

\square

 rrereror cerrene Co. $\frac{\operatorname{crccoc}}{\frac{c}{4}}$
 $\frac{\text { cercores }}{\frac{1}{c o r e c e}}$ <rrocer acreccre <rrerccere rcrococe rercrere recocer rercoser racccor rercero recrox Cr(c) Crecreres
rercor croceca crccos crcce creres
creres) crcces $\frac{\text { rerr }}{}$

THE UNIVERSITY
OF CALIFORNIA LOS ANGELES

GIFT OF

JOHN F. COYIE

THE LIBRARY OF

CHAMBERS'S

 ENOYCLOPADIA

 ENOYCLOPADIA}
a dictiotary

OF UNIVERSAL KNOWLEDGE FOR TIIE PEOPLE

ILLUSTRATED

WITH MAPS AND NUMEROUS WOOD ENGRAVINGS

YOL. X

LONDON

W. and r. Chambers 47 Paternoster row AND HIGH STREET EDINBURGI

1868
WITH SUBSEQUENT CORRECTIONS

LIST OF MAPS FOR VOL. X.

TIIE HORLD (FRONTISPIECE).
WEST INDIA ISLANDS, 145
ITALIA ANTIQUA, 578

CONCIUDING NOTICE.

THE design of this work, as explained in the Notice prefixed to the first volume, is that of a Diotionary of Universal Knowledge for tife People—not a mere collection of claborate treatises in alphaluetic order, but a work to be readily consulted as a Dictionary on every subject on which people generally require some distinet informationno article being longer than was absolutely necessary. Commenced in 1859, the work is now brought to a close in 1868, and the Editors confidently point to the Ten volumes of which it is composed, as forming the most Comprenersive-as it certainly is the Cheapest-Enoyolopedia ever issued in the United Kingdom.

The original plan, as exemplified in the first volume, has been strictly adhered to throughout; and if, as the work proccedel, there has been any change in the method or quality of the execution, it may at least be affirmed that the change has not been for the worse. After some expericnce, it became easier to find the person specially qualified to write a particular kind of article, and thns the circle of contributors became widened, and the distribution of the work more specialised. It was also seen to be desirable, in regard to certain classes of subjects, to admit a rather ampler selection of heads. This has been effected without increasing the scale of the work, not so much by less full treatment of the subjects, as by increased care in condensing the statements and ounitting everything superlluous.

It will be observed that in the earlier volumes there are fewer notices of places than in the later. These and other deficicucies in the Geographical department, hare, as far as possible, been remedied in the Supplenent; so that the Excyolopedia forms a complete Gazetteer. The minuteness of a special geographical dictionary is, of course, not to be expected : with regard to towns, for instance, it may be well to state, in order to prevent disappointment, that, as a rule, no place with a population under 3000 in the United Kingdom, or under 5000 in other parts of the world, need be looked for under its own name, unless it be historically or utherwise noteworthy. Sut towns, rivers, \&c. of secondary importance mentioned anywhere in the work find a place in the Index, and thus a clue is given to some information regarding them, were it only their whereabouts on the map.

In like manner, in the department of Biography, the liuited seale of the work made it necessary to exclude many names which would be deserving of record in an exhaustive biographical dictionary. The intention has been to include only the more prominent actors and thinkers, dead and living, especially such as lave attained extensive celebrity. The difficulty of making such a selection is known only to those who have tried it ; and
the Editors were prepared to have the julicionsness of their choice frequently questioned. In settling relative clams to distinction, the judgment iepends much on the special pursuits or sphere of thonght of the judge. Of the omitted names to which attention has been kindly calleal by correspondents, several have, on reconsideration, been introtuced into the Supplement.

Natural History has been copionsly treated. Without any attempt at embracing a complete exhibition of the three kingdoms of nature, the aim has been to give some account of every class of objects having a general interest, more especially such as are in any way of use in the economy of life.

The articles descriptive of the structure aud functions of the human body have been selected and treated mainly with a wiew to illustrate the laws of health. The subject of Health and Disease has received more attention relatively than is usual in such works ; and the articles of this chass will form a pretty complete Dietionary of Domestic Medicinc. How important it is that some knowledge on these matters shouht be widely diffused, is becoming more and more recognised. The directions given in regard to treatment are chietly meant for those cases of sudden illness or injury where lay practice is necessitated ly the absence of professiomal assistance. Lut prevention is better than eure; aul the chief advantage of a generally diffused knowledge of the nature and eanses of diseases is, that it teaches people how to aroid them. A review of what has been done in recent years for the preservation of the health of communities, is given at some length in the Supplement, under the heal of Sivitary Science.

Of the Sciences, the least adapted to encyelopredic treatment is Mathematics. All terms of common occurrence, however, have been introluced, and a brief exposition of the subjects given, so far as could be done in an elementary way.

Fatural Philosophy has receivel ample attention, and all the leading doctrines and facts of general interest will be found under their appropriate heads, treated in a popular way and divested as far as possible of the technicalities of mathematics.

Chemistry, some knowledge of which is lecoming daily more iudispensable in all ilepartments of life, reecives a comparatively large space. Prominence has been given to those points of the sulject that have either a direct practieal bearing or a special seientific interest. During the progress of the work, several changes in the nomenclature and notation of the science have come into general use; but it was thought better to preserve uniformity in the use of terms and symbols to the end, and to give an account of the changes in the Supplemext.

A distinctive feature of this Excrclopedis, it is believed, will be found to lic in the number of articles deroted to religious beliefs and speculative opinions, and in the way in which these topies are handled. The principle followed has been, not to pronounce an opinion for or against a particular doctrine, but to give a true and unprejuliced account of it. To do this, however, in regard to matters of still living controversy, on which almost every one has more or less of a personal feeling, is next to impossible ; and therefore the plan has been adopted of giving the oplosing views, wherever it waz
practicable, as stated by their respective adherents. Thus, the articles on the doctrines and rites of the Roman Catholic Church are written by a Roman Catholic scholar ; the Unitarian scheme of doctrine by a Unitarian ; and the Secularists have been allowed to state their own case. In carrying out this principle, it has sometimes been necessary to employ two writers on one article. The account of the Feforamatios, for instance, is naturally written by a Protestant ; but our conception of the motement is not complete until we know how the same erents are looked upon by inteliigent adherents of the Church of Rome; and accordingly, a paragraph is added mitten from the Roman Catholic point of view. Similarly, in the article Brshop, the Episcopal and Presbyterian theories of the origin and nature of that office are from different pens. The principle of getting an account of a system or doctrine from a believer in it has not been confined to religion; it has been acted on in regard to Homgopathy, Irddopathy, and many other subjects. The Editors feel confident that in thus securing the most favourable representation of both sides of a controversy, they were doing the luest in their power for the ultimate prevalence of the truth. We are not in a position to judge rightly between two opinions until tre know exactly what they are; and this we can do only by having both before us in the light in which they appear to those that hold them.

The greaf world of thought of the East, with its hundreds of millions of subtle intellects and prolific imaginations, has remained litherto almost a sealed book in the West, except to a few oriental scholars. Yet the Eritish public might be expected to feel some interest in inquiring what kind of thoughts and fancies actuate the rast multitudes of their fellow-subjects in Hindustan-what gols they worship, and with what rites; what things seem good to them, and what eril ; how, in short, they interpret the rildle of this world, and the part they play in it. The means of gratifying this curiosity is now made more generally accessible than it has heretofore been, by the numerous articles, drawn from original sources, on the religious and philosophic systems of India. (See the articles Ispra, section on Religion; Purâ's, Teda, Tishau, Vedàsta, Traxsmeration, Buddism, Lexhisu, Nirvára, de.) Attention is also called to the original articles on Mohammedanism, and on its ratious schools, sects, and heresies (see Mohammedaism, Koran, Sunfa, Shites, and others in the Excyclopedia proper, and particularly the articles Mohamiedan Sects, Motazalites, Ismalis, Sincere Brethred, \&c. in the Sicpplemest). The reader who has been accustomed to think of the Old Testament Scriptures as the whole of Hebreir literature, will be able, from the articles on the Talmid, Haggida, Halacha, Essenes, and others, to form some notion of the rich treasures of Jewish thought and learning that lie buried in the Talmudic writings and have only recently begun to attract attention.

True to its projected plan as a Dictionary of Uniyersal Kxomledge for the Pecple, Chambers's Excyclopedis will be found to be especially rich in notices of miscellaneous matters. Some of the subjects introduced might perhaps be considered beneath the dignity of a book aspiring to a more sererely scientific character; but all of them are, if not instructive, at least curious or entertaining, and likely to occur in the course of reading or conversation. During the progress of the work, the Elitors have received numerous assurances from parents how highly it was prized, even thongh only partly issued, in households with young people at school, as a repertory of the kind of things they are constantly in searclı of and often puzzling their elders abont. This use of the

Excrolopedn has been steadily kept in view; and it is gratifying to learn that it is foumd efficiently to serve the purposo intended. The numerons wood-cuts and maps will, it is hoped, enhance its valun in this respert.

To meet the more important of the changes that have taken place since the publieation of the Excrecopedia began, as well as to remedy some deficiencies, a Surplement of 409 pages has been added. It consists of: (1) Suljects that bave ouly recently risen into importance, or that hat ljeen overlooked ; (2) Subjeets already notieed in the borly of the work, but which have since umdergone important changes, or, from other causes, scemed to require to be treated anew.

In the introductory Notice, it was stated that the plan of the work was contrived with a special view to render it easy of consultation. This end will be still further served by the Index of subordinate subjects at the end of this rolume. Profixed to the Index is a paragraph explaining its nature anci use.

That in a work extending to 8320 pages, and consisting of upwards of 27,000 distinet articles, in the production of which more than a hundred writers have taken greater or less part-that in such a work, notwithstanding all rigilance to the contrary, there should be not a few oversights, errors, and inconsistencies, is a matter of course. Iet, in spite of such inevitable blemishes, the Editors feel confident that, in substantial accuracy and trustrorthiness, this Excyelopedia will bear comparison with any book of the kind. To the numerous correspondents who have faroured them ly pointing out faults, or makinet other suggestions, they beg leave, once for all, to return their best thanks for the uniform courtesy with which their criticisms have been offerel. Some of the complaints of omission havo been attended to in the Supplemest; others proceeded on mistaken ideas as to what the Lixcyclopedia was intended for.

A list of the chicf Contributors is given on a subsequent page. To this able staff, to whose special knowledge of their subjects the Excrecopsdis owes its chief value, the Editors have to express their acknowlelgments, and to thank them for the patience with which they have submittel to the limits as to space and other trammels incident to the nature of the publication, which often rendered the satisfactory treatment of their subjects extremely difficult. Tho list does not iuelude the numerous friends to whom the Editors aro indebted for single contributions on local or other matters coming within their personal knowledge.

Finally, it is right that the public should recognise, in Avdrew Findlater, LL.D., the Activo Editor, who has burne the great burden of the immediate superintendence of this work during its progress from beginning to end. Where a man of learning has given ten years of his life to a task which confessedly ho has performed with skill, taste, and unflagging perseverance, it seems to the Editors that. in simple justiee to him, lis name should be made honourably and gratefully known.

W. \& R. CILAMBERS.

Ednburgit, April 1869. "

LIST OF CONTRIBUTORS.

Patrick P. Atexander, A.M., Edinburgh.
Wh. Anderson (the late), Edinburgh.
Thomas C. Archer, F.R.S.E., F.B.S.E., F.R.S.S.A., Director of the Edinburgh Museum of Science and Art; Corresponding Member of the Scientific Committee of Crown Domains of Russia; \&. \&c.
Alexander Bany, M.A., Professor of Logic in the University of Aberdeen.
George Bapclay, Barrister-at-Lats, London.
B. Batcis, C.E., Rotherham.

Aletayder Melfille Bell, F.E.LS., Lecturer on Elocution in Unisersity College, London.
Jayes G. Bertraty, Edinburgh.
J. Arther Btwss, Manningham, Bradford

Sayuel Birce, LL.D., Keeper of Egyptian and Oriental Antiquities, British IIuseum; Corresponding Nember of the Institute of France, \&.
John Stuari Blackie, F.R.S.E., Professor of Greek in the University of Edinburgh.
W. A. F. Browne, Commissioner in Lunacy, Edinburgh.
A. H. Bryce, LL.D., D.C.L., F.R.S.E., Rector of the Edinhurgh Collegiate School.
Alexander Bechay, M.A., Secretary of the Scottish Meteorological Society.
George Bullex, Assistant-keeper of the Printed Books, and Superintendent of the Reading. room, British Museum.
George Burnett, Adrocate, Lyon King of Armis.
J. H. Berton, LL.D., Historiographer Royal for Scotland.
David Buxton, F.R.S.L., Principal of the School for the Deaf and Dumb, Liverpool.
R. C.uspele, Barrister-at-Law, London.

Jands Capmehaet, Classical Naster, Edinburgh Academy:
Robert Carrcthers, Inverness.
Whlmam Chrruthers, F.L.S., F.G.S., Botanical Department, British Museum.
W. Dyce Cay, Assoc. Inst. C.E., Resident Engineer, Aberdeen Harbour.
Wy. Chajbers, F.R.S.E., \&c.
Robt. Chinmer.s, LL.D., F.R.S.E., \&c.
Robt. Ceaumers, Jun., Eliaburgh.
Jayes Cowie, Sundridge Hall, Bromley, Kent.
The Rex. J. Mison Cox, M.A.. Viear of Bishop's Tawton, Devon, and Prebendary of Excter.
Robert Cox, F.S.A. Scot., Eulinburgh.

Alexamper Cruickshank, A.M., Aherdeen.
George E. Diy, M.A., Cant., M.D., F.R.S., late Professor of Medicine in the University of St Andrews.
Emakuel Devtsch, British Museum.
George Dodd, London.
C. Home Docglas, Edinburgh.

Fincay Dex, Weston Park, Shipston-on-Stour.
Rev. W. J. Edles, M.A., Chaplaiu of Trinity College, Cambridge.
A. MI. Edmafds, M.R.C.S. Eng.. F.R.S.E.E, \&c., late Demonstrator of Anat., University, Edinburgh.
Thozas Ellisoy, Liverpool.
Robert M. Fergesos, Ph.D., F.R.S.E. Edinburgh.
Francis Francis, Twickenham.
Willias T. Gairdser, M.D., Professor of Practice of Medicine, Unirersity of Glasgow.
Alexayder Galletly, Curator, Industrial Museum, Edinhurgh.
Professor Johi Gamgee, Albert Veterinary College, London.
Theodor Goldstücker, Ph.D., Professor of Sanserit in University College, London.
George Grtb, LL.D., Professor-substitute of Law in the University of Aberdeen.
Sajrel Halkett. Keeper of the Adrocates' Library, Edinburgh.
Hexry Hall, F.R.G.S., War Dep. Surveyor, Portsmonth.
David Hamilton (the late), Edinburgh.
B. G. Johrs, M.A., Chaplain of the Blind School, St George's Fields, London.
A. Keitil Johnstox, LL.D., F.P.S.E., Geographer to the Queen for Scotland.
W. B. Johsstone, R.S.A., Principal Curator and Keeper of the National Gallery of Scotland.
IIexpry Jones, Jın. ('Carendish'), London.
J. Kempe, M.A., Fellorr of Exeter College, Oxford. Mps J. Krox.
Hempy H. Lincastere, Advocate, B.i., Balliol College, Oxford.
Smos S. Latcie, A.Mi, Secretary to the Educatiou Committee of the Church of Scotland.
E. Lomm, Advocate, LL.D. of the University of Pisa.
John II. vas Lexyep, Zeyst, Netherlands.
James Leslie, C.E., Edinburgh.
Herbert C. Lloyd, London.
James Lorimer, A.ML, Professor of Public Law in the T'niversity of Edinburgh.

Strivenson Macadimi, Phom, F.R.S.E., F.C.S., Lecturer on Chemistry, Nurgeous' Hall, Edinburgh.
Divio MacGibbos, Architeet, Elinburgh.
liev. Dr Macgowas, Missionary, China.
The Riev. J. M'ILfaith, Minister of the English Hifformed Chureh, Amsterdam.
D. M'Levsañ, M.A., Barrister-at-Law, Imer Temple, London.
J. F. M'Lexsing, M.A., F.R.S.E., Adrocate, Edinburgh.
James Martis, London.
Willimi Mexzies, Deputy-survejor of Wiudsor l'arks and Forests, icc.
Rev. Jonn Montgomeny, A.M., Edinburgh.
Professor J. Merray, Lingston, Canada.
'1'. 1. Nicnols, M.D., Amerieaa Journalist, Londou.
Sir Charles Nicholsox, Bart., D.C.L., 1.L.l)., late Chancellor of the University of Syduey, New South Wales.

Jamifs Nicol, F.R.S.E., F.G.S., Trofessor of Natural History in the University of Aberdeen.
Elise C. Otté.
James Patersoy, A.M., Barrister-at-Law, Londoy.
Jayes Parit, London.
Alexander Peddie, M.D., F.IT.C.P.E., F.I.S.E., Edinburgh.
William l'exgelly, F.R.S., F.G.S., Torquay.
G. Croon Robertson, A.M., Professor of Philosophy of Mind and Logic, University College, Laution.
Josepir Robertson, Iate Curator of the Historical Department, (ieneral liegister House, Ediuburgh.
Destham liobrison, H.M. War Oftice.
Rev. T. P. Rossetti, Turin.
lobert Ressell, F.R.S.E., Pilmuir, Fifeshirc.
Edwarib S.avg, J.LiS.E., Elinburgh.
W゙illia Thomes Shaw, Loudon.
W. W. Snone, M.A., Oxon.

Aefxander Smiti (the Iate), Eilinhurgh.
H. Ayrrose Smith, l…A., London.
J. Cimprell Smini, M.A., Advocate, Elinburgh.

Mre L. C. Smitir, Keswick.
James 1'. S'reele, 13.A., M.D., Lancel Office, London.
Thonas Stevenson, F.R.S.E., M.I.C.E., Civil Engineer.
Robert Stuart, Parrister-at-Law, Q.C.
P. G. Tait, M.A., late Fellow of St l'eter's College, Cambrilge, Professor of Natural Philosophy in the Tniversity of Edinburgh.
Adam Trom, LLD.
T. W. Thomson, C.E., F.R.S.E., Edinburgh.
D. Timiniazle, St Petersburg.

Joni 'Juloch, 1).D., Principal of St Mary's College in the University of St Andrews.
N. Van der Yliet, Se Petershurg.

Enward Walford, M.A., Iate Scholar of Balliol College, Oxford.
Jons Watts, Ph.D., Manehester.
H. Werr, M.A., Cantab., Classical Master, Edinburgh Aeademy:
W'lllim Westgartit, London (late of Melbourne, Victoria).
Walter White, Assistant-secretary Royal Society, londor.
W. Mattied Wimiams, F.C.S.. Chemist to 'Tho Atlas lron and Steel Works,' Sheffield.
Jom Dove Wilsos, Advocate, Sheriff-substituto of Kiveardineshire.
Christorner Tatchell Winter, Cheltenham.
T. Stremhll. Wrigit, M.D., F.R.C.P.E.

Andrew Findliter, A.M., LL.D., Edinburgh, Acting Eiditor.
Jons. M. Toss, A.M., now of the High School, Edinburgh, Assistant Editor.

Other literary gentlemen conueeted for longer or shorter time with the regular staff of the Encyclopadia-
Alex. Nicolson, A.M., Advocate, Elinburgh.
J. U. Hilliouse, A.MI, Mathematical Tutor, Edinburgh University.
J. Lobb. David M. Shith. John S. Kelte.

UNIVERSAL KNOTVLEDGE FOR THE PEOPLE

VITAL STATISTICS.

V1'TAL STATISTICS. The ammal Reports of the Registrars-general for England and Scutlind (see lieglstration) form a valuable storchouse of information on the various subjects connected with vital statistics. Desides detailed abstracts for each year of births, marriages, and deaths, tables of the fittal diseases, classified in comhination with ages, are given, and comments upon the salient points of the year's recistration accompany the whole. The number of births, marriages, and deaths varies with the state of trade, price of food, and the seasons, and thus furnishes a test of the condition of a nation. We shall notice separately each of these three divisions of vital statistics.

1. Births.-From the 25th Report of the Regis-trar-general for England, it appears that in 186 응 there were registered in England (of which the estimated population for that year is $20,336,467$) 712,6S 1 births, exclusive of stili-born, being at the rate of $3.50 \pm$ per cent. to the population ; or 1 birth to 29 lives. 363,534 were male and 349,150 were female children, being in the proportion of 104 males to 100 females. In Huntingdonshire, however, the proportion was $11 \pm$ males to 100 females; while Dorsetshire and Ratlandshire reversed the proportions, giving respectively 99.9 and 97 males to 100 females. There is, it seems, no recorded exception to the rule that the births registered in the first six months of the year exceed those registered in the last six. In Scotland, during 1862, we find the number of births registered to have been 107,138; being 3478 per cent. of the population estimated for that year at $3,079,650$.

In England, there are on an average 5 children to a marriage; of these, three attain a narriageable age to replace their parents aud those who have no offspring. In France, the average fecundity of a marriage is 321 children. In Paris, it is $2: 31$. Females of the age $20-40$ produce 7 in every S of the children horn; and the parents of nearly half of the children born are under 30 . The ligher classes of a country have fewer children than the lower, and
a larger proportion of their marriages are unfruitful. The average of European statistics shews 1 breg. nancy in 81 to produce twins; 1 in 7400 to produce triplets; 1 in 160,000 , quadruplets. The murtality of mothers in childbirth in England and Wales clecreased from 1 in 161 , in 184S, to 1 in 212 in 1854.

The direct canse of the increase of population in any country (apart from immigration) is, of course, the excess of births over deaths, and this will plainly depend ou the following canses: (1.) on the prolificness of marriages; (2.) ou the proportiou born which lives to marry; and (3.) on the interval between the mean age of marriage and the mean age of death. All these conditions must be favourable to shew the full power of increase in action. They have never yet, on any large scale at least, been found operating with naximum force. In the United States, we fiud a combination of the first two ; but from the 'expectation of life' (see Life, Mean Dueation of) not being favourable in that country, it follows that the third cause is not in favourable operation.
2. Marriages.-It wonld seen to be contrary to the principles of human nature that early marriages slonld be united to longevity. Yonthful marriages arise where the chances of the acquisition of wealth in youth are favourable; and when these are favourable the fact seems to tell against longevity. One of the most interesting and useful points of view in which registers can be considered is the evidence which they give of the varying 1 revalence of the prudential check to marriage and population in different countries and places. The prudential check will shew itself in two ways-either by the proportion of marriageable persons who are not married, or by the lateness of the average age of marrying. On the supposition of the natural prolificness of women remaining at the same point, the birth-rate will indicate the cxtent of prudential check in whichever of the two ways it may manifest itself. Suppose that from any canse the prudential restraint on marriage were to become weaker among any

1

VIT.Al, ST.ATISTICS.

peeple than it had hitherto been, while the means of maintenance remained the same, what would happen? A corresponding increase would immediately take place in the ammal inortality, and the mean duration of life would lee correspondingly reduced. And thero can he no donbt that the premature mortality which prevails all over the worh is mainly owing to imprudent marriages. The teath of one half of the hmman race under the age of puberty dees not take place in virtue of any law of man's constitution, but frem a disregard of the
admonitions of its laws. Those who have the means of whedience under the conditions of civilised life gencrally greatly exr ; yet unt so greatly, fur the most part, as to le fatal to infant life. It is the want of means, in other words, imprulent marriages, which is the cause of the whole. 'Ihe following table is taken from an article "On the Statisties of Narriages amoner the F'amilies of the l'eerage,' by Arehibald Day, Esq. (Aswurance Magazine, No. 4S). The results as regarls the peerage families are hased on the data of it century to Deeember 31, 1855 :

PRORONTION PER CENT. OF HARRIAGES.

Rors.	Pecrage Fanilites.	$\begin{aligned} & \text { Cneland. } \\ & \text { (S. Lrown. } \end{aligned}$		Pelgium.	Massa- chusetis.	l'uorer Clianes. (St cieorseses)	Perrage 	1027 Iecrs. (Sualer.)
	Firis and Suberyucut 	1380-1549,	15s - 1 1535.	1541-1435.		$\begin{aligned} & \text { Statimical } \\ & \text { scietwe: } \end{aligned}$ Jouram!.	$\begin{gathered} \text { Fitue } \\ \text { Sarratice } \\ \text { only. } \end{gathered}$	$\begin{gathered} \text { Frat } \\ \text { Marraciges } \\ \text { only. } \end{gathered}$
Ender 20. 30 to 45, 45 to 60 , 60 and upwards,	$\begin{array}{r} 53 \cdot 08 \\ 33 \cdot!8 \\ 9 \cdot 50 \\ 3 \cdot 14 \end{array}$	$\begin{array}{r} 76 \cdot 7 \\ 15.31 \\ 4 \cdot 03 \\ .89 \end{array}$	$\begin{gathered} 55.5 .2 \\ 19.22 \\ 4.25 \\ .31 \end{gathered}$	$\begin{gathered} 5 .-5 \\ 39.93 \\ 6.05 \\ 1.27 \end{gathered}$	$\begin{array}{r} 75 \cdot 01 \\ 154.54 \\ 412 \\ 1.33 \end{array}$	$\begin{array}{r} 85 \cdot 00 \\ 14 \cdot 06 \\ 1.4 \\ 0.00 \end{array}$	$\begin{array}{r} 65.97 \\ 11.63 \\ 2.40 \\ 0.00 \end{array}$	$\begin{array}{r} 62.81 \\ 27.75 \\ 7.88 \\ 1.56 \end{array}$
	10000	$100 \cdot 00$	$100 \cdot 00$	$100 \cdot 00$	$100 \cdot 00$	10000	$100 \cdot 00$	100.00

In the above, column 1 shews the average rate of marriage at the given ages in the families of the peerage. Thus, of 100 persons married, it will, on an average, be fonnd that 53.05 are under 30 years of ame ; and so on. Columns 2 and 3 give the same results for all England, as dedueed by Mr S. Brown (see his paper in the Assurance Magazine, vol. vii.). Column 4 is from M. Quetelet's observations in Belgium. Column G from a lieport of the committee of the Statistical Socicty upon the 1 roorer inhahitants of St Gcerge's-in-the-East in 1845. Colunn 8 was compiled by Mr Sadler, and will be foum in the secend velame of his work on the Law of Population. From the 25th Ieport of the Negistrar-general, it appears that in 1862 there were selemnised in England 164,030 marriages, of which 129,733 , or 79 per cent., were aceording to the rites of the established chureh. On lieense there were 19,486 ; after banns, 102,570 ; on superintendent registrars' certificate, 3,966 ; and 33323 not stated under which head. The mean anmul rate of persons married in England is $1 \cdot 639$ per ecut. In 1862, there were married in England 22,457 widowers, and 14,737 widows. Of every 100 men who married, 13% had been previonsly married; while 9 per cent. of women married had bren married before. These proportions are slightly below the average. $10,615 \mathrm{men}$ and 32,464 women were under age, being in the respective proportions of 0.5 and 10 .S per cent. married. Year by year the number of plersons who simn by mark is fonnd to tecrease. From 414 per cent. in 18.55 , it had diminished to 255 per cent. in 1862. In Scetlinel, the annual rate per cent. of persons marrical is $1 \% 31$. It monst be kept in view, however, that marriage registration is eompulsory in England, while in Sentland it is not so as regards irregular marriages.
3. Deaths.- In 186., the total number of deaths registered in England was $4: 30.56 \mathrm{G}$. The increase of deaths with the rising tide of population is such that while there were only two instances-viz, those of 1547 and 1849 , in the 13 years 153S-1850, in which the annual number of leaths reached 400,000 , there are ten instanees in the twelve years 1851-1562 in which it rose above 400,000 . Had there been no ennigration in the three years $1500-$ 156 , the natural inerease of the population of England rould in these years have been equal to the tewns of Liverpool and Birmingham unitel. The
mean rate of the mortality of England for the ten years $1853-1860$, is found to he 2.21 I per cent. In Seatland it is, for the seven years 1855-1861, 2.07 per cent. Nothing, according to the Registrar-general, shews more clearly the lifferent meteorologieal conditions of the two countries thian the fact that in 1562 , when the mostality rate was below the mean in England, in Scotland it was above it, heing for that jear - 180 per cent. A similar fact was observed in 1860, which was a healthy year in Fngland, and in Scetland remarkably the reverse. The mortality of males is invarially higher than that of females. Throughout the 25 years $1835-$ 1562, male mortality in England never fell so low as $2 \cdot 100$ Ier cent.; the lowest being $2 \cdot 136$ in 1850 ; while that of females was, in 11 years out of the 25 , beluw O.I. In 1856, it was 1.969. When any year is especially healthful, the fact tells most in favour of female life. On an average of the 25 years 1835 -1562 , ont of 100 males there died ammally 2309 While out of 100 females there died annually 2143 ; for every 100 females that died, there died 103 males; and of equal numbers living, the number of male deaths to every 100 female deaths was 108. T'lie highest mortality rate during the 25 years, both male and female, occurs in the eholera year 1549, the second highest in the famine year 184\%, and the third highest in the cholera year 155%. For the three years $1854-1556$, it will be found that the mean male mortality is almost exactly that of the 2i) years given, while the female rate is aetually slightly (.00G per cent.) less. With regard, then, to the eholera visitation of 1851 at least, it may be held that the victiras must bave been generally those of diseased or clebilitated constitution, who, had there been no cholera, would in course of the next year or so have died from some other cause. The ratio of male to fumale mortality dillers enasiderably at different ages. Thas, in the first fire years of life the ratio is, male per thonsand 7\%16 to 6.216 per thonsand females, From 5 to 10 the male excess is very small, and from 10 to 35 the female rate exceeds the male. But from 45 upwards, women die at a deciledly lower rate than men; and the mean result over the whole of hfe is in favour of female life. It is, however, a curious fact in the experience of assurance offices, that while female amuitants are longer lived than male, female assured lives are no better. This fact doubtless

VITAL STATISTICS.

arises from the critical periods incident to female life, and to the selection exercised by the public against the offices.
The following are examples of the fluctuations of the rates of mortality in England, at different ages in the 25 years $183 \mathrm{~S}-1862$. The mean annual mortality of meu aged $25-30$, was 975 per cent. ; but in 1849 it rose to $1 \% 36$, and in 1850 it was as low as 877 ; the range being thus $: 359$ per cent. At age 55-60, the mean male mortality per cent. per annum is $3 \cdot 136$, but in 1849 it was 3653 . and in 1850 it was 2.979 ; thus giving a range of 674 per cent.
In vol. viii. (for 1860) of the Assurance Magacine will be found an interesting paper, by Mr Samuel Bromn, F.S.S., 'On Mortality amongst American Assured Lives.' We extract the following table, showing the

Agb.	'Expectation cf Life,' according to			
	Mutual Life of New York, Fifteen Years.	- Actuaries or Seventeen English Companies.	Massachnsetts (1835) Tables. (Elliot's.)	$\begin{aligned} & \text { Earr's Englisb, } \\ & \text { No. } \end{aligned}$
20	$42 \cdot 8$	41.5	39.9	
30	36	$34 \cdot \frac{1}{4}$	34	381
40	$25 \cdot 9$	27.3	$27 \cdot 9$	266
50	$21 \cdot 6$	20.2	$21 \cdot 3$	20
60	$14 \cdot 6$	13.5	15	$13 \cdot 6$
70	$8 \cdot 6$	$8 \cdot 5$	$9 \cdot 4$	$8 \cdot 5$

See also, on the subject of American mortality, the Report of the Mutual Life Assurance Company of New York, for Fifteen Years ending February 1, 1858 (New York, November 1859).
Influence of Occupation.-The interesting question of the inflnence of different trades, occupations, and habits of life on health and mortality, will be found ably treated in Mr A. G. Finlaison's Report on

Friendly Societies, with accompanying tables and returns, printed by order of the House of Commons, August 16, 1853; in 11r Neison's work on Vital Statistics (Lond. 185.3); and in Mr H. Ratcliffe's Ulservation of Rate of Mortality and Sicliness existing among Friendly Societies (Manchester, 1S50). From Mr Finlaisou, we give the following table, shewing the

-	Nariners.	Colliers.	Mptal Minery.	Painters.	Tulice	Rallw Serranti.	$\begin{aligned} & \text { England } \\ & \text { and } \\ & \text { Wales. } \end{aligned}$
20	-66	$1 \cdot 11$	-65		1.09		$\cdot 74$
25	1.71	$\bigcirc 7$	$1 \cdot 76$	1.55	$\cdot 57$	$\cdot 52$	-71
30	169	-84	- 81	-88	$1 \cdot 35$	1 -18	$\cdot 77$
35	$2 \cdot 26$	1-67	1.02	-87	$1 \cdot 77$	$1 \cdot 00$	-83
40	$1 \cdot 79$. 93	$\cdot 29$	$2 \cdot 04$	$2 \cdot 05$	1-56	$1 \cdot 03$
45	2.51	$1 \cdot 09$	$2 \cdot 00$	2.09	-68	$1 \cdot 63$	$1 \cdot 21$
50	$2 \cdot 48$	$1 \cdot 70$	1.84	$\underline{2} \cdot 87$	$6 \cdot 35$	1.74	1-50
60	2.79	$3 \cdot 96$	$2 \cdot 61$	6.06	..	$5 \cdot 50$	$2 \cdot 61$

Among the mariners, a strong contrast is found to prevail between the sickness and mortality rates, the former being low while the latter is higl. The same fact is found among painters. 'The practical difference in the distribution of sickness,' says Mr Finlaison, 'seems to turn upon the amount of the expenditure of physical force. This is no new thing, for in all ages the enervation and decrepitude of the bodily frame has been observed to follow a prodigal waste of the mental or corporeal energies. But it has been nowhere previously established upon recorded experience that the quantum of sickness annually falling to the lot of man is in direct proportion to the demands upon his muscular power. So it would seem to be, however.'-Report, p. 211.
The following is from Mr Finlaison's Digest of Returns:

GENERAL AVERAGES.

,	Number returned as bick out of each 100 perions biable to sicknes	Average Sicknews per anaum to each in Days.	$\begin{aligned} & \text { Average Sickness } \\ & \text { peranaump to each } \\ & \text { Person nick ex. } \\ & \text { pressed in Days. } \end{aligned}$	$\underset{\substack{\text { Moriality } \\ \text { Cent. }}}{ }$	Withdaamals and Exclusions per Ceat
Light labonr without exposnre to weather,	21.58	9.5489	44.2483	$1 \cdot 42$	2.97
Ligbt labour with exposure to weather, .	20.80	8.5288	41.0053	$1 \cdot 37$	$2 \cdot 82$
Heary labour without exposure to weatber,	26.54	$10 \cdot 5122$	40.7349	1.38	$3 \cdot 08$
1leary labour with exposare to weather,	28.04	$10 \cdot 6537$	$37 \cdot 4960$	1.67	$3 \cdot 02$
England and Wales, .	$24 \cdot 99$	$10 \cdot 1155$	$40 \cdot 4809$	$1 \cdot 26$	3.00

In Mr Neison's work will be found a valuable chapter on the rates of mortality among persons of intemperate labits. The following shews the period of years which there is an equal clance of living among the

Ages.	General Population of Ergland and W'sles.	rersons of In:cmperate Habits.		
20	$44 \cdot 212$			
30	36.482			
40	2S-:90			
50	$21 \cdot 255$			
60	14.285			

The average duration of life, after the commencement of intemperate habits, Mr Neison finds to beamong beer-drinkers, $21 \cdot 7$ years; spirit-driukers, 16.7 years; indiscriminate, 16.1 years. Hence it appears that distilled liquors are more hurtful than fermented, but that both combined are worse than either taken separately.
The following table, from Mr Ratcliffe's work, shews the 'expectation' at decennial periorls of life, for England and Wales, Manchester Unity Order of Odd Fellows, and various trades :

Encland and Wales- Rural, Town, and City ; and ranous Trades.	Age.				
	20	20	40	50	63
England and Wales,	39.88	$33 \cdot 13$	26.56	20.02	1359
Manchester Unity,	40.92	33.70	$26 \cdot 41$	$13 \cdot 40$	1327
Bakers,	41.92	34.05	26.58	$20 \cdot 02$	14-1:
Blacksmiths,	37.96	30.34	2352	18-11	13.02
Bricklayers,	$37 \cdot 70$	$29 \cdot 66$	22.22	14.78	4
Butchers,	41.60	33.49	2C. 33	$20 \cdot 32$	$14 \cdot 89$
Carpenters,	$45 \cdot 29$	38.47	31.65	$25 \cdot 07$	$15 \cdot 85$
Clerks, .	34.99	27.77	20.61	14.18	12'11
Coopers,	38.62	$31 \cdot 17$	$24 \cdot 23$	18.2	13-43
Drers,	39.89	32.60	24.73	18.20	13.4.4
ILatters,	38.91	34.29	27.93	1987	12.5:1
Labourers (Tomn and Citr),	40.87	$33 \cdot 65$	26.27	19.07	$13 \% 3$
" (Rural), .	45.32	37-71	29.91	$22 \cdot 18$	52
Millirrights,	4032	$33 \cdot 38$	$27 \cdot 37$	1960	t 3
3 lill Operatives,	38.09	$30 \cdot 45$	22.61	1555	10-61
Miner:	35.22	$31 \cdot 65$	$24 \cdot 25$	$17 \cdot 52$	12.27
Flumbers,	38.13	31.59	24.67	18.24	12.67
Potters,	3659	$30 \cdot 51$	$23 \cdot 80$	18.74	13.71
Printers,	3666	28.56	2055	1167	$12 \cdot 04$
Sawyer	40.02	33.06	26.05	13.04	12.11
Servanta, Dome	42.03	3430	$27 \cdot 32$	$20 \cdot 7$	1 1 ¢ 51
Shoemake	40.87	3:3‘99	26.23	19.04	1305
Spimners,	$39 \cdot 04$	32.42	24.32	16.62	12.21
Stone-masons,	$35 \cdot 19$	3041	2 ± 16	$18 \cdot 15$	1479
Tailors,	$39 \cdot 40$	32 51	25.34	18.31	111.23
Wearers,	4192	$3{ }^{3} \cdot 55$	28.53	22.01	$15 \cdot 61$
Wheelwrights,	$40 \cdot 97$	33.87	2754	$19 \cdot 11$	$13 \cdot 84$
Wool-combers,	$38 \cdot 58$	33.73	25.96	17.64	13.22

VITAL STATISTICS

It thus appuars that at the early perioul of life, age 20, the following trades, placed according to their expectation, shew an inferior expectation in comparison with the general results of rural, town, and eity districts comlinell: Clerks, potters, letterpress printers, bricklayers, hacksmiths, mill operatives, phmbers, stone-masons, miners, wool-combers, coopers, hatters, spimers, tatilors, ilyers, sawyers, millwriflits, town and city labourers, and shocmakers. The following trades shew a superios expectation: wheelwrights, butchers, bakers, weavers, domestic servants, earpenters, and rural lahmures.

At the last perion given in the table, bricklayers, tailors, mill operatives, printers, clerks, spinners, miners, plumbers, hatters, blacksmiths, shomakers, wool-combers, coopers, and sawyers shew an inferior expectation; ime dyers, town labourers, millwrights, potters, wheehwrights, bakers, stonce milsons, domestic servints, butehers, weavers, rual labourers, and carpenters, slew a superior expectation, in eonnmison with the general results.

I'lae comparative healthiness of varions occupations among the lower ranks in Loncton is given by lor Lethelyy for the years $1555-18.76$; and another view of the healthiness or umbealthiness of industrial oceupations as regards England generally, is given by Dr Farr from the mortality of males at amb above the age of 20 following different industrial "ecupations, in 1S51, as compared with the number of persons emmonetated in them at the census of that year. While the general anmal rate of mortality in England, in 1851 , of 1000 males at am! above the age of 90 , was 20 , that of farmers was 25 ; shomaliers, 18 ; weavers, 17 ; grocers, 11 ; blacksuiths, 15 ; carpenters, 19 ; tailors, 19 ; labuarers, 21 ; miners, 15 ; lakers, 17 ; mutchers, 21 ; imkecepers, 30 . Taking into account the ages at death, the farmers were the longest lisers. Labourers, who form nearly a foneth of the males of England, had a general mortality almost the same as that of the general population, but a very Inch avortality at great ages. At any one clecade of life, the mortality of iun and beer-shop keepers execels that of all the other classus, exeept the butchers, at age $\bar{j}-65$. The murtality of butehers was much heavier than that of any other class, except that of imkeepers, maler the age of 65 ; this faet is supposed to be owing to intemperance, slanghter-homse eflowia, and the use of too much animal and too little vegetable food. All ocenprations have their peculiiur daugers which counterbalanee each other ; thas the tailor is not exposed to the explosions so fatal to the miner, and the labourer has exercise denied to the tailor.

The mortality in the army and mavy during peace and war shews many interesting points. Statistics tell us, that soldiers, though picked men, liviug in custly harracks in Britain during peace, are nearly. as uubcalthy as the people of our unhealthiest cities, and sometimes almust twice as unhealthy; the average annual cleaths of solliers in Britain heing 170 per 10,000 ; in the honsehold eavalry it is 110 1eer 10,$000 ; 133$ in the dragoon guards; 157 in the infantry of the line; and $\because 04$ in the footguards. The mortality at all ages in the army at Lome is almost double that of civilians, a ges being alike. lung diseases and cholera are twice as fital to soldiers as to civilians. This excessive mortality in the army seems owing to overcrowded and ill-ventilated harracks and military hospitals, sameness of dict, and want of healthy exercise. The following table, from the 25th lieport of the Fiegis-trar-general for lingland, shews the annual rate of mortality per cent amongst the officers and
non-enmmissioned oflicers and men in the army abroad in each of the years $1558-1562$:

Year ${ }^{\text {d }}$	Ombers.	
1858	3513	6.701
1839	2111	3.394
1560	1.693	$2 \cdot 603$
1851	1.574	2507
1862	1316	$1 \cdot 381$

The following, from the same, shews the mortality of merchant seamen at soa in the eleven years $18 \pi^{\circ}-186^{\circ}$

Tears,	Sticaidi.	Deathe.	Annual rate of Darenlity io lou lavimg
$18: 5$	159,593	2, 005	$1 \cdot 38$
1853	17:3,525	3,27i	$1 \cdot 30$
15%	162,416	2,782	1.71
1855	164,507	3.318	$1 \cdot 97$
14.56	173,918	3,519	201
1857	176,337	3,44t	135
1858	177.832	3,486	1.96
185 J	173,506	3,430	1-19
1860	171.532	2.760	2-19
1861	171.957	3,581)	$2 \cdot 08$
1862	173,863	3,6:0	4.08
$\begin{aligned} & \text { In the } 11 \text { yiars } \\ & 1852-1862 \end{aligned}$,881,036	36,410	1.94

Valnable information on military vital statisties will be foumd in Militery Stalistics of the United states of America, hy E. D. Elliott (Berlia, 1s63), in Report and I'uluation of the Bengal Military Fund, by Grillith Davies, F.li.S. (Lond. 1S4t); amb in Mr Neison's liepurt on the same as at December 31, 1547.
Mortality varies with density of propulation, place, and climate. Life is longer the better the food, the less the confinement, the more commodious and cleanly the houses. It is a popmar notion that a miki winter is most fatal to life, but the truth is the reverse. Lither extreme cold or extreme heat immediately raises the mortality rate of Great Britain; the injurious effect of cold is in a great measure, however, conline to those whose circumstinees do not euable then to protect themselves against it.
Several of the leading assurance ofiices of England and scotland have recently fomed a joint plan for derlucing the results of their mortality experinuce to December 31, 1863. The facts of each life are tabulated upon cards, classitication according to age being thas rendered extremely easy. In Eugland, the scheme is under the superintendence of a committec of the Institute of Actuarics; in Scotlan!, of Alr lames Melkle, actuary of the Seottish Provident Life Assurance Company:
We give, in conclusion of the subject of vital statisties, the following table, from the 2 2th Fieport of the Fegistrar-geveral, shewiug number and poportion per cent. to population of marriages, births, and deaths in Eagland, France, and Austria in 186: :

	Euglaud.	France.	Ausirin.
Sumbre of Marriages.	164,030	238,812	207.871
Pers cent. of Marisiges to Population,	.807	799	.913
Number of Births, .	712,684	985,589	869,094
Per cent. of Birbs to Populatiun,	$3 \cdot 504$	2626	$3 \cdot 945$
Number of lealis,	436,566	802590	676,375
Her cent of 1 Maths to Pupulation,	$2 \cdot 147$	2138	3.035

The mortality rate of France for $1 \$ 62$, it will be seen, is lower than that of England, but usually it is higher.

VITEBSK-VITERBO.

VITE'BSK, a government in the north of West Pussia, bounded on the N..-W. by Courland and Livonia, and on the N..E by the government of Pskor: Area, 17,19] sq. m.; [ipp. S04,573. The surface is, as a rule, hilly, though woodel plains, marshes, and lakes abound. The Dwina flows for 466 miles in this government; and ly means of this river aad its affluents, large quantities of timber are floated down to the port of liiga. The soil is not fertile, the quantity of cereals grown being generally insufficient for local consumption. Flax is successfully grown; and this material, together with timber, constitutes the chief articles of export. Ship-building is carried on on the Dwina; the lake-fisheries are profitable; and taaning is the most important branch of industry.

VITEBSK, a city of West Iussia, eapital of the government of the same name, on buth banks of the Western Dwina, 359 miles south of St Petersburg. It covers a very large area, and contains many monasteries, churches, and synarogues. Nannfactures are not exteosive; and the trale-the chief articles of which are corn, Hax, bemp, tobaccoleaves, sugar, and timber-is carried on by Jews, who form the larger section of the population. A railway is (August 1566) inder construction between V. and Dinaburg. Pop. $27,56 \mathrm{~s}$.

VITE'LLIN. This name was, until recently, given by chemists to a supposel protein body occurring in the yells of egrs. It has been discovered by Lehnan that this substance is merely an admixture of casein and albumen.

VITE'LLIUS, Acles, Roman emperor, son of Lucins Vitellius the prince of the sycophants who surounded Caligula, but who, according to Tacitus, ' in his provincial administration exhibited the virtues of a former age,' was hora Siepteraber 24,15 A. D., and through his father's influence at court, became consul, 4 S A. D., and afterwarls proconsul of Africa, where his administration gave great satisfaction. He bad been a compraion of Tiberius at Caprex, and was equally a favourite with Calicula, Claulius, Nero, and Galba, the last of whom appointed him commander of the legions in Lower Germany, thinking his interse devotion to gastronomic pleasures would effectually prevent bis becoming a rival. However, V. had not been a month in his new post, till he had completely sained the affections of his soldiers by extreme familiarity and liberality (strongly contrasting with Galba's parsimony) ; and on Janmary 3, 69, they took him from his tent, and proclained him emperor. This decision was adopted by the rest of the troops in Gaul; and two armies, under Valens and Ciecina, immerliately set out to secure Rome, V. following leisurely. A notice of his contest with Otho in Northern Italy will be found nnder Otho. The adberents of his predecessor were leniently treated, with the exception of the coaturions of Otho's army, who were put to death, an act which greatly offended his own supporters. V.'s journcy to liome was a curious specimen of a triumphant advance, the nominal conqueror beiag invariably muddled with liquor, and the soldiers of bis army straggling abont, cummittiny excesses of all sorts with perfeet impunity. At last be reached Fome, and withont loss of time, proceeded, by right of his office as Pontifex Maximus, to deify Nero. The administration was mostly in the hands of the freedman Asiaticus, though P. Sabinus (brother of Vespasian), and the two generals who had gaimed for him the imperial digoity, were high in authority; and the governmeat was marked by great moderation, for V . was too far sumk in the vilest debanchery to be capable of tyranny. But he was not long allowed
to disgust the respectable part of the citizens of lione ; for the legions of Pannooia and lllyricum, having proclaimed Vespasian emperor, advaaced into Italy uader Antonins Primus. They were aploosed by the Vitellian troops, commanded ly Ciecina, but throngh the treachery of the latter general, gained a decisive victory near Bedriacmm, and another, on the following evening, over another Vitellian army which haul marched to the supliort of the first. Y., at this critical periol of his fortunes, nothing abated his swinish indulgences; lut his lorother, Lucius, in the south, displayed more energy, and defeated Vespusian's partisans in several battles. Meantime, the soldiers, enraged at the treachery of P. Sabinus, and his allies among the semators and kniglits, stormed the Calitol, and slew Sabinns. From this time, Rome was a scene of mnintermitting violence and bloodshed, till the troope of Primus entered the city. V. was found wandering about his palace in a state of stupid terror, and after being ignominionsly exposed in the streets, was killed by repeated blows, his head carried abont Rome, and Lis bolly thrown into the Tiber, in December 69 A. D.-For a complete sketch of his private life, see Tacitus's I/istoria, ii., iii., aad Dion Cassius, 65̄ ; see also Suetouius, Vit. Duodec. Cas.

VITELLUS O'VI, or the yell: of the egre of the domestic fowl, is employed in pharmacy for the purpose of administering substances iasoluble in Water (the oils ancl resins, fur example) in the form of emulsions. The rchite is employed as an antidote, in cases of poisouing by corrosive sublimate or with salts of cojucr. As a duetetic article in the sick-room, equs, either lightly boiled or pached, or as ingredients of pudlings, are invaluable; the stomach, after an acute disease, heing often able to digest an egg, when any more solid article of animal foud would set up gastric irritation.

The article Egit, Chemistix of, requires a few sinplementary remarks. The albunen, occurring in the white, is for the most part in cumbination with soda; in addition to this priacipal ingredient, the white contains fats (chicfly margarin), grape-sugar (averaging 5 per cent. of the dried residne\}, and soluble salts, in which the chlorides prepomderate, with a little silica (for the formation of feathers) and thorine. The yelk consists of easein (forming I fer cent.), allumen (about 3 per cent.), fats, somu of which contain phosphorus (alsont 30 per cent.), a little grape-sugar, and minaral constituents (about $1 \cdot \mathrm{~J}$ jer cent.), in which there is a great prepouderance of lotassium compumids and phosphates. Of the phig- $^{\text {ha }}$ ments of the yelk we nnly kuow that there is buth a yellow and red pigment, and that one at least of them contains iron. It is difficult to conceive a more concentrated form of nourishment than a food thus composed of casein, allumea, fat, sugar, potassum salts, phosphates, and iron; and its resemblavee in composition to milk is very remarkable.

The shell of the egyr consists almost solely of carbonate of lime (about 97 per cent.), with a little phosphate of lime, and traces of magnesia and organic matter. The variety of colonr in the eges of lifferent birds is supposed to be due to certa.n molitications of lile-pigment with which they come iu contact in the cloaca.

VITEABO, a city of Central Italy, in the Papal States, stands amid gardens and vineyarls, at the foot of Jonte Cincino, 42 miles north-morth-west of Rome. Its well-huilt streets are prued with marhle, and there are umerons elegant funta:ns. Its Gothic cathedral contains the trimbs of several popes, and is memorable as the scene where Guy de Montfort

YITEX-VITRIFIED FORTS.

assassinated l'rince Henry, brother of Henry 11I. of England. Among other attractive buildings are the churches, mostly rich in works of art, the bishop's palace, and the city halls. There are many monuments of antiquity, both within and without the city. Alum, vitriol, and sulphur abound in the neighhourhood, and exguisite wines are produced. No important manufactures are carried on. L'op. 16,000.
VI"TEX, a genus of trees or shrubs of the natural order lerlenacea, the fruit a drupe, with a 4 -celled stone. F. Agnus castus, the Cunte Thee, a native of the countries aronnd the Mediterrauead, is downy, with digitate leaves whte on the bick, :ant has an acrid fruit, the sceds of which are used in

Chasto Tree (IVitex demers custus).
Smyrna as an external application in cases of colic. It lerives its name from the pactice of Grecian matrons to strew their conches with its leaves, especially during the sacred rites of Cares, in orter to banish impure thoughts; for which phrpose a syrup, made of its fruit, was also, and perhaps still is, used in convents in the south of Europe, althourfl, in reality, it possesses stimulating properties. - I^{\prime}. Neyundo, an Indiau slecies, lias aromatic leaves, which are bruised and applied to the temples for relief of headache.- 1 : (rifolin is another Indian species, whose leaves are a powerful disentient.

VITILIGO was the name given by Colsus to some kind of cutanenns ernption which canmot be clearly identified. The term has, in recent times, been used by different wraters in different senses, Lut is now most commonly employed to designate cutaucous patches characterisel by loss of pigment.
VITIOU゙S INTTROMISSION, in the Law of Scotland, means the unwarrantable interference and jnanagement of the movable estate of a deceased person. The consequence is, to make the intromitter liahle for all the delots of the deceased person, though far excceding the value of the assets. The mode of putting an end to this liability is to obtain confirmation as executor in the usnal way.

VITOliLA, a pleasant, gay, and thriving inland town in the north of Spain, capital of the province of Alava, stands ou a gentle elevation, 70 miles west of Camploma. The old town, the Villa Suso,
consists of dark and torthous streets; the new town is regularly laid out. 'There are several charming akmedus, or public walks, especially La llorida and El Prado. The l'laza Nilleva, a square of 220 feet, was built in 1791, and under its areades is the favourite promenale in winter, Brass and iron wares, earthemware, candles, and linen goods, are manufactured, and a brisk general trade is carried on with towas further inland. The plan surrounding the town is extensive and frutful. The climate is temperate and healtly. Pop. 18,500.
V. will be ever memorable for the decisive and important victory which Wellington gained here over the Freach under Jose ph Bonaparte and Jourdan, June 21, iSi3. The numbers in this encounter were nearly equal. The French lost bu00 killed and wounded, 150 eamon, together with baggage, earles, anul an amount of booty in pictures \&c., which amounted to $5,(000,000$ dellars. The direct result of the battle of Vitoria was, that the Erench had to retire from Spain. Ahout this engruement, Sonthey says the French were beaten before the town, in the town, throngh the town, ont of the town, behind the town, and all about the town.' The loss of the British, Portuguese, and Spauiards was 4900 men.
VITlié, an ancient town of Brittany, France, in the clep. of Ille-ct-Vilaine, on the left lank of the Vilaine, 24 milus cast of Rennes ly railway. It is a curions speeimen of the old towns of the middle ages, and is still surrounded witls Gothic ramparts flanked with towers. At three mites' distance is the Chatean des liochers, the celebrated residence of Hadame de sévigné. Mlamufactures of clothand hats are carried on. l'op. S900.

VY'TRIFIED FORTS, the name given to ecrtain remarkahle stone enclusures bearing traces of the action of tire, alout fifty of which exist in various jarts of Scotland. They are generally situated on a small hill, overlooking a considerable valley, and consist of a wall, which may have origimally becn alont 12 fect in height, cnelosing a level area on the summit of the hill. The most remarkable feature of these structures is, that the wall is always more or less consolidated by the action of tire-in some cases only to the extent of giving a glassy enating to its inner side, while in other instances the vitritication has been more complete, the ruius assmming the character of vast masses of coarse glass. There is sometimes an exterior circuit more or less distant from the interior, composed of loose blocks of stone, which bear no traces of vitrification. structures of this lind are to be found at Noath and Dunnidecr, in Aberdeenshire; Craig lhadrick, Tordun, and Glenever in Inverness-shire; Kinockgarril, in Ross-shire; Creich, in Sutherlandshire; Dunskejg, in Aregleshire; l'inhaven and Laws, in F'urfarshre; Barryhill, in l'erthslire ; Kingarth, in the island of Bute; Anwoth, in Kirkcudbright, and clsewhere, but jrincipally in the northern comnties. Thej were first noticed by Mr John Williams, in his Accomn of some Remarloable Aneient Ruins kately hescorered in the IIightands and Northern P'arts of scothend, pmblished in 157. Mr Williams's oleservatons let him to conclule that they were artilicial structures intentioually vitrified by a partial melting of their materials. Mr Williams's views were combated by other writers, who cuntended that the supposed forts were of volcanic origin, a supphsition quite irreconcilalile with their olvionsly artiticial character. In 1828, the subject engaged the atention of the Society of Antiquaries of Scotland, a series of caruful observations being made by Dr Samuel Hibluert, one of the secretaries of that hody; and the conclusion arrived at was, that while the

VITRIN゙GA-VITRUVIUS.

structures were artificial, the vitrification was an accidental effect, which might have arisen from such causes as the frequent kinding of beacon-fires as signals of war and iuvasion, or of bonfires forming a part of festive or religions rejoicings. The burnmg of signal or other fires, in particular cases, in the manat instead of within the wall, may have cansed the occasional external ritrification. This view of the origin of these structures has, ever since Dr Hibbert's observations, been very generally accented. The alkah produced from the accumalation of the ashes of continually blazing wood-fires would he a powerful aid to the fusion of stone: saudstone, otherwise infusible, is made perfectly capable of vitrifaction by the absorption of melted alkali. The view originally taken by Mr Williams bas since been sulported by Dr John I^{6} Culloch, who argues that the character of the works shews them to liave been designed for defensive military posts, and observes, that in some cases where the most accessible materials for a stone-fort are incapable of vitrification, stones more capable of being vitrified have been broncht from a distance. Uuless in a single questionable instance iu France, no simidar structures have been observed out of Scotland; whence it has been sliggested that they must be the result of rites and customs peenliar to the races of North Britain. Mr J. H. Burton considers the preprouderance of the evidence to be in the direction of design; but the question cannot be consiciered to be set at rest yet.-See Archaologica Scotica, rol. iv. ; II 'Culloch's Highlends and II'estern Sslands of Scotland; Wilson's Prehistoric Annals of Scotland; Biurton's History of Scotlend, chap. 3.

VITRINGA, Canpegits, an eminent Dutch divine and commentator, was born at Lellwarden in Friesland, 16th May 1659. He studied at Franecker and Leyden, at which last place he was created D.D. in his 20th year. In 1681, he was appointed Professor of Oriental Languages; and two years later, received the chair of Theology in the university of Franecker, where he died, March 21, 17\%2. V. is regarded as one of the most learned and laborious divines of his age, and has left many excellent and erudite works, chiefly commentaries on portions of the seriptures, nearly all of which are in Latin. Among others may be mentioned, Commentarius in Jexaiam; Anacrisis A poculypseos Joluanmis Apostuli; Commentarius in Jeremium; Commentarius in Zecharaiam; Vetus Synayoyk; Dissertationes Sacra; Typus Theoloyica Propluetica, sc.

VITRIIOL (derived from the Latin ritum, glass) is a term which the early chemists applied to glasslike salts, distinguishing them by their colours into blue vitriol, green vitriol, and white vitriol. Bhue Vitriol is still the popular name for sulphate of copher, which may be obtained on a large scale in varions ways, but most sianly by boiling conper in an iron pot with dilute sulphuric acid, by which means we obtain a salt having the formula, $\mathrm{CuO}, \mathrm{SO}_{3}+5 \mathrm{Aq}$, and crystallising in oblique prisms of a clear blue culour, which are soluble in four parts of cold, and two of builing water, and whea moistened, reddea litmns paper. In large doses, it acts as a powerful irritant puison, unless, as is frequently the caoe, it is rejecterl by vomiting. In small but repeated doses (as from half a grain, gratlually increased to two grains, made into pills with cousserve of roses), it acts as a tonic and astringent, and will often check the discharges in cases of chronic diarrhoea and dysentery; when other medheines have failed; anl according to Neligan, it has been found serviceable in croup by checking excessive bronchial secretion. It has been much employed in cases of epilepsy, and is a valuable remedy in chorea and
other spasmodic diseases, especially when they occur in weak constitutions about the period of puberty. Its use in doses of from 10 to 15 grains as an active emetic is mentioned in all works on materia medica; but sulphate of ziac in a dose of a scruple, is as efficacions, and safer. Externally, this salt in solution (varying from one to ten grains in an ounce of water) forms a good application to indolent ulcers, aphthæ, cancrum oris, and the sore throat in scarlation ; it is also used in chronic ophthalmia, aud as an injection in cases of urethral or vaginal disclarges. In the solid state, it is used as a caustic to repress excessive granulations (proud flesh), to destroy warts, and to excite indolent ulcers.

Green 1 "itriol is the popular name for sulphate of iron. Its characters, the method of obtaining it, and its therapeutic uses, are sufficlently noticed in the article Inos.

I'hite l'itriol will be described in the article Zive.

Oil of litriol is the old name given to commercial sudphuric acid, in consequence of its olly appearance, aad of its being formerly obtained from green vitriol.

Elixir of Vitriol is the old name for the aromatic sulphuric acid of the Pharmacopœia. It is a mixture of three ounces of sulphuric acid and two pints of rectified spirit, in whieh powdered cinnamon and giager have been digested. Its uses in doses of from ten to thinty minims, in a wine-glassful of water, are much the same as those of dilute sulphuric acid, but it is more agreeable to the taste, and sits more lightly on the stomach.

VI'TRO DI TRI'NA, the name giren to a beautiful kind of glass which was made by the Venetians in the 15 th century. Its distinguishing character is a series of ware-like marks in opaque colours, but usually white, arranged pretty regudarly in the substance of transpuarent glass.

VITRUTIAN SCROLL, a continuous scroll-work forming a kind of cresting
 used in classical architecture.

VITRU'VIUS, the name of two Toman architects, the most celebrated of whom is Marcus Vitauvius Pollio, about whom we have no direct information further than the mention of his name by Pliny and Frontinus, though, from the references to himself in his own work, we can gather that in all probability he was born about 76 or $\$ 0$ B.c. He received a liberal education, pursted specially those studies which were calculated to fit him for the profession of an engineer and architect, and was engaged in the African war (46 e.c.) as superintendent of military engines. He does not seem to have become very popular as an architect, and never succeeded in acquiring wealth, though the constant patroaage which the emperor (Augustus) was induced by his sister (probally Octavia Minor) to extend to him, insured hin comfortable snbsistence during his life. The only public work he executed was a basilica at Fanum. V., in his book, De Architectura, enters at some length into the reasoos which induced him to write it, the chief of them being, the eare bestowed by his patron (after settled peace had been secured to the empire) on buildings public and brivate, his intention to erect numerons edifices, and the danger that, owing to the depraved architectural taste of the time, the beauty and correctness of the jure Grecian models would be neglected. The De Architectura is arrauged in ten books; the first of which contains a dedication to the emperor, a general view of architectural science, hints as to the proper subjects of study for young aspirants,
and directions for building cities; the secoul treats of the early Jistory of arehitecture, and of the materials employed at varions times, and contains a slicteh of the physical theories of various philosophers; the third and fourth treat of the erection of temples, and in connection with this, of the four orlers of arehitecture, Iouie, Corinthian, Doric, aml Inscan; the fifth treats of public buldings; the sich, of privite huuses in town or country; the selenth, of the finishing aud decoration of private buillings; the eighth of water, the monle of discovering it, whence it may be olitained, and the moles of conveying it in large quantities to a distance; the ninll, of the priveiples of gnomonics, the rules for dialling, and other suljects physical and astronomical ; and the lcuth, of machmes used in building and in military warfare, of the mechanical powers, of mills, engines for raising water, odometers, (E. To each book there is a preface, more or less ennnecled with the main subject of the book. and it is in these prefatory remarks that we discover what we know of V ''s jursonal history. There have been many editions of V.; the first was published along with Frontinus's De A puceductibus at liome about 14S6, and afterwards at Florence (1496) and Venice (1497). Inude woodeuts were introduced lnto variuns subsequent ulitions : and the edition of Bode (Berl. 1500) has a volume of plates; but the best catition, that of J. G. Sehneider (Leipe, 3 vols. 1S07-18US), is without illustrations.-See Smith's Classicul Dictionary of Biography and Mytholory.

VITRY-LE-FLANCOIS, a town of France, in the dep. of Narne, on the right lank of the river Narne, las miles cast of Paris by railway. The lirst site of the town was at Vitry-en-Perthois; lut it was taken and burned by Charles V . in 154. Frraçais I. rebuilt V. on its present site, surrounded with fosses and ramparts, and erected a castle for its protection. There are maunfactures of hats and cotton goods. Pop. 860 .

VITTO'RIA, a modern town of Sicily, in the province of Siracusa, IS miles nortli-west of Modiea, on the Clamarama. It possesses little interest, and is made only a noonday resting-place for travellers. The soil of its vicinity, however, is furtile in fruits and wines, bee-enlture is carried on, and the town maintains an active trade in silk and cattle. l'op. $15, S 5 \overline{5}$.

VlTUS, ST, DANCE. Sce CHonea.

VIVADI灾RE, in continental armies, and especially that of France, a female attendiant in a regiment, who sells spirits and other comforts, ministers to the sick, marches with the corps, and contrives to be a universal favourite. Although a familiar friend to all, these women contrive to maintain themselves respectable, and generally respected ; and a eorps is nsmally extremely jealous of the slightest alisconrtesy being shewn to its vivandiere. The woman wears the uniform of the regiment, sloort petticoats taking the place of the man's tunic.

VIVE'RILID E, \& family of Cernirora, having the hody elongated, the claws partly retractile, the pupil of the eye circular duriug the day, and not contracted into a vertical line, as in the Felida, and, in general, a strong musky odour, proceching from a secretion in a pouch near the anus. To this family beloner the civet, genct, ichneunon, \&e.

VIVISE CTION-a term which is employed to designate operations performed with the knife on living auimals, with the view (I) of increasing our physiological knowledge; (2) of confirming previonsly known facts; and (3) of giviog dexterity in operative surgery - is a course of procedure which may
be traced back to almost the earliest perionds of medieine and surgery, and was laticely practisal in the Alexantrian Seloosl. It is, however, only eomparatively lately about hale a ecntury ago, when tie barbarous experiments of Magendic, lracheet, and other elistiaguislied F'reneh plysiolowists, leeame kuown in this country-that the suloject has attracted mucli popular notice; and durines the last ten years, attention lias been so specially drawn to the atrocitius systematieally carried on in the great Frenel veterinary colledes at dlfurt and Lyon, that al elputation of . Phw liogal Socicty fur the Prevention of Crurity to Animals ' laze it statement of the facts lefore the Emperor Napoleon. When it is stateal, Inat with the nominal olyject of teaching the veterinary stndents at Alfort to become skilful ourerators, six living horses were supplied to them twice a weckthat sixty-four operations were priformed on each horse, and that funr or lise horses gremerally died before half the operations were completed-that it takes nearly two days to go throurh the list-and that all the old explouled upurations, as well as those now practised, were perfurmed-aml lastly, when it is borne in mind that most, if not all, these operations could just as instructively lave been practised on the dead animal (as is done in this conntry), there camot lie a cloult that a vast amount of wawarrantable and gyatuitous cruclty was carried on in these estahlishments. Although the subject was brought lnefore the Academie ales Siciencos, ame warnly discussed, the final comelusion was, "that the complaints of the lomelon Sucicty are totally withont foundation; and that there is no occasion to take any notice of then.' We believe that it is only by the veterinary colleges of France that the view is advocated that vivisection is neeessary for the purpose of giviug dexterity in surgieal operations. But while all right. mindel persons-except the majority of the members of the French Aculemy, whose votes were probably influenced by a feeling of nationalitymust coneur in the view, that the argument in favour of vivisection utterly breaks down, some go further, and aloulit whether any experments on living animals, performed with the object of advancine medical and surgieal knowledre, ame of thereby relieving, inclirectly, luman suffering, or prolonging human life, are, un moral gromals, to be regatiled as justiliable. In opposition to this view, it is maintained that, under certain cirenmstances, and with lue restrictions, such experiments are uot mly justifiable, but their jerformance betomes a positive duty. It may be observed that, though in stating this controversy the term vivisection is retained, the remarks apply to all kinds of experiments on living animals. It is universally admitted that man may destroy animals for his food, and to furnish him with many of the neeessaries and luwuries of life; and nust persous go a step further, and see no impropriety in the pursuit of lield-sports. Now, as Dr Markhan argucs in his excellent prize essay on this subject, in all these cases of admittedly legitimate clestruc. tion of anmal life, the intliction of pain is a neeessary ingredient. In some modes of destraction, the cleatly-blow is dealt at once, and the pain is but tleeting; whilst in others, the agony of the deathstruggle is equivalent to a [rolonged and painful torture. An is may be at onee stumed, while the animal bled to death suffers prolanged convulsive strucroles. Tlue humanitarian, if be lue a sportsman, thinks little of the lingeriug pain which a wounded

* Jiriscction : is it nercssary or justifiable? Being two prize essays, published by the Foyal Society fur the lirevention of Cruelty to Animals (Lond. 1866).
hird or broken-legged hare undergoes; nor, if he be engaged in the whale-fishery, does he lament over the prolonged suffering which the object of his pursnit must suffer hefore its capture. If, then, man can legitimately put animals to a paiuful death in order to stipply himself with food and luxuries, why may he not also legitimately put aoimals to jain, and even to death, for the far higher and more noble object of relieving the suffer. inss of humanity, and of prolongiog human life? To point out what gain has accrued to physiolngy (and bence, indirectly, to the healing art) by experiments on lising animals, would occupy many pages oi this work. It is sufficient to allude to the facts, that the doctrine of the circulation of the blood, and of the existence of, aad circulation through, the lacteals, was thus established, and that nearly the whole of our present koowledge of the functions of the vervons system has been thus obtained, and conld never have been afforded by the most minute anatomical research,* and that in consequence of the kuowledge this obtained we no longer divide a motor nerve, and thans paralyse the face, in the hope of relieving tic douloureux; while, on the other hand, thanks to the researehes of Brown-Sequard, Bernard, aud others, we can now see our way to a more rational mode of treating epilepsy, varions obscure forms of paralysis, \&c. Without vivisection, we conld never clearly have noderstond the canses of the sounds of the heart, withont the knowledge of which the stethoscope wonld have been useless in the diagnosis of cardiac diseases; nor should we have known anything of the true nature of that mysterious disease, diabetes. The Hunterian treatinent of anenrism by ligature, which has saved humdreds of human lives, was worked ont by experiments on living anmals. The study of anesthetics, which, after prolonged investigation, led to the intruduction of chloroform (soon, possibly, to be superseled by some even less dangerous ageat), was unquestionably accompanied by the sulfocation of many animals; but surely no one who can form any estimate of the vast amount of misery which has been spared to humanity by the general introduction of the use of chloroform into surgical and midwifery practice, can regret the sacrifice. Indeed, the advantage of the discovery is experienced in more
* See on this subject the remarks of Professor Owen (appended, by permission, to Dr Markham's prize essay): "The closest and most persevering observation of the phenomena in the dead body could only teach the invariable relations of the nerves or tendons' [each of which was known under the conmon name of newron] 'to the muscle. When the idea occurred to the Alexandrian physiologist to divide, in the living animal, the several kinds of white cords, called new'e by his predecessors, then, and then only, was his science enriched with the power of distinguishing true nerre from tendon, ligament, \&ic. Mr Walker, of Elinburgh, was the first to suggest, in reference to the previously known anatomical facts of the two roots of the spinal nerves, that one was sensory, and the other inotory. Mr (afterwards Sir Charles) Bell lias deservedly reaped the credit of the discovery by putting the idea to the test of experiment. He alone discovers who proves - who converts a speeulative into a positive conchision; and it is not true, however the dicta of J. S. Mill may seem to support the proposition, that in regard to these and other great triaths of physiology, experiment has been resorted to "only to confirm the theory already fixed in the mind of the discoverer, and to demonstrate it to the world." For a truth to be operative or available, it must be "demonstrated to the world." Whether, prior to his experiments, the theory of sensory and motory nerve-roots was fixed or loose in the mind of Bell, it wonld have died with him, had he not, or rather the better experinenters that followed hu, deinonstrated its truth to the world.'
ways than one upon the lower animals, since the domestic animals are subjected to its bencficent influence when surgical operations are nccessary, and since, in most cases, animals subjected to physiological experiments are now usually rendered insensible by it. If such questions as-the best means of restoring to life persons apparently drowned-why chloroform sometimes kills, ad how those who are suffering under apparently fatal effects can be best recovered-admit. as they doubtless must, of a solution, that solution must be sought for in experiments on living animals. These and a multitude of similar considerations which might be adduced, are sufficient, it is maintained, to lead any unbiassed inquirer to the conclusion that experments on living animals, performed with the object of adrancing medical, surgical, or toxicological knowledge, and of thereby indirectly relieving human suffering, or of prolonging human life, are not only justifiable, but a matter of duty. There are, however, certain conditions, the fultilment of which (as Dr Markham well points out in his prize essay) is indispensable to the proper and rightful performance of experiments on living animals. First, the experimenter must be equal to the task he has undertaken; he must be a skilled anatomist, and a plysiologist, not only thoronghly acquainted with all the known facts bearing on the subject which he is about to investigate, but he must be capable of duly appreciating all the facts which his experiment may present. Secondly, if the experiment admits of it, the animal should be submitted to the action of chloroform during the operation. Thirdly, when a fact in physiology has been once thoroughly determined, all repetitions of the experiments, for the mere purpose of exhibiting them to classes of students, are unnecessary, and therefore unjustitiablc. Professor Owen, speaking on this point, observes: 'I re]robate the performance of experiments on living animals to shew the students what snch experiments have taught the master; whilst the arguments for learning to experiment by repent. ing experiments on living aniroals, are as futile as those for so learning to operate chirurgically:

VIZIER, or VIZIR (pronounced viz-ir'), the title of various high functionaries in the Ottoman Empire, and other Mohammedan states. The word, which is of Arabic origin, and signifies be who bears or supports (a burden),' was first bestowed as a title of honour on the chief-minister of the first Abbaside calif, in 750 A. D. During the deckine of this dynasty, the vizier had to "bear the burden' of government almost entirely, and consequently; increased so much in power and authority, that the califs thonght it prodent to counteract his influence by the creation of the new dignity of Emir-al-Omrah (q.v.), which, being generally bestorred upon one or other of the powerful alien princes who had made for themselves sovereignties in Persia, was found to be an efficacions counterpoise. The dimnity of vizier wos first introduced among the Uttoman Turks during the reign of their second sultan, Orkhan, and the title was exclusirely contined to the sultan's prime-mioister; but in 1356 , it was conferred by Amnrath I. on his victorious general, Timnr-tash, and the prime-minister's title was then changed into vizir-a-z'hem, 'grand or illustrious vizier.' From this period, the number of viziers was gradually increased, but since the commencement of the ISth c., only seren of them are ministers, the 'grand vizier,' and the six 'viziers of the cupola, who constitute the Divan (q. v.). The graud vizier is, after the sultan, the most important personage of the Turkish Empire; he unites in his own person the whole powers of the state, and is charged with a corresponding responsibility. The
other six viziers in the divan, who are generally men well wrsed in law, and practically acquainted with the details of administration, form a council of advice, to whom the grand vizier applies when he thinks proper, hit who possess otherwise no real power. The eramel vizier, on his nomination. receives a shect of parchment, on which is engraved the uame of the sultan, and this he is lound always to carry in his bosom.-The title of vizier is also given to all the l'ashas ($4 . v$.) of three tails.

VIZZI'Nl, a town of Sicily, in the provinee of Catania, and 29 miles sonth-west of the city of that nanre, stands on a hill. It is well built, and besiles containing a college and hospital, there are a number of handsome buildiugs and churelics, containing many fine pictures. Truits iu abundance are produced, and agates are fonnd. Pop. 13,100 .

VLAA'RIINGEN, an uawalled town in South Holland, lies about five miles west from liotterclam, at a short distance from the New Maas. It has a good haven, and sends annually a large flect of vessels to the herring-fishing, besides earrying on a considerable shipping trade with the Mediterranean, Norway, North Amcrica, Portugal, and Spain. Poj). (31st Decemler 1865) 832.4. Besides the herring and cod fishing and shipping-trade, the industries are : shipluihling, rope-spinning, clistilling gin, sawing wood, grinding corn, hoiling oil, tar, \&C. V. is one of the oldest towns in South Holland, the church now ealled the licformed Chureh having been consecrated by Willebrord in the 7 th e., hut nearly relnilt in 1744. It was the birtliplace of the poets Arnold lloogvliet (165i-1763) and Jacol van Dijk ($1745-1825$).

VLADIMIR, the name of two celebrated Russian princes, the former of whom, Vladmir SviatosiaFITCH, was the first Christian sovercign of Russia. On the death of his father (97?), V., though illegitimate, received Novgorod as his slare of the heritage, hat was driven out by Jaropolk, who had already murlered the third brother, Oleg. However, V., by the aid of a body of Varaugians (from Scanlinavia), returned and overeame Jarepolk, by whose assassination (950) he became sole ruler in linssia. Disembarrassing himself of his dangerons allies by persuating them to take service with the Byzantine emperor, he next recoverell by force from the Poles the provinees of whiela they had deprived his brother, and sulbdned varions tribes which had recently revolted. Russia at this time was an illcompacted empire; the varions Slavie tribes which dwelt within its boundaries acknowledged the sovereignty of the Russian princes solely ly the payment of tribute, and that only when the princes were powerful enough to enforce it; bence it was the custom for the prinees personally, or their delegates, to go their rogular rounds after the fashion of tax-collectors, backed up by a large armed retime. T. tried to increase the central anthority, and one of the means he adopted was the erection at his capital, liev, of the idol l'ermn (Thnuder), the supreme divinity of the Slaves, and of the images of other inferior deities, Slave and Finnish. But a few years more effectel a remarkalile change; many of V's subjects were Greek Christians; his mother, Olga. had become one; besides, he wished to be allied with the byzantine imperial famly; and movel by these and nther reasons of personal or patriotic ambition, he resolved to turn Greek Cliristian. His mode of arriving at conversion and matrimony was as curious as effective; he first made an attack upon the Byzantine Empire, then sent an cmbassy to Constantinople, promising base and his conversion, in excliange for the hand of Anna, the $\underset{10}{\text { sister of Constantine 1... ; thrcateuing war in case of }}$
refusal. 1lis demands were gladly eomplied with; and after his marriage and bapitism at Kherson in 958 , he returned to Kiev, destroyed all the illols, and commanelel his subjeets to be baptised. They had not the slightest oljection to be haptised, if their fearel and admired prince wishal it ; and for days the Dnieper was erowled with applieants for the tiret testing ordinance of Christianity. It could hardly have been expected that a conversion managed in such a fashion would have nifected the manners and conduct of such an arlitrary, violent, and daring prince as V .; yet, strange to say, from oss be appeared to have undergone a thorough mental and moral transformation ; churches were built, schools establisked, eapital punishment was supplanted by a tine, and such excessive lenity shewn to all erimi. nals, that in the interests of good government, it was found necessary to remonstrate with the thorough-going convert. Formerly, the wisdom and ralour for which he was renowned were equalled by his licentionsness, so that the ehronieles had more than one reason for saying that 'he was like unto Solomon;' but the strictest chastity characterised the latter part of his life; and his charity to the poor, and personal forbearanee, were extreme. He died in 1014, three years after his wife Anna The linssian Chureh lias decreed him the epithets of 'saint,' and 'equal of the apostles.' - Vlanimir: 11. Vsevolodovitch, surnamed Nonomachus, grandprince of Kiev, the great-grandson of the preceding, was boru in 1053 . 11 is father being a younger son, there seemed to le little clianee of V.'s attain. ing power in the ordinary course of events, in his own country; and he aceordingly led a band of anxiliaries to join Boleslas 11. of Poland in his wars with Polhemia; gaining suels renown, as on his return ranked him at the head of liussian warriors. Y''s father having, as the eldest of the Rossian prinees, succeceled to the grand prineipality of Kiev (1078). V. took advantage of the opyortunity to wrest from their lawful possessors, Smolensk, Tchernigov, and Novgoroul ; theugh some years afterwards, his cousin Oleg, the dispossessed prince of Tchernigov, with the aill of the l'olotzee or Cumans (a Turkish matiou which was at that time the terror of the Russians), recovered his dominion. V. having sullseifuently routed the I'olotzee in several engagements, became so extremely popular, that in 1112 he was chosen grand-prince of liev, and for 13 years displayed his cminent qualities as a ruler and a warrior. The maintemanee of internal tranquillity, the improvement of ohl, and the building of new towns, and the encouragement of commeree, on the one hand; and the suceessful campaigns against the Tchudes, Poles, l'ulotzee, and Bolgars (a Mohammedan commercial people settled on the Volga), on the other, are the primcipal elaracteristies of his reign. Nost of V.'s fame, loweyer, rests on his writings, Which rresent an interesting picture of the internal life of liussia in the IIth c., and indicate prominently the carnest practical influenee of the newly introdnced Christianity: Tr's mother was a danghter of Constantine Mononarehus; and Aexis Commenus, who wished to be on good terms with his powerful northern neighbonr, is said to have sent him the crown, seeptre, and sword of his grandfather, which are still shewn as such, and which are employed in the coronation of the czar.

V゙LADIMI'R, a gevernment of Tussia, bounded out the E. by the government of Nijni-Novgored, and on the S. IV. by that of Mosenw. Area, $18,206 \mathrm{sq}$. m , ; pop. (1566) $1,223,000$. The surface is level or nndulating ; the soil consists chictly of clay or sand, aud is fertile only in exceptional spots. The principal rivers are the Oka and its tributarics, of which the elief is the Kliasma, a navigable stream. Of the

VLADIMIR-VOICE

lakes, which are numerons, but of inconsiderable size, that of Pcreiaslav is remarkable for its productive fisheries, and is famons in history as leing the cradle of the Russian fleet. After St Petersburg and Moscow, the government of V. is the most actively industrious in the Russian Empire. Of its manufactured goods, cotton-yarn and cloth are made to the value of $13.000,000$ roubles anuually ; clintz and dyed goods, $12,000,000$ roubles ; linen, $2,000,000$ roubles ; glass, $1,000,000$ roubles; iron and lurass foundries produce goods to the ralue of $1,000,000$ roubles; and the manufactures of chemicals and paper are very extensive. The inhalitants are also much employed in painting images and in knitting stockings, which are userl in Russia and Siberia, and yield $1,000,000$ roubles per annum. The graincrops raised are insufficient for local consumption, and corn is imported from neighbouring governments. Hemp is successfully grown; and besides being used in considerable quantities in local mamufactures, is exported to Archangel and St Petersburg. Forests, mostly of pine, form a horder round the goverument, but do not occur in the interior. In the 9 th c ., the country was inhabited by Finns; and though it was subsequently conquered and settled by the Slaronians, traces of the original inhabitants are risible in the present population.

YLADIMIR, a town of Great Russia, capital of the government of the same name, stands on the left bank of the Kliasma which is high and wooded, 125 miles north-east of Moscow. It was founded in the 12th c., during the ascendency of the Dukes of Vladimir, and was the capital of liussia till 1328. It contains many historical remains, as the Kreml; the 'Golden Gate,' built in 1158 ; ruins of old fortifications, and many ancient churches. The ecclesiastical seminary is important. There are several manufactures, and a trade in corn. Cherries are a considerable local product. Pop. (1860) 12,248 .
TODE'SA, a beautifully-sitnated town of European Turkey, in Pumili, on a mountain slope, 46 miles west-north-west of Saloniki. Water is here very abundant; torrents rush headlong down the middle of all the streets, and the sound of cascades is everywhere beard. The houses, from the archbishop's palace to the humblest cottage, are picturescuue, hut are not otherwise remarkable. The streets are wretchedly pared. V. occupies the site of the ancient Edessa, the early capital of Macedonia. Pop. estimated at 12,000 .

VOGHE'RA, a city of Northern Italy, in the prorince of Paria, stands on a fertile elerated plain, in a district rich in vineyards, orehards, and cornfields, $\geq \pm$ miles east-north-east of Alessandria by railway. The Tia Enilia passes through the town, and divides it into two prarts. There are several handsome squares, of which that of the Duomo is the chief; the streets are adorned with porticoes; and there is an oll castle, built by Galeazzo Visconti in 13:2. The ciric palace contains many valuable parchments and manuscripts of the 11th, 12th, and 13th centuries. Silks, linens, canvas, and leather are manufactured. Pop. 13,500.
VOICE (Lat. rox) may be defined as an audible sound produced by the larynx, and may be produced by any animal prossessing that organ; while speech or articulate language may be regarded as voice modified in the carity of the month. The Larynx (q.r.) is the organ by which the so-called rocal sounds (or primary elements of speech) are produced. In the article Laprax, it is shewn that there are tro groups of muscles, which respectively govern (1) the pitch of the notes, and (2) the aperture of the lurynx. Those which affect the pitcli of the notes are divisible
into tro antagonistic sub-mroups, riz, (a) those which depress the front of the thyroid cartilage on the cricoid, and stretrh the vocal ligaments; and (1) those which elevate the front of the thyroid cartilage, and relax the rocal ligaments; while those which contral the aperture of the glottis are divisihle into (c) those which open it, and (d) thuse which clowe it. It is only the first of these grouns, viz., the museles which stretch or relax the vocal ligaments, that is concerned in the production of voice. In the ordinary condition of rest, there is a wide opening between the rocal ligaments, which are in a state of complete relaxation, and the air passes freely between them. For our knowleitge of the alphearances presented under rarying conditions lyy the interior of the larynx, we are mainly indelited to Professor Czermak, the inventor of the Laryngoscope (q.v.) ; and the reader who wishes to enter fully into this subject is referred to his work on that instrument, of which a translation was published by the New Sydenham Society in 1S61. The three

Fig. 1.-Condition of the Larjax during tranquil respiration:
e, epiclotis; \mathscr{a}, fissure-like opening of asopbagns; c, fold of mucons mombrane bonnding the opening of the glottis posteriorly.
figures, 1, 2, 3, represent respectively the condition of the larynx as seen during tranquil respiration, its condition during the emission of the broad vocal

Fig. 2.-Condition of the Laryns during the emission of the broad vowel sound A :
a, a, cartilapes of Santoini, surnountang the aryenoil cartilages; $e_{\text {, }}$ eqielotis; irc, inferior or true vocal cord; sce, superior or falise vucal cord of lett sice.
sound A, and its condition during the emission of a high or acute sonnd. The morements of the argtenoid cartilages during the production of vocal sounds

Fig. 3.-Condition of the Larjnx during the emission of a high or acute sound:
e, epiglottis; cut, cushion of epigloti-; itc, true rocal cord; ste, false voca: curd.
can be distinctly scen-the views that had been lreviously deduced, from theory and experiments on the dead subject, leing thus confirmed by ocular proof. As soon as we wish to utter a sound, the two arytenoid cartilages raise themselves in the fold of mucous membrane which covers them, and approach one annther with surprising motility. This movement effects the alproximation of the

VOlCE.

vocal curils, anal consequently the contraction of the glottis (firs. $\%$). It is impossulile to sturly with the faryngracoge the monle of formation of the grabest chast-simurls, because the arytenoin cartilabes lueome so raised that they almost come in contact with one anothor, while they bend urmer the border of the denressed epiglotis, iml thus conceal the interior of the larynx. During the emissinn of the most acute sennds, the clottis contracts intua mere line, on each sille of which the vocal engls may lue peocrnised by their whitish. ycllow colonr; while furtluw outward, and separated from the former by a narrow groove, are the false or superior visal cords of either sille. 'Tlic arytenoid catilates are raised, and come in contact in the median line, the epiglottis is drawn outwarts, aud a short stiff tulo is then formed above the glottis; all these parts being, as we learn from our sensations during the experiment, in a state of very graat tension. Independently, however, of subl observations as those we have recordel from Czermak's int resting Memmir, any oue may easily prove for himself that the apurture of the elottis is rumel contracted during the production of somuds, by eomparing the time oecupied by an ominary expiration with that required for the gassage of the same quantity of air during the mainteoance of a vocal sound ; inorcover, the size of the aperture varies with the uote that is heing produced, as may be raalily secul by any one who compares the time during which be can hall ont a low and high note. When the distance between the vocal conds exceerls one-tenth of an inch, no sound can he prorluced.

How the vacal cords pornce somuds, is in question which has long attracted the attention of phy* sinlogists and physicists. 'Io answer it, they were compared with varions musical instruments. Nore than a cintury ago, Ferrein (De lie Formation de la I oix de (IIomme, 174) comprard them to vibuating strin!gs ; and at first sight, there is an apparent analugy; lut on further investigation (for reasons which may be fouml in Carpenter's II umon I'mys. oio!! G 6tle ell, 1. 715), this view was foumel to he untcmable. The analngues loctweon the organ of voice mand the flute-pipe, in which the sound is producel lyy the vibration of an elastic column of air cont:inesl in a tube, were then investigated, but foumd to fail. 'The thril class of instruments with which the luman orean of voice has licen eompared are vibratory reeds or tongues, which may sither possess elastieity in themselves, or he made elastic hy tension. From the experiments of WVeber, it aryeurs that the action of the laryox has onore analogy to that of reed-instrmments than to the instruments previously named, and though there would scem at tirst sight to lic a marked difference futween the vocal ligaments and the membranous tongle of any reci-instrument, this differcuce is not very great. Nibler ascertained that mem. branoms tonimus male elastic by tension may bave three different forms, of which the following, which alonc concerus us, is one: "Two clastic membranes mily be extended aeross the month of a short tule, eacls covering in portion of the opening, aud having a chink luft open between thenw.' Here there is clarly an approximation to the hmman glottis, which may be inereased by prolonging the membranes in a direction parallel to that of the current of air, so that not merely their edres but their whole planes shall be thrown into viluration. J'rofessor Willis has, upon this principle, invented an artificial glouis, in which the vocal ligaments are imitated by teather, or preferably by shect india-rubher. It is compresed of a woolen pipe of the form of fig. 4 , a, having a font, C. like that of an organ-pipe, aml an upper openiog, long and narrow, as at B, with a
point, A, rising at one end of it. A piece of leather or sheet indiarnbher rloubled rounl this point, and seenred hy being bound at D with strong thread, will form an artificial glottis, b, white its upuer edges, (1,11 , are capalble of vibrating or not by inclining

Iig. 4.
the pianes of the edges. Two picees of cork, E and F, are glued to the corners to make them more manageable. Firon this machine, various notes may be obtanced by streteling the elges of the leather in the directions of their length, if, II; the seale of motes yielded by lenther is monch mure limited than that yichled by india-rulber; and other observers have found that the middle coat of the arteries in i moist state (as being more viastic, and almost identical in structure with the vocal ligaments), yichls more satisfactory results even than indiarubber. 'It is worthy of remark,' as Dr C'arpenter oliserves, 'that in al] such experiments it is found that the two membranes may be thrown into vibation, when inclined fuwards etch other in vibrious degrees, or even when they are in parallet ulanes, and their edges only approxinate; but that the least inclination from each other (which is the position the vocal ligraments have during the ordinaly state of the glottio) completely [revents any sonmons vibuations from being produced.' - O 1 . cil., 1. 715 . The pitch of the notes produced by usembranous tongues may be affected in various ways (as by increasing the strengtl of the blast, the addition of a pipe, \&e.), and is mainly goverved by their degree of terusion, while the foregoing statements shew that the sound of the voice is the result of the vibrations of the vocal ligaments which take place according to the same laws with those of clastic tongues generally. Little is, however, known with certainty regarding the morle and derree in which the tones are monlitieti by the shape of the air-passages genurally, the force of the blast of air, and other circumstances.

The falselto is a peculiar modification of voice, differing from the ordinary or chest roier, not only in the higlucr pitch of the notes, but also in their quality. The theory of its production is still an open point, into which we have not space to enter. further than to remark that, acooding to Professor Wheatstone, filsetto notes are to be explained by supprosing that 'the colnmo of air in the trachea may divide itself into furmonic len!thes, and may madiace a reciprocution of the tone given by the vocal ligaments.'

The pressure of the air within the trachea during the production of voice is very considerable. From uliserviations male ly Cagniard-Latour ou a man with a fistulous prening ${ }^{11}$ the trachea, it was found that when the pratient called ont

VolCE.

at the top of his voice, the pressure was equal to that of a column of water 35 inches in height; when he spoke at his usual pitch, to one of 5 inches; and when he sang in a high note, to one of about S inches. The glottis has been well chosen by Dr Carpenter to illustrate the minute precision with which the degree of muscular contraction can be adnuted to the desired eflect. The musical pitch of the tones producel by it is, as we have shewn, regulated by the clegree of tension of the elastic vocal higaments. Their average length, in a state of repose, is $\frac{7.3}{\mathrm{~T}} \mathrm{O}$ ths of an inch: while in the state of greatest tensinn, it is about $\frac{93}{100}$ ths-the difference leing thus one-fift of an inch; while in the female the respective lengths are $\frac{31}{100}$ ths and $\frac{n 3}{10}$ this respec-tively-the difference being thas about one-cighth of an inch. Now, the oatural comprass of the voice, in persons who bave cultivated the vocal organ, is about two octaves, or 24 semitones. Within each semitone, an ordinary singer could prodnce at least ten distinct intervals (the celebrated Madame Mara could soumi 100 different intervals between each tone, the compass of her voice being 21 tones), so that 240 is a very moderate estimate of the uumber of different states of tension of the voeal cords, every one of which can be proluced at will; and the whole variation in the length of the cord being not more than one-fifth of an inch, even in wan, the variation required to pass from one interval to another will not be more than $\frac{1}{1 T^{2} 00}$ th of an inch Twhile in such a case as that of Nadame Mara the distance would be reducel to ${ }_{17,0}^{17} 00$ th of an inch).

In the production of vocal sounts, the delicate arljustment of the muscles of the larynx, which is requisite to the evolution of determinate tones, is directed by the sense of hearing, being originally jearnel under the guidance of the sounts actually prodnced; but being subsequently effected voluntarily, in accordance with the mental conception of the tone to be uttered, which conception cannot be formed miless the sense of hearing has 1 reviously brought similar toues to the minul. Hence it is that persons who are born deaf are also dumb. They may have no malformation of the organs of speech, but they are incapable of uttering distinct rocal sounds, or musical tones, because they have not the guiding conception, or recalled sensation, of the nature of these. by long training, however, and by imitative efforts directed by musenlar seasations in the larynx itself, some persons thus circumstancel have acquired the power of speech; but the want of a sufficiently definite control over the rocal muscles is always very evident in their use of the organ.' Op. cit., p. 556. A funel of interesting matter in connection with this subject may be found in Dr Kitto's Lost Senses. Although not born deaf, he became completely so in carly childhook, in consequence of an accident. His voice became similar to that of a person born deaf and dumb, and taught to speak. It was observed that the worls wifich be Jiad been accustomed to nse before his accident, were still prononnced as they had been in childlood, the muscular movements concerned in their production having been still gnided by the original auditory conception, while all the words subsequently learned were pronounced according to the spelling.

The various muscular actions which are concerned in the production of vocal tomes, are commonly regarded as being under the influence of the will. It is, however, easy to shew that this is not the ease. We cannot, by simply willing to do so, raise or depress the laryax, or move one cartuage of it towards or from another, or extend or relax the vocal ligaments; althongh 'we can rearlily do any or all of these things by an act of the will, exerted
for a specific purpose. We conceive of a tone to be proluced, and we well to proluce it ; a certain combiantion of the muscular actions of the larynx then takes place, in most exact accordance with one another, and the predetermined tone is the result. This anticipated or conceived sensation is the guide to the museular movements, when as yet the utterauce of the voice has not taken place; but while we are in the act of speaking or singing, the contractile actions are regulaten by the present sensations, derived from the sounds as they are prodnced.' From these remarks, in which Dr Carpenter has placed a very difficult subject in as clear a light as the suliject admits of, it follows that the muscular actions which are concerned in the production and regulation of the voice, are due to an cutomatic impulse, similar to what occurs in the movements of the eyeball, and in many other cases that might be adduced. There cannot be a doubt that the simple utterance of sounds is in itself an instinctive action; although the combination of these sounds into music or into articulate language, is a matter of acquiremeat.
llaving explained the way in which the larynx produces those tones of which the voice fundamentally consists, and the sequence of which becomes music, we come to the subject of sperch, which consists in the modification of the laryngeal tones by other organs superiol and anterior to the larynx (as the tongue, the cavity of the fauces, the lips, teeth, and palate, with its velum and the uvuia acting as a valre between the throat aul nostrils), so as to produce those articulate sounds of which langlage is formed. The organ of voice is thus capable of forming a large number of sumple sounds, which may be eombined into groups, forming words. Vocal sounds are divided into vowels aud consonants. When a vowel is pronounced, what happens? This question is thens answered by I'rofessor Max Müller: 'Breath is emitted from the lungs, and some kind of tube is formed by the moath, through which, as through a clarionet, the breath has to pass before it reaches the outer air. If, while the breath passes through the vocal cords, these elastic lamince are made to vibrate periodically, the number of their vibrations determines the pitch of our voice, but it has nothing to do with its timbre, or vowel. What we call vowels are neither more nor less than the qualities, or colours, or timbres of our voice, and these are determined by the form of the vibrations, which form, again, is determined by the form of the buecal tube.'- Lectures on the Science of Lauguage, $2 l$ series, p. HG. This writer enters very fully into the various coafigurations of the mouth requisite for the formation of the ditferent vowels. (1.) In pronouncing u (the rowels are all understood to be pronounced as in Italian), we round the lips, and draw down the tongue, so that the eavity of the mouth assumes the shape of a bottle without a neck. (2.) If the hips are opened somewhat witler, and the tongue be somewhat raised, we hear the o. (3.) If the hips are less roundel, and the tongue somewhat depressel, we hear the \boldsymbol{r} of the northern languages (as in august). (4.) If the lips are wide open, and the tongue in its natural that position, we hear a. (5.) If the lips are fainly open, and the back of the tongue raised towards the palate, the larynx being raised at the same time, we hear the sonatl e. (6.) If we raise the tongue higher still, and narrow the lips, we hear i. The buceal tube here represents a bottle with a very narrow neck, of no more than six centimètres (or about two inches and a quarter) from palate to lips. Diphthongs arise when, instead of pronouncing one vowel directly after another with two efforts of the voice, we produce a sound

VOIDED-YOLCANOES.

Iluring the change from one position to the other, that would be required for each vowel. Though the tube of the month thins modifiel by the tongue and liy's is the chicf ayent in the prometion of vowels, Czermals has provel that the welem pulati is changed in position with each vowel, and that it is lowest fur u, and rises snecessively with e, o, u, and i, when it reaches its highest point. He likewise furnd that the cavity of the nuse is more or less opened during the pronnciation of certain vowels. Laugulages micht have been formed entirely of vowels, but the existing worls, consisting sulely of vowels, shew how unpleasant such langunges would have bren. Something else was obviously wanted to supply what Max Muller happily terms the lones of language-namely, the cousonants. These are commonly divided into (1) those which require a total stoppage of the lireath at the moment previons to their being produced, and which eannot, therefore, be protonged ; and (2) those in pronouncing which the interruption is partial, and which, like the vowel sounds, can be prolonged at pleasure. The former are termed explasice, and the latter contimuous, consonants. In pronomeing the explosive cousonants, the posterior openings of the nostrils are completely closed, so as to prevent the passage of air throngh the nose, and the current may be checked in the inouth in three ways-viz. (a) hy the approximation of the lips; (b) ly the approxiuation of the point of the tongue to the front of the palate; and (c) by the approximation of the midlle of the tongne to the arch of the palate. The letters b and p are 1 monounced by the first of these modes; d and t hy the second; and g (hard) and k, sounded as key, by the third ; the difference between b, d, and g, on the one hand, and p, t, and k, depends upon the approximating surfaces being larger, and the breath being sent through them more strongly at the moment of opening in the former than in the latter group. The continuozs consonants maly be subdivided into throe classes, accorling to the degree of freerlon with which the air is allowed to escape, and the compression which it consequently experiences. In the first class, no air passes throngh the nose, and the parts of the mouth that prollice the sound are closely approximated, so that the compression is considerable. This is the ease with v and f, z and s, d and t, th, sh, \&e., the movement of the tongue being also concerned in the production of several of these sounts. In the sccond class, including m, n, l, r, the nostrils are not closed, and consequently, the air is scarecly at all compressed. In pronouncing m and n, the breath passes through the nose alone; m is a labial, like b, but the hatter is formed with the nose closed. Hence the passage of m to b (as in lumb) is ensy; so also is that from n to t, or from u to g, as is seen in the frequent combination of $n t$ and $n y$ in must languages. The sounds of l and r (letters which Max Muiller places in a special group under the name of Trills) are prolluced, accorling to IIclmholtz, as fullows: 'In prouounciug r, the stream of air is periodically entirely intenupted by the trembling of the soft palate, or of the tip of the tongue, and we then get an intermittent voise, the peculiar jarring quality of which is produced by these very intermissions. In pronouncing l, the moving soft lateral edges of thic tongue produce, not eutire interruptions, Lut oscillations in the force of air.'- Die Lelire ron den Tonemyfindunyen, 1S63, p. 116. The thivel class contains sounds which scarcely deserve to be called cousonants, since they are merely aspirations, cither simple, or modified by an elevation of the tongue, causing a slight obstructiou to the passage of air, and an increased resonance in the back of the month. The present h and the

Greek χ are examples of these sounds. The methorl of prononncing, these sounds is very fully diseussed in Max Müller's Lectures, 2 d Series, pp . $127-136$.

For further details, the reader is referred to the adminable chapter on 'Voice and Speech' in Carpenter's ILuman Physiology, and to Miax Mirller's Lectures on the Science of Language (from both of which we bave borrowed largely in this article), to Mr Bishop's article 'Voiee' in the Cyclopredia of ' Anaton!y and Physiology; and tho various works of Funke, Helmhoitz, Bricke, Czermak, Du Bois Raymond, \&c. mentioned ly Max Mulfer in his chapter on 'the Physiological Alphabet.'
YOIDED, in Heraldry, a term applied to an ordinary when its central area is removed, so that the field is scen throngh it, and little but a mere outline remains, as in the example No. 1-Azure, a saltire voidell argent. When the ordinary has its outer elge formed of any of the lines of partition

Voided.
other than dancetté, wavy, or aebuly, the voiting is nevertheless plain, as in No. 2-Azure, a cleveron engrailed voided or. An ordinary voided and couped differs from an ordinary couped and voidecl in so far as the former is opeu at the extremities, and the latter enclosed. One ordinary may sometimes be voiled in the form of auother, as a cross voided per pale in the example No. 3.
VOIRE DIRE (veritatem dicere). In Enghish Law, when a witness is supprosed to be liable to objection for incompetancy or otherwise, he is first sworn, not in the cause, luat on the roire dire, that is, to answer questions relatiug to this ineompetency; aud if it is apparcut that he is incompetent, he is discharged without further examination.
VOIRON, a town of France, in the dep. of Isère, leautifully sitnated on the Morge, 15 miles by railway north-west of Gremohle. Among the manufactures which are here carried on with great activity are to be nentioned blaeksmiths' work, paper-making, mail-making, and tanuing. Pop. (1561) 9600.

VO'LANT, in Heraklry, flying. A bird volant is representel flying lendways towards the dexter side of the shield; and its position may he distinguished from that of a bird rising by the legs being drawn op towards the body.
VOLCA'NOES are conical monntains which romit flame and smoke, and oceasioually throw out showers of ashes and stones, or eject melted rock on the surface of the earth. Voleanoes may have their origin on flat plains on the surface of the earth, or even at the bottom of the sea; but the gradual aceumulation of the ejected material around the vent, through which it has been poured, forms in time a monntain, if it is allowed to remain. The waves swept away the cone of Grahame's 1sland (q. v.), which in 1831 appeared in the Mediterranean, scattering the lava and scorix of which it was composed at the bottom of the sea. When, however, the ejected materials are sufliciently compact to resist the aetion of the wayes, a permanent island is produced, and sometines incereases in height with a rapidity that can scarcely be imaginel. In 1796, a volume of smoke was seen to rise from the T'acilic

VOLCAYOES.

Ocean about 30 miles to the north of Unalaska. The ejected materials having raisel the crater above the level of the water, flames issued from the islet, which illuminated the country for 10 miles around. Six years afterwards, when a few hunters landed on the new island, they found the soil in some places so hot that they could not walk upon it. Repeated ernptions have increased the dimensions of the island, until now it is several thousand feet in height, and between two and three miles in circumforence. In the same region is the volcanic island of Kliutschewsk, which rises at once from the sea to the enormous height of 15,000 feet.
The lava, scorix, aud ashes which are thrust out of the crater form highly inclined and more or less regular heds on the surface of the mountain, extending from the crater-mouth to varying distances down the sides of the volcano. This method of increase gives the uniform comical outline to volcanoes, without the terraces or breaks which are found in almost all other mountains. The sides are often furrowed longitudinally by straight narrow ravines, which increase in aumber towards the base. These are produced by the action of running water obtained from rain or from melting snows during an eruption. The rapidity with which floods rush down the steep sides of a volcano gives a prodigious force, which the loose scoriæ and ashes, and even the solid lava, cannot resist.

The grayish colour of volcanic mountains is produced by the ash and scorix, which, though in comjosition the same as the dark lava, have this lighter colour from the minute subdivision of their particles. When a particular series of rocks remain on the surface, and are not covered by the products of more recent eruptions, they weather and decompose, and produce a very fertile soil, which is speedily clothed with vegetation, and thus change the whole aspect of the formerly bare and uniformly-coloured monntain.

The vent through which the materials are vomited forth is called the crater. This is a more or less circnlar opening, communicating with the source from which the ejected materials are obtained. The crater has generally one side much lower than the other-that from which the prevailing wind blows, which carries with it the showers of ashes to the opposite side of the mountain. In many cases, the cone is truncated; a wide hollow of immense extent, and often of great depth, in the base of which the crater is situated, occupies the summit. The Spanish name Caldera is technically applied to these hollows. Their origin has been a subject of considerable controversy. Von Buch and others maintain that they are craters of elevation; that is, that the rocks were originally spread ont in nearly horizontal deposits, and then upheared into a dome-shaped mountain, with the hollow caldera in the centre of its summit. The more satisfactory explanation is that the original cone, formed by the alternate deposition of the lava and ashes ejected from the crater, has, from the great heat of the molten lava rising in the tube of the volcano, or from gascous explosions, given way, and fallen in. The cones both of Etua and Vesuvius hare frequently fallen in and been reproduced. In 1822 , the sumuit of Yesuvius was reduced by s00 feet. The inmense size of some calderas seems, however, opposed to this theory. That of the island of Palma, one of the Canaries, is from three to four geographical miles in diameter, and the precipices which surround the cavity are from 1500 to 2000 feet in vertical height. They form an unbroken wall, except at the south-western end, where a deep gorge permits the passage of the torrent which drains the caldera. The precipices are traversed by numerous rertical dikes, and exhibit all
the appearances which wonld be produced liy the falling-in of the luge summit of this once enormous volcano.
The pressure of the incandescent lava often forces for itself a passage to the surface before it reaches the mouth of the crater, and this is more frequently the case when the volcanic eruption is accompanied with earthquakes. Immense vertical fissures are found radiating from the centre of the volcanic action, aud reaching the surface of the ground, and even rising to the summit of the mountain; these being filled with the molten rock, which in course of time solidifies and forms often a large portion of the mountain mass, as is shewn in the V'al del Bové on Etna (q. v.). The lara sometimes pours out of these fissures instead of rising to the crater. In 1783, during a terrible eruption of Hecla, a prodigious stream of lava flowed from a lateral crevice; moving slowly down the mountain-side, it reached a distance of 50 miles in 42 days; it then branched into two main streams, the one running 40 miles, and the other 50 miles further towards the sea. Its depth varied from 600 to 1000 feet, and its greatest width was 15 miles. The amonnt of lava poured out into this stream would almost equal Mont Blanc in bulk.

The power which exhausts itself in the eruption of a volcano often shews itself by changes which it produces in the level of the country around. About a hundred years ago, a volcano appeared in the centre of the great table-land of Mexico, and raised an area of nearly four square miles 550 feet higher than it was before, covering it at the same time with conical hills of various heights, the highest of which is Jorulla, which is 1600 fcet high. But sometimes a subsidence takes place. In 1772 , a great part of the Papandayang, a mountain in Java, was swallowed rp; the inhabitauts of its dechvities were suddenly alarmed by tremendous noises in the earth, and before they had time to retire, the mountain began to subside, and soon disappeared. The area thus sunk was 15 miles long and 6 broad.

A volcanic eruption is generally preceded by rumbling noises and slight movements in the earth; then fitful puffs of gases and steam are given off. These contain mucl sulphur; and some volcanoes give out such quantities of carbonic acid and other meplitic gases as to destroy the animals in the neighbourhood, Sir William Hamilton picked up dead birds on Vesuvins during an eruption; in 1730 , all the cattle in the island of Lancerota, one of the Canaries, riere destroycd by these deleterious emanations. The Upas Valley in Java contains an extinct crater; and the certain death which overtakes every animal that penetrates the valley; is due to the noxious gases given out from it, and not to the Antiaris, which, though yielding a deadly poison, does not affect the atmosphere in which it grows. The eruption itself begius, perhans, with the cjection of the finest dust, and that with such a force as to project it high into the atmosphere, where, taken up by air-curreats, it is often carried to emomons distances. In 1845, the dust from Hecla was in ten hours thickly deposited on some of the Orkney and Shetland lslands: the ashes from Consequina fell, in 1835, on the streets of Kingston, Jamaica, at a distance of 700 miles; and during the same eruption, the fine dust corered the ground at a distance of nearly 30 miles to the south of the volcano, to a depth of more than 10 feet, destroying the woods and divellings, and enveloping thousands of rualrupeds and lirds.
The tlames seen issuing from the crater are usually the reflection of the glowing lava emitter from the crater, and illuminating the elouds of vapour, scoria, and ashes.

VOLCANOES-VOLE.

Lava and seorise are at last vomited forth. Sir William Ilamilton says that, in 1579 , the jets of liquid lava from Vesuvins, mixed with scoriee and stones, were thrown to a leeight of 10,000 feet, giving the appearance of a colunin of fire. The lava, however, generally issues from openings in the sirle of the mountain. It pours forth in a perfectly liqnicl state, bright and glowing with the splendonr of the sun. At lirst, it flows rapidly; but as its surface becomes cooled and converted into slag, its velocity diminishes. It has to burst the indurated enating before it can continue its progress, and the liberated lava when it flows bears on its surface masses of scorie, looking like the slay from an iron furnaee.

The materials ejected from a voleano, though ditlering greatly in appearance, have the same mineral composition. The ash is merely the pumice in a very tine state of division, and the pumiee also is only lava made vesicular from contact with air or water.

The theories propounded to account for volennic action are either ehemical or geological. Sir H. Davy suggested that if immense quantities of the metallic bases of the carths and alkalies were prescut in the interior of the earth, all the phenomena would be produced by their oxidisation from contact with air or water: Although the distinguishal anthor of this theory abandoned it, it has since been taken up and advocated hy Daubeny auld others. Bischof, assuming that the interior of the carth. consists of a highly heated and fused mass, considers that the mechanical action of water, converted into steam by the great heat, would prodnce voleanic action. Both theorists scek sulpliort for their views from the fact, that the great majority of volcanoes are situated on or near the sea-coast. Frologists aecepting also the loctrine of internal heat, and believing that at a depth varionsly esti-mated-by souse as low as 10 miles, and by others as high as 25 miles-the rocks of the earth are in a state of fusion, explain voleanoes by considering them as conaections established between the iuterior of the earth and the atmosphere; and Darwin, from observations made in all parts of the worle, helieves that volcanoes are chiefly, and, indeed, almost ouly found in those areas where subterrauean motive-power has lately forced, or is now forcing upwarls the crust of the eartl, and are invariably alsent in those where the surface has lately subsidech, or is still subsiding.

Voleanio action is limited to particular regions of the earth. In these regions, the active vents are distributed at intervals, and are generally arranged in a linear direction. The lacific Ocean is bonnded by an almost unlroken line of active voleanoes. leginning io the New South Shetlands, where there is an active volcano in lat. $60^{\circ} 5.5^{\prime}$ S., we lass to Tierra del Fuego, and then on to the Andes, whieh are throughout their whole course voleanie, althongh the great centres of present action are confinel to Chili, Pern, the neighLourbood of Quito, Cuatemala, and Mexico. The line is eontinued northwards by the burning mountains of North-western America, and the Aleutian Islands carry the chain across to Kamehatka un the Asiatic side. Here turning southwards, the line may be traeed through the Kurile Islands, Japan, Formosa, the Philippines, Moluceas, New Guinea, and the Salomon and New Hebrides gromps, to New Zealand. From Celebes, a branch proceeds io a north westerly direction through Java aad Sumatra, to Barren Island in the Bay of Bengal; and even beyoud this we lind a region in Northeru India subject to earthquakes, which may lead us, on the one hand, to the volcanic region in Tartary, or, on the other, throngh Asia Minor to the Greek Archipelago, Sicily, Naphes, and
on to the L'anaries and Cape de Verdes. According to the geological theory, the lines thus tracel over the globe woukd represent rising lamls, where the crust is less strong, amd so less liable to repress the expansive powers below. There are a number of isolated volcanoes also seattered over the surface of the carth; these are supposed to liave opened a star-shaped eommunication with the interior. The most remarkable of these isolated volemoes are Jan Meyen, in lat. $70^{\circ} 49^{\prime} \mathrm{N}$. ; and those in Icelamd in the north, and Monnt Erebus in South Tolarland, in lat. $77^{\circ} 32^{\prime} \mathrm{S}$.

VOLE (Arvicola), a genus of rodent qualrupeds, of a group which some naturalists constitute into a family (Arviculide), but which is more generally rectarled as a tribe or sub-family of M/uridue (I. v.). This gromp is characterised by a thicker and shorter form than that of the true rats and mice; an ol,tuse muzale ; cars of molerate size; a rombl and hairy tail, not so long as the borly; the molar teeth with that erowns, which present angular cnamelled plates. These characters cxhibit an aprroach to the Beaver family (Custoridu). The Lemmings (q.v.) belong to this group. The species are numerons, ?nd witely distributed, being fouml in Europe, A sia, Africa, and North and South Amorica. Some of them are completely terrestrial in their habits, others are aquatic. Many are popularly called rats and mice, as the species of the genus Arvicola, which are found in Britain. In this genus, the teeth are only ten in number; two incisors and three molars in each jaw. One of the most common British species is the Field V. (A. ugrestis), also known as the Meador Mouse and Short-thiled Field Mouse. The whole length of the heal and body is searcely more than four inches, that of the tail rather more than an inch and a quarter. The Field V. Las a large head, a very obtuse muszle, ears just appearing above the fur, the thumb of the fore-feet rulimentary, and withont a claw. The upper parts are reddish hrown, the umler parts ash-colonr, the feet and tail dusky. It burrows in the ground, or finds a retreat ior itself in the exeavations of some other animal, as of the mole. It chiefly inhalits low and damp situations, and dry seasons are very fatal to it. It produces frus live to seven young at a birth. It is sometimes very injurious to plantations, by destroying the roots of trees and devouring their bark. Exeessive numbers of this little animal were regarded in 1813 and 1814 as threatening the destruetion of the Forest of Dean, and the New Forest in Hampshire; and many trees were killed; lut a remedy was found in digging pits into which the voles fell, and from which they eould not eseape. The same method has been successfully enaloyed in some of the forests of continental Europe. This species of V. is found in most parts of Europe, and in many parts of Asia. It is common in the IIima-laya.-Another very conmon British species is the Water V. (A. amphibia), popularly known as the Water Rat, a mieh larger animal, the heal and body being about S_{d} inches in length, and the tail 4 inches. The head is thick and short, the mazzle very obtuse, the eyes smanl, the ears scarcely seen beyond the fur ; the last joint only of the thumb of the fore-feet eonsjricuous heyond the skin. 'The fur is thick and shining, of a rieh reddish brown nixed with gray above, yellowish gray heneath. Although the feet are not webbed, the Water V. swims extremely well, anel not only at the surface of the water, but often under it. It burrows io the binks of streams, ditches, and ponds. Its food appears to consist chietly of aquatic plants, although it objects to no kind of vegetable food, and lias been known to store up potatoes in its burrow for wiuter. It has been supposed also to feed on worms.
frogs, and small aquatic animals, and to be destructive to the spawn of hish; but this is very doubtful. This species is widely diffused over the continent of

Water Tole (Arricola amphilia).
Europe. There is a black variety of it, common in some parts both of England and Scotland, which has been described as a distinct species (A. atra). Several species of V. are found in North America.

YO'LGA, the most important river of Russia, and the longest in Europe, has its origin in a marshy plain among the Valdai Hills, in the government of Tver; lat. 57° N., loing. $33^{\circ} 10^{\prime}$ E. From its sonrce, which is 550 fcet above ordinary sea-level, and 633 feet above the level of the Caspian Sea, into which it falls, the river flows south-east to Zubzov, then north-east past Tver and Koliazin to Muloga, where it turns east-sonth-east, and flows in that direction past Jaroslay, Kostroma, Nijni-Novgorod, and Kazan, 50 miles below which, on receiving the Kama, it turns sonth, passing Simbirsk, Stavropol, and Samara. ILere its course again changes to south-west, and in this direction the river flows until it reaches Izaritzin, when it bends to the soutl-east, and reaches the Caspian Sea, which it enters by many mouths, and after a course of 2320 miles. The V , waters 9 governments-those of Tver, Jaroslar, Kostroma, Nijni-Norgorod, Kazan, Simbirsk, Sarator, Samara, aud Astraklian ; lut besides these, 12 other governments are watered by its tributaries. The course of the stream is generally divided into three parts-the upper part reaching from its source to its confluence with the Szeksna, and, though presenting many hindrances to navigation, yet capable of being traversed frnm Tier to Iiplinsk by craft of $1 \frac{1}{2}$ and \because feet draught; the middle part, from Rybinsk in Jaroslav to Nijni-Novgorod, navigable for larger craft; and the lower V. from Nijni-Norgorod to Astrakhan-where it is about 90 feet deepnavigable for the largest vessels. Below Astrakhan, the V. is very much shallower-in some places only $1 \frac{1}{2}$ feet deep. At Tver, the 1 rearlth of the river is 720 feet; at Mologa, 2060 feet ; at Nijni-Novgorod, 2069 feet, but sometimes in the Spring $2 \frac{1}{2}$ miles broad; at Simbirsk, about a mile broad; Letween Samara and Sysran, from 1 to 3 miles broad. Delow "'zaritzin, at the conHuence of the Sarpa, the river affords few facilities for navigation, and is remarkable for the number of branches into which it divides itself before it enters the Caspian Sea. The bauks of the V., which are elevated in the upper and middle reaches, become much lower as the river approaches its embouchure. The chief ferries and commercial torns on the V . are: Rjev, Zubzov, Tver, Koliazin, Uglitch, Mlologa, Rybinsk (the great centre of the corn-trade), Jaroslav, Kostroma. Nijni-Novgorod, Kazan, Simbirsk, Samara, Tzaritzin, and Astrakhan. The system of water-communication established by the V. and its tributaries, is of the greatest importance to the
$4 i 0$
commerce of Russia, connecting as it does the central districts of the country with the White Sea by means of the canal of the Prince of Wurtemberg; with the Baltic by the three canal-systems of Tich. vin, Vishni-Volotchel, and Mariiusk; with the Black Sea ly the Ura Canal, which connects the Oka and the Don; with the Caspian Sea by the great stream of the V. itself ; and with Siberia by the rivers Kama and Tchussovaia. The principal affuents on the right are the Oka (q. r.) and the Sura; on the left, the Trertza, Mologa, Szeksna, and Kama (q. v.).

VOLHI'NIA, a frontier government of West Tussia, wounded on the S_{S} W. by Galicia, and on the W . by Poland, from which it is separated hy the river Bug. Area, $27,3 \pm 5 \mathrm{sq}$. m. ; pop. (1S66) 1,575,000, mostly Russians, Pules, Lithuanians, Jews, Germans, and Tartars. The surface in the north of the government is low; and plains and morasses, covered with forests, abound; in the sonth, there are hills, branches of the Carpathian Mountains, but which do not rise higher than 1230 fect. Almost all the rivers flow north, and join the Pripet, an aftluent of the Dnieper; a few streans, however, flow west, and join the Bug, by means of which river timber is floated down from this river to Prussia. The soil is sandy or clayey; agriculture flourishes in the south, and corn is exported to Odessa, Galicia, Poland, and partly to Great Russia. Cattle-breeding has always been a prosperous branch of industry in V. until recently, but a fine breed of sheep are still reared, and the government possesses the finest studs in the empire-those of the Priaces Sangousko and Tzartorisky. Of the woods, which form the 1 rincipal riches of the north districts, fir is the chief. l'he forests abound in foxes, hares, and bears, and huuting is a favourite pastime. Many sugar-mills, cloth-factories, and distilleries are in operation, and the manufactures are increasing yearly. Corn, cattle, sheep, wool, cluth, linen, timber, honey, and wax are the principal articles of trade.
\bar{V}. in early times belonged to the ancient Pussians, but was conquered by the Lithuamians and Poles in 1320, and remained in their hands till its annexation to Russia in 179S.

VOLITION. See Will.

VO'LLEY, the simultaneous discharge of a number of small-arms. The same operation from cannon is called a salvo.
volney, Constantin Fpayçois Chassebecf, Comite de, was born at Craon, in Anjou, on the 3d of February 1757. He was the son of an adrocate of good reputation. His family name was Chassebœuf, but on arriving at manhood he assumed the additional surname of Volney. He got his preliminary education at the colleges of Ancenis and Augers, and afterwards went through a protracted course of study at the university of Paris. His father wishing him to join his own profession, he speot some time in preparing for the bar; but he rcnounced law for medicine, which, however, he never practised. He had inherited a competency from his mother, and, soon after completing his studies, in the year 1783 , he set out for Egynt, with the intention of travelling in Erypt and Syria. This expedition occupied him about four years. On his return to France in 1787, he jublished his celcbrated Travels in S'yria and Eq!pt, which still contain the most trustworthy as well as one of the liveliest and most interesting accounts which have been published of the tribes with which be came in contact. This work at once procured him a great reputation. At first, there was a disjosition to question the veracity of some of his descriptions; but their truthfuluess was fully contirmed when the French became more familiar with the Egyntians and the Arabs through 17
the expedition of 1796. The sagacity of the chief political couclusions to which his residence among these peoples hat bronght him, which in 1788 he embodied in a pampllet-C'onsiderations on the W'ar between the Turks and the Russians-has also been shewn by sulsequent events. In 1790 he was elected to the Etats Géneraux, as a momber for his native district, and tonk a sumewhat prominent part in the political discussions of the years which followed, shewing himself, as he has done in his works, a fast friend of the public libertics, a mocker at all systems of religion, and at the same time a fearless olponent of popular excesses. IIe was imprisoned for his outspukemess in 1793, and was not liberated till after the downfall of Robespierre, in July of the following year.

In Scptenber 1794, V. published his Ruins; Rcflections upon the Revolutions of limpires, upon which, and upon his Travels, his reputation chiefly rests. V. believed that political, like all other organisations, are subject to decay and destruction. The discussioos contained in the liuins cover almost all the radical questions in politics. Its principles are those of 1789. It vindicates the doctrinc of the rights of mas, establishes the duty of toleration in matters of opiniou, and maintains, with perhapls too much of sarcasm aud mockery, the human origin and the essential ialsity of all religious systems. In the previous year, V. had pullished his Natural Law, a catechism for a French 'citizen,' in which be trcats morality as a physical and material science, to be studied upon the same methods as the other natural sciences, and having no ohject but the conservation and improvement of society. This work was afterwards republished under the title of the Physical Principles of Morality.

Towards the close of 1794 , he was appointel Professor of History in the short-lived Ecole Normale; and the brilliant discourses, not untinged witl paradox, which he delivered in this capacity, made a sensation in Paris even at that unsettled time. On the suppression of the Ecole Normale in 1795, he went to the United States, intending to spend the remainder of his days there ; but circumstances made his residence there extremely disagreeable to him, and he returned to France in the spring of 1795 . In his absence, be had been elected a member of the Institute; he was, soon after his returb, admitted to the Academy; and henceforth his life, though not inactive, was prosperous and untroubled. Ile liad early been acquainted with Bonaparte, and had been of service to him at the time when political circumstances had deprived him of employment; and Bonaparte, on becoming First Consul, desired to associate him with himself in the government as consul or as Minister of the Interior. V. refused both offices, but accepted a seat in the Senate. ITe protested against the establishment of the Empire, and resigned his seat in the Sonate; but his resignation was declined; aud during the existence of the Empire he formed one of the little baod, sneered at by Napoleon as idéologues, who in the Scmate attempted by their criticisms to restrain the arbitrary conduct of the emperor. Henceforth, however, his occupations were mostly litcrary. He published Researches into A ncient II istory, several of the papers contained in which were written in the earlier part of his career ; and also several linguistic works, in which be attempted to popularise, aod, by means of a universal alphabet, to simplify the stiuly of the eastern languages. He had accepten from Napoleon the title of Connt, and the commandership of the Legion of Honour ; and upon Napoleon's downfall he was among those who werc called to the House of l'eers by Louis XVIII. Ilis latest work, published in 1819, was The IIistory of Samuel, the

Imentor of the Sacredness of Kings. V. died on the 2 th A pril is 20 , shortly after completing his $6: 31 \mathrm{y}$ y car.

VOLO'GDA, an extensive government of Great Russia, bounded on the E. ly the Ural Mountains, and on the N.-W. by the government of Arelangel. Area, $151,500 \mathrm{sq} . \mathrm{m}$. ; pop. (1SG6) 961,000 , chietly Iussians, but comprising also a few Fimes, liy which race this territory was inhal,ited io carly times. The districts in the east, adjoining the Ural Mountains, are traversed ly branches of that ehain, which rise to the height of from $: 1000$ to 4000 fect. But by far the greater part of the government is occupied by marshy plains, covered with impenetrable forcsts. The soil is not fertile, except in the sonthwest districts, which are the most densely peopled, and produce corn sufficient for local consumption and the supply of the distilleries. In the middle districts, there are comparatively few inhahitants; cultivated land is rarcly seen, and hemp, is the only crop produced liberally. The wooded morasses of the north are inhalited only by linnish tribes, engaged in hunting. The lianks of the rivers are, as a rule, the only inhabited places. The principal rivers, fiftecn of which are navigable, are the Northern Dwina, with its great upice waters, the Suchoma, Jug, and Witchegda; and the Petchora, with its affluents. Lakes are numerous. Saltworks, iron-works, and distillerics are in operatiou; and salt, iron, skins, tallow-candles, and checse are exported; aucl corn aud manufactured goods imported.
VOLOGDA, a city of Great Tussia, in the southwest angle of the govermment of the same name, of which it is capital, stands on both banks of the river Vologda, 407 miles east of St Petersburg. It is said to have been founded in the 13th c. by settlers from Novgorod, to which principality it belonged down to the 15 th e., when it was amexed to Moseow. In 1553, when England opened up a trade with Inussia, through the port of Archangel, V. was the great entreput for goods deported north by the Northern Dwiun; and cven yet (ISG6), it exports to St Petersburg and Archangel various products of its own and neighbouring governments, to a considerable amount. Niyello and filigree work are manufactured. I'op. (1866) 18,984.
VO'LSCI, an ancient [talian pople, closely relatal to the Umbrians. See Cabria. Their territory was bounded on the W. ly that of the Latini, on the N. they marched with the AEqui aucl Hernici, on the E. with the Samnites, and on the S. they had the sca. Along nearly the whole of their coast lay the Pontine Marshes, while, inland, their territory was somewhat monntainous. The V. were a brave and warlike people, who, frequently in alliance with the Ayui, were incessantly at war with the Romans for ulwards of 200 years previous to 338 Br ., alrout which time they appear to have beeu finally sublued, their territury inenrporated into Latium, and they themselves ereated Homan citizens. Sce Latini. These wars were very harassing to the liomans, as they were often carried on not so much ly the V. as a whole, as by different cities, cach frequently on its own account. Some of the chicf towns, and those whill took a mincipal part in the wars, were Antium, Velitre, Satricum, Privernum, Ulubre, Suessa l'ounctia, Anxur, and Tarracinn, and later Fornm Appii and Tres Taberne. The legend of Coriolanus (q. v.) is connected with the Volscian wars. See Rome, 'TarQunios Surerdus, Antium. From the time of their linal sulijugation, their history belongs to that of liome (q. ..).

VOLSK, or VOLGSK, a town of Europan Russia, in the goverument of Saratov, on the right
bank of the Volga, $S 0$ miles north-east of Saratov. Fat and skins are prepared and exported to St Petersburg, and corn is exported in large quantities to Astrakhan and Rybinsk. The inlabitants are chiefly engaged in the culture of gardens and orchards, and the fruits grown are exported priucipally to Nijni-Novgorod. Pop. 24,346 .

VOLTA, Alessandro, a celebrated Italian physicist, was born at Como, of a noble family, in 1745, and received an excellent education. In 1774, he was appointed Professor of Natural Philosophy at Pavia, and continued to discharge the duties of this chair till 180t, when he retired to his native town, to spend the rest of his days. V., while but a youth, had exhibited considerable taste for letters, and had even written two poems, one in Italian, and the other in Latin; but as he grew older, he abandoned all such pursuits, and devoted himself exclusively to the scieuces, especially those connected with electricity. At intervals between 1777 and 17S2, he visited Switzerland, Tuscany, Germany, Holland, France, and England, making the acquaiatance of the most eminent philosophers of these countries; and on his returu is said to have introduced the cnlture of the potato into Lombardy. In 1796, he was one of a deputation sent to solicit the forbearance of Napoleon; and was received with distinction by the French general, who afterwards invited him to Paris, to exhibit, to the members of the Institute, the action of the 'pile' (see Galvanism), which he bad invented, enrolled him in the Legion of Honour, and conferred on him the order of the Iron Crown, with the titles of Count and Senator of the Kingdom of Italy. He was also elected (1s01) a Foreign Associate of the French Institute, ten years after he had been made a Fellow of the Royal Society of London. He died at Como, March 5, 1S26. V.'s contributions to the science of electricity are of great importance, the chief of them being his theory, in opposition to the 'animal-electricity' doctrine of Galvani, that the electric power resides in the metals; althongh, in turn, he fell into the error of supposing that the chemical action of the different kinds of metal on each other was only incidental. He also invented an electric battery, consisting of a series of cups arranged in a circle, each cup containing a saline solution, in which were immersed, edgewise, two plates, one of zinc and the other of silver, the zinc plate in one cnp being connected with the silver one in the next by means of a wire. This battery was, however, soou after superseded by his 'pile.' He also invented, in 1775, the Electrophorts (4. v.); in 1782, the electrical Condenser (4. v.), employing with it an electrometer (see Electricity), in which two straws were employed instead of the gold-leaf strips now in use; and also (1777) the hydrogenlamp, and the electrical pistol. Nost of his important discoveries were communicated by him directly to the Royal Society in the form of Memoirs, which were published in the Plilosoplical I'ransactions (1782, 1783,1800) ; and the Copley Medal was awarded to him in 1794. - A collection of V.'s works was published in 1816 at Florence, under the title of Cullesione dolle Opere, de., in 5 vols. Svo.
Voltalire (Frangots-Marie Arouet, his true name)-one of the most famous of French writerswas born, according to his own account, as given in later life, on 20th February 1694, at Chatenay, near Sceaux. The register of his laptism, however, assigns Paris as the place of his birth, and dates it 21 st November of that year. As to which of these statements may be really the correct one, his biographers are not yet fuly agreed. His father was François Aronet, a notary of the c'hatelet, ultimately

Treasurer of the Chamber of Accounts; his mother, Marguerite D'Aumar, of a noble family of Poitou. Of two sons born to them, François was the younger. He received his education at the College of Lomis le Grand in Paris ; and on its completion, he was set to study law by his father. But he found this pursuit too disgusting, and speedily quitted it for the career of a man of letters. By his godfather, the Abbé de Chateauneuf, who was very intimate with her, he was introduced to the celehrated Ninon de l'Enclos, and through her to the best French society of the period. In these wicked and witty circles, being himself deficient in neither wickeduess nor wit, the young mau prospered extremely; and so perfectly unexceptionable was the company in which he found himself, that one day he could exclaim, looking round the table with complacency: 'Are we all, then, either [rinces or 1wets?' His father, however, deeply disapproving of the life he led as immoral, and probably not inexpensive, had him sent to Holland with an embassy. Here he became involved in a love-affair of the more respectable kind, which eaded, not in marriage, as he scems to have proposed, but in his being sent back to Paris, to resume his gay career. Shortly, it suffered another interruption : on suspicion (unfonaded) of his being the anthor of some satirical verses, reflecting on the government of Louis XIV., then just dead, he was sent to the Bastille (May 17, 1717), where he remained upwards of a year. This time of imprisonment he improved by sketching his famous poem, afterwards published as the Menriade, and by tinishing his tragedy, Edipe, which was produced on the 1Sth November 1718, and had so great a success with the public, as not only to delight the author, but somewhat to mollify his old parent, who began to surmise that the despised 'poetry' of his offspring was not unlikely to come to something. The same success did not, however, attend his next ventures: his tragedy, Artcmire, produced in 1720, was hissed off the stage ; and his Afariane, which followed in 1724 , fared but little better. Meantime, he had again visited Holland, making, on the way, the acquaintance of Jean Baptiste Rousseaur, a poet of some importance, then living at Brussels. The two geniuses met as friends, only to part as irreconcilable enemies. Their quarrel is said to have originated in a characteristic mot of V., who, his critical opinion being asked of an Ode a la Postérité, which Rousseau read to him, had the candour to reply thus: 'Mon ami, voila une lettre qui n'arrivera jamais à son adresse.' In the suminer of $172 \overline{5}$ occurred a misadventure, which, for V., had important consequences. At the dimuertable of the Duke de Sulii, he resented with spirit an affront put upon him by the Chevalier de Rohan, who, worsted in the war of wit, as most men were likely to find themselves with V., avenged himself some days after by laving his adversary thashed in public by footmen. Subjected to so gross an ontrage, V. retired for a time into private life, assiduonsly perfected himself in the small-sword exercise, and then courteously entreated the Chevalier to a meeting in the duello. The Chevalier, as it proved, had small stomach for the encounter; laving immortalised himself sufficiently by his insult to the poet, he considered it unnecessary to asjire to the further immortality of being killed by him. Under superficial pretences of accepting the challenge, his practical answer to it came in the form of a lettre de cachet, which consigned V. once more to the Bastille. His imprisonment was not on this occasion a long one; but it was only under sentence of exile that be was permitted to issue from durance; and on doing so, he betook hinself to England. Some little time previous, the young Arouet had assumed

VOLTAIRE.

the name of Voltaire, destined to become so famons. As to the origin of this name, considerable perplexity has existed; but there can scarce be a doukt of the correetness of the conjecture thrown out by Mr Carlyle, in the second volume of his Frederick, that it is simply an anagram of Aronet l. j. (le jerne).
Arriving in England in 17?G, V. remained there upwards of two ycars. Of this eprisode of his life, we have only the most mearre account. It is cortain, in a general was, that he hat the entree to the best English society; he knew Bolinglroke, l'ope, and, we need not doubt, many others of the intellectually distinguished. Of his visit to the f:mous $11 r$ Congreve, and the little skirmish of wit leetween them, we have express recorl. It was a whim of Congreve to affect dislike of his fame as an author, as to a certain extent a disparagement of his claims as a person of quality. On his signifying to V. that it was simply as this last he desired that his friends should regard him, he was answered to the effect, that had he been nothing more than the elegant gentleman he considered himself, M. de V. would scarce have thought it worth while to solicit the honour of his acquaintanec. To V., his residence in England was fruitful of new knowledge and ideas; in the school of the English Deists, Bolingbroke, Collins, Tindal, Wollaston, \&c., he found speevlations much to his-mind; the philosophies of Newton and Locke he studied diligently ; and in his subsequent dramas there may be traced a distinct influence from shakspeare, whom, however, he has expressly vilificil, as a barbarous monster of a writer, intolerable to any reader with the least tincture of orthodox French goat in him. Not the less the distinction remains with V . of having becn the first Frenchman to recognise in some clecisive, if grudging and inadequate way, the essential superiority of our great national poct. The intellectual delit thus indicated was not the only one which V . owed to England. Whilst resident there, ho pul)lished in a reviscel form his cpic poem, the IIenriade, is surreptitious cdition of which had already appeared in France. The work was dedicated in English to Queen Caroline ; the subscription for it was headed by her and other members of the royal family; the rank and fashion of the country could not lnit follow the illustrions example set them; and for result, V. could convey into his pocket a comfortable sum (stated so high as $£ 5000$), which became the hasis of his future fortune. From the time of his return to Pirris in 17es, he had always on hand some money speculation : investments in corn, bacon, or whatever a pretty penny could be turned by, with now and then a fat army-contract, which a fricnd might have interest to secure for him; and so shrewd in his tinance was he, that, owing lut little to his books, which, despite of their immense popularity, were never a sonrce of great protit to him, his income at his death is ascertained to have metted some £ 7000 per annum, a revenue then to be styled princely: Oi his literary labours, from this time forward unremitting, the sum of which remains in something like ninety volumes, no detailed account can here be attemptect. His was truly a universal genius; he wrote literally everythinghistories, dramas, poems, disquisitions, literary, Milosophical, and seientitic; novels, for the most lart with some doctrinal purpose, of which his iamous C'andile, or the Optimist, may stand as the type; his literary correspondence was on an uncxampled scale; and he was sellom without some fierce polemic on hand, in which his adversaries had to writhe for the amusement of the public, under the scourge of his envenomed wit.

In the gay society of Paris, he became acquainted
with a certain Nadame dn Châtelet, who was living apart from her hushand, the Marquis, though still on polite terms with him. She was assez spirituelle; a most fascinating woman of the world, and in the matter of intellectual aecomplishment, the bluest wonder of the period; most especially she was deep in mathomaties, and lad mastered the mysteries of Newton's Principia. As himself an admirer of Newton, V. could not but be charmed to meet him thus surprisingly put into petticonts ; nor conld a woman so intellectual as Malame fail, in her turn, to appreciate the tender attentions of such a genius as M. de Voltaire. Their intimacy lecame extreme; and fimally, in 1733-the lmsband of the lady behaving like a philosopher and man of fashion of the time, and contiming now and then to visit them-they went off to prosecute it mudisturbed at Cirey, an old châtean in Champagne, the property of Ni. du Chatelet. Here, for the most lart, they diligently studied Newton together for the next fifteen years. The arrangement secms to lave been on the whole a not unhappy one; but towards the close, it beeame complieated for M. de V. by the advent of another lover, in the person of a Monsicur de Saint-Lambert. It is not conjectured that this gentleman know anything of Newton, or was at all such a genius as V.; but it is certain that, on some other ground unexplained, he found farour with Madame du Chatelet. The philosophy which the hushand had been grood enough to practise in favour of V., was now required of himself; and after a little umpleasantness he was able to reconeile himself to the inevitable. This curious triaugular love-affair-or square, if we inelude the husbandwas not, however, of very long duration. In 1748, Madame du Chatelet died in child-bed. V. was overcome with grief; and the tonching reproach which, in the first agony of bereavement, he addressed to the enlpable M. de Saint-Lambert, a fortunate chance has preserved for us: ' Eh ! mon Dieu! Monsicur, de proi vons avisicz vous de lui faire un cufant.' This, which is now so sloncking, illustrates strikingly the morals of a period in which it seemed entirely comme il fout.
To dissipate the sense of loneliness which overpowered limn in the loss of his 'divine Emilic,' as he was wont, in his more lyrical moments, to call her, V. once more betook limself to Paris, whence, in 1750, he proceeded to Berlin, on the invitation of the yong king of Prussia, Frederick, since known as 'the Great.' Between him and V., much correspondence had already passed; and they seem to have entertained for each other a sincere admiration and regarl. When they came together, however, it was found, as so often in such cases before and simee, that it is not in the matter of monntains only that 'distance lends enchantmont to the view.' They quarrelled bitterly, and parted; Y., at his exit from the country, being subjected to indignities which he found it hard to forgive. Into the details of the quarrel we need not enter. When we say that the ling was a poct at once most profuse and most execrable ; and that the main function of V.himself a proet-was to criticise and correct his verses, it should almost secm that we indicate, without going further, a sufficient origo mali. V. detested the king's verses; the king could hardly have been even the very bad poct he was, without heartily detesting V.'s criticism and corrections. Is it marvellous that in no long time they got heartidy to detest each other? A reconciliation was afterwards effected, and their literary correspondence was resumed under the old forms of friendlimess; but meantime V. had aveaged liinself in the amusing but most scandalous chronicle, entitled Vie Privëe du livi de Prusse, which was found at his

VOLTERRA-VOLUMETRIC ANALYSIS

death among his papers, and published, as there is pretty good reason to surpose the wicked wit meant it should he.

After some years of a somewhat unsettled kind, V ., in 1758, established himself along with his niece, Madame Denis, at Ferney in Switzerland, where, with little exception, the last 20 years of his life were prassed. During this period, some generous traits of character are recorded of him. Thus, he rescued from extreme want a graud-niece of Corneille the great dramatist, had her carefully educated under his own eye at Ferney, and made over to her the proceeds of an aunotated ellition of her aucestor's works, which he issued for her express benelit. His noble exertions in behalf of the Calas family, the victims of a shameful persecution, are also well known. In 1778 , he was induced by his niece to revisit Paris. By the l'arisians, the poet, now in his 84th year, was received with a perfect tumult of enthusiasm, the excitement conuected with which is thourht to lave hastened his death, which took place on 30th May of that year.
With the doubtful exception of Rnussean (Jean Jacques), who in his character of vates and enthusiast, was perhaps even more deeply influential, V. is hy far the most memorable of the hand of celebrated writers whose crusade against established opinions was preparing the grand culbute of the French Revolution. As every one knows, it was mainly in the field of religious palemic that his destructive energies were exerted. It is common to stigmatise him as an Atheist, but this is sumply to exhibit iguorance. Discarding revelation, he steadily uheld the truths of natural religion, and was, in fact, a Deist pretty much of the English type. As snch, he was not a little despised by the more 'adranced' miuds of the period, Diderot and the like, who considerel belief in a God clear evidence of intellectual infirmity. His favourite weapon was ridicule, and there was never, perhaps, a greater master of it. In a particular form of polished mockery, V. remains alimost without a rival. His prose is the perfection of Freuch style; it is admirable in grace, clearuess, viracity, and alive like a sparkling wine with the particular quality of esprit peculiar to the people aod the language. As a dramatist, V. takes rank as a wnrthy third with his two great predecessors Corneille and Racine. His most famous poens are the IIenriade, hefore mentioned, the one epic of the language, and La Pucelle, which is, perhaps, more properly to be styled infamous, such is the profanity and indecency with which the writer has wilfully defiled the heroic stary of the Maid of Orleans. In the historical works of V., with the utmost lucidity of method, there are traces of a more philosophical treatmeut than had previously been applied to such subjects. For its narrative charm, his little historiette, Charles Douze, faniliar to every school-boy, is in its kind a perfect model. Strange to say, neither in French nor in English does any full or adequate biograplyy of V. exist. Of his earlier life, a most racy and amusing sketch will ve found in the second volume of Mr Carlyle's F'rederick the Great ; and his relations with Frederick are of course in that work treated of in full, with the writer's characteristic humour and insight. As a critical estimate at once of the man and of the writer, nothing better can anywhere be foumi than Mr Carlyle's earlier Essay.

Almost as we write, the first volume of a Life of Toltaire has beeu pulbished by Chapman and Hall. The writer, Mr F'rancis Espinasse, presents in a lively and entertaining form the results of an accurate and exhaustive investigation; and the work when complete, as proposed, in thrce volumes,
will, without doubt, ably sumply what is hitherto a desideratum in English literature.

VOLTE'RRA, a town of Central Italy, in the province of Pisa, stands on a table-land at the height of nearly 2000 feet above sea-level, 30 miles southeast of Lechorn. It is surrounded by cyelopean walls, which are in a better state of preservation than any structures of the same kind in Italy. The gate called l^{l} Arco, and the remains of baths and of an amphitheatre, are interesting vestiges of antiquity; the cathedral, municipal ralace, and Pretorio, are monuments of the midlle ages; and the Mastio, a prison, is a modern ellitice. V. contains a college, numerous schools, and a library of 120,000 wols. Wine, oil, corn, and mulberry trees are grown in the lands belonging to the town, which also possesses considerable mineral wealth. Pop. 13,099.
V., the ancient Volaterro, was one of the most powerful and important of all the Etruscan cities, and came iuto the possession of Rome $474 \mathrm{r.c}$. ; after the fall of the Empire, it suffered much from the invasion of barloarians.
YOLTIGEURS, picked conıpanies of irregular riflemen in the French regiments. They are selected for courage, great activity, and small stature. It is their privilege to lead the attack.

YO'LTI SU'BITO (Ital. turn quickly), in MIusic, an indication placed at the foot of a page, to signify that the page ought to be turned without delay.
VO'LTRI, a town of Northern Italy, in the prorince of Genoa, and $9 \frac{1}{2}$ miles west of the city of that name, on the Gulf of Genoz. Its churches are richly adorned; it contains many fine villas, and manufactures paper extensively. Near it are the sulphureous springs and baths of Aqua Santa, very efficacious in cases of cutancous disease. Pop. 11,802.

VOLUMETRIC ANALYSIS, in Chemistry, consists in subnitting the substance to be estimated to certain characteristic reactions, the chemist employing for such reactions liquids of known stremgth, and from the quantity of liquid employed to induce the reaction, determining the weight of the substance to be estimated by means of the laws of equivaleuce. The idea of this method first suggested itself to Gay-Lussac in considering how most readily to determine the anount of silver in an alloy of that metal and copper; but the method itself did not come into general use till within the last twenty years. The liquid reagents of known strength are called standard solutions; and the amount employed may be estimated either by weight or by volume, but the latter being the easiest of application, is universally employed; and hence this methol of analysis, based on the use of standaral solutions, is called rolumetric analysis. In order that a reaction may be applicable in volumetrie analysis, it must satisfy the two following conditions: (1) lt must not occupy much time; and (2) the termination of the reaction must be easily recognised and unmistakable to the eye. The necessity that these conditions should be fultilled, very much limits the number of volumetric processes. In addition to the ordinary chemical apnaratus, this kind of analysis requires graduated glass vessels of different kinds for the measwement of the standard solutions. Of these, the most essential are: (1) Pipettes, which are glass vessels of the form of figs. 1 and 2 , intended for the delivery of the standard solution. Fig. 1 is provided with a single mark upon the neck, while tig. 2 is divided and graduated tlirough its whole length, the division being al ways made into cubic centimetres (c.c.), according to French scale; (2) Flask's graduated for the contents in various sizes from one-tenth of a litre to five
litres, and used for the preparation of standard solutions; (3) Burelles, or graduated tubes for measuring the liquids used in an analysis. The burette was invented by Gay-Lussic ; but since his tine, various modifications have been proposed, the best of which, for general purposes, is that

Fig. 1.- A Pipettc, containing $10 \mathrm{c} . \mathrm{c}$.
Ejg. 2. - A Pipette, containing 50 c. c., divided through its whole length in c, c; leeing thus graduated for measuring the delivery of fluids.
Fig. 3.-a, the india-rubber; b, the slips made of brass wire, by which the india-rubber tube can be closed at will.
whiel is known as Mohr's Burette. It is shewn in fig. 3; and its lower part is attached to an indiarubber tube and spring-clamp or clip (Quetsch-HIahn). Its priucipal advantages over other forms of the instrument are, that its constant upright position enables the operator at onee to read off the number of degrees of standard (or test) solution used for any analysis, while the quantity of fluid to be delivered can be most accurately regulated by the pressure of the thumb and finger on the clamp; moreover, as it is not held in the hand, no error is likely to arise in the measurement from the licat of the operator's hand. The greatest drawback to it is that it cannot be used for those test-solutions which decompose india-rubber.
The standard solutions, known also as test or tierated solutions (from the French word titere, which signities the standard of a coin), may be divided into (1) such as are inmediately prepared by weighing a substance of known composition, dissolving it, and diluting it to the required volume; and (2) such as are prepared by approximate mixture and subsequent exaet analysis. The preparation of the first kind requires no description; for the preparation of the second kind, we must refer to the article 'Analysis, Volumetric,' in Watts's Dictionary of Chemistry, vol. i. p. 259, where the method is fully explaincd, and as an example, the preparation (ff a stundard solution of sulphuric acid containing t
grammes of hydrated sulphurio acid in 1 litro is given. It is obviously essential that the greatest care must be taken both with rospect to the graduation of the measuring instruments and the strength and purity of the standard solutions, which must be protected from evaporation and other hurtful inflnences by being kept in bottles of 1 or 2 litres' capracity, provided with well-ground stoppers.
Volumetric methods are nsually classified as follows, according to the principles on which they are based-(1.) Analysis by saturation, wheu the quantity of a base or an acid is measured by the quantity of acid or base whiel is required for exact saturation - -a point to be determined by test-papers, tineture of litmus, \&e. (2.) Analysis by oxidation and reduction, when the quantity of the substance to be cletermined is found by the quantity of chlorine, bromine, jodine, or oxygen to whieh it is equivalent (regarded as oxidant), or ly the guantity of chlorine, bromine, iodine, or oxygen which it requires to pass from a lower to a bigher stage of oxilation. The chief oxidising agents are permanganate of potash and bichromate of potash; while the reducing agents chiefly used are protoxide of iron and hypusulphite of soda. (3.) Analysis by precipitation, when the determinatiou of a substance is effectel hy precipitating it in some insoluble and definite combination. Our limited space does not admit of our giving an example of more than one of these forms of analysis, and from its historic interest we shall select the last, in its applieation to the determination of silver. We slaill borrow Mr Sutton's account of this process. 'Suppose,' he olserves, 'that it is desirable to know the quantity of pure silver contained in a shilling. The coin is first dissolved in nitrie acid, by which means a bluish solution containing silver, copper, and prolably other metals, is olutained. It is a known fact that chlorine combines with siver in the presence of nther metals to form chluride of silver, which is insoluble in uitric aed. The proportions in which the combiuation takes place are 35.5 of chlorine to every 10 S of silver; consequontly, if a standard solution of pure chluride of sodium is prepared by dissolving 55.5 grains of the salt-i. e., 1 eq. sodinm $(=23)$ plus $]$ eq. chlorine $(=355)$ or 1 eq. chloride of sodium-in so much distilled water as will exactly make up 1000 grains by measurc, every single grain of this solution will combine with 00108 of a grain of pure silver to form elaloride of silver, which precipitates to the bottom of the vessel in which the mixture is made. In the process of adding the salt solution to the silver, drop by drop, a point is at last reached whon the precipitate ceases to form. Here the process must stop. On looking carefully at the graduated vessel from which the standard solution lias been used, the operator sces at once the number of grains that have been necessary to produce the complete deomposition. For example, suppose the quantity used was 520 graius ; all that is necessary to be done is to multiply 0.0108 grains by 520, which shews the amount of pure silver present to be $56^{\circ} 16$ grains.' By volumetrie as compared with ordinary analysis, a large amount of time, lahonr, and therefore of expense, is saved; at the loss, however, often of due aecuracy, unless the greatest care be taken that the staudard solutions are of due strength, and the instruments accurately graduated. An analysis can thus be completed in a guarter of an hour, that would formerly have ocenpied a day or more. lodependently of its application to pure chemistry, it facilitates to a great extent the chemical analysis of urine (on which suloject sce the English translation of Neubauer and Vogel On the Urine, published by the New Syd. Soc.), of waters (on which sec Parkes Un Hygiene), of manures, soils, \&c.; and its processes
$\because \because$
have been freely introdnced in the British Pharmacopeia. The standird book on this sulject is that of Nohr, a German chemist; the Enclish reader may consult the text-books of Scott of Duhlin, and Sutton of Norwich, and various Memoirs in the Chemical News.

VO'LUNTARY CONVEYANCE is, in Bankruptey and other proceedings, a conveyance which is made without any legal consideration, either of money or of marriage; and in competition with creditors having deeds made for consicleration, is often decmed fraudulent, and is generally postponed or set aside altogether.

VO'LUNTARYISM, the principles or system of polity distinctive of those who advocate the sepraration of church and state; the cessation of state endowments and state grants for religions purposes, and, in general, of all interference, patronage, or exercise of authority on the part of the civil power in the religions and ecclesiastical affairs of the subject. The terms Voluntaryism and Voluutary have been in use since the date of the leen discussions regarding civil establishments of religion-commonly called the "Volnntary Contro-versy'-which sprung up in the second decade of this century between churchmen and dissenters, in Scotland ; and they serve to suggest, not inappositely, the fundamental couception which underlies the creed of religions dissent, that all true worship, or acceptable service in religion, must be the free expression of individual minds, and that, therefore, religion ought to be left by civil society to mould itself spontaneously according to its own institntions and spiritual nature, without violence to individual freedom from any internosition of secular authority or compulsory influence. Volnntaryism seeks to define more accurately the limits of civil power by defining more adequately than preceding theories had done the latitude due to the novements of religion. Assigning the magistrate his proper sphere, it is equally careful to assign the church and the individual their appropriate spheres of responsibility and duty in reference to religion, within which they may work unchecked, in full harmony with all the claims of civil order. Voluntaryism may be regarded as the formula of advanced Protestantism, the corrected doctrine of church and state, which the failure of the experiment of national churches has forced on public thought. It is a protest in modern language against the encroachment of the temporal power, whether under the name of magistrate, nation, or political majority, on the rights and liberties of individual conscience. Voluntaryism has sometimes been erroneously considerel the offspring of theological neutrality. On the contrary, its leading advocates base it on the expresscd law of Cbrist resnecting the constitution, administration, support, and extension of the church, as well as on the rights of conscience, the nature of civil goverument, and considerations of general equity and policy. In its most extensive sense, Voluutaryism embraces the whole question of the proviuce of the magistrate in reference to religion and the church. Voluntaries admit that magistrates as well as other men, being uader law to Goll, ought so to execute the projer duties of their office that all shall be done in consistency with the paramount claims of morality and religion. At the same time, the nature and design of civil government excludes their authority from the domain of religion and conscience, and confines it to the secular concerns of intividuals and of society. Magistrates, like other men, are under olligation to scek and to follow the highest avail. able light and guidance in duty; but it is not
therefore allowed them to convert the rules of the Divine Word, which are addressed exclusively to the individual conscience, into laws for civil society. God alone being lord of the conscience, such laws only-though revealed in His Word-may be adopted and enforced in civil society as are requisite for its outward preservation, peace, and good order, and for the advancement of those secular interests which are the proper care of its rulers. While, therefore, magistrates, noless than other men-and for reasons common to all favoured with the Gospel-ought, as indiviluals, to embrace and profess the Christian religion, and to employ wisely and justly the influence arising from their circumstances and station, it is no part of their political or official dnty, or of the homage required of them lyy Christ, to emit, adopit, prescribe, or enforce a confession of faith; neither is it within their province to aim at establishing or propagating Christianity ly the civil arm, to provide for, endow, or subsidise its teachers either in churches or schools; but it is their duty impartially to protect all their subjects, of whatever creed, in the enjoyment of full religious liberty, so long as their manner of exercising this civil right does not infringe on the equal rights of others. On this ground, and with such qualification, it is their duty to abstain from all interference with the jurisdiction and economy of the church-not excepting the matter of its support-which being regulated, as Voluntaries believe, by special ordinances of Jesus Christ, its Head, it is an invasion of His prerogatives, and a frustration of His law for its support and extension, to place, or suffer to be placed, on the footing of a civil establishment. The doctrine regarding the support of religion has always been an important article in the Voluntary creed, and, in a restricted sense, Voluntaryism has been popularly defined by this doctrinc. Negatively, the duty of providing for the support of Christian institutions does not lie with the magistrate or nation. The giving of property for the support of the gospel has been elevated by Voluntaryism from the position of an almost eleemosynary and political custom, to the rank of a systematic obligation and a financial law of the church. It is recognised as an act of religion, the duty and privilege of all Cbristians; and as each man is a steward of his silver or gold, responsible to none but its great Owner for his disposal of it in religious matters, the magistrate can possess no right to demand from lim any portion for religions uses, or to apply to these uses the proceeds of taxation imposed for general ends. Civil society being promiscuous and variable in its constitnents, a fixed arrangement for the endowment of religious bodies out of the public funds, is a fixed usurpation -as a system of occasional grants is an occasional usurpation-upon the liberty and pronerty of all who dissent. The existence of an absolnte unanimity among the subjects-even were it possible, as it would be otherwise, to ascertain and secure it from time to time-however it might remove for the moment from any minds the feeling of political grievance incident to sucl arrangements, could neither justify them as a policy, bor alter their character as an interference with religion in its economics. In its broad aspect, as au overstepping of the sphere of magistracy, all who restrict the magistrate, on whatever specific grounds, to secular affars, must deem such interference objectionable; and Christian Voluntaries would reasonably ask, why legal machinery should be employed to gather the offerings which, in the state of public sentiment supposed, must be flowing unforced through their natural channels? and in particular, whether, if Christ has not appointed the magistrate to 'tithe and toll' for his church, society can lresume to
assign him a work beyond his province? There is a manifust division of duties dictated alike by reason and revelation; aud Voluutaryism claims the results of experieace as proof of the entire want of adaptation in the compulsory or magistratical power to deal with the support of a living religion. To burden the rent-roll, increase the assessments, distrain the goods and chattels of citizens, or even to preserve the forms of lergal exaction for such a purpose, are measures which it is hard to believe either politic, seriptural, or just. The penniary supplies required for religions objects are to be secured, according to Volustaryism, solely through the operation of woral influences and sacred motives. Truth, as well as error, must be left to provide for itself. The respousibility adod privilege of providling for the support of Christianity laving been attached ly Christ to ITis charch, it is furthor His law that its institutions shall be maintained and extended hy the voluntary liberality of its friends. A primary obligation rests on those enjoying the services of a rastor to provide according to their ability for his maintenance, on the apostolic principle-'Let him that is tanght in the worl communicate to him that teacheth in all good things;' while, on the equally apostolic principles, that the labourer is worthy of his hire, and that the strong should aid the weak, a mutual and collective responsibility romains with the general membership, to supply each other's ecelesiastical necessities, and to noite in measures that may proride an adequate remuncration to the pastors or other ministers of the church. Civil establishments of religion, together with all forms of state endowments and grants for religious purposes, are thus condcmined by Voluntaries as human expedients, adverse to Christian development and the working of the law of self-support, which alone draws forth the resonrces, and culncates the consciences and habits of the people. Inadmissible, is introducing the compulsory clement into the free and delicate movements of Christian society, and intruding magistracy into a sphere which the history of all struggles for the higher liberty teaches mast be preserved to the individual and the church, these institutions tend to foster political dependence and class-feeling among the recipient bodlies, and prevent those relations of honourable trust and responsibility which hest unite pastors and people. These views express what may be called ecclesiastical Voluntaryism. On the question of education, various shades of opiaion exist among Voluntaries. All are arreed that the religions education of the jomag lelongs to the parent and the chnreh, and is not to be provided or superiatended by the state. How to secure this priaciple in connection with a system of national schools or goverument grants for education, contioues to be the problem of Voluataries. Sume seek the solution in a plan of local hoards representing the jarestage and community, who shall manage the schools, and decide the clanacter of the teacling; and of these, some advocate separation of the hours for religious and secular lessons. Others, who think that while by these methods state superintendence may he avoided, state aill is yet directly or iadirectly received for religions instruction, would accept a system which provided simply for schooling io secular or common hranches. Those known as Voluntary educationists reject the idea of any national system, some on account of the religions difliculty, and others on grounds connected with the philosophy of cducation and the theory of government. Voluntary cducationists would leave the edncation of the poor to be secured by the operation of those influences which originate and sustain other necessary and benevolent measures. The education of the children of classes not
necessitous they expeet to flow from private enterprise and frce assnciation. Voluntaries consistently object to grants to denominational schonls dependent on the condition of teaching religion, to grants to ragged schonls and all semi-religious institutions, as well as to the appointment and payment ly the state of chajlains for prisons, the army, \&c. In reference to the Sabbath, holding the saered character of the day, some Voluntaries appear to admit that the magistrate is both entitled and bound not only to make it a dies non in his own department, but also to prohibit labour and amosements throughout the nation. Others, equally lolding the morality of the day, with more remand to strict theory, deny him the power of intlieting pains and prenaltics, however mild, in a matter radieally religions, at the same time that they assert the obligation of the state to secure all its members due protection and facility in the practice of their worship, and to make sucli laws for this end as may lie fit, in view of frevailing religions observances. Regardiner mational fasts and thanksgivings, most Voluntaries hold that the style of anthority in which royal proclanations appointing these have usually been expressed is ohjectionable, as assuming a right to prescribe the topies and language of devotion, and to regulate its seasons, and insist that the language of invitation should be substituted for that of command. Some, while ready to comply with an invitation of the sovereign to join in an offering of prayer on oceasions they judge snitable, do not allow that it forms any part of magisterial duty to issue such appeals, or that the royal act imparts a national character to the service. Ordinary political acts become national when doue by the proper mational organs; bit no religions acts can acquire a national character except they are particilated hy the body of the people. When this is tho case, the exercise is natioual, though not evoked ly the call of the chief of the state, and it is not made more national by that call. The advantage of simultaneonsness and unity is attaioable on the widest seale by the natural concert of churches apart from royal initiative, which, if it may be followad when right, nead not be waited for as indispensable to true national worship. On the question of marriage, Voluntaryism, recognising its character as a civil transaction, demands that all religious parties stand on the same level in regard to it. Withholding legal saaction from all inamoral connections, and Iminshing lreaches of the lawful contract, magistrates are not warranted to visit with penalties ady mere departure from the standard prescribed to Claristian conscience, or embodicd in ecelesiastical law. l'olitical Voluntaryism, as it is sometimes called, is simply Voluntaryism expressed in the langnage of the politician-the doctrine of the entire religious equality of all citizens in the eye of law, stated and defended without reference to specific religious opinions, and in the way of apreal to principles generally received.
VOLUNTEERS-the great defensive eitizenforce of Great Britain, in some degree corresponding to the National Guard of continental states. It is essentially self-supporting, and wholly unpaid; although government arms the men, and contributes a certain sum towards the corporate expenditure. The oldest voluateer corl's is the 'Honourable Artillery Company ${ }^{3}$ of the city of London, which dates from the reign of Henry VII. : although stdl called artillery, it comprises artillery, eavalry, and infantry, and is probably the oldest armed hody in Europe. When the comntry was in dread of invasion by Bonaparte, almost the whole available male population flew to arms as volunteers, and in I 803 they mustered 463,134 effectives. About this time,

George III. reviewed 150,000 voluntecrs. The force graduilly diminished, when the immediate danger ceased; and before the war closed, they were reflacel by a new force, called the 'local militia,' which was supiosed to be more thoroughly amenable to goverument control. As early as 1857, two small volunteer cor 1 s , the lst Devon and the Victoria Rifles, hal sprmeg into existence; but in ! 1559 , the whole nation seemed to awake to a sense of iusecurity, with a compratively small army, half of which was abroad, amid the enormons armaments of neighbouring states. In a few mouths, 150,000 men had organised themselves in to companies; and in the following year, govermment, which had at first shewn no favour to the movement, gave it a helping hand by combining the companies into battalions, by appointing paid adjutants and drill instructors, and by the establishment of a staff of inspectors under the control of an Inspector-geueral of Volunteers. At present (1S67), the volunteers number about 168,000 effective mev, in a high state of training, and capable of rerforming well all the simpler military manceuvres. They are dividerl into a small number of Light Horse, Mounted Rifles, and Engiueers, a large force of Artillery, and a grand army of Riflemen. Where 60 men can be got together, a company of volunteers may be formed, which is entitled to a captain, lientenant, and ensign for its officers. If a place can produce a corps of two companies, the senior officer becomes 'Captain Commandant.' Four companies make a major's command. Six are sufficient to constitnte a battalion, for which goverument ${ }^{\text {p }}$ provides an adjutant, usually an old military officer, who receives 10 s . a day besides his forage. When there are a number of detached companies in the different villages of a district, they are grouped into an administrative battalion (or brigade for detached batteries of artillery) with an adjutant, and with field-officers selected from the neighbouring gentry. England and Scotland are further divided into inspection districts, each presided over by an assistant-inspector of voluuteers, who ranks as a lieutenantcoloncl, and endeavours to keep the corps in his district up to the standard of efficiency. Over all these districts is the inspeetor-general of volunteers, who is at the head of a department of the War Office. Every company may have an homorary assistant-surgeon; but a corps of two companies is entitled to an assistant-surgeon; of four companies, to a surgeon, who may have one assistant when tbere are six companies, and two for eight or more companies. If a corps exceed a strength of twelve companies, it is customary to divide it into two battalions. The volnnteer corps were originally raised under an act of 1804; lunt the circumstances of modern times having rendered varions supplementary enactivents necessary, the whole were embodied in a new act, the 26 and 27 Vict. cap. 65 (1863), under which the volunteer force of Great Britain is now constitutel.

Under this act, adjutants are appointed hy the crown; the other officers by the lords-lieutenant of counties (thongh practically they are electal by the members of corps, or nominated by the commandingofficers) ; the non-commissioned officers are ap ${ }^{-}$ fointed by the officers commanding. Adjutants and sergeant-instructors are at all times subject to the Mntiny Act-the other officers (and men) only when their corps is embodied ; but the Queen can at any time cleprive then of their commissions. Offences within corps, in time of peace, are punishable ly fines or otherwise, as laid down in the rules of the several corps, which must have the approval of the Secretary of State for War. Lvery volunteer
on joining must take the oath of allegiance, and must be of the age of 17 .

The force may not be used in times of civil disturbance, but may be embodied for active service anywhere in Great Britain, whenever the country is invaded, or invasion is apprehenderl by the crowd. The occasion must first be communicated to parliament, or, if parliament be not sitting, to the country, by an order in council, and then the crown may direct the lords-lientenant of counties to call out any or all of the volunteer corjs in their respective connties for active service. Corps so called out come under the Mutiny Act, and are bound to march whithersoever the lord-lientenant may command. While embodied, officers and men are entitled to the same pay as in the regular army. In point of precedence, volunteers rank with, bit after, the same ranlss in the army and militia. The yeomanry are reckoned as jart of the volunteers. Among themsclves, the volunteers rank in the following order: 1st, Light Horse ; 2d, Artillery ; 3d, Engineers; 4th, Engineers and Railway Transport Corps ; 5th, Mounted Rifles; 6th, Rifles.

Members of a corps are honorary and enrolled. The first are merely subscribers of a certain amount; they are entitled to wear the uniform, but not to interfere in any manner in the corps. The enrolled members are the actual working-men; they are classed as 'efficient' and 'non-efficient'- the efficient being those who are certified by the com-manding-officer and the adjutant to have a competent knowledge of the doties of the service, and to have attended the following number of drills :

Arat.	For Recruits during l'crod not exccedang Eigliteen Months precesing the Onte of the Annual licturn.	For nthers during each neive souths.
Light Ilorse,	$\begin{aligned} & 16 \text { squad or troop } \\ & \text { drills, } \end{aligned}$	6 squad or tror periils, 3 of which have been drills of the whole corps.
Artillery Volun-	30 dills, of which 54 are cun-drils,	12 gun-drills.
Fngincera,	30 drills,	9 drille.
Mounted Riffes,	16 ,	6 drills, of which 3 of the whole corps.
Riffe Corps, with establishment of a battalion,	30	9 drills, of which 6 battalion, and 3 company dritls.
Riffe Corps, not having establishment of a ballalion,	30 "	9 drills, of whi h 3 battalion, and 6 company drills.

The assistance afforded by the public to volunteer corps consists in the surply of adjutants and of sergeant-instructors in the lroportion of 1 to a corps of 3 companies or less, 2 from 4 to 7 companies, 3 up to 12 companies, \&c. The money aid is a capitation grant of 30. s. anmally for each artillery volunteer who is edlicient, and in other corps 20s. annually for each efficient volunteer, in addition to which there is a rate of 10 . for each man who fulfils certain conditions prescribed in the regulations. In scattered administrative battalions, a charge of $4 s$. for each efficient is allowed to cover the cost of attending battalion drills. These allowances are, however, none of them personal, but are granted to corps, to be expended by the adjutant, who is accountable to the War Office, withia certain limits, according to the discretion of the commandingofticer. Government likewise provides all the arins, and a certain quantity of practice-ammunition. Corls may choose their own uuiform, subject to the alymroval of the lord-lieutenant; but no gold lace or buttons may be introduced. Volunteer corps do not lear colours. The system has not yet been extended to Jreland.

VOLUTE-YOMER.

VOLU'TE, in Architecture, the spiral ornaments of the lonic and Curinthian eapitals, probably derived from Assyrian arehitecture, in which it is also used.

VOLU'TID む, a family of gasteroporlons molluscs, of the section l'cctinibranchiata, all marine, having a spiral shell, which is turreted or convolute, the apertire notched in front, the columella ebliquely plaited; no operculum. The animal has a very large foot, and a recurved siphon. The species are

Shell of Voluta tornatilis. numerons, and abonnd chiefly in tropical seas. Many of them lave very beautiful shells, much prized by shell-collectors. Several small sjecies are found on the shores of Britain, of which Voluta tornatilis is the only one that is not rare. This genus makes its appearaoce in the Crctaceous strata, and increases in numbers in Tertiary depesits, wo less than 50 species being known in the Pleistocene beds.

VOLLVOK, a genus of mizute organisms, the type of a family called Tolvocinear, now regarded as vegetable, and ranked among Protophytes, but which were at first supposed to be animals, and were reckoned by Ehrenberg among Infusoria. They are globular, or mearly so, are found in stagnant water, and move slowly through the water, revolving round an axis, by the agency of oumerous little filaments which project from green points on their surface. It was on accomat of their motions that they were formerly thought to be animaleules, and, partly on the same account, it has been suspected that they are not really protopliytes, lut zoospores of some kind of alge. This opinion, however, is readered inprobable by their apparently possessing the power of reproduction; green granules being formed within the parent globe, at first alhering to its wall, and afterwards becoming detached ; the parent globe finally bursting, to allow them to escape. These frequently exhilit, even whilst within the parent globe,

Volrox globator. a rotatory motion similar to its orm. The presence of starcha in the interior of the lobrocinere bas been detected by meins of iodine, and is regarded as a conclusive proof of their vegetable uature. The most common and best-known species is Yoleox globator, which is just visible to the naked eye. It is it transparent sphere, having its surface studled with inuumerable green spots, united by a beautiful act-work. From six to twenty yougg are often to be seen in its interior.

Vo'LTULUS (Lat. volvere, to twist) is the term nsed in Medicine to signify a twisting of the intestine, rroducing obstruction to the passage of its contents. There are three distiact varieties of
rotatory movement capable of giving rise to wol-vulus-(I.) A portion of intestine may have become twisted on its own axis, and, in that case, even semi-rotation brings the intestinal walls into contact, so as to close the passage. This is a rare condition, and only oceurs in the asceading colon. (2.) The Mesentery (q. v.), or a part of it, may be twisted into a cone, dragging the intestine with it: the mesentery being the axis, and the intestine being rolled up upon it. This form oceurs in the small intestine. (3.) A single portion or a coil of intestine may afford the axis round which another portion, with its mesentery, is thrown, so as to compress it, and close the passage. A coil of small intestine, the sigmoid flexnre or the ceecum (see Digestion, Ongass 0 F), may form the aris. All these varieties occur chiefly in advanced life, and their seat is commonly towards the posterior unyielding wall of the abdumiaal carity, the smoothness and yielding nature of the parts anteriorly readeriag such an eveat almost impossible. The symptoms of twisting of the intestines, especially of the sigmoid flexure, which is the most common seat of the affection, are usnally very well marked from the beginning. Great pain is suddenly experienced in a small circumscribed snot of the abdomen, obstinate constipation usually setting in from that date. If the sigmoid flexure, which lies just above the rectum, is the seat of the twisting, the abdemen seon becomes disteaded, especially on the left side, the distention being much more marked than when the twist is in the small intestine, as might physiologically have beed expected. Vomiting, often constant and copious, is usually present. These cases are so desperate in their nature, that it is needless to enlarge upon their treatment. Attempts to remove the displacement by injecting water or air into the intestine by meaos of a long tube, have oftea been made, but with very slight success. Mr Pollock, in his article on 'Disease of the Alimentary Canal,' in Holmes's System of Surgery, remarks, that 'relief in twist of the sigmoid tlexure is just possible without opening the abdomen, provided the long tube be introduced into the disteaded ght, its contents drawn off, and the twist be reduced by the altcred position of the bowel. But no operation for the ultimate relief of the patient will be successful unless the intestine be unloaded tirst, and the twist then reduced.' - Vol, ir. p. 158. The operations that have been proposed for the relief of this and other intestinal obstructions are so often fatal, and, even when successful, leave the paticnt in so wretched a state, with an artificial outlet for the discharge of the contents of the bowels, that it is doubtful whether they should be recommended. It is simply a cheice between almost certain leath in a few lays, and a possible chance of a prolonged (but usnally a miserable) existedce. There are, however, a few rules that shonld be universally known and attended to-viz, wherever symptoms such as we have described occur, alerients shonld only be given by the rectum, while opium should be freely given by the mouth. Leeches and hot fomentations should be applied to the seat of pais; and all solid food should be prohibited, the nourishment being given solely in the thuid furm.

VO'MER, a bone which, in the human skeleton, forms part of the middle partition of the nose, and the lower edge of which fits into grooves between the apposed surfaces of the palatine processes of the upper jaw and palate-bones. It exhibits many modifications in the different elasses of lericbrata. Its position is indicated in the figure of Archefype V'ertebrate Skeleton, in the article Skeleton. It is specially noticed here becanse of the frequent occurrence of the term vomer in articles on fishesa very important character being often found in the

VOMITING-VONDEL.

presence or absence of teeth on the vomer, that is, along the middle line of the roof of the mouth.

TOAITING consists in the stomach emptying itself through the gullet and mouth. It is preceded by a feeling of nausea, a flow of saliva in the mouth, and the breaking ont of perspiration; the countenance grows pale, a feeling of weakness spreads over the whole body, and the pulse becomes slow. At last the muscles of the abdomen and the diaphragm strongly contract, and the whole contents of the stomach are cjected with greater or less violence. The first matters to be ejected are the food and drink present, then mucus from the stomach and csopharus, and lastly, bile from the duodenum. In cases of disease, ahnormal suhstances are sometimes romited, such as blood, fragments of the intestines, and even excrementitions matters. When the romiting is over, it is followed by languor and drowsiness, or, if the excitement was inconsiderable, the usual state immediately returas.

The carses of vomiting are farious. In the first stages of infancy, it is almost normal, and occasions no disturbance of the system. In many animals, too, it is a normal function of life, as when birds of prey reject the hair and feathers of their victims. The infant gets rid of the superabundant milk it swallows by throwing it up with no trouble. Some persons can excite themselves to vomit by swallowing air.

The immediate causes of vomiting may be reduced, according to Dr Carpenter, to the three following categories: "(I.) The contact of irritating substances with the mucous membrane of the stomach itself; these, howerer, cannot act by direct stimulation upon more than its own muscular coat; and their operations upon the associated muscles must take place by reflexion through the nervous circle furnished by the pneumogastric and the motor nerves of expiration. (2.) Irritations applied to other parts of the body, likewise operating by simply-vefles transmission; as in the romiting which is consequent upon the strangulation of a hernia, or the passage of a renal calculus; or in that which is excited by the injection of tartar emetic or emetin into the circulating current, when these substances probably produce their characteristic effect by their operation on the nervous centres. (3.) Impressions received through the sensorial centres, which may be either sensational or emotional, but which do not operate unless they are felt. In this mode seems to be excited the vomiting that is induced by tickling the fances, which first gives rise to the sensation of mausea; as well as the romiting consequent upon disgusting sights, odours, or tastes, and upon those licculiar internal sensations which are preliminary to sea-sickness. The recollection of these sensations, conjoined with the emotional state which they originally excited, may itself become an efficient cause of the action, at least in iudividuals of neculiarly irritable stomachs, or of highly sensitive acrvous systems.'-Principles of Human Plysioloクy, 6 tlo ed., 1. 77.

According to the oldest doctrine respecting romiting, it was held to arise solely from convulsive movements of the stomach, which was thought to take on a motion contrary to the usual peristaltic motion. Bayle adranced the opinion, that the stomach is quite passive in the operation, and that its contents are emptied entirely by its being compressed throush the contractions of the abdominal muscles and the diaphragm. An apparently conchisive experiment of Marendie's, in which the stomach nas removed, and a JIadder substituted for it, had more reccutly (in 1S13) satisfied most physiolarists as to the passiveness of the stomach in vomiting, until Béclard and Budge shewed the
insufficiency of his experiment. It is found, in fact, that in romiting there are two sets of actions, viz., (l) contractions of the abdominal walls, whde the diaphragm remains fixed, and forms a support to the stomach, and (2) the stomach itself performs jerking movements, the pylorus, or inferior orifice, at the same time closing, while the cardiac sphincter relaxes, without which last-named action vomiting is impossible ; and that either of the two kinds of movement-the abdominal or the stomachal-may eject the contents of the stomach into the gullet.

In the treatment of vomiting, we must consider it as a symptom rather than as a malady. Where the stomach is irritated, relief is afforded, according to circumstances, by drinking cold water, aërated or soda water, or, if necessary, by opinm or nux vomica. Cold applications outwardly also do good. In other cases, infusions containing ethereal oils-camomile, coffee, \&c.-astringents, or correctives for acidity -magnesia, soda, \&c-are the fitting remedies. When the irritation is in the hrain, the best remedy is a horizontal position, with composure aad dark. ness. If a person in sound health is suddenly seized with romiting, poisoning may be suspected.

VONDEL, Joost VAN DEN (pr. Joit), the greatest Dutch poet, was born at Cologne, Forember 17, 1557, his parents, who were Anahaptists, having fled from Antwerp to avoid persecution. His maternal grandiather, Peter Kranen, ranked among the poets of Brahant. When freedom began to raise the head in Holland, the elder Vondel removed with his family to Utrecht, and afterwards to Amsterdam, where he prospered in trade. The poct's education in boyhood was limited to reading and writing, but his persererance and love of study eaahled him in after-life to become intimately acquainted both with ancient and modern literature.

At the early age of 13 , his poetical efforts were praised by Hooft. In his 23d year, be married Maria de Wolf, to whose clever management V. chiefly left his business as a hosier, while he devoted himself to study and poetry. The tragedies of V. are rery numerous, and the grandest specimens of Dutch literature. His satirical writings and epigrams are full of fire, cnergy, and spirit. One of his most remarkable pieces is Lucifer, 1 ublished in 1654 , strikingly resembling Milton's Paradise Lost, which appeared thirteen years later. V. took an earnest and active part in farour of the Remonstrants, Grotius and Oldenbarneveld, drawing down on himself the anger both of the clergy aud court, Whom he attacked with the keenest satire.

Gysbrecht ran Aemstel, Adans in Banishment, Palanedes, The Eatavian Brothers, Solomon, Sanison, Adonijah, Noak, or the Destruction of the Olel World, Jfary Stuart, \&c, are splendid efforts of genius. The Harpoon, The Horse-comb, and the Decretum IIorribile are stinging satires on the ruling powers both in church and state. T.'s translations from the Greek and Roman mriters are numerous, the Metamorphoses of Ovil having been rendered into Dutch verse when he was $S 4$ years old. V. left no subject untouched, no nicasure untried. His Works (9 rols. quarto) contain many sea-songs, and more than 100 odes. Nany of the later poems were Written with a strong Roman Catholic spirit, be having joined that church about 16.60. Through the imprudences of his son, to whom he had given his business, V. fell into straitened circumstances, and in 165 S accepted a situation in the City Pawnbroking Office. In 1668, the magistrates alluwed him to retire with his salary of 650 guilders yearly, which kept him above want. He was of moderate stature, well made, and had an exgle eye. After his powers of body and menory had bernn to fail. he could still read withunt glasses. He died calnily

VOPADEVA-VOITEX.

on the 5th of Fubruary IG79, at the age of 91, and was carried to his resting-place in the new church, Amsterian, by fourteea poets, limself Princef's Poctarum.

YOPADEVA is a celebrated grammarian of India. lle wrote a grammar entitled Mugdhabodha, which is hele in high repute, especially in Bengal, aud was commented 12pon hy Durgadasa. (Both text and commentary have been edited at Calcutta in 1861 ; previous cilitions contain merely the text of V.'s grammar.) It differs from the great work of Pan'ini ($(1 . v$.) in its arrangement as well as in its terminolngy; and without the commentary of Durgalasa, would not yield by far the information that may be derived from l'in ini's grammar. It is valuable, however, on aecount of many later Sanserit formations, that coule not be contained in the older work. V. composed also a catalogue of Sanscrit dhatus, or so-called radicals, in verse, called k aviloalpadrume (pmblished at Calcutta, IS18), and a commentary on it, the Kâvyakamadhenu. Another grammatical work, the Ramaryakarana is likewise attributed to lis authorship. Aecordiog to a general tradition prevalent in India, V. would also be the anthor of one of the most renowned l'uran'as (q. v.), the Bha-!gavata-Pu'an'a; and in a little treatise, the Durjana-mukha-chapet'ik \AA, or 'a slap' on the face of the wicked,' w hich is averse to this tradition, and maintains that Vyâsa (q. v.) was the author of this P'uran'a, three other works of a religious character are assimued to V.-viz., the Paramahansapriya, Muktaphala, and Marilìla. A little medical work, the S"utas'lokachandrika, though written by a Vopadeva (see Professor Aufrecht's Catalogue of the Sanscrit MSS. of the Eodlcian Library), does not seem to beloug to the author of the works just mentioned. The date of V., given by some as the 12th, by others as the 13 th c . after Christ, is, according to Burnouf's investigatinu, the secoul half of the I3th century. - See E. Burnouf's l'eface to his edition, and French translation, of the lirst nine books of Le Bhâgarata Puran'a, vol. i. (l'aris, IS40).

VORANT, in Heraldry, a term applicd to an animal represented as swallowing another; as, sable, a dolphin naiant, vorant a fish proper.

VORONE'JE, or VORONETZ (pronounced loromesh), a goveroment in the south of (ireat Russia, bounded on the S. ly Little Russia and South Russia. Area, 25,712 sq. m. ; pop. (1Sti6) I, 950,000 , consisting of Russians and German colanists. It is watered by the Don, its two navigable tributarics, the Voroueje and Khoper, and other streams. The soil, mostly a black mould, is generally fertile, and great cropus of grain-wheat, rye, harley, oats, and millet (which surply the inhabitants and local distilleries, and are exported)-are produced. Cattle and horses of a good breed are rearel-the best studs belong to the crown. The principal manufactured articles are brandy, beer, eloth, beetroot, sugar, skins, wax-candles, soap, tobacco, and potass; and corn, tallow, hemp-seed, eattle, and horses are exported to Noscow, St Petersburg, \&c.

VORONEJE, a town of Great Fiussia, capital of the government of the same name, stands on the right bank of the Voroncje, 150 miles south-west of Tambor. It was founcled in 1556 as a bulwark against Tartar invasion. Peter the Great, who had previonsly visited the town, built a fortress and a dockyard here in I694. Besides two eathedrals, the town has many important civil, ecelesiastical, and educational institutions. The commerce of V. is extensive-the ehief articles of trade being corn, herap-seed, and tallow. Pop. 40,967.

Vo'lRTEX (Lat. a whirlpool). Till lately, it was
a reproach to Hydrodynamics that the theory of vortices or eddies in thuids had not been properly brought under the domain of mathematical analysis. Even now, the problem has only been partially solved by the labours chietly of Stokes ((1. v.) amillelmholtz (q. v.), as their beautifnl investigations apply only to peofect fiuids, that is, fluids which opjose no frictional resistance to ehange of shape. In ordinary motions of perfect thuisls, such as currents and waves, the instantaneous change of shape of a small spherieal portion makes it in ellipsond by aimple extensions and compressions without rotation. The essential characteristic of vortex-motion is, that it involves rotation of some parts of the Hluid. ILelmholtz has shewn that this rotational or vortex-motion remains with the parts of the fluid which first have it, and cannot be transferred. We can conceive 110 process by which vortexmotion could he given to, or taken from, a perfect fluid; for to our reason fluid friction (which does not exist in a perfect fluid) would seem to be indispensable. Un such abstruse subjects we cannot of course enter here; but one result of Helmholtz's investigations is so curious that we must mention it. We are all familiar with those singular smoke-riugs whieh are produced when a mortar is lired; or when, on a smaller scale, a bubble of phosjhnretted hydrogen takes fire in air, or a smoker skilfully emits a pufi' of tobaccosmoke. A very simple mode of producing them, on even a large scale, is to bore a hole in one side of a box, remore the oplosite side, and substitute a cloth or sheet of india-rubber for it. A slight blow on this mombrane ejects a vortex-ring from the hole. To make this vortex visible, we may burn phosphoris or moistened gunpowler in the box; or still hetter, sprinkle its interior with ammonia, and introluce a vessel containing common salt and sulpburic aciel. The sal-ammoniac cloud which fills the box is admirably adapted to display the rings. The general character of these rings, or vartex-tubes, is shewn in the diagram (tig. I) ; which indicates that, besiles a progressive motion as a whole, the ring revolves about its own central or medial

Fig. 1. line. Suppose two such rings to follow each other, with their plaues parallel, and their centres moving in the same line, Helmholtz shews that (at least in a perfect fluid) the foremost will relax its speed, and spreal ont into a larger ring, while its follower will eontract, and quicken its pace, till it passes through the other, which in turu becomes the pursuer, and so on. This very curious result may be realised in a tea-cup, by drawing the balf-immersed bowl of a tea-spoon along the surface of the tea for a short way, and withdrawing it. Two little whirlpools, or rortices, are then scen moving side by side. They are sections of the half vortexring which has been formed in the lipuid by the spoon. A second half-ring may be at once sent after them by ancther stroke of the spoon, and the phenomenon above tescribed will be obtained. When, on the contrary, two snch vortex-rings meet, their ceutres moving in one line, they both spread out, and relax their speed indetinitely. This is olstained in a liquid ly letting the half vortex-ring impinge clirectly on the side of the vessel, when it sireads out, and relaxes its speed; just as if there were no bonodary of the fluid, but a sccond

VORTICELLIDE-VOSGES MOUNTAINS.

vortex-ring occupying the place of the imacge of the first which would be formed by a plane mirror suhstituted for the side of the ressel. When one yortexring impinges obliquely on another, it rebounds from it, and both are thrown into vibration, their form of equilibrium being circnlar. They act in fact in this respect like solid india-rubber rings. By forming them from an elliptic aperture, they are prolnced in a state of vibration. A square aperture gives them in a different state of vibration.
The impossibility of producing or destroying vortex-rings in a perfect fiuid-save ly creative power-has lately led W. Thomsun (q. v.) to regard

Fig. 2.
the ultimate parts of matter as vortices of varions kinds in a perfect fluid. Two such indestructible wortex-atoms are here sketched (fig. ?).

The word vortex has also come into use in connection with Descartes's once celebrated theory of the universc, given in his Principia Philosophice. In this the rotation of the planets about the sun, the satellites about the planets, \&c. were explained (!) by the hypothesis of vortices for ever whirling abont the central body. Descartes was a good mathematisian, but in Natural Philosophy he preferren metaphysics to experiment, and of course erred enormously. But he is not to be laughed at : mistakes more ridiculous than his are gravely \quad ropounded at the present day.

VORTICE'LLIDÆ, a family of I fitsoria, remarkable for beauty, and containing a great number of species, to which, from their form, the name of Bell or Bell-jlower A nimalcules is often given. The genus Vorticella consists of minute cup-shaged or

Group of Bell-flower Animalcules (Yorticella nelulifera).
bell-shaped creatures, each placed at the top of a long flexible stalk, the other end of which is attached to some object, as the stem or leaf of an
aquatic plant. Around the edge of the boll or cup is a fringe of rather lung cilia, the motion of which brings food to the mouth. The stem is Hexible, and is sometimes stretched out to its full leagth, sometimes contracted in a spiral form. The contruction takes place instantaneously upon any alarm, the cilia at the same time vanishing; and it is very interesting to watch a group of J'orticelle, which may often be easily done with a Corldington lens, when they adhere to the inside of the glass of an aquarinm. The stem is often bcautifully branched, the Irurticella becoming a componud animal, like many zooplaytes, and the whole contracts or is extended at unce. The stem, sleuder as it is, is a tube, throngh the whole leagth of which runs a minute muscular thread. A cup or bell of a Vorticella sometimes develops a new fringe of cilia at its point of junction with the stem, becomes detached from the stem, and begins to move freely through the watcr, till it finds a new place on which to tix itself, reproduction thus taking place by gemmaton. Reprodnction also takes place by encapsulation. See Ixfusoria. To the family V. belongs the genus Stentor, having a trumpet-shaped body, and therefore receiving the popular name of Trumpet Animalcules. They swin freely through the water, at the same time rotating on an axis, and attach themselves to objects by a sucker at the lower or narrow end. They have a fringe of cilia round the mouth, aud the body of some species is covered with cilia. They are very voracious. They may often be found adhering to a twig or the stem of an aquatic plant, collapsed into minute masses of green jelly.

VOSGES, a dep. in the north-east of France, formed out of the sonth part of the old province of Lorraine, is bonnded on the N. by the departments of Meuse and Meurthe, and on the E. by those of Bas-Rhiu and Haut-Ihin. Area, $2346 \mathrm{sq} . \mathrm{m}$. ; pop. 415,485 . The surface is monntainous, the territory being traversed not only by the Vosges Mountains, which run along its east border, but also by the Fancilles Mountains, which cross the dep. from east to west. The chief rivers are the 1 loselle, and its tributaries the Meurthe, Madon, and Mortagne, all of which flow in a north or north-west course through this department. The monntains in the east are covered with vast forests of beech and tir, and at the base of the mountains are tracts of pas. ture or rolling infertile plaius. The west part of the dep., called the Plaine, is very fertile in cereals, vegetables, and fruits. Among the hills, the climate is cold ; on the Plaine, it is humid. About $4,400,000$ gallons of wine are produced annually. Mineral riches abound, there being iron, lead, coppler, cobalt, and antimony mines. Of the kind of cheese called Géromé, $23,571 \mathrm{cwts}$. are made anmually. The dep. is divided into the four arrondissements, Nirecourt, Neufchâteau, Remiremont, Saint-Die. The capital is E_{p} inal.

VosGes mountairs (lat. Vogesus Mons, Ger. Hasgau), a range of monntaius in the northeast of France and the west of Germany, rom from south to north, on the left bank of the lhine, from the borders of the departnents Haute-Saoue, HautRhin, aud Doubs, north to Mainz. The range runs parallel with the Schwarzwald or Black forest in Baden and 11 örtcmberg, on the right bauk of the lihine, and it separates what were the o!d proviuces of Lorraine and Alsace. The summits are rounded and renular in outhine, and are called bullons. The chief of them are the Ballon de Guebwiller, 4690 feet; le Hobeneck, 4429 feet; and the Ballon d'Alsace, 4101 feet. The length within the French boundaries of the V. M. is 100 miles. They are
covered with forests, and abound in rock-salt, silver, copper, lead, and conl.

YOSS, Jomaxin IIERNichi, one of the foremost classical writers of Germany, was born in 1751 at Summersdurf in Mecklenburg, of poor parents. In 1772, be went to the university of Göttingen, and there joined the 'Hainbund,' an association of young paets, at the liead of whom stuod Biarger and lioje. V. first inteuded to devete himself to theology, but soon exclusively turned to Greek and Roman antiquities, under Heyne's anspices. In 177 S , he went from Wandsbeck, whither lie hal gone for the purpose of editing the Musenalmanach, to Otterndorf, in lladeln, where he prepared his translation of the Odyssey. This appeared in 17S1, and was received with universal applause. In the next year he became rector of Eutin, whence, in 1759, he issued his German translation of Virgil's Georyics. This was followed, in 1793 , by a new and revised edition of the German Odyssey and Iliad, which, however, did not meet with as favourable a receptiou as the first. His contests with Heyne (q. v.) gave also rise ehicfly to his Mythological Letters, whick appeared in 1794 . Among his purely German poetical werks, Luise, an ldyll (1783, revised 1795), takes a foremost place. In 1799, he issued the whole of Virgil in a German translation. In 1502, he went to Jena, where he wrote the celebrated review of Heyne's Iliad. In 1805, he was called to Heidelberg, where he wrote annotated German translations of Horace, Hesied, Theocritus, Bion, Moschus, Tihullus, and Lygdamus. In 1S21, he published a translation of Aristophanes, and a new edition of Horace and Virgil. Among other literary labours must alse be mentioned his translation (with the aid of his two sons) of Shakspeare's works, which, however, is very inferior to Schlegel's. In opposition to Creazer's Symbolik, he wrote an Antisymbolik (1824), in whicli he lifted up his yoice against exag. geratel praises of heathen mysticism ; and one of his last papers was a violeut denuuciation of bis former friend Stoilerg, who had turned Roman Catholic. He died at Heidelberg in 1826. Among his translations from modern languages may be mentioned that frem Gailand's Arabian Nights, and that of Shaftesbury's works. A brief mention may also be made of his two sous: (1) Henrrich, born 1779, a philologist of merit, who assisted his father in his Shakspeare trauslation, and who was a great friend of Jean Paul's. He hatd intended to edit the latter's works, but died before bin, in IS2.2. (2) Abraham, born at Eutin, Prefesser of the Gymnasium at Kreuznach, who completed the Shakspeare translation. He died in 1S47.-See Paulus, Lebens-und-T'odeskunden ron J. IF. Voss (Heidel. 1826).

Vossius, Gerami, oue of the most distinguished scholars of the first half of the 17 th c , was bern of Dutch parents near Heidellberg, where his father was a l'rotestant minister. His father's name was John Voss, but he, after the fashion of the time, had Latiuised it into Johannes Vossius, and hence his son called himself Gerandus Johannis V., that is, Gerard, the son of Jolnn. In 1578, the family returned to Holland, and settled at Dorirecht, where V. went to sclool. He afterwards distinguished himself at the university of Leyden; and when $\cdot \underline{2}$, he returned to Dordrecht, to become the principal of the scheol, of which he was the most distinguished pupiil. He married shortly afterwards, but his wife died in 1607 , leaving a family of three children. In the same year, he agrain married, and hy his second
wife he had two sons and five daughters. In the wife he had two sons and five daughters. In the earlier part of his life, V. does not appear to have published much, but he became known to his countrymen as a scholar and theologian ; and his assiduity
in study may be inferred from the fact that he would never allow a friend to stay with lim more than a quarter of an hour. In IGI4, he became principal of the theologieal college of Leyden, and while holding this appointment, published a work on I'elagianism (Ilistorice Pelagiana). In it he spoke of the Armininas in an apolegetic tone, and thereby brought down upon himself tho wrath of a largo section of the Jutch clergy; which caused him to be deprived of his ellice in the theolonical college, and of the income derived from it. Ilis work lad attracted attention in England, and it was some compensation to kim that he received from Archbishep Laud an office which brought him $£ 100$ a year without its being necessary he should live mut of Holland. Chietly, it appears, to secure the means of supporting his family, he retracted the pinions he had expressed, in bis boek De Hisloricis Latinis, published in 1627 , and he became reconciled to tho ehirch. In I633, he was appointed Professor of History in a new university at Amsterdam, whero he seems to have devoted himself to the completiou of the great works en which his fame rests. Among the most important of thesc not mentioned above were: Aristarchus sive de Arte Grammatica, Libri YII.; De IIistoricis Gracis, Libri IV.; Commen. tariorum Rhetoricorum sive Oratoriarum Institutionum, Libri JI.; De Veterum I'oetarum Temporibns, Libri II. In 1649, V. was climbing the ladder of his library when it broke; he fell under the shelves and books, and died of the injuries be received.

The children of V. were remarlable for beanty, accomplishments, and learning. Grotius said of V. in epigrammatic Latin, that it was doubtful whether by his books or his children he had contributed most to adorn the age. Five of his sons, Denis, Francis, Gerard, Mathew, and Isaac, are known as authors.

VOSSIUS, IsAAc, a scholar and theologian, was the only son of Gerard Vossins who survived him. He was born at Leyden in 161s. When 21, he published an edition of the Periplus of Scylax, the Greek geograpler, with a Latin translation and notes. He afterwards travelled in Italy, collecting valuable manuscripts. In 1648, he took up his abode at the court of Queen Christina of Sweden; but in 1658 , in consequence of a quarrel with Salmasius, he returned to Holland. In 1670, he came to England, and here, although he openly scoffed at religion, he was appointed ly Charles II. a canon of Windsor, and had apartments assigned him in the Castle. Ile died there iu l6SS, and it is recorded that on his deathbed be refused to take the sacrament, unti! one of his colleagues argued that he ought to do so for the honour of the chapter. His works are numer. ous, but not so important as those of his father.

VOTERS, Abduction of, is an offence punishable by fine or imprisonment, and by a penalty of $£ 50$ lesides, which may be sued for by an informer. The affence is included under the head of undue influence, and by the 17 and $1 S$ Vict. $102,8.5$, is defined to be, the directly or indirectly making use of, or threatening to make use of, any force, violence, or restraint, in order to induce or compel such voter to refrain from voting at any election.

VO'TIVE (Lat. votivus, given in virtue of a vow; Fr. votum, a vow), in ecclesiastical use, signifies the class of actions, offerings, or memorial records or observances, which are intended eitber as the fulfilment of a vow, or as a eemmemoration of the accomplishment of the prayer which accomplanied the vow. Of such votive engagements there are numerous examples in the Old 'Iestament (Levit. xxii. 1S, Deut. xii. 6), as well as in the ancient

YOUSSOLRS-VULCAN.

religions of the Gentile world; and the ecclesias. tical historian Theodoret (De Cur. Grace. Affect., i. S) alludes to the practice in his own day of hanging up, in the churches dedicated to the saints, little models of hands, feet, eyes, \&c., in votive commemoration of the cure of lameness, blindness, and other maladies supposed to have been obtained through their intercession. The same practice continued throughont the succeeding centuries and throughont the medieval period, and still prevails in Roman Catholic countries, especially in Italy and Southern Germany. Votive offerings, often of very considerable value, may be seen in the churches of most of the great Sanctuaries (q. v.), and in other churches in special repute as places of devotion. The offering very frequently takes the form of a votive tablet, with an inscription detailing the event on which it is founded. Sometimes the offering is simply marked with the words ex voto, 'in fulfilment of vow ;' sometimes it is accompanied by a model in wax, in wood-carving, or even in precious metals, similar to those alluded to by Theodoret; and occasionally by a model of some object, which is meant to recall the memory of the favour received, as of a ship, in case of escape from shipwreck, \&c. Many of the great churches, hospitals, monasteries, and other religious monuments of the middle ages and of later times, were built ex volo; and the treasuries of most of the rich cathedrals and other churches abroad contain objects of great value, the result of votive engagements on the part of the donors. The name rotive is also applied in the Roman Catholic Church to the mass or other service, when it is celebrated-as is permitted on certain days and in certain seasons-not according to the rite prescribed for the day itself, but according to a rite selected by the celebrant himself from a number of such 'votive masses' and 'votive offices,' as 'of the Passion,' ' of the Holy Trinity,' 'of the Elessed Virgin Mary,' \&c., which are contained in the Missal and Ereviary.

VOUSSOIRS, the individual stones forming an arch, and of which the central one is the keystone. They are always of a trumcated wedge-form.

YOW (Fr. voev, from Lat. votum), a promise made to God of a certain thing or action good in itself, and within the dominion and right of the person promising. The practice of vows appears to have formed part of the religious observance of almost all races in any degree civilised; and it largely pervaded the whole ceremonial system of the Mosaic dispensation (Gen. xxviii. 20, Lev. xxvii 2, I Chron. [I. Paralip. Vulg.] xxix. 9, 2 Chrou. Exxi. 6, Judges xi. 30, Num. xxx. 2, Judith xvi. I9, Jon. i. I6). The stringeucy of the obligation of fulfilling a vow when ance made, is distinctly laid down (Deut. xxiii. 21 ; Eccles. v. 4, 5) ; but it is equally clearly stated, that it is by no means a matter of obligation to make a vow (Deut. xxuii. 22). The practice of making vows continued among the Jews in the time of our Lord; and st Paul, after his couversion to Cbristianity, continued to conform to this usage (Acts xviii. IS). It would be out of place to enter here into the question, whether this observance was meant by our Lord to form part of his new dispensation, or to discuss how far the practice of vows, especially of chastity, can be traced as in use among the Christians of the first and second century; but it appears quite clear that in the end of the third, and all through the fourth, the monastic life became general in the East, and soon afterwards spread all over the church. See Antony, Paul, Monachism. It is unnecessary to add, that vows, while discarded as a religious observance by the Reformers, cuter largely into the system of the Roman Catholic

Church. The objects of these engagements among Catholics are very various; but they are drawn, for the most part, from what are called the evangelical 'counsels,' in contradistinction to 'precepts' or 'commands'-the most ordinary subject of vows being the so-called 'evangelical 'virtues of poverty, chastity, and obedience. Pilgrimages, however, acts of abstinence, or other self-mortifications, whether of the body or of the will, special prayers or religious exercises, are frequently made the object of vows; and there is another large class of more material oljjects, as the building of churches, monasteries, hospitals, and other works of public interest or utility, to which medieval Europe was indebted for many of its most magnificent memorials of piety and of art. Vows in the Roman Church law are either 'simple' or 'solemu.' The principal difference betreen them consists in the legal effects of the 'solemn' vow, which, where the subject of such vow is chastity, renders not merely unlawful, but null and void, a marriage subsequently contracted. A 'simple' vow of chastity makes it unlawful to marry, but, except in the Jesuit Society, does not invalidate a marriage, if subsequently contracted. Catholics acknowledge in the church a power of dispensing in vows; but this is held to be rather declaratory than remissory, and it is not acknowledged in the case of vows which involve any right of a third party. Bishops are held to possess the power of dispensing in simple vows generally; but the power of dispensing in solemn vows and in certain simple vows, as, for example, that of absolute and perpetual chastity, and of the greater pilgrimages, is reserved to the pope. The practical operation of the canon law regarding vows has evidently been much modified, even in Catholic countries, since the Freach Revolution, and the subsequent political changes; but this must be understood to regard chiefly their exterual and purely juridical effects. So far as concerns their spiritual obligation, the modern Foman theology recognises little if any change.-See Ferraris, Bibliotheca Canonicu; André, Cours de Droit Canon; Welter and Wetse's Kirchen. Lexicon.

VOWEL. See Letters.

VR'IHASPATI, or, as the word is written in Vedic works, BR'lHASPATI (from Lr'ih, probably hymn, prayer, and pati, protector, lord), is, in Vedic Mythology, the guardian of the hymns or 1 rayers addressed by the pious to the gods, and he is therefore considered as mainly instrumental in insuring the efficacy of the sacritice. In consequence, he is 'the first-born in the highest heaven of supreme light,' because the prayers reach him first; he is 'seven-faced,' because his faces are the seven Yedic metres; and he is 'attended by all the companies of gods,' or 'represents all gods,' when the sacritice is performed. Being thus the 'tirst sharer of the offering,' he is sometimes also identified with Agni. His function of guardian of the hymns being similar to that of a priest and spiritual teacher, he is further represented as a priest of the golls, who himself 'celebrates worship;' as 'the observer of truth,' and as imparting 'sirtuous instruction. In the eric ane Puranic mythology, V. figures especially as preceptor of the gods and R^{\prime} ishis, and as such he also causes them to perform sacrifices. A new character, however, in which he appears at that period is that of regent of the planct Jupiter; and in the ceremonies performed in honour of the planets and described in several Puran'as, a special worship is paid him in this capacity.

Vrittra. See Indra.

VU'LCAN (the name is probably connected with fulgere and fulyur, and may he translated the 'hright

VULCANISM-VULTURE.

of shining one') was the old Italian god of fire. The various myths in connection with V. prove the great antiquity of his worship. Latterly, the character, attributes, and history of the Gireck Hephestus were transferred to V., and the two thus became iflentitied. Accorling to Ilomer Hephestus was the son of Zens and Hera; biter accounts, however, asserting that the latter gare birth to him without any co-operation on the part of her husband. ILe appears to have been twice violently expelled from Olymus-the dirst necasion was shortly after his birth, when le was dropped upon the earth by his mother, who was alisgnsted with his sickly deformity; he was received by the marine divinitics, Thetis and Euronyme, with whon he dwelt for nine years. He afterwards returned to Heaven, and on iuterfering in is quarrel between his mother and Zeus, the latter seized him ly the leg, and flung him from Olympus. After falling for a whole day, he alighted on Lemnos, where he was kindly received by the Sintians. He afterwards returnel to Olympus. Homer makes him lane from his birth, while later writers attribute this

Vulcan.
lefect to his second fall on Lemnos. The popular notion of V. or Itephrestus appears to have heen that of a burly, lame, goml-maturel, awkward gol, of ten made the butt and laughing-stock of his fellows. He lad a magnificent pilace of his own in Olympus, 'immortal, brazen, shining like stars,' in which was his workshop, containing an anvil and $\overbrace{1}$ hellows, which werkel at his command. Later accounts locate his workshop in the interior of some voleanic isle, such as Lemmos, Lipara, Sicily, \&c., and give him as worknen the Cyclopes, Erontes, Steropes, \&c. Many wonderful works of art are ascribed to V. by the ancient pocts, and as an artist or artificer, he aplyears to have heen regarded as corresponding in some respects to A thene both instructed men in the useful and ornamental arts, hal the prower of healing, \&e., and at Athens, had temples and festivals in common. In the Iliad, the wife of Ifephestus is Charis; while in the Odyssey, and in later writers, he is represented as being much tormented by the amours of his frail and charming spouse Aphrodite, with her favourite Ares (Mars). In the carlier statues, his lameness appears to have been indicated; but latterly, he was represented as a full-grown, vigorous man, with a bearel.
YU'LCANISM, a term proposed by Itumbohit to include all the eridences of internal heat, suct as volcanoes, hot springs, \&c.

VU'LCANITE aNd VULCANISED INDIA. rubber. See Caoutchovc.

VU'LGATE is the name of a well-known Latin translation of the Old Testament, done by Jerome,
who, when en anged in correcting the Itala (see Italic Virsion), conceived the plan of producing a completely new version, done from the Ilebrew text itself. He commenced this labour about 385 A. D. (with the books of Samuel and Kiugs), and completed it in 405. This new version, although not free from the reproach of casual hastiness, and faulty and insufficient exegetical knowlelge, yct surpissed all previous ones in general correctness and aceuracy; a cireumstance which diel not fail to bring Jerome into bad odonr. The discrepancies hetween the V. and the Itala, which had been made from the LXX., were so numernus and important, that the charge of heresy and falsification of Scripture was openly preferred against the translator by Infinus, and even St Augustine was doubtful for sume time whether this charge might not be truc. But gradually it marle its way in the churel, lirst io Gaul, then in Iome-chielly through Gierory the Great-and finally thrnughont the West. Abont 200 years after Jerone's death, it became the miversally received version of the church. Not long, however, did it exist in its pure and unadulterated form. l'artly through the influence of the emendated Itala, partly through the manifold general causes of neglect, hastiness, and the rest, which have gone so far to spmil almast every ancient MS., the text of the V"ulgate had hecome so corrupted, that in 802 , Charlemagne commissioned Alenin to revise it by old Misis, and to compare it with the Hebrew text. This revision, however, to which afterwards came other 'emendations,' in the llth and 12th c. (loy Lanfranc, Archlishop of Canterbury, aud Cardinal Nieolans respectively), completely changed the original character of the work. Nor did the 'Correctoria Liblica' (i. e., certain collections of commentated and revisell texts, issued at the period), (lo much for the improvement of the corrupted MSS. The confusion between the different codices was chicdly remarked, when the Tridentine Comucil, in 1546 , first declared the V. the authorised version of the Roman Church, and decrect the preparation of an authenticated eilition. In 1564, the Papal Chair undertook the task; but not before 1590 did Sixtuts V. proluce the work. This, however, turned out to be so utterly incorrect and faulty throughont, that the copies were specdily suppressed ; and another edition, which appeared in 1592, was jrepared under Clement VIII., to which in the next year (1593) that other edition sncceeded, which has since remained the normal edition of the Churela of Rome, and has been reprinted unchanged ever since. We may add, that the Anglo-Saxon translation of the Pentatench and Joshma, ley Aelfric (l0th c.), has been made from the V., and not, as has been erroneonsly supposel, from the Septuarint; and that the V. has also been repeatedly translated into Arahic (the I'salms even into l'ersian) for the use of the Coman Catholies in the East.

Y'U'LNED, a heraldic term, applied to an animal, or part of an animal -as, for exanple, a humau heart, wounded, and with the hlood dropping from it. A pelican in her piety (see Pelicas) is sumetimes described as vulning herself.

VU'LTURE (${ }^{\top}$ ultur), a Linnean genus of rapacions birds, now forming the family Vulturide, to almost all the species of which the name V . is popularly given. The liulturidue have a longer beak than the Falconda, and it is straight at the base, slightly or not at all toothed, the upper mandible lonser than the lower, and hooked at the tip, the hearl generally bare, or covered only with a short down, which in most of the species is the case also with the neck-a ruff or collar of soft feathers surrounding the lower part of the neck, into which

VULTURE.

the upper part, and even most of the head, can be withdrawn. The legs and feet are large, but the claws are not mearly so large and strong as in the Falconide, and are but slightly hooked. The middle toe is very long. The wings are long, and their expanse consequently great. Vultures have great powers of flight, and many of them son' to a very great height in the air. Their plumage has not the neat and regular appearance of that of the Falconida, but it is dense, and not casily penetrated by shot. Vultures are mostly found in warm climates, and many of them are inhabitants of

King Vulture (Vultur papa).
mountainous regions. They feed on carrion, which it seems to be their office in nature to remove from the face of the earth, that the evil consequences of its corruption may be prevented. They seldom attack a living animal, but they have been seen to sit and wateh the approach of death, waiting for their feast. They are not in general courageons birds, and are often put to flight by birds much smaller than themselves; yet, if unmolested, they readily become familiar with the presence of man, and some of them seek their food even in the streets of tomas, in which they are useful as scavengers. They gorge themselves excessively when foad is abmadant, till their crop forms a great projection, and sit long in a sleepy or half-torpiil state to digest their food. They do not carry food to their young in their claws, lut disgorge it for then from the crop. The hareness of their head and nock adapts them for feeding on putrid flesh, by which feathers would be defiled; and they are very careful to wash and cleanse their plumage. The question has been much discussed, whether vultures discern dead animals by the eye, or are attracted to them by the smell. It is certain that they possess great powers both of smell and of vision, and the reasemable conclusion appears to be that both are of service in directing them to their prey. The rapidity with which they congregate to a carcass has been remarked with admiration, and vast numbers have often been seen assembled on a battle-fiell to devour the dead.

The J'ulturidee are divided into scveral genera, of which one, Gypä̈tos, approaches to the Falconides in its characters and habits, having the head feathered, and not always feeding on carrion, but often attacking living animals. The Lammergeier (q. v.) is one of this group. The feet are feathereal to the toes, whilst the other vultures have the tarsi bare.

Some of the most notable species of V. have already been described, as the Condor and the

Egyptian Vulturc. The generic mane Vultur is now restricted to those which have the head and neck without feathers and withont caruncles, and a rufí of long feathers or of down at the lower part of the neck. To this genus belongs the Tawsy V., or Griffor (1^{\prime}. fulvus), found in the south of Europe, the north of Africa, and the west of Asia. It makes its nest on the most inaccessible rocks of high mountains, as in the Alps and Pyrenees, and sometimes in tall forest trees. It is a very large bird, more than four feet in length. Its plumaze is yellowish brown, the quills and tail-feathers blackish brown, the down of the head and neck white, the ruff white. When it has found a carcass on which to feed, it remains on the spot, gorging and torpidly resting by turns, till no morsel remains. This V. has been seen ia England, but only as an accidental visitor. The mountains and forests of the south of Enrope, as well as of the north of Africa, and great part of Asia, are also inhalited ly the Cinereors V. (1^{r} ultur or Gyps cincreus), another large species, which departs from the typical character of the vultures in having the greater part of the neck feathered, and comparatively large and powerful claws. It does not, however, attack living animals. India, Africa, and alnost all warm countries, abound in vultures of different species, which it is unnecessary to describe. In the southern states of North America is found the Black Y. (Cathartes atratus), there generally known as the Carrion Crow, a comparatively small species, not quite two feet in entire length, of a deep black colour, the head and neek covered with warty excrescences, aud a few hair-like feathers. This bird is also very alundant in many parts of South America, where it is called the Galiinazo. Very nearly allied to it, and found in the same regions, is the Turkey Buzzard, or Red-headed V. (Cathattes aura). These vultures are more or less gregarious,

> Turkey Buzzard (Cathartes aura).
not ouly assembling where food is to be fornd, unt flying in flocks. They make their nests in hollow trees, and sometimes in the chimneys of deserted honses, or ou the roofs of honses. 1n some of the towns of tropical America, they may be seen in great numbers, perched during the heat of the day on the tops of houses or on walls, asleen, with their heads under their wings. The Californian V . (Cathartes Californiams) is the largest rapacious hird of North America, Deing fully four feet long, and about ten feet in extent of wings. It is black, with a white band on the wings. It is found only on the western side of the Rocky Mountains. It much resembles the condor in its habits.

VYASA.

VYASA is the reputed arranger of the Vedas (q. v.), and the reputed anthor of tho Mahabharata (q.v.), the Puran'as (q. r.), the Brahmasutras (sce Vedânta), and a Dharmas'âstra. According to tradition, he was a son of the sage Paras'ara and Satyavati, 'the truthful,' who was a daughter of King Vasu, and a heavenly nymph, Adrikâ. Another tradition makes him also the father of Dhritarasht'ra, Pan'd'u, and Viclura. On aceount of his dark eomplexion, he was called Kr'ishn'a (black) ; and because he was born in au island (deipa) of the Yamuná (Jumna) river, his second namo was Decaipayana. That the immense bulk of literature comprised by the above-named works, and relating to different periods, cannot belong to the authorship of one aud the same personage, is no matter of doubt. But the name itself of the individual to whom it is attributed conveys the meaning which must be sought for in some of the legends connected with his history. Vydsa (from the Sanserit iv and as, literally, 'throw in different directions,' hence 'distribute') means the person who arranges a snbjeet-matter in a diffuse manner, or the aet itself of such a diffuse arrangement, and is often eontrasted with samása (from sam and $a s$, con-traet), the act of making a coneise arrangement, or of abridging (eompare the Greek omèro-, from om $=s a m=s u n$, and $a r=a s)$. Vyâsa is, therefore, a symholical
representation of the work of geuerations, as cm bodied in the Vedas, tho Mahabberata, and the Purâa'as, and of the order whieh gradually was brought into this literary mass. When, therefore, the Vishn'u-Puran'a speaks of 25 Vyasas who in the reign of the present Manu arranged the Vedas, it is not impossible that some historieal truth may underlio this statement, implying, as it does, a different arrangement of tho Hindu seriptures at various times: and that the Mahablarata, and the Purân'as too, may have undergone various arrangoments and recensions, until they settled down in their present form, sufficiently results from their contents. Regarding the Bralimasatras, tradition itself seems only loosely to connect their author with the Vyâsa of the foregoing works, for it says that he was in a former life a Brahman, Apantaratamas, who, after having attained final beatitude, - by speeial command of the deity, resumed a eorporeal frame and the human shape, at the period intervening between the third and fourth ages of the present world, and was the eompiler of tho Yedas.' (See Colebrooke's Miscellaneous Essays, vol i. p. 327, Lond. 1837.) As the author of the Dharmas'astra, V. is possibly a personage distinet from the legendary indiridual bearing this name, as is the case with other Vyasas who occur as authors of other works.

18THE twenty-third letter of the English alphabet, 'is a letter which performs the double office of a consonant and a vowel. According to the decisive experiments of Professor Willis (Cambridge Phil. Trans., iii. 231), the natural order of the vowels is i, c, a, o, u, or the reverse; in which the sounds must be understood to be those which prevail on the continent. The sounds, then, of i (that is, ee) and u (that is, 00) are the most remote, and the attempt to pass with rapidity from cither of these to the others, more particularly to the other extreme, gives an initial breathing which has the character of a cousonant, viz., in the one case, ee-op, or you; in the other, oo-ee, or we.' See Key's Alphabet. This acute analysis of the articulations denoted by the characters w and y, throws a clear light on the double function they perform as consouants and as vowels. The lctter w, which originated in the middle ages, is merely one v joined to another, as its English name imports. It is peculiar to the English, German, and Dutch alphabets. It wonld appear from a variety of phenomena in Latin and Greek, that the Lat. v or u, used as a consonant, as well as the old Greek digamma (F), were more of the nature of the modern w, than of the decidedly consonantal Euglish v (see U and V). The French, having, like the other Fomanic nations, no character w, express the sound by prefixing ou to the vowel; as oui (pron. wee), Edouard = Edward. In the beginniag of proper names they substitute gu; e.g., Guillaume $=$ Wilhiam. The spaniards also use gu, as in the many names compounded of the Arabic wadi; e. g., Guadalquivir ; but more frequently $h u$, as in Chihuahna (pron. Chiwawa). In HighGerman, which has become classical German, w is confounded with v, and v with f; thus, Wellington is pronounced Vellington. In London, w is substituted for v, and v for u, with 'a most amusing perversity.'

WAAL, The (Lat. Valis or Vahalis), an arm of the Rhine, thrown off near the village of Pannerden, in the Netherlauds, flows thence to Nijmegen, Tiel, Nieuw-St-Andrics, between the Roemmeler- and Tieler-waard, and unites with the Mas below Fort Loevestein (Luvestein). The united rivers then take the namc of the Merwede, which, flowing past Gorinchem and Dordrecht, becomes the Oude, or Old Mas. See Maas.
WA' BASH, a river of the U. S. of America, rises in Western Ohio, runs west and south-west through Indiana, forming the southerly half of its western boundary, on the borders of Ilinois, to the Ohio River, 146 miles from its mouth, is 550 miles long, and navigable by steamers at high-water 300 , and has for its principal branches the Tippecanoc, Big Vermilion, Embarras, and White River-the last 200 miles long. The Wabash and Erie Caual connects the lakes with the Mississippi.

WACE, Robert, an Anglo-Norman poet of the 12th century. Many different versions of his name are given in his own books, as woll as in the other books which mention him. He is styled Vace, Wace, Waece, Waice, Waicce, Waze; Gasse, Gaice, Guace, Guazi, Guaze, Guascoe, Gazoe ; and again, Wistace, Huistace, Huace. It has becu supposed that there were really two poets, the one named Wace or Guace, the other named Wuistace; the one the author of Le Roman du Rout, the other of Le Roman du Brut. But variety in writing names was very commou in the middle ages, and it does not scem necessary to resort to this supposition. About his Christian name there is even more doubt than about his surname. It is never mentioned in his poems, from which the little that is known about him is mostly derived. An old writer speaks of him as Matthew; and it seems that le was first called Robert in the Origines de Caen by Huet, whom subscquent authors have followed.
W. was born in Jersey, in the reign of Henry I., and it is probable that the date of his birth lay between the years 1112 and 1124. He was taken to Caen as a child, and there he received the early part of his education. He was afterwards sent into the neighbouring kingdom of France; but be returned to Caen, and having entered into holy orders, became a reading-clerk in the Royal Chapel there. At Caen it was that he composed his works. Henry 11., to whom be dedicated Le Roman du Rou, gave him a canoury at Laycux, apparently about the year 1160. He died in England about the year 1180, certainly before the year 1184.
Five separate works are attributed to W. ; but three are slight, short performances, and it is only necessary to notice the two principal-Le Roman du Brut d'Angleterre, and Le Roman du Rou. The former premises that a certain Brutus, a son of Ascamius, and grandson of Aueas, settled in Britain, and became its first king. The book continues the history of the British kings from Brutus to Cadwallader, who died at Rome shortly before the year 700. It is little more, however, than a literal translation into the French from the Latin of Geoffrey of Monmouth (q. v.). This poem seems to lave been completed in the year 1155. Le Roman du Rou (Rollo) is a sort of history of the Dukes of Normandy and of the Norman monarchy in England. Neither of these works has the slightest poetical merit. They are both interesting only as shewing the state of the French language in the 12th c., and as supplying occasional facts and social traits to the historin.
WA'CliE, a German miners' term, introduced by Werner, to designate a soft variety of trap, that has an argillaceous asplect, and a grecnish-gray colour. It resembles indurated clay; but has been formed of volcanic ashes or mud. It is often vesicular, and when the cavities are filled, it becomes an amygdaloid. It is associated with trappean rocks, and, indeed, often passes into basalt or greenstone.

WAD-WAGENINGEN.

WAD, the popular name given in some parts of England, as in Derbyslire, to an ore of manganese, which is a hydrated peroxile, uniterl with nearly its own weight of oxide of irou. Wad is also the provincial name of black leal or plumbago in Cumberland.

WAD, in Gumery, a compressible dise foreed home in the barrel after the powder, to confine the latter to the least possible space hefore its cxplosion. For great guns, the wad is commonly made of rope; for small-arms, of pasteboard.

WADERS, or WADING-BllilS, a designation often applied to the whole order of birds Gralle

Claracteristic Features of Wading-birds:
1, IIead and foot of Common Snipe; 2, Head and foot of Finged Dotterel; 3, Head and foot of Conmon Godwit; 4, Ifead and foot of Curlew.
(q. v.), or Grallatores, but really appropriate only to some of them, the more aquatic in their habits, as Herons, Snipes, and lails.

WADILAM COLLEGE, Oxford. In the year 1610, James I. issued a licence to Dorothy Wadham, acting as executrix of the will of her deceased lumshand, Nicholas Wadham, Esq., to fomd a 'College of Divinity, Civil and Canon Law, Plyysic, good Arts and Sciences, and the Tongues.' Dorothy Wadham purchased the site and ruins of the prory of the Austin Friars, in the suburbs of Oxford, and built the present college for a warden, 15 fellows, 15 scholars, and 2 chaplains. The fellows were formerly clected from the scholars, and the tenure of the fellowshins was limited to 22 years; mine of the scholarships were limited to certain counties, and to the founder's kin. By the Coromissioners under 17 and is Vict. c. Sl, the fellowships and scholarships were thrown open-the former to all persons who had passed the examinations for a B.A. degree ; the latter to all persons under 20 years of age. The Commissioners also abolished the limitations on the tenure of the followshins. One of the fellowships is appropriated to the reader in experimental philosopliy. The value of the fellowships is supposed to be about $£ 160$ a year. The scholarships are worth $£ 46$ a year, besides rooms, and are tenable for five years. There are several good exhibitions, especially those founded by Dr Hody-four for Hebrew, and six for Greek, value $£ 40$ a year, and tomable for four years; also a law exhibition for a fellow, value $£ 90$ a year ; and a medical exhibition for a fellow, of the same value. There are ten benefices in the gift of this college.

WA'DI, an Arahic word signifying a river, a rivercourse, a ravine, or valley. It is supposed that the

Greek oasis is a cormption of wadi. It is of frequent occurrence in the names of places; e. g., WadiMlusa (i. c., the Valley of Moses) in Arabia. In Spain, where most of the rivers bear names given them by the Arabs, wed has been transformed into guad; e.g., Wadi-1-abyadh (the white river) has become Guadalaviar.

WA'DSET, in Scotch Law, is the old name for a Mortgage (q. v.). The modern name is Bund and Disposition in Sccurity. Sce IIeritable Slecmities.

WAFELR, in relation to the Roman Catholic usage of the Eucharistic commnnion, is the name given (chiefly by non-Catholies) to the thin circular portions of unleavened breal which are used in the Foman Church in the celebration and administration of the Eucharist. In ancient times, the bread and wine for the Eucharist were contributed by tho faithful; and a place is found in the Eucharistic service of every known liturgy for this offering, still known ly the name of Ollertory (q. v.). But in the Latin Church, for many conturies, the breal (which, as being unleavened, and different from that in common use, needed special preparation) has heen provided by the clergy; and the practice las leen followed of preparing it in the form of thin cakes, commonly, although not necessarily circular, aud frequently impressed with sacred representations or emblems, as the Crucifixion, the Lamb, the Christian monogram, the Cross, and other sacred symbols. The circular form itself is by some ritualistic writers regarded as symbolical, the circle being a figure of perfection. The wafers usel in the Foman Catholic Church are made of different sizes, the smallest abont an inch in diameter for the communion of the people, a second considerably larger for the celcbration of the mass, and a third still larger to be placel in the Monstrance (q.v.) for the service of benediction or exposition. See Lord's Suprer.

WAFERS, thin dises of dried paste, mostly coloured, used for sealing letters, or for attaching papers together: They are made by mixing fine wheaten flour with water and any non-poisonous colouring materials, so as to form a mixture not thicker than thin cream. A small quantity of this is poured on the lower limb of a pair of wafer-irons, which are formed like a pair of pincers, bat with flat blades about 12 inches long by 9 in breadth, the inner surface of which is kent well polisherl. Hefore being used, they are heated over a charcoal or coke fire; and the lifuill paste being poured on the lower llade, the pressure of the two blades distributes it equally in a thin sheet between them, tho superfluous material being squeezed out at the sides, from which it is shaved off by means of a knife. In a few seconds of time, if the blades are hot enough, the sheet of paste bccomes dry and half baked. The shects so formed are then stampel out into dises of the sizes required. Formerly, wafers were very extensively used, and their manufacture was one of considerable importance; lint the introduction of gummed envelojes has almost driveu them out of use.

WA'GENINGEN, an old but well-built town in the Netherlands, province of Gelderland, is situated near the Fihine, to which access is had from it by a canal. Pop. 5632. W. has good schools and other useful institutions. The environs are beantiful, and the Wageningsche Berg, now formed into a buryingplace, is especially picturesque.
Ship-building, brick and tile making, tanning leather, rope-spinning, \&c., with agriculture, are the chicf sources of wealth. W. received the rights of a town in 1263. It is a neat, purely Dutch town,

WAGER OF LAW-WAGNER.

selected as a residence by many who wish to live quietly, comfortably, and economically.

WAGER OF LAW, in the Law of England, was an old form of giving, sureties that at some future time the party would wage his law-that is, put it to the oath of the defendant, who swore in presence of eleven compurgators as to the debt claimed. The action was used in causes where thcre was some secrecy as to the origin of the debt, or where the defendant hore a fair character. That form of actiou had lons been in disuse, but was not formally abolished till the statute of 3 and 4 Will 1 V . c. 42.

WAGERS, in the Common Law of Engłand, were held good, if they were not against the principles of morality, public decency, or sound policy; and a wager or bet was defined to be, a contract entered into withont colour or frand between two or more persons for a gool consideration, and upon mutual promises to pay a stipulated sum of money, or to deliver some other thing to cach other, according to the result of some contingency. A wager has been held void which was made on the life of Napoleon I., on the result of an election of a memher to serve in parliament, \&c. Before the statute of 8 and 9 Vict. c. 109 , wagers above a certain amount were declared to be illegal, but now wagers on a race are not illegal. That statute provides that all contracts or agreements, whether by parol or in writing, by way of gaining or wagering, shall be null and void, and the money due tbereon cannot be recovered in any court of law; but that enactment does not apply to any subscription or contribution or agreement to subscribe or contribute for any plate, prize, or sum of money to be awarded to the winner or winners of any lawful game, sport, pastime, or exercise. If a sum of money has been deposited with a stakeholder, not as a stalke, but by way of wager, it may be recovered back if notice is given to the stakeholder before the crent comes off. As no wager can be recovered in a court of law, it is merely a debt of honour, and if paid, it is in the eye of the law the same thing as giving a gratuity. If a promissory-note or bill of exchange he taken as security for money either won by betting or knowingly lent for betting, the consideration is illegal, and the money cannot be recovered. A recent act was passed for the suppression of betting-houses, and imposes penalties on persons keeping or using honses for betting 1 urposes (17 and is Vict. c. 119); and justices may authorise constahles to break into such houses, and arrest all persons found therein. Whoever by a cheating wager wins money from anothcr, is liable to be indicted for ohtaining the money by false pretences.-In the Law of Scotland, wagers are treated as pacta illicita, which it is heneath the dignity of any court to entertain questions about, and so they are not recoverable by action. The act S and 9 Vict. c. 109 does not apply to Scotland, but there are older statutes of a somewhat similar cfiect.

WAGES means the money given for personal services, as distinct from the price of anything sold, whether made by the seller or not. When a man makes a basket, and sells it, the price is not wages, thongh it may be the same thing to him. The term has by general nsage been limited to the remuneration of hand-working. A manager of a bank or railway-even au overseer or a clerk in a manufactory, is said to draw a salary. It is generally a feature of wages, too, that they are paid at short intervals, as leing necessary for immediate support. This division is connected with social distinctions which have excrcised a haveful moral influence in the direction of improvidence. The
clerk at a hundred a year is supposed to be a gentleman who dresses decently, and so adjusts his expenditure that he can draw it quarterly. The puddler or shingler who can make a guinea a day is, by traditionary usage, a member of the needy classes, who requires to draw his wages weekly, and is expected to spend them at once. Wages are more absolutely ruled loy their value in the market than other services. A writer of poems or a painter of pictures does work which is exceptional-if people are willing to pay him any price he may ask for his work, there is probably no one who can compete with him and undersell him. A lawyer or a physician may also have special qualities to a great extent excluding competition ; and in appointments to offices requiring trust, judgment, and skill, a great many things hare to be considered besides the question, who will do the duty cheapest? But in the staple hand-works-the making of clothes, the baking of breat, and the like-there are uniform functions of the hand which a certain number of persons will always be found ready to give for a price. Strong efforts are made from time to time -by combinations, strikes, \&c.-to make wages fictitiously high. These efforts are of course often successful for a time, bringing profit to some members of the working-classes, though injury to others, and a general loss of the wealth of the community. But the great law of political economy, that labour as well as all other things, will bring what it is worth, ever prevails in the end iu a country where trade and labour are free. See Capital, Combination, Labour, Truck-system.

WAGNER, Riciard, a contemporary German operatic composer. He was born at Leipzig in 1813, and was educated at Dresden and Leipzig. In 1836, he was Kapellmeister at Magdeburg, and after spending some time in Königsberg, Dresden, and Riga successively, he came to Paris in 1811, where he composed his two earliest operas, Rienzi and Der fliegende Hollënder. Rienzi, when brought out by him at Dresden, obtained for him the post of Kapellmeister there. His next opera, T'annhäuser, appeared iu 1845 , also at Dresden. Being involved in the political schemes of 1548 , W. had to quit Saxony, and took up his residence for a time in Switzerland, where he composed Lohengrin and Die Niebelungen. He spent the season of 1855 in London, where le undertook the direction of the Philharmonic Society's concerts. In 1865, he was invited to Munich, and greatly befriended by the young king of Bavaria, who appointed him Director of the Opera-house; and he there produced his latest opera of Tristan und Isolde; but complaints of the royal favourite interfering in state atfairs obliged King Ludwig to dismiss him. The public are greatly divided regarding the merits of W.'s operas and the soundness of his resthetic opinions, one party in Germany looking up to him as the greatest musical genius of the age; another pronouncing his theories utterly visionary, and his music extravagant and unintelligible. W. explains his notions of the opera in a volume of cssays, entitled Oper und die Drama, published at Leipzig in 185.. Music, poetry, and dramatic effect shonld, according to him, not be made separate objects, but mutually combine and assist each other. He takes to himself the credit of having reformed the opera loy, for the first time, cffecting this combination; and his compositions are characterised by himself and bis admirers as ' Music of the Future,' or 'Work of Art of the Future.' Some of his operas, particularly Tannhäuser, are magnificent as spectacles, but they are altogether deficient in melody. In all of them, the words of the libretto, W.'s own composition, are adapted to a declamatory style of recitative, 37

WAGON-WAGTAIL.

relieved by harmonies and instrumentation in accordance with the spirit of the situation. Lohengrin has been his most successful work.

WAGON, a vehicle for the conveyance of goods or passengers, is mounted on four wheels, but varies considerably in the construction of its other parts, according to the species of traffic in which it is to be employed. Since the wagon has four Wheels, it is quite unnecessary that any part of the weight should be sustained on the shafts, and accordingly these latter are hinged to the fore-part of the frame, so as to be raised or let down at pleasure. Wagons being generally drawn by two horses abreast, two pair of shafts are employed; and when three horses are yoked abreast, the centre one is the shaft horse, the right and left 'wheelers' are yoked by traces to the wagon-frame; and each of the latter is attached by a chain from its collar to a shaft, so as to preserve the parallelism of its action. Mlost wagons are set on springs, on account of the weight of the vehicle, and the absence of the steadying weight of the horse, owing to the slafts not being immovably attached to the frame. For facility in turning, the fore-wheels are occasionally smaller than the hind ones; and in addition, the fore-axle of the lighter kinds of wagon is attached to the body of the wagon by a swivel-joint, the shafts or pole being in this case attached to the fore-axle; but the diminution of the size of the wheels is open to grave objection, on account of the greater friction. It heing almost impossible for the beasts of draught to control and subdue the momentum of a heavily-loaded wagon descending a slope, it is necessary to etrplay a drag of some sort ; the rudest forms of which are a thick cylinder of tough rood inserted between two spokes of the wheel, which, being carried upwards in the wheel's revolution, is 'jammed' against the under side of the wagon-frame, and stops the wheel's rotation; and the chain-drag, which was merely a chain firmly fastened at one end to the wagon-frame between a fore and hind wheel, and furnished at the other and with a large hook, to hold the tire of the hindwheel; the method of chaining the fore and hind wheels together was also employed. But in the better elass of wagons, the shoe and break (see Drag) are now employed. The various forms of wagon in common use are the brewer's dray, the railway lorry, the agricultural wain (in common use in England and on the continent), and the bullockcart of South Africa. The comparative merits of a vehicle in which the horse has merely to draw, and one, as the cart, in which he has to carry as well as draw, have often been discussed, though never suffieiently tested; but it seems to be generally believed that, despite the distress arising from his confined position in the comparatively immovable shafts of a cart, a horse can transport a greater weight to a moderate distance by the same exertion of muscular force in a cart than in a wagon.
WAGON-TRAIN, an indispensable companion of an army under this or some other title. It serves to convey the ammunition, provisions, sick, wounded, carap-equipage, \&c. At the present time, in the British army, the Nilitary Train performs this function, although in China (1860) and New Zealand (1862-1865) the commissariat provided and organised its own wagon-service.
WA'GRAMI, or DEUTSCH-WAGRAM, a village of Lower Austria, on the left bank of the Fussbach, ten miles north-east-by-east from Vienna, is of hittle importance, except as the site of the great battle between the French and Austrians in the cam paign of 1809, which forced Austria to bow before Napoleon, and submit to the onerous conditions of
the fourth treaty of Vienna (q.v.). After the capture of Vienna, Napoleon resolved to pass the Danube, and complete the prostration of Austria's military strength by the destruction of her last army-that under the Archduke Charles; and with this view, he called in the Italian army, under Eugene Beanharnois, and all his outlying corps, concentrating them in and about the island of Lobau; and after a few feints, calculated to mislead the Archduke, who, stationed on the north bank, was vigilantly guarding the various crossings, succeeded in effecting a most extraordinary passage, ou the morning of July 5, 1809, from the island of Loban to the north bank, opposite Enzersdorf, landing 150,000 infantry, 30,000 cavalry, and 600 pieces of cannon bcfore six in the morning. When the morning light shewed the Austrians how they had been out-manceuvred, they retreated across the plain of the Mareh-field to its nortbern extremity, and took up a formidable position at W., and being closely followed up, were, on the evening of July 5, attacked by a part of tho French army. By the vigorous exertions of the Archduke in person, the assailants-after a temporary success-were completely repulsed, and the Austrians, exulting in their second victory over Napoleon, waited in sanguine expectation the events of the mext day. In the morning, the Archduke resolved to assume the offensive, and succeeded at first in defeating the French centre under Massena, and in forcing their left into inextricable confusion, followed by total rout; but at the same time his own left was turned by Davoust, and this success followed up by a successful attack of Macdonald on their centre, forced the Anstrians to retreat, which they did in the most orderly manner, carrying with them 5000 prisoners, and leaving 25,000 lead or wounded on the field of battle-the Freach loss bcing about equal. This drawn battle (the Archduke having, as Savary says, 'in reality no reason for retiring') had all the moral effects of a victory for the French; and mas followed on July 11 by the armistice of Zaaim, which resulted in the fourth treaty of Vienna.

WA'GTALL (Motacilla), a genus of birds of the family Motacillido, which is now very generally regarded as a sub-family (Motacillince) of Sylvialte, distinguished by a lengthened and slender bill, long and pointed wings, rather long and slightly curved elaws, and a long narrow tail, which the bird incessantly wags up and down, with a jerking motion. The genus Motacilla of Linneus included many of the Sylviadee not belonging to this group, as the Ficd-breast, Nightingale, Black-eap, and Blue-bird. The genus Motacilla, as now restricted, has a slender awl-shaped, straight bill ; the nostrils oval, on the sides of the bill near the base, partly covered by a naked membrane; the wings of moderate size, the first quill-feather the longest, the second and third nearly as long as the first, the tertials very long; the tarsus much longer thau the middle toe; the tail of twelve feathers, long, and nearly equal at the end.-The wagtails run with great celerity, and seek their food on the ground Their food consists chiefly of insects and small seeds. They frequent the margins of rivers and lakes, inundated fields, and other moist grounds. 'While the cows are feeding, in moist low pastures,' says White (Nat. Hist. of Selborne), 'broods of wagtails, white and gray, ran round them, close up to their noses, and under their very bellies, arailing themselves of the flies that settle on their legs, and probably finding worms and larve that are roused by the trampling of their feet.' Wagtails make their nests on the ground, among moist herbage, or in stony places. Their flight is rapid and undulatory. They are natives of the temperate regions of the Old World, No species is found in America.-

A common British species is the PIED W. (II. Yarrellii), which is from seven to eight inches in length, the long tail included, and has prettily varied white and black plumage. It is abundant over the Whole south of Europe, and is found there at all seasons of the year, which is the case also in the south of England; but in more northern regions it is only a summer visitant, as in the Orkney Islands, where it is the first of the migratory birds to depart southward, the migration taking place almost as soon as the young are able for flight. The Pied W. is incessantly in motion, jerking its tail, running

1, Yellow Wagtail (Motacilla Jlava); 2, Pied Wagtail (3. Farreltii).
quickly along the ground in quest of insects, and making short flights from place to place, chirping as it flies. It is often to be seen wading in shallow water, in pursuit of aquatic insects, and catching also small minnows when they approach the surface of the water. This species was long confounded with the White W. (M. abba), of the continent of Europe, common from Sweden to the Meditertanean, as also in many parts of Asia, and in elevated situations in India and the north of Africa, but not a native of Britain. The two species are, however, very similar.-The Grar W. (NI. boarula) is bluish gray abore, with the rump and lower parts yellow; a black patch on the throat in summer. It is abundant on the continent of Europe, as well as in Britain, and is commonly seen on pastures, often in close attendance on cattle or sheep, Whence the French name, bergeronette, given to this and other species of W. of similar labits.-The Yellow W. (M. Jlava) and the Green-heided W. (J. Rayi), also British species, of which the latter is the more common, belong to a sub-genus, by some regarded as a distinct genns, Budytes, having the hind-claw sery long and sharp, and thus approaching in character to the Pipits (q. v.) or Titlarks.

WAHA'BIS, or WAHA BITES, a recent $310 h a m-$ medan sect, now dominant throughout the greater part of Arabia. The movement may be considered a puritanic reform, which seeks to purge away the innovations and corruptions introduced in the course of ages, and to lring back the doctrines and obserrances of Islam to the literal precepts of the Koran and of the Sunna (q. v.), or oral instructions of Mohammed himself. This purified faith the W. consider it their duty to impose at the point of the sword-in this, too, following strictly the precepts and practice of Nohammed and the first califs.

The founder of the sect, Ibn-abd-ul-Waháb, was the son of an Arab sheik, or chief, and was born in Nejed or Nejd (the Central Highlands of Arabia), about the end of the 17th century. He is said to have visited various schools in the principal cities of the East, and to have lived some years in Damascus; and here he is represented as forming the resolution to restore in its primitive shape the ruined structure of Islam. Nor was the task an easy one. Throughout the Mohammedan world, the precepts of the Koran had fallen into abeyance, more especially among the Turks ; and religion was little else than a round of external ceremonies-prayers, ablutions, fastings, the worshipping of the holy sheiks or saints at their tombs, and other superstitious innovations. In Central and Eastern Arabia, where the faith of Mohammed had never taken deep root, matters were even worse. According to Palgrave, 'almost every trace of Islam had long since vanished from Nejed, where the worship of the Djann (genii), under the spreading foliage of large trees, or in the cavernous recesses of Djebel Toweyk, along with the invocation of the dead and sacrifices at their tombs, was blended with remnants of old Sabæan superstition, not without positive traces of the doctrines of Moseylemah and Kermut. The Koran was mread, the five daily prayers forgotten, and no one cared where Mecca lay, east or west, north or south; tithes, ablutions, and pilgrimages were things unheard of.' Central Arabia was at that time divided among a multitude of vitually independent chiefs. One of these chiefs, named Sa'u'd (or Saoo'd), a young man of ardent and capacious mind, who ruled orer the small territory around the stronghold of Deraijeh, or Dureeyeh* (in Nejed), was the first important convert made by Ibn-abd-ul-Wahab after his return home; and the example of the prince was followed by his kindred and retinue. The Wahabi is said to have promised Sa'ud that if he would draw the sword in the cause of pure Islam, he would make him sole ruler of Nejed, and the first potentate in Arabia. The prophecy was fulfilled, partly in Sa'ud's reign, and fully in that of his son ; and the Sa'ud dynasty is at this day the chief power in the peninsula; Thile the descendauts of Ibn-abd-ul-Wabab (who lived till 1787) contioue to act as spiritual directors, though without any acknowledgcd authority. It Was about 1746 that S a'ud began to act as apostle militat of the new, or rather revived Islam. One after another, he subdued his beretical neighbours, offering them the alternative of conversion or extermination. Dying in 1765 , he was succeeded by his son, Abd-ul-Aziz, who carried on the same policy with vigour and success. Extending his sway to Hasa (Al-Ahsa, as Colonel Pelly spells it, and anciently Hajr), and other places on the Persian Gulf, he was brought in hostile contact with the Turkish authorities of Eagdad, and from that place an expedition was sent in 1797 against the W. by way of Hasa; but it failed to penetrate into Nejed, and proved fruitless. The \mathbb{T}. now grew bolder in their plundering, excursions towards the Euphrates, and in 1801, Sa'ud, the sou of Abd-ul-Aziz, led an army against the holy city of Meshed Hussein, or Kerbela, took it, massacred the greater part of the inhabitants, destroyed the tomb of Hussein, the grandson of Mohammed, and carried off the treasures. On this, a second Turkish army was sent from Bagdad against Nejed, hut wras routeci, and the greater part slain. The conquest of Hejaz was next undertaken by the Wahabis. For two or three

* Nothing is more perplexing than the orthography of Arabic proper names; cvery traveller spells them in a way of his own. In comparing Burckhardt, Palgrave, and Colonel Pelly, it is often difficult to identify the places and persons spoken about.

WAHABIS.

years, Ghaleb, the ruler of Mecca, had been more and more hemmed in by neighbouring chiefs who had joined the W., and now, in 1803 , Sa'ud collected a large army, and defeating Ghaleh in several battles, laid siege to Mecea, which, after a resistance of two or three months, surreadered at diseretion. Not the slightest excess was enmmitted, but the people had to become W. - that is, they were obliged to pray more punctually than usual, to lay aside and conceal their tine silk dresses, and to desist from smoking in public. Heaps of Persian pipes, collectel from all the houses, were burned before Sa'ud's head-quarters, and the sale of tobaceo forhidden.'-Burckhardt.

Failing to take Jiddah, into whieh Ghateb hat thrown limself, the Wahabi forces went northwards, and, in 1SOH, took Medina, where they stripped the tomb of Mohammed of its accumblated treasures, and mohibited the approach to it of all bot W., as they eonsidered the reverence paid to it hy the Torks and others as idolatrous. At Mledina, 'the Wahabis enforeed with great strietness the regudar observance of prayers. The names of all the axlult male inhabitants were called over in the mosque after ruorning, mid-day, and evening prayers, and those who did not obey the call were punished. A respectable woman, aecused of haring smoked the I'ersian pipe, was placed upon a jackass, with the pipe suspeaded from her neck, round which was twisted the long flexible tube or snake: in this state she was paraded through the town.'-Burekhardt.

During these events, Abd-ul-Aziz had been assassinated, in the end of 1S03, by a fanatical Persian, whose family had been murdered by the W. at Meshed Hussein. He was succeeded by his son, Sa'ud 1I., who had for some time condneted the wars, and was perhaps the ablest ruler and warrior of the dynasty. For several years after the conquest of Hejaz, he continuel to extend and consolidate his power. Plundering incursions weve made to the very vicinity of Bagdad, Aleppo, anil Damascus; while the Wahabi sheik of Asir (lying sonth of Hejaz) imposed the new faith on a great part of Femen. On the east, Sa'ud took the islands of bahrein, annexed a part of the Persian coast on the cast side of the Gulf, and exacted tribute from the sultan of Oman. This brought him into conflict with Great Britain, which sent (lSOS) a foree, and severely ehastised the Wahabi pirates that infested the commeree of the Persian Gulf.

White these external struggles were going on, several of the southera provinces of Nejed broke ont in revolt, instigated mainly; perhaps, ly the local clices, whose 1 1ower, formerly independent, was now eireumscrihed, or altogether taken away by the central government; but the risiug was speedily suppressed, and a terrible example was made of the provinee of Harik and the town of IFutah, which last was completely demolished, and its inhabitants (the male inhabitants were reckoned at 10,000) butchered almost to a man.

From 1802, the W. had precented the great lilgrim earavans from reaching Mecea, both hecanse they held the observances of the Turk and l'ersian hajjis to be idnlatrous, and also because they were seandalised at the gross immorality and indecency which were openly practised hy these pilgrims. It may easily be conceived what horror spread throunh the Mohammedan world when it was told that the tomb of the l'rophet had been despoiled by hereties, who prevented the faithful from performing the most sacred duty of their religion. Accordingly, the sultan of Constantiaople, the ackoowledged protector of Mohammedanism, as carly as 1804. imposed on Mehemet Ali, the aewly appointed pasha of Egypt, the task of recovering the holy
cities. With the dilatoriness, however, characteristic of the East, nothing was done till 1S11, when an expedition was sent against them, under the eommand of the pasha's sun, 'Tasim-Bey. Medina was taken by the Egyptian forces in 181%, and Meeca in the following year; and a protracted and desultory warfare, with varying success, was kept up with the W. in Hejaz aml around its confines. At last, in 1S1.5, Jhrahim l'asha ($\mathrm{q} . \mathrm{v}_{\text {. }}$) undertook to penctrate into Central Aralia, and ernsh the hornets in their nest. The enterprise was facilitated by the death of Sa'ud in 1SI4. He was suceecded by his son Abdallah, who, though an able warrior, was less arlooit in securing unity of action among the numerous tribes under his sway. It was not, however, till 1SIS, and after repeated conlliets, that lhrahim succeedel in decisively breaking the Wahalii force, and capturing their eapital, Deraijel, which was laid in ruins. Abdallali-ibu-Sa'ud was sent to Constantinople, where he and some of his ministers were beheaded (1815). Hrahim continued some mouths in Arabia, consolidating lis conquests throughout Nejed and the adjoining provinces. Jis policy was one of gentleness and couciliation towards the chiefs and common people, and of stern repression towards the fanatical religions teachers; and except among these, his name is said to be yet popular thronghout Central Arabia. But the folly and tyranny of the vice-goveroors whom he left soon caused a general insurrection; the Egyptians had to retire to Kasim; and Turki, a son of Abdallah, was proclaimed sultan of Nejed, Riad loeing now ehosen as the capital. Henewed expeditions were undertaken by the Egyptian commanders, driving, first, Turki from his capital for a time, and then his son and successor, Feysul; instead of whom, a chieftain favourable to Egyptian rule was appointed. But soon after the death of Mchemet Ali (1S49), the Ligyptians gave uf, the striggle; Feysul was recalleil from cxile ; and under him and his son and vieegerent, Abdallah II., who unites in a high degrce the fanaticism and ferocity of the W. with great skill in military tactics, the Wababi sway, according to the accounts of l'algrave in 1863, and of Colonel l'clly in 1865, had become more powerful aad extensive than ever, and threatens to swallow up the entire peninsula. Feysul is sometimes styled Emir (ruler), and sometimes Imaum (spiritual ehicf).
Aecording to Burekhardt, there is not a single new preecpt in the Wahabi code. The only difference betrieen the sect and the orthodox Turks (improperly so teroned) is, 'that the Wahabis rigidly follow the same laws which the others negleet, or have ceased altogether to ubserve. To deseribe, therefore, the Wrababi religion, would be to recapitwate the Bussulman faith; and to shew in what points their sect differs from the Turks, would be to give a list of all the alnses of which the latter are guilty:' One peeuliarity of the W. is their zeal against gandy dress-silk and gold ornaments-and tubaceo. In their wars of conversion, 'N"o Smoking' has been a kind of battle-ery. The recent traveller, Palgrave, who eame into more intimate contact with the W. than Burekhardt, has a much less favourable opinion loth of their doctrines and theis practice. He describes their empire as 'a compact and wellorganised government, where centralisation is fully understood, and effectually carried out, and whose mainsprings and connecting links are furce and fanaticism. Its atmosphere, to speak metaphorically, is sheer despotism-moral, inteflectual, rehgious, and plyysical. This empire is eapable of irontier extension, and hence is daugerous to its neighbours, some of whom it is even now swallowing "1', and will certainly swallow more if not otherwise prevented. Incapable of true internal progress,

WAHABIS.

hostile to commerce, unfarourable to arts, and even to agriculture, and in the highest degree intolerant and aggressive, it can neither better itself nor benefit others; while the order and calm which it sometimes spreads over the lands of its conquest are described in the oit-cited C bi solitudinem fuciunt pacem appellont of the Finman annalist. We may add, that its weakest point lies in family rivalries and fends of succession, which, joined to the anti-Wahabian reaction existing far and wide throughout Aralia, may one day disintegrate and shatter the Nejlean Empire, yet not destroy it altogether. But so long as Wababiism shall prevail in the centre and uplands of Arabia, small, indeed, are the bopes of civilisa. tion, adrancement, and national prosperity for the Arab race.' Colonel Pelly characterises the W. as ' warlike Mohammedan Quakers.'
The following statistical table of the W. Eimpire
was drawn up ly Palgrave, mostly from the official registers at Riad:

Prownces.	Towns or Sillages.	Population.	$\begin{aligned} & \text { Military } \\ & \text { Muater. } \end{aligned}$
1. Aared,	15	110,000	6,000
2. Yemamah,	32	14,000	4,5is
3. Marili, -	16	45,0 010	3,000
4. Aflaj,	12	14.000	1,200
5. Wadi Dowa-ir,	50	100.010	4.000
6. Seley'yel, .	11	30.00	1.400
7. Wo-bew,	20	\$0,000	4.000
8. Sedeyr, . .	2 a	14,000	5.900
9. Kasim,	60	$30 \mathrm{0}, 000$	11,000
10. Hasa,	50	160,000	7,000
11. latif,	22	100,000	
	316	1.219,000	47,500

The Bedouin populations within the territories number upwards of 70,000 . A good many of the

Arabia, shewing the Territory of the Wahabis.
(From the map in Palgrave's work on Arabia; by permistion of the pablishere, Messrs Macmillan.)
torns are large, and populous tn a degree that the current notions of Central Arahia would hardly lead us to look for. The following are among those of which Palgrave estimates the population: Eyun,

10,000 ; Bereydah, 25.000 ; Oneyzah, 30.000 ; Toww. eym, 12,000-15,000; Horeymelah, 10,000 : Mejmai, $10,000-12.000$; Riad, the capital (which Cotonel Pelly has ascertained to he in lat. $24^{\circ} 3534^{\prime \prime}$, long.
$46^{\circ} 41^{\prime} 48^{\prime \prime}$), has probably about 40,000 ; Kharfah, S000; Hofhuf (Al-Hufhuf), 24,000. Katif (Khutif) is the most direct port of the W. dominions; and the province of IIasa in which it is situated is the richest.

To the north of Nejed and its dependencies, lies a kingdom ruled over by a half-hearted ally of Feysul's, Tclal, the chief of Djebel Shomer, and ennsisting of five provinces-Djebel Shomer, Djowf, Kheybar, Upper Kasim, Teymar-with a settled pop. of 274,000, and 166,000 Bedouins. IIayel, the eapital, has a pop. of 22,000 . This part of Arabia was overrun and converted during the first outbreak of Wahabi propacandism; but the conversion was only seeming, and during the interference of Egypit in Arabian matters, the country regained a kind of independency. The great majority of the people are averse to Wahabiism, and, indeed, care little for Islam in any form. Still, the IV. have numerons partisans and missionaries and spips in all the towns, and their influence is hated and feared by prinec and people. Even Oman, where the new lslam is said to be still more distasteful, has been brought in some degree under the political sway of the Waliabis, and pays a small yearly tribute.

Karsten Nicbuhr (q. v.) is the first European writer who mentions the W.; Burekhardt, Notes on the Bedouins and Wahabis (1830), gives a sketch of the Wahabi doctrimes and of their history down to 1S15; Sir Harford Jones Brydges, for many years resident at Baglad, to his Account of the Transactions of II is DIajesty's Mission to the Count of Persia, appends a 'Brief Mistory of the Wahauby ;' Mengim, Ifistoirc de l'Egypt saus le Gouvernement de Mohammed Ali; Corancez, IIstoire des IFahabis, with Maps. The most recent authoritics on the subject are W. G. Palgrave's Narrative of a Year's Journey through Central and Eastorn Arabia, 1862-1863 (Macmillan \& Co., 1S65); and 'A Visit to the Wahabee Capital,' by Lient.-Col. L. Pelly, H.M. Pelitical Resident, Persian Gulf, in Geog. Soc. Journal, 1865.

WAiroo. See Elar.

WAI'BLINGEN, a town of Würtemberg, on the Rems, in the circle of the Neckar, with a pop. of 3260 . It usually gets the credit of having given to the family of the Hohenstaufen the title which became ltalianised into Ghibellines (sec Guelpirs and Ghibellines) ; but Raumer (q.v.), the historian of the Hohenstaufen dynasty, upholds the claim of another Waiblingen in Würtemberg, on the Kocher, in the cirele of Jaxt.

WAIFS, in English Law, are goods stolen, and waived or abandoned by the felon on being pursucd. The goods belong to the crown, but the owner, on doing diligence to proseente and eonvict the thicf, can have them again.

WAI'NSCOT (Sax. way, a wall, and seat or schot, corresponding to Ger. Scheit, a split or cut pieec of timber-from scheiden, to divide; the word would thns mean wall-timber or boards), the name given to boards lining the interior walls of apartments. Sneh lining, usually in panels, is very common in Elizabethan architecture. The name is frequently applied to the best kinds of oak-boards, from oak having been so much used for panelling.

WAIST, in a Ship, is that portion of the upper deck lying between the fore and main masts. In it tho larger boats are stowed, and along its gunwale the erew pile their hammocks during the day. In a steamer, the waist is much broken into by the engine-room.

WAITS (anciently spelled Waightes) is a name Which has at suceessive periods of our history been given to different classes of musieal watehmen. The word is one, in slightly varied forms, common in the sense of guard or watelman to all the Germanic languages. It is the German Wacht or Wache, Dutch rayt, Danish raght, Swedish walt, Seotch wate, and the English voatch. How the word in the form of waits came to be exclusively applied to musical watehmen in Englaud and Scotland, it is impossible to say. In the time of Edward IV. the waits appear to hare formed a distinct class from both the watch and the minstrels. It was their duty, we lenru from Rymer's Fodera, to pinc the watcls nightly in the king's eourt from Michaelmas to Shrove-Thursday four times, in the summer nights three times, and to make 'the bon gayte' at every chamberdoor and office, for fear of pyekeres and pillers. The waits were not confined to the court; there were musical watchmen at an early period in mauy provincial towns. In Exeter, a regular enmpany existed in 1400 . Beaumont and lletcher (K night of the Bumning Pestle) speak of the 'waits, of Sonthwark as rare fellows as any in England.' The word in the provinces was afterwards sometimes applied to the town mosicians, who may have represented the old waits, but who had no duties to perform as watehmen. The name was also given to the town-band or to private musicians when employed as screnaders. In this sense it is used in the Tatler (No. 222). The writer says that it had become so much the custom for lovers to employ the waits to help them throngh their courtship, in Nottingham, that the ladies of that place could get no sleep, by reason of riotous lovers who infested the streets with violius and bass-viols between 12 o'elock and 4 in the morning. Till recently, the waits were oflicially recognised in London and Westminster. In London, the post of leader of the waits was purehased; in Westminster, the appointment was in the gift of the High Constable and Court of Burgesses. In 1820, a Mr Munro obtained the post of official leader of the waits for Westminster, with the exclusive right to serenade the inhabitants, and make application for Christmashoxes. Ilis prerogatives were invaded by other musicians, and he jrosecuted several persons before the police courts. At present, in the metropolis, the waits are musicians who play during the ni ht or early in the morning for two or three weeks before Christmas. They call aftermards at the houses of the inhabitants to ask for a Christmas-box. In Glasgow, there were waits at an carly period. The magistrates still grant a certificate to a few musieians, generally blind men, who play in the streets during the night and morning for about three weeks previous to New-Iear's Day. like the London waits, they call at the houses of the inhabitants, shew their credentials, and ask a small subscrip)-tion.-Sce Chambers's Book of Days, vol. ii. p. 742.

WAITREN, a town of Hungary, charmincty situated among vincyards, on the left bank of the Danube, 21 miles north of Pesth, on the Vienna and I'esth Railway. It is a bishop's see, contains a noble eathedral with conspicuous dome, built in 1777, and a handsome episcopal palace. Considerable wineculture is earried on, and there are important eattlemarkets. Pop. 12,000.

WAKE (from the Anglo-Saxon wacian, to watch) is the English equivalent of the ecclesiastical Vigil (f. v.). In early times, the day was considered as beginning and ending at sunset; Sundays and holidays, in consequence, began not on the morning, but on the previous evening (the eve of the
holiday), and worshippers then repaired to the churches for worship. The following day was spent in amusement. Each church when consecrated was dedicated to a saint, and on the anniversary of that day was kept the parish wake. In many places, there was a second wake on the birthday of the saint. On these occasions, the floor of the church was strewed with ruskes and flowers, and the altar and pulpit were decked with boughs and leaves. In the churchyard, tents were erected to supply cakes and ale for the use of the crowd on the morrow, which was kept as a boliday. The second part of the festival seems to have made most impression on the popular mind, and the word wake came to be applied to it. Crowds resorted to the wakes from neighbouring parishes, hawkers or merchants were attracted by the crowds, and ultimately they became mere fairs or markets, little under the influence of the church, and disgraced by scenes of indulgence and riot. In 1255, Edward I. passed a statute which forbade fairs and markets to be held in couutry churchyards; but it does not appear to have put an end to the evil. In 144S, Heury VI. ordained that all showing of goods and merchandise, except necessary victuals, should be discontinued on the great festivals of the church. These regulations do not seem to have been strictly enforced. An act of convocation passed in 1536, during the reign of Henry VIII., seems to have effected a more important change. It ordered the day of the dedication of the chnrch to be kept in all parishes on the first Sunday in October, and gradually that festival ceased to be observed. The saint's-day festivals were not, however, affected, aud they are still kept iu many English parishes under the name of "country wikes.' A lyle-wake or liche-wake is a watching of a dead body (A.-S. lic) all night by the friends and neighbours of the deceased. The custom no doubt originated in superstitious fear cither of passing the night alone with a dead body, or of its being interfered with by evil spirits. It must at all times have led to scenes ill suited to the occasion, and it now survives only among the lower classes in Irelaud.-See Brand's Popular Antiquities, by Ellis.

WA'KEFIELD, an important and handsome town in the West liiding of Yorkshire, overlooking the Calder, 9 miles south of Leeds, on the Lancashire and Yorkshire Railway. The town consists of three principal and many minor streets, and among the chief buildings are the parish church, conspicuous from its lofty and clegant spire; the grammarschool, a wealthy institution, attached to which there are six exhibitions to the universities; the library and news-rooms, corn exchange, \&c. Its benevolcut and scientific institutions are numerous aud important. The town bas long been famous for its manufactures of woollen yarn and cloths. The district around W. is agricultural, and the town is noted for its corn and cattle markets. Coal-mines are worked in the vicinity. W. returns one member to the House of Commons. Pop. (1861) 35,739.

WALA'CHIA. See Moldavia.

WA'LCHEREN, an island in the Netherlauds province of Zeeland, at the mouth of the Scheldt, contaius 55,000 acres, aud has a pop. of 45,000 . The chief places are Middelburg, Flushing, and Vere or Campvere ($q . v$. .). One half is meadow, the other rich arable land, well wooded to the north. Where it is not protected by natural downs, strong dykes have been formed, that at West Kappelle being a magnificent work. The drainage-water is carried off by large sea-sluices at Middelburg and Vere. Agriculture
is the principal employment. Ship-building, beerbrewing, rope-spioning, weaving, sawing wood, grinding corn, tanning leather, \&c. are carried on, especially at Middellurg and Flushing. From the latter town, a railway is being constructed (1S66) through West and South Beveland to Bergen-op-Zoorn, joining the otber coutinental lines. The people are chiefly Protestants. In miny parts are large artificial monnds, supposed to have been crected ly the early inhabitants as places of refuge from high tides.

WALCHEREN EXPEDITION, one of the most disastrous military failures in the history of moderu warfare, was undertaken, like that of Sir John Moore to Spaiu, with the view of helping the continental allies of Britain, by creating such a diversion as would prevent the concentration of Napoleon's strength, in overwhelming amount, against any one of his opponents. The expedition was planned in 1507, when Prussia, Russia, and Austria were all in arms against France; but it was not till early in the summer of 1809 (when Napoleon, who hail meantime overwhelmed Prussia, and reduced Russia to neutrality, was gradually forcing Austria to succumb) that the British ministry resolved to carry it out. The plan was to send a fleet and army up the Scheldt, and attack Antwerp (the primcipal naval station and arsenal in the north of France), whose fortifications, though formidable, were much in need of repair, and whose garrison at the time only numbered about 2000 invalids and coast-guards; while there were not more than 10,000 French soldiers in Holland. The expedition, after numberless needless delays, at last sailed ou July 28 ; and, to the number of 37 men-ofwar, 23 frigates, 115 sloops and gunboats, accompanied by transports, carrying about 41,000 soldiers, reached the Dutch coast on the following day. But, instead of obeying the orders of the minister of war, Lord Castlereagh, to advance at once in force against Antwerp, the commander-iu-chief, Lord Chatham (the elder brother of Pitt), frittered away his time in the reduction of Vlissingen (Flushing), which was not eflected till August 16, by which time the garrison of Antwery, had been reinforced by King Louis Bonaparte with the troops at his command (about 6000), and by detachments sent from France, which swelled the garrison, by August 20, to $15,000 \mathrm{men}$. About the end of August, Chatham, who, as a general, was a methodical incapable, 'found himself prepared' to march upon Antwerp, but by this time 30,000 men, under Lernadotte, were gathered to its defence, and the Euglish army was decimated by marsh-fever, so that success was not to be hoped for. However, it was judged right to hold possession of Walcheren, in order to compel the French to keep a strong force on the watch in Belgium, and, accordingly, 15,000 men remained to garrison the islaud, the rest returning to England; but the malaria proved too fatal in its ravages, and as peace had been concluded between Austria and France, this force was also recalled. Thus an excellently devised scheme, throngh the utter stupidity of the agent chosen by royalty to carry it out, failed in every point of cousequence, and ended iu a loss of 7000 men dead, and the permanent disablement of half the remainder. The failure of the Walcheren Expedition was made the occasion of furious onslaughts on the ministry in the House of Commons and in the public jouruals.

WA'LDECK-PY'RMONT, a sorereign principality iu the north-west of Germany, consists of the old county of Waldeck, enclosed between Westphalia, Hessc-Cassel, and Prussia, and the small

WALDECK.PY゙RMONTT-WALDENSES.

county of Pyrmont, about 30 miles north of Waldeck. Area of Waleleck, 407 sq . m. ; of l'yrmont, $25 \mathrm{sq} . \mathrm{m}$. : entire aren, 432 sq . miles. Pop. of Wal deck (1864), $51, \mathrm{~S} 24$; of Pyrmont, 7319 : entire pop. (December 1564) 50,143. The eleration of the country is greater than that of most districts of Northern Germany; and the scenery, continually alternating between mountain and valley, forest and plain, comprises scenes of much matural beanty: The two largest rivers are the Eder and Diemel afluents of the Weser. Among the minerals found are gold, copper, iron, and lead; and mineral springs oceur. Agriculture and cattle-brceding are by far the most common pursuits of the peuple, and with the execption of leather, no articles are mannfactured to any extent. An important article of export, and one from which the prince alerives n considerable portion of his revenue, is the mineral water of the lyrmont spa.
The noble House of W., one of the oldest in Germany, formerly owned, besides their prescut possessions, the counties of Swalenburg and Sternlerg, but lost the former in 1356, and the latter in 1399 . W.-P. is now (1867) a member of the North German Confederation. The chief town is Arolsen, with 2500 inhabitants.
Walde'nses (Valdenses, Valdesi, Valest, Vaudors) are a Christian community who inhabit a mountain tract on the ltalian side of the Cottian Alps, sonth-west from Turin. The distriet is bounded on the N. by the Dora Ripair, on the S. by the Po. It is enelosed on all sides hy spurs of the $\mathrm{Al}_{\mathrm{p}} \mathrm{s}$, which divide it into three valleys-that of Perosa, drained by the Clusone; that of Sun Mlartino, drained by the Germanasea; and that of Lucerna, drained by the Pelice, all tributaries of the Po. These valleys lie between France and Italy, and immediately south of the great western route into Italy by the passes of Mont Cenis and Geneyre. The inhabitants are thus brought into communication with both countries; indeed, they speak a dialcet more closely allied to those of Diuphiné than to those of Piedmont; and they have used French as well as Italian as the langrage of their liturgy. The religious doctrines of the W, are now similar to those of the Reformed churehes. There is a minister in each parish, called a barbe, and the syuod is presided over by an elected moderator: The W. had at one time bishops, but that was when the sect was more widely spread than it now is. Much has been said of the origin of the Waldenses. Their own listorians assert that the community has remained from apostolic times independent of the elurch of liome, and boast that they ean shew a regular apostolic succession of hishops from the carliest period of Christianity till that of the leformation. This statement has been very generally admitted by uncritical writers, bat in the light of recent investigations, would scem to be no longer tenable. Dieckhoff (Die IF aldenser im Mittelalter Gütt. IS5F) and Herzog (Die romanischen Walrlenser, Halle, 1853) have submitted the early history of the W. to a critical examimation; anll the result to which they have come, after an examination of the manuscript recorls, is, that the W. had not the early origin elaimed for them, and were not Protestant before the Reformation, although they entertained some opinions which, sn far, were in anticipation of those held lyy the Reformers. Thes are also of the opinion that the W. do not take their name from val, vallis, a valley, as has been assumed, but from Yeter Witldo of Lyon, a merchant of the 19th e., who was less the founder of a sect than the representative and leader of a wide-spread struggle against the corruptions of the elergy. The chureh wonld have
tolerated Peter Waldo, as it had tolerated St Francis of Assisi, the founder of the Franciscans, and perhaps have allowed him to form a new order, had he not trenched upon ground dangerous to the hierarchy. But he haul the four gospels translated, aud maintained that laymen had a right to real them to the people. He exposed in this way the prevalent ignorance and immorality of the clergy, and lronght down their wrath upon himself. His opinions were condemned by a general council in $11 \% 9$, and he retired to the ralleys of the Cottian Alps. A long series of persecutions followed, but Waldo's followers could not lee forced to abandon their opinions. They continued to be known as the Leonisti, from the place of their origin -the Poor People of Lyon, from their voluntary penury-D'abotati, from the rooden shoes they wore -and Jumilitati, on account of their humility. It Was natural that a bolly cruelly persecuted should stand aloof from the church, and even offer armed resistance ; yet we have no evidence of the manner in which the W. first beeame a separate community. They are now shewn to have been identical with the followers of TValdo, but they must not be confounded with the Albigenses, who were persecnted at the same period. The protest of the W. against the church of Rome only related to practical ques. tions, that of the Albigenses related to matters of doctrine.
The W. at first seem to have spread in the upper valleys of Dauphiné and Piedmont, to which Wildo retired. They were subjected to persecutions in 1332,1400 , and 1478 , and driven into many parts of Europe, where their industry and integrity wero universally remarked. So widely had the seet been seattered, that it was said a traveller from Antwerp to Rome conld sleep every night at the honse of one of the brethren. In Bohemia, many of them had settled, and they, without forsaking their own community, joined the Hussites, Taborites, and Bohemian Brethren-a connection which led to a change in the priuciples of the Waldenses. They adopted the doetrines of the Reformers, and this led to more serious persecutions than any they had previously undergone. Francis I. of lirance, in possession of Piedmont in 1541, ordered them to be extiryated. They were massacred at various places in Dauphine and in the valleys they still occupy, more especially at Merindol and Cabrière. Several persous who refused to abandon their faith, were burned alive, yet the seet continued to exist. In 1560, the Duke of Savoy, who hat recovered possession of Piedmont, urged by Pope Paul IV., forbade the W. to exercise their faith, under the penalty of being sent to the galleys for life. The IV. sent him a petition and apology for their creed, which appeared to him so plausible, that he suggested that a conference should take place between the Waldensian and liomanist livines. He was, of course, toll that the proposition was monstrous, and bullied by the pope and the courts of Spain and France so eflectually, that he despatehed 7000 men into the valleys, who were joined by two French regiments. The W. offered a gallant resistance, but were overwhelmed by superior force. Nany prisoners were burned alive, and women and children were ruthlessly slaughtered. The duke was disgrusted with these atrocities, and although denounced as no better than a heretic at Jome, granted the W. an amnesty on condition that their service should only be performed at ecrtain places in the valleys of Lucerna and San Martino. The W. in the other districts, and especially the Marquisate of Salnzzo, were then persecuted by the Jesuits. Charles I. of England sent two embassies to the Duke of Savoy to intereede in their behalf, but without arail.

Victor Amadeus I., not long after, ordered the W. of Saluzzo, under peualty of confiscation of property and death, to become Catholics; and the edict was so rigorously carried out that, in a few years, none of the sect remained in the district. Charles Emmanuel II., in 165ั้, directed a fresh persecution against the Waldenses. Some time before, the people of Lucerna, inflamed it is said by the discourses of Jean Leger, a popular preacher, set fire to a convent of Capnchins, and committed other excesses. An inquiry was made, and it was found that the W. had purchased property and built churches and schools in districts where no concessions had been granted them. They were ordered within 20 days to sell their property, or profess Catholicism. They resisted, under leaders named Jayer and Janarel, but ther could not oppose the forces sent against them. No quarter was shewn to women and children, and atrocities were committed -more especially by the French and Irish mercenaries in the service of the duke-which, recorded by Jean Leger, were heard of with indignation in all Protestant countries. Subscriptions were made in Eagland for those who had survived the massacre. The swiss cantons, and the states of Holland, sent envoys to the duke. Cromwell addressed Latin letters to him, written by Milton, and also sent Sir Samuel Morland, who collected numerous manuscripts connected with the history of the W., and Lrought them to England with him. A convention was concluded, by which the W. were allowed a gain to exercise their worship. In 168J, Louis XIV. revoked the Edict of Nantes, and ordered the Duke of Saroy to compel the W. to adopt Catholicism. They, were accordingly commanded to emigrate or abjure their tenets within 15 days. They resisted, and were attacked by the troops of the duke on one side, and those of Louis XIY. on the other. They were overpowered, and the survivors could make no conditions. A large number were imprisoned at Turin, where many died ; others were allowed to emigrate. Their whole property was confiscated, and handed over to Roman Catholic colonists. When the Prince of Orange became king of England, the W. who had settled in Switzerland resolved to return to their valleys under the guidance of Henry Aruaud, one of their pastors. In 16s9, they gathered from all quarters to the rendezrous in the great forest of the Yays de Vaud. On the night of the 16 th of August, they embarked on the Lake of Geneva, landed on the opposite shore, and after encountering the most deternined opposition, reached the valley of San Martino, after a perilous march of thirty-one days. During the winter, a French army of 22,000 men entered their territories, and in the following summer attacked their fortitications, but were repalsed with great slaughter. Fortunately, the French and l'iedmontese at this juncture quarrelled, and the latter, to secure the services of the mountaineers, granted them an amnesty. They are said to have fought not less than eighteen battles against the French, and to have lost only thirty men. This was the last persecution against the Fandois; but it was not until the reign of the present king of Italy that they were admitted to the same privileges as liomau Catholics.-See Botta, Storia d'Italia; Bender, Geschichte der Haldenser (Ulm, 1850) ; Morland's Churches of Piedmont; Gelly's Haldensian Researches; Muston, Israel of the Alps (translated, Blackie, 155̄).

WALES. See the articles Exgland, Great Bertans, Prince of Wales, and the names of the varions counties, torms, \&c., of the principality; also Welsh Language and Literatere.

Wales, New South. See New South Wales.

WALHA LLA (the Hall of the Fallen, i. e., heroes. See Waleyries) is, in Northern Mythology, the name of the place of residence for the fallen in battle. This brilliant hall stood in Gladsheim (the bouse of joy) ; in front of it was the beautiful grove Glasur, the trees of which bore golden leaves. Before the hall, which was so high that its summit could scarcely be seen, a wolf was hung, as a symbol of war, over which sat an eagle; the saloon itself, ornamented with shields, and wainscoted with spears, had 540 doors, through each of which 800 of the inmates (Einherjer) could walk abreast. For these Eiuherjer (i. e., the brave), who came after death to Odin, was it destined. lienowned chiefs, especially if they had desolated many countries, and wielded the hood-dripping strord far and wide, were met and welcomed by Eragi and Hermode as messengers from Odin. The hall was decorated to honour them; all the divine heroes stood up at their reception; the Walkyries tasted wine for them, which otherwise only Odin drank. All kings came to Walhalla, even when they did not die on the battle-field; in general, these joys seem to hare been prepared only for those of high rank and the rich. As it Was honourable to come to Walhalla with a great retinue, and to possess many treasures, the comrades of a leader who had fallen in battle killed themselves of their own free will, and in his grave were laid along with his horse and arms the treasures won in fight. Every morning, the inmates marched out at the crowing of the cock, and fought furionsly with one another ; but at mid-day all wounds healed, and the heroes assembled to the feast under Odin's presidency. Odin himself partook of nothiug but wine; he gave the edibles to the wolves Geri and Freki, who sat beside him. The grests ate of the bacon of the boar Sahrimmer, and refreshed themselves with beer and mead, which tlowed in abuadance from the udder of the goat Heidrun; the attendant Walkyries handed them the drinkinghorns, under Freyja's direction. Occasionally, the hero rode by night to his grave, where the belored Walkyrie received him ; he reposed in her embrace till, night disappearing, he exclaimed: 'It is time to make the horse tread on the white stair of the sky; I must travel towards the west to the bridge of leaven before the cock awakes the warriors in Walhalla.' The half of the fallen helonged to Freyja. The boar Sahrimmer, of which the heroes ate, was prepared by the cook Andhrimmer in the kettle Eldhrimmer. sa is explained as signifying water ; and, breath or sonl; eld, tire; hrim, i. e., frost, was the primitive matter of which the world was made; from the branches of the deer Eikthyrnir, standing over Walhalla, drops fell into the well Hvergelmer, from which all rivers tlowed. According to this, the heroes appear to be conceived as stars or spirits of the constellations. which draw their nourishment from the elements; and Walhalla stands for heaven.
The name Walfalla is also given to a magnificent structure erected by Ludwig I. of Eavaria (1530-1541) as a temple of fame for all Germany. He conceived the project in 1SUG, when the Fatherland was at its lowest point of degradation, and while be was yet crown-prince. The design of the huilding was by Klenze, and the chicf sculptors of Germany have contributed to the execution of the plan. It stands on an eminence 250 feet above the Dannbe at Donaustauf, near Regensburg. The temple is of nearly the same dimensions and proportions as the Parthenon, and is built of marble. By means of statues, lusts, reliefs, and tablets, the mythology and history of Germany are illustrated, and her greatest names commemorated. The undertaking is said to have cost $2,330,000$

WALKER-WALKYRIES

florins. The chief blemish in this splendid structure is, that a monument in honour of the German poople, instead of being built in the old German style, has been made a copy of a Grecian temple.

WALKElR, liev. George, an Irish clergyman, distinguished for the part he took in the heroie defence of Londonderry against the army of James II., was born in the connty of Tyrone, of Luglish parents, in the early part of the 17 th century. He was educated at the university of Glasgow, and entering the chureh, became rector of Dononghmore. The early life of W. was not remarkable. When the Irish army of James II. entercd Ulster, and took possession of Kilmore and Coleraine, W. sought refuge in Londonderry, the head-quarters of "the Englishry' since the times of James I., when the confiscated lands of the comaty had been bestowed on the corporation of the city of London, and a Saxon colony, luglish and Scoteh, had been planted there, who had converted a waste into the vichest district of Ireland. The town was fortified sutficiently to protect it from the pike-armed Celtic peasantry, and it had resisted more than ono attack. But it was not so defended as to oppose regular troops. Lundy, the governor, was in secret com. munication with the enemy, and prepared to hand over the town to them; but some of his own officers protested against this course, and the citizens, remarkable at the time for that high spirit which characterises a dominant race, and the pessession of those qualities which made the soldiers of Cromwell famons, determined not to yield. The bishop, Ezekiel Hopkins, in vain inculcated the doctrive of passive obedience at a conference; he was interrupted by a lad, one of a daring band known as the 'thirteen Scotch apprentices,' who called out: 'A good sermon, my lord-a very good sermon; but we have no time to hear it now,' A Scotch fanatic named Hewson urged the Presbyterinns not to ally themselves with the enemies of the Covenarat; but he was laughed at by his countrymen. The thirteen appreatices closed the city-gates, and defied the enemy. It was then that W ., described as an aged clergyman who had taken refuge in the city, encouraged the townspeople to fight to the last. W . saved Lundy from the rage of the populace, and enabled him to quit the city in safety. Najor Baker, who soon after died, and W. became jointgovernors, aided by Captain Adrm Camphell. The siege is the most memorable in British history. It began in April, and lasted till the end of July 1689. The inhabitants were reduced to the greatest extremities by hunger, but they were sustained to the last by the rousing serinons preached to thein by W. in the cathedral, and the example he and Captain Campbell set in heading sallyings-parties. When the siege was raised by the English fleet cutering the harbour, W. went to London. He was warmly received at court, thanked by the Honse of Commons, created D.D. by Oxford, and Bishop of Derry by the king. Portraits of him were in every house in England, and his triumph would have been complete had the Presbyterians not thought that their share in the defence of the city was overlooked, and provoked useless controversy. W. could not be induced to take quiet possession of his bishopric; he would head a troop at the battle of the Boyne, and he was there killed. A lofty pillar has been erected to his memory at Londonderry, and the Walker Clnb anil the Campbell Club have kept alive to our times the recollection of the siege. W. published in 1689 A True Account of the Sicge of Londonderry.

WaLking-LiEAF. See Leaf-insect.

WALKING-STICK, the popular name of many insects of the family Phasmider (q. v.), destitute of wings, and having a loug, slender, cylindrical body like a small stick with the bark on, the delicate legs resembling little twigs. Their habits are very similar to those of the lcaf-insects or walking-leaves,

> Walking-stick (Phasma gigas).
and their peculiar appearance is, in like manner, their protection. Most of them are natives of warm climates, and they are widely distributed. Sonte of them attain a large size. Phasma gigas, an East Indian species, is seven or eight inches long. A species, between three and four inclies long, P. femoratum, is found even in the northern and north. western parts of the United States.

WALKING-STICKS. The habit of nsing a stick, either for suppert or merely as a fashion, is of great antiquity; and in modern times, the supply of such articles constitutes a large branch of trade in European countries, especially in Britain, France, and Germany. The imports into London and other English ports of sticks in the raw state, to be afterwards dressed and mounted, is enormous, exceeding four and a half millions annnally, and reaching ia value of about $£ 25,000$. They chictly consist of the small stems or canes of certain palms, as the Malacca cane; and others called Whangee and Peuang Lawyers; the woody stems of some small species of bamboo are also used, besides straight shoots of orange, cinnamon, myrtle, and other shrubs. The preparation and sale of walking-sticks are extensively carried on in Hamburg, and the fiver sorts are richly and tastefully mounted in Paris. London is, however, the greatest mart for all kinds of walk-ing-sticks. Of British trees and shrubs, the oak, cral, hazel, and sloe are used to some extent for the manufacture of walking-sticks.

WALKY'RIES, beings of the Scandinavian Mytlology (q.v.), the legend of whom is the most terribly beautiful in the whole system. The name is derived from the old Norse val, which signifies a heap of slaughtered men, and kjora, to choose. Val itself contains the notion of chosen, elect, being allied to Ger. wahlen, Scoteh wale, to choose. The Walkyries, also called battle-maidens, shield-maidens, wish-maidens, are charming young women who, adorned with golden ornaments, ride through the
air in brilliant armour, order battles, and distribute the death-lots according to Odin's commands. Fertilising dew drops on the ground from the manes of their horses; light streams from the points of their lauces, and a flickering brightness announces their arrival in the battle. With their eharming glance, they rejoice the glazing eye of the hero, and lead him to Walhalla, where they act as his cupbearers. Two Walkyries Hrist and Mist, are cupbearers to Odin himself.

They differ in regard to their origin; some of them spring from Elves and other superhumau beings ; some also are the danghters of prinees, who in their lifetime are numbered among the Walkyrics, shewing all their qualities, and when they die, their spirits become Walkyries. They ride generally in companies of three, or of three times three, or four times three, and lhave the gift of changing themselves into swans. They often choose noble heroes for lovers. Thus, Swawa was the beloved of Helgi, was twice, as Sigrum and Kara, re-born along with him, and accompanied him in his battles as a singing swan, flying over his lead. Brynhild is also in the Norse heroic poem a Walkyrie. As a punishment for having distributed victory and death in battle contrary to Odin's will, he had taken the office of Walkyrie from her, and doomed her to marriage. Tonched by Odin's magic rod, she lay in a trance till sigurd, borue on his noble horse through the fire that flamed around her castle, undid her armour, and broke the spell. Whoever deprives a Walkyrie of her swan-robe, gets her into his power. Thus, three bold heroes took possession of the three princesses, WalkyriesHadgudr Swanhwit, Heröd. Alvitr, and Alrun-as they sat spinning tine flax by the seaside. They stayed seven years with them, and then went away to attend on battles again as Walkyries. Here they resemble the swan-maidens of the German Sagas. But amiahle as they here appear, the song of the Walkyries in the Njals Saga sounds terrible, as sitting on a hill, they weave the battle-web during the battle of Sigtryg with the silken beard and King Brian of Ireland. The Walkyries were frequently eonfounded with the Norns or Destinies. They were also conceived under the figure of the clonds. Thus, Hrist signifies dark sky, and Mist signifies quaking. Most of the names of the Walkyries, however, relate to war and lattle.

WA'LLABA TREE (Eperia foliuta), a tree of the natural order Leguminosce, sub-order Ccesalpineee, a native of Guiana. The wood is deep red, often variegated with whitish streaks, hard, heary, shining, resinous, and very durable. The leaves are pinnate, without a terminal leaflet; the flowers iu panicles of numerous distinct racemes, on a long pendulous flower-stalk. The ealyx consists of four sepals, connected into a tube at the base; the corolla of one roundish petal.

WALLACE, Willian, the famous Scottish patriot, was the younger son of a linight of good family in the south-west of Scotland. Neither the date nor the place of his hirth has been ascertained; but there is no doubt that the former may be assigned to the middle of the reign of Alcxander III. Nothing certain is known of his education or his early years. His true history, even in the next geueration, was so obseure, that it is now impossible to separate truth from falsehood or exaggeration. He first appears, in the light of authentic history, as the chief of a band of insurgents against Edward, king of England. Taking advantage of his superior power, of his influence over the barons of Norman race, who then were the foremost persons among the nobility of Scotland, and of the posi-
tion of umpire to which he had been chosen by the various claimants to the Scottish crown, Edward had established his supremacy over the northern kingdom, and afterwards deposed John Baliol, and attempted to govern in his own absolute right. See Scotland, History. The injustice of the claim, and the cruelty with which it was enforced, roused the opposition of all classes in Scotland except the higher nobles. The geutry and the middle and lower classes of the Lowlands, had for many years identified themselves with the country in which they dwelt, rather than with the great English race from which most of them drew their descent; and what has been called the War of Independence began, which resulted in the deliverance of Scotland from foreign rule, at the cost of the comparative civilisation and tranquillity which the country had enjoyed under the descendants of Malcolm Canmore. In this struggle, W. was the most successful leader; and in the course of the year 1297, the insurrection became general. Edward himself was at that time in Flanders; but his general in Scotland, the Earl of Surrey, led his army to Stirling. On the 11 th of September, they encountered the Scots under W., and were completely defeated. The whole kingdom submitted to W. ; who, passing the Eorder, ravaged Cumberland and Northumberland without opposition. On his return from this expedition, he was elected by his countrymen Gorernor of Scotland, in name of King John, whose title was still recogmised. In the following year, Edward in person entered Scotland at the head of a numerous army. He was met at Falkirk (q. v.) by TV. on the 22d of July; but the Scots were defeated. It is generally assumed that the jealousy of some of the Scottish nobles, who euvied the position of the governor, had aided in bringing about the disaster, and W., in consequence, resigned his high offiee. With this event, his brilliant public career may be said to have terminated; and the obscurity of the remaining period of his life is almost as great as that which covers its commencement. All that is certainly known is, that he continued to struggle for his country's independence, and never made his submission to Edward, or took those oaths of fealty to him which were so lightly made hy the Scottish nobles, and as recklessly broken. The events of this period related by modern writers under the name of 'Lives of Wallace,' are either transactions in which there is no evidence that he took any part, or the doubtful legends which, as years went on, gathered round the name of the Scottish hero. Some documents of undoubted authenticity make it probable that he was for some time in France. The close of his life forms an exception to this obscurity. When Edward offered pardon to the other Scottish leaders on certain terms, W. was excepted by name. If he chose to surrender, he might do so, but it was to be without conditions, and his life was to be at the king's merey. Efforts were also made to discover his retreat and secure his persou, and these were finally snccessful. In the year 1305, he was seized by some of his own countrymen, and delivered to Edward. He was carried to London, and with a mockery of the forms of justiee, tried for trason. He denied the charge, asserting, with truth, that he had never been the vassal or subject of Edward; but his plea was disregarded. He was condemned and executed on the $23 d$ of August; and his death was accompanied by acts of barbarity uncommon even in that age, and marking the merciless character which distinguished the later years of the English king. Contradictory as are the accounts of the English aud Scottish chroniclers, it is not difficult to discover
the true character of Wallace. He was the truc leader of a national insurrection agaiast a foreign yoke. He shared in the erucl and violent habits of his time, and in this was more excusable than the great king whese ambition and tyramy he opposed. The cruelties inflicterl in his invasion of lincland are undenialle, but he diel what he could to mitigate them; aud he should not he severely blamed if, unler far greater prevocation, he tolerated what the gnorl King David, in his War of the Standard, was nuable to prevent. His memory lives, and will cocr live in the hearts of his countrymen, whe knew that they owe to him and to these who followed in the same course, that their histery has not heen as unhappy as the histery of lrcland. The chief authority for the life of Wallace, as teld by popular Scotch writers, is the poem of Heary the Minstrel. The fullest medern acceunt is that given by Mr Tytler in the lirst volume of his IIIstory of scollend, and in his Life of Wallace in the first volume of his S'cottish IV erthies. Reference may also be made to the secent volume of Mr liurton's recently-published IIistory of Scotland. It is satisfactory to kuew that the result of a careful examination of the latest and best sources by a writer so impartial, and so little apt to be carried away by enthusiasm of any kind, as Mr Burton, correborates the mest favourable estimate of W.'s character.

WALLACE, Williay Vincemt, a British musician and compeser of operas, was born at Waterford, of Scetch parents, June 1, 1814. He early attained proficiency as a performer on the pianeforte and violia-his perfermances on the latter instrument hringing him uader the notice of Paganini. After being for some years leader of the orchestra of a Dublin theatre, he emigrated to Anstralia, where he lived for a considerable time in the bush, and then suddenly appeared in Sychney as a mosician, and gave concerts io Anstralia, New Zealand, Iudia, and America. In 1845, he came to England, and wrote his first opera, Maritana, which was an immediate success both in London and Vienna, and still holds the stare as one of the mest pepular of English operas. Matitda of II ungary followed it in 184%. During a sojourn of some years in Germany, Wallace added further to his mosical culture; and after again visiting America, composed Lurline, which was lrought out in London in 1560, with even greater snccess than Maritana. In 1861, he prodnced The Amber IFitch ; in 1862, Love's Triumph; and in 186:3, The Desert Nlower: V. died at the Château de Bagen, in the south of France, 12th October 1865, leaving another opera, Estrella, nearly completed. Withont possessing genius of the very first order, W. was a highly-cultiFated mnsician; the freshness of the matives, and the brilliancy of the orchestration of his operas, particularly Mavitana and Lurline, have stamper their anthor as one of the chief English composer's of this century.

WALLENSTEIN (or, more correctly, WALDSTEIN), Albert-Wenceslas-Eusebius von, Duke of Friedland, Sagan, and Mecklenburg, the most remarkable of the long series of cminent men who owe their prominence on history's page to the Thirty Years' War, was the third son of a noble though not wealthy Bohemian family, aud was born at the château of Hermancè, in Bohemia, 15th September 1583. His parents, who were Protestants, intrusted the care of his education to the Moravian brotherhood of Koschumberg, who, however, male little of their stubborn and passionate pupil. Un his parents' leath, his uncle, Albert Slavata, a zealous Catholic, took charge of the wayward youth,
48
and having wen him over to his own ereed, sent him to the Jesuit conrictorium at Ohmiitz, and to the universities of Alorf, Bologna, and l'adua, where his education, such as it was, was completed. W.'s course of training had not erarlicated, or even moderated the mominent fanlts in his natural disposition; on the contrary, inis wilfulness and independent spirit hal gathered stahility and strength from ineffective opposition ; aml lis first prominent appearance on the stage of events shewed a man of extreme individuality, gifted with great and versatile ability, but equally remarkable fer ohstinacy, passion, and pride. He afterwards visited Germany, France, and Holland. tonk service in the imperial army, then engaged with the Turks in Hungary, and, returning home at the close of the war (1606), married an aged widow of noble rank, who, at her death (1614), left him the whole of her great wealth. This, aleng with the fourteen domains heqneathed to him by his uncle, made him one of the richest and most influential lords of Bohemia, a position recognised ly the imperial court by the hestowal on him of the title of comnt and the military grade of colonel. A second marriage in 1617 with the daughter of Count Harrach, the emperor's favourite, and W.'s frm adherence to the imperial side during the Bohemian insurrection; his maintenance, at his own expense, of a large body of troops; and his brilliant and well-clirceted gallantry at the hattle of Prague, and in various contests with Mlansfeld and Bethlem Gabor, added a pewerful influence at court to his hitherto only local eminence. The latter, hewever, was now much increased by his purchase, at much less than their value, of sisty confiscated lordships in Behemia; and Ferdiuand I1. felt himself implled to recompense the valuable services of his faithful subject by (1623) raising him to the digaity of a mince of the empire, with the title of Duke of Friecllend. (Friedland is a town situated close to the Prussian frenticr, abeut 60 miles north-11orth-cast of Prague.) Two years after, when the impossibility of maintaining an army suthicient to restrain the Protestant League from uniting with the Danes against him, threw the emperor almost inte despair, W., seizing such a faveurable oppertunity of gratifying his ambition, offered to raise, equip, and maintain $50,000 \mathrm{mon}$ free of charge, provided he were intrusted with the abselute command, and allower to appoint his own ullicers: a proposal greedily accopted by the emperer. W. raised 30,000 in Bohemin; adventurers from all quarters flecked to his staudard; and in a short time his army far exceeded the promised number. With this motley but not ill-disciplincel array, he then marched into North Germany, and acting in concert with Tilly (q. v.), routed Mansfeld at Dessau, hunted him through Silesia and Moravia, and on his junction with the army of Bethlem Gabor in Hungary, compelled, by skilful strategy, the combined forees to remain on the defensive. lieleased by a truce with the Transylvanian prince and the death of Mansfeld, he returnel by Silesia, recovered the fortresses which Thurn had capitured, forced the Elector of Brandenburg to submit to the emperor, and joined Tilly in annililating the military power of Denmark, The vahue of these services to the emperor's cause was joestimable, as Ferdinand well knew, and he accordingly turned a deaf ear to the loud complaints of the North Germans, who had suffered grievously from the rapacity, oppression, and licence which W.'s soldiers were allowed to excrcise withont the slightest opposition ; and rewarded their leader by the gift of the Mecklenburg duchies, the rank of generalissimo on land, and aduiral of the Baltic. W. speedily made himself master of his new
territory; fitted out a fleet of 15 sail, by the aid of which he captured Usedom and Rugen, with various Baltic ports, and laid siege to Stralsund. But the Danes annihilated his navy; and the Swedes succoured Stralsund, the siege of which he abandoned iu despair. But as under cover of the dread inspired by W.'s arms, Ferdinand had resumed his tyrannical and aggressive schemes (see Thirty Years' War) in Germany, the Catholie League, headed by the Duke of Bavaria, beeame bitter adversaries of W., and backed by the intrigues of France (which was represented at Vienna by Father Jaseph, a master of subtle and unscrupulous diplomacy), partly foreed and partly eajoled the emperor to dismiss W., an act for the probable consequences of which cven Ferdinand, with his extraordinary fortitude, tremblel. W., howeter, disappointed his sovereign's fears and his enemies' hopes by abeying with apparent cheerfulness, being somewhat moved thereto by the predictions of his favourite astrologer," who declared his star to be only temporarily echipsed, and that it would soon shine forth again with far greater lustre; and retired to Prague, where he lived in his magnificent palace in sovereign state, surrounded by a court composed of barans, kuights, and the principal officers of his army: But the insult and injury he had received were eating into his soul; the frankness and affability to his subordinates, which had hitherto distinguished him, were changed for a gloomy taciturnity; and much of his time was spent in salitude, braoding over his wrongs, and scheming for revenge on the Duke of Bavaria, whom he justly aceused of being the eause of his disgrace; though all the while he kept a calm but eager watch over the changes of opinion in the caurt of Vienna, where several of the ministers and numerous secret agents were either in his pay, or devated to his interests. His eminent services, his immense popularity, and his great talents, pointed him out as the only lope of the empire after Tilly's death, and Ferdinand saw himself forced almost to kneel to his haughty subject, and beseech him again to gird on his sword; but W. for a long time affected the utmost indifference to re-engaging in active service, and at last consented only on such conditions as made him the independent ruler of the empire in military affairs. With the Swedes an the Danube, the Saxons in Bohemia, and the army of the League almost aunihilated, the emperor had no choice; and W., three months afterwards, was at the head of $40,000 \mathrm{men}$, well armed and diseiplined. But commands and entreaties were in vain employed to induce hin to save Bavaria from the Swedes; and he lay idle at Leitmeritz, gloating orer the prangs of his enemy, till, on Austria being threatened, he adranced to Egra, and by menacing at once Saxony and Nuremberg, brought Gustavus to a standstill. The two armies lay opposite each other for ten weeks, each suffering the extremities of famine, hardship, and sickness, in the hone of wearying out the other. At last, when half their numbers had succumbed, Gustavus, wha had made a fruitless attempt to storn W's camp, retreated to the Danube, whence his skilful opponent soon drew him by marching on Saxany. The two again confronted each other at Lutzen ((q.v.), and though W. was campletely defeated, it was chiefly owing to the superior discipline and morale of his opponents. His army was recruited and reorganised in Bohemia: and, unable to make head against Saxons and
${ }^{*}$ W., during his attendance at the Italian universities, had deeply studied astrology; and although far too much has been made of this fact by his biographers, there is no doubt that the mystic doctrincs of this pseudo-science had a strong hold on his mind, and at

times much influenced his conduct.

472

Swedes combined, he found it advisable to gain time by amusing lis antagonists with illusory negotiations, after repeated vain endeavours to persuade the emperor to come to terms with the Protestant princes. Meantime his old enemies of the League were in full activity at Vienna; and the emperor, chagrined at the humiliations to which he had subjected himself to gain W.'s aid, was not slow ta give eredit, real or feigned, to their misrepresentations; his ill-concealed dislike was developed into hatred by the stubborn pertinacity with which W. insisted on the full observance of the terms of their agreement; aud on W., who was kept well informed of the state of matters at court, attempting to attach his officers permanently to himself by obtaining their signatures (January $1 \stackrel{J}{ }$) to an agreement to that effect, the emperor (January 24, 1631) declared him a rebel, and ordered two of his ald afficers, Piccolomini and Gallas, who had for same time been acting as spies on his actions, to take him dead or alive. W., with some devoted adherents, including a guard of 200 dragoons, taok refuge in Egra, but was there assassinated, February 05,1634 . W. was tall, thin, and wiry, with lively brilliant eyes, tawny-reddish hair, and an whealthy-looking, yellow complexion. 'He was far superior to his sovereign in true policy, liberality of sentiment, and religions taleration; but these qualities only rendered him more obnoxions to the bigoted emperor and his ministers.' As a general, he holds the foremast rank, vigilance and presence of mind, great judgment and unflinching perseverance, being his prominent characteristios; and of him alone can it be said that he checked the progress and foiled the designs of the great hero of Sweden. After his death, it was seen that the treacherous murder of one who had twice saved the empire from destruction called for some justification; and accordingly a paper was published by imperial authority, in which an attempt was made, by misrepresenting every overture he had made to his opronents, and erery scheme he had employed to divide his numerous enemies at court, to prove that he had constautly meditated treason from the time of his first disgrace. This riew and its oppasite have found numerous and enthusiastic supporters; but without going further inta detail, we may ohserve that the overtures made by him to the Swedes and Saxons while in commaud were undoubtedly ruses de guerre, and were invariably fonnd ta be such by his apponents; that when the Saxons invaded Bohemia, and took Prague, where he was residing in disgrace at the time, he took no part on either side, except such measures as an influential citizen would adopt for the safety of the inhabitants from insult and spoliation; and lastly, that when, after he had been declared a rebel, he did make 'treasonable' overtures to Bernhard of Weimar, the latter, though W.'s defection would at that time hare heen of the utmost importance, coulil not convince himself that this was not another artifice; a proof that the former overtures were as abore stated.-See Coxe's House of Austria; Harte's History of the Life of Gustarus Adolphus (1759), in which many particulars of W's career are supplied from the Itinerary of Carve, the chaplain to the assassin, Derereux ; Gualdo- ''riorato's Historia della Jite d'Alberto Fulstain, duca di Fritland; and Yelzel's Geschichte der Böhmen (Prague, 17.4, 1759, and 1782).

WALLER, EDHEND, celebrated as one of the refiners of English poetry, was born at Coleshill, Herts, on March 3, 1605゙-1606. He was of an ancient and opulent family, and having passed through Eton and King's College, Cambridge, was returned to parliament, at the early age of 1 s , as member for

WALLFLOWER-WALLIS.

Amershan, Bucks. In 1631, he married a London heiress, who died shortly afterwards; and the rieh widower made suit to Lally Dorothy Sidney, eldest daughter of the Earl of Lciecster, whom he poetically and perseverimgly commemorated under the name of Sacharissa. Lady Dorothy, however, was inexorable: 'she was not to be subdued,' as Johusou says, 'by tho powers of verse.' Mleeting him in her old age, she asked the poet when he would again write verses upon her, and he ungallantly replied: 'When you are as young, madam, and as handsome as you were then.' ln the Long P'arliament, W. joined the party of Hamplen (who was his cousin), and he was one of the commissioners appointed to negotiate with limg Charles I. at Oxford in 1643. He was soon gained over by the royalists, and entered into a conspiracy against the dominant party in the House of Commons, for which ho was fined $£ 10,000$, and banished the kingdom. His conduet on this oceasion was mean and disgraceful. He not only confessed all he knew, but all that he suspected; attempted to criminate innocent persons, and humbled himself before the House of Commons in langnage inexpressibly abject and humiliating. After eight years' exile, spent in France and Italy, he was suffered to return to England; and he then became a supporter of the Commonwealth, and a panegyrist of Cromwell, to whom he was distantly related. When Charles II. was restored, W. was equally ready with a poetical congratulation ; but his loyal strains were much inferior to those with which he had hailed the Protector; and it is said that when Charles reminded him of this fact, the poet wittily replicd: 'Poets, sir, succeed better in fiction than in truth.' Up to bis S0th year, W. continued a member of the House of Commons, delighting all parties by his wit and vivacity. He died at Beaconsfield, Octoher 21, 1657. W. hegan early to write verses, and published two collections of his poems -one in 1645, and another in 1664 . An edition appeared in 1711, edited by Atterhury; and one in 1799 , with copious 'Obscrvations' by Fenton. Pope has eulogised the sweetness of W.'s verse. Some of his smaller picees are characterised by infinite grace and harmony; he has also oceasional dignity and striking imagery, as in the lines on Cromwell; and he is never involved or obseure; yet his rank among our poets is but a subordinate one, as he is deficient in passion, energy, and creative power.

W A'LuFLOWER (Cliciranthus), a genus of plants of the natural order Cruciferce, having the siliques quadrangular from the prominenee of the nerves on the back of the valves, the seeds in a single row in each cell, the stigma deeply 2 -lobed, the lobes hent back. The flowers are in racemes. The species are annual, biennial, or perennial herbaceous plants, some of them almost shrubs. The Common W. (C. cheiri) is found in rocky places and on old walls iu the south of Europe, and also, but less abundantly, in the middle of Europe and in Britaiu. In its wild state, its flowers are always yellow ; lut in cultivation, they exhibit a considerable diversity of colours, ehietly lorown, purple, and varicgated; and they attain a larger size. It is a universal favourite, on account of the delicious odour of its flowers. The varieties in cultivation are very numerous; but there are among them no marked distinctions. Double and semi-double flowers are not uneommon. The plant is perennial, hut in gardens is generally treated as a biennial, although fine kinds are propagated by cnttings, which soon strike root under a hand-glass. The ordinary mode of eultivation is to sow the seed of an approved kind, and to plant out the seedlings. The Howers of W. have a bitter and
eress-like taste, and were formerly uscd as a medicinc.

WA'LLINGFORD, a small, but ancient and interesting, parlianentary and municinal borough of England, mostly in the county of Berks, and on the right bank of the Thames, 13 miles north-north-west of Reading. Of its three churches, that of St Leouard's-rebuilt iu 1849-has a N゙orman doorway. The earthworks with which the Liomans encompassed the town, are still distinctly traceable. Tho diversion of the London and Oxford hoad from W. much injured the old town, and it is now a place of little consequence. The borongh returns one member to the House of Commons. Pop. (IS61) of municipal horough, 2793.

WALLIS, Rev. Joirn, D.D., a very eminent English mathematician, was the eldest son of the Rev. John Wallis, incumhent of Ashford in Kent, and was horn there, November 23,1616 . He was brought up with a view to the chureh, and was edueated for his professiou, to the strict exclusion of all other branches of knowledge, in accordance with the prevailing practice of the time, which was in his case earricd to such an extent that even ordinary arithmetic was wholly neglected. W. never saw a book of arithmetic till he was 15 years old, and then ouly by accident. At the age of 16, he was entered at Emmanuel College, Cambridge, where at that time mathematics fonnd no place in the course of study, being esteemed merely mechanical. After a brilliant career, he took his degrec, was chosen a Fellow of Qucen's, and took orders in 1640. On the outbreak of the civil war, he sided with the parliament, and was of great use to his party in deciphering intereepted correspondence, an art in which like Vieta (q. v.) and Battista la Porta, he was eminent. In 1644, he was one of the secretaries of the Assembly of Divines at Westminster, holding at that time the living of St Gabricl, Fenchurel Street; and, in the following year, he joined with other eminent men in the establishment of the meetings for mutual instruction, which, 17 years afterwards, developed into the Royal Socicty. It was not till 1647 that he commenced the study of mathematies; and, in 1640, he was chosen Savilian Professor of Gcometry at Oxford. The rapid progress he had made in his mathematical studies was evidenced by the puhlication of his greatest work, the Arithmetica Infinitorum, with a treatise on Comic Sections prefixed, in 1655 . In the same year commenced his well-known controversy with Hobbes-ragarding a quadrature of the cirele, which the latter believed he had effeeted-which was continued at intervals till 1663, and was marked by the usual quaint eaustic satire of the time. W. liad, of course, the right side of the dispute; but unfortunately for posterity, his manly feeling of forbearanee towards a deecased antagonist (Hobles died in 1679) prevented him from admitting his polemical treatises into the collection of his works, which was published 1693-1699. Numerous other mathematical works, as the Mathesis Universalis (1657), Commerciem Epistolicum (165S), Cuno-Cuners (1G63), De Proportionibus (1663), De EEstu Maris (1665), a treatise on Mechanics ($1669,1670,1671$), editions of the works of Horrocks (1673), of the Arenarius and Quadrature of Arehimedes (1676), and of I'tolemy's liarmonics (16S0), a treatise on Algebra (1685), an edition of Aristarchus and of Pappus (1688), \&e., were the products of his originality and industry. We have besides numerous minor theological works, polemical and expository, from his pen, none of which, however, are important enough to call for mention. Of his other works, the treatise on Logic

WALLOONS-WALL-TREES.

(1687) is of the highest excellence, and even at the present day is well worthy of perusal: and his English Grammar (1653), written in Latin for the use of foreigners, has only of recent years, when the true principles of grammar are becoming better understaod, received the attention it merits. About 1655, W. joined the party who werc in favour of a restoration of kingly government, and his talent for deciphering was now put in practice against his former friends, an act for which he has been ahused with virulent injustice. At the Tiestoration, he was confirmed iu his professorship, was appointed keeper of the archives at Oxford, and royal chaplain. In 1692, he was consulted as to the adoption of the Gregorian Calendar, and his strong disapproval decided the government to retain the old style. He died 2 Sth October 1703 .

It is exclusively as a mathematician that W.'s name has ohtained permanently a niche in the temple of fame; though as an expositor of the cardinal doctrines of Christianity he was fully on a par with South and Sherlock; but his eminence in the former character has thrown into shade even his services as a scholar, and few at the present time remember that it was le wha first edited the musical works of Ptolemy, Porphyrius, Aristarchus of Samos, and the later work of Briennius, though the manner in which these labours were effected indicates unquestionably an immense expenditure of labour, and a high degree of scholarship. His Arithmetica Infinitorum is a successful attempt to solve, hy means of the summation of series to infinity, a number of the more simple problems of the calculus, such as the evaluation of all cases of $\int x^{m} d x$; and, in extension, to discover the limit of $\int\left(a^{2}-x^{2}\right)^{n} d x$, of which the quadrature of the circle is a particular case. There are numerous other results, which are, at the present time, considered to helong to the more adranced stages of the calculus; and, in fact, W. is another example of the strange blindness which, in full possession of a principle, neglects to suit it with a generalised form of expression. The hest known of W.'s results is his formula for π, which gives

$$
\frac{\pi}{4}=\frac{2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot 8 \ldots \ldots}{3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7 \ldots \ldots} \text { ad infinitum. }
$$

WALLOO'NS, the name given to a population belonging to the great Tomanic family, more especially to the French stock, and occupying the tract along the frontiers of the German-speaking territory in the South Netherlands, from Dunkirk to Malmedy. They are located more particularly in the Ardennes, in parts of the departments of Pas-de-Calais, Nord, Aisne, and Ardenues in France, but chiefly in South Brabant, as well as in the provinces of Hainault, Namur, Liége in Belgium, and in the greater part of Luxemburg, and finally in some towns and villages in the neighbourhood of Malmedy in Plienish Prussia. The W., whose namhers in Belgium, where they are principally established, are stated at $1 \frac{3}{4}$ millions, are the descendants of the old Gallic Belgr, who held their ground among the Ardennes Mountains when the rest of Gaul was overrun by the German conquerors, but became eventually Romanised, especially in their language, which appears now as a patois or popular dialect of French; of all the French dialects, however, the greatest number of Gallic words have heen prcserved in it. See the unfinished work hy Grandgagnage, Dictionnaire Etymologique de la Langue W'allone (Liége, 1845). The name W., in Dutch, Walen, sufficiently shews their Gallo-Romanic origin and their relationship, partly by race and partly by language, with the Galli, Gaels, Walese, Welsh, Walachians, \&c. The Walloons of the
present day resemble their French more than they do their German neighbours. They are squat and middle-sized, with powerful limbs, dark hair, deep sunk, fiery, dark-brown or blue eyes. They surpass their Flemish ncighbours in adroitness, activity, and skill; and their French in earnestness, perseserance, and diligence. In impulsiveness, they resemble,the latter more than the former, but their anger sooner cools than that of the more deeply feeling Fleming. It is worthy of notice that the Belgian revolution was pre-eminently the work of the Walloon districts, and the most eminent statesmen of modern Belgium are of Walloon descent. It was against the Walloon spirit and tendencies that the Flemish morement (see Flesisil Lasguage aivd Literature) was chiefly directed.

WALI-PJECE, a small cannon for, in anciect times, an arquebuss) mounted on a swivel, on the Wall of a fortress, for the puppose of being fired at short-range on assailants in the ditch or on the covert-way. There are distinct evidences that the great wall of China was originally constructed for the reception of wall-pieces.

WALL-PLATE, a piece of wood laid along the top of the wall of a building to receive the feet of the rafters of the loof (q. 5.).

WALL-TREES, iu Horticulture, are fruit-trees trained ou walls for hetter exposure of the fruit to sunshine, and for the sake of the heat radiated from the wall. Brick walls are generally preferred, and have a great advantage in the regularity with which the nailing can be accomplished, but trees are often also trained on stone walls, and the walls of houses are sometimes used for this purpose. Trees are trained on walls in hothouses as well as in the open air. Flued walls are often used, the fruitheing thus partially forced by artificial heat; and screens of various kinds, as of reeds, canras, and oiled paper, are sometimes employed to protect blossoms in spring. Woollen nets are also much used for this purpose, and a net even with wide meshes affords much protection froms spring frosts. Wall-trees, intended permanently to occupy the wall, are generally trained in the nursery with a dwarf stem only five or six inches in length, so that the branches may cover the whole wall, and no arailable part of it may be lost. It is usual, horrerer, in planting to introduce riders alternately with the permanent wall-trees, which are grafted or loudded on tall stocks, and occups part of the wall till the other

Horizontal Form.
trees hare become large enough to require it all for themselses. Garden-walls are generally 12 or 14 feet in beight. Different modes of training walltrees are practised, of which the principal are known as fan training and horizontal training. In the former, the branches are arranged like the spokes of

WALL-TREES-WALNUT.

a fan; in the latter, a main stem is leal up, from which they are spread ont horizontally on both sides. Diflerent modes are preferred for different

Fan Form.
kinds of trees, and the art of the gatdener is displayed in kecping to his plan of training, and loying in brauches so as completely to fill up, the space, and make every purt of the wall productive. 'I'liere is a Dutch mode of training, which consists in lealing two chief brauches horizontally to right and left, and training shoots from them straight ${ }^{11}$, to the top of the wall. It is seldom cmployed in Britain,

Half-fan.
cxcept for white currants. Fiders are not unfrequently trainel in a star-like form, some lranches being led downwards, in order to fill the wall as quickly as 1 ossible. It is necessary for the gardencr, in training wall-trees, to consiller the halitit of cach kind, particularly whether fruit is chiclly to he expected on young luranches or on the spurss of ollder branches. superilluous branches must in all cascs be carefully removel, and amongst these are to be reckoned all forer-right shoots, or hranches which project straight from the wall. The use of small strands of cloth, along with nails, to fasten brauches to walls, is familiar to every onc. These strands are renewed from year to year, so that they may not cause disease ly interfering with the growth of the brancles.

W'A'LNUT (Juglans), a genus of benutiful trees of the natural order Juglandacea. This order is nearly allied to A mentecece (q. v.), and particularly to the sub-order Cupulifere (q. v.), or Corylacea, bit differs in hariug the owary one-celled, with a solitary crect ovale. The flowers are unisexual, the male fiowers in catkins, the fermale in terminal clusters. The species, of which not quite thirty are linown, are mostly natives of North America; a few
are found in Asia. All are trees with alternate pinnated leaves. The genus Juglans is distinguishecl by monocious flowers, with 18 - 24 stamens; and a drupe with a deciduous tleshy husk, which lursts irregularly, and a deeply wrinkled slell (putamen) of two valves, within which is the seed, curiously lobed and wrinkled, with a membranaceons testa and partial dissepiments. The sirecies of Hickory (q.v.) were formerly included in this genus.-Tho (oxmos W. (J. regict) is a native of Persia and the Himalaya, but has long leen cultivated in all parts of the sonth of Europe. The date of its introduction is unknown, int it was certainly cudtivated by the

Walnut (Juglans regia).
Ronnans in the reign of Tiberins. It is a lofty tree of $60-90$ feet ; with large spreading lrauches. Its folinge resembles that of the ash. The leares have 2-4 pair of leaflets, and a terminal one. They have a fine balsamic odour when bruised; this quality, however, being much more marked in some trees than in others. An infusion of them has been found useful in scrofula; and when hruised and rubbed on the skin, they are eflicacions in curing itch. Placed in wardrobes, they prevent the ravages of moths. The sap is limpid like water, but contains much sugar, so that the tree is sometimes tapped for it, like the sugar-maple, and the sugar is procured ly cevaporation. A pleasant kind of wine is also made from it. An excellent pickle and a kind of ketchup are made of the unripe fruit. The ripe fruit is one of the hest of nuts, and is an inportant article of export from many parts of the south of Europe. Talnuts are also exported in large quantities from Cashuncre and other Himalayan rewions to supply the markets of India. The oiter husk is removed before the nuts are brought to market. In the sonth of Europe, walnuts are a very considerable article of food, and when perfectly freshl, they are wholcsome and nntritions, although in the state in which they are imported into liritain they are not casily digestible. Just before they are ripe they are much used in France with vinegar, salt pepper, and shallots. Amons the varieties of W. in cultivation is one with a yery thin shell, which is much esteemed. Walnuts yield ly expression a bland fixcl oil, which, under the names of Walmut Oil and Nut Oil, is much used by minters, and in the countries in which it is prodnced is a common article of food. The cake left after the expression of the oil is sometimes used as an article of food, and is also usel for feeding cattle and poultry: The timber of the W. is of great value, and is much

WALNUT-WALPOLE.

used by cabinetmakers. Gun-stocks are made of it. It is light, although hard and fine-grained. The wood of young trees is white and little esteemed; that of old trees is brown, reined and shaded with darker brown and hlack. The wood of the roats is heantifully reined. Botli the root and the husks of the W. yield a dye, which is userl for staining lichtcoloured wools brown. The W., when meant to become a timber-tree, is best sown where it is to remain, as the roots are much injurerl by transplanting. The best kinds of W. for frnit are gencrally grafted.-The W. succeeds well in Britain as an omamental tree, even in the north of Scotland, although it seldom quite ripens its fruit except in the warmest parts of England. It was probably brought to England by the Iomans. It takes its name from being foreign (A.-S. wealh or walh). Very similar to the Common W. is the Black W. (J. nigra) of North America, found in most parts of the Tnited States, except the most northern. It is a very large and beautiful tree, the trunk sometimes six or seren feet in diameter. The leaves have more numerons leaflets than those of the Common Walnut. The timber is even more valuable than that of the Common W., and is used for the same purposes. The fruit, however, is very inferior, althongh it is sold in the markets of American cities. The partial dissepiments of the kernel are thick and woody.-The Butter N"t (J. cinerea) is abundant in the northern and north-western states of North America, and in Canada. It is a tree only about 50 feet high, with trunk about a foot in diameter; leaves with $15-17$ leaflets; the fruit elongated, and externally corered with a viscid substance. The nut is hard and rough, with prominent ridges, of good quality, and sometimes brought to market in America. The wood is not apt to split or warp, and is useful for many purposes. Sugar is obtained from the sap, as from that of the maple, but is of inferior quality. The inner bark is a mild cathartic, resembling rhubarb in its properties. The leaves, reduced to powder, are used for blistering, like cantharides. -To the natural order Juglandacea belongs the genus Engelhardtia, found in the Malayan Archipelago and the Himalaya. The rood of E. Roxburghiana, a Himalayan species, is much valued by turners.

WALPOLE, Sif Robert, third son of Robert Walpole, N1.P., by Mary, daughter of Sir Jeffrey Burwell, was borm August 26, 1676, at Houghton, in Norfolk. He received his education at Eton and at King's College, Cambridge. On July 30, 1700, he married Catharine, daughter of Sir John Shorter, Lord Nayor of London. On aSth November following, he succeeded to the family estates on the death of his father. In 1702 , he was elected member of parliament for King's Lynn; and in 1705, he was nominated one of the council to Prince George of Denmark. In this latter capacity, he appears to have ron the esteem of Godolphin, Marlborough, and other Whig leaders. In 1707 , he was appointed Secretary at War; and in 1700, Preasurer of the Nary. Shortly after this, however, his fortunes suffered a temporary eclipse. He was found guilty by the House of Commons of 'a high breach of trust and notorious corruption,' and accordingly, on January 17,1712, he was expelled the House, and sent to the Tower. There can be little donbt that he had all his life a profound faith in bribery, and never scrupled to exercise it; but his punishment on this occasion seems rather to have been the result of party animosity than of virtuous indignation on the part of the House. He had all along been a strong Hanoverian, and on the accession of Gearge I., he was restored to fortune. He was made a privy-councillor, and had various other
high offices conferred upon him. On the impeach ment of Bolingbrake and others by his means, he hecame, in 1715 , Chancellor of the Exchequer, and First Lord of the Treasury. A disunion of the cabinet having arisen in 1717, he resigned office, bringing in a Sinking-fund Bill on the day of his resigaation. Io opposition, he was the determined enemy of the South Sea Scheme. He was recalled to oftice on the retirement of the Earl of Sunderland in 172l; and from this time to his final retirement in 1742 , the life of W. may be said to be the history of Encland. In 1723, his son was created Baron Walpole. In 1737 , his power was a good deal shaken by the disputes which had ariseo between the king and the Irince of Wales; the Iatter siding with the Opposition, which began to grow very formidable in the questions which arose about this time between England and Spain. IV. was opposed to war ; the grand principle of his action being, according to Archueacon Coxe, "the love of peace;' accorliog to Macaulay, however, his aim was not the peace of his comtry, but of his own administration. In 1740 , a motion was made in the House to petition the king to remove Sir Pobert W. 'from his Dajesty's presence and counsels for ever.' This motion was negatived by a large majority; but the power of the great minister was evidently shaken. He resigned on 2d February 1742, when he was created Earl of Orford, with a pension of $£ 4000$ a year. Charges of bribery were now brought arainst him, and a committee of investigation was ultimately appointed by the House of Commons. It consisted of 21 memhers, of whom only two were of his own party. The Fieport was against him, but it was unsupported by evidence, and proceedings were ultimately dropped. The rest of WV's life was spent in tranquillity and retirement. He died in 1745 , aged 6S. In prirate life, he was amiable and good-tempered. Love of power appears to have been his ruling motire of action. He had strong common sense, with clearness of political vision, and next to his own interest he had at heart the interest of his country. Doubtless, he bribed largely, but as \$lacaulay says: " We might as well accuse the poor Lawland farmers who paid black-mail to Rob Roy, of corrupting the virtue of the Highlanders, as accuse Sir Robert Walpole of corrupting the virtue of parliameat.'-Sce Coxe, Memoir of Life and Administration of Sir Robert Wralpole (Lond. 1795); and Lord Dlacanlay's Essay on Wralpole's Letters to Sir Horace Mann.

WALPOLE, Horace, third son of Sir Robert Walpole, first Earl of Orford, was born in 1717. He was educated at Eton and Cambridge. After finishing his education, he travelled abroad for some years, principally in Italy, where be seems to have acquired those tastes for which he afterwards became so well known. In 1741 , he returned to England, and took his seat in parliament. But he had no taste for politics, and nerer took any active part in puhlic life. In 177^{7}, he purchased a picce of ground near Twickenharn. Here he built his famous mansion-Stramberry Hill. Its erection and decaration may almost be said to have formed the principal occupation of his long life. In 1755 , he published his Catalogue of Royal and Foble Authors. This was followel by The Castle of Otranto, The Mysterious Mother, and the II istoric Doubts on the Life and Reign of Richard III. The works, how ever, to which he owes the preservation of his amme are his Letters. These will alwass be interesting as pictures and records of the society and fashionable gossip of his day. Their interest is, howerer, considerably marred by their palpable want of truthfulness. On the death of his nephew in 1791, he became fourth Earl of Orford. Ite died in his S0th

WALPURGA-WAISTNGHAM.

year on March 2, 1797. 'The faults of Horace Walpole's head and heart,' says Macaulay, 'are indeed sufficiently glaring. His writings, it is true, rank as high among the delicacies of inteliectnal epicures as the Strasburg pie among the rlishes described in the Almanach des fourmands. But as the pâte de foie gras owes its excellence to the diseases of the wretched animal which furnishes it, and would be good for nothing if it were not made of livers preternaturally swoilen, so mone but an unhealthy and disorganised mind could have prodnced such literary luxuries as the works of Walpole. The conformation of his mind was such that whatever was little seemed to him great, and whatever was great seemed to him little. Serious business was a trifle to him, and trifles were his serious business.' - See Letters, edited by Mr I'eter Cunningham (S vols., 1857) ; also Macaulay's Essay on Lettcrs of Horace Walpole.
WALPU'RGA, or WALPURGIS, ST (otherwise Wallurga), followed her brothers St Wilibald and St Wunnibald (sons of a king of the West Saxons), in the time of St Boniface, from her native country, England, to Germany, to belp them in extending Christianity: Wilibald established the bishopric of Eichstadt about i4l; and Wumibald, the neighbouring convent of Heidenheim about 745 , the direction of which last W . undertook, after his death (about 7G3), as the first albess, and continued till the end of her own life (77S). Her bones, from which, according to the oldest biography, a miraculous healing oil flowed, were transferred to Eichstadt, where a convent was erected in her honour. That old biography was written towards the end of the 9 th c. by a monk, Wolfhart, in the monastery of Hasenried, and contained, like all the later legends, which are based solely upon it, only a multitude of marvellous stories of the usual stamp. A somewhat more special significance lies in the trait that W. was not molested by biting dogs, and was in consequence invoked for protection against them and other ferocions animals. The veneration of W. became widespread. Throughont all Germany, and even in France, the Netherlands, and England, churches and chapels were dedicated to her, relies of her were shewn, and festivals celebrated in her honour. The feast of Walpurga falls properly on the 2 ath of February; but as in some German calendars it is assigned to the lst of May, the name of W. has become associated, in a quite accidental way, with some of the most noted popular superstitions. The lst of May had been one of the most sacred days of all paganism; it was the time of a great sacrificial festival, and of the old May assembly of the people. For centuries on the lst of May, informal conrts of justice continued to be leld, the joyful May procession took place, and the kindling of the sacred May-fire. See Beltens. When afterwards the old heathen gorls lial heen completely degraded into devils by the Cbristian missionaries, aml when the belief in witelieraft had come in vogue, the Walpurgis-night obtained naturally a notorions significance, inasmuch as, during the night leetween the 30th of April and the 1st of May, the witches were beld to ride on lroom-sticks and be-goats to the old places of judgment and sacritice, in order to enjoy theuselves there with their master the devil. Such witch-hills were tolerably numerous in Germany and the neighbonring comntries. The best known, however, was the highest point of the Harz, the Brocken, Brocks or Blocksberg, which has obtained a wide celebrity as the sceue of the witches' Sabbath in Goethe's Faust.

WA'LRUS. Sce Morse.
54

WA'LSALT, a monnicipal and parliamentary barough, Staffordshire, stands amid pleasing scencry on a sinall stream, an affluent of the Tame, eight miles north-north-west of Birminghan. Its public buildings are accounted mere than usually handsome, and embrace a number of churehes, a free grammar and other schools, and a number of charitable institutions. The iron manufacture, for which the situation of the town on the edge of the South Staffordshire mineral field affords facilities, is the staple branch of industry. Tanning, currying, the mamfacture of harness and harness furniture, and of every description of leather goods, are extensively earried on. Coal and line works are in operation in the vicinity, and there is an extensive trade in malt. W. returns one menuber to the Honse of Commons. Рop. (1861) $37,760$.

WALSiNGHAM, Sir Frincis, Euclish statesman, of an ancient lientish family, thirdaud youngest son of William Walsingham of Scadbury, was loorn at Chiselhurst, Kent, in 153G. Ite studied at King's College, Cambridge, and afterwards travelled on the continent, where he remained until the accession of Queen Llizabeth. Burleigh, with his usual discernment in selecting men of talent, discovered his abilitics, brought him into office, and sent him on an embassy to France in Angust 1570. He remained in Paris until April 1573, and discharged diplomatic duties with such consummate skill that he was, on the recommendation of his great patron, appointed one of the principal secretaries of state to Elizabeth. He was alse sworn of the prisy council, and knighted. In 1578, he was sent on an important enbassy to the Netherlands; in 15S1, to France ; and in 1583 , to Scotland. He was, with some reason, regarded by the adherents of Mary, Queen of Scots, as the most insidious of her enemies in the English council. He contrired to intercept most of her letters, and after having deciphered them, sent them to their destination, in order to obtain fresh intelligence from their answers. Some of these deciphered letters are preserved in the British Museum. W. soon held Mary secure in the toils. Some time previous to September 1583, he had bribed to his service Cherelles, the secretary to the Freuch ambassador Castelnau, in whom Mary placed implicit confidence. W. also won over Gray, the envoy of the Duke of Guise and ether friends of Mary to James VI. (James I. of England), who employed him to manage his eorrespondence with his mother and his friends in France. The most secret letters of $\lambda 1$ ary and of James thus came into the hands of Walsincham. Up to Babiugton's conspiracy, or, as some have called it, W.'s conspiracy, there was no evidence for charging Mary with being accessory to any of the plots formed against the life of Elizabeth. The real fountain-head of this conspiracy, and the chief confederates, were spies in the pay of W., and all the correspondence of Mary and her friends passed into the lands of Elizabeth's dexterous minister. After the discovery and execution of Balington, \&e., W. Went to Fotheringay as one of the commission to try Qucen Mary. She charged him with having forged the correspondence produced against her, when W. rose in his place and solemnly called God to witness that he had not done anything uuworthy of an honest man, and that he was wholly free from malice. Elizabeth signed her death-warrant with a jest on W.'s hatred of the Quecu of Scots. She had ordered Davison to bring ber the warrant, and when she hat signed it she said: 'Go; tell all this to Walsingham, who is now sick; thongh I fear he will die for sorrow when he hears it.' W. was distinguished even among the ministers of Elizabeth for acuteness of penctration, extensive knowledge of public affairs, and profound acquaint-
ance with human nature. His administration of foreign affairs was founded on the system of bribery, espionage, and deception. He is said to have had in his pay 53 agents and 18 spies, in various countries; and no minister was better informed of the intrigues of foreign courts. Notwithstanding this diplomatic duplicity, which was then universal among public men, W.'s personal integrity and disinterested patriotism are undouhted. He was of strict morals, faroured the Puritan party, and in his later days gave himself up to religious meditation. He retired from pubhe affairs some time before his death, and resided at his house in Barn Elms, where he died, April 6, 1590. Elizabeth was ready enough to acknowledge his diligence, genius, and important services, yet she kept him poor. There remain in the British Museum (Harleian MSS.) various letters from W. complaining of his being wholly unable, on his scanty appointments, to support his establishment, though very inadequate to his dignity of ambassador in France. Camden says he died so far in debt that he was buried privately by night in St Paul's Church, without any funeral solemnity. The queen was chary even in conferring honours upon him, for he received nothing bnt his knighthood, and held no offices when he resigned the clarge of forcign affairs. He was married, and his daughter Frances hecame successively the wife of Sir Philip Sidney, of the brilliant and unfortunate Earl of Essex, aud of the brave soldier, Pichard de Burgh, 4th Earl of Clanricarde.
WA'LTHAM, a village of Massachusetts, U. S., on Charles River and the Fitchburg Railway, ten miles north-by-west from Boston, has a broad street of handsome residences, and manufactories of bleached cotton goods, hollow iron-ware, machinery, chemicals, hoots and shoes, and machine-made watches, of which 10,000 are made a year. Pop. (1860) 6397.

WALTHAN ABBEY, a market-town in the county of Essex, on the banks of the Lea, 13 miles north of the east part of London, on the Great Eastern Railway. It contains a spacious Norman chureh, originally belonging to an abbey. The river Lea here dirides into several branches, which are made to turn a number of gunpowder and flour mills belonging to government. Enfield Lock, at which is situated the celebrated government factory for rifles, \&c. (see Smali-arms Factories, Roval), is about a mile distant; and many of the hands there cmployed live in and around Waltham Abbey. Pop. (1S66) 7000.

WALTHER VON DER VOGELWEIDE, the greatest and most famous Mlinnesinger ($\mathrm{q} . \mathrm{v}$.) of the middle ages, was horn 1165-1170, in Franconia or in Austria. Although his family was noble, he had no possessions, and became a minstrel as much, perhaps, from necessity as from impulse. His master and early model was the elder lieinmar. It is thought that his first public performances in 'singing and saying' date from ahout 1187 ; soon after which, he found a warm patron in Friedrich the Catholic, Duke of Austria. But this prince having died in 1198. W. began the life of a wandering minstrel, in the conrse of which lie visited the courts of most of the German sovereigns. A few details of his career are known. He twice (1199 and 1205) spent some time at the court of the Emperor Philipp; and then lived six years at Eisenach with a generous patron, Hermann, Landgraf of Thuringia. During $1214-1215$, he repeatedly visited the Emperor Otho, by whom, as well as by Philipp, he seems to have been treated with unkingly parsimony. From 1217 to 1219 , be lived with Drke

Bernhard in Carinthia, then returned to Austrim and in 1220 received from Friedrich II. a small estate at Würzburg. He died about the beginnin; of 1228 . His grave has long been pointed out in the Laurence Garden of the cathedral of Wïrzburg; but a new monument was erected to him in 184.3. W. far excelled his master Reinmar, whom be survived about 20 years, both in matter and style; while in richness and versatility of mind all the other Minnesingers must stand far behind him; for, to his wide sympathies and matured art, all themes were alike: tenderness and depth, no less than cheerfulness and gaiety, deep earnestness, as well as playful raillery. He did not confine himself, like heinmar, to minnelays, but wrote also hymns, eulogies of his patrons, and didactic pieces. He sang of the duties and dignities of the emperor; of the obligations of princes and vassals; of the rights and wrongs of the question between the pope and the emperor; of the glory of the true church; and often his song conveyed earnest and cutting ceusure. But it was only on conviction that he gave praise or blame, never inflnenced by favour os prejudice; and his censures of the church were those of a candid but pious believer. From a decided patriotic feeling, he stood firmly by the empire and the emperor in opposing the pretensions and usurpations of the pope. His writings on this subject had a widespread and powerful effeet; they alienated, according to the testimony of a contemporary, Thomasin, thousands from the pope, and determined the politics, so to speak, of the German poets for the whole century. W. was soon recoguised by his contemporaries as the master of lyric poetry; and the traditions of the later Ninnesinger schools place him among the twelve who, in the Emperor Otho the Great's time, originated and established the noble art of minstrelsy. Lachnann brought out a masterly critical edition of W.'s writings (Berl. 1827, 3d. ed. 1853); and Simrock an excellent translation (with explanations by Simrock and Wackernagel, 2 vols. Berl. 1833 ; 2 d ed. Leip. 1853); Uhland wrote a beautiful account of his life and writings (W. von der Vogelweide, ein altdeutscher Dichter, Stuttg. and Tüb. 1822) ; and Hornig, a complete Glossarium to his poems (Quedlinb. 1841).-See Reusz, 1F. von der Vogelweide (Würzb. 1813); Daffis, Zur Lebensgeschichte W.'s von der I'ogelweide (Berl. 1S54).
WALTON, IsAak, author of the Complete Angler, was the son of one Jervis Walton, a yeoman, and rras born at Stafford on 9 th of August 1593 . Of his earlier life, not much is certainly known. In the year 1624 , we find him settled in Fleet Street, London, and carrying on business there as a hosier. In the end of 1620, he married Fachel Floud, as descendant of Archbishop Cranmer. From George Cranmer, her uncle, who had been a pupil and friend of Hooker, it is thought likely that W. derived much of the material for his Life of that eminent man. In Angust 1640, she died in giving birth to a danghter, having before had two sons, neither of whom survived her. In 1643 , W. retired from business with such a modest competence as sufficed for the simple way of lite be affected; and in 1647 he married a second time. The lady was Anne Kenn, half-sister of the well-known bishop of that name. She bore to him a daughter and two sous, only one of whom lived, and died in 166°, to the great grief of her husband, who survived her many years. He died on the 15th December 16S3, at the great age of ninety, in the house of Dr Hawkins, his son-in-law, prebendary of Winchester Cathedral, and was buried in the vault of that sanctuary.

With the celebrated Dr John Donne, who died in 1631, W., who attended his ministry, had been on

WALTZ-WA1ENTAKE.

terms of affectionate iutimacy ; and on the pullication of his sermons in 1640, he was induced to preface them with a Life of the anthor. 'This, his tirst publication, was followed ly Lives of Hooker, Sir Henry Wotton, and George Herbert, in succession : the whole four leing reissued in a collected edition in 1670 . In 1678 , the life of his friend, Bishop Samlerson, was adiled. The Complete Anyler, or Contemplative Man's Recreation, was published in 1655 , and it instantly attained the popularity which to this hour it contimues to enjoy. In 1655, 1664 , 1668, and 1676, suecessive editions were called for. To the edition of 1676 , a little treatise on Fly-fishing was added by Walton's friend, Charles Cotton, in a fishing-house built ly whom, on the lanks of the river Dove, many of the later days of his happy and Dlameless life lapsed peacefully in the pursuit of his favonrite recreation. The Complete Anyler, as a treatise on the art of angling, may be regarded as in good part obsolete, but it continues and will continue to be read for its charming simplicity of manner, its pastoral freshness and poetry, and the pure, peaceful, and pions spinit which is breathed from its quaint old pages. The Lives, though somewhat less widely known, are in their lind not less extuisite aud mique. Wordsworth has dedicated to them a beantiful sonnet, in which he speaks of the five saintly mames of the subjects of them as

Satellites burning in a lucid ring Around moek Walton's heavenly memory.
WALTZ (Ger. Häzer, literally, roller), a national German dance, said to have originally come from Bohemia. It first becane a fashionable dance in the other countries in the carly part of the $19 t h$ century. It is danced to music of $\frac{3}{3}$ tume by any number of couples, who, with the gentleman's right arm romul his partner's waist, wheel rapilly romad on an axis of their own, advancing it the same time round the room. Of late years, a inodification of the dince, called the Valse it Deux Temps, has been very generally adopted, whieh is perhaps harelly equal in gracefulness to the older waltz, as the step is less correspondent to the rhythm of the music.

WA'MPUM, a name given to shells and shellbeals, used as money, and worn for ornaments in strings and belts by the North American lndians.

WANDRl:lNG JELV. Sce Jew, the WhaderNNG.

WANDEROO', a mame which has heen given to several species of monkey. The species commonly described under the name is Macacus silenus or Silemus veter, a native of the coast of Malabar, a monkey of rather large size, deep black thonghout, execpt a mff of long gray or white hair, from the midst of which the face looks forth, and which descends over the chest, giving the animal a very peculiar aspect. This monkey exhibits considerable intelligence and docility, and performs its tricks with an absurd air of gravity.-The name W., however, more properly belongs to monkeys of the genus Presbytes, natives of Ceylon, to which it is given by the Singhalese, and appears to have been transferred hy mistake to the species just described, which is not found in Ceylon. The wanderoos of Ceylon are all small monkeys. The hest known species is Preshytes cephalopterus, found in the low parts of the island. It feeds chiefly on the berries and buds of trees, and is seldom seen on the ground. Twenty or thirty are generally found together in a troop. When alarmed, they display marvellous agility in leaping, or rather swinging from branch to branel, using their powerful arms alternately, often flingiug themselves ubliquely so as to eatch the lower bough of an onnosite tree, and taking advantage of its
rebound to earry them up again till they ean reach a higher lranch; the females, all the while, being often encumbered by their young, which eling to them. This monkey is far from being so mischievous ns monkeys in general. 'In eaptivity, it is remarkable for the gravity of its demeanour, and for an

Wanderoo Monkey (Macacus silcnus).

air of melancholy in its expression and movements, which is eompletely in elaracter with its snowy beard and venerable aspect.'-Tennent's Ceylon. Its disposition is extremely gentle and affectionate, it is intelligent and docile, aml very eleanly in its habits.-Several other sprecies of W. or Presbytcs are found in Ceylon, some of them in the more elevated parts of the island.

WA'NTAGE, a market-town in Berkshire, in the Vale of the White Horse, 26 miles west of lieading, and 60 west of Londoo. It mamufactures agricultural implements, and has an extensive trade in corn. Pop. (1566) 3064.

WATPENSILAW (Sax: wepen, woapon, and scecwan, to shew), a periodical gathering of the people, iustituted by varions Scots statutes, for the purpose of exhibiting their arms, these statutes directing each individual to be armed on a seale proportioned to his property. There are uumerons Scots acts of the 15 th and 16 th centaries rerulating the subject of wapenshaws. In the time of war or rebellion, 1 roclamations were issucd charging all sherifls and magistrates of burghs to direct the attendants of the respective wapenshanwings to join the ling's host. Duriug the reign of the later Stuarts, attendance on the wapensluaws was enforced with considerable strictness; and in addition to military exercises, sports and pastimes were carried on ly authority at these gatherings. The Covenanters, in consecpuence of these sports heing of a kind disapproved of by them, did what they could to discourage attendance on the wapenshaws.

WA'PENTAKE (Sax. wapen, arms, and tac, touch), a name given in Yorkshire to the territorial divisions of the county, similar to what, in most of the other connties of England are ealled hundreds, and in the more northern countics, urarls. The terin has come down from Anglo-Snxon times, where it, in the first instance, signified the assemblies of each district held for the administration of justice and like purposes, at whieh eaeh vassal attended armed, and 'tonched' the spear of his overlord, in token of homage. From the asscmbly, the word

WAPITI-WAR.

was transferred to signify the district within which it was convened.

WA'PITI (Cerrus Canadensis), a species of deer, nearly allied to the stag, bnt considerably exceeding it in size, being $4 \frac{1}{2}$ feet in height at the shoulder. It is a native of North America, found as far south as Carolina, and as far north as 56° or $57^{\circ} \mathrm{N}$. lat. It is yellowish brown on the upper parts; the sides gray; a pale yellowish patch on each buttock, boumded by a black line on the thigh; the neck, a mixture of red and black, with long, coarse, black

Wapiti (Cervus Canadensis).
hair falling down from it in front like a dewlap; a black mark at each angle of the mouth. The bair is crisp and hard, but there is a soft down beneath it. The antlers are large, much like those of the stag, but the first branch bends down almost over the face. The W. is called Ell: and Gray Moose in some parts of America, althongh very different from the true ell, or moose deer. It is found chiefly in low grounds, or in parts of the forest adjacent to savannahs and marshes. Its flesh is coarse and dry. The hide makes excellent leather.

WAR hetween states or mations, or between parties in the same state (civil war), is avalogons to club-law (Ger. faustrecht), or the law of the strongest, among the individuals of a community, which is the normal state of things where no legal or fixed rights are established, or where there is no authority to enforce them. The prevalence of war among nations is thus an indication of the imperfection, or the total want, of international law. If the sentiment of brotherhood were universally diffused, and a system of international morality established and generally accepted together with an organisation for putting it in force, we can conceive the necessity for war to cease. And although the full realisation of this state of things may never be attained, it is nevertheless the ideal goal to which all real progress tends. But it by no means follows that in the present condition of the world, while the sentiment of international justice is yet in emhryo, peace at any price is to be preferred to war. When a community is in a state of anarchy, the individual man must take the law into his own hands, and defend his life and his rights with violeace if need be; aud nations in similar circumstances must do the same. The Balance of Power (q. v.), the shape in which the sentimeut of political morality in Europe seemed at
oue time trying to crystallise itself, haś gone again apparently into chaos.

Wars are various in their occasions and objects, sometimes breaking out iu consequence of disputes about territorial possessions or material interests; at other times, having reference to the establishment of some important point of civil or religious liberty. In ail cases, the aim of each contending party is to weaken and overthrow the opposing party. At one time, the art of war was supposed to consist very much in wearing out the enemy by a slow process of exhanstion, and thus wars were much protracted; but more receutly the greatest geverals have adopted the method of rather endeavouring to strike sudden and terrible blows, by which the war is sooner brought to a termination; and this methon, although it may often have been adopted withont regard to considerations of hmmanity, is, in all probability, less productive of suffering to mankind than the other.

Amongst rude nations, wars are conducted by tumultuary hosts, suddenly congregated, and in geveral, either after defeat or victory, soon dispersed. But the wars of the more civilised and powerful uations have long been conducted by armies carefully trained and disciplined; and in the case of maritime powers, by means of fleets at sea as well as of armies on land. Preparation for war amongst such nations requires not only the forming and traming of the army, but vast provision in many varions ways of the means and matériel of war. Much science and skill are also applied to the conduct of military operations, and the principles upon which they ought to be conducted have been carefully investigated, and theories tested ly an examination of the history of the most importaut campaigns. See Strategy, Tactics.
lu the progress of society, certain 1 sages of war have come to be generally recognised. These, of course, have varied at different times, and in different parts of the work, according to the state of civilisation and the prevaleot feelings of the time: they are also subject to modification from causes less general. But the changes which have taken place in them during the lapse of ages have been in general favourable to the interests of humanity. Prisoners of war are no longer put to death, nor are they reduced to slavery, as was once very frequently the case, but their treatment has become generally more and more mild and kind. It is a well-understood rule, bowever, that a prisoner of war obtaining his tiberty by exchange or otherwise, with the condition of not serving again during a fixed period against the same porver, forfeits his life if he is found so serving and is again taken prisouer. Amongst all civilised vations, quarter is granted in battle whenever it is songht; and there are certain usages universally prevalent with regard to the capitulation of fortificd places, and of bodies of troops hopelessly hemmed in by snperior forces, \&c.

Har-cries for mutual recognition and encouragement in battle have always been common, each rude nation or tribe having its own. The ancient warery of the English was Suint George! that of the Spaniards, Sran Jago! and that of the French, Mountjoic Saint Denis! In the fends of the middle ages, each party, or the retainers of each noble family, had a distinctive war-cry. Sometimes the war-cry was the name of the family. Thus, in Scotland, the retainers of the noble Houses of Douglas and of Home rushed into battle with the cry of A Douglas ! a Douglas! or A Home! a Home! The French armies under Napoleon were accustomed to charge with shonts of Vive l Empereur !

The invention of guppowder has effected great changes in the whole art of war; but the introduction of firearms has rendered battles less sangminary

WARASDIN-WARBURTON.

and ferocious than they previously were. Whilst firearms were yet unknown, warlike engines of various linds were employed; but close combat was more general, and often more protracted, and the passions of the combatants had thus in ordinary battle more of that exasperation which fearfully characterises the storming of a town.
WH'RASDIN, a town of Austria, in the erownland of Croatia, two miles from the right bank of the Drave, and about 40 miles north-north-cast of Asram. It is to some extent fortified, is surrounded by stragcling suburbs, and contains nine churches, a few convents, and a gymnasium. Silk-spinning is earried on; and stoneware, wine, and tobacco are manufactured. Pop. 9000.

WA'RBLER, a popular name often applied to all the birds of the family Sulviade (q.v.), many of which, however, commonly receive other popular names, as the Blackeap, Nightingale, Hedge-sparrow, Redbreast, Redstart, Stonechat, Wheatear, Whitethroat, \&c. (q.v.), while many reccive the name Warbler with some adjunct. Several British species, commonly thus designated, belong to the genus Salicaria, others to the genus Sylvia. The species of the former genus have the tail rounded; in the latter, it is almost square or a little forked. The Salicario are also inhabitants of moist sitnations, whence they are known as Sedge Warblers and Reed IFarblers; the Sylvice are inhabitants of woods. Of the former genus is the Grasshopper W. (Salicaria locustella), not unfrequent in many parts of England, and found also in the south of Scotland and in Ireland. It is found in most parts of the centre and south of Europe, at least during summer, being partially a bird of passage. It is of a greenish brown colour, the centres of the feathers dark brown, producing a spotted appearance; the lower parts pale brown. It is a shy bird, hiding itself in hedges and bushes, but very active often darting out like a mouse from

1, Sedge Warbler (Salicaria phranmitis); 2, Willow Warbler (Sylvia trochilus).
the bottom of the hedge, and receives its name from its ehirping, grasshopper-like note-The Sedge W. (Salicaria phragmitis) is the most common British species of Salicaria, and is generally found in thick patches of reeds or willows in marshes, or in other situations close to water, and π here the aquatic herbage is thick and strong. It abounds on the marshy banks of the Thames. It is of a brown colour, exbibiting various shades, finely intermixed; the
chin and throat white ; the under parts buff colour. -The Ieed W. (Salicaria arundinacea) is found in summer in marshy situations in the south of England; it abounds in Holland and in many parts of Europe, and its range extends to the porth of India. It is of a uniform pale brown, with a tinge of chestnut; the chin and throat white; the under parts pale buff colour. Its nest is remarkable; it is attached to the stems of three or four reeds, and

Nest of Reed Wabler.

formed by winding the branches of their panicles together with a little wool; and is conical and deep, so that the eggs or young may not be shaken out when the reeds are shaken by the wind.-The Trood W., also known as Wood Wren (Sylvia sylvicola), is common in the wooded districts of England, in summer, particularly in old plantations of oak and beeeh. It is olive green, tinged with yellow, the wings brown, the primaries and secondaries edged with bright yellow, the tertials with a broader edge of jellowish white; the lower parts yellow and white.-The Willow W. (Sylvia trachilus) is very common in the south of England in summer, but more rare in northern parts of Britain. It frequents woods, shrubberies, thich hedgerows, and bushes; but builds its nest on the ground. It is of a dull olive-green colour, the wing and tail feathers dark brown, the wing-feathers edged with grecn; the under parts whitish, slightly tinged with yellow. The tail is slightly notched. There are other British species of more rare occurrence.Numerous species of W. are found in North America, migratory birds, which spend the winter in more southern regions. Not a few of the same species are therefore reckoned among the birds of the West Indies. Some of the European species are in like manner found in Africa ; and Asia has many species of W., among which some of the European species are included. Australia has many species of W., some of which are of very beautiful plumage.

WARBURTON, Willlas, a distigguished English divine, commonly known as Bishop Warburton, was born at Newark, in the county of Nottingham, on the efth December 1698. He was the eldest son of George Warhurton, an attorney of that place, who claimed descent from an old Chéshire family. Young W. received his education at the school of his native town, and afterwards at Oakham in Rutlandshire, which he left in the year 1714,

WARBUPTONーWARD.

returning home to pursue the profession of his father, who had died some years before Having served the necessary apprenticeship, he practised as an attorney at Newark for some years, but with no distinguished success. His natural bent was towards literature ; and he had all along expressed a desire to take orders in the Church of England. Finally, he quitted the legal profession with this object in view; and having gone through the necessary course of study, he was presented, by Sir Pohert Sutton, in $172 S$, to the rectory of Brand-Broughton, in the diocese of Lincoln, where he remained for many years. After poblishing some comparatively unituportant pieces, he issued, in 1736 , a treatise, entitled The Altiance between Church and State; or the Necessity and Equity of an Established Religion and a Test Lave. This work, which is still recognised as one of the most masterly statements of the subject from the point of view of the writer, drew great and immediate attention; and in January 1737-1735, it was followed by the first volume of the opus magnum, on which his fame as a theologian must mainly continue to rest. This celebrated work, The Divine Legation of Moses, demonstrated on the Principles of a Religious Deist, from the Omission of the Doctrine of a Future State of Rewards and Punishments in the Jewish Dispensation, thongh it encountered a storm of adrerse criticism, to which the writer thought it necessary to reply in A lindication, \&c., at once established the position of W. as one of the most potent intellects of the period; and though its main argument has since been extensively discredited as more or less 'precarious,' not the less the book, in virtue of its vast learning, its rigour, and originality, will always maintain its repatation, as one of the master-pieces of the great period of our English theology. In 1739, a new and revised edition of the first part of the work appeared. This was followed, in 1741, by the publication of the second part; and the third and concluding section, rather supplementary to the argument than essential to it, was only given to the world after the death of the writer.

Becoming involved in the controversy which followed the appearance of Pope's Essay on Man, W. undertook the defence of the poet, and, in 1739-1740, issued a series of seven letters, entitled A Jindica. tion of Mr Pope's Essay on Man, by the Author of the Divine Legation. The poet was much gratified; and between him and his vindicator a warm friendship was the result, which only terminated with the death of Pope, in 174 . He died, bequeathing to W. one-half of his library, and such profit as might accrue from any cdition of his works published after his death. To Pope, W. was indebted for opportunities of cultivating the friendship of some of the most distinguished men of the time-among others, of the well-known Palph Allen, of Prior Park, near Bath, to whose niece, Niss Gertrude Tucker, he was married in 1745.

Though TV.'s important services to literature and religion were admitted, they did not for a long time bring him any very great recognition in the way of substantial preferment. On the appearance of The Divine Legation, indeed, he had been appointed Chaplain to the Prince of Wales; and in 1746, nearly ten years later, the Society of Lincoln's Inn unanimonsly elected him to be their preacher. In 1757 , he was promoted to the deanery of Pristol; and finally, in 1760, Mr Pitt, afterwards Earl of Chatham, bestowed on him the bishopric of Gloncester, declaring that 'nothing of a private nature, since he had been in office, had given him so much pleasure' as this exercise of his patronage. In the later years of his life, his mind became seriously impaired; and he was utterly prostrated
by the loss of his only son, whom he did not long survise. He died on 7th June 1779.
W. was a keen polemic, and deeply cngaged in all the intellectual warfare of his time. In nearly everything he wrote, there is the impress of a vigorous and fertile mind, with an arrogance of tone, which tends, in his treatment of adversaries, to degenerate into truculence and scurrility. In addition to those already meutioned, it seems sufficient to give the titles of a few of his more notable performances. In 1750, appeared his Julian, or a Discourse concerning the Earthquake and Fiery Eruption which defeated that Eimperor's Attempt to rebuild the Temple at Jerusalem, apropos of Dr Middleton's Inquiry concerning the Miraculous Powers of the Christian Church. Shortly after came two volumes entitled The Principles of Natural and Revealed Religion occasionally Opened and Explained; and in 1755, A View of Bolingbroke's Philosophy, in a Series of Letters to a Friend, which was held to be manch the ablest of all the answers to Bolingbroke which appeared. In 1757, he attacked Hume, in a publication entitled Remarks on Mr David Hume's Natural History of Religion, by a Gentleman of Cambridge, in a Letter to the Rev. Di. JWarburton. The blind deceived no one; and if we may estinate the success of the attack by the amoyance it gave the philosopher, his allusions to 'that low fellow Warburton' may be held to indicate success. In 1747 , he went somewhat ont of his way to issue an edition of Shakspeare, with notes critical and emendatory, which last, though ingenious, and occasionally happy, did not greatly add to his repatation. A complete and splendid edition of his works was published in 1788, at the expense of his widow, by his friend, Bishop Hurd, who prefaced it with a biography.

WARD, EDWARD Matthew, R.A., an eminent painter of the present day, was born in the year 1S16, in London. He early displayed a taste for art, and was educated in a way to develop it. In 1834, he was sent to study at the Royal Academy ; and two years after, he went to Rome, where he remained for some time, gaining, in 1838, a silver medal, given by the Academy of St Lnke. He returned to Englaud in 1839, making on the way a short visit to Munich, where he had lessons in fresco-painting from the celebrated Cornelins. After his return, he annually exhibited pictures at the Royal Academy, though for some years without any very decisive recognition. In 1843 , he competed unsuccessfully for the decoration of Westminster Hall and the Houses of Parliament, his large cartoon specimen, 'Boadicea,' being generally adjndged a failure. In the same year, however, be made a very 'palpable hit' by his picture, familiar to every one as engrared, 'Dr Johason perusing the Mlanuscript of the Vicar of lfakefield.' His steady progress thenceforward, in the estimation of connoisseurs and the public, is sufficiently marked by the fact, that in 1553 , having previously; as we noted above, failed in the public competition for the work at Westminster, he was solicited by the Fine Arts Commissioners to aid in this national under. taking. Of the eight cartoons which he cogaged himself to furnish, several have been completed. The merit of these is unquestioned; and one of them in particular, 'The Last Sleep of Argyll,' is ranked lyy competent jndges as one of the most masterly works in this kind which our country has as yet produced. In further recognition of his merits, Mr W. was, in 1847, elected an Asseciate of the Royal Academy; and in 1855 , he attaincd the full bonour of Academician. Of the works of an artist so well known, it would be idle to attempt a catalogute. A few of the more notable are: 'The Fall of Clarendon,' 'Interview between Charles II. and N'ell

Grwyn,' ' The loyal Family of France in the Prison of the ''emple,' and 'Charlotte Corday led to Execution.' In technical execution, Mr W. must be admitted a master; if he fails a little commonly, on the side of penctrative power and genume imaginative realisation, it would be unfair to say that his failure is conspicuous, as compared with that of others of his brethren, who yet very well contrive in these times to prass for proctic artists.- Hi is wife, Mrs lIenrietrit Ward, is also favourably knowu as a painter, and as the grand-danghter of James Ward, R.A., in his day something of an art-celebrity, thongh now a little ont of date.
WALDDEN, an officer appointed for the naval or military protection of some particular district of country. In order to leep the districts of England adjoiniog to Scotland and Wales in an attiturle of defence, great oflicers, called Lords Wardens of the marches, were appointed, to whom the duty of protecting the fronticr was committed. From this source originated the name ward, applied to the subdivisions of the counties of Cumberland, Westmoreland, and Durham-a term afterwards extended to divisions of a city, town, or burgh adopted for municipal purposes. The custodier of Dover Castle was created by William the Conqueror warden of the Cinque Ports (q.v.), and guardian of the adjacent coast; an office comprising extensive jurisdiction, civil, naval, and military, the freater part of which was taken away by 18 and 19 Vict. c. 48 .-As to the Lord Warden of the Stannaries, see Stannaries.
WAR DEPARTAENT, the cutire administration of the military affairs of the nation. It includes the purely military command under the Commander-is-Cinef, aud the eivil administration muder the Secretary of State for War. This latter includes the manufacture of warlike stores, and their enstody; the formation of defcnsive works ; the paying, feching, punishing, curing, arming, earrying, \&c. of the army. The National Surveys form also a part of this department. The whole deprartment is controlled by the War Office.
WA'RDHOLDING, the military tenure of land in Seotland under the fudal system, by which the vassal was loond to serve the superior in war whenever called on to do so. As the military duties of the vassal could not be performed when he was under age, the superior liad a right both to the guardianship of his person and to the possession of his fee during his minority. An arrangement, however, was frequently male by which this right was commuted into an annual payment, in which case the fee was said to be held in Taxed IFard. When an unmarried vassal succeeded, the superior was entitled to a sum proportionate to the value of the estate, called the Avail of Marriage; and a larger sum, called the Double Avail of Marriage, was due when the superior named a wife for his vassal, and the vassal, rejecting ber, married another woman. If a vassal alienated his lands or the larger portiou of them without consent of his superior, the fee fell to the superior by what was called the casualty of Jiceognition, which was a check on vassals impoverishing themselves to such an extent as would reader them unfit to perform feudal services. Wardholding was abolished by 20 Geo. 11. c. 50 , as a system hazardons to the public tranquillity, suel fees as were held ward of the crown being couverted into Blanch (q. v.) holdings, and those held of subjects becoming feu-holdings, a yearly sum being made payable to the superior, as a recompense for the casualties which were done away with.

WA'LDIAN CASES, close glass eases placed upon a trough containing soil, and accurately littecl to it, intended for the growth of plants in the
windows of apartments. Remarkable success has attended the use of them even in the smoky atmosplhere of the largest towns. Ferns and other plants may now be seen in great beanty and luxuriance in

Wardian Case.
these cases in the windows of houses in London and in all the cities of Britain. They are especially adapted to those plants which require an atmosphere more moist than that of an inhabited apartment ean ordinarily be. They derive their name from the inventor, Mr W. B. Ward of London. To the success attending them, the invention and frequent use of vivaria for marine animals is with great probability attributed.
WARDLAW, R.slpm, D.D., the most celebrated preacher and theologian in the roll of Scoteh Independents, was a Scceder by extraction, and studied in eonnection with the Associate Secession Church. Before he had completed his curriculum, however, be had convinced himself that congregational independency was the scriptural system of church government. In 1500, he began to preach, and after some time settled in Glasgow as pastor of an Independent ehureh. In 1S11, he was appointed Professor of Theology to the Congregational body in Scotland, in conjunction with the liev. Greville Ewing; an office be retained, along with bis pastorate, to the period of his death, which happenel on the 17 th December 1853 . W''s life was a very laborious and earnest one. Besides discharging faithfully and ably the duties of the pulpit aud the professor's chair, he was a voluminous anthor, of ten involved in theological coutroversy, and a prominent actor in the public religions aud philanthropical movements of the day. His intellect was acute, his understanding sound, and his style remarkable for its perspicacity, vigonr, and grace. The most important of W.'s works are : Discourses on the Socinian Controversy (IS13) ; Lectures on Lcclesiastes (2 vols. 1821); Essays on A ssurance of Faith, and on the Extent of the Atoncment and Universal Pardon (1S30) ; Discourses on the Sablath (1S32) ; Christian Ethics (1833) ; Discourses on the Nature and Extent of the Atonement of Christ (IS43); The Life of Joseph and the Last Years of Jacob (IS 15); Congregational Independency (184S); On Miracles (1852). -See Life and Correspandence of Ralph Wardlaw. by Dr Alexander (1856).

WA'RDÖEHUUS, a seaport in Norway, at the east extremity of Fiumark, stands on the island Warlöe or Vardioe, and is protected by a fort, the most northerly fortilication on the globe, being in lat. $70^{\circ} 22^{\prime}$. The inhabitants, inclusive of the garrison of if men, number only 120 . Not even potatoes or barley comes to maturity; and the few
cows that are kept have sometimes to be fed on herrings.

WA'ROSHIP, in English Fendal Law, was the guardianship which the teudal lord lad of the land of his vassal while the lattcr was an infant or minor. Until the majority of the infant, the lord, out of the profits, provided a fit person to render the services incmmbent ou the vassal. See Tenuris, WardHOLDING.

WARE, a small market-town in Herts, $2 \frac{1}{2}$ miles north-east of Hertford. Malting, for which there are several establishments, most of them engaged in supplying the London breweries, is the priacipal cmployment. The springs of the New liver, which supplies London with water, are in the vicinity. In one of the inns of the town, is still to be seen the famous Bed of Ware, for a notice of which, see Bed. Pop. (1861) 5002.

WA'REHAM, an exccedingly ancient though small town of Dorsctshire, stands between the rivers Piddle and Frome, $1 \nmid$ miles nearly due cast from Dorchester. It was a British town, and afterwards a Roman station, and is surrounded by a British vallum or rampart of earth, which, although extremely aucient, is still about 30 feet high, and is perfect on threc sides. Stockings, shirt-buttons, and straw-plait are manufactured. The borough, comprising the parishes of Holy Trimity, Lady Saint Mary, Saint Martin Ame, Bere Fegis, Corfe Castle, and parts of the parishes of East Stoke and Morden, sends a membor to parliament. Pop. (1861) 6694.

WA'REHOUSING SYSTEM is a plan for lessening the pressure of excise or customs cluties by postponing payment of them until the goods they are laid on pass to the consumer, or, at all events, to the retail dealer. A merchant who might import a thousand pounds worth of wine or tobacco, if he only paid duty on it by instalments as it went out to the dealer, would be quite unable to import so mnch if he had to pay somewhere from one to five thousand pounds of duty on its arrival. The system of bonded warehouses was hence adopted. The taxable commodity thus came to be locked 11 , in a government warehouse, and the cuty to be praid on its removal, along with a proportional fee or rent for the custody of the article, or its accommodation in government premises. Bonding in this manuer was part of the scheme of Sir Robert Walpole in 1733, gencrally known as the Jixcise Scheme, which was defeated from its unpopularity. The system was first authorised by an act of George III. in 1802. When the customs laws were from time to time consolidated, the Warehousing Act formed a portion of the consolidation. In the consolidation of 1846, there was a separate ' Act for the Warehousing of Goods.' In the latest consolidation of IS53, the warehonsing system is embodied in clanses 41 to 113 inclusive of the general Customs Consolidation Act' (16 and 17 Tict. c. 107). 'this process, by which the crown holds in custody the goods of private persons, has produced some curions etfects on mercantile law and trading practices. When transactions have taken place about bonded goods, should they be injured or destroyed, it may come to he a question of nice adjustment who is to bear the loss, seeing there is not possession to shew ownership; and still nicer questions sometimes arise as to whether such goods are or are not part of a bankrupt estate. There is a difficulty in securing money upon goods without transferring their absolute possession, as in the case of pledging or pawning. The warehousing system, however, by retaining the goods for the owner, whoever he may be, has created a complete system of paper-moncy in the
transference of the title-dceds, as they may be ealled, of such goods-the dock-warrants or other clocuments-the possession of which is equivalent to possession of the goods.

WARM-RLOODED ANIMALS. Under this title are included those vertebrates which possess a four-chambered heart and spongy lungs ; the heart and lungs being so arranged that the whole of the venous or impure blood is propelled over the large but closely-packed capillary arca of the lungs, by successive contractions of a special ventricle, recciving it from a distinct auricle (these being called the right or pulmonary ventricle and auricle), while the blood thus purificd by the action of the air in the lungs is conveyed to another amicle, and propelled over the whole system by a second distinct ventricle (these being known as the left or somatic amricle and ventricle). The only animals which exhibit these structural peculiarities are mammals and birds. In man and in the or, the mean tomperatnre of the interior of the body is 100°; in the mouse, it is 99°; while in the whale it is 103°. In birds, it ranges, in different species, from 106° to 112°. The warmblooded animals present, however, gradations of their heat-making power. In the hylbernating animals, there is commonly a loss of heat, of from 10° to 20°, during their winter-sleep; and in the bat, the temperature falls to 40°. In the cold-blooded animals, the fisbes, amphibians, and reptiles, the temperature of the blood rarely exceeds that of the surrounding medium. For the general characters of the warm-hlooded avimals, the reader is referied to the articles Birds and Mamailia.

WA'RMING aNd VE'NTILATION. WARA-NG.-A certain temperature, constant within narrow limits, is essential for the life of warm-blooded animals, and the heat by which this temperature is maintained is produced by the vital actions of the hody itself. S'ee Animal Heat, Temperature of THE Body. In the case of man, however, at least in ordinary climates, and in the civilised condition, the heat of the body, if allowed freely to escape, would be dissipated faster than it is produced; and hence arises the necessity of cluthing, houses, and other means of retarding its escape. To allow the body to continue depessed in temperature beyond the natural-state, instead of hardening, infallibly weakens its vitality, and sows the seeds of disease ; and that this error is committed on a vast scale, in Britain more espeeially, is apparent enough. The Reports of the Iegistrar-general shew that, exactly as the thermoncter sinks, the rate of mortality rises and certain diseases of the most fatal kind become more prevalent; the vitality, in short, of the community decreases as the warmth of the atmosphere decreases. Could this loe, if the means taken to arrest the waste of heat from our hodies, or to supplement it, were not, for the majority of men and women, insufticient, or injudiciously managed? This is a matter of literally 'vital' moment to one and all. The economy of heat is a primary element in the art of living in health and comfort; and 'no knowledge of commou things' that we can think of can surpass in importance a right understanding of the principles and facts on which that art reests.

Where fuel is sarce the rosource against the cold of winter is thick clothing indoors as well as out. This is said to be the regular practice in China; and cren in the south of Europe, fires are dispensed with in weather when we should think them absolutcly necessary, and additional wrappings are considered as appropriate while sitting in the housc, as in the open air. But wherever fuel cau be lad, it is always preferred to wear

WARMING AND VENTILATION.

within doors much the same elothing in winter as in summer, and to keep the apartments nearly at smmer temperature by artificial heat. It is this special branch of the subject, viz, the artificial warming of apartments, that we are at present to eonsider ; and in doing so, we presume the reader to be aequainted with the more general facts regarding the generation of lieat by combustion, and its diffusion, as stated in tie articles Combusthon, Flame, Fuel, Heat.

The great aim, it may be premised, in all plans of warming is, as it is expressed by Dr Arnott, ' lo outain everywhere on earth at will, the temperature most congenial to the human constitution, and air as pure as blows on a hill-top.' The obtaining of the desired temperature would be comparatively easy by itself ; the difficulty lies in eombining warmth with pure air. Warming and ventilation are thns in some degree antagonistic operations, and are therefore best treated in one article. The varions plans of warming litherto tried may be elassed under the four heads of-The Open Fite, Stoves, Gas, Stenm and Hot Water.

The Open Fire.-The first application of artificial warmth consisted, most likely, in lighting a fire of dried sticks and leaves in a grore, a eave, or other naturaI shelter. When tents or wigwams came to be erected, the fire would be lighted on the middle of the floor, with perhaps a hole in the roof for the smoke to eseaple by. This primitive arrangement may still be seen in some of the cabius of Ireland and the Scottish Highlands. The Romans warmed their apartments chiefly by portable stoves or ehafing-dishes, without any regular exit for the smoke and fumes; and a brasier of chareoal is still the chief means of heating sitting-rooms in Spain and Italy, which are in general withont ehimneys. The Chimney (q. v.) is a modern invention.

The open coal-fire glawing in a grate, which is the prevalent mode of warming dwelling-honses in Dritain, has an air of cheerfulness and comfort, and a power of concentrating the whole family in one social circle, that make it almost an object of worship; but it is not without serions drawbacks, the most scrious of which is the waste of fuel it oceasions. About one-half of the heat produced by a common fire ascends with the smoke-the black part of the smoke itself being an unconsumed part of the fuel-while about a fourth of the heat which is radiated into the apartment is, in ordinary circumstances, carried into the chimney between the fire and the mantel-piece, and thus lost. It is calculated by Dr Arnott, that only about one-eighth part of the heat-producing power of the fuel used in common fires is realised, all the rest being dissipated into the surrounding atmosphere. A common iire gives also a partial kind of warmth, heating the side of the body next to it, but leaving the rest cold ; and it produces draughts into our rooms which are anything bnt safe or agreeable. Notwithstanding these and other acknowledged evils, the open fire contimues to hold its place, partly perhaps from prejudice, partly from real points of superiority over other methods as yet practised; and the object of late has been, not so much to do it away, as to improve it.

Grates.-One improvement consists in diminishing the quantity of metal in immediate contact with the fnel, and forming the back and sides of the grate of fire-bricks. The brieks aet like elothing, and keep in the heat of the coals, thus rendering the combustion more complete, and the fire far hotter; while iron, being a good conductor, runs away with the heat as fast as it is generated, and passes it into the wall, making the coals that tonch it dull and black. The same quantity of fuel,
therefore, burned in a brick-lined grate, not only produces more heat, but throws a greater proportion of that heat out into the room, and less up the flne and through the wall, than when it is surrounded by a mass of iron; for radiation depends more upon the intensity of heat than unon its quantity.
Another point deserving attention is the shape given to the ehimuey-mouth, or recess above the grate. When the sides are square with the back, none of the heat falling on them is given out again into the room. With a view, therefore, to throw out the heat better, the sides, or covings, as they are called, are inclined to the back at an angle of about 130°; and sometimes they are made curved and of polished metal, in order that they may retlect the heat withont absorbing it. It is questionable if simple brick slabs, placed at the proper angle, do not throw out more heat thau the most splendid polished metal plates; for though the bricks do not reflect the rays of the fire, they become heated themselves, and then radiate their heat into tho room. Plates of rough metal albsorb the heat that falls upon them as the briek does; but heing good conductors, the heat passes through them into the wall, and thus they never become hot enough to radiate sensibly.

Much also depends upon the shape of the fire-box, or grate itself. To see the importance of this, it is necessary to attend carefully to the exact way in which an open fire heats a room. It does so almost entirely by the rays of heat that it throws ont; and these rays do not warm the air direetly; they pass through it bike light through glass, just as the hottest rays of the sun pass through the upper atmosphere, leaving it cold enough to freeze mereury. It is only when the rays of the fire fall on the floor, furniture, and walls of the room, that they give out their heat; and it is by coming in contact with these solid heated bodies that the air is gradually warmed. We may thus see the necessity of having a fire lighted and burning brightly for a considerable time before the hour when the apartment is expected to be comfortable.
The law that radiant heat neither affects nor is affected lyy the surrounding air, also explains the fact that an apartment may feel very cold, thongh the air in it be at high summer heat. A church or other massive stone building in frosty weather may be filled with artificially-heated air and yet retain its ehilling, effect for many hours. The warm th of the living body is lost in two ways: the film of colder air that tonches it receives part of its heat by conduction, and rising up makes room for another film to do the same ; a moderately heated body in cooling, is robbed of about half its heat in this way. The other half is given off in rays, which pass through the air, and impinge upon the objects around. These objects are radiating back heat in return; but their temperature being low, the return is small, and the warmer body is colder by the difference. Hence we are chilled by a cold wall or a cold window withont touching it, and thongh the air hetween us and it may be at 70°.-To return to the shape of the grate.
The chief olject is to present as large a surface as possible of glowing fire to the front. With this view, the grate is made long and deep, in proportion to its width from front to back. This principle, however, is carried too far in mayy grates. The stratum of fuel is too thin to burn perfectly, espeeially in the narrow angles at the sides, where the coals seldom get to a red heat, and are only warm enough to distil away in smoke. Such fires are constantly going out, and are further from being economical than a square box.
The practice recently come into vogue of placing
grates almost on a level with the floor, is also a mistake. The floor and the lower part of the person receive no share of the radiant heat.

The chimney-throat, instead of a gulf drawing in a. constant wide current of the warm air of the room, and causing draughts from windows and doors towards the fireplace, should just be sufficient to admit the burned gases and smoke that come directly from the fire, and no more. See Chnney. This is the object of the movable plate in what are called register-grates.

It would he endless to attempt to enumerate the various forms of grate constructed, with more or less success, on the above principles. We shall content ourselves with a notice of the recent invention of Dr Arnott, to whom the subject of warming apartments is more indcbted than to any individual since the days of Count Rumford. It comes nearer to the idea of perfection in an open fireplace than any previous contrivance. Its peculiar advantages will be understood from the following description:

Arnott's Smokeless Grate.-ab, of (fig. 1), represent the front bars of a grate in a chimney of the usual construction, rswu. The grate has no bottom, and

Fig. 1.
below it is an iron box, open only at top, into which the clarge of coal for the day-from twenty to thirty pounds-is put. Any kind of coke or coal may he used. To light the fire, the usital quantity of wood is laid on the surface of the fresh coal at ef, and a thickness of three or four inches of cinders or coked coal, left from the fire of the preceding day, is laid over all. 'The wood being then lighted, very rapidly ignites the cinder above, and at the same time the pitchy vanour from the fresh coal below, rises through the wood-flame and cinders, and becomes heated sufficiently itself to become flame, and so to angment the blaze. When the cinder is once fairly ignited, all the bitumen rising through it afterwards burns, and the fire remains smokeless.'

As there is no supply of air but through the bars in front, the box being close underneath, the fire must be gradually raised up as the combustion goes on; and this is effected by having a false bottom, ss, in the box, which can be moved like a piston by means of a rod. The rod has notches in it, and, by
means of the poker used as a lever, can be raised up and then retained at any height by a ratchet-catch. When the piston comes level with the bottom har of the grate, the coals may he replenished while the fire is burning, by pushing in a Hat shovel over the liston, so as to form a temporary bottom to the grate, and support the fire, while the piston is allowed to descend to the bottom. The shovel is then raised up a little in front, or a part of the upper edge of the box is made to fold down, and fresh coals are shot into the box; on which the shovel is withdrawn, and the combustion goes on as before.
'A remarkable and very valuable quality of this fire is, its tcuacity of life, so to speak, or its little tendency to be extinguished.' Even after it sinks below the level of the box, it does not go out, but continues to smoulder slowly for a whole day or night, and is ready to buru up actively when the piston is raised.

Another peculiarity of the Arnott grate is the means taken to diminish the proportion of the heat usually carried up the chimney. Of the thick column of smoke that issues from a common chim-ney-can, only a small fraction is truc smoke or burned air; the rest consists of the warmest air of the room, which becomes mixed with the true smoke in the large space usually left between the top of the tire and the throat of the chimney. 'The whole of the air so contaminated, and which may be in volume twenty, fiity, or even a hundred times greater than that of the tiue smoke, or burned air, is then all called smoke, and must all be allowed to ascend away from the room, that none of the true smoke may remain. It is evident, then, that if a cover or hood of metal he placed over a fire, as represented by the letters yab in the diagram-or if, which is hetter, the space over the fire be equally contracted by brickwork, so as to prevent the diffusion of the true smoke, or the entrance of pure air from around to mix with it, except just what is necessary to burn the inflammable gases which rise with the true smoke-there will be a great economy. This is done in the new fireplace, with a saving of from one-third to one-half of the fuel required to maintain a desired temperature. In a room, the three dimensions of which are fifteen feet, thirteen feet and a half, and twelve feet, with two large windows, the coal burned to maintain a temperature of 65° in cold winter days has been eighteen pounds for nineteen hours, or less than a pound per hour.'-Arnott's Warming and Ventilation.

The bood is furnished with a throttle-valve or damper, t, having an external index, shewing its position, so as to give complete control over the current. The provision made for ventilation in this fireplace is considered further on.

Eren in this, perhaps the most economical form of open fire yet contrived, there is still great waste of the heat actually produced by the combustion. To say nothing of what passes by conduction from the fire itself into the wall, and is mostly lost; the quantity carried off in combination with the hot gases, though no more air is allowed to enter than is necessary for complete combustion, is still great. It deserves being noticed, that the proportion thus carried off is greatest in the case of fuel that burns with flame. Experiment shews that a fire of wood radiates one-quarter of its heat, the rest flying up; while the radiation from wood-charcoal is one-half of the whole heat produced. Every one has felt that a blazing fire has far less waruiug effect than a glowing one. Not that flame has not intense heat in it-more intense even than a glowing fire; but it gives it out only by contact, and not by radiation. It thus appears that any mode of heating that
depends upon direct radiation, as the open fireplace chiefly does, necessarily involves great waste of fuel. This an he aroicled only by applying the heat on a different principle, which consists in first making the fire heat certain apparatus with considerable surfice, which then, hy radiation and contact with the air of the apartment, diffises its hent throughout it. This is the principle of the other methods of warming, which we now proceed to describe. The consideration of methods that comline the tro principles, will come most eouveniently last.

Hraming by Stores.-A close store is simply an enelosure of metal, brick, or earthenware, which is lieated by burning a fire within it, and then gives out its heat to the air by contact, and to surrounding oljects by radiation. The simplest, and, so far as mere temperature is concerned, the most effective and economical of all warming arrangements, is What is ealled the Dutch stove; which is simply a hollow cylinder or other form of iron standing on the floor, elose at top, and having bars near the bottom on which the fire rests. The doov by which the coals are put in being kept shut, the air for comlonstion enters below the grate; and a pipe, issuing from near the top, carries the smoke into a tlue in the wall. If this pipe is made long enough, by giving it, if necessary, one or more bends, the heated gases from the fire may be made to give out nearly all their heat into the metal before they enter the wall ; and thus the whole heat of the combustion remains in the room.

The great objection to this form of stove is, that the metal is nit to become overheated, which not only gives rise to accidents, but has a hurtful effect upon the air. The exact nature of the chauge that highly leated metal protuees upon air is not very well understood. It cannot be said to bum it, in the proper scase of the word, for none of its oxygen is alstraeted, but it gives it a peculiar odour, which is both unpleasant and uwwholesome. Thes is thought to arise in some measure at least from the hot iron burning the particles of dust that light on it, which particles consist of organic matter, such as wool, wood, Se.

Part at least of the nuwholesomeness of air so heated arises from its exeessive dryness; it parches and withers everything it tonches, like the African simoom. It must not, however, be supposed that this is peculiar to air heated by contaet with metal ; air suddenly heated is always unwholesomely dry. This is an important point in regard to the subject of warming, and requires consideration. A cnbie foot of air, say at 32°, can contain a certain quantity of moisture and no more; but if heated to $S 0^{\circ}$, it is capable of containing fire times as much, and has thus lrecome thirsty, and drinks up moisture from everything that contains any. The heating of air, therefore, does not dry it, in the sense of taking moisture from it, it only renders it greedier of more; and this is cqually true whether it is heated by a stove or an open fire. The chicf difference is, that in the latter case the warming is more gradual, and no part of the air becomes very highly heated; while the air that touches a metal plate near rechess is all at once rendered intensely thirsty, and before its fierceness is tempered by thoroughly mixing with the rest of the atmosphere of the room, must be highly pernicious. But whenever the temperature within doors is much higher than without, the air is in a too thirsty state, and parches the skin and limgs, unless menns be taken to supply the neeessary moisture. An cvaporating pan or other contrivance is an esscntial part of warming apparatus; it is specially uccessary to attend to this during east
winds, which are gene:ally too dry even at their natural temperature.

All improvements on this simple and rude form of stove aim at avoiding a high heat in the warning surface, and this chiefly by lining the fire-box with briek, and enclosing it in several casings, so as to enlarge the heated surface. A gencral notion of these contrivances may be got from the annexed cut (fig. 2), representing the kind of stove called a cockle. 'lhe fire is burned in a small furnace within the inner case, and the air is warmed by cireulating between the inuer and onter eases. When placed in the apartment or hall to bo warmed, the outer easing has perforations about the top for the issue of the warm air. For heating

Fig. 2. churches and similar buildings, the stove is placed in a scparate furnace-room, and the warm air is conveyed to the different parts of the building in pipes or flues, while fresh air is drawn to the stove through a channel or culvert leading from outside the building to the oprenings in the outer casing, where the arrows are seen entering.

The stove invented by Dr Arnott is upon tho same priuciple of an extensive and moderately warm heating surface. Under a sense of professional honour, Dr Arnott did not take out a patent for his stove; it was therefore made by many furnishing ironmongers in the metropolis and elsewhere, some of whom took out patents for what they considered as improvenants upon it. No fewer than twelve patents were taken out in one year for modifieations of this stove, all of which Dr Amoll considered to le upon fulse mineiples. The consequence has been, that many Armott stoves, whieh had been introduced into houses, have been given up on account of the inconvenience felt from the species of heat which they generated. It is also, howe ver, to be observed that the stove, made even upon the most approved principles, requires certain aljuncts and conditions in order to operate healthfuily and agreeably.

The aceompranying figure represents the Arnott stove in the most inproved form given to it by the

Fig. 3.
inventor. We give the description in his own words. 'The complete self-regulating stove may indeed be considered as a close stove, with an external case, and certain additious and modifieations now to be described. The dotted lines and

WARMING AND VENTILATION.

small letters mark the internal stove, and the entire lines, the external case or covering. The letters ABCD mark the external case, which prevents the intense heat of the inner stove, abcl, from damaging the air of the room. F is the regulating-valve, for admitting the air to feed the fire. It may be placed near the ashpit door, or wherever more convenient. The letters ffimark the fire-brick lining of the firebox or grate, which prevents such cooling of the ignited mass as might interfere with the steady combustion. Il is a hopper, or receptacle with open month below, suspended abore the fire like a bell, to hold a sufficient charge of coal for 24 hours or more, which coal always falls down of itself, as that helow it in the fire-box is consumed. The hopreer may at any time be refilled witl coal from above, through the lid, k, of the hopper, and the other lid, K, of the outer case. These lids are reudered nearly air-tight by sand-joints; that is, by their outer edges or eircumference being turned down, and made to dip into grooves tilled with sand, as at e, e. The burued air or smoke from the fire, M, rises up in the space between the hopper and the inner stove-case, to pass away by the internal flue, x, into the other flue, X, of the outer case. I_{1} is the ashpit nuder the fire-bars. G is the ashpit door, which must be carefully fitted to shut in an air-tight manuer, by grinding its face or otherwise. M is the coal intensely ignited below where the fresh air maintains combustion, but colder gradually as it is further up. Only the eoal in the fire-grate below, where the fresh air has aceess to it through the fire-bars, can be in a state of active combustion.' The self-regulating valve above mentioned is an ingenious contrivance by which the passage for the air is rendered narrower according to the force of the dranght. Dr Arnott describes varions other plans of effecting the selfregulation of the combustion.

A drawer inserted into the heated chamber of the stove would serve for cooking meat, and a pot for boiling might be plaeed upon the fire-box; it is therefore, as the inventor remarks, peeuliarly the poor man's stove. Or, by making the space between the two casings water-tight, a water-stove is produced, whieh, besides seeuring a regulated beat, offers many other conveniences.

In Russia, many parts of Germany, and other northern countries of Europe, the staves are usually built of brick, covered with porcelain. They are of the size of a large and very high ehest of drawers, and usually stand in a corner of the room. 'Ilhe fire is burned in a furnace near the bottom, and the heated smoke is made repeatedly to traverse the structure from side to side, along a winding passage, before it reaches the top, where a pipe conveys it, now comparatively cold, into a tlue in the wall. The heated mass of brick continues to warm the room long after the fuel is burned. It is geverally sufficient to warm the stove once a day. The same quantity of wood burned in an open grate would be consumed in in hour, and wonld hardly be felt.

Open-fire Stores.-As a specimen of the numerons plans for combining the advantages of the stove and the open fire, we maly take Sylvester's stove or grate, which is thus described in Ronalds and Richardson's T'echnology: "The fucl is placed upon a grate, the bars of whieh are even with the floor of the room. The sides and top of these stoves are constructed of domble casings of iron, and in the sides a series of vertieal plates, parallel with the front facing, are included in the interior, which callect, by conduction, a great portion of the heat generated from the fire-the mass of metal of whieh these are composed leing so proportioned to the fuel consumed, that the whole can never rise above 43
the temperature of $212^{\circ} \mathrm{F}$. under any eireumstances. The sides and top of the stove are thus converted into a hot ehamber, offering an extensive surface of heated metal; at the bottom, by an opening in the ornamental part, the air is allowed to enter, and rises as it becomes warmed, traversing in its ascent the rlifferent compartments formed by the hot parallel plates, and is allowed to escape at the top by some similar opening into the room.' The Sylvester stove can either be placed in an ordinary chimney recess, or be made to stand ornamentally forward into the raom. The feeding-draught may be either taken directly from the apartment, or brought by flues from the outside of the building.

The idea of having au air-chamber behind and around the fireplace, from which warm air would issme into the room, thus saving part at least of the vast amount of heat that is lost by passing through the wall, is not new, having been put in practice by the Cardinal Polignac in the begioning of last century. But the way to carry the principle ant to the full would be to have the open fireplace in a pier of masoury standing isolated from the wall, like a German porcelain stove. A very small fire would keep the whole mass mildly beated. The pier could reecive auy shape, so as to give it arehitectural effect; and it might either terminate in the room-the smoke, after parting with most of its heat, being condueted by a pipe into the wall-or it might be continued into the story above, where its heat would still be sufficient to warm a bedroom. An Arnott smokeless grate, set in the pedestal of an ornamental column, which might either stand in front of the wall or in a niche in its depth, might be made the beau-iléal of eamfort, economy, and elegance.

Wurming by Gas.- A prejudice arose against gas as a medium of heat, from the first attempts to employ it being made in an unskilfnl way. But when care is takeu to carry off the products of cambustion lyy a pipe, and to prevent overheating, gasstoves will be found economieal and pleasant, and capable of being used in situations where a common stove is inadmissible.

Iu stoves, gas should always be burned with the Bunsen burner, which is generally employed by chemists when they make use of gas for heating purposes. It consists of a small brass eylinder, or chimney, set over the gas-jet, like the glass of an argand lamp, with openings near the bottom to allow air to enter. The gas being admitted into this before lighting, mixes with the air, and when lighted at the top, which is usually covered with wire-gauze or perforated metal, burns with a pale-blue Hame. The most complete combustion and the greatest heat are obtaiucd in this way. Smoke, properly so ealled, there is none. Still, it must not be forgot that there is lumed air-a cubic foot of carbonic acid, besides a quantity of watery vapour, for cvery cubic foot of gas used; and therefore, even with the Bunsen burner, these gaseous products shoulh, wherever it is possible, be condueted away.
A pleasant aud very serviceable gas-stove might be constructed by making the casing double, to contain water. It has been ascertained that a gallon of water may be brought to the boiling-point in 20 minutes by burning 4 cubic feet of gas, which, at $4 s .6 \mathrm{l}$. yer 1000 feet, casts less than a farthing. The cost of doing the same by a newly-lighted coal-fire is more than threefold.

Steam and I ot $W^{\text {Fater. - The immediate warming }}$ agent in these two methods is the same as in Arnott's and other low-temperature stoves-viz., an extensive metallie surface moderately heated; but instead of heating these surfaces by direet contact with the fire, the heat is first communicated to

65

WARMING AND VENTILATION.

water or steam, and thence to the metal of a system of pipes. This affords great facility in elistributing the heat at will over all parts of a building; and these methods are peculiarly adapted to factories, workshops, and other large establishments. Other advantages are-freedom from dust, and from all risk of overheating and ignition.

Steam.-Steam-Warwing is generally adopted in establishments where steam-power is used, as the same boiler and furnace serve hoth purposes. When stean enters a cold vessel, it is coudensed into water, and at the same time gives ont its latent heat till the vessel is raised to 212°, when the condensation ecases. The coudensing vessel is usually a east-iron pipe placed round the wall of the apartment near the floor. In admitting fresh air into the room it may be made to pass over this pipe, and thus be warmed. The stean is conducted from the boiler by a smaller tube, which may be covered with list or other material, to prevent all condensation by the way; and the admission of the steam is regulated by a cock within the apartment, means being provided for allowing the air to escape. Where a pipe cannot be laid round the room, a coil of pipe may le formed, or the steam may be admitted into a large vessel or into a hollow statue, forming a steam-stove. Allowance must he made for tho expansion of the tubes liy heat; and they are so arranged that the condensed water is conveyed back to the boiler. One round of iron pipe, of four inches diameter, is quite sutlicient to warm cach of the large iphartments or stories of the printing-oftice from which the present work issues.

There can be no proper comparison between this plan of heating and that of common fireplaces. Coal-fires caunot warm the air in large workshops; the leat is eonfined to their owu immediate neighbourhood; bence the workmen are often obliged to lraw near the grate to warn themselves. According to the plan here alopited, every part of the house is equally heated, anil the whole of the workmen are as comfortahle fluring the hardest frosts as if they were working in a pleasant summer clay. It is diffienlt to estimate the expense of supplying the leat, seeing that the steam happens to be drawn from a boiler which is always in operation for other purposes. Exeellent, however, as the process is, it is for many reasous unsuited to private dwellinghouses.

In ealculating how much surface of steam-pipe will be sufficient to warm a room, it is eustomary to allow about 1 foot square for cyery 6 feet of single glass window, of usual thiekness; as mneh for every 120 fect of wall, roof, anel celling, of ordinary material and thickness; aml as much for every 0 eubie feet of lot air escaping per minute as ventilation, and replaced by cold air.

Hot Water.-Hot-water apparatus was applical ns early as 1777 by M. Bonnemain, in Paris, to warm the hot-houses at the Jardin des llantes, as well is for the artificial hatching of chiekens. It was first introduced into England by the Marquis de Chabannes in 1SI6, and is now uscel in many large buildings. It is more ceonomical than steam, except where n steam-boiler is reguired for machinery ; and from this and other advantages, it is generally preferred to stem-apparatus. One of these aliantages is, that the leat begins to be listributed, in soune degree, as soon as the fire is lighted, while with steam-apparatus the whole of the water must be at boiling-heat before any steam enters the pipes.

There are two kinds of hot-water apparatus-ligh-pressure and low-pressure. In the first, the water is confined, and can be heated to any degree; in the other, it is open to the air, and cannot be
leated above 212°. Fig. 4 will explain the way in which water is made to carry the heat of a furnaec to any part of a building by the low pressure method. a is a boiler, from the top of which a tube issues, and after circulating throngh the building, re-enters near the bottom. At the top of the cirenit, there is a funnel, or a small cistern, c, by which the tubes and boiler may be liept full. When the fire is lighted at

Fig. 4. heated portion of water, being lighter than the rest, rises towards the top through the tube, $b b$, while the colder water from del flows in to take its place. 'Tlro tube is made to traverse the ajartments to be warmed, where it gives ont its leat to the air; the retirning portion of the pipe is thus always colder, and thercfore heavier than the other, so that the circulation is constantly kept 11p. The warming surface is inereased, wherever it is neeessary, by eoiling the pipe, or by making expransions upon it of various forms, so as to constitute water-stoves.

To aroid the necessity of so large a surfince, and such a mass of water as is required at the low temperature the water attains in the pipes of this kind of apparatus, Mr Perkins introduced the highpressure system. In this, tho pipe is made comparatively small, but very strong, and is formel into an endless circuit cut off from the atmosplere. The water is hated by making a number of coils of the pipe itsclf jass through the furnace; and as the whole cirenit forms a slut vessel, as it were, the temperature may be raised to 300° and ujwards, according to tho strength of the pipes. This high temperature causes a rapid circulation. A compendious and readily nnderstood specimen of the apparatus, calculated for a house of three stories, is Iresented in the aecompanyiug engraving. In filling the tube with water, which enters at b, care is taken to expel all the ais ; and at a there is an expansion of the tule, equal to 15 or 20 per eent. of the eapacity of the whole, which is left empty both of water and cirr, to allow for the expran-

Fig. 5. sion of the water when heated. The arrangement of the pipe may be varions: the plan generally followed is to place a considerable coil of it within a pedestal or bunker, with open trellis-work in front, in a convenient part of the room. It may also be made to wind round the room, behint the skirting-board, whieh, being perforated with holes, will allow of the entrauee of the warmed air.

The hot-water apparatus has been fitted up by Messrs Perkins and Heath in various public buildings, warehouses, and gentlemen's houses; and, while sufficiently effective for the desired end, it has been proved to be attended with as few drawbacks as any regulated mode of beating whatever. But there is a great obstacle to its general adoption in its expensivencss. The temperature also becomes at times so high as to cause a disagreeable odour. Another objection is its liability to burst; though, from the tubes being of malleable iron, such an accident causes more inconvemience than serious danger.

Conservation of JVarmth.-The art of warming embraces not only the prodnction and distribution of heat, but the construction of apartments with a view to prevent its escape. The way to effect this -setting aside in the meantime the uecessity of renewing the air-is, in the first place, to make the walls, Hoor, windows, doors, \&c. as impervious to air as possible, to prevent the heat from being carricd off by currents; and in the next place, to make them bad couluctors of heat. For this last purpose, the walls ought to be sufficiontly thick, and, if passible, built of non-conducting materials. Solid iron would make a cold wall; wood, a warm one; and in this respect brick or porous stone is preferable to hard stone. But the chief element in a warm wall is that it lie double, which every wall in effect is, when it is lined by a coating of plaster, kept apart from the wall itself by the laths. The plate of confined air between the two is the most effectual barrier to the passage of the heat ontwards that could be contrived. By making iron walls donble or cellular, with a lining of plaster, they might be rendered as warm as wished. Windows are a great source of cold, not merely by admitting colld air, but by allowing the heat to pass by conduction through the thin glass. The air of the room that touches the window is robbed of its warmth, and is constantly descending in a cold stream towards the Hoor. There is thus a cold influence felt from a windor, however close it is. This is partly arrested by window-blinds, shutters, and curtains, which check the flow of the air, and retard its carrying power. But a far more effectual plan is to have double windows: either two frames, or donble pancs in the same frame. The loss of beat lyy a double window is said to be only one-fourth of that by a single. Double windows are considered essential in countries where the winters are rigorous.
By carrying those principles far enough, we night succeed in well-migh imprisoning the heat, and thus produce a house of ideal perfection, so far as mere temperature is concerned. Eut for the habitation of living beings, another condition, seemingly antagonistic to the former, is no less requisite- 'air as free as that on a mountain-top.' In general practice, the two hostile conditions are not so much songht to be reconciled as compromised; and then, as usual, neither object is well attained. Circulation of air is got accidentally, through the imperfections of structure in our rooms-through the chinks and bad fittings of the windows, doors, floors, and the uneconomical fashion of our fircplaces. Were houses much better constructed than they are, the inmates would in many cases be suffocated outright, as they often partially are with the degree of perfection we have already attained. Neither the airing of our houses, nor the art of building them solid aud warm, can advance to perfection, nutil the former be no longer left to chance, but be in every case secured by sprecial apparatus capable of direct control. We now proceed to consider how this is sought to be attained; confining ourselves still to the leading
principles, and only noticing a few of the specific plans that have been put in practice.

Vevtilation.-'The necessity of constantly renewing the air wherever living beings are breathing, arises chiefly from the effects produced upon air in the lungs (see liespiration). The average quantity of carbonic acid in expired air or breath is found to be $4 \cdot 3$ per cent. by measure. Now this gas, when taken into the lungs, is a poison, and tends to arrest the vital processes. Like other poisons, however, it can be rendered harmless by dilution. The small proportion naturally cxisting in the atmosphere is perfectly innocuous, and may be considerably increased without sensible effect. But it is decidedly prejudicial to breathe for a long time air containing 1 measure in 100 of carbonic acid; and it is considered desirable that the proportion should never exceed I in 500. We may assume, then, what is near the truth, that 20 cubic feet of air pass through the lungs of a man in an hour. To reduce the poison of this to 1 per cent., at which point it is barely respirable, it requires to mingle with as much fresh air as will make a mixture of nearly 100 cubic feet ; and to make the dilution at all safe, it must be carricd five times as far. In other words, the respiration of one human being vitiates hourly about 500 crbic feet of air.

In addition to carbonic acid, expired air contains an unduc amount of watery rapour. Minute quantities of animal matters are also exhaled with the breath, which in close ill-rentilated apartmeuts form a clammy deposit on the furmture and walls, and, by putrefying, become organic poisens.
A further necessity for the constant renewal of fresh air arises wherever lights are burned. The deteriorated air of a fire goes off by the flue, but lights are generally burned where the products must mingle with the atmosphere of the apartment. Now, a pound of oil in burning consumes the oxygen of 13 feet of air, and produces a large amount of water in vapour, and also of carbonic acid. Erery cubic foot of gas consumes the oxygen of 10 feet of air, and forms at least 1 foot of carbonic acid, besides watery yapour, sometimes mixed with sulpharous fumes.
To counteract these various sources of pollution, and keep the air sufficiently fresh and wholesome, in rooms where many persons are breathing, it is found in practice that on an average about 20 cubic feet of fresh air per minute for eachindividual must be supplied.
Ventilation consists of two operations--the removal of the foul air, and the introduction of fresk. Thongh neither operation can go on without the other going on at the same time, it is convenient to consider the twa separately.
The agents employed in removing the air from apartments are chiefly two: that by which nature effects the vcutilation of the earth on a grand scale, viz., the draught of ascending currents produced by difference of temperature; and mechanical force, such as pumping. 'The former is the more common, and is the only one applicable to private houses.

The column of air in the chimney of a lighted fireplace being expanded and comparatively hight, exerts less than the prevailing pressure on the air immediately uuder and about its base. The air, therefore, below and around it pushes it up, aud flows in to take its place; the velocity of the movement being in proportion to the height of the chimney and the degree of heat. Thus, although it is often convenient to speak of the air being draven or sucked into the chimney, the force does not lie in the chimney, but in the greater pressure of the air behind.

Wherever, then, there is a leated chimney, there

WAIMMING AÑD VENTILATION.

is a means of removing the foul air. And in roous moderately lofty and spacious, with windows and other fittings not closer than usual, and a chimneymoutly of the usual width, there is little risk, when there are only a few inmates, of any serious vitiation of the air. The beated breath that asceuds to the ceiling las time to diffuse itself gradually, and le drawn in a diluted state into the currents that are setting from all quarters towards the chimney. These currents, however, are one great objection to this mode of ventilation, as they consist in great part of cold air that has just entered by the doors and windows, and are strongest where the inmates sit to enjoy the fire.

The ascent of foul air to the top of the room dictates its exit in that direction, rather than low down at the mouth of the chimney. It is conceived by some that the earhonic acid of the lreath, from its greater weight, must be chictly at the bottom of the room ; but this is a mistake. Tho heated breath ascends instantly, because it is, as a whole, lighter than the air around it; and the carbonic acid in it does not toud to separate from it and fall down by its superior weight, but, by the law of the diffusion of gases, seeks to spread itself equally all over the room, and would do so though it were lying at first on the floor. It is on the principle of the fonl air ascending at first to the top of a room, that Dr Amott's ventilating-valve is contrived. 'Ihe valve may be used to supplement the open-fire draught in small and crowded apartments, and is essential where the fire is burned in a close stove or in the smokeless grate. The valve is represcuted at v, fig. 1. An aperture is cut in the wall over the chinmey, as near to the ceiling of the apartment as may be convenient. In this is suspended a valve, capable of opening inward to the chimney, lut not in the other direction, by which means a return of smoke is prevented. The valve is so balauedi on its contre of motion, that it settles in the closed position, but is easily opened. A flap of olb square inches is suflicient, where there is good chimuey-draught, for a fullsized room with company. 'L'his simple apparatus may be painted or otherwise made ornamental. It operates by virtue of the draught in the chimmey. Whenever that is active from the presence of a tire, the valve is secn to open inwards, and a stream of air from the top of the apartment passes through into the ehimney, and is carried off. 'the operation is precisely equivalent to the stream of air always passing into a chimney between the fire and the mantel-piece, but has the great superiority of draining of the most impure air in the room. A wire descends to a serew or peg fixal in the wall, by which the opening of the valve may be limited or altogether prevented. This is a far more clificnt plan of rentilation than an open window, or an opening in the wall near the roof, leading nuerely to the outer air; where there is an open lire in the room, such openings rather admit a rusls of cold air than let out the foul.
'There is generally more or less dranght in a chimney even withont a fire, from the air within being slightly warmer than that without; and this action anight be strengthened by burning a jet of gas within the ventilating aperture at \because. Where a louse is to be built new, some recommend haviag special ventilating-flues in the walls, selarate from, but elose to the fire-flucs, so that the air may lse leated, and an ascending eurrent prucluced. In weather when ieres are not required, the dranglit can be maintained by gas-jets at the entrances to the vents. This plan of causing a dranght ly gas is applicable to churches and apartments withont fireplaces.

Where a fire is burned for the express purpose of
producing a current of air, it is called ventilation by fire-draught. The plan has been exemplified with succuss in mines, where a fire lecine lighted at the bottom of a sliaft, air is drawn off in all clirections around, and sent up the shaft; to replace which, fresh air is constantly pouring down other shafts.

Many of our large buildings are ventilated by fire-draught. Fig. 6 shews an arrangement by which a schuol or chnrels may be rentilated: aa, the Hooring perforated with holes, through which air, warmed by hotwater lujes, passes to the interior. The ceiling, l, b, is perforated, leading to a ehamber which com-

Fig. 6. municates with a vertical llue, $c c$; which leads to the fireplace of the warming-apparatus, situated at the foot of a fluc, ed. As the only air which reaches this must pass from ec, a constant emrent is maintained therem, and also throngh the apertures in the ceiling. Dr Licid exemplified this method, lirst in his own class-room in Eetinburgh, and afterwards in varions public buildings, among others, in the temporary Ionse of Commons, crected after the burning of the old honse in 1834. The plan was attended with some inconveniences-in fact, no plan can meet every contingency-but, notwithstanding the storm of hostile eriticism that was raised at the time, Professor 'Tonlinson (Treatise an IFarming and Ientilation, J86t) gives it as his opinion that, 'in the case of the temporary House of Commons, where all the arrangements were loft in his own bands, he suceceded in the proposed object of removiner the vitiated air, and kcoping up a constant supply of warm or of cool air to fill its place.' Tho arrangements for warming and ventilating the pre. sent Honse of Commons are a moditication of Da. Feid's plam.

To other eases, as at the prison in Millbank, warm air is admitted at the cciling, and carricel off by the draught of a chimney in connection with the sides or lower part of the rooms.

In these last-mentioned instances, the apparatus provides as well for the admission as for the removal of air. In ordinary dwellings, no special provision is in gencral made as to admission. It is, in fact, not absolutcly uecessary ; for the removal of a portion of the air of a room never fails to sccure the entrance of a fresh supply somewhere. Whenever the chimney-draught or other ineans removes a little of the pressure inside the room, the pressure withant forces air throuth every opening and chink; and eren, were there no actual openings, would foree it through the porous substance of the structure-such as mortar, and evon wood itself. Lut this irregudar somree of sulply has various inconvenicuces. It often reyuires more force to straiu the air in this manmer than the drawreht is possessed of, and then the chimney smokes; it is smoke lroduced by this canse that is curable by opening the door or windew. Another oljection is, that impure air is often thus lrawn into rooms from the lower parts of the building and from drains abont the foundation. For these and other reasons, there onght, in all cases, to be a frce and legitimate eutrance provided for fresh air, so as to give a contrul over it ; and this entrance should be independent of the windows. It is a much disputed point whereabont in a room the air should be made to enter-some advocating openings for it near the floor, others ncar the ceiling; and it must be confessed that neither method has yet been
rendered nnobjectionable. One essential thing is, to prevent the air from rushing in with a strong current, hy passimg it through minute loles spread over a large space. A tube, for instance, leads from the outer air to a channel behind the skirting, or behind the cornice, and the air is allowed to issue into the room through minute boles, or throngh a long, narrow, and concealed opening coverel with perforated zine or wire-gauze. The passage or tube leadiag from outside the mall can be more or less closed hy a valve reoulated from the inside.
But the great difficulty lies in the coldness of the air directly introduced from the outside; whether by the doors and windows, or throngh channels in the walls; and all such plans of ventilation must be considered as imperfect make-shifts. The fresh air ought in every case to be warmed before being admitted, or, at least, before being allowed to circulate in a sitting-room. In the smokeless grate (fig. 1), the air is led directly from the outer atmospibere into a channel ($1,-2$) underneath the hearth, and escaping below the fender and about the fire, is warmed before spreading through the apartment. With stoves and leated pipes, the air should enter abont the heated surface; in stoves on the cockle principle, the fresh air, as it enters, is made to pass betwecn the casings of the stove. With an open fire, a very feasible plan is to make the fresh-air chanvel pass behind the direplace, and allow the warmed air to escape from concealed openings ahout the chimney-piece aud jambs, or from behind the skirting. In Condy's Ventilating-grate, the firebox is constructed of hollow pieces of fire-brick communicating with the external atmosphere aud with the room.

For a house with fireplaces of the usual construction, perhaps the simplest and most effective expedient is to aimit the fresh air into the entrance-hall, and there warm it by means of a low-temperature stove or hy hot-water pipes: its passage into the several rooms can then be provided for by regular channels, behind the skirting or otherwise. In America, perforations are frequently made in certain parts of the doors, before which silk curtains are disposed, so as to temper the currents. It is almost unacconntable that in this country the plan of warming the lobby and staircase is so seldom resorted to. To say nothing of the comfort thus diffused through the whole house, and the benefit in point of health, especially to wealily constitutions, the economy of the arrangement is beyond dispute. In the sittingrooms, not more than one-Lalf the usual quantity of fuel requires to be hurned in the open fires; and in the hedrooms, as a rule, fires are rendered altogether unnecessary in the coldest weather. It ought to be observed that when air is admitted by a regular and free channel, comparatively little is strained in by the windows and other byways.

Ventilation by Fans and Pumps.-The fan-wheel has been for many jears used in factories, to which it is particularly applicable, from the readiness with which it can be kept in motion by the engine. It is essentially the same as the barn-fanners; the air is drawn in at the centre of the wheel, and flies off at the circumference by centrifugal force. The fan is placed at the top of a flue, into which branches from all parts of the establishment proceed ; and when it is set in motion, it draws off the air from every apartment communicating with it. Dr Aruott observed, that in the fan-wheel as well as in the air-pump or bellows invented by Dr Hales, a great deal of power was wasted by 'wire-drawing' the air-that is, making it squirt through small ralves or other narrow openings. To obviate this, he invented a ventilating-pump, which supplied a hospital with fresh air, requiring no other motive-power
than the descent of the water used in the establish. ment from a high reservoir to the lower parts of the building. It is described in his work on Warming and I entilation.

Transference of heat from the used air to the jresh. -This is the kind of economy which is put in practice in the Tespirator (q. v.) and in the Caloric Engine (q. v.). Whatever diffenlties-or impossibilities, as some maintain-there may be in the way of turning this transferred heat into a fresh source of power, nothing seems simpler, in theory at least, than to economise heat in this manner for the warming of dwellings and similar purposes. The idea originated with Dr Aroott, many jears ago, who thus illus-

Fig. 7.
trates it in the case of water : Suppose a a ressel of boiling water, with a thin metallic tule issung from the hottom, and having a stop-cock at d; and $b \Omega$ similar vessel of water at freezing, the tube of which is larger, and envelops the other. When both are flowing simultaneously, the hot water, if the tube is long enough, will have lost all its excess of heat before getting to d, while the counter-current will have gaioed all that the other lost. In an experiment with tubes six feet long, the boiling water from a issuted from d at 34°, and the freezing water from b issmed from c at 210°. It is clear that if a were a bath, the warm water in it, after being used, might in flowing out be made to heat the cold water from a reservoir, b, flowing into another bath below c. We are not aware that the principle has ever been acted upon; but the possible ecooomy of heat is obvious, and it only requires mechanical ingenuity to realise it.

It will at once strike the reader how desirable it would be to do the same with the impure heated air which we are obliged to eject from our dwellings. Where the rentilation depends upon the draught of a common chimney, it would seem impossible to bring the eutering air in contact with that which is escaping; but where the mechanical force of a pump or a fan is employed, nothing seems simpler than to make the two currents run counter to one another for a certain distance in close contact through a system of tubes. The smoke even, which, with the most economical arrangements, still issues from the flues at a temperature considerably above that of the building, might be drawn into the current along with the foul air of the apartments, anl the whole reduced nearly to the temperature of the atmosphere before being allowed to escape. Of course, there must be loss in the transference; but a large percentage would be saved, and the consumption of fuel would be reduced by that amount. Were this double-current ventilation 'applied to churches, ball-rooms, theatres, \&c., where thousands of persons are assembled, Dr Arnott believes that "no other heating apparatus will be required but the lnngs of the company.'

Notwithstanding all the improvements recently effected, it is beyond clonbt that this important branch of the art of living is still in a very mole and imperfect condition. A writer in the Quarterly Review for April 1866, in a very suggestive article on Coal and smoke, points to the radical error of the existing system, when he remarks that in a

WARMINSTER-WARRANT OF APPREUENSION.

houschold fire heat is, as it were, manufactured on a very small scale; and cxperience has proved that the cost of production of an article has always been inversely proportionate to the scale of its mannufacture.' He accordingly suggests that "it seems practicable, in a great measure, to supersede domestic fires, and to lay on heat (heated air), or the means of generating heat (Iow-priced gaseous fuel), to our houses pretty much as we now lay on gas.' The abatement of the smoke-nuisance, and systematic and thorongh ventilation, onght to be effected on a similar joint-plan, 'by connecting the chimneys of all the houses with underground culverts, provided at intervals with high shafts, in which, if necessary, the draught upwards might be increased by furnaces. We have long been familiar with extensive manufactories, covering large areas, in which are very numerous fires, all in communication with a single lofty chimney. With such an arrangemeut, no visible smoke should be produced, and with due attention, a smoky chimney should be impossible.' In the case of existing houses, the amount of reconstruction necessary might be a serious ohstacle; but in building a new street, it might casily be made to empty its entire suoke throngh the medium of a single tall tower resembling those medieval camp, nili which are to be seen in Bologna and other Italian cities.' It is further proposed to make the ordinary sewers serve the purpose of culverts for the passage of the smoke to the common chimney. The sulphurous acid of the smoke would destroy the noxious qualities of the sewage gases, and improve the sewage for agricultural liurposes; and instead of foul gases escaping through every opening or leak in the sewers, as at present, the powerful suction of the ventilating shafts would draw in fresh air, thus establishing a thorough system of atmosplberic sewage. Another effect of the common chimney system would he to make the transference of heat, or double-current ventilation, spoken of above, easily practicable in domestic bouses. The pipe through which the heated air and smoke were being drawn away might be made to give up its heat to the counter-current of fresh air which was being drawn in.

Even though such painstaking plans of economising heat might not pay at the present cost of fuel in this country, it is pleasing to think that there is such a resource in reserve. It is not with all comntries as with us; and ceen our stores of coal are not iuexhanstible. It is au unworthy, and, in the real sense of the word, an inhuman maxim, that bids us 'let loasterity look to itself.' If the absorbing passion for present gain will not let us begin practising economy now, we may at least seek to devise and perfect plans to be in readizess when the necessity comes. It is not uncommon to hear the argument, that before the coals are done, something else will be discovered as a substitute. We are at a loss to imagine what the something is to be, unless it be the ingenuity to make the fuel that is now wasted in a year last a hundred; and this we believe to be quite possible.

WA'RMINSTER, a small ancient tomn of Wiltshire, on the west border of Salisbury Plain, and 19 miles north-west of Salisbury. The parish ehurch dates from the reign of Henry III.; and the inter. esting editices in the town and neighbourhood are numerous. An important corn-market is held every week. Pop. (ISG0) 3675.

WARNING, in Scotch Law, means a notice given to terminate the relation of master and servant, or landlord and tenant; corresponding in England to notice to leave and notice to cruit respectively.

WAR OFFICE, the immediate office of the Sccretary of State for War, and the centre on which pivots the entire admiuistration of the army. It is subclivided into a number of departments, each under a chicf officer, who is at the head of that section of the labour, and is directly responsible to the Secretary of State. The last-named high officer is ailed by two Under-secretaries of State, an Assistant Under-seeretary, and a Military Assistant. Under these and the heads of departments there are about 450 clerks, with 50 messengers, \&ic.
WAR-OFFICE REGULATIONS consist of the royal warrants regulating the pay, retirement, and allowances of officers ant men of the army, together with the instructions to paymasters and others considered necessary for the proper earrying out of the warrant.
WARP, in Weaving, signifies the yarn or thread which runs lengthwise in the cloth. See Weavisg.
WARPING, a mode of improving land, practised where rivers briag down large quantities of mud, or where mud is brought up from estuaries by the tide. It is practised in some of the valleys of the Al_{1}; and the rich soil brought down from the momitains is thus arrested, and made to increase the fertility of fields. It is practised also in England, on the tidal waters of the Ouse, Trent, and other rivers falling into the Humber. There are not many places in Britain where the process of warping is capable of profitable application. The term warping belongs to the banks of the Humber. The name warp is there given to the large quantity of earthy partieles held in suspense by the tidal waters. About i century ago, warping began to be practised, by means of small tunnels made through embankments, the water being allowed to remain, and deposit its sediment of earthy particles, before the sluices were onened for it to How off. Warping has now loug been carricd on, upon a larger scale, with large canals, embankments, and flool-gates. Many acts of parliament have been obtained for large warping canals, to lead tide-water over great tracts of land. Land previously stcrile ancl worthless has heen covered with good soil, and lias become very productive. The 'compartment' which is embanked around, in order to warping, is generally only fifty acres, or less; the farmer warping only one field in a season, beeause in the meantime it is umprodnctive. Iu some cases, however, 500 or 600 acres have been warped in one picce. In the rivers which How into the Humber, the water coming down the river in floods is unsuitable for marping, and contains no such quantity of sediment as the tidal waters.

WA'RRANDICE, in the Law of Scotland, is the obligation to indemnify the grantee, or purchaser of land if, by defect of title, there should be an evietive or paramount claim estaldished against the lands. Warrandice is personal or real ; and personal warrandice is subdivided into general and special. Special warrandice is either (i) simple-i. e., that the granter shall do nothing inconsistent with his grant; or (2) warrandice from fact and deed-i. e., that the granter has not done, and will not do any contrary leed; or (3) absolute warrandice, or warrandice against all deadly-contra omnes mortalesi. c., that the granter shall be liable for every defect in the right which be has granted. Teal warrandiee is where the granter or vendor conveys another estate or lands, called warrandice lands, to be held by the grantee in sccurity of the lands originally granted.

WA RRANT OF APPREHENSION is an authority given by a justice of the prace to apprehend some criminal to answer a charge of

WARRANT OF ATTORNEY-WARRLNGTON.

misdemeanour, felony, or treason. It is in the form of a command in her Majesty's name, issued by the justice to a constable, and to all other peace-officers of the county, reciting that an offence has been committed, and that oath has been made as to the offender, and commanding the constable to bring the offender before him (the justice), or some other of her Majesty's justices, to answer the said charge, and be dealt with according to law. The warrant must be signed and sealed by the justice. It may be issued and executed on a Sinday as well as any other day. In Scotland, the sheriff or justice of the peace who issues a warrant to arrest does not seal the document. In both countries, the warrant must name the individual arrested. In England, the party must either be taken or seized, or hands must be laid on him, accompanied with the words: 'I arrest you.' If the party arrested demand to see the warrant, the constable, if a known officer, is not in strictness bound to shew it to him; but if the officer is not a known officer, and not acting within his precinct, then he must shew the warrant. It is enough for the constable to say simply that he arrests in the Queen's name. If the party to be arrested be in a house, and the doors be fastened, the constable may, after first demanding admittance, and being refused, break open the doors. If, however, the house be a stranger's house, the constable who breaks open the door is not justified in doing so unless the criminal be actually within. A general warrant, i. e., a warrant to apprehend all persons suspected, without naming or particularly describing any individual, is illegal and void for uncertainty, for mere vague suspicion is not enough to deprive any man of his liberty. A practice had obtained in the Secretary of State's office ever since the Restoration, grouncled on some clauses in the acts for regulating the press, of issuing general warrants to take up (without naming any person in parti. cular), the authors, printers, or publishers of such obscene or seditions libels as were particularly specified in the warrant. When these acts expired in 1694, the same practice was inadvertently continued in every reign, except the last four years of Queen Anne, till the question was raised and decided as to the validity of such warrants, and they were declared by the Court of Queen's Bench illegal. The House of Commons in 1766 also passed a resolution declaring the issuing of general warrants to be illegal.

WARRANT OF ATTORNEY, in English Law, is an autbority given by a debtor to some attorney to enter up judgment against him in any action that may be brought to recover a particular debt. It is generally given by a debtor when he finds he has no defence, and wishes to gain time; and if he do not carry ont his promise, the effect is that the attorney can immediately sign judgment, and issue execution against him, without the delay and expense of an ordinary action. But to prevent the malpractices of attorneys, and any imposition upon ignorant men, no such warrant is legal unless the debtor had his own attorney present, expressly named by him, and attending at his request, to inform him of the nature and effect of such warrant; and such attorney must subscribe bis name as a witness. It is also provided that all warrants of attorney shall be voil unless they are filed, within 21 days after execution, with the clerk of the judgments in the Queen's Beuch.

WARRANT-OFFICERS, on Shipboard, are the highest grade to which seamen ordinarily attain. They are the gunner, boatswain, and carpentcr. Their widows receive pensions.

TV A'RRANTY, in English Law, is a promise or covenant to warrant or sccure, against all men, a
certain person the enjoying of the thing granted or sold to him. As applied to ordinary sales of things persoual, it is used to secure the truth of certain representations which the purchaser has no means, or has imperfect means, of ascertaining for himself, and yet the knowledge of which is material to the contract. The law does not imply from the mere seller of an article in its natural state, who has no better means of information than the purchaser, and who does not affirm that the article is fit for any particular purpose, any warranty or undertaking beyond the ordinary promise that he makes no false representation calculated to deceive the purchaser, and practises no deceit or fraudulent concealment, and that be is not cognizant of any latent defect materially affecting the marketable value of the goods. In the ordinary sale of a horse, the seller only warrants it to be an animal of the description it appears to be, and nothing more; and if the purchaser makes no inquiries as to its soundness or qualities, and it turns out to be unsound and restire, or unfit for use, he cannot recover as against the seller, as it must be assumed that he purchased the animal at a cheaper rate. And on the sale or transfer of wares and merchandises, if nothing is said as to the cbaracter or quality of the thing sold, the buyer takes the risk of all latent defects unknown to the seller at the time of the execution of the contract of sale; all that the seller answers for being that the article is, as far as he knows, what it appears to be. Whenever a man sells goods as owner, he impliedly undertakes and promises that the goods are his own goods, and that be has a right to make the sale and transfer which be professes to make; and if he was not the owner, he is responsible in damages if the real owner claims them from the purchaser. If the purchaser does not him. self inspect and select the subject-matter of sale, the seller impliedly warrants the article he sells to be the very article the purchaser has agreed to buy, and is responsible in damages if he furnishes a different article. If the vendor is told the article is wanted for a specific purpose, then be is taken to warrant impliedly that the article he furnishes is sufficient for that purpose. Every victualler or dealer in provisions impliedly warrants them to be whole. some and fit for food. But a private person who does not trade in provisions is not responsible for selling an unwholesome article of food without fraud and in ignorance that it is unfit to eat. Where buyer and seller have equal means of knowledge, then the rendor is not liable for any representation which he makes without fraud; but if, from the nature of the case, the rendor has the exclusive means of knowledge, then he impliedly warrants that what he says is true. Warranty is also to be distinguished from mere matter of opinion or belief. When a servant sells a horse, he has no right to give a warranty, unless his master expressly authorised him to do so. In the law of Scotland, the doctrine of Warranty of Goods does not substantially differ from the above.

WHAPREN is a place kept for the purpose of breeding game or rabbits. In its strict legal sense, a right of free warreu can only be derired by grant from the crown, and gives certain privileges to the warrener as to recovering game and destroying dogs which infest it (see Paterson's Game Lau's, 20); but in the popular sense, a warren merely means a preserve for keeping game and also rabbits.

WARRINGTON, a parliamentary aud municipal borough and manufacturing town of Lancashire, on the right bank of the Mersey, 16 miles east of Liver. pool by railray:. After the parish church, which is of Saxon origin, the chief buildings to be mentioned are the cotton and other factories and the
cloth-halls. In the older strects, ancient wooden houses are even yet to be seen. The manufactures of W. comprise cotton goods, as fustians, twills, corduroys ; sailcloths and sacking: files, lins, wire and wire-woven work; glass; leather and soap; and a famons ale is lirewed. Vessels of 101 tons can ascend the Merscy as far as the brilge of this town. lopp of parliamentary lorough, which returns one member to praliament, (1861) $\because 6,947$. ($187 \mathrm{I}-33,053$.)

WA'RSAW, formerly the capital of Poland (q. .1), now (1867) capital of the linssian, or rather liussianisel, government of W., stands on the left bank of the Vistula, about 300 miles east of Berlin by railway. Lat. of observatory, $52^{\circ} 13^{\prime} \mathrm{N}$., long. $21^{\circ} 2^{\prime} \mathrm{E}$. It stauds partly on a plaiu, partly on rising ground sloping upwards from the left lank of the river, extends over a wide area, and consists of the eity proper, and of a number of suburbs, several of which are beantifully built. A bridge of bats 1626 feet long comects W. with the suburb of Praga, on the right bank of the Vistuli. The streets are mostly narrow, though in several instances they are broad and handsome. The Vistula at W. is broad, shallow, and ever-changing in its sind y course, and is navigable for large vessels only when, after thaw, rivers of melted show pour down into it from the Carpathians, or when it is swelled by the autumu rains. But the only craft seen bere ous the Vistula are rude rafts, usually laden with wheat, which they convey to Dauzig by river, and (within the last fow years) steamers at intervals. Seen from lriaga, on the right bank, the Castle, stanuling on a steep ascent, has a most imposing elfect. Attached to the Saxon Palace are a spacious court and gardens, which are considered the finest promenade in the eity. Among the other buildings there are nearly 30 palaces; the cathedral of St John (dating from 1250), a Gothic building of great beanty, containing statuettes and many interesting monuments, among which is one by Thorwaldsen; the Lutheran church, the loftiest lnilding in W., and numerous other places of worship, including synagogues. There are severat large and memorable squares, as the Sigismund Square, containing the momment, erected by Ladistas IV., in honour of his father, Sigismnnel III. In this square, in A pril $8,1861,40$ unarmed and unresisting Poles were massacrecl. The citadel, crected by the Emperor Nicholas, for the express purpose of intimidating, and, if necessary, destroying the city, commands, from its situation, every part of Warsaw. The university, broken up by the Emperor Nieholas after the insurrection of 1830 , bas been re-established within recent years, through the influcnce of the Graul Duke Constantine; and besides this institutiou, there are several minor colleges, gymmasiums, and other educational establishments. Woollen and linen fabries are manufactured. P'u]. (1863) $2+4,512$. (1566-150,657.)

For the history of W., sce Polixd, Jous III. (Sobieshi), Poniatowsei, \&c.

WA'RTBURG, War of THe, the mame given both to a grave poctic contest, which is represcuted to have taken place on the Wartburg, and also to a pluem in the Middle Migh-German dialect, which commemorates the event. At the time when the aforcsail dialect had attained its highest literary development, and its poets enjoyel a brilliant reputation, Ifermann, the mnnificent Landegraf of Thuringia, had made his court a sort of refuge or home for the irritable race, as well as for many other people. It could hardly fail, under the circumstances, that quarrels and jealousies should abound ; and, in fact, allusions to these are sufficiently distinct in several of the most distinguished writers who lived
at the Thuringian court-e.g., in Wolfram von Eschenbach and Walther von der Vogelweide. But soon after, the conecpution of these things muderwent a sint of mythical transformation, and the occasional temporary and natural rivalries of the pocts were changed into a partienlar and premeditated contest for superiority in poetie skill; and to the list of those poets who aetually had intercourse with each other it Eisenach were now added others partly historical, and in part purely fictitious char-acters-c. g., the virtwous Schreiber, Bitterolf, licinmar (subscquently confoumded with Reimmar von Zweter), the almost inythical Heimrich vom Ofterdingen, and the wholly mythical Master Klingsor, the 'lransylvanian magician and astrologer. On the basis of this historico-mythical tradition, and nuder the formal influences of the then much almired songs of cmulation, ridllle-contests, and ccelesiastical plays, there was composed, about the yar 1800, a strange, obscure, unharmonions poem iu two parts, called Kriec van Wartbur!. In the first of these, executed in a long and artistically managed measure, and entitleal Tone des Fürsten von Thuringia, Heinrich von Ofterdingen ehallenges the other poets to is contest in verse-the fato of the vanquished to bo death-and asserts the excellence of Leopold, Iuke of Austria, over all the other princes. Victory, however, inclining to the Eisenachers, Heinriel calls in Klingsor to his aid, who, on his part, fights his verse-battle against Wolfram hy the assistance of evil spirits, with riddles and dark science. With distinct refercace to Klingsor's 'black art,' the simpler and shorter measure of this seconel part is called Schwarze T'Un. Throughout the whole poem, which may be regalded as the first attempt at a secular drama, but which is rather an intermetiate link between the Lyric contest and the Drama, one may trace an numistakable imitation of Wolfram's style of poetry. The anthor is unknown. From the inequality of the style, one is disposed to conclude that several hands were employed in its composition. The poom, which has been much overrated in modern times, does mot seem to have exercised any 1 particular intlucnce on literature. In a prose form, the story of the Wartimirg Contest first appears-in the Thuringian Chronicles-after the beginning of the l-th c., and probably owes its origin to the poem. The poem was printed in a separate edition ly Fttmüller (1hmenau, 1830), and is also to be found in Borlmer's and Von der Hagen's collection of the Minnesinger.-Sce Vou Ilotz, UCeber den s̈̈̈ngerlerieg auf Wariburg (Wcimar, 1S51).

WA'RTHF, the longest and most extensively navigable alluent of the Oder, rises on the southwest frontier of Poland, 35 miles north-west of Cracow. In Poland, it flows north and west, and the length of its course in this country is 300 miles. It then fluws west-north-west through Prussia for 180 miles, passes l'osen, and joins the Oler at Kustrin, where it is $6: 0$ feet broad. 'Total length, 483 miles, for 220 mites of which it is navigable.

WART-HOG (Phacochorus), a genus of Suider, closely resembling the true hogs in most of their characters, and partienlarly in their feet, but remarkably differing from them in their dentition; the molar tecth being much like those of the elephant, and replacing one another in the same manner. There are two triangular incisors in the upner jaw, and six small ones in the under; the tusks are lateral, very large, project far from the mouth, and are bent npwards; there are six or cight molars in eacl jaw. The head is very large, and the muzzle very broad; the eheeks furnished with large wartlike excrescences, so that the apnearance is altogether very remarkable and uncouth. The species are all

WART-HOG-WARTON.

natives of Africa. They feed very much on the roots of plants, which they dig up hy means of their ezormous tusks. The Africay IV., or Ilareja (P. AEliani), a native of Abyssimia and of the central regions of Africa, from the coast of Guinea to that of Mozambique, is nearly four feet long, with a naked slender tail of one foot, is scantily covered with long bristles of a bght hrown colour, and has a mane sometimes ten inches long, extending from between the ears along the neck aud back. Another species is found in the south of Africa (P. Ethiopicus or Pallasir), the Fall:e J"ark of the Dutch colonists

Wart-hog (Phacocharus Etthopicus).

at the Cape of Cood Hope. The incisors of the latter fall out at an early age, those of the former are persistent.-A closely allied genus is Potamochoerus, of which there are several species, as the Bosch Irark of Cape Colony (P. Africanus), which is nearly black, with whitish cheeks having a central black spot; and the Paisted l'ig of West Africa (P. penicillatus), which is reddish, with black face, forehead, and cars. The species of Potamochoorus frequent swampy grounds, and sometimes receive the name of Water-hog. They have longer ears than the true wart-hogs, tapering and ending in a pencil of hairs; the face is elongated, and bas a huge protuberance on each side. The flesh of all the wart-hogs and water-hogs is in high esteem. They are hunted by dogs, which are often killed in the encounter with them. They are much addicted to fighting among themselves.

WARTON, Josepf, D.D., was horn at Dunsfold, Surrey, in 1722 . His earlicr education he received from his father, the Liev. Thomas Tharton, sometime Trofessor of Poetry at Oxford. At the age of 14 , he was sent to the great school at Wiachester, whence, in 1740 , he was trausferred to Oriel College, Oxford, where, four years afterwards, he took his degree of B.A. After passing the intermediate years as a curate at Chelsea and elsewhere, in 1745 lie was presented by the Duke of Bolton to the rectory of Winsdale, near Basingstoke, a living of no great value, yet sufficient to determine his inariage with a Miss Damon, to whom he had been cugaged. Previous to this, he had become known as a writer of rerse in the Gentleman's Magazine, Dotsley's Museum, \&c., and as the author of a volume of Oiles and other Poems. In 1751, he went abroad with the Duke of Bolton; and after his return, he issued, in 175%, an edition of Virgil, with a translation of the Echogues and Georgics. This, with the critical notes and dissertations appended to the work, met with great approval, and procured him from the university of Oxford the honorary degree of $1 \mathrm{~J} . \mathrm{A}$. In 175t, appeared the first volume of his chief literary performance, the Essay on the Writings and Genius of Pope, the second and concluding volume of which was not given to the world till 17 S . Venturing, as
he did, to question the positive supremacy which it was then fashionable to attribute to Pope, W. dil not by this work attain any very instant increase of polularity ; lut the value in relation to the literature of the time, of the critical principles announced in it, as also in his other more casual Essays, has since been sufficiently recognised. In $1705, \mathrm{~W}$. was appointed second Master of Winchester School, of which he became head in 1760 . Soon after, he revisited Oxford, and had conferred on lim the degrees of Bachelor and Doctor of Divinity. Of preferment in the church, he hal subsequently bis full share. By the good offices of Dr Lowth, Bishop of Loudon, he was marle, in 17s?, a Prebendary of St Paul's ; and the living of Thorley, in Hertfordshire, was conferred on him. He oltained besides, in 1788, a prebend in Winchester Cathedral, and the rectory of Easton, which he soon after exchanged for that of Clayham. The Mastership of Winchester he resigned in 1703 , and devoted himself to the preparation of an annotated edition of Pope, which was completed in 9 vols. S vo in 1797. At his death, 23i February 1500, he was engaged on a similar edition of Dryden, of which he had published two volumes. The poetry of W. can scarcely be said to have secured a permanent place in our literature; but as a critic, his reputation survives along with that of his more distinguished brother.

WARTON, Thomas, the younger brother of the preceding, was horn in 172s, at Basingstoke, in Hampshire, of which place his father had then become vicar. His earlier education he received chietly at home from his father; and in 1743, he was entered at Trinity College, Oxford, where, in 1750 , he took his degree of M.A. The year after, be olstained a fellowship. He remained at the university, eroployed as a tutor; and in 1757, he was made Professor of Poctry, in which capacity he was much esteemed as a lecturer. In 1767, he took his degree as Bachelor of Divinity, and was soon after presented to the living of Kiddington liy the Earl of Lichfield. Iu 1782, that of Hill Farrance, in Somersetshire, fell to him by favour of lis college; and these two unimportant pieces of ecelesiastic preferment were the only ones he ever enjoyed. Tery early, he became known as a poet, and in 1754 , he published a volume entitled, Observations on the Fairie Queenc of Spenser, which established his reputation as one of the first critics of the day. In a second edition of the work, issued in 1762, it ras expanded into two volumes. Of W.'s miscellancous literary activity, no accomat need be given in detail. The work by which he is now chiefly remembered is his IIistory of English Poetry, the first volume of which was pulalished in 1774. Two other volumes followed in $17 / 8$ and 1781, bnt at his death the work remained unfinished. In its wealth of information regarding the earlier portion of our literature, the book remaius to this day unrivalled. As a poet, also, W. takes distinct, if not very high rank. ln 17:7, he published a collection of such of his scattered pieces as he deemed most worthy of being reprinted, and the aceeptance it met with is shewn in the successive editions of 1778,1779 , and 1759 , as also in the fact, that on the cleath of Whitchead, the poet-lanreate, W. had the houour, such as it might be, of being selected to succeed him in the office. The last work on which he was engaged was an elaborately annotated edition of the Minor Poems of Milton. Of this, published in 178ă, a carefully prepared re-impression was issucd the year aiter his death, which took place suddenly on the 21st May 1790. In 180․ a new edition of his poens was published, with a Life of the author by Mr Mant.

WARTS (sometimes known in Surgery by their Latin name I'erruc(e) are collections of lengthened Papillz of the Skin (q.v.), closely adhereut and ensheathed by a thick covering of hard dry cuticle. From friction and exposure to the air, their surface presents a horny texture, and is rounded off inte a small button-like shape. Such is the description of the simple wart, which is so commonly seen on the hinds and fingers (and rarely on the face or elsewhere) of persons of all ages, but especially of children. Amongst other varietics of warts are: (1) One to which the term I'erruca digitata has been applied. $1 t$ is more elongated in shape, and less protected by cuticle than the preceding. It is said to necur nowhere but on the scalp of women of adult age, and sometimes to occasion great aunoyance in brushing and combing the hair. (2) Sub. ungual warte, growing, as their sjecific name implies, beneath or at the side of the finger or toe nails. They originate beneath the nail, and as they increase, they crop out either at the free extremity or the side of the nail, and are usually troublesome. and often very painful. They are generally of syphilitic origin. (3) Fenercal warts, caused by the direct irritation of the discharges of gonorrhea or syphilis, and occurring about the parts which are liable to be polluted with such discharges. They attain a larger size, and are more fleshy and vascular than other warts.

Nothing is known of the causes of warts further than the third variety is joduced by an irritating discharge, that the malignant form of wart which is the begianing of climney-sweepers' cancer is causerl by the irritation of soot, and that persons engaged in dissection and post-mortem researches are especially liable to them; bence we may infer they are always due to some local irritation. Venercal warts are certainly contagions; with regard to others, we cannot speals positively. In some cases, but not invariably, blood from a wart is capable of producing similar warts when applied to the skin. In consequence of the capricions way in which warts often spontaneeusly disappear, there are numerous popular charms for their removal, several of which may be found recorded in the pages of Notes and Queries. Commen warts are so apt to disappear, that they may be often left to thensclves. If it is desired to remove them, glacial acetic acid is perhaps the best remedy: it must be applied with a camel-hair pencil till the wart is pretty Well sodden, care heing taken not to blister the neighbouring skin. One or at most two applications are usually sufficicat. Nitrate of silver and tincture of iren are pojnular and general applications. Small warts hanging by a neck, may otten be very simply removed by the moderately tight application of an elastic ligament (for example, a small broken elastic ring) to the base. The wart usually shrivels up, and falls off within a week. The other varicties of warts must be left to the surgeon.
WA'RWICKSHIRE, one of the midland counties of Eagland, bounded on the W. ly Worcestershire, on the N. by Stafford and Leicester shires, and on the S. mainly by that of Oxford. Area 563,946 acres; pop. (1861) 561,855 . The surface, though presenting no lofty hills, is marked by gentle emiucuces and vales. The nertl districts of the county were formerly occupied by the forest of Arden, of which there are still remains; and the scenery, in general remarkably rich and charming, is varied by moer and heath. The principal rivers are the Aron, flowing from north-cast to south-west; and the Tame io the north. The soil varics mach in quality, being cold and heavy on the higher and more exposed positions; while in more farourable districts, it is as a rule grood. Of the whole arca, 44,718
acres are (1566) under crops and grass and fallow, and of this area 151,456 acres are under coro crops, 32,771 acres under green crops, and 209,914 in permanent pasture. Of minerals, coal, stone, lime, and marl are found. The comnty, exclusive of the boroughs, returns four members to the House of Commons. Chief town, Warwick (q . v.).
WA'RWICK, a muncipal and parliamentary borough, chicf town of the county of the same name, stands in the midalle of the county, on the Avon, 20 miles south-cast of Birmingham. It is a very ancicot town, and contains many ancient and interesting buildings and institutions. Of these the most notable is Warwick Castle, the principal residence of the Larls of Warwick, heautifully situated on a rocky elevation, 40 fect ligh, on the banks of the Avon. Of this ellifice, Guy's Tower, 12 S feet himh, was built in 1394; anl Cesar's 'Tower, still more ancient, is 147 foct high. The interior, remarkable for its splendour and elegance, contains valuable pictures and curions specimens of armour. The Earl of Leicester's Ilospital for aged brethren has an zautal income of $2 \mathscr{2} 2016$. Thero are numerous other charitics, with schools, Libraries, \&c. Agriculture and general trade afford employment to a large number of the inhahitants, and a small iron foundry is in operation. W. returns two members to the House of Commons. I'op. (1861) 10,570 (1871-11,001).

WARWICF, a township of Phode Islaud, U. S. America, 10 miles south-west of Providence, on Narragansct Bay, and the Stomington and Providence lailway, coutainiog the villages of Natick, Phonix, Centreville, Arctic, Crampton, and Apponang. It has 21 cotton-mills, 2 woollen, 2 bleacheries, 2 print-works, 15 churches. Drnm Rack, a balanced rock of great size, can he moved by a child, and makes a sound which can be heard for miles. Pop. (1860) S916.

WARWiCK, Ricilard Neville, Earl of, K.G., popularly named the Kiog-maker, Was eldest son of Fichard, Earl of Salisbury, and Alice, daughter and heiress of Thomas Montacute. IIe was born about 1420, shortly before the accession of Henry V I. Lord 1. Neville, as he was then styled, early manifested his distinguished bravery and brilliant personal qualities in a hostile incursion across the Scottish marches, in which he accompanicd his father, the Earl of Salisbury. IIe became the most pewerfu] nobleman in the kingdom, by his marriage with Anne, daughter and heiress of Pichard de Beauchamp, Earl of Warmick. He not only acquiren by this alliance the broad lands of the Warwick family, but was created Earl of Warwick, with succession to the heirs of his wife. He is the most prominent figure in the civil War of the Toses, one of the darkest periods of our history. The Duke of York gained his support by his marriage with Lady Cecille Neville; and when the harons declared the incapacity of Hemry VI., and chose the duke to be jrotector of the kingdom, W. led into the field his welltried borderers of Wales. The Yorkists and the Jancastrians first met at St Albans in $14 \overline{5} 5$, , when W., rushing suddeuly into the town at the head of his men, mainly won the battle ly his impetuous onset. He was rewarded with the government of Calais-'then,' says Comiacs, 'coosidered as the most advantingeons appointmont at the disposal of aoy Christian prince, and that which placed the most considerable force at the disposal of the governor.' He also oltained commaod of the fleet for five ycars. Ia 1458, he sailed fron Calais with five large and seven small vessels, and attacked a fleet of 28 ships, belonging to the free town of Lübeck. After a battle of six hours, he took six of

WASH—WASHING AND WASHING-MACHINES

the enemy's ressels. In 1460 , he landed in Kent at the head of his troops, and entered London amidst the acclamations of the people. He defeated the queen's army, near Northampton, with great slaughter, and obtained possession of the persou of the king. Lichard, Duke of York, now advanced his claim to the throne. Queen Margaret raised an army to rescue the king; and the duke committed the idiotic monarch to the enstody of the Duke of Norfolk and TV., while he adranced to Wakcfield to attack the Lancastrians. The duke was taken, and put to death; and WI's father, the Earl of Salisbury, with twelve other Jorkist chiefs, was beheaded at Pontefract. Another battle at St Albans was won by the Lancastrians; but Edward, Earl of March, now Duke of York, accompanied by W., marched boldly upon London, which was throughont Jorkist, and Edward was proclaimed king ly the style of Edward IV. The next battle was that of Towton, near York. The Lancastrians had retalsen the pass of Ferrybridge, on the river Aire, and W. in despair at the loss of so good a position, rode up to Edward, and dismounting, shot his own horse through the head, as a signal for an attack from which there could be no retreat, exclaiming: 'Sir! let him flee who will flee; but by this cross' (kissing the hilt of his sword) 'I will stand by him who will stand by me!' The Lancastrians were defeated with immense loss; and Elward, returning to Londou in triumph, was crowned June 22, 1461. The battle of Hexham was followed by the capture of Henry; aud W., who had been left in command in London, placed the deposed king on a horse, under whose belly his feet were fastened, and thus led him through Cheapside to the Tower. W. having been authorised to negotiate with Louis X I. of France for the marriage of his sister-in-law, the Princess Lonne of Savoy, to King Edward, could not brook the king's sudden marriage with Elizabeth Woodville, and seemed inclined to shew that he could pull down as well as set up kings. He was now at the height of his power. To the earldoms of Warwick and Salisbury, with the estates of the Spencers, he added the offices of Higli-admiral and Great-chamberlain, together with the lord-lientenancy of Ircland and the government of Calais. Comines states the income of his offices at 50,000 crowas a year, besides the immense revenues accruing from his patrimony; yet he bad the meanness to accept a secret pension and gratuities from Louis XI. After being seat into honourable banishment by means of embassies to France, Burgundy, and Drittany, he gave his daughter in marringe to George, Duke of Clarence, without asking Edward's permission. He soon afterwards broke out into revalt against Edward, and concluded a treaty with Queen Margaret, by which it was agreed that her son, Prince Edward, should espouse Anne Neville, W.'s daughter, and that in failure of issue, the crown should devolve on Clarence. King Lelward escaped to Ifolland; and Henry VI. resumed the sovereignty. Edward, however, raised a body of Flemings and Dutchuen, and, landing near Hull, adranced towards London. He gave battle to King Henry's army, commanded by W., at Barnet, April I4, 1471. The battle was memorable and important. W. and his brother, Montagne, were left dead ou the field, and with them fell the great ness of the House of Neville. This fatal battle, followed by the decisive engagement of Tewkeshury, completed the defeat of the Lancastriaus, and concluded the sanguinary War of the Toses. It appears (Fenn's Letters) that every individual of two generations of the great families of Warwick and somerset fell on the field or on the scaffold, a victim of these sanguinary contests. W. is the most conspicuous personage of these disturbed times. He kept
opeu house wherever he resided, and daily fed at his various mansions 30,000 . He loved turbulence for its own sake, and was ready to make or unmake any king, according to the caprice of the moment, and in order to shew his power.
WASH, a wide cstuary on the east coast of England, between the counties of Lincoln on the north-west and Norfolk on the sonth-cast, is about 20 miles in length, and 15 miles in average breadth. It is surrounded by low and marshy sbores, and receives the rivers Witham, Welland, Ouse, Nen, and Nar. The estuary for the most part is occupied by sandbanks, dry at low water, and hetween these sandbanks are the channels through which the rivers mentioned flow into the North Sea. On both sides of the channel by which the Ouse falls into the sea, considerable tracts of land have been reclaimed. Anchorage is afforded to vessels by two wide spaces or pools of water, called respectively Lynn Deeps, opposite the coast of Torfolk, and Boston Deeps, opposite the Lincolusbire ccast.

WASHING AND WASHING-MACHINES. Although domestic washing is a simple enough process, yet it may be useful to give a brief description of the most efficient way of conducting it, in so far as experience and correct principles can guide such an operation. The first essential is suitable water, in other words, soft water. See Water-supply. Fellow Soap (q.r.) being the kind chiefly used in washing linen, it is well to bear in mind that it is not desirable to purchase it very pale in colonr, or very low in price. In orter to gratify the desire for a light colour, soap-makers are obliged to reduce the strength of good dark soaps with adulterants; and it will give some idea of how easily the demand for cheapness may be met, to state, that hard soap, which should not contain so much as 25 per cent. of water, can be made with as much as 75 per cent. Soap, as is well known, improves by keeping. Soft or potash soap is sometimes used to wash coarse things, on account of its being stronger than hard soap, but its smell is objectionable. Soda is easily procured good; and with respect to washing-powders, as their merit depends on the amount of alkali which they contain, sutice it to say that to buy them is only a dear way of buying soda.

Iu arranging clothes for washing, it is desirable to sort them into kinds most suitable for washing together; such as lace, nets, and fine muslin into one heap; white body-linen into another ; coloured things of the nature of prints and ginghams into another ; and so on. It is also desirable to wash clothes as soou as possible after they are soiled. Previous to washing, all white articles should be soaked for a night in cold water, in which a little soda las been dissolved, as the steeping in alkaline water grcatly aids in removing all dirt of a greasy nature. The clothes should then be washed twice in clcan tepid water with a sufficient supply of soal. If the water is quite cold, the dirt is talsen off with difficulty; and if too hot, it is apt to fix it into the fibre of the cloth. The clothes should next be examined for spots or stains, so as to remove them, if possible, by an additional rubbing; after which they are boiled for at least 15 minutes in soap and water. Ink-stains or iron-moulds require to be taken out with oxalic acid, or the esscutial salts of lemon (oxalate of potash); and fruit-stains by boiling the stained parts with pearlash. After being boiled, the clothes are rinsed twice in cold water; and in the second rinsing, a little stone blne is aulded, to nentralise any yellowness occasioned by the washing. When this is done, they are wrung, and hung out to dry:

WASHUNG AND WASHING-MACHINES.

For the washing of flannels, it is even more desirable that the water shonld be soft than for linen or cotton; and it should contain no soda or potash in any form, as although a little alkili wonld more effectually remove dirt, yet it always turns woollens yellow, and at the same time thickens them. it is well to remember also that all rubbing, wringing, or scueezing tends to make woollen soods shrink, by facilitating their tendency to felt or mat into a thicker fabric. With respeet to ladies' coloured dresses made of fine wool, such as merino, it is considered best to wash them in warm soft water with ox-gall, say a pint in a tubful of water. Ox-gall is a soap, in its chemical mature, and it elears and brightens the colours.

The washing of printed cotton fabrics, especially muslins, las of late years become a difficult operation, on account of the fngitive uature of some of the dye-stuffis employed. The beautiful hues produced by the aniline or coal-tar colours, and by the archil lakes in imitation of them, have led to their being extensively used in calico-printing, as well as in the dyeing of silk and wool. These dyes can searcely be said to be permanent on any fabrie; but on eotton they require to be fixed loy mordants, such as albumen (white of egg), which will scarcely stand washing at all, and to which bot water is utter destruction. The same thing is true of some other dyes, suelt as the light blue produced by artiticial ultramarine. If economy is to be stmlied, it is far better to have printed dresses done in fast colours -the reds and purples, from wadder, for exampleas they, although less attractive at first, can be washed without injuring their appearance. All such articles should be washed in soft warm water ; that which has been usel for flannels, if not too dirty, will do. When thoroughly cleaned, rinse them well in clean cold water, and do not allow them to remain long in contact before they are hung up to dry.

White silk articles, as stockings and gloves, should be washed with sonp, first in milk-warm, and afterwards in nearly boiling water. They will he improved if hung up for a short time in the fumes of burning sulphur (sulphurous acid) while still damp.

We have now to notice the domestic washingmachines which have, of late years, come into rather extensive use. A machine of this kind, when in motion, onght to produce at least as much aritation as will keep up a constant change in the deterging solution in contact with the linen, and at the same time cause the clothes to slide over each other in a somewhat analogous manner to handwashing. There is an old form of washing-machine called the dolly-tub, which has been in use in Yorkshire for upwards of seventy years. It consists essentially of a presser or dolly, which is simply a round piece of wood, say ten inches in diameter, with from three to five legs romnded at the ends; the whole exactly resembling a footstool, but with the addition of an upright rod or spindle from its centre, with a cross piece at the top for Torking it. Any vessel. such as a tul, barrel, or lox, may le used to hold the clothes, which are washed by moving the dolly first one way and then the other, at the same time a certain pressure being exerted on them against the sides and bettom of the vessel.
of receut washing-machines, a certain elass of them are modifications of the dolly-machine, with fpring-ribbed boards, on which the linen is rubbed by a swinging motion. Another elass consist of hoxes which also oscillate upon an axis, but operate by jerking the clothes and water from side to side. A third, and perhaps the most efficient elass are made upon the principle of the dash-wheel, so much
used in large bleach-works. In this machine, the materials to be washed are lifted hy internal ribs on the rim of a large wheel, and allowerl to fall with some force from fully half its height into the eleansing liquid-this being of course repeated as the whel rotates.
The annexed figure shews a dash-wheel washingmachine for domestic purposes, ly Messrs Summerscales \& Sons, Kicighley, lorkshire. The names of its seprate parts are given in the roferences to the

Dash-wheel Washing-machine:
A, Drum inside of tub; S, Tub with cover removed: C, Tap to draw off water; D, Wooden rollers; E, Drip-buard; F, Mangling-boards; G, wbecls to remose the machine: 11 , Mangling-boards; G, Wbecls to remose tbe machine: II, clothes; h , Wheel thrown out of gear when anangling, in gear wben wasbing.
letters, but we may explain that the linen is put inside the drum or dash-wheel, A (a sparred eylinder), which has a reciprocating action, so that, after maling a complete revolution, it is reversed. The elothes are thus friven hoth ways through the water, and the quiek reversing action of the machine gives them a jerk or dash at each change of motion-the equivalent of the fall from a large dash-wheel. There are brushes on the inside of the drum, which are brought into play if the clothes are coarse and dirty, but are turned out of action if they are of a fine description. A machine of this kind, 26 inches wide, will take in two pair of sheets or a dozen of shirts at a time, and by turning the handle with a brisk motion, they will be washed in eight or ten minutes. The lather for linen is made up with one ponnd of soap, half a pound of soda, ant three quarts of water-the last being poured in boiling. Only about half as much soap, is required as for washing by hand.

The wringing is performed by passing the wet clothes through the wooden rollers I, D, , the upler one being temporarily coverel with flannel to protcet buttons, hooks and eyes, \&. from damage. The necessary pressure is obtained by means of the spring at J , and before turning the rollers, the washing-cylinder is thrown out of gear. With the aid of the mangling-boards, F, the elothes aro mangled by these same rollers.

WASIIING OF FEET-WASHLNGTON.

Wasking by Stean, though little known in England, is practised to a considerable extent in France. The Freach chemist, Chaptal, first brought the process to perfection. Besides a saving of fuel, soap, and manual labour to the extent of at least one hali, the wear and tear of the linen attending ruhbing and beating is avoided. The efficacy of steam in washing depends upon its penetrating and dissolving property. The elothes are first steepel in a ley of suda or potash, or in a mixture of alkali and soap, and then hong in a wooden vessel kept full of steam by a pipe commonicating with a boiler. On a small seale, a large eask, made air-tight, will answer, and a common tea-kettle will produee steam enongh. There must be an apurture to allow the air to escape when the steam first enters ; the air being expelled, the aperture is shat. In laalf an hour, the dint is sufficiently loosened to wash out with ease, and the linen is found to be extremely white.

W゙ASHING OF FEET (eallecl in Latin Pectilarium, and sumetimes Jfandatum, from the first word of the 'little chapter' in the serviee), one of the eeremonial observances of the Holy Week (q. v.) in the Roman Catholic Clurch. It forms part of the serviee of Holy Thursday, which day, from the word mandatum, is also ealled Manndy Thursday. The oricin of this observanee is extremely aneient. It is founded on the example and exhortation or precep, of our Lord in Joln xiii. $\bar{j}-14$; and is traceable in the writings of Justin, Tertullian, Ambrose, and Augustine, as well as in many of the early couneils. In some churches, bowever, or at least at some partienlar periods, the day fixed for the ceremonial was Good Friday, although for many eenturies it has miformly been assigned to Holy Thursday. It is neeessary, lowever, to distinguish from the ceremonial of the Holy Week, another washing of the feet (also called pedilarium), which, in the case of catechumens, preceded baptism, and which, in many ehurches, was aceompanied by a washing of the head, coptilutium, and took place on Yalm Sunday (q. - .), thenee called 'Dominica Captilawii.' To this nsage Sts Ambrose and Angustine distinetly refer. In the medieval and modern chureh, the washing of feet has generally followed the solemn mass of the day. In those ehurehes where the eeremony is still retained, the officiating bishop or 1 riest, wearing a cope, and girt with a towel, and attended by a deacon and subueacon, washes, dries, and hisses the right foot of a certain number of pilgrims, generally twelve, in memory of the twelve anostles; after which all the pilgrims are hospitably entertained, and served in person by the bishop, who distributes to each a dole in money or provisions, An appropriate serviee, eousisting of a gospel (Joln xiii. 1-14) sung by the deacon, a chapter ('Mandatum novmm') ehanted by the choir, and a jrayer by the bishop, aceompanies the evemonial. The washing of the pilgrims' fect on Holy Thursday forms a very striking part in the Holy W cek eeremonial as carried out not only by the pope, lut also by the hishops in most of the creat eathedrals abroad. It was also practised by kings and other royal and noble personages, even down to a very recent date.

WASHINGTON, George, Commander-in-chicf of the Continental forces in the war of the American revolution, and first President of the United States, was born in Westmoreland county, Virginia, February 2., 1732; son of Angustine Washington and his sceond wife, Mary Ball; a descendant of Joha Waskington, who emigrated to Virgiaia from England ahout I657, who was a grandson of John Washington, mayor of Northampton, and first
lay-proprietor of the Manor of Sulgrave, in Northamptonshire, who married a daughter of Shirly, Earl Ferrers. Lawrence, an elder lrother of John, studied at Oxford; John resided at one time at South Cave, Forkshire. Being royalists in the time of Cromwell, both emigrated, and beeame lauded proprictors and planters in Virginia, in the district between the Putowac and I:apphannock rivers. Angustine Washington died when his second son George was $1: 2$ jears old, leaving a large property to his widow and tive chillren. IIis edneation in the indifferent loeal schools exteuded only to reading, writing, arithmetic, book-keeping, and land-surreying, then an important aequisition. He grew tall, had great physical strength, and was fond of military and athletie exercises. At the age of 13 , he wrote ont, for his own use, 110 maxims of eivility and good lebaviour. In 1740, his elder brother, Captain Lawrence Wishington, served under Admiral Vernon in the expedition against Carthacena, and named his residence on the Potomae Mount Verwon, in honour of his commander, who offerel George a commission as midshipman on his ship, whieh, but for the oprosition of his mother, he would have gladly aceepted. He then spent his time chiefly with his brother at Monnt Vernon, and with Lord Fairfax, who owned great estates in the Virginia valley; and in 1748, he engaged to survey these wild territories for a doubloon a day, eamping ont for months in the forest, in peril from Indians and squatters. At the age of 19 , at the beginning of the Seven Years' War, he was appointed adjutant of the provincial troopis, with the rank of major; in 1751, he made his only sea voyage - a trip to Barhadoes-with his brother Lawrence, who died soon alter, and left George heir to his estates at Mount Veruon. At 22 (1\%j4), he commanded a reciment against the French, who had established themselves at Fort Duquesne (now Pittshurg), and hold Fort Necessity against superior numbers, until compelled to capitulate. The year following, when two regiments of regulars were led actainst Fort Duquesne by General Bradlock, W. voluntecrea ; and at the disastrous ambuseade of July ? 1750 , he was the only aide not killed or wounded. He had four bullets through his coat, and two horses were slut under him. The Indians believed that he bore a charmed life, and his countrymen were proud of his courage and conduet. Two thousand men were raised, and he was selectel to command them. In 1750, he maxtied Mrs Martha Custis, a wealthy widow, resigned his military appointments, and engared in the improrement of his estates, raisins wheat and tobaceo, and carrying on brick-yards and fisheries. He was, like nearly all Amerienos of property at that period, a slaveholder, and possessed at his death 1:2 slaves, whom he direeted, in his will, to be emancipated at the death of his wife (who survived him but three years), so that the negroes of the two estates. who had intermarried, might not be separated. He was for some years a member of the Virginia Assembly; and in 1754, thongh opposed to the ilea of independenee, and in favour of the union with Great britain so ardently desired by all British Americans, he was seady to fight, if necessary, for the constitutional rights of the eolonists. He spoke selelom and Lriefly ; but Patrick Henry declared him to be, 'for solid information and sound judgment, mquestionably the greatest man iu the assembly.' The news of the battle of Lexingtou (April 19, 1775) called the country to arms; and W., then a member of the Continental Congress, was elected Commander-inehief hy that body. He hastened to the camp at Cambridge; compelled the evacuation of Boston;

WASHINGTON.

was driven from N゙ew lorl; compelled to retreat across New Jersey; often defeated, and reluced to the most desjerate straits, by disaffection, lack of men and supplies, and even cahals amainst his authority; but by his calm courage, prudence, firmness, ad perseverance, he lorought the war, with the aid of powerful allies, to a successful termination; and (Dee. $2: 3,1783$), the independence of the thirteen colonies achieved, he retired from the army to Mount Vernon, which he had, during the eight years of the war, but once visited. Ife refused pay, but kept a minute account of his personal exprenses, which were reimbursed by Congress. In 1781, he erossed the Alleghanies to see his lands in Western Virginia, and planned the James River and Potomac Canals. The slares roted him by the state he gave to endow Washington College, at Lexington, Va.., and for a university. The Federation of States having failed to give an efficient government, W. proposed conventions for commercial purposes, which led to the Conrention of 1787 , of which he was a member, which formed the present federal constitution, considered by him as the ouly alternative to anarchy and civil war. Under this constitution he was chosen president. and inaugurated at New York, April 30, 1789. With 'Lady Washington,' so termed by the courtesy of the period, he presided over a federal court, far more formal and elegant than exists at this day, and made triumphal progresses in the north and south. During his second term of office, he was disgusted by the olposition of the Republiean party, under the leadership of Jefferson and liandolph, and refusing a third election, he issued, in 1796, his farewell addiress, and retired to Mount Vernon. In 1797, when there arose a difficulty with Frace, threatening hostilities, he was appointed licutenant-general and commander-in-chief. On the 12th of December 1799, he was exposed in the saddle, for several hours, to cold and snow, and attacked with acute laryngitis, for which he was repentedly and largely bled, but sunk rapidly, ani died, December 14. His last words were eharacteristic. He sail: 'I die hard; hut I am not afraid to go. I believed from my first attack that I should not survive it. My breath cannot last long.' A little later he said: 'I feel myself going. I thank you for your attentions; but I pray you to take no more troulle about me. Let me go off quietly: 1 cannot last long.' After some justruetions to his sceretary about his hurial, he beeame easier, felt his own pulse, and died without a struggle. He was mourned even by his enemies, and deserved the record: "First in peace, first in war, aud tirst in the hearts of his countrymen.' W. was 6 feet 2 inches hierh, with brown hair, blue eyes, large hean, and strong arms; a bold aod graceful rider and hunter; attentive to his personal appearance and dicnity; gracious and rentle, though at times cold and reserved ; childless, but very bappy in his domestie relations and his adopted children-nephews and mieces. His hest portraits are those by Stuart, and the statue by Ifoudin at lichmond. He was an exemplary member of the Chureh of England.-See art. United Srates; also Sparks's Life and Writings of Washinyton, 12 rols. Svo (Boston, 1834 1837); Life of Washington, by Chief-jnstice Marshall, 5 vols. Sro (Philad. 1S0z); Life of Hashinglon, by Washington Irving, 5 vols. Svo (New York, 1855-1859) ; \&c.

WA'SHINGTON, a territory of the U. S., in lat. $45^{\circ} 30^{\prime}-19^{\circ} \mathrm{N}$. ; long. $117^{\circ}-125^{\circ} \mathrm{W}$. ; boundel N. by British Columbia, E. by the territory of Idaho, S. by the Columbia River, which separates it from Oregon, W. by the Pacifie Ocean. Fstimated area, 71,000 square miles. Its capital is Olympia, at the
head of Puget Sound; Vancouver, Wallawalla, Caseade City, and other new towns, with a multitude of mining villages and camps, are scattered over the territory. The chicf rivers are the Columbia or Uregon, on the southern border, which also ilrains the whole territory east of the Cascado Mlountains; the Okonagan, its great northern branch, flowing from the lake of the same name in liritish Columbia; lewis or Snake liver, and mumerous streams emptying into Puget's Sound and the Pacilic. W. is rich in sounds and harbours. l'uget's Sound, from 1 to 4 miles wide, and S fathoms or znore in depth, opens ont of the Strait of Juan de Fuca, penetrating 100 miles into the heart of the country, and with its bays and islands forming ono of the finest collections of harbours in the world. Hood's Canal, a narrower chamel on the west, extends 60 miles. Belliagham, on the eastern shore of the Gulf of Georgia, has a tide of 20 feet. There are also large and deep harbours, suitable for naval stations, on the Strait of Juan de Fuca. The great range of Cascade Mountains, a continuation of the Sierra Nevala, passes through the centre of the territory from north to south, about 100 miles from the coast. Its chief summits are Mount Baker, lat. $45^{\circ} 44^{\prime}, 11,200$ feet, an active volcano; Mount lainier, lat. $46^{\circ} 40^{\circ}, 12,330$ feet, an extinet voleano; Mount St I Ielen, 9550 feet, nearly extinet; Mount Adams, 9000 feet, entirely extinct. East of the Cascade MEountains, the soil is thin, roeky, dry, and sterile, lut with fertile valleys; on the west, and especially around Puget's Saund, the soil is rich, and the country covered with a dense evergreen forest. West of the Cascades, the formation is of tertiary sandstone; near the Somur, the alluvium has a depth of 100 fcet. Lignite, or tertiary coal, is found in many places. The monntains are granitic, and near Monnt Adams is a large tield of lava. Last of the Caseade Mountains, the formations are iorneous and metamorphic, with trap and voleanic scorite. There are rich gold-diggings in the north-castern portion. The climate in the western distriet is almost preeisely that of England, with a rainfall of 53 inches; east of the mountains, there is but a quarter of the rainfall, and extremes of heat and cohl. The timber in the westeru district is of great richness and abundance; the red fir aud yellow fir (Alies Douglasii and A. grandis), growing su0 feet high, and 6 to S feet in diameter. The vegetable and animal productions are the samo as in Oregon. Fish are very ahundant, a dozen species of sahnon filling all the streams, with halibut, cond, berrings, and sardines in great quantities. The watcr and mountain scenery is amonis the fincst on the coutinent. The chicf product is timber, of which $20,000,000$ feet were exported in 1S60. Steam saw-midls on P'uget's Sound and IIool's Cinal saw $40,000,000$ feet per ammum. Wheat, harley, oats, potatoes, and the hardier fruits, are produced in abuncance. This territory was discovered ly Juan de Fuca, a Greek, in 1592; visited ly a Spanish navigator in 1755 , and three years aiter by Captain Cook. In 17S7, Berkeley, an Englishman, re-discovered the Strait of Fuca, which had been missed by others. Captain Gray, an American, visited the coast in 1791; and the Enghish Captain Vancouver in 1792; Captains Lewis and Clark explored the interior during the presidency of Jefferson, and settlements were made by the Hudson's Lay Company in 1828 ; in 1845, American settlers cntered the territory, then a part of Oregon. Wars with the lndians, in 1855 and 1555 , retarded immigration, but in the latter year, 15,000 persons were attracted by the discoveries of gold-diggings at Fraser's River, many of whom became permanent settlers. The white pop.

WASHINGTON CITI-WASP.

in 1860 was 11,504; Indians variously estimated at 10,000 to 30,000 .*

WASHINGTON CITY, the seat of the government of the U. S. of America, is in the district of Columbia, on the leit bank of the Potomac River, between Anacostia River and Rock Creek, which separates it from Georgetown, lat. $35^{\circ} 51^{\prime} 20^{\prime \prime}$ N., long. $77^{\circ} 0^{\prime} 15^{\prime \prime} \mathrm{W} ., 39$ miles sonth-west of Baltimore, 136 from Philadelphia, 226 from New York, 120 north-east of Fichmond, 1203 from New. Orleans, 2000 from San l'ranciseo, 160 above the mouth of the Potomac, and 300 from the Capes of the Chesapeake. The Potomac at W. is one mile wide, and of suffcient depth for the largest vessels. The eity was laid out under the direction of General Washington, on a handsome scale for the national capital, on a platean 40 feet above the river, with several elevations, with streets from 00 to 120 feet wide, and 20
avenues, 130 to 160 feet. The principal edifices are the Capitol ; the White Honse, residence of the president; latent Office ; General Post-office ; Treasury, War, and Navy Departments; Smithsonian Institute ($\mathfrak{q} . \mathrm{v}$.), \&c. The Capitol, on the summit of a gentle clevation, in a pleasure-ground of 35 acres, was commenced in 1793 , burnt by British troons in 1814, completed in $1 \$ 25$, and extended by the addition of two spacious wings in 1851 ; the ceatre is 352 feet by lul, with a lofty dome; the wings, 142 by 233 feet; the entire building being 751 feet long, 324 deep, covering $3 \frac{1}{2}$ acres-the centre of white sandstone, the mings white marble. The Rotunda, under the dorae, contains several national pictures by 'Trumbull, Weir, Vanderlyn, Powell, Chapman, \&c. The Senate Chamber is a noble ball, 112 by 82 feet, with galleries for 1000 spectators; the Hall of Renresentatives is 139 by 93 feet, with

The Capitol at Washington.
gallerics for 1200. The old Senate and Representative Chambers, used before the enlargement, are beautiful rooms. The Congressional Library is 91 by 34 feet, with 70,000 vols., besides 50,000 vols. of documents. The Capitol, containing also मumerous committee-rooms and offices, is highly ornamented with rich marbles, frescoes, and groupls of statuary. The buildings of the Treasury and State Departmeats, l'ust-ofinee, \&c., are massive and spacious. The saloons of the Fatent Olfice, filled with models, are 1300 feet in length. A monument to Washington, intended to be 600 feet high, is one-third huilt. The city also contains numerous large hotels, 50 churches, a lioman Catholic and a Baptist college, three daily and several weekly newspapers, academies, schools, \&e. The public buildings alone, however, are spacious and costly, the city in general having a scattered and mean appearance. During the War of Secession, from its exposed position, it was threatened with capture, and was surrounderl by fortifications, and converted into an entrenched camp. Pop. in $1560,61,11 S$.

WA'SHlTA, a river of the U. S. of America, rises on the western borders of Arkansas, and runs east and south-east throngh Louisiana, emptying into the Red River, 30 miles from its month ; it is 500 miles long, and navigable to Camden, 300 . Its chief branches are the Saline River, La Fourche, Tensas, and Little Missouri.

* The eastern and larger portion of the W. Territory of 1860 , is now included in the newly erected territorics of Idaho and Montana

WASHOE SILVER MINES, a rich deposit of silicenus argentiferous galena, discovered in 1559 in a range of hills on the cast side of the Sierra Nevada, on the borders of California and Nevada Territory, near the sources of Carson's River, 160 miles east by north of Sacramento. The ore 1 roduces as much as 2000 dollars to the ton, and is largely exported to England. The discorery of these mines caused a great excitement in California, and a large emigra. tion.

WASP (I'espa), a Linnean genus of insects, now forming the family \mathbf{V}^{\prime} espider, a very numerous and widely distributed family, of the order Hymenoptera and section Aculcata. They are distinguished from all the other IIymenoptera, by their wings, when at rest, being folded throughout their entire length. The wings of all the wasps exhibit a similar pattern of nervation, with one marginal and three submarginal cells, and an incomplete terminal submarginal cell. Their antenna are usually angled, and somewhat club-shaped at the extremity. The maxille are long and compressed; there are glands at the extremity of the labrum; the tongue is trifid, its tips laciniated. The body is naked, or but slightly laiary. The general appearance resembles that of bees; the colour is usually black, with yellow markings. The division between the thorax and abdomen is very deep, the abdomen often stalked. The legs are not fitted for collecting pollea, like those of bees. The females and neuters lave stings, generally more formidable than those of bees. The larre have tubereles instead of fect. The wasps differ very widely in their habits, some being solitary, the

WASTE-WASTE LANDS.

family Lumenida of some entomologists; others social, to which the name l^{\prime} cspide is sometimes restricted. Neuters are only found among the social wasps. Some of the solitary wasps make curious burrows in sand, or construct tubes of eartly paste on the sides of walls, in which they form cells for their egas, at the same time placing there a store of food for the larve, some of them using for this purpose perfect insects, others eaterpillars, which are stung so as tu be rendered incapable of motion without being killed. Others make little earthen eells on the stems of plants, and store in them a little honey for their young. The social wasps have various modes of construeting their nests, which are sometimes formed in exenvations in the ground, sometimes attrached to walls, boughs of trecs, \&e., and formed of a paper-like, or sometimes a paste-board-like substauce, produced by mixing into a pulp, with their saliva, small partieles of woody fibre, torn by their broad and powerful mandibles from gate-posts, palings, the bask of trees, \&c. Great diversities are to be seen in the arrangement of the combs within the nest. The combs are made of a substance similar to the outer covering of the nest, but generally thicker and firmer. As the nest is enlarged, new paper is made for the purpose, the whole nest heing enclosed in the last-made envelope, and the inner ones, which sufficed for its former size, are removed to give place to eombs. Several inner envelopes are generally fouml in a W.'s nust, so that paper-making must be a great part of the industry of these insects. The nests of the wasps of tropical countries are often very large, sometimes six feet long, and the communities rery mumerons. In colder regions, the increase of the community and of the nest is irrested by the approach of winter, when the males and the neuters due; but a few of the females survive, passing the winter in it torpid state in some retreat, and found new communities in spring. In a community of wasps there are miny perfeet females-not a single queen, as in the case of hive bees. Wasps in their perfect state feed very

Nests of Various species of Wasps: 1, Vespa crabro; 2, V. Ifolsatica; 3, Y. vulgaris.
indiscriminately on a great variety of animal and vegetable substances, as insects, Hesh, fruit, sugar, \&e. Grapes or gooseberries, espiceially if over-ripe, are often found to contain a W . in the interior. Wasps often invade bee-hives and steal honey. There is a Brazilian species (Myropetra scutcllaris) which stores up honey like hees. Wasps way be killed by
pouring lot water on their nests; but more ensily hy the rapour of burning sulphur, when the nests are not in the ground; or ether or ehloroform may le used to stupify the wasps, so that the nest may be safuly destroyed. The largest British speeies of W. is the Hornet ((q. v.), found only in the south of England. The most abondant species, diffused over all parts of the eountry, are I'espe vulperis and J^{r}. mudia. The former is about cight Jines long. The front of the head is yellow, with a black centre; there are many yellow spots on the thorax, and a yellow band with black points at the posterior margin of cach ring of the abdomen; the rest is black. 1. media is very similar, but rather Jarger. 1. vulgaris makes its nest in the grouml; 1 . media suspends it generally to the branches of trees, but sometimes to the projections of walls.
WASTE, in English Law, has several meanings. (1.) It means a common belonging to a manor, and by analogy is often applied to preces of land of no great value, lying at the sides of lighways or the seashore. The presumption is that a strip of land adjoining a highway belongs to the owner of the land next to it. (थ.) Waste also means the spuil or destruetion to houses, gardeus, trees, or other corporeal hereditaments, coumitted by tenants for life or for years, to the injury of the remainderman or reversioner. Thus, he who has a life estate, or an estate for years, in a house or land, cannot change the nature of things, as by turning meadow into arable, nor wood into pasture, though he may better it thing of the same kind, is by draining the meadow, \&c. The alteration caused by thus diminishing an inheritauce is ealled waste, and its charaeteristies are to diminish the value of the inheritance, or to increase the burden upou it, or to impair the evidence of title. Waste is either voluntary or permissive. The former consists in the commission of aets which the temant has no authority to do-such as pulling down buildings, felling timber, or opening mines. Permissive waste arises from the onission of aets which it is the tenant's duty to do-as, for example, sullering buildings to go to deeay ly wrongfully negleeting to repair them. There is, however, incident to every estate for life or years, the right to take estoversthat is, so much wood, stone, $\& \mathrm{ce}$., as is required for use on the tenemacnt, for repairs, hushandry, and the like purposes. It is a common practice, in family settlemeuts, to provide that, in addition to this pivilege, the estates of the tenants for lives shall be without impeachment for waste. The effect of this clause is to enable the tenant to take timber, minerals, \&c., severed by himself or others during the continuance of his estate. But even where the tenant holds without imperehment of waste, he is not eutitled to cut down ornamental timber; and if he do so, a court of equity will restrain him by injunction. Wherever the tenant is committing acts of a eharaeter especially destruetive to the inheritance, or still more, aets of wanton or malicious miselrief, the Court of Chancery holds that his legal power to commit waste is leing used unconscientiously, and will restrain him.

WASTE LANDS, accorling to the general use of the term, are uneultivated and unprofitable tracts in populous and eultivated countries. The term waste lands is not employed with r eference to land not reduced to cultivation in countries only partially settled. There is a large extent of waste lands even in the Eritish Islands. Of the $74,000,000$ aeres which they contain, only about $42,000,000$ are arable land and improved pasture ; $2,000,000$ acres are oceupied with woods and plantations; 7,000,000 acres in Scotland consist of shecp-pasture, generally at a considerable elevation, and little improved by art;
$8,000,000$ acres in Ireland are unenclosed pasture, generally quite unimproved; $3,000,000$ acres are mountain and bog; and $12,000,000$ acres consist of nnimproved and very unproductive land of other kinds.
The improvement of waste lands is very much a question of expense. It is often more profitable to improve lands already cultivated, and to bring them into a higher state of cultivation and productiveness, than to reclaim waste lands ; in attempting which, much money has often been lost. Nuch of the cultivated land of Britain is far from having been urought to the highest state of cultivation of which it is evidently capable, or to a state equal to that of the best cultivated lands of similar soil and situation. In many instances, however, waste lands have recently been improved with great adrantage, and it seems probable that no small part of the waste lands of the country are capable of profitable improvement. The process must ofteu be slow and gradual, especially where the soil is maturally very poor, as even the addition of large quantities of manure to very poor soils will not render them fertile, lunt on the contrary will be followed by a sterility greater than before. The quantity of gunno which a rich soil would gratcfully receive, will destroy every vestige of vegetation on a very poor soil.
The waste lands of Britain are of rery varions character. Some of them are bogs, already sufficiently noticed in the article Bog. Others are marshes and fens, generally very near the level of the sea, and often within the reach of its tides, chiefly in the eastern counties of England. See Bedford Level. Of these, a great extent has been reclaimed, and has become very productive; mnch still remaining, however, to be done. There are also extensive moors both in England and in Scotland, often of very poor soil, and often also at such an elevation above the lerel of the sea, as to render profitable agriculture hopeless. This is not the case with all the moors, and it is sometimes possible to effect great improrement by drainage ; so that land, formerly almost worthless, may be converted into good pasture. In many places, the heath has been extir1ated, and the moorland changed into good pasture, and even into good arable land. It is sometimes found very profitable to break up such land, even at very considerable elevations, and afterwards to lay it down in pasture, the produce being much greater than it was before. Even in the most elevated tracts, drainage is beneficial ; although it must always be considered whether or not drainage will pay. The highest sheep-pastures of the south of Scotland have been greatly improved by a kind of superficial drainage (shcep-druins), consisting of mere open channels for water ; but in the greater altitudes of the Highlands, and' amidst their more r.ngged steeps, even this is out of the question. In some cases, chiefly of the more level moorlands, much improvement is effected by paring and burning, the surface being pared off by the breast-plough or paring-spade, and burued, generally in heaps, of which the ashes are spread mon the soil. The application of lime is of great beuefit in many cases, as is also that of chalk and of marl, but the expense must always be considered, and many tracts of waste lands are so situated that the application of such manures is impossible. Railways have rendered the reclamation of waste lands protitable in many districts, in which formerly it would not have been so.-The chalk downs of the South of England may, in great part, almost be considered as waste lands, although used for sheep pasture; but they have been found capable of great improvement, although in a slow and gradual manner, by tillage,

44
and the application of manures.-Sands near the sea-shore are fixed by sowing certain grasses (see Ammopirla), and are capable of further improvement by cultivation and the application of manurcs ; particularly where the sand is in considerable part calcareous. The most barren and hopeless sands are those which are almost entirely siliceous. An experiment, on a very large scale, is now in process of being made, on a sand of this kind, on the coast of Essex, by applying to it the sewage of London. Very different opinions have been expressad by scientific men, as to the probable result of the experiment. Liebig deoms the siliceous sand incapable of profiting by the rich manure poured npon it. The experiment is one of importance, not only as to the rcclamation of waste lands, but as to the great question of the disposal of the sewage of towns.

WASTING PALSY is one of the terms applied to the disease described in this work under its old name of Tabes Doesadis.

WATCH, a small portalile machine for measming time, the construction of which is essentially the same as that of a clock (see Horology), except that the moving power is obtained from the clastic force of a coiled spring instend of from a weight, and the movement regulated, so as to be isochronous, by a Balance and Balance-spring (q. v.) instead of a pendulum. The going part of a watch consists of a train of wheels and pinions, kept in motion by a spring, called the main-spring; the last and fastest wheel of the train, the scape-wheel or balance-wheel, acting so as to keep in vibratory motion a balance whose movement, again-which is made isochronous by the action of another spring called the balance-spring-regulates to a uniform rate the revolution of the scape-wheel, and consequently the motion of the rest of the tram, and the uncoiling of the main-suring.
The main-spring is a thin riblon of steel coilcd in a barrel. The inner end of it is fixed to a strong spindle, the axis or arbor of the barrel, around which it is coilech, and the onter end is fixed to the inside of the barrel. By its tendency to uncdil itsclf, the spring sets the barrel in motion, and it produces as many revolt. tions of the barrel as it makes turus itself in unwinding (fig. 1). As its elastic force is greater when it is tightly coiled than

Fig. 1. when it has to some extent unwonnd itself, the spring, if its force were applied without modification to the watch-train, would act upon it unequally, the power exerted diminishing as the spring uncoilerl; so much so, that the watch conld not go uniformly throughout the day, though it might keep time from one day to another. A piece of machinery, called a fusce, is employed to correct the variations in the force of the spring, and equalise the power exertcd upon the train. The fusee is a cone with a spiral groove, connected with the barrel which contains the mainspring by a chain, one end of which is fixed at the broalest part of the conc, and the other end to the barrel (fig. 2). The harrel moves the fusee by means of the chain, which, as it runs off the sides of the fusce, is coiled upon the outside of the barrel. In winding a watch the key is placed on the axis of the fusee, and by the same movement the main-spring is coiled around its spindle, and the chain wound oft the barrel, to cover the cone of the fusee. So when the spring is all coiled up, and its force npon the barrel is greatest, the chain is acting at the small end of

Watcli.

the fusee, and its leverage upon the fnsee is least is the force of the spring diminishes, the chain having gat to a broaler part of the fusce, the leverage is increased; and the grooving of the fusce being

Fio. 2.
when perfect, arranged so that a section of the fusce along its axis would present two hyperbobas placed back to back, secures that the foree of the spring, morlified Ly the leverage of the chain, shall [roduce a uniform motion of the fusee. From the fusee this motion is communicated to the watch-train, the first wheel of the train-called the fusec-wheel ar the great wheel-being set upen the fusee. The fusee is introduced in ahoost all English watehes; Lut a great proportion of foreign watches, and most Freuch spring clocks, have no fusce, and have the great wheel fixed on ta the barrel. Accurate time-keening is not to be looked for froms such clocks or watches; but it is said that mayy of the main-springs made upon the continent are so skilfully contrived, that the force is pretty constant during the whole time of unwinding.

Between the train of wheels and pininns in a watch and that of a clock, until we come to the escapement, there is no difference, except that there is one more wheel and pinion in the wateh-train than in the clack-train; the reason of which is, that the scape-wheel of a watch revolves, not fike that of a clock, in a minnte, but usually in about six seconds, making necessary an additional wheel to rerolve in a minute and carry the seconds hand. A great rariety of watch escapements are in use. The oldest, which is now going ont of use, is the vertical escapement. It exactly corresponds to the crown-wheel escapement in clocks (see Horologr). The accompanying figure shews a watchtrain with this escapement. It may be useful also as ivdicating, in a geweral way, the arrangement of the wheel-work in a watch (fig. 3). The mainspring contained in the barrel B , sets in motion

Fio. 3.
the barrel, which, by means of the chain c, moves at a uniform rate the fusee F , along with which turus the fusee-wheel W, the first or great wheel of the watch-train. It will be easily seen how, from the great wheel, mation is communicated successively to the centre-pinion D, and the centrewheel D^{\prime} (which turn in an hour); to the third-wheel pinion, E, avd the third wheel, which is upon the same arbor, E^{\prime}; and to the fourth or contrate-whecl pinion G, and the contrate-wheel G^{\prime}. The upright teeth of the last-named wheel move the balancewheel pinion H, and with it the balance-wheel or scape-wheel H^{\prime}, which is fixed upon its arbor. The seape-wheel (and in this escapement the contratewheel also) is what is called, from its shape, a crownwheel. Upan the arbor ar verge of the balance K, are two pallets, p, p, at a distance from each other, equal to the dianueter of the scape-wheel, and so

1hacel that, as the scape-wheel revolves, its tecth give them altoruately an impulse in different cireetions, which keeps up the vilmatory motion of the balance. The balance is made to vibrate isachrononsly by the action of the lbalance-spring (q. v.) ; and its vibration regulates the cseape of the teeth of the seaje-whect, and so the motion of the whole train, exactly as that of the pendulum does in an ordinary elock. The vertieal escapement is liable, though in a less degree, to the same oljjection as tho oht crowa-whecl and the crutch or anchor escapements in clocks. There is a recuil of the scape- wheel atter une of its teeth has been stopped by a pallet, which interferes more or less with the accuracy and uniformity of the motion of the train. See llonology.

Almost immediately after the invention of the halance-spring, attempts began to be made to intraduce an escapement which would produce greater acumacy than the vertical escapement. Hooke, Muygens, IFatefeuille, aml Tompion introduced new principles, cach of which has since been successfully applied, thongh they all, from imperfect execution, failed at the time. The first real inprovement was made by Geurge Graham, the inventor of the dead escapement in clocks (fig. 4). This is calleal the horizontal escaprement; it was introduced in the berinuing of the last century, and it is still the escape-

Fig. 4. meat used in most foreign watches. The impulse is given to a hollow cut in the cylindrical axis of the balance, by tecth of a peculiar form projecting from a horizontal crown-whecl. Other forms of escapement in high estimation are the lever escapement, ariginally invented by Berthond, improvel by Mudge; the duplex escapement, the principle invented by Hooke, the constriction perfected by Tyrer; and the dutached escapement of Berthoud, improved by Amold and Earnshaw. The last-mentioned is that which is employed is marine chronameters and in pocket-chronometers, as watches made in all respects like chronomuters are called. The lever escapement is that which is used in most Euglish watches. In it the seape-wheel and pallets are exactly the same as in the dead escapement in clocks. See Horology. The pallets, p, p (fig. 5) are set on a lever which turns on their arhor, A; and there is a pin, B, in a sma!l disc on the verge or arhor of the balance, which warks into a notch at the end of the lever. The pin

Fig. 5. and notch are so adjusted, that when a toath of the scape-wheel has got free, the pin slips out of the wotch, and the balance is detached from the lever during the remainder of its swing; whence the name delached lever escapement, origiaally applied to this arrangement. On the balance returning, the pin again enters the netch, maving the lever just enongh to send the tooth mext in order to escape from the dead face of the pallet on to the impulse face; then the scape-wheef acts upou the lever and balance; the tooth escapes, and anuther drops upou the dead face

WATCH.

of the pallet, the pin at the same time passing out of the notch in the other direction, leaving the balance again free. This arrangement is found to give great accurncy and steadiness of performance. To prerent the teeth from slipping away while the balance is free, the faces of the pallets are slightly undercut, and this makes them secure while at rest; moreover, there is a pin on the lever which mores through a notch on the balance disc, while the pin, B , mores through the notch in the lever, which is so adjusted as to guard against the lever moring and the teeth escaping, while the balance is free.

In watches, even more than in clocks, variations of temperature, unless provided for, produce variations in the rate of going, the increase or diminution of the temperature affecting to some extent the moment of inertia of the balance, and to a great cxtent the elastic force of the balance-spring. A rise in the temperature makes the balance expand, and therefore augments its moment of inertia; it adds to the length of the spring, and thereby diminishes its elasticity, the elastic force of a spring varying inversely as the length; and the time of ribration of the balance, which depends upon the moment of inertia directly, and upon the elastic force of the spring inversely, is increased- the watch, that is, goes more slowly-in consequence botly of the increase of the inertia and of the diminution of the elastic force of the spring. A fall in the temperature is attended by opposite results, the watch going more rapidy than before. A watch without a compensated balance would vary very much more than a clock without a compensation pendulum, but that being usually carried in the waistcoat pocket, it is kept at a pretty uniform temperature. To invent a satisfactory compensation Was at one time the great problem for watchmakers. The compensation can obviously be made in either of two ways-by an expedient for shortening the effective length of the balance-spring as the temperature rises, so as to increase the clastic force of the spring; or by an expedient for diminishing the moment of inertia, of the balance as the temperature rises, so as to correspond to the diminution of the force of the spring. The first method was that made use of by John Harrison (q. r.), who first succeeded in making a chronometer capable of measuring time accurately in different temperatures; but an adaptation of the other method, invented about

Fig. 6. eighty years ago by Earnshaw, is that which is always employed now (fig. 6) : t a ℓ^{\prime} is the main bar of the balance; and $t b, t^{\prime} b^{\prime}$ are tro compound bars, of which the outer part is of brass and the inner part of steel, carrying weights, b, b^{\prime}, which may be screwed on at different places. The brass bar expands more with heat, and contracts more with cold than the steel bar; therefore, as the temperature rises, the bars, with their weights, bend inwards, and so the moment of inertia of the balance is diminished; as it falls, they bend outwards, and the moment of inertia is increased ; and of course the dimination or the increase must be made exactly to correspond to the diminution or increase in the force of the spring.

The chronometer is just a large watch fitted with
all the contrivances which experience has shemn to be conducise to accurate time-keeping-e. g., the cylindrical talance-spring, the detached escapement, and the compensation-balance. As a ratch mhich will keep time in one position will often not do so equally well in another, marine chronometers are almays set lorizontally in a box in Gimbals (q. r), an arrangement which keeps the chronometer horizontal, whatever the motion of the ressel.

The great importance of an accurate portable time-keeper at sea is for determining the Longitude (q. 5.). This use mas first distinctly pointed out by Sir Isaac Newton. A committee of the House of Commons, of whom this philosopher formed one, having been appointed on the 11th June 1714, to consider the question of encouragement for the invention of means for finding the longitude, the result of their meetings was a memorial containin.r an explanation of the different means proper for ascertaining the longitude, and recommending encouragement for the constrnction of chronometers as the best means of ascertaining it. An act of parliament was then passed, offering a reward for this purpose.

The first chronometer used at sea was inrented by John Harrison. After many years of study it Was completed in 1736. After several further trials and improvements, and two trial royages to America, undertaken for the satisfaction of the commissioners, the last of which was cormpleted on the 18th September 1764, the reward of $£ 20,000$ was finally awarded to Harrison.

Somewhat later than this, several excellent chronometers were produced in France by Berthoul and Le Roy, to the latter of whom was arrarded the prize by the Académie Royale des Sciences. Progress was still made in England by Arnold, Earnshaw (the inventor of the compensation still in use), and Mudge, to whom prizes were awarded by the Board of Longitude, and under whom a perfection nearly equal to that of the present day was obtained. The subsequent progress of watch-making has heen chiefly directed to the construction of pocket. watches on the principle of marine chronometers, or to the combination of accuracy with convenient portability. The adjusted lerer watch is now made in Clerkenwell with a degree of accuracy which enables the performance to be warranted within an error of one second a day.

While the compensation of a chronometer can nerer be made perfectly accurate for all degrees of temperature, there are almays two temperatures at which a well-constructed chronometer will go with perfect accuracy. The explanation of this lies in the fact that while the variations of elastic force in the spring go on uniformly in proportion to the rise or fall of the temperature, the inertia of the halance cannot be made to vary as it should do, in exact correspondence to them insersely. The variation of the elastic force may be represented by a straight line inclined at some angle to a straight line divided into degrees of temperature; the corresponding changes of the moment of inertia will be represented by a curre, and this curve can coincide with the straight line representing the variations of elastic force only at two points, corresponding to two different temperatures. The particular points in the case of any cbronometer are matter of adjustment. For instance, one chronometer may le made to go accurately in a temperature of 40°, and also in a temperature of SO°, at other temperatures being not so accurate; another chronometer to go accurately at a temperature of 20° and of 60°. It is manifest that the former would be adapted to royages in a warmer, the latter to voyages in a colder climate. Apparatus for testing chronometers have been long in use in the observatories at Greenwich
mat Liverpool. In the latter, there is now an axtensive apparatus for this purpose, deviscd ly the ingenions astronomer, Mr Hartnup. In a room which is iselated from noise and changes of temperature, the chronometers are arraigel on a frame under a glass case, so contrived that they may lee subjected in turn to any piven degree of temperature. The rate of each under the different temperatures is oheervel and noted, and the chronometers reristered accorelingly. These observations are uf the greatest importance both to ship-eaptains and instrument-makers, who can have their instruments subjectel to the uliservations na prament of a fec.

It may be stated that the main-spring had heen employed as the moving force of time-keepers for ahout is century before the iuvention of the balaucesuring ; but very little is known about the action of these forerumers of the watch. A watch without a baiance-spring must have been a very rude and untrustworthy contrivance. The honour of tirst proposing the balance-spring is mubulatedly slue to our comitryman, Dr Hooke, though Huygens and De ILantcfenille also invented it ind pendently much about the same time.-See Rudimentury T'rut se on Clocks and W'athes, by E. B. Denison, C.C.; Wood's Curiosities of Clocks and IVatches.

WATCH, on Shipboard, a division of the erew into two, or if it he a large crew, intu three, scetions; that one set of men may liave charge of the vessel while the others rest. The day and night are divided into watches of four hours each, exeept the jeriod from 4 to 8 r.m., which is tivilet into two cloy-reulches of two hours' duration each. The object of the dogwatehes is to prevent the same men being always on duty at the same hours.

WATCIING AND WARDIN(f, in Scotels Law, mean the services rendered hy one who hohls lanels moder burstare tcume. Theod services are merely numinal.
WATCH-InATES, in Englant, are the rates authorised to be levied in a prarish or bornugh nobler the Watching and lighting Act, $\boldsymbol{B}^{\text {and }} \cdot \frac{1}{1}$ Will. IV. c. 90 , for the purnuse of watehing aml lighting the parish.
WATER (symb. IJO, * equir. n, spec. grav. 1), in a state of purity, at the ordiuary temperature of the air, is a clear, colourless, t trausparent liquil, perfectly neutral in its reaction, aul levoid of taste or smell. At a temperature bolow 32 it freezes, crystallising in varions forms derived from the rhombohodron anl six-siden prism. See ICE; Snow; Fesing and Frbizing loonts; Iffat. It appears from the resenrehes of Arago and bresucl, that notwithstauding the grarhal dilatation of water below 39°, its refractive power on light con-

* During the last few years Gerhardt's views as to the nccessity of doubling the atomic weights of oxygen, carbon, sulphur, and a few other of the clements have been gradually gaining ground. Thus, the connlining numbers of uxygen, carbon, and sulphur, instead of being 8,6 , and 16 , are now fixel at 16,12 , and 33 , and the corresponding symbols are indicated by a lurizontal bar, whicla doubles the valuc of the symbol; $\boldsymbol{\theta} \boldsymbol{\in}$, and SS being writter in place of O, C, and S . According to these views, the symbol for an cquivalent of water is $11, \forall$, or $H, \%$, in place of $H O$, and the combining number is 18 in place of 9 (sce Cmemistra, in supplement).
\dagger Althongh water is colourless in small lulk, it is llue like the atmosphere when viewed in mass. This is seen in the deep ultramarine tint of the lakes of Switzerland and other A_{p} pine countries, and in the rivers issuing from them; and in the water in the fissures and caverns found in the ice of the glaciers, which, except on the surface, is extremely pure and transparent; and the decp blue tint of the ocean is doubtless due to the water itself, rather than to the salts dissolved in it.

81
tinues to increase regularly, as though it contracted. Its density at 60 , and at the level of the sea, is taken at 1.(000), and forms the stamelard of comparison for all solids and lipuids, hyidrogen heing similarly taken as the standard of comparisn for gases ame vapors. Distilled water is $\$ 15$ times heaviur than air; a culnic inch weighs, in air at $6 \mathbf{2 a}^{\circ}$, with the harometer at 80 inclues, 250.4 grains, and in rucuo, $\because 59.7=2$ grans, the grain being róg of
 For all practical purposes, water may be consilered as incumpressihle; but very accurate experiments have shewn that it cloes yich to a slight extent when the pressure employed is very great; the dimimution of volume for cach atmosilhere of pessure being about 51-millionths of the whole. -Sce Miller's "hemical Physics, 3d wi. 1', 41. Water evaporates at all temuratures, and under the ordinary pressure of the atmosplert, hoils at 2120 , passing off in the form of stean, which, in its state of greatest density at 212°, compared with air at the same temperature, and with in equal elastic forec, has a spuce grav, of 0.62%. In this condition it may be represented as contaning, in every two volumes, two volumes of hydrogen and one volume of oxygen. See Buhnic, Stelm, Viador.

Water is the most universal solvent with which the chemist is acquaimed, and its operations in this respect are equally apparent, althongh on very different scales, on the surface of the glole ame in the laboratory. This solvent action is nsually mneh inereased ly heat, so that a hot aqueons saturated solution deposits a portion of the dissolvel matter on cooling. Nome substances are su soluble in water, that they extract its vapour from the atmosphere, and elissolve themselves in it. Moreover, When water is heatel in a strong closed vessel to a temperature above that of the ordinary builingpoint, $21 \ddot{2}^{\prime \prime}$, its solvent powers are much increased. Picees of plate and crown glass, actel mon for four months hy water at 300 (in is steam-boiler), were foum hy the late Professor Thrner to be reduced to a white mass of silica, clestitute of alkali; while st:ulactites of siliceons matter, more than an inch in length, hnog from the little wire eage which enclosed the glass-an experiment illustrating the action which ghes on in the Geyser springs of Icelanl, which deposit siliccons sinter. All gases are soluble in water, but water clissolves very unequal quantities of dillerent gases, and very mequal quatities of the same gas at dilferent tempratures. Some gases are so extremely soluble in this fluid, that it is necessary to colleet them over mereury. For example, at $32^{\circ}, 1$ volume of water dissolves some-
 exactly rith of its volume of mitrogen, while it dissolves 506 and 1050 volumes of hydrochloric acid ancl ammonia gases: and while at 32° water dissolves 1.8 times its volmme of carbonic acir, it dissolves only half that volume of the gas at 60 .

Water enters into combination with acils, bases, and salts. When an acid has once been allowed to combine with water, the latter can seldom be entirely remover unless by the intervention of a powerful hase, which displaces the water, and allows of its reonoval ly heat. For example, if sulphuric acid be largely diluted with water, and exposed to heat, watery vapour aloue at tirst passes off; but as the temperature is raised to about 600°, a puint is reached at which acil and water distil oyer together. The liquith at this stage of concentration is found to lee composed of one equivalent of acid and one of water $\left(\mathrm{HO}, \mathrm{SO}_{3}\right)$. The further separation of the water can only be effected by the addition of a base, as potash, oxide of Jead, \&c. Water which, as in this case, supplies the place of a

WATER.

base, is called basic water, and the compound is called a hydrate, or is said to be hychrated. Similarly, water combines with strong bases, such as potash and soda, and beat can only succeed in reclucing a mixture of potash and water to a condition represented hy one equivalent of each (FO, KO) ; and this last equivalent of water can only be removed by the addition of an aeid. In this case, the water in combination with the base acts the part of an acid. These compouncls also are hydrates. In these cases of acids and bases, the one equivalent of water cannot be removed without completely altering the chemical character of the body. (Sce, for instance, in the article Sulphuric Acid, the difference between the properties of hydrated sulphurie acid and sulphuric anhydride.) In the case of many salts, however, a certain guantity of the water entering, so to speak, loosely into their com1,nsition may be expelled by heat withont altering the properties of the salt. The water capable of being thins got rid of is called water of erystallisation, and is taken up by the salt in the act of crystallising. The form of the salt depends mon this water of erystallisation. In chemical formule, this variety of water is represented by Aq instead of by HO . For example, in the formula for rhombic phospliate of soda- $2 \mathrm{NaO}, \mathrm{HO}, \mathrm{PO}_{5}+24 \mathrm{Aq}$ - the HO remresents an equivalent of basic water, while otidq represents 21 equivalents of water of crystallisation.

It is less than a century since the uncient view, that water was one of the four elements, has ceased to be believed in. It is now known that it is a compound of oxygen with hylrogen in the proportion of one equivalent of each. Hence its symbol is HO, and its combining mumber 9. When converterl into vapour, 9 grains of steam occupy the bulk of 8 grains of oxygen at the same temperature; bence the combining volume of aqueons vapour is ectual to 2 , if the combining volume of oxygen be taken as 1. Tliat water is such a compound as has been just stated may be proved cither analytically or synthetically; and the subject is one of so great importance in the history of chemistry, that we shall enter rather more fully than usual into the consicleration of these two modes of proof. The following simple mode of separating water by voltaic electricity into its constituent elements is borrowed from Fownes's Manual of Chemistry: 'When water is acidulated so as to render it a conductor, and a portion interposed between a pair of platinum-plates connected with the extremities of a voltaic apparatus of mone. rate power, decomposition of the liquid takes flace in a very interesting manner; oxygen in a state of perfect purity is evolved from the water in contact with the plate belonging to the copper end of the battery, and hydrogen, equally pure, is lisengaged
 at the plate connected with the zinc extremity, the middle portions of the liquid remaining aprarently unalterect. By placing small graduated jars over the jlatimum-plates, the gases can be collected, and their quantities determined. The accompanying figure will shew at a glance the whole arrangement; the conduet-ing-wires pass through the bottom of the glass cup and away to the battery: When this experiment has been continued a sufficient time, it will be found that the volume of the hydrogen is a very little above twice that of the oxygen; ware it not for the circumstunce of oxygen lueing sensihly more
soluble in water than hydroren, the proportion of two to one by measure would come out exactly.' In lecture-rooms, an ingenious but more complicated apparatus, devisel by Kolp, is commonly used to illustrate the electrolysis of water. It has been shewn by Mr Grove that an extreme heat may, like electricity, be employed to decompose water into its constituents ; and it is well known that if, in the form of steam, it be passed over red-hot iron, it parts with its oxygen to the metal, while the hydrogen is given off as gas. The syntluetical proof of the composition of water is afforded by passing pure hydrogen aud oxygen, in the ratio of two volumes of the former to one volume of the latter, into a strong glass tube filled with mereury, and exploding the mixture by an electric spark, when the gases are replaced by a corresponding quantity of moisture, and the mercury is forcal into the tube so as to fill it. The most satisfactory form of this synthetical 1 roof is, howerer, afforded by reancing pure oxide of copper at a red heat by hydrogen, and collecting and weighing the water that is thus formed. The arparatiss required for this experiment, and the method of employing it, are given in Fownes's Mcanual of Chemistry, 9th ed., 1. 131, and in Miller's Inorganic C'hemistry, Bd ed., p. $5 .$.

Owing to its extremely solvent powers, the pure uater which we have been hitherto considering is never found in nature. The nearest approach to a natural pine water is rain-water, after a continnance of wet weather; but even this water always contains in 100 volumes about 2.5 volunies of atmospheric air, with a trace of ammonia; and in point of fact, it seems impossible to obtain water which does not contain this ingrealient, for, after two distillations, Professor Niller found from 1.S5 to 2.38 volumes of air in 100 volumes of water. In addition to rain-water, the other natural uaters may be inelnded under the heads of Spring-water, Mineral J'cters (already considered in a special article), River-watcr (see Water-Supply), and Secu-water (see below).

This article would be incomplete without a brief notice of the prolonged and acrimonions controversy that was for many years carried on, and is probably now hardly to be regarded as settled, regarding the respective claims of different philosophers to be the true discoverer of the nature and eomposition of water. In the year 1781, Cavendish made a long and careful series of experiments, which, unfortitnately, were not pululished till Jannary 1784, when his celebrated Memoir entitled Experiments on Air, was real to the Royal Society. In the interval (June 17S3), his fricnd, Dr Blagden, risited Paris, and on the anthority of Cavendish, gave an account of the experiments proving the composition of water to Laroisier ; and this delay letween the discovery aud the date of publication caused his clains to one of the most marvellous cliscoveries the world ever saw, to be contested by an English and a French rival, James Watt and Lavoisier. It may be luriefly stater, that Caveudish's experinuents consisted ius exploding, in various proportions, mixtures of hydrogen and atmospheric air, and of hydrogen and oxygen, and finding as the result a liquil which proved to be pure water. (Priestley and his friend, Mr Warltire, had made similar experiments, and had moticed the deposition of moisture that followed the explosion, but failed to recognise in it anything but the condensation of aqueous rapours in the cases.) The general conclusion' to which Cavendish came was, in his own words, 'that water consists of dephlogisticated air united with phlogiston,' and as dephlogisticated air was lis term for oxygen, and phlogiston his term for hydrogen, this statement corresponds to the modern view of the
nature of water introduced by Lavnisier. As Lavoisier was from the first aceused by the English chemists of laving acted unfairly towards them, and as indect his own claim only dates back to June 25,1783 , he may be dismissed fron further consideration; and during the lives of the English elaimants there were no public complaints on either side, although Watt, in private letters to his frieuls, linted at C'avendish's incapacity and unfairness. Hence, then-at all erents, in this country-scientific men were startled when Arago, then Secretary of the Frencl Aeademy, pullished in 1838 the Eloge of Watt. Which be bad read as far back as Deeernber 1534, in which he charged Cavendish with deceit and plagiarism, inasmuch as he was said to have learned the composition of water, not by experiments of his own. but by obtaining sight of a letter from Watt to Priestley. The battle now fairly began; the first how being strack in August 1539, when the President of the Iritish Association, the Res. Vernon Harcourt, in his olening address, rinclieated Cavendish, and pointed nit Arago's misstatement. At a sulsequent meeting of the Acalemy, Arago, with Dumas to back him, defended his statements. Sir Bavid Brewster (Eilin. Rev., January 1St0) then sought to aet as mediator; and the controversy, as might have leen expected, went on with increasell aerimony; and in the summer of the same year, when the President of the British Association publishell the Feport he had delivered the preeeding year, he added is post.cript, replying to Arago, Dumas, and Lord Brougham (who had appended 'An Itistorieal Nute on the Discovery of the Theory. of Water,' to Aragn's Eloge). In 1841, Berzelius published what Dr Gcorge Wilson terms 'a conditional julgment' in favour of Watt; and in 1S+5, in his Lives of Men of Letters (see Life of Hatt, p. 400), Lord Brougham followed on the same side. Dr Peacock (Qiuart. Rec., 1545, . .105), in reriewint his book, assailed his conclusions, and asserted the elaims of Cavendisl. In 1S46, Mr Harconrt (Lond. and Ejdin. Phil. Mag., Feb. 1846) also replied to Lord Brougham; and in 1S 47 , in the second edition of his Mistory of the Inductive Sciences, Dr Whewell maintained his old conviction of the claims of Cavendish. In 1846, the publication of the Correspondence of the lute James Watt on his Discorery of the Thicory of the Composition of Wrater, with an introluction lyy lis kinssman, Mr Muirbead, who was editor, and a letter from his son, formed a most inpurtant adilition to the literature of this controversy. Finally, the question was discussed, in 1547, by Sir David Brewster in the North British lieviece, and in 1845, by Lord Jeffrey in the Lidinburgh Lieview, both of whom advocated the claims of Watt. As we bare no spaee to discuss Watt's real clains, we may here state that Dr George Wilson, whose Life of Carendish is in reality a strictly impartial history of the ratercontroversy, maintains on very sound grounds that in reality Watt was informed of Cavendish's discovery through Priestley; as Lavoisier was through Dlagden.
Sea-Water. - For an aceurate knomlolge of the composition nf sea-water, we are mainly indebted to the investigations of Professor Forchhammer of Copenhagen. Not very many years ago, the only elements known to exist in sea-water, in addition to those constituting water itself, were chlorine, iodine, bromine, sulphur, carbon, sodium, znagnesium, potassium, calcium, and iron. To these twelve must now be added, (13) fluorine, discovered by Dr George Wilson; (14) phosyhorus, as phosphate of lime ; (15) nitrogen, as ammonia; (10) silicon, as silica, in which form it is largely ccllected by sponges from seawater; (15) boron, as boracic aeid; (15) silver; (19)
eopper; (20) lead ; (21) zine; (22) cobalt; (23) nickel; (2-1) manganese ; (25) alnmininm, as alumiva; (26) strontium, as strontia ; (2i) barium, as baryta. Several of these elemeuts, however, exist in such small quantities that they can only be discovered indirectly, that is to say, in sea-weeds, marine animals, or in the stony watter deposited at the bottom of the boilers of oceavic steamers. The substances which, in respect of quantity, play the principal part in the confosition of sea-water are chlorine, sulphuric aeid, sola, potash, lime, and magnesia; those which occur in less but still deterininable quantity, are siliea, phosphoric acid, carbonic acid, and oxide of iron. In the elaborate tables which are aunexell to his paper, Forehhammer has always calculated the single substances (chlorine, sulphuric acid, magnesia, line, and potash) and the whole quantity of salt for 1000 parts of sea-water; Jout besides this, he has caleulated the proportion between the different substances deterinined, referred to chlorine $=100$, and of all the salts likewise referred to cllorine. This last number is found if we divide the sum of all the salts found in 1000 parts of any seavwater by the quantity of ellorine found in it; and he terms it the co-eficient of that sannl? of sea-water." This chemist divides the sea into serenteen regions, his reasons for doing so being that he could thus avoid the prevailing influence which those parts of the ocean which are best known, and from which he has taken most observations, would exert upon the ealculations of the mean number for the whole oeean. In referenee to the salinity of the surface of the ocean, he has made the following observations. (1.) The mean salinity of the Atlantic between 0° and $30^{\circ} \mathrm{N}$. lat. is $36^{\circ} 169$ (i.e., this is the quantity of salts in 1000 parts of water); the maximum, which is also the maximum of the surface-water of the whole A tlantic, being $37^{\circ} \cdot 908$, and occurring in $24^{\circ} 13^{\prime}$ N. lat, and about $5^{5} \mathrm{~W}$. from the coast of Africa, where no rivers of any size earry water from the land, and where the influence of the dry and bot wiuds of the Sahara is prevailing. This maximum is equal to the mean salinity of the Mediterranean, and is ouly exeeeded ly the maximum of that sea off the Libyan Desert, aud that of the Red Sea. The minimam is $34^{\circ} 253$ in $4^{\circ} 10^{\prime} \mathrm{S}$. lat., and $5^{\circ} 36^{\prime} \mathrm{W}$. long., close to the const of Africa, where the large masses of fresh water whicb the great rivers of that region pour into the oceau exercise their inflnence. (2.) In the Atlantic, betweeu 30° 人. lat. and a line drawn from the north point of Scotland to the north point of Newfoundland, the mean salinity is 35.946 , the dimiuntion being due to the fresh water poured into it by the southern month of the St Lawrence. (3.) In the Baftin's Bay and Davis' Strait region, the mean salinity is 33% Sl, and the salinity increases from latitude 64° towards the north, being in 64°, 32.926 , and in $69^{\circ}, 33 \% 98$. This peeculiarity is owing (says Forchhammer) to the powerfnl eurrent from the I'arry Tslands, which through different sounds passes into Baftin's Bay, where it is mixed with the great gnantity of fresl water that comes into the sea from the West Greeuland glaciers. Had this faet leen known before the sounds that connect the Yarry A rehipelago with Bafinn's Bay were diseovered, it might bave proved the existence of these sounds, because bays and inlets shew quite the reverse : the further we get into them, the less saline the water leeomes. (4.) From cleven olsservations on the Mediterranean Letween the Straits of Gibraltar and the Greek Archipelago, be confirms the old view of

* Tre give these details because the term co-cfficient will now doubtless be permanently retained by writers on tie chemistry of sea-water.

WATER

its sreat salinity; its mean salinity being 37.936 , while that of the whole ocean is $34 \cdot 388$. Its maximum (39.257) falls between the island of Candia and the African shore; and its minimum ($36 \cdot 301$) is at the Straits of Gibraltar. These results are due to the influence of Africa and its loot and dry winds. In salinity, the Mediterranean is only exceeded by the Red Sea, whose mean salinity is 43.067 . (5.) The Black Sea, like the Baltic, is a mixture of salt and fresh waters. In three different experiments, the salinity varied from $18 \cdot 146$ to $11 \cdot 880$. At a distance of 50 miles from the Bosphorns, the proportions between chlorine, sulphuric acid, lime, and magnesia, were $100: 1171: 4 \% 2: 12 \cdot 64$, while the normal oceanic proportions are $100: 11$ S0 : 2.96 : 11.07 ; thus shewing a relative increase in the lime and magnesia. (6.) As the Caspian Sea is considered by many geologists to have been formerly in connection with the Black Sea, the results of Mahner's analysis of its waters are given. The salinity varied between 56.814 and 6236 , and the proportion between the chlorine, sulphuric acid, lime, and magnesia, is 100 : $44.91: 9.31: 21 \cdot 48$, which differs extremely from the normal proportion. Thus the Caspian Sea, if it erer had any connection with the Black Sea, must hare entirely changed its character since that time -a change which might be occasioned by the different salts which the rivers brought into it, and which accumnlated there by evaporation of the water; or which might he caused by the deposition of different salts in the hasin of the Caspian Sea itself. (7.) The Atlantic between 30° S. lat. and a line from Cape Horn to the Cape of Good Hope, is less saline than the correspondiug region north of the equator;
and all the samples from the western part of this region have less, while the samples from the castern part, nearer to the African coast, have considerably more sulphuric acid than the normal quantity. Does this, asks Forchhammer, depend npon the more volcanic nature of the west coast of Africa than the east American coast? (S.) In the sea between Africa and the East India Islands, the mean salinity is 33.868 . The minimum (25.579) is from a place high up in the Bay of Bengal, and of course much intluenced by the Ganges. It lies, however, about 300 miles from the month of that river; and another specimen taken 60 miles nearer the month has a salinity of 32365 , so that it would seem as if some other cause (possibly fresh-water springs at the bottom) had beeu in operation to weaken the seawater at the minimum spot. (0.) In the Patagonian cold-water current, the mean salinity was 33.966 ; while three samples brought from the South Polar Sea, by the late Sir James Poss, had different salinities of $28.565,15.595$, and 37.513 . Forchhammer cannot account for these discrepancies. All the specimens shewed a great excess of sulphuric acid (12.47 in place of $11 \cdot \mathrm{SS}$, as compared with 100 of chlorine), a result probably due to the volcanic nature of the antarctic continent. Forchhammer's analyses of waters from other of his 17 districts call for no remark; and the following are the general results of his investigations. "If we except the North Sea, the Kattegat, Sound, and Baltic, the Mediterranean and Black Sea, the Caribbean Sea and the Red Sea, which have all the characters of bays of the great ocean, the mean numbers are the following:

	$\begin{gathered} \text { Sea-water. } \\ 1000 \end{gathered}$	Chlorime.	huric Acid.	Lime	Magnesia $2 \cdot 096$$11 \cdot 03$	All Salts. $3 \div 402$	$\begin{gathered} \text { Ceeficient } \\ 1-812 \end{gathered}$
		18.933	2.253	0.556			
		100	11.88	$2 \cdot 93$			
Equira!ents,		423	45	16	\%.		

Thus it is evident that the sea-watcr, in its totality, is as little a chemical compound as the atmospheric air; that it is composed of solntions of different chemical compoinds ; that it is neutral, becanse it everywhere in the atmosphere finds carbonic acid to neutralise its bases, and everywhere on its bottom and shores finds carbonate of lime to nentralise any prevailing strong acid; that lastly, the great stability of its composition depends apon its enormons mass, and its constant motion, which ocensions that any local variation is evanescent compared to the whole quantity of salt.' It will be seen that the Atlantic is that part of the ocean which contains the greatest proportion of salt, while some of the bays in the tropical or subtropical zone (the Mediterranean and Red Sea, for example) have a greater menn than the Atlantic; that on approaching the shores, the sea-water, as might hare been expicctel, becomes more diluted, and consequently less saline; that the polar currents contain less salt than the equatorial; that the polar current of West Greenland contains more sulphuric acid than the water in any other region except the East Greculand and south polar currents (while in the ocean at large, the chlorine is to the sulphuric acid as $100: 11 \cdot 59$; in the south polar current it is as $100: 12 \cdot 55$). As in the case of the Wrest Greenland enrrent, there is no neighbouring volcanic region to account for this excess, Forchhaminer suggests that the absence of fucoidal plants, which have a great attraction for sulphuric acid, may have an influence in bringing about this result; * that

* In a paper read before the British Association in 1844, Forchhammer shewed that the fucus tribe has a great attraction for sulphuric acid, and that the acid, when the plant undergoes putrefaction, is reduced to soluble
most lime occurs in the ocean in the second region, the middle part of the Northern Atlantic; and the least in the West Greenlaud polar current (the quantities being 3.07 and 2.77 respectively). Wherever, in other regious, the influence of land prerails, the lime also is in excess; thus, in the Black Sea, it was 4"221.
From these remarks on the surface-vater, we pass on brietly to notice the difference of sea-water in different deptlis. On this subject, the result obtained from the analyses of specimens of sea-water taken from different regions, is so contradictory, that we shall simply quote the sentence with which Forchhammer commences this department of bis subject: ' It would be uatural to suppose that the quantity of salts in sea-water would increase with the depth, as it scems quite reasomable that the specific gravity of sea-water would canse such an arrangement. But this difference in specific gravity, relative to the increase in the quantity of salts, is counteracted by the decreasing temperature from the snrface to the bottom. We have parts of the sea where the quantity of solid salts increases with the depth; in other parts, it decreases with the increasing depth; in other places, hardly any differences can be found between surface and depth; and lastly, I have found one instance where water of a certain depth contained more salt than both abore and below.
sulphides and to sulphuretted hydrogen, which, with the oxide of the iron of the plant, which is partly dissolved and partly suspended, will form sulphide of iron. Thus, the sulphur will disappear from the water. He suggests that the diminution of sulphuric acid which he found in the Atlantic, between the equator and $30^{\circ} \mathrm{N}$. lat. ($11 \cdot 75$ in place of $11 \cdot 99$), may be due to the action of the Sargasso Sea.

These dificrences are, to a great extent, dependent urou currents both on the surface and in dinlerent depths.- Op. cit., j. g.e! Sometimes, salinity of the surface-water is the same as that of the ieep: or one or more ingredients may vary in its proportions: for example, in the Nlediterramean, while the deep water, cenerally, is richer than the surfacewater in sulphuric acid, in some parts, as between Sardini: and Japles, the surface-water is the richer in that ingreclicnt. There are few olservations on the specilic gravity of the sea-water at different depths. For the following observations, we are indeltell to sir James Ross. 'At $39^{\circ} 16$ ' S. lat., $177^{\circ} 2^{\prime} 11^{\circ}$. long., the specific gravity of the surfacewater was 1.0274 ; at 150 fathoms, 10272 ; and at 450 fithoms, 10268 : all tried at the temperature of $60^{\circ} \mathrm{I}^{\circ}$, and shewing that the water beneath was specifically lighter than that of the surface, when lorought to the same temperature : omr almost daily experience confirmal these results.'- Voyage, \&e. vol. ii. 1: 183.
The important questions-llow did the salts which now oecur in the sea come into it? Is it the lanil that forms the sea, or is it the sea that makes the land? Are the salts that are now found in sea-water washed ont of the land by the atmospheric water? Has the sea existed from the beginning of the earth ? And has it slowly but contimally giron its clements to form the land? and their answers, constitute the last part of Forchhammer's most philosophical and labrinus Memoir. The following is, in a condensed form, his reply to these questions. Suppose a river had its ontlet in a valley, with no commmication with the sea; the valley would be filled with water till its surface wins so great that the ammal evaporation was equal to the amual snpply. There would then be a pilisical, lint not a chemical equilibrium, because the annual loss would consist of pure water, while the received water would contain various mineral or saline matters, which would go on increasing till chemical changes would occasion precipitation of different salts. Now, in the water of the assumed river, we should find the hases prevailing in the following order-lime, mannesia, soda, iron, manganese, and potash; while the acids, similarly arranged, were carbonic, sulphuric, mariatic (chlorinc), and silicic. Now, all these sulb. stances are fomm in sea-water, although in very different proportions. The ocean is, in point of fact, such a lake as we have here supposel, with all the rivers carrying their dissolvel matters into it. 'Why, then,' our author asks, 'lo we not observe a greater influence of the rivers? Why does not lime, the prevailing lase of river-water, occur in a greater proportion in the water of the ocean? In all river-water, the number of equivalents of sulphuric acid is much smaller than that of lime, and yet wo find in sca-water about three equivalents of sulphuric acid to one of lime. There unst thus be in sea-water a constantly acting cause that deprives it again of the lime which the rivers furnisl, and we timl it in the shell-fishes, the corals, the bryozoa, and all the other animals which deposit carbonate of lime.' These animals not only deprive the water of its carbonate of lime, but they likewise decompose the sulphate of lime-a decomposition probably depending upon the carbonate of anmonia formed by the vital processes of these animals. The silica, which is always present in river-water, is appropriated by the varied sponges, diatoms, \&c., and hence its scantiness in sea-water. With regard to the sulphuric acil conveged into the sea, a small part enters into the composition of shells, corals, \&e., and a greater part is attractel by sea-weeds, in which it undergoes reduction, as alrealy ilescribed, while the balance remains in the sea-water. The
margesia of the river-water enters in smail quantity inte marine shells and corals, but only it small ghantity is than abstracted from sea-water, while the solli and muriatic acis, or chlorine, form, as far as we know, by the pure chmical, or organochemical action that takes place in the sea, no insuluble compomal. "Thus,' lie concludes, 'the quantity of the diflerent uments in sea-water is not proportional to the ynantity of elements which river-water pours into the sca, but inversely to the facility with which the elements in sea-water are made insoluble lyy general ehemical or organwchemical actions in the sea; and we may infer that the chemical compusition of the water of the ocem in a great part is owimy to the inllucace general and organo-chemical decomposition lias upon it, whatever may have beca the composition of the pimitive occan.'
WATER-LEDD, called also the IImmostatic Ben, or Filuitiva Mittress. It is well known that the life and health of every part of the animal borly depend on the sulicient cirendation throngh them of refreshed blood. Sce Crmeudition. Now, when a persun in health is sitting or lying, the parts of the desh eompressed lyy the weight of the budy do not recuive the blood so copionsly as at outher times; and if from any canse the action of the heart has lecome weak, the interruption will follow both more quickly and be more complete. A peculiar untasiness soon arises where the circulation is thus olstructer, impelling to ehange of position ; and the change is made as regularly and with as little reflection as the winking of the eyes to wipe and moisten the eychalls. A person weakened by disease, however, while generally feeling the uneasiness sooner, as explained above, and becoming restless, makes the changes with increasing fatigue ; and shonld the sensations hecone indistinct, as in the delirimm of fever, in palsy, \&c., or should the pationt have become too weak to obey the sensation, the compressed parts are kept so lonis without their natural supply of blood, that they lose their vitality, and become what are called sloughs or mortificed parts. These, if the patient survives, have aftcrwards to be thrown of by the process of ulecration, leaving deep hollows to be filled uip by new flesh during a tedions convalescence. Nany a fever ur other discase, after a favourable crisis, has termimated fatally from this occurence of slonghing on the back or sacrum. The same termination is common in lingering consmmptions, palsies, spine diseases, \&c., and generally n diseases that confine the patient long to bed.
It was to mitigate all, and entirely to prevent most of the evils attendant on the uecessity of remaining long in a recumbent posture, that the hydrostatic bed was devised ly Dr Neil Amott, one of the Queen's physicians. The bed may be shortly described as a mattress floating on water, with a loose sheet of ćaontchonc cloth properly secured letween it and the water, to prevent its being wetted. A person rests on it as a waterfowl docs on its bulky feathers, with as little inequality of local pressure as if in a batli. A trough of the dimensions of a wide sofa or a bed, having six or seven inches depth of water in it, with the requirel caontchonc covering, is the foundation, on whicl clothes and pillows are laid as in a common bed. A full description is given in Dr Arnott's book, the Llements of Physics (Gth edition, Longman \& Co.). The bed not only prevents the occurrence of Ledsores, but by lessening antecedent distress, lessens also the danger of the illness.

On a sudden emergency, or when the need of the flnid support is not very urgent, local relief may be given by forming in any way a partial hollow or

WATERBRASH-WATER-DROPWORT.

depression in a bed, and placing in it a water-sack or loag half-filled, so as to remain loose or slack. This approaches in effect the slack-sided cushion, which is another modification of the invention.

Waterbrash. See Prrosis.
WATER-EUDGET, a heraldic bearing in the form of a yoke with two pouches of leather apmended to it, originally intended to represent the bags used by the Crusaders to convey water across the desert, which were sling on a pole, and carried across the shoulders. The Trusluts, Earous of Wartre in Hollerness, bore Trois boutz d'eaut, three water-budgets, symbolising at once their family name and baronial estate ; and by the marriage of Water-budgets. the heiress, similar arms came to be assumed by the family of De lins, who bear ghles, three waterbudgets argent.

WATER-EUG, the popular mame of a tribe or section of Heteropterous insects, II yelrocoriser, which live almost entirely in water, and feed upon other aquatic insects. The anterior portion of the first pair of wings is horny; the antenne are very small, and concealed beneath the ejes. The Hydrocorisce are divided into two families, Totonectido, and Sepilce. Of the fommer, the Boat-fly (q.v.) is an example. The Nepide are youmlarly known as Water Scorpions, from the form of their fore-lers, which are efficient instruments for seizing their prey. Some of the Nepidce are powerful insects, two or three inches long.

WATEREURY, a township and city of New Haven county, Connecticut, U. S., 33 miles southwest of Hartford, on the left bank of the Naugatuck Fiver, at its confluence with Great Brook and Mad liver, whose falls furnish abundant water-power. It is a well-built town, with a fine park and ornamental cemetery, 7 churches, 2 banks, and 30 large manufactories of rolled copper, brass, Germansilver, plated ware, pins, hooks and eyes, buttons, lamps, clocks, perenssion-caps, \&c. It has been built uip by small mechanics, and is the head-quarters of the brass business in the United States. Pol, in 1860, 10,004.

Water Caltrops. See Trapa.

WATER CHESTN UT (Marond'Eau), the name given in France to the edible seeds of the Trapa nutans (sce Triras).-The name Water Chestnut is also given to the edible tubers of the Scirpus tuberosus, a plant of the natural order Cyperacea (see Dulresir and Cyperacese), which is cultivated by the Chinese in tanks very abundantly supplied with manure. It is destitute of leaves, except a slender short sleath or two at the base of each culm. It is stoloniferous, and the tubers are produced on the stolons. They are in high estimation among the Chinese, both for food and as a medicine, and are eaten either raw or boiled. They are called Pi-tsi or Mact-tai.

WA'TER-COLOURS are painters' colonrs mixed with water and some adhesive material, as gum or size instead of oil. Those intended for lrawings on paper are prepared with great care, and are usually formed into diy cakes with gum. Those for colouring walls and scene-painting are roughly prepared
with glue or size. These are often called Distemper Colours, from the Italian term tempera, applied to them to express their application to temporary purposes.

WATER-CRESS. See Creas.
WATER-DOG, a kind of dog, of which the Poodle (q. v.) is regarder as a sub-variety: The head is rather large and romnd, the ears long, the less rather short, the general form compact, the hair everywhere long and curly. The Water-dog of Eugland, common before the poodle had been introduced from the continent, is still much esteemed

Water Spaniel.
by professional wild-fowl shooters, and by the fishermen of the north-eastern counties. It is about 15 or 20 inches high at the shoulder. The hair is coarser and crisper than that of the poodle. This dog was formerly sometimes used in London for the brutal sport of hunting and worrying domestic ducks, placed in a pond for the purpase. It is an intelligent and affectionate kind of log, althongh not of much beants.

WATER-DROPWORT (Enanthe), a genus of plants of the naturalorder Umbelliferce: having ovatocylindrical fruit, not prickly nor beaked, each carpel

Water-dropwort (Enanthe crocata).
with five blunt convex ribs, and single rittre in the interstices; the calyx teeth lanceolate; the petals obcordate and radiant, with an inflected point; the
partial involuere of many rays ; the flowers of the cironmference on long stalks and sterile, those of the centre subsessile and fertile. A nmmber of species are natives of Pritain, large perennial plants, with a strong and generally disagrecable aromatic smell, and componnd or decompound leaves. The Common W. (di. jintulosa) and the llembock W", or Watiar Jemlock (O : crocuta), are huth eommon in wet jhaces in Britain and thronghout Europe, and both are narcotic acrid poisons. The roots of the latter have some resemllance to small [arsnips, and hence fatal aecidents lave frequently oceurred. The Fine-leived W., called Water Femel by the Germaos (C . phellandriun, formerly known as Phellondrium aquaticum), is alsn enmmon in ditches and poords both in Britain and on the continent. It has a jointed root-stalk (rhizome), with tufted whorled fibres, aud a strong zigzag stem dilated at the base. The leaves are decompond. The fruit has a peenliar aromatic but disagrecable smell. It is not so proisonous as the other sjecies jnst named. It was at one time erroneonsly regarded as a specific agaiust pulmonary cousumpition ; but it has leeen advantageonsly employed in pulmonary complaints.

WATELREE', a river of the U. S., formed by the junetion of the Catawba and Fishing Creek in North Carolina, runs south-east into Sonth Carolina, where it unites with the Congaru to form the Santee. Stermboats ascend the W. to Camden, 200 miles from the sca.

WATILRFALL is a break in the contimuty of slope of the channel of a river or stream, se abrupt that the body of water fulls from the higher to the lower level. Waterfalls occur most fregueutly in mountainous comntries, where the streans from the mountain sides enter the valleys. It is only when the side of the valley is comnosed of hard rock that there can be a waterfall ; in friable strata the strean wears out a ravine or side-valley. These monntain waterfalls, however, are generally rather curious and picturesque than grand, the rolume of water being in most cases comparatively insignificant, though the height of fall is oceasionally very great. All mountain waterfalls necessarily change their aspect from season to season-in winter, a roaring torrent plunging headlong into the abyss; is summer, often a mere film of water trickling down the face of the precipice. Waterfalis in comparatively level districts are not nearly so common, and their height of fall is insignificant compared with that of monntain eataracts; bit the much greater volume of water, its steady and even llow to the head of the precipice over which, in solid column, it descends with a thnudering phage, place such waterfalls among the grandest of nature's phenemena. It is where the course of a large river passes frow a higher to a lower platean, and where the upper plateau is edyed with rock, that the granier eataracts are formed. If the rocks are of the same hariness from top to bottom, the edge of the escarpment, supposing it to be perpendicular at tirst, becomes worn olf, and a slope or rapid is formed. But when the upper edge is hard and the under strata soft and friable, the reverberation of the spray wears away the softer parts loclow, leaving a projecting ledge at the top, which breaks off, piece by piece, as it becomes too much undermined, so that the fall is constantly receding. The question of the rate of regression of waterfalls las not hitherto oceupicil nuch attention, and has only been estimated in the ease of Niagara, Hakewell giving its anmual value at 1 yard, while Lyell limits it to about a third of this. Some of the most remarlsable waterialls of the world are the Orco Falls at Monte Rosa, 2400 fect in height ; Gavarnie
(Pyrenees), 1400 feet: Stanbuach (Switzerland), 1000 feet; Nlannclvan (Norway), 940 fect; Niagara (q. v.); Zambezi (q. v.); Nissouri ; and that in Mariposa County, California, said (on litherto unsatisfactory authority) to he the lighest in the worli. Tho cataracts of the Velino and Anio, in laaly, are beatiful artificial imitations of this most striking of matural phenomena.

WATIEI FLLEA (Daphnia), a genus of Entomostraca, of the order Cladocera, and family Daphiniada. One species, D. monoculus, is abundant in pools and ditches in loritain. It comes to the surface in the mornings and evenings, but keeps near the hottorn during the heat of the day. It swims by taking short springs, whence its jopmlar mame. It feeds on minute particles both of auimal and vegetable sulstances. It is a beautiful object for the mieroscope; the whole interior organisation being visible through the transjarent carapace. The male is much smaller than the female, and comparatively rare. The eggs, after leaving the ovary, are retained in a eavity between the body and the carapace, mitil the joung have attained almost their jerfect form.

WैATERFORD, a maritime county of the province of Munster, Ireland, is bonnded on the N. by the counties of Tipperary and Kilkenny, on the E. by Wexford, on the S. by the Atlantic, and on tlie W. by the county of Cork. Its greatest length from east to west is 52 miles, and its breadth, north to south, 28 ; the total area beiog $721 \mathrm{sq} . \mathrm{m}$., or 461,563 acres, of which $325,5,345$ are arable, 105,496 waste, $23,46 \mathrm{~S}$ in rlantations, 526 in towns, and 5779 noder water. The pop. in 1551 was 164,051, and in $1561,1: 34,252$; of whom 107,225 were Catholics, 3208 l'rotestants of the established chureh, and the rest Protestants of nther denominations. The number of acres under crops of all kinds in 1862 was 112,279 , of which 23,520 were muder wheat, 32,900 woder oats, 18.757 mader potatoes, 11,053 under turnips, and 19,755 in meadow ami clover. The coast-line extends from the estuary of the Suir, Waterford llarheur, to that of the Blackwater at Youghal, and is partly dlat, jartly rocky, lout in general very dangerous for shippiog. The rocky district eontains some remarkable caverns. The surface of W. is in general mountainous. The principal ranges are knockmeledown, the Cummeragh, Monevolagh, and Drum. The Cummeragh Mountains are the loftiest, and abound in wild and picturesque scenery. The Suir ($\mathrm{q} . \mathrm{v}$.) and the Blackwater (q . v.) are the elnicf rivers. There are no lakes worthy of note. The climate is meist, and over a considerable part of the county the soil is marslyy; but the upland distriets are well suited for tillage, and the lower pasture-lands, although inferior in fattening jroperties to those of the great central plain, produce excellent butter, which is exported in Inrge quantities. In geological structure, the mountains present the old and new slate, separated by red and gray quartz rock and quartzose slate. Of quarry slate, there are two principal varieties, which are raised extensively for local use. The valleys lelong to the limestone series, being an outlying prolongation of the great bed of the central niain. Lead, iron, and copper are fonnd, and have all been raised with more or less success. The two former, however, have proved unprofitable, bnt the copper-works at Bonmahon and Kuockmahon have for many years been among the most productive of the lrish mines. Marble of severai colours and of considerable beaty is quarried near Cappoquin and Whitectmrch, and potter's clay of good quallty is found at Kildrum, near Dungarvan. The chicf occupations of the

WATERFORD-WATER-L1LY.

population are pastnrage and dairy-farming; but a considerable manufacture both of cotton and linen has been recently introduced at Portlaw, and the shipping-trade has of late years become active and profitable.
W. is divided into eight barouies. The most considerable towns besides Waterford City (q. v.) are Dungarvan, Carrick-beg-properly a suburb of Carrick-on-Suir, which is in Tipperary-Lismore, Cappoquin, Tallow, and Tramore. Clonmel, although chiefly in Tipperary, lies partly within this county. W. returns five members to parliament-two for the county, two for Waterford City, and one for the borough of Dungarwau. The county constituency in 1863 was 3664 . The net annual value of property in W., under the Tenement Valuation Act, is $£ 263,0 \pm 7$. This district, in common with the adjoining county of TVexford, is believed to have been asciently peopled by a Belgic colony. The Danes also formed a settlement at the mouth of the Suir. From the date of the invasion, W. became a stronghold of the English, large grants having been made by Henry II. to the family of Le Poer; and in all the alternations of the subsequent struggle with the Irish population, it coutinued for the most part a firm centre of English influence. The connty abounds with antiquities ecclesiastical and military, and of the Celtic and Danish, as trell as the Anglo-Norman period. (1871-pop. $122,825$.

WATERFORD, a city, capital of the county of the same name, but itself a county of a city, and a parliamentary borough, is situated in N. lat. $52^{\circ} 16^{\prime}$, W. long. $7^{\circ} 8^{\prime}$, on the river Suir, 12 miles from the sea, and 97 south-south-west from Dublin, with which city it is connected hy the Great Southern and Western, and Waterford and Limerick Jnnetion Railways, as also by the Waterford and Kilkenny Railway. The pop. in 1861 was 23,293 , of whom 20,429 were Roman Catholies, 1969 Protestants of the established cburch, and the rest Protestants of other denominations. The city, with the excention of an inconsiderable suburb, with which it is connected by a bridge of 39 arches, 852 feet long, opening for the passage of ships, lies on the right bauk of the Suir, along which a handsome and spacious quay extends for a distance of nearly a mile, and from which the city ascends gradually in well-built streets. Vessels of 2000 tous are now enabled to discharge their cargoes at the quay; but there is an anchorage for still larger ships about six miles lower down the river, at Passage. The public buildings of most considerable pretensions are the Protestant cathedral and that of the Roman Catholic bishop, the Protestant episcopal palace, the (Catholic) college of St John, the Model National School, and the city and comuty court-houses. In addition to the Union Workhouse, there is an infirmary, a dispensary, a fever hospital, a district lnuatic asylum, and a penitentiary. The affairs of the muricipality are administered by a mayor and corporation consistiog of ten aldermen and thirty conncillors; those of the port, by a body of commissioners, $2 t$ in number, elected by the corporation and the Chamber of Commerce. The trade of W. is mainly with England, and lies chiclly in the export of agrienltural produce, butter, pork, bacon, coro, flour, eggs, and live-stock. Steam-navigation has received a great impulse, and there is now a ship-budding yard, with patent slip, graving-bank, and dock, on the kilkenny bank of the river.
W. is originally of Danish foundation; but at the invasion, the city was taken by assault by Strongbow, by whom it was enlarged, and made a place of strength. It received a charter from John, which was forfeited under James I., but restored by

Charles I. in 1626. But few remains of its ancient buildings are now to be seen. (1871 -pop. 23,337 .)
WATER-GLASS, the soluble silicates of potash or soda, or a mixture of both. It is usually prepared ly boiling silica with caustic alkali under pressure, about 60 lbs . to the square inch, in a digester. When pure and solid, it has the appearance of common glass, and is slowly soluble in boiling. water. A solution of water-glass is used, mixed with sand, \&c., to form artificial stone. It is also spread on the surface of stone to protect it from decay, as it sinks in and cements the particles together; and it enters into the composition of some kinds of cement. In the art of Stereochromy, or Fresco-paintiag (q. v.), water-glass is now much used. It has also become useful in certain dyeing processes, having in some cases been found to auswer the purpose of dunging.
Water-hen. See Gallivele.
WA'TERLAND, DANIEt, D.D., a clergyman of the Euglish Church, prominent in the theological controversies of the first half of the 18th century. He was born on the 17 th February 1683, at Waseley in Lincolnshire, of which parish his father was the rector. After going through the usual course of study at Magdaleu College, Cambridge, he was admitted into orders ; and in 1713 he became rector of Ellingham, on the nomination of the Earl of Suffolk. It was shortly after this that he pub. lished his first book, Advice to a Young Student, with a Method of Study for the first Four Years -an unpretentions but useful work, which soon became very popular, and brouglat its author into notice. King George I. nppointed him one of his chaplains in 1717. About this period he began to be engaged iu theological controversy, one of his earliest works being a criticism of a book by Dr Whitby, in which a severe attack was made upon Eishop Bnll's Defence of the Nicene Cread. Whitby answered him; W. rejoined ; and in 1719 the latter expanded his writings upon this subject into his Defence of Christ's Divinity. This work was sharply criticised by Dr Clarke and other Arians; to whom W. replied in a work published in 1724 . Upon the same subject he, in 1720 , preached and published a series of sermons at the request of the Bishop of London. Within a few years after this he passed throung a rapid course of promotion in the Church. In 1721 he was appointed rector of the parish of St Augustine in the City of London ; in 1724 he got the Chancellorship of the Cathedral of York. He was appointed a canon of Windsor in 1727, and Archdeacon of Middlesex in 1728. He held along with the latter appointments the valuable living of Twickenham. During these years he was indefatigable in controversy; not only keeping up a paper war against the Arians, but cutering the lists against free-thinkers, such as Middleton and Tindal, and against those of the Anglican body who did not slare his doctrincs upon the subject of the Triuity and the Eucharist. A Critical II istory of the Atha. nasian Creed (1724); A Review of the Doctrine of the Eucharist (1737); aod Scripture I indicated (1734), are considered among the most notewortly of his productions. In 1738 were published two volumes of his sermons, edited by one of his friends-the one upon Justification, the other upon the Communion of Infants. W. died on the $23 d$ December 1740. A complete edition of his works, accompanied by a pretty full Memoir of his life from the pen of Bishop Van Mildert, was published at Oxford in 18 23 , in ten volumes Svo ; an eleventh rolume, containing a general index, was added in 1828.
WATER-LILY, a name commonly enough giren to the different species of Nymphea and I^{\top} uphar,

WATER-1.IJ.

and alsn of Nelumbium, all genera of the natural
 temed to all the plants of that order. Critain produces three species-Nymphea alba, the White Wiater-lily; and Stuphar heme and Vuphar

White Water-lily (X'ymphect alla).
pumihum, called Yellow Water-lilies The two former are frequent in still waters in most parts of the island; Nouhar pumilum is more rare, and chiefly found in Sentland. All have heart-shaperd leaves, tloating on the water. The lecantiful and fragrant white flowers of Nymphace alla flont upon the water; the flowers of the yellow water-lily, which are of emmparatively little beanty, are raised hy their stalks a little above it. The seeds of these, as well as of the Water-lily of the Nile ($\mathrm{I}^{2} y \mathrm{mp}$)hera lotus-see Lotes), are farmacenus, and are sometimes used for fool. The Turks prepare a conling drink from the stems of $V^{\text {rup }}$ har luteum. -The Sweer-scemted Water-lily of North America, Nymphera otloruta, has a large white tlower of great beanty, and of very sweet smell. Not noly Jymphoce lutus, but also N. rubra and N. pubescens, are regardel as sacred plants liy the Jlindus. N. erimhice was also held sacred lyy the ancient Eysp. tians.

W゙ATERLOO' Battle of, the decisive confliet which annihilated the wower of Napoleon 1., was fought. ISth June 1815, in a plain about \because miles from the village of W., and 12 miles south from Prinssels. Agrecably to the unanimous resolve of the Allies to attack Napoleon on all sides, ant crush him as they had done in 1814, British and Prussian tronps were stationed in the Netherlands, under the command of Wellington and Blicher respectively; in order to attack France on the morth. Napoleon, on his side, well aware that for a consilerable time no weighty attack could be made on France except ly these forecs, and fully recomnising the immense advantage ta be gained by destroying one enemy before the others could coine up, rapidly conemptrated the bulk of his troops ; and with a suddenness and secrecy which defied all effective counter-preparations, crossed the Belgian frontier, and foll with one part of his forces on the Prussians at Limy (q. ‥), and with the other part, under Ney's immecliate command, on the army of the I'rince of Orange at Quatre-Bras (q. v.). The Prussiansas Wellington, after learning Blicher's dispositions for the battle, had forctold-were, after a contest of the mostolistinate description, completely defeated; but the Jrince of Orange, by the aid of the reinforecments promptly forwardel to him by the Enslish commander, succeeded in withstanding Neys
attack. In the plan preconcerted ly the Allied generals such a result was not monfereen, and in aconrlance with their scheme of firm resistanco and retreat if necessary (to allow time for the Russimas amb Austrians to assemble on the eastern (rontier of France), Dilieher retreated northwards (instead of eastwards, as Napoleon expected) nearer the place nf rendezous with Wellingtion at Mont St Jean ; white early on the morning of the 17 th, the Inglo-Ni-therlanders retired along an almost parallel ronte till they reached the forest of Solgnies, in front of which they were formed in lattle-array, facing southwards. Napolenn, imagining that the Prnssians were in total rout, and that their comphete dissigation wonk easily be accomplished by ifronchy's ilivision (33,0010 men), which he had sent in pursuit, crossel to Quatre-bras with the rest of his trongs, and uniting with Ney, marched in pursmit of Wellington, arriving on the pain of W. in the crening.
'Ihe two armies which then confrontal each other. thongh nearly equal in strength, were composed of very different materials. The lrenel, army, numbering from 69,909 to $7.2-47$ men (aceorling to French authorities, linglish listorians varying in their estimate from 7,410 to 90,000 , though its exact strength eannot be ascertained, owing to the loss of the ullicial returns), was composed of veteran troops, who liand enthusiastically ranked themselves onee more muler the standard of the chief who had so often led them to victory. The Anglo-Netherlands army, Which numberal 69,894 , of whom only 25,350 were Pritish, G.9\% of the ling's German legion, 10,905 Hanoverians, 6303 Brunswiekers, 2926 Nassaucrs, and $17,1 \mathrm{~s}^{\prime}$ Netherlanders, consisted, with the cxeeption of a small mumber of Peninsular veterans, wholly of yourg soldiers, a large proportion of whom hat never been muder fire; the Hanoverians were only militia, some of them being fit hat for garrison-duty; while the luchaviour of many of the Belgian troops during the hattle shewed plainly enough that they manly increased the momerical strength of the army, as they left it to the Duteh soldiers to vindicate the wrongs of the Netherlands. The French had $2+10$, while their opponents had only about 106 guns. With such an aruy, to maintain even a defensive conflict with an army of veterans, commanded ly the greatest general of the time, was a task which (labouring mader a mistake as to the exact superiority in number of his opponents) it required all Wellington's rare tenacity of puriose to undertake; yet undertake it he did, depending on Blicher's promise to juin him an hour after mid-day.

On the morning of the 1Sth, the two armies foum thenselves ranged in battle-array opposite each other: the Allies, posted on a line of eminences, had their left wing resting on Frischermont, the farm-honse of La Haye Sainte in front of their eentre, while their right wing eurved convexly round bchind Hougromont, and rested on Lraine Merbes. The French were ranged on is prallel row of eminences, having La Belle Alliance in their centre, with some divisions of cavalry and infantry in reserve behind the right wing; Kellermam's dragoons bchind the left wing; and the Guard, stationed with the 6th corps, in the rear. Skirmishing had continued all the morning; but the first serious attack was not made till between elewen and twelve, when a part of the lst corp's advanced against Hongomont, with the view of masking the more important attack to be made against the allicd left. This preliminary assault, however, though unsuceessful, was maintainel with great vigour for a considerable time; till Napoleon, dreading a further loss of time, prepared to make

WATERLOO.

his grand attack on the left centre. At this time' its ground, to protect the flight of the Emperor; (half-past one P.M.), he learned that the advancel gnard of the 4th Prussian corps (Bulow's) was appearing in front of St Lambert, $2-3$ miles to his right; and being forced to detach his Gth carps (Lobau's) with the reserves of cavalry behind his richt wing, to keep them in check, he had to modify his grand plan of attack on the AngloNetherlanders, and accordingly orderal Ney to break through their centre. At two P.N., after a furions preliminary cannonade, from which Wellington sheltered his men (as at varions other times during the battle), by retiring them to the reverse of the slope, Ney advanced against the left centre with 20,000 men, but had only succeeded in putting to flight a Belgian brigade, when he was attacked and driven back by Picton's division, his retreating columns charged and broken by the English cavalry, and 2000 prisoners taken. Nevertheless, after i bricf space, Ney returned to the charge, and carricd La Haye Saiute, though his repeated attacks on the infantry in position were constantly repulsed, and his retreating columns severely handled by the British cavalry, who, disordered by success, were as often overthrown by the French enirassiers. By this time (half-past four P.M.), Bulow had succeeded in deploying from the woods, and, advancing against l'lanehenoit, in the rear of the French right, carried it after a vigorous contlict. Lobau's corps, however, aided by a reinforcement from the Guard, speedily retook the post, and driving the Prussians lack into the wood, secured the French right llank for a time; Napoleon, though now learning that another Prussian corps (the 1st, under Ziethen) was coming up by Ohain to join the Allied left, being still confident that he could destroy the Anglo-Netherlauders before the Prussians conld render effective aid. During the conflict with Bulow, Ney bad been warmly engaged with the centre and right of the encmy, who had made varions attemnts to regain the wood of Hougomont and La Haye Sainte, and had supported his repeated attacks with not only his own cavalry, but (by, at any rate, the 'tacit consent' of the emperor) with the cuirassiers, lancers, and chasseurs of the Guard, and the whole of the mounted reserve, withont, however, producing any result other than a great slanghter on both sides, and the useless sacrifice of 18,000 of the finest cavalry ever seen. Napoleon now resolved on another vehement assault on the immovable British centre, and directed against it in succession two columns, one composed of four battalions of the Middle Guard, and the other of four Lattalions of the Middle and two of the Old Guard, suppporting them with flank attacks of other infantry divisions, of eavalry, and with a dreadful fire of artillery. The advancing French were met with a mell-sustained fire from every piece which could be brought to bear upon them; the first attacking column was fairly driven down the slope by the English Guards, and the second was totally ronted by a bayonet-charge of Adam's brigade, the British cavalry following up the fugitives. Ziethen had now (7 P.M.) joined the left of the Enghish line; Bulow, further reinforced, had carried Planchenoit, and was driving the French right wing before him; and the combined attack on the retiring masses of the French by the whole eflective force of the Anglo-Netherlanders on the one side, and of the Prussian cavalry on the other, converted an ordinary, though severe defeat into a rout upparalleled in history. The maguificent cavalry, wantonly destroyed by Ney in fruitless attacks upon an impracticable' infantry, would then have been of incalculable service, but they were no longer to be had. The last square of the Gnard still stood
but it was speedily surrounded, and on the soldierlike refusal of Cambronne to surrender, was iu a moment pierced through, and broken to pieces. From this time all resistance was over ; the roads southwards, especially that to Genajpes, were crowded with fugitives fleeing for their lives from the pursuing cavalry; and though the English light cavalry, exhausted with their severe work during the battle, soon ceased the pursuit, it was kept up, with great energy throughout the whole night by the Prussian troopers, who seemed bent upon at once aveuging the defeats of Jena, Anerstadt, and Ligny, and glutted their fierce animosity by an indiscriminate slanghter. The total loss in this lattle was, from the obstinacy and determination with which it was contested, necessarily large; the figures are: British aud Hanoverians, 11,07S; Brunswickers, 687; Nassaners, 643 ; Netherlanders, $\$ 178$; a total of 16,186 ; which, added to 6999 Prussians, gives the aggregate allied loss, $23,1 \mathrm{~S}$. The French liad 18,500 killed and wounded ; 7800 prisoners (some French accounts raise the total list of hors de combat to 32,000), and 227 camon eaptured.
This great battle has given rise to numerons controversies among the British, French, and German historians of the great struggle between Europe and Napoleon-the points in dispute being, (1) as usual, the numbers engaged on each side, (\because) the ability shewn lyy each general in his dispositions for the conflict, and (3) the relative share of the British and Prussiaus in producing the final result. These questions can be briefly and satisfactorily answered. The strength of the English army is known from official estimates; the French army, as shewn by its mancurres thronghont the day, was more numerons, and thongh its amonnt cannot, with perfect accuracy, be ascertained, it was certainly over 70,000 , and under $S 0,000$; but the fact that many Belgians in the Duke's army took to their heels as soon as the French marched towards them, and fled direct to Brussels, increased the disproportion, already sufficiently great, between the two arnuies ; the Prussians had only 35,000 men under fire at W., and half of these only for abont half an hour. Fanlt has been found with Wellington for giving battle in front of a wood, but the aecusation is foolish, as several good roads trarersed the wood, thus affording means of retreat, if necessary, and the woot could have been held by skirmishers to protect the retreating infantry. Napoleon's faults were ehiefly-the late honr at which be (not ealeulating on the arrival of the Prussians at all, and certainly not without Grouchy) commenced the contlict, and the reckless manner in which his cavalry reserves were wasted; and his neglecting to take into account the steadiness-a steadiness new to one of even his experience-with which, as he was warned by Soult, who knew it only too well, the British infantry were wont to maintain their gronnd. As to the third point, there is no doubt that Bulow's attack on Planchenoit distracted Napoleon's attention, and drew off 10,000 of his forces; lut though the Prussians had not come np, the battle could not have been otherwise than a drawn battle ; however, the effect of their successful attack on the French right, by taking in flank also the squadrons which recoiled before the invincible steadiness of the British, was' the conversion of an otherwise drawn battle into a glorious victory, Each of the three nations claims its right to give name to this famous condlict-the French calling it after Mont St Jean, a chattean in rear of the British line; the Prussians after La Belle Alliance; while the true victors on the bloody field assert their
rightful elaim, aml will hanel it down to all future abres as the batlle of IJaterloo.

WATER-MAIKK, the mannfacturevos maris on various kinls of paper. See l'speli.

WATER MElUUN゙. See MFiLON.
W゙ ITER OUSEL. Sce DIPIER.
W'ATFlR-1'OWFR. The value of water-power depeuls much on the nature of the source of supply, whether steady or otherwise. Whlere streans sujpplying water-power are liable to fall off much in dry weather, Iarge impounding reservoirs are necessary to keep the mills from being stopped during summer. These, however, being generally expensive concerns, are seldom made for one mill, but rather by some association of mill-owners; and often by a water. company or commission for supplying a town with water, to afford compensation to the mills by storing ny flood-water, for what is abstracted for the use of the town. On small strums, there is generally a pond provided fit to hold a night's water, or, perlhaps, even is Suday's, in addition; but in the case of large rivers, there is, in general, only a weir or dam across tho river to direct the water into the intake lade. When the inclination in the bed of the stream is small, the larles require to be proportionally long, to give suflicient fall, and are often above a mile long or more from the intake to the lower end of the tail or discharge lade, where the water is returned to the stream. The rise and fall of the tide las been frequently used for driving water-whecls.

The most usual, and generally the most eligible, mode of applying water to the driving of machinery is by means of a vertical wheel; and the wheel is pht in motion either by the water acting on blades or floats by impulse derived from its velacity acpuired in falling, or by the weight of water being applied to one side of the wheel. The former mode of applying the water is generally adopted in low fills, say under six feet or thereabout, and to what is ealled an undershot wheel-i.e., a wheel where the effective head of water is below the level of the centre; and to make the application efficient, that portion of the periphery of the wheel measuring from the point of impact of the water to a point dircetly below the centre, requires to be surronnded by a casing generally of stone, but sometimes of cast-iron, called the are, elosely fitted to the extremity of the tloats, so as to prevent any considevalo escape of water.

The wheel, waich may be either of timber or of

Fig. 1.
cast-iron, or partly of both, coasists (fig. l) of axle, u; arios, b; thoats, which are generally radii of the
circle, lut are sometimes set a little ohliquely to the radius, bointing up stream, c; and generally there are also a sole, d, being a lining round the circumference at the lower edge of the floats, having openings for the escape of air ; and a slarouding or cirenlar plate, c, at each side of the wheel, and of the same depth as the tloats.

Sometimes, when there is very little fall lyeyond the mere current of the stream, the lloats simply dip into the water like the paldles of a steamer, in which case, no sole or shronding is required; and to make allowance for the rise of the water in the tail-lade during floods, whicll is generally called back-water, and serionsly impedes and sometimes stops the motion of the wheel, occasionally the wheel and its are are so constructed as to lo capable of being raisel or depressed together, without throwing the machinery ont of gear. This is done in tho ease of the Inverness water-works, where the wheel is liable to be much affected by the rising and falling of the river Ness,
Sometimes, in this country, and often on the continent, the machinery is all on board a vessel moored in a river, so as to rise and fall with the level of the water, and thereby keep its water-whed always immersed to the proper depth. At the old London Bridge water-works, the wheels which rose and fell with the tide were worked by the eurrent of both the Hood and cbb.

The other mode of applying the water to a vertical wheel by making it act by its gravity, is the more perfect and economical mode, where circumstances will admit of it, and is generally adopted in falls of any considerable height, say of six feet and upwards, and where the water can be let on above the level of the centre. The wheels are called respectively breast and overshot wheels, aecorling as the water is let on more near to the level of the centre or to the crown of the wheel; and they have, instead of straight loats, curved or kneed buckets, according as they may be made of iron-plate or of wood, and of such a sliape as to retain the water down to the lowest possible point. There are generally in good wheels

Fig. 2.
ventilating openings in the sole for the escape of air. The overshot wheel bas this disadvantage that, as the water has little or no power until considerably past the top centre, the wheel is burden with a useless weight of water.
'Iho direct overshot wheel has the water min,

WATER-POWER.

without changing its direction, right over the top, as in fig. 2 ; which arrangement has this advantage that, as the top of the wheel moves in the same direction as the stream, it gets the benefit of the whole initial relocity and impulse of the water; lut, on the other hand, the bottom of the wheel, if at all immersed in water, which it generally is to some extent, meets with obstruction by moving against the current.
The pitch-back overshot is a modification of the last, making the water to pass alongside the wheel, and then to return and be let on the top of the whecl in a contrary direction, as in fig. 3. This requires longer and more complicated troughs, and ly the change in direction, part of the impulse from the water is lost, but the bottom of the whecl mores in the direction of the tail-water, and is not liable to the impeded by being immersed in it.

On the whole, it is generally thonght better to appily the water at abont 30 degrees from the top of the wheel. In such high-loreast or nearly oversloat wheels, the water is let on to the buckets over the top of the sluice, which is made to open by lowering, and shut by lifting, as in fig. 4. In this way, however small may be the quantity of water, it is always applied at the highest possible level, which is of importance when it is its weight multiplied hy the beight of descent, and not its impulse, that yields the effective power.
The structure of the overshot and breast wheel is nearly the same as that of the undershot, excepting in the substitution of curred bnckets, as in figs. 2 and 4, or angular buckets, as in fig. 3 , for straight

power is applied to a pinion P, working into seginents either external, as in fig. - , or internal, as in fig. 4 , attached to the shronding. In this arrange-

Fig. 4.
ment, there is notorsion of the axle, or transverse strain on the arms, and therefore the latter are more often made of round wrought-iron rods, with a slight axle. This wheel is much lighter than with the massive axle and the strong wooden or cast-iron arms, and is called a suspension or spider wheel.

In reckoning the power of water, its weight being Q $2 \frac{2}{2} 1 \mathrm{lbs}$. to a cubic foot; theoretically, 5 $2 S$ feet, falling vertically 1 foot a minute, would be equal to 1 Boulton and Watt horse-power of $33,000 \mathrm{lbs}$. lifted 1 foot a minute ; but the effective power is far short of that, and 60 per cent. of it, requiring 880 cubic feet, falling I foot a minute, is generally reckoned a fair allowance for an effective horse-power. Seventy-five per cent., requiring 704 feet, falling 1 foot a minute, is about the highest that has ever been spoken of, and it is doubtful whether even more than 70 per cent. has ever been attained; while with low falls and imperfectly constructed wheels, it is often reckoned that a borse-power requires nearly 1000 cubic feet a minute.

The velocity of the periphery of an undershot wheel is usually from 500 to 600 feet a minute, and that of a bucket-wheel, overshot or breast, from 300 to 450 feet. It is seldom that the whole beight of a fall can he adrantageously made use of; for if the wheel be placed so low as to get the benefit of the whole height of the fall in low states of the water, very often it is liable in floods, to have the lower rim immersed, and to be obstructed or stopped by back-water.

The most extensive application of water-power to one work in Scotland, or probably in Britain, is that of Deanston Cotton Mills, on the river Teith, 6 miles above Stirling, where there are in one house four wheels, 36 feet in diameter, and 12 feet in breadth, and having a volume of water of $8 \frac{1}{4}$ millions of cubic feet in 101 hours a day-falling 33 feet a minute. The most systematic application of water-power, however, is prohably that of the Shaws Water-works, now the property of the corporation of Greenock. There the yield of nearly 7000 acres of hill-ground is stored up in reservoirs of a capacity of $320,000,000$ of cubic feet. and conreyed by an aqueduct of about G miles in length to the outskirts of Greenock, which it reaches at the level of 512 feet abore the level of the sea, and is then divided into tro lines of falls, one laving

WATEL-POWER.

1200 eubic fect a minute for 12 lours a day, anel the other the equivalent quantity of 1060 feet for 13. L hours a day, divided each into 19 falls, for which those ahrealy appropriated pay per anmm from $£ 1,15 s$, to 24 , 5s. per horse-pwer, acending to their distance from the centre of the town, and their heiglt above its level. One foot of fall for eack line is reck ined I S horse-power, which is a wery hinh computation, beiner 922]er cent, of the theoretical horse-power. At the 'Cottou Mill,' where both lines of falls are combined, there is the largest, or nearly the largest water-whee in existence. It is 70 feet 2 inches in diameter, 13 feet wide, with 106 buckets, having a depth of 17 inches. It has 2006 culsic feet of water per minute, with a fall of $6 t$ feet 4 inches, and is therefore nearly 200 horsepower. By the shaws computation, it would be als horse-power. It is a spieler whecl, taking the power ofi the ciremmerence.

Of horizontal whels: In the proper turbine (from Ital. (urlino, a whirlwind), the water passes cither, first, vertically down through the wheel between fixel serew-blades, which give it a spiral motion,

Fig. J.
aud then strikes similar blades attached to a movahle syindle, but placed in the opposite clircetion, so that the impact of the water communicates a

Fig. 6.
rotatory motion to the blates and spindle, as shewn in fig. $\bar{\sigma}$, and iu fig. 6 an enlargement of the parts, the fixed blaces being marked a, a, and the movable
'portion of the machine l, b; or, second, a modification of the foregoing is to pass the water from the

Fig. 7.
centre lorizontally mitwards through fixed curved blades, u, a, ligs. 7 and S , so as to give it a rotatury

Fig. S.
or tangential motion, and thereby cause it to act on the blades of the wheel, ψb, which revolves outside.

Fig. 9.
In the reactionary wheel, which is in prineiple almost identical with Whitelaw and Stirret's wheel,

WATER-POWER.

previously described uniler the article Barker's Mill, the water is admitted at the centre of the wheel from helow; passes to the circumference hetween curved blades of the wheel, and escapes by tangential orifices at the circumference, there being

Fig. 10.
valves male to open more or less, accorling to the quantity of mater and to the puwer required. This form of turbine is shewn in figs. 9 and 10 , where the water enters at ac, and escapes by $h_{\text {b. }}$.

The rorter wheel of I'rofessor Thomson (figs. 11

Fig. 11.
an.l 12) takes in the water after clescending through the tubes, a, a, at the circumference, where, by means of fixed blades, b, b, it acquires a tangential

Fig. 1 ?
motion, and then passes through between the curved arm, cc, of the wheel, and escapes at the centre, 475
$d d$. As the two last described wheels work always under water, they are not liable to be obstructed by back-water, or to have their power lessened thereby more than what is due to the diminished fall, and they are understood to yield a good rercentage of power, sometimes stated at 75 ner cent.; but all turbines are somewhat delicate, and liable to be choked by leaves or twigs, unless the water be carefnlly strained. Although only a few Lurizontal wheels have been described, their name is legion, and it rould take a book to mention them all, or to describe their respective merits.
The reciprocatory hydraulic engine, as shewn in fig. 13 , works exactly on the same principle as the ordimary non-condensing steam-engine. 'lhe water,

Fig. 13.
under consideralle pressurc, is admitted at one ent of a cylinder, a, the exit ralve, d, at that end being simultaneonsly closed, while it is shat off from the other end, and the exit ralve, l, there opened; and so the alternating action of the valves and of the piston goes on continuously. To work smoothly and effectively, the piston ought to be of large diameter, in proportion to the length of stroke, and to go slowly; otherwise the quick jerking is apt to shake and to injure the engine; aud generally it is better to have two cylinders and pistons working together, as that enables them to work more equally, and to turn the crank without the use of a tly-wheel.

Both the turbine and the reciprocatory engine hare been made use of as water-meters.
The turbine and the reciprocatory engine have the adrantage of heing able to take the use of a fall much greater in height than the diameter of the largest wheel that can be made: but for all ordinary falls, a good breast or overshot wheel,
or even an undershot, is, on the whole, generally considered better.

WATER-PROOFING. See CAOUTCHOLS. Besides the application of caontchonc, peculia. methods have been employed to remder cloth impervions to water, at the same time allowing the passage of air, the absence of this property in the impermeable caontchone matmfactures laving been found disalvantageons. Two plans are adoptecl for water-prooting woullen cloths, without rendering them quite impervious to air-the first is to dip the cloth into a solution of soap, and thoroughly rub it into the texture, after which it is dipped into a solution of alum; a decomposition of the soap and almm is effected, and the minute openings between the fibres are in some way partly filled so as to exclude water. In the second plan, the cloth is dipped into a solution of gelatine or isinglass, and afterwards in an solution of galls. A kind of tanning process is the result, the gelatine which has pervaded the cloth being rendered as insoluble as leather ly its union with the tannin of the galls.

WATER-SPOUT. See Whirlwind.

WATER-SUPPLY. Water is one of the primary wants of human life, no less essential than air and food; hence the strong and religious interest that has always been attached to the means of its supply. In the carliest records of civilisation, we read of the digging of wells, and of quarrels about the possession of them. The 'Pouls of Sulomon,' near Bethlehem, which remain now almost as perfect as when they were huilt, were connected with a scheme for supplying Jerusalem with water. In Assyria and Persia, from the earliest times, water has been conveyed to towns from astonishing distauces in open channels or cauals, and in subterranean tumels, or ketetes. In Egypt also, and in China, gigantic works for conveyins water, both for domestic use and for irrigation, have been in existenec from remote antiquity. Nor were these undertakings contined to the eastern hemisphere; we have evidence of the existence of kindred works in preChristian America. The ancient city of Mcxico, which was built on several islimels near the shore of the lake, was connected with the maiuland by four great causeways or dikes, the remains of which still exist. - One of these supportenl the wooden aqueduct of Chapoltepec, which was constructed by Montezuma, and destroyed by the Spaniards when they besieged the city. Hytraulie works on a great scale had also been executerl by the Incas of Peru. Uf al! the ancient nations, the fomans pail the greatest attention to the supply of water, and carried the construction of aquelucts to the greatest perfection and magniticence. If we except the supply of New York from the Croton river (see Aqueducr), and that of Glasgow from Loch Katrine, the efforts to supply morlern cities are as yet insignificant compared with those of the Rontins. The last-named works, fuished in ISJS, convey 19 million galluns a clay a distance of 26 miles. It is only since the beginning of the sanitary moveunent, oceasioned by the repeated visitations of cholera beginning with 1832, that the suljeet of water-supply, and more especially the quality of water-supply, has serionsly oceupieal jublice attention. "the result of every inquiry and every day's experience has been to bring ont more strongly the decided cfiects on the health of a community arising from the quantity and quality of the waterat their command; and as the river and surface sources of supply near the chief seats of population are lsecoming every year more cuntamimated by Sewage (g. v.), the drainage from manurel land, the dropings of animals, and the refuse of manufactures, enterprise and enginecring skill must
be directed cither to procuring a supply of puro subterrauean spring water from the chalk or other absorbent strata, or to bringing jure water from greater distances than hitherto. Already it is sug. rested to bring water to the metropolis from tho flanks of the monntain ranges of Cader Idris and Plinlimmon in North Wales, from which the river Severn is supplied. According to Mr Bateman's plan, which be has elaborated in considerable detail to shew the practicableness of the scheme, the water would be conveyed for the most part in ans opea arqueduct, 173 miles long, aml capale of carrying 2200 millions of gallons a day, to service-reservoirs on the high land near Stanmore, about ten miles from London, from which it would be deliverel, at ligh pressure, by means of pipes, to the whole city. The initial cost he estimates at $£ 8,600,000$. If this project is carried out, it will far outstrip the greatest works of the liomans on their own plan. 'There are rival scheures for taking the supily from the Lake districts of Cumberland and Nestmoreland. Owing to the exceptionally great rain-fall in these regions (140 inches on an average), it is calculatec that the two lakes of Ullswater and Ifaweswater, with a drainage of 100 sq . m., receive together an aweage daily discharge of 550 million gallons. From this water, which is very free from mineral matter, there are proposals to supply not only the metropolis, but the jrincipal towns of the north. west of England-Liverpool, Leeds, Bolton, Bury, Blackburn, Hudderslickd, de. The proposal also has been revived, made in 1510 by the late liobert Paton and the late Robert Stevenson, to supply the whole of the metropolis with softened spring-water to be derived from the chalk strata in the sicinity. Recently, a covered conduit, 80 miles long, has heen constructed, which conveys S million gallons of pure clalk spring-water from the sources of the Dhuis, in Champlagne, to Paris; and operations are going on to bring the chalk springs of the Tamne, calenlated to yield $2 \cdot 2$ million gralluns a-lay, also to Paris, a distance of $10 t$ miles.

The chief points of interest on this sulject may be arranged mmler the heads of the Sources of Supply, the Qualities of Water, and the Arrangements for its Conveyance and Distribution.

Sources of Wrater.

The ultimate source of all fresh water is Rain (ๆ. v.). When it has fallen on the earth, it presents itself chiefly in the forms of surface-watcr, rivers, and springs.
Surface-cullection.-Pain-water, as it is formed in the upper regions of the atmosphere, is the purest that nature supplies; but in descending, it brings with it whatever impurities are floating near the surface, which, in the neighbourhood of towns, are momerons, consisting of various gases, together with soot and other floating partieles, organic and inorganic. liain-water lias a strong allinity for organic impurities-that is, the convinting ingredients derived from vegetable and ammal lodies, and which are diffused over every surface in the viciuity of liviurs beings; hance, when collectecl from the roufs of houses, it has a tendency to rapid putrefaction. Beinis free from saline imgredients, it is excellent for washing, Jut is not generally plensant to drink.

But if we resort to a larren district of rock or saml, lestitnte of vegetation, and remote from the rullution of towns, we may oltain water with comparatively little organic impurity, Nutwithstanding several dufects, it happens in varions places that a surface-supply is the best that cau be bal.

Rivers.-The water obtained fróm rumning streans is in part what has flowed immediately from the
surface, and in part the water of springs, shallow or deep. In any case, a considerable amonnt of contact with the ground has taken place, and in consequence saline and organic matter is liable to be dissolved in a greater or less degree. The extent of the impregnation, as well as the kind of material dissolved, will deprend on the rocks and strata of the river-basin.

River-waters, besides the qualities they derive from their primitive sources, are apt to contain mud, decayed leaves, the exuviz of fish, and other matters in suspension, and are thus deficient in the clearness and transparency so essential to the satisfaction of the eye in a drinking-water. Moreover, the water partakes of the extremes of summer and winter temperature. But the great objection to water from rivers is their general pollution from the manure used upon the land, sewage, and manufactures, so that there are now few rivers left from whose lower course a supply could be taken for domestic durposes. On the other hand, the supply from one of our large rivers is boundless and unfailing; and it conveys the surface-drainage and spring effusions of a large tract of country, without incurring any trouble or expense as to the original sources. Fivers that issue from lakes are generally the purest, as the suspended matter has time to be precipitated.
Springs.-The qualities that recommend water to the eye and to the palate belong in a pre-eminent degree to spring-water (see Sprivg): it is clear, sparkling, and of an agreeable and nniform temperature at all seasons of the year (abont 50° Fahr.) ; it is well aërated, and is totally free from the affensive taint so common in all other waters, as well as devoid of the animalcules generated by organic impurity; and where a sufficient number of springs can be collected to suffice for a town, it is the most desirable of all sources of supply. Three-fonrths of the water brought to Edinburgh is sprirg-water collected on the slopes of the Pentlands.

Quality of Water.

Perfectly pure water is hardly to be found ; rainwater, and even artificially distilled water, are only approximates. The chief impurities may be considered under the heads of Mineral Matter in Suspuension, Mineral Matter in Solution, and Organic Matter.

Mineral Malter in Suspension.-When running water comes upon a loose bottom, it carries the finer particles of sand and earth along with it. If the water comes into a position of perfect stillness, the matters thus Hoated gradually sink to the bottom again, with the exception of particles of clay, which, owing either to their excessive fineness or to their adhesive attraction for water, are incapable of being satisfactorily separated either by subsidence or filtration. Besides carthy matter, compounds of iron and lead are also in some circumstances present in a solid state, and may be got rid of by filtering. To separatc clay-powler from water, the practice has long been resorted to in India and China of putting in a piece of alum, which seems to protuce a kind of coaculation.

Dissolved Mineral Matter.-Spring-water, which is generally clear and sparkling, holding no solid matter in suspension, is seldom withont a large amount of dissolved mineral matter, sometimes as much as 2 parts in 1000. commonly from 1 in 1000 to 1 in 90,000 . River and surface water also contains more or less dissolved minerals (see Mineral Waters). The great bulk of the sobil matter held in solution in ordinary waters consists of the salts of soda, potash, lime, and magnesia. The most material are the salts of lime and magnesia, as they are the
canses of what is called 'hardness' in water, which we shall speak of more particularly afterwards. The most important salt of lime is the bicarbonate, which is lerived from chalk or limestone. Chalk or limestone is a carbonate of lime-that is, a compound of lime with one equivalent of carbonic acid -and is almost insoluble in water ; but when water containing an excess of carbonic acil-as is the case with spring-water especially-passes over limestone, it gives the carbonate a double dose of carbonic acid, and converts it into bicarbonate, which is soluble. The waters having bicarbonate of lime for their chief impurity, are familiarly spoken of as the chalk-waters. The other salt of lime often present in water is the sulphate or gypsum. The important distinction between the bicarbonate and the sulphate lies in the fact, that the first, the bicarbonate, may be in great part precipitated, or thrown down in a solid form, by boiling, which drives otf the solvent carbonic acid; whereas the second, the sulphate, cannot be so precipitated. The chief effect of the boiling takes Hace in the first five minutes; but it may be increased by continuing it for fifteen minutes or even an hour.

Apart from its harduess, it has been made a question whether water containing salts of lime is injurious or not to the human constitution. Dr Lankester holds that there is evidence to prove that earbonate of lime in large quantity is positively injurious ; and most physiologists are agreed that pure water is the best for securing the health of animals and man.

With regard to magnesia, its salts are well known to act as powerful melicines when taken in large doses, and it may be presumed are not altogether withont effect in the small quantities existing in ordinary magnesian waters. A foreign physician has lately made the observation, that magnesia is the characteristic ingredient of waters in the districts where the diseases called cretinism and goitre abound. -Of salts of sode and potash, the principal is common salt, or the muriate of soda. Sulphate of soda (Glauber's salt) occurs along with the muriate in the salt-springs of watering-places as well as in the seawaters. None of all these salts have any effect on the harlness. In the case of sea-water, which is very hard, the effect is not due to common salt, but to the lime and magnesian salts dissolved in it ; were it not for these, sea-water would be perfectly suitable for washing, although not for drinking.-Salts of iron in considerable quantity make what are technically named chalybeate waters, which belong to the medicinal class. When the iron exists in the spring as carbonate, which is the most usual case, on exposure to the air, it is changed into the peroxide, and falls down in the form of an ochery precipitate. Salts of iron give an inky taste to the water, and a yellowish tint to linen washed in it.

Marlness in W"ater.-The ciuality of hardness in water is commonly recognised by the difficulty experienced in washing, and by the amount of soap necessary to form a lather. This quality is injurious also in the preparation of food; but its action is most universally felt in washing, operations. It occasions the chapping of the skin, an enormons waste of soap, an extra labonr, and a corresronding tear and wear of clothes. Every grain of chalk contained in water decomposes 10 grains of soap; and thus the hardening matter contained in 100 gallons of water, such as is supplied to London, will destroy 33 ounces of soapthat is, the first 35 ounces of soap added to this quantity of the water will disappear without forming any lather, or having any cleansing effect. Soap is a compound, formed of an alkali (soda or potash) joined to an oily acid. When a salt of lime,

WATER-SUPPLY.

then, is present in the water, the lime decomposes the sonp, and combines with the oily acid to form a line-soap, which is insolnble, and has no detergent properties.

Tlie most usual hardening ingredients are the salts of lime. Sialts of magnesia aml of iron are also hardening salts. Salts of solia and potash liave no hardening eflect. Dr Clark, formerly I'rofessor of Chemistry in Marischal Collece, Aberdeen, has devised a scalle of hardness which is now universally employed in the chemical lescription of waters. The hardening effect that would be produced by one grain of chalk clissalvel in a gallon of water is one clegree of hariluess; in like manner, four grains per gaillon would produce four degrees of hardness ; ten grains, ten degrees; and so on. The degrees are expressed in numbers-thms, $1^{\circ}, 4^{\circ}, 10^{\circ}, 15^{\circ}$, are one, four, ten, fifteeu degrees respectively. The degree of hadness of any particnlar water cau be readily and exactly determined ly Dr Clark's Soa' Test (q. ソ.).

Next to washing, the deletcrions consequences of hardness are felt in various culinary operations, cspecially in the furring of boilers and cooking utensils, and in the infusion of tea. It is a fact of unversal experience that hard water requires more tea than soft water to make an infusion of the same strength, and also renders the infusion mudily. Subcarbonate of sodia in erystals, by decomposing the earthy salts, improves the water; but if more is added thau what will exactly decompose the earthy salts preseut, it injures the fine flavour of the tea. It may be stated generally, that for the jurposes of washing and cooking, a water of less than 6° is soft, Lut above this point the harduess becomes objectionable. At S°, the water is moderately hard; at 12 , it is very hard; at 16°, the hardness is excessive; and much above this, it is intolerable.

To make these observations more intelligible, we may mention a few instances of known waters, witl their place in the scale. In Kuswick, the water is under half a degree of hardness; in Lancaster, it is 13°; and in Manchester, 2°. I'lie water of the Dee at Aberdeen, which is used for the supply of the town, is 14° of hardness. 'The water of Loch Katrine is of remarkable prity, haviug only two grains of solid matter of all kinds in the gallon, and 10 of hardness. The waters of the Welsh mountains, from which it is proposed to supply Loudon, have on an average less than 2°. The river Clyde, wheli formerly supplied Glasgow, is 42°, and nayy also be reckoned a soft water. The Thames at London, as well as the New River, is about 13°, while many of the tributaries of the Thames rise as hirg as 16^{3}; but being all chalk-waters, they may be materially softened by boiling. Springs from the chalk commonly range from 16° to $1 S^{\prime}$; but particular springs are to be met with in some parts of the work four or five times as hard, from the presence of bicarbonate of lime. The water of the Treasury purp in Loudon has from 50° to 60° of harelness. In many jarts of the continent, hard waters abound; but the testing of waters has not been so much attemaled to there as in this country.

From an extensive examinatiou of the waters of England and Wales, made some years ago by the General Board of Health, it appears that in England the hardness of springs in general is considerable; that a very large nmmber of rivers have an injurious and exceptionable amonnt of hardness ($13^{\circ} \cdot 05$) ; and that surface-waters may be collected in a state that is to be considered soft ($\left.t^{\circ} \cdot 9 t\right)$.

Lead in 3F"ater:-Injurions effects liave frequently ariseu from the contamination of water with lead, derived from leaden pipes and cisterns. Souse kinds of water are known to act powerfully on a leaden of wate
100
surface, and others scarcely at all; but the qualities and circumstances on which the action depends have never been satisfactorily determined. Distilled water, and soft lake and river waters in general, act nost deeidedly, but by no means in proportion to their softness. The presence of air in the water seems one essential condition; liglt also increases the action, as does the presence of vegetable matter; it has been observerl that when leaves drop by chance into al lead cistern, the spots where they lie become risil,ly corrodel. The water of Locl Kiatrine, according to exteusive sets of experiments by distinguislied chemists, is allowed to have an intense action ${ }^{*}$ on leal under certain cireumstances-viz., "1sf, If the lead le bright and highly polished; and $2(l$, If the lead and water be freely exposel to the access of air.' But it 'does not exert any noxious action on lead when the metal is in its ordinarily dull state. The coating formed on the surface of the metal is hell to protect it from further chemical action. Still there are opposing facts to shew that this protective action is not always to be relied on ; and that water that has passed through any consirlerable length of learl pipe, or stood for some time in a short oue, or in a cistern, should never be used without care; a uinth part of a grain of lead per gallon has been known to derange the health of a whole eommunity. Dr Clark made the unexpeeted liseovery that saud-filters completely separate the lead.

Organic Impurilics. - The contamination of water by regetable and animal sulstances takes place in various ways. 'The most obvious and abundant source of this class of ingredients is the sewage and refuse of towns; and next in order may be ranked the contact with soils rich in organic matter. Among organic impurities may be classed offensive gases, such as carburetted, sulphuretted, aml phosphuretted hydrogen; vegetable fibres in a state of rottenness; putrefying products of the vegetable or animal Kingdoms; starch, muscular fibre, \&c.; urea and amuoniacal products; vegetable forms-algæ, couferva, fungi, Re.; animalcules-iufusoria, entomostracce, anuellidec or worms, se. Water falling on a growing soil, and running off the surface to lie in stignant ponds, is in very firvourable cireumstances for being tainted with vegetable amd animal life. Water-plants will spring up and feed numerous tribes of amimalcules, and each prool will be a constaut scene of vitality: In sucll a state, the water is usually unfit for rlrinking; the palate instantly discerns a disagreealue taint, and no one wall nse it who can do better. The surface-water of a district overgrown with peat-moss has usually a peaty flavour, as well as a dark and din'ty colour. The infusion of peat does not breed animalcules, being a strong antiseptic; but it is au objectionable ingredient nevertheless. Very slow filtration has been found to remose the colour of the infusion in some degree, but not entirely. Lime removes the peat most effectually, but there is both expense and risk in applying it. It is perlaps doubtful whether any specitic unwholesomeness can be justly attributed] to peat-water; but it is unpalatable, and the nse of it is shunned by the inhalitauts of praty listricts, aud even by cattle. The jresence of jeat iu the lands used as collecting-grounds for surface-waterand it is generally such worthless tracts that are so employed-is a disalvantage attending that mode of supply.

* The water of Loch Katrine is remarkably well aërated, having 71 cubic inches of air per gallon, of which 212 inches are oxygen. Dr Clark has a suspicion tlat the oxygen may turn out to be in some different state or modification from common oxygen.

WATER-SUPPLY.

Chalk-water, which, as it issues from a spring, is perfectly free from organic matter, has a source of contamination within itself. When exposed to light and air, the duphicate dose of carbonic acid that keeps the chalk dissolved, becomes decomposed; and the carbon of the decomposel acid gives rise to a green regetation, which soon acquires an offensive marshy smell.

Organic matter in a putrefying state forms the worst kind of contamination that water can have. Though we may not know the precise effects of these impuritics on the animal system, the single fact of their rendering the water repulsive to the taste and nauseons to the stomach would be sufficient to condemn their nse. What is disagreeable to the senses, must be presumed to he nuwholesome in addition, antil the contrary is proved. Thongh no one has ever yet gone the length of maintaining, as a general trith, the wholesomeness of water abounding in vegetation, insects, and decaying matter, yet the water of the Thames, even within the inflnence of the tides, where it is contaminated by the whole sewage of the metropolis, found defenders until lately, on the plea that the amount of impurity was too small to do harm. This ground is at length given up; but Thames water above Tedlington Lock is still sanctioned as safe water for the companies to supply to the inhabitants of London, notwithstanding the sewage of the numerous populous torns that the river receives above that point. As to this plea of smallness of amount, the highest medical authorities hold that it is impossible to say how small a quantity of organic matter in a state of fermentation may not do harm. We are not, howeser, left merely to presume that organic impurity in water is prejudicial to health. During the cholera risitation of 1553-1854, a gigantic experiment was undesiguedly made on half a million of human beings. It so happened that a certain district of London was supplied by two rival water-companies, the tro mains running often side ly side, and some honses taking water from the one, and some from the other. The whole inhabitauts were living alike in all respects save oneviz, that one company drew its water from high up the Thames, where it was of comparative excellence, while the other drew its water from low down the river, where it was profusely contaminated with town-drainage. Among this population, there were more than 4000 deaths from cholera ; and when the epidemic had subsided, an inquiry was made, honse by house, as to those deaths, and as to the watersupply of the sereral houses where they had occurrel. The inquiry was conducted with every precaution, to avoid sources of fallacy; and the result was this: in the one set of houses, the mortality per 10,000 of the population was 37; in the other set of houses it was 130 -that is to say, the cholera death-rate was $3 \frac{3}{2}$ times as great in the one set as in the other.
It is a commou notion that every drop of water teems with life; but this is a mistake. Doep wells. and spring-water in general, contain little or no living organie matter. Consequently, it is quite possible to ubtain a liquid perfectly free from animalcules and vegetation. The presence of living creatures, vegetable or animal, discernible either by the naked eye or by the microscope, is a proof of organic taint in the water, and is one of the tests of this kind of impurity. With respect to rain-water, Dr Hassall states, in his evidence before the General Board of Health: 'I have made several examinations of rain-water immediately after its descent to the earth, obtained in both town and country, and can coufidently assert that it does not, in general. contain any form of living vegetable or animal
matter.' The conditions necessary for the development of vegetation and animalcules over and above the presence of matter for them to feed on, are air, light, and stillncss. With regard to the probable effects on health of living creatures contained in water, Dr Hassall's observations are worthy of attention: 'All living matter contained in water used for drink, since it is in no way necessary to it, and is not present in the purest waters, is to be regarded as so much contamination and impurityis therefore more or less injurious, and is consequently to he avoided. There is yet another view to be taken of the presence of these creatures in water-viz., that where not injurious themselves, they are yet to be regarded as tests of the impurity of the water in which they are fuund.'

Means of purifying Water.

The mechanical impurities of water, or the solid particles rendering it muldy or milky, may in most cases be removed by mechanical means. The two processes for this purpose are subsidence and fitration. The effects of subsidence are strikingly seen in the case of rivers that pass throngh lakes. See GEXETA, LaKE OF. The suhsidence of solid particles depends on their own weight, as compared with the weight of an equal bulk of water. To favour the process, the most perfect stiliness should be allowed. It is expedient to have partitions placed in the subsiding reservoirs at short intervals, more effectually to rrevent the agitation of the water. The water should be run off from the top, and not from the lootom. By making the bottom of the snbsiding reservoir form a declivity from opposite sides, and proriding means to let off the water occasionally from its lowest depth, it is possible to get quit oi the subsided mud. It is alrays fornd of adrantage in clearing water from solid particles, whether by subsidence or by filtration, to mix together streams of different qualities.

In constructing an artificial filter on a large scale, a basin is formed, haring the floor nearly level, but slightly inclining towards a centre line, and made water-tight loy puddling the bottom and sides with clay. On the floor is laid a series of layers of gravel, coarse at first, and getting gradually finer apwarls; next, a layer of slate-chips or sea-shells, then one of coarse sand, on which is placed the actual filtering layer of fine sancl. The depth of this layer is from trelve to thinty inches, that of the entire mass from four to six feet. The water being admitted gently on the top of the sand, sinks down and is conducted by a series of channels, generally of tile-pipes, into the main drain. A filter in a clean state will pass from twelve to eighteen vertical feet of water in treenty-four hours. The solid matter intercepted does not penetrate more than three-fourths of an inch into the sand, so that, by remoring a very thin film from the surface, the filter is again clean. What is scraped off the top, is caprable of being washed and put again to ise. - This process of filtration,' says Professor Clark, 'is efficácions in remoring mechanical impurities to an extent that could scarcely be believed without seeing the process.
The cleansing power of sand can hardly bo accounted for on the theory of mere mechauical interception. Though there is no chemical action, strictly speaking, there is no doult that the attraction of adhesion is at work-a power that plays a greater part in natural processes than has generally been assigned to it. Some substances manifest this aulhesive attraction more strongly than saud, and have therefore still greater efficacy as filters; though practically, and on the large scale, sand is the most eligible. Powdered charcoal has long

WATER-SUPPLY.

been known as a powerful filtering medium, attracting and detainingespecially organic duatter. Animal charcoal, or that derived from burning bones, is still more efficacious than wood charcoal. A filter of animal chareoal will render London porter almost colonrless.

According to recent researches, it would seem that loan and clay have similar properties, and may be made available as filters. Professor Way states that they have powers of ehemical action for the removal of organic and inorganic matters from water to an extent never before suspected.' The filthiest liquids, such as putrid urine and sewerwater, when passed through elay, dropped from the filter colourless and inoffensive. The clay used was that known as pipe-clay.

For filters for domestic use, see Filter.
Softening of Hater rendered Hard by ChalkClurk's Process.-This is one of the most beantiful applications of seience to the arts of life that coakl perhaps be named. We extract the inventor's own account of it, as given in a paper read before the meeting of the Society of Arts:
' In urder to explain how the inveution operates, it will be necessary to glance at the chemical composition and some of the chemical properties of chalk; for while chalk makes up the great bulk of the matter to be separated, chalk also contains the ingredient that brings about the separation. The invention is a chemical one for cxpelling chalk by chalk. Chalk, then, consists, for every 1 lb . of 16 oz ., of lime, 9 oz ; carbonic acid, 7 oz

The 9 oz . of lime may be obtained apart, by burning the chalk, as in a lime-kiln. The 9 oz . of burnt lime may be dissolved in any quantity of water not less than 40 gallons. The solution wonld be called lime-water. Duriag the burning of the chalk to convert it into lime, the 7 oz . of carbonic acid are driven off. This acid when uncombioed, is naturally volatile and mild ; it is the same substance that forms what has been called soda-water, when dissolved in water under pressure.

- Now, so very sparingly soluble in water is clalk by itself, that probably npwards of $50 n 0$ gallons woukl le necessary to dissolve 1 lb . of 16 oz. ; but by eombining 1 lb . of chalk in water with 7 oz . addlitional of carbonic acid-that is to say, with as much more carbonic acid as the chalk itself contains -the chalk becomes readily soluble in water, and when so dissolved, is called bicarbonate of lime. If the quantity of water containing the 1 lb . of chalk with 7 oz . additional of carbonic acid, were 400 gallons, the solution would be a water of the same hardness as well-water from the chalk-strata, and not sensibly different in other respects.

Thus it appears that I lb. of chalk, scarcely soluble at all in water, may be rendered soluble in it by either of tro distinet chemical changessoluble lyy being deprived entirely of its carbonic acid, when it forms lime-water, and saluble by combining with a second dose of carbonic acid, waking up bicarbonate of lime.

Saw, if a solution of the 9 oz . of burnt lime, forming lime-water, and another solution of the 1 lh, of chalk and the 7 oz. of earbooic acid, forning licarbonate of lime, be mixed togetber, they will so act upon each other as to restore the 2 lbs. of chalk, which will, after the mixture, subside, leaving a brioht water above. This water will be free from bicarlonate of lime, free from burnt lime, and free from chalk, except a very little, which we keep out of account at present for the sake of simplicity in this explanation. The following table will shew what occurs when this mutual action takes phace :

A small residuum of the chalk always remains not separated ly the process. Of $17 \frac{3}{2}$ grains, for instance, contained in a gallon of water, only 16 grains would be deposited, and 14 grains would remain. In other words, water with $17 \frac{1}{2}^{\circ}$ of hardness, arising from chalk, cao le reduced to $1 \frac{1}{2}^{\circ}$, but not lower.
'These explanations will make it easy to comprehend the successire parts of the softening process.

Supposing it was a moderate quantity of wellwater from the chalk-strata aromi the metropolis that we hall to soften, say 400 gallons. This quantity, as has already been explained, wonld coutain 1 lb . of chalk, and would fill a vessel 4 feet square by 4 feet deep.
'We would take 9 oz . of burnt lime, made from soft mper chalk: we first slack it into a hydrate, by adding a little water. When this is done, we mould put the slacked time into the ressel where we intend to soften; then gradually add some of the water in orler to form lime-water. For this purpose, at least $4(1)$ gallons are necessary, but we may add water gradually till we have added thrice as much as this; afterwards, we may add the watcr more freely, taking care to mix intimately the water and the lime-water, or limc. Or we might previously form saturated lime-water, which is very easy to form, and then make use of this lime-water instead of lime, putting in the lime-water first, and adding the water to be softened. The projortion in this case wouh be one bulk of limewater to ten budks of the hard water.'

It is of inaportance that the lime-water-that is, the softening ingredieot-be jut into the vessel first, and the bard water gradually added, because there is thus an excess of lime present up to the very close of the process. Instead of lime-water, the lime itself may be put at once into the ressel, and some of the water to we softened gradnally added to dissulve it. The softened water thus obtained has no action on lead-pipes or cisterns, as many soft waters have. One ton of burned lime, used for softeciog, will produce three add a balf tons of precipitite. The present watersupply of the metropolis, if suljected to Clark's process, would deposit abont fifty tons of chalk daily.
The process was in operation on a large scale for several years (1854-1S61) at Plumstead, near Woolwich, where 600,000 gillions daily were ojerated upon with the most satisfactory result. These works are now given up, though for reasons quite apart from any failure in the process. But several water-works have since been erected, or are in course of erection, by Mr Homersham, C.F., London, fur supplying water from the chalk springs softened by Clark's method ; e.g. at Castle Howard, seat of the Earl of Carlisle (1 SJS); at Caterham, Surrey, for the supply of Caterham, Warlingham, and several neighbouring towns (1S61); at Shooter's Hill, Kent, for the War Office, for softening the water of the Kent Company for the supply of the Herbert Hospital, \&c. (1S65); at all of which works the 1 rocess is in snccessful operation. Mr Homersham has also nearly completed works near Tring, Herts, for the snpply of Tring, Ayleshury, and other townos, with softened spring-water. Mr Homersham finds that spring-water from the chalk cau readily, on
the large scale, be softened down to from $2 \frac{1}{2}$ to $4 \frac{1}{2}$ derrees of hardness.
Clark's process is not confined in its effects to softening; it has a decided influence as regards organic impurities; for it not only removes the active source of corruption which exists in all chalkwater, as abore explained, but the precipitated chalk carries down with it a large proportion of such organic matters as may be already present. Several calico-printers in Lancashire have had Clark's process in use for several years, for the improvement of the quality of the water employed in their processes.

Natural Process of Purification from Organic Matter.-Although, by means of sand and other filters, or of the liming process, organic contamination of water may be much reduced, there still remains euough to render the Trater unsafe for use. Is Tater, then, once cormpted with organic matter, lopelessly and permanently so? This question can be answered in the negative. Filthy water has a tendency to purify itself, and this in two ways. In the first place, in any shallow stream of polluted water, such as the kennels of a street, there may be observed long brushes of a sort of slimy vegetation adhering to every projection of the bottom. All this matter has been disengaged from the water, which thus flows away so much the purer. The second and most effective part of the natural purification consists in the actual decomposition of the impurities. The nitrogen of the decaying matter, then, goes to form nitric acict, which, uniting with bases, forms salts of the class called nitrates, of which saltpetre is one. Thes, what was in a state of putrefactive change, offensive to the senses, breeding loathsome insects, and causing dangerous disorders, is changed in course of time into a stable and harmless product. This process is constantly going on in rivers and other waters containing organic matter. In the case of streams passing through populous districts, the contamination goes on at a rate far beyond the power of natural purification ; but we can easily conceive how a river, sery much contaminated with organic impurities at one part of its colurse, may, after flowing a long way through an uninhabited tract, be almost restored to its natural state. The process is one of oxidation, and takes place at the cxpense of the free oxygen, of which, in healthy normal water, there ought to be 29 per cent. of the entire volume of gases held in solution.
The oxidation is much faroured and hastened when the water percolates or filters very slomly through porous beds of earth. If the filtration has been sufficiently prolonged to conrert all the decaying matter into carbonic acid or nitrates, the water mill be pure, as far as the organic taint and the presence of animalcules are concerned, and will, in fact, be neither disagreeable nor unwholesome, the amount of the dissolved carbonates or nitrates being unimportant.
Dr Smith has proved by direct experiment that deccmposing organic matter passed through a filter-ing-bed is changed into nitric acid. 'A jar, open at both ends, such as is used with an air-pump, was filled with sand, and some putrid yeast, which contained no nitric acid, was mixed with pure water, and poured on the sand, and allowed to filter through. The production of nitric acil was abuodant.' It is not improbable that other earthy matters, such as loam and clay: may have a still more decided influence in hastening the formation of the nitrates; and perinaps by imitating more closely the slow mode of filtration by which nature converts surfacewater iuto spring-water, it may yet be practicable to nake the most contaminated waters fit for use.

Conveyance, Storage, and Distribution.

Into the engineering operations connected with the conreyance of water from its source to the town to be supplied, we need not enter, beyond noticing, that when the source is below the lerel of the houses, steam or other power is necessary to lift or propel the water to the necessary height; while in the more general and more desirable case of the source being higher than the place where the supply is to be delivered, the water is made to flow ly its own gravitation, either in a channel or culvert with a continuous descent, as in the ancient Aqueduct (q. v.), or in the simpler and more economical modern plan of a line of cast-iron pipes following the inequalities of the surface. The annexed diagram represents an outline of this mode of convcyance; where a is a lake

Fig. 1.
or reservoir situated in a mountainous district, and b a town separated by several miles of irregular country; the course of the pipes is indicated by the dotted line, and the pressure of the water at a suffices to make the water rise at b to a height nearly equal to that of the head. In many cases, both principles are employed, the water flossing for the most part in a gently sloping conduit, tunuclled through hills where necessary, and being carried through valleys in tubes descending and ascending -an inverted siphon, as it is called. The Croton Aqueduct, which supplies New York, is carried across the Manhattan Valley, upwards of 100 feet deep, in this way. The Glasgow supply from Loch Katrine Hows mainly in a sloping channel carried through tunnels and over brilges; but there are four miles of iron pipings across valleys.

The extent of the storage in reservoirs depends on the nature of the supply. If water is derised from perennial sjrings, whose minimum flow equals the maximum demand, the storage may be the least possible. If a river is the source, the reservoirs should be large enough to hold such a stock as will carry the consumers orer the periods when the river is polluted by rains; they should also be large, on the principle of allowing time for purification by subsidence, especially if artificial filtration be not employed. In places where the supply is obtained from surface-drainage, or from a small stream, the practice is to build reservoirs capable of containing a five or six months' supply, it being necessary to provide against the greatest droughts that ever happen in any season.
The reservoirs should be deep, so as to prevent vegetation; and the distributing or service reservoirs should be roofed.

In distributing water orer a town, two different methods hare been adopted, known respectively as the intermittent and the constant systems of supply. On the intermittent system, water is laid on once a day, or once in two or three days, as the case may be, and fills a tank attached to every separate house, and from this tank the water is drawn off as required. The feeding-pipe of such a tank or cistern is prorided with a ball-cock (see fig. 2), which ingeniously shuts off or admits the supply, as the cistern may be full or empty. On the constant system, no tank is absolutely needed, but the house-pipes are kept constantly charged through their unbroken connection with the distributing reservoir, which must
therefore he higher than the highest house to be scived. The intermittent supply was until lately employed everywhere in the metropolis; but it is universally admitted that the other system is vastly superior in every respect. The disadvantages of the intermittent practice lave been stroncly sct forth in all the recent official lieports on sanitary improvement: the expense of the erection and repair of cisterns, the troulle requisite to keep thom clean, the contamination of the water by the neighbourhood of sources of pollution, the frequent waste of water that occurs, the difficulties imposed on the poorer class of tenements where cisterns are not provided-are a few of the objections urged against this mode of supply. In a letter in the Times, 3 ld January 1866, Dr M. Jeaffreson thas describes the condition, in regard to water-supply, of the centres of typhus infection in Lambeth, Sonthwark, Bethnalgreen, \&c. 'Those houses the best supplied have e'ach a butt, holding about S0 gallons, into which water flows from a stand-pipe for from ten minutes to half an hour each day, and is supposed to supply the wants of 20 persons for cooking, the washing of their persons, house, and linen, aud for the rinsing down of the w.-c. at such times as it may suit the caprice of any one of the inmates. At other places, a larger butt, but in relation to the number of persons proportionally smaller, supplies a whole court of tel or more threc-reomed houses, which have no back-yarls, and a population of 150 people-members of 30 different families. On sundays, even this supply is absent, the water of the day before is gone, and in many houses, that for the Sunday cooking las to be leegged from neighbours who may lave provided themselves with a larger butt, who are more provident or more dirty. More than ninetenths of these water-butts have no covers; and fully balf are so placed as to catch the drippings from the foul caves of the houses, and are lined internally with scum and slimy regetation.'

One inprortant advantage, arising from the constant system, is the ease with which water can be lad in time of fires. The water being supplied at high-pressure, all that is necessary is to allix a hose to the water-plug in the street, when a jet corresponding in height to the pressure is oltained, which ean be immediately directed against the fire.

The ratio of the supply to the population varies in different torms. In Edinburgh, it is 34 gallons for cach individual ; in Glassow, it is 45 gallons. This includes the water furnished to works of varions kinds. The eight companies that supply Lonelon pour into the city and suburbs not much less than $100,000,000$ gallons daily, which gives 206 gallons per liouse (mcluding manufactories), or 26 gallons to each person. Notrithstancling this, owing to the neglect of the proprietors, 'thousands of the poor git but little of it directly any day, and none at all on Sundays.'

Cisterns, Pipes.-Owing to the action of water on lead, already described, it is desirable to avoid the usc of that metal in connection with very soft lake or river water. With regard to lead pipes, if the precaution is taken when the water has stood for any time in them, of allowing the first portions to run off befure any is taken for use, little danger can arise; but either lead cisterns should be wholly avoided, or but cith
.
means talken to asecrtaiu whether they contaminate the water; and if so, a remedy should be applicel. There are various substitutes for leal as a liniog for cisterns. Shate slabs are lighly recommented. Gutta-pereha is also found to lic an easily titted, cheap, and durable lining. For a few lays, the water tastes of the naphitia nsed in applying the lining; lut afterwards, no kind of water, not cren acids, have any action on the gutta-percha. lipes of gatta-pereha may also be used; they are cheap, and easily fitted n!?

Common H'clls. - The simplest of all water-supplies is that of a cottage or farmhonse in the country, with a good spring rising to the surface close by; and yet what a paor use is nsnally made of such a precious boon! 'The country well is generally a simple cavity to receive the spring, rudely linefl, it may be, with stones, fut with open mouth, into which dust and dead leaves are blown lyo every wind, and forl surface-water is trickling from all sides. Being cxposed to the light, there is gencrally a profuse yegetation on the lottom and sides, and, in addition to these impurities, it is further muddied by the dipping in of buckets, often dirty on the outside. Who lias not been disgusted, when asking a drink at a cottage, to get water thick with dust and visible impuritics, knowing, at the same time, that it micht be so easily remedied? A surfacespring slowild always be covered, and male to issue by a pipe; lalf a day's labour to create a fall, and a clay drain-tube, will genemally convert a filthy puddle into a crystal fount. It is singular to seo this blindness to the impurity of water in people otherwise cleanly enough. This is a subject worth the attention of country physicians and clergymen. The evil effects of drinking impure water are not confined to towns. May not the putrid sore throat and malignant ferers that often sweep away whele houscholes in the country, especially in antum, be partly owing to the cause now pointed at?

Deep wells should invariably be covered, and carefully protected from tho infiltration of superficial cozc. The situation of pump-wells is oiten singularly ill chosen in this respect. Sce Arotisias Wells.

WATER-TABLIF, a set-off in a wall sloped om top to throw off the rain.

WATELETOWN゙, capital of Jefferson County, New York, U. S., on the Black River, SG miles north-west from Utica, and 150 from Albany; has mannfactorics of cotton, woollen, flour, paper, iron castings, machinery, \&e. An ice-care extends partly under the village. Pop. in IS60, 7572.

WATERTOWN, a city of TVisconsin, U. S., on Rock liver, and the Fond elu Lac and Rock liver Railway, 10 miles east-by-north from Madison. The city is built on hoth silles of the Great Bend, where rapids with a fall of 24 feet afford water-power for flouring and saw mills, fonndries, and mannfactories of agrieultural implements, furniture, woollen mills, and potterics. Settled in 1836 . Fop. in 1860,5302 .

WA TERVILLE, a village of Maine, U. S., on the right bank of the Kennelse River, at Ticonic Falls, S. miles north-north-east from Portland. Around the falls are clustered saw-mills, plough, axe, hoe, and scy the factories, machine-shops, tanneries, \&c. W. has a Baptist College, with 120 students, and lihrary of 15,500 volumes, an academy, \&e. P'op. in $1860,4425$.

WATER Violet. Sce \#ottoxil.

WATERY GRIPES is the popular name for a form of scrous cliarrheea necurring in infants, in which there are copious discharges of thin watery motions, often limpid, or almost colourlcss, aud
nccasionally intermixed with flakes or shreds. This form of diarrhcea may be induced in weakly children by sudden impressions of cold on the surface, so as to check perspiration ; or it may be lrought on by cold drinks taken when the body is heated. The exhaustion brought abont by the copions excretions from the bowels is sometimes so great that the case might be mistaken for one of cholera. On the occurrence of such an attack, the child should at once be wrapped up in warm flannel, placed in bed, with a bag of hot dry bran over the belly; and some arrowroot, with a little brandy, given frequently in teaspoonfuls or larger doses according to age ; and the medical attendant should be at once 'sent for. If medical aid cannot be readily procured, opium must le carefully used to check the profuse evacuations. One of the best preparations is Aromatic Porrder of Chalk and Opinm, every 40 grains of which contain 1 grain of opium. From 3 to 5 grains of this powder, with a quarter of a grain of ipecacuanha, may be given, and repeated every three or four hours for two or three times, unless any head-symptoms (due to the opitm) are perceived.
WA'TFORD, a market-town in the county of IIertford, on the banks of the Colne, IS miles north-west of London. Straw-plait is manufactured, and silk-splinning and malting, and a trade in corn and live-stock, are carried on. Pop. 7418.
WA"TLING ISLAND, one of the Bahamas (q. v.).

WATT, Jasres, mechanician, engineer, and man of science, famons as the improver, and almost the inventor of the steam-engine, was born at Greenock in Scotland on the 10th of January 1736. His father was a blockmaker and general merchant at Greenock, was long a member of the council of that burgh, and for a time a magistrate. Two members of James W.'s family-his grandfather and his uncle-had had some local rejutation for scientific or engincering ability. The former was a teacher of mathematies, surveying, and narigation at Crawfordsdyke, near Greenock; the latter practised as a land-surveyor and engineer with great success at Ayr. The grandfather, Thoms Watt, had been brought early in life to Lanarkshire from the neighbourhood of Aberdeen, where his fawily had previonsly lived. The father of Thomas Watt, the great-grandfather of Janes, is said to have farmed a little property of his own in Aberdecnshire, and to have been killed while fighting on the side of the Covenanters against the Marquis of Montrose.

James W. was very weakly as a child, and being unable to go to school with regularity, he became, to a great extent, his own instructor. What schooling he did get, he got in the schools of his native town. He eally manifested a turn for mathematics and calculations, and a great interest in machines, and accordingly-his father's business, for which he had been destined, having greatly declined-he was, at the age of IS, sent to London, to learn the trade of a mathematical instrument maker. 川health compelled him to return bome ahout a year after; but he had made good use of his opportunities in London; and on his health improving, be resolved to set up as a mathematical instrument maker in Glasgow. The incorporation of hammermen of that city put difficulties in his way; but the authorities of the university took him by the hand, appointed him mathematical instrument maker to the university, and gave him the use of premises within their precincts. He occupied these premises from 1757 to 1763. They seem to have been badly situated for his business, for which, moreover, at that time there was but little room in Glasgow;
and W . during those years was scarcely able to make a living. In 1763, he got a $1^{\text {lace }}$ of business in the town, and after that, he did somewhat better; still, he had to eke ont his income by making or mending fiddles (which he was alle to do, thongh he had no ear for music), or doing any mechanical job which came in his way; and no work requiring ingenuity or the application of scientific knowledge seems to have come amiss to him. At length, in 1767, he fell upon a new and a more lucrative oceupation. In that year, he was employed to make the surveys and jrepare the estimates for a canal projected to unite the Forth and the Clyde. This work could not be carried out at the time, because it failed to obtain the sanction of parliament; hut W. had now made a beginning as a eivil engineer, and heneeforth he got a gnod deal of employment in this capacity. He made surveys for various camals, for the improvement of the harbours of Ayr, Port-Glasgow, and Greenock, and for the deepening of the Forth, the Clyde, and other rivers. One of the tasks committed to him was to decide whether a projected canal between the Firth of Clyde and the Western Ocean should be made by way of Crinan or of Tarbert ; and the last-also the greatest-undertaking of this kind on which be was employed was a survey for a canal hetween Fort-William and Inverness ; a work which has since been executed on a greater scale by Telford. In his survers, lie made nse of a new micrometer, and of a machine, also of his own invention, for drawing in perspective-the latter of which appears to have been for several years about this time one of his sources of income. The Reports which he drew $u p$ in the capacity of engincer are said to have been remarkable for perspicnity and accuracy.

Living in the college at Glasgow, in constant intercourse with the professors of the university; with access to books, and with much unemployed time on his hands-having, too, a great love of knowledge, and a lively interest in mechanical novelties, W. had been a diligent student of science, and experimenter in the application of science to the arts. As early as 1759, his attention had been directed to the capabilities of steam as a motiveforce by Mr Rohison (q. v.), afterwards Professor of Natural Philosophy in the university of Edinburgh, who was then a student in Glasgow. It had oceurred to Mr Fobison that steam-pressure might be used to propel wheeled-carriages; but it does not appear that either W. or he attempted to carry out this idea. In 176 I or 1762 , however, W. made a series of experiments on the force of steam, using a Papin's Digester. These do not seem to have led to any results; and it was not till the winter of 1763-1764, that he began the investigations which ended in his improvenent of the steamengine. During that wintex, a working model of the Newcomen engine, kept for the use of the natural philosophy class in the college, was sent to him to be put in repair. W. quickly found out what was wrong with the model, and easily put it into order. But in doing this, he became greatly immessed with the defects of the machine, and with the importance of getting rid of them. The Nen: comen engine (sce Stean-exgine), was still but little used, and only for pumping water out of mines. It was a cumbersome machine, aod it required so much fuel that the expense of working it had restricted, and must always liare restricted its use. It was not a steam-engine at all. It was worked by means of the atmospheric pressure; steam being only nsed in producing, by its condensation, a vacnum in a cylinder, into which-the vacumm made-a piston was depressed by the pressure of the air. The steam issuing from a boiler was admitted into the
cylinder until it filled it, when the supply was cut off by a self-acting cock; and then the steam was contensel in the cylinder by means of a jet of water. The water so greatly cooled the eylinder that the greater part of the steam at each stroke of the piston was wasted in heating its malls; and on the other hand, much of the injected water was heated to the boiling-point, and gave off steam. which resisted the descent of the piston. W. fomd that about four-fiths of the steam, and consequently of the fuel, was wasted; and be saw that to malie the machine work economically, two alpharently incompatible conditions must be obtained-first, that the walls of the cylinaler must constantly be of the same temperature as the steam which came in contact with them; and second, that the injected water must never be heated up to 100°, the boiling-point in racuo. He now experimented upon the conducting power of riarious substances, and made trial of a cylinder made of wood steeped in oil; but with this cylinder, though it cooldil less rapidly than a metallic one, there was still far too much waste of steam. Constantly, from the end of 1763 , occupied with the subject of steam, he at length, early in 1765 , hit upon the expedient which solved all his difficulties-the separate condenser, an air-exhausted vessel, into which the steam should he admitted from the eylinder and there condenserl. The separate condenser at once preventel the loss of steam in the cylinder whieh had arisen in the process of condensation; and there was no difficulty in liceping it conl, so as to prevent the undue heating of the injection-water. He had now got a perfectly economical engine on Newcomen's principle, but he did not rest content with this-he resolved to make steam his motive power. Closing the cylinder at both top and bottom, and connectivg the 1 iston with the beam, to which it was to communicate motion, by a piston-roul passing through a stuffing-box, he admitted the steam by suitable valves alternately above aud below the piston, to push it downwards and upwards in tarn ; and this lone, his invention was substantially complete. He had at last made a real steam-engine, capable of being worked with i comparatively small expenditure of fuel, and of yielding any desired amount of power. Comparing his invention with the atmospheric engine of Newconseu, it must be admitted that it is not without justice that the popular voice has awarded him the name of inventor of the steam-engine.
W., soon after perfecting his model, formed a partuership with Dr Ioemick, then of the Carron Iron Works, for the construction of engines on a scale adapted to practical uses; and a model was erectel at Kinneil, near Borrowstounness, where Dr Focbuck then lised. But Roebuck got into ditfculties; and nothing further was done until, in 1773 , W. entered into a partnership with Datthew Boulton of Soho, near Birminglam, when, Roebuek's interest having been repurchased, the manufacture of the new engine was commenced at the Soho Iron Works. A patent for his invention had been taken by W. in 1\%69. He got from parliament a prolongation of his patent for 25 jears in 1775 .

The advantages of the new engine were in no long time found out by the proprietors of mines; and it soon superseded Newcomen's machine as a pumpingengine. W. afterwards made mumens improvements in its construction (for the most important of which see Stean-Engise); and in conjunction with lis partner Boulton, he immensely improred the quality of the workmanship employed in huiluing engines and other machines. In the years 1781, $175 \%, 1754,1785$, he obtained patents for a series of inventions-among them, the sun and planet motion, the expansive principle, the double engine, 106
the parallel motion, and the smokeless furuace, of most of which the chicf purpose was to make steam-pressure available for turning machinery in mills. The accomplishment of this-extending the application of the new power to the arts-was of searcely inferior importance to the invention of the steam-engiue itsclf, The first contrivance invented by W. for this purpose, was lost to lim through the treachery of a mechanic, who had leen employed in making the model, who sold it to is manufacturer named Prickarls, who got a patent for it for himself. The application to the steamengine of the governor (see STEAM-ENGINE) was IV.'s crowning improvement. Je made uumerous inventions unconnected with the steam-engine, several of which he pateuted, but they are all of minor importance.

He retirel from business in the year 1800 , giving up to his two sons his interest in the extensive and prosperous lusiuess which Boulton had created at Soho. He died at Heathtield in Staffordshire, on the 25th August 1819, in his 54th year. W. was twice married: first in 1763 , to his cousin, Niss Niller; aul a second time shortly after his removal to Birminglamn, to a Jliss M'Gregor of Glasgow. He had a most extensive and accurate knowledge of the physical sciences, to several of which lee made important contributions-and an almost unsur 1 nassed fund of general information. (His claims to be considered the discoverer of the composition of bater are considered in the article WATFR.) He was elected a Fellow of the Ioyal Society of Edinburgh in 17S4; a Fellow of the Royal Society of london in 1785 ; a corresponcling nember of the Batavian Society in 1787 ; and in 1808 , a corres. ponding member, and afterwards a foreign member, of the Institute of France. The university of Glasgow conferred wh him the degree of LL.I). in 1806. His statue, the funds for which had been raised by a public and almost a national subseription, was crected in Birmingham in 1824; and Fis statue is now to be seen in the streets of many of our larger towns. The lonours paid to his memory and to himself in his later years appear to lave been deserved lyy his personal qualities, no less than by the immeasurable benefits which his inventive talents have conferred upon the hnman race.

WATTEAU, AsTOINE, was born at TVlenciennes, in the year 1684 . In 1702 , he betook himself to Paris, where for some time he worked as assistant to a scene-painter. When this employment failed him, by the retirement of his master from Paris, he employed himself in copying pictures. The talent which he shewed in this humble walk of the art, drew the attention of Gillot, a popular painter of the day, who engaged him to assist in his studio. ln no long time, it was found that the pupil cxeelled his master, who specdily relinquished the field in his favour, and became an engraver. The success of W. was now assured: he was made a member of the French Academy, and became by special favour Peintre de Fétes Galantes du Roi. In 1718, Je visited England, it is believed chiely on accomnt of his health, and to consult a certain Ur. Meade, then famous, for whom, during his stay, he painted one or tro jictures. Ie remained about a year, withont, as it should seem, much lnonefit. After his return home, his bealth gradually declined; and in 1721, he died at Fogent, uear Paris.

In virtue of their charming colonr and graceful design, the pictures of W. continue to please, thourh his reputation as an artist is now but a faint echo of that which, in his lifetime, he enjoyed. He employed himself chictly in painting small landscapes, with something of the nature of the Fcte Galante going on in them-idylls in court-dress,

WATTLE-WAVE.

which, as preserving for us the fopperies of the time, are not without a certain ralue distinct from their properly artistic one.

WATTLE. See Acicis.

WATTLE-BIRD (Anthochera carunculata), an Australian bird, of the family of Honey-eaters (Meliphagidec). It is about the size of a magpie, grayish brown above, each feather striped, and bordered with white; the tail brown, long, wide, and graduated. It derives its name from a pendulous reddish wattle on each side of the throat. It feeds chiefly on homey and insects extracted from the flowers of Banksias, these trees contiming in flower most of the year. It is a bold and active bird, and drives array all other birds from the part of the tree which it occupies.

WATTS, Isaac, was born on July 17, 10-4, at Southampton, where his father had a boardingschool. He was educated at the grammar-school of his native place, and afterwards sent, at the age of 16, to an academy in London, kept by Mr Thomas Rowc, an Independent minister. Here his devotion to his studies was so excessive as to permanently injure his constitution. In 1696, he became tutor in the family of Sir John Hartopn, at Stoke-Newington, with whom he remained six years. During the latter part of this time, he officiated as assistant to Dr Chauncey, minister of the Independent Church in Mark Lane, to whose post he succeeded in 1702. His health was throughout infirm ; and in 1712, he was prostrated by an illness so violent that he nerer thoroughly recovered from its effects, though he lived for many years afterwards. A risit which he paid to Sir Thomas Abney, at Theobalds, for change of air, resulted in his domestication in the establishment till his death, 36 years afterwards, on November 25, 1748. As his health permitted, he continued to discharge his clerical duties, and to occupy himself with literary pursuits. His theological works were numerons, but are now quite forgotten. His treatise on Logic, though long since superseded, had in its day a considerable reputation, and was adopted as a text-book by the university of Oxford. By his well-known Hymas for children, his reputation has been chiefly perpetuated. So lately as 1837, his Horce Lyricue were republished, with a Memoir by Sonthey. In Johuson's Lives of the Poets, a notice of him is likewise to be formel.

WAUKE'GAS, a citr and port of Tisconsin, on the west shore of Lake Michigan, 35 miles north-by* west from Chicago, and 50 miles south of Milwaukee, connected with both by railway. The town is handsomely built on a bluff, 50 feet above the lake, and has 6 churches, 2 academies, steam flourmills, and considerable commerce. Pop. about 4000.

WAIE. the name givers to a state of clisturbance propacgatel from one set of particles of a medinm to the adjoining set, and so on; sometimes with, sometimes without, a small permanent displacement of these particles. But the essential characteristic is, that energy (see Force), not Matter (q. v.), is on the whole transferred. The theory of ware-motion is of the ntmost importance in physical science ; since, besides the tide-ware, waves in the sea, in ponds, or in canals, undulations in a stretched cord (such as a pianoforte wire), or in a solill (as sound-waves or earthquake-wares), we know that sounds in air are propagated as wares (see Sound), and that even light (see Undulatory Theory) is a form of wavemotion.
The general investigation of the form aud rate of propagation of wares demands the application of
the highest resourccs of mathematics; and the theory of even such comparatively simple cases as the wind-waves in deep water (the Atlantic roll, for instance), though easily enough treated to a first, and eren to a second and third approximation, has not yet been thoronghly worked out, as fluid friction has not been taken acconnt of. In this article, therefore, we will mercly state some of the more important conclusions which mathematical analysis has established in the more difficult of these inquiries, comparing them with the obserrations of Scott Russell and others; while we give at full length the very simple investigations of the motion of a wave along a stretched cord, and of the propagation of a particudar kiud of sound-wave.

To find the rate at which an undulation runs along a stretched cord, as, for instance, when a harp-string is sharply struck or plucked near one end, a rery simple investigation suffices. Suppose a uniform cord to be stretched with a given tension in a smooth tube of any form whaterer, we may easily shew that there is a certain relocity with which the cord must be drawn through the tube in order to cease to press on it at any point, that is, to move independently of the tube altogether. For the pressure on the tube is due to the tension of the cord ; and is relieved by the so-called Centrifugal Force (see Central Foeses) when the cord is in motion.

If T be the tension of the cord, r the radius of curvature of the tube at any point, the pressure on the tube per unit of length is
$\frac{T}{r}$.
If m be the mass of $u n i t$ length of the cord, v its velocity, the centrifugal force is
$\frac{m v^{2}}{r}$.
These are equal in magnitude, and so destroy each other, if

$$
\mathrm{T}=m v^{n} .
$$

Hence, if the cord be pulled throngh the tobe with the velocity thus determined, there will be no pressure on the tube, and it may therefore be dispensed with. If we suppose the tube to have a form such as that in the figure, where the extreme portions

Fig. 1.

are in one straight line, the cord will appear to be dawn with velocity v, along this, the curred part being occupied by each portion of the cord in succession: presenting something like the appearance of a row of sheep, in Indian file, jumping over a hedge.
To a spectator moring in the direction of the arrow with velocity v, the straight parts of the cord will appear to be at rest, while an undulation of amy definite form aud size whatever runs along it with velocity r, in the opposite direction. This is a very singular case, and illustrates in a rery clear manner the possibility of the propagation of a solitary ware.
Thus we have proved that the relocity with Which an undulation runs along such a cord is
$\sqrt{\frac{T}{m}}$
If l be the length of the cord in fect, 20 its whole

WAVE.

weight, Wh the apmended weight $\mathrm{log}^{\text {which }}$ it is stretched, $g=3=2$ fect, the measure of the earth's gravity, this becomes

$$
\sqrt{w_{w}^{\mathrm{l}} \mathrm{lg}}
$$

This formula is found to agree almost exactly with the results of experiment. We can easily see why it should be to some small cxtent incorrect, because we have supposed the eord to be incxtensible, and perfectly flexible, which it cannot be; and we liave neglected the effects of extrancous forees, such as gravity, the resistance of the air, \&c.

Let us next consider the motion of air in a cylin. drical tube in the particular. case in which the leor of a ribrating tuniog-fork is applijed at one cud. This is a simple ease of the pronagation of soundwaves. We shall treat it by a synthetical process, somewhat like that given by Newton.
As we have already seen (sec Pendulca), a simple viluration such as that of a pendulun or tuning-fork is the resolved part, in a detinite line, of the miform anotion of a point in the circumference of a circle. What we have now to shew is, that such a mution of all the particles of air in the pipe, the phese of the vibration (or the position of the particle in its lath at any instant) depenting on its listance from the end of the tube, is consistent with mechanical princples. When this is done, it will be easy for us to trace, in this particular example, the process by which the wave is propagated from one layer of the fluid to the next. We must now eonsider (a little more closely than in Pendulua or Sound) the nature of the simple vibration of cach particle of the air.

Suppose P^{\prime} to move, with uniform relocity V , in the circle $A Y^{\prime} l$, amd let l'Q be drawn perpendicular to the fixed eliameter, O.A. Then the aceeleration of P 's mation is $\frac{\mathrm{V}^{2}}{\mathrm{OA}}$ in the direction PO . Hence in the motion of Q, which is a sinple vibration, we have. by the rule for resolving velocities and acceleratious (sec Yelocity),

$$
\text { Velocity of } Q=\frac{T^{\prime} Q}{O . A} Y^{r} \text { in the clirection } Q O \text {; }
$$

Acecleration of $Q=\frac{O Q}{O A} \frac{V^{2}}{U_{A}}$ in the direction $Q O$.
Next consider two particles of air near one aunther in the axis of the tube, or the masses of air in two enntiguous cross-sections of the tube. If the phase of vibration were the same for hoth, they wonld be equally displaced from their original positions, and

Fig. 2. the air between them would be neither compressed nor dilated. Hence, that a ware may pass, the phases must be different. Let, then, Q represent the position of the one particle, or layer, in its line of vilbation at any instant; Q', the simultaneons pusition of the other. The first will be dis- placed through a space $O Q$ from its position of rest; the second, through a space $O Q^{\prime}$; and their distance will therefore he altered by the amount $Q Q^{\prime}$, which may be taken to represent the campression or dilatation. But it is easy to sce that, as I' and I^{\prime} move round, $Q Q^{\prime}$ is always proportional to $P Q$. Hence the compression or etilatation of the air in any cross-section of the tule is proportional to the

108
velocity with which it is moving. IInce the difference of pressures before and hehind any such section is uroportional to the difference of velocities-i. c., to the acceleration of the motion while the section prasses over a sjace equal to its own thickness. Aud this is consistent with mechanical principles, for the mass of air in the section is constant, while the difference of pressures before and behind produces the accelcration, and should therefore be propertional to it. The particles of air in eross-sections of the tube thercfure vibrate, each in the satue perion as floes the tuping-fork, but the phase is later for each section in proprotion to its distance from the fork. Where the phase is one or more whole vibrations later than that of the fork, the motion is cxactly the same as that of the fork, and simullaneous with it. At all other points, it is the same as that of the fork, but not simultaneous. This, the greatest displacement of the fork is immediately shared by the layer next it, later by the next layer. and so on. Thus, a were of displacement travels along the tube from one section to the next, while each particle merely oscillates backward and forward through (in general) a rery small space about its position of rest.

The reater who has followed the little geone. trical investigation above will have no ilifficulty in proving for himself that the velocity with which the wave travels is proportional to

$$
\sqrt{\frac{p}{g}}
$$

where p is the pressure, and ρ the density of the air. The easiest mode of doing this is to express, in terms of these and other quantities, the equation given us by the laws of motion,

Mass \times Acecleration $=$ Difference of pressures,
and to assume that llooke's (ๆ. v.) Law hulds, even during the sudtlen compression of air. This, we know, is not the ease; so that a correction lias to be apllied to the above expression, depending on the heat developed by sudden compression or lost in sudden rarefaction, ly each of which the elastic force of the air is increased. But this has been alrendy disenssed in Sotex.

The above furmula shews us, however, that the velocity of sound is not affected by the pressure of the air-i. e., the leight of the barometer-siuce, in still air, p is proportional to $\xi_{\text {. The relocity dues }}$ depend on the temperature, being, in fact, proportional (ceteris parilus) to the square root of the tensperature measured from absolute zero. See Неit.

Wre see also from the formula that the velocity is inversely as the square root of the density of the gas-the pressure being the same. Thus, a somalwave travels about four times faster in bydroged than in air.

Also we see that, within the limits of approximation we bave uscel, the velocity does not depend upon the intensity, nitch, or quality of the Sound (q. v.). The investigations which seem to lear to slight modifications of this eonclusion are too recondite to be introduced here. We can only meution, also, the beautiful investigations of Stokes (q. r.) connected with the extinction of a soundwave as it proceeds, partly by fluid friction, partly by radiation. And we may conclude by stating that the result of a completely gencral investigation of the velocity of a sonnd-ware gives, to a first approximation, the resnlt we have deduced from the study of a simple particular case.

We now come to the consideration of waves in water. Of these, there are several species. One, however, we may merely mention, as its theory is

WAVE

the same as that just briefly discussed. This is a sound-wave, or ware of compression, in water. Its relocity is considerably greater than that of sound in air (see Socxd). The others, which are commonly observed on the sufface of water, depend on mere changes of level, and their effects; and in studying them, we may consider water as incompressible.

The first of these is what is called a long or solitary ware. Its essential characteristic is, that its length is great compared with the depth of the hiquil in which it moves. To this class belong the tide-wave (see TIDEs), and the long ware which accompanies a canal-boat, and which we see slomly trarersing the canal when the boat is stopped. Scott Russell has made many interesting observations on this wave, all of which accord well with the results of the mathematical theory of its propagation. The velocity of this wave depends solely on the depth, not on the deasity of the liquid in which it moves-and in a uniform canal the velocity is that which would be acquired by a stone falling freely through a space cqual to half the depth of the water. A nother characteristic of this wave is that, after it has passed, it leaves the water bodily transferred through a small space along the bed of the canal-forwards or backwards, according as it cousists of an eleration or a depression of the water-surface. Scott Pussell has shewn that the most favourable rate at which a canal-boat can be drawn is when its velocity is such that it rides on the crest of the solitary ware. If drawn at any other speed, it leaves the solitary wave behind, or is left by it; and in either case, part of the horse's work is expended in producing fresh solitary wares. An excellent mode of observing these waves is to tilt slightly a rectangular hox containing some water, and restore it to its original pasition. A long ware is thus formed, which is reffected repeatedly at the ends of the box, and whose rate of motion may be accurately observed by watching the image of a candle reflected at the surface of the water. If the sides of the box be made of glass, and some light particles be dispersed through the water, their motions enable us to discover all the circumstances of the propagation of this wave.

We next come to what are callerl oseillatory Waves in water or other liquids. To this class belong all wares whose length from crest to crest is small compared with the depth of the liquid; from ripples on a pool to the long roll of the Atlantic. They are never observed as solitary waves, their general characteristic being their periodical recurrence. And, by watching a piece of cork floating on the surface, we see that it moves forwards when at the crest of the wave, and backwards through an equal amount when in the trough. Also it rises while passing from trough to crest. and sinks from erest to trough. Mathenatical investigation, confirmed by experiments with Hloats at sea, and with short wares in the glazel box before clescribed, shews that each particle of the water describes a circle abont its position of rest in the rertical plane in which the wave is advancing. Particles at greater and greater depths describe smaller and smaller circles. The diameters of these circles diminish with extreme rapidity. At a depth equal to the distauce from crest to crest (i. e., the length of the wave), the displacement of the water is already only $\frac{1}{55}$ th of that at the surface. At the depth of two wave-lengths, it is about $300^{2} 000$ th of that at the suriace. Thas we may sce to how small a depth the ocean is agitated even by the most tremendous wind-waves : for, aceording to Scoresby, 43 feet is about the utmost difference of level betreen erest and trough in ocean-waves. If
the wave-length be 800 feet (which is a large estimate), then at a depth of 300 feet the water-partieles describe circles whose radii are only the $\frac{21.5}{6,5} 5$ th of a foot, or about four-tenths of an inch; and at 600 fect this is reduced to $\frac{1}{1200}$ th of an inch; while the deptlo of the Atlantic is in many parts more than three or four miles. In this case, the velocity of propagation of the wave has been shewn to be

$\sqrt{\frac{g l}{2!}}$,

Where g is, as hefore, $\mathfrak{z o n}$ feet; l is the wave-lennth in fect; and π is the ratio of the circumference of a circle to its diameter (see Quadratcre of the Cincles). Thus, the velocity of an oscillatory wave in deep water is proportional to the square root of its length. This fact has been of nse as an analogy in helping us to account for the Dispersion (see Refractios) of Light, where, by experiment, we know that the waves of red light are longer than those of blue light, and also that they travel faster in refracting media.
When the depth is not infinitely great compared with the length of a wave, thcory and experiment agree in shewing that the motion of each particle takes place in an ellinse whose major axis is horizontal. These ellijses diminish rapidly in length as we descend in the liquid, but still more rapidly in breadth; so that, as was to be expected, the particles at the bottom oscillate in horizontal straight lines. The expression for the velocity of propagation is now by no means so simple as in the previous cases-but is easily shewn to include the ralues already given.
So far, the first approximation. A section of the surface made by a vertical plane in the direction of the wave's motion, is shewn to be lounded by the Hermonic Curse, or Curve of Sines, the form assumed by a vibrating string (see SorxD) ; from which it follows that the crests are similar to the troughs. The second approximation makes the troughs flatter, and the crests steeper, and also shews that the particles are, on the whole, carried joncard by each successive wave. The amount of this progression diminishes rapidly with the depth below the surface. A third approximation shews that the velocity is, ceteris paribus, greater the greater is the leight of the wares.

When waves adrance torrards the shore, their circumstances change, in general gradually, from those of oscillatory waves to those of waves of trans. lation, as the depth of the water becomes less and less considerable in comparison with the length of the wave; and it is found by experiment that they 'l hreak,' as it is called, When the depth of the water is about equal to the height of the crest abore the undisturbed lerel. All the curions phenomena of breakers are thus easily explained by the results we have already giren, when they are considered with reference to the gradual alteration of the depth of the water.

Finally, we must notice a singular phenomenon often obscrred, riz., that of a series of waves breaking on the coast, every eighth, or ninth, or tenth, \&c. is seen to be higher than its predecessors or successors. The explanation is simple enough, and points to the simultaneous existence of two or more scts of oscillatory wares of different lengths, due in general to quite distinct canses, which reach the shore together. - For further information on this subject the reader is referred to papers by Stokes in the Cambrilge and Dublin 11ath. Journal, vol. ir., and the Combridge Phil. Trans, vol. viii, and to Airy's 'Tides and Wares' in the Encyclopadia Metrap.

This might lead us to consider the very interesting

WAVRE-WAX.

case of 'Co-existence of Small Molions' presented by the Interference (q. v.) of such waves; lut we have already in various articles (see polabisition, Sound, Undubitory Theory) given sufficient examples to illustrate the great principle.

There remains the consideration of the propagation of waves in elastic solids, among which, at least so far as Inminifurons ribrations are concerned, it aphears that the Ether (q. v.) must be ranked. Thus is a subject of a higher order of dificulty than any of those before mentioned, and, in the case of light at least, has not yet beeu treated in a thoroughly satisfactory manner, though such men as Ciuchy, Neumann, Maccullagh, Green, and Stokes have written profound memoirs upon it.

WAVRE, a town in the prorince of South Brabant, Belgium, 15 miles south-east of Brussels, has a pop. of 5241 , who are mostly engaged in the mannfacture of hats, leather, and cotton-yarn. W. is better known as the scene of a desperate and protracted contlict between the French and Prussians, on the 1S-19th June 1S15. The former, under Grouchy, Gerard, and Vandamme, adranced against the Prussians at the same time as Napoleon direeted the troops under his immediate orders against Wellington at Waterloo (q. v.), and being much superior in number $(32,000$ to 15,200$)$, drove the Prussians, under Thielman, into W., where they defended themselves with desperate firmuess, repulsing thirteen different assanlts in the course of the 1 Sth. On the following morning, Thielnan, who had heard of the victory at Waterloo, attacked Grouchy, but was repulsed with vigour, though the urgent orders of Napoleon forced the latter to retreat to Laon, instead of following up his success.

WAX. Under this term, ehemists include various matters of a well-known (so called waxy) appearance, derived both from the animal and the vegetable lingdoms. While in their general relations they approximate to the Fats, they differ materially from the latter in their chemical composition; those of them which have been carefully examined, being found to consist partly of mixtures of alcohols and compound ethers, and partly of free fatty acids. Their general properties may be thus laid down: They are solid or semi-solid matters; are casily broken when cold, but at a moderate warmth are soft and pliable, and fuse at a temperature below 212°. They have a peculiar glistening appearance, are lighter than water, are insoluble in that fluid and in cold alcohol, but dissolve readily in ether; they are combustible, and burn with an illuminating flame, are non-volatile, and when beated in a free atmosphere, undergo decomposition. In this category are included spermaceti (which has been already considered), bees' wax, Chinese wax, and other less known kinds, as palm or vegetable wax (obtained from the bark of Ceroxylon andicola, by the action of hot water and pressure), Carnahuba wax (au exudation from the leaves of a Brazilian palm), sugar-cane wax, $\& c$.

Bees' wax is an animal secretion formed by the bees from sugar, and constitutes the material of which the cells of the honey-comb are composed. It is obtained by expressing the honey, and fusing the residue in boiling-water. In this state it is of a yellow colour (Cera flava). It may be bleached, so as to form white wax (Cera alba), by being exposed in thin slices to the action of solar light, or by the action of nitric acid. (Chlorine readily destroys the colour, but renders the wax unfit for candle-making, as a portion of the hydrogen of the wax is replaced by chlorine, and the candles, when burning, evolve irritating vapours of hydrochloric acid gas.) From the researches of Sir B. Brodie (Phil. Trans., 1S4S, 1S49),
it appears that wax consists of three different substances, myricin, cerin, and cerolein, which are separable from one another ly weans of aleolol. Myricin, which is insoluble in boiling alcohol, constitutes more than two-tbirds of the buik of ordinary wax. Ccrin, or ccrutic acid, which dissolves in boiling alcobol, but separates on cooling, varies in quantity in different specimens. In one sample of genuine bees' wax, Brodie formd that it constituted $\xrightarrow[2]{ }$ per cent., and it was always present in European samples, while in Ceylon wax it was entirely absent. This enrious variation in the nature of an animal seeretion, under different conditions of lifo, resembles the variations sometimes noticed in the acids of butter, in whiel the butyrie and caproie acids of one seasnn are replaced in another by vaccinic acid, differing from the former acids in the amont of oxygen alone. Ccrolein, the substance solnhle in cold alcohol, is a greasy body, constituting 4 or 5 per cent. of ordinary wax. Without entering into chemieal details, we may observe that bees' wax yields the following derivatives: Cerotic acil or cerin, $\mathrm{HO}, \mathrm{C}_{54} 1 \mathrm{I}_{53} \mathrm{O}_{3}$; cerylic alcohol or cerolin, $\mathrm{HO}, \mathrm{C}_{54} \mathrm{H}_{55} \mathrm{O}$; melissylic alcolol or melissin, $\mathrm{HO}, \mathrm{C}_{60} \mathrm{H}_{\mathrm{n} 1} \mathrm{O}$; melissic aeid, $110, \mathrm{C}_{61} \mathrm{H}_{55} \mathrm{O}_{3}$; palmitic acid, $\mathrm{HO}, \mathrm{C}_{32} \mathrm{H}_{31} \mathrm{O}_{3}$; myricin, $\mathrm{C}_{99} \mathrm{H}_{92} \mathrm{O}_{4}$; and melene, $\mathrm{C}_{60} \mathrm{H}_{60}$.

Chinese ${ }^{T} a x\left(\mathrm{C}_{108} \mathrm{I}_{109} \mathrm{O}_{4}\right)$ is supposed to the the produce of a species of insect of the Cocens family, and consists principally of cerotic acid, in combination with oxide of cerotyl.

Both yellow and white bees' wax occur in the Pharmacopocia. The characters and tests, as given in that work, are-Of yellow wax: 'Firm, breaking with a granular fracture, yellow, having an agreeable honey-like odour ; not unctnons to the touch, does not melt under 140°, yields nothing to cold rectitied spirit, but is entirely soluble in oil of turpentine; boiling-water in which it has been agitated, when cooled is not rendered blue by iodine.' Of white wax: ' Hard, nearly white, translicent; not nnetuous to the touch, loes not melt under 150° :' The iorine test is used because wax is often adulterated with starch. Wax was formerly much employed internally $2 s$ an emollient medicine, in cases of suspected ulceration of the intestines. At present, it is ouly used as an external ageut, being an ingredicnt of many ointments and plasters.

The commercial value of bees' wax is very great; and if it were possible to ascertain the total of the quantity produced, it would eause great surprise at the amount of valuable material derived from a souree apparently so insufficient. Its chicf uses are for candles, modelling, medicinal cerates or ointments, besides many minor purposes. Nearly 300 tons are annually imported into Great Britain, the value of which is about $£ 50,000$; but so large is the quantity consumed in the ceremonies of the Greek and Roman churches, that Russia alone consumes more than four times that amonnt, and the various Catholic countries 1 robably ten times as much. The Insect Wax of China, or Pe-la, has lately been imported in small quantities, and used in the manufacture of candles hy Messrs Price \& Co. ; but it is far too costly for general use (see Wax Insect). In China, this wax is very highly valued, and is so costly as to be used only by the highest elasses; it is white, and breaks with a erystalline fracture and pearly lustre. Of Vegetable Wax, there are four distinet kinds known in commerce. The first in importance is the Japan Wax, which is almost as white and compaet as refined bees' wax, which it closely resembles; it was first brought to Great Britain in 1859, and since then, some very considerable importations have taken place. It is sait to be obtained by boiling the seeds of a species of Ruus (R. succelunea). It

WAX-WAX PALM.

has only been used in making candles. Braztlits Vegetable Wax is also an article of regular importatien, but only in small quantities; it is obtained from the leaves of Corypha cerifera, the Caruabuba Palm of the Erazilians. It forms a glossy varnish-like covering; and whea the leaves are gathered, and begin to shrink from withering, it cracks and peels off, and is collected and melted into masses. It is hard and brittle, and of a dull yellow colour. The candlemakers have used it for mixing and improving uther materials. In Brazil, candles are whally made of it, or half the quantity of stearine is added. The Tegetable Wai of the Andes is also yielded by a palm (see War Pams). Although much used in Mexico, it has not yet become of commercial importance to Europe. It is chiefly used for candles in the churches. Mrrtee Wax, though rarely seen in Europe, is much nsed in the British colunies of North America, and the United States, and at the Cape of Cood Hope; it is also in use in Brazil. It is procured by boiling the herries of Myrica cerifera in North America, and probably from other species in Brazil, and at the Cape of Good Hope. It resembles bees' wax rery much, except that it has a greenish-jellow instead of a yellow colour. It is only used for candle-makiag. See Candleberry.
Of the manufactured compounds called wax, the following are the chief-viz., Sealing-was (q.v.). Modellers' Wax, used by artists for modelling small works. It consists of equal parts of bees' wax, druggists' lead-plaster-olive oil and yellow resin, and just sufficient whiting added to proiluce the consistency of putty. Gilders' Max consists of four parts of bees' wax, well mixed by melting with one part each of verdigris and sulphate of copper.

The bees' wax of commerce is of a dirty yellow colour, and mixed with many impurities. It has, consequeatly, to undergo a process of bleaching, by which it is rendered quite white and pure. The usnal process is to melt the wax with boiling-water, and stir them together for a short time, so as to separate the impurities from the wax. It is then allowed to rest for a short time, and the pure wax floats ou the top; and when cold, is taken off in a cake, the lower part of which is often discoloured with the dirty water. This is scraped off, and mixed with the next lot to be operated upon. The puritied portion is next remelted, and is then allowed to trickle from the melting-pan on to a woolen cylinder, revolving rapidly, and partly immersed in pure cold water, in a large eistera. This throws it into the water in the form of tine thin feather-like flakes, which cool and harden instantly in the water. When all is run off, the wax is removed from the water, and laid on linen cloths. placed on tables in a field for the air to bleach. From time to time, the flakes are turned over and examined; and when the Hleaching effect of the air seems to have stopped, the wax is remelted, and converted into flakes in the cistern, and replaced in the bleaching-ground uutil it is quite white. Chemical processes are sometimes resorted to, but they have not superseded the oldest, and, as yet, the best method, just described.
WAS, Mlveral, is a natural product, found in small quantities oozing from rocks of the coal formation. It is called Ozokerite by mineralogists, and has been found in such quantities, in one or two wells in the neighbourhool of Edinburgh, as to lead to the hope that it might have some practical use. It is of a dark-brown, almost black colour, in large lumps, of the consistency and lustre of hard wax. Candles have been made of it, but rather for curiosity than for use.

WAX-CLOTH, a name sometimes given, but very erroneonsly, to Floor-cloth (ๆ. v.).

WAX-FLOWERS. An elegant use is found for bees' wax in the manufacture of wax-flowers. The wax for this purpose is bleached and prepared in thin sheets of various colours, which are cut out into the shapes for petals and leaves, according to the kind of flower to be imitated. They are easily made to adhere, either by a slight amount of heat, or a little melted wax.

WAX INSECT (Coccus sinensis; see Coccus), a very small white iusect, a native of China, of the same genus with the Coclineal and Kermes insects, and with the Scale insects, which are the pest of our greenhonses, valuable on account of the wax which it produces. It is found abont the beginning of Jnne on the branches of certain trees, on the juices of which it feeds, particularly on those of a kind of Sumach (Rhus succedanerm). The wax is deposited on the branches as a coating which resembles hoar-frost. This is scraled off towards the end of August, melted in boiling-water, and strained through a cloth. See Wax. The Chinese W. I. has been introduced by the French into Algeria.-Another W. I. is found in South America, hut is not yet well known, uor has its max become an article of commerce.

Wax myrtle. Sce Candleberry

WAX-PAINTING is an art of great importance, better known, however, under the name of Encaustic Painting (q. r.).

WAX PALM (Ceroxylon-or Iriartea-andicola), a lofty palm, found in the Andes, on the eastern horders of Peru, at an elevation of 3000 feet and

Wax Palm (Ccroxylon andicola).
uprards above the level of the sea. It grows to the height of 160 feet, and on the cicatrices of the fallen leaves, a resinous secretion is produced in great abundance, composed of about two parts of yellow resin, and one of a kind of wax, more brittle than bees' wax. This wax cxudes also from the leares, and is whitish, almost inodorous, except when heated, when it mives out a resinous odour. It is used by the inhabitants of the country in which it is produced for making candles, but is usually mixed with wax or tallow. It is probable that the W. P. would sneceed well in the south of Europe, as its native climate is not dissimilar. The usual methed of obtaining the wax is by felling the tree. Each tree yields abont 25 lbs. The

WAX-SCULPTURE-IFAYLAND

wax is scraped off, melted, and ruu into calabashes. The timber of this palm is very hard and durable; the leaves are used for thatchins, and the fibres for cordage. The tree is a beautiful one, with a stately stem, and a head of large pimate leases.-In some of the northern provinees of Brazil, wax is oltaned from the Carnahua I'alm (ч. ऊ.).

WAX-SCULPTURE. The use of wax for senlp. ture is believed to be of yery ancientorigin; and not ouly have the tombs of Southern italy yickded many specimens of the portraits of the deceased modelled in wax, hut many fine bronzes in antiquarian collections bear evident marks of having been modelled in wax ly the process called cire-perduc. This consists in producing a model in wax, and then coating it with elay or other material iu a soft state; this is allowed to harden; aud the war is then melted out by heat, and the molten metal loured in. A very fine cast of the wax-figure is thus obtained; but, of course, the wax-model of the artist is lost, after the first copy is taken; hence, such specimens are very highly prized hy connoisseurs. During the 14 th and 15 th centurics, the art of modelling in Wax. or ceroplastics, was much practised, especially in Italy and in Germany, by many of the first artists, even Michael Angelo not cxcepted; and many of their original works in was are still presurved. They were chietly, however, in low relief, although very fine statuettes were also produced by men of great eminence.

WAX-TREF (lismia), a genus of plants of the patural oriter Hypericacec, having a 5 -parted calyx, and 5 petals, generally covered with soft hairs on the insidc. All the species yield a ycllow viscid juice when wounded, which, when dried, becomes somewlat similar to gamboge. The spocies are natives of the tropical parts of America.

WAXW1NG (Bombycilla)', a genus of birds of the family Ampelilue, or Chatterers (IT. v.), haring a short, straight, elevated bill, with a very wide gape, as in the Fly-catchers, but without bristles ; Dooth manulibles notched at the tip; the wings rather long, broal, and pointed; the legs short; the toes

Sultminn Chatterer (Sombycilla garrulu).
long, with sharp and curved claws. The name VI^{-}. is derived from a very peculiar character, which the wings exhibit; some of the secondaries and tertiaries terminating in horny expansions of the shaft, resembling small pieces of red sealing-wax. The species are few, but widely diffused over the colder parts of the northern hemisphere. The only European species is the Ecrorean W., or Boheman Chatterer (B. garrula), which is found in snmmer in the arctic regions of Curope, Asia, and America, migrating southwards in winter, 112
sometimes as far as the shores of the Mediterranean; most abmadant in America, during winter, about the great lakes and the unthern part of the Talley of the Mississippi. It is found also in Japan. It is only an occasional winter-visitant of Britain. In smme winters, numerous flocks are seen; in other winters, and more gencrally, none at all. It is in severe winters that this lird is most frequently seen in Britain, and in the more southern parts of Europe. It is gregarions in winter, and the tlucks are often large. It feeds on insects and worms, secds, berries, and other fruits. It is a handsome bird, nearly as large as the Sone Thrush; redelish gray, with a hlack patch on the throat, antl a black band on the forchead; the tail-coverts brownish orange; the primaries, scondaries, and tail-feathers tipped with yellow, two white bards on the wings; the lower jarts silvery gray. The bead is surmonnted by an erectile crest of brownish orange feathers. The song of the W . is a weak whistling, hearing a little resemblanee to that of the thrush. It is casily tamed. The flesh is said to be delicate foml.-The Americin W., or Cedar Bird (D). cedrorum, or Ctrolimensis), is a very similar, lut smaller species, found only in North America, from Canada to Central America, less migratory, anl never visiting arctic regions. The qeneral colour is reddish olive, 'passing into purplish cinnamon in front, and into ash-colour behind; the chin black; no white on the wings; the lower parts yellow: It is erested like the Enropean Waxwing. Great floeks of cedar birds collect in the end of summer. They feed on berries, and are particularly fond of those of the Red Celar. The Cedar Bird is extremely voracious, and when foorl abounds, sometimes gorges itself so much, that it may be taken lyy the hand. It is in much esteem for the tableAnother species is found in Japan, having no waxy drops on the wings.
WAXI DEGENERATION is a morlid process in which the bealthy tissue of various organs is transformed into a peculiar substance, allied in some respects to anyloid compounds, and in others to albuminous substances. Organs affected by this degeneration have a certain resemblance in consistency and physical character to wax. They may be eut into portions of the most regular shape, with sharp angles and smooth surfaces; and the thinnest possible slices may be removed by a sharp kuife for microscopical examination. Sueh organs are abnormally translucent, increased in rolume. solidity, and weight. Usually, the first parts affected by this degeneration are the small llood-wessels, the middle or muscular coat being first changed. Subsequently, the secreting cells become similarly affected. When a solution of iodine is brought in contact with such tissucs, a very deep violet red colour is produced; and this deep red colonr is alone a sutficiently characteristic test. Although amyloid degencration is common to many tissues and organs, the parts most frequently affected are the spleen, liver, and kidneys. This morhid condition in one or more organs is the expression of a general pathological state, the conditions and relations of which are as yet but little known.
WAYLAND, the Smith (Ang.-Sax. Veland : olet Norse, Völusdr; Ger. Wibland), was, aconrding to the old German Saga (the pincipal traits uf which are already contained in the older Edda, but which is related in the most detailed fomm in the Viltinasaga), a son of the sea-giant Wate, a nephew of King Wilkinus, and of the sea-nympla Wac-hilt. His father had bonnd him, at first, apprentice to the celebrated smith Nimi, then took him across the sea to the most skifful dwarfs, from
whom he not only soon learned all their science, but far surpassed them.* He afterwards dwelt a long time in Ulfdaler (the Wolf's Valley, which, by comparison with other Sagas, appears to correspond to the Greek Labyrinth) along with his two brothers-Eigil, the best archer, to whom the oldest form of the Tell legend attaches; and Slagfidr, whom the saga has not further characterised. The brothers liere met three swan-nymphs, and lived with them for seven rears, when they tlew away to follow lanttles as Walkyzies (q. v.). Afterwards, W. came to King Nidung, who made him lame, by cutting the sinews of his feet, and put him in prison, for whieh IT. revenged himself by putting the king's two sons to death, and violating his danghter Beadohild, who afterwards gave birth to Wittich, a powerful champion of the German hero-legends. W. then Hew away in a feather-robe, which he himself manufactured, and which lis brother Eigil had tried first, but was precipitated to the ground. Skilfully putting together and sapplementing the varions old legends, simrock has produced the Saga of W., as a whole, in his poem IJ'ieland der Schmied (Bomn, 1833), and in the 4th part of his Meldenluch (Stuttg. 1843). The legend was a favourite one among all the Germanic nations, as is shewn by the frequent ailusions to it in Scandinavian, Anglo-Saxon, Enghsh, and German poems, as well as by the numerous fragments yct extant in oral tradition thronghout all Teutomic countries. The German poems to which the Viltinasaga appeals, which were in existence up to the 13th e., have been utterly lost. Even beyoud the bounds of Germany, old French poems and traditions tell of Gallans the smith. See Mepping and Michel, Veland le Forgeron (Par. 183:3). The legend of W. is in fact one of those myths common to the Imio-Germanic family. Besides the German tradition, it is found most distinetly among the Greeks, in the different stories of Dredalns, Hephestus, Erichthonius, and so forth. Next to Jacob Grimm's profound discussion in the German Mythology, Knlan has pointed out in the best manmer the signification and ramifications of the myth in his treatise, Die Spracheveryleichung unl die Uhrosschichte der Germ. lölker, in the Zeitschrift für vergleichende Sprachforschung (rol. iv., Berl. 185 $)$.

WAYNE, Anthony, an Ameriean gencral of the war of the Revolution, was born at TVaynesborough, Pennsylvania, January 1, 1745 . His grandfather, a native of Yorkshire, commanded a squadron of dragoons at the battle of the Boyne, and emigrated to Pennsylvania. Anthony was educated at Philadelphia; at the age of 18, he was employed as a land-surveyor, and was selected by İenjamin Franklin to form a projected settlement in Nova Scotia. At the beginning of the American revolution (1775), he was married and settled ou a farm in Pennsylvania, taking an active interest in jolitics, and became a member of a Committee of Safety, and studied military drill and tactics. At the outbreak of hostilities, he raised a regiment of volunteers, of which he was appointed colonel, and sent to Canada, where he corered the retreat of the provincial forces at Three Rivers. He commanded at Ticonderoga until 1757, when he was made Brigadier-general, and joined Washington in New Jersey; commanded the rearguard in the retreat at Brandywine; led the attack at Germantown; eaptured supplies for the distressed army at Valley Forge; distinguished himself at Monmouth: was defeated at Paoli; but achieved the most brilliant

[^0]victory of the war in the storming of Stony Point (q. v.), July 15, 1779. His courage and skill saved Lafayette in Virgivia in 1780; and he aided in the siege of Yorktown, and commanded in Georgia. At the elose of the war, rewarded ly poprular enthusiasm, and having, by his clash and audacity, acquired the sobriquet of 'Mad Anthony,' he retired to his farm at Waynesborough, and engaged in promoting the construction of roads and canals. [n 1792, he commanded a successfu] expedition against the Indians of the north-western territories; Where he remained, until 1796, as United States' Commissioner. He died at the garrison at Presque Isle (now Erie), Deeember 14, 1790.

WAYS AND MEANS, Commttee of, a committee of the Honse of Commons appointed to determine the modes of raising the money which the Honse-after resolutions reported from the Committee of Supply, and agreed to-have granted to the crown. Like the Committee of Supply, it is always a committee of the whole Honse. A chairman, elected by the Committee of Supply, but known as the Chairman of the Committee of Ways and Means, presides over both committees. One of the most important occasions for which the Committee sits is to receive the Budget, or annnal finaneial statement of the year from the Chancellor of the Exchequer. The propasitions of the government regarding loans, duties, taxes, tolls, and any other means for raising revenue, are submitted to the consideration of the Committee of Ways and Means in the shape of resolutions. The amount proposed to be raised must not exceed the sum granted in the Committee of Supply; and the Chancellor of the Exchequer is bound to satisfy the Honse, by a detail of the sums granted for the several services, that the amount of these sums will be a suthicient justification, in point of quantity, to the Committce of Ways and Means to adopit such measures and impose such taxes as shall then be recommended. Such resolutions as are agreed to are atlopted and emborlied in bills, and in due time become law. Sce Surply, Committef of; Patha. ment.

WEALDEN FORMATION, a series of freshwater strata belonging to the lower Cretaceons epoch. Having been originally studied in the parts of Kent, Surrey, and Sussex called the Weald, this local name was given to the formation. It has been divided in to two series, which do not differ very materially from each other, viz., Weald Clay, 560 feet; Hastings Sand, 740 : total, 1300. The Weald Clay consists of blue and browu clay and shale with thin beds of sandstone and shelly limestonc. These strata were probably lake or estuary deposits, and eontain the remains of the land Hora and fauna, often in great abundance. The beds of limestone, called Sussex Marble, are almost entirely composed of a species of Paludina, not very different from the common P. rivipara of English rivers. The elays are often laminated by thin layers, consisting of immense numbers of the shells of minute Cyprides. But the most remarkable animal remains are those of the lange reptiles which lived on the land, tenanted the air, or abounded in the sea, such as the Iguanodon ($q . \times$.), Hylaeosamus (q. v.), Pterodactyl (q. v.), and the mmerous species of turtles which have been described from these strata. The regetable fossils belong ehietly to ferns, and to the gymnospermatous orlers of Conifers and Cyeads ; the imuits of several species of both orders have been found: and in some places, the rolled trunks of Endonenites and Cluthrartia, belonging to Cycads, and of different specics of coniferons wood, oceur in enormous quantities, as at Brook Point, in the Islo 113

WEALTH-WEANING.

of Wight, where the shore at low-water is strewn with them.

The Ifastings beds contain more sandstone and less elay than those of the upper Weald Clays. The picturesque scenery of the High Locks and other places in the neighbourhood of Tunbridge, is weathered ont of the beds of white sandstone helonging to this period. The remains of the huge Wealden reptiles aboumd in the sandstones of this division. The Tilgatc forest-beds, where Dr Mantell first found the Jgnanodon, and the rocks in the neighbourhood of llastings, are the best linown repositorics of those remarkable fossils.

The deposition of the Wealden beds was followed by a gradual depression of the land, when these fresh-water deposits were covered by the estnary beds of the newer Greensand. The depression continued until the fresh-water and estuary strata formed the bottom of a deep sea, on which were deposited the immense beds of chalk and allied strata which form the bulk of the Cretaceous series. I_{n} the process of clevation, these beds have suffered denudation, so that districts which were covered with Cretaceons beds have been eleared of them, and immense valleys have been furrowed through the Chalk, Grecusaud, and Wealden.

WEALTH. See Caprral.

WEA'NING, and FEEDING IN INFANCY. The propriety of mothers nursing their own children is now so niversally acknowledged, that it is the duty of the physician less frequently to urge maternal nursing, than to indicate those cases in which it becomes necessary to substitute another mode of rearing the infant. 'Women,' says Dr Maunsell, - who labour under any mortal or weakening disease -as phthisis, hemorrhages, epilepsy-are obviously disqualified from the oflice of murse. Some who are in other respects liealthy, have breasts incapable of secreting a sufficient supply of milk. In other instances, the lreast may jerform its functions well, but the nipple may be naturally so small, or may be so completely obliterated lyy the pressure of tight stays, as not to admit of its being laid lold of by the child. These are actual physical hindrances to morsing. Agaim, women may, and, in the higher classes, frequently do, possess such extremely sensitive and excitable temperaments, as will render it imprudent for them to suckle their own children. Frightened and excited by cvery aceidental change in the infant's countenance, and inordinately moved by the common agitations of life, such persons are kept in a state of continnal fever, which materially interferes with the formation of milk both as to quantity and quality. Women, also, who become mothers for the first time at a late period of life, have selfom the flexibility of disposition or the physical aptitude for the secretion of milk, required to constitute a good murse.' - A Treatise on the Managment and Diseases of Children, 4th ed., 1542, 1p. 3?, 40. In ordinary cases, the child slould be $1^{m t}$ to the breast as soon as the latter begins to contain anything; and when the secretion of milk has fairly commenced, it will require no other fool until the seventh or eighth month, provided the mother be a good murse. During the lirst five or six months, the infant should be put to the breast at regular intervals of about four hours; afterwards, when the teeth are beginning to appear, the child need not suck more than four times in the twenty-four horrs, some artificial food being given to it twiee during the same period. This at lirst may consist of soft bread steeped in hot water, with the addition of sugar and cow's milk; and snbsequently a little broth, free from salt and vegetables. may be given once a day. The spoon is now
the best medium of feeding, as the food should be more solid than could lee drawn through the suck-ing-bottle. The time of weaning should be that indieated by nature, when, by providing the child with teeth, she furnisbes it with the means of obtaining its nourishment from substances more solid thatu milk. If the infant has been gradually acenstomed to a diminished supply of maternal and an increase of artificial food, weaning will be a comparatively easy process; and mucly of that suffering both to parent and child will be spared, which commonly ensnes when a sudden change is made. In ordinary eases, the period of weaning varies from the seventh to the twelfth month; sometimes the child is kept at the lreast for a much longer period, from the popular idea that lactation prevents pregnancy, but such unuaturally prolonged lactation is usually injurious to both mother and child.

In those cases in which it is inexpedient or impossible for a mother to suckle her own child, tho choice of a wet-nurse becomes a subject of much importance. Upon this subject, Dr Maunsell lays down the following important practical rules: "The great thing we have to look to is to ascertain that both the woman and her child are in good health; and of this we must endeavour to judge by the following signs: The woman's general appearance and form shoukl he observed, and they ought to he such as betoken a sound constitution. Her skin shonld be free from eruptions; her tongue clean, and indicating a healthy digestion ; her gums and teeth sound and perfect; the breasts should be firm and well formed-not too large or flabhy-and with perfect, well-developed bipples. Wo should sec that the milk Hows freely, upon slight pressure ; and we should allow a little of it to remain in a glass in order that we may judge of its quality. It shomld be thin, and of a bluish-white colour; sweet to the taste; and when allowed to stand, should throw up a considerable quantity of cream. A murse should not le old, but it is better that she should have had one or two children before, as she will then be likely to have more milk, and may be surposed to have aequired expericuce in the management of infants. Having examined tho mother, we must next turn to the child, which should be well nourished, cleau, and free from eruptions, especially on the head and buttocks. We shouhl also carefully examine its mouth, to ascertain that it is free from sores or aphthe. If both woman and child bear such an examination, we may with tolerable security pronounce the former to be likely to prove a good mirse.'-Op. cit., pp. 44. 45. In one respect, we eliffer from this cminent physician. He holds that 'the more recently the murse's own confinement has taken place, provided she has recovered from its effects, the better:' Supposing a muse is recpuirerl for a new-born infant, this rule holds gooll; but provided a murse is required for an infant of three or four months old (for example), it is preferable to obtain a nurse whose milk is of that agre. We believe it to be a general physiological law that the age of the milk should correspond to the age of the infant; that is to say, that an infant taken at any given age from its mother, before the normal perion of weaning, should be provided with a nurse who was confiued about the same time as its own mother.
A wet-nurse should be very much ${ }^{\text {referred }}$ to any kind of artificial fecding; but peculiar cases may occur in which it is impossible to procure a murse ; or an infant whose nother is incapable of nourishing it may be the subject of a disease that may be transmitted through the infant to the nurse. In these cases, a food must be provided as nearly as possible rescmbling the natural food; and this is naturally
sought for among the food of animals. The milk of the cow is most commonly used, in consequence of its being the most easily obtained; but ass's mills more nearly resembles human milk, as is shewn from the following comparative analyses by Professor I'layfair :
Casein,
Buter,
Sugar,
Ashes,
Water,

Casein,
Sugar,
Water,

Woman.
$1-5$
$4-4$
5.7
0.5
$85^{\circ} 0$
Cow.
4.0
4.6
3.8
0.5
89.0

Ass.
$1-9$
$7-3$
1.3
6.3
$30 \cdot 5$

The most important difference between cow's milk and woman's milk is the great excess of casein in the former. The former fluid may, however, be made to resemble the latter in compasition in either of the following ways: (1) On gently heating cow's milk, a membrane of cascin forms on the surface; by remoring two or three of these membranes as they form, we can reduce the quantity of casein to the desired extent ; or (2) we may dilute cow's milk with twice its bulk of pure water, and add a little sugar. This food should be administered at a natural temperature (of about 98°) through a suck-ing-bottle; and as the child grows older, it will soon be able to take natural cow's milk withont incouvenience. The nature and importance of the mixture of milk and farinaceous faod known as Liebig's Somp for Children, are described unter Soup.

The rules regarding the times, \&c. of feeding are similar to those faid cown for suckling. Assuming that the infant, whether brought up at the breast or artifieially reared, has been safely weancd, we have to consider what rules should be laid down regarding its food subsequently. For some months after weaning, the food should consist principally of semi-fluid substances, such as milk thickened with baked flonr, or pap, to which a little sugar should be added. Light brotlis may also be administered, especially in the occasional cases in which milli seemis to disagree ; and bread and butter may be tried in sinall quantity. We shall conclude this article with the following " madel of a suitable diet for children,' which cannat be too strongly impressed upon the minds of all young mothers. 'A healthy child, of two or three years old, commonly awakes hungry and thirsty at five or six oclock in the morning, sometimes even earlier. Immediately after awaking, a little bread and sweet milk should be given to it, or (when the chill is too young to eat hread) a little bread-pap. The latter should be warm ; but in the former case, the bread may le eaten from the hand, and the milk allowed to be drunk cold, as it is well at this meal to furnish no inducement for eating beyond that of hunger. After eating, the child will generally slecp again for an hour or two; and ahout nine o'clock it should get its second meal, of bread softened in hat water, which latter is to be dramed off, and fresh milk and a little sugar added to the bread. Between one and two, the child may have dinner, consisting, at the younger ages, of beef, mutton, or chicken broth (deprived of all fat), and bread. When a sufficient number of teeth are developed to admit of chewing being performed, a little animal food, as chicken, roast, or boiled mutton, or beef, not too much dressed, should be allowed, with a potato or bread, and some fresh, well-dressed vegetable, as turnips or caulillower: After dinner, some drink will be requisite ; and a healthy child requires, and indeed wishes for nothing but water. Light, fresh tahlebeer would nat be injurions to a child of four or five years old, but it is imnecessary. Tetween six and seven o'clock, the child may have its last meal of breal steeped in water, \&c., as at nine o'clock in the morning. A healthy child which has been in
the open air during the greater part of the day, will be ready for bed shortly after this last supply, and will refluire nothing more till next morning. Similar regimen and hours may be adapted throughout the whole period of childhood; only as the fourth or fifth year approaches, giving, for breakfast and supper, brend and milk without water, and either warm or cold, according to the weather or the child's inclination. The supply of food unom first awaking in the morning may also be gradually discontinued, and lurealsfast be given somewhat carlier.'-Op. cit., IP. S0, 81 .

WEA'SEL (DIustela), a genus of quadrupeds of the family Mustelides (q. v.), having a very elongated body; short feet, with taes quite separate, and sharn claws; four molar teeth on each side above, and five below. The Common W. (ML. vulgaris) is a native of almost all the temperate and cold parts of the northern hemisphere, except the most arctic regions. Its range does not extend quite so far north as that

Weasel (Mustcla rulgaris).

of the ermine. It is the smallest of the Mustelides of the Old World, not exceeding two inches and a half in height, and seven inches and a half in length, from nose to tail; the tail about two inches and a half long, and terminating in a point, not so bushy as that of the stoat or ermine. The female is smaller than the male. The head is large; the ears short, broad, and rounded, the whiskers long. The colonr is reddish brown on the upper parts, sicles, legs, and tail; the throat and belly white. 'The eyes are small, round, and black, with a very keen expression, to which the whole habits of the animal correspond. It is nimble and active, bold, and yet wary. It may often lee scen peeping curiously from a hole in a wall, but vainly does the schoolloy attempt to strike it with a stone. Catching it is ont of the ynestion for him, and sa far well, for it is ready to bite severely. It is a most persevering hunter, its seent as keen as its sight, quarters the ground like a dog, and wearies out nnimals larger and apparently much stronger than itself. It preys on mice, rats, voles, small birds, and other small animals, sometimes even on hares and rabbits, robs bircls' nests, devouring the yamm birds or sucking the eggs, and is occasionally troublesome in poultryyurds, killing young clickens. It climbs walls and trees with great agility, and cloes not lesitate to plunge into water in pursuit of the water-rat. It sometimes besins by sucking the blood of the animal which it has killed, and generally devours the brain; but when foorl is abundant, it carries the body to its retreat, where a considcrable quantity of prey is often found, the W. preferring to eat it in a half-putrefied state. The W. generally sleeps during the day, and is most active at night. It has a disagreeable smell, which is strongest in hot weather, or when it has been pursued or irritated. It is capable of being tamed when taken young, and becomes clocile and gentle. The female W. makes a nest of straw-leares and moss for her young, which are produced in spring, four or five in a litter; often in a crevice of a bank, or in a hollow

WEASEL-WEATHER.

tree. The for of the \mathbb{W}. is an article of commerce in some nothern countrics, and W.-skins are exported in eonsiderable ruantity from Siberia to China. Tlie IV. sometimes, lut rarely, becumes white in winter, like the emminc.-The Lrmine (q. vo), or N'toat, is another specios of weasel. America las several spocies of 15. (. M. pusilla) is rather smaller than the Common W. of Fiurope, and hats a shorter tail. It is abundant in the northern larts of the United States, and its range extends far to the morth. In the United States, it remaius brown all winter; but in the furcountries it becomes white.

WEATHER is the comlition of the atmosplhere at any time in respeet of heat, moisture, wipl, rain, cloud, and electricity; and a clange of wrathor implies a ehange in one or more of these clements. From the lirect beariug weather-changes lave on human interests, they have from the corliest times been closely watcheck, so that the eauses by which they are lrought abont being discovered, their approach might be predicted with some degree of conffleuce. The eraving in the propular mind for this knowledge is strongly attested liy the prognosties of the weather current in every language, which, amid much that is shrewd and of considerable practical value, emlrace more that is vague, and not a little that is jositively alusurd.

It is not necessary here to refor to Moore, Zalkiel, and other almanae-makers of that class, cxcept as proving by their merc existence a wide. spread ignorance of eren the most palpalole clements of physieal law, which is a disinvace to the clucational system of the comutry. Prognosticators of higher pretensions repeatedly appear before the public, and it is curious to note low their predictions are eagerly laid hold of by the newsparpers, and scattered lroarleast over the country. Among the latest of this class was Dlathien de la Drome, whose predictions of storms aud rains marle so much woise, that the Emperor Fiapoleon requested the celcbrated Leverrior to examine the groumds on which the predictions were fommded. The exposure was complete. One of his principal predictions was based entirely on a high ucerage of the rainfall at a particular season. On examining the rainfall of the particular years of which the average had been taken, it was found that the excess wis cotirely alue to an unprecedentedly heary rain which occurred in one of the jears at that season. Ilis fame was fommed on a few haply hits, and on lis death occurring a short time after be began to issue predictions of the weather. One of the most remarkable predictions of recont times was that made by an lrish nobleman in reference to the weather of September 1865, which turned out to he in accordance with the prediction-dry, warm, and fine, beyond precedent. The celebrity of this prediction has, however, heen greatly reduced by other predictions made since; which the events unfortunately have not veritied.

The changes of the moon were long, and in many mimuls are still, regarded as supplying the clements of prediction. In order to test the real value of the moon's changes on the weather, the (ireenwich olsorvations of 50 years were carefully examined, anll it was found that the number of instances in which the weather was in accordance with the prognostieation was one instance less than those in which the weather was different. When brought to the test of accurate examination amb figures, the theory of the moon's changes on the coming feather is thus proved to be a complete delusion; But since most people have a bias towards forgetting the unsuccessful jrognostications, and remembering the successful ones, the theory will likely coutiuue to
he believed in, at least until some knowlealge of the natural laws be more generally diffused, so as to reveal its absurelity.

I'or some ycars, IIr Thomas alu Bonlay predictod the general character of the weather of cacli summer from the weather-conditions wlicls prevailed luring the week of the spring eguinox preceling, believing that the general character of the watlere of the next six montlis is already, settled, and that it only reyures the neecssary slill to read its features, since these will renain generally constant till autumu. For a few jears, he speculated in grain on the faith of the predictions, which turned out pretty correct. Latterly, the predictions have not been rerificel.

The truth is, that no prediction of the wecther can be made, in the Lritish Lollands at latst, for more than three, or perlatps only tuo days beforehand. Any attempt at a longer prediction is illusory. Ne woull here refor to the article Storms, as shewingr the possibility and mode of making real predictions of the weather. Almost all the weather-chanses of Europe begin from the south-wost, and pass ower Great Britain to the northeeast. L"usettled or bad wather is accompanied with a low lrarometer; (Isewhere, the luarometer is higher. 'Thus, then, supprose that, from weather-telucrams receivcel, it is secn that cverywhere in liurope baroncters are ligh, we may be sure that no storm need be dreaded for two days at least. But if, on the following morning, barometers begin to fall a little in the west of Ireland, aad an easterly wiml begius to llow renerally over Great lbritain and Norway, and a sonth-east wind over France; then, since the winds blow towards the lowest biuroneter, or rather a little towards the right of it, the presunption is that a storm of greater or less severity is coming up, the centre of which is likely to pass over England. 'Ilns ought, therufore, to be closely watcheal ly the telegrabh; and if the winds keeping in nearly the same direction, or veering slowly towards the south and west. increase in force, and larometers in the west of Ireland fall rapidly, a great stom is portensled, of the alproach of which waming should be at unce telegrapheal to the diflerent seajurts. Sut if, on the contriary, the winds do nut increase in furce, aud the barometer fall slightly, or cease to fall, the storm has either prassed considerably to the north of the British Islauds, or its approach will he delayed for some time yet; and lience, no immeliate warning is neecssary.

It is our proximity to the Atlantic that malies it impussible to predict the weather leyond three days at the utuost. In Jorway and the Baltic, and places towards the cast of Europe, the weather may lue predicted for a longer time, since each storm as it aplears in the west may be followed in its course by the telegraph, and the places which it threatens be wancel of the coming danger. In America also, where stoms chiefly advance from "est to east, gales aud unsettled weather are predicted at the sca-board in the east some days before.

But the collecting of this information ly the telegraph is a work which, owing to the expense, guveruments only can accomplish; and froun its mimportance, it is an incumbent duty which they shonld discharge for the benefit of the scafaring population. From the great value of veathertelegrams to jursons interested in shipping, we believe that the time is not far distant when each of our chicf seaports will be supplied with daily telegrams ot the barometer and the winds from tive or six places, at some distance, aud in different directions, from the particular seaport. A rood deal may, however, be clone by each one for himself, by
observing his barometer, the winds, and the face of the sky-especially the cirrus cloul-the most elevated and delicate of the clonds. But ere these simple observations can be turned to account, and made the basis of an intelligent prediction, some knowledge of the general features of Storms (q. v.) is indispensable. These specially-(1) Storms have a circular area; and (2) advance in an easterly direction. bearing a low barometric pressure with them. (3) Winds blow from a high to a low barometer, and (4) with a force proportioned to the difference of the pressure. (5) Storms are first felt in the upper regions of the atmosphere or in the region of the cirrus clond; and (G) in front of the storm the air is warm and humid; in the rear of it, cold, or cool and dry. With such obscrvations (requiring only a barometer), intelligently interpreted, particularly if hills form part of the landscape, the character of the weather may be foreseen for one day, or longer.
Eut though no prediction of the weather for weeks or months beforehand can be made with any pretensious to trustworthiness, yet guesses or sur mises may be formed which are not without value. All observation goes to prove that predictions based on solar or other astronomical causes are without foundation, and that averages based on terrestrial observations are the only guides we have in this matter. Of this class are the interruptions which occur in the regular march of temperature in the course of the year. Thus, cold weather seaerally prevails from the llth to the 14th of April-that is, the period of the 'borrowing days' (O. S.), and in the sccond week of May; and these, with some other cold and warm periods, are almost co-extensive with the northern hemisphere of the globe. Hence, therr, at these times, when the weather begins to get cold or warm, it may safely be predicted that such weather will last for several days. Again, if, after a long-continued prevalence of sonth-west winds, or the equatorial current, the polar current, or north-east wind, should set in, it is highly probable that easterly winds will prevail for some time; so that, if the season be winter, a continuance of frost, and jerhaps snow, may be looked for ; but if midsumuser, the weather will become dry, warm, and bracing. But suppose easterly winds have been unusually predominant in autumn, and sonthwesterly winds begin to prevail in the end of November or beginning of llecember, it is most proballe that the weather will continue exceptionally mill, with frequent heary storns of wind and rain, till abont C'hristmas. This period occurs nearly every year, and its commencement is popularly linown as s't Martin's sumner. If easterly winds preponderate greatly above the average during the spring months, the summer is likely to be characterised by south-westerly winds, with much rain and moisture, and little sunshine ; but if easterly winds nea:ly fail in spring, the summer will be dry and warm, it being expeeted that the polar enrrent will prevail in summer, bringing clear skies and brilliant sunshine. This latter forecast of the summer is believed in by the Rev. L. Jenyns, and several meteorologists of note; but an examination of the weather of the past eleven years shews that it is only generally true.-See Rer. Leonard Jenyns' Meteorology (185S) ; Popular Promostics of the 15 cather in scotland, by Arthur Mitchell, II.D. ; Joumal of Scottish Meteorological Socicty, No. siii.'Interruptions of Temperaturc.'
WEATHERING, a slight inclination given to the top of a cornice or moulling, to preveut water from ludging on it.

WEAVER-BIRD (Ploceus), a genus of birds of
the Finch family (Fringillide), of a gronp or sub) family (Ploccince), to most of which the mame Weaver-bird is cxtended. The name has reference to the remarkable structure of the nests of these birds, which are woven in a very wonderful manner of varions vegetable sulstances, and are objects of great interest. The Ploceince are nafives of the warmer parts of Asia, of Africa, and of Australia;

Taha Weaver-bird (Ploceus Taha).
nowe being fornd in Europe nor in America. The species are numerous. They are small birds, with a strong conical bill, the ridge of which is slightly curved, the tip, entirc. The claws are large and very long. The wings are pointed, the first quill remarkably sloort. There is great diversity in the form and appearance of the nests constructed by different species. One of the best-known species is the Philippline Weaver (P. Philippints), the Baya (q. v.) of fudia.-Many of the other weaver-birds construct vests pretty much on the same plan with this-ponches elongated into tubes, entering from below: those of some are kidney-shapel, and the entrance is in the side. They rery generally suspend their nests in the same way from thie extremities of branches, ancl often 1 refer branches which hang over water, probably as afforling further security against monkers, squirrels, snakes, and other enemies. Social habits are very prevalent

Nest of Pensile Weaver-bird.
among them, and many nests of the same specics are often found close together. Some of them attach the nest of one ycar to that of the year preceding, as the Ploceus pensilis of Madagascar, which sometimes thus makes five nests in succession, one hanging to another. Some of the African species build their uests in company, the whole forming one structure. Thus, the Solial ur Repeblicas
W. of South Africa (Ploccus socius or Philotorus lepidus) constructs a kind of umbrella-like roef, under which 500 or 1000 nests lave been foumul, the nests like the cells of a boneycomb, and armanged with wonderful recularity. Au aeacia with straight smooth sten, such as predaceous animals cannot easily elimb, is often selected by the bird-community. When the situation is chosen, the lirds begin by constructing the roof, which is made of coarse grass, each pair afterwards huilding their own nest, which is attached to the roof. As new nests are built every year, the weight of the structure often becomes so great as to break down its sup-port.-Tcxtor erythrorhynchus is a bird of the W. group, which is commonly secu in South Afriea accompanying herds of buffaloes, and feeding on the bots and other insects which infest them, alighting on their backs to piek them out of the hide. The lird is often of great use to the buffalo in another way, by giving warning of the approach of an enemy.-The Whydaw Lirds (q. v.), or Widow Birls, likewise belong to the group of Ploceinc.

WEAVING, the art by which threads or yarns of any substance are interlaced so as to form a continuous web. It is perhaps the most ancient of the manufacturing arts, for clathing was always a first necessity of mankind. 'Ihe methods by which wearing is now accomplished have been explained and illustrated under Loon (q. v.); it therefore only remains to describe the variations which may be effected by ingenious applications of the powers of the loom; and as these are almest endless, some of the more conmon and easily understead will be chosen. The simplest form of weaving is that employed in making the, mats of uneivilised nations. These consist of single untwisted fibres, usually vegetable, arranged side by side to the width required, and of the length of the fibres themselves, which are tied at each end to a stick, which is so fixed as to keep the fibres straight, and on the same plane, as in fig. 1. Then the weaver lifts up

Fig. 1.
every other of these longitudinal threads, and passes uuder it a transverse one, which he first attaches by tying or twisting to the outermost fibre of the side he commences with, aml afterwards in the same way to that on the other side, when it has massed through the whole series. The acquisition of the art of spinning threads of any length emables more advanced nations to give great length to the warp, or series of threads which are dirst arranged, and to pass the reft or transverse thread baekwards and forwards by means of a shattle, without the necessity of fixing at the sides. The meehanieal appliances already described noder Loom aid these operations to an amazing extent. 'That kind of weaving which consists of passing the weft alternately over and under each thread of the warp is called plain
weaving, and a transverse section of the web would be represented by fig. 2 ; but if the weaver takes up first one and then two threads alternately of the warp series, and passes the weft under them for the first shoet of his shuttle, and raises those which
 Fig. 2.
were left down before for the seeond sloot, he produecs a cloth with a very different appearance, ealled Twnel (q.v.), many varieties of which may le produced by varying the numbers missed or taken up -as, for example, one and three, instead of one and

Tig. 3.
two. The simplest form of twill, viewed transrersely, would be represented by tig. 3.
There are few arts which require more patience or skill than weaving. As many as from one to two thousand threads often constitute the warp; and these threads may he so varied in quality (see YARN) as to praduce many varicties of fabric. From that eause alone, there are almost intinite variations. Many may be produced by the order in which the threads are lifted for the passage of the weft-that of itself can also vary as much or more in its quality and other circumstances, so that the iuventive gemins of the weaver finds incessant opportunities for its display, and nice arithmetical calculations are required in estimating aud allotting the numerous threads to the endless variety of patterns which are constantly passing through tho looms. A really practical knowledge of wearing can only be oltained by working with looms, and studying such technical treatises as Watson's Theory and Practice of the Art of Hreaving, and some of the claborato treatises by the French weavers.

Werer, Carl Marla von, a musical eomposer of high eminence, was born at Entin in Holstein, 1 Sth December $1 \% 56$. Musical and dramatic talent had been leereditary in his family for some generations: his father, by turns officer in the army of the Palatinate, finance minister of the Elector of Cologne, music-director to the Prince Bishop of Eutia, and head of a company of strolling players, led a somewhat irregular and checkered life. Young W. shewed carly a genins for music, but his instructors were often changed, in consequence of his father's change of residence. The teachers to whom he owed most were Hauschkel at Ifildburghausen, Michael Haydn at Saizburg, and Valesi and Kalcher at Mumich. His father's impatience and want of judgment were injurious to him in many ways, particularly in the efforts made to bring him before the publie prematurely as a musieal prodigy. At the age of 13 , he comporsed an opera calleal Die Machider Liebe und des Weins. When but 14, his second opera, Das Wrallmëllchen, was brought out, without much success at first; but was afterwards far better received than he limself thought it deserved. The next effort of the yonng opera-composer was Peter Schmoll und scine Nachlurn, eompiosed at Salzhurg in 1S01, and performed at Vimma with hut indifferent succuss. At Vienua, he lecame aepuainted, in 1803, with Josepli Haydn and the Albe Vogler, and studied for some time noder the latter. In 1504 , he left Vienna, to be eonductor of the Opera at Dreslan, and while resident there, composed the greater part of his opera of Räbeardhl.

WEBER-WEBSTER.

We next find him, iu 1806, with Prince Eugene of Würtemberg at his court of Carlsruke in Silesia, where he composed two symphonies and three concertos. In 1507 , he went to Stuttgart, as private sccretary to Dnke Ludwig, becoming also musical instructor to his children ; and while there, he composed the opera of Silucona, and a cantata called Der erste Ton, besides overtures, choral pieces, and pianoforte works. Getting into disfavour and peenniary embarrassments. the result of his father's recklessness, he was dismissed the court of Würtemberg, and took up his residence successively in Mannheim, Heidelberg, and Darmstadt, at which last place he composed his operetta of Abu Hassan. He then made a musical tour through Germany, during which his concerts were everywhere well attended. From 1813 to 1816, he was director of the Opera at Prague, which he entirely remodelled; and during his residence in the Bohemian capital composed Kampf und Sieg, and numerous other sougs, including that noble national serics from Körner's Leier und Schwert, which had no little influence in ronsing patriotic sentiment during the war of liheration.
In 1817 , he was invited to form a German Opera at Dresden; and there, during the remainder of his life, he beld the post of Kapellmeister to the king of Saxony. To this period belong his most important compositions, imcluding Preciosct, Der Freischütz, Euryanthe, and Oberon. None of these works, however, were first brought out in Dresden. The music to Wolff's Preciosa, the subject of which is taken from a novel by Cervantes, was first produced on the Berlin stage, where it made a powerful impression. The author's cleef-l'ouere, the opera of Freischütz, the libretto of which was written by the composer's friend, Friedrich Kind, also first saw the light in the Prussian capital in 1822. It was a great success: its novelty and veanty, as well as the deep thought contained in it, excited an extraordinary sensation throughout Germany, which soon extended to France and England. Euryanthe, produced in Vienna in 1823, was not quite so warmly received. Bearing more the impress of lahour and cultivation, and less that of the composer's natural vein of romance, it has never been in such general favour as its predecessor. Oberon was written in prospect of a visit to London to a libretto supplied hy Mr Planché. When W. set out for England, he was already struggling against mortal disease. Oa the Sth March 18:6, he appeared at Covent Garden Theatre as conductor of a selection from Ireischiutz; and on the l.2th of April following he also conducted, on the first appearance of Oberon, with applanse on hoth occasions, incessant and uproarions. At his benefit concert on the 26th of May, he was hardly able to go throngh the duty of conductor; and on the 5 th of June he was found dead in bed in the house of Sir George Smart, whose guest he was. He was interred in the Roman Catholic Church, Moorfields; but in 1844 , his hody was removed to Dresden; and a statue of him by Reichel was erected in 1560 in front of the Dresten theatre. W. Was married in 1S1S to Carolina Brandt, an operatic singer of some note, daughter of Brandt the violinist, by whom he left a family.

The verdict of posterity, as well as of his contemporaries, has placed W. in the first rank of musical composers. He was the first to use those bold effects of harmony and modulation whose introduction forms an era io the history of music. ln his operas, the spirit of the romantic school appears in its brightest and most captivating form ; and the overtures are masterpieces of imagination, each presenting an outline of the work to which it belongs. Besides the above operas and songs, his musical
works are numerous, comprising concertos for the pianoforte, clarionet, oboe, bassoon, and violoncellosymphonies and overtures, one of the most beautiful and characteristic of them being the overture to the Behervscher der Geister. Among his posthumous writings is an Autobiography. His Life has been written by his son, Baron Max Maria von Weber, and recently translated into English by Mr Palgrave Simson.

Webster, Daniel, American statesman and jurist, was born at Salisbury, New Hampshire, January 18, $17 \$ \Omega$, the secont son of Ebenezer Webster, a small farmer, and justice of the county court. He entered Dartmouth College in 1797, and taught school in winter to pay his expenses, and aid his brother, Ezekiel, who became a distinguished lawyer, in fitting for college. On graduating in 1 sol, he commenced to study law, but was induced, by the offer of a salary of 350 dollars a year, to become preceptor of an academy at Fryburg, Maine, paying his board by copying deeds. In 1s04, be went to Boston, and entered the law office of Mr Gore, refusing an appointment of clerk of the court of which his father was a judge, at 1500 dollars a year. In 1505, having been admitted to the Boston bar, he established himself at Portsmouth, New Hampshire; married in 180S; and having engaged in politics as a member of the Federalist party, was elected to Congress, where he immediatcly took rank with the foremost men of the country. His speech on the Berlin and Milan Decrees, and his mastery of the questions of currency and tinance, gave him a high position; but he determined, in Is1G, to remove to Boston, where, leaving politics, he engaged for scveral years in legal practice of the most extensive and raried character. In 18O2, he was a member of the Massachusetts Constitutional Convention ; and December 22, 1529, he pronounced at Plymouth, on the anniversary of the landing of the Pilgrims, the first of that remarkable series of discourses, or orations, which gave him the first rank among American orators. In 1S@J, he gave an oration at the laying of the corner-stone of the Bunker Hill Monument; in 1S43, one on its completion. In 1826, he prononnced the culogy of John Adams and Thomas Jefferson, two fathers and Presidents of the American republic, who died on the same semi-ccntenary anniversary of the Declaration of Independence; and in 1851, a patriotic discourse on the laying of the corner-stone for the exteusion of the Capitol at Washington. In 182\%, he was elected to Congress from Boston, and was distinguished by his speeches on the Holy Alliance and the Greek revolution, and lis Iahours in the revision of the criminal laws of the United States. In 1826, he was chosen seuator; and in 1830 , rose to the height of his forensic renown in a speech of two days, in the debate with Mr Hayze, of South Carolina, on the right of 'nullification.' W. and Clay were the leaders of the opposition during the administrations of Jackson and Van Buren. In 1839, he visited England, Scotland, and lrance; and in 1841, accepted the post of Secretary of State in the cabinct of General Harrison, and remained in that of Mr Tyler, who, as Vice-president, succeeded on the death of the President, until 1S43. In 1S44, he aspired to the presidency, but the choice of his party fell unon Ir Clay, whom he supported, but unsuccessfully. He was chosen senator for Massachusetts, and again, in 1845 , was disappointed of the presidential nomimation by the popular enthusiasm for the rictor of Buena Vista, General Taylor. His senatorial ctlorts at this period were directed to the meservation of the Union by the advocacy of compromises on the slavery question, and he gave oflence to the Abolitionists

WEBSTEI-WEDGWOOD WARE

by defending the Fingitive Slave I, aw. In 1S50, he became again Secretary of state in the eabinct of Mr Fillmore; and in 1S52 was once more, and no doubt grieconsly, disappointed at not receiving the nomination to the presidency, which was given to General socott. Ife did not live to see the dufeat of his rival ; but, after a brief illmess, died at his country residence at Marshtield, Massachusctts, October -4, $18 j^{\circ}$. N1 W . was a man of very striking alpuearance, large, swarthy, with deep-sct eyes, a ilepp prowerful voice, and a solemn and carnest manner. His collected writings and sjeeches lave been published (6 vols. Svo, 1551), and his Correspondence (2 vols. Svo, 185̈5).

WEBSTER, Noan, American author and philologist, was boru at Hartford, Comecticnt, Oetober 16, 1758 , and entered Yale College in 1774. In his third college year, he served under his father, ${ }^{2}$ militia captain, in the war of the lievolution. He was admitted to the bar in 1781, but engaged in scholastic and literary occuprations. Employed in teaching a school at Goshen, New Yurk, he prepared his trammatical Institutes of the Emplish Language, published in three parts; and edited Governor Ifinthrop's Iournal. In 1785, lic wrote Sketches of Ancrican I'olicy, advocating the formation of a new constitution, and gave public lectures on the English language, which were pullished in 17S9. He taught an aeademy in Philadelphia, and wrote on the Constitution ; and in 1785 , published the 1 merican Maguzine in New lork. After a few years' law-practice at Hartfori, he engreyed, in 1793, in the editorship of the Minerre, a lederalist daily paper in New York. In 1\%99, he published A Brief Ilistory of Epidenic and I'cotilential Diseases, the yellow fever having broken out in New lork; and pamphlets on lnternational Law, Banking, and Finance. ln 1807, he published A Philosophical and Practical Grammar of the English Language, and commenced his Americin Dictionur! of the binglish Lengmage ; but finding dillicultics in etymolojy, he devoted ten years to its study, and prepared a Symopsis of Worls in Twenty Lanrmages; then legan his bictionary anew, and in seven years completed it. In 1824, he came to Emrope, to consult hooks and learned men, spending some months at Paris and at Cambridge. In 182s, an edition of 2500 eopies of his Dictionary, in 2 vols. Ito, was issued; followed by one of 3000 eopies in England. Numerous abridgments have been made, which found a large sale. His Elementury Spellingbook, fonnded on his Institutes, up, to 1560^{2}, had be'n sold to the extent of $4 \mathbf{1 , 0 0 0 , 0 0 0}$ copies. A new and thoronghly revised anil enlarged edition of his dietionary was fuished in 1860 , and it is now perhaps the most complete dictionary of the English language yet published. Mr W. also published a popular Ilistory of the United Stutes, and a Mremal of Useful istuclies. He was a judge, a member of the state legislature, and one of the foumders of Amherst College. He died at New Haven, May $2 \mathrm{~S}, 18 \pm 3$.

WEDGE, one of the mechanical powers, and in priaciple a moditication of the inelined plane. Its normal form is here represented. The power is applied ly pressure, or more generally liy lercussion, to the back B, thus forcing the edge A forwards. The welge is employed for such purposes as the sylitting of wood, the fastening firmly of the handle of an axe, the raising of a ship in a dry dock, ive. The investigation on statical principles of the mechamical advantage of the wedge is extremely unsatisfactory, the power, which is scareely
ever a 'pressure,' being ilinays assumed to be one, and the enormons frietion on the sides of the wedge being generally neglected; the theoretical result thus arrived at is that the pressure applied at the back: the resistance or weight : : $\frac{1}{2}$ width of hack of wedge : length of side. In the aplication of the walve to the splitting of wood in the direction of the dibres, the split generally extends some distance in advance of the cdge of the wedge, and the action of the latter is then a combination of the action of the wedge with that of the lever; in fact, this componnd action is found mone or less in all alplications of the welge as a cutting or splittiny wearon, and tends further to complicate the statical investigation of its mechanical properties. The leest aud simplest illustrations of the single wedge are axes, nails, phags, planes, chisels, needles, and all sharr-pointed instruments.
WEDGWOOD, Josmar, the creator of Eritish pottery as an art, was born at liurslem, in staflord. shire, in the year 1730 . Ilis father was a potter, and very early he was set to work at the same business. Mis education seems to bave been of the scantiest. After an abortive attemprt to settle himself at Stoke with a partnor named Ilarrison, lie returned to his native place, and there commenced business as a potter. Jirum the first, his ardonr for the inurovement of the manufacture was conspicuous. His first efforts were tirected to the refining of the material, and soon he succeeded in prolucing a beautiful ream-coloured poreelain, Which becane popularly known as Queen's Ware, Queen Charlotte having muth admircl it, and extended her patronage to the manufacturer. Subsegueutly, other improved materials were produced. Tho attention of W . was not less assiduonsly directed to considerations of form and decoration he busied himself in emulating the grace of the antique models; and the celebrated sculptor, Flaxman, was employed to furnish designs to him. In this way, what he found a rude and barbarous manufacture, he raised to the level of a fine art; and he found his reward in the specty amassing of an immense fortunc. In 1771, he removed his worlss some little way from Burslem; and to the new site he gave the fanciful name litruria, as that of the conntry of old most eelebrated for the beanty of its ceramic prodnets. Here he huilt himself a spleudiel mansion; and here, in 1795, lie died.

A part from his eminence in the art to which he mainly devoted himself, W. was a man of considerable culture. Natural philosophy, in particular, he studied with much success. He was a fellow of the Rayal Socicty, as also of the Society of Anticuaries; and to the P'hitosophical Transactions he from time to time contributcd papers. Me likewise interested hinself decply in all matters of public concornment; and mainly through his influence it was that the Grand Trunk Canal, uniting the waters of the Merscy, the Trent, and the Severn, was carried out. IIe was a man of much benevolence of character, and the prosperity which flowed upon him throngh life, he distinguished by the exercise of an almost princely liberality.
Full partieulars as regards this remarkable man may be found in two lives of him recently published, the one, in 1865, by Ehiza Mcteyard (2 vols. Inrst and Blackett), the other, in the same year, by Lewellyn Jewett (Virtue and Co.).

WEDGHOOD WARE, a beautiful kind of pottery invented by Josiah Wedgwood in 1775. It consists of ilint, l'otter's clay, carbonate and sulphate of barytes, and zatfre, or some other colouring material. It is also called Jasper Ware. The beautiful classical designs on the carliest productions.

WEDNESBURY-WEEK.

of this manufacture were many of them executed by Flaxman, and are very highly valued.

WE'DNESBURY, a market-town in the south of Staffordshire, in a district abounding in eanals, coal mines, and iron-works, $7 \frac{1}{2}$ miles north-west of Birmingham ly railway. It was called Weadesbury by the Saxons, and for a loug time took precedence, in point of population and historical importance, of Eirmiugham and Wolverhampton. It was here that the great coal-field of Staffordshire was first workell. The garish now contains probahly the largest works in the kingdons for the manufacture of railway plant; and of its productions, iron, wheels, axles, tubes, edge-tools, coach ironmongery, locks, serews, \&c., are prepared extensively for exportation. The pop., which in 1521 was under 7000 , had in 1851 risen to about 12,000 in the town, and 14,300 in the parish; in 1861 the town had 15,298 , and the parish 22,000 ; and in 1867, the pop. of the parish was estimatced at 26,500 .

WE'DNESDAY, the forth day of the week, the Dies Mercurii of the liomans, the Mittwoch (midweek) of the modern Germans. The name TVednes. day is derived from the northem mythology, and signifies Woden's or Odin's day. The Anglo-Saxon form was Hôdancs def, the old Cerman IVuotunes tac. The Swedish and Danish is Onselay.

WEE'BO, or 1 BO, a small islimel off the coast of Mozandique, belonging to the Portnguese, about 150 miles sonth of Cape Delgado. The town is clean, with neatly-built houses; there are three forts, one of which serves as barracks for the garrison, and, though contemptible as a defensive work against a well-orgnnisect enemy, it is well adapted for resisting the natives, between whom and the Portuguese all along the Mozambirpue coast, there seems to the perpetnal hostility. The 101. consists of nearly 3000 natives and a few Ehropeans; and though an important trade in ivory, copal, \&e., is said to be carried on, there are few signs of activity in the harbour, and the natives for the most part scem miserable, fever-stricken wretches.

WEED, Thurlow, American joumalist, was borin at Cairo, New Xork, November 15, 1797, and at the age of 10 years was cabin-boy on a sloop on the Hudson liver; at 12 he was an apprentice in the printing-oftice of Mr Croswell, at Cattskill; then lived for a short time in a baekwoods settlement, but at 14 returned to printing. He was a volunteer in the war of 1812, and at the age of 21 established a newsprper in Western New Tork, and huring the Anti-Nasonic excitement, was elected to the state legislature, $1820-1827$, where his peenliar and almost unrivalled abilities as a political manager or 'wire-puller' were early recognised. In 1830 he settled at Allany, the state capital, and commenced the publication of the Evening Journal, an anti-Jackson, whig, or repablican paper, which became the organ of the party, and of the state government when its party was in power. Iheclining all oflices for himself, except the profitable one of state printer, he is sup.posed to have extreised almost supreme intluence in nominations and appointments, and to have secured the choiee of Presidents Harrison ame Taylor; has been, through bis whole career, the friend and adviser of Mr Sewarl. In 1561 , he was sent in a semi-diplomatie capacity to Europe, and on his return, was presented by the authorities of New liok with the freedom of the city, where be beame part proprietor and one of the editors of the New Fork limes, in which he has advocated a prudent and conservative policy.

WEED (Lymphangeitis), or a Shot of Grease, consists in inflammation of the large absorluent glands
and vessels situated between the horses thighs. liarely, it attacks the corresponding structures between the fore-limbs. It ocenrs in romnd-limbed, indifferently bred, hard-wrought horses: appears particularly after a day or two of rest, after exposure to culd, or cluring inperfect action of the bowcts; and is said to depend upon more blood being produced than is required to replace the natural waste of the hody. It is identified by lameness, tenderness in the groin, and fever. The horse must be bled, have a full dose of alows, and when the pain and tenderness are great, ten drops of Flemings Tincture of Aconite in water every two hours ; the limb should be bathed for at least six or eight hours continnously in hot water, and then rabbed dry and kept warm. The subsequent swelling will be reduced by saline draughts, diureties, rubling of the limb, and exercise.

WEEDS, the name given to all those plants which grow wild in ealtivated gronnds, and injure the crops; which they do both by choking them, and by exhausting the soil. Those weeds which are auntuals or biennials, as charlock, yellow rattle, and melilot, may gradually be got quit of loy nerely cultivating, for a succession of years, such plants as are to be cat before the seeds of the weeds are fully ripe. Perennial weeds, such as conch grass, can only lie removed from the ground by repeated and careful tilling; and for this purpose, crops which require much hoeing are advantageously planted, and recourse is had to summer fallowing in tichls, and frequent weeding in gardens. Thistles and other large weeds are frerguently pulled in corn-fields before the corn comes into ear, and to prevent their seerling, they are cut ia pastures. Sedges and rushes, which spring up in great abundance in damp grounds, disappear ou thorough duaining. Leafy crops which thickly cover the soil, mevent the growth of many weeds by the exclusion of air and light. Weeds which have been rooted ap form excellent compost for mamure. 'Those which make their appearance in fallow gromds, serve for green manurng when they are ploughed down.

WEELE (Goth. Jico: Old High-German, Wchha= order, cycle (?) ; Lat. Ficis; Gr. ITebdomas, Sabbuton; Heb. Shabna, from Sheba, seven) designates generally a periol of seven days. It was probably first instituterl as a kind of broad sublivision of the periodical month, corresponding to the four quarters of the moon, or about $7 \frac{3}{8}$ days. Although found as a civil institution among some mations at the earliest time-e. g, with the Hindus, Assyrians, l'ersians, \&e., it is only with the Jews that we see a religious signification given to the concluding or seventh day of that period itself. Both their cosmogony and legislation are connected with it. The Sabbath (q. v.) is anpuatically the day of rest, while seven weeks after the Passover, the Pentecost or Feast of Weeks takes place, \&c. (see SEVEN). It is doubtful whether it was through the Jews that this computation of weeks was introduced to the Egyptians, but it is certain that the latter at an early period conated seven periodical days, naming them aceording to the seven planets then assumed. The application of the names of the planets to the days of the weck in the order they now stand, originated in this way: It was an astrological notion that each planet in order presided over an hour of the day, the order, accorling to their distances from the eartl, being, on the geocentric system, Satum, Jupiter, Hars, the sm, Vems, Nereury, the moon. Assuming Saturn to preside over the first hour of Saturlay, and assigning to each sweceeding hour a planct in order, the 202 hour will fall wain to Saturn, the "od to Jupiter, the "4th to Mars, and the
first hour of the next day to the sun; in the same way, the first hour of the following day falls to the moon, and so on. From Alexandria, this seven days' week was imported, together with the names of the individual days, to the Grecks-who previously divided their months into three deenles-and to the lionans, alout the time of Christ. liome hatl previously connted her periods liv eight days, the (ighth day itself beins originally ealled J゙undince -a term later applied to the whole eycle-as returning nono quoque die, when the conntrypenple were in the habit of eoming to town for the purposes of hasiness, and chictly to inquire after puhlic news, the ehanges in government and legislation, vacant places, and the rest. But the seven days' cyele soon found great favour among the lomans, owing partly, perhaps, to the spread of Eryptian astrology, although the change was not officially introlaced before ('onstantine. It is eertain that the Jewish name Sabbath came into use in Come, and from liome it spreal to all the Romanie languayes, even iuto the German. It survives in the ltalian Sabbato, the Spanish Sabado, the French Samedi (Sabuati elies), and the German Sambatac, which afterwards became Sunslay. In the same manner, the Latin Septimanc (the Greek hebedomas) has become the modern designation for week in the Italian Settimance, Span. Semana, French Senaine, and even in the Irish Sechtmaine. The Codex Theodosianus is the first docmment which alopts the term Septimunce in the meaning of wecks. The Jews, as well as the early Christians, had no special names for the single days, but counted their unmber from the previous Sabbath, beginning with Sunday, as the tirst after the Sabbath, and ending with Friday, as the sixth after the previous, or eve (Ereb) of the next Sabbath. After a very short time, however, young Christianity, which in the same manner hal endeavoured to count from the feria sccunda, or second day after Sunday, to the Septima (or Saturday), had to fall back again upon the old heathen names, previously introduced in Gaul, Germany, \&c. by the heathen Romans. The Sunday, or dies Solis, alone was changed in many of the Lomanic languages in accordance with the new erced. It was called Kyriake, dies Dominicus or Dominica, the Day of the Lord, a term which in Italian became Domenica, in Spanish Domingo, and Dimanche in French. The Germanic Frontac (from fron $=$ dominicus) occurs but once. It is very eurious to notice how the names of the five days of the week which followed thuse named after the sun and moon, beeame Germanised, as it were, or the names of the originally imported gods translated into those of the Germanic divinities. Thus, the day of Mars beeame that of Ziu (see Tri). Mercury beenme Wodau; and the fourth day was ealled after the latter, in Duteh, English, and Scandinavian; while in Germany it was simply called the middle of the week = ifithwoch. The day of Jupiter became the day of 'lhor = Thursday, Donnerstag: while the Dies Iencris was transformed into the day of Freya, the wife of Odin (Wodan). The day of Saturnus, retained moder this name in some northern tongues, beeame a langardage, or bathing-day, in others; while in Upper Germany it remained a Sunday-eve (feria ante dominicam) or Samstag (sce above). Amon's tho Semitic nations, which, as far as our infornation goes, seem to have had the computation by weeks at the earliest period, the Arabs stand foremost; and up to this day they count their days by seven, beginuing and ending with the sunset previons to each new day, and they count them instead of giving them special names-except the Friday, which is called the Day of Assembly (Iaum Al-Djuma),
or Aruba ($=\mathrm{Hcl}$). Erell) Eve (of the Jewish Sabbath. Slavonians, Lithuanians, aut Finns also count their days from Sunday, instead of giving them planetary names. The French Revolution alterel the seven days' week into a deeade of ten days, but the new computation introduced in 170:3 was abrogated again in 150.5. Respeeting the 'weeks of years" (very similar to the lioman annorum hebdomoder), it will suffice here to indicate that they only occur in prophetical pretry, and seem to indicate there certain seven years' cyeles. For further information on this subject, we refer principally to Ideler's C'hronologic.

WEEKS, Feast of (Gr. Pentecoste $=$ fiftieth, Heb. Shabuoth, also called Feast of ITarvest, Day of the First-fruits, \&e.), the seeond of the three great Regalim or Pilgrim Feasts of the Oll Testament, was eelebrated seven weeks, or forty-nine days, after the Passover. As the latter was the feast of the barley harvest so the former was that of the wheat-harvest. The first two loares of the new erop were offered up on the day of the festival -leavened, and containing about $3 \frac{1}{2}$ quarts each (the Mishnah speaks of their being 7 iuches ly 3), together with a peace-offering of two lambs. Besides this, a great burnt and sin oflering-the former consisting of seven lambs, a bullock, two rams, together with the appropriate meat and drivk oflerings; the latter of one kid-were added, aceording to Levitiens (xxiii. 18); while Numbers (xxviii. 27) increases the mumber of the bullocks to two, and ouly mentions one ram-a number more in aceordance with the regulations for the other festive sacrilices. The Jewish tradition, however, considers the animals mentioned in the later passage as an additional sacritice; and Josephus has indeed aulderl both un, exeept in as far as the rams are coucerned, of which he only gives two. Traclition has given to this feast, which oriminally was only intended to represent the solemn closing of the harvest, a aew signiticance by making it the anniversary of the Sinaitic Legislation, which indeed must have taken place in the lirst days of the third month. But the Pentecost, which is always lixed in the Jewish ealendar on the Gith of Sivan, could not, before the establishment of astronomical computation, fall always on the same day, but mnist needs have fallen between the 5 ith and 7 th of that month. Moses himself nowhere fixes the date of this festival as he does with the others. The Karaites, insteal of referring the 'morning of [after] the Sabbath' of Lev. (xxiii. 15) to the 16 th of Nisan, take it literally, and celebrate the festival always on a Sabbath. The uncertainty of the lunar ealculation and observation among the Jews of the Dispersion, eansed them also to add one day to this festival-a usage still retained at present. There seems to have been more of the character of a harvest-home inherent in this festival than in the Passover, which partook particularly of the character of a large and solemn family-gathering. For the Cliristian adoption of this festival, see Pextecost.

WEEPING TREES are trees with remarkably clongated and pendulons branehlets, generally mere varieties of species which ordinarily liave a different labit, as the Weeping Birch, Weeping Ash, and Weeping Willow, which are varieties of the Common Birch, Common Ash, and White or Huntingdon Willow. The Wepping Birch occurs in a wild state in some places in the Illighlands of Scotland, ant is a characteristic ornament of the landscape. Trces intermediate in their habit between the Weeping Lirell and the common variety are of very frequent occurrence. Weeping trees are mach esteemed for ormamental purposes, and are not only very beantiful

TVEERT-WEEVER.

in themselves, but as a contrast to other trees in lawns and pleasure-grounds. They are therefore

Weeping Willow.
carefully propagated in nurseries. The Weeping Asb is often grafted on the Common Ash, but the

Weeping Birch.
result is seldom very satisfactory, the art of the gardener forcing itself too much upon attention. A
tendency to the weeping habit of elongated and pendulous branchlets is manifested in some kinds of trees, as the tendency to vary into a very opposite habit, with the branchlets drawn up close together (rar. stricta of botanists), appears in others, of which the Swedish Juniper and the Irish Yew are familiar examples.
WEERT, an unwalled town in the Netherlands, province of Limburg, 12 miles west-north-west of Rocrmond, on the ship-eanal from Maastricht to 's Hertogenbosch. Pop. 675. There are several good schools, a collegiate institution, tomn-house, two churches, and three market-places. In the Church of St Martin is the grave of the Count of Hoorn, who was beheaded at Drussels, in 1568, for adhering to the Prince of Orange in the struggle for religious aud political freedom. A beautiful promenade leads to the other church, ontside the town, north of which are the ruins of the old castle. Besides the markets for farm produce, horses, and pigs, W. has factories for making eloth, stoekings, and hats, corn and oil mills. Here was born, 1594 , Jau van Weert, who, in boyhood a shoemaker's apprentice, became commander of the Austrian army and viceroy of Bubemia.
WEEVER, or STING-FISH (Trachinus), is genus of acanthopterous fishes of the family Uranoscopida, also called Trachinide. In this family the ventrals are composed of a spine and five jointed rays, and are generally sitnated before the pectorals. The scales are cycloid, or wanting. The eyeballs

Greater Weever (Trachinus draco).

are capable of being raised in a remarkable manner out of their sockets, and of being retracted again to the level of the orbits. The species frequent the bottom of the sea. They are often furnished with barbels, and have also a peculiar membranous filament under the tongue, which they can protrude at pleasure. In the genus Trachinus the head is compressed. the ejes are placed high and close together; there is a long sharp spine on the hinder part of the gill-cover. There are two dorsal tins; the second dorsal and the aual are long; the ventrals are close to the throat. Two species are found on the British consts, the Greater W, or Stivg-bull (T. draco), and the Little W. or Viper W. (T. vipera). The former attains a length of nearly one foot; the latter, seldom of more than four or fire inches. The general form is long, narrow, and compressed ; the Little W. is proportionally deeper in body than the Greater Weever. The head of both is short, compressed, flat between the eyes, and rougli on the summit; both dorsals and the anal fins are spiny; aud in both the gillcover is furnished with a strong and sharp spine, which is directed backward, and can le appressed to the body, but which is also capable of being made to stand out so as to present its point to an adversary. Both species are of a yellowish brown colour. They inhabit parts of the sea having a sandy bottom, and often partially bury themselves in the sand. but are ready to more off with great celerity if disturbed. They can live long out of the water; and if left by the retiring tide, suffer no

WEEVIL-WEIGJIING-MACIIINES.

inconvenience. If assailed, they can, by a sudden bending of the body, make use if one of the strong spines of the gill-covers against the assailant; and the wound thers inflicted is so severe, as to leaul to the opinion that the spine is conted with a venomous exudation. Jaturalists. however, generally sup)posed the popular opinion to be erroncous, and the severity of the wound to be merely owing to the laceration effected by the spine, nutil it was discoverel by Dr (iunther, in 1864, that poison-glamls existed in connection with spines of some Sontls American fishes of the family Siluride. A peculian stinging sensation attends a wound by a spine of a W., which extends far up the arm, if the womd has merely lieen in a linger, and is much more severe than the pain of a wasp sting. There is also a groove in the spine, which has perhaps something to do with the conveyance of the poison; but no boison-gland has yet been proved to exist. In Franee, the lishermen are required, inder a penalty, to cut off the spines of weevers before selling them. Wreevers are esteemed for the table.

WEE'VIL (c'urculio), a Linnean genus of insects, now forming the tribe Rhynchophorit, of the order Culeoptera, and section Tetramera. They are remarkably charaterised ly the prolongation of the heal into a beak or suont, at the extremity of which the mouth is placel, and from which the clab-shaped antenne spring. Some of them lave straght antenne; but the greater number have the antemme geniculated, or bent forwards at the second joint. The species are very mumerous, and are distributed over all parts of the work. They all feed on vegetable food, both in their larval anil in their perfect state; and some of them are notable for the mischief which they do in the former state, to the young shoots, leaves, fruits, ausl sceds of plants. They are diturnal iusects, many of them very small, but others of considerable size. They are slow, timid, and defenceless; although the lonr hard beak suggests to those isnomint of its real nature and of their habits an iflea of danger in handling the larger species. Nlany of them are of very dull and uniform colon? hut some are amongst the most beautiful of the Coleontera-resplendent with the finest hues, and lrillint as gems. Such is the well-known Diamond Dectle (1. v.) of Sonth America. The larva of weevils are soft, white, and footless, with very convex rings, hard heads, and homy jaws. The perfect insects are often fonud on leaves and in Howers of the particular kinds of plants on which they and their larve feed. Ihynchiles betuleti, a W . often very injurions to vineyards, constructs a nest for its larzie lyy rolling up the leaf of the vine, piereing the roll as it proceeds, and depositing eags between the folds in the inner part of the roll. The lavee feed upon the leaf, whiely the parents further allapt for their use by entting the leaf-stalk half through, so that the leaf hangs down, and by the time they are ready to change into the chrysalis state, it dropss off, or is blown off by the wind, when they lmry themselves in the ground to wait fur the return of spring. Other trees, as the peartree, are infested by weevils which destroy their leaves in a similar manner; the leaves of sme, as of the peach, often suffer injury from weevils whieh devour them, like caterpillars, without rolling them up; and turnips are sulject to the ravages of certain small speceies of W., which proceed in the same manner. Some species of W. gnaw young shoots. 'Thu" shoots of fruit trees, and young grafts, are sometimes clestroyed ly weevils, which bore into them by means of their beak, and make a small chamber in the centre, in which an ege is deposited, being pushed into its proper place by the beak.

The shoot is then ent throngh a little lower down, and the parent W. may be seen elimbing upon it, when the operation is nearly completed, to make it fall ly her weight, and returning arain to lier work, if it is not yet realy to fall. She lays ahout two egers a day, Dnt contimues her operatims for many weeks, so that much destruetion is cfleeted. Thie lavia feels on the pith of the fallen shoot, and descrets it when realy to become a chrysalis, to miry itself in the gronad.-The lava of a large spectes of W. (C'elandra polmarum) inhal,its palmtrees in Soutly America, feeding on their central part, and is eaten and estecmed as a delicary: When roasterl, it almost melts into grease ; lut its flavour is sait to he remarkally dime This W. is black; abont an inch smo a half long ; its larva is between two and theve inclies long. Another sprevies (Culundre saccheri) is very destruetive to the sugar-canc. Its larva is also eaten in the West Indies and thiana. The wood of pines and firs is the food of certain kinds of W., so that plantations suffer severely from their ravages. Thousands of acres of pines in the southern states of America have been destroyed by a W . (Hylubius pules), not much more than a quarter of an inch in length; and some of its congencrs in other countries are scarcely less destrnctive, as IIylubius ubictis in Europe-There are many species of W. Which attack leaf-buds and ilower-buds. Tlus Anthonomu: pomorum infests the apple-tree, lepositing its egas in the flower-buds, annl cutting ofl the praspect of fruit. Anthonomus pyrni is equally injurious to the buds of pear-trees. some species of Rhynchitco lay their cggs in fruits-as apples and plums-at an early stage of their growtb, cutting the fruit-stalk, that the fruit may fall to the ground. 'The European Nut-1W. (Balanimus mucum) lays its eggs in young hazel-mits, upon which the larve feel as the muts grow ; a nearly allied species attacks, in like mamer, the hazel-nits of America, and anotber infests acorms. The Pea-WV. (q.v.) feeds upon peas; and other legrminous plants have their peculiar specees, which devonr their seeds. The Com-W. (1.0°) is very destructive to wheat, and rether similar slecies to maize, rice, anll other kinds of grain.

WEFT, or WOOF, the tbread which, in weaving, is passed ly the shattle backwards and forwards through the warp. See Weavinc.

WYIGHING-MACHINES are of rarions forms, accordiny to the quantity and speecies of the gools whose weight is to be determined. The great majority of weighing-machines are fomeded upon the principle of the Lever (q. v.), the only exeeptions being the various forms of the Spring-balance (q. wi.), to whieh might be aulded (thought in such cases the tem 'machine' is quite inaplyicable) some of the methods employed to determine specilic gravity, time of oscillation, \&c. The simplest and primitive form of weighing-machine is the Balance (q. v.) with ecpual arms, which ean be adapted cither to the maximum of aceurate weighing or t_{1}, the most rapicl exupomlerance. lint as this machine neerssitates the placing in one seale of weights equal to the weight of the groods, it was soon fonnd to be more convenient to employ a lever with unerpal arms-the grools to be placed in the scale attached to the short arm, and thercfore cyuipisel by less weights, the ratio of the weights in the two scales being in proportion to the ratio of length of the arms. On this principle the steelyard (see Balasce:), the bent lever balance (sce Balasce), and the cartsteclyard are constructed. But the convenience of ecpupoising a greater weight ly one much less is counterbalancel by a consideralle diminntion in accuracy-one of the causes of error being the

WEIGHLNG-MACHINES-TETGHTS AND MEASURES.

greater liability to flexure of the longer arm of the lever; and another, the nccessity, for convenience, sake, of liaving the arm which is affected by the goods to be weighed as short as possible-the latter of itself reducing the accuracy of the steelyard to that of a symmetrical balance whose arms are each equal to the slort arm of the steelyard. However, on behali of the steelyard, there is again the advantage of rapid equpoise. Eack of these machines is variously constructed, the modifications having reference either to conrenience of use, or to the species or weight of the goods to be weighed : an example of the former is the cqual-armed balance (fig. l), made

Fig. 1.
in an inverted manner, with the scales above, and the rods which connect the scales with the beam so united as to preserve their perpendicularity during riscillation ; and the latter is appropriately illustrated ly the form of cart-steelyard given in fig. .. The dotted limes, DD, DD, indicate the sroored plates on which the wheels rest; E, E, E, E are the four paints supporting the wheel-plates on the two triangular levers, $\mathrm{CBE}, \mathrm{CBB}$; the triangular levers

Fǐ. 2.

aresnpported by thehooked cxtremities of their bases,

 $\mathrm{B}, \mathrm{P}, \mathrm{E}, \mathrm{B}$, upon fixed supports, $\mathrm{A}, \mathrm{A} . \mathrm{A}, \mathrm{A}$; while their vertices, C, C, are attached to a lever, FG, whose fulcrum is at F ; (r is attached by a chain to H , the extremity of a lever of the first kind, whose tixed sulport is at K, and on whose other arm (gralnated) the weigots for equpoisior the cart and its load are placed. The machiue is thus seen to be componad, consisting of the two triangular lever pieces, of a simple lever of the second, and of one of the tirst kind; the weight L , if sufficient, raising H , and with it G , and thence raising C , and so balanciug the downward pressure of the cart and its load at $\mathbf{E}, \mathbf{E}, \mathrm{E}, \mathbf{E}$ Varions uther forms of the cartsteelyard are in common use, unost of them more complicated in construction and less accurate.WEIGHTS AND MEASURES. For the proper carrying on of mercantile transactions, and for many other purposes, it is necessary that there be tixed and readily-accessible standards of macnitude, of weight, and of valne. The lengths implied by the names a joot, a hand, a culit, a futhom, are far too indefinite to liave loug continned to satisfy the wants of civilised nations; and in every conntry, ly common consent, or by the action of government, determinate measures have been agreed upon. These measures, left almost to chance, have heen different from one nation to another, even from county to
connty, sometimes from town to tomn, and still more awkwardly, often from one trade or guild to another.

Any one can ajrreciate the inconrenience of such a waut of unitormity, for, in every transaction extending beyond his own sphere, he has to take account of the change of measure, the chance of weight, the change of money, perhaps of all three at once. We all see and illow that there ought to be only one system of weights and measures in one country; that one busliel in Winchester, another in Vork-one acre in Englank, another in Scotland, and a third in Ireland ; that Troy weights, avoirtnpois weights, apothecary weights, and all the other local, conventional, and trade variations which abound in the British dominions, form an aggregate of unbearable confusion, leading to endless mistakes and ceaseless quarrels. It is nut more difficult to perceive that if one system be advisable for one country, a uoiversal cosmopolitan system would be no less alvantageous for the whole world.

The only practicable method of establishing a systen of measures is to construct standards of reference, and to preserve these carefully in some public place. In order that these standards 1 may not be worn and injured by too frequent use, it is conrenient to have authenticated copies deposited in the various towns, so that all dealers and artificers may liave ready access to them, and so that all makers of weights and measures may be without excuse for errors in their workmanship.

To set up a standard of measure seems to le a very simple matter-the anthorities have only to fix upon the proper length of a yard, to have a piece of wool or of metal made to that lengti, and to cause it to be properly marked aud preserved. For common purposes, this seems to lye quite enough : howerer, experieace soon shews the inconvenience of this simple plan, for, by repeated contacts, the ends of the yard-measure get worn. Instead, therefore, of makincs a rod just a yard long, they make it a little longer, and upon it form two tine marks a yard distant from each other, and hold this distance to be the true standard. By this expedient, the effects of wearing are got rid of; copy after copy can be compared with the original, withont deterioration of the standard.

Lut use is not the only canse of deterioration: wood decays or is worm-eaten, and metals are liable to oxidation, so that the material has to be carefully chosen. This is not all. Every substance whieh has heen examined is fombd to change its size with a change of temperature; the stamlard luar is shorter in winter than in summer ; and the change, though it be so small as to be of no momeat to the haherdasher, the wright, or the mason, is enough to cause grcat trouble to those engaged in very accurate work. Hence, in the selection of the substance to be userl for the standard bar, we must have an eyc to smallness of exransion as well as to durability. The sulastances available taken in the order of their expansibility, are-deal, glusis, phutinum, gold, sileer, iron, bictss, copper. Deal may lo put aside as wanting in durability, aud the choice may be said to lie between class and platioum, neither of which is much acted un by the air, or ly the vapours which are found in the atmospberes of large towns. The fragility of glass and the costliness of platinum are ubjections; but the latter is a mere tritle when a national standard is concerned. Platinum, then, seems to be the best sulustance.

The standard measure for the British Empine is a brass rod, into which two pins of gold are inserted; these are dressed Hat with the surface of the Bar: and a small dot is made in the middle of each. The

WEIGHTS AND MEASURES.

distance betwoen the centres of these dots, taken when the temperature is at $62^{\circ} \mathrm{F}$., is declared to be the true yarl.

In the same way as the standard of measure, so must the standard of weight he establisherl. A piece of heavy metal is made of the desired weight, and is duly authenticated. The preservation of tho standard of weight is a matter of very considerable difficulty. Every occasion on which it is used, each remoral of dust from its surface, the actions of the oxygen of the air and of the products of combustion which are always floating about, produce a sure though slow waste; and all that can be done is to retard this waste as much as possible. Perhaps a hmp of platinum wonld make the best standard; but its softness is a decided objection.
In the use of a standard of weight, another matter bas to be taken into consideration. The apparent weight of any substance is less than its trne weight by the weight of as much air as is displaced by it. Now, the density of the air is not constant-air, when warmed, expands very much more than any solid body; and therefore a piece of metal appears to weigh more in warm than in coll weather. Not only so, air is rendered more dense by an increase of pressure, and so, when the barometer is high, all heary bodies become apparently lighter; when the barometer sinks, they appear to become heavier. Thus the apparent weight of the standard pound is continually chang. ing. If we aceurately adjust two weights of brass when the barometer is low and the air warm, and afterwards compare them when the barometer is high and the weather cold, we can perceive no change, for, thonelh each has lost weight, they have lost alike. But if we had adjusted a weight of iron to a weight of platimum in light air, and a gain compared them in dense air, the change would have been at once seen. For, since a pound of iron is more bulky than a pound of platinum, it displaces more air, and its apparent weight undergoes a greater change than does that of the platinum. Fortunately, these changes are too small to have any perceptible influence on mercautile transactions, yet they are suflicient to create the necessity for it being enacted that the standard weight must be beld as true when the air is in a specitied state as to warmth and pressure. The standard brass pound, which serves for the British Empire, is directed to we used when Fahreuheit's thermoneter is at G20, and when the barometer is at 30 inches.

The thought naturally arises, what if, in the course of time, the original standards bo lost or destroyed?
Time was when a seed of wheat gathered from a well-ripened ear served sufficiently well to detine a grain weight; and even now the Eastern jewellers Weigh their gens amainst the carat or carob-bean, the hardness and uniformity of which seem to justify the selection oí it. But for the extended murposes of modern conmerce, and particularly for the more delicate requirements of scientitic researeh, it is indispensable that we find some unchanging object of comparison ; and none can be preferred to the carth itself, as the most universally acceprable aud as the best defined. For the purposes of geographers antl navigators, the circumforence of the earth is divided into degrees and minutes, the length of one mimute being the gengraphical or natical mile; and it certainly wolld have heen convenient if the common or statute mile had agreed with this. The dimensions of the earth are now known with a precision far greater than is neerled for ordinary pur. poses: the entire length of the circumference of a meridian circle being $131,236,000$ of our standard feet, so that the length of a nautical mile is 6075
feet and about 9 inches; aud it is highly probable that subsequent and more aceurate measurements will not alter this determination more than an inch or two either way: It is usual to divide the minute into 60 seconds, so that a second of the earth's circmuference is $101 \cdot \underline{5}$, and thus if our standard foot had happened to be one-cightieth part longer than it is, there wonld have been exactly 100 feet in a second, and 6000 feet in a nautical mile. When we reflect on the disparity of the foot used by different mations, and recollect that 100 Vienna feet make 103.6 English, as many Amsterdam feet 92.7 , as many Berlin fect 90%, we can hardly help regretting that our forefathers lad not happened to hit upon the exact 100.
The ancient Grecks were fond of dividing into sixties ; this division still contimues in our scales for angles and for time; and it is worthy of remark, that if we divide the whole circunference of the earth into 60 parts, each of these into 60 , and again each into 60, we arrive at a distance of 607.5 English feet. Now, the length of the ancient Greek stadium or furlong is stated to he Gubl feet by some writers; and if deduced from measures of the loman mile, is between 605 and 613 feet; so that if we desire a cosmopolitan standard, we can hardly do better than go back to the ancient Greek stadium or the Chinese $l i$, corrected to suit the more accurate determination of modern times: this rould bring us to the geographical foot, one-hundredth part of a second of the earth's meridian.

The standard of weight is readily connected with the standard of measure. Some substance which can be easily obtained pure is chosen, and a definite bulk of it is reighed. Distilled water is universally selected for this purpose; and in the British system, the weight of one cubic inch of pure water is declared to be $252 \cdot 45$ grains wheu it is at the temperature of $62^{\circ} \mathrm{F}$.

It has long leen known that water does not contimue to contract as it is cooled; the contraction becomes less and less as the temperature approaches to 41° or $39^{\circ} \mathrm{F}$. ; and the water, when cooled more, begins to expand, and continues to grow more bulky until it be on the point of frcezing. On this account it has been proposed, and without any doulst it would be the best plan, to take water when at its greatest density as the standard for comparison, because then an error of a degree in temperature will produce no percentible error in the weight.
The oneration of verifying the standard of measure by comparing it with the size of the earth is necessarily an expensive and a complicated one, only to be attempted under the auspices of a wealthy government, or with the concurrence of severat mations; and it is desirable to find out something more local and more easily obtained wherewith to compare our measures. The length of the Pendulum (q. v.) has been proposed; and, on account of a very simple and beautiful property of pendulums, the comparison can be readily made. If we imagine an excessively minute heavy body to be suspended by a threal so fine that the weight of the threarl may le neglected, the compound so formed is called a simple pendulum ; and the question becomes, what inust be the length of such a peadulum in order that it may ribrate from side to side in, say, one second of time. Now, it is clear that we cannot oltain this length by direct experiment, since we caunot construct such a pendulum. M. Biot tried to approximate to it Ly using a small ball of platinmm hung l,y a very fine wire. Howerer it is known that if a heary rigik mass, $A \mathrm{~B}$, be suspended by a knifeedge U, and if its vibrations be made in the same time with those of a simple nendulum of which the length is CD, then if we placc auother knife-edge
at D, and reverse the ends A, B, the compound pendulum will again vibrate in the same time as before. Hence, we have a very simple method of comparison. Having constructed a strong bar with two knife-edges at a known distance from each other, say at the distauce of a yard; let us then
 by many trials, filings, and scrapings, so adjust it as that the times of vilbration shall be alike for the two knife-edges, and, finally, let us count how many vibrations such a pendulum makes per day, and then we shall have a means of rerifying our measure.
The act of parliament which fixes our present weights and measures, enacts that the length of a pendulum vibrating in one second of mean solar time is $39 \cdot 13929$ inches: now the leugths of pendnlums are proportional, not to the times in which they vibrate, but to the squares of those times; and so, if we know the length of one pendulum, and the number of ribrations it makes per day, we can calculate what ought to be the length of another to vibrate a given number of times. A convertible pendulum having the distance between its knife-edges cxactly 36 inches, ought to make 900 SS 42 vibrations per day.

When ouly a degree of accuracy sufficient for commercial and ordinary purposes is aimed at, the above process is by no means difficult; but when extreme precision is wanted, the operation is atteuded with many and rery great difficulties; it involves considerations which wrould hardly have been cxpected. In the first place, our experiments are made in air, and the buoyancy of the air lessens the actual weight of the pendulum ; that huoyancy has to be allowed for, and therefore it is declared that the ahove length is that of a pendulum vibratiug in a vacuum. Next, since the earth has a diurnal motion ou its axis, every'substance placed ou it has a centrifugal tendency which goes to modify what otherwise would have been its gravitation; this centrifugal tendency produces the earth's oblateness, and causes a variation in the intensity of gravitation from one latitude to another. A stone is actually heavier in Edinburgh than it is in London. This chauge in gravitation canmot be measured by a balauce, because the weights at each end of the balance are changed alike; but it is seen at once in the going of a clock; for a pendulum regulated to go truly in London is found to go too fast when taken to a higher latitude, and to lose time when carried nearer to the equator. Hence, the enactment that the pendulum must be swung in the latitude of London. And again, the attraction which the earth exerts upou bodies placed near it diminishes with their distances, being inversely as the squares of the distances ; hence, a clock carried from the hottom to the top of a hill loses time perceptibly, and so it is necessary to have the additional enactment that the pendulum be swung at the level of the sea.
In addition to these miceties, there are others connected with the manipulation, such as the parallelism of the knife-edges, their bluntness, the extent of the area of oscillation, and the stability of the supports, so that altogether the exact measurement of the length of the seconds pendulum is a matter of very great complexity. All these difficulties and troubles notwithstauding, we may hold that for all practical purposes, our system of weights and moasures-and it may be added, the systems of all other civilised nations-is perfectly well established, whether it be regarded as derived from
the dimensions of the earth, or from the intensity of gravitation.

No system of measures can ever claim to be of universal application from which geographical dimensions are excluded. It is cssential that the unit of measure bear some simple relation to the earth's circumference, for otherwise the operations of the surveyor will not accord with those of the geographer: The only question, therefore, in regard to the establishment of a cosmopolitan system, is as to the number of parts into which the earth's circumference is to be divided. Now, the denary system of numeration has already asserted its supremacy; one by one the schemes followed by different nations have given way to it, and their very languages have been modified lyy its influence; sufficient traces remain to shew how extensive these modificatious must have been. The three-score and ten is not yet forgotten in Euglish, nor the quatre-vingt dix neuf in French. In many trades the counting is stall in dozens and grosses; yet our merchants count their interest, their discount, and their dividends in ceuts. The surveyor divides the foot on his levelling staff into tenths, hundredths, and thousandths; he makes his Gunter-chain of 100 links. The astronomer no longer diviles the second into sixty thirds, but into hundredths; he gives his equiuoctial time in decimal fractions of the day, and he makes the arguments for the planetary disturbances in thousandth parts of the whole revolution. There is no single instance in which the decimal system, once adopted, has been abandoned; slowly, but surely, its influence will increase uatil it have displaced every other system. See Decmila Syistem.
No one opposes the abstract principle that one system for the whole world would be best; but each natiou retains an excusable partiality for its own measures. We can never do away with our good old English penny: what! shall we give up our time-honoured standard yard, and adopt the new-fangled French metre? Admit the force of such short-sighted argnmeuts as these for ourselves, and we must admit them for all other nations, we must remain where we are. The rery idea of a cosmopolitan system carries with it that of natioual abnegation; and of this the French have set a noble example ; they have put aside their ancient toise, their lieu, their pied, and their pouce, to adopt a measure which commends itself to all nations atike by its want of nationality; and the decimal system of measures aud weights must, whether we will it or no, prevall against all others.

WEIGHTS AND MEASURES have, since 182?, been in great measure regulated by statute. The statute 5 Geo. IV. c. 74 was passed to enforce uniformity in the weights and measures used in various parts of Great Britain and Ireland; and a standard yard was defined as being then in custody of tho elerk of the House of Commons, and it was cnacted that all superficial measures should be computed aud ascertained by the said standard yard. The act also described how, if the said standard yard were to be lost or destroyed, another was to be made. So the statute defined a standarl brass weight of one pound troy, and a standard gallon. That statute was altered by a subsequent statute of 5 and 6 Will. IV. c. 63, and inspectors were authorised to bo appointed by justices of the peace, who had power to examine and stamp weights and measures. It was cnacted that any contract, bargain, or sale made by any weights or measures unantlorised by the act shonld be wholly void, and every such weight might be seized by the inspector, and forfeited. One or two cxceptions were made hy the act-such as weights abore 56 lbs.; wooden or wicker measures used in the sale of lime; glass aud cartheurare jugs or

WEIMAR-WELD.

drinking-cups, though represented as containing the 'fuantity of any imperial measure, or' any multiple thereof, and these are not illeral, thongh incorrect. liy a later act of 2.2 ard 23 Vict. c. 50, ins]ectors have power to inspect the weights and measures of persons selling grods in streets and public places. By a statute of 29 and 30 Vict. c. 82, the custorly of the imperial staniards of weights and measures has been transferred to the Buard of 'ravle; and periodical comparisons are to be made wery ten years of certain standards.

WEI'MAR, a small but interesting town of Germany, capital of the grand duchy of saxe-WeimarEisenach, and residence of the grand duke, 60 miles south-west of Leipzig by ailway. It stands in a pleasant valley on the left bank of the 51 m ; but the cnvirons are in may remarkable, and the town itself is irregularly and rather poorly buitt. Thongh the residence of the court, and finding its subsistence in providing for the wants of distinguished visitars, W. carries on neither trade nor manufactures, and seenss a dull, prowincial-looking town. The lustre conferred upon W . by the residence here, at the close of the ISth and the cartier partion of the 19th centuries, of Gocthe ($\uparrow . v$.), Schiller (q.v.), IIerder (q. v.), and Wieland (q.v.) at the court of Karl-Augnst (see Sone-WmaniErserichin), has facled since that gronp was broken up by death; and now the interest of the town is almost whally derived from its monuments, traditions, and associations. The town church (Stedtkirche), dating from the year 1400, has an altarpiece by Cranach, and contains a number of memorable tombs, among which are those of the brilliant soldier, Bernhard of Weimar (1. the philosopher and critic. The ducal palace is a handsome building, some of the apartments of which are decorated by frescoes illustrating the works of docthe, schiller, Herder, and Wieland, The public library contains lusts of these men of genius; and a number of relics, as the gown worn by Luther when a monk, and Custavus Adolphus's leather belt, pierced by the bullet that caused his death at Liitzen. The houses of Goethe, Schiller, and Herder are still pointed out. The two former of these poets lie interred in the graud-dncal burial. vault. The park and gardens of the paince, within which is the summer residence of Goethe, are much esteemed as a promenade. I'ol. (1564) $14,279$.

WEI'SSENFELS, a town of Prussia, in the government of 1 erseburg, and 12 miles sonth of the town of that name, ou the Saile. Pop. 10,638, cmployed in the poreclain-factory and in woolspinnine, shocmakiog, the manufacture of pinnefortes, tanning, and a trade in timber. The castle, formerly the residence of the dukes of W., is now a barrack.

WelCKER, Friedrici Gottlicb, one of the most distiugnished scholars of (iermany, was born in the year 1784 at Grimberg, in Hessen-I armstadt; studicd at Giessen; was appointed one of the masters of the Gymnasium there in 1803 ; and in the year 1806, travelled to Rome, where he remaned two years. there he became acquainted with the celeIrated Tanish archæologist, Zoega, whose Life and Essays he afterwards pulblished, and by whose example he was stimulated to that subtle appreciation of the works of ancient art which ajpears everywhere in his works. On bis return from Italy, he was appointed to a professorship of Ancient Literature, tirst in Giessen, then in Gïttingen, and finally (1819) in the newly erected Prussian university of Bonn, which has since then been the great scene of his schoharly activity.
W. belongs to that class of scholars who, since

Heyne aud Tholf, have given such a lofty inspiration, such a philosophical significance, aml such a historical comprehensiveness to those studies which, for want of a leetter name, we are forced still to designate philology. Jht philology in this country generilly means the history and philosuphy of languake; with the Germans, as it diul originally with the Alexandrian Grecles, it means, the sympathetic molerstanding and the imaginative reconstruction of the life and thought of famous ancient peoples, hased on the critical treatment of ancient docaments, or the tasteful appreciation of the momments of ancient art. It is needless to say that this ' 1 hilology' is a very different thing from the minate verbal and metrical preciscuess which was long the leading eharacteristic of scholarship in this country. For however important these minutie may be in their place, they are manifestly valuable only as means to an end; and even when the end has boen steadily kept in view, it cannot be denied that some of our greatest intellects have spent more of their strensth on these subsidiary matters than their importance deserves. In W., Offried Muller, and other Ger. ban scholars of the first class, we see a general reaction against this narrow school ; and a reaction which was sure to prosper, as it was based on thorough academic training, and hal learned to negleet $n o$ trifle and despise no minute point which could be made subservient to higher purposes. If it was the fault of fierman scholarshije generally that it was too professional and too academic, it is the praise of Muller, W., and the school to which they belong that they lave bridged over the gulf which separates learning from life, and inspired the dry bones of tradition with a spirit which makes them intelligible to the present, and signilicant of the future. The long aeademic career of W. has been marked by an uninterrupted course of selalarly activity. Many of lis works are tracts and essays on archaological subjects withont external unity, but all exhiliting a remarkable combination of extensive adud acenate leaning, fine taste, delicate sensibility, and sound judgment. We can only note here his three most important works of a largee eompass. The first is the Alschylean Triluyg (1524), in which the organic connection and sequence of the Greck dramas are set forth with a richness of constructive detail not altogether free from that fanciful and problematic element which is one of the most distinguishing characteristics of German scholarship. The second is the E'pio Cycle (1835-1549), a work which has dowe great service to the right appreciation of early Greck literature, ly taking Homer out of that region of mysterions isulation in which he had been mevionsly allowed to remain. The thiri, and perhajes his greatest work is the cötterlehre, or Greek Mythology, recently completed, which embraces all that is goou, and rejects all that is bad in the wide German literature of this subject, with a delicate tact and a just discrimination as valnable as they are vare. Of all W's works, this is the one that wonll most probably bear with credit the ordcal of an English translation.

Weli), or WOOLD, also called Dyer's Rocket, Dyer's Weed, and Yellow Weed (Rescla lateola), is a plant of the same genns with Mignonette (q. v.), a native of waste places in England, very eommon in Germany and in many parts of Europe. It has an upright stem, $2-3$ feet high; lanceolate, undivided leares; and long racemes of small yellow flowers, with 4-partite calyx and prominent stamens. It is used for dyeing. In order that it may yielil a good dye, it requires to be cultivated with care. The best is grown in France, Engtaud, and

Holland ; and that produced about Cette, in France, is preferred to all other. Good W. must have flowers of a beautiful yellow or greenish colour, and abound in leaves; that which is small, thin-stemmed, and yellow, is better than that which is large, thickstemmed, and greeu; that which grows on dry sauly soils is better than that produced on rich aud moist soils. It was formerly cultivated to a much greater extent in Britain than it is at present, and was also more used by dyers than it now is. WT. is still, however, a valuable dyestulf. It serves equally for linen, woollen, and silk, dyeing not only a rich jellow, bat, with proper management, all shades of yellow, and producing a bright and beautiful colour. Stuffs previously dyed blue are, by means of W., changed to a very pleasing green. Large quantities of \mathbb{H}. are imported from France.

WEEDING, the process by which some substances are united together in a softened state. It is generally applied to such metals as malleable iron, two pieces of which, heatell to redness, may be made to knite by applying them together and beating with a hammer. Other substances, streh as horn and tor-toise-shell, can be welded ly first making separate pieces soft by heat, and iressing them toyether, which canses so intimate a union that no traces of the junction remain after cooling.

Wellesley, Iicelard Colley Wellasley, Marquis, K.G., English statesmau, was born at the town residence of his family, Grafton street, Dublin, June 20,1760 . The family of Wellesley was of Saxon origin, belonging to the connty of Sussex, and was among the most ancient in Irelant, one of them having goue from England as standard-hearer to Henry II., who gave him large grants of land in Meath and Kildare. William de Wellesley was, in 1334, summaned to parliament as Baron Noragh, and was high in favour with Edwards 11. and 111. The name (originally Wrelesley or Welseley) was writtens Wellesley till the 16 th c., when it became abbreviatel into Wesley. Mr Garrett Wesley of Dangan, county Meath, married Jiss Colley, of Castle Carbery; and on the decease of his son without issue, the estates were bequeathed to his cousin, lischard Colley, who thereupon assumed the name of Wesley. The Colleys, originally Cowleys, were also of ancient descent, and came originally from lintlandshire. Richard Colley, who thus succeeded to the Wrellesley estates, thongh in no way related by blood to the earlier Wellesley family, was created Baron Hornington. His elilest son receiver (1760) the dignities of Viscount Wellesley and Earl of Mornington, and enjoyed the still more enviable distinction of being the father of the Marquis Wellesley, the subject of this notice, and of Arthur, first Duke of Wellington, by lis marriage with the eldest daughter of Arthur, first Tiscount Dungamion. W.'s father, the first Earl of Hornmagton, althongh chiefly known for his talents as a musical composer, was a man of great abilities. W. received his education at Eton, and afterwards at Christchurch, Uxford, at both which
seats of learning bis fame stood high. An cloquent speech was made by him at Eton as early as 1778; and in 1780, he gained the University prize for the best conıposition in Latin verse, in which he cxcelled through life. His father having died in 1781, W., on attaining his majority, took his seat in the Irisli Honse of l'eers, took upon himself the pecuniary obligations of his father, and placed the estates under the management of his mother, who survived her husband for nearly half a century. The delots of the first carl were liquidated, but W. was nnable to preserve the family possessions. He was one of the original Kinights of St Patrick when the order was fonuded by George 111. in 1783. It appears, from a correspondence lictween Pitt and the Duke of Iintland, that at the age of $2 t$ he had convinced both statesmen that he was destined to distinguish himself, and to render the public essential service. Dissatisfied with the limited ficld of distinction which Heland afforded him, he obtained, in 1784, a seat in the British Honse of Commons as member for Beeralston. In 1780, he hecame one of the Lords of the Treasury, when lie was elected for Saltash. Being unseated on petition, he obtained a seat for Windsor, and became a favourite of George 11I. Aecident directed his attention to ludia, and in 1795, he becane one of the nnpaid members of the Board of Control. In October 1797, he receivel a seat in the House of Lords as Baron W, ; and, at a most eventful perioul, was selected to go to India as governorgeneral. Four powers then divided the sovereignty of India-the British; Tippoo Sahib; the Nizam; and the Mahrattas, comprehending Scincliah, Holkar, and the Fajah of Berar; and the west of India was the scene of invasion by Zemanm Shah. Tippoo hated the Englisl, and meditated their expulsion from India; and the troops in the service of the Nizam and the Mahrattas were officered by Frenchmen. When W. arrivel at Caleutta, in May 1798, Egypt had been conguered by Bonaparte; and the native powers of India, incitel by the Frenels, were unfriendly to British rule. His first operation was one of great boldness. Disregarding the remonstrances of the Madras Comncil, he ordered the Nizan to dishand 14,000 men, surrounded them with a British force, secured the $12 \pm$ Frenehmen by whom they were officered, and sent them instantly to Europe. Having annihilated French influence, he began the reduction of the empire of Mysore. On the 3d February 179?, he ordered General (afterwards Lord) Harris to march with an army of 20,000 men direct from the coast npon the Mysore capital. He himself removed to Madras, to be near the scene of this eventful operation. In one short month, the fortress of Seringapatam was taken, Tippoo Sahil slain, and his domimions partitioned. Having thus, in fifteen months, destroyed French influence, struck terror into the native princes, and overthrown the most inveterate enemy of British rule in Inclia, he returned to Eengal. Up to this period, he had been the Earl of Mornington ; he was now (Dec. 1799) created by the king Marquis of Tr°, and received the thanks of 1rarkiament. The East India Company offered him $£ 100,000$ of the prize-money realised at Seringapatam. but he refused, disdaining to be enriched ont of military spoil. He afterwards accepted an aunuity of $£ 5600$ voted him by tho Court of Proprietors. His next step was to place the territories of the Nabob of the Camatic under the administration of the Company, in consequence of the treachery of that prince. He also concluded a treaty with Persia, to which he attribnted 'the fall of Zemaum Shah, the confusion of the Afghan government, and the repression of the annual project of invading Hindustan from Cabul'-theu, as since, the nightmare of Indian statesmen. In 1801,
he seut a force of 7000 men up, the Red Sea, to assist in wresting Egypt from the French. The expedition, under General Baird, reached Egypt, and eflectel a junction with the army from Englaud; but the French had alrealy surrendered. In 1802, in consequence of differences with the Court of Directors, he tendered his resiguation; hut was induced to continue in office until January 1806. The Mahratta war broke out; the battles of Laswaree, Assaye, Arganm, and Delhi were fought; and Scindiah, the Berar Ihajab, and Holkar were stripped of their dangerous intluence, and reduced to submission. A large aceession of territory rewarded the gallantry of the army; and in $1805, \mathrm{~W}$. returned to England, after the most brilliant administration ever known in India. He had outshone even the native prinees in the pomp and splendour of his progresses. He built the palace of Calentta; fonnded and patronised the college for Indian literature; stimulated every attempt of natives and Europeans to bring to light the regetable, miueral, and physical treasures of the 'golden peninsula;' and inaugurated those important financial reforms which in a brief period raised the revenue of the Company from 7 to more than 15 millions sterling. On his return, he was received with every mark of respect and approval by the directors; but as matter of course, there were many complaints that his administration had been oppressive, especially towards the native powers; and articles of impeachment were even presented to the House of Commons, though they were rejected with contempt. He now prepared to enter anew upon a Iarliamentary eareer. George III. wished him to be one of the secretaries of state in the Portland eabinet, but he declined the offer. He went to Spain as ambassador-extraordinary in 1509 ; lauded at Cadiz on the day the battle of Talavera was fought, and on the -d November met his brother, the Duke of Wellington, at Seville. In December 1s00, he was appointed Secretary of State for Foreign Affairs; and in 1510, was elected a Knight of the Garter. He was favourable, both in and ont of office, to the repeal of the penal laws affecting the Roman Catholies; and wheu, in January 1812, the Prince Regent refused to agree to a concession of Roman Catholic claims, W. resigned his seat in the cabinet. Duriug the first ten years of the administration of Lord Liverpool, he remained in opposition. He protested acrainst the insufficiency of the means placed at the disposal of the Duke of Wellington, and clid not cerse to demand that he should be assisted to the utmost extent of the uational eredit and resources, until the Duke had erossed the Pyrences at the head of lis vietorions arny, and brought the var to an end before Toulouse. When the settlement of the affairs of Europe was being arranged in 1515 , W. protested against the negleet of commercial interests, but without effect. He now hegan to ally himself with the more liberal seetion of the Conserratives, who looked up to Mr Canniug as their leadnr, aud accepted the office of Lord-lieutenant of Ircland. Conciliation was to he the principle of his government, but he held office for five years without effecting any material amehoration, oring to the difficulties arising out of the state of the penal laws. He was recalled from Ireland lyy his brother when he took office in 1828. In 1830, W. accepted the post of Lord-steward of the Household from Earl Grey; and in 1533, in the 74th year of his age, he again proceeded to Ireland as riceroy, where he remained until Sir R. Peel's administration of $1 \$ 34$. In 1835, on the restoration of the Whig party, he accepted the post of Lord Chamberlain, which he only held for a fer months. In 1837, it became known to the Directors of the East India

Company that he was in straitened circumstances, aud deriving little if any advantage from their annuity of 25000 per annum; they therefore resolved that a sum of $£ 20,000$ should be vested in trustees for bis benefit. Iu 1841, it was further resolved that his statue sbould be ereeted in the conrt-room, as a mark of the almiration and gratitule of the East ludia Company. INe died at Kingston House, Knightsbridge, on the 2-th September 1S 12 : and, in compliance with his will, was buried in the vault at Eton College Chapel. An authentic record of his Indian administration was undertaken by Mr Montgomery Martin, under the direction and at the expense of the East India Company, and published in 1836 in 5 vols. Svo, entitled Despatehes, Minutes, and Correspondence of the Marquis If tlestey, during his Administration in India. A thin Svo vol. issucel in 1838 contains Despatelus and Correspondence of the Marquis IVellesley, durint his Alission to Spain. The marguis published several pamphlets on various occasions: Substance of a Speceh in the House of Commons on the Address in 1794; Notes relative to the Peace conchuded with the Mahrattas; Letters to the Government of lort George, relative to the nero furm. of Gorernment established there: Letters to the Directors of the Last India Company on the Indict Trade; \&c. He was twice married, but left no issue, and the marquisate became extinct at his death; the carldom, se., went to his next brother, lut afterwards reverted to the second duke of Wellington, as son of the great duke, who was third brother.

WE'LLINGBOROUGH, so ealled from the medicinal springs in its vicinity, is a market-town in the county of Northampton, $10 \frac{1}{2}$ miles east-north-east of the tuwn of that name. It earries on a considerable trade in corn, boots, and shoes. Pop. (IS61) 6067.
hellington, Arthur Wellesley, Duke of, I..G., ote of England's grentest generals, was the third son of Garrett, first Earl of Morningtou, aud brother of the Marquis TVellesley (q. ヶ.). He was born May 1, 1769, at Dangan Castle, Ireland, and completed his military education, a few years before the French Revolution, in the military college of Angers, in France. He entered the army as ensign in the 41 st Regiment in 1787 , and became heutenantcolonel of the 33 d in 1793. In 1794, he embarked in command of the 33d Regiment, to join the Duke of York's army in the Netherlands. In this, his first term of actual service, he commanded three battalions on the retreat of the army through Holland, and distinguished himself in sereral repulses of the French. In 1796, he aceornpanied his regiment to India, where his brother, the Marquis Wellesley, shortly atterwards arrived as governor-general. He commanded the subsidiary force of the Nizam, when the reduction of the Mysore was decided upon, and his division defeated 'Tippoo Sultan's right Hank at Mallavelly. At the assault and eapture of Seringapatam, he commanded the rescrse in the trenches. He was appointed to the command in Mysore, and took the field (1500) against Dlioondiah Waugh, a Mahratta freebooter, who was defeated and slain. He was named second in command of the expedition which sailed from India to assist the Euglish army in Egypt, but was prevented from embarking by ilness. It was in the Mahratta war of 1803 that the joung general won his tirst fame. After besieging and capturing Ahmednuggur, IW., with only 4500 men, came upon the combined Mahratta forces, 40,000 or 50,000 strong, and not waiting for a larger litish foree that was on its way, won the brilliant victory of Assaje (q. r.). The victory of Arganm followed; and the great fort of Garrulghur, supposed to be impregnable,

WELLINGTUN.

having been taken in December, the Nahratta chiefs sued for peace, after one of the most extraordinary campaigns on record. W. was made K.C.B., and received the thanks of the king and parliament. In 1805 , he returned to England, and in November commanded a brigade in Lord Cathcart's expedition to Hanorer. In 1S0G, he obtained a seat in the House oi Commons for Newport, Isle of Wight; and in April 1807, was appointed Chief-secretary to Ireland, the Duke of Richmond being Lord-lieutenant. He held a command in the army under Lord Cathcart, in the expedition against Copenhagen in 1807; and after the affair at Kioge, negotiated the capitulation of Copenhagen. He received the thanks of the House of Commons in his place, and returned to Ireland. In 1508, he commanded an expedition which sailed from Cork, beiog the first division of the British army sent out to assist in the expulsion of the French from Spain and Portugal. He landed at Corunna, and offered his aid to the army and people of Galicia; but the offer being declined, he finally landed (August 180S) with 10,000 troops at the mouth of the river Mondego, in Portural. The whole of the north of Portugal was then in arms against the French. The affairs of Olidos and Roliça were quickly followed by the battle of Vimieira, in which he defeated Junot, who lost 3000 men and 13 pieces of cannon. After this event W. signed the armistice which led to the Convention of Cintra (q. r.). He subsequently gave evidence generally in favour of this Convention at the Court of Inquiry (November 22). Being superseded in the command of the army by men tho were only his superiors in military rank and seniority, he returned to England. For the battle of Vimieira, he again, in his place, received the thanks of the House of Commons. On the death of Sir John Moore, he returned to re-assume the command of the Peninsular army, previous to which he resigned the office of Chief-secretary of Ireland. He arrived at Lisbon, and assumed the command April $\stackrel{2}{2}$, 1809. He had now to contend with Soult and Victor, who had entered Portugal at the head of a veteran army, and were in possession of its finest northern provinces. Oporto had been taken by Soult, and IV. was anxious to bring him to action at once, in order that he might not make his retreat unharmed. The passage, at Villa Nova, of the Douro, a wide, deep, and rapid river, in the face of a formidable enemy, who had remored every boat aud barge to the opposite side of the rirer, was one of the boldest and most successful operations of the war. W. entered Oporto the same day, and followed the French army. He was now, by a decree of the Prince Regent of Portugal, Marshal-general of the Portuguese army. The French had fallen back to a point where reinforcements were to meet them; andon the 27 th and $2 S$ th July 1 S09, the enem 5 , commanded by Victor and Sebastiani, were defeated by the British under W. at Talavera. The slaughter on both sides was terrible, in this desperate, almost hand-to-hand conflict. IV. was unable to follow up his victory owing to the non-co-operation of the Spanish army under Cuesta ; and the want of supplies, and the junction of Soult, Ney, and Mortier in his rear, compelled him to fall back upon Badajoz. The thanks of parliament were voted fur the victory of Talavera, and Sir Arthur Wellesley was created (4th September 1809) a peer by the titles of Baron Douro of Welleslej and Viscount Wellington of Talavera, with a pension of £2000. In May 1SI0, the French collected under Massena in such superior force in his front that he fell back upon Busaco, where be made a stand. Here the French (September 27) made two attacks upon his position, but were repulsed with great slaughter. After
this, he retreated to Torres-Vedras ($q . \mathrm{v}_{\mathrm{r}}$), to the occupation of which line of defence, and his judicious method of maintaining it, the ultimate success of the Peninsular war may be chiefly attributed Massena, being unable to find subsistence for his army, began his retreat to Santarem, followed by W., who pursued the French in their retreat along the line of the Mondego. In April ISII, he receired the thanks of parliament for the liberation of Portucal. Spain, homever, was now subdued by the French. The Spanish almies were annihilated, and it was of the last importance that W. should be able to keep his rear open to the Tagus. W. having invested Almeida, Massena attempted to relieve it, but was skilfully repulsed at Fuentes de Onoro, May 3 and 5. The fall of Almeida followed, and W. ordered Badajoz to be inrested. At this time, he had great reason to complain of the want of support and reinforcements from England. He had only the force which had followed Massena from TorresVedras, diminished by 9000 men, hors de combat in so many sanguinary encounters. Writing to Marshal Beresford, he said: 'I enclose a" dispatch from Lord Liverpool [then at the head of the Home Government] ; I' believe they have all gone mad.' The siege was carried on with vigour ; but lcarning that Soult and Marmont designed to join their armies into one, in order to reliere Badajoz, and his own inadequate force not justifying him in risking a battle, he raised the siege, and retired to the frontiers of Portugal. He next laid siege to the strong fortress of Ciudad Rodrigo; and on the night of January 19, 1812, it was carried by storm, and the garrison made prisoners. For this achierement he was created by the Regency a Grandee of Spain, with the title of Duque de Ciudad Rodrigo. He again received the thanks of parliament, and a further pension of $£ 2000$ a jear, and was advanced in the British peerage by the title Earl of Wellington. He next marched torsards Badajoz, invested it in March, and carried it by storm, April G, after a frightful carnage; the allies losing neally 5000 men. In June, he advanced to Salamanca, captured the conrents there, which had been fortified by the French, and drove Jarmont to the Douro. On the $2.2 d$ July, he gained at Salamanca one of his greatest military triumpls. Marmont extended his line, with the view of turning T.'s right: but the latter, perceiving that the enemy had thus weakened their left and centre, vigorously assailed the weak points, and after an obstinate resistance, put the whole army to rout. Ammunition, stores, two eagles, eleven pieces of cannon, and 7000 prisoners, were the trophies of victory. The loss of the allies was only about 700 killed and 4000 wounded. Marmont lost an arm, and four French generals were killerl. W. received the order of the Golden Fleece, entered Hadrid, was made generalissimo of the Spanish armies, and was advanced in the British peerage by the title of Marquis of Wellington. The thanks of parliament were again voted to him, together with the sum of $£ 100,000$, to be laid out in the parchase of lands to be settled on him, his heirs, and successors. In September, he marched to Burgos, but failing to capture it, he again retreated to the froutiers of Portugal. IV. visited Cadiz and Lisbon, where he was received by the whole population. In Nay, he marched his army into Spain in two columns, and on the 2Ist June gained, at Titoria, another signal rictory orer the French, commandel by Fing Josenh, assisted by Marshal Jourdan. The enemy lost 151 pieces of cannon and all their ammunition. The king's private carriagc, letters, \&c., fell into the hands of the victors. In cxchange for the baton of Jonrdan, which was found on the field, the

WELIINGTON

Prinee Regent forwarded to W . the haton of a field-marshal of England. By this splendid and important series of victories, he had reached the summit of martial glory. The deliverance of $\mathrm{S}_{\mathrm{p}} \mathrm{ain}$ from the Frencl was now certain. His infantry were soldiers who would, in his orrn words, 'go anywhere and do anything;' and even the invasion of France itself semed to his comntrymen to be no longer chimerical. He pursued the French army to Firanee by l'amplona. IIe failed, July 25, to carry San sebmstian ly assault, , hat gainecl another decisive lattle over Soult at the P'yrences, and the Freach army retreated into France. A second attempt to carry San Sebastian ly assault was snceessful, but it cost W. asuo in killed and woumlerl. He now crossed the Bidassoa, and invaded France. Pamplona surremdered. Aiter the passage and battle of the Nirelle, and the passage of the Nive, the victorions ariny of W. was attacked, December 10 to 18 , on the left and right, by Soult, who was defeated. Leaving two dirislons to hlockade Bayonne, W. followed Soult with the rest of the army. On 20th Fehruary 1S14, he defeated soult at Orthes, and crossell the Adonr. The aflairs of Aire and Tarbes were followed by the passage of the Garome; and on the 10 th Apmil, W. consummated this series of brillinat rieturies lyy again defeating Soult under the walls of Toulouse. The allied Russian and German armies having entered l'aris, ant Napoleon having signed his abdication a few days before, this last battle would nut have beca fought, lne fur the non-arrival of news of the events of Paris. In a few weeks W. was in Paris, presenting the trophies of his lrilliant campaigu to the allied monarels. He was created, May 3, Maryuis of Douro, and Duke of W. in the British peerage, and receivel on alditional grant of $£ \pm 00,000$. II receivel for the twelfth time the thanks of parliament fur his services, and on his arrival in England was grected with the utmost enthusiasm. On the eSth Junc, he took his seat for the first time in the House of Lorls. He next returnel thanks at the bar of the Honse of Commons, and was addressed by the speaker. Hle was appuintel ambassador-extraordunary to the court of France in July 1S14, whence he proceeled to the congress of Viemna. Nipoleon having cseaped from Cilia, the congress was ahruptly broken2 ul. W. was appminted commander of the Britisl forces on the continent of Europe, and from Vienna joined the army at Erussels. It appeared probable that Napoleon would make a hold alvance into Belgium, and its defence was assigneel to an Anglo-allied army under W., and a Prussian army under Blacher. The battles of Ligny (q. v.) and Quatre Bras (q. v.) were succeeded ou the 15 th June 1815 by the great battle of Waterloo (q. v.). Here the grand and lecisive blow was struck; here for the first and last time the Emperor and the great English general met and measured sworls, and here the power of Napoleon was finally crushed. The allied armies, under W. and lilicher, marched upon Paris; the French army evacuated Iaris under a convention; and Luvis XVIII. entered Paris the very day after the English army. Marshal Ney was brought to trial. He relied upon the terms of the eajpitulation of Paris, and apprealed in vain to W., who denied that the French king was bound ly the convention-a reading which it is impossible to justify, as sir A. Alison has shewn in his IIixtory of Europe. At the request of the allied sovereigns, W. took the command of the army of occupation, and resiced in Paris from 1815 to 1818 . Two nttempts were, during this period, made upon lis life: gnnpowder was placed in his cellar for explosion; and one

Cantillon disclargell a pistal into his carriage; for which attempt at assassimation, Napoleon I. Feft the miscreant a beyuest in his will. When the allied armies evacuatel France in 1SIS. the cmperurs of Rinssia and Austria, and the kiny of I'russia, created IV. a ficde-marshal of their armies. He was created Prince of Waterloo ly the king of the Netherlands. The gratitule of the liritish mation was, meanwhile, enthusiastieally mimifested. Statues were raised to his honour in the metropolis. I'uliament
 the mausion and estate of Strathifieldsaye were purehased, to be held by W. and his heirs. The office of Master-general of the Orduance, now abolished, but then comprehending the control of the artillery branch of the service, was conferred ujon him. At the eoromation of Gcorge IV., in 1821, he , nliciated as Lord High Constable of England. In October, he attended George IV. to the fielli of Waterloo. In 18:-, he representel Great Britain at the Congress of Verona, where he incfectually exerted lis influence to prevent the invasion of spain by a French army, in suphort of alsolutist prineiples. In IS:6, he went ou in special emlassy to St I'etersburg, when he indined the Eunceror Nicholas to aet in comnon with Lagland and vther powers, as mediators in the quarrel between Turkey and Greece. On his return, he was appointed Constalle of the Tower. In 1S27, he succeeded the 1huke of York as commander-in-ehief of the army, aud was made colonel of the Grenadier Guards.
From this period, his political career may be saill to begin. When Alr Canning received the commands of George IV. to form an administration, W., with six other members of the Liverpool alministration (iucluding Lord Ellon and Pecl), resignel office. In the explanations which he gave, he emphatically deniel that he hal entertained the ambition of himsoli filling the post of tirst-minister; ;and snil he felt his incapacity for such an office so strongly that he shonld have been 'mad' if he had coveted it. In Augnst 1827, after Mr C'anning's death, he again accepted the command of the army, which he resignod on being called mpon by George IV. (January $\mathrm{S}, 1825$) to form an administration. Of strong Tory polities, he was, nevertheless, the first minister to cede to the growing popular power. The 'Test and Corporation Aets were repealed, and the removal of the Catholic disabilities was the first measure proposed by W. in the following session, ujon the ground of the formidable attitude of the people of Ireland and the danger of eivil war. This measture involved him in a bloodless duel with the Earl of Winchelsea. The French revolution of 1830 appears to have intueneed him in making a firm stand against reform in parliament, in the same proportion that it raised the demands of the people; and when the struggle of Continental Europe to emaneipate itself from arbitrary goverument, strensthencd the popular cry for 'parliamentary reform,' he elose the earliest moment to declare the unalterable perfection of the rejresentative system of the conntry, and the determination of his government to resist all measures of parlinmentary reform. His unponularity became excessive ; and antieipating a defeat in the House of Commons, on Mr Bronghan's proposition for reform iu parliament, W. resigned office, and was sueceeded by Earl Grey. He had mcanwhile become Lord Warden of the Cinque Ports. Under the alministration of Earl Grey, W. held no office. He strennously opposed the licform Bill, and a London mol broke the windows of A_{1} sley House, and hooted and pelted him in the streets. In January 1834, he was elected Chaneellor of the university of Oxford. Upou the enforced resignation of Lord Melbourne,
in November 1534, he was sent for by William IV. He deelined to take the premiership, and was intrusted by the king with the whole charge of the government, and the seals of the three Secretaries of State, until Sir R. Peel could arrive from Rome. Peel constructed a Conservative government, in which W. took the office of Foreign Secretary. In April, Peel resigned, and henceforward W. ceased to take a prominent share is the civil government of the country. He gave a generous welcome to Soult, who represented France at the coronation of Queen Tietoria, and was received with great cordiality by the people on this occasion. In Angust 1839, a grand banquet was given to him at Dover, as Lord Warden of the Cincue Ports, on which occasion Lord Brougham proposed his health in a brilliant eulogium. In 1S11, he accepted a seat in the cabinet of Sir 1 . Peel, without office. In 1542, the Queen risited him at Whalmer C'astle, and in the same year he was reappointed to the command of the forces. In 1845, he doubted the policy of repealing the Corn Laws; but in conformity with his usual practice, of considering 'how the Queen's government was to be carried on, he determined to stand by Sir F. Peel in bis attempt to abolish them. W. not merely consented to remain in the cabinet, but accepted the higher affice of President of the Council in lien of the post of Lord Privy Seal. When the bill came up to the Lorls, W., with great emotion and earnestness, warned the peers not to reject the bill, and never to separate themselves from both the crown and the House of Commons. His speech made a great impression, and the hill passed a second reading ly a considerable majority. He retired with the Peel government in July IS 46 . After this event, be may be said to have withdrawn from political strife, nor is it to he denied that his share in the repeal of the Corn Laws cast a balo of popularity aromed the remainder of his life. In 1845, he called attention to the unsatisfactory state of the uational defences, in a letter to Sir J. Lurgoyne. As com-mander-in-chief, he directed great preparations to be made to present a Chartist ontbreak on the 10th April. His last speeeh in the House of Lords was delivered in support of the Militia Bill, when be declared that England harl been carrying on war in all parts of the world with an insufficient preace cstablishment. On September 14, 1552, he was seized at Walmer Castle with an epileptic fit, became speechless, and died the same aiternoon. His remains were honoured by a public funeral. The body, after lying in state at Chelsea Hospital, was removed to the Horse fituards; and on the morning of Norember 18, was borne through the strects of London to St l'aul's Cathedral, where it rests by the side of that of Lord Nelson. The funeral pageant was witnessed by a countless multitude. His Despatches, published by Colouel Curwooul, in 12 vols., are the proulest momment of his glory ; they exhibit him as a commander who overcame countless difficulties by honesty, sagacity, singleness and constancy of purpose, and devotion to duty. Thronghont his long career, he appears the same honourable and urright man, devoted to the service of his sovereign and country, and just and considerate to all those who served under him. As a general, he was cantious, lrudent, and eareful of the lives of his men; but when safety lay in dariug, as at the lattle of Assaye (q. v.), be conld he daring in the extreme. He enjoyed an iron constitution, and was not more remarkable for his personal intrepidity than for his moral courage. The umion of these qualities obtained for him the appellation of the 'Iron Duke,' by which be was attectionately known in his later years. His parliamentary oratory was plain and to the point. He spoke without
fuency or art, jet his strong sense and practical sagacious judgment gave him great weight with his lorother-peers. His tastes were aristocratic; and his aides-de-camp and favourite generals were almost all men of family and high connections. Sltogether, he was the very type and model of an Englishman ; and in the general order issued by the Queen to the army, he was characterised as 'the greatest commander whom England ever saw.' He married, in ISOG, the second daughter of the third Earl of Longford, and by her (who died in 1831) he left two sons-Arthur, the second dike (who also inherited the earldom of M Iornington), and Charles, deceased, whose son, Henry Wellesley; is heir-presumptive to the title.
Colonel Gurwood's Despatches of the Duke of Wrellington, $1: 2$ vols.; Gurwood's General Orders of Duke of IFellington, 1809-1818; Napier's II istory of the Peminsular II'ar; Alison's History of Europe: Thibandenn, Ifistoire de l'Empire: Thiers, Histoire de l'Empire: Marquis of Londonderry's. Tarrative of the Peninsuker If ar, 1s0S-1813; Gleig's Life if Arthur, Duke of Wellington; Bourrienne's Méminitis sur Tapoleon: Las Casas, Mémorial de ste-Héléne; La I'ie de If pllington, by Brialmont: Speches in Parliament of Dulke of I' ellington; Sir R. Peel's Memoirs, by his Literary Trustees; Despatches, Correspondence, and Mcmoranda of Field-marshal Arthur, Duke of Wellington, edited by his son the Duke of Welington. This is a continuation of the former series of the Wellington Despatches and Correspondence ; rol. i. (breaking off at Deeember 1822) has just appeared (1867), and this series will be brought down to the latest dates. See also Correspondance de Tapoleon 1., an official record of the thonghts and acts of the emperor, now in course of publication at Paris.

WE'LLINGTON, a small market-town in the county of Somerset, 7 miles south-west of Taunton, at the foot of the Elacklowns, which are crowned by a monument commemoratise of the battle of Waterloo. The town gives title to the Duke of Wellington. Llankets, serges, and other woollen gools and earthenware are manufactured. Pol. (1861) 3659.

WELLISGTON, a small market-town of Shropshire, 10 miles east of shrewsbury, at the foot of the Trekin, on the Shrewsbury and Shropshire Canal. The tuwn forms the junction of several railways. It is situatel in a populous mining and asricultural district, with coal and iron mines, ironworks, limestone quarries, and wire-mills in the vicinity; while, in the town, there are smeltingfurnaces, nail-works, and malt-kilns. A spacions public market, with town-house and assembly ruom, has recently been erecterl at a cost of about fivo,000. The town has been recently thoroughly dramed. Pop. (1861) 5556.
WELLINGTO'N゙1A, a genus of trees, of the natural order Coniferee, of which only one species is known, H^{\top}. gigantea, the greatest of all pines, and indeed by far the largest tree of temperate climates. The genus is nearly allied to Sequoia and Taxodium. The foliage is very similar to that of an arbor vitæ, the leaves being very small, hke scales, and closely all ressed to small slender branchlets. The leaves of young plants are longer and somewhat needleshaped. The branches divide into very numerous small branchlets. The flowers are generally solitary and terminal, the male and female flowers distinct, lut on the same tree. The cones of the W. gigantea are ovate, from $1 \frac{1}{2}$ to \cong inches long, by $1 \frac{1}{2}$ inch broad, single, or in opposite jairs, rarely clustered, the seales wedige-shaped, with about four seeds under each. The 1F. gigantert has a columuar stem, with
branches only on the upper Italf of it, the branches of comparatively small size, and not forming an umbragcous head. The stem attains a height of 300 feet, and sometimes more, perfectly straight amd erect. One tree is known, 321 feet in height; and

Wrellinftonia gigantea: The 'lhrec Graces. (Copied from IIutchin's sicencs of HVosder in Californaia.)
near it lies a larger one, which has Eallen, and which was broken against another large tree in its fall, its diameter where it was broken, 300 feet from its base, leing 15 feet. Another trec is 102 fect in circumference at the base. The W. is found only in a limited district in California, on the Sierra Nevada, at an clevation of 1 (non to snon fect above the sea.

Cone and foliage of the Wellingtonia gigantea.
It was discovered in 1850, by Mr Dowd, who, being engaged in lecr-hunting, came witl astonishment into the midst of a group of these trees, now known as the Mammoth Trees of Calaveras. In this locality, within an area of 50 acres, are 123 large trees, 20 of which exceed 25 feet in diameter at the base, and are thercfore about 78 feet in circumference. A tree which Was felled was 302 feet in height, and 06 feet in circumference at the ground. It was sound to the contre. Its age may be guessed at sumething like

3000 years. It was calculated to contain about 500,000 cubic fcet of timber. Five men were employed for 22 days in felling it, lyy boring great auger-loles and sawing between them. When it had been eut through, it remamed steadfast on its base, and more than two days were spent in driving in great wedges, to canse it to fall. A round wooden house has been crected on the stump, where dancing pirties sometimes cajoy themselves. For several years, the Wellingtonias of Calaveras were suppused to be the only trees of their lind in existence, but groups have more recently been found in other parts of the same district, and scattered trees in a number of localities. The W. has been introduced into Britain, tlic climate of whicla is very suitable to it ; fine young trees are now to be seen in many places, and plants are comnon in nurscries. I'he W. lats been called Wrashingtoniut by some American writers; but no reason, except national feelings has been alleged for the change of the name. Ac: cordinu to the generally acknowledged rule in natural listory, the older name must be retained.

WELILS, an ancient city and municipal and parliamentary borongl, in the county of Somerset, pleasantly sitnated at the foot of the Mendip Hills, 15 miles south-west of Bath. It is a clean and cheerful town, with runlets of water flowing through each principal strect. The catliedral, a remarkably beautiful edifice, begun in 704, and enlarged in 1135, is for the most part in Early English; but its west front, me of the moblest façades in the kingdom, and which is cariched with 300 statues, is in Gethic. T'he bishop's palace, originally fommled in 105 S , is surrounded by a moat supplied from the abundant source of St Andrew's Well-from which the town is suid to derive its mame-and by lofty walls. "Ihere are no manufactures, and the trade is chicfly retail. I'op. (1S61) 464 S .

WELL-STAIRCASE, a winding staircase with an aperture left in the centre, called the well, by which light and air are admitted.

WFLSER, the manc of a famons extinct jatrician family in Augsburgr. Julius WT. Was knighted by the Emperor Otto I. for lis services in the war against the Hungarians, His son, Octavian W., settled in Angsburg, and from him descended the patriciau family, which always held important posts in the council of tlat town. Bartholomew W., privy councillur of the Emperor Charles V., was so wealthy, that he could vie with the Fuggers (q. \%.) in muniticence. Witli the emperor's permission, in 1526 , he fitted out three ships in Spain, which, under the command of Ambrose Walfinger of Ulm, sailed for America, and took possession of the province of Caracas, which the emperor gave W, in pledge. Twenty years after this, the Welsers gave up their possession voluntarily, and it reverted to Spain. -The most famous of the family was the nicce of Bartholomew W, Philippine W., a danghter of his Urother, Franz W., born about 1530. She had received an excellent education from ber clever mother; and was exceedingly beautiful. On the occasion of a Diet of the empire at Aucsburg in $15 \frac{17}{}$, she was seen by the Archduke Ferdinand, the sccond son of the subseruent emperor, Ferdinand I., who fell in love with her. The young girl firmly rejected all the advances of this fiery youth of 19, and refused to have any relation with him excejpting by marriage. They were therefore anarried in 1550 , withont the lnowledge of his father, or of his uncle, Charles V. His fatber, ou bearing the news, was exceedingly angry, and for a loner time his son did not venture to aplear lefore him. Even in other conntries, this misalliance made a great noise. In the meanwhile,

WELSER-WELSH LANGUAGE AND LITERATURE.

the loving couple enjoyed the greatest domestic happiness, and Philippine enchanted every one that knet her by her intelligence and kindness of heart. It was only after eight years that his father was reconciled. Philippine, in disguise, herself handed him a petition, and by her deportment on the oceasion, as well as her beauty, disarmed the angry father. He forgave his son, declared his children legitimate, and raised their mother to be Markgravin von Burgau. This happy marriage lasted 30 years. Philippine died at Innsbrück in 1550. In the palace at Schönbrunn, the portrait of the larely Philippine is still pointed out.

TVESH LANGCAGE AMD LITERATURE. The Celtic languages are divided into two groups, Gaelic and Cymric. To the latter of these the Welsh belongs, and has even giren name, as forning the most important member of the stoup, which comprises besides, Armorican (spoken in Bretagae) and Cornish (now extinct). A cantroversy has been waged concerning the nature aud closeness of the intimacy existing between the Gaekic and Cymric tongues, but the question may now be considered settled by the researches of the Rer. Fichard Garnett (Gentleman's Magazine, May 1839), who found, on examining the monosyllabic words in the introductory part of Neilson's Irish Grammar, that ant of 270 , no fewer than 140 were identical in sense and origin with corresponding Welsh terms, that 40 were cognate, an equal number borrowed from Latin, Saxon, \&ie., and that only 50 were peculiar to the Gaelic. Nevertheless, it is not to be supposed that the atfinity is as close as that which exists between English and so-called Scotch. It is rather (according to Mr Garnett) such as exists between Icelandic and German. A Welshman caunot understand a Highlander or an Irishman; he cannot even understand a Breton (as used to be believed), though the language of the latter is undoubtedly Cymric. Most extraordinary hallucinations were formerly curreut in regard to the antiquity of the Cymurie tongues. Pezron, the Breton incestigator, gravely affirmed that Welsh and Armoric (which he considered the same) had been 'the language of the Titans, that is, the language of Saturn, Jupiter, and the ather principal gols of heathen antiquity.' The Rev. Joseph Harris, editor of the Seren Ciomer, remarked in 1514 that "it is supposed by sone, and no one can disprove it, that TVelsh was the language spoken by Adam and Ere in Paradise.' The fact, on the other hand, is, that of the trra branches of Celtic, the Cymric is less ancient than the Gaelic, and that among the Cymuric tongres the Cornish is probably older than the Welsh. (See Norris, Ancient Cornish Drama, Oxford, 1859.) But preposterous as the riews of most patriotic Welshmen are on this subject, it is uadonbtedly true that the Welsh is one of the oldest living languages in Europe, and that it possesses a literature reaching back to remater times than that of any modern tonguc except Irish. The most striking peenliarities of the language are the abundance of its grammatical permutations, and its facility in forming derivatives and compounds. Of the former, two examples may be giren by way of illustratiou. The Welsh word for 'father' is tad, for 'my,' fy. But you cannot say for 'my father,' fy tucl. After fy, every word beginning with t must change the t to $n h$; and therefore the correct phrase is fil nhad. So after ei, lad becomes cither dud or that, according as ei means 'his' or 'her.' The rules of permntation are almost endless, and, in the apinion of such Welsh scholars as are not Welshuuen, useless, nothing being gained in point of eurhony or expressireness. The Welsh aftirm that their langrage is ex-
ceedingly harmonious, and it would serve no good purpose to dispute the assertion; but foreiguers ignorant of the tongue, and associating no definite ideas with the words that issue from a Welshman's lips, generally fail to realise the fact, and consider it in this respect-though not in others -distinctly inferior to Gaelic. The language, or rather the structure of sentences and the phraseology, exhibits a certain stateliness, or even grandiloquence, characteristic, indeed, of uncivilised nations. One thiog specially deserres notice. The Welsh people are profoundly attached to, and familiar witb it. It is not dying out, like Irish or Scoteh Gaelic. It has a genuine literary, as well as oral existence even now, and though the changes it bas undergone since the days of Taliesin are numerous and great-so great, indeed, that no modern unlettered Cambrian can understand a word of the early poetry of his country-yet it is essentially the same toogue as Cæsar and Agricola heard, and is consequently to be regarded with reneration as the solitary liring link that unites those distant ages with our own.

There are extant, says Owen Pughe, some thirty old treatises on Welsh grammar and prosody. The most important of these is one composed by Gcraint (SS0 A.D.), revised by Einion (1200 A.D.), and regularly privileged by the sovereigns who then exercised authority in Wales. It was first printed by the Welsh M1S. Society in 1S56, under the editorship of the Rev. J. Williams ab Ithel. Among English grammars of the Welsh language, the best is said to be that by the Rev. Thomas Rowland (@d ed. 185̄7) ; among dictionaries, that of Owen Pughe, entitled Geiriddur Cymraeg a Saesaneg, a Welsh and English Dictionary (2 rols. 1793 ; 3d ed. 1S61, et seq.). It is, however, only a Welsh-English dictionary; the most satisfactory English. Welsh dictionary is that published by Daniel Silran Erans (2 vols., Denligh, 1Sãz-18ฮัS).

The literature of Wales lias been arranged inta four periods : the first extending from the earliest times to the Norman Conquest (1066 A.D.) ; the second, from the Norman Conquest to the English Reformation (circa 1556 A.D.) ; the third, from the English Reformation to the beginning of the reign of George III. (1760 A.D.) ; and the fourth, from 1760 to the present day. To what date the oldest specimens of Welsh literature ought to be assigned, has been the subject of sharp dispute. These specimens are in verse, and are rhymed. The chief of their alleged authors, with their supposed periods, are Aneurin ($510-560$ A.D.), Taliesin ($520-5.0$ A.D.), Llywarch Hen, or 'the Old' (550-640 A.D.), and Mlyrddin or Merlin (530-600 A.D.). According to Pinkerton (see his preface to Barbour) and Laing (Dissertation on Ossian), they are not authentic; but the sindication of their authenticity, first by Sharon Turner in 1803, and afterwards, and more critically, by Mr Stephens of Merthyr-Tydvil, in his Literature of the Kymry (1S49), and Mr Nash, in his Taliesin, or the Bards and Druids of Britain (1Sass), is considered conclusive. The last two of these writers, however, may almost be said to meet their opponents half-way. Of the seventy-seven paems ascribed to Taliesin in the Myryrian Archaiology of 11 ales (a collection of all the most celebrated works in Welsh literature, $500-1400$ A.D.), which appeared in 1 S01-under the auspices of Mr Jones, Mr Edward Williams (better known as "Edward of Glamorgan'), and Dr Owen Pughe-Mr Stephens considers fifty-seren to be demonstrably spurious, and only twelve to be probably genuine, that is, belonging to the age of Taliesin. Ir Nash enables us to form an independent judgment on the point, for he translates some fiity of these poems, and we

WELSH LANGGU.fのE AND LITERA'URE.

find that, instead of their exhibiting an antique Welsh character, they aboune in allusions to medieval theology, and frequently emplay medicual Latin terms. It is certainly unfortumate for the reputation of the 'Chief of the Barels,' that the speeimens of his which are considered to be genuine possess exceedingly small proctic merit. The life of this fanems but apparently over-mated genius is, of course, envelopeel in legend. He is said to have been the son of a cortain St Henwg, and to have been educated at the College of St Cadog. ITis life was spent successively at the courts of Urien liherged. tiwyidno, l'rince of Cardigan, and ling Arthur, and his sepulchre is shewn near Aberystwith. It is still called Bedd Traliesin (Taliesin's Grave). Of the pocmss whose authorship, is ascribed to Ancurin, a prioce of the Cumbrian Britons, the most notable is that entitled Golodin, in which he pathetically laments a defeat of his countrymen by the Saxons. It is reckoned authentic. (Several English translations of the Gododin have been published, and a translation of the whole works of Aneurin was published ly Mr Probert in 180.) Llywarch ITen, also a Cumbrian warrior, is regarded as the fivest and most poetical of all the semi-historical Welsh bards. Tradition reports that he lived to the age of 150 . The hurden of his verse is the miseries of old age, on which he descants with melancholy eloquence. (Sce The Heroic Eleyies and other Pieces of Llywarch Hen, Prince of the Cumbrian Britons, with a literal translation by William Owen, 179‥) The picees ascribed to Merddyn, in the Mypyrian Archuioloyy, are in all probability spurious. Besides the names already mentioned, other poets of the first period are Gwyddno, Gwilym ab Don, Golyddan, \&c.
The earliest specimen of Welsh ${ }^{\text {Hose }}$ now cxtant is the collection of the laws of King llywel Dda, or Howel the Good (dicd 7-4 A.D.)-a work of great value in illustrating the manners and morals of early Welsh times, but it is very uncertain when or by whom the collection was made. The oldest extat MS. belongs to the 12 th century. The latest and most critical cdition (Welsh and English) is that published in 1811 lyy the Record Commission, and edited by Aneurin Owen, son of Dr Owen Pighe. Another work, entitled The W"istom of C'alog the lyise (a collection of proverls pretending to be ly a St Chalor, who flourished in the 6th c., and was a friend of Talicsin), is of such donbtful anthenticity that its claim can only be notieed in our sketch.

Second Period, 1066-1536.-A few years after the date of the Norman Conquest, a new spirit was imported into Welsh poctry by the indluence of Gruffydd ab Cynan, Prince of North Wales, and Thys ab Tewdwr, I'rince of Sonth Wales, particularly of the former. Gruffydd had been born during his father's exile in Ireland, and was brought up in that country, where he appears to have acquired a familiarity with both the mative Celtic literature and that of the Dano-Norse invaders. In the year 1100, he held a great Eisteddvod at Caerwys in North Wales, which was numeronsly attended by Irish lards and musicians. For the next three hundred years, Wales is rich in native bards, a fact that conclusively refutes the tragic story of Edward 1. having caused them all to be slain, lest their patriotic songs should stir the Welsh to renew the struggle for indepeudence. Nearly sixty mames necur in the Myryrian Archaiology between 11201350. The first is that of Meilyr (1190-1160), whose hest piece is entitled The Dcathbed of the Bard. Meilyr's son, Gwalchmai ab Meilyr (1150-1190), who is said to have accompanied Lichard Cour de Lion to Palcstine, is a superior poet to his father. Fonrteen of his productions are cxtant. Gwalchmai's son, Einion (1170-1220), also figures as a
port. Forty pieces are ascribed to Cyaddelw (1150 -1806), a contemperary of Gwalchmai, of which probably the most interesting is The Derthbed of Cymhlitut. Ile has also sume verses adliresset to Prince Madog or Maloc of I'owys, whom enthusiastic Welshmen conceive to have discoverel Anerica before Columbus. Other bards of this second period are Llywarch ab Jlewellyn (1160) -1200 ; Hywel ($1140-1170$), a brother of l'rine: Madoc, aml writer chicfly of erotic viles; Uwain Cyveilioc ($1150-1197$), also of princely rank, whuse Mirlas, or the Long Blue Mom, is a great favourite with more than Welshmen ; and ahove all, Daverhe ab Givilym (circa 1340-1.100), who has heen compared to Ovid, to l'ctrarch, and to Burns. In his verses, Welsh poetry undergoes in change - the hardie or Scaldic spirit disappears, and a more lnmane, if less patriotic spirit takes its place. Davyld sings of love and of social amusements; he was likewise a ficree satirist, though at times very penitent and pions; whilc, to complete his rescmblance to the Soottish poct, and also to justify the hiblical name he hore, he shewed an unmistakable predilection for illicit love. Davydel's proems were first pmblished in Welsh, with a biography of the author by Owen Jones and Owen Pughe (1789). An English translation of some of them by Mr A. Johnes appeared in 1834. Besides the poets already mentional, the following names are in high repute: Iolo Goeh, the friend and bard of the famons Owen Glendower, who is said to have lived to the ase of 120 ; Sion Cent ('John of Kent'), a name given him from Kentcharch, in Hereford, where he resided (1350-1+10), and who, having adopted the opinions of the Lollards, ultimately attained the reputation of a wizard; and Lewis Glyn Cothi, who flomished during the Wars of the lioses, aud was bard to Jasper, Earl of Pembroke, son of Owen Tudor and the wilow of Henry V.

Pruse.-The oldest Welsh chromicler of the second period is Caradoc, a monk of Llancarvan, who ilourished in the first half of the 12th century. His work narrates in Welsh the history of his native conntry from the death of Cadwallader, 689, to the times of Caradoc himself. It is a dry, illiterate alfair, like the Anglo-Saxon Chronicle. Contemporary with Caradoc was the famous Geoffrey of Alonmontla (q. v.), Bishop of St Asaph, who died in 1154. Ile, howerer, though a Welshman, wrote in Latin, and belongs, therefore, rather to the general literature of England than to Welsh literature. His Chronicle commences with the fall of Troy, and ends with the death of Cadwallader, so that it forms an introduc. tion to that of his friend Caraloc. In it the legend of Arthur first assumes that romantic and chivalrous form in which modern readers are familiar with it. It is impossible here to enter into a cliscussion of the question where the materials of the Arthurian romance were first accumulated ; suffice it to say, that evidence prepouderates in favour of their Welsh origin. To this second period must also be assigned that charming collection, the Mabinogion, or Children's Tales, of which a MS. volume of more than 700 pages is preserved in the library of Jesus College, Oxford, and is known as the Red Book of $H_{\text {ergest, }}$ from the name of the place where it was discovered. A beautiful edition of this work in Welsh and Enclish, with preface and notes, was published in 3 vols. (1838-1819) by Lady Claarlotte Gnest. The age of these tales, which relate priucipally to Arthur and the Found Table, is doubtful. The transcrij,tion in the Red Book of Ilergest belongs probably to the 15 th c .; but the date of their composition may be safely held to be much earbier, perhaps somewhere in the 13th century.

The 'Triads may also be here noticed. They are

WELSH LANGUAGE AND LITERATURE.

collections of historical facts, maxims ethical and legal, mythological doctrines and traditions, and rules for the structure of verse ; all expressed with cxtreme brevity, and regularly disposed in groups of three. They were a very popular species of composition among the Welsh, and are of all ages. Examples occur in the poems of Llywarch Hen, but the greater part are found in transcripts and mis. cellanies of the 16 th and 17 th centuries. The 'historical' triads are especially puzzling. They occur in a so-called collection, made by one Thomas Jones of Tregaron, abont the close of the 1Gth centmry. This Jones was originally, it scems, an eminent robber-a Welsh 'Rob Roy;' but in his later years he reformed, married an heiress, and became a justice-of-peace for the connty of Brecon. The peculiarity of his 'Collection' is, that it gives a totally different account of the origin of the Britons from Geoffrey of Monmonth, bringing them from a 'Summer Land' (supposed to be Constantinople or the Crimea) over a sea called the 'Hazy Sca.' The question arises, and has not been settled; Whether are we to suppose Jones the fabricator of these 'triads,' or his account of the origin of the Britons the genuive record of an ancient tradition? In favour of the former hypothesis, unfortuately, is the circumstance that there is no trace of such an ancient tradition in the anterior literature of Wales.

Thirel Period (1536-1760).-This and the remaining period may be brictly sketched. The most notable fact in its commencement is the comparative case with which the Reformation male its way among the Celts of Wales. The Celts of the Highlands remainet for a time, and those of Ireland remain to this day, obdurate adherents of the old faith; hut those of Wales, ou the whole, swiftly accepted the new religiou. The art of printing had been in operation in England for more than half a century before it was applied to the Welsh language. The first book printed in the Welsh or any Celtic language was an almanac, with a translation of the Lord's Prayer and the Ten Commandments (Lond. 1546). The author, William Salesbury, was a scholar and a zealous Protestant. In 1547, he published the first dictionary of English and Welsh, and executed the greater part of the first translation of the New Testament into his native tongue (Lond. 1567). In 15ss. appeared the carliest translation of the whole Bible into Welsh. The author was a Dr William Morgan, afterwards Bishop of St Asaph's. A revised edition of this, in 1620, by Dr Parry, Morgan's successor in the bishopric of St Asaph's, is the translation still in use among the natives of the Principality. Contemporary with Salesbury, but an adherent of the old faith, was Dr Griffith Roberts, who lived on the continent, and publishell at Milan a Welsh Grammar in 1567. Another contemporary was Dr John David Rhys, whose principal work, Cambrobrytannicce Cymrecceve Lingure Institutiones et Rudimenta, is a treatise on Welsh grammar: The suspicious Thomas Jones of Tregaron, possille ruthor, rather than collector of the "historical triads, was a friend of Rlyss, and died abont 1620. In 1603, Captain Myduleton, one of the tirst three persons who smokel tobacco in England, publisherl a metrical version of the Psalus in Welsh, partly executed while cruising about in the West Indies. The most celebratcl poets of the third period are the Ficy. Riees Prichard, vicar of Llamovery (1579-1644), whose Cenvyll ? Cymry (Candle of the Cambrians) is a metrical versiou of his professional homilies or sermons, the eloruence of which had previously won for him a great reputation as a preacher; it is still popular,
the 20th edition having appeared as late as 185s: Huw Morns, or Hugh Morris (1622-1709), author of a rariety of pieces, which his comutrymen consider unsurpassed in humour, pathos, and even sub-limity-an edition in 2 vols. appeared at Wrexlam (1823), under the title of Los Ceirion (The Nightingale of Ceiriog) : and Goronwy Owen (152-circe 1750), a gifted bard, but likewise an incurable drunkard, whose principal poems are contained in the first volume of a book cutitled Diddanwecho Teuluaidd (Domestic Amusement, Lond. 1763). Of the prose writers, the only noteworthy are Ellis Wyane (d. 1734), author of the Bardd Cuesg (Sleeping Bard, 1703), a series of risions of Hell and Lades, written with great beanty of style; and the Fiev. Moses Williams ($1655-1742$), au autiquarian scholar of high merit, whose Repertorium Poeticum, or List of Welsh Poems and C'atalogue of Welsh Books, is very valuable.

Fourth Period (1:60-1867).-Varions canses co-operated to give a new impetus to Welsh literature after the accession of George III. Anuong these, the most powerful were the establislmment of periodical publications, the institution of patriotic societies, and the spread of Methodism. The first important production of this period is entitled Some Specimens of the Poetry of the Ancient Wedsh Bards translated into Énglish (Lond. 1764), by Mr Evans, curate of Llanvair Talyhacrn, in Denbighshire. The next name deserving of mention is that of Owen Jones ($1741-1814$), who, though engaged in mercantile occupations all his life, managed, by his enthusiasm and liberality, to quicken and extend the public interest in Welsh literature. In 1771, he fonuded the Gurmeddigion (society of the 'Men of (Gwynedd'), which gave prizes for the best performances on the Welsh harp, and the best Welsh poons. In 1801-1807, he caused to be pullished at his own expense, under the editorship of Owen Pughe and Edward Williams, three rolumes of the Myryrian Archaiology, so called in honour of himself, who had assumed the bardic name of Myvyr, from his uative vale in Denbigh. Owen Jones was, however, rather a Welsh Mæcenas than a Welsh littérateur. The next names of importance are those of the editors just mentioned, Owen Pughe and Elward Williams. The former (1759-1835), accorling to Southey, was a 'muddy-minded man;' nor is the fact that he was a follower of Joanna Southcott, and one of her twenty-four elders, adverse to this description of his intellect. Be this as it may, Owen Pughe is the great Welsh lexicographer ; his Dictionary of Welsh (1793-1803) contains 100,000 worls illus. trated by 12,000 quotations. He also translated Paradise Lost into Welsh, in which work he threw off the chaius of Welsh alliteration, an innovation generally acknowledged to be an improvement. Edward Williams (1745-1826), better known as lolo Morganwg, is probably the finest Welsh genins of the fourth period. Southey knew him, and liked him greatly. 11 is principal productions are Sulmare y_{r} Eyluys yn yr A nialuch (Psalms of the Church in the Besert); but an Ode on the Mytholorm of the Ancient Eritish Bards in the Manner of Taliesin (1:92), accompanied by notes and specimens of 'Triads,' containing the metaplaysical and religious doctrines of the ohd Druidical bards, provoked a longrprotracterl coutroversy. Morganwer sairl that he hard conied them from a Ms. collection of a Welsh prot, amo 1560 , which was in his possession, and atfirmed that the collection was of very great antiquity. He was often asked to produce it, but always declined; and Welsh critics of the stricter sort have now ceased to helieve in its existence. The three associates in the pubfication

WELSH ONION-WELSHPOOL

of the Myuyrian Archaiology had each one son, anel all of these have become eminent in eonnection with the literature of their native eountry. 'laliesin Williams (1787-1847), son of Elward Williams, wrote poetry both in TVelsh and Tinglish; Ancurin Owen (1782-1851), son of Owen Pughe, among other works, published an important collection of the Jaws of Wales; while Owen Jones, son of Owen Jones, the Welsh Mrecemas, is still alive, and bas a high reputation as an areliitect, the Alhambra at Sydenlaam being a favourable specimen of his professional talents. The fourth period of Welsh literature is naturally richer in critical than in creative works. Among Welsh antiquaries may be mentioned the Rev. Edward Davies (1756-1831), author of Celtic Researches (1804) and Mylhology of the Druids (1809) : the Rev. Thomas Price (17871848), author of the Hanes Cymrou a Chenell y C?mmry (1836-1842), a History of Wales and of the Welsh nation from the earliest times to the death of Lewellya; an admirable work, comprehensive, critical, and literary (Price was an ardent and voluminous writer, contributing to no fewer than 15 periodicals at the same time): and the Rev. John Williams ab Ithel, rector of Llanymowddwy in Merioneth, and editor of the Cambrian Journal. In 1856, he edited, for the Welsh MS. Society, the Grammar of Edeyrn, the Golden-tongued, said to be composed about 1270; in 1S60, the Brut y Tywyrogion, or Cbronicle of the Princes; and in 1861 (et seq.), The Traditionary Annals of the Cymiry, reprinted from the Cambricu Journal. Williams is a rather credulons and uncritical writer, but a scholar of nudoubted merit. Probably the ablest Welsh scholar alive is Mr Thomas Stephens of Mertlyr-Tydvil, a man at once patriotic and lonest, enthusiastic and critical. To him, above all others, Eaglishmen desirons of obtaining some clear and credible knowledge of Welsh literature, ought to apply. His principal worlss are Studies on British Biography, and Litcrature of the Cymry in the Twelfth and following Conturies. The enlightened views of Stcphens have met with great acceptance among such English scholars as Inve paid attention to the subject of Welsh history and literature.

The poetry of the forrth period is not remarkiable. The principal names are-David Richards of Dolgelly (1751-1827), author of a sort of epic on the Trinity-a rery unsuitable subject for an epicand a paraphrase of the history of Joseph: Disvid Thomas of Caernarvon (1769 -152n), who was very successful at the Eisteddrods: David Owen of Gision (1781-1841), whose poems were collected and published under the title of Blodau Arfon (Flowers of Arvon) : the Rev. Daniel Evans, a collection of whose pieces was published at Llandovery in 1831, under the title of Gwinllan y Burdd (The Poet's Vineyard) : the Rev. Walter Davies (17611849), also great at Eisteduvods: the Fev. James Hughes (1779-1846): the Rev. William Rees of Liverpool, author of a spirited paraphrase of the Book of Job, \&c.: and the Rev. William Williams of Caernarvon, author of Grawn 1 wen (The Treasure of the Musc), 疋.

A good deal of indifferent Welsh prose lias been written during this period on religious subjects, owing to the spread of Methodism annong the Welsh, but it may profitably be overlooked by a foreigner ; and with a glance at the history of Welsh periodicals and societies, we close our brief survey of the subject. The first Welsh periodical, edited by the Rev. P. Williams and Evan Thomas, appearad about $\mathbf{1 7 7 0}$, and was entitled Yr Eurgraun Cymraey (The Welsh Treasure), but the first that attained any measnre of success was the Seren 133

Gomer (Star of Gomer), which was published at Swansea (1814). At mesent, it exists as a Welsh "quarterly" of evangelical views. In 1831, Y Irysorfa (The Treasury) was commenced, under Calvinistic anspices; in $18: 30, Y$ Diovgiwo (I'le Reformer), and Y"Dysgrdydil (The 'Teacher); 1833 - 1St1, Y Guladyaruer (The Patriot), more a literary than a theological magazine, and tolerably clever; Yr Maul (The Sun), a journal advocating the interests of the Established Church; and Y Traethodydd (The Essayist), commenced at Denling (1845), distinctly the best literary organ in Wales. It discusses, in the Welsh tonguc, tho poctry and philosophy of modern Europe. In 185\%, a new quarterly was started at luthyn, entitleal Taliesin, as a compauion and rival to The Mssayist. The leading Welsh nowspaper is the Amseran (Times).
A worls of great value, commenced in 1856 , is a Welsh Lincyclopredia, under the editorship of the Rev. John Purry of Bala, and eutitled Encyclopadia Cambrensis-I Gıoyddoniadur Cumıcig. Periodicals, exclusively devoted to Wclsh subjects, are the Cambrian Register (3 vols., 1796, 1799, and 1818); the Cambro-Briton anel Gcneral Cellic Repository (3 vols., 1819-1822) ; the Cambrian Quarterly Magazine (5 volse, 1889-1833); and thu Cambrian Journal, begun in 1854, and still going on. Another valuable periodical is the Archooologia Cambrensis, or 'Journal of the Cambrian Arehwo. logical Association,' begun in 1816 , and published quarterly.
The leading Welsh socictios, literary and antiquarian, that hare existed, or still exist, are the Cymmrodorion, established in London in 1751, which lived for 30 years; the Gwyneddigion, also established in London in 1771 , but extinct some 20 ycars ago; is second Cymmrodorion (1820-1843) ; The Socicty for the Publication of Ancient Welsh MSS. (founderl at Abergavenny, 1837) ; and the Cambrian lnstitute, founded in 1853.

The best work on Welsh literature, as already mentioned, is that of Mr Thomas Stephens of Merthyr-Tydvil, to which the reader is referred; as also to the various Welsh quarterlies, where almost every question in Welsh literature is copionsly discussed. A very excellent and complete survey of the subject is also to be found in Knight's English Cyclopadia, article 'VVelsh Language and Literature.'

WELSII ONION, or CIBOL (Allium fistulosum ; see Alliunt), a perennial plant, a mative of Siberia. It lias fistular leaves and no bulb. Its leaves appear very early in spring, and are then used in soups and salads. Its flavour more rescmbles that of garlic than of the onion. It has been long eultivated in kitchon-gardens in Britain, and perhaps deserves more attention than it receives, because it is ready for use before any similar plant in spring. The secil is sown in spriug or summer; leaves fit for use are produced in the following spring, and the bed continnes to be productive for a number of years. The name Welsh Onion is from the German W'alsch, and merely indicates a forcign origin.

WE'LSHPOOL (often vulgarly called Pool), a municipal and parliamentary borough of North Wales, in the county of Montgomery (of which it is considered the capital), 18_{1}^{1} miles westsoutliwest of Shrewslury. Powis Castle is an ancient edifiee, the oldest parts dating from the 12th c.; aml the park is mueh admired. Woollen mills, tanncrics, and malt-houses are in operation. Pop. of parliamentary borough, (1861) 500.1 ; (1867) 6000. W. is eonnected by a branch with the Shrewsbury and lIereford and other railways.

WENDS from the same root as to wend, to wander, and signifying the wandering or roving border tribes), the name given by the Germans to a branch of the Slares ($\mathrm{q} . \mathrm{r}$.) which, as early as the Gth c., occupied the north and east of Germany from the Elbe along the coast of the Baltic to the Vistula, and as far south as Bohemia. They were divided into several tribes, which were successively subdued by the Germans, and either extirpated or gradually Germanised and ahsorbed, although remnants of them are still here and there to be found.-In a narrower sense, the name of Wends is given to those remnants of the Slavic population of Lusatia who still speak the Wendic tongue, and preserve their peculiar manners and customs. They number about 150,000. A collection of Wendic songs was pulblished by Haupt and Smaler (2 vols., Grimma, 1843 -IS4). The Wends, like the other subject Slavic tribes, were, in early times, cruelly oppressed by their German masters ; in recent times, their lot has been more tolerable.

WE'NER, Lafe, the largest lake in the Scandinavian peninsula, and after the lakes Ladoga and Onega in Russia, the largest in Europe, is situated 150 miles west-sonth-west of Stockholm, and about 30 miles inland from the Cattegat. It is over 90 miles in length, and varies from 15 to $4 S$ miles in breadth, is 309 feet in greatest depth, and lies 150 feet above sea-level. Area, 2005 sq. miles. From the north shore a peninsula extends southward into the middle of the lake; and from the sonthern shore a peninsula extends northwarl to within about fifteen miles of the point of the northern peninsula; the portion of the lake lying to the west of thcse peninsulas receives the name of Dalbo Lake. Of the numerons rivers that feed the lake, the chief is the Klar, from the north, and its surplus waters are discharged into the Cattegat by the river Göta. It is connected by a canal with Lake Wetter, hy means of which, the Göta Canal, Lake Poxen, \&c., inland communication is established between the Cattegat and the Baltic Sea. The lake is rich in fish; it is often visited by sudden gusts of wind, and is in many places too shallow for navigation.

WE'NLOCK, a parliamentary and municipal Worough in the county of Salop, 12 miles southeast of Shrersblury. Pop. of parliamentary borough (1861), 21,590 . The principal huildings in Much Wenlock are the church, a building of considerable autiquity, bearing traces of Saxon and Norman architecture; and the town-hall, a venerable and interesting structure, decorated internally with elaborate oak carvings of the time of Charles I1. There are also a savings-bank, and a public library and reading-room. The extensive ruins of Weulock Abbey attord a rich treat to antiqnaries. The abbey was founded in the year 680, and was the parent church of Paisley Abbey, Scotland. The remains are now carefully preserved from further dilapidation by the present owner, J. Milnes Gaskell, Esq., M.P. for the borough, who has converted a portion into an occasional residence for bimself. W. is an ancient municipality, with separate quarter sessions, and is the first borough that acquired the right by charter of representation in parliament. The torn of Wenlock 1roper, or Much Wenlock, is but small; but the parliamentary borough comprises 12 parishes spreading over is large area, and includes the market-towns of Madeley, Broseley, and Ironbridge, and the populous district of Coalbrookdale, where important iron and brick and tile works are carried on. There are also extensive limestone quarries in the neighbourhood. There is a railway counecting W. with the Severn Valley Railway at Buildwas, and
another connected with the Shrewsbury and Hereford line. (Pop. 1S71-21,2S3.)

WENLOCK GROUP, an important series of rocks of Upper Silurian age, which are largely developed in the neighbourhood of Wenlock. The group is divided into an Upper and Lower series. The Upper, known as the Wenlock Limestone, consists of a considerable thickness, sometimes reaching 300 feet, of a gray suberystalline limestone, so hard that it has withstood the weathering which has removed the softer shales above and below it. It forms a ridge parallel to that of the Aymestry limestone, running for 10 miles north-east to south-west throngh the south-eastern portion of Shropshire. Sometimes it contains huge concretionary masses of crystalline carbonate of lime, locally named ' ballstones;' in other places, it becomes thin and flaggy. It abounds in fossils, especially in corals, crinoids, mollusca, and trilobites. The Lower Wenlock series consists of 1400 feet of Wenlock shale, and 150 feet of Woolhope limestone and grit. The Weulock shale is generally a dark gray, almost black argillaceous rock, often containing elliptical concretions of impure earthy limestone. It is worked in some places for flagstones and slates. The Woolhope limestone and grit consists of gray argillaceous nodular limestones resting on fine shales. In Denbighshire, it appears as a coarse grit, often of great thickness, and prodncing a very barren soil. The fossils of the Lower Wenlock beds are of a similar character to those of the Upper series.

WENS are encysted tumours, much more common on the scalp than in any other situation, though occasionally observed on the face, shoulders, \&c., and consisting of obstructed sebaceons glands, which enlarge by the intermal pressure of their accumulated secretions. The closed orifice may be often noticed in the form of a small clark point, and in that case the duct may sometimes be gradually enlarged by the gentle introduction of a probe or director, and its contents pressed out. By this treatment, they may, at all events, be kent from heing unsightly, and will sometimes shrivel up and disappear. If this treatment fail, and the patient finds the tumour so annoying that he insists upon its removal, it must be exterminatel with caustic or the knife. In consequence of the wellknown dangers (especially erysipelas) that frequently follow cutting operations of the scalp, the caustic treatmont is generally preferable. The most prominent part of the wen must be thoroughly cauterised with nitric acid or potash, which will lead to the formation and separation of a slongh, which will lay open the tumour, which may then be left to empty itself and wither, or may be emptied by pressure, and canterised within. As a general rule, weas are better left alone, unless they can be cmptied by simple pressure, as severe operations on them are frequently attended with dauger.

WE'NTLETRAP (Scalaria), a jenus of gasteropodons molluses, of the family Thrritellide. The shell is spiral, with many whorls, the whorls deeply divided, and not always close together, crossed by remarkably elevated ribs, the aperture round and rather small. The animal is furnished with a proboscis, and has the eyes placed on an external convexity, the foot short and oral. About one hundred species of this genus are known. Those which have the whorls close together are called False Wentletraps by sleell-collectors, those in which they are not contiguous are known as True Wentletraps. Of the former, some are found in northern seas, as Scalaria communis on the coasts of Britain and of contimental Europe, and S. Grenlandica on those of North America. S. Granlandica is particularly

WERDAU-WERE-WOLF.

abundant on the lanks of Newfoundland, and forms part of the fool of the cod. The true Wentletrapes are all matives of the seas of warm elimates. Some of them are very beatiful. I species fomed in the south-east of Asia, and known as the Preciots W. (s. metiosa), was once in stuch esteem amongst shell-colleetors, that an extrancly tine specimen is

Wentletrap (Scalaria pretiosa).
said to have been sold for 200 guineas; and an ordinary price was from three to five ponnds. This shell may now be purchased for a few shillings. It is from an inch and a half to two inches long, snowwhite, or pale Hesh-coloured, with eight separatelbut not widely scparated-whorls.

WERDDAU, a town of Saxony, on the river Pleisse, 40 miles directly south of Leipzig, and 49 by railway. l'op. S436, mostly cngaged in mannfacturing cloth and in yaru-spiuning.

WE'RDEN, a town of Cihenish Prussia, on the Iiuhr, 17 miles nurth-cast of 1 hisseldorf. Pop. (1S61) 5775 , employed in the manufacture of eloth, linen, and sill, and alum, and coal-mining.

WE RECILD (Ang.-Sax. ver, man; and gell, satisfaction), a composition by which, accorling to the custom of the Auglo-Saxons, Franks, and other Teutonic people, homicide and other heinous crimes against the person were expiatect. There was an cstablishad progressive rate of weregild for homicide, varying at differeut times and among different Teutonic tribes, from the weregild of the ccorl, or peasant, to that of the king. In the time of Tacitus, the weregild for homicide among the Germans was due to the relatives of the deeeased; that for other crimes one-half to the injured party, and one-half to the state. The sum paid to the relatives in case of homicide, also known as the man-wyrth, scems to have been looked on as the equivalent of the dead man's value. As the power of the commmity or king increasel, the exaction of retribution for the death of its members was consilercal to be the duty of the state as well as of the relatives, and the principle of division was applicd to homicide as well as minor crimes; each payment being a separate fud equivalent for the vilue of the deceased, the one to appease the feud, the other to make atonement to the state. This double weregili is recognised in the compensation for the deatly of a king lyy the laws of the Mercians and Northumbrians. In the days of Edward the Filder the weregild had become a much more complicates penalty, the comprosition for homicide consisting of four different pryments, two of which, the fight-wile, or penalty for a breach of the peace, and the weregild, went to the king as head of the state; while a sum ealled the halsfang was paid to the kindred to loosen the hand of the avenger of blood,
and the manbote was given to the overlord to eompensate him for the loss of a vassal. The graduated scales of weregid in use amone the different Teutonic nations throw much light on the gradations of socicty at the perion. It cloes not appear that amons the nations who recognisel the principle of weregild, the relatives were bound to accept a compensation for their kinsman's slaurliter, in place of inlwasing the death-fend by blood; the latter practice was often resorterl to insteal. It was ouly through the exertions of Archbishop, Thendure that Eafrel, the Cluristian king of the Angles of Northmubria, adopted the alternative of aecopting a weregild for his brother slain in battle by the Mereians, in place of demanding the hood of the slayer. A simmar priuciple to that of weregild for homicide serms to have been recognised by the Celtic nations, and there are traces of it in the Mosaic code.

WE'SE-WOL1 (Ang--Nax. wer, a man), a manwolf, a man who, either periodically or for a time, is transformed, or transforms limself into it wolf, beeoming plossessed of all the powers and appetites of a wolf in addition to his own, and being especially remarkable for his alppetite for human llesh. 'The belicf in the transformation of men into wolves or other heasts of prey has been very widely diffused; there is perhaps no people amony whom some evidence of j ts former prevalence does not exist. It is not yet extinct, even in Lurope. In many of the rural districts of Eranee, the loup-garou (the latter part of the word is a cormption of the 'leutonie wer-u*olf), is still an object of dread. 'l'his superstition lingers too among the comntry-people of Nurthern Europe, and a partienlar form of it flourishes vigoronsly among the Bulgarians, Slavonians, and Serbs, and even among the more intelligent inhabitants of Grece. See Vampire. Its Cetails vary in different countries and districts. The definition given above includes only the commonest and the lest marked of its ineidents. Probahly, it has not yet entirely disappeared in any cometry whose rural districts are infested with wolves or other wild animals; aml manifestations litted to suggest it may le occasionally observed in the mal-honses of most comentries. See Lxcistineria. The ammal whose slapre is taken, as alrealy stated, is not always, thongh usually, a wolf; it was prohally alway's the animal most formidable, or considered nost inimical to man. In Alyssinia, it is the liyana.

Uccasional notices of lycanthropy, as it is called, are found in classical writers; and lycanthropy, as there described, was the change of a man or woman into a wolf, so as to enable the man or woman to gratify an appetite for human tlesh, either ly magieal means, or through the julement of the gods, as a pumishment for some dire offence. Sometimes the transformation was into the shape of a dog or a lull. Ovil, in his Metamorphoses, tells the story of Lyeaon, king of Arcadia, who, when entertaining Jupiter at a banquet, resolved to test his omniscience by serving up to him a hash of human ilesh. The god, to punish him for this, transformed him into a wolf. Herodotus describes the Neuri as sorccers who had the power of taking once a year, for several days, the shape of wolves; and the same account of them is given ly l'omponius Mela. Pliny relates that, in Arcadia, cvery year, at the festival of Jupiter Lycreus, one of the family of Antens was chosen by lot, and eonulueted to the brink of the Arcadian Lake, into which, after having hung his garments uim a trce, he plunged, and was transformed into a wolf. Nine years after, if alive, he returned to his friends, looking vine year's older than when he disanplyeared. Some notices of lycanthropy are to be found in l'etronins; and

WERE-WOLF.

allusion to it is also made by Virgil in the Sth Eclogue. Marcellus Sidetes tells us of men who, every winter, were seized with the notion that they were dogs or wolves, and lived precisely like these animals, spending the night in lone cemeteries. This disorder attacked men chiefly in the beginuing of the year, and was usually at its height in February. It is worth while observing that the classical instances of lycanthropy mostly refer to Arcadia, a pastoral country, whose inhabitants suffered greatly from the ravages of wolves.

In Norway and Iceland, it used to be believed that there were men who were 'not of one skin.' Such men could take upon themselves other shapes than that of man, and the natures corresponding to the shapes which they assumed; they had the strength and other powers of the animal whose shape they bore, as well as their own. It was believed that the change of slape might be effected in one of three ways: simply by putting on a skin of the animal ; by the soul of the man deserting the human bodyleaving it for a time in a cataleptic state-and entering into a body borrowed or created for the purpose ; or, withont any actual change of form, by means of a charm, which made all belolders see the man under the shape of the animal whose part he was sustaining. The two former were the common mocles of transformation ; at any rate, the Sagas are full of illustrations of them; while illustrations of the third mode are comparatively rare. Nothing of the mau remained unchanged except his eyes; by these only could he be recognised. Odin had, and freely exereised, the power of varying his shane. When meu changed their shape to prey upou their kind, they always took the form of a wolf. It was believed that many had the power of thus transforming themselves; and great was the popnlar dread of were-wolves. Perhaps the best stories of were-wolves which are to be fonnd are contained in the Northern Sagas. Scarcely anywhere did the belief in them go so deep into the minds of the peoplle as among the northern races. In comnection with it, notice may he taken of what is called the 'Berserkr rage,' which appears to have been a peculiar form of mania. The Berserkr yelped like dogs, or wolves rushing into conflict, bit their shields with their teeth, and committed terrible atrocities while the paroxysms of their disease were upon them. Berserkr has been rentered 'bare-skinned'; uthers make it mean 'wolf-slin-coatcl' (why not 'bear-skin-coated ?').

Olans Magnus states that in Prussia, Lithuania, aud Livonia, thongh wolves were very mumerous and troublesome, the ravages of the were-wolves were regarded as much more serions. Every year at the feast of the Nativity at night, the were-wolves assembled in great numbers at appointed places, and proceeded to look out for human beings, or tame animals, upon which they could glut their appetites. If they fonnd an isolated house, they entered it, and devoured every human being and tame animal it contained; after which-shewing that they were not common wolves-they drank up all the beer or mead. Similar testimony with regard to Livonia is given by Bishop Majolns, who adds, that the transformation into the wolf-form continued for twelve days.

Instances of persons being changed into wolves by way of pumishment, were freely believed in the middle ages ; for example, St Patrick was believed to have changed Vereticus, king of Wales, into a wolf; and there was au illustrious Irish family which had incurred the curse of St Natalis, every member of which, male and female, according to the popular belief, had to take the shape of a wolf, and lise the life of a wolf for seven years.

In the 15th and 16 th centuries, the lelief in were-wolves was, thronghont the continent of Eurone, as general as the belief in witches, which it had then come to resemble in many respects. It gave rise to prosecutions alnost as frequent as those for Witchorait ($\mathrm{q} . \mathrm{v}$.), ancl these usually enderl in the confession of the accused, and his death by langing and hurning. It was ealculated to inspire eveu greater terror thau withcraft, since it was believerl that the were-wolves delighted in human flesh, and were constantly lying in wait for solitary travellers, and carrying off and eating little children. The were-wolves, like the witches, were now regarded as servants of the devil, from whom they got the power-often exercised by anointing with a salveof assuming the wolt's form ; and it was believed that great mumbers of them trooped together to the devil's Sablath. The stories of mutilations and other mishaps befalling them in the wolf-state, by which, when they resumed the human form, they were identified as were-wolves, exactly resemble the stories told of witches. In September 1573, we find a court of parliament sitting at Dole, in Frasiche-Comté, authorising the conutry-people to take their weapons, and lieat the wouds for a were-wolf, who had already-thas went the recital -'carried off' several little children, so that they had not since been heard of, and done injury to some horsemen, who kept him off only with great difficulty and danger to their persons.' Through. out Europe, the judicial cognizance of witcheraft and of lycanthropy eeased at the same tine. In Great Britain, where wolves had carly been exterminated, the were-wolf was only known ly rumours coming from abroad; but the belief that witches could transform themselves iuto eats and hares, which dicl prevail, was precisely analogons to the belief in were-wolves, especially in its later forms.

The later forms of this strange belief were obvionsly sophisticated. In its earlier shape, three things are to be noticed-the power ascribed to the were-wolf of transforming himself, either by changing the shape of his owa body, or projecting his slimit into another body; his appetite for human Hesh; his taking the shape and nature of the animal held to be most malicions against man-the wolf. As to the first of these, all that can here be done is to point to its comnection with the cloctrine of Transmigration ($\mathrm{q} . \mathrm{v}$.), and to add that it las been one of the commonest of human beliefs. As to the second, is it unlikely that in the early times in which the superstition had its origin, the appetite for human flesh may have been common enough to spreal terror through whole districts? It is, at least, not improbable that every race of men has had an experience of cannibalisw ; and it may well have been that, in oecasional cases, especially umder couditions of disease, the taste for human Hesh survived the general practice of using it. Modern Enrope affords many unquestionable examples of this taste existing and being indulged in the midst of comparative civilisation. There can be no donlt that some of the uniappy multitude pat to death as were-wolves had really murdered and caten the flesh of luman beings. But secret murders, maccompanied by cannibalism, would tent to sul? port a popular belief in cannibalism. We have not to go out of our own age for proofs of the existence of men afflicted with a homicidal tendeucy; and in times when the means of detecting crimes were very imperfect, it is conceivable that the murders committed by one or two such persons would spread terror, and give support to a superstitious theory throughout a large district. The Maréchal de Retz, who lived in the time of our Hemry VI., had caused
to be stolen and put to rleath by torture, under the most inhuman circumstances, many hundired chiliren -he confessed on his trial that he murdered 120 in a single year. (A memoir of Gilles de Laval, Maréchal de lietz, has beeu compiled from authentic documents by 1'. J. Lacroix, the eminent French antiruary.) Pcrhaps no society has ever been free from men simdarly constituter, and acting similarly according to their opportunities. As to the third point, if it be granted that a certain practice of, or general suspicion of cannibalism existed among a people who believed in the porver of transformation, it is easy to understand how the cannibal, getting his victims by stealth, was supposed to indulge his inhuman appetite under the guise of the animal most uniriendly to man. And the existence of a form of mania in which the madman liad the hallncination that he was changed into a wolf, yelled like a molf, lived in many respects like a wolf, was calculated strongly to confirm the belief in men-wolves. In conjunction with the mischief done by real wolves, this itself may be thought almost enough to have given origin to the superstition. The hallucination of having undergone trausformation into a wolf from time to time, seems to have been one of the commonest by which weak and crazed brains were possessed during the period when the hunt for werewolves was kept up. The literature of this subject, though abundant, is for the most part fragmentary, and mixed up with other matters. A good account of the subject will be found in The Book of Werewolves, by Sabine Baring-Gould (Lond. 1865).

Werner, "Abrahar Gottlieb, a celebrated mineralogist and gcolngist, born at Wehrau, on the Queiss, in Upper Lusatia, September $\mathbf{2 5}, 1750$. His father was director of a smelting-work, and le was thus led almost in childhood to the study of minemls. After some time spent at the Mineralogical Academy of Frcyberg, he went to Leipzig, Where he stulied natural history and jurisprudence. Here, at the age of 24 , he published his tirst work on mideralogy, a ruere pamphlet on the external characters of minerals. In 1775 , he was appointed Professor of Mineralogy, and curator of the Mineralogical Cabinct at Freyberg. In 1780, he published the first part of a translation of Cronstedt's Mineralogy, in his notes to which he gave the first outlines of the systen whicl bears his name. In 1791, he published a Theory of the Formation of Mctallic Veins, which was translated into English and French, and great!y extended his reputation. He was not, lowever, a voluminous anthor, but his views tere diffused loy his pupils, among whom were the most eminent German mineralogists of the time. In 1792, he wis appointed Councillor of Mines in Saxony. He died at Dresden in 1817.
W.'s influence was very great in the promotion both of mineralogy and of geology. In his mineralogical system, minerals were distinguished and arranged chiefly according to their external char. acters; and mineralogists have now learned to depend much more than he did on their cheraical constitution. In geolog; he did great service by arranging the facts already known, and guiding to proper methods of observation. His theory was extensivcly received for a time. It may be described as the opposite of the Huttonian theory, accounting for the present state of mineral substances in gencral by supposing them to have been dissolred or suspended in water; whilst the Huttonian theory ascribed almost ercrything to the action of fire. W.'s is sometimes called the Neptunian theory, whilst that of Hutton is styled the Plutonic. Modern geology recognises a certain measure of truth in both, but rejects them alike in that character of completeness or universality in which
they were once adrocated. W. classified rocks into Primary, Transition, and Secondary ; anl the terms are still sometimes used, although merely as convenient names, not as indicative of opinions concerning the rocks designated by them.

WERNIGERO'DE, a small walled town of l'russia, in the government of Magdeburg, and 43 miles south-west of the city of that name, stands at the northern base of the Brocken Monntain. Its castle, the residence of the Counts Stolzberg.Wernigcrode, comprises a library of 40,000 volnmes, and a zoological garden. It manufactures linen, cloth, and tobacco; and carries on copper-smelting and paper-making. Pol. 5572.

WE'SEL, a strongly fortified town of I'russia, on the Rhine, 3 ? miles north-north-west of Dusseldorf. The Phine, which here is joined by the Lippe, is divided by a fortifiec island, and crossed by a bridge of boats, protected on the left bank ly a fort. Of its churches, the Willibrod Kirche mas first opened in 1181. Cloth, hosiery, serge, leather, hats, tobacco, and linem are manufactured, and book-printing is carricd on. The citadel is defended by abont 4500 men. Pop. (1561), exclusise of garrison, 13,507 .

WE'SER (Lat. lisurgis), a river of Germany, formed out of the Werra, which rises in the Thur-inger-wald, and the Fulda, rising in the Fhöngebirge, on the frontiers of Prussia and Bavaria. These streams, after a northern course, unite at Münden, in Hanorer; and the united stream, the W., flows morth through Prussia, till, passing Bremen, it forms for about 40 miles the boundary between Oldenburg and Prussia, and enters the North Sea by a wide hut shallow estuary, much interrupted ly sand. Entire length, 260 miles. It commumicates with the Kllbe by a navigable canal; but though considerably improred in this respect, the W. is not of much use as a pavigable stream. The priscipal trading-town on its banks is Bremen.

WESLEY, Jons, the founder of the Methodists (q. r.), was born at Epworth, in Lincoloshire, England, 17th June 1703. The family name was rariously spelled Wesley and Westley, and is supposed to be the same with Wellesley, and to he derived from a place of that name near Wells. An Irish gentleman, Garrett Wellesler, Esq., of Dungannon, offered to make Charles Wesley, younger brother of Jolin, his heir, on condition of his settling in Ireland, believing him to be of his own family. The offer was not accepted; and the estate of Bir Wellesley went to another branch of the family, which was soon raised to the Irish pecrage, with the title of Earl of Mornington, and from which the Duke of Wellington and the Marquis of Wellesley sprung. The more immediate progenitors of John W. Were ministers of the church of England, of Puritan principles. Some of them sufferen for monconformity. Bartholomew Wesley, the great-grandfather of Jolin, was cjected from his living by the Act of Uniformity in 1662. Johm Wesley, the son of Bartholomew, was also deprived of his living, and was often fined, and several times imprisoned for preaching contrary to the law. Samuel Weslef, a son of this John Wesley, conformed to the Church of England, but opposed the schemes of James II., refusing to be bribed by offers of preferment, which, on account of his erudition and talents, it was thouglt worth while to make to him. He supported the cause of the Tierolution. in circumstances of personal danger, and in the beginning of the reign of William and Mary, was rewarded with the living of Eprrorth. He wrote an cpic poem entitlerl The Life of Christ, and other similar works. He harl a family of ninetcen children. His wife, Susannah

Annesley, the daughter of an ejected minister, was a woman of remarkable intelligence and fervent piety, who devoted herself very much to the education, and particularly the religious education, of leer children. His eldest son, Samuel, head-master of Tiverton school in Devonshire, was a Tory and High-Churchman, who strongly disapproved of the 'new faith' and peculiar course of his brothers John and Charles. John W. was the second son of Samuel, or the second who grew up to manhood. In lis infancy, he had a narrow escape from being lurned to death, when the parsonage of Epworth wis burned by some of the parishioners in their rage against their pastor for his faithful reproving of their rices. Another remarkable story is connected with the parsonage of Epworth, and with the early years of John W.'s life-the continued disturbance of the family, throughout a considerable time, by loud knoclings and other noises, which could not be accounted for, and which therefore were regarded as preternatural, although Mr Mesley and his household were less affected by the strange sisitation than perhaps its authors expected them to be, and persisted in residing in the parsonage, even making sport of 'Old Jeffery', their unseen visitant, who 'was plainly is Jacobite goblin, and seldom suffered Mr Wesley to pray for the king and the Prince of Wales without disturbing the family prayers. ${ }^{\text {? }}$

John W. ras a. very diligent and successful student. The religious history of his college life belongs to the history of Methoclism (q. v.). After much conscientious hesitation as to his motives and fitness for entering into the clerical profession, he was ordained deacon in 1725 , and in 17.6 he gradnated as M.A., and was elected fellow of Lincoln College, Oxford. In the same year he was appointed Greek lecturer and moderator of the classes. He became curate to his father at Wroote, a small living which Sanuel W. hek along with that of Epworth, and whilst serving herc, he was advanced to priest's orders in 1725 . He returned to Oxford, and along with his younger brother, Charles, entered into those religious associations from which Methodism sprang. The intercourse of the brothers Wesley at this time with William Law, the author of the Serious Call, had a great influence on their opinions and conduct. They walked two or three times a year from Oxford to visit Law at his house near London. In 1735 , John IV. was induced to go out to Georgia with General Oglethorpe, to preach to the Indians and colonists. His relgions views at this time were strongly tinctured with asceticism. His intercourse with Moravians, who were his fellow-passengers to America, and afterwards his fellow-labourers in the colony, tended to stimulate his religious zeal. He attempted to establish a discipline in the colony, very different from that of the Church of England at home, and failed in the attempt. The difficulties of his position were increased by an affair in which he became inrolved with the daughter of the chief magistrate of Saramnah, whom he wisled to marry; but on the advice of the Moravian bishop and elders, to whom he submitted the matter, be witldrew from her, and she very soon marrying another, W. refused her admission to the communion; upon which her husband raised an action at law, and W., linding Sarannah no suitable place for him, and, as he said, 'shaking the dust off his feet,' returned to England, having resided in America not quite two years. Witl religious zeal undiminished, he maintained an intimate connection with the Moravians in London. On 2tth May l73S, some months after his return to England, he attended a meeting of a society in Aldersgate Street, where, whilst one was reading Luther's preface to the Epistle to
the Iomans, he experienced such a change of religious feeling that, notwithstanding all his previous zeal, he ever afterwards regarded this as the time of his couversion. 'I felt my heart strangely warmed,' he says; 'I felt I did trust in Christ, Christ alone, for salvation; and an assurance was given me, that He had taken array my sins, even mine, and saved me from the law of sin and deatb.' Many who accept generally Wesley's views of conrersion, doubt his opinion as to the date of his own. After this, he visited the Moravian brethren at Herrnhut in Germany, made the acquaintance of Zinzendorf, and was introduced to the Prince Foyal of Prussia, afterwards Frederick the Great. Feturning to England, be became associated with his old college companion, Whitefield, and after his example began, in 1739 , the practice of open-air preaching. From this time, the history of Wesley's life becomes very much the history of Methodism. In 1740, he solemnly separated himself from the Moravians, finding that he differed from them on important points of doctrine; and in the same year the breach took place betreen Whitefield and him, which divided the Methodists into two sections, Calvinistic and Arminian. In the evangelistic work which he carried on in England, and in organising the Methorlist body, W. was indefatigable. He seldom travelled less than forty miles a day, usually on horseback, till near the close of his life, when he used a chaise. In 1752 , he married a widow with four children, but the marriage proved an unhappy one, and a separation ensued. His health gradually declined during the last three years of his life, and after a short illness, he died in London, 2d Mareh 1791, in the S8th year of his age. His remains lay in state for several days in his chapel in the City Foad, dressed in the sacerdotal robes which he usually wore, with a Bible in his hand. W. was a voluminous writer. His writings are chiefly polemical and religious. His style in the pulpit was fluent, clear, and argumentative, not impassioned Like Whitefield's; his countenance was mild and grave; and his manners agreeable, although he exercised a rery imperial domination over the preachers of the Methodist body: He was a man of great benerolence, and gave away all his living to the poor. Probably no man ever exerted so great an inflnence on the religious condition of the people of England as John W., and his intluence has extencled to the most remote parts of the world. -Charles Wesley, his younger brother, born at Epworth, 18th December 170S, was associated with him in the whole Methodist movement. Having studied at Christ Church, Oxford, and visited Georgia at the same time with his brother, he took an active part in the subsequent work in England. He was a clear and simple preacher, and a man of fervent piety, but of a disposition very far removed from asceticism. He is the author of a great number of hymns in use among the Nethodists; some of which, however, are among the best and most admired hymns in the English language, replcte with pious feeling, and of lyrical power and sweetness almost unsurjassed.- See The Works of the Rev. Jolen W'esley (16 vols., Lond. 1S09) ; Life of the Rev. Jome Wesley, A.M., by Dr Coke and Mr Moore (Lond. 1792); and The Life of Wesley, and the Rise and Progress of Mrethodism, by Southey (? vols., Lond. 1520 ; new edition in Bohn's Standard Library, Lond. 1S64).

WESSEL, JouANy, called also Gansfort, a predccessor of Luther, was born at Gröningen, 1419 , taught philosophy at Cologne, Louvain, Heidelberg, and Paris, and died (1489) in his native town. On account of his learning, he was called Lux Mundi (Light of the Morld) ; while his enemies, on account
of his opposition to the scholastic philosophy, termed lim Mayister Contradiclionum (Naster of Contrarlictions). In his doetrine of justification by faith, lie forestalled Luther who esteemed him very lighly: After his death, a large purtion of lis writings were burned as hereticil. Another portion appeared under the title of F'urago lierum Theoloficarum, of which Luther published an edition with a preface (Wittenb. 152.2), but the most complete erlition is that by Joh. Lyclius (Aunst. 1617). See Tllmanns Joh. Hessel., ein Jorgünger Luther's (Hamb. 1S34), and Biahring's Das Leben Joh. J'essel's (Bielel. J 546).

WE'SSEX. See Heptancir:

WHST, BenJamis, Anglo-Americall painter, was born at Springfield, Pennsylvania, October 10 , 173S, of Quaker parentage, and with lack of opportunity or encomragement, surprised his friends by his skill in drawing at the age of seven years, anil at uine painted a picture in water-colours, which, in some points, he cleclared in after-life, he had never surpassed. His first colours were made from leaves, berries, \&c., and his brushes stolen from a cat's tail. Thus self-tanght, at the age of 16 he practised portrait-painting in the villages near. Philadelphia, and painted for a cunsmith his first historical picture, 'The Death of Soerates.' While the Society of Friends were discussing the propriety of his becoming a painter, he shocked their principles still more by volunteering in a military expedition to search for the remains of Braddock's army. At 18 , he was painting portraits in I'hiladelphia, and Inter at New York, where, in 1760 , he was aided ly some generous merchants to go and pursue his studies in Italy. At liome, he was patronised by Lord Grantham, whose portrait he painted, became the friend of Nongs, and, as the first Americau artist ever seen io ltaly, attrancted much attention. He painted liss 'Cimon and Iphigenia, and ' Anselica and Medora, and was elected member of the Academies of Florence, Bologna, and l'arma. In 1763, visiting England on his way to America, he was indnced to remain in London, and in 1765 married Eliza Shewell, to whom he had been engaged before leaving Anverica. His 'Agrippina lanking with the ashes of Germanicus,' attracted the attention of George III., who was his steady friend and patron for forty years, during which time he sketched or printed 400 pretures. Ilis * Death of General Wolfe,' painted in the costume of the period, against the advice of all the most distinguished painters, effected a revolution in historic art. For the king, he painted a series of 28 religious pictures for Windsor Castle. Jis best-known works are "Christ healing the Sick,' "Death on the Pale Horse, and the ' Battle of La Haguc. In 1792 he suceeeded Sir Joshua Reynolds as the President of the Royal Academy, but declined the honour of linjghtlinod. Through his whole career, he was the generous friend, adviser, and patron of young artists. The Life and Studies of Benjamin 11'est were compiled from materials furnished by himself, by John Galt, in two parts (Lond. 1516 -1520); and a liograply of him is also given in Cunningham's Lires of Eminent british Painters. Ile died in London, darch 11, 1820 , and was buried with great pomp at St Paul's C'athedral. ITis wife died IS1\%. 'I'wo sons survived him.

WEST SRO' $11 W 1 C H$, a larre and rapidly increasing town of Sonth Staforishire, one of the most important towns in the great manufacturing and mining district known as 'T'lie Black Country,' five miles morth-west of Eirmingham. A few years ago, W. B. was a mere village on a barren heath, and it owes the rapidity of its growth mainly to the rich
mines of coal and iron in the vicinity, and to the industries to which these give rise. Very many canals, and thace railways, rma through the [arish. There are numerous churelies, schools, and other important establishments. There are very large glass-works and also sas-works in the town: much of the gas used in Birminglaun, as well as all that supplied to W. B., Wedneshury, and many other towns in the vieinity, loeing made lece. The manufactures of iron-wares of all kinds, as gno and pistol barrels, locks, swords, fire-irons, fenders, \&c., aml of all linils of hollow-wares, as kettles, samee1,ans, \&c., are among the great branches of industry. Pop. (1561) 41,774.

WE'STBURY, a small and ancient parliamentary horongh of Wiltshire, 20 miles north-west of Salisbury, and on the western declivity of the Salisbury L'lain. Its church, a tasteful edifice, was crected - the older parts at least-in the listh century. For the most part uninteresting in itself, W. stands in the midst of a locality interesting from its many antiquities. W. is a station on the Wiltshire and Somerset Railway. Pop. (lS6I) 6495, chicilly employed in agriculture, the mamufacture of woollen cloth of a sujerior quality, and the smelting of iron ore, some extensive mines of which have lately been discovered near the town, and which allord employment to many hands. $\quad(1571-p o p .6395$.

WE'STCHESTER, a beantiful town, in a rieh agricultural district of Pennsylvania, U. S., 23 miles west of Philadelphia, with elcgant resilences, a granite court-house, a white marble bank, S ehurelies, an academy, a state normal school, and 2 mblic libraries. Pop. (1860) 4757.

WE'STERN AUSTRALIA, a British colony, and the western section of the great island-continent of Australia, embraces the whole of that island west of the la9th meridian. Its extreme length from north-east to sonth-west is 1370 , its average hreadtl is 650 miles, and its area is estimated at 975,000 sq. miles. Pop. (1S63) 15,780, including military and convicts, and exclusive of aborigines. Revenue (1863), £71,70S; expenditure, £71,073. This colony was formed in 1829 , and in 1551 had only 5880° inhabitants; but within recent years a considerable number of emigrants have been sent out under the auspices of the Govermment Emigration Board. W. A. was formerly named Sucan River Scttement, from the river Swan, which joins the Indian Ocean, after watering a considerable district in the ex* treme sonth-west. Of the whole vast area, this dis. trict in the sonth-west is now, as formerly, the only portion inhabited. There, monntain-ranges rising in elevation from the coast inlaud, run paralle] with each other from south to north; the highest summit being 5000 fect above sea-level. The climate is agrecable and salulrions; the soil, both on the coast and in the interior, is light and dry. Bands of fertile land, where the sandal-wood and other trees grow abundantly, and which are suitalle for the culture of the vine, olive, and fig, occur in the middle districts of the country. livers, of which the Swan is the chief, abound; but are not of much use for navigation. Magnetic iron ore, lead, copper, and zinc ores are found in large quantities, and there is a band of coal extending over 600 miles. The number of vessels which entered in $186: 3$ was 91 ; tomnage, 48,055 : cleared, 87 ; tonnage, $46,219$. inplorts in 1863 (chiefly sugar, tea, tobacco, spirits, beer, soap, irommongery, and clothing of various kiuds) amounted to む157,137; exports (chiefly wool, timber, copper ore, horses, and whale oil), £l43,10G. The capital is Perth, and there are several smaller towns. The colony became (1849), at the request of the colonists, a settlement for convicts, and has much

benefited lyy their labour, a great extent of road, and many bridges, jetties, landing-places, and public buildings, having been constructed by them. It is now the only colony to which Convicts (q. r.) are sent.

WEST INNDIES are already described under Astilles ($\mathrm{q} . \mathrm{v}_{\mathrm{o}}$). See also the names of the islands themsclves_Jamaica, Cuba, Martinique, $\& c . ;$ as well as the Europeau countries that possess them-Great Britain, Spain, France, Netherlands, \&c.

WESTALACOTT, Sir Richard, R.A., an eminent sculptor, the son of liehard Westmacott, also a senptor in his day oi some little note, was born in Lonclon in 175. . His predilection for art was early manifested, aud was carefully cherished by his father. He received as a youth the best ellucation which London coukd then furnish, and in 1793 he proceeded to Rome to complete his studies. Here he became in some sort a pupil of the celebrated Canova, who shewed him mucb kindness and attentiub. His progress was rapid, and he distinguished himself by earrying off the highest prizes offered to the competition of the rising geniuses of the day, in particular a grold medal given by the Pope. In 1797, laving, meautime, in recognition of his talent and promise, been elected a member of the Academy of Florence, he returned to London, where, shortly after, he was marriel to a daughter of a Dr Wilkinson, then of sume medical celebrity. His success in his art was not for a moment doubtful, and very soon he found himself in full employment. In 1805 he was elected an Associate of the Royal Acalemy; in 1816 he was advanced to the full dignity of Academician; and in 1533 the University of Uxford recognised his eminence by conferring apon him the honorary degree of D.C.L. Two years afterwards, the honour of knighthood was bestowed on him. Previously, in 1S27, he had eucceeded Fiaxman as Professor of Soulpture at the Acadenoy, in which cajacity he continued to ofticiate till his death, which took place on September 1 , 1856. The works of sir Richard W. by which he is chietly known are public monumental statues, in some of which he haul much success. Of these it may suffice to mention his statues in Westminster Abley of Pitt, Fox, Perceral, and Addison, with the monuments to Sir Rall Abercromby and Lord Collingwood in St Panl's C'athedral. Wany of his works iu the antique classical manner, are also of exquisite beauty and finish.

WESTMACOTT, RICHARD. R.A., son of the foregoing, Was born in London in 1799. After being careinlly educated under his father in the art which might seem to run in the farmily blood, he was sent to lome in 1820 to prosecute his studies further. In Italy he passed six years; and alter his return to London, he gradually tron a repntation for himself as one of the ablest scmlptors of the day. Besides being eminent in his art, he has likewise made himself known as a man of cousiderable literary and general attaimment; and in 1837 he had the honour to be elected a Fellow of the liogal Society. In the year following, the Academy recognised his more special claims ly assuming him as an Associate; and in 1549 he attained the rank of Royal Academician. On the death of has father, he was appointed to succeed him in the I'rofessorship of Sculpture, a post which he is understood to fill with distinguished ability and acceptance.
WESTMEATH, an inland county of the province of Leinster, Ireland, bounded on the N. by the connties of Cavan and Meath, on the E. lyy
Meath, on the S. by the King's Connty, and on the Meath, on the S. by the King's Connty, and on the W. by Lioscommon. It lies hetween N. lat. $53^{\circ} \mathrm{S}$
and $53^{\circ} 45^{\prime}$; and $\pi{ }^{\circ}$. long. $6^{\circ} 54^{\prime}$ and $7^{\circ} 55^{\prime}$. Its greatest length, N. and S., is 35 miles, and the greatest breadth is 25 miles; the total area being 70 S miles, or $453,46 \mathrm{~S}$ acres, of which $365,21 \mathrm{~S}$ are arable, 56,392 uncultirated, SS03 in plantations, 628 in towns, and 22,427 under water. The population in 1851 was 111,109 ; in 1S61, 90,579 , of whom S3,749 were Catholics, 6334 Protestants of the Established Church, and the rest Protestants of other denominations. The surface is for the most part level, the hilly district, which is in the north of the county, not reaching at any point a higher elevation than 710 feet. Nevertheless, owing to the number of lakes, and the large extent of wood in some districts, the scenery is in many phaces highly picturesque. Geologically, W. belongs to the great central limestone series: yellow sandstone only occurring in tiro very limited districts. Of the numerous lakes which diversify the surface, one chain belongs to the basin of the Shanuon, which river, with its lalies, forms the Western boundary, anil separates W. from Roscom. mon; the other, towards the east, flows into the basin of the Boyne. The Shannon is navigable for steamboats throughout that portion of its course which hounds this county; and the iuland navigation is further provided for by the Royal Canal, which traverses IV. from east to west, and loy a brauch of the Grand Canal. The county is also traversed by the Midland and Great Western Railway: The climate is mild and less moist thau that of the more western midland counties. The soil is a deep heavy loam, producing herbage especially suited to the fattening of cattle, which are here largely fed; sheep also are fed, but not in the same proportion: as are also horses and pigs. There is comparatively little tillage, and almost the only cereal crop is oats. The total acreage under crops of all kinds in 1862 was 120,337 , of which only 914 were in wheat, 45,432 acres were in oats, 14,525 in potatoes, 393 in turnips, 46,850 in meadow aud clover. The quan. tity under other green crops than turnips and potatoes was small, and only 65 aces were in flax. On the other hand, the total number of cattle was 75,826 , of sheep 137,216 , of horses 14,001 , and of pigs 16,\%20. The net annual value of property under the Valuation Act is $£ 319,901$. W. is divided into twelve baronies. The chief towns are the assize town and capital, Mullingar ((1.v.), Moate, and Athlove, which is partly in the county of Roscommon. It returus three members to the imperial parliament, two for the county and one for the borough of Athlone. The constituency in 1563 numbered 3602. IV. anciently formed a portion of the kingdom of Meath ($\mathrm{q} \cdot \stackrel{1}{\mathrm{i}}$), but in the 34 th of Henry VIII., it was erected into a separate county, and at first included Loncford (q. v.) and part of the King's County (q. v.). Many antiquities of the Anglo-Norman period, and some of the Celtic, chietly tumuli and raths, are found in this interesting and picturesque county. (18,1 -pop. 78,416 .)

We'stainnstep. The City and Liberty of, now forms part of the English metropolis. It is bounded by T'emple Ear on the east, the Thames on the south, Chelsea and Kensington on the west. and Narylebone on the north. The early history of W. is that of the abber, still the most interesting of its public buildings. In early times, that part of W. which adjoins the Thames was surrounded by a branch of the river, so as to form an island called Thorney Island, from its being covered with brush. wood. Here, on the site of the 1 resent abbey, Sebert, king of the East Soxoms, is said, in the 7th c., to have built a church. It is sulpposed to lave been replaced by an abbey called Westminster, to distinguish it from the cathedral church of ${ }_{1+5} \mathrm{St}$

WESTMINSTER.

Paul's, called originally Lastminster. The first erlitice of stone erectell on the site was luilt by Edward the Confessor between 1055 and 1065. The Pyx Honse, a low aprartment, 110 feet long by 30 feet wide, vanlted and divided by a central range of eight plain pillars with simple eapitals, is nearly all that remains of it . The principal parts of the existing abbey were built loy Ifenry III. In 1220 he erected a ehapel dedicated to the Virgin, and a quarter of a century later lie took down the old abbey of the Confessor, and erected the existing choir and transepts, and the ehapel of Edward the Confessor. The remainder of the building was completed under the abbots, the western parts of the nave and aisles having been erected between 1340 and 1483 . The west front and its great window were the work of Richard III. and Henry VII. The latter pulled down the chapel to the Virgin, erected by Henry I1I. at the east end of the chureh, and built the chapel known as Hunry VII.'s chapel. This completed the interior of the abbey as it now stands; the ouly important auldition male since then having been the upper larts of the two western towers, which were the work of Sir Christopher Wren. The whole building forms a cross. Its extreme length, ineludiug Henry VII.'s chapel, is 511 feet; its width across the transepts is 203 feet. The width of the nave and aisles is 79 feet ; of the choir, 38 feet; and of Hebry VII.'s chapel, 70 feet. The height of the roof is 10^{2} feet, a loftivess unusual in English churches. The eastern front, which is the finest, is still obstructed by St Margaret's Church, and the western is almost entirely hid. It is the interior of the abbey, however, which las at all times exeited the most enthusiastic admiration. The harmony of its proportions, and the 'chm religions light' of the lofty and long-drawn aisles, leave on the mind impressions of grandeur and solemnity which chnrches of greater size fail to produce. The abbey was at one time the burying-place of the English lings, and it has become a national honour to be interreal within its walls. It is crowied with tombs and monuments. The chapel of Elward the Confessor, at the east end of the choir, contains his shrine erected by Henry IIl, the altar-tombs of Edward I., Henry III., Henry V., and Elward III. The canopy of that last mentioned deserves especial notice. It is consilered to be one of the greatest works in wood extant, and equal to anything in the best age of mellieval art. Against the altarscreen in this part of the church stand the two coronation ehairs. One, the kivg's chair, encloses the stone bronght by Edward I. from Scone, on which the Scoteh kings were crowned. The other, the consort's chair, was constructed for the coronation of Mary, wife of William III. Both are still used at coronations. Most of the English kings, from the time of Henry VII. down to that of George III., were buried in Henry VII.'s chapel, and there aecordingly are the tombs of Queen Elizabeth and Mary Qucen of Scots. The most remarlable monuments in other parts of the church are those in the east aisle of the southern transept, known as 'Poets' Corner,' where many of the most eminent British poets have been buriecl. There monuments are erected to Chaucer, Beaumnnt, Drayton, Cowley, Dryden, Milton, Gray, Prior, Shakspeare, 'Thomson, Gay, Goldsmith, Addison, and Ben Jonson. In the north transept are the monuments of Pitt, Fox, Chatham, Canning, and Wilberforce. Elsewhere are the monuments of the great engineers and inventors, Telford, Watt, and Stephenson.

South of the abbey are the Pyx House alreaty mentioned, the chapter-honse, the eloisters, the building occupied by W. School, formerly the
monks' dormitory, \&c. W. School was founcled by Queen Llizabeth for the education of 40 hoys known as Queen's scholars, who are prepared for the universities. Other persons send their sons to it, and it has long been one of the leading English public schools.

The eity of W. spravg up round the abbey, and the Enclish kings, in consequence of the jealonsy with which they regarded the privileges claimed by the citizens of Loudon, early took up their abode there. William Liufus, in 1097, erected a palace between the abbey and the Thames. Its chief apartment was a banqueting hall, with two rows of pillars down the middle. This hall becoming ruinous in the time of Ricliard II., he pulled it down, and erected in 139\%-1399, on the same site, and indeed on the same foundations, the great hall which still exists. It is 90 feet ligh, and 200 feet long, by 68 feet wide internally, and is roofed by 13 great ribs of timber, combined with a mechanical skill which has not been excelled in any work of the present age. The roof of Westminster Hall is the tinest specimen of the purely English art of forming a Gothic roof of wood: with the exception, perhaps, of the Mall of Justice at Pardua, it is the largest roof in Europe unsupported ly pillars. The law courts were establisher at the hall in 1224, and they contimue to be held in buikings which rest on the northera side of the building, and men into it by side-doors. These law-courts, as an excrescence and out of place, are to be removed to the new buildings ahont to be erected near Lincoln's Inn Fielels.
The old Houses of Parliament which adjoined the hall, and like it lay between the abbey and the Thames, were burnt to the ground in 1834. It was then determined to erect i new building on the same site, but on a much grander scale. The designs of Sir Charles Barry for 'the New Palace of Westminster' were selected as the best, and tho work was hegun in 1840 . The building, now completell, or nearly so, is the most magnificent erected in this country for many centuries. It may be ronghly said to form a parallelogram, 900 feet long by 300 feet in width. The principal rooms are the Honse of Lords and the House of Commons, which occupy the eentre of the building, and run on the line of its greatest length. They are separated by an 'Octagon Hall,' with a diameter of 70 feet between the walls. From this hall, one eorridor runs north to the House of Commons, and another sonth to the House of Lords, beyond which are the royal apartments at the extreme sonth of the building. The entrance to the 'Octagon Hall' is by a passage known as St Stephen's Hall, which communicates ly flights of steps with an entranee in the east front, and also with Westminster Hall, which, included in the new building, forms its northern vestibule. The state entrance of the queen is at the south-western extremity, and is, of comrse, in direct commumication with the royal apartments. The building is surmounted by lofty spires and towers. In the eentre, above the Octagon Hall, rises the central tower, 300 feet high. At eaeh corner there are towers; at the south-west the Victoria Tower, 346 feet high ; at the north-west the clock-tower, surmounted by a belfry spire 320 feet high. The clock has four faces, each 30 feet in diameter; and it strikes the hours on a bell weighing 9 tons, and known as Big Ben. The appearance of the eastern front is still marred by the buildings occupied as law courts, which will, however, be removed on the completion of the new Palace of Justice, near Lincoln's Imı; and then it is believed that the picturesque ontline of the palace, seen from the north-east, will for the first time prove all the merit of the architect's designs. Professional critics have

WESTMORELAND-WESTPHALLA.

stated many objections to the building, the soundest of which, perhaps, is that it stands too low. The chief subject of regret in connection with it is, that the stone of which it was built, a magnesian limestone from Yorkshire, has begun rapidly to decay, and that it will, in consequence, he impossible to protect the rich ornaments of the exterior from the influence of the atmosphere. The internal decorations, frescoes, and statues are deservedly admired. The House of Pcers, 97 feet long, 45 feet wide, and 45 feet high, is rich with carved work gilt, and stained glass. The throne stands at the southern end. On the northern wall, on compartments, are six frescoes, representing (1) the Baptism of Ethelbert (by Dyce); (2) Edward III. conferring the order of the Garter on the Black Prince (by Cope) ; (3) Heary, Prince of Wales, committed to prison for assaulting Judge Gascoigne (by Cope); (4) the Spirit of Religion (by Horsley); (5) the Spirit of Chivalry (by Maclise); (6) the Spirit of Justice (hy Maclise). There are other frescoes and many statues in different parts of the building, all worthy of notice, which we cannot afford to enumerate.-See Dedication of Westminster Abbey, hy Dean Stanley; The Memorials of Westminster, by Rev. Mackenzie E. C. Walcott (1551).

TVESTMORELAND, a county io the north-west of England, bounded on the E. by Yorkshire, on the S . and W . by Laucashire, aud on the N . by Cumberland and Durham. Area, 455,432 acres, of which 213,576 acres are wider crop-22,130 acres heing corn crops, 11,191 green crops, 15,159 clover and other grasses, 159,931 permanent pasture (exclusive of hill) ; number of cattle, 55,325 ; of sheep, 224,664 . Pop. (1S61) 60,S17. The surface is almost wholly mountainous, the chief summit heing Helvellyn (3055 feet), partly on the western border, partly in Cumberland. The other more important summits are Loughrigg Fell, Bowfell, Crossfell, and High Strcet and Langdale Pikes. Lakes remarkable for their leanty occur. The chief are Windermere (q. v.), partly belooging to Lancashire ; and Cllswater (q. v.), betreen W. and Cumberlavd. Moorlands are numerous and extensive; but along the courses of the Kent in the south, and the Eiten in the north-the principal streams-there are tracts of fertile land. The climate is mild and moist, often with much snow in winter, the deep wreaths of which freqnently prove fatal to travellers on the monntain tracks. The soil is mostly a dry gravelly mould, favourable to the culture of turnips, of which great crops are produced. Rich pasture-lands abound, and cattle, mostly of a large size, are extensively reared. The county town is Appleby, and the other chief tomns are Anbleside, Kendal, and Kirkby-Lonsdale. The county returns two members to parliament. (1871-pop. 65,005.)

WESTPHA'LIA, a province of Prussia, lies between Holland, Hanover, Brmnswick, Hesse, Nassau, and the Rhine Province. Its area is 7758 English sq. m., with a population (December 1864) of $1,666,581$, who, with the exception of 16,557 Jews, are of the purest German descent. Of the population, 900,273 are Catholics, and 733,584 Protestants. W. is divitled into three districts-Münster in the north-west, Minden in the north-east, and Arnsberg in the south. The east of the province presents vast plains covered with grain, while the north-west exhibits an uninterruptedly flat expanse of uncultivated land. The climate is generally temperate. The chief rivers are the Weser (q. r.), the Ens, the Lippe, and the Roër or Ruhr, none of which are navigable in Westphalia. The products are, besides grain, excellent Hax, potatoes, wood, iron, copper, lead, salt, \&c. ; and the chief
of the industrial products are iron, and articles of iron, steel, and coppier from the forges of Arnshercr ; while manufacturing industry embraces flax-spinning and linen-weaving in Minden, and extensive production of woollen articles, stockings, and ribbons of esteemed quality. The exports consist of these products, and of butcher ment, especially hams. The capital of the proviace, Minster (q. v.), possesses a noiversity, and is the seat of the supreme Catholic and Protestant religions authorities of the provicce.-W. derives its name from the West-falen, a section of the great Saxon people, who migrated hither from the banks of the Elbe soon after the Christian era; and after the subjugation of the Saxons by Charlemagne, the deposed leader, Wittekind, was allowed to remain Duke of the Engern and IF est-fulen. At this time, the country called W. (and occasionally denominated Sauerland) comprised all Germany between the Weser, Phine, and Ems : and soon after, it was subjngated by the dukes of Lower Saxony, and held by them till, on the rebellion of Henry the Lion in 1179, the electoral archbishop of Cologne extended his sway over it. It then becarme one of the circles of the empire, and belonged to the Cologne electorate till 1802, when most of it was given to the HesseDarmstadt family. In 1807 arose the kingdom of Westiplatic, which, besides a portion of W., also inclnded Electoral Hesse, Hanover, Brmswick, and portions of Upper Saxony. This kingdom, erected ly Napoleon as a prehminary to its incorporation into France, was given to his joungest brother, Jerome, who made Cassel his capital, and, despite the large French garrisons with which the country was hurdened, and the extensive contributions in men and money which it was forced to pay to Napoleon, succeeded, by the establishment of the Corle Napoleon, and by shewing in various other ways his strong desire to promote the welfare of his new subjects, in acquiring their esteem. But the oppressive conscriptions and taxes for the lehoof of the French army and treasury gradually increased in amount, aud excited such resentinent, that Jerome's life was several times threatened. The king rereatedly remonstrated with Napoleon, but without the slightest effect; and despite his elforts, the 'continental system' was introrluced into his states. In 1813, Jerome was chased from Cassel by the Russians; and though he returued for a few days, the defeat of Leipig forced him to take shelter in France. By the treaty of Fienna, the states which had been joined to W. to form the kingdom, were restored to their former 'lossessors, and W. itself, with the exception of a portion which had been annexed to Hesse-Darmstadt, was united to Prussia.

Westrhalia, Treaty of, also known as the Treaty of Nuinster, was concluded at Münster and Osnabruck (towns in the circle of Westrphalia) in 1648, and in putting an end to the Thirty Jears' War (q. v.), restored tranquillity to Germany. established a new system of political equilibrium in Europe, and became the basis of all subsequent treaties down till the French Pevolution. The minor states of Germany had long desired a cessation of hostilities; and as carly as 163S, plenipotentiaries from France, Sweden, and the Empire had assembled at Hamburg; but it was not till several years after. that all parties agreed to Münster and Osnabruck as the places, and to March 26,1642 , as the time, of meeting of the congresses. Ferdinand, however, was very loath to commit himself to a detinite negotiation till the success of his arms, the hope of succour from Spain, or a change in the French policy, should give him less the position of a beaten opponent willing to accept almost any terms; and he accordiagly temporised

WEST POINT-WETSTEIN.

from time to tine till his hoples of succour had vanished. In 1644, the congresses oprened; the two places of meeting having been chosea to awoil any rivalry between France and Sweden for supromacy, to prevent any collision hutweca the swedish representatives and the pope, and to sequrate the Catholics from the 1rrutestants. The representatives of France, the Empire, Spain, and the Catholics of Germiny, met at Aiunster muler the mediation of the pope, and those of swelcn, the Empire, and the l'rotestants of Germany uader the mediation of the king of Denmark; the representatives of Spain, lortugal, the United Provinces, Savoy, Tuseany, Lorraule, Mantua, and Switzerland being also present; so that this congress incladed all the great Europen powers except Britain, anl almost alt the minor powers. As the conflict was still carried on with undiminished rigour, the incliuation of fortune to one sille was the signal for excessive demands, which were met on the other side ly evasire proposals; and it was not till Torstensoln's decisive campaign of $1641-1645$ that negotiations commenced in carnest, and the representatives mate sprecitic moplositions. The successes of Turenue and Wraugel in Sonthern Germany, and the capture of Prasue by the Swedes muder Königswark in July 1648, at length orercame all the emperor's dilatoriness, and, the Osnalruck representatives having arrived at Münster a fuw days before, the treaty was finally signed at Munster, 24th October 16 15 . Its terms, as regarls the Germanic Empire, were as follows: The sovereignty aud independence of the different states of the empire were fully reconnized, and liberty was given them to contract any alliances with each other, or with foreign powers. if these were not against the emperor or the empire; all religious persecution in Germany was forbididen; the treaty of Passau and the religions peace of 1555 were conlirmed; and with respect to the secularisation of ecelesiastical benefices, everything was to reuain in Austria as it was in 1624 (hince called the normal year), and in the lalatinate, Baden, and Wurtemberg as it was in 1615; the power of putting uuler the ban of the empire was ouly to be exercised with consent of the diet; and the Reformed were puit on a footiug of equality as to privileges with the Lutherans. The territorial chauges were as follows: the Lower Palatinate was restored to the eldest son of the uufortunate 'Winter King' (Frelerick V.. Elector Palatine), and an cightli electorate was created in his farour, wit the Upper P'alatinate and Clanu were given to Lavaria, on condition that, should the two states become united, one electorate was to be abolished (as bappened in 17Ti, see Bivaria); part of Alsace was celed to France; Upper Pomerania, lingen with Stettin, Giartz, Damme, Goluau, the isle of Wollin, Peine, Sch weine, and Divenau in Lower Pomerania, Wismar, the sseularised archbishopric of Bremen as a duchy, and the lishopric of Cordun as a principality, were obtained lyy sweden as ficfs of the empire, with three deliberative roiees in the diet, and an indemnification of $5,000,000$ crowns to be pail hy the "mpire ; Brandenburg obtained, as compensation for its cessions in Pomerania, the secularisel archlishopric of Magileburg as a duchy, nud the lishoprics of Halberstalt, Ninden, and Camin; Hanover and Aecklenburg were conplensated for their share in these cessions ly secularised church lands ; and Hesse-Cassel obtainel the rich abbaey of IIirschfeld, with 600,000 thalers. The imdependence of the United Irovinces was recognized by Spain, and that of Switzerland by the Empire. The pope's agent, Fabio Chigi (afterwards l'ope Alexander VII.), protestel vigoronsly against the liberal alienation of
the possessions of the Church, and withdrew; and the king of Demmark's medintion being stopped by his war with swelen in 164t, the treaty was cumcluderl mukler the sole mediation of the Republic of Verice, and France and sweden became guarantecs for its expention. France, Sweden, and the Protestants were the only gaiuers ly this treaty. whech, by weakening the great central authority of the "mpire, destroyed its mity, allowel France, as one of the guarantees, a pretext for continual interfereuce with its internal allairs, and gave the coup degrace to the independence of the remaining frec cities of the cimpire.

WEST POINT, site of the Unitel States Military Acadmy, and of a fortress erceted during the War of lnulejendence, on the right bank of the Mudson River, 52 miles north of New York. The Military Acalemy is ou a plain, 160 to 180 fect above the river, surrounded by the bold scenery of one of the finest river-phasses in the world. The forts and a river chain wore taken by the British in 1-i7, lout abandonel after Purgoyne's surrender, anul stronger forts were built, which Cieneral Arnolid larysuned to betray-a plot foiled by the arrest of Jajor André. The ueademy was estallished in 1SUN, for 40 cadet artillerists and 10 encincers. The number was incereased, in 1sus, to i56; in 1S12, to 2.0. It is governed by a board of five visitors and a stafl of 41 professors anl teachers. The elncation is frec-each prulil engaging to serve cight years. Each member of congress has the right to nominate one callet from his district, and ten are appointel ly the president. The course of study and discipliue is four years: (1) mathematics, engineering, fencing, bayonet-exercise, school of the soldier; (2) mathematics, lrench, fencing, tactics of infantry, artillery, mul cavalry ; (3) natural philosophy, chemistry, drawiug, riding, tactics; (ψ) military and civil enginecriug, mineralogy, geology, chemistry, law, literature, practical military enginecring, tactics.

WEST PORT, a small seamme town of Comnanglit, Ireland, county Mayo, stands in a pretty valley at the month of a small stream that falls into Clew 13ay, about 35 miles north-north-west of Galway: Formerly W, was supported principally by lineu manufactures; but it is now kinown mostly for its trade in corn and provisions, and for its facilitics for sea-bathing. In the immediate vicinity is the licek, a monutain 2510 feet high, from which magnificent views of the coast and neighbourhoord may be obtained. In 1865,171 resscls of 18,978 tons cutered and cleared the port. Top. (1501) 3519.
west prussha. See Prussia, frovince of.
WETSTEIN, the name of a Swiss family illustrions for the talents, and learning of jts members, originally from Kyburg, in the canton of Zurich. Anoong the mure noteworthy are(1.) Join. Jakib W., born at Tasel in 1Jut, who Was first in the service of the Fenetian state. In 16:0, he becane a member of the supreme Council of his native town; represented switzerland at the l'eace of Trestphalia (164S) : was raisecl to the rank of a noble in 1653, and died in 166 G . (2.) Jour Livd. W., son of the preceling, was born at Bascl in 1614, and died there in 165:3, prufessor of theology. Ile was a great opponent of the introlnction of the Formula Constusus, and assistel Snicer in drawing up his Thessaurues Ecclesi-usticus.-(3.) Joir. Itrd. IW., son of the preceding, born at Bascl in 1647, and died there in 1711; also professor of theology, favourally known as an early editor of Origen- - But the ninost distinguished member of the family is Join. Jak.

WETTE-WEXFORD.

W., son of Joh. Rind. W., the younger, who was born at Basel, 5th March 1693. After a thorough study of the classics, Hebrew, 1 hilosophy, ant mathematics, he was made a Ph.D. at the age of 16. Four years later, he became a minister, and gave himself up to the study of the New 'Testament. In 1717, Ine began to give lessons in theolory at the university of Basel, aud continned to do so until 1730, when (being suspectel of Socinianism) he was forced to leave Switzerland. He sought an asylum in Holland, where the Remonstrants appointed him professor of theology at Amsterdam in 1733. He died there 23d Nlarch 1754. W.'s great work is his edition of the New Testament, with prolegomena, a collection of warions readings, and Latin notes (2 vols., Amst. 1751-1752). Its publication marks an eproch in the listory of New Testament criticism. Semler reprinted the prolegomena with additions (Halle, 176) .

Wette, De. See De Wette.

WETTER, LaKe, after Lake Wener (q. r.), the largest lake in Sweden. lies in Gothland, abont $\because 5$ miles sonth-east of Lake Wener in direct line. It is 70 miles long, 13 uniles in average breadth, has an area of $550 \mathrm{sq} . \mathrm{m}$., is 370 feet in greatest depth, and is 300 feet above the level of the Baltic. It receives abont 90 small tributaries, thongh its waters have only oneoutlet, the Motala Rirer, which, flowing eastward, maintains the commmication of the lake with the Baltic. Its waters are clear, and of a heautiful green colour, and it is surromaded by lofty romautic shores, almost unbroken ly bays. It is remarkable for an irregnlar alternation of risings and fallings, and for an occasional undulation, which is so rapid and violent as to break the thick sheet of ice with which it is covered in winter. An intricate chain of small lakes, continued westward lyy the ciüta Canal, connects Lake W. with Lake Wener, aud thus with the Cattegat. Lake W. contains few islands, and of these the chief is Wisingsï, $1 \frac{1}{2}$ miles long by $\frac{1}{4}$ mile broad.

WE'TTERHORN (Peak of Tempests), a lofty mountain of the Beruese Oberland. Switzerland, on the east side of the Grindelwak, and abont 10 miles south-east of the Lake of Brienz. From the path by which it is ascended, it rises in one rast precipice of alpine limestone, seeming to threaten the traveller. Height variously stated at 12,200 feet aud 14,105 feet.

WETZLAR, a small town of Whenish Prussia, charmingly situated on the Lahw, 40 miles north of Frankfurt-on-the-Maine. Part of its old cathedral is said to date from the 11 th century. W. is notable as the scene of the Sorrows of JJerther. Yop. 5500.

WE'IFORD, a maritime connty of the province of Leinster, Ireland, is bounded on the \mathbf{N}. by the county of Wicklow, on the E. by the English Chanuel, on the S. by the Atlantic, and ou the W. by the connties of Waterford, Kilkenny, and Carlow. Its greatest lensth north and south is 55 miles, aud its greatest brcalth east and west is 34 miles. The total area comprises 900 sq . m., or 576,616 acres, of which 510,502 are arable, 45,501 mencultivated, 14,305 in plantations, 2392 in towns, anel $; 665$ under water. The pop. in 1561 was $143, S 15$, of whom 130,103 were Roman Catholics, 12,759 P'rotestants of the Established Church, and the rest Protestants of other denominations. The coast-line of W., which extends from Kilmichael Point to the estuary of the Suir, Waterford Harhour, is irregular, and very dangerous for shipping. From the abovenamed Point to Wexford Harhpur there is no opening for navigation; and as Wexford Harbour, besides being intricate and dangerons, is also
obstructed by a bar; it offers little security in boisterons weather. The coast from the southern headlaad of Wexford Harbour, Rosslare Point, to the month of the Suir, presents a succession of bays and headlands. The headland called Carnsore Poiut is the south-eastern extremity of Yreland. Parallel witl the northern const-line, at a distance of a few miles, is a rance of sandluanks; and the sonthern shores are beset hy outlying rocks and islets, which, although somewhat gnarded by light-bouses and light-ships, frequently prove fatal to shipping. The greater part of the surface is tolerably level, but some detached hills rise to considerable elevation. The mountains of the border are much mor elevated, the hichest point of the Blackstairs being 2409 feet ; and of Mount Leinster, 2610. There are few lakes, and these of small size. The principal river is the Slaney, which for some distance is the boundary between W. aud Carlow, but enters W. near Newtownharry, Whence it flows by Enniscorthy into the sea in Wexford Harbour. In its geological structure, W. bclongs to the eastern clay-slate tract, which stretches in a south-westerly direction from the north of Wicklow to the Atlantic, and which extends across the level districts as far as the granite range separating W. from Carlow. Granite is found in the sonth-east of the county; and in some of the detached hills, as are also beds of greenstone. Silver was formerly raised near a place called Clonmines, where traces of an ancient mine are still seen, and galena has been found in the same place. Copper ore is found at a place called Kerlogue, near H^{r}, and plnmbago and asbestos have been discovered near Enniscorthy; but none of these minerals has been raised with profit. The climate is said to be singularly temperate, and the district, as leing sheltered by its mountain border, is considered more suitable, in point of temperature, for agriculture than the adjacent counties of Carlow and Kilkenay, although inferior in fertility of soil. The total acreage umder crops, in 1562. Was 205,S26: of which 21,881 was under wheat: 65,599 oats; 39,816 barley; 5911 beans; 24,28 1 potatoes; 18,370 turnips; 2107 mangold wurzel ; 55,404 meadow and clover, and the rest minor crops; only 68 acres leing under flax. The aunual ralue of property iu W., minder the Taluation Act, is $£ 371,952$. There are but ferv and inconsiderable manufactures, and the trade is chiefly in the export of agricultural produce, especially barley; butter, cattle, pigs, poultry, and eggs are also exported in large quantities. $\mathrm{II}^{\text {r }}$. is divided into nine baronies. The principal torns are Wexford (q.v.), Enniscorthy, New lioss, and Gorey; Newtownbarry and Taghmon also deserve to be noticed, as each haring a population of about 1000 ; and Duncannon, although now very inconsiderable in size, for the sake of its ancient fort and interesting historical associations. The maritime position of W. laid it open early to the incursions of the Danes, to whom the name Wexford, or Weisford, is traced by antiquaries. It was the first landingjlace of the English in the invasion, and formed part of the tract granted by MacMurrough to the English adventurers whose assistance he had invoked. By the marriage of Strongbow with Eva, MacMurrough's daughter, it came into his hands; and after tbe partition of bis lands among his daughters at his death. W. underwent many changes of masters. During the civil wars which followed 1641, W. was the scene of frequent contests; and in the more recent insurrection of 1795 , it formed the theatre of the only formidable conticts of the peasantry with the regular troops. There are numerous relics of antiquity, Celtic as well as Anglo-Norman, in almost every part of the county. Upwards of a hundred castles are still traceable, and many ecclesiastical

WEXFORD-WHALE

remains, of whieh the monasteries of Dubbrody, Tintern, lioss, and some others are not unworthy of the hest days of medieval architecture. W. returns four members to parlianent, two for the county, one for the borongl of Wexford, and one for that of New lios. (15:1-pop. 132, 506.)

WEXLOLID, capital of the comuty of that name, a seaport, and parliameatiry and municipal lurgh, is situated at the month of the river Slancy; 7t miles snuth from Dublin, with which it commmnicates by the Wicklow, Wexforl, and Waterforl liailway, complete as far as Ennis. cortly: The pop. in 1861 was 12,015 , of whom 11,573 were Lioman Catbolies, 649 Protestants of the L'stallished Churel, and the rest Protestants of other denominations. The town is sitnated on the sonth-western shore of the estuary of the Slaney, which is known as Wexford Harbour, and along which the quay extends nearly 1000 yards, forming a spacions and not inelegant terrace. Behind this, the town extends in two nearly parallel streets. 'There are two Protestant, and three Catholie churches. Of the latter, two are modera and handsome stmetures. One of the former, St Selsker's, is ancient, part of its walls dating from the English invasion. There are also a Preslyyterian, a Methodist, and a Quaker meeting-louse; a convent of Franciscau Friars, a uunnery, a Roman Catholic college, and National, Christian Brothers', and conventnal sehools. Pesides the union workhonse, there are also an infirmary and a fever hospital. The only manufactures of any importance pursued are those of distillation and the grinding of eorn ; the ehief industry of the town being in connection with the export trade of the comnty, already described. The position of W. for export trade, favomable in itself, is much marred by the shallowness aud intricate character of the channel of the Slaney, which has the further disadvantage of being olsstructed ly a bar. Great efforts have leen made for its improvement, a patent slip, and dock lave been constrneted, and an active shipping-trade is carried on. The W. fisheries also have long been reekonel among the most valuable on the castern coast. The town is extremely aucient, and was oceupiel by the Danes as one of their strongest settlements. From the time of the invasion, it became an English stroughold against the native population. During the civil wars of 1641, it was occupied by the confederated Catholies, but was taken by Cromwell in 1644. The insurgents of 1708 also had possession of it for a short time. W. returns one member to the imperial parliament. Its municipal affairs are managed by a corporation, with a revenue from borough rates of $£ 1260$.

WEY'MOUTH, a tomuship of Massachusetts, U. S., on Boston Harbour, twelve miles south-southeast of Boston, on South Shore Railway, containing the fishing and coasting village of Weymouth Landing, and the manufacturing villages of East Weymouth and Sonth Weymouth, with large factories of nails, boots and sloes, \&e. Pop. in 1860, 7742.
WEYMOUTH-AND-MELCOMBE-REG1S, senport, a fashionable watering-place, and a municipal and parliamentary horough of Dorsetshire, on a bend of the coast facing the soutl-east, and at the month of the river Wey, three miles north of the isle of Portland, and eight milus south of Dorchester by railway, seven in a straight line. A projecting point, called the Nothe, separates the two quarters-the old town of Weymouth lying to the south of it, the modern town, Meleombe-Regis, extending to the north, and facing the sea. The two quarters communicate by means of a bridge with a swing in the midulle, to permit the passage of ships. The old town is uninteresting in appear-
ance; Melcombe-Regis, clegantly luilt, stands on i narrow peninsula, with the sea on the east, and an estuary on the west side. Its chief features are the sea-terrace and usplanade, the latter adorned with a statue of George III., who largely patronised Melcombe. The larbour has fourteen feet of water at full tide, and in the bay there is gool anchorage in seven or cight fathoms. Portland Harbour, now in process of completion, will be a source of great trade to the town. W.-and-MI. is the seat of steantraflic to the Channel lslands. Sbip-building, rope and sail making, and the export of Portland stone and lioman cement, employ the great mass of the inhahitants. The tuwu is counceted with the Great W'estern and London and Sonth-western Railways, and there is one in course of construetion to conneet it with Portland Isk. I'op. (1861) 11,383 (1871-13,25才).

WIIALE, the popular name of the larger ectaceans, 1 articularily of all those belonging to the families Bulanidee and Physeteride or Catodontidce. The latter family has already been noticed in the article Cacholot, and some of the specics of Delphinider, also sometimes ealled whales, have been described in separate artieles, as the Caaing Whale and the Beluga. The Balonidee alone remain to be described now. In this family, the head is of enormens size, as in the Catolontide, but is

Jaws of Greenland Whale, shewing the Balecn.
entircly destitute of teeth, instead of which, the palate is furnished with an apparatus of baleen, or whatebone, for the purpose of straining out of the water the small crnstaceans and acalephre, which form the food of these whales. Rudiments of teeth,

Iood of the Whale, consisting of minute slurimps, sca-snails, meduse, sc.
however-dental pulps-appear in the foetus of the whale-sixty or seventy on each side of each jaw; but they are re-absorbed into the system, and the plates of whalebone are not-produced from them, but from the integuments.

The fibrous structure of balcen, or whalebone, its elasticity, and its heaviness, are well known. The

WHALE

plates of it in the month of $a \mathrm{~W}$. are very numerours, several hundreds on each side of the month, and they are rery closely placed togetler, so that the mouth is filled with them ; the whole quantity in the mouth of a large W. sometimes amount. ing to nearly two tons in weight. They are suspended from the roof of the mouth; none proceed from the lower jars. They extend on each side from the middle line of the palate, like the barbs of a feather; those in the middle of the month are longest. The base of each plate is embedded in the substance of the membrane that corers the palate, whilst its edge forms a loose fringe, composed of fibres or pliant bristles. The vast mouth being opened, water is taken in ; and the small animals which enter with it being retained for food, the water is allowed to escape by the sides of the mouth.
The tongue is a soft thick mass, not extending beyond the back of the month. The gullet of whales is very narrorr; it iss said not to be more than an inch and a half in diameter eren in a large W., so that only very small animals can pass through it.The head of whales occurpies from a third to a fourth of the whole length. The skull is unsymmetrical, the right side being larger than the left. The tlesh is red, firm, and coarse. The skin is naked, with the exception of a few bristles about the jaws, and its surface is moistened by au oily fluid. The lower surface of the true skin extends into a thick layer of Zlubber, an open network of fibres in which fat is hell. The blubber is from a foot to two feet in thickness, the whole mass in a large W. sometimes weighing more than thirty tons, and serves the purpose of keeping the animal warm. as well as of making the specitic gravity of the whole body mnch lighter than it would otherrwise be, and of resisting the pressure of the water in the great depths to which it often descends.
The skin of whales is always infested with parasites; molluses adhere to it ; certain kinds of cirrlopods burrow and live in it; and crustaceans, such as the Whale-louse (q. r.) attach themselves to it, and feed upon it.
It has been attempted to calculate the age of whales from the transverse lines on the phates of baleen, and in this way it has been computed that they attain the age of 800 or 900 years, each transverse line being assumbed to indicate an annnal check of growth; but it is evident that there is no good ground for the assumption on which such calculation proceeds.

In the genus Juicena there is no dorsal fin, nor elevation of the back correspouding to it, as in some of the family. The belly is smooth, not plaited, as in the other genera of the family. The most im. portant species, and indced the most important of all the whales, is that known as the Right W., or Greevcard W. (E. mysticetus). It inhabits the seas of the northern parts of the world, and abounds chiefly in the arctic regions. It is sometimes seen on the coasts of Britain, and even in more southern latitudes. It attains a size of sixty or seventy feet in length. The body is thickest a little hehind the fippers, or pectoral fins, tapering conically towards the tail, and slightly towards the head. The tail is five or six feet long, and from twenty to twenty-five feet broad; formed of two diverging lobes, broadest almost where they are united, but with a slight indentation. The pectoral fins are eight or nine feet long, and four or fire fect broad. The mouth is fifteen or sixteen feet long. The eyes, which are situated on the sides of the head, about a foot above and rather behind the angles of the mouth, are not larger than those of an ox ; but the sense of sight secins to be acute, at least in the water. The iris is white. The blow-holes are situated on the most
elevated part of the head; they are from eight to twelve inches long, but of comparatively small breadth. The upper parts are velvety black, the lower parts white. The upper parts, in very old whales, sometimes become piebald, the black being mixed with white and gray. The period of gestation is uncertain ; one young one is produced at a birth, and is from ten to fourteen feet in length when born. The mother displays great affection for her offspring, of which whale-fishers sometimes take undue advantage, harpooning the young one-itself of little value-in order to secure the mother. Suckling is performed at the surface of the water, and the mother rolls from side to side, that she and the young one may be able to hreathe in turn. The usual rate of progress in swimming is abont four or five miles an hour, and whales often swim not far beneath the surface of the water, with the mouth wide open to take in water from which to sift fooll.

Greenland or Right Whale (Ealicna mysticeitus).
The W. is capable, however, of swimming with much greater rapidity, and when harpooned, it often descends to a great depth in a few seconds. Its tail is extremely porrerful, and a single blow of it is sufficient to destroy a large boat, or toss it and its crew into the air, so that the whale-fishery is attended with no little danger. Whales usually come to the surface to breathe at intervals of eight or ten minutes, but they are capable of remaining under water for half an hour or more. When they coume up to breathe, they generally remain on the surface about two minutes, during which they blow eight or nine times, and then descend. The noise which they make in blowing is rery loud, and the spont of water ejected ascends severad yards into the air, appearing at a distance like a purff of smoke. They often assume, as if in sport, a rertical position, with the heal down, and flap the surface of the water with the tail, making a sound which is heard two or three miles off. The Greenland W. is not properly gregarious, being generally found alone or in pairs, except when numbers are attracted to farticular feeding-grounds, as is sometimes the case in the bays and inlets of northern coasts.
It was formerly sulpposed that the Greenland W. was an inhabitant of the southeru as well as of the northern parts of the world; but the Southers or Cape TV. (B. australis) is now regarded as a distinct species, the head being smaller in proportion than that of its northern congener, and the colour a nuiform black. It attains the length of 50 or 60 feet. It is usually found in comparatively shallow water near consts. It occurs not only in the colder parts of the southera hemisphere, but throughout

WHALE

its temperate regions, and its range extents into the tropics. It has been taken even as far north as Jipan. lts capture is prosecuted to a considerable extent, particularly on the coasts of South Africa and New Zealand, although this whale-fishery is not nearly so important as that of the northern seas. S'everal other slecies of Bulene have been deseribed, lut they are imperfeetly ascertained and characterised, specimens not often coming under the observation of competent naturalists in a perfect state. The Forlkoper of the Icelanclers has by sume naturalists been described as a distinct species, although it is more generally regarted as a variety of B. mystictus. It aiffers, however, from the common varicty in having the body more slender and the head proportionally smaller ; the under jaw very round, deep and hroad; and the plates of baleeu comparatwely shert. It is of a gray colour; the lower part of the bead of a brilliant white. It is said to lie more active and more fierce than the Common W., so that its eapiture is attended with greater danger.
The species of the genus Mregaptera are called Hump-backed Whales, and by whale-fishers ordinarily Hump-backs. They have a rulimentary dorsal tin, in the form of an clevation of the back. There are several species, but some of them are very imperfectly known. M. longimana, so called from the length of the pectoral lins, is found in the North Sea, and is included in the British fanna. MI. A mericma, the bermula Hump-lacked W., oecurs chiefly about the Bermudas, from which its baleen is extensively imported. Another species, M. PussLop, occurs at the Cape of Good Hope.
The genus Balanoptera, Physalus, or Rormalus is distinguished ly having a dorsal fia. see rorqual.

All the species of these genera are oljects of Imr. suit to whate-fishers, althongh the Greendand W. is that which they prefer.

Important as the W . is to civilised man, both for the oil and the whalchone which it yiekls, it is still more important to the rude natives of arctic regions, as the Lisquimanx and Greenlanders, who use its oil for foot as well as for burning, and to whom its tlesh also is a chief article of food ; white its bones and haleen are nsed for uaking tents, slerlges, boats, harpoons, and sjuars; the sinews suplly a substitute for twine or thread; and the membiaues are usel instead of glass for wiurlows. There is no essential difference in the way in which the capture of whales is prosecutel by the rudest tribes and the most civilised nations. The whalefishers approach the whale in boats, and attack it by harpoons to which lines are aftixed, following up and repeating the attack, until its strength is exhausted, taking advantarge of the necessity which it experiences of coming at intervals to the surface to lreathe, and finally killing it with lances, which are thrust into the most vital parts.

In its most simple form, the harpoon is an irm spear abont 5 feet in leugth, with a much flattencel point, having sharp cutting edges, and two large

Harpoon.

flattened barbs. Many modifications have been made, the most important perhaps being the gunharpoon. The ordinary harpoons are attached to a long line at the opposite end to the larbed point, and when the boat is near enough to the W., the man whose duty it is darts or plunges the
weapon with all his force into the amimal's sitle. In its flecing from the attack, the line is rapilly drawn out of the boat, mitl the creature is tired, and rises to the surface for air. The lonat follows, leepinit as much of the line as possible, until, cxhausted by 1ain and loss of hlome, the aninal succumbs. it will be seen that mueh depends upon the sharpness of the blade-like ellges of the barbs, and their pwour to hold when in; hence many ingenous deviecs of movable harls have been eontrivel, which cluse on the shaft of the instrument in groing into the animal's flesh, hut open outwards as soou as there is any strain on the shaft. The gun-Larpoon is a short har of iron with the barbed spear at the end, and a ring with clain for the attachment of the line; this is fired from a small swivel canmon attached to the whaler's boat. However well the larpoon may lie fixed in the animal's body, its death and eapture are still very dillieult matters to accomplish, and take much time. To obviate this, a yery jugenious expedient was snggested ly Dr Christison, the eminent toxicologist of Elinburgh University, that glass tubes containing mussic acid should be so placed in the shaft of the harpoon, that the moment the cord or line was pulled tight, they would be broken in the animal's body, and oeeasion instant death. This plan has been triel with great success, but has met with opposition from the whale-fishers, who have a projudice against using a poison which they see has such deally effects. Another mole of employing prussie acid is to enclose a class tulce containing it, in a hollow rifle bullet about four inches long, which is firel from a rifle made for the purpose, the bullet containing also an explosive subst:unce conneeted with a fuse, which is lindell as the rifte is fireci, so that the bullet lmosts inmediately after penetrating the whale, and spreads its cleadly contents throngh the flesh. The bullet is made of zine, becanse it breaks into fracmeuts more angular than any other metal. The success of this method has been found to be perfect. but sailors object to its use, dreading to tonch the carcass of a whale which has been killed by so powerful a poison, for a whale struck by a bullet charged with prussie acid only disappears for about five minutes, and rises to the surface dead. Strychnia has been used iustead of prussic acid, and with similar results.

The lance used for killing the W. laas generally a blade 5 or 6 inches long, and 21 or 3 inches broan, with shap cutting edges, and a long wooden handle.

The ships fitted out from Earopean and American ports for the northern whale-fishery are generally from 300 to 400 tons burden. To 1 rotect them from injury by ice, they are fortified with an audditional series of planks, iron plates, and a folse or ice stem, on the sides of which are ice-linces, -angular blocks of wood filling up the concarity formed hy the stem and fore-planks. The stern is also defunded hy ice-plates of half-ineh iron; and many timbers and stanchions are added in the interior of the vessel, wreat strensth being a more imprortant recunisite than fast sailing. Each ship has generally 6 or 7 boats, carcer-built, from 23 to $2 S$ fect in lougth, each capable of carrying 6 or 7 men, with 7 or S cwt. of whale-lives, ive. The crew of a whaler consists of 40 or 50 men, each of whom, from the master to the boys, generally receives, in addition to his fixed wage, a gratuity for every W. caught, and a certain sum for every tun of oil prodnced by the cargo. Each loat carries? harloons and 6 or 8 lances. When the ship arrives in the vicinity of a whaling-gronnd, a look-out is stationed at the masthead. As soon as a W . is discovered, the boats are lowered, and a competition eusues among their

WHALE

crews, all exerting their intmost strength to reach the W. first. The harpooner is ready, as soon as the bont is sutficiently near the W., to hurl his harpoon with all his force; the crew instantly back the boat, and the W. generally plunges in terror to a great depth, sometimes carrying out more than 200 fathoms of line. It remains below for 20 minutes or more, and when it rises, the boats hasten to it again; it is struck with a second harpoon, and probably, instead of at once deseending, it strikes violently with its tail, to destroy its enemies, when great caution is requisite. It cannot now remain long below the surface, and when it comes up, probably sponts hlooul through the blowholes. When it is lanced, it sometimes dies almost at once, but sometimes there is a terrific struggle-the water is lashed intu foam, and dyed with blood. It not unfrequently happens, that instead of dying at the surface of the water, the W. descends, and does not rise again, so that it is lost to the whaler. The careass of the WV. is towed by the boats to the ship, and made fast to the ship's chains. The process of Jtensing is then commenced. Some of the crew, having their boots armed with iron spikes, to prevent them from slipping. descend upon the carcass, and cut into the blubber with blubber-spades, removing a broarl strip or blanket of skin, 20 or 30 feet long, which is hoisted to the deck by means of a hook and tackle. Great culvical pieces of binbber, of bali a ton or a ton in weight, are then cut ont, and hoisted on deck. In this way, the process is carried on, the W. being turned over and over, that every part may be reached; till, in three or four hours, the whole mass of blulber is remored from itprobably amonnting to 20 or 3) tons. Meanwhile, uthers of the crew have clesceuded into the mouth of the W., and removed the baleen. The remainder of the carcass is then flung adrift, and sometimes sinks, but often swims, iu consequence of incipient Intrefaction, to afford food for bears and fishes. The blulber, after being received on leck, is cut into smaller cubieal pieces, and subjected at leisure to a process by which the cellular tissue is separated from it. This is called making-off or trying-out; and to accomplish it, the l,hubber is heated in a large pot, and afterwards strainel, the scraps or cracknels from one pot serving as fuel for another, and the ship being made filthy with smoke, soot, and grease. The product is tinally stored in casks, to be coureyed home, and boiled for oil. A ton of blubber yields nearly 200 gallons of oil. A siugle W. often yields Hubber and whalebone to the value of £j00 or £S00. The whalebone is subjected to no pracess but that of arying till it is brought bome.
Ships often return from the whale-fishery cleani. e., withont having captured a single whale. The greatest number of whales known to have ever been captured by a single ressel in a season is 44 ; yield. ing 299 thins of oil, of $\mathbf{2} 9$ gallons each. This was in 1814; the fortunate whaler belonged to Peterheal, in Scotland, and the oil alone, according to the price of that year, $£ 32$ per tun, was worth £95cs. When the price of oil and whalebone has been higher, even greater profits have been realised by whalers making fewer captures.

It is usual for whalers to resort to the aretic whale-fishery in spring, and to return in antumn; but Captain Pemny adopted with great suecess, in 1853-1854, the method of wintering in the aretic regions.
The Normegians sent vessels to Greenland for the whale-fishery in the 9th century. They had previously prosecuted it on their own coasts, and the Norman settlers on the Eay of Biscay carried it on there, whates inhabiting that bay in considerahle numbers, till, through the eager prosecntion of the
fishery, they became so few that alont the lyth c. it became unprofitable, and was relinquishel. In 1201, a tithe was laid upon the tongues of whates brought into Eayonne, they being then highly esteemed for food. The French, Spaniards, and Flemings early began to fit ont vessels for the northern whale-fishery; the English eatered upon it with great spirit in the end of the 16 th e ., and about the same time the Dutch, Darnes, and Hamburgers. The British Muscovy Company obtaised a royal charter, giving them a monopoly of the whale-fishery of the coasts of Spitzber'sen, on the pretence of its laving been discovered lyy Sir Huch Willonghby, although, in fact, it was discovered by the Dutch navigator Barentz. Other aations were not disposed to acknowledge the claims of the English; the Dutch in particular sent out a strong fleet, betreen which and the ships of the Muscory Company an engagement took place in 161S, and the English were defeated. The spitzbergen bays and seas were afterwards divided into fishing-stations, allocated to the whalers of the rival nations. No nation now asserts a claim to the exclusive right of whale-fishing in any quarter. The Spitzbergen fisliery was thrown open to all nations in 1642.

Tho English for some time prosecuted the whalefishery sluggishly and with incompetent means; the Dutch carried it on with great vigour and success. During the latter half of the 17 th c. , the Dutch furnished almost all Europe with oil. In 1650, they had 260 ships and about 14,000 men employed in the whate-fishery; but from that time the Dutch fishery hegau to decline. In 1732, Great Britain attempted to encourage the whale-fishery by a bounty of 30 s. a ton to every ship of 200 tons engagel in it, which was raised in $[-19$ to 40 s., redncel to 30 s . in 175 , and again raised to 40 s . in 1781. The object of the bounty was not only to encourage the trade, but to make it a musery for seamen. Ships, however, were fitted ont rather for the bounty than for the capture of whales, and during the next five sears after the reduction of the bounty in 177., the number of ships employed in the trade was reduced from 105 to 39 . After 17SI, it rapidly increased, and continued to increase although the bounty was reducecl. The bounty was finally altogether withdrawn in 1524; yet in 1S15, when the British whale-fishery was in its most flourishing condition, only $16 \pm$ ships were engaged in it. The Dutch whale-fishery had in the meantime almost entirely ceased, owing to the national calamities consequent on the Frencl Revolution. The British whale-fishery is still prosecuted, although not nearly to the extent that it was fifty years asco. The French whale-fishery has in like manner dectined. The Americans are at present more actively engaged in the whale fishery than any other nation. The New England colonjes entered upon this enterprise at a very early period, at first merely by boats on their own coasts, which, however, were deserted hy whalcs before the middle of the 1 Sth c.. and shilis then began to be fitted out for the northern seas. For a number of jears, however, the American whale-fishery also has been declining, owing to the scarcity of whales, and becanse substitutes for whale-oil and whalebone have been found.
Of all Eritish towns, Peterhead is that which of late has shewn the greatest enterprise in the whalefishery, and next to it are Hull and Dundee. In America, New Bedford demands special notice. It is at present the greatest whaling-1prt in the world. Nantucket also sends out many whalers.
The ships engaged in the whale-fishery generally add to their cargoes of oil hy the capture of seals.

Whales, in point of lam, belong to the crown, according to the law of England, if they are caught
or found within the territorial sea-that is, within the limit of three miles from the shore; or in the inner scas, as distinguishel from the open sea. This is contrary to the general rule-that he who first captures a wild animal is entitled to the property thereof. Whales are thus called royal fish; and it is said sturgeons and porpoises also fall under the same class. If the whales are not caught in the territorial seas, which are part of the realm, but in the open sea, theu the law of nature applies, or rather a secondary law or custom governs the right of property, and that law, though varying slightly according to locality, is, that the person who first captures the whale is entitled to keep it. In the Greenland seas, the local custom is that the first harpooner who strikes the whale is entitled to the property only if he continue to hold the whale by the line attached to his harpoon; but if his line break, and a subsequeut harpooner from another ship finish the capture by oltaining possession, then the latter is entitled, for it is a loose fish. This rule, however, has been qualified in this way, that the first harpooner who strikes the fish and keeps it entangled is entitled, even though a volunteer come up and officiously strike the fish, thereby causing it to struggle and break from the first line. At Gallipagos, South America, the custom is that he who first strikes the whale with a drong, or loose harpoon, is entitled to receive half of it. The same rules govern the right of property in whales when sinilar questions arise between partics litigating in Scotland. The law of Scotlaud, as well as England, adopts whatever local custom prevails where the whale was captured.

WHA'LEBONIE. The baleen plates which take the place of teeth in the mouths of the Baleen Whates (see Wilale), constitute the whalebone of commerce. They vary in leugth from a few inches up to ten, and even iu rare instances to twelve feet. Their chemical constitution is albumen hardened by a small proportion of phosphate of lime. Their colour is usually of a bluish black, but in some species they are striped longitndinally with bands of a whitish colour; and they terminate at the point in a number of coarse black fibres of the baleen, which fibres are also found more or less down both sides of the blade. These fibres are much used by brushmakers. There are three principal linds in the market, and they are generally known as whale-fins. The first is the Greenland, or Davis' Strait and North Sea fins; second, the South Sea, or black fish-fins ; third, the North-west coast, or American whale fins. Whalebone requires some preparation before being lit for use ; this, however, is yery simple. It is first trimmed-that is, all the hairs are removed from the point and edges of each blade; and generally the surface of each flat side is scraped. The blades are then boiled in water for several hours, until they become soft enough to be cut easily with a common knife. The workman then cuts them into lengths fitted for the purposes to which they are to be applied. They are chiefly used in thin strips, such as stay-bones and umbrella-ribs, and can be easily split for such purposes, owing to their lamellar structure. Generally, the boiling is combined with a dyeing process, to make the whalebone perfectly black, which is preferred to the not agreeable natural colour. The quantity annually imported into Eritain rarely exceeds 150 tans; but as the price ranges from £. 50 to 5500 per ton, that represents a large value. - Strips of rattau canes dyed black are used as a cheap kind of artificial whalebone, but the leest imitation is made of vulcanite or 1 repared caontchnuc, which in many respects is superior to the real whalebone.

WHALE-LOUSE (Cyamus), a genus of Crustacea, of the order Lemodipoda, having the body short and rather broad; the legs short and stout; seven pair of legs; the first pair more slender than the rest ; the first, second, fifth, sixth, aud seventh pair furnished with sharp hooked claws, the third and fourth not terminating in claws, but in a lons almost cylindrical joint. All the species are parasitic on Cetacea, attaching themselves to the skin by means of their claws. Whales are sometimes so
 completely corered with them, as to appear of a whitish colour eren at a distance; and when the rhale is captured, its slin is found to be deprived of the epidermis. Cyamus Ceti is said also to infest the mackerel and other fishes of the famdy Scomberidce.

WHANG-HAI', or YELLOW SEA, an important inlet of the Pacific Ocean, washes the north part of the cast coast of China, aud is bouuded on the W. by the Chinese provinces of Shang-tung and Ticaugsu, and on the E. by the peninsula of the Corea and Japan. It terminates on the north-west in the Gulfs of Pe-chih-li and Leao-toug, and opens out in the south-east into the Tung-hai, or Eastern Sea. It is more than 600 miles long, and over 400 miles in average breadth. The W. is shallow, and near the land its waters are of a lemon colour, owiug to the nature of the bottom, which is often furrowed by vessels navigating it. By degrees, it is becomiug more and more shallow, owing to the quantity of alluviuns borne down into it by the rivers Hwangho (q. v.) and Yaug-tze (q.v.).

WHA'RNCLIFFE MEETING. By a standing order of the House of Lords, which was proposed by Lord Wharncliffe, and is still known by the title of the 'Wharncliffe Order,' no bill to empower any company already constituted by act of priament to execute, undertake, or contribute towards any work nther than that for which such company was originally established, or to sell, lease, or abandon its undertaking, or any part thereof, or to amalgamate with any other undertaking, or to dissolve, is allowed to proceed in the House of Lords until it is reported that such bill has been submitted to a special meeting of the proprictors of the company, courened by public advertisement, and by circular addressed to each proprietor; that such meetiug was beld not earlier than seven days after the last insertion of such advertisement; and that at such meeting the bill was submitted to the proprietors present, and approved of hy proprietors present, in person or by proxy, holding at least three-fourths of the paidup capital of the compang represented at such meeting. Of late years, a number of lills are in each session originated in the House of Lords; and since the introduction of this practice, the meetings held in conformity with this order are popularly known as 'Wharncliffe Mectings.' The House of Commons has adopted a corresponding standing order applicable to such bills coming from the Lords.

Wharton, Peilip Wharton, Duke of, was the son of Thomas, Marquis of Wharton, an eminent member of the Whig party in Qucen Anne's reign, and Lord-lieutenant of Ireland from 1.08 untd after the fall of the Godolphin administration in 1710. Macaulay says he was licentious and corrupt ; but the faults of his Irish administration

WHARTON-WHATELY

were largely redcemed by his appointment of Addison as Chief-secretary. George I. made him Lord Privy Seal and Marquis of 1 . in 1715, but he died three months afterwards. His son, Pbilip, born 1693, was educated at home by his father, who aimed at making him a great orator, a Whig in politics, and a Presbyterian in religion. In a boyish freak, be contracted a clandestine marriage at the Fleet with the daughter of Major-general Holmes. The shock is said to have killed both his parents. W. soon parted from his wife, and in 1716 went abroad with a French Huguenot tutor, to be brought up according to his father's dying instructions, in strict Presbyterian principles, at Geneva He contracted debts, spurned the restraints of his tutor, and ran away to Lyon. He risited the Pretender at Avignon, and, it is said, accented from him the title of Dukc of Northumberland. He next risited Paris, and after various extravagances, set out for Ireland, where, although he had not jet reached bis 19th year, he was allowed to take his seat in the House of Peers. He soon displayed such splendid abilities in debate, and supported the government with so much zeal, that although still under age, he was, January 20, 171s, raised to the bighest rank in the English peerage. He did not take his seat in the Euglish House of Peers until 1720. Here he opposed with much warmtl the government measure on the South Sea Bill, and the bill of pains and penalties against Bishop Atterbury. His affairs became hopelessly involved by his extravagance, so that although he had succeeded to an estate of $£ 16,000$ a jear, he was soon compelled to accept a yearly allowance of $£ 1200$ from his creditors. He set up a political paper, called the True Eriton, in 1723; and lost no occasion of speaking, as well as writing, against the ministry and the court. In 1724, he set out for Vienna, and then visited Madrid, where be was served with an order from the Privy Seal to return home. He treated the order with contempt, and afterwards went to Rome, and appeared openly at the court of the Pretender, from whom he accepted the Order of the Garter. He now assumed the title of Duke of Northumberland. In 1727, he fought with the Spaniards and against his countrymen at the siege of Gibraltar. This last mad act lost him his English title and estates, and led to his conviction under a bill of indictment for high treason. He refused to make his submission to the government; and the rest of his life was passed in France and Spain, at one moment squandering his precarious supplies of money in drunkenness and luxury, and at another suffering the extremest poverty. He died in a miserable condition at a Bernardine convent in Catalonia, May 31, 1731. His brilliant talents and wasted life were sketched by Pope in his Maral Essays, in the lines beginning-

Wharton, the scorn and monder of our days.

The Life and Writings of Philip, late Dulie of Wharton, were published in 1732 (Lond. 2 vols., Svo); and another two-volume publication, entitled The Poetical Works of Philip, late Duke of Wharton, and of the Duke's Intimate Acquaintance, appears, with the exception of the title-page and a prefixed biography of W., to have been printed in 1727. This publication, however, contains little that is even attributed to the duke.

WHATELY, Richaid. Archbisbop of Dublin, was born in Cavendish Square, London, 1st February 1787, and was the fourth son of Dr Joseph Whately of Nonsuch Park, Surrey, Prebendary of Bristol, Vicar of Widford, and lecturer at Gresham College. He was sent in due time to a private school at Bristol, from which, in $1 \$ 0 \overline{5}$, he passed to Oriel

College, Oxford. He took his Bachelor's degree in 1505 , taking a second class botb in classics and in mathematics. He got the English-essay prize in 1810. In the following year, be was elected a Fellow of Oriel College, which at that time ranked among its Fellows not a few men destined to play a considerable part in the morld, and alrcady remarkable for their attainments and intellectual activity-e. g., Arnold, Keble, Puses, and the elder Newman. In 1S15, he became one of the tutars of his college; and about this time be mrote (originally for the Encyclopecdier Metropolitana) what he afterwards expanded into his popular treatises on Logic and Rbetoric. In 1821, he married a daughter of W. Pope, Esq., of Hillingdon, Middlesex. In the same year, be published two works ; the one a volume of sermons on The Chris* tian's Duty with respect to the Estallished Gowernment and the Laws; the other a work which is among the most celebrated and characteristic of his writings: this was Historic Doulds relative to Napoleon Bonaparte. Its ohject was to throw ridicule upon the criticism to which the Gospel narratives were subjected by sceptical nriters, by applying the same kind of criticism to events within the memory of all the world, and starting doubts as to whether these events had occurred. This jeu desprit with a purpose created a great sensation. It has been translated into several foreign languages. In 1822, W. was presented to the living of Halesworth, in Suffolk. In the same year, he delivered the Bampton Lectures at Oxford, taking for his subject the 'Use and Abuse of Party Feeling in Religion.' In 1825, he was appointed by Lord Grenville Principal of St Alban's Hall, which, under his energetic rule, quickly lost the bal character it had long sustained in the university. In 1820, he was appointed Professor of Political Economy ; but be was destined not to hold this office long enough to do more than deliver an introductory course of lectures. In 1831, Lord Grey's government, at the instance of Lord Brougham, appointed him Arclbishop of Dublin and Bishop of Glendallach. Afterwards, in 1846, his episcopal cbarge was enlarged by the addition of the bishopric of Kildare.

During the ten years preceding lis appointment to the archbishopric, W. had incessantly been writing and publishing, chiefly upon theological and ecclesiastical subjects. He belonged to the Liheral school in religion and in politics; he was opposed, that is, to High Church or Catlolic ricws in theology, and to Toryism in politics. He lad taken a keen interest in the political questions of the time, and especially had made himself conspicuous in the university by his advocacy of Catholic emancipation, of mbich the party in the cluurel which had most sympatlyy vith the theology and ecclesiastical system of the Roman Church were the most detcrmined opponents. When Sir R. Peel, after his clange of views on the emancipation question, voluntarily submitted himself for reelection to the university, W., though a Liberal, came forrard to support him, and was one of the most active of those who endeavoured to prevent his rejection. His Essays on some of the Peculiarities of the Christian Religion appared in 1S25; his Elements of Logic, in 1S26; the Elements of Rhetoric, in 182S; his Essays on some of the Difficulties in the JFritings of St Paul, \&c., also in 182S; his Thoughts on the Sabbath, in 1830; and in the same year, the Errors of Romanism traced to their Origin in Human Nature. His Introductory Lectures on Polilical Economy rere published in 1831. By this time, his writings, and the great activity and ability which he displayed in his rarious public functions, had placed him among the foremust

WHATELI-WIIEAT.

men of the university, and had also got him rank imoner the must remarkable thiukers and writers of lis time. Thonerh many distrusted him as a Liberal, puestioucil the soundness of some parts of his theolouy, or thought his manners too cecentric, and his halit of mind too peculiar, for one who was to rule over others, uoboly questioned that his abilities and reputation were equal to the high mosition bestowed upon lim by Lorl Grey.

As Archhishop of Dulhl^{2}, W. was very active in all matters of importance, social and ecelesiastical, and shewel a deep interest in every question affecting the welfare of Ireland. He was one of the original members of the Boarl of National Fducation, and contunded a member till 1553 , when he retirel, in consequence of it departure, as he thought, having been made from the puinciples on which, up to that time, the national education ban been carried on. He was perhaps the most active member of the Goard, and the success of the natioual system was in a great measure owing to him. Ste aud memlers of his family were always foremost in supporting well-chevised charitable schemes. His liberality was, in fact, unbounden, thongh an opposite impression prevailed among those who did not know him, locanse lie wrote and spoke strougly against casual benevolence, and used to say he had never given a penny to a hergar. As archbishop, his rule was firm and julicions. A slight disregard of etiquette wias about the worst thing ever alleged against him: he was not dispused to make meln difference between a reetor and his carate. I lis activity as an author was not stiffed by his energetic diseluarge of his jublic antios; indeed, he seems to have been always either writius a hook, or affording literary belp to others. Besides many charges, sermous, and a few panpulats, his $K^{\prime \prime}$ ingiom of (Yhrist Delineated, one of the most remarkable of his works; his Introductory Lectures to the Study of St Pauts Lipistles: his Linglish Synonyms; and his annotated edition of Bacon's Lisay/s-perhaps the best exannle of good editing in the English lan-guage-belong to this period of his life. A work, published anonymonsly in IS55, Scripturc Rerclations respecting Good and Bad Angels, has been generally ascribed to What ly.

He died on the Sth Octohar 1S63. The world's esteem aud the regard of his friends for him had been growing to the last. In early life, there was much about him to shock the fastidious, and some things which inight hurt the sensitive; but his peenliarities softencl and wore off as be advanced in years. At Oxforl, he was noted for his rough nnceremonious maumers, for which (together with lis dress) he was nicknamed the White Bear; ant for the plain speaking and rough ridicule with which he would overwhelm an oppouent in an argument. He was remarkable, too, for his foulness for athletic sports, which he indulged with a perfect indifference to the minor propricties. He used to say that his abrupt and careless and seemingly unfeeling ways were in recoil from the painful shyness for which he hat been remarkable in his youth. Those who knew him, however, made liglat of his peculiarities; and few things about him are unore pleasing than his firm belief in the merits of his friends, aud the number, the warmth, and the permanence of his frieudships. He had great talents for eonversition, and was famous for his bon-mots, happy repartees, and couversational pleasantries of crery kind. His writings are not so much remarkable for subtlety of thought or novelty of view as for strong logic, acuteness, felicity of arrangement and exposition, and the fretuency and homely foree of lis illustrations. He had the hajny power of builting up materials which might be old into a new,
commolinus, and almost a beautiful structure. Ite lid nothing for nowe ornament's sake: thours his imagination was ahumlantly fertile, it was used only to illuminate his argument; his images are seldom impressive for their leanty, thounh admirably fitted for didactic purposes. IJ is theological worlis have been charged with a cold rationalistie" tendency, and with being wanting in reverence; and it his heen inferred, though perhaps too hastily, from some passames in his writings, that he was beretical on the sulbject of the "rinity. The II istoric Donbts, the Sisutys on the Peculiarities of the Christian Religion, the Ervors of Romanisn, and the li$i n g d o m$ of Chuist, are perhans the most valuable and characteristic of his writings.- The Life and Correspondence of $1 i$. Whately, D.D., de., hy his danghter, E. Jane Whately, was published at London in 1566 . It is an interesting, though in some respects a liartial, and in some legree an inadequate, memorial of Dr Whately. As might be expected, the 'White Sear' side of his eharacter is kent in the shade: but few examples are given of the coarse but racy conversational wit which was one of the Archbishon's elams to distinction amoner his contemporaries. And it is searemly possible ter gather from it what his exact prosition was in theology or in literature, thoumh the letters, which form a great part of it, give a very fine impression of the qualities which distinguish his works.

WHEAT, the most valuable and, next to maize, the most productive of all the cerenl grasses. The genus Triticum, of which the specios are propularly known either as Wheat or Wheat-grass, is distinguished by a spike with many-flowered spikelets, without stalks, and seated one on each noteh of the rachis, their sides clirected to the rachis, which is zigzitg; and two glumes, of which the lower is either awned or awnless; the ontur palea of each floret having at the top in notel, in the centre of which is the terminal point, sometimes prolonged into an awn, or, iu some species, with many flercts tapering into an awn withont a noteh. A number of suceies are fouml in Britain, of which T. reveus, well known as ("ouch Grass (c.v.), is the most common; lut the secis of nonc of them are of any value. The native country of the cultivated W. has generally been supposed to the the central part of Asia ; but a discovery was made not many Years ago by M. Fabre of Agde, in the sonth of France, that the Aypilops oratce, a grass of the regious near the Mediterranean, and of the west of Asia, becomes transformed by cultivation into wheat. The amouncement of this liscovery was at first receised with mucis donbt, althongh the possibility of the transformation had been sugrested by previous botanists; but it has been confirmed by subsequeut observations and experiments. The genus E*yilops, as hitherto recognised by botanists, is distinguished from Triticum chiefly by its more numerous awns, the glumes of \mathcal{L}. orata being generally terminated by $: 3$ or 4 awns, prolongations of their ribs, and the palece by 2 or 3 short awns. The awns of grasses, however, afford very uncertain cba. racters, being extremely liable to disappear through change of circumstances ; and among the cultivated varieties of W ., every farmer is fandiar with some that are awnel or bearded, and some that are heardless, baving searcely a trace of awn. In the wiln idyilops, the ear is also much more easily broken from the rachis than in wheat. In cultivation, the \mathcal{E}. ovata very soon loses the awns of its palere and of the lateral ribs of its glumes, and thus assumes the cbaracters of W., the ears at the same time losing their fragility, the grain also increasing in size, whilst the floral envelopes are proportionally diminished, the leaves become larger, and the stem

WHEAT.

stronger. From seeds of the . E. ovata sown in a garden in 183S, MI. Fabre obtained W. of fair quality

in 1846. Professor Buckman, of the Royal Agricultural College, repreated the experiment in England. His first sowing was in 1855, and notwithstandin the alisadvantages of edld seasons and a cold situation on the Coteswold Hills, he fomel th spikelets much moditiced in 1509, the wan summer of that year producing a greater change than had taken place in previons yeurs (sce Popular Science licuiere for October 1861). 'The annexd out shows the uatural state of a spikelet of 22. arata (fig. 1); the spikelet as modified by cultivation from 1855 to 15.99 (fig. 2) ; and for comphison, an ear of molinary hearded W. (fig. 3). The identity of the principal cultivated forms of Triticum with A^{*}. orata may now be regarded as fully established. These forms have generally been inchuded by botanists nuder the name 7. vallgare.
W. has been cultivated from the earliest ages, and was a chief crop in ancient Egypt and Palestine, as it still is in all the temperate parts of Europe, Asia, and Africa. lt is cultivated to a considerable extent in the north of India. In North America, it is very extensively cultivated, and many parts of the United States and British provinces are admirably adapted to it. Wide regions of Sonth America are equally suitable, and W. of the finest quality is prodnced in Anstralia. In the torrid zone, W. does not succeed, except in elevated situations; but it nowhere succeeds better than in sultropical regions, althongh it is a hardy plant, and when covered by snow, entures even very severe winters in the north of Europe. For its successful cnltivation, however, it requires a mean temperature of at least $55^{\circ} \mathrm{F}$. for three or four months of the year. It is an anmal plant, and its capacity of enduring the cold of winter is of importance only in conncetion with the alvantage to be derived from sowing in autumn, so as to have it more forward in spring. lts cultivation does not extend so far morth as that of barley or uats, or cveu of rye. In Europe, its northern limit is about lat. 60°. The quality of the grain varies much in different soils and climates, and particular varieties are also distingnished by difference of quality as well as by external characters. The W. of the eastern parts of Britain, where the climate is comparatively dry, is superion to that of the western parts, where the sky is more eloudy and the climate more humid, although the crops in the west are not less luxuriant; and the W. produced in Britain is not found suitable for the mavufacture of macaroni, to which that of the countries near the Meditemacan is particularly adapteel. Although hardy in winter and early spring, W. becomes more delicate and susceptible of climatic influences as it adrances in growth; a prevalence of dry weather, with bright sunshine from the time when it comes into car until it is ripe, is of the greatest importance.

Comion W. (T. vulgare, estivum, or saticum) grows to a height generally of 3 or 4 feet, and has ears or spikes geverally 3 or 4 inches long ; the spike 4 -cornered, the spikelets abont 4 -flowered; the palere ventricose, ovate, truncate, mucronate or awned, compressed under the point, roumded at the back, the grain free. In conseguence of long cultivation, in a great variety of climates, the cultivated varicties of W. are very numerons, more so than in

4, Chiduan Wheat; \bar{u}, 'earl Wheat; G, Spalding's Prolific Red TVheat.
any other kind of grain. New varjeties are continually coming into notice ; and many are in hogh estimation in particular districts, although little known beyond them. Some botanists have attempted to distinguish species among them, appropriating the name 7 . cesticum to the awnless kinds, and T. hybermum to the awned; but intermediate forms are very numerous, and the length or shortuess of the awn seems to depend upon accidental circumstances. Nor do the awnless or beardless kinds perfectly correspond with the Summer W. of farmers, preferred for sowing in spring with a view to a crop in the same season, and the awned or bearded kinds to the Winter W., sown in autumn, as some of the hardy varictics of Winter iV. are awnless, and some of those usually sown in spring are beardel. Besides being classified as Bearded and Beardless, the varieties in eultivation are also distingnished according to the colour of the grain, as White and Recl wheats. Some having the ears eovered with a short soft down are known as IFoolly wheats. There are also differences in the length and compactuess of the spike, and in the size and form of the grain, which is more rounded in some, and more elongated in others. A uumber of varieties, having the spike very compact or square, have been sometimes classed together under the name of T : compactum, and the distinction is very obvions and permanent, although there is no reason for regarding it as characterising a distinct species. Akin to this

WHEAT

is the Mcman WT. (T. compositum), in which the spike is branched, and which is said, but on insulficient evidence, to have been produced from seeds found in mumny cases in Eiggpt. Nummy V. has lieen grown in Ennlind, of which the ears have lad 10 or 11 branches, and 150 grains lawe been foutud $i_{i n}$ one ear; whilst du cars have been prodneed by in single seed. Notwithstanding these apparcnt axlvantages, however, this varicty does not serve the burn … ut tho firnury so well as some uthers. In

7. Furn Wheat; S, Immny Wheat.

another group of varieties with compact cars (T. turgidumi of some botanists), the glumes are remarkably tumid, and always awned. These are known by the names of Criny W., Pollard N., Duckbill Wi., \&c., and in Germany are commonly called English Wheat. Polonian W. (T. Polonicum) is the common name of a number of kinds of a very pecnliar appearance, with a long, lonse, and somewhat nodding spike; the ghmes awned, and remarkably long-twice the length of the florets. The stems are also very tall, sometimes more than 6 feet high. These kinds, sometimes called Grecian or MogaDORE W., are cultivated in some parts of the sonth of Europe, in the south of Sibcria, and in Africa. Hard W., or Horsy W. (T. durum), has rather small, elongated, and very hard mrains, the palea have remarkably long awns, and the leaves are very broad. It is much cultivated in the countries near the Nediterranean, and Dr Foyle suggests that it would be a valuable acquisition to India, as it yields a gond erop on comparatively sterile soils.

The red varieties of W. are generally more lardy than the white; the grain is inferiur in quality, and yields less flour, but these disadvantages are more than counterhalaneed in many soils and situations by the greater productiveness of the crop. lied wheats are thercfore preferred for comparatively puor soils, but the white kinds are generally cultirated wherever the soil and climate are suitable. The warieties with long straw yidh the best crops in dry seasons, hut the short-strawed kinds are lrest when the season is wet. W. is [marticularly suited to clay soils, and rich heary loams; but with rond farming, excellent crops are produced even on light sandy or gravelly, and on chalky soils. Where the climate is moist, a light dry suil is most suralule; soft deep soils being productive chietly of straw. The land intended for W. must, at least in Britain, be in a high state of enltivation. W". is commonly sown after green erops, beans, or bare fallow; in the south of England, often after grass or elover. It may be sown, at least in autnmm or the leginming of winter, when the ground is so saturated with moisture, tlaat any other kind of grain wonld be almost sure to perish. It is cither sown lomadeast or in drills, and the practice of drilling becomes more and more prevalent, both on aceonnt of the saving of seed and the superiority of the crops produced. The land prepared for W . is very often manured with farm-yard manure ; artificial manures -as guano-are also used. In Scotland, it is a common practice, when W. is to be grown after turnips, to plough down the turnip-leaves in antumn, before the Wr. is sown, and to apply guano in spring. Nitriate of soda is another farourite top-rlressing for W., lut sometines canses the plants to grow too rapiadly, su that they beeome tender, and suffer from climatic inthences. Many farmers use both gunuo and nitrate of soda for top-dressing W., and the vitrate of soda is often mixed with common salt, Which is thought to be useful in giving strength and vigour to the V^{*}. plants, preventing lodging and mildew. W. onght to be reaped before it is deall riper, unless when it is intended for sced, and it ought to be stacked as soon as it is sufficiently dry to be free from danger of heating. On very rich land, W. sometimes becomes too luxuriant in spring, and its growth needs to be repressed by eutting the leaves with a scythe-a practice essentially agrec. ing with that mentioned by Virgil in his Georgics (i. III), of allowing cattle to feed upon the young blades:

> Quil, qui, ne gravidis procumbat culmus aristis, Luxuriem segetum tenera depascit in herbf, Guum primùm sulcos requant sata?

The relative proportions of straw and erain differ very much in different varieties of $\mathrm{W}_{\text {., and }}$ according to differences of soil, climate, and scason. The proportion of the weight of grain to that of the whole plant when dried so as to be ready for stacking, varies from 20 to 47 per cent. The composition of the grain itself varies considerably, as to the proportions of starch, gluten, \&e. which it contains. 100 juarts of the grain of W ., dried in the ordinary minner, contain on an average-water, $14 \cdot 83$; glaten, 1964 ; albumen, 0.95 ; starch, 45.99 ; gum, l:52; sugar, 1.50 ; oil, 0.87 ; vegetable fibre, 12.34 ; ash, $2: 36$: total, $100 \cdot 00$.

The ash is rich in phosphoric acid, magnesia, and potash. Its composition is as follows: Patash, 2997 ; soda, $3 \cdot 90$; mamesia, $12 \cdot 30$; lime, $3 \cdot 40$; 1 liosphuric acid, 40.00 ; sulphuric acid, $0: 33$; silica, $3: 35$; peroxide of iron, 0.79 ; chloride of sodium, 0.09 : total, 10000 . For the processes liy which starch and gluten are obtained from W., see these articles.
The value of W. depends mainly on the quantity

WHEAT.

of fine flour which it yields; the best W. yielding $76-80$ per cent., sometimes eveu 86 per cent. of fine Hour, whereas inferior kiuds sellom yield mere than GS per cent., and sometimes only $51-56$ per cent. In general, the smeother and thinner the grain is in skin, the greater is the produce of fine flowr. The greater part of the lusk of W. is separated from the flour by the miller, and is known as 7 rone. That portion of the bran which is more finely divided than the rest, receives the name of sharps or pollarl. See the articles Bran and Flour.
W. straw contains, on an average, in its ordinary state of dryness-uitrogenous substances, $1 \cdot S 5$; nonnitrogeneus substances, 67.50 ; mineral substances, 4.59 ; water, 26.00 : total, 100.00 ; and the compesition of the ash is as fellows: potash, $12 \cdot 14$; soda, 0.60 ; magnesia, $2.7 t$; lime, 623 ; phespheric aeid, $5 \cdot 43$; sulphuric acid, $3 \cdot S S$; silica, $67 \cdot \mathrm{SS}$; perexide of iron, 0.74 ; chloride of sedium, 0.22 : total, 100.00 .

The primeipal diseases to which W. is subject, some of which are often preductive of great loss to the farmer, are either owing to or connected with the presence of parasitic fungi. See Bunt, Mindew, Pust, and Smut. An animalcule causes the disease known as Ear-cockles (q.v.). W. suffers also from the ravares of numerons species of insects. See Hesslay Fly, Wheat-fly, Corn-moth, and Wireworm. The larvib of a Ground Eeetle (Zabrus gilbus) is often very destructive to young W . in winter and spring.

Spelt (Triticum spelta) is regarded as a distinct species from Common W., and is suppesed to be a cultivated form of SEgilops canduta, a native of the coluntries near the Mediterranean. The spikelets are smaller than in Cemmon W., and each spikelet has two or three, rarely four, perfect flerets, besides a barren terminal one, the euter glumes and the palex are very breadly truncate at the top, and notched, the awns very slender; the ripeued grain adheres closely to the pralea or chaff. Spelt is supposed to be the grain called Zea by the Greeks and For by the Remans. It is of little value in comparisen with W., but can be grown on inferior soils, and is cultivated in switzerland at an elevation where W. would not succeed. The liread made of it is coarse, and is used chiefly by the poorer classes. -Another species, sometimes called Lesser. Spelt, or One-grained W. (Triticum monococcum), is also occasienally cultivated on peor soils and in elevated situations in the centre and south of Europe. It is sometimes called St leter's Corn. The ear is small and compressed, the spikelets centain only one perfect Horet and a rudimentary one; the awns are long; the grain is small, and adheres closely to the chaff.-Triticum Bengalense may be regarded as a kiud of spelt. It has remote spikelets, long awns, and long irregularly triangular grains. It is enltivated to sonie extent in India.

Wheat being the most esteemed of all the cereals, particularly for the making of bread, the increase of its cultivation and use has markel the progress of agriculture and ef wealth in many countries, and particnlarly in Britain. It is only of late that breal made of wheat has hecone a common article of food among the labouring classes in Britain. In some parts of the country, it is still, indeed, far frem being a principal article of food among the peasantry, who use barley and oats in various forms. In the Sth c., the monks of the abbey of s't Elmuad, in England, ate barley-breal, becanse the income of the abhey would not almit of their using wheaten breal regularly. At a later period, wheat was largely nsed, at least in the southern parts of England, for a short time after harvest, but the supply was soon exhausted, and recourse was again had to inferior
kinds of foocl. There was then wo trade in corn to equalise the price over the jear. In 1317, when an aloundant harvest had been gathered in, the price of wheat fell at once from $50 s$. to 6 s. 8%. per quarter. The rejoicings of harrest-heme were, therefore, in these times connected with a transition frem poor to good fare, and from comprarative want to abindance, such as liapily does not attend the same occasion in eur day. Nown to the end of the 17 th c., wheaten liread was a principal article of food only among the more wealthy; and the servants in their heuses were still furuished with oats, barley, and rye. In the nerthern parts of England, as well as in Scotland, the nse of wheaten breal was comparatively rare even at the mildle of last century. 'So small was the quantity of wheat used in the county of Cumberland,' says Eien, in his History of the Poor (1797), 'that it was only a rieh family that used a peck of wheat in the course of the year, and that was used at Christmas. The usnal treat for a stranger was a thick oat-cake (called haver-bannock') and butter. An eld labourer of 85 remarls that when he was a boy he was at Carlisle market with his father, and wishing to indulge hinnself with a ponuy loaf made of wheat-Hour, he scarched for it for seme time, lut could not precure a piece of wheaten bread at any shop in the town.' At the period of the Revolution, 1689 , the quantity of wheat grown in England was estimated at aheut $14,000,000$ bushels, or about three bushels to each of the poprzlation, which was then under five millions. In $1 S^{2}-5$, about $100,000,010$ bushels were produced, or about seven bushels to each of the popudation, then under fifteen millions (see Library of Entertuining Finowledge; I'egetable Substances usell for the Food of Man, Eond. 1832). In 1566, there were $3,275,293$ acres under wheat in England and Wales, aud 110.101 acres in Scotland, the produce of which may be estimated at almost $100,000,000$ bushels ; besiles which, a very large quantity of wheat has been imported from other countries. The cultivation of wheat now extends to the most northern parts of Scetland, 4718 acres having been under this crep in 1866, in the county of Elgin, aud $468 t$ in Ross and Cromarty, and even in Caithness 26 , and in Orkney and Shetland 79. The population of England and scotland being now abeut $24,500,000$, it appears that the quantity of home-grewn wheat consumel amounts to fully 4 bushels for each of the population ; but the wheat imported in 1860 amounted to about $42,000,000$ bushels ; raising the amount consumed to nearly six bushels per head of the population. Ireland is left out of account, as not being to a great extent either a wheat-growing or a wheat-consuming country. The proluce per acre is greater in Britain than in any othcr wheat-growing country, ewing to superior farming, notwithstanding disalvantages of climate aul often of sod. The extent of land now under wheat has, however, of late years diminished, owng to the foreign supply, and the high price of butcher-meat making pasturage now profitable. The quantity of wheat producerl in the United States in 1860 was estimated at about $173,000,000$ bushels, of which nearly $2 \neq 000,400$ bushels were prorluced by the state of llinois, wearly $17,000,000$ by Indiana, and abeut almost as much by Wisconsin. The progress of wheat-cultivation in the western states has been extremely rapid. Illinois now produces more wheat than any other state of the union. Chicago has become one of the greatest wheat-exporting ports in the world. The exportation of wheat from Chicago began in 1838 , when 78 bushels were exported; and in 1862 , the quantity exported amounted to $22,902,155$ bushels; this rapid increase being due to the increase of wheat-culture in previonsly unsettled regions. The greater part

WHEATEAR-WHEATON.

of the wheat exportal from Nortl America is to Fircat Britain. Oi the wheat imported into the I nited Kinctom during the dive years 1S60-IS66, the ('uiterl Sitates contributed 31 pur cent. ; I'russia ami the other morthern parts of fermany, 18.5 per cent.; Fussia, IS per cent. ; France, I: per cent. ; British North America, 7 per cent., and Torkey, 2 per cent.

WH1FATHAR, or FALLOW.ClIAT (Saxicola anouthe), a bird of the genus popularly linown by the name Chat ($1 . \%$), of the family Syldieder, a common summer visitant of britain, alounding on downs and fallow fichls. Its geormaluic range is

Whentear (Saxicola cenanthe).
wide. Its winter retreat is in the countries near the Mediterrancan, and chiefly in Africa; its summer migrations extemi to the furthest north of Europe, and to Iecland and Greenland. A few wheatears spend the winter on the southern coasts of Eingland. The entire length of the W. is abont six inches and a half; the tail is almost square ; the wings are long and pointed; and the legs are long, enabling the bird to hop about actively in gtest of food. Its food consists of worms and insects, and it may often be seen perched on the top of a clod or stine, looking ont for them, and at the same time on the watch against enemies. The male is of an ash-brown colour on the nuper parts; the forehead, a band above the cyes, and the thwat, white: a black mark extending from the hase of the bill to cach eye, and expanding behind it, so as to cover the orifice of the ear; the wings, black; the rump, and two-thirds of the tail, except the two midule feathers, white; the tip of the tail, black: the two midde feathers of the tail, entirely black; the breast, buff-coluur; the belly and tlanks, pale buffy white. The female is less maily coloured, brown and gray prevailing. The W. makes its nest in an old wall, or in a crevice of a quarry or yravel-pit, often in a desertel rabbit-burrow, and generally lays six pale-blue equs. The male bas at pleasant, but not loud somes and sings well in cons. tinement, in winter as well as in summer. 'This little bird is much estecmed for the table, and ereat numbers are therefore anmally canght, not only on the continent of Europe, but in Enulanl, where comparatively few small birds are suncht after for such use. It is chictly on the downs of the smith of lingland, where vast flocks congregate before their autumn migration, that wheatears are can ght for the narket. The shepherds eateh them by means of nooses placed in little exeavations made in the grouml, alvantage beiog thus taken of the habits of the bird, which upon the least alarm, or cren the shadow of a pasing clond, rums to lide itself in any little hollow that may be near. The usual practice of the shepherds is to ent out an 160
oblong piecr of turf, ahout 11 inches by S, and 6 inches thick, which they lay across the hole that is made, making sloping entrances at the ents of the hole, and setting nooses minder the turf in the centre. As many as 84 dozen wheatears have been thus eaught ly a single shepherd in a day. It is not unusual fur a shequerd and his lad to look after from 500 to 500 of these traps. The season for catching wheatears extends from the end of July to the end of Saptember. They are partly sent to the London market, lont very many are eunsumed at the watering-julaces on the Sussex coast.

WHEAT'FLY, the popular name of certain specses of dipterous insects, which are nften very injurious to wheat-crons. One of them, Cecidompia tritici (see Cecinomyla), sometimes called the Wheat Mmoc, and helonging to the same genus with the instruetive II ssima Fly of America, is ton common buth on the continent of Euroje and in Britain, but fortunately is not very abundant except in particular years. It is supposed to be the same fly which appeared in the north of New England in 1s:S, probally imported from the Old Word, and thence spread into New lork anl Camada, destroying a tenth part of the wheat-eron for several years, and only disappearing on being starved ont by a change of erop, or by late spring-sowint of wheat. The egess are deposited in the wheat when it is coming into flower, and the larwe alnstracting the juices, cause the grain to shrivel. The perfect insect appears in June, when great numbers may sometimes be seen on wing in the evening, their chief time of activity. It is abont one-tenth of an inch in length, pale ochreons or orange, downy, with lare black eyes, and long slender logs ; the male with very long antenne. The antenna of the male difler much in structure from those of the femate, as will be seen ly the annexed fig. (g, h),

Wheat-fly (Cecidomyia (ritici). (From Morton's Cycloyavia of Agricuture.)
a. harva in spikelet of whent ; $b_{\text {, pupa in the anme: ", larsa, }}$ natural size : d, do. magntied ; f_{1} pupa, natural size ; f, do. matritiod: q, a few joines of one of the antenne of a male wheat fly: h, do, uf female; i, fimale wheat-fly, natural size; k, do magnified.
and are of tweaty-fire joints, whilst those of the female have only thirtecn. The larve are small and Jumon-coloured. A little black ichneumon lays its eargs in the larsa of the IV., and is thus nseful to the farmer by destroying it. - The name W . is also given to species of the genus Chlorons (see CorsF1.5) destructive to whent.

WHEATON, HeNri, American jurist and diplomatist, was bom at l'rovilence, Thode Island,

Norember 27,1785 , educated at Brown University; admitted to the bar in 1802 ; after which he spent several years in France, and six months in London, engaged in legal and literary studies. On his retnrn to America, he resided in New York, where he coutributed papers on International Law to the National Adrocate, a daily newspaper, and was appointed a justice of the Marine Court. In 1815, he published a Digest of the Law of Jaritime Captures or Prizes, which has been commended as one of the hest works, in English, on the subject. About the same time, he published an Essay on the Means of maintaining the Commercial and Naval Interests of the Enited States. In 1816, he was appointed Feporter of the Proceedings of the Snipreme Court of the United States, a post he filled until 1827. His Reports, filling twelve volumes, a distinguished German has called 'the Golden Book of American Law ;' and it is considered by the legal profession as a work of extraordinary ability and valne. He also made frequent contributions to the Jorth American and American Quarterly Reviews, and delivered addresses before literary societies. In 1820, he was engaged in revising the statute laws of New York ; in 1896, he wrote his Life of William Pincliney, of which he furnished an abridgment for Sparks's American Biograplies. In 1827, he was appointed Chargé d'afficives to Denmark, and resided at Copenhagen till 1835, when he was appointed Resident Minister at Berlin, and in 1837, Minister Plenipotentiary; which post he occupied with distinguished credit until 1846. Iu 1831, his IIistory of the Forthmen appeared at Philadelphia. London, and Paris; in 1836, his Elements of International Law; in 1S41, his Essay, for which he received the prize of the French Institute, entitled L'Histoire du Droit des Gens en Europe, depuis la Paix de Westphalie jusqu'au Congrès de Vienne, which, in 1846, was published, greatly enlarged, in Leipzig and Paris, and an English translation in New York. This work is a standard authority, and its author received the highest honours from the learned societies of Europe, and his own countrymen. Having retired from political life, he died at his residence at Dorchester, Massachusetts, March 11, 184 S .

WHEatstone, C'rarles, physicist and electrician, was born at Gluucester in 1802. From school he went to the making of mnsical instruments, aul afterwards entered into business on his own account in London. But he was no ordinary manufacturer: the scientific principles inrolved in the construction of instruments occupied his thought; he made many improvements, and in 1523 , published a paper entitled Few Experiments on sound. Endowed with remarkable ingenuity, he produced numerous models and apparatus to illustrate the phenomena of acoustics and of light, his attention having beeu drawn to the latter by the analogies betwcen the tro subjects. Few men have done so much towards enabling the student to apprehend the principles on which scientific theories are based, particularly those of the undulatory theory of light.

In 1833 , Mr W. comnunicated his first paper, On Acoustic Figures, to the Royal Society; followed, in 1531 , by Experiments to measure the Felocity of Electricity, in which, with a mirror revolving 800 times in a second, he demonstrated the velocity at 258,000 miles in a second-greater than that of light. In the same year, he was appointed Professor of Natural Philosophy in King's College, London. In 1836, he was elected a Fellow of the Royal Society; and in a course of lectures at the College on the velocity above referred to, he anticipated the electric telegraph by experimenting through four miles of copper wire. In May

1837, a patent was taken out in the joint names of Cooke and W., for improvements in giving signals and sounding alarums in distant 1 laces by means of electric currents transmitted through metallic circuits.' From this instrument, which had five needles, has grown that system of electric telegraphs which now ramifies over the length and breadth of the Enited lingdom. The first working-telegraph-insulated copper wires enclosed in an iron tube-was constructed on the Blackwall Railway is 183S.

To enumerate the titles only of Professor W.'s papers on scientific subjects, and describe his various inventions, would fill many pages: a few only can he indicated here. In a paper on Einoctilar vision laid before the Royal Society in 1535, he explained the principle of the stereoscope, au instrument of his invention : in 1810, he shewed that, by means of electro-magnetism, a number of clocks far apart might be kept going with absolute exactitude from one central clock; and in 1843, he bronght out his new instrmments and processes for determining the constants of a voltaic series. In 1840, and again in 1843, the Royal Society awarded him their Toyal Medal-a high acknowledgment of the merit of his researches. Since then, scarcely a year has passed without a paper on some recondite scientific subject, or some new inrention, or improvement on former inventions, from the hand of Professor W., which have heightened his reputation, and procured him substantial pecuniary reward. He has bronght out his cryptograph, his automatic telegraph in two forms ; and his telegraph thermometer and barometer, by which an observer at the foot of a mountain could read the indications as shewn by the instruments on the summit. His latest inrention is a machine for the conversion of dynamical into electrical force without the use of permanent magnets, by whicl large quantities of electricity can be produced at a cheap rate, to be used for laboratory and manufacturing purposes.

Professor W.'s scientific writings are contained in the Annals of Philosophy; Joumal of the Royal Institution; Philosophical Magazine: Reports of the British A ssociation; and Philosoplical Transactions and Proceedings of the Royal Society. He has sat many times on the Conncil, and has been a Vice-president of the Toyal Societr, and is a Corresponding Member of the Imperial Institute of France, and of the leadin'g scientific academies of the principal capitals of Europe.

WHEEL AND AXLE, the second of the Mechanical Powers ($q . \mathrm{V}_{\mathrm{V}}$), is a modification of the Lever (q. r.). Its most prinitive form is a cylindrical axle, on which a wheel, concentric with the axle, is firmly fastened. When employed for raising heary weights, the meight is attached to a rope which is wond round the axle, and the power is applied either to a rope wound round the grooved rim of the wheel, or to a handle fixed at right angles to the wheel's rim (in the latter case, the wheel may be dispensed with, unless it is useful as a conservator of momentum [see Fly-wheel], and an ordinary winch substituted). The accompanying figure exhibits a transverse section of the common form of the wheel and axle, and
 shews that the wheel and axle is neither more nor less than a lever, whose extremities are not points as in the normal form,

WIIEEL-AN1MALCULE-WHEEL-W゙ORK.

but the circmmferences of the circles, whoso rulii are FA and FI\%. Accordingly, tho power and weight are not attached to particular points in these circumferences, but to cords wound round them, and thus the imaginary siuple lever, AB (formed by joining the points where the cords lecome tangents to the circles), is preserved unalterel in position and magnitude. The conditions of equilibrium are, that $\mathrm{P} \times \mathrm{AF}=\mathrm{W} \times \mathrm{FB}$, er, sinee the cirenmferences of circles are proportional to their radii, that $\mathrm{I}: \mathrm{W}^{r}:$: circumference of axle: circumference of wheel. When there is no wheel, lut only a winch, the cireumference described by the power in one revolution is substituted for the circumference of the wheel. The cajstan and windlass are simple and eommon examples of this mechanical power, and comhinations of toothed-whecls, or of wheels from one to another of which motion is communieated loy'an endless band, are compound illustrations of the same. See Wianlass.

WHEEL-ANIMALCULE. See Rotatoma.

Wheel, Breakivg on the, a vety barbarous mode of inllicting the punishment of death, formerly in use in France and liermany, where the eriminal was placed on a earriage-wheel, with his armis and legs extended aloug the spokes, and the wheel being turned round, the executioner fractured his limbs by successive blows with an iron bar, which were repeated till death ensued. There was considerable variety in the mode in which this punishment was inflicted, at different times and in different places. By way of terminating sooner the sufferings of the vietim, the executioner was sometimes permitted to deal two or three severe llows on the clicst or stomach, known as coups de grace ; and oceasionally, in France at least, the sentence contained a jrovision that the criminal was to be strangled after the first or second blow. Merey of this kind was, however, not always allowed to be shewn to the rictims of the wheel: when Patkul, the envoy of Peter the Great, was put to death on the wheel by order of Charles XII. of Sweden, it is said that the oflicer in command of the guarl was eashiered by the Swedish king in consequence of having allowed the head to be struck off before life was extinet in the mangled limbs. The punishment of the wheel was abolished in France at the lievolution; in Germany, it has been oceasionally intlicted during the present e., on persons convicted of treason and parricide.

WHEELE'RA, a genus of trees of the natural order Lermuminose, sub-order Papilionacea. The wood of 11 . ebenus, a native of the West Indies, and of the tropieal parts of America, is imported into lritain under the name of 1 merican Ehon\%. It is very hard, of a brownish-green colour, takes a time polish, and is employed by cabinetmakers and musical-instrument makers.
WHEE'LING, a city, port of entry, and capital of West Virginia, U. S., on the left bank of the Ohie liver, and both sides of Wheeling Creek, 40 miles direet, and 92 by river, below Pittshurg. The city is built at the foot of the hills, which rise to the Alleghanies, and is the terminus of the Baltimore and Ohio, and of the river division of the Cleveland and Pittsburg railways. The great national road here erosses the Ohio, over which is a wire suspen-sion-bridge, 1010 fect long. The hills around the city are full of bituminous coal, which sells for $1 d$. a bushel. In 180, there were 55 steamboats, numerous fommlries, and other metallurgic works, 4 glasshonses, 5 paper-mills, tlour-mills, breweries, tanneries, $\& \mathrm{e}$; and 2 daily newspapers. Pop. in 1860, 14,50.

WHEEL-WORK. The arrangement for conreying motion from one axis to another by means of tonthed-wheels, is familiar to every one; it has
been in use since the days of Archimedes, aud was in use, probalbly, for many centurics lefore; but it is only in modern times that the action of such wheels has been eritieally examined and understood. To a superficial observer, the action appears to bo extremely simple: a tooth of the driver pushes against a tooth of the driven wheel, thereby causing that wheel to turn round ; and, sinco by this torning the teeth mast besome disengaged, it is requisito that, before one tooth let go, a second tooth of tho driver be ready to take hold of another tooth of tho driven when. For this parpose, it is enough that the distances hetween the teeth on the two wheels be alike; in other words, that the diancters be propertioned to the number of the teeth.

When two unequal wheels act upon each other, the smaller one turns faster than the larger. Thus, if a wheel with 60 teeth work into one of 20 , tho latter will turn ${ }^{3}$ times as quickly as the former; and it is on this principle that the trains of cloekwork are arranged. For example, the great-zoheel of a common house-elock may have 180 teeth, and may drive a smaller wheel, or pinion as it is ealled, of 15 leaves, and in this ease, if the great-wheel turn once in 12 hours, the pinion must turn once in every hour ; the axis of this pinion carries the minute-landi. On the same axis the hour-wheel is fixed, which may have, say, 96 tecth, and may drive a pinion of 12 leaves. This pinion, then, must turn 8 times per hour, or onee in $7 \frac{1}{2}$ minutes. On the same axis with this last-mentioned pinion there is fixed the thirlwheel, having, perhaps, 75 tecth, and this drives a pinion of 10 leaves, which, turning $7 \frac{1}{2}$ times as fast must malie one turn per minute. On the axis of this last pinion the eseape-velued is fixed. This escape-wheel has 30 tecth, each tooth acting twiee upon the pendulum, thus making 60 leats per minute. In such a case as this, there is no difficulty in arranging the numbers of the teeth, and these may be varied in many ways, provided the proper proportious be kept. But in other cases, a considerable amonnt of skill, and often a great deal of labour, is required for the discovery of the proper numbers. 'Thns, if it be wished to indieate the moon's age on the dial of a elock, we must have an index turning once in the time between new moon and new moon. This time, which astronomers eall a lunation, averages 29 days, 12 hours, 44 minutes, and nearly 3 seconds (2.853), and it is by no means an easy matter to tind out what number of teeth will produce this motion. The month-wheel would need to turn rather more than 59 times as slowly as tho great-wheel of the clock; and if the mean lunation had been 291. days, without the odd 44 minutes, the thing could lave been managed by making a pinion of 8 tecth lead a wheel of 59 teeth, on the axis of which another pinion, say, of 10 teeth is fixed, and made to work a wheel of 50 teeth. But then such an arrangement would go wrong nearly threequarters of an hour cvery month, and in three y ars would indieate new moon a day too carly. In order to obtain a better train, we may compute the number of days in $2,2,4,5$ lunations until we get nearly a number of half-days. Now, 16 lunations consist of 472 days, 11 heurs, 45 minutes, or almost exactly 945 turns of the great-wheel. This proportion can be obtained by causing a pinion of 12 teeth to lead a wheel of 81 teeth, and another pinion also of 12 teeth to lead a wheel of 105 teeth. This arrangement gives an error of one cquarter of an hour in 16 months, or hardly an hour in 5 years. If still greater precision be required, we must earry the multiples further: 33 limations make 974 days, 12 hours, 133 minutes, or 1949 turns of the greatwheel of the clock; but then this number 1949 has no diviser, and it is quite impracticable to make a

WHEEL.WORR.

Wheel of I949 tceth; so that we must continue our multiples in search of a better train. In this way, when great exactitude is desired, we often encounter an unexpected amount of labour. For reducing this labour, the method of continued fractions is employed, and the toil is further lessened by the use of tables of divisurs.

Such calculations have to be made for the construction of orreries, by which the times of the revolutions of the planets are shewn; and engineers have to make them, as when a screw of a particular pitch has to ve cut. If, for instance, we have to cut a screw of 200 turns to the French metre on a lathe having a leading-screw of 4 turns to the English inch, the axis of the lathe must make 50 turns while the screw makes 39 and a fraction, since the metre is $39 \cdot 37079$ inches. By applying the method of continued fractions, we discorer that, for 20ํ 5 turns of the lathe-spindle there must be 1752 turns of the screw; and as these numbers can be reduced into products-viz, 22.2 into $5 \times 5 \times \$ 9$, auk 1752 into $2 \times 2 \times 2 \times 3 \times 73$, we can easily get trains to produce the required effect. From these illustrations, it is apparent that the computation of the trains of wheel-work is intimately connected with the doctrine of prime and composite numbers.
The general sizes of the wheels and the number of the teeth having been fixed on, the next business is to consider the shape which those teeth ought to have. Now, for the smooth and proper action of machinery, it is essential that the uniform motion of one of the wheels be accompanied by a motion also equable of the other whecl. Two curves have been known to give this quality of equable motion -riz., the epicycloid, formed hy rolling one circle upon another, and the involute of the circle traced by the end of a thread which is leing wound upon a cylinder, or unwound from it. But the general character of all curves which possess this property has been only lately examined. If it were proposed to construct two wheels which shall have their centres at the points \mathbf{A} and B (fig. 1), and the one of which may make 5 turns while the other makes 3, we should divide the distance AB into S parts,

Fig. 1.
and assign 5 of these for $A C$, the raclius of the one wheel, the remaining 3 parts for the radius BC of the other wheel. Whecls made of these sizes, and rolling upon each other, would turn equably, and if the circumferences be divided into 5 and 3 parts respectivcly, the points of division would come opposite to each other as the wheels turned. The circumferences of these circles are called the pitch-lines, and the portious of them included betreen two teeth is called the distance of the teeth: the distance, or arc CD, on the one wheel must be equal to the distance CE on the other wheel, in order that the motion may bring the two points D and E together. For a reason that will appear in the sequel, we cannot use wheels with so few as 3 or 5 teeth, and therefore we subdivide the distauces $C D$ and CE into some number of parts, say 4 , and thus obtain wheels of 20 and 12 teeth instead. Since the tooth of the one wheel must uecessarily
come between two teeth on the other, the distance hetween the teeth must be halred, the one half being given for tooth, and the other half for space.
Having then divided off the pitch-line of the wheel B , as in fig. ${ }^{2}, \mathrm{CD}$ being the distance of the teeth, CG the halfdistance, let us sketch any contour, CFGHD, for the shape of a tooth, and let us examine what should be the characters of this outline. In the first place, the form of this outline must be repeated for each tooth; and in the second place, the line should be sym. metric from the top, F , of the one to the top, I, of the next tooth, in order that the wheel may be reversible face for face. These obrious conditions having been attended to, let us cut, in thin sheet-

Fig. 2. brass or other convenient material, a disc having this outline, and let us pin its centre at the point B. Haring prepared a blank disc on which the outline of A is to be traced, let us ship it under the edge of the previons one, and pin its centre at the point A. If, now, B and A being held fast, we traco the outline of B upon A , we move each of them slightly, but in the proper proportion forward, and make a new trace upon A, and so coutinue as far as needed, we shall obtain a multitude of curve lines marked upon A. The line which envelops and touches all these curves is, obviously, the proper outline for the wheel A ; and thus it appears, that whatever outline, within reasonable limits, may have been assumed for the teeth of B , it is always possible, by a geometrical operation, to discover the proper corresponding form for the teeth of A. These forms may be called conjugate to each other, inasmuch as, that if the disc A were now cut out and used as B has been, the identic form of B would be reproduced.

We may obtain a whole series of wheels, $A^{\prime}, A^{\prime \prime}$, $A^{\prime \prime \prime}$, \&ce, from the same original B; and from A, as an original, we may obtain another series, $\mathrm{B}^{\prime}, \mathrm{B}^{\prime \prime}$, $\mathrm{B}^{\prime \prime \prime}$, \&c., having various numbers of teeth. And it has been shewn that any wheel of the series A will work accurately along with any one of the series E . So far well; but then the wheel A of 20 teeth may not be like the wheel B of the same number of teeth. It becomes, therefore, a desideratum to choose the form of the teeth of B in such a manner that its conjugate of the same number of teeth may have the same form; by such an arrangement, we shall obtain a series of wheels, any one of which will work with any other.
If the number of the teeth of B be augmented indefinitely, the outline of the pitch-line will become nearly straight; and so drawing through C (fig. 3) a straight line to touch the pitch-line of A, we shall hare the pitch-line of the straight rack, as it is called, which could be worked by any wheel of the series A. The

Fig. 3. reverse of this rack would work with any one of the serics B , and therefore, if the series A and B be identic with each other, the

WHEEL-WOIKR.

rack must be its own reverse. Thus we obtain a very inportant gencral result-viz., that if we mark ofl along a straight line distances, (1), equal to the desired interval betwen the tecth, and then draw any line CKLA(1), consisting uf four equal parts, ('ட, KL, L入l, N11, symmetrically arranged, all the wheels whtaiver from this, as the origimal, will work into eacle other; and, moreover, the forms thus obtained answer for internal as well as external teeth.

Being then at liberty to choose any line whatever, subject to the abose comation of symmetry, for the figure of the straight rack, we may inquire whether it may mot he arranged so as to bring ahout other desiderata. This line, it may be noted, is not necessarily curved; it may be composed of straircht lines, or partly of straight and partly of curved haes.
'The gencral apmearance of this wary line recalls that curve known as the curve of sines, which, inded, is the simplest known curve, consisting of requal and symmetric undulations, and unlimited in extent. By changing the ordinates in any ratio, say in the ratio if J'U to I'lh, the wares of the curve may he made slablower or dequer; and un studying the effects of such a change, we diseover some new and very important laws concerning the cuntacts of the teeth of whecls.

Degiming with the curve of sines proper, in which the greatest urlimate, sk, is equal to the radius of a cirele of which ('I) is the lengtly of the ciremuferance, it is found that wheels traced from it ean only touch cach other at one point: of cenrse such whecls cannot work, hecause the solitary coutact is now on the back and now on the front of the tonth. In this case, the cuntour of the tootherosses the pitchline at an augle of 45°. On dcerruing the teeth, still keeping to the same lioud of curve, it is foumb that the wheels leegin to touch at more points than one; and when they are made so deep as that the contour crusses the pitch-line at an ingle of 6.5°. there are always three contacts, meither more nor less. If the teeth be still further depened, the contacts become more mumerous; they appear and , lisappmar in pairs, so that with an inclination of, say, 65°, there wouk he sometimes three, and sometimes dive contacts. When it hecomes $70^{2} 17$, there are always live; and with an inclination of $73^{\circ} 11^{\prime}$, there are always seven points in contact at once.

Of these proints of contact, some are on the sides of the tecth, and others are near the top and lottom; the latter, on account of the obliquity of their action, are of no use in driving ; they may be called suppplementary, and their number is always one less than the number of usefnl or working contacts. In the system of seven contacts, four are useful, two of then being forwarls, and two lackwards, so that two tecth are always in action at onee; an arrangement by which it gradmal improvement in the equality of the tecth is seeured by their wearing.

When two properly formed wheels are put in motion, the joints of contact move also, and describe a peculiarly shapad line, the nature of which depents on the character of the prionary form adopited fur the toath of the straight rack. Converscly, if this path $^{\text {of }}$ the points of contact he first assunied, and the latw of motion in it lee olserved, the form of the torith of any wheel may thence be ritained; and this leads us to the most courenicnt way of making the delineation.
In fig. 4. the form of the straight rack and the corresponding shape of the tecth of a wheel of 20) are shewn in contact, the depth of the tonth being such as to give five contacts, which in the drawing are at the five points marked 0 . If we suppose the rack to be slid upwards, carrying the whecl along with it, the points of contact will
change ; and when the motion has been onc-cighth part of the interval between two tecth, these points will occapy the positions markel 1. When a

Fig. 4.
motion of annther eighth is male, the two npper contacts on the left hand merge into one, and are abont to ulisappear; at the same instant, two now contacts legin at the lower point, marked 2; and thus the motion continues in the order of the numbers marked along the peenliarly shaped path of the points of contact. 'Those contacts which necur aloug the crossing lines of the curve, are working

अin. Ј.
contacts ; those which bappen along the two external ares, are suppementary. When the form of this path, and the positions of the successive points in it have been obtained hy calculation, the outline of any whecl is casily traced geometrically. Figs. 5, 6, and 7 shew the path for the system of seven enntacts; tig. 5 , whem the outline of the rack is the curve of sines; fig. 6 when the teeth of the wheels

WHEEL-TORK.

have the involute, and fig. 7 when they have the enicycloidal form. In these figures, $\mathrm{C}^{\prime}, \mathrm{C}^{\prime \prime}, \mathrm{C}^{\prime \prime \prime}$, are the positions of the centres of wheels oi $1,2,3$ teeth.

Fig. 6.
In well-constructed machinery, there should never be fewer than seven contacts in the system, since of these only four are working; and therefore only two teeth are fully eugaged; and it is necessary

Fig. 7.
that two teeth be engaged at once, in order that the wearing may tend to remove any unavoidable inequalities of workmanship.

When we attempt to delineate the forms of wheels with few teeth hy help of any of these orbits, we find that the contours overlap each other; in such cases, the following tooth of the conjugate wheel effaces, as it were, the trace lelonging to the preceding tooth; and the contacts, though still holding good of the geometrical eurves, hecome mechanically impossible. Thus it is that there are limits below which we cannot go in the numbers of the teeth. If the overlapping occur at the shoulder of the tooth, some of the useful contacts are arranting; but when the replication is only at the point of the tooth, the want of the supplemer tary contact
occasions no iuconvenience. An examination of the different cases shews that with seven contacts, the smallest numbers which can be used on the three systems just mentioned are 19, 17, and 11, so that the system of epicycloidal teeth has, in this respect, the advantage over the othere. Clock pinons, then, should not have fewer than eleven leaves.

This method of considering the subject was first published by the writer of this article in A Few General Theory of the Teeth of IFheels (Edinburgl, 1852).

It remains to cut the actual wheels to the shapes thus formed. The essentials of the operation are these: The blank wheel is attached to the axis of a large divided circle, which ean be turned round and held in any desired position. A cutter, generally a revolving cutter, is brought down upon the blank, so as to noteh out the space between two tecth; this done, the circle is turved round by the proper number of divisions, and another space is cut, and in this way the whole circumference of the wheel is goue over. In order that the work be well done, it is essential that the cutter be truly shaped; and when the edges get blunted by use, it is no easy matter to avoid spoiling the shape in the reshar pening. Whatever system be followed, the form of the tooth varies from one number to another, so that the cutter which answers for a wheel of 20 cannot do for one of 30 teeth; and hence, when accurate results are wanted, there must be a cutter for each wheel. In order to aroil the expense of so many cutters, each requiring to be carefully made, the slovenly practice is too often followed of havins, perhaps, two entters. one to be used for pimions, the other ior wheels; and the result is the intolerable noise which is so common in mills, and which, if properly understood, should be taken as an indication of unnecessary expenditure of power.

When, as in the wholesale manufacture of clocks and watches, multitudes of wheels are to be cut of one size, careful attention can be given to the share of the cutter. The labour is cconomised by binding a considerable number of blanks together on the dividing engine, and ploughing ont the teeth of the whole of them at once. For the small wheels, technically called pinious, which cannot conveniently be fixed on the dividing-engine, pinion-vires are used; these are wires of brass or steel drawn through holes of the proper shape, and having the leaves running all aloug them. The watchmaker removes the leares from those parts where they are not wanted, and thus obtains the pinion and its axle in one picce; in this way he gains the advantages of solidity and economy of workmanship.
Among the many purposes to which wheel-work is applied. it sometimes happens that an unequable motion is wanted. Thus, in the construction of an orrery, it is desirable that while one index turns uniformly to shew the time, another may turn so as to shew the unequal motion of the sun in the ecliptic. In that case, the rariations of the velocity are smail, and it is enongh to divide the teeth unequally, as the slight inequality cau hardly affect the working of the apparatus. But when the changes of velocity are considerable, the matter must be more carefnlly looked into. If we suppose the pitch-lines of two wheels to be uneven, and to roll uou each other withont regard to the positions of their centres. the forms of tecth to be arranged upon those pitch-lines may be traced out almost in the manner already cxplained for mom wheels. The pitch-line must be divided into equal distances, and the dise must receive a half-sliding half-turning motion. so that the pitch-line may lass through the point C (fig. S) always perpendicularly to the line $A B$, which is the line of centres for round

WIIEEL－WORぶーW11ELK．

wheels．The eombination of this motion with the proper motion of the points of coutact gives true lorms for the teetl．

Fig． 8.
Thus，the form of the tooth can be oltained when that of the pitch－line is known．Now，when two dises，turning ou fixed centres，touch each other at any point out of the straight line joining these ecntres，there is a slipping of the one surface over the other；and therefore，in order that the pitch－ lines may roll together，they must bo so shaped as that the point of contact may be in the line of eentres．It ean be shewn that，for any assumed contour of the wheel A ，another contour having its centre at B ，ami rolling upon A ，is possible．But， exeept in one or two special eases，the working out of the problem has not been aceomplished．It will be enongh here to mention the single ease of elliptic wheels．The action of these is foumed on the well－ known property of the ellipse，that the sum of the distances of any proint in it from the two foci is constant，and that the eurve makes equal angles with these two lines．Hence two equal ellipses turning on their foei，when their centres are at a distance equal to the major axis of the ellipse，will roll upon each other；and teeth formed upon these as piteh－lines will work perfectly．In lig．9，the

Fig． 9.
ellipses have their major and minor axes in the proportion of 5 to 4 ；with that proportion the foeus is at one－fifth part of the major axis from one end ；and therefore B，at one part of the revolution， moves four times as fast－at another part，four times as slowly－as A．

Sometimes nue of the wheels has to lie quite at rest during part of the motion of the other wheel． This is accomplished by eausing some part of the wheel that is to be stationary，to bear upon a part of the cireumference of the novins wheel which is eoncentric with its axis，This is exem－ flificd in the arrangement for counting whecls shown in fig．10．The object of this apparatus is to count and recorl the revolutions of the wheel B．As this wheel turns round，a pin E attached to it enters into the slit Cill，and thus earries the wheel A round as long as the pin remains in the slit，that is， until the slit GII be brought into the position IK： As soon as E leaves the slit at I，there would be no further connection between the two whecls，and 1
eatid bo moved anyhow，altogether independently of B．In order to prevent this，tho dise B is made nearly five－sixths entire，and parts of A are scooped out between the slits so as to receive and to lit B．liy this means A is preventel from being turned either backwards or forwards until the pin E：again come into one of the slits．When this happens，the projecting part at G finds room in the reeess l ．If there be seven slits，GII，romm？ the whed λ ，and if 1 ； turn onec in twenty－four hours，an index attached to A would shew the days of the week；and the index might be made to be stationary all day， the elauge being effected

Fig． 10. during the night．An－ other example of this kind of interrupted motion is seen in the orilinary dead－beat clock cscapement， in which the detaining surface of the pallet is concentrie with the axis of the erutch．

When the axes are inclincd to each other，bevelled wheels are used．Just as common wheels may bo regarded as fluted eylinders，bevelled wheels may he deseribed as tluted cones having a common apex． The prineiples which regnlate the formation of the tecth of these are the sauc as for plaue wheels； but the application of these prineiples is consider－ ably more intricate．Since looth tho teeth and the spaces between them are tapered，it is impossible to notch out the intervals by means of a revolving cutter．Attempts have been made to construct maehinery for planing the teetla by means of a cutter mowing in a line towards the apex of the cone，but the eomplexity of the apparatus，and the slowness of the process，have prewented its intro－ duction ；and thus the aceurate formation of bevelled wheels has still to be accomplished by hand．

WHELK（Buccinum），a gemms of gasteropodous molluses，of the family Buccinide．The shell is ovate，turreted，and more or less ventricose；its mouth ovate，emarginate，or produced into a very short canal below，the outer lip，expanded，the immer lip usually thin and smooth within．The operculmon is horny．The animal has a broal head，with two tentacnlia，with the base of which the stallis bearing the eyes are mited；the prohoscis is large，and the tongue armed with teeth，which are used for the purpose of rasping substances used for food－almost any animal substance leing welcome for this use－ or for perforatiug the shells of other molluses in order to prey upon them．There are abont twenty

Whalk（Buccinum undatam）：a ，the eggs．
known species，chiefly found on the eoasts of the coller parts of the worll．The British coasts pro－ aluce several species，of which the most abundant is the Commor W．（ b ．undutum）．It oceurs from
low-water mark to a depth of 100 fathoms, is sometimes three inches in length, grayish or brownish white, with nnmerous raised ridges and spiral strix. It is very widely distributed in the northern parts of the northern hemispbere, and is one of the most common molluscs of the arctic regions. It is much used as an article of food, is cooked simply by boiling, and is generally eaten with vinegar"aud pepper. Great quantities are consnmed in London, chiefly by the poorer classes. In former times, whelks would appear to have been more highly esteemed than now. Eight thousand of them were provided for the enthronisation feast of Willian Warham, Archbishop of Canterbnry, in 1504. Yet on some parts of the British coasts, as on those of Scotland, whelks are never caten, a prejudice existing against them as unsuitable for food. The whelks lrought to the London market are mostly olitained by dretging. On the coast of Galloway, where they are used as a bait for catching cod, they are procured hy letting down baskets containing pieces of fish in about ten fathoms water. The baskets being taken up next day, are fonnd to contain many whelks which have crept into them to feed on the garbage. The name W. (or Will) is popularly given in Scotland to the Periminkle, the W. being known by that of Buckic.-There are more than 100 fossil species of W. in the Mioceue formations.

WHELK, or BUBUCLE. These are terms used by the older English writers, and by Dr Craigie in recent times, to signify the cutaneous disorder now commonly known as Acne. The simple whelk, the black whelk, the inveterate whelk, and the crimson whelk, correspond to Acne simplex, A. punctata, A. indurata, and A. rosacee of the more modern dermatologists. The symptoms of the crimson whelk, or fiery-face, must have been carefully ohserved by our great dramatist before he could have written Fluellen's graphic description of Bardolph: 'His face is all bubukles, and whelks, and knobs, and flames of fire, lunt his lips plows at his nose ; and it is like a coal of fire, sometimes plue, and sometimes red.'-Kiuy Henry V., act iii. sc. vi. The Chinwhelk is the old name for the affection now known as Sycosis or Mentagra.

WHEWELL, William, D.D., was born in 1795 at Lancaster. His father intended him for his own trade-that of a joiner; but the boy having excelled at school in mathematics, was persuaded to go to Cambridge. He entered at Trinity College, and graduated (Second Wrangler, and Second Smith's Prize-man) B.A. in 1816. He became a Fellow, and afterwards a Tutor of Trinity, where also, for many years, be acted as a successful 'coach,' or private tutor. In 1820, he became a Fcllow of the Royal Society. Between 1828 and 1832, he was Professor of Mineralogy in Cambridge; and betwcen 1838 and 1855, Professor of Moral Theology, or Casuistry. In 1841, he was appointed Master of Trinity; and in the same year, he was Presideut of the British Association at its meeting at Ply. mouth. He was also, for a time, President of the Geological Society. In 1855 , he became Vice-chancellor of the university of Cambridge. He died at Trinity (1866), in consequence of injuries sustained through a fall when riding.
W., when he acted as a private tutor, produced several text-books on mathematical subjects (one of which, his Dynamics (1823), is deservedly admired), which were for a time popular, but may now he said to have been superseded. He also contrihuted a variety of papers to the Transactions of learned and scientific societies, and to scientific journals, and to the reviews. In some of these, he treated of such subjects as the Tides, Electricity, Marr-
netism, and Heat; in others, of alastruse and recondite subjects, literary, historical, and metaphysical. Later in life, while be continucd to write papers of this class, he concentrated his powers mainly on the production of large works. Among the most important of his books are-Astronomy and General Physics considered in Reference to Natural Theology, being the third Bridgewater Treatise (Lond. 1833); IIistory of the Inductive Sciences, from the Larliest to the Present Times (3 vols., Lond. 1837) ; The Philosophy of the Inductive Sciences, founded upon their Ilistory (? vols., Lond. 1840); The Elements of Morality, including Polity (Lond. 1855). Among his other works are-The Plurality of Worlds, which hal considerable popnlarity from its subject; The ITistory of Scientific Illeas, Novum Organum Renovatum; Notes on the Architecture of German Churches; Lectures on the II istory of Moral Philosophy in Enyland; Indications of the Creator; translation of Gocthe's Herman and Dorothea; translation of Auerhach's Professor's Wife: translation of Grotius's Rights of Peace and War; a translation of Plato's works; and The Platonic Dialogues fur English Readers. Besides these books, he published many essays, as yet uncollected. His last composition, so far as is known, is au attack on Comte and Positivism, which appeared in Macmillan's Magazine aiter his death.
W.'s acquisitions were most various; it would hare been sufficient occupation for the lives of most bookworms to have made them. His writings, again, were so various and voluminons, it might he thonght sufficient employment of the life of a mere clerer bookmaker to have produced them. W. was neither bookworm nor bookmaker. A clear-headed student, he was always increasing his stock of knowledge; a vigorous and independent thinker and writer, he was always giving forth the results of his studies to the public; and having thus proceeded during is long life of almost uninterrupted good health, he may be taken as illustrating what at the best may be achieved by a man of ambition, ability, and unflagging industry, without genius. He was nowise superticial, like many pretenders to encyclopredic knowledge; he was really master of all that could be learned on a great many subjects. It has been said of him, 'knowledge was his forte, omniscieuce his foible ;' hut it is ahsurd to suggest that a man can have and strain after too much knowledge, if it be, as his was, thorongh knowledge. ILis chief ambition was to grasp, survey, and co-ordinate the scicaces; and he did excellent service both to science and history in the cffort to gratify it. The task suited one of his extraordmary acquisitions, good sense, and philosophic comprehension. Had he been a man of more imagination and ingenuity, he might, of course, have been better employed iu endeavouring to advance some single science. As he was, this was beyond him: he made some original investigations; hut the results must be pronounced unimportant.
W. was a large, strong, erect man, with a red face and a loud voice. He was an effective preacher and lecturer, though in both characters wanting in that 'something' which wins and rivets the hearer. He was accused of being arrogant; and his geveral beariug gave colour to the charge. A story, long current, may he told as illustrating at once his varied knowledge and his personal relations to his brother Fellows. He used so to overwhelm with his learning the company at the Fellows' trabe and in the Combination Room, that a conspiracy was formed to put him down. Some Fellows got nl a knowledge of Chinese music from scattered articles in old reviews, with which they presmmed he would be unacquainted. They then made Chinese music 107

WHEY-WHIMBIREL.

the subject of, as it were, a easual conversation at table. For a time, contrary tu his usual habit, he took no part in the conversation. When they liad about exhansted themselves, however, he remarked: II wias imperfectly, and to some extent incorreetly, informed regarding Chinese musie when I wrote the articles from which you lave drawn your information.' They were eanght in their own trap, and liact, as on other occasions, to submit to lie instrueted.

WHET. When any sulustanee, possessing the property of coagulating casein, is adiled to mill, the coamulated easein separates in llakes amel clots, and sinks to the bottom, constituting what is termerl the curds; while the supernatant, striw-coloured tluil is known as the whry. ('heese-making affords the prineipal souree of whey, which, thus ohtained, forms, like butter-milk, a very vialuable kinu of drink. The whey of goat's milk is regarelcul as specially beneficial, and in Switzerland and elscwhere, large establishments have been set uj for earrying out the whey-cure, either alono or in association witl the grape-eure. There an the no doubt that, were the eases judicionsly selected, much good, in the way of eliminatiner morbid matter, might be etfected in a few weeks lyy contining the patients to a diet of brown bread, grapes, amel whey; while, on the other hand, many diseases might be muclu aggravaterd by that treatment. In ordinary medieine, we recognise several useful varicties of whey, as: White-wine whey, prepared by the aldition of sufficient sherry to a tumbler of leatcel milk to congulate the cascio. On lecanting off the whey from the eurils, and sweetening, we obtain a farourite suclorific draneht. which may be taken with alvantare as a sudoritie at lredtime, whenever there is a threatening of incipient eold in the bead. Cream-of-tartar achey and nitre-acheythe former prepared by boiling loograins of eream of tartar in a pint of mille, and the latter loy the similar use of nitre-act in the same way as winewhoy, but more powerfully. Tranamind whey has been alrealy described in the artiele on that fruit.

WIIfG AND 'IORY, the names which for the last two centuries have heen proplarly applied to two rpposite political parties in (ireat Britain. Poth were at first names of reprozeh. Whig was oriminally a niekname of the peasintry of the Western Itowlands of Neotland, said by some to be derived from a word or souml used by them in driving their horses; ly others, from whig, 'an acetous licpoor subsiding from sour cream. --Jumieson. Its next application was to the bands of Covenanters, clinetly from the west of sentland, who, subsequently to the murder of Arehbishop, Sharpe, took up) arms against the government, and after gining sone successes in encounters with the king's troops, were defeatel at Bothwell Bridge. Thence the name Whig for Whisamore) eame to lie fastened, lirst, on the whole I'reshyterian zealots of scotlauel, and afterwards on those Focglish politicians who shewed a disposition to oppose the court, and treat lrotestant noneon formists with lenemey. ']he word Tory-said to be derived from tord, ford, in lrish, 'give, give, or 'stand and deliver'-was first given to certain lrands of ontlaws, half-robber, Lali-insurgent, professing the lioman C'atlolie faith, who harassed the Lnglish in Irelaml ; and was thence applied reproalhfully to all who were sujplosed to lie abettors of the imaginary l'opish plot; and then gencrally to persons who rofuscd to concur in the exclusion of a lioman Catholie prince from the throne. These two nicknames, which eame into use about 1680, immentiately became familiar words, amh have since been retained as designations of two opposite political sides-the Tories being,
generally speaking, the alherents of the ancient constitution of Englanct without clange, and the supporters of regal, ceclesiastieal, aml aristocratic authority; while the Whigs have been the alvoeates of such changes in the constitution as temel in the dircetion of demoeraey. The most sweepiner enn stitutional change of the present century which the Whius have earried is the lieform Bill of 1S3:. Pach party, white preserving within certain limits a general eonsistency of purpose, has undergone many changes in its principles, professions, aml modes of action with the altering circumstances of the country; and among persons who lave been considered adherents of each side at iny given time, there lave seldom been wanting a varicty of more or less distinctive shates of ouinion. A division in the ranks of either party has often led the more moderate section of that party to eoalesce with the opposite side; and at other times, the extreme party of innovation, dropuing their connection with the Whigs, have achopted another name, as when those politieians whose desine was to lave the whole institutions of the conntry remodelled on it demoeratic basis, assumed the designation of Joulical lieformers or liadicals. S'ee also Chartisn, For a considerable time after the lieform libll, the governing scetion of the Whig party were move disposed to maintain the principles of the changes alrearly mode, than to insist on further eonstitutional ehanges; and the prineiples maintained by Whigg and 'Tories sometimes approximated so closely that the differnee seemed more one of men than of measures. Sometimes on" party, sometimes the other, has appeared as the advocate of measures which have proved bencticial. In the argitation for the repeal of the Corn-laws, which lasted from 154 to 1816 , the Tories were ranked on the side of proteetion, and the Whigs of free trale; lint the relations of the two parties hand heen the reverse at a former period, when Jl litt's alvocary of freo trade between England ancl Ireland wits upposcel by the manufacturers of lameashire, who succeederl in getting his measure postponed. Inring the last twenty years, the names liberal and Consorvutire have to in great extent sujurseded the former party desiguations of Whig and 'Jors:

WHIMISREL, (Sumenius phanpus), a bird of the same geuns witl the Curlew ($1 . \mathrm{r}_{\mathrm{r}}$), anel mueh

Whimbrel (Numcnius phecopus).
resembling it in form, plumage, and labits, but of smaller size, anc with a bill consilerably shorter in proportion. The female, which is larger than the male, is abont eighteen inches in length, the bill being abunt three inches and a half. The plumarge of the 11 . is of a bright aslo colour, with streaks of brown on the neck and breast. The W^{+}. is a very

WHIN-WHIP-POOR-WILL.

widely distributed bird, being found from the north of Africa and of India to the aretic regions of Enrope and Asia. It occurs also in Japan. It is a bircl of passage, and visits Britain chiefly in the course of its spring and autumn migrations. A few whimbrels breed in Shetland; but the number is diminishing, the eggs being in great request as a delicacy. The flesh is also highly estcemed.

whin. See Furze.

WHIN-CHAT (Suxicola rubetra; see Cmat), a bird very similar to the Stone-chat (q. v.), a summer visitant of Dritain and of the northern parts of Eurone. It is widely diffusecl over the British islands in summer, but nowhere very abundant. The bead, sides of the neck, and npper parts of the body

Whin-chat (Saxicola rubetra).
are blackish brown, each feather bordered with rust yellow; an elongated streak of white above each eye; the throat and a streak on each side of the neck white ; the breast, rust-colour ; a large white spot on each wing ; the tail white, except the tro middle quills and the tip, which are blackish brown. The colours of the female are less distinct than those of the male. The W. frequents furze (or whin) hushes. Its song is pleasant.

WHINSTONE (probably from the same root as whine, and meaning the sounding, ringing stone), a name popularly given in Scotland to any hard and compact lind of stone, as contra-distiugnished to sandistone or freestone, and rocks of slaty structure. Thus. in most parts of Scotland, it is the common appellation of basalt, greenstone, and other trap rocks, whilst in some districts it is applied to granite.
WHIPPING. Corporal punishment by whipping, public as well as private, was formerly often awarded by the criminal law of England for minor offences, sucla as petty larccuy, and was not mufrequently superadded to some other punishment, such as imprisonment or the pillory. In early times, and by the usage of the Star Chamber, whipping coull not be competently iuficter on a gentleman.-In Scotland, sentence of whipping was also frequent, the terms of the sentence sometimes requiring it to be repeated at intervals and in different parts of the lingdom. 1u the last century, the Scottish burgh magistrates were in the babit of awarding sentence of whipping on summary convictions for police offences, such as broils, street outrages, and the keeping of disorderly houses; but in modern practice the competency of inflicting this sentence at common law without the intervention of a jury has been made matter of doubt. Whipping used not long simec to le an occasional addition to the sentence of the Justiciary Court on persons convicted of aggravated assaults.
The intliction of corporal punishment by whipping on women was prohibited by act 1 (ico. IV. c. 5%. In act 5 and 6 Vict. e. 57 , direeted against attempts to injure or alarm the Queen by discharging tire-
arms in ler Majesty's neighbourhood, or otherwise, the intliction of public or private whipping not exceeding three times is made part of the punislment. Act 26 and 27 Vict. (not applieable to Scotland) authoriscs whipping in addition to penal servitude in convietions for roblery, assaults with intent to rob, aud attempts to strangle or render insensible with the view of committing a crime, the number of strokes not exceeding 50 in the ease of an adult, or 25 in the ease of a boy nuder 16 . Recent legisla. tion, both in England aud Scotland, has made various provisions for the infliction of this description of corporal punishment on juvenile endpits. Whipping of boys under 16 for warious offences is anthorised by the English Criminal Consolitation Act (1861); it being jrovided that the whipping is to be private, and not repeated more than once, and the instrument of punishment to be specified in the sentence. Similar provisions, with some additional oues, oceur in OJVict. c. 18 as to the mode in which the same punishment is to be alministered on summary convictions by justices. In Scotland, the Prisons Amendmeut Act, I4 and 15 Vict. c. 27 , and the act 23 and 24 Vict. c. 105 , which superseded it, authorise the whipping of boys nuder rarulations made by the Lord Advocate, and approved by the Secretary of State. By act 25 Vict. c. 1S, no jerson above the age of 16 can now be whiped in Scotland for theft, or any crime against person or property. It is a rery general impression amoug magistrates that whipping to the moderate extent allowed by 26 and 27 Vict. has had a most salutary eflect in repressing certain kinds of outrage, the apprehension of merc imprisonment, or even of penal servitule, having little effieacy in the way of prevention. Thus, personal chastisement, the oldest form of 1 nuishment for crime, bas to a certain extent been resumed in the administration of the criminal law.

As regards corporal pumishment in the army and navy, see Floganc.

WHIP-POOR-WILL (Caprimulyus or Antrostomus rociferus), a species of Coatsucker (q. r.), a native of North America, common in the eastern parts of the United States. It receives its popular name from the fanciel rescmblance of its notes to the words Whip poor llill. It is about ten inches

Whip-poor-Will (Caprimulgus rociferus).
long, the plumage very like that of the European goatsucker, much mottled and indistinctly marked with small transverse bands, the top of the bead streaked with L,lack, a narrow white collar on the throat. The bristles at the base of the lill are Yery stiff, and more than an inch long. This bird is suldom seen during the day, but seeks its food by night, eatching moths, beetles, and other inseets ou the wing. Its flight is near the gromud, zigzag, aud noiseless. Its notes are heard ouly during tho

WHIRLPOOL-WHISKI.

night, and are clear and lond. so that when a few of these lirds are close at hand, the noise is such that those unacenstomed to it cannot slecp. In the more southern jarts of the United sitates, the WV. is replaced by a larger species, the Chuck-Will'sWidow ($\mathrm{I} . \mathrm{F}$.), and on the fiper Missouri ami to the west by a smaller one (C. or A. V Vullalii).

WIIINLIOOL, a circular current in a river or sea, produced by opposing tides, wints, or currents. It is a phenomenon of rare ocourrence on a large scale, hat illustrations in miniature may be noticed in the cdlies formed in a river by means of obstacles or detlections. The two culebrated sea-whirlpools, Charybuis (sce Scrula) aml Nalstrom (q. Y.) are now known to be mercly ' clopljing seas, cansed by the wind acting obliquely on a rapid current setting steadily in one direction while the tide is flowing, and in the oplosite direction when it is cbbing. Durine calm weather, weither of these socalled whirlpools is chagerous for large ships, but when the current and the wind are strongly in opposition, the broken swell is so viotent and extensive in the Malström as to founder large ships, or drive them against the rocks. Thourl in neither of these two cases, formerly so much ireated, is there any vortical action, instances of such action cho actually oceur in various localitics, as in the whirlpool of Corricvrekin (q. v.), and in some mldies produced by opposing wiods and currents among the Orkney Islands.

WHIRL, TINDS AND WA'TERSPOUTS.
Whirlwinds differ in many respects from the storms described in the articles fronws and 'I'rioons. They scluon continue longer than of minute at any place, and sometimes only a few seconds; their breadth varies from al few yarils to mearly a quarter of a mile ; during their short contimuance, the changes of the wiml are sulden and violent; and the barometer is not observed to fall.

Unst Whirlwinds.
(From Ihddeley's Whirluinds and Dist-storms of India.)
The direction of the eddy of the whirlminds, especially when the cliameter is very small, differs from the rotation of winds in a storm, in that it may take place cither way-right to left, or left to right -according to the direction of the stronger of the two winds which give rise to the whirlwind. Thns, suppose it to arise from a north wind blowing side by side with a south wind, and to the west of it,
then, if the north wind be stronger, the whirl will be north, west, south, and east; but it will be in a eontrary direction if the south wind he the stronger. Whirlwinds aften originate within the tropies during the hot season, especially in llat sandy leserts; these becoming unequally heated by the sun, give rise to ascending colmmas of heated air. In their contact witl ciach other, the ascendiner currents result in edclics, which draw up with then largo clouks of dust, antl the whole is borne forward by the wink that may lampen to be lowome at tho time. 'This is the origin of the elust whirlivinds of India, which have leen almirably deseribed and illustrated by I. I'. II. Diaddeley. 'Ihese duststorms aro frequent in dry wam regions; and in the ease of the Simoom (q. v.), which may bo regarded as a suceession of such whirlwinds, they alprear on a scale of the most apluiling grandeur.

Extensive fires, such as the buraing of the prairie in America, and voleanic eruptions, also cause wlirlwinds, by the contlicting currents of lieated air they occasion; and these, as well as the whirlwinds alrealy mentioned, are generally acconpanied with heavy rains, lail, aucl electrical displays. Whirl. winds are also of frequent occurrence in France, doing great damage to the vineyarls and other crops: but in Great liritain they schlom occur.

If aterspouts are whirlwinds occurring on the sea or on lakes. When fulty formed, they appear as tall pillars of cloud stretching from the sea to the sky, whirling ronnd their axes, and exhibiting the progressive movement of the whole mass precisely as in the case of the dust-whirlwind. The sea at the base of the whirling vortices is thrown into the most violent commotion, resembling the surface of water in rapul eloullition. It is a popular fallacy that the water of the sea is sucked up in a soliel mass by watersponts, it being onty the spray from the broken waves which is carried up. Observations of the rain-gauge conclisively prove this.

What are sometimes called waterspouts on land are quite distinct from these phenomena. They are merely heavy falls of rain of a very local character, and may or may not be accompaned with whirling winds. They generally oceur during thunder-storms, being quite analogous to severe hail-storms, from which they differ ouly in point of temperature. Also all the anoisture that fills is the result of conclensation; whereas, in the true waterspout, the rain is mixed witl spray which lins heen eaught up from the broken waves, and carried aloft by the ascending currents of the whirlwind.

WH1'SKI (Gaclic, uisge, water; uisge-beatha, eommonly written asquebaugh, water of life), as spirit made by distillation from grain of any sort, and from other materials, as buckwheat, potatoes, autd even turnips. The best is made from barley after it has been malted; but whisky of goot quality is also male from rye in some parts of the Uniteli States; and oats, rye, rice, millet, buckwheat, \&c. are tlo materials from whicl the infurior sorts are oltained. Whisky is mannfacturcl almost cxclusively in Scotland, Ircland, and the United sitates of America; the produce of the tirst-mamed country being generally considered liest in quality. The manufacture of whisky (as well as of uther spirits) in the United Kingdom is placed under the surveillance of the Excise, and by act of parliament (6 Geo. IV. c. 80) the distiller is subjected to numerous stringent regulations, with a view to prevent the evasion of the vory ligl duties. The mote of manufacture is described under Disthleation. The quantity distilled, according to the statistics for 1865 , was, in Scotland, $13,455,752$ gallons; and in Ireland, $5,646,947$ gallons ; and the proportion of this which paid duty was, in Scotland, $7,375,931$ gallons;

WHISKY-WHIST.

and in Ireland, 5,255,232 gallons; the remainder being either exported or retained in bond. There are doubtless no better subjects for taxation than spirits, since they may in general be looked upon as purely articles of luxury; but the principle attended to in fixing the amount of duty to be charged is different from that which is followed in fixing the tax on other supertluities. The object of other taxes is simply to raise revenue; in the case of whisky and other intoxicating drinks, the aim is also, and perhaps chielly, to check their consumption.

The pernicious effects of the cxcessive use of ardent spirits were prominently brought under the notice of parliament about the commencement of the 18th c. ; and by the imposition of the enormous duty of 20s. per gallon, besides a heary tax on the retal dealers, it was attempted to put a complete stop to the consumption except by way of cordial or medicine. The effect produced by this oppressive enactment was not such as was anticipated; respectable dealers withdrew from a trade which was now unprofitable, and their places were supplied from the profligate and criminal classes, who had not the slightest objection to break the law and run the risk of fine. Smuggling flourished extensively; the officers of justice were assandted, and violently prevented from discharging their duty; and informers, to whom a high reward was held out by government, were hunted down as deadly enemies of the community. The act soon became a dead letter, and in 1742 it was repealed, and a moderate duty imposed.

In Ireland, the repressive system was carried to a still greater extent, a fine being imposed on the district in which illicit distillation was detected, and the unfortunate operatives subjected to transportation for scren years. The effect of this attempt at repression was similar to what occurred in England ; of 10,000,000 gallons annually (18201823) consumed, only about $3,000,001$ paid duty; and frequent and murderous conflicts took place between the smugglers and their abettors on one hand, and the excisc-officers and military on the other, and much of the country was almost in a state of rebellion. Scotland's history in this respect is similar to that of her two neighbours. Illicit distillation flourished afresh at each rise of the duty; lawless violence was resorted to freely, the common people invariably sympathising with or aiding the smugglers; and in many cases the officers of excise were effectually intimidated. The difficulty of dealing with illicit distillation iu Ireland and Scotland led to the adoption, beginning with 1823 , of a cousiderably lower duty in these two countries than in England. The following table exhibits the relative rates of duty on spirits in England, Scotland, and Ireland at different periods during the present century :

	Englanca 5. d.	Scotland. $\begin{array}{cc}8 . & \text { d. } \\ 3 & 10!\end{array}$	1reland $\stackrel{3}{2} 10!$
1803,	- $8^{5} 0^{4 \frac{4}{4}}$	$310 \frac{1}{2}$	${ }_{3}^{2} 10 \frac{1}{4}$
$180 \pm$,		510	
1811,	- 10×3	$80 \frac{1}{4}$	2 -63t
1813,	984	6 11
1817,	11	62	$57 \frac{1}{3}$
1819	1118		
1823,	-	243	248
1826,	- 70	210	210
1830,	- 76	34	3 4:
1840,	- 710	38	28
1853,	- . . .	48	34
185..5,	- 80	80	62
1858,	- 80	80	$\checkmark 0$

* The duty differed in the Highlands and Lowlands till 1814, the difference varying from $6 d$. to $2 s .5 d$. , giving rise to a considerable amount of smugroling.
\dagger For two years-afterwards doubled.
\ddagger Rieduced to 2s. $4 d$. after 1834 .

In 185 s , the duty on spirits was equalised in the three kingdoms, thus putting a stop to the systematic and (as was found) irrepressible practice of smuggling spirits from Scotland and Ireland into England, which had prevailed for a long time previously. The duty was in 1860 raised to 10 s. per imperial gallon, at thich rate it still (IS67) remains. This rate was increased to its present value by Mr Gladstone with the avorred intention of diminishing the consumption of ardent spirits within the United Kingdom; and though it does not seem to have produced much effect, neither has it, as was always the case formerly, much increased the practice of illicit distillation, owing, in all probability, to the improved moral tone of the population, and the more thorough execution of the law: It has, however, had a most deleterious effect in increasing the temptation to produce a cheaper drink for the poorer classes by largely diluting it with water, and introducing sulphuric acid, sulphate of copper, and other noxious materials to maintain a 'biting' 'llavour. A great part of the whisky distilled in Scotland and Ireland is bought by the English rectifiers, to be converted into British gin ; part is also sent to France, from which it comes back as brandy: In the United States, the process of manufacture is the same as in this country, and is largely carried on in New York, Pennsylvania, Ohio, Illinois, Indiana, Kentucky, and, in a less degree, in Tennessee, Missouri, and California. The annual consumption of whisky alone in the Cnited States does not fall far short of $£ 4,000,000$ in ralue. A large quantity is also rectified, and reduced to alcohol, and much is exported and in part returned iu the form of 'French brandy,' 'Hollands,' \&c. The 'Monongahela' whisky of Pennsylvania, and that from Bourbon County, Kentucky, are considered the best in the United States, and always fetch a high price.

WHIST, a game at cards, believed to be of English origin; probably a development of the game of trump (or, more properly, triumph), which was played in England at least as early as the time of Henry VIII. Trump (or triumph) is mentioned in a sermon delivered by Latimer on the Sunday before Christmas 1529. The game of trump is also meutioned by Shakspeare puuning on the word triumph, (see Douce's Illustrations, and Antony and Cleopatree, act iv. scene 12). The game of whist is not mentioned ly Shakspeare, nor by any writer of the Elizabethan era.
The earliest mention of whist (or, more properly, whiski) is in the poems of Taylor the Water-poet (1621). In the first edition of Cotton's Compleat Gamester (1674), whist has no place; but it is added in the second edition (1650) as a game 'comuonly known in England.' Cotton says that 'the game of whist is so called from the silence that is to be ubserved in the play;' and this derivation of the word has been generally accepited, and was adopted by Dr Johnson, to the extent of explaining whist to be a game requiring silence. But if the original name of the game was whisk, Catton's derivation fails. The derivation from an interjectiou signifying silence seems to have been taken for granted somewhat hastily.

The game was formerly played nine-up. The change to ten-up seems to have taken place in the first quarter of the 1 Sth century. Whist played ten-up is called long whist. About 1785, the experiment of dividing the game into half was tried, and short whist was the result. The short game soon came into fayour; and in 186t, the supremacy of short whist was acknowledged by nearly all the London and by many conutry clubs, the clubs adopting as their standard the laws of short whist as

WHIST.

framed by committees of the Arlington and Port. lancl.

Bdmond Ihoyle, the first writer of any celelnity on whist (commonly called the father of the game), was horn in 16%-it is said in the neighbourhood of IIalifax, Vorkshire, but on insuflieient grounds. He: was educated as a barrister. He dirst publisheal his shom Tratise about $1 \% 4 \pm$. 1le used to give lessons in whist at in guinea a lesson. Ifis Short Treutise ran through many editions (16 or more) during his lifetime; and since his death, lis works have been reproduced in mumerless ways. Hoyle died in Welbeck street, Cavendish Square, on August 29,1769 , aged 97
The gane of whint is played by four persons, two being partners against the other two. 'The partuers sit opplosite to each other. The partnership is tetermined ly cutting. The two lowest are partuers agninst the two highest, and the lowest has the deal and the choice of seats and cards. In entting, the ace is reckonel lowest. Ench player has a right tn shuflle the pack once before each deal, the dealer having the privilege of a tinal shitle. The shatling lecing concluded, the player to the dealer's right euts the pack. The dealer having reunited the packets, is bound to deal the cards one at a time, to the players in rotation, beginmines with the player to his left. IIe turns up the bottom card (called the trump eard). The deal being completed, the players sort their cards, and the player to the dealer's left (or leader) plays a card face upwards on the table. The other players follow in rotation, being bound to follow suit if they can. Whon all have played, the trick is complete. It is then gathered and turned over ly the wiming side. The highest eard wins the triek. The ace is highest in playing ; and the other cards reckon in the order, king, pueen, limase, ten, dee, down to the dence, on two, which is lowest. If any player camot follow suit (i.e., has none of the suit led), he may play any card he Heases. If he plays a card of the suit tumed up (called trumps), he wins the trick, unless another player also, having none of the suit led, plays a higher trump. The player who wins the trick becomes the leader for the next trick, and so on till the whole hand (cousisting of 13 tricks) is played ont.
After scoring, the mode of which will be presently deseribed, the player to the last dealer's left deals in his turn ; and in sulsecpuent deals, each phayer deals in turn, the rotation going to the left.

After the hand is played ont, the seoring is thms performed: the side who win more than six tricks reckom one for each trick ahove six ; and the side who either separately or conjointly hold more than two of the following carls, ace, king, queen, aud knave of trumps (called honours), reckou as follow: If they hold any three homours, they seore two (that.being the excess of their honours over their opponents') : and similarly if they holel four honours, they score four. At short whist, players who are at four, cannot score honours. The same at long whist with players who are at nine. The side who thus in one hand or in a succession of hands first reach live at short whist, or ten at long, score the game.
A game at slort whist is called a single, if the adversaries have already scored three or four; ? domble, if they lave scored one or two; a treble, if they have secred nothing. A game at long whist is a simgle, if the opponents have scored five or more: a double, if they have scored less. There is no treble at long whist.

A rubler consists of the best two ganes out of three. If the same players win two consecutive games, the third is not pinyed. The winners of the
rubber win in points the value of the games they have won, and where the rulber has consisted of three games, the value of the loser's game is deducterl. And whether two or three games are played, two points are added for the rublber at short whist; one point for the rubber at long. Thas, if at short whist A 13 (partuers) win a single and a double, they win three proints on the games, anil they able two for the rubber, making five points. 11ad A l' won the same, but CD (their opponents) won a treble, they woukd have to deduct three points, the value of the oponents' game, and would only win two proints. Loug whist is now seldenm played.

Whist is a mixel game of chance and skill. The chane resides in the holding honours, and the fore tune of having high eards dealt in the hand. The skill eonsists in the application of sueh knowletge as shall, in the long run, turn the chances of the cards in the player's favour. At the commencament of the hand, the first lead presents a prohlem of almost pure chance; lut as the hame proceeds, ohscrvation of the fill of the cards, inference therefrom, memory and judgment come in, so that towards the end of the hand we are often presented with ib problem of almost jure skill. It is these ever-warying gralations of skill anel chance that give the grame its chiof interest as a scientific pastime.
In order to become a skilful player, it is necessary to bear in mind that the game is not one of any given player's hand against the other three, but a combination of two against two. In order that two partners shall play their hands to the best advantage, they must strive, as much as possible, to play the two hands as though they werc onc. To this enel, it is advisable that they shonld pursuc some uniform system of play, in orler that each partmer shall understand the plans of the other, and so be placed in the most farourable position to assist him in carrying them out. The experience of the last humbed years has developed a system of play tending to this result. Of this we procced to give an epitome.

The lirst, or, as it is commonly callent, the original lead shoulil he from the player's strongest suit. A strong suit is one that contrins either a large number of cards (four or more) or suveral hich eards. The suit contaning the larest number of cards (numerical strength) is the one to le mostly preferred. The object aimed at in opening with the strongest suit is to "xhaust the cards of that suit from the other hands. When this oljeet is aceomplished, the earils of the suit which remain in the leader's hand (ealled long eards) obtain a value which does not intriusically belong to them. They niten become of great service, for when led, they either compel the adversary to trump, or they make tricks. And when trumps are all ont, the player who has the lead makes as many tricks as he has long cards.

On the other side, liy opening weak suits, there is considerable risk of sacrifieing partuer's strength, and of leaving long cards with the opponents.
Some players are prone to lead single cards, but experience shews that weak leals, as a rule, do more harm than good. Sometimes a trick or two is made by playing a trumping game; lut the chances are that such tactics sacritice partner's haud, and clear the suit for the alversaries.

The proper card of the strong suit to leal is, as a rule, the lowest. The intention is for the thirel player to play his highest, aml so to assist in clearing his partner's strong suit. Morcover, if the lualer keeps the best eards of his suit in his own hand, he has a fair chance of getting the lead again when his snit is nearly or quite established. Jout with ace and four or more small ones, it is considered best to begin with the ace, lest the ace is trumped, second

WHIST.

romud. Also, witl a strong sequence in the strong suit, it is hest to lead one of the sequence tirst, lest the adversaries win with a very small card. The following are the principal leads from senucnces:

From ace, hing, queen-lead king, then queen.
From aee, king, and small-lead king, then ace.
From ace, queen, kuave--lead ace, then queen.
From king, queen, linave, and more than one small-lead knave.

From king, queen, knave, and one small-lead ling.

From king, queen, and small-lead king.
From king, kuave, ten, nine, \&e.-leat nine.
From king, knare, ten, and small-lead ten.
From queen, knave, ten, and small-lead queen.
From knave, ten, nime, and small-lead knave.
After the first trick, the lead may remain with the first leuder. His best play, as a rule, is to continue his suit. If the lead falls to auother player, his play, as a rule, will be to open his best suit; and so on. If the leal falls to the first jlayer's partner, be has choice of two modes of play. If he has a good strong suit of his own, as, for instance, one of those in the list above, and containing four or more carts, he would, as a rule, open it; if not, he would, as a rule, do well to continue the snit his partner tirst led; or, as it is commonly callent, to return his leartner's suit. The object is to strengthen partner lyy assisting to clear his strong suit.

In returning a suit, if the player has only two carts of it remaining in his hand, he should return the highest; if more than two, the lowest. The exception is, if he has the winning card, he shonld return that irrespective of the number of other carls in the suit. The reason of this rule is that, with but two sards of the suit remaining, the player is weak in the suit, and he is therefore bomad to sacrifice his good card to support his partner. But with three or more remaining after the first round, he is strong, and is therefore justified in calling on partuer to support him.

This rule of play is most important. It should be carefully observed with even the smallest carts, as it enables partner to count the situation of the remaining eards. For example: A leads a suit in which C (his partney) holds ace, tliree, and two. In returning A's suit, after winning with the ace, C is bound to return the three, and not the two. When C's two falls in the third round, A will know that his partuer has no more of the suit. But suppose ('s cards to be ace, four, three, and two. In returning the suit, C is bound to choose the two. Then after the third round, A will conclude with certainty that C has at least one more card in the suit.

Late in a hand, the considerations with regard to the lead wary. If there is no indication to the contrary, it is leest for each side to continue the suits originally opened by them. But the fall of the cards may shew that it is disadvantageous to persevere in the suits first led. In such cases, the player must have recourse to other and weaker suits. The general rules to be observed here are-to choose a suit in which there is reason to jufer that the righthand adversary is weak; or-but this is less favour-able--one iu which the left-hand adversary is strong. In either ease, if the suit choseu contains but three cards, none higher than linave, or only two eards, it is generally right to lead the highest.

The second player, as a rule, should play his lowest card, in order to preserve his strength in the lealer's suit. The first trick in the suit is left to partner, who has an even chance of holding a better card than the third player. But if the second hand las a strong sequence, he should play the lowest of the sequence, by which partner's hand may be saved, and a high card still remain over the original leader.

The following are the principal sequences :
With ace, king, queen-play queen.
With ace, king, \&c.-play king.
With king, qucen, knave-play linave.
With ling, queen, \&c.--play queen.
With queen, knave, ten-play ten.
With rueen, knave, and one small-play knave.
When a high carl is led, it is sometimes advisable for the seeond player to cover it with a higher one. The shortest rule is to 1 nut an honour on an honour, if with but two or three cards of the suit. With king or queen, and four of the suit, it is better to pass an honour led.
When the seeond hand has none of the suit led, he sloould, as a rule, trump, if he has bot two or three trumps; but he should not trump a losing eard if he has more than three trumps, the reason of which will be explained when treating of the management of trumps.

The third hand, as a rule, plays his hichest card in order to support partner in his suit. The exceptions are, with ace, queen, \&c., the queen is to be played; and if partner has begun with a high carcl, it is often right to pass it.

The management of troups varics accorling to whether the player is strong or weak in them. If strong (i. e., with four or nore), they shoud not be used for trumping, if it can be aroided, but should be kept together, in hopes of establishing a suit, ant of remaining with the long trump, with which to get the lead after the other trumps are out, and so to bring it in. Thus, if the opponents lead a losing or doubtful card, it is letter, as a rule, not to trunip it when holding four trumps. But if the oplonents lead a winning card, it is, as a rule, hetter to trump it, though holdiug fonr trumps, than to pass it in hopes of bringing in is suit.

With five trumps, the chance of succeeding in exhausting the opponents' hands, and of remaining with the long trump, is so considerable, that a player having five or more trumps, shonld lead them; and as number is the prineipal element of strength, he should not be deterred from leading trumps merely beeanse the fourth havd has turned up an honour.

With four trumps only, it is better first to lead the strong suit. When the adversaries' hands are cleared of that suit, or so far cleared that the holder of the long cards in that suit commands it, it is, as a rule, safe to lead from four trumps.

As a rule, less than four trumps should not he led from. But a player is justified in lealing from weak trumps, if he holds winning cards in every suit; if the adversaries are both trumping a suit; or if the game is lost, unless partner lias strength.

It is most important to return partner's trump lead at once, unless he has led from wealiness; for partner, by leading trumps, declares a strong, game, and it is then the best policy to abandon one's own plans, and to support his.

It follows that a player should not, as a rule, lead a card for his partner to trump, unless he has four or more trumps; for with less than four trumps, the player is weak; and if he forces his partuer to trump, paotner is weakened also; and the chances are that by weakening partner under such eircunstances, the command of trumps will remain with the adversaries.

But a player may foree his partner, althongh weak hinself, if partner has already been forced, and has not afterwards led trumps; if partner has already cleclared weakness in trumps, as by trumping a doubtful card second hand; if two liartners can each trump a different suit; and when one trick from partner's hand wins or saves the game.

The same considerations which make it inexpedient to foree partner when weak one's-self, shew the

WHIST.

adwantage of forcing a strong trump-hand of the opponents.
There are yet some general rules of play which have not been explained.
'Tho seeond, third, and fourth players shoukd always play the lowest of a sequence. The rule here given is in conformity with the play that would naturally be adopted in playiug cards that are not in sequence; and by keeping to a uniform jlan, players are enabled to iufer what eards their partner does or does not holl. It is true that the alversaries often gain the same information; but it is found by experience that it is of more advantage to inform partner than to deceive the opponents.

As a rule, it is advisable to lead out the winning earls of partner's suit. The presumption is that he has led from his strong suit; and by leading out the winning cards, the suit is cleared for him, and his long eards are not obstracted. The reverse applies to suits led by the adversaries. It is mostly right to retain the winning cards of such suits as long as possible, in order to stop the establishment of them.

When a player has none of the suit led, he should, as a rule, throw away from his weakest suit ; for by discarding from a strong suit, its numerical power is damaged. But when the adversaries liave shewn great strength in trumps, it is not advisable to keep small cards of a long suit, as it is not likely that it can ever be brought in. Under such circumstances, the player should throw away from his best protected suit, and keep guards to his weaker ones.

Players should watch the cards as they are played, and endeavour to infer from them where the others lic. Thus, if a player wins a queen with an ace, it may be inferrel that he has not the king, the rule being to win with the lowest; if a player leads trumps at starting, it may be inforred, as a rule, that he is strong in trumps, or has a tery fine land. By recording in thts way, and ly counting the number of cards played in each suit, skilled players will often, towards the close of a hame, know the position of all the important cards remaining in; and ly means of this knowledge, they will be able to play the end of the ham to the same alvantage as though they had seen all the cards.

And lastly, and most important of all, players should play to the score. Thus, wanting lut one trick to save or win the game, a winning eard should be played at once. The example is stated as for one triek ; but it should always be kept in mind how many tricks are requisite to win or save the game, or even a point, and the play should be varied accordiugly.

The previons condensed outline enbodies the principal rules of play. For more detailed information, the reader is referrel to Professor l'.'s Essay on the modern scientitic game (Lomgman, Green, \&e.); C'arendish's Principles of Whist (De la lue \& Co.); and 'J. C.'s' Treatise on the ganse (Harrison). They should be read in the order here indieated.

1LLUSTHATIVE IIAN1.

The following example (the figures for which were kindly lent by the proprictors of The Field, in whose columns are given many excellent illustrative lands) is given to shew how the play at whist is conducter in aecordance with the preceding general rules, and also how inferences from the fall of the cards may be drawn and used. The example is of the simplest kind, and is not intended to exhibit any fine stroke of play. A, b, C. and D are the four players; they sit round the table in the order of the letters, A C being partners against B D. A is the first leader, and D the dealer. We will suppose ourselves to be A, the score to be loveall, and D to have turned up, the four of hearts.

A's Hivd.

[Note--lt is a great assistanco to inexperieuced players to sort the hand from a pack, and play a card to each trick, as would bo done in actual practice.]

THE PLAT.
[Note. -The eards in cach trick are placed in the order in which they are played, the leader's card standing first. The enpital letter in front of each. card shews by whom it was playel.]

Remark:-A leads from his strongest suit. IIe leads the lowest card of it. (For reasons, see preceding article.)

Inferences.-C being unable to win the king, A should note that the best diamond is against him, probably in B 's hand, as the rule is with ace and king to put on king second hand. (See preceding article.) Some players put on king second land, with king and one small one; but, as a rule, the smallest should be played, unless the second hand holds a sequence. Udropping the nine, and A holding queen and knave (refer to A's liand), A concludes C to have ten or no more, the rule being to play the smallest when mable to heal the trick.
It is in this way, hy comparing the cards that fall with those that remain in hand, that players obtain an insight into the game to guide them in their future couduct of the hand.

Trick 2. B
J leuds.

「跎 2. D wis.s.

Inference.-A infers clubs to be B's strongest suit. This inference does not affect the subsequent play. Jont it might; and, at all events, it is an inference that Λ ought to draw.

Thers 3.

$B \square$ C $\left[\begin{array}{cc}\therefore & \vdots \\ \therefore & \vdots \\ \vdots & \vdots\end{array}\right]$

Trick 3. b wins.

Remar\%:-D returns lis partner's lead (for reasons, see preceding article).

Soveral inferences mighthere be drawn as to the position of the remaining clnbs-as, for instance, that C bas the queen; but as they do not affect the play, they are omitter, for the sake of brevity.

Trick 4. I:

Iicmark:-B continues his suit (for reasons, see preceding article).

Inforences.-Spades may be taken to be C's strongest suit.

D, putting on queen second hand, probably has king (see preceding article). Also, he may be presumed not to have the kuave, or he would play the lowest of the sequence.

Remarl.-A continues his suit. As a rule, with second and third best (in this case, queen and knave), one of those should be led; but C having played the nine to the king, in the first trick (refer to Trick 1, and last inference therefrom), A would part with strength unnecessarily by leading a high card, as C either has the teu or will trump.
This is an example of direct departure from common rule, owing to previous fall of cards.

Remark:-C continues his suit.
Inference.-The ten falling from B's hand, it may be inferred that he holds knave or no more.

Inferences.- B not playing the knave of spades, C may be inferred to hold it (see inference, previous trick, and last inference, Trick 5).
As regards the lead of the spade here, it may seem at the first glance to be contrary to the rules of play adrocated in the preceding article. It is a return of the adversary's lead, and up to the strong hand. But it must be remembered that whist is not a stereotyped game of rule; rules can only be given for the general case, and they have to be departed from more or less frequently as the circumstances of the hand becone cleveloped. In the case before us, any other lead would probably be worse. We may take it for granted that D is not very strong in trumps, or he would have led them. The diamond lead would enable the adversary to make the winning diamond, and then probably a small trump on the next round. The spade lead would probably enable \mathbf{B} either to make the knave of spades or a small triump (see inference, Trick 7).

It may be asked: Why, if D is not strong in trumps, does he lead a card which may force his partner? This question may be satisfactorily answered by referring to the score (sec preceding article). B D have four tricks up, and one more saves the game if either B or D holds an honour. D is justified at this point of the game in forcing his partner, even though wak in trumps. Or 10 may have four trumps, and so be strong cnough to force at any score, but not strong enough to lead trumps (sce manargement of trumps in preceding article).

Remark:-A trumps, as the knave may be with D. He chooses the seven rather than the five, in ordcr to prevent B from making so small a card as the six by overtrumping.

Trick 9.

Remark.-B leads the thirteenth club.
Inferences.-It is probable, from this lead, that B
has strength in trumps, such as an honour guarded. When a thirteenth card is led before trumps have been played, it generally means that the leader lias such strength as above presumed, and that he wants his partuer to put on his best trump, in order to make the trumps separately. It may be, however, that the leader only wants his partuer to be led up to if the thirteenth card is trumped by the fourth hand. It is a difficult point in the game for the third hand to know whether to trump a thirteenth eard high or to pass it.

A further inference from this trick is, that D is probably weak in trumps, as he only puts on the six. If he trumps at all, he will most likely trump with his lighest. Looking at the fact that if the trump lead comes from A, the lead will be presumably up to a weak suit, and also that A has the best diamond and his partner the best spade (seo inferences, Tricks 5 and S), A determines to lead a trump. Accordingly,

Remark:-Having but two of the suit, A leads the best (see preceding article).

Trick 11.
 $A\left[\begin{array}{ll}Q & Q \\ 0 & 0\end{array}\right.$

Trick 11. B wins.

Remark--C returns his partner's lead of trumps. As a rule, partner's trump lead should be returned immediately (see preceding article); but it does not follow that C is bound to return trumps here, a strengthening trump being led late in the hand. C, however, does well to return the trump in this case, as, on the whole, perhaps the best chance for the odd trick is to bring the trumps down this round, and to find A with the winning diamonds.

Trick 12.-B leads a diamond (he has only diamonds in hand), and A makes the knare and queen.

> A C score the odd trick.

Whiston. Willlan, was born on 9th December 1667, at Norton, in Leicestershire, of which place his father was rector. His earlier education he received at home; subsequently, he became the pupil of a Mr Antrobus at Tamworth, and finally he went to Cambridge, where he greatly distingnished himself, chielly as a student of mathematics. In 1690 , he took his degree, and obtained a Fellowship in 1693. The year after, he became chaplain to Dr More, Bishop of Norwich ; aud in 1698, having been presented to the living of Lowestoft, in Suffolk, he was married to Miss Antrobus, the daughter of his old preceptor, his Fellowship, being thus forfeitcd. Neantime, in 1696, had appeared his Theory of the Earth, a work which, despite, or perhaps in virtue of, the oddity of certain of its speculations, procured him a considcrable reputation. That his genuine claims as a man of science were considerable, is made clear by the fact, that in I703, by the express influence of Sir Isaac Newton, whose acquaintance he had made some years previonsly, he was appointed to succeed him in the Lucasiau Professorship at Cambridge. On receiving this appointment, he gave up his living, and again settled himself at the university. In addition to the duties of his chair, he engaged in clerical work; and such was his success as a preacher, that he would probably have attained high position in the church, had not the development of his theological opinious led him iuto Ariau heresy-his
fratuk and fearless avowal of which at onee in his preachiu" and his writings hed, in 1710 , to his ©xpulsion from his prefessorshipl and the university. In the same year apparal the most noted of his orignal writints, An Ifisforical Prefice to Printite Christianity lierived. Il is sulsectuent prosecution in the church courts forms a curimsly complicated ehapiter in the history of such matters. The result was, that after tive years of vexatious suspense, during which the proceedings swayed hither and thither in the strangest way, they proved in the end alortive, and W. was perunitted to remain formally a momber of the Church of England. By many of the clergy, however, much ilissatisfaction was expressed; the famous Dr Sacheverel in partienlar thumdered from the pmpina against the delinguent, and refused to ahmit him to commumion -an cxample which was followed by others, It scems significant of the social stimma attached to him in the minds of the ortholox, that when Malles, in 1720 , proposel him as a manber of the Loyal Suciety, his old friend N"wton sucerssfully oppesed lis admission. W. himself, the most ammsingly vain of men, remained imbed derply convinced that Newton's conduct was dietated by jealonsy of his superior scientific genius-a notion in which he probably found not many to agree with him. Having no ostensible means of livelihoorl, W. was frequently rechuced to great straits ; but he had kind friends, who were ready to assist him it nced. In the dissemimation of his religious opinions he continued unwearied; his publieations on the subject were numerons; also, he oceasionally dulivered lectures; and he institnted a religions society; which had meetings at his own house. IIc also busied himself much with scientilie erotehets, chief among which was a scheme for calculating the longitude, of the success of which he was assurch. 1Le dien on the $\because=[$ of August 1752, at the great age of Si. Of all his numerons works, a transla. tion of Josephus was the only one which contimued for a time to propetuate the nane of its author; and of this there have been several reprints. Il is Memoir of his own Life (published in his lifetime in 3 vols. $1749-1750$) is a curions specimen of sclfjortraiture, and conveys a very vivid imase of this strange, whimsical, eccentric, but thoroughly honest and conscientions man.
WII'Tlis, a parliamentary borough, market-town, and thriving seaport in the North liding of lorkshire, on both sides of the mouth of the Esk, about 50 miles north-10orth-east of the city of Fork ly railway, and 4 o in a straight line. A stonce bridge with a swivel, liy which ressels are almitten into the inner harbour, connects the two pirts of the town. Two jiers, of which the west one is abont 1000 fect long, run ont into the German Ocean, and protect the outer harbour, and it is further protected by two inner jhers, which break the force of the waves duriog storms. On a cliff about 350 feet high stands the parish ehurch, which is approached from the town helow by a tlight of nearly 000 steps. There are dry docks for the building and repair of ships; iron anil jet ornaments are extensively manufacturedthe jet found in the vicinity having a world-eclebrity: Alum and ironstone-the latter found in great quantities in the neighlourhood-are exported. Of late years, IV: has risen into importance as a watering. place. In $186{ }^{2}$, 738 vessels, of 37,757 tons, entered and cleared the port. Pol. (18G1) 12,051.

The saxon name of the place was Streoneshalch, but when the Danes took possession of it they called it Whitby (white town), just as they changed the Saxon Northweorthing into Deoraby or Derby. The termination l $\quad 4$, which is characteristic of Danish settlements, is a corruption of the old Norse byr,

176
modern Icclandic hoor, a Iwelling, farmsteat, town. In Dewon the suilix weurs in the form bere or beer, as in Lockbere, Larkbeer. (1871 -pop). 13,0s2.)

WH1"TCHURCLI, a small market-town of Shropshire, on a height. 20 miles north-north-east of shrewshury ly railway. Trate in malt, hops, and shows is carrical on. Pop. (1S61) 3704.
WHITIA, Hexiry Kheky, was burn on the 21st March 1785, at Nottingham, in which place his father was a butcher. It was at first intended that he should be lred to his inther's business; but at the instance of his mother, a woman of superior intelligence, this phan was deproted from, aud he was alprenticed to an attorncy. At his lusiness he displayed exemplary diligence; whilst his leisurehours were passionately deroted to intellectual pursuits, and especially tor the cultivation of poetry, which he had very carly begun to practise. IIe also lecame a member of a literary society in Nottingham, and began to attract notice hy his fluency and ability as a speakor. To the Monthly Mirror he was wont to send coutributions, and the merit of his verses drew to bim the attention of 31 . 11 ill, its proprictor. Acting on the advice of this gentleman, and Hr Capel Lotit, who also tonk ir generons interest in him, be publisbed in 1804 a suall volume of pooms, which was eruelly treated by the crities, and fomm little aceeptance with the pullic. It was tho means, however, of securing him influcntial friends, notably sonthey, who was shortly to beome his liographer, and the Fev, N1r Simeon, through whoso intucnce a sizarship iu St Jolm's College, Cambridge, was procured for him. In his studies he lighly distiugnishell himself ; but the ardour with which they were pursued spedily proved the ruin of a constitution at all times delicate; consumption rapidly developed itself, and he died October 19, 1SU6. The year after, two whmes of his Remains were published hy his friend Southey, to whom his Miss. hal been intrusted, prefaced by a pleasing Alemoir of the deceased pret. Sonthey's names commanded attcntion; and the touching story of youth cut down in the ilush of its carly promise, movel the pity of the word, and gave for a time to the poetry of W. a popularity somewhat grater than its merit would strietly, perhaps, have warranted.

He came with all his youtl and unblown hopes On the world's lieart, and touched it into tears.

These tears are some time since dry; and tha poetry is now a good deal forgotten. It is destitute of force anl originality; hut in virtue of its grace, elegance, just and pious sentiments, it may still liave sume clain to live as produced by a man so young aspiring to be a poet under didiculties.

WH11TE, Fev. Joseph lilaven, was born at Seville, in Slain, on llth July 17\%.) Ilis father was a merchant there of Irish parcntage, who had married a Spanish lady of old Andalusian family. Finding las father's counting-house on trial not at all to his mind, he quittal it to prepare himself for holy orders, and in 1799 he was orlained a priest. But born with a mind euriously restless and inquisitive, he ceased in no long time to find himself at home in the fomisl commmon ; and in 1810 ho came to England, which he never afterwards quitted. Joining limself to the English Church, he scems to hase meditated becoming one of its clergymen ; an intention which it was quite as well he did not can'y out, inasmuch as his speculations rapidly led him to results not recognised by English orthodoxy. On coming to England, he settled hiuself in London, where for some years he conducted a monthly Spanish paper called El Lspañol. On the cessation of the Peniusular War in 1814 , this I ublication

WHITEBAIT-WHITE COLOURS.

ceased also, as having no longer a raison d'ćtre; but meantime its services to the government of the day lad been such as to secure for its editor a pension for life of £2う0 per annum. Subsequently, Mr W. lived chiefly in London, employed as a man of letter's. 'Though in literary circles recognised as a man of tine talent, and known as a contributor to the Guarterly and Jiestminster Revicus, and other high-class periodicals, he scarcely succeeded in making a permanent impression on the public by any of his more formal publications. Of these, the most important were: Letters from Spain (1S22), contributed some years before to the Jew Monthly Magazine; Practical and Internal Evidence against Catholicism (1525) ; Poor Man's Presenvation ayainst Popery (1525) ; and Second Tratels of an Trish Gientleman in Search of a Religion (2 vols. 1533). He died on the 2uth May 1S41, in Liverpool, whither he had removed some years before. In 1845 there was given to the world, as his legacy to it, by much his most striking and valuable work, The Life of the Rev. Joseph Blanco Jrhite, written by himself; with portions of his Correspondence; edited by John Hamilton Thom (London, 3 vols. Svo). This book, at the time of its appearance, excited a good deal of interest, and is still eminently worth referring to. The corious picture it presents of a mind at once pious and sceptical, longing and sorrowing after a truth which it can nowhere find, or finding, contrive to rest in, has, in the present unsettled state of religious opinion, a very particular significance. Poor W.'s life-long "search for a relivion" seems not to have been a successful one, and to have lauderl him at the last in a condition of nearly entire scepticism.

WHI'TEDAIT (Rogenia alba), a small fish of the Herring family (Clupeidce), of a genus distinguished by having teeth on the palate and pterygoid bones, on the vomer, and on the tongue. The WV. is found on many parts of the British coast, and is particularly ahundant in the estuary of the Thames in

Whitebait (Ioyenia alba).
spring and summer. It ascends estuaries in spring in shoals to deposit its spawn. Adult W. are canght on the coasts of Kent and Essex during winter. The small fry besin to appear in the end of March or heginning of April. The W. is not uncommon in the Firth of Forth. This fish attains a length of six inches, althongh the W. caught in the estuaries of the 'Thames and other rivers, and much prized as a lnxmy, are mostly young tish, not exceeding three

*r four inches in length. They are caught by means f bag nets sunk four or fire feet helow the surface of the water. For several months, they continue to ascend the river in shoals with the Alood-tide, and descend with the elb-tide, not being able to live in fresh water. They are fried with flour or crumbs; they are often laid on a napkin and sprinkled witl fine flour and a little salt, rolled about till well covered with flour, and then thrown into a pot of boiling lard, where they remain till they are of a
male straw colour. Londoners resort to Greenwich and Blackwall to enjoy W. dinners. It has become the practice for her Majesty's ministers to repair to Greenwich for a W. dinner every year lefore the prorogation of parliament in autnun. Some of the corporations of London indulge in a similar annnal festivity. The yonng of herring, pilchards, and sprats are often served up as W., although the true W. is of more delicious tlavour. It was formerly supposed that the W. was the young of the shad or sprat, although it is now revarded as not only specifically lut generically distinct. The W. has the body more compressed than the herring; the belly is serrated; the lower jaw is longer than the "riper' ; the scales are very soft, small, and thin, and very easily rulbbed off ; the colour is silvery white, greenish on the hack. The food of the W. seems to consist of minute crustaceans.
WHI"TEBOY, the name of an illegal association of the peasantry in Ireland, which for a long series of years was the fruitful source of agrarian ontrage, sometimes of a very revolting and sanguinary character. The association had its origin in the early years of the reign of George III, ; and first took an oryanised form in the county of Tipperary, where it appeared in the shape of a united resistance to an attempt on the part of certain proprietors to enclose and appropriate lands up to that time common. The movement at the beginning was confined to throwing down the newly erected fences, and destroying the enclosure, from which circumstance the rioters were in the first instance called 'Levellers ;' but their views soon extended further, and they addressed themselves to the redress, first, of the oppressive exactions of tithes, and afterwards of various other grievances, especially those connected with the temure of land. The name of Whiteboys was given to them in consequence of their wearing white shirts in their nightly expeditions. Many acts of cruelty and outrage haring been committed, a special commission was issued in I762 for the trial of the otfenders; but the repression was only partial and temporary, and Whiteboyism reappeared more than once in the sonthern province. In 1787, a new association, the members of which called themselves 'Right-boys,' appeared in the same district, and was made the subject of discussion in the Irish parliament. The contlicts of the northern Orangemen (q. v.) and Ribbonmen (q. r.) for a time drew attention away from the minor discontents of the south; but the same spirit of secret combination has continued among the peasantry down to the present day. The Shanavests, Caravats, Tiuckites, Terry Alts, and other more obscure or more local denominations, must be regarded as embodiments of the very same discontent, which has long held its gronnd among the poorer classes in Ireland, and which, altbough undonbtedly exaggerated and embittered by the recollections of hereditary wrong inseparable from the condition of a conquered people, are held, even by politicians of moderate views, to have much justification in the social condition of the people, and in certain striking anomalies of the legislature in reference to lreland, and especially the endowment and establishment of the church of a small minority of the population, as compared with the other portions of the British dominions.

WHITE COLOURS. The principal white pigments used hy painters are: (1) Hihite Lead (see LEAD), which is not only used as a colour, but forms the body of most oil-paints; (2) Derlyshire W'zite, which is sulphate of baryta; (3) Pearl White, or trisnitrate of hismuth ; and (t) Zinc White, or hydrated oxide of zinc.

WIIITEFIELD.

IFIIITEIIELJD, GFovige, one of the founders of Methodism, was born in the Bull Inn, at liluncester, on the $16 t i$ the grammar-school of his mative town, at which he appears to have distiuguished himsolf, especially by clocutionary displays at the anmal visitations. On leaving schoul, ho was for at time cugaged assisting in the husiness of his mother, the lustess of the Jall Imm; but le obtaineri almission as a servitor at I'cubroke C'ollege, (Uxforch, when in lis Istis year. Abont three jears carlicr, Juhn and Charles Wersley luad laid, in the miversity of Uxforl, the foundations of Jletholism-a system which, at first, resembled the rule of a religious order more than the bond of a religions sect; requiring from its professors ascetic oliservances amel devotion to worlis of piety aml charity. It was not till he had been upwads of a ycar at the university that IV. lucame associateal with the llethudists. He at onee made limself remarkable among them for zeal, for the austerity of lis asceticism, for lahour too great for bis strength anoug the sick and the prisoners in the jail. 11s health gave way, and lie had to go home, when his native air soon restored him; after which le carried on at Gloncester the same pions anl self-denying practices which he hal begun at the university. His conduct drew upon lim the attention of the bishoy of the diocese, who offered, thourh W. Was only twenty-one, to admit fim immeliately into orders. The oflec w:is accepted, aud 11 . was ordained a deacon in 1736 , before he had tatien his degree. lie preached his tirst sermon in Gloneester Cathedral, and the effect of it was remarisable. 'l'he velumence and earnestness uf his oratory decply moved the audience; and live persons are said to have been rlriven mad with fear and excitement. Complaints were made to the bishop; but this ghod man gave wo beed to them-simply saying that he huped the madness would last to the following Sunday: During the acxt two years, W. preacled with similar results in various churches in Kingland.

Meanwhile, Wesley had been in America estal. lishing mossions among the colonists; and in 1735 le desired W. to join him, a recuest that was immediately complied with. IV. haw to go to dondon to mako arrancments for his jonrney: and this visit, though not his first, secms finst to bave made him kimown to the inliabitants of the metropolis, upon all ciasses of whom-tine gentlemen like Chesterficld, and cool sceptics liko Bolingbroke, as well as the more mobile crowd-he afterwards made an impression such as, prubably, wo otler preacher crer prodncel. Jlis success in Lundon was immediate, and much execeded all that had hefallen him previonsly: The doors of the clureh jn which he was to preach were besieged licfore the dawn; the unlighted strects in the early morniug were filled with persons carrying lanterns, making their way to the jlace of worshy, many hours before the time of service. This lasterd until his departure for America. Ife was lereafter to he almust as closcly connected with evangelical Ialours in America as in England itself ; but on this lirst occasion, Lis stay was short-only a few months. IIc returned t) lue almitted to priest's orlers, and to collect funds for the cstablishuncnt of an orplanarge in Georgia. He soon weat back to America, but not before a heginning lad been made of his split with the English Church, whose clergy be offended by preaching in the open air, whether le got permission from the parish elergyman or not. and by deviating, whenever he thonght fit, from the liturgy of the church. But the remarkable and beneticial effects of his preachiog on the rude misers and others who
tlocked to hear him, consoled him for cilcrical censures; and after this, lue socms to bave preachal almost by preference in the open air. Ilis sceomel visit to Americ:l ocenpied ncarly two jears. Me c:me back in 17.11.

It was abont this time that doctrinal diferences led to his separation from John Wesley-both of them leing lyy this time disowned by the Estahlishen! Church. Wesley believenl and freached the doetrine of universal ralemption; W. was a riginl Caivinist. Facli thought his belief of the utmost importance, and in the ead, eacis excommunicated the other. WV.'s supporters now buit him a large shed at Moorfields, near Wesley's chapel-which, being temporary, was known as the 'liabernacle; and his preaching gathered immense audicuces around bim. But he lial no talent for organisation; and as soon as lae went away on his frecuent and protracted juurneys, his supporters began to disperse. Jint that the Countess of I funtingdon, a lady of wealtiz and of abilities, beeame a couvert to his views, IV., in all probability, would not have founded a sect. But this lady appointed him fier chaplain ; she built and endowed chapels to mantain lis Calvinistic doctrines; and thus a slight memorial of W's preaching, though it more directly commemorated the zeal and energy of lady Huntingdon, remains in what is known as the llunting. don connection.

One of his most famons missionary jonrness was that which he made to sicutland in litl. He went to scotlaud on the iuvitation of Ralphand Ebenezer Trskine, well known as leaders of a secession from the Churcl of Scotland; but his notions were too catholic for his friends; he was as ready to preach in a parish church as to a secediug congregation, and more ready still to preach in the open air; and the Erskines soon cliffered from and separated from him. That the impression he made upon the people of Scotland was very strous and very general, may be inferred from time fact that the leading corporations of Scotland-Edindurgh, Glasgow, Aberdeen, Stirling-admitted him to their citizenship. At Cimbustang, in Lanarkshirc-a mining district, mainly inhabited by rude colliers, then adscripii gleba-his preaching produced one of the most remarkable 'revivals' of modern times; many thonsands were stricken with concern about their souls, and violent yhysieal manifestations followed npon their excitement-foaming at the mouth, blecding at the nose, convulsions-which, by many who real of them, were attributed to Divine inthence, by others to the devil. It was on lis return from this visit to Scotland, that W., making a stay in $\|^{+}$ales, met and married a widow, a Mrs James. His marriage, like that of Wesley, was not a mapyy one ; and it is recorded that the death of his wife, when it occurred, 'set his mind much at liberty.'

To America, 11 . 1aid seven visits, several of whicli lasted for two or threc years. Me set out for Ancrica for the last time in 1769 . He was ailing at the beginning of the voyage; he was ill at the end of it; and lie died somewhat suddenly not long after bis arrival in America, at Newberry, near Dostou, on the 30 th Scptember 1770. A callection of his sermons, letters, and controversial writings was published in the following year (The iforks of the liez. George IFhitefield, 6 vols. Londnu, 171); and in 1772 were publishect his memoirs, by 1)r Gillies. His writings do not sustain the impression which would be derived from the aecounts of his preaching. They shew him as a man of somewhat slender talent and common-place quality of mind; quite untearned; eatircly free from the casuistical turn, as well as deficient in the worldy
knowledge and prudenee, for which Tresley, like many other enthusiasts, was pre-eminent. His suceess as a preacher seems to have been iu no small degree due to a sonorous but expressive voice; no doubt it was mainly due to the earnestness of his faith, to the flueney and rude strength of his homely language, and to that vehemence and impetuosity of nature whieh, perhaps, is the thing most distinctive of the orator. Of the Memoirs of the Life and Character of Gearge Whitefield, by J. Gillies, D.D., of the College Church, Glasgom, originally published at London in 1772 , subsequent editions, containing additional matter, appeared in 1795, in 1811, 1812, 1S13, and in 1827. An anonymous Lije of George Whitefield, founded upon his journals and letters, and borrowing largely from the work of Dr Gillies, appeared at Edinburgh in 1SO6. Fhitefield's Life and Times, by Robert Philip, D.D., was published at London in IS:37; and there has since appeared it full memoir, under the title George Writefeld: a Light rising in Obscurity, by Andrews (Lond. ISGI).

WHI'TEFISH (Coregonus albus, see Copegosts), a fish of the farnily Salmonide, of the same genus with the Gwyniad, Vendace, Powan, Pollan, \&c. It is found in the lakes and large rivers of North America, from the St Lawrence and its tributaries to the Arctic regions, and is one of the most valuable of American fresh-water fishes, abounding over a great extent of country, and being excellent for the table. It is the Attihawmeg of the northwestern Indians. The hody is elongated but thick. the head small and the muzzle pointed, the tail forked, the scales large. The mouth is destitute of teeth. It sometimes attains a length of two feet and a balf, and weighs ten pounds. It is bluishgray on the back, lighter on the sides, and white belor. It sparrns in October, proceeding from the lakes up the rivers for this prurpose. It usually swims in shoals, like its small British congeners. It feeds chiefly on inseets and entomostraca. It is caught by nets, which are often spread under the ice, and the fishery is attended with much labour and exposure. The Iudians sometimes spear it through holes in the iee. The W. forms the prineipal food of many Indian tribes, and of the furtraders, during great part of the year. It is often salted by them. The Hesh is bluish-white, changiug to a pure white when boiled, whence the name. The most southern lake in which the W. is found is Lake Champlain. No fresh-water fish better deserves to be made the subjeet of piscicultural experiments thau the W., and its acclimatisation in Britain would probably be as easy as it is desirable. -An allied species, the Otsego W. (C. Otsego), found in Lake Otsego, is also of exquisite flavour; but it is now rare.

Whlte FLUX. Sce Flex.

WHITE GCNPOWDEI is a mixture that was at one time employed in blasting, but is now scarcely ever employed in consequence of the danger attending its preparation, and the faeility with which it explodes by friction. Its ingredients are chlorate of potash, dried ferrocyanide of potassium, and sugar.

WHI'TEHALL, a village of New York, U.S., at the head or southern extremity of Lake Champlain, and termination of the Troy and Champlain Canal, with important railway and steam-boat eonnections, and water-power for saw and flouring mills, machine woollen and carpet factories. It was settled by Major Philip Skene in 1761, and called Skeneshorough; in the war of 1812 it was an important military depot. Pop. in 1S60, 4560 .

WHITEHA'VEN゙, a parliamentary, borough and seaport of Cumberland, near the point where the estuary of the Solway Firth joins the Irish Sea, 40 miles south-west of Carlisle by railway, 36 in a straight line, and 31 miles east-north-east of Ayre Point, the northem promoutory of the Isle of Man. It contains a market-honse, eustom-house, baths, and a theatre, as well as the West Cumberland Infirmary. The harbour is commodious, but is now dry at low water. The sources of the prosperity of the town are its vicinity to extensive collicries-some of which extend beneath the town and stretch out under the sea-and the extraordinary abundance and richness of the hematite iron ore found in the neighbourhood. Coal and iron mines are numerous; there are iron smelting-Torks, and iron and brass foundries-the manufactured iron being shipped mostly to the Welsh and Irish markets. There are dry docks for the building and repair of vessels; and rope-making aud the manufacture of thread and sailcloth are important branches of trade. W. returns one member to the House of Commons. In 1S66, 534 S vessels, of $43.9 \% 1$ tons, entered and elcared the port. Pop. (1861) 18,S42. (1871-1S,446.)

WHITE LADY', a being who, according to popular legend, appears in many of the castles of German princes aud nobles, by might as well as by day, when any important event, whether joyful or sad, but particularly when the death of any member of the family is imminent. She is regarded as the ancestress of the race, shows herself always in snowwhite garments, carries a bunch of keys at her side, and sometimes rocks and watehes over the children at night wheu their nurses sleep. The earliest instance of this apparition spoken of was in the 16 th c., and is famous under the name of Bertha of Rosenberg (in Bohemia). The W. L. of other princely castles was indentified with Bertha, and the identity was accounted for by the intermarriages of other princely houses with members of the house of Fosenberg, in whose traim the W. L. passed into their castles. In the castle of Berlin she is said to have been seen in 1603, and a arain in 1840 and 1850 . The most celebrated in Britain is the TV. L. of Arenel, the creatiou of Sir Walter Scott. It was long a common belief in the Highlands that many of the chiefs had some kind spirit to rrateh orer the fortumes of their honse. Popular tradition has many wellknown legends about white ladies, who generally $d w e l l$ in forts and mountains as enchanted maidens waiting for deliverance. They delight to appear in rarm sunshine to poor shepherds or lerd-boys. They are either combiag their long hair, or washing themselves, drying wheat, beating tlax, or spinning; they also point out treasures and beg for deliverance, offering as reward Howers, corn, or ehaff, which gifts turn in the instant into silver and gold. They wear snow-white, or half white half black garments, yellow or green shoes, and a bunch of kessat theirside. All these and manyother traits that appear in individual legends may be traced back to a goddess of German mythology who influences birth and death, and presides over the ordering of the household. Still more distinetly the appellation W. L. and the name Bertha point back to the great goddess of nature, who appears under various names, and who, as Berhta (i.e. the brilliant, shining, white), held her cireuit on Twelfth-night and revealed her power. When the legend goes on to say that the Bohemiau Bertha of the 1 ath c. prornised the workmen of Neuhaus a sweet soup on the completion of building the castle, and that this soup, along with carp, is still given in remembrance of it to the poor on Maundy Thursday, we reeognise again the festival dishes consecrated to Berbta, such as fish, oatmeal

WHITE LE，WD－WH1TGIFT．

grucl or ilumplings，icc．，which it is still eustomary to citt abut the time of I＇welfth－night and Clurist． mas in must districts of（icrmany：

WH1TE：LEAD．Sice Lead．

WIITE MOU゙NTAINS，a mountam－chain of New Enelami，l＇s．，revarded as an motlier of the A pralachim range，commences at the headwaters of the Aronstnok liver，in Mane，where its lirst summit is Mount Katahlin，and extenels in a loroad platean， from I6it to 1 stu0 feet high，west liy south nearly across N゙ゃW llamphire，where it has twenty bolil jeaks，with deep，narrow gorges，wild valleys，leauti－ ful lakes，lofty casculcs and torrents，forming the －switardanl of Amacrica，and a favourite resort of sumumer tourists．Nount Washingten，the lighest summit in New Ensland，（ies5 feet，has a practicable carriase－roal and a hotel on its summit；Jumat Pleasant，the secoml of the grould，is 1710 feet ；the Jesser are named Franklin，Momree，defferson， Adans，Malison．In the Franeonia froty are Lafayette， 5000 feet，aml Mooschilluek，d6：36t．These montans furnish the chici somres of the Comecti－ cut，Merrimack，and Androscoggin rivers．The rocks are ancient metanorphic，with maked granite and gheiss．The Ammonnonsuck liver fatls 5 tho feet in 30 miles，the Androsenergin 200 in a mile． Five narrow and pecipitons notehes seem to have leen rent in the monntans，and give passage to as many rivers．

WIITA PLBCLPITATE．Sce Mrx：clim．

WHYTE JilVER，a river of Arkansas aud Missomi．C．．．．，riscs in the Ozark Mountains，flows north－crast into Nissuari，then turning east and sonth－east intu Arkansas，drams the north－eastern prom of the sitate，and flowing southerly，ompties itself into the Mississiph near the month of the Arkansas．It is 500 mules long，and navigable 350 miles．
WH1TE SliA（linss．Bjeloje－More），an arm or great haty or julet of the Aretic（becan，which， between C＇ape Kanin on the Kaninskaia Peninsula， and Cape Sriatui nu the Kola reniusula，penetrates the Hussian govemment of Arehangel sonthwards to lat． 19 N ．Atits catrance between Copes Kanin and Sviatoi it is lef miles loroal；aiter penetrating the land 150 miles in at sontheensterlo direction，it narrows to a width of at miles ；but after sweeping sonth for onn miles，it ：uan consilerably widens， forming in the arenth－west the cirti of kandalak， anl in the suth ，mul smath－enst the great（iulfs of Oncura and Arehan m M insina．The W．s．covers an thea estimated at $45,000 \mathrm{sin}$ ． m ．，and the length uf its const－has is wer 1000 nilies．The enasts in the north and east are mountaimus，in other phates thry are mostly low，and abound in lakes，which communicate with the sea ly rivers．The greatost depth of the W．S．is $113: 3$ feet．From the middle uf August ice formy on the enasts sonnetimes to the width of 30 miles，and is not meltel till the follow－ ing July．

WIITE SULPHER SPRINGS，a villace and watering－place in Virginia，C．．．．，on Howarl＇s Creck， gos milus west of Richmond．It has botel accom－ modation for 1500 grests，The suriay is in the lowest part of a beantiful valley，and is coved by a dume supported ly 12 lonic columns，and summonted ly it statue of Hyecia：it is 2000 fert above tide－water ；yichls 30 gallons per minute uf water at 62° Falur：，impregnated with sulphates of lime，sola，magnesia，earbonate of time，chlorides of ealcilm ant sodinn，iron，iodine，sulphnr，carbonic acid，sulphuretted hyidrogen，oxygen，nitrugen．It is considered efficacions in dysuepsia，liver iliseases， gont，rhenmatism，and diseases of the skin and
150
kidneys．The licd，Nalt，and Bhe sulphur Nomings， at a distance of $\because 2$ to miles from the illove，are also much resorted to．

WHIITESWELLLING．Seedonts，Disfases of．

WHI＂TlETMIEOAT（＇turruca cinerica），a hirl of the family suptictle，is summer visitant of hritain： plentifal eluring summer in the greater part of Fingland and in Ircland，but emplaratively rare in soutland．It is also common charing summer in the south and middle of Fartope，amd is fomm even in the north．It places its nest in a low bush，or among a tangled mass of lrambles and weeds．its frod con－ sists both of insects and berrics．Its song is not

Whitcthroat（Curruca cincicu）．
very swect，but is delivered with great chergy，and it scems to vie with other birds in singing，relinsing to be outdone．It is very lively and amusing as a eage－hird，and very vasily tamed．The whole Iength of the W ．is $5 \frac{1}{2}$ inches．Its plumage is lmown， of varions shades：the lireast and belly brownish－ white，tinged with roscocolour in the male．－ The I．csser W．（Curruce syhtriellu）is a species of much mater aceurence in Britain．The Whitethroats belone to the same wenus with the Blackeap）（I ．．．） ami the Garten Warbler（ f ！hortensis），which is mot meommon in Lritain，and almost rivals the biachenp in the richness of its notes．

WHMTE VITHIOL．Sice Zisc．
WHITE－WASH，slal：ell quicklime，reducerl to the consistency of milk hy means of water．It is ns＂d for colnuring walls，and as a elisinfectant．If mrerly for colouring，a little size is added，bot not When insul for sanitary puposes．

WHITGIFT，Ions，the third Protestant Arels－ bishop of Cauterhury，was horn at Cireat（irimshy， in Lincolnshire，according to one accennt in 15．in， accorting to another in 1533 ．His father was a merelant．and is said to hawe belongod to a fanaly loner established in Jorli hive． 11 is carly yeats were passed within the Ahbey of Wellow，near livimsly，of which his mucle was the ahoot；and from that he went to St Antony＇s Silhool in Lombon，a religions house then in great regntation． Ahont 1545 ，he was entered at＂（encen＇s College， rambridge．Aiter a slart time，lee removel to Prombroke frall，of which he continued a member till 1555. when he was decterl a Fellow of I＇eter－ house．Whe tuol urters in 10̈fo，and as he shewed a remarkable talent for preaching，the Bishop of Ely appointed him his chaplain，ant gave him the living of Feversham．1n L． 6 ：3，he was appointed Lady Mar－ garet＇s I＇rofessor of Divinity：In 1567 ，he became Master of l＇embroke Hall；and in the course of the same year，Queen Elizalbeth，who admirel his preach－ ing，and had made him one of her chaplains，iappointed him to the Mastership of Trinity College．About
this time, he also obtained the Fegius Professorship of Divinity, and took his Doctor's degrec. He wis appointed Dean of Lincoln in 1571, Bishop of Worcester in 1577, and Arehbishop of Canterhury in 158\%. The at one time held together-under a dispensation from the archbishop...the Deanery of Lincoln, the Mastership of Trinity, the Regius Professorship of Divinity, and the living of Feversham; and the dispensation enabled him to hold, along with these, any other benefice whatever. 'This cannot lave been often paralleled, even in the history of pluralities. Of course, the man so favoured had rentered and was rendering considerable services to the chureh and to the erown.

His first work, on becoming Master of Trinity, was unon a revisal of the statutes of the uuiversity. He olbtained such powers for the heads of lonses as enabled them to ejeet from the Lady Margaret's Professorship, the able and energetic Puritan, Cartwright, on the score of his Calvinistic ereed. He afterwards, at the request of Arehbishop Parker, published an auswer to an 'Admonition of Par'iament' (drawn in] by a clergyman named Field), presented to the House of Commons on behalf of the Puritans, in which it was maintained that, in matters of doetrine and diseipline, the chureh should admit nothing as anthoritative but what was enntained in the Word of God. This work was pub. lished in 1572. It has always been held that in it W. vindicated the position of the Anglican Chureh acrainst the I'uritans with no less ability than Bishop Jewell shewed in defending it against the Fiomanists. He was answered by Cartwright on behalf of the I'uritans; he replied, and Cartwright rejoined; and as the works on either side were revised by the most learned and eminent men of the two parties, they give an excellent view of the state of opinions in the Anglican Churelı at this time. After becoming primate, W. laboured assidnously to secure uniformity of discipline in the chureh. He had the full confidence of Qneen Elizabeth, who placed all the church patronage of the erown, ineluding the bishopries, in his disposil, and lie was armed with full powers for earrying out his design. He required the elergy not only to subseribe to the Royal Supremacy, the Liturgy, and the Thirty-nine Artieles of the Church, but also to a set of additional artieles framed mainly with the view of purging the church of Puritanism. The bishops were required to administer those tests; and the elergymen who refused to accept them were deprived of their livings. This measure was harshly conccived; but W. is said to haye been a Eindly man, and to have used his authority over the elersy gently, especially in his later years. He was made a Privy Comeillor in I5S6, and in that capacity drew up a set of statutes for eathedral chmehes, to make their services conform to the principles of the lieformation. He was offered the chancellorship by Queen Elizabeth, but he dectined the office. On the accession of Fing James, he seems to have been much alarmed for the stability of the system which he had spent his life in rearing; and though the monarel treated him with the utmost observance, anxiety upon this acconnt is said to have hastened his end. He died of paralysis on the 29th Feuruary 1603. He is undoubtedly entitled to rank with the alolest and most distingnished pirelates that have adorned the English Climeh. He founded amagnificent hospital aud a granmar-school at Croydon.

WHI'TING (Merlangus), a grems of fishes of the family Gadido, differing from the cod, haddock, and their congeners (Gadus, or Morrluta) in having no barbule on the lower jaw, and also in their more slender form, which alapts them for pursuing their prey more actively and further from the bottom of
the sea. The Common W. (M. rulyaris) is abunclant on many parts of the British coast, partienlarly on the western consts of Britain, and on the coasts of Ireland ; on the northern coasts of Seotland it is comparatively rare. It not nufrequently attains a weight of three or four pounds-although the whitings bronght to market are seldom of this size; lnt a WV. has been taken of seven pounds weight. The bead and body are compressed ; the deepest part is at the vent, which is opposite the middle of the first dorsal fin; the upper jaw exteuds a little beyond the lower; both jaws have lonc sharp teeth, and there is a triangular pateh of teeth on the palate. The scales are small. There are tlaree dorsal fins. and two anal fins; the tail-lin

> Whiting (Merlangus vulgaris).
is eren. The colour is dusky yellow on the back, the sides paler, the beily silver white; there is a black spot on the mpper part of the root of the pectoral fin. The W. is a voracious fish, lreying on molluses, worms, crustaceans, and small tishes. It is eanght chiefly by hand-lines and long lines; mussels and pieces of enttle-fish are fery generally used for bait. It is in high esteem for the table, and is regarded as particularly delicate and easy of digestion. The flesh is of a pearly whiteness, whence the English name. It very soon suffers elange, however, and is in good condition only a short time after being eaught; but great mumbers of small whitings are seut to market, salted, and dried, under various names.-Another species of W., Coucn's W. (M. albus), is sometimes taken on the British coasts. It is more abundant in the Mediterrancan. It is more slender than the Common W., and the under jaw is a little longer than the upper. The Coal-fish (q.v.) and the Yollack (q. v.) also belong to the genus Merlungus.

VHITING is an impure carbonate of lime, prepared by grindiag and then washiug chalk, so as to separate the coarser particles from the fincr ones, which are collected in masses, and dried. It is extensively used for size-painting, and as an article of household economy, for eleaning plate; and on emergency, may be employed as au antidote (in suspension in milk) in cases of poisoning witl oxalic, or one of the mineral acids.

WHITLOW, or PARONY'CHIA, is a painful intlammatory affection of the phalanges of the fingers, almost always procceling to suppuration. There are several varieties of this affection, accorling to the texture primarily attacked; thus, it may be situated in the slin, the cellular (or connective) tissue beneath the slin or muder the nail, the tendons or tendinons sheaths running along the fingers, or the periosteum. If the slin be the seat of inflammation, vesicles apprear, which soon dis. charge pus, after which relief is rapidly aftorded. Such eases require little care or attention, and give rise to hardly any constitntional disturbance. If the cellular tissue is the primary seat of intlammation, there is a painful sensation of tenseness and
throbbing of the part, and often consileralble febrile disturbance, until the pus ean be evacuated. Although this form is painful, no serious misehief is to le apprehenich. When, however, the tendons and their sheaths, or the periostemm, are affectal, a much nore serious Iorm of whitlow is aleveloped, which has been already discussed in the article Texnos. In this Iorm, the suppuration may extenel 11 p the arm, and ocasion destruction of the joints, and cren death.

Whitlow may originate either spontancously, or after au external injury, such as a prick Irom is neclle, thorn, \&ec. In the treatment of the milker forms, the finger or thmm shonld lo held for half an hour or longer in water as hot as can be borne, after which lunar caustie slould le rubbed frecly over the painful surface; and if there are any febrile symptoms, the [atient may take a powler, consisting of 4 graius of calomel, 3 of James's Powder, and is of Dover's l'owder, at bedtime, to le followed in the morning by an ordinary back draught. The hot local baths shond be carried on till matter shews itself; and as soon as its presence and seat are determined with eertainty, an incision should he made, to mimit of its eseape. Even if suppuration has not taken place, a free ineision into tho inflamed part often gives great relief. There is a very pernicious popular idea that the applieation of cobblers' wax, or some other stimmlationg substance, will draw the indlammation to the surlace, and luing the whitlow 'to a head.' There is reason to fear that a cousiderablo number of fingers are ammally sacrified to this delusion. As it is not always casy to state in an carly stage how a whitlow may turn ont, it is advisable that surgical aid should always be at onec obtained.

WHITNEY, Elf, American inventor, was born at Westborongh, Massachusetts, Necember S, 1765, and was educated at İale College, where he paie? his expenses, partly by school-teaching, partly by mechanieal labour. Masing graduated in 1792, he went to Georgia as a teacher; fut finding a generous patron in the widow of General Greene, of the licvolutivany army, he resilech on her estate, and studied law. The cotton culture at this perionl, especially that of the bust kind, the 'green seed,' was limited lyy the slow and diffient work of separating the cotton from the sced by hand; hut Jhrs Grecne told her eomplaining neighbours that she was sure W. could help them unt of their trouble, for he could make anything. At their desire, he set to work nuder great disulvantages, for he had to make his own tools, and even draw his own wire; but the reports of his success prompted some lawless pwple to break into his workshy, aucl steal his inachine, and get others made befure he cunbl secure a patent. IIe, howeser, formed a partnership with one Miller in 1793, and went to Comecticnt to mamuacture cotton gins; lont tho lawsuits in defence of his rights tork all his protits, and 50,000 dollars voted him by the state of Sonth Carolina. Fimally, in 17as, he got a government contract for the manufacture of firearms, and was the dirst to effect the division of labour, hy which each part was male separately. He marle a fortune by this manufacture, carried out with ingenions machinery at 7 hitneyville, Connecticut; while he had hit harren honour from the frin, one of the most important of the whole series connectel with the cottom manfacture. IIe died at New Haven, January S, 1825. See Corros.

W11ITSTABLE, a long, straggling, maritime village in Kent, on the south shore of the mouth of the Thannes, at the mouth of the swale, 6 miles north-north-west of Canterbury, with which it is
connected by railway. It is noteworthy chicily because some of the largest artificial oyster-beds lie off the coast, which are regularly farmed by different companies and proprictors. Thero are breweries, rope-works, copperas-works, and boat-luilding-yards. Some Roman pottery has been found anong the oyster beds, indieating that proh. ably a Roman station existed here. 1'op. (ISül) 3056 ; (18G1) 4183.

Whli'TSUNDAY, in Scotlanel, is one of the usual terms for regulating the letting of houses and iarms. It was formerly movable, but was dixed by stat. 1690 , c. 39, to mean the lith May. In many respects, however, local usage overrules the statute; thus, in Edinhurgh, the term of entry to a house is the 2 anth of Blay.

WHI'TSUNTIDE ('White-Sunday-tide'), tho English name of the season of Pentecost (q. v.), is so ealled from the white garments aneiently worn by the newly-baptised eatechumens, to whon that sacrament was usually admiuistered on the vigil of Peatecost. The name 'Whitsuntikle' emmprehends the cutire octave or the week which Eollows l'entecost Sunday ; but the word is more strietly applied to the Sundiay, Monday, and Tuesday of that week. The two latter days, down to a very reeent date, were observed in the Laman Catholie Churela as holiclays of strict obligation. Many Iustive observances and celebrations were anciently practised in connection with the Whitsuntide holilays, which in England and other Protestant countries still subsist, having ontlivel the religions association ont of which they originatel.

Whitheifin, John Greenleaf, Ameriean author and joet, was born at Maverhill, Massachasetts, December 1807, in the Socicty of Fricnds. Ho worked ou a Iarm and at shocmaling in his boyhood; lut at the age of 18 , having a strong desire Ior learning, he studied for two years at a local academy. In 18\%?, he became editor of tho American Manufacturer, a puper established at lioston to adroeate a $1^{\text {rotective tariff; in 1830, he was editor of the New }}$ Bingland Review, at HartIord, Connectient, where he wrote a Life of Lrainard, and Legends of New Einglund. The subjects of these legends he afterwards worked ont in his prems, as Mogg Megone, Bridel of Pcnnacook, Cassandrct Southwich, and IVary Gurvin. lieturning from his literary labours to his farm, lie was, in 1535, elected to the Massachusetts legrislature; and in 1836 appointed seceretary of the American Anti-slavery Society, and became erlitur of the Pemsylvania Frecman in Philadelphia; and in 1 S. 10 removed to Amesbury, Massachusetts, as correspondent of the Fational Era; and has simee devoted himself to literature and philanthropy. Mis principal writings are-loiecs of Freecdom, poems collectel in 1830°; Leaves from Marmertet Smith's Journal, poems collceted in 1836; Ohd Portraits and Modern Sketches, liomzaphical, 1531 ; ('ollected Pooms, 185!) ; Songs of Labour, and othro Poems, 1551; The Chapel of the Hermits, and other Poems, 185:3; Literary liecrcations, 185t; The J'anorama, and other Pocms, 1856 ; Mome Ballarls, and other Poems, 1S50. These poems have tiue clements of vigour, a rugged picturesqueness, a eorrespontence of rhythm and somind to sense, and a rendering of popular fecling, which have given them a wide circulation. IIis latest publication is The T'ent on the Beach, and other P'oems, 1 S67.

WIRI'TTLLESEX, or WHITTLESLA, a decaying village and market-town in Cambridgeshire, miles east of leterborough. The population in and about W. are mostly employed in agricultural pursuits and iu brickmaking. Hzilllcsca-mere, a shallow

WHORTLEBERRY-WICHERN.

Jake, which formerly existed in the north of Huntingdonshire, 4 miles south-west of W., was 2 miles in lengtl by 1 in breadth, and ahounded in fish, water-fowl, \&c., is now drained and laid out in fenlands, which are under cultivation. W. is conneeted by a branch with the Great Northern and Great Eastern Railways. Pop. (185l) 5472; (1861) 4496.

WHO'RTLEBERIIY (Faccinium), a genus of small shrubs, of the natural order Vaccimiacece. having a 4-5-toothed calyx, a 4-5-eleft bell-shaped or urceolate corolla, with the limb bent back, S or 10 stamens, with two-homell anthers, and a 4-5celled many-seeded berry. The species are numerous, mostly natives of the northern parts of the world, with evergreen or deciduous, more or less ovate leaves.-The Conmon W., or Bilberfy (1 . $m y$ ritlus), called in Scotland the Blaeberry, is very common in Britain, and in the middle and nortl of Europe. It is found also in Iceland and in the northern regions of North America. It delights in dry situations, but is often found in woods, and often on very elevated mountains. It varies from a few inches to almost two feet in height, and has ovate deciduous leaves, and dark purple berries. A variety oceurs, but rarely, with white berries. The berries are very sweet and agreeable, and are much used for making jelly. A kind of spirituous hquor is
also made from them in Germany.-The Eog W., or Geeat BilBEREX (V. veliginosum), is common in the northern parts of Britain, and in the north of Europe aud Asia. It is said to cover extensive traets in Greenlaud. It grows in marshy situations, and is a taller plant than the Common Whortleberry. It has deciduous, obovate, entire leaves, and a fruit larger than the Common W., and inferior to it in flavour. The fruit is sail to eanse giddmess when eaten in large quantity. An intoxicating liquor is made from it in Sweden and in Siberia. The only other British species is the Iied W. (1. vitis Ideca), which is often called Cranberry, beeause of the similarity of its acid fruit to the Cranberry (q.v.). It is a native of the north of Eurone, Asia, and America, and is plentiful in some parts of Britain. Its fruit is mueh esteemed for preserves, and is used in the same way as the cranberry. Large quantities are sent to the south of Europe from the shores of the Gulf of Bothnia. The plant is a pretty dwarf shrub, with oborate evergreen leaves, and racemes of flowers. 1. buxifotitm is generally regarded as a mere American varicty of it.-Many species of Juccinium are in occasional cultivation as ornamental shrubs, and the fruit of most of them is agreeable, althongh in general it wants acidity. Their more genural cultivation has perhaps been prevented by the prevalent notion that they require a peat soil, but they succeed on other soils also. Most of them are North Anderican, and the fruit of some of them is often brought to market in North Americau towns.-The BLack W.,
or Huckleberry (V. angustifulium or Gaylussacia angustifolia), is a shrub about two feet high, much branched aud erect, with deciduous oval leaves. The berries are of a shining black colour, and sweet. It is widely difitsed from Canada to Ceorgia. The Blue Tavgle-eerry (1 . frondosum, or Gaylussacia frondosa) is a rather larger and more spreading shrul, which grows near lakes and springs. The fruit is slightly acid.-The Bean W. (1) ursinum, or Gaylussacia ursina) is found on the mountains of North Carolina; the Box-eeared W. (V. brackeycorum, or Gaylussacia bracluycera) in Pennsylvania and Vincginia. There are other North American species, as I^{\prime}. Canadense, J^{*}.humifusum, and V^{\top}. parvifotium, humble evergreen shrubs. Several species are natires of Mexico. V. arctostoplyylos is a native of the coast of the Black Sea; and I. padifolium is a native of Nount Caucasus and of Madeira, on the loftiest parts of which island it forms impenetrable thickets, growing from six to ten feet high.

WHY'DAW, or WHIDAW, a maritime provinee of Dahomey ($\mathrm{q} \cdot \mathrm{r}$.$) , on the Bight of Penin. It is$ populons and very fertile, and exports palm-oil, gold-dust, ivory, and many slaves.-The town of W. is the principal seaport of Dahomes, and in population the second town of the kinglom, being inferior only to Abomey. The pop. is supposed to be about 15,000 . It is situated about a mile and a half from the sea, close to a lagoon aud a swamp, between which and the sea a sandy neck intervenes. Into the lagoon How several rivers, scarcely known except to slave-traders.

WHYDAW BIRD, WHYDAW FINCH, or WIDOW BLRD (lidua), a genus of birds of the family of TVeaver-birds (q. v.), having long wings, and a boat-shaped tail, the two middle feathers of the tail of the males excessively lengthened during the breeding-season. The name is derived from the country of Whydaw in Western Africa, and Widow Bird is a mere corruptiou of it, which, however, has given to the geaus its name Tichua (Lat. Widow), regarded as appropriate, because the long tail of the male drops off after the breeding season, and also beause of the general dark colour of the plumage. The species are matives of the tropical parts of Africa and the south-cast of Asia. They are irequently hrought to Britain as eage-birds, both on account of their plumage and the sweetness of their song. 'The best known species (I. paradisea) is a small bird, about the size of a eanary, with black aud brownish-black flumage, with a broad collar of orange-rufous colour, and breast of somewhat similar colour ; two feathers of the tail in the male very broadly webbed in the breecling season, and ending in a lair-like shaft, two feathers very much elongated, sometimes a foot in lengtl, and about three-guarters of an inch in breadth.

WICMERN゙, Jom. Heinerom, superintendent of the Tiauhes Haus (q. v.), near Hamburg, and known by his exertions in the affairs of the German Home Mission, was born at Hamburs on the 2lst Aluil I80s. He attended the Gymmasium of his uative town, and then studied theology at Güttingen and Berlin. Shortly after passing his examinations at Hamburg, he directed himself to practical usefulness, visited the poor and the wretched in the courts and lanes of the town, anil undertook the direction of a Free Sunday School for poor children, in which he soon gathered round him from 400 to 500 scholars, instructed by $\left.f^{\prime}\right)$ voluntary male and female teachers. At this time, W. declined the ofler of a clarge in the neighbourhood of Hamburer, as he already entertained the idea of an institution such as the Ranhes Hans, which he opened in 1833 . From about $18 f 0$, W. was much engrged with uudertakings of a

WICK゙-WICKLOW.

similar kind in Germany, to which his mother-institution give rise. The example was soon followed ly France on a great scale (Mettray, near Tours), then ley Jugland, Holland, and other countries. It was chielly through the instigation of W., that at the lirst Irotestant kicelesiastical Assembly held at Wittenberg in 1848 , for the pmopose of concertnas muited action, a central Home Mission Committee was appointed, nuder which title IV . hand formed the idea of comprehending all excetions on behalf of the poor, the miserable, and the morally and religiously lust. This Home Dlission laas cexerted a wide :mul benelicial intluence on the north of (iermany ; and as a member of the committee, W. fouml in it an -xtemed fick for his exertions. Travelling through all parts of Gemany, W. wats the means, by his exhortations, of founding all sorts of institutions and sacicties for elueation and the eare of the sick, of the poor, and of prisoners. On his return from a visit to England in 1S5I, the Prussian government commissioned him to inspect all the houses of correction and prisons, and to suggest improvements. Prevented ly this constant practical uselulness from any great literary effort, he publisheel but little. In his Mome Mission of the Cerman Livungelical Chureh (14unburg, 1849), he explains his views of Christion charity, iand its relation to the ecclesinstical and social gucstions of the day. Since 1848, he has published his Fliegende Blütter (Fucitive Leaves), whiel contain larts of discourses delivered by bim at the ecclesiastical diets. In 1851, W. reccired from the university of Halle the derree of D.D.

WICK, a royal, parliamentary, and municipal longh and seaport, eapital of Caithness-shire, stauds on looth sides of Wiek Water, at the mouth of that stream, and at the hearl of an inlet called Wick Bay, 16 milcs sonth-sonth-west of Duncanshy Ilead, and 20 miles east-south-east of Thurso. The prarliamentary boundaries include the royal lurgh, containing about ls:0 inlahitants, which, with the suburbs of Louisburgh and Lioatharen, containing 1000 more, lic on the north sinle of the river and bay, and J'ultency-town on the south side, having a pepp. of about 5000 -the total pop. of the parliamentary lurgh being, in 1861,7475 . Pulteney-town, a settlement of the British Fisheries Society, is a flourishing town, managed ly Improvement Commissioners under a local act of parliament. 'The bay is about a mile long hy half a mile broal, exposed to frequent stoms from east and nurth-east. There is at present an excellent tidal harbour of consiterable capacity, the property of the said society, which is now in course of constructing an extensive breakwater. in deep water, which will cost over $£ 120,000$; but several years are still required for its completion. The institutions within the parliamentary burgh comprise a county courthouse and pison, nine churches and chapels, a town-hall, the l'ul-tency-town Acudemy, and a clamber of commeree. There are two weckly uewspapers. W. is, and has been for mayy years, the great centre of the herring-fishing in Sootland, thourfl of late years the take has not been so great as it had formerly bean. Everything in the town is subservinut to the herring-ishery; and the trades-eliefly larrel-making, boat-buikling, and rope-making-are directly supported by it. In 1866, the mumiver of boats employed in the herring-harvest was 922, anil the take amominted to 59,000 crans. In 1865,1745 vessels, of 159,752 tous, entered and cleared the port. The msual industries of a county town are prosecuted with considerable spirit. ($15 / 1-\mathrm{pop}$. $\$ 132$.)

WICK, the material used for the centre of candles and lamps, which, from its porons nature, draws up) the oil liy capillary attraction in such quantities as
to buru easily. U'sually, wicks are made of cotton, hut formerly flax, hemp, and rushes were used. For ordinary eancles, the wick consists of a bundle of cotton thread, lying parallel with each other; but for wax, spermaceti, paralin, stearin, \&e., they are nsially of twisted or plaited cotton. Very ingenions contrivanees have been applica to the mannfacture of candle-wicks, to prevent the necessity of smulling. Sce Candle.

WIClil.OW, a maritime county of the province of Leinster, Ircland, is bombled on the N. by the county of Dublin, E. ly the Irish Channel, s. by the county of Wexford, and W. and N..W. by the comities of Carlow and Kildare. Its greatest length is 40 miles, and greatest lreadth 33 ; the total area being 781 sq . me, or 500,178 acres, of which $\because 00,303$ are arable; $200,75 t$ meultivated; 15,000 in plantations; 341 in town ; and 1090 under water. The pop, in 1851 was $92,97 \mathrm{~S}$, and in 1861 , S6,179, of whom $70,04-1$ were Catholics, 15,285 Protestants of the Lstablished Chureh, and the rest Protestants of other denominations. The enast-line stretehes in a southerly direction about 29 miles, is in many parts precipitous, and being, morcover, obstructed by samelbanks, is recy dangerous for shipping. The surface asceuds in some parts most almuptly from the sca, and a large portion is monntainous and unproductive. The Wicklow Monntains, however, form rather a group than a range, and on the western and north-western side, deeline less precipitously towards the central plain. The most elcvated point is Lugnaquilla, which is 3039 fcet above the levol of the sea. Scweral other peaks approaeh this elevation, and the glens which lie between the several mountains or groups are execedingly picturesque, especially flentalough, Glemialure, Imail, the Glen of the Downs, and Avoca, the scenc of Hoore's well-known Irish melody, The Mecting of the Waters. The valleys are, for the most prat, of limited extent; but some plains of considerable size lie upon the eastern and sonthern shore. The lakes, although strikingly heantiful, are few in number, and of small size ; and the rivers, some of which drain the eastern, and others the western slope, are little more than montain streams, at least so far as therr course lies within the limits of this county. 'The Liffey and Slaney rise in W., but do not reach any considerable volune matil after they have issued from it. The great central group of mountains is a mass of granite, which protruiles througl mica and clay slate, to which latter formation the minor clevations both on the eastern and the western side generally belong. The granitic protrusion, which is one of the most remarkable and hest defined in the kinglom, falls away on the east side towarls the sea, ind on the west, towarls the great central limestonc. The minerals of W. are numerous and varied in character. In the granite and mica-slate are fonnd galena, green and white lead ore, and copper pyrites. From the clay-slate tract are ditained goli, silver, copper, iron, leal, zinc, tin, tungsten, manganese, arsenie, and antimony: The quantity of gold fomm is very small. Silver is fomm in combination with lead, which is raised with great suceess and profit at Glenmalure. The copper mines also are very productive; anl of late years, the utilisation of the sulphur, which was formerly wasted, has added larsely to the prolit of the mining operations.

The climate resembles that of Wexford (q.v.). The soil is very various in charater. In the momatans, it is thin and poor, but generally dry, although there is a consilerable proportion of bog. In the valleys and level districts, the subsoil is generally gravel, and the soil is for the most part either dry, or, cren in the bogrgy districts, susceptible of drainage. On the

WICKLOW-WICLIFNE.

whole, in the lowlands, the soil is moderately fertile; lout there is little cultivation of wheat, the chief agricultural jursuits beiner dairy-farming and grazing; and the culture, on a limited scale, of harley, oats, turnips, and potatoes. In $1 \mathrm{S6}^{\circ}$, the acreage moler crops was 118,590 , of which very nearly one-half-viz., 55,365 -was under meadow and clover ; $31,23 S$ under oats ; 13,7S0 under potatoes; 5595 under wheat: j231, turnips; 2401 , barley ; and the rest under the minor crops in small proprortions. Flax-cnlture in IS6O was entinely blank, and in the year 1861 was represented but by a solitary acre. In 1862 , the number of cattle was 74,135 ; sheep (of which a small breed prevails in this eounty), 174.320; horses, 13,007 ; and pius, $22,61 \%$. The total anmual value of property in W., under the Valuation Act, is A259,988. There is a large mmber of villas and many residences of great arehitectural pretensions, with extensive and highly cultivated parks, especially in the picturesque district which lies between Bray and Wicklow. The county is divided into eight baronies. The principal towns are Wicklow (q. v.), the capital, Arklow, Baltinglass, Shillelagh, Rathdrum, Bray, and Newtown-Mount-Kennedy. In. returns two members to the imperial parliament. W. is described by Ptolemy as the territory of the Canci, and the names of the rivers mentioned by him are still tracuable in their modern appellations. At the invasion, the greater part of the lands of W. were granted to Manvice Fitzgerald, and W. was included by John in the shire of Dublin. Generally speaking, however, the authority of the English in W. was little more than nominal; the territory heing under the command of the chief of the O'Byrne. A vigorons effort was made ly the Lord-deputy, Sir Arthur Chichester, to establish the king's anthority in W., and in 1605 it was erected into a separate county; but again, in 1641 , the population joined in the gencral uprising. From the clate of the settlement, however, they were effectually held in subjection. During the rebellion of 179S, W. was the scene of more than one contlict, and the peasantry, in some districts, suffered severely from the vindictive character of the repressive measures adopted by the ascendant party.
W. ahounds with antiquities of the highest interest. Nany tummli, raths, cromlechs, and other Celtic remains are freserved; aud there are very many ecclesiastical remains of aImost every period of Irish Christian architecture ; those of Glendalough, which include a round tower, are especially interesting. ($1571-\mathrm{pOp} .78,509$.

WICKLOW, a seaport, capital of the above county, is situated at the month of the river Vartrey, N. lat. $52^{\circ} 55^{\prime}, 1^{\top}$. long. $6^{\circ} 3^{\prime}, 32$ miles south-soutieast from Duhlin, with which city it is connected by the Wicklow, Wexford, and Waterford lailway. The pop, in 1861 was 3448 , of whom 2673 were Catholics, 619 Protestants of the Established Church, and the rest of other denominations. It is an assize town, the smallest in Ireland. Sthe municipality is arministered by 16 town commissioners; but although it is a seaport the export trade is extremely small; nor are the fisheries of much value. The prineipal exports are the products of the mining operations and the agricultural produce of the alistrict. The streets are narrow and ill lotilt, nor is there any public building deserving of notice.

WICLIliFE, Jons DF, the greatest of all the 'Reformers before the I'cformation,' was born in $182 \frac{1}{1}$, and is supposed to liave been a native of the parish of the same amme, mear the town of Fichmond in Yorkshire. He studicel at Oxford; but of his early uviversity career nothing is known.
W. first emerges into public notice in 1861, when
his name appears as master of Balliol Hall-as Balliol College was then called. In May of the same year he was instituted to the rectory of Fylingham in Lincolnsliire, and slortly after resigned his mastership and went to reside at his rectory: Alout 1363 he took his degree, and began to read lectures on divinity at Oxford, in which his anti-lomish views were first expounded. In 1365, he exchanged the rectory of Fylingham for the living of Ludgershall, in Bueks; and in 1374, was presented to the parish of Lutterworth, of which he remained priest till his death.

In the great struggle maintained by Elward Ill. and his parliament against the pretensions of the papacy, regarding the exaction of certain tributemoney which had been grantel by king John in acknowledgment of the fealty of the kimgdom to the Lioman see, II, who had been adwanced to be one of the kings chaplains, was called upon to deply to a defence of the papal clam, which had been anonymously sent abroad. This he did publicly at Oxford in an ingenious and powerful manuer, and thus early shewed his antipathy to the pretensions of liome. I clear evidence of his growing reputation is furnished hy his appointment, in 1374, as second in a commission sent to Biuges to confer with the papal legate as to certain abuses on the part of the papacy complained of by the English parliament. It was probably on his retum from this mission, that W. was promoted to a prebend in the diocese of Worcester, and at the same time presented to the reetory of Lintterworth in Leicestershire. Here he lihhoured with great zeal, preaching not only on Sundays, lut on the several festivals of the Church, and shewing himself 'a most exemplary and unwearied pastor:' Ilere also he began at length to speak his mind as to the paprey. The iusight into papal dougs which he had received at Bruges seems to have confirmed suspicions previously forming in his mind, and he is said, soon after lis return to Eugland, to have styled the pope 'Antichrist,' 'the proud worldly Iriest of Rome, the most cursed of Clippers and Purse-kervers' (cut-purses). Then began in real eamest his tronbles with the hierarehy. In the beginning of $1.37 S$, lie was summoned to a meeting of Convoeation, to be examined for his opinions. He obeyed the summons, but he appeared attended loy his triend Johu of (iaunt and others. A great tumult ensued, the London citizens Lursting into the chapel, and frightening the synod of clergy, who were ordered to sist proccedings. The pajal authority was then invoked against him, and Gregory V1. issued several bulls, three addressed to the Arehbishop of Canterbury and other hishops, one to the ling, and one to the university of Oxford, commanding an inquest into the erroneous doctrines attributed to the Reformer. WV. was accordingly again summoned before the prelates at Lambeth; hut on this oceasion also he was favoured by circumstances, and escaped merely with an injunction to refrain from preaching the obnoxions doctrines.

These proceedings only served to make Wr. a more thorough lieformer. He now entered upon his great work of translating the Scriptures, and circulating them among the common people. He lad a great retinue of poor preachers, who went from village to village hearing copies of parts of them. He also challenged the doctrine of transubstantiation. Nany of the people, the burghers and the middle class, heard him glakily, and matters seemed tending to an open mpture with the papacy. But the times were not as yet ripe for this. Nany who otherwise sympathised with the Reformer were afrail of his rieirs about transubstantiation. Te was especially summoned to answer on this head, first,

185
before a synoll at the Greyfriars, London, and finally lefure Convocation in liss.. He appearel. and defended himself with great subtlety and ןower. His defence was unavailing. Twenty-four 'erroneons' statements were pickel out of his works, which were in consequence condemned and orlerell to be lmurned. He was banishell from Oxford, but was allowed to retive to his parish of Lutterworth. His health was already shattered by hard work and many anxieties, and on the last Sumlay of the year 135.1, he was struck down by paralysis while conducting public worship, and two days aiterwards expirel. W. appears to have been a man of simple faith and of carnest and manly courage. He made a strong impression upon lis age; an impression there is reason to think not cutirely effaced esen to the time of the lieformation. Tbe Lollards, as his diseiples were called, were to be foum not only among the poor, but in the church, the eastle, and even on the throne. Political mischances, however, overtook the party in the following century, and only a few traces of it survivell here nuld there when the movement of the 16 th c. begran.-S'se the lier: W. Shirley's edition of the Pasciculi Zizaniorum Magistri Johamis Hyclif (1S:is), pmblished under the direction of the Master of the liolls.

WIDDIN, or WIDIN, a fortifiel town of European Turkey, capital of an cyalet of the same name in Eulgaria, on the right lank of tho Danube, 140 miles east-sonth-east of Felgrade. It is surronnded on the land-side ly morasses, ani is defended by a strong citadel, by walls, anil lyy a fortified island in the Danube. Its streets aml lazanss are pestiferously dirty. For centuries, W. has heen a strong post in all the contests between the Turks and their northern neighbours, and it is called by tho Turks the Virgin Fort, from its never having lieen taken. The industries and the active generial trade which it carries on, rembler the town a prosprerons one. Ships from the Flack Sica can reach W, by the Danube at high water. I'op, about 30,000 .

WI'DGEON, or WIGEON (Mfreca), a gemus nई Ancks of the non-oceanic section, with the hind-toe not welbed, having the bill shorter than the liead, and of equal wilth throughout, mueh ronnded at the tip, with a broad strong nail; the lamella of the mper mandible promincht ; the wings lons and pointed; the tail wedgesshaped. The splecies are

Widyeon, Jala and Female (Murcca penclorc).
pretty numerous, migratory lirids, appearing in great ilocks in the warmer conntries which they Visit during the winter. The Cosmor W: (Anas or 3 (arecas penelope) is plentiful in Pritain daring winter. A fuw breal in the most northern parts of Scotland, but the ordinary breeding-place is iu zore
northern regions. This splecies is found at some season of the year in almost all parts of Earope, and in Asia, as far south as the morth of India. It is found also in Nonth Amcrica, along the Atlantic const. It is known as one of the birds of Japan. Its whole length is ahout 15 inchcs. The forcheal and top of the leall in the male are white, the checks and hind-part of the neck redlish chestnnt ; the upper 1arts grayish white, erossel with irregular zigang lines of black; the tail nearly llack ; the wins. coverts white, tipped with black; the primaries dark lwown; a green speculum edged with black; the throat, palc rufuns; the loreast and belly, white. The female is very different, the head and neek rufous brown, specklecl with dark brown; the back varied with two shades of broma, darker in the centre, and paler in the elges of the feathers. The IV. is the most common of all the duck tribe in Lapland, frequenting grassy swamps, lakes, and rivers. Flocks of W. appear in Scotland and England, on lakes and rivers, in winter, and most abundantly in surere winters. They feel during the daytime, and elicily on grass. The note of the W. is a shrill whistle, whence its French namo Siffeur, and the English names, Whew Inuck and Whewer: Its Hesh is gooll for the table.-The Americas W. (.tnas or Marecr 1 mericana) is a larger lisel than the Earopean W., lecing about 22 inches long. The upper parts are fincly waved transversely with bhack and reddishl brown, the under parts are mostly white ; the top of the lead is almost white; the wing-corcrts white, the greater tipped with blaeds ; the speculum green, encircled by black: It breels chictly in the northern parts of America, and is common in winter on the coasts of the Uniterl States, and in the rice-gronnds. 1ts Hesl is highly esteemed. It is known as an oceasional, but very rare visitant in the linitish 1slands.
Widow (see Jus helicter, Seccessox, Mhariage). A widow's right to dower, ly the common law of England, extends to a life estate in one-third of the lands and tenements of which her husband died scised, and which any issue she may have had might by possilifily have inherited. The law of dower was cousiderably aiterel by a statute 3 and 4 Will. N. c. $10 \overline{3}$; and in cases where married parties are entitled to real property, their riglts are generally regulatell by contract. There are certain modes of conveying and devising property so as to prevent dower arising, and a widow's right to dower is also generally prevented by giving her a jointure. A woman loses her dower ly a divoree, but not by judieial separation or other misconduct.
wieland, Curisfopi Mabiti, one of the greatust of German poets, was born, jth september 1733, at Oberkulzhein, near Liberach, his fither lecing pastor of that place and afterwards in Bilerach itself. The precucity of his powers early excited attertion, and when only 12 years of age, he had essayed his proctical tallent both in Latin zui in German verses. In 1750, W. weat to the nniversity: of Tübingen to study liaw, limt cecupied himself more with the classics, and with reecnt literature both native andl forcign. From Tubingen, he returnel to Biberach in $1 \overline{5}$. . At this tine, Klop. stock's example had an extraordinary intluence on him, so that he gave hinnself up to a mystical pricty, foreign to his nature, which lie gives ntterance to in the Empfindunyen des Christen (The Christian's Experiences). While in this moorl, an invitation from Lodmer lell him to give up the intention of graluating at (iöttingen, and go to Zuirich. The number aud nature of his productions at this time shew the effect which the example of Lodmer's desultory way of working was beginning to lave

WIELAN

upon him. He soon, however, returncd to the more congenial field of the literature and life of the Greeks. The lively interest which he took in Frederick the Great, prompted W. to work out the ideal of a hero in a great poem, for which purpose he fixed on Cyrus. The first five cantos appeared 1757 , and a new edition 1759 ; but the reception it met with was not very cordial, and consequently it remained unfinished. The beautiful episode from the Cyropaideia of Xenophon, Araspes und Panthea, appeared alont this time, and revealed W. as the poet of love. In 1760 , he received an appointment in his natire town in connection with the lawcourts. At this period, he engaged in the arduous task of translating Shakspeare (S vols., Zür. 17621766). However little W., whose mind had been formed after Greek, Foman, and French models, and who was constitutionally inclined to pleasant and easy trifling, was calculated to enter fully into the spirit of Shakspeare, he mevertheless was, for his time, tolerably successful, and opened up the path for his successors.
W. now spent much of his time at Warthausen, near Biberach, the estate of the Count von Stadion, an accomplished and highly intellectual man, but thoroughly a man of the world, and averse to all religious enthusiasm. From the tone of the society he met here, as well as by the course of his reading, W. became imbued with that modern French philosoplay which runs through the most of his later writings. In some of these, there is an ummistakable tendency to licentiousness, from which his personal life always remained free; in most of them, however, he has blended the Greek sensibility to outward impressions with the French love of pleasure into a peculiar graceful philosop, hy of life. The first production which bears the impress of this Freuch-Greek sensuousness, was the protical tale Nadine, which he himself calls a creation in Prior's manner. In 1766 and 1767, Agathon, a romance in 3 vols., made its appearance, which greatly contributed to establish W.'s fame. His views on the subject of love are most fully and worthily expounded in the didactic poem Musarion (176S), a work of singnlar grace and harmony of treatment, which he himself called a philosophy of the Graces. W. had, in the meanwhile (1-65), married a lady of Augsburg, and accepted a call to Erfurt (1769), as Professor of Philosophy in the university: He terminated what may be called the crotic period of his literary career with the Jerklagten Amor (The Impeachment of Love), wherein he, in a manner, vindicated the kind of poetry to whicl he had till then devoted himself.

A period of delightful leisure and undisturbed mork legan for W. When the widowed Duchess Anna Amalie invited him to Weimar (17%), as tutor to her two sons, with the status of Hofrath, and a salary of 1000 thalers, which was continued to himl after his duties as tutor ceased. W. was entirely in his own place in the society of the distinguisked mon (such as Musïus and You Einsiedel) already gathered round this court; and his genius began to soar more courageously. He wrote bis vandeville, Die Wahl des Hercules (The Chnice of Hercules), and the lyrical drama, Alces.e (1773), which were received with great approbation. Of greater importance for German literature was the publication of the German Mercury, a monthly periorlical, to which W., till towarls the close of Lis life, devoted himself with the greatest earnestness, and which he made the vehicle for disseminating his æsthetical views. On the whole, however, his criticism was neither genuine nor rery deep, and suffered from that conventional narrowness which was then dominant in France. 'His letters on his

Alceste in the Mercury (Sepitember $1 ; 73$) contain sufficient traccs of this tendency, at which Goethe and Herder were so much offended. The former wrote in relation to it the satire Götter, Helden, und Wieland (Gods, Heroes, and Wieland). W. answered the attack with pleasantry and with his characteristic good nature. Shortly afterwards, Gocthe himself joined the circle at Wcimar, the soul of which was the Duchess-mother, Anna Amalie. W.'s literary powers developed themselves here more and more; and for more than 20 years, almost nothing of any importance occurred, either in the political or literary world, in which he did not take a more or less active part. His literary productireness shewed itself chiefly in the Geschichte der Abderiten (History of the Ablerites, 1773), a charming work, depicting the follies of small communities, in which the muse of Wisulom is disguised under the garb of the Satyr. This was followed by a series of tales and stories, partly imitations of foreign origioals, and partly of his own invention. Oberon, a romantic heroic poem, the most perfect and enduring of his greater works, appeared 1780 (last ed. Leip. 1SJ3). It was followed by the translation of Horace (Letters, 17S2 ; Satires, 17S6) and of Lician (17 SS). W. pronounced the Epistles of Horace with the commentaries to be those of his works on which he put the greatest value. He has given us a complete sketch of his conception of the Greek world in the Aristippe (1800). A collected edition of W.'s works up to $1 S 02$, in 36 vols., with 6 supplementary vols. in large quarto, and large and small octaro (new edition with the poet's life, 5.3 vols., 1828 ; 36 vols., 1839), was got up by the bookseller Güschen in Leipzig. From the proceeds, W. was emabled to buy the estate of Osmannstadt, near Weimar. From 1798 to 1503 , he lived here in the circle of his numerons family (his wife, in the course of 20 years, had brought him 14 children), and devoted the greatest part of his time to literary labours, among which his Attic Museum (179G-1S04) and the Neue Attic Mruseum (1S05-1S09) were not the least. In these publications, he strove to make his countrymen familiar with Greek poetry, philosophy, and rhetoric. In 1803, he soll his estate, aud returned to Weimar, where he very soon became intimate with Schiller. Here he lised to sce the day of the battle of Jena, the death of the Duchess Amalie, and also of Herder and Schiller. The marks of honour which he received from Alexander and Tapoleon, and his admission to the French 'Institut,' helped to alleriate his many griefs, among which one of the greatest was the death of his wife, $\mathbf{1 8 0 1}$, with whom he had lived for so many years in great happiness. His own death took place 00 th Jannary 1813.
W. had neither the spirit of a reformer like Klopstock and Lessing, nor dial he attain the poetical greatncss of Goethe or Schiller; nevertheless, he dicl great service to German literature, which has not always been sufficiently recognised. He gave to German poetry, as it was rising into true national importance, the still wanting grace and harmony of expression and versification, in which respect Goethe learned much from him. The poetic handling of medieral chivalry was an entirely new creation of his, and thus the school of romantic poetry is indebted to him for its origin. Me also introluced poetical materials from England, France, Spain, and Italy, which were not withont influence. In all his aprropriations W. exercised that tine discernment which scizes upon what is universally human, so that he nowhere appears as a blind imitator. His criticism, too, with all its shallowness, contributed much to the diffusion of general culture.-Compare, besides Gruber's

WIELICZKA－W゙GAN．

Lionraphie $1 l^{*}$ ielamil＇s（ 4 vols，Leip． 1827 ；vols． 50 － $5: 3$ oi tlie II＇orks），IFieheme＇s ressfpuchlte Jiriefe （t vuls．，Ziir．1S15），A uswahl tenkweïrliger Drieje（＊ vols．，Vien，ISl5），aml Briaje an Sophie Laroche， Lum．15：（リ）．

WIELI＇RZKス，a small town of Austrian Galicia， 10 miles directly east－sunth－east of Cracow，amd the same by railway．It is remarkable for its salt－mines，in which the majority of jts juhabit－ ants（about 6 oov in number）are employed．The mines were diseovered in $1: 50$ ，and have been contimonsly worked since that time；thongh some assert that there is abmulant evidence to prove that they have been workes since the 9th contury：The town itself is entirely maderninacd by the excavations，which cxtencl upwards of y500 feet from east to west，3000 fect from north to solth，and are 1780 feet in depith．The mines extembl to four stories or＇fields，＂one helow the other．In the secoml story，the risitor is rowed across a salt lake，and when he has reached and is exploring the thid story，he is informed that the lake he littely erossed is now right above his head． ＇l＇le stories are simply large chambers exeavated in one enormous mass of rock－salt，of great purity，and arparently of inexhanstible cxtent．In one of the clambers，the miners have senoperl ont a Gothic clapel from the solisl salt－rock，and have carved， not withont skill，a number of statues and obelisks from the same material．The mines produce 55,1 ：l tons linglish per annum．

WHE＇SBADEN，a town of l＇ussia，formerly eapital of the independent cluclay of N゙assan，one of the oldest and most famons of the German watering－ places，drelightfully situated on the sonth slopes of Munat＇litunus， 26 miles west of Framkiurt，and 5 miles north－west of Mainz by railway．The town has been called＂a city of lodging－honses，＇and this may be understiond from the fiact，that during the ＇Season＇the number of the visitors is greater than that of the resident inhabitants．but though almost every honse is appropriatel to the reception or entertainment of grnests，the town is well amd regn－ larly built．The Kursal enmprises an extensive dining－hall，in which frequently 300 people sit down to dinner，amd which also serves as a ball－room， torgether with realing ancl gaming rooms．lit the large garlens behind the Kiursad，it is the lialnit of the risitors to sit in the evenings at their numerons small tables，reraling themselves with collee or ices－the men emoking，the women lint－ ting－and all either chatting or listeninis to the music played by a baud on such occasions． Other buildings are the Schlösschen（Little Palace）， containing a library of $60,(0) 0$ vols．，and a collection of antignities，in which are a number of curions Ioman besssi－selieri，statues，altars，\＆c．foum in the vicinity；the handsome l＇rotestant chureh，finished in IS6i（）the superl，（iruck chapel，built hy the Inke of Nassant as a mansuleum，in which repose the remains of his first wife．＇There are $1+\frac{1}{}$ hot eprings，all of a hicrli temperature，ansl numerous bathing－honses throughont the town；but the prin－ cipal is the Kochbreumes（Boiling－spring），the tem． peratire of which is 156° Fohar．The spring has all the aprearance of a boiling caldron，and so copi－ omsly does it pour forth its waters，that，thongh they are ised both for arinking and to suplly the prin－ cipal baths in the town，a rast quantity escapes， and runs away through gutters and drains，sending up clourls of vapour in its passage along the strects， and adiling to the warmth of the temperature of W．in summer．Next in leat and volume to the Fiochbrunnen is the spring that rises in the giarden of the Idler（Engle）ILotel，the temperature
of which is 13.5° Finhr．＇l he use of the W．Hot－ springs is consulered lighly cificacions in cases of gont，Theumatism，serofula，and ozleer skin diseases and nervous aflections，＇The waters of these sluings are saline，and contain silica and iron．＇The pro－ sperity of VI° ．is cntirely alne tu its springs；inml the beauty of its situation and envirummont，the agreeable walles and rides，the charmiug views of the vicinity，and the wever falling gaicty that pre－ vails during the season，render it one of the most popular of the spoas．＇Ilhe season lasts from June to September，and the ummber of visitors annmally

W．is very ancient ；its spriurs are the Fomess Mattiaci mentioneal by I＇liny．＇Tlse lionsans bunt a station lere，and erected a fort on a hill on the nortb－west side of the town，still linown as the Ioumerberg，and which was gitrisoned by the 2：d Foman legion．＇Ilse Matliaci，it subdivision of the German tribe eallex the Catti，allied themselves with the Romans；lut in the Bde．，the loarbarian Giemnars rose arsinst the Fiomans，and destroyerl their forts，incluling Wiesbalen．Urms，tiles，coins， \＆c．are found abumdantly whenever the foumation of a louse is ding：and that the liomans appreciated the vireses of the waters is proved by the remains of ancient haths that have bewn fomal，amd by the votive tablets recording the thanks of liomans who had been restored to healdi by the waters，still preserved in the museum．

Wrat（Lat．pilus，the hair ；pilare，to pluck off the hair；from which was formed piluccere，anl hence piluccu，i head of lanix ；this was transformed in Ital．into perruen，Frencla perruque，whence Eng． periuin，sloortened into u＊it）．The use of fillse haje for euncealing liakliness，or for the supposed wlom－ ment of the heml，njurears to le loner to all arges and conntries．Tbere is an Eaghtian wig in the Pritish Dlusenm，supposed to be about 4000 years old，and sonse of the south Sea islanders are saiel to be skil－ ful wig－makers．Nenonlon mentions that Δ styages wore an immense wirs Several of the lioman emperors wore wiers，and Lampridins relates that the wiof of the limperor Commodus was hirhly perfumud，amo sprinklesl with rold dust．After this，there are mo historical traces of the wig till abont the end of the lith c．，when wiot male their ${ }^{\text {a }}$ plenrance in lizance，aul hence spread gralually over uther Eurolean countrics．The fishion of wearing wigg set in strong in the reign of Jouns Klll．（16l（t－l 643 ），and for more than a century， no gentleman of fashion could appear without one． Nuch was the extravagance in thas article of dress． that as much as three gnimeas an ounco was pail in England for line qualaties of hair，and wigs were makle at a cost of ellso．It was only towards the end of the listla c ．that the munaturalness of this ornament alpears to have benn thourlit of，and it legan to lee superseded by the quene with Ilair－ powder（ $\mathrm{q} . \mathrm{v}^{2}$ ）．Execpt by judges and barristers， wigs are now used only in cases of halduess，and thes they are made in imitation of mature，which was lyy no means the ease with the wigs of old times．

Wl＇CAX，a posperous and important manuface turing town，and municipal and parliamentary borongh，in Lancashire，on the Dunglits， $15 \frac{1}{2}$ mile＇s south－sonth－east of l＇restron，and abont the samu： distance from liverpol on the sontly－west，and Manclester on the suntl－east．Irregnlarly built， and notwithstinding is number of inpurovements made within recent years，WT．is not of very pre－ possessing appearance，and contains few objects worthy of special mention．It stands in the milast of a cond－field；and canmel coal abounds in that

WIG．1ズーWIGHT．

vicinity．Cotton－spinning，and the mannfacture of calicoes and other cotton groods，checks，and home－ made linens，are extensively carried on．There are also brass and iron fommlries，factorics for elge－tools， and ather metallurgic works，chemical works， 1 nerer－ works，and corn－mills．The river Douglas，and the Leeds and Liverıol Cimal，attiord facilities for inland navigation；and connmmication with the chief towns of this and the neighbouring counties is maintained by railwilys．J＇ol＇，（1851）31，941； （1861）37，65S．（1571－39，160．）

WIGHT，IsLe of，an island in the Eaglish Chan－ nel，remarkable for the varicty and beanty of its scenery，and the mildness and salnhrity of its elimate，lies ahmost centrally，close off the southern coast of Englaud，in which it is partially embayed， and is divided from it by a chanmel varying from less than 1 mile to more thin 6 miles in breadth， known as the solent（q．v．），which spreads out to the east into the broal and safe anchorage of Spitheud （ $\mathrm{C} . v$ ．）and St IIelen＇s hoods．Its form is remarkably regular，its longer and shorter diameters 222 miles 5 furlongs，and $13 \frac{3}{1}$ miles in length respectively） rumning almost due east and west，and north and south．Its shape is rhomboidal，and has been com－ pared to a bird with expanded wiugs or to a turbot． It is 56 miles in eircuit，and embraces an area，in－ cluding its inlets，of 98,320 acres．Pop．（1861） 55,182 ． Neuport，which returus two members to parliament， the island retmung one，is the eapital；the other chief towns are Iiyde，Cowes，and I entnor（all described under their separate lieadings），of which the first and last have sprung up from small villages within the present century．I＇urmouth is a small decaved town near the western extremity of the island，for－ nerly returning two members，a mivilege once also possessed by $\vec{T}_{\text {ewow }}$ on the north－west coast， at once important town，now sumk to an insignib－ cant liamlet．On the south－east coast，the delight－ ful health－resorts of Sundoure and sthumblin are fast acquiriog the size amd importance of towns． Failway communication lias been opened between Hyde and Ventnor，and letween Cowes and New－ port．＇I＇luronghont the island there are good thongh generally nariow romls，for the most part pietu－ respue and bounded by licdgerows．The chief physi－ cal featmre of the island，to which it owes its shape and mucl of its beauty，is a long undulating range of chalk downs，extending，as a kind of backbone， from the Culwer Cliffs on the east，to the Jealles on the west，rising to its greatest elevation in Mottis－ ton 1）Wwn， 661 feet（Ashey 1）own is $4 \sim 4$ fect，and bembrilge Thown 355 fect）above the sea．The river Medina，rising near the suuthern extremity of the island，flows north through a gap in this range， expands into a tidal estuary below Newport，and Hows in to the sulentat Cowes，and divides the island inte the hundreds of the Liast and IV est Nedine． In addition to the central ridge，a second range of chalk downs of greater elevation－st Boniface Down， 783 feet，Dunuose（Shanklin Down）， 77 feet，St Catheriue＇s， 769 fect－rises at the southern point of the island，and expands into a broad pronontory， the sonth face of which forms the picturesque dis－ trict known as the Underclift，or＂Back of the Island，＇of which Tentuor is the capital．This dis－ trict owes its remarkable beaty to a series of land． slips on a gigantic scale，of pre－historic date，which have laid bare a long wall of rugged cliff，below which a succession of sinny terraces，due to the gradual subsidence of the strata，slope gently down to the sea．The whole of this prart of the island is completely sbeltered from the colder winds，and enjoys a well－merited reputation as a ressdence for invalids suffering from consumption or any disease of the respinatory organs．Its remarkable healthi－
ness is attested by the returns of the registrar－ general，which lrove that the deatla－rate of the dis． trict is ahsolutely the lowest in the kingdon；while the mildness of its climate is evidenced by the luxu－ riance of the myrtles，fuchsias，sweet－scenterl ver－ benas，and otherexoties，Whielinot only live throngh the winter without protection，but attain the size of large bushes．

In a geological point of riew，the Isle of W．is most interesting．The great variety of strata dis－ played within so small an area，umder circumstances so favourable for examination，renders it one of the best available localities for the young observer：＇lise north side of the island presents a suecessiun of ＇Tertiary or Locene strata，ineluding beds of fresh－ water limestone，which have been extensively worked for buildiag－stone for many centuries，aud based on beds of London and Ilastic Clay．In Alum Bay， at the west cxtremity of the island，the rapid succession of vertical layers of samel and clays of bright and varied hues，produces a singrular and beautiful effect．The central ridge or backboue consists of strata of chalk imbedding layers of tlints，aud the moderlying formations in an almost vertical position．Isolated masses of chalk that， in consequence of their superior laraluess，have survived the marine and atmospleric waste，forms the well－known －ecelles，at the west opening of the Solent，and the picturesque rocks of Freshwater Bay．The downs at the south oif the island belong to the same formation，but here the strata have been undisturbed，and are nearly horizontal．The clifis of the Undereliff are of the Upper Green－ sand，or Firestone，underlying the chalk．Helow this comes the Gault，or Blue Irarl．To the action of the land－spuings upon this unctuons formation， the land－slips to which the Back of the Island owes its beanty are due．The Lower Greensand succeeds the gault，occupying the greater part of the area between the north and south ehalk downs．This forms excellent corn－land，and presents a wall of cliff to the sea，diversified with many narrow picturesrite gorges，locally known as rhines，where a small rivulet has eaten away the friable strata． The chief of these are those of shanklin，Luc－ combe，Iblackgang，and Whale Chine．The fresh－ water Wealden formation is the lowest visible in the island，and is seen in the clifis of Brook to the west，and of liedeliff Bay to the east．Bones of the colossal ignanodon and other samrians are foumd in this formation．

The soil of the island is very varied，hotlo in uature and fertility．L＇hat of the northern lalf is，to a considurable extent，a cold，still elay，nome suited for the growth of wood，especially oak，than corn． Of late jears，however，mnch of the woodland has been cleared，aud judicions draning operations，in which the late Prince Consert lad the way on the royal domain of Usborne（near Last Cowes），have produced very beueficial results．Farming is still on the whole somewhat primitive；even on large farms the tlail may still be seen in use．The soil of the sonth half is chiefly a red loan，which is exceedingly productive，especially in crops of barley； and，in the inose rich and sheltered lands，of ritute wheat．Fird wheat is grown in abundance in other parts of the island；while the stither clays of the north grow capital crops of oats．The chillk dowas afford admirable pasturage for sheep，which are celebrated for the pureness of their wool，chiefly exported to Corkshire，and which furnish the Londun market with early lamb，as mauy as 4000 being ammally exported．But few oxen comparatively are fattened．The chief exports are wod，corn，flour， cement stones（septaria），and white glass－house sand．

The history of the lsle uf W．presents but com－ paratively few points of interest．It is supposed， with much probability，to have leen tho tim mart of the Greck traders mentioned under the name of Ictis by Diolorus Sienlus．The liomans knew it as Fecta or I＇ectis，which is merely the Latinised form of the native name．It was conquered for the Lomans by Vespasian in tho reign of Claudins （ 113 A．1\％）．Certic，the fommter of the lingtom of Wessex，touk the island 530 A．18，and hanled it over to his nephews，stuf and Wihtgar．In bibl A．d．， it was rednecal by Wulphere of Mercia，and given to Ethelwohl，king of Sussex，from whom it was wrested（6S6 A．D．）by Ceadwalla of Wessex，to whom，under the benign inflnence of Wilfrid，Areh－ hishop，of York，the islind owes the introluction of Christianity．During the three centuries precelin： the Norman Conquest，it was repeatedly devastated loy the Danish $l^{\text {nrates，who made it their strong－}}$ holl，to which they retired with their plunder． Willim the Conqueror gave it to his kinsman，Fitz－ Oshorne ；IIenry 1．transferred it to the family of De Redvers，in whose hamls it remained till the reign of Eilwarid l．，when it passed by sale to the crown．During the French wars of Elwand Ill． and his successors，the island was repeatedly insaded and pillaged by the l＇rench．At the close of the reign of Llenry Vill．，the armada despatched by Irameis I．，under the command of D＇Annelbault， made several landings on the coast，and inilicted some damage，lut were ultimately driven laack by the jerowess of the islanders．The most interesting event in the history of the island is the imprison－ ment of Charles I．in the eastle of Carislrooke， after his flight from Hampton Court，from Novenz－ ber 93,1647 to September $15,164 \mathrm{~s}$ ．Carishrooke was also the place of the imprisomment of his children， I＇rince Henry and the I＇rincess Elizabeth，the latter of whom died there，and was buried in Nowlort Churel，where a beantiful monument by baron Marochetti has heen erectel to her memory by Quceu Victoria．

Among the edebraten natives of the Isle of W．We maty notice Dr liobert Ifooke，the experimental ${ }_{1}$ hil－ nopopher，born at Freshwater，16：3ั）；and Dr＇Thomas Arnold of liughy，the regenerator of public－school edneation，born at Last Cowes， 1795.
The antiquities are not mmerons．Scpulchral barrows occur on the downs，and saxon hurial－ Haces lave been discovered in several localities． There are tho remains of a Roman villa，with a tesselated pavement，at Carisbrooke．The remains of Quarr Abbey，near liyde，are very seanty：Caris－ brooke Castle is a the ruin，oecurging a command－ ing position．The churches are juieturesque．hut not remarkable for beauty of arehitecture．There are but few mommental brasses or other sepulchral memorials of interest．（l＇op．1871－66，16 \％．）

WI＇GTON，a market and small manufacturing town of Cumberland，in the midst of a specially agricultural district， 11 miles by railway sonth－ west of Carlisle．It carries on mannfactures of giughams and checks．I＇op．（IS6i） 4011.

WIGTOWN，a county forming the sonth－west corner of Scotland，is hounded win the W．liy the lrish Clannel，N．by Ayrshire，E．Dy the Stewartry of kirkeudright and the Sulway Firth，and s． lyy the Irish sea．Its extent from cast to west is computed at from 32 to 34 miles，and from north to sonth 24 to $2 S$ miles．This cunty；which con－ stitutes West Galloway，was formel about the year 1341；aud is between $54^{\circ} 38^{\circ}-55^{\circ} \mathbf{4}^{\prime}$ ． lat．，and $4^{\prime} 10^{\circ}-5^{\circ} 6^{\prime} \mathrm{W}$ ．longitude．W．is some－ what irregular in form，being deeply intersected by two arms of the sea，one of which，Loch $1: 0$

Ryan，a lone narrow inlet，stretches southwarls from the north－west corner fur fully 9 miles into the county，while lace lay on the sonth makes a wide indentation 15 miles long with an average of 12 wide，the heads of the inlet and bay being only 6 miles apart．The western part of W．，known as the lihins of rialluray，thus forms a peninsula whose length（from north to sonth）is 28 miles，and hreadth $1!-6$ miles；its northem extremity is Corsewall Point，and its sonthern the Mull of Galloway，cach jromontory being provided with a light－louse．The south－eastern half of IV．is sepm－ rated from the Stewartry loy Wigtowal liay， 15 miles long and lif wide at its mouth，and between this latter and Lnee Bay，W．extends southwards in a hhnt triangular form，terminating in Burrow llead． Tho inhabitants of W ．wero uriginally of Celtic origin，and up to the midille of the 16 the c ，a Celtic lialect was universally spoken；and for a century afterwarels，it was in use in the remote districts．WV． is irregnlar in its sufface，lut its eminences aro inferior in leeight to those of any other county of Seotland－none of them exceerling 500 fect．The soil is varied，and－with the execpition of a portion lying along the sua－shore，especially in the sontly－ east，whicla consists of a rich lomm－the quality is mostly inferior．There is a large extent of moss and moor，mostly of a very poor and umproductive nature，julging from the alpearance and produce of much of what has been reelamed．There has，how－ ever，been is considerable improvement maic of lato years in farm－buidings．The climate is rather will，but moist，the rainfall being comparatively great．There are many dairy establishments iu this county，aluost exclusively for making checse similar to the Somersetshire cheddar．The cows are frequently let for hire at from ± 0 to $£ 1 \approx$ por cow， the farmer supplying all food，and the dairyman the labour．Alost of the cows are of the Ayrshire lreed；it is dillicult to obtain the pure mative lneca of eattle；and the Galloway pony，formerly in such vonue，is now hardly to le met with．The area of W．is over 512 sy ． m ．，or $3: 7,906$ acres，of whiels about threc－lifths are either uncultivated or would le unprofitable to reclaim．The govermment retmos for 1866 give 37,242 acres maler com crops， $18,59 \bar{u}$ under green erops，$: 8,941$ under clover and sown grasses，and ou，StI pasture．The mumber of eattle in the same year was $35,70: \%$ ，of which 11,980 are cows；there are 118,660 sleepp and 10,278 piss．

Tesides numerons small streams，W．contaius three rivers of cousiderable size，the Cree，which forms the eastern bounlary；and the IBladenoch－ both of which fall into Wigtown Bay－and the Lace， which empties itself into Luce Bay；the former two are navigable for a lew miles，and yield salmon and tront．The county also josscsses several small fresh－water lochs．In the I＇hins of Galloway，on the sonth－west，is situated the parish of inim－ maden，the most sontherly point in Scotland－ henec＇from Maidenkirk to Jolin o＇Groat＇s．＇＇There were at an early period a cousiderable number of religions houses in the county；and the ehurels， believed to be the oldest in Scotland，fommed ly st Niuian，was built near the site of what is now the villago of Whithorn．At the lieforma－ tion there were 21 parishes；the number has simee been reduced to 17．The principal towns aro Wigtown，Newton－Stewart，Stranraer，and Whithorn． There is no miueral wealth，ame little trade or manu－ facture carrical on in W．There is a distillery at BIadenoeh，a woollen mannfactory at Kirkcowan， and some saw－mills and stareh－mills at Stranraer and elsewherc．The mail－coach was first rua through W．in 1804，and was only superseded a few years
ago by the railway between Dumfries and Portpatrick, from which latter the shortest sea-passage to Ireland is obtained. The old valued rent was £5634; the new valuation in 1866-IS67 was £183,96.. The pop., in 1861, was 42,095 ; constituency, returning one M.P., in 1S66, I1S3. (Pop. 1871-38,795.)

WIGTOWN, a royal, municipal, and parliamentary burgh, market-town, and scaport in the southwest of Scotland, capital of the county of Wigtown or West Gallonay, is situated on Wigtomu Bay, near the mouth of the Bladenoch Water. It is 40 miles west-sonth-west of Dunfries, and nearly 150 miles distant by railway from Edinburgh. The parish churel was erected in 185?. It is of Gothic architecture, and monch superior to the ordinary run of conntry chmeches. In the churchyard there are three tombstones in memory of martyrs who suffered in the time of Episcopal persecution. Two of them are old. On the summit of the Windyhill, the highest ground in the neighbourhood of the town, an obelisk of freestone was placed a few years ago, in memory of those same martyrs-two of whom, women, are said to have been drowned here. The authenticity of this event, thongl lately questioned by some, is doubted by very few in the locality where it is said to have happened. A large and very handsome building, which is used as a town-hall and court-house, was crected in 1863. Pop. (1861) $\because 101$. There is no particular trade carried on in the town. At Bladenoch Bridge, however, which is held to be part of the burgh, although nearly three-fourths of a mile distant to the south, there is a distillery of considerable extent; also an iron foundry and a coach-lonilding establishment. W. unites with Whithorn, Stranraer, and New Galloway in electing a member to the House of Commons. The registered tonnage of the port in 1866 was 3097 . (Pop. 1871-1859.)

WIRANA, the Jracaka des Indes of the French, a dictetic preparation of eacao much used in France for invalids. It consists of ronsted cacao nibs aad sugar, in the proportion of three parts of the latter to one of the former, well mixed together, and flavonred with cimamon, vanilla, ambergris, and musk.

WIlmerForce, Williav, was born at Mull, on 2tth Angust 1759. His father was a wealthy merchant, descended from an old family, proprictors of Wilberfoss, in the East Riding of York. W., at the are of 9 , on his father's death, was sent to school at Wimbledon, where, under the care of a pions aunt, he ran the risk of becoming a Methodist. But his mother did not approve of a serious cdueation, and removed him to a Yorkshire sehool, where the religious impressions he had received were soon dissipated by a life of gaiety. His constitution was delicate, but he was quick and spirited, and fond of society, in which his lively couversation and musieal talent made him a great favouritc. While at school, he addressed a letter to a York paper 'in condemvation of the odious traffic in human flesh,' a snbject he seems never afterwards to have lost sight of. At 17, he entered St John's College, Cambridge, and in due time be passed his examinations with credit. He came, on attaining his majority, iuto possession of a large fortune, and determined to enter parliament. In 1780, he was returned for Hull. He had known Mr Pitt when at Cambridge, and in London they became inseparable friends. W., in parlianent, however, remained independent of party. The elevation of Mr Pitt to the premiership gave him an opportumity of taking office, but he deelined to do so. IIe rendered, however, efficient service to his friend. In March 1784, on the eve of a dissolution, le spoke at a county meeting in York, called to vote an address against the Coalition Ministry ; and such
was the effect of his eloquence, that when he had coneluded, a resolution had been come to by the freeholders that he should be asked to stand for the county. He did so ; and in spite of opposi tion from the great Whig families, he was returned without a contest. W.'s success in the leading connty, set an example to other constituencies, which was of very great advantage to the Pitt ministry: In the same year, W. made a tour on the continent with some ladies of his family and Isaae Milner, the Dean of Carlisle, during which the serions impressions of his youth seem to have been revived. In 1787, he in a great measure eschewed gaicty, and founded an association for the discouragement of vice; and in the following year, while in very bad health, he entered on his great struggle for the abolition of the slave-trade, to which he thenceforward dedicated his whole time. He was powerfully supported by the Quakers, and by Mr Thomas Clarkson, who kept alive interest in the subject beyond the walls of the House of Commons. In 1789 , he first proposed the abolition of the slave-trade in the House of Commons, and nret, as he expected, with powerful opposition. In 1804, his bill was first carried through the Conımons; it was thrown out in the Lords ; and in the following year it was again lost in the Commons. In 1806, howerer, a resolution was moved by Mr Fox, pledging the Commons to a total abolition of the slave-trade in the following session. It was adopited by the Lords. Just before the discussion began in January 1804, a work had been published by W. against the slave-trade, which had a marked influence on public opinion and the subsequent debates. The bill was passed by the Lords. In the Commons, it was carried by an enthusiastic majority. Sir Samuel Romilly, who supported the measure, compared the feelings of Napoleon, then at the height of his glory, with those of the English philanthropist, 'who would that day lay his head upon his pillow, and remember that the slave-trade was no more;' and the whole House burst into applause, and greeted W. with enthusiastic cheers. W. now songht to secure the abolition of the slave-trade abroad. He at the same time entered on an agitation for the total abolition of slavery itself. Declining health, however, compelled him in 1825 to retire from parliament, in which, since 1812, he had sat for the borough of Bramber, having at the latter date resigned the representation of Yorkshire. The movement against slavery was then intrusted to Sir T. Fowell Buxton. Three days before W',s death, news was brought him that the Abolition Bill had passed a second realing, and he thanked God he liad hived to see his countrymen spend 20 millions sterling in such a cause. Ife died 29th July 1833 , and was buried as a national benefactor in Westminster Abbey. In 1797, W. married tho daughter of Mr J. Spooner, the banker of Birmingham, by whom he had a large fanily. ITis third son, Samnel, is the present lishop of Oxford. W. is the author of a Practical ricw of Christianity, which, on its publication in 1797, met with great success. In six mouth it went through tive editions, and it has since been translated into most of the European languages.-See the Lije of Hrilberjorce, by his Sons.

WI'LDDAD, a small town of Wiartemberg, in the Black Forest, romantically situated in a ralley watered by the Enz, about 32 miles south-south-enst of Carlsruhe, 18 miles of which are by railway to Iforzheim, and the remaining 14 hy road, through a beautiful portion of the Black Forest. It is noted for its thermal springs and baths, the water of which ranges from 90° to $100^{\circ} \mathrm{F}$. in temperature. The baths consist of mumerons basins formed round the springs

W1LDBAD-W1LD-NOWT.

na they gnsh from the rocks, and floored with sand for the comfort of the lathers. From the circumstimee that these bathere aratural, or will, and mot artiticial, the town derises its name: The waters are nearly pure, the principal ingredient they contain being commons salt. They are peenliarly benefieinl for rhenmatism, gont, stifluess of limbs, paralysis, \&c., aml for some skin-alisenses. Jhe season lasts from May till septunber, and the mumber uf visiturs has steadily increased from 470 in $15 \% 0$ to 4.52 in $15(00$. 大o gambling is allowed. (roitre alommels here and in the neighbouriar close valleys of the lilack lorest. Pop. Du0s.

W゙H,D- FOW L , a popular term, synonymons witl H"ater-foul, and generally applieal to weh-fuoted birds, lut smmetimes employed also to include herons, plovers, anm other linels wheh frernent rivers, likes, and sen-shores. 'lhe dillirent kinds are noticed umber their proper heads. - HFild-joutin! is one of the most dillicult, and yet one of the most interesting pursuits of the liritish sportsman. loockfouliag (see loumang) is not included maler this term. Wild-fowling is prusecuted in a great variety of ways. The wilh-fowler sceks his game with a gun and dog, generally a retriever; or he uses a small lont, called a pint, admpted to the shallow waters in estuaries which wild-fowl frequent ; or he procecels a little further to sea, in a boat with sails; sometumes he employs a yacht, or he endenvours to

Fig. 1.—Stalking-horse.
(From Blaine's Lincyclourcdag of Kural Sports. By kind permission of the publishers, Slessrs Longman.)
approach his game on land by the aid of a stallinghurse; or he las recourse to decoys, and other contrivances, by whiel great numbers of widd-fowl are capturcal. It is clietly on the eastern and southeastern coasts of England that wild-fowl aboumd in Britain, and they are most abundant in severe winters, coming as migratory birds from the north ; but the draining of the fen-lands has greatly reduced their numbers. The ancient Greeks and liomans eaptured will-fowl by varions hinds of nets, one of which, called the argumentum, was not unlike the return of the tide.
andern alecoy-pipe, the hirls, howewer, being gemerally driven, and not enticel into it. The pranthore was a large purse or drar met, placed along the hanks of mers. 'The anciont wild-fowlers sometimes practiod a system of decoying, appare atly less perfect than the medern system, fut essentially of the same nature, enticine the birils to their suares hy movements iatended to excite their curiosity, and for this purpose the fowlers clothed themselves in feathered jerkins, and danced with leculiar motions and gestures. Nooses and hird-lime were also mneh cmployed in ancient times. The ligyptians made much use of the throw-stick, a missile similar to the boomerang of the Anstralians, and which was dexteronsly thrown so as to hit the neel of the hird. In more recent times, falconry was much practised for the capture of whld-fowl. '1"he grm, cleceys, aml flight-ponds are now chielly in use. Althengin many widd-fowl are killed witla the ondinary fowl-ing-piece, it is not thas that the ereatest numbers are oltained. Nuch larger guns are used in puats and yachts, by which many are killed at one shot. The stalking-horse is still useel in some parts of Enwland, in order to enable the widd-fowler, armed with an orlinary fowling-piece, to get within reach of the birds, whilst they are fecting on the lewel swanpy ground which they chietly frequent. A horse well trained for the purpose alvanees towards them, the fowler eoncealing limself on the sile of it furthest from them. An ox is sometimes trained for this use, and indeed the kind of animat with which the hirels are most familiar in the locality is most suitable. Artiticial stalking-horses are sometimes employed, made of canvas, and stutfed with straw, the head being dewn, as if grazing. This practice is common in some parts of l'rauce. The use of tho stalling-hurse is very anciont. Wild-fowl shouting is nut muattemed with danger. In the pursuit of wounted biris on the voze, the spartsman or fowler inust use sphichlers, thin berards about Is inches sfuare, attached to the fect, to prevent him from sinking; and if he fall, it is very diflienlt for him to regain his feet. He emnot raise himself by resting his hands on the muk, which only makes him sink ileeper and elecper, nor can he do it by getting upen his knees. The only methorl is to roll wer un the liack, drawing the arms out of the mul, and placing one foot with his splasher iimly on the ooze, tu press looth hands on the knee of the ley so raised, and give a vigorous spring. "'he pmanter is also in grent danger of losing himself in fogcy weather when pursuing wounded lirds, and being unable to get back to lis punt, when a fearful death awaits lim on the

The curly-eoated retriever is the best dog for the will-fowl shooter, but goorl training is necessary to fit the \log for his nse. 'Ilke punter ought not to earry a dog with him, becanse the cog, having uo opportmity of exercise after his return from the water, spon suffers from the cold of the winter weather in which the sport is pursued.

Sledging for wild-foul is practised ly professional widl-fowl shooters on souse parts of the Euglish

WTLD-FOWL

coast, particularly that of Hampshire. The sledger trarerses the oozes by means of a small light sledge called a launching-punt, with a gun in the fore-part. He pushes it abead, cramling on his knees, and often at full length on the mud, till he gets within range. His most severe work is on sands and dry ground.

The gunning-punt is a small generally flat-bottomed boat, about 1% feet in lengtb, with a gun placed in the front of it, generally carrying about half-a-pound of shot at a charge. The punt must be nicely trimmed, so that the gun is nearly on a level with the surface of the water; and the fowler, having approached the
birds where they are congregated, often kills great numbers by its discharge. The sport is pursued both by day and by night. The puat is generally constructed to carry only one person, and although be rows it in the ordinary manner till he discovers the birds, he is obliged then to he down in the punt, and force it forward by a pole or by the oars with no little exertion, till he gets within range. The danger is not incousiderable of his mistaking another punt in the darkness of night for an assemblage of wild-fowl, and firing at his fellow-sportsman. In a clear moonlight night he proceeds, if possible, against

Гis. 2-Gunningrpunt approaching Wilu-fowl.
(D) perairsion of Messrs Loņman.)
the light, so that he may see, and not be seen. By a successful shot, great numbers of water-fowl are often killed. The punt-gun is capable of being tipped, that is, elevated so as to shoot water-fowl on the wing; and the most successful shots are often made by waiting till they rise, and tipping the gun. The punter cannot expect to recover all his wounded birds, and there are men on some parts of the coast who make their living during winter mostly by seeking for them in the morning.-The sailing-punt is a mere modification of the ordinary gunning-runt ; the sail saving much hard work to the fowler, but its use is attended with greater danger, and it is utterly unsuitable for rough water. A shooting-boat is therefore sometimes used; but in it the gun cannot be fixed level with the surface of the water. as in the punt, and still more is this the case with the shootingyacht. The practice of the sportsman is therefore considerably different, and the best shots are generally made after the lirds are on the wing. The helmsman of the slootingryacht must be quick and skilful in luffing up, in such a manner as to cross the flight of the birds, that they may be well exposed to the gun, which is generally larger than the punt-gun. Great numbers of wild geese, swans, \&c., are often killed from the shooting.yacht. In approaching the birds, the greatest cantion is necessary, and the men in the yacht must be carefully concealed behind the bulwarks.
Dotwithstauding the draining of the fen-lands, many of the decuys of the eastern coast of England are still very raluable, and in some iastances, they afford a considerable part of the living of the parochial clergy. A good decoy-pond attached to a rectory adds not a little to its value. It is in severe winters that the decoy-pond is most productive. It must be in a secluded situation, and the proprietor

481
takes care to keep it as secluded as possible, per. mitting no use of the gun or rille in its neighbourhood. An extent of three or four acres is about the best for a decoy-pond. Very large ones are foned to be comparatively much less productive. The decoypond ought to be surrounded with trees and conse; reeds and selges being permitted to flourish near the water. Several pipes are led of from the pond.

Fig. 3.-Wild-duck or JIallard, Male and Female.
in different directions, ditches of six or eight inches in depth, of a curved form, and becoming narrower towards the extremity. It is in these pipes that the wild-fowl are caught, particularly mallards, teal, and widgeons, and often in very great numbers. The length of the pipe is generally from sixty to eighty yards, its breadth at the mouth from twenty

WILD.FOWI.

to thirty feet, diminishing to two feet at the extremity, where it terminates in a tumel-nct, geverally carried out on the dry land. The whele pipe is spaned with a light netting, spread upons semicircular lars of iron rod, in an arch of abent twelve feet alove the water at the entrance, but beemniag lower as the pipe leconaes more narrow. Jo attract wald-fuwl to the poal, and to induce them to enter the pine, decorotucks are liept, constant inhabitants of the pomel, and regularly fed. Will-fowl come more reulily t, the pond hecanse of their presence, and iollow them alsi, to the month oi the pipe, and into it, when they cunde at the well-hnown whistle of the decoy-man, to feet on the grain which he scateres for them on the wat-r. It is only thus that the deeoy-ducks are of use. They are not trained in any way; nor do they display any intelligence beyoml response to the whistle whels invates them to their fumb. Very differeat is the eave with the decnyers dog, the miper, sn called not from any vocil powers, but from his use in enticing birds into the pipe. The dors leest adaptel for this purpuse are of a peculiar breed, small, fox-like, and very lively and frolicsome. They are very earefully trained, and their peculiar qualities seem to be in some measure hereditary: On the ennvex sile of the corve of the pipe, for abont thinty or forty yarels, insteal of netting coming down to the cround, screens made of recels are placel of height sutileient to conceal the decoyer: but they are placed whiguely, with marrow ontlets luewoun them, throung which his dog may pas aud with laas in
decoyer depends very much on the state of the weather, and he muse cousider the direction of the wind in order to the choiee of the pine he is to use. Into such cletails, however, we eannot enter. It is in the daytime, and not by night, that wild-fowl are captured in the decoy. They generally leave the decoy-pond at night for aeighbouring feedinggroumls. The decoyer often linds it profitable not to attempt the eapturo of lirds when they lirst appear on the pond, lut to wait for a fow days, when they congregate in greater numbers.

Decoys are of so great value that many acts of parliament have been passul for their regulation and protection. A decoy which has been established for twenty years enjoys certain privileges scoured by law, particularly as to the equietude of its vicinity; which must not be disturbed by the diring of guns at wile-fowl apparently going to the ponel, even ly the propietors of laud over which they pass.

Flight-punds alone remain to be noticed. These are used chictly for the capture of poehards or dunbirls, which rery seldom enter the pines of the decoyer. The same prod is sometimes used both as a decoy-ponel amel it tlight-pond. The pochard, havines its legs placel far back, eamot rise from the water so sumlenly as the wild-duck or wielgeon, and skims the surface for many yards, proceeding lay a very gradual ascent. 'Iv eapture llights of pochards, nets are used, which are fixed to a cumbrous apparatus of poles at the side of the pond. The pond may be about seventy or eighty yards square. On an embankuent, about ten yards fom the water, strung posts are fixed, about twelve feet high, two together, and about fifty yards apart-the corners of the pond being generally ocenpied by trees. Further back, abont fifty fect, are slighter posts, about fifteen feet high. Other posts are required for the working of the net, the position and use of which we cannot explain ; but the purpose of the whole is that the net, which is of the form of a parallelogram, may be suddenly thrown up into the air. In order to this, it is attiehed to cross-bars, which work between the twin posts, and heavily-weighted boxes attacbed to two poles, aid in bringing it into an crect position when rerquirenl. The fowler's skill relates very much to the moncut of raising his net, which be cloes by elrawing a bult or trigger. The net onght to rise so as fully to confront the bivils as they issne from the pond. Pens are formed on the cmbankment in front of the net of reed-screens about thrce feet
the intervals ahout 15 inches high, for the dog to leap over. When the widd-fowl hawe lieen attracted to the month of the decoy, and the elocoyer, peeping through the screens, jerceives that they are in the proper situation, be sends out the < log, which makes eportive sambols in their sight, and they are attracted by the stranse ohject, as sheew are when a small hour plays ahout in the foll where they graze. They eriter the pife in pursuit, as if fur gratilication of their curiosity, aud the dog lears over the first leapincs-bar, and disappears behind the sercens, where his master immednitely rewarls him with a piece of eheese or other deheacy. When the wild-forl bave adranced a little furtber, the dog is sent ont again, repeats his gambols, leaps over the secoml leaping-bar, aud gets a seeond liece of cheese. The curiosity of tl: , hirds cuncerning the frolicsome little aminal se ms to incroise, and by and by they are completely in the net, when they burry un to lie inevitably eanght at the far cod. The dog is trained to liecpiperfeet silence. A single Lark would disperse the birds. The success of the 134
luinh, lyy two or thrce feet square, and the birds falling into them on being throw b back from the net, are caucglit, not being able to rise again. The mumber of pochards caught at once is sometimes very great. At Mersea and Goldhanger in Essex it has been necessary to employ a wagon and four horses to carry them away, and they have fallen in such heaps in the pens, that those below lave been stitted by those abuve.-For full particulars concerning Wild-fowling, the reader is referred to Colonel Hawker's well-known work on Shooting, and to The Hild-fowler by Folkard.

Folkard, in his cxeellent work upon Wild-fowling, r-marks that writers upon sporting literature geverally aphly correct terms to game and birds of the lam, while water-fowl are invariably classed by them as 'llocks.' "The modern terms, as applied to water-fowl, are, accureling to Folkard, as iollows: - A herd of swans. A gaggle of geese (when on the water). A skein of geese (when on wing). A paddling of ducks (when on the water). A team of wild-ducks (when flying in the air). A sord or
suit of mallards. A company of widgeon. A flight or rush of dnnbirds. A spring of teal. A dopping of sheldrakes. A covert of coots. A herd of curlews. A sedge of herons. A wing or congregation of plovers. A desert of lapwings. A walk of snipes. A fling of oxbirds. A hill of ruffs. A small number of wild-fowl, as ducks and reese (about thirty or forty). is termed a "trip." "The same of widgeon, dunbirds, or teal, is termed a "bunch;" and a smaller number (from ten to twenty) is called a "little knob." Of swans, it would be said, a "small herd;" and sometimes of geese, a " little garcgle," or a "small skein; " and so of ducks, a "short" or "long team.",

WILD HCNT (Ger. Wilde or Wiuthende Jagl; also Hildes or Wuthendes Heer, Wild or Maddening host; Nachifüger, Night Huntsman, \&c.), the nane given by the German people to a fancied noise sometimes heard in the air at night, as of a host of spirits mishing along over moods, fields, and sillages, accompaniel by the shouting of huntsmen and the b:ying of dogs. The stories of the Wild Huntsman are numerons and widespreacl: althond h varying in detail, they are uniform in the essential traits, and betray numerons counections with the myths of the ancient gods and beroes. The root of the whole notion is most easily discernible in the expression still used by the peasants of Lower Germany when they hear a howling in the air, 'Wocle hunts' (Hode jaget), that is, Wodan or Odin marches, as of old, at the head of his battle-maidens, the Walkyries, and of the heroes of Talhalla; perhaps, too, accompanied by his wolves, which, according to the myth, along with his ravens, followed him, taking delight in strife, and pouncing upon the bodies of the fallen. The heathen gods were not entirely dislodged from the imagination of the people by Christianity, but they were banislued from all friendly communication with men, and were degraded to ghosts and devils. Yet some of the divine features are still distinctly recosnisable. As the cclestial god Wodan, the lord of all atmospheric and weather 1 henomena, and consequently of storms, was conceired as mounted on lierseback, clad with a broad-rimmed hat shading the face, and a wide dark cloak; the Will Huntsman also appears on horseback, in hat and cloak, ancl is accompramied by a train of spirits, though of a different stamp-by the ghosts of drunkards, suicides, and other malefactors, who are often without heads: or otherwise shockingly mutilated. One constant trait of the stories shews how effectually the cluurch bad succeeded in giving a hellish character to this ghost of Wodan-when he comes to a cross road, he falls, and gets up on the other side. On very rave occasions, the Wild Huntsman shers kindness to the wandercr whom lie meets; but generally he brings hurt or destruction, especially to any one rash enough to address him, or join in the huntifg cry, which there are many narratives of persons in their cups haring done. THhoever remains standing in the middle of the highway, or steps aside into a tilled field, or throws himself in silence on the earth, escapes the danger. In many districts, heroes of the older or of the more modern legends take the place of Odin; thus, in Lusatia and Orlagan, Berndietrich, that is, Dietrich of Bern; in Lower Hesse, Charles the Great; in Encland, King Arthur; in Denmark, king Waldemar. The legend has also in recent times attached itself to indiridual sportsmen, who, as a punishment for their immoderate addiction to sport, or for the cruelty they were guilty of in pursuing it, or for hunting on Sunday, were believed to have been condemned henceforth to follow the chase by might. In Lower Germany, there are many such stories current of one Hakkelberend, whose tomb eren
is shern in several places. Still, the very name leads lack to the myth of Wodan, for Hakkellerend means literally the mantle-bearer from 0 . H. Ger. hakinul; O. Norse, hökull or hekla ; Ang.Sax. hacte, drapiery, mantle, armour; and bern, to bear). The alpearing of the Wild Hunter is not fixed to any particular season, but it occurs frequently and most regularly in the twelve days between Christmas and Epiphany.

Another version of the Wild Hunt is to be found in the legend prevalent in Thuringia and the district of Mansfeld. There the procession, formed partly of children who had died unbaptised, and headed by Frau Holle or Holla (see Berchta), passed yearly through the country on Holy Thursilay, and the assembled people waited its arriral, as if a mighty king were approaching. An old man, with white hair, the faithful Eckhart (sce Tavinfätser and Texcsperg), preceded the spirit-host, to warn the people out of the way, and even ordered some to go home, so that they might not come to hurt. This is the lenign goddess, the wife of Wodan, who, appearing under various names, travels abont through the country during the sacred time of the year. This host of Holda or Berchta also prefers the season abont Epiphany. In one furm or other, the legend of the Trild Hunt is spread over all German countries, and is found also in Frauce, and eren in Spain. In Lower Germany, it has been preserved in an older and purer form than in UIPler vermany. It has prohably some connection with Celtic mythology, but not apparently with the Sclavonic.-See Grimm, Deutsche Mythologie.

IVILFFID, SaINT, an Anglo-Saxon bishop, was born. of noble parents, in the kingdoni of Bernicia in 63t. He was remarkable when a boy for his good looks, graceful manners, and ability. He became at 14 the attendant on a Saxon nobleman, who had retired to spend the last years of his life in the monastery of Lindisfarne. There his attention was directed to the controversy as to the time of celelurating Easter ($\mathrm{q} \cdot \mathrm{v}$.) existing hetween the two sections into which the Anglo-Saxon Christians were diviled; the one adrocating the Roman practice, which was that of the continental churches generally, the other adbering to the scoto-British. II. resolved to risit Iiome to ascertain which was in the right, and thither he went at the age of 19 , with recommendations from the courts of Kent and Bernicia. He returned to England a warm partisan of the Roman party. From Alfrid, king of Jorthumbria, he receired a grant of land and a monastery at Ripon, aud there, in 661, he was ordained a priest. The synoll of Whithy, which met in $\dot{6}-4$ to discuss the disputed questions between the two parties in the church, was attended by the most distinguished members of both, and among others, by Colman, Bishop of Lindisfarne, and Tilfrid. We have a curions account of this confercace. The king presided, and seems at first to hare been puzzled 1, yr the arguments, but he noticed that Colman always referred to St Columba, W. to St Peter-and it struck him that the relatire power of these saints had a close connection with the points at issue. 'St I'eter,' said W., "is the rock on which the Lord founded his church, and to him he intrusted the keys of bearen.' 'Did St Colnmua not receive the same power?' asked the king. Colman coull not say he had. "Then you both admit that God has given the keys to 'tt Peter ?'. Both said they did. 'Mi.ll,' coutinued the king, 'if it is so, I shall not oppose him. Were I to clo otherwise, I might find nu one to open the gate when I came there; St Peter might turn his back on me. We must not offend him.' The council and andience were carried

WILIELMSHÖHE-WILKES.

away by this argument, and the ling decided in fovour of the Jomm party. W. wias afterwards mamed lishop of lork, bit he did not enter into possession of dis see mutil 669 . He then surroumded himself with great pomp, built churches, one of which, at llexhan, was satid to be the finest north of the Alps, and strove to oppose the ecclesiastical to the royal power. A quarrel followed with the new kint of Northumbria, named Egfrid, and W. was depused. Tle started on a journey to lame, to make a personal appeal to the pope; hut he was driven by a storn1 to the eoast of Friesland, the inhabitants of which were still pagan. There, however, he was hospitally receivel ty the ling. Yo his arrival, the people attributed an excellent fishing-senson and abundant harwest. Hc was asked to preach, and he did so in lis own Anglo-Saxon tongue, which was perfectly intelligible to the lirisians. Such was the effect, that he baptised many thousands of the peopte, and all the 1 rinces. The event is one of the most memorable in the history of Northern Germany and Scandiuavia, for witl) it began the conversiou of these comntries to Christianity by Anglo-Saxou missionarius, and the introduction into them of the arts and knowledge inherited from ancient civilisation (see Bosiface; Wunimbor). W. reached home, and the popedecided in bis favour; but on his return to England, the king gave no heed to the decree, and committed him to prison. Me escaped, however, to the Weald of Sussex, where he converted the jagan inlabitants. He was afterwards recalled to his see ; and a proposal was made to clevate him to the primaey, but he was still opposed, as the leader of the lioman party, and ultimately be was deposed, and exconnunnicated. He again went to lome, remained there sume years, returned to England in FoJ, and died at Unidle, in Northamptonshire, in F09.-There is a very interesting slietcl of the saint's life given in the 19 th chapter of Bele's L'cclesiastical ITistory, See also Lappenberg's Mistory of England under the Anglo-sucions.

W'Lhelaishone. Sce Casser.

WILKES, CHMaLEs, Anerican naval oflicer and explorer, was born in New York in 1sul, and eutered the nary as midshipman in 1516. served in the Mediterranean in 1819-1820, and in the Pacific in 1S21-1S23, where he was selected for a separate command. In 1526 he gained the rank of lientenant, and in 1530 was appointed to the Depout of Charts and Instruments at Washington, and was the first in the United States to set ul fixed astronomical instruments and make ohserva. tions. After being employed in surveying George's Bank, he was, in 1835 , aypointed to the command of an exploring expedition of five vessels and a storeship, in which he surveyed the samom group in the Pacific, discovered many islanls anif the antarctic continent, which he coasted throngla 70° of longitude, explored the Fecjee group, and returned in 1S42, when be was adranced to the grade of commander, and published a Narrative of the United States Exploring Expedition (j vols imp. Svo, Philadelphia, 15 (5). Of the 11 supplementary quarto volumes, he was the author of the one on Mcteorology; and in 15t9, of a volume on California and Oregon, entitled Western America. In $15 \mathrm{~J} \omega$, he pul)lished his Theory of the 11 inds. Having heen promoted to the rank of captain in 1555 , he, in 1561 , took command of the United States steamer San .Jacinto, and forcihly removed from the British mail-steamer, Trent, Messrs Mason and Slidell, commissioners of the Confelerate States to England and France, and conveyed them to Boston, receiving the thanks of Congress and the acclamations of the people; but
at the demand of the British government, his act was disapyroved, and the commissioners restored. In 1sti2. he was promoted to the rank of commodore, and to active service as aeting-rear-admiral; but at the elose of the war, placed upou the retired list of cotmmodores.
W1LKES. Jons, a celebrated pulhic elaracter, was born in Lomlou, October 17, 172\%. His father, a brewer or distiller at Clerkenwell, sent him when a lad to the university of Levden, where lee recerived an excellent education. On his return to Fughand in 17.19, he married a Niss Meal, an heiress, ten years lus senior. 1 lis good manners, learuing, ready wit, and open talle secured lima many friends, but extra. varance and dissipation soon involved him in difliculties. He and his wife separated, and in a lawsuit which followed, facts eane out most damaging to his ebaracter. He was nevertheless manued lligh Sheriff of luekinghamshire, and in 175% returned to parliament as memher for Aylesbury. In the lionse, he joined in the popular clanoour agaiust Lord Bute; and in June 176., foundel a paper entitled the Worth Briton, in which he denounced hinn with such vigour and suecess as to drive him from the ministry. IIe attacked with equal bitterness the next ministry, insinuating that although Mr Greville was nominally at the head of afliars, lord Bate still had the car of the king. In the 45th number of the North Lriton, he charged the king with laving uttered a falseliood from the throne, anll in consequence, his honse was entered, and his papers were seized. He was himself committed to the Tower, on a general warrant. But he was released by Chief-justice Pratt, on account of his privilege as a member of parlianont. His paper was hurned, by order of the llouse of Commons; Lut a riot ensued, shewing that public sympathy went with Wilkes. A prosecution was next instituted against the Under-secretary of State ly W. for the illegal seizure of his papers; and he obtained £1000 of damages-a declaration being at the same time made ly the Chief-gustice that scueral warrants are illegal. W. then went to France, on the plea of bad bealth, and was expelled from the 1 louse of Commons. In his absence, he was convicted of having printed privately an olscene poem, of which he was one of the authors. It was boped that eridence of lisis iumoral character would disgust the public with him. But the copy of the hook on which the prosecution had leen fonnded hal been obtained surreptitiously from a printer cmployed ; and this fact becoming known, the steps taken by the government, instead of injuring $W_{\text {., only }}$ added to the outery agninst ministers. On the formation of a new ministry under the Duke of Grafton, W. returned to England, and lecoming a caulidate for Middlesex. harangued great crowds in London. After his election, he was arrested, in consequence of his outlawry; and on the way to prison he was resened hy a mob. Пe, however, after it had dispersed, voluntarily gave himself up to justice. When parliament met, a crowd assembled to convoy him to the House of Commons. A riot took jhaee, anl the milhtary were ordered to fire on the mol) in St George's Fields. Many persons were womuled, and one was killect The coroner's jury who sat on the hody returned a verdict of murder against the magistrate who had given the order to fire; and he was tried for that crime, lyut acquitted. W. seenred a copy of a Ietter from Lorl Weymouth to the elamiman of the Lamheth Quarter Sessions, in which it was recommended that the military should be employed to suppress disturbances in London. It was published with a Ireface by W., in which be elarged the Sccretary' of State with' baving planned 'the massacre in St George's Fields.' The House declared

WILKIE-WILL

the preface to contain a seditions libel, and W. was again expelled. He was after this re-elected several times as member for Middlesex; but the elections Trere declared void. Colonel Luttrell, who vacated his seat and opposed him, obtained only 300 rotes; but he was declared to be duly elected, in defiance of a protest from the whole country. W., still in prison, was now recognised as the champion of public liberty, and became the most popular man in Encland. In 1769, he obtained a verdhet against Lord Halifax in the Court of Common Pleas, with $£ 4000$ damages. He was shortly after discharsel from prison on giving a bond for good behaviour during seven years. In 1774, he was chosen Lord Mayor of Loudon, and again returned for Middlesex, which he continued to represent for many years. In 1782 , the resolution by which he had been declared incapable of re-election was expunged from the minutes of the House of Commons, as suhrersive of constitutional rights. The other resolntions relating to IV. Were at the same time expunged. Two years later, he withdrew from the House of Commons. He died 27 th of December 1797

WILKIE, Sir David, a distingnished Scottish painter, was born in Fifeshire, at Cults, of which parish his father was minister, 18th November 1785. His boyish passion for art was too strong to be resisted by his father, who, with much relnctance, sent him, in $\mathbf{7} 99$, to study in the Academy at Edinburgh. Here he greatly distinguished himself; and returning home, in 180t, he painted his 'Pitlessie Fuir, a piece in which already his peculiar genius is pronounced, and which brought him the sum of $£ 2$. . The price seems paltry ; but for the work of an unknown country stripling in an original walk of art, it was perhaps to be considered handsome. Shortly after, W. proceeded to London, iutending to return to Scotland after a year or two of study; but the great success of his picture, "The Village Politicians,' determined him to settle in the metronolis. Not that, pecuniarily, he was very greatly benefited, $£ 30$ being all that the Earl of Manstield could with difficulty be got to pay for the picture, though aware that, on a point of honourable scruple, the artist bad refnsed repeated offers of $£ 100$; but the originality and humour of the work greatly captivated the prblic, and at once established the reputation of the painter, who had soon commissions in plenty, at greatly adranced prices. In 1809, his brethren of the Royal Academy ratified the farourable verdict of the public by electing hin an Associate; and two years afterwards, he was adranced to the rank of Academician. In 1814, in company with his friend Haydon, he visited Paris, and inspected with great delight the art-treasures at the Lourre. Though his father had died some years before, and his mother and sister were now living with him at Kensington, in 1517 he made a run into Scotland, and while the guest of Scott at Abbotsford, painted his well-known picture of the great poet and his family. During these years, W. had been engaged on the series of pictures on which mainly his fame rests : pictures familiar by engrar ing to every one (The 'Blind Fiddler,' 'Card Players,' 'Rent Day,' 'Jew's Harp,' 'Village Festival,' ' Blind Man's Buff,' 'Distraining for Rent,' "The Penny Wedding,' 'Reading of the Will,' \&c.), in which the homely humours of humble life are expressed by a rehicle appropriately simple, andthough scarce in the higher sease to be ealled colour-of charming purity and transparency: In this style. distinctively his orn, his genius is commonly held to have culminated in "The Chelsea Pensioners listening to the News of Waterloo,' which was painted during the jears $1820-1821$. This work was a commission from the Duke of

Wellington, who paid the artist 1200 guineas for it. Subsequently, he changed his style, sought to emulate the depth and richness of colouring of the old masters, and deserting the homely life, which he could treat so exquisitely, chose elerated, and even heroic subjects, to the leight of which he could never rightly raise himself. The Horid picture, painted in 1830, of 'George 1V. entering Holyrood,' which, though not without its fine points, can delight no one but a flunkey, gase the first hint of the change; and no doubt a tour orer nearly the whole continent, which he made for lis health, in 1824, everywhere, of course, intent unon the grand oll masterpieces, did something to stimulate the new and unwise ambition. By common consent, it has been adjudged unwise; and W. remains, and will remain, memorable, not for the quasi-high art of his later years, but for the simpler, truer, and, in every right sense, higher art of his earlier time. He nerer, however, ceased to be popular, and honours continued to be showered upon him. On the death of Sir Heury Raeburn, he succeeded him as Limner to His Majesty ; in 1830, he was made Painter in Ordinary to His Majesty, in room of Sir Thomas Lavrence deceased; and in 1836, the honour of knighthood was conferred upon him. W. bad never been robust, and his health now began to gire way seriously. In 1840, sceking to re-establish it, he once more left England; but he did not find what he sought. Having visited Syria, Palestine, and Egypt, he died on his royage home, off Gibraltar, and his body was committed to the deep.
As an illustrator of Scottish character and manners in the humbler levels of life, W., in his best pictures, may take rank with Burns in his poetry, and Sir Walter Scott in his novels. As a man, he was kindly, warm-hearted, and-though with some touch of the canny Scot in him-of essential generosity of disnosition.

WILL is, in English Lats, a writing by which a person entitled to property declares what is to be done with such property after his death. Though, by the Wills Act, 1 Yict. c. 26, a writiog is indispensable to a will, yet there is an exception in the case of soldiers or sailors who, from their occupation, and while in actual service, are allowed to make a verbal or nuncupative will ; and this exception only extends to their personal estate, for they must make a written will, like other persons, in order to deal with their real estate. An infant, or person undex 21 years of age, cannot, since 1838 , make a will. A married woman can only make a will if she las separate property, or her husband assents to her will, or she makes the will by virtue of some power of appointment vested in her. As a general rule, it is absolutely necessary that the party making a will should have a free and disposing mind at the time; and hence, if he or she is a lunatic, or druak, or acting under compulsion, fear, or undue influence, the will is invalid. There is nolimit as to the time preceding death when a will may be made: it is enough that the testator was at the time capable and sensible, though he died immediately after. A will must be executed in presence of two witnesses, who see the testator sign the will, or at least hear him acknowledge it. But there is no particular form of words in which a will must be made for the purpose of disposing either of realty or personalty. The will must be in writing, but it need not be in ink or written continuously. The testator may sign by his mark or hy an assumed name. Though a seal is not equivalent to signature, yet a person may have a stabip to sign papers with, and that will be sufficient for a will also. The testator need not sign the will if he authorise some one to do so for him in his

WILL.

presence. 'The sirwature must be at the foot or enul of the will ; but if it is placel so as to lead a court to the conclusion that it was intended to give effect to the will, that will be enough. Though the witnesser neel not know it is a will, they must be preseat towether when the testator signs it or acknow. ledges his signature. Tho witnesses must sign their names or make their marks. A legatee, or the wife or lushancl of a legatec, may be an attesting wituess, hat by being so, he or she will forfent any legacy left to him or her liy the will. But one may be an executor though he attests the will. A will is revoked by the marriage of the testator or testatrix. The mere fact of making a subsequent will does not of itself operate to revoke a prior will, unless there is some inconsistency in whole or in part; and, as a general rale, no will will be revoked by any prestmpition of an intention on the ground of an alteration in circumstances. The usual way of revoking a will is to burn, tear, or destroy it with the intention of revoking the same: or by executing another will which expressly revokes the prior will. When a testator tears or cuts away that portion of his will containing the signature and attestations, the presumption is that he intended to revole the whole. Lut merely cutting out a part of the will, or striking it through with a pen, does not amount to a revocation. It is to le burne in mind that, in order to revoke by tearing, \&c., there must be an inteution to revoke, so that a mere accidental tearing will prevent the act from having the foree of revocation. When there are interlineations or alterations in a will, it is presumel these are made after signature, unless there is evidence to prove the contrary: A will which is in any manner revoked ean only be tevived by re-execution, or by a codicil shewing an intention to revive it; but many nice questions have arisen as to what eanses a will to revive.-In Seotland, a will is used only to denote a testament affecting personal or movable property; while a will affecting real or heritalle property can only be made by way of a deed having a present operation. A will or testament may be written in the handwriting of the testator, and if signed lyy him, will not require witnesses, being then called a holograph will. In other respects, wills are subject to nearly the same rules which prevail in England with respect to revocation, \&c. Wills of real property are called Dispositions or Deals, and hare a present operation, and the mode in which they are drawn up is that of conveying the property to the disponee, but reserving the testator's liferent. The effect of this is that the testator retains the property in his own hands while he lives; but the moment he dies, the disposition mortis crusa comes into play, and the disponee then takes the property, subject to the deed. Sec Dern.

WILL. The Nind is divided into three distinct functions-Feehing (see Liotion), Intellect or Thought (see Lntellect), and will or Tolition. Under Will, is included the putting forth of active encrey to move our own organs, or change something about us; but all energy is not voluntary energy. The peculiarity of action from Will, in contrast to wher activities, as the powers of nature-wind, gravity, \&c., is its being jreceled or inspired ly feelings, or hy the pleasures and pains of an molividual minul. Hence, Will is definen, action prompted by feeling. The feelines that prompt the will, called motives, are our pleasures and our pains; pleasure felt or imagined moves us to continue and increase the pleasurable state; pain urges us to work for the abatument of the prained condition.

In the maturity of the powers, a luman being, or animal, can perform a great variety of specilie actions the the bidding of the various wants or desires. 193

The sensation of thirst induces at once a series of complicated movements, curling in the relief of the paintul feeling. Put no man or animal is born with the ability to make a juumey to a well, whenever thirst is felt ; the human infant cannot even perform the voluntary act of lifting anything to its mouth. Our most ordinary voluntary movements are the result of an elueation; and the explanation of the rolitional energies consists in aseertaining what are their beginnings or germs in the mental constitution, and low they are brought to the finished state.

Tharee different facts of our nature appear to concur in formin! the collective aptitules of the Will.

1. The fact termed Spontaneous Activity, or the self-acting energy of the system, wherehy movements arise withont waiting the stimulus of tho senses. Any actively disposed animal, after rest and nourishment, legins to move merely through a surphus of nervous power, and not because it is walkened out of dormancy by the solicitations of sensible objects. Without this teadency to commence movements in the tirst iustance, there would be no apparent basis for the voluntary acquirements. See Srostaseity. In imitation with the voice, for example, we must begin by uttering sounds, and then discover by the ear their agreement or disagreement with the sounds heard.
II. 'l'he second fact is the tendency to abide by a movement giving pleasure, and to relax a movement coincident with jain. From the tirst momeuts of sentient life, every animal appears to possess this property: If a movement happens to coincide with an access of pleasurable warmth, the animal main. tains, and possibly increases, the movement: if the warmth passes into pain, the movement ceases. The infant sucks so long as the fecling is pleasurable, and ceases when saticty comes on. This power may be an offshoot of the general law connecting pleasure with an incrcase, and pain with a diminution of vital enerys. See Lmotion. However arising, the fact is uaquestionable, and is excmplified all through life. Without our going through any process of deliberation or resolntion, we sustam an activity that brings us agreeable sensation, and remit an activity ending in pain. We keep our eyes fixed on a cheeriul tlame, and withdraw thom when the glare is overpowering: the process is self-acting and intuitive.
III. The third fact is the operation of the Retentive power of the mind, in joining together, by a permanent association, movements and feclings that have existed together for some time. This is a branch of the great law of Coutimous Association. See Associatios of Ideas. The Will is an educated fnuction, and education supposes the plastic or fixing operation expressed by the above-named law.

But the chief nicety in explaining the growth of the Will consists in shewing how the proper movements and feelings originally came together. This is the problem of the Development of Voluntary lower, which wordd demanl an extended illustration. A brief indication of the process must suffice.
Uue of the easiest examples is the moving of the head to follow a light or other object pleasing to the gaze. This power is not possessel at the commencement of life, and the process of arriving at it is supprosed to be as follows. The child has its eyes fixed on the light, and enjoys the haminons excitement. The light is moved to one side, and is therefore lost to the direct gaze, and there is no power to recover it. An accidental movement of the head, occurring by mere spontaueity, carries the ejes round to encounter the light again, or to follow it as it moves; the consequence is, that the recovered

WILL-WILLEMS.

pleasure of the spectacle sustains the morement that brings it. Now, every such coincidence tends to become fixed, by the law of plastie association; and after a few repetitions of the accidental concurrence, there is a connection formed between the optical impression and the morement that is found to go along with and sustain it. Thus it is, that a movement of the object to the right hand, which leaves a characteristic trace on the ristal organ, becomes associated with a movement of the eyes and the head to the right band; and whenerer the optical fact arises, the movement is apt to follor. This makes one distinct item in our volitional acquisitions; one instance of the poter of definitely acting to a definite feeling.

Another example might be taken from the feelings of warmoth and chillness-both very powerful sensations in all animals. One of the most obrions means of attaining comfortable warmth is to crouch and bring all the limbs close to the body. A very early experience would connect this posture, accidentally hit unon, with the comfortable seusation; and, by virtue of the primary law of the mind. connecting pleasure with exalted energy, the movement, onee coinciding with the pleasure, would be sustained and adhered to, so long as it brought the pleasure; and in course of a few repetitions, a detinite association would be formed between the state of chilness and this mode of relieving it. By a. more lengthened and round-about process, more complicated associations would be formed, suchi as coming close to the warm body of a companion, running into shelter, aproaching a fire, going into the sunshine, \&c.; but, in all cases, the only mode of attainment that can lee pointed out, is (i) the concurrence of spontaneous morements with feelings of pleasure, or relief from pain ; (2) the maintenance of those morements by the first law of self-conservation; and (3) the forming of a link between the two l,y the force of plastic association.

The illustration may be varied by riewing the case from the side of pain. The immediate and direct result of pain, from the dawn of sentient life, is to lower active energy for the time, and therefore to arrest whatever movements are in progress: this is the general mule, althongh there is an important exception in the case of acute or pungent pains, which, in the first stage, stimulate and excite the active members. Hence, when a movement happens to coincide with a pain, it is liable to be arrested; a. bitter morsel in the mouth makes one cease chewing, by reducing the active power for the moment. The primitive endowment of the system would lead to nothing further, until some chance movemeut of the mouth tended to get rid of it, which morement would be promoted and sustained by the pleasurable feeling of relief, which is the operation of the principle from the other side.

The growth of the Will is conspicuonsly shewn in Imitation, which is an acquired aptitude, and a rlepartanent of our roluntary power. In imitation, there must-be (1) a spontaneous tendency to more the active organs concerned-the voice, the month, the hands, \&e.; (2) a sense of the effect, with a certain pleasure in attaining it ; and (3) a cementing process, as already described. In learning to speak, the infant must first articulate something of its own accord; the resulting sound affects its own ear, and is discovered to coincide with a sound heard from others. The frequent repetition of the articulate effort leads to its being coupled is the mind with the sound that it gives; and when this association is mature, the sound heard will induce the articulating movement; and this is the power of imitation. But prerious to the opportunity of associating the excrtion of the mouth, throat, and lungs
with the sound emitted, there does not appear to be any capability to imitate articulate sounds. The same would apply to imitation by the hands.

The Will in its full development includes not merely a series of associations of movements with the ordinary pleasures and pains, but also the power of performing actions to the word of Command, the Imitative faculty just discussed, and the power of acting from a mere Wish to perform a certain action, or to produce a certain effeet upon things about us -as to ojen a window or stir the fire. It might be shemn that all these various aptitudes grom, by successive stages, out of the three fundamental facts above described. The process involves many struggles and failures, from there being so mueh in it dejending on accidental commencements; hence one reason of the slomness of the early education of human beings.- See Bain on The Emotions and the Hill. See also Free-will.

WILLEMS, Jay Fraizz, a distinguished Flemish philologist and mriter, and noted as one of the originators of the great Flemish national mosement. was born, in 1793 , at the little rillage of Bouchout, near Antwern. W., at the age of twelve, was sent to the tornn of Lierre, to learn singing and musie, for which he had early evinced considerable aptitude. At Lierre, which continued to be the seat of some of those ancient Belgian literary associations known as 'Rêderyk-Kamers,' or Chambers of Rhetoric, mysteries and other scemic representations were given from time to time in connection with these institutions; and during W.'s residence in the town he was frequently called upon to take part in these singular entertainments, a circumstance to which he ascribed his first impulse towards the study and cultivation of the old Flemish language and literature. The talents which he exhibited in his acting, and in the composition of satirical rerses, attracted the notice of several influential persons at Lierre, through whose agency he was sent to Antwerp, to study in the office of a notary; and in 1S11, be contended successfully for the prize awarded for the best poem on the battle of Friedland and the peace of Tilsit. From this period, his poetical and dramatic compositions follorred each other in rapid succession. His ode Aen de Belgen (To the Belgians), which appeared in 1818, in which he exhorted his countrymen to resume the use of their native Flemish, and his elerer treatise on De Nederduytsche Tael en Letterkunde (1819-1824), in which he traced the history of the Flemish and Dutch tongues from their common origin to their gradual but slight divergencies, marks an epoch in the literary history of Belgium. The Dutch government shewed their sense of his anti-French tendencies by giving him the post of Keeper of the Archives at Antwerp, while the Royal Institute at Amsterdam elected him a member of its learned corporation; but the Catholic larty in Belgium resenting the attempt made ly W. to refer the decline of Belgian national renown to the abandoument of the Flemish rernacular, looked upon his writings with mistrust; and in 1830, when Belgium was definitely separated from Holland, the dominant Belgian party deprivel W. of his office, and left him for a time in obscurity and neglect. In 1835, chiefly through the influence of his old opponent, S. Van de Weyer, he was, however, promoted to the place of Keeper of the Archires at lihent, where he continued to reside in the enjoyment of numerous literary successes and national honours. till the period of his death, which took place in 1846. W. had the satisfaction, during the latter years of his life, of seeing the gradual growth of the Flemish movement, which, since his death, has continued to advance with steady progress,
and has resulted in the formation of many literary socicties, the publication of numerous literary and historical remains of the ohd limmish, and a more general cultivation of the vermaeular. Among the muncrous lemish works published by W., slecial notice is due to his version of the medieval poem of hisinelie Ios, or licymurd the Fox, for which he clams a Flenish origin; while, among tho more important of his strictly national works, we may instance his calitions of the rhymed chronicles of Jan de Klerk and Jan van Meelu, and his Jengelingen zan V"aderlandschen Inkond.

WYLLEMSTAD, a fortified town in North lirabant, on the Holhandsdiep, 16 miles north-west of Breda, cructed by William I., Prince of Orauge, to protect the traffic between Holland and Zeeland. There are 7 bastions, 2 forts, 2 inumdation sluices, and a good haven. 'op. 1860 . In 1793, Baron van Boctzelaar suceessfully defended W. against the French, under Dumouriez, who, after a heavy hombardment, were obliged to break up the siege. It was the birthplaee of the naval hero, Callenberg, who, when lle luyter fell in aetion with the French, suceeeded to the command.

WI'LLEMSTADT, chief town of the island of Curaça (q. v.).

WI'LLET (Symphemia semipalmata), a bird of the family Scolopacide, a native loth of Nortle and Sonth America. It is about lifteen inches lone; dark ash-colour above ; the rump, upper tail coverts, and noder parts white, the tail grayish, the tailfeathers, all except the two middle feathers, slotted with dark-grayish brown; the secondaries of the wings white, with dark-brown spots. The hill is two inches and a half in length, very thick, compressed; the wings long; the legs long and strong, the tail short and nearly square; the toes partially webbed. This lird is found in summer as far north as the coasts of New England: in winter, it retreats to the Gulf States. The flesh is highly esteemed, and the eggs are reckoned a delicacy. Willets are usually seen in llocks, and generally near the sea. The name is derived from the note.

WILLLAM I., king of Lugland, commonly ealled William the Conqueror, was the illegitimate son of Robert, surnamed Lee Diable, Duke of Normandy: Ife was horn in 1027 , and succeeded to the lukedom on the death of his father, in $1035 .{ }^{\text {. Prions }}$ to his father's death, he had heen intrusted to the eare of Henry I. of France; but it was owing rather to the quarrels and jealousies of his own subjects than to the protection of Henry, that he was able to preserve his domimion intact until his arrival at manhood. In 1017, he gained a vietory at Val de Dunes over a powerful competitor, Guido of Macon ; and in 1054, he defeated another rival, Guillaume, Count of Arques, being aided in both contests by the lirench. His ambition now began to extend to England, where Edward the Confessor reigned at this time. On visiting England, W. found his hopes of succeeding Elward unch strengthened by the dominance of Norman influence in the councils of that monarch. On Edward's death, however, the Witenagemête ($q . v_{0}$) chose Harold ($\mathrm{q} . v_{0}$) to fill the English throne; ignoring, aceording to the monkish chronielers of Norman bias, in so doing, an alleged bequest of Edward in favour of William. The Norman asserted his pretended rights by a powerful invasion, and the result was his acquisition of the crown by the famons hattle of Hastings, October 14, 1066. Harold having heen killed in the fight, the Saxens chose Edgar Atheling as his successor. Edgar was, however, soon olliged to yield, and W. was crowned king of England,
 dated. Eigar remained for some time at his court, and his treatment of the conquered people was at first mild and conciliatory; lut his savage sulppression of a rebellion, which hroke out in tho north in 1070, laid the foundation of an irreconcilable antipathy between Saxon and Jorman, which rendered a continuance of this policy improssible. lBefore long, W . began to rule like a true conqueror. Everywhere, the Faxons were reduced ahost to a state of slavery. The higher classes were deprived of every office of church and state, while the poolde were ground down by new and oppressive taxes. Fortresses were erecteil over the country, and garrisoned, to overawe the Saxou inlabitants. $\ln 1072$, the Saxons were so far reduced to submission, that W. found time to lead an army across the border into Scotland, in order to punish the king of that country, Malcolm Cammore, for having received aud pretected Edgar Atheling. The Conqueror marched as far north as the Tay, and received a nominal submission from Nalcolm. In 1085 , au attempt was made to overturn the powe of the Fnglish ling by Caute, king of Denmark. A great naval armament was got together for the purpose of invasion, but the enterprise was abandoned, its abaudomment being caused partly by had luck, and partly, it is supposed, 1 y a skifful application of II.'s treasure. The tax called the Danequit (q.v.) was re-imposed to meet the expense cansed by the threatened war. Disputes laving arisen between W. and his son Robert respecting the duchy of Maine, which had come to W. through his marrinue, November 2, 1053, with Matilda, diunghter of Baldwin, 5th Farl of Flauders, father and son took up arms against one another. The dispute was ultimately adjusted, through the intercession of yueen Mittildi. Must of the latter part of W.'s lifo was spent in Normandy, tho goverument of Ingland being entrusted mainly to his half-brother, Odo, lishop of Bayeux. W. was of a corpulent habit of body, at which fact it seems that his brother-monareh, Milip I. of France, hal pointed sone sareasm. W., in a fit of wrath, raised an army, and iuvaded France. Me took the eity of Mantes, and set it on fire ; but while in full enjoy. ment of the blaze, his liorse, stumbling on some hot embers, threw him, and the injury he receivel proved fatal. IIe dicd Scptember 9, 10S7. Stern and ruthtess as W. undoubtedly was, he yet knew how to govern a mation and protect it from foreign aggressions. For more than wo centuries England had been harassed by the frequent descents of piratieal hordes. IIe put an end to these. Never after W.'s time did a Norse rover venture to shew face on the Eaglish coast. In the common administration of justice, he was royally impartial; many of his severities are eren referrible in part to his thorough hatred of anarchy, while his attitude towards the chureh is adminable. He clearly defined the limits of ecelesiastical judienture, and when the furmidable Hildebraud desired that the conqueror should do honage to him for the kingdom of England, the latter boldly refused.

WILLIAM II., king of Fngland, suruamed Rufus, sceond son of William the Conqucror, was born in Normandy in 1056. He was edueated by the celebrated Lanfranc, Archbishop of Canterbury. Ile was the favomrite sen of his father, who, on his deathbed, recommended him to the barons and prelates as his successor to the crown of England. W. was, at the time of his father's death, along with him in Normandy. But no sooner had the event taken place than he set out for England. Landing at Dover, he obtained possession of its eastle and of several other fortresses. He then presented

WILLIAM II.-WILLIAM III.

himself to Lanfrane, who proposed him to the nobles and prelates as their king. No opposition was offered, and W. was crowned un September 26 1087. Neanwhile, his elder brother, Hobert, had entered upon possession of the duchy of Normandy: The relative position of the brothers was such as, in these times, was sure to lead to war between them. Pobert, at the instigation of Odo, Bishop of Layeux, endearoured to excite an insurrection in England. This attempt having failed, W., in revenge, invaded Normandy in January 1091. An arrangement having been ultimatcly come to through the mediation of Philip I. of France, Robert and W. then turned their nnited arms against their third brother, Henry, who had purchased from Robert the district of Cotentin, comprising ncarly one-third of Normandy. The fortune of war went against Henry, who was driven into exile. lieturning to England, W.'s next enterprise was an invasion of Scotland. The life of W. seems to have been a continual scene of strife. Returning from Scotland, he felt himself callerd upon to renew the contest with his brother, who had, meanwhile, strengthened himself by an alliance with Philip of France. A pecnniary payment, however, lyy W. to Philip soon dissolved the bonl hetween him and Pohert. W. would now, douhtless, have taken signal renscance on his brother, had he not been recalled to England by disturbances in Trales and in the north. In the year 1096 , Pobert, having resolved to go to Palestine, sold his duchy of Normandy to W., for $£ 10,000$. This transaction led to a contest between W. and a chieftain named Helie de la Fleche, who had all along disputed Robert's right to the Naine district of Normandy. Helic was not, however, able to withstand the English monareh, who now took the field against him. He was obliged to disband his forces and take to flight. This was the last warlike achievement of William Finfus. He was shot (it is said, accidentally, though there alpears equally good reason to believe the act intentional) hy an arrow, supposed to come from the bow of Sir Walter Tyrrel, while bunting in the New Forest, on August 2, 1100 . His body was found by a poor charcoal-burner, who conveyed it in a cart to Winchester. W. inherited the comrage, cnergy, and political talent of his father, but he was ruthless and unprincipled.

WILLIAM IlI., king of Encland, was the posthumous son of William II, of Orange, and Mary, eldest danghter of Charles 1. of England. He was loorn in 1650 . The alliance of his family with the Stuarts excited the jealousy of Oliver Cromwell, and by his influence, the young prince and his descendants were declared to be excluded from the Stalthollership of the United Provinces. W. ' found himself,' says Macaulay, 'when first his mind began to open, the chief of a great but depressed and lisheartened party, and the heir to vast and indefinite pretensions, which excited the dread and aversion of the oligarchy, then supreme in the United Provinces.' The restoration of the Stuarts, however, in England greatly improved his prospects; and on the murder of De Witt, W., then in his and year, was chosen Stadthollcr. The republic was at this time carrying on an apparently hopeless war with its powerful neighbour, Lonis NIV. of France ; but by the wisclom and retermination of the young Stadthokler, the contest, which lasted for nearly seven years, was in 1678 terminated hy the treaty of Nimegnen, in a manner bighly advantageous and honourahle for the United Provinees. A few years before, their ruin had seemed inevitalle; and the fame of W. became great over Europe. Shortly before this crent, he had married his cousin, the Princess Mary, eldest daughter of the

Duke of Fork, afterwards James II. of England. This marriage, entcred into solcly from political consiflerations. did not at first proze a happy onc. W. scems to bave been jealous of his wife's position, and too resersed to give utterance to his feelings. Aceording to Macaulay, a complete explanation and rcconciliation were utimatcly brought about by the agency of Bishop Burnet.

In 1686, W. became the head of a league formed among the Protestant princes of Gcrmany, the kings of Spain, Streden, and others, having for its object to curb the power of Lonis XIV. Tho treaty by which the alliance was constituted was signed at Augsburg in July lisf. In England, the tyranny of James $I T$. was now beginning to estrange from him the affections of every class of bis subjects. The cyes of all were turning towards the Stadtholder as their only hope. Having formed his resolution, W. conducted his operations with great seerecy and skill. On the 5tl November 1685 , he landed at Torbay, with an army of 15,000 , composed of English and Dutch. His success was rapifl and bloodless. Nen of influeuce of all parties gave him their presence and support; and on the 18th of December following, be entered London triumphantly as a national deliverer. The adherents of James held out for some time in Scotland and Ireland; but the death of Dundee ended their resistance in the former country; while in the latter it was ended in 1691, after a vigorous contest of two ycars, in which the Stuart party had, in most cases, the arlvantage. The object of VW. in accepting the crown of England, was probably not so much to free the English nation from the tyranny of James, as to enlist its power on his side against that of France. In spite of his sterling qualities, and of the debt which they owed to bim, the English nation never. really liked William III. The death of his wife, on whom the crown had been conferred jointly with himself. in 1695, materially injured his position. His schemes were thwarted by parliament; continual plots for his assassination were liatched by the alherents of James; and in his warfare with France, victory was almost always on the side of Lous, W. being in person repeatedly defeated by Luxembourg (q. vo) ; and it was not without a struggle and a pang that he agreed to the terms of the jeacc, cminently popular, however, which was concluded at liyswick on 10th September 1697. The alcath of Charles II. of Spain in 1700, and the succession of Philip of Anjou, was another blow to his policy. He carried it on, however, with unflagging viccour till his cleath, which was occasioned by a fall from his horse, on Sth March 1702. The massacre of the Macdonalds of Glencoe ($\mathrm{q} . \mathrm{r}$.), and bis conduct to the promoters of the Darien Scheme (q.v.), are two blots on W.'s reputation which his most thoronghgoing apologists have been unable to cfface. However, he was undoubtedly a practical genius of the highest order, and the services which he rendered both to England and to his native country can lardly be overrated. During his reign the Bank of England had been fonnted, the modern system of finance introIuced, ministerial responsibility recornised, the liberty of the press secured, and the liritish constitution established on a firm basis. In his domestic life, he committed the error of a too stern repression of all manifestation of kindly or genial feeling. His manner was wholly Dutch, and even his countrymen thought lim blunt. 'In his intercourse with the world in general,' says Lord Macanlay, 'he appeared ignorant or negligent of those arts which double the ralue of a favour, and take away the sting of a refusal.'-Sce Macuulay's IIistory of Eingland.

WILLAM IV.-WILJIAN.

WILLIAM IV., king of Great Britain and Irelimet, thirel son of cicorge 111., was born on 21st Anginst 1765. Until 571, he remained, along with the l'rince of Wales and Prince Freterick, amber the care of Dr Majendie. He was then sent to Kiew, where, with l'rince Elwarl, afterwarls Duke of lient, he was under the guardianship of Colonel limile. On 15th June 1759, he entereat the nary as milshipman on hoard the Prince fiearge, theni under lienr-admiral Dighy. The I'rince George then jomed Achmiral limhey's squalron, on its way to Gilmaltar. After seeing a considerahile amount of service, l'rince W. was made a lientenant on 17 th June 1755 ; and in the year following, he received his commission as captain. In 1759, he wais created Duke of Clarence and S't Aulrews, and liarl of Munster, with an allowance from parliament of $£ 12,000$ a year. Subsequent to this, several acts of insulnodination readered an actual continuance of his professional carcer impossible. He was, however, formally promoted through the snecessive ranks until he was made Aclmiral of the Fleet in 1sol. Meanwhile, however, he had been living aluost entirely ashore, along with Mrs Jorlan, a celebrated actress, with whom he had hecome connected in 1791. By her he liad a family of tive sons and five danghters who became known ly the surnance litzolarence, and were raised to titular dignities. On 11 th July 1S18, he marrien Adelaitle, eldest daughter of the Duke of Saxe-Meiningen. The issue of this marriage was two daughters, both of whon diet in infancy. By the datho of the Duke of York in 18%, the Duke of Clarence became heirpresumptive to the throne, to which he succected, on the death of his brother, George 1V., on 26th June 15:30.
The great event of the reign of W. IV. was the passing of the lieform Bill. After a tierce and protracted struggle, the bull was rearl a third time in the Honse of Lords on 4th June 183:, and three days afterwarls it receivel the royal assent. The first licformed pharliament met on $99 t h$ January 18:33. The abolition of colonial slavery, the reform of the poor-laws, and of the Irish church, were the immediate results of the great constitntional change. King W. died, after a short illness, on 20h June IS:3i. He was succeeded ly his niece, Quten Victaria.

WILLIANI 'IIIE LYON, one of the early kiugs of Scotland, succecdel his lirather, Mialculm IV. in 1165. Ife is commonly ealled W. the Lion, but why he oljtained that title is one of the mysteries of history. When heralley long afterwarls became a science, and was supposed to have been in use carlier than it really was, it was not munaturally supposed that he was the first king who usend, as a heralelic achievement, the lion, afterwards the chicf feature in the arms of scotlavd. His pretecessors had long contested with the kings of England the sovercignty of Northumherland and other districts of what is now the worth of Euglanul. Under Milcolm, these claims were virtually abandonel, and the king of Scots received, as a sort of equivalent for them, the carldorn of lluntinglon and other valualle estates holding of the English erown. William had still, however, a hankering after the Northumbrian districts. He attended Henry of England in his continental wars, and is suppesel, when doing s, to have pressel for a portion at least of the old disputed districts. In his disappointment, he invaded them, after the example of his ancestors. On the 13 th July 1174, he fell, almost by accident, into the hands of an English jarty. For security, he was conveyed to Nommandy, and there he consented, as the price of his tiberation, to perform that homage for lis kingdom which the English kings so long in vain attempted to exact
from the government of Scothand. How far the Scots community would have admitten that he had a right to bind them to such a coulition, may be doubted. The treaty of Falaise, however, as the transaction was termen, from the place where it was adjusted, was revoked in the year 1189 by lichard 1. of England, in consideration of a payment of $10,(100$ marks, which lie wanted for his celebrated expectition to Palestinc. 11 . had several digputes with the church, but lie was one of the early benefactors of the regular ecclesiastics, and foundel, in 117 S , the great abley of Arbroath, which he dedicated to '1'homas i Becket, who had heen slain eight years carlier. King W. died in 1214.

Wilhiam, Phince of Orange, and Count of Nassau, the foumder of the intepentence of the Netherlands, was born at 1hillenburg, A pril 16, 1533. 1 Iis father, William, was the second son of Connt John of Nassan-Dillenburg, and succeeded to tho German possessions of the famdy; while lis elder brother, Henry, obtained the extensive estates in Luxemlurg, Brabant, Flanders, and Holland. Tho latter also by his marriage with Claudie of Chalons, added the charming and valuable little principality of Orange to his alreally extensive domains; lut his son René dying withont issue, left Urange along with the Low Conntries' estates to W., in 154. W. had hitherto liverl at Dillenburg under the care of his fither, who was a zealous Lutheran; but on his hecoming the most powerful lord of the Low Countries, he was sent to the Queen liegent's court at Brassels, and brought up in the Catholic faith. At the age of 15 , he became page to the Emperor Charles V., who took an almost paternal care of him, attentively watched the development of his character, and, satislied with the result, tonk him into his inmost couthlence, making him the safe repository of the most important secrets, employed him in varions diplomatic offices, and in 15.55, promoted him, over the heads of all lis veteran officers, to the command of the imperial army on the French frontier. In all these varions situations, IV. acquitted himself completely to his patron's satisfaction; displaying acnte intelligence, sound judgment, and a precocious knowledge of nen, while hearing limself with a grace and dignity of manner that gained umiversal estecm. Charles, on his alurlication, strongly recommenced W. to his son Ihilip as a contidential alviser; and acendingly, we tind him employed to draw up the treaty of Catenu-Cambresis, and selected as one of the fomr lostages to be given to France for its fulliment. During W.'s residence in France, he was contidentially informed by Henry II. of a secret arrangement which was being formed between France and Spain for the complete extermination of heretics in both countries; and with admirahle nerve, dissembling lis horror of the project, lie resolved in his own mind to oppose the execution of the scheme in the Netherlands to the uttermost of his power. On returning to the Low Conntries, he became the leader of the party which deroted itself to the maintenance of the chartered liberties of the country, agitated for the recall of the Spanish troops, opposed the angmentation of the mmber of bishopries (a pet seheme of Philiy's, for his opposition to which he firat incurred the bitter dislike of his sovereign), and finally broke entirely with Carlinal Granvelle, the presiclent of the council, and the willing agent of Philip's tyranny: Expostudations to the Regent Margaret of Parma, and directly to Philip himself, far from producing any good result, seemed only to hurry the bigotel monarch to more extreme measures; the crucl edicts against beretics were made still more stringent, and at the end of 156t, the inquisition was established. W., how-
ever, steadily refused to allow these oppressive enactments to take cffect in his hereditary governments of Holland and Zeeland; and though he did not join in the famous protest known as the 'Compromise' which was presented to the regent by the 'Beggars,' he supported their proposals at court, seeing that, though maintained with somewhat too much violence, their aims were the same as his own. For the next few years, he was unremitting in his exertions to impress both the rulers and the people with the desirableness of moderation, and on several occasions succeeded by his personal influence in repressing religious dissension. Hitherto, he had laboured conjointly with Counts Hoorn and Egmont, but failing to convince his two associates of the rank duplicity of the king, of which he himself mas assured by means of the spies in his pay at the Spanish court, and of his perfidious designs against them, he was compelled to leave them to their fate, and retired to his German estates. Hoorn and Egmont were scized and executed; W., cited as a rebel (January $1 \breve{G}$), and, ou the ground of being a knight of the Golden Fleece and a sovereiga prince, refising to appear, had his estates confiscated, and the Duke of Alva arrived at Brussels, to reduce the provinces to subnission. W. had hitherto lived in a most luxurions and extraragant manner, the splendour of his household far exceeding that of his royal master; but now he effected a thorough retrenchment, and disposed of his ralualles, to equip four armies for the invasion of the Low Countries. Two of the armies failed completely; the third, under his chivalrous brother Louis, was destroyed at Jemmingen by Alva; and the fourth, 30,000 strong, under his own immediate command, lay in Erabant, unable to force Alva's army to a conflict, till want of the means of paying his soldiers forced him to retreat. His uext attempt was made in 1572, and though as unsuccessful on land as before, he succeeded in exciturg Holland, Zeeland, Gelders, Orcryssel, and the bishopric of Utrecht, to rise for their liberties; and was proclaimed by these provinces as their stadtholder for the king, whose authority he and they still acknowledged. Mleantinie, his coadjntors, the ' Beggars of the Sea,' hall talien Brill and Flushing, and had committed heavy depredations on Spanish commerce. But ere long the fortune of the Spaniards on land was again in the ascendant; fortress after fortress fell into their hands, despite W.'s utmost efforts to relieve them; and though Holland and Zeeland still remained faithful to the cause of liherty, he found it impossible to raise an army which could fairly cope with the encmy. He succeeded, however, by breaking the dykes, in saving Leyden, though Antwerp and Haarlem experienced all the horrors of a siege and capture. It was at this period that W. openly professed himself a Calvinist, though, with his usual moderation, he utterly disclaimed the bigoted fanaticism which characterised his coreligionists, and in which they went near to equal their adversaries the Catholics. Success still attended the patriot fleet, and though the gallant Louis, with his brother Henry, was defeated and slain at Mooker-Heide (14th April 1504), the ruinons condition of the Spamish finances, and the general detestation in which the soldiers of Philip Were justly held, helped W. to hold his ground. In March 1575, conferences were opened at Breda between the belligerents, but Philip obstinately refusing to yield an iota, they were broken off ; and in October of that year, the provinces of Holland and Zeeland pronounced Philip's deposition, and gare porer to W. to choose the country under whose protectorate they were to be placed. Deantime,
the rapacity of the Spanish soldiery bad ronsed the fifteen provinces which still remained loyal to Philip, and the league, known as the Pacification of Ghent (October 15\%6), the object of which was to drive out the foreign troops, and establish, at least for a time, toleration in religion, was the consequence. This was a brilliant success for W.; and though Don John of Austria, the new governor, tried to dissolve it by the 'Perpetnal Edict' (12th Felornary 15\%7), in which he grauted nearly all demands, W. succeeded, by skilful policy, in foiling the attempit. War was accordingly resumed, and the patriots were defeated at Gembloux (31st January $15 \% 8$), though their spirits were from time to time buoyed up by an occasional success. The next governor, Alexander Farnese, succeedled, however, in detaching the Walloon provinces from the league, though, to compensate for this, W. obtained the signature of the Union of Utrecht (23d January 1579), the first foundation of the Dutch Republic. In the following year, his two faithful provinces, Holland and Zeeland, after having been nominally under the sway of the Archduke Matthias of Austria, and of the Duke of Anjou, proclaimed W. their sole ruler, the Duke of Anjou being still acknowledged as sorereign of the others. W., however, after his long and desperate struggle for his country's freedom, was not destined long to enjoy the honours of sovereignty, for, on 15th March 1550, Philip had, by Granvelle's advice, put a price of 25,000 gold crowns on his bead, and the incitement of this magnificent hribe prodnced rarions attempts to assassinate him, the last of which, by Balthasar Gerard, was successtul at Delft, 10th July 15 St . W. was four times married, and left by his first wife, Aune of Egmont, Philip-William, Prince of Orange; by his second, Anne of Saxony, the famous Maurice (q. v.) ; and by his fourth, Louise de Coligny, Frelerick-Henry, who succeeded Maurico as stadtholder of Holland.
WILLIAM I. (Ger. Frienrich-Lodwia Wilhelim, the present king of Prussia, is the second son of Frederick-William III., and was born 22d Dlarch 1797. He received a careful education, joined the army at an early age, aud was engaged in the carnpaigns of 1813-1s14 against France. On the accession of his elder lurother, FrederickWilliam IV. (q. v.), to the throne in 1840, IV. became governor of Pomerania, and afterwards sat in the Prussian diet, and vigorously supported the absolntist party. ln consequence, he was so much disliked by the people, that on the ontbreak of tho revolution of 1548 he had to tlee to England; though he returned some months after, and was elected to the National Assembly. However, from this time he interfered little in the ruarrels between the Coustitutionalists and Absolutists, though he gladly accepted the command of the troops despatched to put down the rising in Baden; and in October 1857, the king having become incapacitated for busincss, W. was commissioned to act as regent, a commission renewed from time to time till his permanent installation in October 1858. At this time he was very popular in Prussia, owing to his supposed opposition to some of the obnoxious measures of the king's ministers, and to his vigorous adrocacy of conjoint action with Britain aud France in the war of 1854; and his election as regent was consequently opposed by the aristocratic and pietistic parties, who were, ou his elevation, dismissed from power, anil a more liberal ministry formed. On January 2,1861 , W. ascended the throne; and on the occasion of his coronation at Königsberg ou 18 th October following, he himsclf put the crown on his head, declaring that he 'ruled by the favour of God, and of no oue else.' The

WILLIAM II.-WILLIAMI III.

result of the elections to the Chamber of Deputies, which were bein: earried on at the same time, heing much in favemr of the liberal party, W, who was Ifuite astunishel at the fact of the party whon he looked upon as the nplonents of the crown having a majonity, attributed it to the intrigues of seeret enemies; and in his address at the opening of the ("hambers, saying that he 'never could permit the pracressive devedopulent of our inner politieal life to guestion or to culanger the rights of the crown and the power of J'russia, ${ }^{3}$ disclosed the principle of inis policy, a policy whieh, with all the undlagging perseverance and noconquerable obstanacy which characterise men, like him, of thorongh honesty, motlinding dirmmess, and considerable narrowmindelness, he has since unemittingly pursued. The first chamber which sat after his coronation was dissolved, despite the protest of a large majority of the members; but the succecding elections further increased the liberal majority; and though some pogntar measures were brought forward, and some obnoxious taxes abolished, the new chamber proved as refractory as its predecessor, and refused its consent to the extensive clanges in the Prussian military system (the king's pet scheme), and to the raising of money by loan, to be applied for that and other ministerial projects, till its constitutional powers were fully aeknowledged. Un September ${ }^{2 \prime}$?, 186:2, Herr von Bismark-schönhausen, formerly the ambassador at l'aris, was made prime minister' ; and the depmities laving not only rejected the ministerial budget, but resolved that the expenditure of moneys not sanetioned by them was a breaeh of the constitution, the chamber was dissolvel, October 14, the king declaring ly message, that as the three estates could not acree, he should continue to do his duty to his people, without regard to 'these pieces of maper ealled constitutions,' in which he had no faith. The number of the liberals was further increased in the following year, and the contest continned; the deputies displaying the same firmness and extrene moderation as before; while the king and his ministers nade it plainly understond, that if the lower chmber did what the govemment aklied it to do, all would be well ; but if not, the king would 'do his duty' without its aid. Iowever, this strife between the old fendal and the modern liberal doetrines was shelved at the elose of 1863 , by the able strategy of Bismark, who revived the old dispute with Denmark regarding its government of Slesvis and Ilolstein, and by forcing Austria to conjoint action, contrived to make the question one of 'German' interest. See Slessig. This juarrel heing temporarily settled, the attention of the chamher was diverted from home affinirs lig the dissensions hetween the two govermments as to the disposal of the territories taken from Denmark, by the war (sce Cifrmasy in Scpplement) between I'russia and Austria, and by the subsequent arrangements for the consolidation of the extended monarchy. The intense national feeling of the Prussians has, on account of the astonishing suceess of his forcign policy, given an inmense popularity to the king and his government; but with a continuance of extermal tranquillity, the political contest between him and his people eaunot fail to be renewed. W. marriel, 11th June 1829, Maria Louisa of Saxe-Wcimar, by whom he has issuc Friedrich-Withelm, the Crown Prince of I'russia, who marricd Vietoria, the Prin-cess-royal of lingland, and has issue; and Louisa, the present Grand-duchess of Baden.

Wituian IT. (Frmderick Geonge Lemis), King of the Netherlands, Grand Duke of Luxemlurg, Duke of Limburg, fic. (1840-1819), son of William I., was born at the Hague, 6th December
1792. In 179.5, the Orange family songht an asylum in England, whenee a few years later, the hereditary l'rince of Grance-Nassan, afterwards William 1., king of the Netherlanls, went to settle at Berlin, where his son attended the Mhlitary sichool. At the are of 17 . le was sent to study at Oxford: and in 1811, joined the army in Portugal, and served on the staff of lond Wellington, to whom he hecame adjutant, and sucetily obtained the rank of eolonel. Ilis hravery was conspicuous at Puentes de Onoro and Cilulat Lodrigo. At Bulajoz, the stomning column having been repulsed, the young prince met and rallied the retiring trongs, leading them anew to the attack, and was the first to spring into the breach. Ite took an aetive prart at Salamanea, Vittoria, and the battles of the l'yrences. On the return of the Urange family to the Netherlands, William 1. made him commander of the army. The last campaign of Napoleon brought the prinee again into active service, and he gained fresh lamrels at Quatre Bras ant Waterloo, where he was wounded. The Prince of Orange married, "bth Febrnary 1816, Anna laulowna, youngest sister of the Dimperor Alexander J. of Jinssia. When the Eelgian revolution legan in 1830, he was ealled açain into public life; and, as governor of the loyal districts, tried by coucessions to allay the storm, but the provisional govermment at Brussels was not to lee satislicd, and having over-stepled the limits of his commission, the prince was reealled. In July, he took command of the army, and pushed to the centre of belinm; when at Louvaiu, his victorious course was interrupted hy l'rench intervention, and the Dutch army retirel to the north. Having more liberal views than were then conmon, the prince took little sharo in state atfairs, and spent his life ehiefly at Tilburg, as commander of the army of olservation. On the abdication of William I. (see Nemerfands), the Irince of Orange assumed the rcins of government (1840) as William 1I. The jolitical movements of IS.1S were felt in the Netherlands, as in other countries; and the ministerial plans of reform not having satistied the prarty of progress, the king announced his willimguess to sanction whatever changes in the constitntion were thought nceessary, and the storm was averted. The new enustitution was proclaimed id November 18.1s. W. died on the 1 th Mareh 1849, regretted by all ranks. ITe was Marshal in the British arny, and held a multitude of European orilers.-See IVet Leven vern Irillem $I f$., door J. J. Ablink; also the same ly Jossclia.
Wifiliam 111. (Alexinner Paul Feederick Lewis), reigning king of the Netherlands, was born 19th Fehruary is17, and succeeded to the throne on the death of his father, William 1I., in 1549. The kingdom has since enjoyed minterrupted peace, material prosperity has inereased, and the pablic debt has heen considerably reduced. W.'s reign has been chitetly distinguished for undertakings which contribute to the true greatuess of a nation. The drainage of the 1farlem Lake ($\mathrm{q} \cdot \stackrel{\mathrm{r}}{\mathrm{o}}$) was eompleted in 185゙, removing an ever-enlarging comy, and adding nearly 60,000 aeres to the wealth-pruducing power of the comntry. In 1863, the slaves in the Dutch West Indian colonics were emancipated, nuder wise restrictions. Liailways liave been extensively constructed; the water-way to liotterdam is being improved; and the formation of a canal through the fsthmens of Holland, with a fine harbour on the North Sea, by which the largest ships will easity reach Amsterdarn, and 16,000 acres of land be redeemed from the $l j$, is in progress. While Prince of Orange, W. married, 18th June 1839, the l'rincess Sophia Frederica Matilda, daughter of the late King William I. of Wurtemberg. They have

201
turo sons－William Nicholas Alexander Frederick Charles Henry，Prince of Orange，born 4th Septem－ ber 1840；and Willian Alexander Charles Henry Frederick，born 25th August 1551.
WILLIAM AND MARY COLLEGE，next to Harvard College，the oldest institution of learning in A merica，was established at Williamsburg，Virginia， 1692 ，and endowed with lands and placed under the patronare of the king and queen of Great Britain． In 1718，£1000 were granted＇for the support of as many ingenious scholars as they should see fit．＇In 1791，Robert Boyle，Esq．，gave part of his Irroperty to this collere for the education of Indians．At the beginning of the Revolution，half the students entered the army，and the French troops occupied its buildings as a hospital．Here were educated Presidents Jeffersun，Madison，and Monroe，Chief－ justice Marshall，and General Scott．The library has 53,000 vols．

WILLIAMS，JoHr，a celebrated missionary，was born at Tottenham，London，20th June 1796．At the are of 14 ，he was apprenticed to an ironmonger， and daring his apprenticeship，displayed a great taste for mechanics，and acquired a linowledge of mechanical arts，which lie afterwards turned to great account．Having become deeply religious，he offered himself to the London Missionary Society as a mis－ sionary to the Sonth Seas．IIe was ordained in 1816，and sent to Eimeo，one of the Society Islands． Two months after his arrival，he was able to preach to the people in their native tongue．From Eimeo， he soon went to Huaheine，and afterwards to Rai－ atea，the largest of the Society group．His labours here were attended with great success；the island became Christian，and the arts and habits of civili－ sation were introduced along with Christianity： Wherever W．went，he not only preached the gos－ pel，but instructed the people in the arts，so as to elevate then from their state of barbarism．At Raiatea，he heard of Raratonga，the chief of the Hervey Islands，and thither he went in 1503．The mission which he founded there was eminently suc－ cessful；not only Raratonga but the whole group of the Hervey Islands being soon Christianised．In his missionary work，W．made great use of native teachers，trained by himself．He translated the New Testament into the Paratongan language，and pre－ jared books for the schools which he established． After spending some time in Fiaratonga，he wished to return to liaiatea；but the island in which he lived lay out of the way of vessels，and he resolved to build one．He made all the necessary tools，and in about 15 weeks completed the vessel itself，a boat 60 feet long，and 18 wide，the sails of native matting， the cordage of the bark of the ITibiscus，the oakum of cocoa－nut husks and banana stumps．In this vessel，during the next four years，he visited many of the South Sea Islands，extending his missionary labours to the Samoa Islands．In 1834，he came to England，where he remained for nearly four years， during which he procured the publication of his Raratongan New＇l＇estament by the Pible Society， and raised $£ 4000$ for the purchase and outfit of a missionary－ship for Polynesia．In is3s，he returned to the chosen sphere of his labours，visited many of the islands，and finally the New Hebrides，where he hoped to plant a mission，but was killed，zoth November 1539，and most of his body eaten by the savare natives of Erromanca，on the shores of which he had landed．His death was the occasion of great lamentation in the islands which owed to him their Christianisation and civilisation．W．was remarkably successful as a missionary，not only by his own preaching，but throngh the instrumentality
of natives whom he trained．He possessed in an
extraordinary degree the power of organisiug．His mechanical skill and genius were also of great service，and no other missionary has ever been so successful in making the progress of civilisation attend upon the progress of Christianity．
WILLIAMS，Roger，founder of the state of Phode Island，C．S．，was born at Conwyl Cayo， Wales，in the year 1606 ．In his routh，he cane to London，and attracted the attention of Sir Edward Coke by his short－hand notes of sermons， and speeches in the Star Chamber；and was sent by him to Sutton＇s Hospital，now the Chartcrlouse Sehool，in 1621 ；and on April 30,1624 ，he entered Jesus College，Oxford，where he obtained an exhibi－ tion．He studied Latin，Greek，Hebrew．French，and Dutch，and was ordained a clergywan of the Church of Englaud，but soon became an extreme Puritan， and emigrated to New England，arriving at Boston， February 5，1631，＇a young minister，godly and zealous，with his rife Mary．＇Ile refused to join the congregation at Boston，because the people would not make public declaration of their repentance for having been in commnnion with the Church of England；he therefore went to Salem，as assistant－ preacher，but was soon in trouble for denying the right of magistrates to punish Sabbath－breaking and other religious offences，as belonging to the first table of the Law．For his opposition to the New England theocracy，he was driven from Salem，and took refuge at Plymonth，where le studied Indian dialects． Two years later，he returned to Salem，only to meet renewed persecution and banishment from the colony，for denying the right to take the Indians＇ lands without purchase，aud the right to impose faith and morship．He held that it was not lawful to require a wicked person to swear or pray，which were both furms of worship；and that the power of the civil magistrate extends only to the bodies， goods，and nutward state of men，and not to their souls and consciences．Banished from the colony in 1635 ，and threatened to be sent back to Eng－ land in order to prevent the infection of his new doctrines from spreading，he escaped in mill－ winter to the shores of Narraganset Bay，accom－ panied by a few adherents，where he purchased Jands of the Indian chiefs，founderl the city of I＇rovidence，and established a goverument of pure democracy．Having adopted the belief in adult bap－ tism of believers by immersion，W．was baptised by a layman，and then baptised him and ten others，and founded the first Baptist church in America．Later， he doubted the ralidity，of this baptism，and with－ drew from the church he had founded．In 101？，he came to Eugland to procure a charter for his colony， and published a Key to the Languages of A merica，and The Bloutly Tenent of Persecution for Cause of Con－ science Discussed，\＆c．－his chief work on the nature and sphere of civil government．Aiter returning to Rhode 1sland，he came a second time to England on business of the colony in 1651 ，when he published Experiments of Spiritual Life and ITealth，and their Preservalions，dedicated to his friend，Lady Tane， and written，as he says，＂in the thickest of the native Indians of America，in their very wild houses， and by their barbarous fires：＇also，The IFireling Ministry none of Christ＇s，and The Bloutly Tenent yet more bloudy by Mr．Cotton＇s Endeavour to wash it White in the Blood of the Lamb．At this period，he engaged in an experiment of teaching languages by cunversation，and made the acquaintance of Milton． He returned to Rhode Island in 1G⿹勹巳t，and was elected President of the colony＇refused to persecute Quakers，but held a controversy with them，and published George Fox digged out of his Burroues． By his constant friendship with the Indians，he was of great service to the other colonies；but they

205
refnsen! to remove their ban, or to actmit libode island int, their league. He died in 16s3. Sce Memoirs, ly James D. Ǩnowles (Boston, 183:3); Villiam Gammell (Boston, 1546); Liumeo Eltan (Lomlou, 1859).

W1'LLTAMST; ${ }^{\circ}$ IRG, a city of lírginia, \mathbb{T}. s, hetween York and James rivers, G0 iniles sonthinst of Fichmond, the site of William and Mary Coollege (q. v.), and the Eastern State Lunatic A sylum. W. was fombel in 1632, is the oldest incorporated town in the state, and was the coloninl and state apintal till 1779. A battle was fought here between fiencral MClellan and the Confederates, May 5, 1862. Present 1"0). about 1.500.

W゙ILLIAMS COLAEGE, an institution of learning in Williamstown, Massachusetts, U. So, founded ly a bequest of Colonel Ephraim Williams in 175"; incorporated in 1593, with furtber endowments of state grant, am the privilege of raising money by a lottery. In 1836, it was provided with an astronomical and magnetic observatory, the first in America. It has since been liberally endowed hy Amos Lawrence and Nathan Jackson, and has 11 instructars, 240 stulents, a lycenm of natural history, and library of 20,000 vols.

W'LLIAMSPOLTT, a shiretown of Penusylvania, U. S., on the left lank of the Wrest Prauch of the Susquehanna River, letween Lycoming and Fine Treeks, 75 miles nortls of Harrisburg. It is on the West Branch Camal, and the intersection of three railways, and has 2.5 saw-mills, four planing-mills, iron foundries, woollen factories, ten churches, three newspapers, an academy, and two female seminaries. 1'op, in 1560, 7560.

WILLIELROD, or WIIBBIRORD, ST, lirst Bishop of Utrecht, ancl 'apostle of the Frisians,' chams notice as being one of that meritorious band of British and Irish missiouaries liy whom Christianity was estahlished in Northern Germany. He was born about the year $6 \overline{0} 8$, in the kingeloni of Northumbria; and, although elucated in the monastery of Ripon, where he received the tomsure, was sent, for final instruction, like most of the monks of that age, to the schools of Ireland. After a sujoum of thirteen years in that country, he resolved to devate himself to the conversion of Friesland, in which some of his fellow-monks had already engacel with little success. In 690 , he sailed with tridve eompanions, and passing up the Rhine, arrivel at Ultrajeetnm, the present Utrecht, soon after the victory of l'ep in over the Frisians. By lepin, they were warmly received; and W. having estaldished the lirst begimings of his mission, went to Rome in t92, whence he retmmet, with the sanction of the pope, Surgius I., ami enntinued his labour till 695, when lie aghin visited liowe, and received episcopal cousecration, together with the pallinm of an archbishop. lixing his see at Utrecht, be envertel a large number of the inhabitants, and exteurled his missionary colonies from that centre as far as the Danish provinces; and, although ho received some check upon the death of Pepin in TH, yet the successes of Charles Martel cuabled him sonn afterwards to resume, under similar favourable anspices, the work which, after many alteruations, ended in the successful establishment of Cbristianity. W. died at a very adranced age in 73S, at the monastery which he had founded at Behternach, near Treves. IIis festival is the 7th of Ňorember.-See Eete's Ecelesiastical Jistory, chaps. 10 and 11.
Willis, Naminitet Paiker, American mithor, was horm at Portland, Maine, January 20. 1807. It is father became the publisher of the Jioston Recorder, said to be the lirst religions newspaner ever 1 erwanently establisbed. Elucated at lale College, he
obtained in 1 Sas a prize for Scriptural Poems. On the completion of his eollege course, he established the A merioun Monthly Alagraine, afterwards merged in the New lork Mirror, in which he was associatel with George 1'. Morris. In 1S30, he visited Lurope, and contribnted to the Mirror his Pencillings by the W"a!. Appointed atteché to the American legations at I'aris, he had favomable npportunities for observiny Burapean socicty ; and after a risit to Greece: and Turkey, returnel to lingland in 1835, and was maried to a danghter of a British otheer, General Stace. While in lingland, on accomnt of some $1 \sim 4$. somalities in his writings, more consonant to American than English manners, he became involved in : quarrel with Captain Narryat, which led to a cluel. IIe contributed to the Lomelon Neio Monthly his Inklings of Achenture, also published in tbree rols. and in 1830, returned to New Jork, and Imblished a literary Maper, The Corsair, and Lellers froms uniler a Brialye, written at a heautifnl comery-seat, named, in compliment to his wife, Glemmary. He wrote also at this period Tortesa the Usurer and Lienca Trisconti, dramas, aud the descriptions of scenery ilhustrated in Bartlett's Uniteel States and Cunuida. In 184, he engaged with (keneral Morris in erliting the Daily Mirror. Ilis wife died, and he revisited Europe, and published Dewhes at Jife witho a Froe Pencil, 1845; returned to Now lork in 1846, he was married to a daughter of the 11 m . Joseph Grimell, of Massachusetts, and with his former partner established the Jome Joumal, to which he coutributed most of the following works, also publishal in a collected form : in 1850, l'eople J have Ifet, and life Here and There; 1851, IIurrymraphs, Memoranla of a Life of Jenny Liml; 1S̄̄3, Fun Jottings, A Mealth-trip to the Tropics, A Summer Cruisc in the Mechiterrancan: 1554, Fumous Persons and Places, Out-doors at sule IVikd; 1555, The Liaybag: 1S50, I'aul Pane, or Parts of a life clse Untold; 1860, The Comralestent. Much of this work was clone during a long, lrave struggle with what appeared to be consmmptive ilisease: Mr WT. was an ubservant aud thoughtiul writer, disenrsive, fragmentary, picturesque, sprightly, quaint, aud graceful, full of claborate case, and incenions spontaneity. IIe edited the Home Jominal (General Morris having died in (SGf4, and resiled at his romantic highlaml retreat of Idle Wihl, until his death, Jamiry 21, 1567.-1I is sister is a popular writer, under the nom de plume of 'Fanny Fcrn;' and his hother, Fichard Willis, is a musician and musieal eritic.
WlLLOW (Salix), a genns of trecs and shrubs of the natural order Salicacec, otherwise regarded as a sub-order of Amentacce. This order or suborder, to which the Poplar (q. v.) also hclongs, is distinguished by having the flowers naked or with a eup-like perianth; pumerous ovules; a naked, leathery, one-celled, two-salved fruit; seds with long hairs; leaves with stipnles. lu the willows, the flowers are absolutely naked, the stamens from one to live in number, the leaves simple and deciduons. There are many species, but their precise number is not likely to be soon deternined, as they are very difficult to distinguish botanically, and varieties are very numerons. They are mostly natives of the colder temperate regions of the northeru hemisithere, althongh some are found in warm cunntries, as Salix tetresperma in tho hottest parts of luctia, and another species abundantly on the banks of the Senegal. Must of them are slirubs, and some are of very humble growth, particularly those of arctic and alpine regions. Thus, S. herbacea, which is common on the mountains of Scotland, seldom rises more than an inch from the gromed. S. arctica and S. polaris are the most northern woody plants. Other

WILLOW-MOTH-WILSON.

small species are also found to the very limits of perpetual snow in different countries, as S. Lindleyana on the Himalaya. Some of the species have already been noticed in the articles Osier and SalLow. Some of those which more generally receive the popular uame W., are trees of large size, and remarkably rapid growth. The wood of some of them, as the Whire TV., or Huxingadox W. (S. alba), and the Ceack W. (s) fragilis), is used for many purposes, being remarkally durable, especially in damp situations, although light and soft. It was ancieutly used for shields. Cork-cutters and others employ it for whetting slarp-edged implements. It is very tough. It is used for making paddles of steam-boats, because it wears better in water than any other kind of wood. Willows are often planted as urnamental trees, especinlly near streams and in moist grounds. Mauy linds are also planted ou the banks of rivers, to retain the soil in its place, and restrain the encroachments of the river. They are the better adapted for this purpose that they grow readily by cuttings; and willow-stakes driven into a moist soil strike root, and soon become luxuriant. The twigs of most of the willows are very tough and flexible, and are used by coopers for making hoops, and by gardeners for tying espalier trees, and for many similar purposes. They are much used for basket-moking and other kinds of wicker-work. See Oster. Willow withes were probably amongst the first ropes used by man. But the young shoots of many of the kinds with orate or little elongated leaves, are comparatively brittle, and ill adapted for wicker-work. Willow trees are sometimes treated as pollards, and the lop used for fuel and other purposes. They are also often grown as coppice-wood, yielding a great bulk of hoops, poles, fuel, \&c. 'The leaves and young shoots are in some countries used as food for cattle, and even dried and stacked for that use. A fragrant water is distilled in the north of India from the catkins of the Egyptian or Calipit W. (S. E'ypptiaca). A principle called Salicine exists in the bark of willows, which has been found efficacious in intermittent ferers, and is sometimes used as a substitute for quinine. It is crystalline aud intensely litter.-The flowers of the W., which in many specics appear before the leaves, are much sought after by bees. The male catkins of many species are very beantiful, the prominent anthers being of a tine yellow colour, or as in S. purpurea, of a rich purple. The Weeplig W. (S. Babylonica), of which an illustration is giveu under Weeping Trres, is a very ornamental species, a native of the East, now much planted in Britain, and on the continent of Europe, on account of its beantiful pendent twigs. What is called Napoleox's W. is a variety of it.The White W., or Huntingdon W., is loy far the largest species knowa in Britain. It attains a height of eighty feet, and grows so rapidly that a cutting has been known to become a tree of thirty feet in ten years. Its head is much branched and spreading, its leaves narrow elliptical-lanceolate, silky beneath, and sometimes also above.

WILLOW-MOTH (Caradrina culicularis), a species of moth, of which the caterpillars feed upon the grain of wheat, often doing very much mischicf. The perfect insect is of a monse eolour, and its wings are closed flat upon its back when it is at rest. On the upper wings are three trausverse wavy lines, and some black duts. The under wings are pearly white, with a slight tinge of brown near the fringe, and brownish bervures. The body is sleader, the antenne threal-like. The whole length, without the antennæ, is rather more than half au inch. The caterpillar varies in colour from dull achreans red to dirty green, with a blackish bead, two brown spots on the first segmeut, a wavy line on each side cdged with
black. The chrysalis is bright brown. This moth is often abundant in summer, in hayfields, gardens, and barn-yards. The caterpillar feeds on grain

Willow-moth (Caradrina culicularis) :
a, coterpiliar ; b, pupa in its eocoon ; c, willow-mulh at rest; d, insect with wings expanded.
throngh the winter, and draws the corn together with a thiu silken web in February or Mlarch, when about to assume the chrysalis state.

Wl'LMINGTON, a city and port of Delarare, U. S., on Christiama Creek, near its junction with the river Brandywine, 2 miles from Delaware River, ${ }^{2}$ miles south-west of Philacelphia, on the l'hiladelplia, Wilmington, and Baltimore Railway. It is a handsome, regular town, commanding fine water-views, and has 26 churches, a town-hall, large hospital, St Mary's Loman Catholic College, 4 barks, 6 newspapers, and manufactories of steam-engines, railway cars, and wheel car springs, iron steamboats, machinery, galvanised iron; Hour-mills, powder-mills, \&u. Pop. in 1560, 21,25S.

WILMINGTON, a city and port of North Carolina, U.S., on the left bank of the north-east branch of Cape Fear River, 34 miles from sea. It has a good harbour, with extensive internal navigation, and railway connections, and large exports of lumber, tar, rosin, turpentine, shingles, cotton, \&c. It has 5 steam saw-mills, 5 planing-mills (making $25,060,000$ feet of lumber per annum), 5 turpentine distilleries. During the war of 1801-1565, it was one of the chief ports of the Confederacy, and was frequented by blockade-runners, until attacked by Commudnre Porter's fleet, and land-forces under General 'Terry, January 13, 1865 ; on the 15th, Fort Fisher was captured, aud the town surrendered on the 2.2 . Pop. in 1560, 9505.

VILNA. Sce Vilno.

Wllson, Alexander, American oruithologist, was born at Paisley, Scotiand, July 6, 1766. He was the son of a distiller, and was apprenticed to a weaver, for whom he worked seven years, amusing himself at the same time by writing verses. As soon as he was free, be gratified a roving disposition by mounting a pedler's pack, and went to Edinburgh to take part in a discussion, in which be maintained the poetic claims of Fergusson against Allan Ramsay, and, in the same cause, wrote The Laurel Disputed, a Poem. The picee by which he is best remembered, is a droll poem in the Scottish dialect, styled JFatty and Meg. He also contributed to The Bee, and made the acquaintance of Burns. He was prosecuted for a lampoon upon a resident of Paisley, and condemned to a short imprisonment, and to burn the libel with his own hand at the Paisley cross. Determiued to leave a country where his genins was unappreciated, be sailed from Belfast for America, and landed at Neweastle, Delaware, July 14, 1794, with a few borrowed shillings in his pocket, and no acquaiutances. He got work with a copperplate-printer in Philadelphia, then with a

WILSON.

weaver: travelled as a peller in New Jersey, where the brilliant plumage of the birds attracted his attention; then engaged as a selool-teacher in l'emsylvania, and then walked Sou miles to visit a nephew in New York. Teaching a school ouce more in New Jersey, lie lived near the botanic garden of William Bertram, who was well acquainted with birds, aml, stimulatel and encomraged in his studies of nature, W. resolved to make a collection of all the birds that were to be found in America. In Uctober 1804, he set out ou his tirst excursion, in which he travelled to Niagara Falls, and wrote The Foresters, u Jucm. In 1ヶUü, he learned etching of a Mr Lawson, from whom he had already learued to draw; and was employed on the American edition of Rices's cyclopatite. He soon prevailed upon the publisher, Bradford, to undertake an Ameriean Ormithology. In September ISUS, be brought out the tirst vohune, but in a style too costly for the tastes and fortmes of the period, so that he oltained only 41 subscribers in the eastern states, and had no lietter suecess in the southern. The secoud volume was, notwithstanding, bronght out in 1810 . The following year, be miale a royage down the Ohio, and travelled overland through the then unscttlad remion of the Lower Mississippi Valley; from Nashville to New Orleans, collectiug specimens for lis third volume, pmblished in IS1:2. Exphoring the New England States during the war with Eugland, he was arrested at Haverhill, New Hampshire, as a British spy: a circumstance which probably hastened his death, at Philadelphia, August 23,1813 , when he had compluted seven volumes of his work. The eighth and ninth were published after his death ly George Ord, the companion of his travels and labours, and it was continued by Charles Lucien Bonaparte, in 1 vols. 4to (1'hiladelphia, 1825-1S33).

WILSON, Horace Marman, a distinguished Stuscrit scholar, was born in London iu the year 17S6, and was educated for the medical profession. In lsus he went to India as assistant-surgeon on the Bengal establishment, and in a short time afterwarls, on aecount of his proficiency in chemistry, olitainel an appointment in the Calentta mint as assistant to Dr Leyden. IIe now applied himself diligently to the study of Sanscrit, and in a few years olitained so high a reputation for his scholarship, that upon the decease of Dr Hunter in 1S11, W. was appointed to succeel him as secretary of the Asiatic Society of Bengal on the recommendation of Mr II. TS. Colelronke. In 1S13. W. published bis first work, vizo, The Méshu Duta, or Clond Messenycr, a Poem in the Sunscrit Languay, by Kelidaser; transtated into Engli.hh Ferse, rith Notes and Jllustrations, ly MI. II. Vritson. This work, originally published at ('alcutta in 1513, was reprinted in London in the following year. His next publication was A Dictionary, Sunscrit and Engtish, iransluted, amended, and enteryed from an Oriyimal Compilution proparel by Learncel Natives (Calcutta, 1819-1840). This work proved to he of great atvantage to stments of Sanscrit, and added considerably to W':'s reputation. A second edition of this work was published in 1832; and a new edition of the same, greatly conlarged and improved, by Professor Gohlstueker (Berlii, 1S556, \&c.) is now in progress. W's next publication was it 'ollection of Proverds and Provertial Phrases in the l'ersian and Mindustani Lanyuages; compilal and translated chiefly by the hute Themas Rochucl: (Calcutta, 1821). To this, W. prefixed a valuable Introduction, at the same tine that he edited the whole, with considerable additions of bis own. W.'s subsequent [ullications were as follows: 1. Select Specimens of the Theatic of the Hindus, translated from the Original Sanscrit, 3 rols. (Calcutta, 1897) ; another
edition, 2 vols. (Lomd. 183.5). . . Documents illustratire of the Durmese IV ur ; with sketh of the Rernts of the IVar, and an Appendix (Calcutta, 1827): another alition (Lonk 185゙3). 3. A Descriptive Cotulogue of the Urimtal Manuscripts and other. Articles illustrutive of the Literature, Ilis tory, Stutintics, and - 1 ntiquaties of the South of India; collectad by the late Lieutenunt-colond i. MacLenzic, 2 vols. (Calcutta, 182S). 4. A lieripw of the External Commerce of liengal from 181:3-1814 to 18:7-152s (calcutta, 18:30). 5. The liuyhu J ansu, or Race of Raghu, a llistorical Poem, by Rialidasch, with a Prose Interpretution of the I'cxt, In Pundits of the Sanserit College of Calcuttu (Caleutta, 1832). Of this publication, W. was the editor. 6. Ubserva tions on Liektenant Lurnes's Collection of Bactrian and other Coins, by II. II. W"ilson, and J. Prinsep (183.5).
7. A Manual of L'nirersal Sistory aml Chronology (Lond. 1S30). S. The J'ishn'u-Puran'a, a System of Iindu Mythology, translated from the Original Sanscrit, and illustrated by Jotes (Lond. 1840). 9. An Introduction to the Errammar of the Sunscrit Lenguaye, for the Use of Early Students (Lond. 1S41); ?l ed. (Lond. 1847). 10. Ariuna Intizaa, a Descrip. tive Accomnt of the Antiquities and Coins of Afyhanistan, with a Memoir on the buildings cauld Topes, by C. Masson (Lond. 1S41). 11. Sclections from the Mahabharata, edital by F'. Johuson (Lond. 1812): this Las a Preface and Notes ly II. 11. Wilson. 12. Rig-I"elce-Sanhita, a Collection of Anciont Hindu liymns, franslatel from the Original sienserit (Lond. 1850). 13. The Present State of the Cultivation of Oriental Literature, a Locture deliveral at a Meeting of the Royal Asiutic Society (Lond. 185흐). 14. A Glossary of Judicial and Ricremue I'orms, and of uscful Hords occurring in Official Documents reiating to the Administration of the Government of Dritish Indiu, from the Arabic, Persian, Ifindustani, de. (Loml. 1S55). 15. Principles of Mindu and Mohammodan Lav, republished from the Principles and Precedents of the same, by the late Sir lVilliam SIay Macnughten, amd celited by S. II. 17ilison (Lond. 1860). Many of these works were produced whide W. held the otfice of Assay-master and Secretary of the Dlint at Calcutta. In his official capacity, he often received the thanks of the govermment of India for reforms in the coinage and other services. He also encouraged in every way the progress of elucation among the matives of Inilia, especially liengal. He was for many years secretary to the Public Instruction Committee at Calcutta, and took great trouble in directing the studies of the Ifindu College. IIe was at the same time noted for his musical skill, and his talents as an amateur actor -qualitics which made him a great favourite in Caleuttin sucicty. In 1833, the Baden Professorship of sanscrit was foundel in the university of Oxford, and W. was clected to that lucrative post, not without strong competition. Ie accordingly left Calcutta for Euyland; and soon after his aurival was appointed Librarian at the East India House, in succession to Sir C. Wilkins. This appointment he held in conjuuction with the professorship until his death, which occurred on May S, 1860. He was married to a grand-daughter of the celebrated Mrs Sildons, by whom be had several chiletren. Wr., as au orientalist, takes mank with Sir W. Jones and 1F. '1'. Calebrooke. Even the various publications above mentioned by no means sufficiently iudicate the extent and variety of his researches, many of which are embodied in papers contributed to the Journal of the Asiatic Socicly of Lengal, and other periodicals.

WILSON, Joins, famous as Professor W'ilson, and the Christopher North of Blachwood's Mayuzine, was born on May 18, 178.5, at Paisley, where his

WILSON

father was a wealthy manufacturer. His earlier education he received in the house of Dr M'LLetchie, minister of the parish of Mearns, a wild moorland district in Renfrewshire, his boyish residence in which he long afterwards commemorated in some of his most charming essays. After having been transferred for a time to the care of the Rev. Joseph Macintyre of Glenorchy, in the Highlands, the love of which became for him a lifelong passion, he was sent to the unversity of Glasgow, where he remained for four years, distinguished as on the whole a diligent and snccessful, though somewhat fitful and irregular student. In 1803 , he went to Magdalen College, Oxford, where he became notable at once for the splendour of his intellectual gifts, and for his supremacy in the various athletic sports-bosing, rowing, runming, \&c.-which have always formed a not inconsiderable part of the edncation bestowed at the English unirersities. In 1806, he signalised himself by his Newdigate 1 rize poem, On the Study of Greek and Roman Architecture; and the year after, he took his degree of B.A., that of M.A. following in 1510. Meantime, he had left Oxford, and settled himself in Cumberland, attracted partly by the heauty of the Lake Country, and partly by a desire to cultivate the intimacy of Wordsworth, of whose genins he was already a devout admirer. He purchased the lovely little property of Llleray; where, for some years, he resided almost constantly. Besides Wordsworth, there were available in the district for intellectual converse De Quincey, Southey, and Coleridge (to whose Friend he contribnted some essays). With all of them, he became intimate; and when he wearied a little of celestial colloquy divine' with them, he sought it variety to life in measuring his strength against that of the far-famed Cumberland wrestlers, the very sturdiest of whom has left it on express record that he found him 'a vera bad un to lick.' In 1810 , he married a Miss Jane Penny, a Liverpool lady, of great personal attractions and much amiability of character, in his union with whom he found the main happiness of his life. He now serionsly devoted himself to poetry; and in 1812, published his Isle of Palms, which attracted considerable attention, and was followed in 1816 by The City of the Plague. This work shewed a marked increase of power; but it is questionable, despite the grace, music, and tender feeling of much of his verse, whether, as a poet, W. would ever have succeeded in developing the real force of his genius. His true field, however, was found on the starting, in 1817, of Blackwood's Magazine. Some years previously, a peeuniary disaster had befallen him; the fortune of $£ 30,000$ left him by his father being so seriously curtailed by the misconduct of a relative as to necossitate the breaking up of his establishment at Elleray. On this, he transferred himself to Edinburgh, where, in 1815, he was called to the Scottish bar; but it does not alpear that he had any opportunity of practice. As one of the briefless, with pleaty of spare time on his hands, along with his friend Lockhart, then in similar case, he lost no time in proffering his aid to Mr Blackwood. The astute publisher was at no loss to estimate the value of their alliance; and it is not too much to say that during its earlier years, Lockhart and W. were the sonl of the success of the magazine. Presently, Lockhart was withlrawn to succeed Gifford as editor of the Quarterly Revicu in London; and W., though never in any strict sense its editor-Blackwood himself throughont exercising a severe control-became, in the eye of the public, moore and more identified with the Magazine; in a certain modified, yet very real sense, to all intents for many years he was editor

452
of the Magazinc, and under his famous pseudonym of Kit North, swayed it before the world. In 1520, he was appointed to sncceed Dr Bromn, deceased, as Professor of aforal Philosophy in the naiversity of Edinburgh, his friend, Sir W. Hamilton, being one of the defeated candidates. His real claims to such a post, thongh not to be compared with those of Hamilton-who, at that time, howerer, had given little or no proof before the public of his consummate accomplishment and ability-have been somewhat noduly depreciated. They were not so by Hamilton himself, whose opinion it was, as reported by Mr De Quincey, that 'Wilson's philosophic snbtlety of intellect was not the least wonderful of his many wonderful gifts.' Thus much is certain, that as a professor, though somewhat desultory in his methods, he had an almost unexampled power of stimulating the enthusiasm of his stadents. Ont of his class-room, however, it must be admitted he but indifferently succeeded in attaining the staid ideal proper to the learned and respectable class of men with whom he was thus somewhat oddly associated. He was the most 'muscnlar' of 'Christians;' and on more than one occasion, the singular spectacle was exhibited of a scotch professor of moral science taking off his coat iu a public marketplace, to jutlict personal chastisement on some ruffian, whose olnnoxious proccedings had done ontrage to his nicer sense of the litness of things. Thongh sedulous and strict in his discharge of his duties as a professor, Wr. was loyal in his adhesion to Blackwood, and his contributions to the Magazine, in their mere amonnt enormous, continued to form the main part of his activity. In 18 ± 0, he suffered an irreparable loss in the death of his wife. His grief for a while nearly prostrated him, and seems to have flung something of a shadow over what of life remained to him. He continued, however, to contribute to Blackwood, though now somewhat more intermittently; and in ISt:2, he published, as The Recreations of Cheristopher Forth, a selection, in two volumes, from the mass of his essays furnished to it. During the session $1852-1853$, he was smitten by an attack of praralysis, which permanently incaracitated him for the discharge of professorial duty; and in Edinburgh, on Apri] 3, 1954, he died. During his last years, he enjoyed a peusion of £200 a year from government, in acknowledgment of his literary services. Besides lis puetry and preriodical writings, he published in 15:2 a volnme of sketches, entitled Lighles and Shadoess of scottish Life, which was followed the year after by his tale of liargaret Lyndsay. In these, as in his poems, the robuster side of his mind is scarcely;, if at all, represented; but the tender idyllic grace and charm by which they are pervaded, secured for them an extensive popularity, some portion of which they have since continued to retain. In his miscellaneons prose essays, critical and descriptive, and most especially in the celebrated series of dialognes entitled Noctes A mbrosiance, the true power of his genins is revealed. Of the genius, there can be little question ; though as to whether it has succeeded in embodying itself in forms which are likely to be permanent, there may reasonably be differeace of opinion. The materials for judgment are before the world in the collected (or rather selected) edition of his Discellanies, published since his death by his son-in-law, Professor Ferrier. As a magnificeut potentiality, it is scarcely exaggeration to speak of W. along with Burns and Scott as a member of the trinity (so to speak) of Scottish literary genius. Certain it is, that nearly as effectually as they did, he stormed the heart of the Scottish people, and bccame, in his later years-the Great 203

WILSON.

Novelist being gone-their ithot and accepted lite. rary representative. If be lass left belind him m work saered as his literary monument, thus much was almost involved in the conditions under which he wrote. Writing as lee tid from month to montl for the instant purpose of the hom; wise and steady conecutation of his cuerges became more and more eliffeult for bim. Not tho less, when all reasouable deduction is made, ho lolds his place as one of the most notalle literary figures in the cartier balf of this century. His range of power is extraordinary: from the nicest subtleties of fiminine tenderness, he passes at will to the wildest animal riot and the most daring grotesqueries of humour; and in what he terms ' numerons prose' the prose jroem or rhapsorly-a questionable and perilous, though, within wise limits, a lecritunate form of art -he may be held, in his tiner passages, to be at this day without a rival. As regards his life in detail, full information may be found in the atlectionate and felicitous Memoir, published in 1803 by his danghter, Mrs Gordon.

WILSON゙, Incuard, an English Iandscajepainter of great eminence, was the sun of a clercyman in Montgoweryshire, and was born in 1713 at I'inegas in that county. His early love of drawing attraeted the attention of sir George Wyune, his relation, who had him placed under the tuition of a portrait-painter in London, by name Thomas Wright. In portrait-painting, W. had consilerable success, but can searcely be said to have become cminent, when in 1749 he went to Italy to study the works of the old masters. At V'enice, he formed the acquaintance of the theu famous Zucearelli, who was so struck with the merit of a careless and random landse:tre sketch diashed off hy him as the whim of an idle moment, that he earnestly advised lion to forsake portrait for landscape, as plamly his true vocation. He was further encouraged in doing so by the praises of Vernet at Rome, who was greatly charmed by sume of his earlier eflorts. To land-scape-painting, he now exclusively devoted himself : and lufore returning to Einclavil in 1\%55, he had succeeded at loone in establishing a considerable reputation. In Lomlon, in 1760, he exhibited his great picture, the "Niolse,' which was bought hy the Duke of Cumberlaul, and at onee secured him rank as une of the tirst painters of his time. Another celebraterl work, his • View of Fome from the Tilla Madinna,' was exhilsited in 1765, and found a purchaser in the Marquis of Tavistock. Strange to say, howerer, his pictures, since so famons, failed to hit the general taste ; and while far inferior artists were eagerly patronisul hy the public, W. was for the most part neglected. Failing in the general market, he fell into the hands of the pieture-dealers, to whom he would frequently for a few prounds dispose of juetures which have since been suld for large sums. So straitened did he frequently find himself, that in 1770 he wats fain to solicit, and haply to obtain, the appointanent of Librarian of the lioyal Academy, with the tritling salary attached to it. As explanation in part of his otherwise almost unaceountable want of suceess, it is alloged that his manners were rude, and his temper sumewhat manecommodatiog ; with his brethren in art, he was notoriously the reverse of nopular; aud it is probable that in the general conduct of life be exhibited some lack of that tact and skill which eren men of the most distinct genius may find of some little avail to procure them a prompt recognition of it. By the death of a brother, who left him a haudsome sum of money, he was resenerl from the indigence, as it may almost be called, in which the greater portion of his life had been jassed ; and retiring to Llamberris in Denbigh-
slire, 'he died there some few years after in 1782. Oi his mbmerous pietures, now nuth prized, many are faniliar to the publie lyy engravings; in tho National Gallery, three very fine specimens of him may he foume and several others form jart of the well-knowa V゙ernon Collection.

Wllson, Geveral Sir liobert Thomas, was born in the year 1777 in London, where lis father was a painter. He was educated at Westmioster, and afterwards at Winchester, and when scarcely 17, ho joined the 15th Light Dragoons, then serving luder the Duke of York in Belgium, and took part in some sharp service, in which the regiment greatly distioguished itself. Shortly after his return to Lingland, he was married to a lady of great heauty and some fortnne, to whom, through life, he seems to have been ardently attached. In 1798 , he was engaged in Ireland in the suppression of the rebellion; and the year after, lie served in the unfortumate campaign of the Helder, and was present with his old regiment at the battle of Egmont-opZee. That in everything he proved himself a capable officer, may be inferred from his appointment soou after to command the small force of eavalry which served under Sir lialph Abercromby in ligypt. Here he formed a warm friendship with General, afterwarls Lord Hutchiuson, who succeeded to the command of the army after the death of A bereromby. His next service was at the conquest of the Cape of Good Hope in January 1806, where again be commaneled a small cavalry force. In the latter part of that year he went abroad on the staff of his friend, Lord Ilutchinson, who was sent on a mission to the king of Prussia, then a fugitive from his capital, and awaiting the result of the conflict pending betareen Napoleon and his allies, the liussians. WV. had now, for the first time, an opportnuity of secing war on a really gigantic scale, Leing present at the lesjerate battle of Eylau. (1. v.). The peace of Tilsit cusued, and W, thereuron returned to Englamel. The struggle in the leninsula had now commenced, and W. was sent to take part in it; he was active in the embodiment and traming of the Portugnese army, and subsequently, uuder Wellington, he commanded a Spanish brigade at the battle of Talavera. From this tield of action he was, however, withdrawn; and in 1812, he was attached to the Russian army as English military commissioner. During the tremendous strugglo which resultel in the capture of Moscow, and the operations which followed in pursuit of the doomed French army, he rendered important service both in comneil and in the battle-field; and he seems to have won the especial regard and confidence of the Emperor Alexander. Throughout the sulsequent campaigns in Cermany, and those which followed in France, coding wath the capture of Paris in 1814, be was present in a similar eapacity in the camp of the allies. At Liitzen, be took command of the I'russian reserve, and at a particular crisis of the battle, succeeded in screrely checking the enemy: At Bantzeu, he also distinguished himself; and a day or two after, the Euperor of Russia presented to him publicly the cross of the Order of st George, saying that he gave it as a memorial of his esteem for his comrage, zeal, talent, and fidelity to my scrvice.' His services during this period will be found noted in every military History of the time; and they amply prove him to bave been a most gallant and accomplished soldier.

After the peace, he became involved in the unfortunate matter of Queen Caroline; aod for his censure of the course $\mathfrak{p u r s u e d}$ by goverument he was dismissed the army. He was afterwards, however, reinstated. In IS41, be attained the rank of general; and from IS42 to 1S49, he held the post of governor
of Gibraltar. In ISIS, he had been returned to parliament in the Liberal interest for Southwark, and he retained his seat till 1S31. On 9th May 18 49 , having just returned from Gibraltar, he died suddenly in London. During his life, he published several works; in 1804, An Inquiry into the Military Force of the British Empire; in 1811, Campaigns in Poland, with Remarhs on the Riussian Army; and in 1817, a Sketch of the Military Power of Russia. During his foreign campaigns, he kept copious private diaries; and of these, two most interesting volumes, 'edited by his nephew and son-in-law, the Rer. Herbert Randolph, M.A.,' Tere some years since published by Mnrray of London. A Life of him has likerrise beew published ly Murray, under the same superintendence.
WILTON, a market-town and parliamentary lorough in Wiltshire, at the junction of the Nadder and Wily, athuents of the Avon, $3 \frac{1}{2}$ miles west-north-west of Salisbury. The New Chureh, a magnificent Romavesque edifice, decorated in the richest and most tasteful manner, was erected in 1844 by the Right How. Sidney Herbert, at a cost of 200,000 . The principal industry of the town is the mamufacture of carpets, especially Axminsters, and the carpets called Saxony, made of short staple wool. The burgh returns one member to the House of Commons. It is a station on the Salisbury branch of the Great Western Railway. Pop. of parliamentary borough (1861) S657. (IS71-S865.)

IT., a very ancient, and at one time important torn, was the capital of the Anglo-Saxon kingdom of W'essex, and gave name to Wiltshire. From the 9 th c. to the year 1244 , it was a busy and prosperous place; but in that year, the Great Western lioad, which had formerly passed through it on its way from Old Sarum, was diverted, and the prosperity of the town came to a close. The town stands near the site of a monastery given to Sir William Herbert, first Earl of Pembroke, by Henry VIll.; and the locality is rich in associations connected with the Herbert family. Here Sir Philip Sidney wrote part of his Arcadia. The present mansion is noted for its collection of statues, and for its pictures, including several excellent Van Dychs.

WI'LTSHIRE, or WILTS (called by the AngloSaxons Hriltonshire, from their capital town, Wilton, (f. 5.), one of the south-western counties of England, bounded on the W. and N. by Somerset and Giloncester, and on the E. and S. by Berks, Hants, and Dorsetshire. Area 865,092 acres; pop. (1561) 249,311 . The county is divided into two unequal larts-the plains in the north, and the hill district, which comprehends the greater part of South W .; and the separation between these tro parts is very nearly that of the Great Western Railway, the course of which across the county is from nurth-east to sonth-west, past Swindon and Chippenham. The plains incline north to the basin of the Thames, which forns in part the northern boundary, and are noted for their arricultural capabilities. The surface of this district is checkered with corn-tields and rieh pastures, and here the cheeses for which W. is well and favourably known are produced. The hill district presents ranges of bleak downs, with deep valleys, and is thinly peopled, much of it consisting of sulitary sheep-walks, on which it is estimated 700,000 sheep are pastured. Inkpen Beacon, 1011 feet high, at the junction of W., Hampshire, and Berkshire, is the nuelens whence proceed the North and south Downs of surrey and Sussex, and the hills which, running south through this county, become the North and South Downs of Dorsetshire. Agriculture is carried on with the assistance of modern improvements; many swine are reared, and W.
bacon is famous. Portland stone is quarried at Swindon, Tisbury, and in other localities; and a stone called Forest Marble yields coarse tiles and flagstones, and is said to retain in perfect preservation "the ripple-marks of wases and the footprints" of crustaceans.' The manufacture of woven goods, carpets and other woollen goods, silks and linens, is carried on at Trombridge, Wilton, Bradford, Devizes, Heytesbury, \&c. There are iron mines and blast-furnaces at Westbury and Seend. The rrincipal rivers are the Thames, with its tributary, the Kennet; and the Avon, with its tributaries, the Nadder and Wils. The county, exclusive of boroughs, sends four members to the House of

W. abounds in early and interesting antiquities. Amon.r these may be mentioned its Uruidical temples (see Ayebury and Stonehenge), British entrenchments, roads, and villages, barrows (in which heads, rude axes of stone, arrow-heads of flint, and sometimes articles in golkl, brass, or iron, have been found along with the relics of nortality), Saxon encampments, Roman roads and Norman castles, of which there are many remains.-See Mistory of Ancient W゙iltshire, by Sir F. U. Iloare.

W1'NCHESTER, a famons historical city, and parliamentary and municipal borough, chief town of Hampshire, is situated in the middle of the county, on the right lauk of the Itchen, 67 miles south-west of London by railway, and 60 in a direct line. It consists of ove main street, crossed by a number of streets running at right angles to it, and was in early times surrounded by a wall, of which remains exist. The houses for the most part spread over a hill rising from the valley of the Itchen; but the cathedral, and some of the older and more interesting portions of the city, stand on lesel ground close to the river-bank. 'The Castle-hill is the site of the old castle or royal palace, built in the 13th c. by Henry III., and of the magnificent hall, of which the only remaining portion is used as the County Court. About a mile from the torn is the famons hospital of St Cross, founded in 1136 by a bishop of W., Henry de Blais, for 13 poor men, 'decajed and past their strength.' It was munificently endowed; but its sources of income have been narrowed, and its ancient charters and grants were destroyed during the 13th century. Its income now is $£ 10 S 8$ per annum, and it supports 13 poor brethren, atfords relief to a number of external poor, and distributes general doles on the eves of great festivals. The hospital is entered by a gateway, after passing which, a lleasing view is obtained of the buildings, which occupy three sides of a quadrangle, the fourth side being occupied by a most picturesque ancient chnreh in Transition Norman, which formed part of the institution. There is a city library and a musenm; the latter contains some very interesting local antiquities. Charles II. commenced a palace here, but the part completed is now used as larrachs. The city cross in the High Street, dating from the läth c., is very beautiful in design.

The college of W., called originally 'Seinte Marie College of Wynchestre,' now St Mary's College or Winchester College, was fuunded by William of Wykeham, Bishop of W., in 1357, and the luildings were completed in 1393 . The buildings are, fur the most part, uf the age of the founder, Bishop Wykeham, and consist of two quadrangles and a cloister, together with recently erecterl houses for the commoners. The famous dulce domum is sung by all the boys in the courts of the college before the breaking up of the school at the long vacation. The foundation consisted originally of a warden, 10 Fellows, 70 scholars, a
lseal-master (informalor), an usher (ostiarius) or secund master, 3 chathains, 3 elerks or singing-men, and 16 choristers. liy an oulinatnee of the Gxford University Commission, which took uflect in 1857 , the number of Feellowships is to be reelnced, as racancies ocenr, to six, the mumber of schulars to lre increased to 100 , amd 20 exhibitions to bo fonnded; and in accorelance with this regulation, the number uf lellows is now (1867) mine. l'he charter of the school, which is in existence, was granted by lichard II. jn 1896, and contimed hy all the sulsequent sowereigns of Jinelimel, Mary excepted, down to Charles II. 'Ihe visitur is the dislomp of Wr., aml the warden and two Fehlows of New College, Oxford, bukd an atumal "scrutiny", which practically consists in questioning the seven senior and seven junior scholars as to their comforts, and listming to any complaints they liase to make. The codowment, which amounts at present to about at 17,600 ammilly, consists of landed moperty ant funderl stuck; and of this about $x 600$ goes to expenses of managenent. The warden and Pollows are the governing hody of the college. The pupils of the school are of two classes-fomelation scholars and commoncrs. The scholars are elected, between 10 anl 14 years of age, by the warden, sub-warden, ant Lead-master of the college, jointly with the warden and two Nellows of Niew College, Oxford, by competitive examination; the average ammal number of vacancies leines 10 , and the nomber of candidiates 150 . The scholars are well fonardel, lodged, and cducated, at the expense of the fomblation; having to pas, for some incidental
 but tradition exereise's a powernl influence at 1 F ., anil many of the quaint oldeustoms of the school, such as dining off wooden trenchers, dec., are still retained. The mumber of the conmoners lias lluctuated much; Int uwing to the better position in which they were placed by the new regulations of 1857 , they bave averaged "00 mmally for smo years; they generally enter between 11 and 10 years of atge, and stay $3-4$ years, and not being fonndation-boys, are boarled in the honses of the heal and other masters, at a total ammal cost of ± 115 (inclurling expense of tuition, lucket-noncy, and cost of travelling). W. prossesses 13 F'cllowships ant 30 scholarships at New Cullege, Oxford (also tomnded ly William of Wykeham), (pen to scholars and commoners alike (since 18.57), and tenable for five ywars, besides numerons uther prizes. Fagging is permitted to the 1 S chiof boys, who are calledi 'prefects,' The monitorial systen was lirst established bere, and is still in force -the monitors loeing the 'prefects.'

A churel is said to bive been lynilt at $\mathrm{IV}^{\text {, in }}$ in the year 169 ; to have been destroyed in 266 , restored in 293 , and eonverted into a 'temple of Dagon' (by whom we are to mulerstand Wrodin) by the siaxons under © erdic in 495. In 635 , the polluted chareh was pullerl down, and a new one commenced, nuder the superintendence of Birinus, the first apmstle of Wessex: and King Kiynegils granted the whole of the land for the space of seven miles roumd the city for the support of the episcopal seat and the re-established monks. From the year 6 - 4 , the suc. cession of hishopes of W... of which the celebrated St Swithin (sce siwiturin, ST) was une, contimues unbroken. Of Jirimes's eathedral, however, in which most of the Silxon kimos of Wessex (sce JIEITARCIIY) were interred. and on the altar of which, aceording to tratition, liny Cannte hung uls his erown after the well-known scenc on the sea-shore, no purtion penains, and a new cathealral-the present one-was luilt 'from the foundations' by Bishop, Wralkelin ($10.0-1097$) ; aml after its completion, and the remoral into it of the precions relies of Birinus's
cathedral, that old edifice was polled down. Wrialiam of II ykeham-regardiner whose qualatications to dill the episcopate, Wicliffe can say wothing mome than that he was 'one wisn in buldinet eastles'-was
 closely than :ny other lishonk assuciaterl his name with lis episcopral eity and its cathedral. Ilo creatly enlarged and beantilied the building, and he legen the transformation of the nave from Norman to lerpemelicular. The cathedral is 5on) fect long, lomere than any other cathelral but uf Italy, with the exceptions of those of Ely (ixto feet), ind Canterlury (525 feet). Its limealth at the transcpits is eon fect, the length of its Have is 3ill feet, its leiglte $S 6$ feet, amel a low cuntral Norman tuwer 150 fect high. 'I'he exterior is somewlat lisappointing, owing to its musual want of decoration, ind to the lowness of its Nomman tower; lut the interior is marnificent, ame contains many oljjects of the highest interest-as the tomb of Williau liufus; bromze figures of Charles 1 , ibsel James 1.; mortuary ehests which contaned the ashes of a mumber of brest Saxon lings and hislupps, but which wore ngencl during the Civil Wiar, and their contents seattered abont the chareli ; the golalen shrine of St Swithin, with some excellent specimens of senlpture, both ancicut and recent: the tomb of Edmumd, the son of Fing Alfred-Alfred bimself being buried in the vicinity-and the tomb of 1zatk Wrilton. 'Ihe various arehitcetural sty" to be noted in the catleetral are: Farly Noman in the cljort and transepts: Jiarly Jinglish in the eastem aisles and chapels behind the preshytcry; Jecorated in the piers and arehes of the preshytery; and J'wrpendicular in the Have, which, for bearty and grandenr, is perbaps untivalled in England. After the cathedral, there are many churches of creat interest, and in the Transition Vorman and Perpendicular styles; and there are many other buikdings of a religions and educational kind. The industries of W^{\top}. are ummportant. I'op. nf muncipral and parkamentary borungh (1861), 14.776 , rejuresentel by two members. (1S71-101, 14,70.5.)
W., the lioman Ienla Belyarmm, was the site of a Britisl! city before the arrival of the Jiomans in Jiritain, Cor-Ciment (forent \Rightarrow champaign ux (down). It afterwards became a Roman station, and, as such, was a place of comsiderable importance, aml contained temples of Apollo aml Concord. When taken by the saxons in 49%, it contained at least one C'hristian chureh. 'Ille Saxons changed the name Ventil into Wiate, and called the town Wintanceaster-i.e., the city of the Ninte, or Winchester. In 126.7, during the binons' wir, 1^{+}. was sacked. Up to this time the trade of this town lad rivalled that of Landon ; but after leingr sacked, it never recovered its commercial prosperity. From the time of Charles II., the town las gradnally deelined-its chief somrees of life and movement being the cathedral and the college.

WrlNCHESTER, a village of Tirginit, TV. S., in the valley of the shemandoalh, 150 miles north-northwest of Cichmond, 71 west-hy-north from Washington; 32 miles by railway to Haprev's Jicrys. It his twelve clurches, an acalemy, two newspapers. Narch 12, 1862, it was nccupial ly the Federal General banks, and was duriner the war the seeme of frequent conficts, and occupient in turns by the Federal and Confederate armies. I'O. in 1860 , 439.2.

WI'NCING MACHINEE, the wheed used by dyers for winding ont of their dye-vats long pieces of eloth. The vat is often divicled by a partition, and the wincing-machine is generally so placed that it will wiud the picee of cleth from one
compartment to the nther, according to the direction given to the handle.

Winckelmann, Johany Joachon, well known as the critical exponader and historian of ancient classical art, was horn of poor parents in the year 1717, at Stendal, in Prussia. He very carly shewed an eager desire for knowledge, and being sent to the free school of the place, became so special a favourite with the rector of it, that he was taken into the rector's honse as a companion, when age and blindness marle some assistance necessary to him. After studying for a time in Berlin, he went, in 173 S , to the noiversity of Halle, where he remained two years engaged in the study of theology, which, however, he found so distasteful that, at the end of that time, he relinquished it, accepting a situation as tutor in a private family at Osterburg. In 1743 , he became a schoolmaster at Seehansen-a wretched position, from which he was rescued by the C'ount von Buinau, who employed him as secretary in his library at Nothenitz. Here he remained some years. Jeiog in the vicinity of Dresden, he had frequent opportunities of inspecting the fanous treasures of art accumulated there. He also made the acquaintance of some artists of eminence, among others, the well-koown Ocser; and the enthusiasm was awakened which determined his sulbseqnent career. To the theory and history of art he now resolved to devote himself; and on being thrown into the society of the Pope's muncin, C'ardinal Archinto, he was induced, after some hesitation, to become a Roman Catholie, on a promise of a pension being procured for him, to enalule him to proceed to Fome. Thither he repaired in 1755, having previously published at Dresden a treatise, entitled Gedanken über die Nachatemung der Griech. Herke, \&ic. (lieflections on the lmitation of the Antique, 1754). Of this work he issued, in 1756, a new and enlarged edition. At Rome, he prosecuterl his studies with the utmost ardour, and every facility; was afforded him. In 175S, he risited Naples, to examine the celebrated remains of Iferenlanenm, Yompeii, and Prstum: and went also to Florence, for the 1 nurpose of catalogniag the famons collection of autique gems belonging to Earon de Stoseh, a labour which occupied him for nine months. Soon after, the Carclimal Albani appointed him his, librarian, and the salary attached to this post. with the pension continued from Dresden, in atself a somowhat meagre pittance, enabled him to prosecute lis studies in comfort. The first-frnit of these alpeared in his treatise, entitled Anmerkungen über die Batkunst der Alten iRemarks on the Architecture of the Ancients), which was printed in Germany in 1762 ; and two years afterward, the great wrork of his life, on which he had heen long engaged, the celebrated Geschichte der $\overline{\text { un unst des Alter- }}$ thums (History of Ancient Art), was issued from the press of Dresden. In 1767, a supplement to it was added. He also gave to the world the result of bis researches at Herculaneum ; and in 1766 , his Monumenti Antichi Inediti, an elaborate work with jlates.

Iu $17 \mathrm{GS}, \mathrm{W} .$, by this time famons throughont Emrope, set out to revisit Germany. His destination was Berlin; but on the way, a strange yearning seized him for the Italy he had left; on his reachiog Munich, it was no longer to be resisted; and be started thence on his return to Fome. He went ly Vienna. where the most flattering attentions were paid himm ; procecding thence to Triests, where he came by his tragic end at the hands of a fellow-traveller, ly name I'rancesco Arcangeli, who nurlered him in order to plunder lis effects. In this he did not succeed, being scared alnost in the act, and presently caught and executcd.
W. Was the forerunner of a great movement; and his influence has been deeply felt in all the subsequent literature of the subject to which he devoted himscle. Even at this day, when a good deal of it is regarded as obsolete, lis great History remains as a work not to be neglected by any one scriously concerning hinself with the stndy of this branch of aesthetics. The most complete edition of W.'s works is Fernow, Mayer, and Schulze's (S vols. new ed. Leip. 1S2S).

WIND is air in motion. The force of the wind is measured by Ancmometers (q. v.), of which sorne measure the velocity, and others the pressure. The following are a few velocities of wind, translated iuto popular language: 7 miles an hour is a gentle air ; 14 miles, a light brceze; 21 miles, a good steady breeze; 40 miles, a gale; 60 miles, a heavy storm; and S0 to 100 miles, a hurricane sweeping everything before it. We also add a few comparisons of velocity and pressure: 5 miles an hour is a pressure of $\mathscr{-} o z$. on the square foot; 10 miles, $\frac{1}{2}$ ih. ; 20 miles, 21 lss ; ; 010 miles, $4 \frac{1}{2}$ lhs. ; 40 miles, $\$$ lbs. ; 51 miles, 13 lbs ; ; 60 miles, 18 lbs ; 70 miles, 24 lbs. ; SO miles, 32 lbs. ; and 100 miles, 50 lbs . During the severe storm which passed over London, on February 6, 1867, the anemometer at Lloyd's registered a pressure of 35 lbs , to the square footin other words, the wind during that storm acquired a velocity of S 3 miles an honr. Wind is most frequently measured by estimation.

Scamen have more need than landsmen to pay atteution to every minnte variation in the strength of the wind, as well as its direction, and to alopt such phrases as will reuder that strength generally intelligible. The Anemometer (q. r.), which is used on land by scientific men for this purpose, is unsuitel to the wants of seamen. They have found it convenient to divide wiads in to twelve kinds, in relation to strength, desiguated thus: juint air, light air, light breeze, fentle bretze, fresh breeze, gentle gale, moderate gale, brish gale, jresh gale, strong gale, ilard gale, and storm. Each of these is determined by the amount and kind of sail which a ship can safely carry at that moment. The estimate of the wind's force by the seale 0 to 12 , means that 0 represents a calm, and 122 hurricane. If such estimations be divided by 2 , and the quotient squared, the result will be the pressure in pounds, aproximately.
All wind is eaused, directly or indirectly, by changes of temperature. Suppose the temperature of two adjacent regions to become, from any cause, differeat, the air of the warmer, leing Iighter, will ascend and llow over on the other, whilst the hearier air of the colder region will flow in below to surply its place. Thus, then, a difference in the temperature of the tro regions gives rise to two currents of air-one blowing from the colder to the warmer aloag the surface of the earth, and the other, from the warmer to the colder, in the upper regions of the atmosphere; and these currents will continue to blow till the equilibrium be restored.

Winds are classed into Constant, Periodical, and Fariable Ilinds.

Constant Winds. The Traderrinds.-When the part of the earth's suriace which is heated is a whole zone, as in the case of the tropics, a surface-wind will set in towards the heated tropical zone from both sides, amel uniting will ascend, and then separating, How as upper currents in opposite directions. Hence, a surface-current will tiow from the higher latitudes towards the equator, and an upper-current towards the poles. lf, then, the earth were at rest. a north wind would prevail in the northern half of the globe, and a south wind in the southern lialf. But these directions are modified by the rotation of the earth

WIND.

on its axis from west to east. In virtue of this rotation, objects on the earth's surface at the equator are earricel round toward the east, at the rate of 17 miles a minute. But as we reeede from the equator, this velocity is contimually diminished : at lat. 60°, it is only 5. miles a minute, or half of the velocity at the equator; and at the poles it is nothing. A wind, therefore, blowing along the earth's surface to the equator, is constantly arriving at places which have a greater velocity than itself. Inence, the wind will lag behind, that is, will come itp against places towards which it blows, or become an east wind. Since, then, the wind north of the equator is under the influence of two forces-one drawing it south, the other drawing it west-it will, by the law of the eomposition of forecs, flow in an intermediate direction, that is, from north-east to south-west. Similarly, in the southern tropic, the wind will blow from sonth-cast to north-west. All observation confirms this reasoning. From the racat service these winds render to navigation, they have been ealled the Thade-winds. It is only in the Pacific and Atlantic Oceans that the trade-winds hare their full scope. In other parts of the trades' zone, such as Seuthern Asia and intertropical Africa and America, they are more or less diverted from their course ly the unequal distribution of land and sea, as explained muder Monsoon (q. v.).

In the Atlantic, the Forth Tredes provail between lat. 9° and 30°, and in the Pacitic, between lat. 9° and 26°; and the South Trades, in the Atlantic, between lat. 4° N. and $\because 2^{\circ} \mathrm{S}$., and in the Pacitic, letween lat. $4^{\circ} \mathrm{N}$. imd $23 \frac{1}{2}^{\circ} \mathrm{S}$. These limits, however, are not stationary, but follow the sun, alvancing northward from January to June, and southward from July to Decenber.

Region of Calma. - This is a belt, 4° or 5° broad, stretching across the Adlantic and Pacifie, parallel to the equator. It marks the meeting-line of the north and sonth trades, where they mutnally neutralise each other. Here also occur heary rains, and thunder-storms almost daily: This belt varies its position with the trades, reaching its most northern limit in July, and its monst sonthern in January: When the belt of calms nears the African coast, in the Gulf of Grinea, the copious rainfall gives rise to the strong stenly-hlowing gales of that const, called Tornadoes.

Return Trades.- It is proved by nbservation that, while there is within the tropies a surface-wind blowing toward the beld of calms, there is at the same time prevailing, in the higher region of the air, a counter-current constantly dowing toward the pales. These great aërial currents descend to the surface after they have passed the limits of the trade-winds, forming the sonth-west or west-south-west winds of the north temperate, and the north-west or west-north-west winds of the south temperate zones. The westing of these great ecinatorial currents is producel hy the same cause that gives casting to the trade-winds, viz., the rotation of the earth on its axis. Owing to the interference of the north-east or polar current with these winds, the irregular distribution of land and water, momitaiu and plain, and storms diverting them out of their course, they do not blow with the ennstancy of the regular trade-winds. They are, however, sufficiently marked and dceiled to be elassal with the constaut winds.

Pemiontcal Winds. Lamd and Sea BrcezesThese are the most geveral, as well as most casily explaned, of the periodical winds. On the coast, within the tropies, a breeze sets in from the sea in the morning, at first in mere lreathing on the land, but pradually it iucreases to a stifl breeze in the heat of the day, after which it sinks to a calm towards
evening. Soon after, a contrary brecze springs up, from the land, hlows strongly seaward during the night, and dies away in the morning, giving place to the sea-breczo as lefore. These winds are cansed during the day, by the land getting more heated than the sea, consequently the air over it ascends, and the cool air from the sea flows over on the land to supply its place; aud during night, by the temperature of the land falling below that of the sea, and the air heenming therehy heavier and denser, llows over the sea as a land-brecze. It is within the tropics where sea-breezes are most marked and constant, hecause there the sun's heat is greatest, and atmospheric pressure is practically uniform, except in those rare instances where it is disturbed ly hurricanes. Lut in comeries such as Great Britain, where atmospheric pressure is most commonly, to some extent, greater or less than that of surrounding regions, the strength of the wind blowing from the high to the low larometer is far stronger than that which would result from the disturbance caused by the unequal heating of laud and water; and consequently the sea-brecze is not felt. In the warm months, however, when birometers are nearly equal over northern and western Fhrope, there is a gentle sea-brecze all round Great lisitain during the heat of the day, and a land-brecze during night. Quite malogoms to the land and sea breezes are the Monsoons ($\mathrm{I} . \mathrm{r}$.), which are only the north trades drawn out of their course in summer by the heated regions of Southern Asia-the south-west monsoon being only a vast sea-brecze blowing on Southern Asia, and continuing several months of the year.

Variable Winds.-These winds elepend on purcly local or temporary eauses, such as the nature of the ground, covered with vegetation or bare; the physical configuration of the surface, level or monntainons; the vicinity of the sea or lakes; and the passage of storms. Within the tropics, all except the last of these is hame down by the great atmospheric currents, which prevail there in all their force. But in higher latitudes this is not the ease; these, therefore, are the regions where variable winds prevail. The most noted of these winds are the Simoom (q.v.), Sirocco, Solauo, and Harmattan (q. s.). The P'une IFinds prevail for four months in the fear in a high barren table-land in Pern called the Puna; as they we prart of the south-east tradewind, after lanving crossed the Andes they aro drained of their moisture, and are consequently the most dry and parching winds that occur any where on the glole. In travelling over the Puna it is necessary to pratect the face with a mask from the glare and heat of the day, and from the iutense cold of the night. The EGast IVinds which prevail in the Dritish Islands in spring are part of the great polar current which at that season deseends over Europe through lussia. Their origin explains their drymess and mulealthiness. It is a prevalent notion that the east winds in this comntry are damp. lt is quite true that many easterly winds are peonliarly damp; all that prevail in the front part of Sterms ($(4 . v$.$) are very damp and rainy, they$ being simply an indranght of the air towards the low baroncter which is advancing from the west at the tine; and it is owing to this circumstance that in the east of Scotland the greater part of the annual rainfall falls with casterly winds. All of these damp easterly winds, however, soon shift round to some westerly point. But the gennine east wind, which is the dread of the nervous and of invalids, does not shift to the west, and is speeinlly and intolerably dry. In the third week of May 1866 this character was strongly marked, when at many places in scotland the humidity was only 40 ,
and on some occasions as low as 29 ; the degrec of this dryness will be appreciated when it is stated that the dryest month during eleven years ending with IS66, shewed a humidity only of 73, saturation being 100 . While this wind lasted, the daily range of temperature was donble the usual amouut, the soil was parched, and the leaves of trees and plants were blackened and destroyed. Deaths from braindiseases and consumption reach the maximum in Great Britain during the prevalence of east winds. The Etesian Winds are northerly winds which prevail in summer over the Mediterranean Sea. They are caused by the great heat of North Africa at this season, and consist in a general flow of the air of the cooler Mediterranean to the south, to take the place of the heated air which rises from the sandy deserts. The Mistral is a steady, violent northwest wind, felt partieularly at Marseille aud the sontl-east of France, hlowing down on the Gulf of Lyons. The Pampero blows in the summer season from the Andes across the pampas of Buenos Ayres to the sea-coast. It is thus a north-west, or part of the anti-trade of the southern hemisphere, and so far analogous to the stormy winds which sweep over Europe from the south-west. But since it comes from the Andes over the South Ameriean continent, it is a dry wind, frequently darkening the sky with clouds of dust, and drying up vegetation.

Lord Bacon remarked that the wind most frequeutly veers with the sun's motion, or passes round the compass in the direction of N., N.E., E., S.E., S., S.W., W., and N.W., to N. This follows in consequence of the influence of the earth's rotation in changing the direction of the wind. Professor Dove of Berlin has the merit of having first proponnded the Lav of the Rotation of the Winds, and proved that the whole system of atmospherie currents-the constant, the periodical, and the variable winds-obey the influence of the earth's rotation.

WI'NDAGE, in a Gun, the difference in diameter between the bore of the piece and the projectile with which it is loaded. Formerly, a considerable
windage was allowed; but this only served to diminish the force of the explosion, aud to give an irregular motion to the shot. In the present rifferl artillery, it is songht to reduce the windage to a minimun, as oI of an inch. Some windage is indispensable, or the shot would jam either going in or coming orit.
WINDAGE (from cannon-balls), or WIND CONTUSIONS. Military surgeons so often meet with eases in which serious internal mischief (as, for instance, the rupture of the liver, concussion of the brain, or even a comminuted fracture of a bone) has been inflicted, without any external marks of violence to indicate its having resulted from the stroke of a eannon-ball, that they were led to the conclusion that solid objects projected with great velocity through the air might iuflict such injuries indirectly by aërial percussion; the burt being inflicted either directly by the force with which the air is driven against the part, or indirectly by the rush of air to refill the momentary vacuum created by the rapid passage of the ball. So many ohservations have, however, been made of cannonballs passing close to the hody (even shaving part of the head, tearing away portions of uniform, or carrying off the external ear or the end of the nose, without further mischief), that this hypothesis is totally untenable, and is now generaliy rejected. The true explanation of the cases formerly attributed to the windage of cannon-balls appears to rest, according to recent view's, 'in the peculiar direction, the degree of obliquity with which the missile impinges on the elastic skin, together with the situation of the structures injured beneath the surface, relatively to the weight and momentum of the ball on one side, and hard resisting substances on the other.' See Longmore's article on 'Gun-shot Wounds' in Holmes's System of Surgery, vol. ii., pp. 1S-20, where the subject is fully discussed.

WI'NDERMERE, WINANDERMERE, or LAKE WINDER, the largest lake in England, called, ou account of the supposed superiority of

Lake Windermerc, from Elleray.
its shores, in point of natural beanty, over those 'entering the lake, aud by the streams which drain of the other lakes of North-western England, the neighbouring lakelets of Esthwate, Troutbeek, the 'Queen of the Lakes', is partly in the county of Lancaster, and partly divides that county from Westmoreland. It is 11 miles long, and about 1 mile in extreme breadth, is fed by the Brathay and the Iothay, the waters of which become united before
aud Dielham, and discharges its surplus waters southward into Norecambe Bay by the Leven. Next to Wast Water, W. is the decpest of all the English lakes, its greatest flepth being 240 feet, while Wast Water is 270 feet decp. It contains

WINDGALLS-WIND-INSTRUMENTS.

a number of islands, the largest loeing 25 acres in superficial extent, and the chicf of which are Rongh llohn, Tlonse Ilolm, Lady Moln, and Curwen's or Belle lsle. Soft rich beauty is the prineipal characteristic of the islands of the lake, of the wooded shores, and of the scunery arommel; there loing a total alosence of that wildness aud sub. limity which characterises some of the other lakes, except at the north end, where Langdale I'ikes, Harrison Stickle, Sca Fell, and Bow Fell stand forward prominently in the landscape. The east and west shores are hounded hy gentle eminences exuberantly wooded, and mumerons villas and cottages peepuing out of the woods give an aspect of puiet domesticity to the landscaje. About a mile from Waterheal, at the north extremity of the lake. is the town of Ambleside, It miles north-west of which is Rytal, the residence of the poet Wordsworth; in the vicinity of W゙aterhead is Dore's N Nest , the cottage at one time oceupied by Mrs Memans; further down the east shore is Elleray, famous as the residence of 'C'hristoplaer North : ind halfeway down the lake, on the eastern shore, is Bowness.

WI'NDCXALLS are puffy swellings ahout the joints of animals, nartienlarly of horses, correspond to the ganglions of human surgery, and result from irritation and inflammation being set up within the delicate symovial cavities, which thos secrete an musual quantity of thickened synovia. Rest, moderate worls, wet bandages, and oceasional hlisters reduce the swellings, but with fast roadwork they are apt to reappear, especially in old horses.

WINDHAM, Right Mos, Willian, English statesman, born, 1750, in Colilen Square, Lonton, was son of Colonel Windham of Felbriger Itall, Norfolk, in whieh county the family had been settled since the 1 ? th century. ILe was edueated at Eton, and was afterwards scut to Glasgow University, where he studied mathematics with success. In 1761 , he entered at University College, Oxford. After the, usual course of travel, he began to acquire notoriety as an opponent of the adminis. tration of Lord North. Ilis oratorical exereises were interrupted lyy a clesign of visitiog the Nortl Fole, and le acconpunied the expedition in which Nelson, then a youth, tools part. He found the sea-sickness intalcrable, was put on shore in Norway, and returned home in a crreenland whaler. In 17S1, he was returned to parlimment for Norwich, and took his seat among the Whigs. In 17S3, on the formation of the lortland ministry, remarkable for the coalition of Lord North and Nr Fox, he became principal secretary to Lord Sorthington, then lord-lientenant of ireland. Before leaving England, he called upon his friend Dr Johnson, and lamented that his situation would compel him to sanction practices he could not approve. 'Don't be afraid, sir,' replied the doctor, 'you will soon make a very jretty raseal.' IIl-health, or, perhaps, conscientious seruples, soon cansed him to resign his secretaryship. In 17S4, he seconded Burke's motion for a representation to the throne on the state of the nation. There is an admirable and charaeteristic sketel of W. in Nacanday's deseription of the trial of Waren Hastings: "Hhere, with eyes momentarily fixed on Burke, appeared the first gentleman of the age, his form developed by every manly exercise, his face beaming with intelligence and spirit- the ingenious, the chivalrons, the highsonled Windbam.' Abandoning his old friends the Whigs, he followed Nr Burke, and ranged himself on the side of Mr Pitt in (mplosing the speculative doctrines of the French lievolution, and supporting the war with France. In 1794, he became secretary-at-war under Mr Pitt, with a seat in the cahinet.

Te now attacked his former friends witl the utmost acerbity. Ihe went ont with I'itt in ISOI, and sided with the Gronvilles in stimmatisiog the peace of Amiens, concluded by the Addington administration in 1S01. 'Phis lost him his seat for Norwich, Lut lie was elected for St Mawes, and on the return of the ciremille party to power, lie beeame colonial secretary. In ISU6, he brought forward his plan of limited service in the army, proposing that the infantry should be enlisted for seven years only, with liberty to renew their services for another seven years, receiving an increase of pay; eavalry and artillery to be enlisted for ten years, the seconil period six, and the third five years. Me also proposed to inerease the pay and pensions of ollieers and men, and generally to better the condition of the soldier. The plan was strenuonsly opposed, but juassed into a law. He went ont of oflice in 1SU7, when the Portland administration was formed (having previously declined the offer of a peerage), and strongly denomeed the expedition against Cojenhagen, and afterwards the disastrons Walcheren Expedition. In 1505 , a clause was introdneed by Lord Ciastlereagh (who had succeeded W. in office) into the Mutiny Act, permittiug men to enlist for life, contiary to W.'s scheme of limited service, which was, however, re-adopted in IS47. In May, he under. went a surgical operation for extracting a tumour from his hip, from the effeets of which he died June 3,1 Slu.
W. wias an excellent speaker, and one of the most effeetive and skilful debaters of his time, as will alpear from his speeches collected by Mr Amyott, his secretary, and jublished, with a Life prefixed, in 3 vols. Sro. Fox said he land never met a meditating man witl so much activity, or a reading man with so unuch practical knowledge. Pitt declared that his specehes were the finest prodnctions possible of a warm imagination and fancy. Canning deseribed his eloquence as, if not the most commancling, at least the most insimating that was ever luard in the IIouse of Commons. Dr Jobnson, who was mueh attaclied to him, declared that, in the regions of literature, W. was inter stellus luna minores. He possessed brilliant conversational powers. Iet, notwithstanding lis great talents and rare gifts, he appears in the page of history as the mere shadow of a man. In his lifetime, he gained the disparaging uiclaname of the weathercoek.' He was fond of paradox, and once defended bull-bating in the House of Commons with great vivacity and ingenuity. Although a man of relinement and sensitiveness, he had a passion for pugilism, aud was a regular attendant upon prize-fights. The publication of his Diary fiom 1784 to 1810 , by Mrs Jienry Baring (1866) discloses the secret of his weakness. Morbidly self-conscious, he was always watching limself, pulling himself to pieces, and recording the doubts that hamed him as to his mental capacity. Acknowledged ly lis contemporaries to be one of the manliest of men, he succeeded in infnsing into his mind doubts with respect to his own conrage. He got rid of this delnsion by going under fire in the trenclies at the siege of Valenciennes; but no sooner was be convineed that he was not a cowarel than he began to be afraid he was disereditaloly insensible to the scenes whiels were passing around him! With brilliant faculties, he was in fact an intellectual hypochondriae incajable of achieving anything great.

WIND-INSTRUNENTS, musical instruments of whicla the sounds are produced by the agitation of an enclosed column of air. They are generally classified into wood instruments and lrass instriements (both of which are played by the breath), and the organ.

WINDLASS-WINDMILL.

The name wood instruments is applied to musical instruments constructed either of wood or of ivory, of which the principal are the flute, piccolo, clarionet, flageolet, basset-horn, oboe, and bassoon. They are generally characterised by a soft, smooth, aërial tone, resembling the human voice. By the use of holes and keys, considerable compass is given to them; they are capable of producing only one sound at a time, but with considerable command of piano and forte. Of brass instruments the chief are the horn, trumpet, trombone, cornet-a-piston, euphonium, bombardon, and ophicleide. They are generally more powerful, and their quality more piercing than wood instruments; the ophicleicle, howerer, approaching more than the rest to wood instruments in capabilities and tone. In a full orchestra there are generally two flates, two oboes, two clarionets, two or four horns, and two bassoons, frequently with the addition of two basset-horns, one or two piccolos, and one or two ophicleides or trombones. Each part, except when there is an unusually large number of bow-instruments, is single.

The organ is a combination of a large number of wind-instruments, sounded, not by the breath, but by the admission of air into the wind-chest, by means of keys pressed down by the performer.

WI'NDLASS is that modification of the wheel and axle which is employed in raising weights, such as bucketsful of water from a well, coals from a pit, \&c. Its simplest form is that of an axle suppurted by pivots on two strong upright pieces, and pierced near one end with fonr or six square holes,

Fig. 1.-Ship's Windlass.
into which handles, known as handspikes, are inserted. In other forms, a winch at each end is substitnted for the handspikes. If the weight (say a bucket of water) is to be lifted a considerable distance, the length of the rope which attaches it to the axle largely increases the weight, and thus aids the power when descending, and counteracts it when ascending. This difficulty is partially got over by employing a double rope with two buckets, one of which ascends while the other descends ; but this modification, though partially effective for the end in riew, lends aid to the power when aid is least, and hinders it when aid is most, required. A more efficacious plan is to form the axle not cylindrical, hit of a barrel-shape, like two truncated cones placed base to base, and to fasten two ropes, one to each end, so that when coiled up round the barrel they approach the middle; in this case, when one rope is fully uncoiled, and winding-up commences, the gross weight, which is then at its maximum, acts at the minimum leverage of the end, and as the progress in winding up diminishes the weight, its leverage so increases that the momentum is preserved uniform. On the other hand, the empty bucket, when commencing its descent, acts at its grcatest leverage, and as the unwiuding of the rope adds to the weight, its
leverage becomes smaller, so that the momentum of the descending weight always remains the same; and thus the strain on the power is preserved uniform. The ratio of the weight to the power it is sometimes found necessary to increase greatly; but with the ordinary windlass this could only be effected by similarly increasing the ratio between the leverage of the handle and the radius of the axle-an object attaiued by a great increase of the former, rendering the machine too cumbrous, or by greatly diminishing the latter, and so weakening it. The desired result is attained, however, in a manner not liahle to these oljections, by the use of the differential aalc (fig. - -), an axle of which one half is of greater diameter than the other, and the single rope, after being coiled round the whole axle from end to end, is fastened at each end of the axle, and the weight is hung by a pulley, which is supported in a bulge in the centre of the rope. As the portion of the rope on one half of the axle is

Fig. 2. unwound, that on the other half is wound up; but since the rates of winding aud unwinding are different, the bulge of the rope increases when the rope is wound on the smaller end of the axle, and decreases when it is wound off the smaller end. The more nearly equal the two radii of the axle are, the greater is the weight which can be raised hy the power-the ratio between the two being WV radius of circle described by power
$\overline{\mathrm{P}}=\overline{\text { lifference of radii of the portions of the axle }}$; so that if the radius of the power is 18 inches, and the radii of the axle 5 and 4 incles, the power balances a weight $=18$ times itsclf; while the strength of the axle requires to be only equal to that of one of the ordinary kind, in which the power can only balance a weight $=4 \frac{1}{2}$ times itself. The same principle is applied to the Screw ($\mathrm{q} . \mathrm{r}$.). For a very accurate estimate of the mechanical advantage of the windlass, the thickness of the rope must be taken into account, by adding half of its diameter to the radius of the axde.

WI'NDMILL is a mill for grinding corn, sawing wood, or performing any other species of work for which fixed machinery can be employed, the motive-power being the force of the wind acting on a set of sails in a manner similar to that of a current of water impinging obliquely on the floatboards of a water-wheel. The structure is a conical or pyramidal tower of considerable height, and covered over at the top with a species of dome, aaa (ig. 1), which is so fastened as to revolve upon it round the upper extremity of the shaft c, as a centre, the motion being aided by the interposition of 'castors' between the wooden rings which form respectively the base of the dome and the top of the tower; the sails, b, b, are attached to the extremity of the axis d, so as to revolve in a plane at right angles to it, and the motion they communicate to the axis is transferred ly the bevelled wheels e and f to the uright shaft c, by which it is in turn conveyed to the working machinery at the bottom of the tower. The axis d of the sails, which is inclined at an angle of about 10 to the horizontal, is fixed at one end to a projection from the top of the shaft c, and at the other to a circular orifice in the side of the dome, so that it revolves with the latter, carrying the sails along with it ; this arrangement is adopted for the

WIN゙DMILT_IWLNDOW.

purpose of cuabling the plane of rotation of the sails to be placed always at right angles to the direction of the wind. This transference of the plane of rotation was at one time effected by manual labour

Fig. 1.
applied to a winch at the bottom of the tower, the rotation being communieated, by an endless band and wheel-work above, to the dome, the outer cireumference of the lase of which, was, for this purpose, furnished with a cirele of rack-work. But this elumsy arrangement was superseded in English windmills by an ingenious contrivance due to Sir William Cubitt. by whiel the wind itself was made to turn the sails into their proper position. The apparatus by which this is effectecl consists of a revolving flyer or fan,,f, projecting from a gallery fastened to the dome on the side opposite to the sails: h, a long thin shaft to which a revolving motion is commmicated by a toothed wheel on its outer extrenity, from a correspouding wheel on the axis of the Hyer (these wheels are not seen in the fig., heing lehind the flyer);

Fig. 2. a pinion at the other end of the slaft acts upon the cog-wheel k, which carries, on the lower extremity of its axis, a pinion l; and this last ean, at pleasure, be put into gearing with the rack-work or eng-cirele on the lower edge of the dome. The construction of the sails, which are four in mumber, is shewn in fig. . Eaely sail consists of a whip or radlus of from 33 to 40 feet in leugth, firmly fastened at right angles to the sail-axle, ancl pierect at from $\frac{3}{3}$ th or $\frac{1}{6}$ th of its length from the axle to its extremity with about 20 holes, into each of which is inserted a cross-har of $\overline{5}-6$ feet in length; and this framework, strengthened generally by light rods conneeting the ends of the eross-bars, is then coverel with camvas. The eross-hars, however, are not, as in the tignre, set in the plane of revolution of the whips, for, in that case, the wiod, acting in a direction coinciding with that of the sail-axic, would iupinge perpendicularly on the sails, and no rotatory motion would result ; the hars, therefore, are set at an angle to this pervendicular direction, jet not all at the same angle, for the velocity of each point of the sail increasing with its distance from the sail-axle, the inclination must yary from the first cross-har to the outer extremity: It is found that a variation of the angle from 15°, at the first cross-bar. to 7° at the extremity, is a very effictive form. The amount of sail that a windmill can earry with advantage is limited, according to

Mr Smeaton (q. v.), one of the great autlorities on this sulbject, to the of the area of the eircle described by one whip; the velocities of a sail, when unconnected with, and when producing its maximum cffect on the machinery below, are as 3 to 2 ; also, the inerease of useful effect varies with the square of the wind's velocity, and is proportional to the cube of the length of the whip, in sails of similar form. A windmill with sails of 40 feet radius is equivalent to 65,000 foot-poumls per minute. Another species of windmill, known as a horizontal windmill, is a large eireular frame of wood which rotates on a vertical axis, and carries a set of sails which revolve in a horizontal plane. 'Ihis form is, however, not nearly so effective as the other, it being evident that the wind can only act effectively on one sail at a time. According to sir David Brewster, the power of a horizontal mill is only about one-third or nonefourth of that of a vertical mill, the number and size of the sails being equal in each. An ingenious form of horizontal windmill was patented by Mr Giraudat of New York in 1861. The peculiarity is in the sails, which are hinged in such a way that the forco of the wind aeting on one face of them preserves their perpendicularity to jt , and secures a maximum effect, but when, after a further semi-revolution, the other side is presented to the wind, they are raised to a horizontal position. Most of the recent improvements in windmills have had for their object the regulation of the sail-area exposed to the wind to counterhalance the variations in the latter's force, and so produce uniformity of motion; but these are too ummerous to be here noticed. We may mention, however, that the inventions, with this object, of Mr Bywater in England, M. Berton in Mrance, and Mr Henry Glover of Massachusetts, are both ingenious and effective. Windmills were introduced into Europe from the Saracens, and were formerly much more extensively used in England than now. 'They are, however, still common in tho midland and southern districts; on the continent, espeeially in Holland and France; and in the Uuited States.

W1NDOW (connected with wind, as Lat. fenestra with ecntus) is an opening in the wall of a building for the admission of light and air. In the Fast, from tine immemorial, windows ojen not unon the strect, but upon the court, and are usually provided with lattices or jalousies. The Chinese use, instead of window-glass, a thio stuff varnished with shining lac, polished oyster shells, and thin plates of horn. Among the Romans, windows were originally closed with shutters; afterwards they were made of a transparent stome, lapis specularis, which, from the description, can be nothing clse than mica; and in the 2d c. aiter Clarist, of horn. According to some, there are traces of glass windows laving been used in Pompeii ; but the matter is doubtiul. The first indisputable mention of glass windows is made by Gregory of Tours in the 4 thi c. of our era, who speaks of church windows of coloured glass. Wilirid ($q . v$. , on suceeeding to the archbishoprie of York in C69, filled the vacant windows of the cathedral with glass. In 674, Abbot Denedict Biscop brought artists from France to glaze the windows of the Abbey of Weremouth; and the Bishop of Worcester did the same in 726. Leo MII., in tlie end of the Sth c., put glass windows into the elmel2 of the Lateran. Glass hegan to be used in windows of private houses in England as early as 1180 ; in Franee in the lith ceutury. As late as 14 is , it struck Reneas Sylvius very much that in Vienna most of the windows were glazed. Nee Glass.

In ameient temple architecture, windows were unknown-the light being obtained from npenings in the rool. In Gothic architecture, howerer, the

TVINDOW-WINDSOR.

window is one of the most inportant features, giving, by the infinite variety of its outline, and the graceful forms of its tracery, as mucl character and beauty to the Gothic edifices, as the styles and colonnades of ancient art gave to the classic teniples.

In the early Gothic or Norman style, the windows were small and comparatively stunted-they were either simple openings with semicircular head, or two such grouped together with a larger arch over

Fig. 1.-Buckuell, Oxford.
both, and with the usual mouldings and ornaments of the style (fig. 1). The inside bad generally a deen splay, and simple moulding on the outside. Small circular windows sometimes occur in Norman work.
In the early English style, the windows were more elongated, and had pointed arches. They are frequently gronped in twos or threes, and placed so elose, that the wall betreeu becomes a mullion. The wall over the group contained withiu the enclosing areh, then becomes perforated with a quatrefoil or other ornamental opening, and thus

Fig. 2.-Little St Mary, Cambridge, circa 1350.
the simpler forms of tracery become introtuced. The interior arches are splayed off, and are frequently very claborately decorated with slafts and
arch mouldings. The lancet window (so called from its shape) is common in this style. Circular wiudows are also used with tracery formed by little radiating shafts with small arches. The triangular windors, on a small scale, is also occasionally to he met with.
It is in the Decorated style that the windows become enlarged and filled with mullions and tracery. This is at first simple, and composed of geometric figures such as the origin and progress of Tracery (q, v.) naturally led to. As the style advanced, more flowing forms were introduced, until, in the 15 th c., the tracery passed into the Perpendicular style (q. v.) in England, and into the Flamboyant (q. v.) in France. The heads of the lights, and the apertures in the tracery, are usually foiled, and the inner jambs are splayed and ornamented with mouldings, shafts, \&c. (fig. \%). In claborately traceried windows, the jamb and arch mouldings are occasionally very small, but they are usually bold and deep.

Iu the later Tudor style, the window-heads hecame flattened inta the four-centre arch ; and in the time of Elizabeth and James I, the arch gave place altogether to the flat lintel with the opening divided by mullions into rectangular lights, sometimes foiled at ton: Circular windows, with elaborate tracery, are chiefly found in the Decorated period.
In domestic buildings, the windows are similar to the abore, but square-headed windows occur more frequently to suit the height of the floors; and the space between the sill and the floor is recessed and fitted with seats. Transoms are also of common occurrence. The Bow or Bay Window (q. v.) is also a frequent and very elegant feature in the later Gothic buildings.

In the revived Classic styles, the windows are almost invariably plain rectangular openings, with either a flat lintel or semicireular arch-bead. They have sometimes architraves round the jambs and lintel, or are ornamented with pillars supprorting an entablature or pediment above. The architraves are frequently carved, and the cornices carried on trusses at each side.
The style of shop-fronts has been much modified, and the windors enlarger, in cousequence of the facilities afforded by the use of plate-glass.

WI'NDSOR, properly called NEW WINDSOR, a mmicipal and parliamentary horough of Berkshire, beantifully situated on the right bank of the Thames, 23 miles west-south-west of London. W. and Eton iu reality form one town. The town is chicfly interesting on account of its being the scene of The Merry Wires of llindsor, and the antiquity of its castle and parks, which have been a favourite residence of English monarchs, especially since the time of William the Conqueror. The elevated plateau of natural chalk npon which it stands marked it out, no doult, as a naturally strong place from the earliest dates, but the deficiency of water which snch a position entailed, was a serious objection to its being adopted as a permanent residence for many years. The older palace of the English kings was at Uld Windsor, about two miles distant, anil considerable doubt seems to exist among antiquaries and historians as to the first English king who built solid work of masonry at Windsor Castle. In the time of Edward the Confessor it was probally a wooden structure, as stone was difficult to be had, and wood was abundant. William the Conqueror probahly built the first substantial stone buildings, and regularly fortified the place ; but the absence of water, except what was carried to it from the Thames, nust have for a long time been a serious drawback to its importance as a military station. The history of the existing fabric begins in the reign of Menry

WINDSOR-WINE.

1II. The lmiltings may be said to be groupel in thrce portions-the Middle Ward eontaining the Ihound Tower ; the Lower Ward, on the west, eontrining St Gicorge's Chapel, the houses of the Military Kinights, eluisters, \&c. ; and the Upper Warl, on the east, enntaining the sovereign's private apartments. The unfinished chapel, which was hegun ly Henry III., was completed by Edward Ill., reluilt ly 1 enry Vhi., and added to hy Cardinal Wolsey: Uulker this chapel is the burial vanlt of the present royal family. The liond Tower, formerly believed to be Xonman, but in which there is not a single yard of Norman masonry, was built in the istli year of Ehward III. to receive the lound Talle of the knights of the newly founded order of the Garter. Pop. (1561) !3:0. The park and forest immediately adjoining are 13,000 acres in extent, and contain many historic trees, such as Elizabeth's Oak; Shakspeare's Oak; the Long Walk, made in the reign of Charles II.; and Queen Annc's lide of Lims, three miles long. Herne's Oak, rendered so famous ly Shakspeare, was blown down in September 1863, and a stone and youns tree now mark the spot. The oldest planted timber in EngLand, viz, that of the reign of Elizabeth, is also in Windsor l'ark, and there are many oaks of which it is well estahlished the age must be 1000 years.See suturlay Revicu, August 11, 1S66; Tighe's Annals of H"indsor ; Menzies' Mistory of Hindsor P'orest and Parks. (1871 -pop, of p. b. 17,281.)

Wine, Chemistry and Mantfacture of. Tefore enteriug into the chemistry of this subject, it is necessury that the composition of the grape, from whose juiee it is derived, should be understood ; and as there is an immense variety of vines yielding grapes of correspoulling variety, and as the same variety* will, under different exterual inlluenecs, produce very difforent grapes, it is obvions that our researches must be confined to the most typieal form of grapes. The prineipal component of the juice of ripe grapes is water, in which are varions substances, cither hed in solution or tery minutely divided. The juice as olbtainel by pressure, is thick, aud exposure to the heat of the sum rapilly clanges it into a fermented liquid. As principal eompunents held in solution in the water, I'rofessor Mulder mentions 'sugar (both grape-sugar and fruitsumar), gelatine or peectine ; gum, fat, wax, vegetable albnmen, vegetable gluten, and some other sub. stances of the nature of extractive matters, which are not, however, accurately determined; tartaric acid, both free and combined with potash (as eream of tartar), partly also combined with lime ; in some eases, we lind also racemic acil, malie acid, partly quite free, partly combiued with lime, and, according to some, tartrate of potash and alumina; further, oxide of manganese and oxide of iron, sulphate of potash, common salt, phosphate of lime, magnesia, and silicie acid may also exist.'-Chemistry of lline, p. 5. Atthough no other ingredients have as yet been diseovered in grape-juiec, others, which only applear tluring fermentation, and impart not only the vinons smell common to all wines, lut the aroma (houquet) aud the flavour peculiar to each wine, must exist in it in small quantities. In those cases where the skins are allowed, as in the preparation of red wine, to ferment with the juice, the constituents iuppatting odour and flavour may be drawn from

[^1]them. Colouring matter and tamic acid are mdonbtedly foum in the skin, and are thas imparted to red wines, Horeover, the grape-stones, which are left with the skins, yidh tamic acid freely during fermentation. The different moportions in which the ioorganic matters-the potash, solia, lime, magnesia, iron, manganese, sulphuric acid, phosphoric acid, and chlorine-exist in grape-jnice, exert a very great influence upon the guality of the winc, both in relation to its colour aml ats taste. A relative excess of phesphoric acid, or of lime, or of soda, will induce chatuges sulliciently obvious to the chemist, lut which we have not space to diseuss. With regard to the acids of grapuejoice, or must, as it is teehnically called, Professor Mulder observes that, as a gencral rule, the three-riz., tartarie, malie, and citric-are rarely found together in one fruit, and he doubts whether the presence of citric acid has heen fully proved. Nalie ache exists in unripe, and tartaric acid in ripe grapes; and while no malie acid exists in wine made from perfectly ripe grapes, a small quantity is present in most wines. In the article Tabtafic Acm, it is shewn that a nearly allied aed, rucemic ucit, exists in execptiomal cases in grapes. The quality of wine is only allected if this aciel be largely present, beause less lime than ustual will be found in it, racemate of lime being less soluble than tartrate of lime, and further, beeanse eream of turtar is more soluble than biracenate of potash, Such wines are conseducntly swecter, and-if red wines-darker coloured, than wines containing only tartaric acicl. The quantity of sugar varies extremely. In the juice of very ripe griples, it may reach 40 per cent. Aecorling to Fontenelle, the juice produced in the south of Pramee contains from 30 to 18 per cent. ; while in the neighbourhood of Stuttgart, licuss iletermines it at from 25 to 13 per cent. In the low and varialbe temperature of Holland, the juice of the lest grapees yields only 10 or 12 per cent. of sugar. The composition of the albuminous matter is not elearly determincel. In an analysis of the must of the liesshing grapes of Crumbach, laclt\% foume that the ghiten (no albumen was fonme) was thirty times less abumbat than the sugar. It probably varies at from 1 to $\frac{1}{8}$ jur cent. The omly atlier ingredient repuiring notice is fat, which is chiclly but not catirely derived from the grape-stones, in which it is an abundant ingredient. It weurs in wine, in minute chantity, in the form of a fatty acid.

On the subject of the fermentation of the grapejuice we shall only ullor a few remarks. It has been already stated that the saceharine contents of grape-juice range from $1: 3$ to 30 yer cent. If we regard all this sugar as grape-sugar, $\mathrm{C}_{12} \mathrm{I}_{12} \mathrm{O}_{12}$, with an equivalent of 180 , then each atom may be resolved into 2 atoms of alcohol, $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$, with an equivalent of 46 , ane 4 of carbonic aeid gas, con, with an equivalent of 20 , aecording to the equa-tion-

$$
\overbrace{\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{12}}^{\text {Crnic-supar. }}=\overbrace{2\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{42}\right)}^{\text {Alcolion. }}+\overbrace{4\left(\mathrm{CO}_{21}\right)}^{\text {Carbonic Acid. }}
$$

provided that there is no loss; or under the most fa courable conditions of fermentation, 180 parts (by weight) of anhydrous grape-sugar, "r 19S of the hydrated sugar (with the formula, $\mathrm{C}_{12} 1 \mathrm{I}_{14} \mathrm{O}_{14}$), may yiek 92 parts of alcohol ; or, roughly speaking, :parts of sugar yield 1 of alcohol. "According to this,' says Mulder, the juice of Freneh and German grapes gives, when analysed, as a maximum, from 7 to 15 puer cent. of alcohol by weight. But some of the sugar remains undissolved, amel, during fermentation, more alcohol is evaporated than water; therefore, for such grape-juice, or rather for the wine
-

WINE.

to be produced from it, the alcoholic contents must be noder 15 per cent. as maximum, and 7 per ceot. as minimum.' Op, cit., 1p. 49, 51). Accordiog to Nulder, sugar is found in all wine, and its quantity depeods to a considerable extent upoo the treatment to which the granes are subjected before pressure. Tokay wine, for example, is prejared from grapes which have been allowed not only to get over-ripe, but partly to dry on the vines; ein de paille is obtained from grapes dried on straw exposed to the sun; and in both these cases, water is eraporated, and the concentrated juice vields a wine of extra strength. The strong heavy wines used by the ancients were thus preparecl. When the grapes are dried on the vine, the wine is callerl rin sec; and When the juice has been evaporated by the aid of heat, the wine is called vin cotti.

In conseqnence of the close connection which exists between the amount of sugar in the grapejuice and the exeellence of the wine which it yields, attempts are often made, especially in bad seasons (rrant of heat and light, and excess of rain), to introduce extraneous sugar into the juice; or, as it is technically called, to doctor it. For this purpose, a cheap, fermentable sugar is added to the sour juice, an adulteration which cannot subsequently be detected by chemistry, although it may be suspecterl, from the absence of the proper aroma from the wine. Similarly, sugar is ofteo added to good grape-juice, in order to olttaia a stronger wine than the aatural proluct. Many imitations of Port wine are thas mavufactured. The character of the wine is much influenced by the extent to wbich the process of fermentation is allowed to proceed. If it goes on till all the sugar is coaverted into alcohol, a dry wine is produced; when it is checked before the change is completed, a rich fiuity wine is prodnced; and when the wine is bottled whilst the fermentation is still in progress, effervescent wine is formed.

Shortly after the must has passed from the winepress, symptons of fermentation appear ; the juice becomes more turbid, lubbles rise to the surface, and a froth soon settles there. This process in a moderate climate usually reaches its lighest point in three or four days; and before it is quite tinished, the whele liquid mass is stirred up so as to re-excite the process. For this purpose, io many districts, a naked man nsed (we do not know if the custom generally still exists) to go into the winetub, who both accomplished the necessary stirring, and promoted fermentation by his animal heat. Several persons have been killed in this way by suffiocation from the atmosphere of carbonic acil! gas. In two or three weeks, the fluid lecomes conparatively clear, and a precipitate forms at the bottom. The wine is now removed from the sediment into another vessel, and a slow form of fermenta-tion-after-fermentation, as it is termed-goes on for several months, sugar being constaatly converted into alcohol and carbonic acid, and a fresh precipitate forming at the bottom. Several similar changes into other vessels are made, to get rid of the sedimeat, till it is fit for transferriog into easks. That the process of fermeatation may go on satisfactorily, not only must water, sugar, and a nitrogenous matter in a state of actual chance be present, bat there must be a certain temperature and a cortain amount of atmospheric air present. 'Although,' says Mulder, 'there is a wile interval between the

* Dr Bence Jones, in the Appendix to his translation of Mulder's work, declares, on the other hand, that while Port, Sherry (except in two mstances), Madeira, and Champagne always contain sugar; Claret, Jurgundy, Hihine, and Moselle wine (excepting one sample of Sauterne) are always free from every kind of sugar.
extremes of temperature at which fermentation is possible, the boundary is very narrow which limits good aad active fermentation in every kind of wine. The grapes of each country ripeoed under different degrees of summer warmth, and tery unequally rich in constitueats, require very different temperatures during fermentation ; ad differcnt temperatures are also required for grapes which are the product of a warmer or a colder summer. But on these points we have little accurate knowledge. All we know is, that a high temperature duriug antumn promotes fermentation, and a low oue is detrimental to it; and that ioequality of temperature duriog fermentation is extremely injurions, and not uafrequently spoils the wine altogether.'-Op. cit., 3 . 67. To what extent it is expelient to almit atmospheric air to the must, so that the fermentation uay go on most favourably, is a point regarding which there has been much discussion, and which is not definitely settled. While some have asserted that no air is necessary to the development of fermentation, others have maintained that the wine is improven by the free admission of air during fermentation. Gay-Lussac proved experimentally that air is essential to initiate fermentation, which would then be continued without aoy fresh supply; and for many years wine tras made in France with an almost total exclusion of air from the fluid by an arrangement intended to prevent the escape of alcohol by exaporation; but when the same chemist proved that by the use of open vats scarcely $\frac{1}{20}$ th part of the alcohol was lost, this arrangement fell into disuse. Judging from the methoil of preparing Bavarian beer, in which air is allowed to eoter freely, Liebig recommended the same in the case of wine, and suggested that a large opening should be made in the casts in which fermentation takes place. This method has been tried on a large scale by Ton Babo, Crasso, and others, with red wige, which was fouad to be of it better quality than that which uoderwent the same process in a cask which was closed, agd only lrowided with a glass tube for the escape of the carbonic acid. But in other experiments made with white wiac, the wine in open casks appeared to lose in aroma; and heace the solution of this question aprarently depends on the kind of wine. Liebig's olninion has been very fiercely, aod, as Muhler thinks, unfainly attacked; the probability is, that wines containing much sugar may be allowed with advantage to ferment io closed ressels, while those less rich in that substance may be left in open casks, provided the temperature le low and equable. When the main object is to increase the quantity of alcohol, the admission of much air is injurious, since it promotes the formation of acetic acid, and causes a corresponding loss of alcohol.

The actual substance-ferment-which causes the breakiog-up of sugar ioto alcohol and carbonic acid, has been submitted to careful chemical and microscopical examination. One hnndred parts of suyar require about 15 parts of ferment reckened in the dry state; and as the analysis of fermeut shews that about half of it consists of albuminous matter, it follows that $\frac{3}{4}$ of a part of albuminous matter are required for the conversion of 100 parts of sugar into alcohol and carbonic acid. Ferment coosists of cells or globules of Torule (q.v.), which are precisely the same in the production of wine and beer. It is the contents of these cells which contain the active alhuminous matter; while the cell-wall, consisting of cellulose, $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{10}$, and produced from gum or veretable mucus, is inert.
The lading points in which the constituents of grape-juice aod those of wine differ from one another in consequence of fermentation, are, that in the

WINE.

wise there is a diminution (1) of tho mucilaginons and saccharine matters, in consequence of the formation of ferment and alcohol; (2) of those sub. stances wlich are insoluble in eommon water, but are held in solution in the visciel must, as, for cxample, jhesplate aml sulphate of lime; and (3) of eream of tart:ur, tartrate of magnesia, and sul. plate of potash, which, heing less soluble in spirit than in water, fall as the formation of alcoliol jncreases. lied wines lose a portion of colouring matter and of the tannin, which is withdrawa by these salts, and hence become of a lighter colour and less astringent. J3efore noticiug the alcodiolic strength of different wines, we shall brieliy clescribe the concluding steps neeessary fur reudering wiue lit for usc. 'The process of clecuring is undertaken with the view of removing all the sechment in which albuminous matters may still ocenr, and of diminishing the colouring matter and tanuin of red wiues. Amongst the substances uscd for these purposes may be mentioned albumen, isioglass, gum, milk, fime, gypsum, \&c. In warm countrics, gum is preferable to alloumen or isinglass. The addition of lime throws down a precipitate of salts of lime, which carres dewn, in the case of red wine, a considerable quantity of colouriug matter; its aldition gives a swecter and less astringent taste to the wine, and an appearance of age. As a general rule, clearing incroases the durability of wine. Sulphurising is a process which is especially applied to sweet white whes, which possess an cxcess of sugar and allbuminons matter, and little tamnic acid, ane thus becone (rasily decomposed. Its object is to chock unduce fermentation, and to frevent the formation of mould, which afterwarls imparts a musty taste to the wine. The proeess is eflected by lmrning sulphur in bottles or casks, and instantly pouring in the wioe, which absorlos the sulphurans acid. Wine intended for - xportation to warm climates is usually stronsly sulphurised. Of course, great cure must be taken that the sulphur is free from its common impurity, irsenic. In place of sulphurising, another method of hindering the fermsutation of sweet winc is adopted in some parts of France ; it consists in lutting roboth part of powdered mustand into the wine; but how it aets is unknown.

Having traced the chemical history of wine from its origimal state of grapeojuice to the time when, haviur been claritied, and joured into casks and bottles, it is fit for use, we ought, in order to complete the sketch, to notice the subsequent changes Which, in the course of time, it undergoes in the cellar. 'Jlhe ages at which diffurent wines attain their perfection are, as is well known, extremely dillurent. 'As a general rule,' says Mulder, 'wines which have retained a considerable portion of albuminous matter, and possess but little tannic acid, cannat resist the influence of time; they become acil, or wadergo some other ebmige. This ocems in the case of thine wines, which contain but little alcohol; and all those wines which contain much sugar, or but little tannic acil, cannot be kept long. Wines which can be cellared are those which inbrove; or, to speals more correctly, those wines are stured which improve with ige. In these, odoriferous snbstances are formed, anl the wine becomes less acid and better tasted. Such wine as is coloured often deposits a considerable amount of sedimenst ; and if it be stored in casks, there is a constant increase of alcohol.'-Op. cit., M1. 10J, 106. Wine is improved ly being kept in woolen casks, as water escapes by evaporation, aud the other constituents are relatively iuereased. 'l'be vinous constituents being thus concentrated, cxert a stronger chemical action upon each other, and render the wine not only stronarer, but better flavoured. The change, how-
ever, does not stop here. 'l'he loss of water mnst be replaced by the aldition of wine, otherwise tho itction of the air wonld turn the wine sulnr, and convert the alcohol into acetic aceid; and the eliminution of water, which is thus replaced by winc, causes a constant increase of tartaric avid. Wines which are poor in sugar may thas suon become too sour ; and consequently, all wines camot undergo this process. The pryular iden, that wine which has grown ohd in bottles has thercfore become richer in alcohol, is altogether false, and is doubtless founded on the fact, that it is only the strougest wines that can be preserved. The coloner, however, of hottled wine is materially affected by arge : liqueurwines and real wines containing nu large anount of tannic acid, becoming darker, whilo wines which are rich in tannic acid, its Port, for example, deposit it sediment, and become lighter. Old bottled wines contain udoriferons constituents-ethers of various orginic acids-which are not found in new wine. For an explanation of the mole of formation of these compoumels, to which wine owes its aroma, we must refer to the chapter on "The Oduriferons Constituents of Winc,' jn Mulden's work ; we will here mercly remark, that diminution of the free acids is necessarily associated with the formation of these compounds, and that this diminution can only occur by the acids being either decomposed or combined with non-acid substances, both of which operations here take place as the result of a very slow ehemical lroeess. This effeet of time may, however, be imitated hy art ; and if buttles corked, but not quite lilled with wine, are placed for two hours in warm water at a temperature of 185°, and after cooling, are fillel, their contents possess the flavour and aromia of wine that has leen bottled several years. This result was originally olntained by Appert; but Pasteur and others liave, curing the last few years, arain brought the suloject before the French Acalemy. Wines which have been long in bottle sometines acquire a jeculiar 1layour, which is incorrectly referrel to the cork. It is in reality due to the peculiar monlel which grows from the vutside of the corle juwards; and should it reach the inuer surface, it imparts to the eontents of tho buttle a peeuliat taste; and this wine is said to be corkecl. Very similar to this is what is known as 'the taste of the cask;' a peeuliar Havour sometimes acquired by wine before bottling. 'This मlavour is regaricel as dependent on the development of a peculiar essential vil, duriner the growth of 'monld,' on the surface of the wine. It can bo remuved hy the addition to each piyue of about a guart of olive oil, which dissolves the unpleasant flavouring matter, ant carries it to the surface.

In submitting matured wines to chemical analysis it is found that they differ materially from one auother in their composition; and especially as the wine is, or is not, red. In white wine, $n o$ spuceial colouring matters are found, and only a trace of tannic acid; while in red wine, both are present. In wine generally, the principal ingredients are alcohol and water; then sugar, gum, extractive and alluminous matters; then free organic acids, such as taltaric, racemie, malie, and acetic acid; and salts, such as the tartrates of potash, of limes, and of margesia, sulphate of potash, chloride of sodium, and traces of phosphate of lime; also, especially in old wines, substances imparting troma, as oenanthic and acetic ethers, and other volatile odoriferous uatters famonerst which Nulder meutions hutyric aul caprylic ethers, cach having at pine-aplle odoux, caproic, pelargonic, capric, and propione ethers, amylic alcohol, and many of its ethers and other compounds, aldehyde, acetal, and probably racemic, citric, and inalic ethers). In red wines, and in many

WINE.

others, a little iron, and possibly some alumina, may be found; and lastly, the best wines contain, according to Fauré, a pechliar matter, which he terms enantlion, and to which lie ascribes the substance or body of the wine; lut which seems to other chemists scarcely to differ from gum or dextrine. These ingredients, as llulder observes, vary exceedingly in proportion. The quantity of some is so small that the substance almost disappears during analysis; others can just be determined by a delicate balance; while others, again, are freely present. Putting aside taste and smell as standards of comparison, most of the essential dietetic and therapeutic properties of wine depend upon the alcohol, sugar, and jree acids, especially tartaric acid, contained in it. In his chapter on 'The Amonnt of Alcohol in Wine,' Mulder gives a large number of analyses of different wines in which the percentage of alcohol is determined. We shall here only give the abstract of the analyses made by his translator, Dr Bence Jones, who found that the alcohol varies in

	Per Cent			Per Cena
Port,	from	20.7	to	$23 \cdot 2$
Madeira,	"	$19 \cdot 0$	"	$10 \cdot 7$
Sherry,	"	154	"	$24 \cdot 7$
Champagac,	"	$1+1$	"	$14 \cdot 8$
Burgundy,	"	$10 \cdot 1$	"	$13 \cdot 2$
Rbine Wiae,	11	9.5	"	$13 \cdot 0$
Claret,	"	$9 \cdot 1$	"	$11 \cdot 1$
Moselle,	"	$8 \cdot 7$	"	9.4

while in

Sugar is found in all wines,* although in certain kinds very little exists. According to Fresenius, the sugar in four linds of Rhine wine amounts to exactly six-sevenths of the extract remaining after evaporation, the seventh part cousisting of the salts and non-volatile unfermentable inatter. In red Bordeaux, on the other land, very little sugar is found; red sauterue contains less than 1 per cent. of extract, and Hermitage 1.7 ; hence the quantity of sugar must be very minute; while some kinds of Muscat yield 24.5 oi an extract, containing about 22 per cent. of sugar. Small as is the quantity of sugar in some wines, it is of great importance in diminishing the sharp taste of the frec acids, aud in imparting an agreeable diavour to the winc. Giood red wines shonld contain at least one-half percent. of sugar, and the quantity is sometimes larger. Some of the swect wines contain nearly une-fourth of their weight of saccharine matter.

The following results were yielded by the experiments of Dr Bence Jones :

Under the term 'free atids' are included the acid tartrate of potash, known as cream of tartar, and other soluble bitartrates found in winc, besides such acids as are quite uncombined, such as tartaric, malic, and acetic acid, and a trace of free tannic acicl. Sugar has so much power in concealing the free acids, that their amount cannot be estimated with any certainty by the flavour of the wine, and nust be estimated chemicalky by ascertaining how much of an alkaline solution of given strength must be used

* In the preceding foot-note we have mentioned that Dr Bence Jones demies the accuracy of this statcuent.
in order to render a given quantity of wine perfectly neutral to test-paper. Volatile acids, as, for example, acetic acid, may eithcr be determined separately, or included with the others; and, excepting this acid, all the other acids occurring in wine may practically be calculated as tartaric acid. Mulder found that acetic acid was present in 20 different kinds of wine which be examined, the amount of the anhydrous acid ranging from $1 \% 5$ thousandth parts in Madeira to 0.25 thousandth parts in Tavella. In the same 20 kinds of wines, the free tartaric acid ranged from 2 to 7 parts in 1000 of wine, Tavella haring the largest, and Bordeaux Sauterne the smallest quantity. With regard to the tannic acid, traces of it may be found in all white wines, but in no white wine is it sufficiently abundant to he of the slightest importance in a medical or dietetic point of riers. On the other hand, it is abundant in Port and heavily loaded Bordeanx wines, especially when new. In the course of time, this tanmic acid becomes oxidised into a sparingly soluble compound, which is called by Berzelius the apothema, or precipitate of tannic acid-a process which is facilitated by the exposure of the wine in bottles to full daylight. There is no donbt that this acid, by combining with the albuminous matters, tends to increase the durability of these wincs. Dr Bence Jones, in his Appendix to Mulder's treatise, gives numerons results of experiments made regarding the acidity of wines by Pront, Liebig, Fresenius, and himself. His general conclusions are, that, proceeding from the least acid wiue to the nost acid, we hare Sherry, Port, Champagne, Claret, Madcira, Burgundy, Ilhine wine, Moselle. The least acil fluids examined wore Geneva and whisky; then rum, brandy, ale, porter, stout: the wines were all more acid than the malt liquids.' Mr Griffin Las made 22 determinations of the acidity of light wines for Dr Druitt, which are published at the end of that physician's instructive little work ou Cheap Wines, and has subsequently published an independent volume on the mode of determining the acidity of wines.

In conclusion, we may say a word or two on 'the diseases of winc,' by which term we understand those conditions in which the wime has become so altered and unfitted for nse as to hare lost its distinct character. The most important of these diseases are:

1. The Tuming of Jine.-This discase is incidental to young winc, and seems to occur under special conditious of the weather. The colonr becomes darker, and the taste first disappears, and if the disease goes on, becomes thisarreeable; the wine becomes turbid and acid. This disease is caused by a clecomposition of tartar.
2. The Ropiness of HFine-This disease consists in the formation of vegetable mucus from the sugar of the wiue, and is linown as mucous fermentation. The wines liable to this change are those which are deficient in tanmic acid.
3. The Bitterness of IIne-to which Burgundy wines are especially exposed-scems due to a second fermentation, inasmnch as a large amount of carbonic acid is evolved. It has been ascribed, whether correctly or not, we cannot say, to the formation of citric ether, which is very bitter. The disease is caused by the sediment, and often ceases on heing drawn off into other casks.
4. The -1cidifying of the Wine depends upon the conversion of the alcohol into acetic acid, and may he stopped at its commencement by adding alkaline carbonates, which, however, destroy the colour, and affect the taste of the wine.
5. The Mouldiness of Wine is a disease in which mould-plants are prodnced on the surface of the

WINE.

wine. llow or under what conclitions the monlu is formed, is not known, exeept that the admission of air as favourable to the disease:

For further information on this suljeset, we may refor, inter alia, to Ilinderson's Mistor! of A wient and Modern llines, Iicnce Jones's translation of Mululer's Chemisery of Il'ine, and to the recent Works of Shaw and Demman, in Emglish; to those of Julicn, Clapital, Faur (18t4), and Batilliat, in Fronch; aul to those of litter, Balling, Von Babo, lironner, \&e., in German ; also to the clief works on technolomical chemistry in all languages.

1/amifaclure.-The mode of mannfacturing wine daries in its cletails in different comotries. I'agnierre, in his treatise On the Hines of Bordeanx, gives the fullowing description of the manufaeture of the superior Clarets. The grapes, after beiug gathered, are pieked; all thit are likely to injure the quality of the wine being earefully removed. A principal vat of the best fruit, which is called the mothercask (cure-mere), is thon made, into which, after picking, the workmen continue to put the best grapes, without their stallis, and without treading them, till they are from 15 to 20 inches deep; after which they threw about two gallons of old Cognac or Armagnac mpon them, and then another bed of picked grapes, followed by two gallons more of frandy, and so on till the vat is full. Spirit of wine is then adiled, atont funr gallons being used for a winc-vat of from 30 to 36 tuns. The amonnt of lramly and spirits that is alded varies with the quality of the vintage, the better vintages requiring the less spirit. When there is a defieciency of saccharine matter in the grapes, starch-sugar is sometimes added. The cme-mire, when filled, is closed and woll covered with blankets to prevent the entrance of air, and is left in this state for about a month. A small cock or tal is placed in the sicle of the vat at about 2 third of ats arth from the bottom, in order to allow of the juogress of fermentation being observed; and to enable the manufacturer to know when the wine, liaving beconse cool and sulficiontly clew, may be racked off and put into casks, previously prepared by seald. ing and rinsing with a little spirit. While the cue-mere is at work, the ordinary vintage goes on as follows: The grapes are trodden or aeted on by machinery in the press, and put with their stallis into the vats, when the fermentation takes place naturally. About a foot of the upper part of the vat is not filled, in order to leave space for the fermentation, which in very mature vintages sometimes occasions an overflow of these limits. J'he term clupeau is applied to the floating mass of stalks, sects, and skins on the surface. The rats are lightly coveren, ind in from a week to a fortnight the winc is realy for being drawn ofl; for if it is left unon the lees (marre), or in contact with its crust (chepectu), it woulal take the disagreeable taste of the stalks. The barrels in which it is then placed are filled to about two-thirds or three-fourths, after Which the cure-mìre is cmptied, and its wine is pomed in equal portions into these casks so as to fill them; and the remainder is uscil to replace every Wrek what is lost by evaporation, or may lave laked away. All proprictors lave not the means of making a cuve mire ; lut in its absence, and with the employment of small vessels, wine of an infurior character is prodncel. The casks being full, are left unbunged for about a week, the bung-hole being in the meantime covered with a brick or piece of wood. They are filled up every two days, and after bunging, at least once a week, till the wine is in a state to allow the cask to rest witl the bung-hole at the side, which is not till after a year and a half.

White wines are made in a somewhat different
manner. The grapes are mot, as in malsing real wine, put into the vat to furment, but after tho renowal of the stalks, they are trodden, and when taken from the press, the juice, slins, and seeds are put into easlis, in which the fermentation talies place, and wine is formed. When the fermentation has ceased, the wine is racked off from the barrels into smaller easks ; and any loss that subsequently occurs from evapration must be replaed once or twice a weel:

The mature of the wine-press possesses many molifications. The winc-presses of the Jews consisted of two receptacles, or vats, jlaced at different clevations, in the urjer one of which the grapes were trodden, white tho lower ono received tho expresserl juiee or must (sec Jocl iii. 13). 'Vliese vats were usually hewn out of the solid rocle (lsa. v. = (margin), aml Matt. xxi. 33). In Wilkinson's Ancient Eiv!ptions, vol, i.]. 46, there is a figuro of i wine-priss thus composed of two vats or recepticles. The process of treading, which seems to lave prevailed from the earliest ages, is shewn in our coply of that figure, the treaders being assisted

Ancient Lgyptian Wine-press.
by ropes fixed to the roof of the press. A certain amonnt of juice was allowed to cxude from tho ripe fruit by its own pressure before the treading bryan. This was kept separate from the rest of the juice, ank formed the glencos, or 'sweet wine" noticed in Acts ii. I3. The first drops that reached the lower vat were ealled the clema, or tear, and formed the first-fruits of the vintage, which were to be presented to Jehovalı (Ex. xxii. 29). Although the aucient system of treading the grapes still prevails in many comutries, it is heing gradually displaced by varions mechanical applinnces. In some barts of France, two wooden cylinders turning in oppositc directions are employed to crush the fruit ; aud the reader will finl acconnts of more complicated presses in the varions works on wine by Cyrus Fichling and later authors.

Commerce.-The mannfacture of wine has been carried on in all countries where the graje condl be successfully eultivated, from the very carliest periods of history; and during the present contury, it has followed the footsteps of man, and become established in the American and Australian continents, and fromises to become, especially in the latter, a most important intraduction. The vine, like most cultivated plants, is capable of producing very numerous varieties, and these, of course, give rise to different qualities of wine; bnt far more influence is exerted npon the quality of the wine by climate, soil, and the position of the vineyard

WINE.

as to the sun's influence; so that we not only have wines peculiar to particnlar comotries, but of those, acgain, we lave usually very numerons varieties, producel by special causes within those countries; and in addition to all these, again, we lave other differences, produced by the degrees of skill in the manufacture. 'I'he earliest wines of which we have any account were made in Asia, but of these we know very little. Later on, we find abundant evidence of the ligh esteem in which wine was held by the Greeks, Pomans, and other civilised contemporary nations; and the name of one of the choicest Foman wines lias continned in use to the present time, viz., the Falernian. From what we learn from Pliny and other writers regarding the extraneons additions made by the Romans to their grape juice, and the treatment of the interion of their casks, we should much doubt whether even Falemian would be appreciated by the Enghish palate. The following extract from the article 'Vinum 'in Simith's Clussical Dictionar? will give a notion of the way in which the ancients 'cooked' their wines : - The principal substances employed as conditure or seasonings were-(1) sea-water; (2) turpentine, either pure or in the form of pitch (pix), tar (pir liquida), ur resin (resina) ; (3) lime, in the form of gylsum, burnt marble, or calcined shells; (4) inspissated mast; (5) aromatic herbs, spices, and gums ; and these were used singly or cooked up into a great varicty of complicaterl confections. It was customary to line the interion of both the dulia or casks, and the emphore or pitchers, with a coatiag of pitch; but besides this, it was customary to adel this substance, or resin, in powder, to the must laming the fermentation, from a conviction that it not unly rendered the wine more full-bodied, but also communicated an arreeable bouquet, together with a certain legree of raciness or jiquancy (Plias, N. T1. xiv. 25; I'htareh, Symp.v. 3). The moder'u Greelss, it is said, nse turpentine or resin in the preparation of their wine, as their ancestors did two thonsand years aro. Host Sicilian wines (the ancestors of the Sicilians were Greeks) lave a tecided resinous taste, as have also the Cape wines. 'I'he medieval history of wine is involved in much obseurity; but we find such abundant mention of Sack and Canary, that althongh we are not quite clear as to the exact history of those wines, we are not left in doubt as to the bigh appreciation felt for them by the priesthood and nobility of those times. The Greek islauls seem to have furnished a large portion of the wine then consumed in Europe; and the Nalmsey of those times was not the prodnce of Madeira, hat of the islands of Tenedos, Lesbos, Chio, and Candia. At a later period the Lurguady Wines (q. v.) of France and the lhine-wines (q. v.) of Germany became famons, and may be reganted as the commencement of that vast commerce which has now spread all over those conntries, and has led to such variety and perfection in the manufacture of this valuable drink. It is loyoud the limits of this article to give even a full list of all the known varieties of wine, much less to specify their leculiar qualities. The chicf wines of Firance and Germany are noticed under the heads of Bordeaux (known in England as Claret), Burgundy, Champrage, and Rhine-wines (see also HocrHEmin and Moselle). There are very choice sparkling wines made in Germany of both the lihine (or Hock) and Moselle elasses; the Moselle wines bave latterly been artificially flavoured either with musk or with elder-flowers, to imitate the flavour of the Hiscat grape. At first, it was carefully and judiciously done, bnt is now often carried to excess. -Hungarian and Austrian wines have lately come into notice in Britain, and the former have found 483
much favour with some consumers. But although Hungary produces the Tokay (q. v.), which, if genume aud old, is scancely rivalled in the worlh, yet the wines commonly used are inferior in many respects to the ordinary wines of France and Germany, which they most resemble. The best known are Cirlowitz, St George, and Odenburg-white ; and Erlaner, Ofner, Menes, Juda, and Grosswardeinrel wines. The best Austrian wines are those of Stomberg, Vöslau, and Goldeck-red and white of each; also an effervescing wine somewhat like Sparkling burgundy, called Sparkling Vöslauer.
'I'he wimes of Spain and Portugal are in the highest esteem in Great Britain-thase of the former conntry best known under the general name of Sherry (from Neres), and those of the latter as Port (q. vo). The Spanish and Portuguese wines, like those of other countries, difler widely in quality. The hishest class of sherries are those which are techuically called dry, that is, are free from sweetness. Tho Montilla, Manzanilli, Amontillanlo, and Vino de Pasto, are of this kind. Some red wines are also made in Spain, as the Tent or Rata Tinto, Paxarété, Val de Penas, Denicarlo, \&c. The produce of Spain is enormons, being estimated at nearly 136 millions of gallons.

Abont the middle of the last century, Port, or the wine of Portugal, becane the most important wine for Lritish use, and for the hichest gralities, very bigh prices have always been given; indeed, sucil is the demand for very ulel wines of the best vintages, that as much as 心uJ per dozeu bottles, or £ 17 , 10 s. per galion, was realised at a sale for l'ort wine of the year 1820 , only a year or two since. This is mobably the highest price ever reached for Port; but on the continent, the finest Tokiay has realised cven more than む'36 per dozeu at Cracow. Besides I'uri, we receive from l'urtugal Bucellas and Lishon, white wines; and Colares and Calcuvella, red.

The Italian wines are very mumerous. The best veds are Lambrusco, Barbera, Barolo, Brachetto, Griguolino, Aleaticu, Brolio, \&c. ; the best whites, Malvisia, Vino Santo, Lachryme Christi, Jernaccia, Sc. Uf spurtlin! wines, the Fed and White Asti, Passerettia, Nubiola, and one or two others, are very good. They differ much from the sparkling wines of other conntries in being much less eflervescing.

The chief crieck wines are those of Candia and Cyprus, but not much of either comes to Great Britain.

Madeira was lour famous for its fine white wine, but the alnost total destruction of the rines by the fungous growth known as the oidinm, and causing the grape-disease, temporarily stopped the trade. It is, however, beginning to revive.

From the Cape of Good Hope, very large quautities of inferior wine are sent to Enrope, and sold as Sherry. The Pul and White Uonstantia of that colony are, however, excellent sweet wines, of a very luscions charaeter.

The United States of America have begun to grow the vine extensively, and to prodnce wine. At present, it has all been used for home consumption. Ihe most celebrated is the Catawba, and a very good imitation of Chanapagne.

The Australian colonies have also commenced wine-making, and have prodnced very fair qualities; the best is a Hock-like wine, called C'warra.

Owing to the very fine produce of two small vineyards on the banks of the river Salta in the Crimea, belonging to Prince Woronzov, the Inssian govermment established a School of Wines in the Urimea, but with very indifferent results, as the efforts of this establishment have been to imitate the wines of other comntries, insteal of prodncing distinetive ones of their own locality. The wines of the Prince
2.5

WINITREDE-WIN゙NEBAGO.

Woronzov are great favourites where known : the finest is called di Danil; the second, Nassandra; and the third, Muscat. They are light white wines, of a nost agrecable laveur, and line gollen-yellow colour.

The I $l l o w i n g, ~ t a k e n$ from the annual government returus, will shew the vast commerec carrich on in this article of trade. Wine imported intu Great IBritain from lst April ISG5 to 3ist Marel $1566-$ Red, $6,503,509$ gallons; value, £ $1.660,21 \%$. White, $7,466,2: 21$ gallons ; value, $£^{\circ}, 9,93,98:$.

Dictetic and Medical Value of Wines.-It may be laid down as a general rule, that the use of wine, even in molerate quantity, is not necessary for youns or adult persons enjoying good ordinary Inalth, breathing fresh country air, and not exposed to overwork or any other abnormal depressing acency: As, however, life adrances, and the cirenlation becones languid, wine in moderation becomes an essential, or, at all events, a valuable article of food; and cven in carlier life, tho physician meets large numbers of townspeople, especially womeu engaged in sedentary occupations, who cannot digest the national drink, beer, which is admirably suited to our outloor labouring population, and to persons of higher ranli who iudulge freely in open-air exercises. In such eases, the beer is replaced by the more grateful bevorage, tea, which, honever, when taken too freely, and without sulfieient solid food, gives rise to a form of distressing dyspepsia, which too uften impels the sufferer to seck refnge in spirits. In many snch cases, cheap wine, which may be purchased muler our new tarill at from ls. Gd. to D.s a bettle, mixed with an equal bulk of water, will be found an excellent substitute for the beer or tea. We shall first notice the medical uses of those numerous eheap French, German, and Italian wines which have been, luring the last fow years, so prominently brought before the attention of the British public ly certam enterprising wine-merchants; and then brielly notice the uses of the more expensive wines, such as Port, Sherry, Clampagne, de. In the first department of the subject, we shall take Dr Druitt's lieport on Cleap J"ines as our ehief autherity; and we shall regard as cheap wines those whose price does not exceed 2, Grl. a buttle. In prescribing wine, whether eheap or dear, the physician desires to give net unerely alcohol, fur that might be giren far inore cheaply under the form of cin or Pritish branely, but a compound liquid containing not only more salts ormineral ingredients than many a mineral water, but also the extractive parts of grape-juice, and the powerful oils and ethers which give to wine its special flavour or bouquet, and its singular exhilarating jroperties. 'The distinctive efcments of wine,' says Dr Druitt, 'are to be had in abundance in clieajs Bordeanx, Purgundy, and other French wines; in Rline wine; in the Mungarian, Austrian, :and sume Greek wine; and in all with a natural and not injurions quantity of spirit. In freseribing pure vine-i. c., light natmal, virgin wine-thepractitioner has a perfeetly new article of loth diet and medicine in Jais hands. - Op, cito, p. 2.2. In cases of debility and indigestion, such wine as that whieh we are now con: idering, diluted with coll water, may often be freels prescribed with great advantage in place of tein at breakfast, as well as at luncheon or dinner, or domaer and supper, accurding as the patient arrunges his meals. 'The best of the eheap' wines are those of Bordeaus: they are fure, light, and cxlilarating ; moderately strong, scldon containing *'l per ecut. of alcohol; free from sugar and other matcrials likely to induce gout or lieadache; and are admirally adapted, accurding to Dr Druitt (who has experimented largely upon them), for children with capricious and bad appetites, for
literary persons, and for all whose occupations are chictly earried on indoors, and which tax the brain more than the muscle. They should be taken at, not after, meals; and in many eases, when judiciously prescribel, they will be of inore service to patients sulfering [rom anmmia, chlorosis, dyspepsia, or gonty or rheumatic tendencies, than any form of medicine. The ljordeaux wines are, moreover, of great use in relieving the restlessness, nightly wandering, and thirst that accompany scarlet fever and measles in children; one part of wine with ono or two of cold water, according to age, being an excellent ilrink, acting at once as in diaplaretic, saline, and sedative. The Rurgundy wines are fidler, stonter (on an average, from 2 to 4 per cent. stronger in alceliol), and higher llavoured than the Bordenux of equal price. The cheap Burgundies are inferior to the lhordeaux as medicinal agents ; but the higher-priced wines (at and above 4 s. a bottle) are of extreme service in cases of debility with uervous exhaustion, and, as Dr Druitt remarks, 'what Bordeaux is to the blood, that is Burgundy to the nerves.' Some of the Hungarian wines which are being now introduced into this country, are excellent substitutes for Berdeanx; aud mot having the acidity, austority, and colduess of the latter, are often preferred by patients. Amongst the most impertant of the dearer kinds of wine are Port, Sherry, and Champagne. Good old Port is a tonic of great value in cases of fever and other forms of extrome debility; but many persons past 40 dare not take it if they have nny predispesition to gont. lort wine given with warm water, udninistered with it biscnit at bedtime, often induces a goed night's rest during convalescence from fevers or other woakening liseascs. But duriug the last 15 or 20 years, its price has risen froms 30 to 100 per cent. ; aud the Port purehased at a vintner's by a foor invalid at 4s. a bottle is usually nothing but loctored British spirit that has been sent to Hamburg to be transmuted into winc. In place of good Iort, now unattainable by the poor, the fhysicinn had better prescribe good British brandy, if a strong stimulant be required; or such wiues as the IIungarian Ofner or lirench Madeira, if it is the mutritive value of vine that is required. Sherry is, in a dictetic point of view, the wine in most general use in this country, and if pure, it agrees well with most constitutions. It is the only wine admitted into the lharmacopaia, in which it is employed in the composition of aloetic, antimonial, colchicum, and other medicated wines. If is a wine that suits the stomach in many cases of dyspepsia, but is not often prescribed medicinally. Champargue is a wine that acts as a most valuible medicine in cases of vemiting, irritable stomach, \&c., mul wheu the appetite flags, and there is great general debility. Gemme Tokay is so rare a wine that it is almost unnecessary to notice it ; it is, however, when procurable, extremely valuable as a cordial for aged persons of broken-down constitution.

WINIFIEDE, ST, a virgin saint of the ancient Dritish church, formerly Inclu in grent veneration in Wales. Her history is obscure nnd uncertain; but her aame is noticeable in conncetion with the well known well, to the traditionary mirnculous virtues of which, Holywell in Wales owes its origin as well as its celebrity.

WINIEBA'GO, a lake, the larcest in Wisconsin, U. S., lying 40 miles west' of the middle of the west shore of Lake Michigan, and connceted by Foss Iiver with Grcen Bay. It is as miles long by 10 wide, contrining 212 sq. m., and is navigated by several steamers. The east shore is for 15 miles a wall of rock, hundreds of feet deep below the surfacc.

WINNEBAGOES-WINTER'S BARK.

WINNEBA'GOES, a tribe of Indians who lived around Lake Winnebago in 1639, and were engaged in the war of Pontiac against the English in 1762; in 1794, they were severely defeated by General Wayne, and were engaged in the Black Hawk war of 1831 . In 184S, $: 531$, under a treaty with the government, emigrated to Minnesota.

WI'NXIPEG, Lake, the largest of the lakes belonging wholly to British North America, lies 90 miles north of the state of Minnesota, and about 350 miles north-west of Lake Superior, in lat. 50° -54° N., $96^{\circ}-100^{\circ} \mathrm{W}$. It is 264 miles long, 35 miles broad, has an area of $9000 \mathrm{sq} . \mathrm{m}$; and lies 625 feet above sea-level. Its principal affluent is the Saskatchewan ($\mathrm{q} . \mathrm{v}$.), and its surplus waters are carried off by the Wimniper River, which, flowing south-east, passes through the Lake of the Woods and Rainy Lake, and enters Lake Superior. It is connected by a series of streams and small lakes with Hudson's Bay. A little to the west, and running almost parallel with Lake W., are Lakes Winnipegos and Manitoba, which by small streams are connected with the former.
WINNIPISCIO GEE, or WLNNTPESAU'KEE (the latter being the usual pronunciation), a heantiful lake of New Hampshire, U. S., 25 miles long, by some 10 miles wide, but extremely irregular, with deep bays, bold promontories, and numerous islands from a few yards to many acres, with water clear as crystal, stured with fish, and surrounded with hills and mountain peaks. It is navigated by a steamboat, and is a favourite resort of tourists to the White Mountains.

WINSEY, or WINCEY, a cloth of Scotch manufacture, consisting chiefly of wool mixed with a portion of cotton.

WINTER GREEN, the popular name of plants of the genera Pyrola and Chimaphila, of the natural order P_{y} rolacece, which, according to some botanists, is a sub-order of Ericea, distinguished chiefly by difference of habit, but also by declinate styles, seeds with a loose winged skin, and a minute embryo in the base of tleshy albumen. Only about trenty species of Pyrolacte are known. They are natives of woods throughout the whole of the northern hemisphere, and are herbaceons or halfshrubby plants, with a corolla of four or fire segments, which are almost petals, but are slightly united at the base. Several slecies of Pyrola are natives of Britain, perennial herbaceous plants, with flowers of some beauty. Two species of Climaphila, half-shrubby plants, with beautiful evergreeu leaves, natives of North America, C. umbellata aud (C maculata, are valued for their tonic, diuretic, and narcotic qualities, and are used in dropsy, calculus, strangury, and other diseases.

WINTERGREEN, OIL of, or Gaullheric Acid, is an essential oil yielded by the flowers of the Gaultheria procumbens (see Gaclutherls), abundant in Few Jersey, and consisting chictly of salicylate of methyl $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}, \mathrm{C}_{18} \mathrm{H}_{5} \mathrm{O}_{5}\right)$, mixed with a small quantity of a hydrocarbou, termed Goultherilene, which is isomeric with oil of turpentine, and which, being more volatile than the salicylate of methyl, is easily separated from it. The latter is:so much the more abundant constituent of the oil, that the two may be practically regarled as identical. This oil is not only yielded by the distillation of other plants, as the leares and flowers of Monotropa hypopilys, and the bark of Betula lenta, but may be artiticially formed by distilling a mixture of $\because 2$ parts of crystallised salicylic acid, 2 of anhydrous wood-spirit, and 1 part of oil of vitriol. In whatever mode it is obtained, it presents the appearance of a colourless or yellow oil, of a
powerful, agreeable, and persistent odour; and hence it is largely used in porfumery.

WINTER NOTH (Cheimatolic lmumata), a species of moth, the caterpillar of mhich is very injurious to plum trees. It has long been well known as common in many parts of the continent of Europe, and has of late begun to be very abundant also in some parts of England, as in the Vale of Evesham, in Worcestershire, celebrated for its

Winter Moth, wingless Female, and Caterpillar.
plum plantations, where damage has been done by it to the extent of $£ 20,000$ or $£ 30,000$ in a year. It is an insect about hali an inch long, of a lightbrown colour. The male alone has wings; the female, as in a ferr other moths, is wingless. The eggs are hatched early in spring, and the caterpillars, at first very minute, feed upon the buds of the plum. The egors are deposited on trees, chiefly around the base of the buds, and in chinks of the bark. Like most of the moths, this insect is nocturnal in its habits. It is during night that the males fly abont the trees, and the wingless females creep up their stems. The best mode of preventing its ravages is to surround the stems of the trees with something over Thich the females cannot climb from the ground, in which they pass their chrysalis stage. Boxes are used for this purpose in Germany, in which the ascending insects are trapped. A more easy method is to coat the trees with a composition of tar and grease in the beginning of winter, the time at which these moths appear in their perfect state, and when, of course, the laying of eggs takes place. By risiting the plantation of plum trees with a lantern at this season, the gardener is often also successful in killing great numbers of them.

WINTER'S BARK, a stimulart, aromatic, and

Winter's Bark (Fintera aromatica).
toric bark, resembling cinuamon, and used for the same purposes. It derives its name from Captain

Winter, who tirst brought it from the Strait of Magellan in 150!. It is the proluce of Drimys H"int ri, a native of some of the mountanous parts of South Amerre:a, and alourdant in the lower grounds of Cape llorn and Staten lsland an evergrens shrub with lamel-like leaves, corymbs of White flowers, and many-sceded herries. This shrub belonss to, the uatural order Magmoliucere, and to a section of it which has ly some heen constituted into a separate order, llinterared, chicily distinguished by dotted leaves and aromatic qualities. The Star Anise (Illicium) is nearly allied to it, The bark of other species of Irimys has similar propertics to Winter's Bark, as that of 1 . Girenatensis, much used in Brazil as a remecty for colic, and of D. axilleris, a New Zealand tree.

WI'NTTERTMLUL, one of the most imlustrions and heantiful of the smaller towns of Switzertand, in the eanton of Zurich, stinds on the Fulach, If miles north-east of Zurich. Its situation among hills, many of which are chathed with rines, is :pecially pleasant. Cotton-spinming, cotton-printing, dyoing, amb the mannfacture of machinery and weapuons, are actively carried on. I'olo abont 6000.

WINTHIROP J゙AMILY.-JoHs, governor of the colony of Massachusetts. was born in Groton, county of Suflolk, Enylaurl, January 12, 15SS, was bred to the law, appontel Justice of leare at the age of 1 S , and on account of his excellent and pions character, was, in $36: 9$, elected by the governor and complany of Mlassachusetts Bay to gowern their colony. He sold his estate, aud, A]nil 7,1630 , sailel from Yimmonth with 900 persons. During the royage, ho composed an essay, entitled A Model of Christian Charily. He was re-elected governor every year until 1634, when he hecame Tepurty-governor under Sir I Iarry Fane, with whom he lade an anmated controxersy on the doctrines of Mrs Intchinson. In 163\%, he was eleeted over Sir Harry, and contimed governor, with a brief interval, during his life, and hall more influence probally than any other man in forming the political institutions of the northeru states of America. He was opposed to an uolimiteil demoeraey, for he said: "The best part of a community is always the least, and of that hest part the wiser part is always the lesser.' ILe kept a journal up to 1619, two bouks of which were published in 1790; and the third, found in the New Bngland Library, kent in the tower of the Olul South C'hureh in Hoston, in 1816. A revised edition was pmblished at Doston, in 2 vols. ($1825-18 \% 6$). He dicd at Boston, Mareh 26, 1640-JonN, governor of Connceticut, son of the preceding, was born at Groton. England, February 12, J 606 ; educated at Trinity College, Dublin; made the tour of Europe ; went to America in 16:31, was chosen a macistrate in Massachusetts, but returnal to Englancl; nod in $16: 35$ went to Comectiont, luilt a fort at the mouth of the Commecticut liver, was made governor of the colony, and founded the city of Now Londen in 1661. He obtained a charter for the colony from Charles 11., aml was tirst appointed governor unter it; and, in 1676 , represented his colony in the congress of the uniter colonies at lioston. ILe was a man of eminent virtnes, and consiterable acquiremeuts. Some of his papers are contained in the Philosmphicel Transactions. Ite died at Bustou, April $\overline{3}, 16$ (6.-Joms, LL.D., American scholar, a descendant of the first Goveruor IV., was borrn in Massachusctis. 1715; graduated at Harvard College, 1732; and in 1735 was appointell Hollis P'rofessor of Ilathematies and Natural lhilosmhy. In 1740, he duserved the transit of 17 ercury; and, in 1761,
went to Newfoundland to observe the transit of V゙enus. Ile published tracts on Eartlopuakes Cometa, and other astronomical suhjects Died at Combridge, May 3, 1779.-Ronfar ('hablist, LJ.1)., American statesman and orator, desecudant of the sixth generation from the first (iovernor IV., was born at boston, May 12, 1809, grachatel at Itarard College in 1 sos, studied law with Imand Widster, and was admitted to the bar in 1s31, hut soon abandoned haw for politics, and was elected to the state legislature in 1834 , where le served five years, three as speaker of the House. In 1840, he was elected to Congress, of which he was in member for ten years. In 1847, he visited Europe, and was the Whing candidate for Speaker, but defeated after a balloting of three weeks. In 1850 , he suceceded Mr Welsster, who became Secretary of State, as senator from llassachusetts, i place iv whicls he Was succecded by the more malieal (harles Sumner. He was also defeated as a eandiblate for governor of Massachusetts. His Adhresses and Speeches were published in 1852, and he has since then spent some years in Europe.

WIRE ANE WHIREDRAWING. The facility with which any metal can be drawn into wire depends npon its ductility: Nost metals have this property; lut some, like lismuth and antimony, are so brittle that they can only bo drawn ont with dilliculty, and wire made from suel metals is useless, from want of tenacity: see Decturms.

Metals largely used for making wire, such as irom, brass, and copper, are drawn loy essentially the same process. Wre may take iron as an cxample. It is prefiared by cutting up tlat rolled plates into square rods of a given thickness. This is thone by means of a pair of slitting rollers; one of these has

Wire-drawer's Bench.
gronves, equal to the breadth of the rols wanted, iitting into eorresponding grooves in the other, which cut up the metal like scissors. The rods are cleaned of scales of oxide, cither by mechanical rubling, or by chemical treatment with dilute sulphurie acil. If the rod is thick, it luas its square edge taken off hy rollers. It is then drawn into wire ly forcing it throngh the hole of a drom-plate. This is an oblong piece of hard steel pierced with conical holes, gradually diminishing in diancter, aud having the smallest ends of these tapering holes carefully prepared to the required size. Sometimes cribicalshaperd dies, each with a single trampet-shaped hole, are used. A wire-trawer's beneh is shewn in the annexed figure, in which A is the drawing plate, and I the drawing-block or eylinder. The motion is given lyy means of bevelled wheels connectal with a shaft driven by steam or water power.

The workman commences by making a point on the rod, so as to allow it to pass through the hole, and be grasped by a pair of pincers attached to a chain, which diaws it out till the length is sufficient

WIRE-ROPES-WISBECH.

to pass round the cylinder. This much is done by hand, and then the cylinder, being put in gear, is made to revolve and pull the wire timongh the draw-plate-coiling it romnd itself as the drawing proceeds. After heing once drawn, it is again passed througli a smaller hole, and so the process is repeated till it has been reduced to the size required. Fine wire may dequire from 20 to 30 drawings. The eylinder revolves slowly with a thick wire, and the speed is inereased as the size diminishes. After being passed a few times throngh the draw-plate the metal becomes brittle, and requires to be annealed. Sometimes, a lubricating substance-as wax, grease, or sonp-is employed during the drawing, especially for fine wires.

For some very aceurate purposes, such as chronometer springs, and for gold and silver lace, the wire is drawn through jewelled holes, that is, holes perfurated in rubies and other hard gems. A silver wire 170 miles long, and ahout $\frac{1}{3}$ th of an inch in diameter, has been drawn throngh a hole in a ruby, and found, by a micrometer, to be of exactly the same size at the end as at the begiuning; whereas the drawing of a length of 16 miles of brass wire through a steel draw-plate necessitates a readjustment of the hole.
Platimum wire ean be drawn as thin as $\frac{100}{}$ th of an inch in diameter by first encasing it in silver, drawing down the compound wire, and then dissolv. ing off the silver with nitric acid. By the same process, gold wire ean be obtained only govoth of an inch in diameter. It has been shewn by Pabbage, as an illustration of how greatly labom inereases the valne of a raw material, that one ponnd of iron, which costs twopence, will yield 50,000 wire peudulum springs for watches, each weighing about one-seventh of a grain, and selling at the retail price of twopence.

Wire, although mostly cylindrical in form, is drawn of many different sections, such as oval, halfround, Hat, triangular, moulded, and the grooved pinion-wire from which the small toother pinions for clocks and watches are cut. Copper wire of rifferent forms is used to form patterns in the blocks used by ealico-printers.

The fullowing table (given by Dr Tomlinson) of weights, omitting fractions of a pound, which were sustained by wires 0.757 of a line in diameter, shews the comparative tenacity of a few of the metals: lron, 549 lbs ; copper, 3021 bs ; Ilatinum, 274 lbs ; silver, 187 lbs ; gold, lதl lbs.; zine, Ilolls. ; tin, 3.5 lbs ; lead, 25 lbs . It may be remarked here that some linds of brass wire have beeu noticed to become extremely brittle in the course of time, especially if subjected to vibration, and even to break when used to support objects, withont any assignable eanse.

The quantity of wire used in the English mannfacturing districts must be enormons, steel and iron wire being required for the mannfacture of needles, fish-hooks, hooks and eyes, carding-machines, serewnails, fencing, and basket-work; brass wire for the manufacture of pins, wire-cloth for paper-mulaing and other machines, and chain-making; and copper wire for bell hanging. Fothing, however, has increased the production of wire, both iron and coppler, more than the clectrie telegraph. lielgimm, which a few years ago exported noue, now exports 1200 tons anmually of iron wire.

WIME-ROPES have come greatly into use of late years for winding pmrposes in mines and on inclines, for the rigging of ships, and for numerous engineering contrivances; also for the construcion of electric-telegraih eables. They are almost always 'galvanised,' that is, eaated with zinc. A hemp rope 6 inches in circumference, and weighing

9 lbs. per fathom ; an iron-wire rope $2 \frac{3}{5}$ inches in circumference, and weighing 5 lbs . per fathom ; aml a stecl-wire rope $J \frac{7}{8}$ mel dianeter, and weighing 3 lbs. per fathom, are all of equal strength-the breaking strain of each being 10 tons.

WIRE-WOLBI, a name given by farmers and gardeners to the larvie of Click Beetles (\%.v.), which are long and hard, and often swarm in corn-fields, gatdens, and liastures, feeding on the roots of crops, and doing great mischief. The best known Lritish species are Elater or igriotes lineatus, 4 . or A. obscurus, and E. or A. sputator. The first of these, which is the largest, is in its perfect state about half an inch long, with brown head and thorax, elothed with cinereons down; the elytra tawny, striped with brown. The larva, when full grown,

Wire-worm :
a, perfect insect, magnified ; b, natural size of perfect insect ; c, wire-worm mitrnified; d, matural size of wire-worm.
is fully half an inel long, very narrow, yellowish, hard, and slining, the jaw's tipped with black. The second species named is in its perfect state of an earthy-brown colour. The third has a black head and thorax, with many dots, the elytra light brown with dotted lines. It is only about a quarter of an inch in length. Wire-worms are very small when first hatched, and are said to live for years in the larva state. Moles, rooks, and pheasants are useful in destroying them. Clover crops are said to have the effect of inereasing their numbers. Farmers and gardeners resort to varions means in order to get rid of this pest, as hard rolling after a top-dressing of lime, and mixing spirits of tar, gas-lime, or rapeeake with the soil; but one of the most cflectual is the strewing of slices of potatoes or turnips on the ground, under which they soon congregate, and great mombers are thus easily destroyed. The name W. is often very vagnely used, so as to include not only the larva of some moths, but even myriapods of the genus Julus (व.v.), which somewhat resemble the true wire-worms in form, although in reality very different, and probably not injurious to crops, as they arc.

Wr'spech, or WISEEACH, a market-town in Cambridgeshire, in the lsle of Ely, occupies a position of importance in the Fen District, on the Nen, 18 miles cast-north-east of Peterborongh. W. is connected by a branch of the Great Eastern liailway with I'cterborough; and two railunas are at present in course of construction, which, when completed, will counect it with the Great Northern branch to King's Lynn, and directly with the Great Northern main line. By the Nen, which falls into the Wash, at the distanee of 12 miles below W., commmaintion is maintamed between this town and the North Sea. Tlic navigation of the river has been much improved withim recent jears, and WT. is considered the port of Cambridgeshire. It is generally well built, contains a mumber of useful institutions, and carries on ropespinuing,
brewing, and general trade. Corn, timber, wool, salt, and seeds are exported; wine, deals, oilcake, corn, slates, and coal imported. In 1S66, 722 vessels, of 75,449 tons, entered and cleared the port. Pop. (1S61) 9276.
WI'SBY, a once famous scaport of the Swedish island of Gothland (q. v.), eapital of the island, and situated on its west coast, about 130 miles sonth of Stockholm. It is of the highest bistorical and antiquarian interest; and though the time of its foundation is unknown, it was, during the loth and 11 th centuries (200 years before the establishment of the Hanseatic League in 1241), one of the most important commercial cities in Europe. It was a principal factory of the Hanseatic League cluring the $14 t h$ and 15 th ecnturies. The eastern trade, which during the 11th and 12th centurics passed through Iussia, and thence down the Baltic to Gothland, centred in W., and greatly enriched that port. In 1361, Valdemar II1. of Denmark took the town by storm, and, plundering it, obtained an immense booty. 'Ihis was a fatal blow to the prosuerity of the place. The arehitecture of W . is exceedingly interesting. Its ancient feudal walls and towers exist in almost as entire a state as they were in the 13th c., and render its arpearance, as seeu from the sea, exceedingly striking. The early grandeur of the town is attested by the fact, that the town contains well-preserved remains of is churches, all of which date from the 11th and 12th ecnturies, are varied in form and ornament, and are a mine of interest to the student of Early Gothic. The oldest is the church of the Holy Ghost, built in 1046. St Mary's, built in 1190, is the only church now kept up for the use of the inbabitants. Pop. (1865) 6013.

WISCHEHILAD (Old Slar. and Bohem. wys. dhehrud, Pol. wyszogrod) is the name of numerous towns and castles in all Slaronic comatries; e. g., the original residenec of the princes of Bohemia, now a quarter of the city of Prague. The worl is composed of the root weys or wysch, high, and hroul (Rus. gorod, Pol. grod, in some dialects grüte), a fort, castle, town. IIrad is from the same root as Ang.Sax. hrcod, Eng. reed, rod, another form being yeride or yard. It signified primarily a place defended by rods or poles, i palisadel fort, aud lience a town. See Ton.

WISCO'NSIN, one of the United States of America, between lat. $42^{\circ} 30^{\prime}-46^{\circ} 50^{\prime} \mathrm{N}$., and long. $\$ 7^{\circ}$ $-92^{\circ} 50^{\prime} \mathrm{W} . ; 255$ miles from north to sonth, and 255 from east to west; containing 56,0010 sq. m., or $35,540,000$ acres ; is bounded N . by Jalke Superior and the state of Michigan, E. by Lake Michigan, S. by Illinois, and W . by lowa ant Minnesota, from which it is separated by the Mississippi and St Croix rivers. It is divited into is counties. Its chief towns are Milwankee, lacine, Kenosha, Janesrille, Watertown, Waukesha, Marlison (the capital), icc. Its chicf rivers are the Mississippi and its branches, Tock, Wisconsin, Black, Chippewa, and St Croix, which drain fourfilths of its surface; the Menomonce on the northeastern border; Wolf and Fox, emptying into Green liay ; and numerous small rivirs emptying into 1,alies Michigan and Superior. Mesides these mreat lakes and Lake Winnehago, the whole state is stulled with small, clear, aud beantiful lakes, well stocked with fish. The conntry is a high rollins prairic, from 600 to $] 200$ feet above the sea, with 1ao considerable mountains, but nnmerous lills or mounds. In the rainy season, the rivers Fox and Wisconsin, emptying into the Nississippi and Lake Michigan, How into each other. The geological formations extend only from the Primitive to the

Devonian. On Lake Superior are primitive rocks, granite, magnetic iron, quartz, slates, sandstome, drift, and beds of red clay and marl; sandstono clifis on the Mississippi ; the middle and southern parts of the state have the Lower Magnesian Limestone, a belt of white sandstone with beds of shells, then the leal-bearing group of Upper Magnesian Linestone. Besides the great magmetic iron bed on Lake Superior, and the rich leal region bordering on Illinois, copper is found in several places; zine, some silver, plumbago, bitumen, peat, fine marble (some of light pink with red reins, and lue and dove colonr), gyisum, and coal in small quantities. Of the curiosities are earthworks in the forms of men and animals; aucient fortificatious; Devil's Lake, of 600 acres, on the summit of a monnd 300 fect high; the precinitous shores of Lake Pepin rising to 500 feet, 200 feet being a perpendicular wall of magnesian limestone ; the high bluffa of the Mississippi and Wisconsin rivers; the falls of the St Lonis (320 feet in 16 miles) and of the Mcnomonee (132 fect in $1 \frac{1}{2}$ mile). The climate is cold, the winters long and severe; but the state is eonsidered ono of the most healtlyy in the west. The soil in the north is broken, with drift and boulders, covered with heavy pine forests, and not well adapted to cultivation; the middle and southern region, of prairies and park-like oak openings, is exceedingly rich and productive, raising great quantitics of wheat, Indian com, oats, barley, potatoes, tobacco, \&c. Desides the great pine-forests of the nortl, there are spruce, ecdar, various oaks, hickory, birch, clm, sycamore, sugar-maple, ice. Of animals there remain the elk, leer, bear, foxes, wolves, beaver, gojher, \&e. ; and mumerous birds and waterfowl, fattening upon the wild rice, on the margins of the numerous lakes. The chief manufactures are of iron, lumber, agricultural implements, flour, spirits, and malt liquors. The chief export is wheat, which amounted, in 1S62, to nearly $20,000,000$ bushels, some of which was sent from Milwaukee to England without transhipment. There are 13 railways, extending 926 miles, and extensive lake and river navigation. State and government appropriations of land have richly endowed a state university at Madison, normal, bigh, aud common free schools, and the usual state asylums. The constitution and government closely resemble those of the older states. 'There are 713 elaurches, of which 241 are Iioman Catholic- 200,000 , out of 2 $\$ 7,500$ worshippers, belonging to that communion. W. was explored by the lirench missionaries in tho latter part of the 17 the c, and Indian trading-ports were also established; but the actual peopling of the state has been recent, and very rapid-a large proportion being of foreign birth-German, Norwegian, Irish, Welsh, \&c. It was organised as a territory in 1536, and admitten into the Union as a state in 184S. Pol. in 1S40, 30,945; 1S50, 305,391; 1860, 775,573.

WISCONSIN゙, a river of Wisconsin, U. S., riscs in the northern centre of the state, and flows southerly upwards of 200 miles to the Winnebago portage, thence south-west 114 miles to the Mississipli liver, 4 miles below Prairie du Chien. Navigable 200 miles.

Wise, Ienry Alexander, American statesman, was born at Drummondtorn, Accomac county, Virginia, December 3, 1806; graduated at Washington College, Pennsylvania, in 1825 ; studied law at Winchester; settled and married at Nashville, Tennessee, but two years after returned to his native county, and cmgared in politics; in 18.5, advocated the nomination of General Jackson at the Baltimore Convention; opjosed nullification, but maintained

WISE-WISEMAN

the state-rights doctrines of Jefferson and Madison as expressed in the Virginia resolutions of 1798 , that 'each state for itself is the judge of the infraction of the constitution, and of the mode and manner of redress.' Elected to Congress in 1833 , he was involved in a duel with his opponent, whose arm he fractured. On the removal of the government deposits by General Jackson, he went over to the opposition or Whig party, but was sustained by his constitucuts, over whom lie had an unbounded personal influence. In 1837, he was the sccond of Mr Graves, a member of Congress from Kentucky, who shot Mr Cilley, a member from SIaine, in a rluel. In 1840 , he secured the nomination of John Tyler as Yice-president; and on Tyler becoming President by the death of General Harrison, lad a powerful infnence in his administration. Nominated minister to France, he was rejected by the Senate, but confirmed for Brazil, where he resided until 1S17. He was now once more identified with the Democratic party; and in 1854 , after an arduous electioneering campaign, in which, thongh in fecble health, he travelled 3000 miles, and made 50 stump speeches against the "Knownothing' or Protestant native American party, he was elected governor of Virginia. In 1859, he published a treatise on Territorial Government, maintaining the richt of Congress over the institution of slavery. In December of this jear, he signed the death-warrant of John Brown, hanged for treason in attempting to excite a negro insurrection. In 1861, as nemleer of the Virginia Conrention, he labourer for conciliation; but when his state voted for Secession, be entered heartily into the war, and was appointed Brigadier-general, serving in the Kanawha Talley, and later, defending Poanoke lsland, where his son, Captain Wise, was killed.

WISEMAN, NrCholas, Cardinal and Foman Catholic Archbishop of Westminster, Tas born August 2, 1802, at Seville, of an Irish family settled in Spain. He was brought to Ireland in his childhood, and received his first education at Waterford, whence he was removed to the Toman Catholic college of St Cuthbert at Ushaw, near Durham. In his 16 th year, he entered as an ecclesiastical student the English College at Pome, and after a very brilliant course, received holy orders at Rome in 1S』3, at which time he was also admitted to the degree of Doctor of Divivity, and was appointed Vice-rector of the English College, and Professor of Oriental Languages in the miversity of the Sapienza. In 182S, he published his Horce Syriaco, and in the end of that year was named Rector of the English College. It was while he held this office that he delivered his Lectures on the Connection of Science and Revealed Religion (: rols. Svo, 1836). But in England lie first became known by a series of lectures on The Doctrines of the Catholic Church, delivered at Moorfields Church, and published in two vols. in IS36. In the same year he cstablisher, in concert with Mr O'Connell, the Dublin Review, a journal which has sinee continued to be the quarterly organ of the Roman Catholic body, and to which Dr W., even while residing abroad, was a rerular contributor. In \$540, he was named Coadjutor Vicar-ajostolic of the Central District of England, with the title of Dishop of Melipotamus In Partibus Infidelium (q.v.). At the same time he was appointed President of St Mary's College of Oscott, where he took up his residence. The circumstances of religions parties in England at this period contribnted much to bring Dr iV.'s very remarkable abilities as a polemical writor into prominence; and the dissensions which arose in the Church of England during the Tractarian Controversy, were turned to effect by him in various lectures, pamphlets, reviews,
essays, \&c. In 1816, he was transferred as Coadjutor Vicar-apostolic to the London district ; and in 1849 hecame himself acting vicar. In the following year, lic came still more remarkably into notice, during the progress of a change in the position of the Roman Church in England, which, for a time, was the occasion of almost unexampled religions excitement in the country. From the reign of Elizabeth, the sces in England having been occupied by bishops of the Established Church, and it being penal for a bishop or priest of the Roman Catholic Clurch to officiate in England, the Catholies, for the necessary religious ministrations of their church, had resorted to the well-known expedient of a system of bishops In Partibus Infidelium ($\mathrm{I} . \mathrm{V}$.), with the title and anthority of Vicars Anostolic (q. v.). This form of church government, with some modification, had in snbstance subsisted from the time of James I.; but from the clate of the passing of the Catholic Emancipation Act, a desire had gradually sprung up among Catholies for the restoration of the normal form of church government by the appointment of regurlar bishops. This measure was finally determined on by the pope in the year 1850 , and a new distribution of the kingdom was made into twelve sees (one of them archiepiscopal), in which, iu order that it might not be supposed to clash with the existing episcopal system, the names of the ancient sees were carefnlly avoided, the titles of the new bishops being taken exclusively from cities and towns which were nonepiscopal. Dr W. was named archbishop of the see of Westminster, which included great part of the district already under his charge, and was at the same time created cardinal. This measure, for which the Protestant public were but little preparcd, and which was made more formidable in their cyes by the langtage which was employed, although but following the established canonical forms, and bearing altogether on the spiritual concerns of the Catholics, was supposed to involve an invasion of the rights anci dignities of the Established Church and of the crown, and called forth a storm of religious cxcitement which was unexampled during the memory of the living geacration. Whilst this excitement, which was much influenced by a letter addressed by the prime minister to the Bishop of Durham, was at its height, the new cardinal, who lad gone to Pome to receive the cardinal's hat, retnrned to England, and published an explanatory address of great ability and moderation, but yet firmly asserting the strictly constitntional rights of his fellow-Catholics, entitled An Appeal to the Ractson and Good Feeling of the People of England on the Subject of the Catholic Ifierarchy. This address, as well as certain lectures sulusequently delivered by him, and extensircly circulated, did much to mitigate the excitement, which nevertheless led to violent debates in parliament, and to the prassing of an act prohibiting the use of ecclesiastical titles other than those recognised by the law. See Ecclesiastical Titles Assumption Act. Notwithstarding these unfarourable circumstances of his introduction into notice in England, however, the undoubted abilities and great literary eminence of Cardinal TV. erentually compelled the admiration of the British public. He took frequent occasion, morcover, by public lectures and addresses on the neutral subjects of education, literature, and art, to identify himself with the spirit of progress, and with the national sentiments of his fellow countrymen; and notwithstanding the infirmity of his constitution, which began to fail soon after his return to England as carclinal, he published during these years a succession of works which, althougl with the strong religious bias natural to a Poman Catholic churchman of eamest convictions,

231

WISH.UITT-WISMAI:

possesserl much, wevertheless, ecncrenial to the sympathies of cultivated linglishmen of every degree. The Lectures on lietigion and Scicnce alrendy referred to; On the Connection between the Arts of Dexigm and those of I'rorluction; on the Influcnce of IVords on Thontht and Civilisation: ons the I'oints of C'ontact between Science and irt ; Recollections of the Last F"ou* Popes, and other similar works, olitanned an extensive circulation; and partly from their effect upon the public mind, partly, no doubt, from the reaction consequent on what was soon folt to have been a grommiless and exaggerated alarm, Cardinal W. came by degrees to command the respect of the pmblic at large. He died in his GBd year, ou the li5th Febinary ISGO゙; and his funeral, which was comdncted with great solemmity, and excited great public curiosity and interest, was witnessed with every demonstration of respect by one of the largest assemblics seen for many yenrs in London. Lesicles admittedly high professional learning, le was a scholar of rare and singularly various attaimments, an eminent linguist, a well-informed scientific scholar, a distinguished orator, a graceful and vigorous writer, and an accomplished eritic and connoisseur of art. In addition to the works inciclentally mentioned above, he published The Real Presence of the Lioly and Blood of Jur Lord Jesus Christ in the E'ucharist (Svo, 1836): Lieply to Dr T'urton on the Eucharist (Sro, IS39); Lectures on the Ceremonies of Moby ITeek (Svo, ISB?); Essays an Turious S゙ubjects (3 vols. Svo, 18533)-a selection of articles contributal to the Dublin Reriew and other periodicals, and of other \{ugitive essays; Fabiola, or a Clurch ni the C"atacomles; a simgularly truthful and life-like picture of early Christian life in classic liome; bermons (2 vols. Slo, Lb6.l); witl many shorter pulblications uot as ret collecten. He also left a large collection of Mist., many of them prepred for the wess, a selection from which has alreatly been amonnced as in the press.

WISIIART, GEOTGF, one of the early lieformers of Scotlaud, is suyposed tu have been it native of Forfarshire, a son of James Wishart of Pittarrow, justice-clerk in the reign of James Y. The exact clate of his birtl is maknown. Jle tirst cmerges into notice in the beginning of the l6th century. It this time lie taught a grammar-school at Nontrose, and made himself remarkable by introducing the study of Greck. He bergan also to preach the doetrines of the lieformation, and was obliged to thee into Linglamel. Here Je is found at Bristol abont loj3s, preaching the same cloctrines, but loring scized upon and thenatencel with death, he publicly recanted. Later lie is found at Cambridge, in the centre of the Anglicas Reforn mosenent, which had begm there mader the inflnence of Bilncy amb Latimer. He is lescribed at this time by a pupil of the name of Ty'ney as a tall man polle-healed, of melaneloly complexion, black-haired, long-bearded, conely of personage, well spoken after his country of Scotlanel, eourteous, lowly, Jovely, glad to teach, desirons to learn, abstinent in his labits, and very charitable to the joor.' His portrait, which has been preserved in the university of dlasgow, answers to the personal characteristics here men tioned. IVe returned to Scotland in 154:3 or 1544, with the commissioners sent to negotiate a treaty with Henry VIII., and it was then that he entered upon his special reforming mission, terminatinc in his martyrdom. He appears to have possessed great powers as a preacher, although it is clubbtfid whether he ever took orders; and he travelled from town to town, and county to county, making everywhere a great impression by his stirring words. Knox has given in his II istory, Book i., a very striling descrip-
tion of the effects of W's preaching. Its effect mpon himself was the most imprortant and fruitful of all. When the preacher came to Lothian, Kinox, charmed by his wharacter and teaching, attached himself to his person, bearing a 'two-lianded sword" luefore him. This precoutionary defence was remelered necessary ly two attempits supuosed to liave been instigated ly leaton against his life. His activity and intluence were too brominent long to escaph notice. ('ardinal beaton hial had his eye 1 pon him for some time, and while le rested at Ormiston, aiter preaching a powerful sermon at 1 Iaddington, he was made a misoner by the liarl of linthwell. licatun himself was in the neighbourloood with a considerahle foree, in case it should lave licen attempited to rescue lim. Tre was ennveyed to - .t Andrews, and immediately put ujon his trial before an ecclesiastical tribmal. Arran, the goremor, refused to give his countenance to the jrocectings; but the R ieforming [reaclicr was nevertheless condemmed to be burnel at the stake; amb the sentence was earried ont lefore the castle or episcopal residence at St Audrews on the Ist of Mareh 1546
W. is reportel to have given utterance at the stake to it prophecy of the ileath of the eardinal, which took place about three months after his martyrdom. "But he who froux yonder high place beholcleth us, with such pride shatl, within a few days, be in the same as ignominionsly as now he is seen proudly to rest himself,' are the words attributed to him. 'This has appeared to some recent writers to strengtlen the suspicion, otherwise suggested, of W. having leen accessory to the plot for assassinating the cardinal. 'Hhe main grount of this suspicion is the discovery of a clocument in the state Piper Othee, bearins that a Scotishman ealled IVyssliat,' a friend of the Lairl of Brunstone, was concernecl in this plot. Mr Tytler confidently aclopted the riew that this friend of the Laird of Brunstone and the lichormer were the same person, and it camot bo lenied that there are reasons in favour of this inference, not in the mere coneidenco of the name, jerhaps, but in the fact of the association of the jerson beariug it with the Laird of Brmastone, who was a fumiliar frieme of 11 . ; and further, in the fact, that Kirkalnly of Grance and the Master of liothes, who are mentioncel in the doenment as eonspiring vither to "appreliend or slay the eardinal,' were afterwards really the perpetrators of his munder. At the same time, it camot be saill that thore is clecisive evidenec to prove that the "Wysshart " of the state clocument was Ceorge W., the Reformer aml the martyr. The concinences in the case might be aceidental, and the question will probably remain among the questiones rexute of Seottish Iistory.

WI'S.IAR, the second senport of MecklenhmrgSchwerin, at the bead of a bay of the same name, an inlet of the Baltic, $5 t$ miles sonth-west of Kostock by railway, il in is straiglat line. Its larbour, nearly land-locked lyy the islaml of I'oel, is the best on the Laltic coasts, and is furnished with shipbuilding docis. Its old fortifications lave heen renoved; lut many of its uld bmildings, which are excecdingly curious and pieturesque, remain. Ihe (rothic church of it Miry (founded in 1:139) is 300 feet long, and 200 feet broad, aud has a towe ${ }^{\circ}$ 309 feet high. Commerce, the fisheries, tobaces and sail-cloth manufiactures, and agriculture are the principal employments of the inhabitants; there are also breweries and distilleries. W. is the termimes of a brinch of the Mecklenhurg liailway, and communication by stuamers subsists between it and Copenhagen. In 1565,717 vessels entered and cleared the port. Poj. (1564) I3, 1\%3.

WISSEMBOURG-WITCIICRAFT.

WISSEMBOURG, a small fortified frontier town of France, in the dep. of Bas-Rhin, stands on the Lauter, 42 miles north-north-east of Strashourg by railway. It carries on a flonrishing trade, and manufactures tiles, bricks, soapl, hats, \&c. Besides its fortress, a line of works, ealled the Lines of Wissemboury, extend south-east to Lauterburg - a distance of nine miles. The cathedral, the only remarkable building, dates from the l3th century. Рор. (1866) 5151.
WISTARIA. a genus of plants of the natural order Leguminosa, sub-order Papilionacew, having pinnate leares and flowers in terminal racemes, the porl leathery. The speeies were formerly included in the genus Glycine. Some of them are amongst the most magnificent ornamental climbers known in British gardens. Wr. frutescens, a native of Virgimia, lllinois, and other parts of North America of

Wistaria Chinensis.
smilar climate, fornd chiefly in marshy grounds, attains the length of 30 feet, and has beautiful racentes of fragrant lluish purple flowers. IV. Chinensis or consequana, a native of China, has larger flowers in peadulous racemes, and its branches run to the length even of 90 fect. In Britain, these plants are senerally trained on walls.

WITCHCRAFT* is merely the form that the belief in the arts of magie assumed under the action of certain notions introduced by Christianity. The powers supposed to be possessel by the witches,

* Not a little light is thrown on the original conception of witcheraft, and the magic arts in general, by olserving the primary meaning of the various terms employed in connection with them. The most striking thing is the number of those terms that come from roots signifying simply to do, perform. From this notion, the transition is casy to a variety of shades of meaning, as is seen in Lat. fucinus, whick radically signifies a deed (from facere, to do), hut becane restricted to a bad deed, a crime. The Greek spotiv or ${ }_{\text {E }}^{6}$ gav ($=$ Thg. work), and the Lat. facere, operart, were used, withont any addition, to signify to perform sacrifice or other sacred or magical rite. Accordingly, in Low Lat., fucture signified sorcery; and in modern ltal. futtura $=$ incantation, and futtucchiera $=$ a sorceress or witch. Lat. factum becomes in Span. hecho, and means a crime; while hechicero is a sorcerer, and hechieru, a witch. The Portugucse feitigao, mayic, is also from Lat. factum; and Sans. hratu, a sacrifice, is from kri (= Lat. creare), to make.

The Eng. witch is ricee in Ang.-Sax., which las also ricciut, to fascinate, and viccuncraft, the art of magie; the Low Ger dialects have similar forms (e. g., Dutel wikierij $=$ witchcraft) : in High (rer, there are no cognate names. These words, as is seen in the Dutch form,
and the rites and incantatious by which they acguired those powers, were substantially the same as helonged to the devotees of the Greek Flecate (1.v.), the Striga and Venefica of the ancient Romans, and the Tala or Wise Woman of the Teutonic pagans. But wheu, along with the knowledge of the one true God, the idea of a purely wicked spirit, the enemy of God and man, wats introduced, it was natural that all supernatural powers not proceeding directly from the true God, should be ascribel to lim. This gave an entirely new aspeet to such arts: they became associated with heresy ; those who practised them must be in compact with the devil, and have renomeed God and the true faith. F'reriously, if a witch was punished, it was because she harl been guilty of poisoning, or at least was believed to have poisoned or wronght some other actual mischief. Now, however, such power was only the power to work evil ; and merely to be a witch was in itself a sin and crime that filled the pious mind with horror. This feeling, zealously fostered, first by the Catholic clergy, and theu no less by the Protestant, rose to a frenzy that for four centuries filled Europe with the most shoeking bloodshed and cruelty.

Almost all the varions notions and practices noticel under the heads Magic, Dinination, lacastation, Auguries, Cilirm, Talisman, Ordeal, Fetichism, Evil Eye, icc., are embodied more or less prominently in the huge mass of superstitions which formed the creed of witeleraft in its full development. A reference, therefore, to those heads, and to the kindred subjects of Asteology and Alcheny, saves the necessity of entering into descriptive details of what witchcraft was. What was new and distinetive in the witeheraft of Christendom was the theory of magical arts which it involved. The doetrine of the Devil (q. v.), as finally elaborated in the middle ages, established in the world a rival dominion to that of the Almighty. The Areh-fiend and his legions of subordinate Demons ((q.v.) exercised a sway, merely permitted, no douht, but still vast and indelinite, not only over the clements of nature, but over the minds and bodies of men-all except those who had been admitted by baptism into the namber of the 'redcemed' (see ATONEMENT), and continued to be guarded by the faith and rites of the chureh. The fiaithful could not be led into evil against their will, nor essentially injured in person; lut not even they were altogether exempt from diabolic annoyanee, for the immunity does not seem to have extended to
have clearly no connection with witan (Ger. uissen), to know, which is usually given as the root of the Englisls witch; and the most probable etymology is that proposed by J. Grimm, who derives then from the Gothic reihan (O. 1I. Ger. wihan, modern Ger. weihen), which simnified to consecrate, but which he infers to have meant primarily to to, make, perform (see Deutsche Myth., pp. 26, 5S, 40S; Deutsche Gramm. iii. 181). Wiht, or wicht, is evidently a derivative from this root, and signified a thing made (Lat. factum), a creature, a person, and, in some Teutonic dialects, a demon. A viced was thus a doer of sacred or magic rites (compare the 'I'll do, I'll do, I'll do!' of Shakspeare's witches). Wickel is a participle from the same root, and signified primarily bewitched, accursed, hence perverse. W゙izard is probably a masculine form of ricca.

Nearly corresponding to Englislı witch were the Lat. terms saga, a knowing or wise woman; strix. striga, a kind of nocturnal bird, hence a witch; vencfict, literally, a poison-maker, a concocter of drugs. The Ger. hexe, Old Dutch hagetisse, Ang-Sax. hägtesse, or heigesse (from which Enf. hag), appear to come from hay. cognate with Lat. sagus. In O. Norse, hagr signifies dexterous, cumning.

WITCIICRAFT.

their belongings. As a strictly logical consequence of this assumed constitution of things, it followed, that those mortals who liad the gifts of producing supernatural effects of any kind (and that such gifts had been possessed by individuals in all ages ant countries, was not for a moment questioncd), must derive their power from the Prince of Darkness and be acting as his agents-always excepting, of course, those riraculoug powers which the elurch herself claimed to exercise in the name of Heaven. Moreover, as tho universally coveted powers of fortunetelling, and of controlling the elements for your own benctit or the lurt of your enemies, could not he supposed to be bestowed hy a being of the devil's character execpt as a quid pro quo, and as the object dearest to the devil's heart-the very aim and end, in fact, of his struggle with tbe kinglom of lightwas to win back as many as possible of the sonls that had been redeemed from his domimion by the death of Christ ; it was natural to conclude that the price he would diemand for his gifts would he a renunciation of Christianity and entranec into his scrvice. Hence it eame to be the established belief, that in order to acquire the powers of witchcraft, the person must formally sell his or her soul to the devil. The idea of a covenant with the Archenemy was not involved in the early and heathen conception of magic. Originally, magre was identical with the lowest form of religion, that is, Fetichism (q.v.). It was grounded ou the idea that certain natural objects and certain rites and observances had, in themsclves, a mysterious power of producing wonderful effects; and the art of the magician consisted in the knowledge of these mystenous jowers, and in the skill to comhine and direct them to speciar purposes. The effects were not conceivel as being produced by the interference of any conseious being-god or devil. On the contrary, it human being could, throngh marrical means, acquire control over supernatural beings. The Ilinchus candy this notion so far, that tbey represent some of their sages as practising austeritics and performing sacrifices and other rites, until they can control the gods themselves, amd even threaten their destruction along with that of the universe (see Viswimitha). The higher lind of Furopean magic in the middle ages was mixed up with what luysical science there then was; and the most noted men of the time were aldicted to the pursuit, or were at least reputch to be sn. Sn far from deriving their power from the kinglom of larkness, the scientitic magician, by the mere force of his art, could compel the oceasional services of the Arch-tiend himself, and make inferior demons the involuntary slaves of his will. A belief, however, had early existerl that individuals in desperate cireumstances had been tempted to purchase, at the price of their souls, the bely of the devil to extricate them from their diffienltics (see Tieorimus); and hence a suspicion began to grow that many wargicians, instead of sceking to acquire their power by the laborious studies of the regular art, had acquired it in this illegitimate way. At last, as the system of dualism above mentioned became more jerfect, the art of magic was wholly diabolised, and a compaet with the Evil One was thought to be the sole charter of supernatural jower. Nee Facst. This transformation took place carlier and more completely (about the 13 th c .) in regard to those lower forms of the mayical art which constitute witcheraft 1 roper, and which have from ancient times been considered the special province of women. The chief cause of the prominent part assigned to the female sex in this matter is noticed in the article Magric. In addition, it may be observed, that their more excitable temperament renders them peculiarly liable to those

Eestasies (q. 3.) which lawo been associated with the gift of divination from the 1 wiestess of the ancient heathen oraclo down to the medium of molern spiritualism. Further, when witelacraft came to be proseented as heresy, the part assigned to woman in the Seripture account of the Fall led to her boing looked upon as specially suited to be the tool of the devil. Founded on this circumstance, a constant element of the creed of witcheraft eame to be the belief in a earmal intercourse between witches and evil spirits. The devil was supposed to tempt them in the shape of a wooer, and the unholy compact was consummated in carnal fashion.

The hargain was usually in writing, signed with the witch's own blood. She was relaptised, receiving a now name, and had to trample on the eross and renounce foll and Christ (among lioman Catholics, also the Virgin Nary) in forms paroly: ing the renunciation of the devil in the formula of Christian baptism. A mark was impressed on some part of her body; this mark remained for ever after inscnsible, and was one of the means of discovery employed by the witchfimlers. The bowers conferred by Satan on these corenantel servants of his, were essentially the same as hal always been attributed to sorecers; the mode of exercising them was also the same, mamely, hy charms, incantations, conecctions, \&c. The only change was in the theory: These mystic rites, instead of producing their effects ly an inlerent virtue, were merely symbols by whieh the witch conveyed her behests to the devil and his ministers, who obeyed them according to the compact. Another differenee to be noted is, that the power was exclusively directed to work evil-to raise storms, blast erojs, render men and beasts barren, indlict racking pain on an enemy, or make him pine away in sichness (which was usually done ly making an image of wax, and sticking it full of lins, or setting it to melt away before the fire). If a witch attempted to do good, the devil was emraged, and chastised her. A remarkable cirenmstance is, that witehes seem to have been powerless to serve their own interests, for they romained poor and miscrable.

A prominent point in witcheraft was the belief in statcel meetings of witches and devils by night, called llitches Sabbaths. First anointing her feet and shoulders with a salve made of the fat of murdered and unbaptised elildren, the witeh mounted a broomstick, distall', rake, or the like, and, making her exit lyy the chimner, rode through the air to the phace of rendezvous. If her own particular demon-lover came to fetch her, he sat on the stafl before, and sle behind him ; or he came in the shape of at goat, and carried her off on his back. At the place of assembly, the areh-devil, in the slape of a large goat, with a black human countenance, sat on a high chair, and tho witehes and demons pail homage by knecling to him, and kissing his posteriors. The feast was lighted up with torches, all kindled at a light hurning between the horns of the great goat. Among the viands there was no bread or salt; and they drank out of ox-hoofs and horses' skulls; but the meal neither satisfied the appetite nor nourished. After eating and drinking, they danced to misic played on a hagnipe with a horse's head for the hag, and a eat's tail for a chanter. In dancing, they turned their backs towards one another. In the intervals, they narrated to one another what mischief they had done, and [lanned more. The revel concluded with obsecne debauchery; after which, the great goat burned himself to ashes, which were divided among the witches, to raise storms with. They returned as they came; and the Lusband was kept from being aware of the wife's absence by a stick being lad in the bed,

WITCHCRAFT.

which he mistook for her. The places of meeting were always such as had feelings of solemnity and awe attached to them, derived from tradition or otherwise ; the more noted are known ta have been places of sacrifice in heathen times (see WalPURGA).

The prosecutions for witcheraft form one of the most deplorable episoles in human history. They shew more strikingly than anything else has ever done, on the one hand, what relentless cruelty human uature is capable of under the influence of a fanatical delusion; and on the other, low little reliance is to be placed on the concurrence of any number of witnesses when any extensive excitement prevails on a subject involving the sentiment of wouder. Multitudes will be found testifying, and testifying honestly, to alleged facts which fall in with the prevailing behef, but have no better foundation than their own heated imaginations.

In the early laws of Come, the Twelve Tables, there were penal enactments against him who should bewitch the fruits of the earth, or conjure away his neighbour's corn into his own field. A century and a half later, 170 Roman ladies were convicted of poisoning under the pretence of charms and incantations; which lecl to additional laws against such practices. But in all this, the penalties were directed against those who had done, or were believed to have done, positive injury to anotber; and this is probably the meaning of the Mosaic law against witcheraft. At all events, in the heathen world, the mere possessing, or being believed to possess, supernatural powers was not in itself a crime. It was feared, no doubt, as leing liable to be turned to malicious purposes; but on the whole, magic was looked upon as a beueficial art, being, in fact, the only form of the healing art known, and iu part also the religion of domestic life. This view of the sulject continued to prevail for many centuries after the reception of Christianity. Constantioe, in the 4 th c., while ordaining capital punishment for those who practised noxious charms against the life or health of others, is careful to protect from prosecution all magical means used for good-such as warding off hailstorms and excessive rains (Codex Justin. lib. ix. tit. 1S); and the distinction hetween black and white magic was long kept up. It was through the prosecutions directed against heresy, which were systernatically organised in the 11 th c . (sec Inquisition), that the magic arts came gradually to be all dyed black abike. Along with errors in doctrine, the heretics were almost always accused of magical practices, and their secret meetings were represented as a kind of devil-worship, attended with all kinds of abominations. Thns soreery and heresy becarne synonymous; and to the dread of supernatural power was added the feeling of 1 rions horror. White magic, no less than black, was now looked upon as the work of Satan; and the countercharms against the mahice of him and his agents were to be sought only in the rites of the church as ministered by the accredited servants of Heaveu. The belief in this ecclesiastical white magic was as zealously cultivated by the Frotestant clergy as by the Ioman Catholic.

Fostered chiefly by the proceedings amainst heresy, the popular dread of witcheraft hat been on the increase for several centuries; and numerous executions had taken place in varions parts of Europe. At last, Innocent VIII., by his celebrated bull, Summis Desiderantes, issued in 14St, gave the full sanction of the church to the prevalent notions regarding sorcery, and charged the inquisitors and others to discover and put to death all practisers of these diabolical arts. Two special inquisitors, apIointed for Germany (to which country the bud
was specially directed), Heinrich Institor and Jacob Sprenger, with the aid of a clergyman of Constance, Johannes Gremper, drew up the famons Malleus Maleficarum, or Hammer for Witches; in which the whole doctrine of witcheraft was systematised, a regular form of trial laid down, and a course of examimation appointed by which inquisitors everywhere might best discover the guilty. From this we may date the heginning of the witch-mania proper. The edict of 1484 was subsequently enforced by a bull of Alexander VI. in 1494, of Leo X . in 15 21 , and of Adrian VI. in 152g-each adding strength to its predecessor, and the whole serving to increase the agitation of the public mind upon the subject. The results were dreadful. A panic fear of witcheraft took possession of society ; every one was at the mercy of his neighbour. If any one felt an unaccountable illness, or a peculiar pain in any part of his body; or suffered any misfortuue in his family or affairs ; or if a storm arose, and committed any damage by sea or land; or if any cattle clied suddenly, or, in short, if any event, circumstance, or thing occurrel out of the ordinary routive of daily experience-the canse of it was witcheraft. To be accused, was to be doomed ; for it rarely harpened that proof was wanting, or that condemnation was not followed by execution. Armed with the Malleus Maleficarum, the judge had no difficulty in finding reasons for sending the most iunocent to the stalie. If the accused did not at once confess, they were ordered to be sbaved and closely examined for the discovery of devil's marks, and if any strange mark was discovered, there remaioed no longer any doult of the party's guilt. Failing this kind of evidence, torture was applied, and this seldom failed to extort the desired confession from the unhappy victim. A large proportion of the aceused witches, in order to avoid these preliminary norrors, confessed the crime in any terms which were dictated to them, and were forthwith led to execution. Other witches seemed to confess volurtarily, being probably either insane persons, or feeble-minded beings, whose reason had been distorted by brooding over the popular witcheraft code.

In Germany, the prosecutions were carried to a frightful extent. In the small bishopric of Bamberg, 600 fell victims to the delusion in the course of about four years: and in Wurzburg, which is not much larger, 900 . In the small district of Lindleim, a twentieth part of the population were sacrificed in the same space of time. Similar accounts are on record regarding the other coulutries of Europe. In Geneva, in three months ($151 \overline{5}-$ 1516), 500 persons were burned. In the district of Como, 1000 were lyurned in one year (1524), and 100 per annum for several years afterwards. In France, about the year low , tires for the exceution of witches blazed in every town; and throughout the century, the provincial parliaments were incessantly occupied with witch-trials and enactments against them, especially against that form of the superstition known as Lycanthropy (q. v. ; see also Were-Wolf).

Iu Englanel and Scotland, the witch-mania was somewhat later in sctting in than on the contineut; but when it did so, it was little if at all less virulent -the Reformation notwithstanding. The statute of Elizabeth, in 1562, first made witcheraft in itself a crime of the first magnitude, whether directed to the injury of others or not; and the act of James VI., in the first year of his reign in Eogland, defines tho crime still more minutely: "Any one that shall use, practise, or exercise any inrocation of any evil or wicked spirit, or consult or covenant with, eutertain or employ, feed or reward any evil or wicked spirit, to or for any purpose; or take uls any dead

WITCHCRAFT.

man, \&ic.; such offemders, duly and law[ully convicted and attainted, shall sutfer death.' Many years hand not clapsed after the piassing of the statute, cre the delasion, which lay heretofore committed lint occasiomal local mischief, hecame an epidemical frenzy, dewastating every enrmer of Englaml. 'the poor creatures who usually fell vietims are thus described ly an able obsurver: 'An old woman with a wrinkled face, a furred brow, a hairy lip, a gobber tooth, a squint eye, a squeaking voice, or a scolding tongue, having a ragged coat on her back, a spindle in her lhand, and a dog by her side-a wretelied, infirm, and impotent creature, pelterl and persecnterl by all the neighbourhood because the farmer's eart han stnek in the gateway, or sume itle boy haid pretender to spit needles and pins for the sake of at holidiay from school or work '-such were the poor unfortmates selected to undergo the last tests and tortures sanctioned by the lins, and which tests were of a nature so severe that no one would have dreamed of inflicting them on the vilest of murderers. They were alministered by a class of wretches, whe, with one Matthew llopkins at their head, sprung up in England in the middle of the 17th c., and took the professional mame of witch-finders. The practices of the monster Hopkins, who, with his assistants, moved from place to place in the regular and anthorised pursuit of his trade, will give a full illea of the tests referred to, as well as of the horrible fruits of the witcheraft frenzy in general. l'rom each town which he visited, Itopinins exacterl the stated fee of 20 s., and in consileration thercof, he cleared the locality of all suspected persons, briuging them to confussion and the stake in the following mamer: He strippell them naked, shaved them, and thrnst pins into their horlies to discover the witch's mark; he wrapped them in sheets, with the great toes and thumbs tical together, and drageed them through ponds or rivers, when, if they sank, it was held as a sign that the haptismal clement did not reject them, and they were cleared; but if they floated-as they usually woukd do for a time-they were then set down as guilty, and doomed. He lepet them fasting and iwake, and sometimes incessantly walkiug, for 21 or 48 hours, as an inducement to confession; and, in short, practised on the accused such ahominahbe crualties, that they were glad to escape from hife by coniession. If a witch eould not shed teris at command, sail the further items of this wretch's ereel, or if she hesitated at a single wore in repeating the Lord's l'raycr, she was in lague with the Esil One. After he had murdered humdreds, and pursued his trade for many years-Trom 1644 cluwn-wards-the tile of popular opinion finally turncd against Hopkins, and he was subjected, ly a party of indignant experimenters, to his own favourite test of swimming. It is said that he cscaped with life, but from that time forth he was never heard of again.

The era of the Long Parliament was that, perhaps, which witnessed the greatest number of executions for witcheraft. Three thousand persons are sail to have perished during the continuance of the sittings of that body, by legal executions, imdependently of sumnary deaths at the hands of the nob. Witcl-executions, however, were continued whth nearly equal freqnency long afterwards. Oue notel case occurreal in 166t, when the eulightenced and just sir Matthew Hale tried and condemued two women, Amy Dunny and liose Callender, at Gury St Didmunds, for hewitching children. It is stated that the opinion of the learned sir Thomas Lrowne, who was accidentally prescut, had great weight against the prisoners. He declared his belief that the chidren were truly bewitched, and licf that
supported the possilitity of such possessions hy long and learncd arguments, theological and metajhysical. liet Sir Matthew Hale was noe of the wisest and lest men of his time, and Sir Thomats Browne hat written an able worls in exposition of Popular l'allacies! C'hief-justices Xineth and 1 Iolt were the tirst individuals occupying high places wha had at once the goul scuse and the courage to set their faces arsainst the contimuance of this delusion, and to expose the gencral absurdity of such charges (1604). Summary excutious, however, coutinued for sume years to be still emmon, in consertuenco of confessiuns extracted after the Jopkins fishion. In 17lG. a Mrs llicks and her daughter, aged nine, were hanged at lluntimgdon for silling their sonls to the devil, and raising a stom loy pulling off their stockiners and making a lather of soap! With this crowning atrocity, the catalogue of murders in Englaud clises.

11 Scotland, witcheraft as a crime per se was first made legally punishable ly an act passed in the reign of alary (1563). On coming to exicute tho functions of majesty, Janes V'J. made numerons oflicial investigations into alleged cascs of witchcraft, and derived a pleasure in questioning ohl women respecting their dealings with satan. In 159:, James, it is well known, made a poyage to Demark to bring home his appuinted hride, the Princess Anne. Soon after lis arrival, a tremendons witch-conspiracy against the haply conchusion of his homeward yoyage was discovered, in which the principal agents :typared to be prersons considerably above the vulgar: The king hall all the accuscal bronght hefore himseli for examination, and even superintended the tortures applied to them to induce confession. Onc of them, Mrs Acmes sampson, ileclared that one great object with satan and his agents was to destroy the king; that they had held is great witch-consention at forth lierwick for no wher end; and that they had "ndeavoured to cllect their aim on many occasions, and particularly ly raising a storm at sea when James eane across from Henmark. The witches demanded of the devil why he bore such hatred to the king, who answeral that the ling was the greatest eneny he had in the work. On this occasion, 30 persons were excenterl on the Castle-hill of Edinburgh. Thuse procecdings, no doubt, gave nceasion to the fanous work on Jemonology which James VI. published shortly after. The remosal of James to Fngland moderatal hant did not altogether stop the prosecutions. As the sjirit of l'uritanism gained strength, however, they again iucreased. The Gencral Assembly was the body in falt on this occasion, ad from this time forward, the clergy were the great witch-finders in scothanl. The Assembly passed condemaatory acts (1610,1643 , 1641, 1645, 16:9), and with every successive act the cases and convictious increased with cren a deejer degree of atteudant horrurs than at any previous time. At a single circuit held at Clasgow, Stinling, and Ayr in 165y, If persons were convicted and burucd for this crime. The popular frenzy seems to have exhansted itself by its own virulence in 1661 - 166%. After this perionl, the dying embers of the delusion only burst out on accasions here and there into a momentary tlarne. 'Jhe last regular execution for the crime is said to lave taken place at Dumoch in 15:20, when an wh woman was condemned ly larich lioss, sheriff of Caitlmess. The number of vietims in Scotland from first to last has been estimated at upwards of 4000 .
In the British colonies of Ňw England, the witcheraft mania raged with peculiar intensity. As in Scotland and clswhere, the clergy were the 1rine movers. Two elergymen have oltained a

WITCHCRAET—WITCH-HAZEL。

snecial and uneuviable notoriety for the part they acted in this matter. The ne was the Rer. Cotton Mather (q. v.), a man who was consilered a prodigy of learning and piety, hut whose writings and proceedings in regarel to the trial and exccution of witches, of which he was the chief instigator, shew a degree of fanaticism, credulity; and bind cruelty tlat is almost incredible. The other, a samuel Parris, minister of Salem, male use of the popular feeling to gratify his owu spite at individuals. At last, in the 'Salem traselly', as it is called, in 1602, the exccutions, torturings, and imprisomments rose to such a height as to lie no louger endurable, a complete revulsion of public feoling took place, and the delusiou was broken. For details of New Englaud witch-trials, we must refer to No. $\Omega 6$ of Chambers's Iienository of Tracts.

Dr sprenger, in his Life of Molucmmenl, computes the entire number of persons who have been burned as witches during the Christian ejoch at nine millions.

Thronghont the middle ages, it is doulotful if one person could have been fond who doubted the reality of witcheraft; and it was not till the middle of the luth c. that any one had courage to raise his roice agaiust the enormities which the delusion was occasioning. The first, probably, to do so was a physician of the name of J. Weier (De Prestigios Diemonum, \&e.), in Germany, in 1563. He was followed in 1584 by Reginall Scat (q. r.), a solid and learned person, beyoud almost all the English of that age ' (Hallam), who demonstrated the absurdity aud impossibility of the prevalent notions. The clelusion, however, was still in the ascendant, and fonud multitudes of defenclers, who branded the scepties as 'Sadducees.' The most prominent of these champions was James VI. of Scotland, who, through his treatise on Demonology (1597), and his activity in the inquisition of cases, is entitled to rank with Pope Innocent and the inquisitor sprenger, as at the same time a chief enmy and chief encourager of witcheraft. At last the world liegan to awaker from the horrid nightmare; the feelings of the lumave began to be shocked by the continned butchery, and the more jutelligent to question, if not the existence of witcheraft, at least the evidence on which the accused were for the most part condemned. Aclrocates took courage to defend a reputed witch, and jndges, like North and Holt in England, to throw cold water on the proceedings; and the frenzy gralually subsided all over Europe. Iudividual cases occurred later on the continent than in Britain. A man was exented at Wurzburg in 1749 on a charge of sorcery; and a witch was Lurned at Glarus, in Switzerland, in 17S.. I'erhaps the latest instance of a judicial execution for witcheraft occurred in 1793, in the grand duchy of Posen. The laws against witcheraft were formally repealed in England in 1736, in Austria not till 1766.

The cessation of judicial proceediuss, however, did not all at once put an cad to popnalar outrages on supposed witches. In 1751, an agel female paurer and her hushand were killed by a mob near Tring, in Staffordshire; and for the murder, one of the perpetrators was tried and cxecuted. Nut longer ago than 1563, a reputed wizard was drowned in a pond at the village of Hedingham, in Essex ; aud it was considered wortly of notice that nearly all the sixty or serenty persons concerned in the outrage were of the small-tradesmen chass, none of the agricultural labourers being nixed up in the affair. Besides such violent outbreaks, striking revelations are frequently made in the course of judicial proceediugs, how deep-seated and general the dread of witches continues to be throughout the more ignorant strata of European society, especially iu rural
places ; and, concurrent with this, the faith in the skill of certain 'wise men' and 'wise women' (white witches) to counteract their malicions practices. As recently as March 1867, a man calling himself Dr Harris (S. Wales) was committed for trial at the next Radnorshire Assizes, for duping various persons, by persuading then that their ailnents were caused by their being 'witched,' amd pretending to cure them by giving them written charns to wear. From one mau he had extorted $ఓ 4$, from another $£ 6$, and sann.

The belief in magic or sorcery; in fact, continucs to be the most energetic belief of the innorant and degraded all over the world, no matter what their nominal religion is. To the mass of the adherents of Buddhism in Central Asia, the lana or priest is mercly a wizard who knows how to protect them from the malignity of exil spirits; and, accurding to Liviugstone and other tiavellers, trials and executions for witcheraft are at this day common throughout Africa, as they were in Europe in the 17 th c., and under forms ludicronsly similar, See Ordeal, Magic.

Of the numerous books written about witcheraft, we note the following: Salducismus Triumplutus. Sadducism J'anquished, or, Considerations about Hitchoraft, a work vindicating the belief in witchcraft, ly Dr Joseph Glanvil, Chaplain-in-ordinary to Charles II., who was one of the first Fellows of the Foyal Society, ame wrote a meritorious treatise shewing the value of scepticism in science. P.. Baxter ($1 . \mathrm{v}$), in his Certainty of the World of Spirits, upholds the same side. Balthazar Bekker, a lieformed Duteh clergyman, was the first, at the end of the 17 th c., to attack the very foundation of the superstition-namely, the belief in the devil himself, or, at all events, in the 1 ossibility of his interference in the affairs of this world. A successor of Glanvil, D. F. Hutchinson, chaplain to George I., in his Historical Essay concerning Witcherait (1/18), writes from the sceptical point of riew. Sir W. Scott, Letters on Demonology and IVitchcroft, entertaining but superficial. Brand's Popular Antiquities of Gireat Britain, editel by fir H. Ellis (1855), gives a collection of witch-beliefs put together withont much connection or method. H. Williams's s'uperstitions of W'itcheraft (1865) talies a wide historical view of the subject, aud evinces extensive reading : although lousely put together, and a good deal spoiled by the ambition of tine writing and the display now and then of marrow Protestant feeling, it is on the whole one of the best books on the sulject in English. C. Mackay gives a good digest of it in brief space in a section ot his work on Extraordinctry Populur Delusions (1841). Thomas Wright, Turratiees of Sorcery and Magic, \because rols. (185.), contains a large collection of the most interesting stories oi individual cases. Soldan, Geschichte der Mexenprocesse (History of Witch-trials), (Stut. 1843). Garinet, Histoire de la Magie cn. Frunce. Ennemoser, Geschiclue rer Magie, 2 , ed. (Leip. 184t); translated by W. Howitt (Loud. 1851). L. F. Afred Maury, La Mayje et l 'Astrologie dans $l^{\prime}-4$ ntiquite ct ar Moyen Age (Lond. 1860), attempts to give a philosopilay or theory of all superstitions Deliefs. J. Grimm, Deutsche Mythologie, with his wonted sagacity and podigality of learning, traces the several elements of the witch-creed to their roots in the beliefs of pagan times.

WITCII-HAZEL (ILamamelis 1"rifinica), a North American shrub of the natural order Hamameli. dacer. This order contains only a very small number of species, much diffised over the world, but nonc of them European; shrubs or small trees, with alternate, stipulate, feather-veined leaves, and small axillary unisexual Howers. The W. is

WITENA-GEMOT-WITNESS.

often not more than 6 or S feet in leight, dividing at the base into several eylinirical grayish branches. Sometimes it attains in leight of 20 or 30 feet. The leaves are about four inelies long, and two or three froad. The flowers are clustered, yellow and showy, with long linear petals. They appear in winter, or at the season when other trees and shrubs are barting with their leaves. The English name is derived from the supposed virtues of a forked twig as a divining-rocl. The barls is nutelo estecmed as it sedative and lisentient.

WITENA-GEMO'T (A.S. witena, genitive plu. of uita, a wise man, from witan, to know, and !facit, assembly, from metan, to mect), tlic great matioual eouncil of England in Anclo-Sixon times, by which the king was guided in all his main acts of govemment. Each Kingdom had its own Witena-gemót before the union of the IIejtarchy in S:7, after which there was a general one for the whole country. It was composed of the chicf ecelesiasties, the ealdormen (sce Asclo-S.ixoss) of slures, and some of the chicf proprictors of land. It would rather appear, though the matter is not quite frce from dombt, that the lesser thanes, who formed prart of the scir-gemót, or next inferior court, were not entitled to form jart of the general conneil. In the year 034 , there were present at one of these assemblies King Atlelstanc, four Welsh princes, two archbishops, seventeen bishops, four abbots, twelve dukes, aud fifty-two tlanes.

The powers of the Wituna-gemét scem to have heeu very extensive. The kmg's title, lowever hereditarily uncxcuptionable, wis not considered complete without its recognition, anl it possesserl the power of deposing him. It could make new laws aucl treaties; and along with the king it appointed prelates, recrulated military and ecclosiastical affairs, and levicd taxes. W'ithout its consent, the king lad no power to raise forces by sea or land. It was also the supreme court of justice, civil and criminal. The Witcna-gemót was abolished hy Villiam the Conquelor, and its powers were (on] y in jart transmitted to parliament. - See Ilallam's Middle Asfs, c. S ; Sir I. L'algrave's Fiise and Proaress of the English Commonuealth; and Kiemble's Saxons in England.

WITHER, Grorge, wiss horn on the llth June 1588 , at lientforth, an estate in Hampshire of which his father was groprictor, and which in due eourse fell to the son. He was educated at the frammar-school of Colemore, and aiterwarl at Magdalen Culloge, Oxford, which le entered iu 1604. He remained there several yoars, and after jassing some time at home, le went to London, and enterel himself at Lincoln's lnn. Ilis bont was, however, rather to literature than law; and he shortly becance known in certain circles as a writer of elcyer reases. In 1613, he eame before the Iublic in a volume of satire, the title of which, Abusc's Stript and JFhipt, in some sort defines its eonteats. Certain things in the book were considered offensive by the anthorities, and ho was sent to the Marshalsea prison, and keit there for some months. During his imprisonment trere connposed his Sutire to the Kings and his Shepherds' JIunting. In 1620, appeared a collection of lis poems under the title Mistress of Philarete, and in 1635 , his Emblens.s, Ancient and Modern. Though he had very much identified himself with the party of the Puritans, among whom his writings were most popnlar, on the hreaking out of eivil disturbance, he served as a eaptaiu of cavalry in the ill-judgerl aud abortive expedition of Charles 1. against the Scotch Covenanters in 1639. When a little later, however, the general discontent deter-
mined itself into the grand struggle leetween the king and the linglish parliament, ho yromptly sided with the latter, and raised a troop of horse for its service by the sale of his estate. In the army of the parliament he attained the rank of major; but of his special serviees not much is known. On one oecasion lye was taken prisonct; and is said to have owed his life to a joke of Denham's, who besought the royalists to spare his life, on the grounel that so long as W. lived, he (Denlam) was not the worst poet in Eocland. On the final triumph of the side with which le had ranged himself, it appears that oprortunities were aflorded him of feathering his nest rather eomfortalby by the spoil of the defeated jarty. With the Jestoration naturally a reverse came ; and as the reputed anthor of a jranplalet entitled Jox Yulgi, of a so-called seditious tendency, he was committed to the 'Jower, and an impeachment of him Ihring been ordered, his life for a time scemed to be in some danger. The impeachment was not, however, proceeded with, and sooner or later-the date seems somewlat uneertain -he obtaincel his liberty. Ile died in London on 2d May 1667.
W. was an excessively voluminotes writer. U1wards of 100 sepurate publications of lis lave been noted by modern bibliographers (see 1st and 21 vols. of Park's Eritish Bibioyrapher), Jet, after his eleath, lis loetry fell into oblivion, or, so far as remembered, was regarded with such contempt that we find him introduced by I'ope in the Dunciud, as 'wretched Withers.' A later timo las, however, revised this decision; the grace, swectuess, fancy, and charm of matural simplicity which distinguish not little of his verse lave since been sufficiently recognised; and a modest niche in the temple has been accorderl him, from which he cinnot now be degraded. The men to whom the resuscitation of lis fame is chichy owing are Southey, Lianb, and Sir Eigerton Jirydges. In his Shepherds' Jhomin!, in particular, passages accur of such rare aud finished beauty, that no collection of the choiecst things in English poetry conld be held to be complete which slould omit them. Il is Ifymus anel Songs of the Cleurch were edital, with an introduction, by Mr^{*} Vd. Farr in 1556 . Jy fur the best aml most complete account of W.'s life anul writiugs is to be found in Tlilmott's Lives of the Sacred Poets (Lond. IS34).

W1TNLSS, a person summoncd, or capalele of being summoned, by a court of law, or some oflicer authorised to talse cvidence relating to a judicial or other proceeding. All persons are liable to be witnesses, either voluntarily or involuatarily, and it is a duty which every citizen owes to his fellowcitizens, to be available whenever his testimony is deomed desirable. It is a compulsory duty, and the presence of any ferson can be enforced, both in civil and eriminal cases. In England, the tisual mode of summoning a witness in a court of law, is by serving lim with a subpona, i. e., a formal writ proceediug in the Qucen's name, reciting that a certain action is peading in a court named, and a trial is to take place, and commauding the witness to lay aside all and singular business aud exeuses, aud appear at the time and place before the court mentioned, under a penalty (sub pona) of $£ 100$. 'I'his is called is subpena ad testificandum. The corresponding term in Scoteh law is Diligence (q. r.). If the witness is required to produce a docnment in his possession, it is ealled a subpona duces tecum, and he is told in the writ to bring the document. If a witness do not attend at the time and place mentioned, he is liable to be punished, either by attachment, i. e., summary imprisonment for coutempt, or by an action for damages at the suit of the party summoning

WITNEY-WITTENBERG.

lim. The subpœna, or notice to attend, must be served a reasonable time before the witness is wanted, and it is generally necessary to give a day's notice beforehand. During a witness's attendance on this public duty, he is privileged from arrest: thus, he cannot be taken into custady for clebt while he is guing to, remaining at, or returning from the court. Moreover, he is entitlerl, before he go to the court, to have his reasonable travelling expenses paid to lim, and a sum for subsistence while he remains in attendance. He is also entitled to a reasonable allowance for his lost time while attending a civil trial, and courts of law allow 58 . per day to a labourer or journeyman, 7 s. $6 d$. to a mastertradesman, aud £l, Is to £3, 3 s . to professional men : to females, according to their station in life. A witness may, in a civil case, but not in a criminal case, refuse to gire evidence until his expenses are paid. A witness, hefore examination, is required to take an oatli, which may be in any form which be considers most binding on his conscience; but he inust at least believe in a God and a future state of rewards and punishments. When a witness is examined, he is generally asked specific questions, first, by the party calling him, and during this examination in chief, the rule is that he is not to be asked leading questions, i.e., questions which suggest the answer that is required. The opposite party is then allowed to cross-examine the witness, and in doing so, may ask leading questions, or test in every way the truth of the witness's statement. After this, the witness is re-examined. There is a technical rule that the party calling a witness is not allowed to impeach his credit, or ask anything laving that effect. There are certain questions which a witness may refuse to answer. Such are questions the answer to which might render the wituess liable to a criminal charge or penalty; but he camot refuse if the effect mould merely be to reader him liable to a civil action, or merely to degrade him. If a witness live in a foreign conntry, he cannot be compelled to come to this comentry liy any subpœua, and therefore the only way of getting his evidence is to send a commission to some person in the foreign country to take the examination there.
Where, however, a witness resicting in Scotland is required for a trial in England, ancl vice rersa, he may now be compelled by subpernia to attend in the same way as if he had resided in England or Scotland respectively. If the witness is aged or infirm, so that his attendance at the trial would be dangerous to him, he may be examined by a commissioner or examiner before trial. In England, when a witness is sworn, a New Testanent is put iu his hand, aud after the officer of court repeats the form, he kisses the book. The form is : The evidence you shall give to the court and jury, touching the matter in question, shall be the truth, the whole truth, and nothing but the truth.' When the witness is a Jew or foreigner, the form varies. In Scotlanl, the witness, when sworn, stands, holding up his right hand, while the judge of the comrtrepeats this form : '1 swear by Almighty God, as I shall answer to Cod at the great day of judigment, that l shall tell the truth, the whole truth, aud nothing but the truth, in so far as I know or shall lye askel.'

WI'TNEY, a small market and mannfacturing town of Oxfordshire, in a dreary district on the Windrush, 10 miles west-north-west of Oxford. It is a neat ame well-built town, consisting principally of two streets. There is a spacious cruciform ehureh, a blanket-hall (built 1721), a town-hall, anel cross (16S3). It is celebrated for its blankets, which are distinguished for their peculiar whitevess, communicated, it is said, by the sulphureous qualities of the waters of the Wiudrush, used in their manu.
facture. This branch of industry luas, however, somewhat declined, from the introduction of machinery for blanket-making in other towns. Gloves, malt, pilot-cloths, and felting for paper are also mannfactured. The Saxon form of the name is Witaneye, and means, 'the island of the Wise Men,' or 'the island of the parliament.' W. is connected by a branch with the Great TVestern Railway. Pop. (1861) $345 S$.

WITTEKIND, a Westphalian chieftain, the most celebrated leader of the Saxons against Charles the Great, made his first appearance as leader in the expeditions which the Saxons undertook in 774 against the fortress of Eresberg, in Westphalia, and the Frankish province of Hesse, while Charles was subduing the Lombards. When most of the Saxon nobles submitted to the Emperor Charles at the imperial diet at Paderborn in 777, W. Aled to Siegfried, king of Jutland, whose sister Geva he is said to have married. In 77S, he returned, and when Charles was absent in Spain, began to lay waste the Phine conntry. Charles's return obliged him again to take refnge in Jutland ; but in 782 he fell upon the Frankish arny by surprise at the Sintleberg, and entirely annihilated it-an act for which Charles took frightful vengeance lyy the execntion of 4500 Saxons. On this, all the Saxon tribes rose iu arms, and the war was again led by W. until TSE, when Charles entered into negotiations with him, the result of which was, that IV. repaired to the emperor's camp at Attigny in Champagne, and received baptism. After that, he appears no more in history. According to the legend, however, that is still current among the people in Westphalia, Charles promoted IV. to be Duke of the Saxons, and inade over Eucers to him. From his castle called Babilonie, situated in the neighbourhood of Lubeck, he is said to have ruled with gentleness and justice till 807 , whon he met his death in a campaign against Dulie Gerold of Swabia. His bones repose in the parish church of Engers, in the duchy of liarensberg, where Charles 1 T., in 1377, erected a monument to lim; antl on October 18, 1S12, another monument in his honour was erectal at Ninden by the Wrest. phalian Suciety. The higher of the two hills which form the Westplalian gates on the Weser, near Mindeu, bears the name of Wittekindsbercs.

W1'TTENEERG, a town of Prussian Saxony, a fortress of the thind rank, stands on the right bank of the Elbe, J5 miles south-west of Berlia, and 59 by milway. It is interesting as having been the capital of the electorate of Upper Saxony; as the cratle of the lieformation, and as containing the remains of the reformers Lnther ancl Melaucthou. The once famors unirersity, in which Luther was professor, and mentioned by Shakspare as the school wlece Iramlet stndied, is now removed and incorporated with that of Halle. In the Siadt-Firche are two remarkable but joor pictures supposed to be by their contemporary and friend Cranach, in one of which. Nelancthon is represented as dispensing the saerament of baptisn, and Luther as preaching to a congregation, of which the two forenost firures are his wife ant son. In the Schloss-Kirche are the tombs of Luther and Melancthon, as well as those of Frederick the Wise (with a noble bronze statue by Vischer) and Jolun, electors of Saxony. Upon the doors of this church-burned down by the French, but replaced hy others of metalLuther hang ul his 95 theses against the papal doctrine of indulgences. The house of the great Reformer, containing his chair, tahle, \&c., and two portraits of him by Cranach, remajns almost unaltered. The houses of Melancthon and Cranach are also shewn. In the market-place is a bronze

WOAD-WOHROW

statue of Luther by Seladow: and outside the kilster (iate, a spot is pointed out as the place Where J,uther hurnerl the japlal hull. Manufactures of woollon and linen senols, Josiory, ame leather are earried on. Jimuly is distilled, and beer brewed. P(1). (1864) 1:3, (1) S.

WOAT (Ismix), a ecmus of plants of the natural order Crucifert, hating a l-celled, 1 -secded, laterally compressod pouch, with the valvos liectul amel eventually sejarating. It contains only a fuw species, mostly natives of the eomeries aromed the Mediterrancinn. DrEn:s II. (1. tincturia) is somelimes found in eultivated ticlds in England, but nost jrobably has been introdneed, as it was formerly much eultivatel both in England and Scotland, for the salse of a blne dye oltamed from its root-leaves. 'lye use of this dye has in crwat jart ceased, in cunsegreace of the mare general iutrontuction and diminisher cost of indiro. Iyer's W. is a bieminal plant, with wblung erenate ront-leaves alsont a foot in longth, an pretty long stallis; an urri hat, nuch lamelacd leafy stem. abont $: 3$ fect high; suall yellow dowers, and larse seed-vessels, alout half
Heres TVoad
(laticis linctoria).
offers whals were mate to hinn of aplonintments to prastoral clar:res of more inportance. He latillecta tromelte uy in the strictest princinles of mesloy: terianism, and lo zealously adhered to the party in the Eistablished Chureln, which was most strenuons in mantaning those principles, and in resistinge what were decmed to he the encroach. monts of the secular fower. Soon after his settlemant at biastwool, lae began to elevote lis lvisure lours to what beeane the chief oliject of his lifethe writing of a history of the ('harely of Scotlam! from the liestoration to the lievolution. Ne spared no pains int no expense, so far as his limited means could afford, in collecting materials for this work. Ife contesponded with all persms who could give hime any information, and transcribed with his own hand the civil and ecelesiastical recomls loaring on his suhject. I'lee work was published in two folio volmmes, the first in $1-\% \mathrm{j}$, anl] the second in the following year. It was dedicated to King George 1., whom the author styles the luest as well as greatost of lines ; and in the year 17.25 he received an order on the scottish excherpuer for $£ 105$, as a mark of the royal lwunty. It is probable that tliss sum was the chicf recmiary recompense of his libhurs: but considerations of that nature fomed no part of the inducements which hal led him to undertalec the work. A second edition of the history, in 4 vols. Svo, wis phblislued at (ilascrow in 18 ås, under the editorship of lir liobert limrns. Wh. con. templated wther works, ehietly of a liograplucal character, illustaative of the ceclesiastical listory of Scotland. Nome of these were published till the present ecntury: "]wo vols. of his collections on The lives of thi Scoltish Fiformers unel most cminent Ministers, amd 4 vols. cutitleal dustech; or, a / I is. tory uf lemarladele l'rorialencos, have heen jrintal by the Alatland Club. Three volumes of his correspondenco were pmblished ly the Wedruw Suciety- a literary club calleal aftor his name, ame instituted in lofl for the jublication of the worlis of the fathers aml canly wraters of the licformed Church of sentlaml. This correspondenee, which extends from the year 1700 to the jear 1731 , throws mucll light on the ecelesiastieal histury of the time, and contains letters aldressed to jersons uf some note in thenr lay, mot only in Scotlaml, but in Englami, Ireland, and Nuth Ausurica. IV', shealth was impaived lyy the eacurness with which he prosecnted lis laborious studses. Je died on the Zlst of March 173t, in the 55th yeur of his age. His great work-the onc by which his name is gemerally kunwn-is the history. It is what it professe's to lie in the title-page, a "Jistory of the Suffermes' of the l'resbyterian Cluxela, rather than an eeclesiastical history of the perionl. 'This uf itscif jmplies an onesided character, and warns its realers that they need not expect an aecount of events not coming within its limited range. Of its great value as a storehonse of materials to the stument of Scottish history, no one who has examimel its pares can hase a domlet. As little hesitation will there be in regard to the absence af every grace of style. The only question will he as to the degree of credit to le given to the facts whiel: the writer relates. So far as eoncorns his firlclity in transcribing records, and incorbrating in the text the narratives furnished to him, there is no reason to doubt his geveral accuracy. Jut beyoul this nothing can lee sail. Ilis crealulity was so great as to make him cutirely unalite to give any wejeht to intrinsic improlabilitics or the contliet of extermal evidence. He could rarcly admit a fault in those of his own sile, and it is hardly an exacceration to say that le conld nerer sce a virtue in his opponents. Nuch of his history is gathered from the records of the Privy Cotmeil of Scotland, and

WOJWODA-WOLF.

an examination of these valuable and voluminous papers will make it pretty evident that W. disingemonsly neglected to extract particulars which tell against his party. It is obrious, therefore, that in the perusal of his work, allowance must be made, not only for the absence of whatever does not come within its proper subject, but also for exaggerations of the virtues and sufferings of one party, and the crimes and errors of the other. The fullest memoir of W. is that which is prefixed by Dr Burns to his edition of the history. Interesting details of his domestic life and of his lahours and studies will be found in the printed volumes of his correspondence.
WOJWODA (Polish, Wojewoda), an old Slavonic word (composed of woi, warrior, and wodit, to lead), means, literally, army-leader or general, and was from early times used by most Slavonic nations in this sense. Afterwards, it hecame the title of the elective princes before hereditary monarchies were formed. Thus, at one time, the princes of Wralachia and Moldavia were called Wojwodes; from the Greek emperors, with whom they had been in intimate alliance from the year 1439 , these princes next received the title of Despots, a title they afterwards exchanged for that of Hospodar. The name was also given to the elective princes of Transylvania, whether dependent or independent. The same title of Wojwoda was applied to the elective chiefs of the Polish goverument before the beginning of the Piast dynasty. Later, the mame denoted office and dignity; and was given, in the former kingdom of Poland, to the governors in the districts, or Wojwodschafts, into which the kingdom was divided. They had at first only a military authority; afterwards, however, both the civil and military were united in one person, so that Wojwoula and Palatine were one and the same. The name of Wojwodschaft was preserved in lussian Poland till recent times; now the Polish Wojwodschafts are named uniformly with the other Russian 'governments.'

WOJWODSCHAFT (or WOJWODLNA) of Servia. See Banat.

WO'KINGFANT, or OAKINGHANI, a small but improving market-town of Berks, 7 miles sonth-east of leading, at the junction of the Reading and Staines and the Reading and Guildford Railways. Shoes are made, and ganze and silks woven. In the original Rose inn, Gay, Swift, Pope, and Arbuthnot, being detained here by wet weather, composed among, them the old song of Molly Mor. All Saints' CLurch, a magnificent building, lately restored, is remarkable for its massive ehalk pillars. W. is the only town in Windsor Forest. The aneient amusement of bull-baiting was continued here until within the last 25 years. Pop. (1851) 225%; (IS61) 2404; (1866) 2600 .

WOLCHO W, or VOLKHOV:. See Ilmex, Lake, and Ladoga, Lake.

WOLCOT, Dr Join, better known ander the nseudonym of Peter Pindar, was lorn at Dodbrooke, in Devonshire, in 173 S . He was educated at the charge of his uncle, a respectable surgeon and apothecary of Fowey, in Cornwall. After stadying medicine at the Loudon hospitals, he accompanied Sir Willian Trelawny to Jamaica in the capacity of medical attendant; but finding his professional incone too small for his wants, he solicited and obtained a church-living in the island. His congregation consisted mostly of negroes, and Sunday being their principal holiday and market, the attendance at church was very limited. Sometimes not a single person came; and W. and his clerkthe latter being an excellent shot-used at such times, after waiting for ten minutes, to proceed to
the seasile, to enjoy the sport of shooting ringtailed pigeons. The death of his latron, Trelawny, induced him to abandon both Jamaica and the church. Returning to England, he tried to establish himself as a plyysician at Truro, in Cornwall, but does not appear to have succeeded. At anyrate, he soon removed to London, where he gave himself up to writing audacious squibs and satires in verse, on all sorts of persons, from King George III. down to the Liverymen of London, and even lower. W.'s line in literature is not a very respectable one, and most people would probably prefer olscurity to a reputation like his; but, to do him justice, I'eter Pindar is an excessively clever writer. Unscrupulous, impudent, and coarse, he is yet a master of burlesque humour and comic caricature : his verse is easy, vigorons, and idiomatic ; and his fancy rich in the production of ludicrous metaphor. Two of his raciest pieces, levelled at his sovereim, are The Apple-dumplings and a King, and IFhitluread's Brewery Visited by their Majesties. Besides these, we may mention his Lyrical Odes on the Iioyal Academy Exhibition (the earliest of his London efforts, and dating from 1782) ; Bozzy and Piozzi, or the British Bioyraphers: Peensat St James's; E'pistle to a Fallen Minister; Odes to M. Paine; and the Lousiad, a Heroi-comic Poem, in five cantos; \&c. The Lousiad has its foundation in the fact, that an obnoxious insect had been discovered in the king's plate among some green peas, which prodnced a solemn decree that all the servants in the royal kitchen were to have their heads shaved. Some of W.'s serious effusions actually possess considerable merit. If the matter, or rather the themes of his verse, had heen less worthless, it would have stood a hetter chance of permanent popularity: In his own lifetime, his pieces were greedily read, and he had an annuity from the booksellers of $£ 250$ for the conyright of them. He was considered so formidable ar personage, that the ministry are said to hare endeavoured to bribe him into silence. W., who records this proof of his power, also asserts the incorruptibility of his patriotism. He died 14th January 1819.

WOLF, Frederick Alg., the most gifted classical scholar and first critic of his age, was born 15 th February 1759, at Haynrode, near Nordhansen. Me was brought up and educated with great strictness ly his father, the leader of the choir and organist of the place ; but was afterwards sent to the gymnasium at Nordhausen. Here, under the training of the rector Hake, were developed in him not only that restless ardour for the thorough study of the ancient languares which actuated him throughout life, but also, what was afterwards the predominating trait of his character, the halbit of inquiring and judging for himselt, and of pursuing only one object at a time. Before leaving the gymnasium for the university, he had read the principal ancient authors, as well as the French, Italian, Spranish, and English; and had also perfected himselt in the theory and pactice of music. At the university of Göttingen, which he went to in liनi, with the intention of studying philology exclusively, he attended the lectures very irregnlarly, being aiready much given to private study. For the rest, he lived very retired, was little visited or known, and was only intimate with a few. However, he gave lessons to several students in Greek and also in English, for which he published Shakespeare's Macbeth, with explanatory notes (Gött. 17Ts). From Heyne (q. v.), who had once excluded him from hearing a course of lectures on Pindar, on account of the irregularity above noticed, he kept himself quite aloof. In order, however, to commend himself to a man who had so much influence as Heyne had, he laid before him,

WOLF.

shortly before his departure in 1779, a dissertation, containing some novel viers's regariling the Ifomeric poens; which, however, Heyne coldly returned. In the same year, he went as teacher to the l'odagogimm at Ilicld, anal there lirst established his fame by an ellition of the s'ymposium of l'lato, with notes aud introduction in German. In 1782, he was appointel to tho rectorslipy of the High School at Osterode, in the IIarz; aml, in 1783, accepited an insitation to Halle, as professor of philosophy and of pelaromieal seicuce. In IFalle, W. Had at lirst dillicidties to encomiter, as he rather estranged than attracted students ly the high tone of his teaching. Howerer, he soon learned to adapt himself to his audience, and then the erowl of eager pupils was very great. As academical teacher, he went on the principle that classical antiquity should be lonked upon ehielly as serving for a model of what is mollest and greatest in 1 mblic and , brivate life, and :is such, is to be employed as in medinm of education. Ife made it the primeipal duty of his oflice to provide able teachers and superintendents for the schools of his native country, and to deliver edueation, as much as possible, [rom the scientific pedantry of the old sehool of perlagognes. Literary labours and fame he looked nuron more as a subordinato objeet; and his cffectivencss as a teacher was unparallcled during the twenty-threc years he lived at Iralle. He nevertheless establisbed his reputation as a scholar and critie by an cdition of 1 emosthenes's Oratio udversus Leptimum (1759), which attracted much attention, and still more ly his celebrated Prolegonena ad IIomerum (1795), in which he unfolded, with prodigious learning anul acuteness, his boll theory, that the Odyssey and Iliad are composed of numerous hallads or rhapsodies by difierent minstrels, strung together in a limul of unity by subsequent editors (sce IIomer.). This work made a great sensation through the whole of Europe. Some scholars gave out that they hal long entertained similar notions regarling the looneric pooms; and Heyne insinuatal that the I'rolegonena were only a reproduction of what W. had heard at Güttingen. I'his gave rise to the spirited Briefe an Meyme (Letters to Heyne, Burl. 1797), of which the tirst three may be considered as models of scholarly polemie and tine irony. Some years afterwards W . published the text of the four orations of Cicero, whose genumeness liad becn ealled in question ly Markland in England-namely, Post reditum in Seratu, Ad Quiriles post radilum, Pro domo sua ad pontifices, De haruspicum re-sporsis-appending the previous controversy, and adding striking observations of his own in proof of their spuriousness. He next went still further, and attack the authenticity of the oration Pro 11 arcello, which had loug been studied by the Ciceronians as a model of cloquence and style, prououncing it to le mere inflated declamation, in a diction hardly Latin, and which Cicero never could hase written. 'Jhis andacions secpiticism produced no little alarm. After having refused a call in 1796 to Leyden, in 1795 to Coperihagen, and in 1505 to Munich, his position was consilerably improved, and he receised the title of I'rivy-councillor. After the disasters of 1sulj, the university at llalle was dispersed, and W . was for a tinc reduced to great straits. However, he soon found a suitable position as member of the Academy of Sciences at lierlin, where he towk an active prart in the reorganisation of the university, and became a professor. He was taken into the Ministry of the Interior as member of the section for public instruction; but, finding that the dutics interfered with? lis time and strength for teaching, which he considered his mission, lie continued only a short time in public office. He next gave up the
$2+2$
work of an ordinary professor, and reserved at last only the privilege of lecturing in the university on such sulhjects as ho closc. For the benefit of his licalth lie took a jouraey to the south of France in April 152f, and dicel at Harscille, 8th August 182%. The multitndinous works of W . we cannot attempt to cmunerate. They consist chiclly of critical editions of classieal writings, with dissertations and annotations, and often with admirable translations citber in Gerwan or Latin. While in lierlin ho edited, along with Buttmann, the Museun iler Allerthumswissenschetten (1807-1810), and afterwards the Literarische Analecten (1817-1890), which has been pronounced perhay's the best philologieal journal that has ever been pulilished, aud which contains, among otber papers by W., a long notice of liehard lientley. lrom the papers which he left, his son-inlaw, Kürte, published Ideco z̈ber Eowiehung, Schule und Universitiut (Irleas on Education, School and University; Quedinlo. 1835).-Sce IIanhart, Lrinnerungon an $⺊ 尸$. Auy. 17. (13as, 18:5); Kürte, Lelen umb stuelien Fr: Auty. 1F's des I'hilologen (2 vols., Essen. 183:3) ; Gotthokl, Fr. Auq. W. dic Philoloych wud tlic (iymnasien (künigsl. 15-13).

Wolj, Joman Cmbisfiay ron, a celebrated philosopher and mathematician, was born in 1670 , at Breslau. Ilis father, a rather poor lout wellinformed artisan, made it his chief objeet to give a good education to his son, who at an early ago shewed exeellent abilitics. W. received the cluments of his edmeation at the gymmasimm of lieslan, and went to Jena in 1699 to study theology: llusever, mathomatics and philosophy were his favourite scionces, and to them be almost exelusively devoted limself. In particular, he studied Descartes and Tschimhansen's writings, to whose Medicint mentis ho wrote annotations, which hrought him into connection with Leibnitz. In 1703, ho delivered at Lejpioy a graduation disputation, De Philosophiat Pratica íniecrsali, Methodo Muthenatica Conseripta, which made a very favourable impression, and then locgan to give leetures in mathematies and philosophy; which were very numerously attended. liy varions works which he published on special manchcs of mathematies, his name became celchrated even in forcign countries. When the ineursion of Charles X11. into Saxony oluiged him to leave Leiprig, he receiver, on the recommendation of Leilnitz, a call to lIalle, as professor of mathematics aud natural $1^{\text {bhilosophyy }}$. He there aequired great celebrity by his systematical methorl of teaching, as well as by mumerous mathematical writings. The clearness and definiteness of the ideas and propositions which be exLibited in his mathematical feetures, were something till then quite unknown. Hence it came that his system of metaphysical and moral philosophy, which he worked out according to this mathematical method, and published, met with universal approbation, and quiekly spread througlı Germany: it became a kind of rage to treat all sorts of subjeets in the mathematical method, the uffect of which was often ludicrously pedantic. W., however, was violently attacked by his colleagnes in Halle, especinlly by those thenlogians who favoured the pietism then coming into ronue: he was deelared to be a despiser of religion, and a tcacher of error ; and a formal aceusation was brought against him to the govemment. The immelliate ground of the acensation was his oration De Philosophit Simensium Moruli, in which he spoke with approval of the morality of Confucius, besides which the basest insimuations were brought against hina, derived from his doctrine of freedum, which, it was saicl, encouraged social anarchy, By a eabiuct orier of Frederick-William 1., of date 15th November 1:23, W. was deposed from his otlice, and

WOLF.

commanded, under pain of deatl, to quit Halle in 24 hours, and the Prussian dominions in two days. He did so on the 23 d November, and met with a favourable reception in Cassel, and was appointed to a chair in the nuiversity of Narburg. The dispute about his philosophical system now became general, and nearly the whole of Germany took part either for or against him. At the same time he received from abroad many marks of honour and adrantageons proposals, which last, however, he declined. In the meantime the Prussian government had begnn to regret the steps it had been led to take against him, and had appointed a commission to re-examine the ratter. This resulted in his entire justification ; and when Frederick 11., who bad a great esteem for him and had studied his system, ascended the throne (1740), W. was induced to return to Halle as Professor of the Law of Nature and Nations, and with the titles of Privy-councillor and Vice-chancellor. In 1743, he became Chancellor in the place of Ludwig, and was raised to the rank of Baron of the Empire by the Elector of Eavaria cluring the regency. W. died in ITJ4. Before his deats, he saw his philosopliy spread over the whole of Germany and a great part of Europe; he haud, however, ontlived his reputation as an acadenical teacher. That he did great service to philosophy, cannot be denied. If he did not enrich it by great and brilliant discoveries, he at least directed attention to systematic method; and by treating scientifie subjects in the mother tongue, he did mueh to create that wide-spread taste for philosophical speculation which has since been characteristic of Germany. W. adopted Leibnitz's hypotheses and principles, which he endeatoured to carry out into a complete system and popularise. But although the Wolfian philosophy was a great improvement on the scholastic Aristotelianism that had previously prevailed, its dogmatism conll not stand the criticism of Kant, and it is now a theory of the past. By lis voluminous writings, written partly in the German language, and the immense number of his pupils, W. had a wide aud beneficial inftuence on his age, more cspecially as counteracting pictism and mysticism, then rampant. He also did good service to the German language. The multitude and extent of his writings is truly marvellous, even if we look at nothing else than the mechanical labour of writing them. He treated mathematics and philosoply in a double set of works; the one in full in Latin, the other shorter as German school-books, of the most of which several editions have been published. Besides these, are a great number of treatises on single subjects in physics, mathematics, and philosophy. His systematic works on all the chief bracches of philosopley alone, amount to 22 rols. in quarto.-See Christian II.'s eiqene Lebrnsbeschreibung (Christian W.'s Antobiography), published by Wattke (Leip. 1St1) ; Ludovici, S'ammlung unt Auszïgerer Sü̈nmblichen Streitsclurifion wegen der JFolf'schers Philosophie, u.s.w. UCollection and Extracts of the Controversies about the Woltian Philosophy, \&e., 2 vols. Leip. 1737); by the same anthor, Ausfichelicher Entwourf ciner rollstientigen Historie der IJ'olf'schen Pluilosophie (3 vols. Leip. 1737).

WOLF (corresponds to Lat. vulpes, a fox), the mame of a wild animal of the same genus with the dog, and of which it is indeed doubtinl if it constitutes a distinct species ; whilst, as to the different linds of wolves fonnd in different parts of the world, it must be deemed at present wholly uncertain whether they are to be regarded as sprecies or varieties, althongh they have, provisionally, received specific names. There exists among them the same close resemblance as in the different kinds of dog,
with a similarly marked distinction of characters, which, however, it is difficult to state as speeific characters are generally stated. The same difficulty, therefore, ocenrs in the natural history of wolves as in that of dogs, although the number of different forms is not so great. In their most important characters, and those which, as least subject to variation, are generally regarded as best marking specific clistinction, they agree not only with each other, but with dogs. The opinion, that the W. is the parent of the dog, or of some of the kinds of clog, is favoured by the identity of the period of gestation, a point which seems to be pretty well established, and which, in such a question, is to be regarded as of great importance. Dogs and wolves, also, intermix, but it is not yet fully ascertained that the offspring will continue fertile among themselves. It is further observed that wild races of clogs, whether originally wild, or having become wihd (jeral races), resemble wolves in many respects, in their dull miformity of colour, in their lengthened muzzle, lengthened limbs, lank form, and gaunt aspect, and even in the bushiness of the tail. It has been alleged, as a reason against supposing the W. and the \log to be really of the same speeies, that the W. is incapable of domestication and of attachment to man. This, however, is not the ease. Both the Common W. of the Old World and the wolves of America have been found capable of domestication, when taken young, and instances are on record of their having displayed an attachment to their master like dogs.
The Common W. (Canis lupus) inhabits Eurnne and the northern parts of Asia, its range extending from the Arctic regions as far south as the northern parts of Africa and of India. It is of a yellomisls or tawny-gray colour, with strong coarse hair,

Common Trolf (Canis lupus).
which is longest on the ears, neck, shoulders, ancl haunches, lhat particularly on the throat; the muzzle is black, the upper lip and chin white. The cars are erect and pointed, the muzzle sharp; the legs rather longer than those of the SLepherd's Dog; the tail bushy, hut not curling; the eyes oblique, giving a peculiar vicions expression to the conntenance. The W. is swift of foot, and hunts deer and other animals, packs of wolves associating for this lurpose ; it also often commits great ravages among sheep, and attacks calves, but seldom full-grown oxen. It seldom attacks man, unless hard presserl ly hunger, when it beeomes very dangerons. The hungry wolves which sometimes deseend, in severe winters, from the forests of the Alps, Pyrenees, and other mountains, are much dreaded lyy the inhabitants of neighbouring regions; and terrible stories are told of travellers chased by packs of wolves in the

WOLF-DOC-WOLFE

forest-covered plains of the east of Europe and in Slain. In gemeral, the W. is cowardly and stealthy, apporaching sherpfolds and farm-buillings by night, in search of prey, and readily scared by any demonstration of watchfulness, thecing from dogs, and wat reulity exposing itself within range of shot. It defends itseli, however, with great visour, when compelled to duso. It is not casily trapped, leing extremely eations, amd appearing to understand the nature and purpose of is trap alinost as well as those ly whom it is set. Wolves have often been known even to approach a trap so skilfully as to Acrour the bait without ham to themselves, getting at it from lelow.
biversities appear in the wolves of different conntries of Eirrope and A sia, hut not very consil. erable. The lireneh wolves are genemally browner, and rather smaller, than those of Germany; the wolves of liussia are larger, and have longer hair ; the wolves of the Alps are lpownislagray, and not of large size ; in Italy and T'urkey a taw colour predominates. In some very northern regions, wolves become white in winter; and white wolves, probably albinos, sometimes oceur in more sonthern regions. The Black W. is the most marked E.uropean variety. It is found in the Pyrences and in Spain, and is very large and strong. Strings of mules are often followed by these wolves in the passes of the l'yrences, after evening comes on, and they not unfrequently succeed, notwithstanding all the care of the muletecrs, in eapturing some of the animals.

Wolves are still very plentiful in some parts of Europe. An official report of the liussian government eoneerning the district of Livonia, for the year 15:2, states that the wolves in that distriet of alont 20,000 square miles, destroyed in that year 1841 horses, 1807 oxen, 723 calves, 15,182 sheep, 726 lambs, 2.55 goats, IS3 kids, 4002 swine and pins, aud $70: 3$ dogs, besides geese and fowls. The W. was formerly comman in Britain, and the Anglo-sianon name for January, Holf-month, is signifieant of this fact. Plaees of refuge from wolves were erected for travellers in wild and mpeopled districts, as at Flixton in Vorkshire. King Digar commuted the punishment of eriminals on their producing a certain number of wolves' tongues. Lands in Jerheshire were held on condition of killing wolves. It is not easy to say at what date wolves eeased to exist in Encland; it was probably about the end of the 15 th c., but they continned to commit serious ravages on flocks, in Soutlant, in the rad of the lith co, and the last W. in Seotland is sail to lave been killed by Sir Lwen Cameron of Lochiel, in 16S0. They existed in Ireland at least as late as 1710.
The American wolves are very similar to those of the uld World. They have been deseribed as forming several distinct species, but are by some included in one, doubtfully distinguished from the Common W., and to which the name Canis occidentalis is given. The fur is thicker, and the form more robust than in the Common W., the mazale is less pointerl, and the profile not so straight, the legs and ears are shorter, and the tail is more bushy. The Gray W. (C'mis occidentalis, var. ariseotelbus, or C. griseus) is ahnodant in the northern parts of North America, except in the lonw-settled distriets, frum which it has been expelled liy man. It is the only kind foum in Canarla. A few still remain in the monntainous aud wooled parts of New Lingland. Packs of wolves hang around the herds of buffaloes (lisons) on the western prairies, not daring to attack strong animals, but reuly to seize any sickly straggler that falls behind the rest. They hime and run ilown deer. The Gray W. equals the European slecies in cuming, and lias been known to bite off
the eord close to the trigger of a set gran, ami afterwards to devour in safety the bait placed before the muzze. It has also heen known to hanl up tishimgo lines set in a hole of the ice, and to hell , itseli to the fish. It is frequently taken loy means of pitfalls. On the prairies, the ludians kill great numbers of wolvos ly enclosiny them in a circle gradually reluced, but originally extending ower many mites. A premiom of 10 to 20 dollars it head was formerly paid, in some parts of Ameriea, for the destrnction of wolves, jartly by tho state, zand partly loy the connty or town, beeause of their raviages amone sheep. The range of the (iray W. extemis to the coldest northern regions, as Mchville Islaud and lianks's Lamel. In the nortl-western states, the Gray W. gives place to the Duski W. (C'anis nubilus of mamy maturalists); and in the somth is the Jlach W. (f. ater or Lycaon) : whilst on the upper parts of the Missomri, the Whre W. appears, and the liufous W. in Texas. They differ little in chameters and habits from the Gray Wolf. -The l'manie W. (C'. latrans, or Lyciscus latrans), the Corots of the Mexicaus, is a very diflerent animal, more resembling the jackal. It is found from Nexico northwarts to the Saskatelowam, aboumbing on the vast plains of the Missmani . It is 36 to 40 inches long. with a tail of 16 or 18 inches; the mazale sharp and fox-like, the ears very large and erect, fon toes on wach fout, and on the forefeet a sharp claw on the inside, two incles alove the gromul, attached to the rudimentary thumb; the colour is nsually dull yellowish gray, with black clondings, the muler parts dirty white. It loments in packs. It is an extremely fleet quadruped, excelling every other in the countries which it inlabits, exeept the J'rong-horn. Its voice is a kind of shayping bark. The true wolves never bark, the only sound they emit being a prolonged and dismal lowl.
South America las numerous speeies of Conider, some of whiel are known as Agnaua wolves, and are nearly allied to the I'rairie Wiulf.
WOLJ-DOG, a kind of don used for hunting the wolf, formerly abundant in Norway and sweden, lut now almost exelusively found in Spain, into which it is suppose to hate been introduced by the Goths. It is of the same group with the shepherd's Dog; and is of a large size, little inferior to the mastifl, with pointed nose, erect ears, lone silky lair, and is very bushy tail curled over the back. ln colonr it is mostly white, with large clunds of tawny colour or brown.
Wolffe, The liev. Charles, the son of a eounty gentleman of Kildare, was homi on 14th December 1791, at Dublin. The family having come to England on the death of his father, which took place wlailst he was yet guite yourg, the hoy receised his chief elucation at Winchester, where he shewed himself an apt scholar. Being transferred, in 1809, to the university of Buhlin, he succeeded in securing a scholarslip, and in $181 / 4$ his degree of Bachelor of Arts. During this perionl, he was actively employed as a tutor: at this time it was also that he composel the greater part of the poetry which he left as his legaey to the worli. In 1817, his eelehrated lines on The Bu-ial of Nir ofohn Moore, suggested by reading fonthey's impressive aceomat of it in the Lidinburgh Anmual liemister, were written ; and soon after, they found their way into the newspapers. So generally admired were they, that even whilst the name of their author reunained unknown, they had won for themselves a secure place in the memory of the British people. As a singularly felicitons and tonehing proctical record of a noble and pathetic incident in our

WOLEE

national bistory, they are perhaps not likely to be furgotten whilst that history is patriotically read and remembered. W., after qualifying himself to taise orders, became, in 1517, curate of Ballyclog, in the county of Tyrone, from which he was shortly transferred to the larger parish of Donoughmore. Ilis devotion to his duties was extreme. and was repaid by the warm affection of all with whom they brought hins in contact. But they seem somewhat to have overtaxed the strength of a constitution at no time robust; symptoms of consumption appeared; and a visit which he made to Edinburgh in May 1821 , developed it. He tried in scarch of bealth, successively, England, the south of France, and finally the sheltered Cove of Cork, in which last 1)lace be died on 21 st February 1523.

Ifis literary Remains, consistivg of sermons chiefly and poems, were given to the world, with a llemoir, in 1825 , by the Tiev. John A. Fussell, D1.A., arclideacon of Clogher, an attached friend of the deceased. The work, though containing some poetry of real merit, never made any great impression, and is now quite forgotten. The one beautiful piece which preserves for us the name of W., was attributed by guess, whilst he lived, to more than one of the most famous writers of the day-as, notably, Campbell and Lyron. Since bis death, several nefarious attempts hare been made to filch from him the fame be continues to derive from it.

WOLFE, Janes, the most famons English general of his time, was born at Westerham, in Fient, on 2d January 1727. His father was a lieu-tenant-colonel, afterwards Gencral Wolfe, an efficer of merit and distinction, who served under Marlberough and Prince Eugeue. Along with his brother Lilward, who was about a year younger, James received his first education at a small sehool in that neighbourhood. From the first, the boy had resolved to follow his father's profession of arms; and when little more than 13 years old, he started to accompany the colonel as a volunteer in the unfortunate Carthagena expedition. An attack of illness, however, made it necessary to put him ashore at Portsmouth just before the fleet sailed. In 1742 , he received his commission as ensign in the 12th, or Colonel Duroure's Reginent of Foot, with which he was soon after embarked for service in Flanders. In the year following, he took part in the famous battle of Dettingen; and it is evidence of the capacity be already began to display; that we find him, though still the merest boy, acting in the responsible capacity of adjutant of his regimeut. After the battle of Fontenoy in 1745 -at which W., who had now become a eaptain in the 4th, or Barrell's Regiment of Foot, was, notwithstanding a current tradition to that effect, certainly not present-the British trools were withlrawn from Flanders to assist in the suppression of the rebellion at home. With the army in scotland he served in the capacity of brigademajor, and was present at the battles of Falkirk and Culloden. In 1747, he was again abroad on service. At the battle of Lanfelat, he was wounded, though not serionsly; and his conduct was so distinguished, that he was publicly thanked by his commander-in-chief, the Duke of Cumberland. In the beginning of the year 1749, he was appointed major of the 20th Foot, then stationed at Stirling, whither he proceeded. In the alssence of the colonel, the command of the regiment devolved upon him. In this resjonsible position, which was rendered much more trying by the disaffection still prevalent, young as be was, W. conducter himself with admirable tact and discretion. With little interruption, he remained in Scotland till the end of 1753, when the regiment returucd to Englaud. From the tone
of his correspondence, it is evident be was not greatly delighted with Scotland or its inhabitants. In the mismanaged expedition against Rochefort in 1757, W. was appointel to act as quarter-mastergeneral of the force. The total failure of the operations brought disgrace to nearly all concerned; but it becaue sufficiently known that, had W.'s prompt and daring counsels been followed, the result would have almost certainly been different ; and his reputation, already a brilliant, one, rose considerably in consequence. In particular, it appears that the attention of Pitt was now first decisively drawn to him as an officer of whom, in any enterprise intrusted to him, great things might be expeeted. As marking approval of his conduct, the full rank of colozel was conferred on him. The bigh opinion thus formed of him, was signally confirmed the year following, when he was intrusted with the command of a brigade in the expedition against Cape Breton, under General Amherst. A great success was obtained in the capture of Lowisbeurg; that it was mainly due to W.'s skill, boldness, and activity was quite clearly understood, and be becawe popularly knowu as 'the Hero of Louisbourg.' Presently came the opportunity which was to consummate his glory, in the instaut of heroic death. Pitt was now organising his grand scheme for the expulsion of the French from Canada; it was his just boast that he 'sought for merit wherever it was to be found;' and the expedition, which had for its object the eapture of (laebee, the enemy's capital, he confided to the care of W., allowing him, as far as possible, a carte blanche for the choice of his subordinate officers. On 17th February 1759, W., advaneed to the rank of major-general, and commanding an army of between $S 000$ and 9000 men, set sail from England. At Louisbourg, he had news of the death of his father, the state of whose healih had for some time been such as to prepare him for the event. On the 26th June, W. landed his forces on the Isle of Orleans, opposite Quebee, and proceeded to concert his plans for the attack upon it. This, of which be had shortly before written as likely to be found 'a very nice operation,' prored, on a closer examination, to be one of stupendons, aud, indeed, nearly hopeless diffienlty. The system of defence adopted by bis adversary, the skilful and wary Montcalm, was such as to offer him no loint of advantage. In all lis attempts, though seconded most ably by Admiral Saunders, who commanded the lleet, he found himself completely foiled. The season wore fast away during which operations conld le continned; and an abortive result secmed imminent of the expedition from which so much had been hoped. But at last, at day-dawn of the 13th Seprember, be found himself at the head of his little army, on the Heights of Abraham, above the eity; where Montealm, sorely against his will, was forced to risk decision of the struggle by battle in the open field. Iiesolying to stake all on a tinal effort, W. had, during the night, succecded in scaling the clills at a point insufticiently guarded-an operation of such frightful risk and difficulty, as in war has scarcely a parallel. Of victory he had no donbt; his little force, now-exclusive of detachments necessarily left behind-reduced to something like 5000 men, was indeed opposed to near 8000 of the enemy, besides Indian auxiliaries; but of these it was well known that only a part could be depended on as trained and veteran troops. The result justified his confidence; after a short struggle, the enemy was driven from the field in complete rout; the capitulation of Quebee followed some days after: and its fall decided the fate of Canada. But W. did not live to reap the fruits of his victory; he died in its very

WOLFENBÜTTEL-WOLFFIAN BOTTLES.

hour. In person he led the right; twice wounded, he refused to leave the frout : a third bullet prostrated him ; and he was earried, plainly dying, to the rear. Ife lived only long enongh to know that the battle was decisively won; then rallying his last strength to give one fimal order, and saying: ' Now God be praised! I die in peace,' he expired. The gallaut Montealm also fell, phying, with almost his last breath, the tribute of a true sollier to the valour of the troops who lad beaten him: 'Since,' said he, 'it is my misfortune to be discomfited and mortally wounded, it is a great consolution to me, to have been vancuished by so brave au enemy. If I could survive, I would engage to beat three times the number of such forees as mine were, with a thirel of British troops.'
The news of the vietory was received in England with a tumult of exultation, dashed with grief for the loss of the hero to whom the nation owed it. When prliament met in November, the House of Commons aulinessed the king, praying that his Majesty would order a monnment to be erected to the memury of the deal suldier in Westminster Abbey; where, aceordingly, an flogies of him may be seen, with allegorical adjructs as tasteless and absurd as usual. He was lonried beside his father, in the family vanlt under the parish church at Grecawich.

A single military achievement, howerer brilliant, cannot be made ground of a claim for the successful solulier to take rank as a great captais. But that W. hat the true genius for command, which necded only time and farther opportunity to win for him a fame still more splendid, it is scarcely permitted ns to doubt. Through the lower regimental grades he rose rapidly lyy sheer foree of personal merit, at a time when the service was a mere hotbed of corruption; and ou attainiug to higher commands, he in every iustance gave evilence of the bigher military qualities which proved him eminently worthy of them. He lad only renched the age of 33 , when in his last, aml properly his one great achievernent, ho died, secmingly eut off in the mere opening of a brilliant career. He was of warm affections, and frank and generons nature; though his temper was somewhat cager, impulsive, and irascible, few men have ever been more generally beloved; and not many men so famons have left behind them a memory in every way so pure and spotless.
Till lately, no memoir of him in the least adequate existed; but in The Life of Major-general James Wolfe-formded on Original Documents, ame illustrated by his Correspondence, by IVobert Wright (Lond. (chapman and 以all, IS64), the want is now competently' supplicd.
WOLPENBUTTEL, a very old town of Brunswiek, stands in a low marshy district on hoth hanks of the Oker, 7 miles south of lirnoswiek ly railway: its old fortifications have heeu converted into promenades. There are several churches, sehouls, charities, and a collegc. In a handsome building formed aiter the model of the lantheon at liome, is the famons library phaced liere in 1611 , of which Lessing was sometime librarian. It consists of 2001,000 vols. and 5000 ILSS. or, according to some authorities, 220,000 vols., and contaius some of the linest missals in Europr, an immense colluetion of Bibles, including Luther's Lille with autergraph notes. In the same institution are preserved the great Ruforncr's marriage-ring, spoon, drinkingghass, and portrait hy Cranael. The cnltivation of reget:ables is carrici on to a great extent, and there are manufactures of laequered and japmoed wares, Iaper-haugings, leather, tohacco, and liquenrs; a trade in corn, cattle, and linen-yarn. W. has fise auvual fairs. Pun. (1SG1) 9333.

W゙OLPINEUTTEL FMAGMENTS.
See Lessina; licimares.

WO'LFFLAN HODIES, important organs in the vertubrate embryo, in which they serve only a temporary purpose, except in the lowest class (the ishes), where they remain permanently. In the development of the ehick, these Loolies may be seen as early as the fourth day, lying along cither side of the verteloral camal, from the region of the heart downwards and hackwards, and consisting of a series of cæeal or blimd appendages, corresponding with the so-called kidneys of fishes, which in reality are true persistent Wolffian lodies. On the fifth day, the appendarges become convoInted, and the body which they collectively form increases in mass. The appendayes are then seen to jussess a secreting property, and the tluid which they secrete is conveyed by the duct of each side into the allantois, a sac which, at the same time, aets as a temporary respiratory organ, and is also used as a urinary liadeler. Hence these organs may be regarded in the light

State of tho Urinary and Genitat Apparatus in tho early embryo of the Dird:
a, Corpora Wolfiana; b. b, their excretory ducts; c, kid. neys; u, urcter; c, c, testes. of temporary kidncys. In the chick, the true kid- neys berin to form from the Wolfian bodies at the fifth or sixth day, and gradually inerease in size as the temporary organs diminislı; and at the end of futal life, only a shrmken rudiment of them ean be olserved. In man, the process is very similar, the Wolflian bodies beginning to appear towards the cond of the tirst month; while in the seventh week, the true kidueys tirst present themselves. From the beginning of the third month, the Wollian Lodies begin to decrease, the kidneys inereasing in a corresponding ratio, and at the time of birth, searecly any traces of the former ean he seen. It was formerly believed that the essential parts of the gencrative apparatus -the testes in the male and the ovaria in the female-were also developed from these bodies; but this is not the case, as they lave an independent origin in a special mass of blastema peculiar to themselves, in the iumediate viemity of the Wolftian bodies. - Sice Carpenter's Prineiples of IIuman Physioloyy, Gth ed., !. Slu.

WOLFEIAN LOTTLES, the name giren to a set of appratus employed for the distillation of Hydrochloric Acill (r. v.): It consists of a retort, a, in which chloride of sodimn (eommon salt) is submitten to the action of sulphuric acid, gradually added throngh the funnel U, and the vaponr evolved passes out iato the first bottle (which, in the aceompanying tigure, is represeuted as half full of water), and is absorbed by the water. This process contimes till the gower of absurption of the water in the dirst hottle ceases (or, in other words, till the water becomes saturated), when the vapour colleets in the weck of the retort and in the tube c, till it aurquires sufficient tension to fore its way throngh the water, and enter the second loottle by the tube d. In turn, the water in the second botile becomes saturated, after which the gas is foreed to find its way into the third bottle throngh the other two by meaus of the connecting tule f. After the force of reaction in the retort has become wealsened,

WOLF-FISH-WOLLASTON

the evolution of the gas is quickened by the applieation of a flame, which requires to be gradually increased. Considerable heat being generated during absorption, it is desirable that the hottles should le immersed in cold water. The tubes, c, c, admit

Wolffian Buttles.
atmospheric air to prevent the rarefaction in the retort tending to force the contents of the bottles back into it.

WOLF-FISH (Anarrhichas), a genus of fishes of the family Blemiutce (sce Blesivi), having no ventral fins, the pectorals very large, a single dorsal fin extending from behind the head almost to the tailfin, a long anal fin, the tail-fin rounded; the head round, smooth, aud blunt; the teeth large and strong, not attached immediately to the jairs, but to bony processes connected with them ly sutures.

Wolf-fish (Anarriichas Tupus).
The jaws are powerful, the front teeth resemble the eanine teeth of mammals, whilst the vomer and palate are furnished with teeth which have the forn of rounded tubereles. One species, the Common W., also called Cat-fisir and Sea-cat (A. lumus), is found ou the coasts of Britain, and is plentiful in more northern seas. $1 t$ is frequent on the coasts of Scotland, particularly in the north, but is more rare on the English coasts. It is of a light gray colour, brownish on the back ; the lower parts exhihiting ten or twelve dark transverse stripes. The skiu is covered with much slime. It attains the length of six feet, and is a creature of formidable and even repulsive apyearance: it bites savagely when canght, aud fishermen therefore generally despateh it as soon as possible by knocking it on the head. It preys chictly on molluses and ernstaceans, whieh its jaws easily erush. It is often very destructive to nets, heing an active and powerful dish. Notwithstanding its ugliness, it is in esteem for the table, aud it is often brought to the Edinhurgh market. It is much used in Icelaud, both fresh aud salted; and a lind of shagreen, used for bags and pouches, is made of its thiek skin. A very similar species, A. vomerinus, is found on the Ameriean eoast from New York to Greenland, and is not only used fresh, but also split, salted, and smoked.

WO'LTRAM is a native compound of tungstate of irou and manganese, from which the metal Tungsten (ๆ. v.) is usually obtaizech.

WOLF'S-BANE. See Acontte.

WG'LGAST, a commereial town and seaport of Prussia, in Pomerania, stands on the Peene, about 10 miles from its entrance into the Baltie, and 33 miles south-east of Stralsund. The shallowness of the water admits only the smaller elass of sea-groing vessels eutering the harbour. There is a public doekyard and a school of navigation; and the inhalitants, who number about 6000 , are ocenpied in shipbuilding, seafaring, and in the manufacture of candles, soap, and tobaceo. The larger ships discharge and take in cargoes at Puden, a small island and pilot-station opposite the mouth of the Peene, known as the landing-plaee of Gustavins Adolphns in 1630. W. is a very old town; it was strongly fortified as early as the 12th c., and was once the residence of the Dukes of I'ommernWolgast; it was taken and retaken five times between 16.3 and 1675 ; the liussians plundered and burned it in 1713, aud the Swedes retook it in 1715.

Tollaston, Willam Hyde, M.D., a distinguished physicist, was the second son of the Rev. Franeis Wollaston, of Chiselhurst, in Kent, and was born August 6, 1766. Aiter the usual preliminary edueation, he was entered of Cains College, Cambridge, where he studied for the medical profession, and took the degree of \$1.D. in 1793 , in which year. also, he was elected a Fellow of the Royal Society. After praetisiug as a physician at Bury St Edmumds, he removed to London; but being beaten by Dr Pemberton in a competition for the post of pinysician to St George's Hospital, he determined thenceforth uever to write a preseription, 'were it for his own father,' but to devote himself wholly to scientific investigation. This sudden resolution proved ultimately most benefieial, leading him rapidly to wealth and fame; for unlike many eminent incestigators of nature's laws and phenomena, W. combined 'the genius of the philosopher with the skill of the artist,' and succeeded in making industrial application of several of his iupportant discoreries. IIis researehes were proseented over a wide field, lut were pre-eminently fruitful in the seiences of chemistry and opties. To the facts of the former science he added the discovery of new componuds conneeted with the productiou of gonty and urinary concretions, such as phosphate of lime, ammonio-magnesian phosphate (a mixture of these two forming the 'fusible' calculus), oxalate of lime, and eystic oxide; the diseovery in the ore of platinum of two new metals, palladium (1SU4) and rhodinm (1805) ; and the determination (1809) of the identity of the supposed new metal tantalum with eolumhim. He also established the important doctrine of multiple combinations of ehemical substanees in a paper 'On Super-acid and Suh-acid Salts,' which was printed in the Philosophical Transactions for 1SOS; and by suggesting the construction of a synoptieal scale of chemical equivalents, tid much to establish in Britain the theory of definite proportions. By his ingenious discovery of a mode for making platimm malleable, he is said to have gained $£ 30,000$, and his mode of hardening steel, and some other discoreries of a practically useful nature, were also very lucrative. His contrihutious to optics were the celehrated 'Goniometer' ($\mathrm{q} . \mathrm{r}$.$) , a most$ valuable gift to mineralogists: an apparatus for ascertaining the refractive power of solid bodies; the 'Camera Lueida' (q. v.) ; the discovery of invisible rays outside the violet band of the spectrum; and an immensity of valuable and interesting observations on single and double refraction. To other seiences his contributions were also of importance, for he was the first to demonstrate the identity of

WOLSEY-WOLTELIHAMPTON.

galvanism and common electricity, and explain the cause of the alillarence in the phomomena exhilited by each; he inventel a eryopliorus' fur illustrating the theory of leat; constructed a most convenient kind of hlowpipe; de. IV. was ulected secretary of the lioyal Suciety, Nowember :30, 5 sof; and on November $30,152 \mathrm{~S}$, he was awarded one of the linyal Medals for his discovery of the mode of maling phatinnm malleable. He died of eflusion of lolood on the brain on December win af the same year. Ilis anost important Memoirs, is in nmmer, will le foumb in the Philosophkicul Transuctions (1500152り).

W'OLSEIV, THOMAS, CuRDIN゙ML, was born in 1.1\%l at Ipswich, in the county of Sutiolk, and is remutud to have been the son of a butcher of that place. 'Ilongh thus of bumble origin, it is certain that lyy some means a good ealueation was secured lim, and, at au umanally early are, he was sent to Magdalen College, "xford, of which he lecitme a Frellow. It is said that while at Oxford, he was brought into somewhat intinate ralations with the great Erasmus, uncuestionably then in Enchand. Itc afterwarts acted as tutor to the sons of the Marquis of Jorset, throurh whose favour be hecame, in 1500 , rector of iymington, in Somersctshire. On one occasion, he rplucars to hive got limself into difficulties. At a fair in the neighbour hood, it was his misfortune one day, it is sitid, to be found drink and disorderly; and ly a certain knight of the shire, by name Sir Amias l'onlet, he was put in the stocks for the mishlemeanour. 'Ilat he figured in the stocks, is certain; that he did so on the seore of drumkenness there is no aderuate evidence. When the jower to retaliate came to him, he took lis revenge on Sir Amias by laving him imprisoned for six years.
W., who was plainly one of the most insinuating of men, in Somersetshire became intimate with a Sir Jolm Nafant, a man of considerable mark. Through the influence at court of this gentleman, he was appointed chaplain to Henry VII., with whom he speedily ingratiated himself. Being sent by the king on a special cmbassy to the continent, lie nequitted himself so dexteronsly, that he rose still higher in favour; and in ljus, the deancry of Lincoln was conferred on him. The year after, Henry VIIl. succecked to the throne left vacant ly the death of his father. Venrly from this time forward, the life of W., previously noted, inreed, as a rising man, yet of no spreinl pulilic importance, is in eflect the history of the Eingland of which le implicitly lrecame the ruler. From Itary he enjoyed the most unbounded favour and confidence; and the intluence which he thus exerted in the conduct of affairs was such as has schtom been exerted by a subject. The nost valuable ecelesiastical preferments were showered upon him; and finally, in the same year (1515), he obtained the bishopric of Lincoln, and the archbishopric of York. The year following, the dignity of cardinal was conferrei on him by the pope, who, not long aiter, appointed him also legate. Besides these ecclesiastical honours, he was made by the king, in 1515, his Prime Minister, and Lord High C'hancellor of England. From this time, प, to that of his forleiture of the royal fivour, W. was one of the most important men in Europe ; and at boure his power was almost withont limit. The revenues derived from his various offices were of princely magnitule; and they were further conlarged by subsidies from forcign potentates, cager to conciliate his favour. He did not bear his honours meekly; in his way of life be allected a sumptuous magnificence, anel a state only not royal, whilst in bearing he was arrogant and imperious. He openly aspired to be
pope: and there seemed more than once ground for supposing that this crowning olaject of his ambition was really within his reach. He was, lowever, disapponted; and it has been smmaised that his resentment açainst C'harles V., to whom he attriluted lis failure, determinem, to a considerable extent, the forcion policy of the comntry:

Such a man conld not fail to have many encmies, eager. as occasion might ofler, to discredit him with his royal master ; and an occasion at lenoth came, of which they did not fail to take advantace. To the project on which the king hanl set his lieart, of divoring (Jucen Catharine, and marying dane Boleyn, $I I$. shewed limself hostile: of the latter part of the sehme he was known to disnplrove; and his negotiations with a view to securing the consent of the pope to the divoree were enudueted, as it seemed to the king, in a dilitory and half-hearted manner. Itenry, where his passions were intrrested, couhl little brouk rontumacy of this kiml; his lispleasure was carefully fonned, and the discrace of W. was accomplished. In lisag, he was stripped of all his honours, and driven with ignominy from the conrt. Symptoms of relenting shewed themselves, however, next year in the mind of the monarch, and it sermed as if 15 . might again be taken into favour. The prospect, as it moverl, was delusive. Being at the time in lorkshire, the archbishopric laviug bewn restored t u him, along with others of his minor prefermmits, he was arrested on a charge of high treason, and orderel to be comveyed to London for trial. On his journey, he was attacked with dysentery, and at the monastery of Leicester, in November 15030 , lue died.

The fanlts of WI's character are olsious; lut if his pride, ambition, and rapacity were inordinate, his Iuxury and ostentation somewhat unbesceming a suceessor of the primitive afostles, he was not withont redecming rualities. Ilanghty and insolent to his enenies, am! those whose clams ran counter to his own, to his dependents and inferiors he was generons, affable, amil hmanc; and not a few of them shewed their honourable sense of this by devotion to him in his misfortunes. Uf learning, he was a most liberal and culightened patron; and the emlownent of Christ Church College, Oxford, survives as a monument to attest this. He was planly a man of large and splendid capracity; and he scems, on the whole, to have been a diligent, faithful, conscientions, and salutory counsellor and servant of the monarch who so long and entirely trusted to him.

WOLUSPA-i.c., the prophecy of Wala-is the name of an old Siurse poem, preserved in the ndder Edda, which principally contains the description of the creation and the destruction of the word. The IV ala who delivers the utterances, whose name properly signifies propheless, appears in it hersclf as a mythical being. According to Wemhohl's explanation in IIanpt's Zeitsehrift (IS47), the pom, as we have it now, was prodincerl out of oheler popular songs by the liand of a later author at a time when C'bristianity had abready penetrated into the north, somewhere in the tirst lialf of the otla century: Besides luing contained in the Edtla, it has been separately published hy Gruter (Leip. JSLS), by Ettmiiller (Leip. 1S30), likewise lyy Bergmann in the Poümes Islanduis (Par. 1S3S), and ly Dictrich in the ald Norse Lesebuch (Leip. 1843).

W'OLVERHA'MI'TON, a muncipal and parliamentary borough of Staffordshire, a flourishing centre of the manulacture of iron, iron warus, and tin-plate goods, amd the most populous and wealthy town of its comuty, 10 miles north-west of

WOLVERINE-WOMB.

Birmingham, with which it is connectel by railway. Besides Roman Catholic and other Nonconformist chapels, numbering in all 25 , there are also within the municinal borough 10 churches, of which
reference to fig. 1. It consists of a body (1), a hase or fundus (2), a neck or cervix (3), and a moutlo or os uteri (4). It lies in the line of the axis of the outlet of the Pelvis (q.v.), with base directed upthat of St Peter's is a stately edifice, with a lofty embattled and pinnacled tower. In the immediate suburbs there are (1867) : 3 new churches and 4 Nonconformist chapels. Of these 13 chnrches and 29 chapels, 11 churches and two-thirds of the chapels have been erected since 1827. Its leading public schonls are-a thriving grammar-scluod, founded 1714; an Orphan Asylum, instituted 1850 , for orphans irom all parts of the kingdon, with 100 scholars, and room fur -011; and a school of Practical Art, opened 1s5. Among its philanthropic institutions, a General Hospital and Dispensary, opened 1849, baving l00 beds, and, like the Orpuan Asylum, supported by voluntary coutributions, is the chief. W. sent members to parliament first in 1832, and became a municipal borough in 185 . It has Quarter Sessions of its own, a sjacious cattle-market, and a market-hall. New corporation oftices and police barracks are about to lee erected; a system of deep sewerage is conmenced; and its abundant water supply is in the hands of the corporation. There is a recently crected bronze equestrian statue of Irince Albert standing in Queen Squarc. The town possesses an Exchange, where iron-masters and merchants assemble ; and an Agricultural Hall, for the use of farmers and corn-dealers. W. stands mon the western cdge of the extensive coal and ironmining district of South Staffordshire, and is the metropolis of that district. On the sunth and east, the vicinity is covered with coal mines, iroustonc pits, blast-furnaces, forges, rolling-mills, and foumdries; but on the north and west it is rural and picturesquc. Its chief manufactures are tinplate and jakunned goods (14 manufactorics), enamelled holluw wares, locks and keys, edge-tools, iron braziery and galvanised iron goods, gas and water tubes, cables and railway fastenings, ironfoundry goods, machinery, mills, cut nails, tips, cast hinges, electro-plate and papier-mâché goorls, brass castings, aud finished iron. leesides the establishnents engaged in the hardware manufacture, there are several flour-mills and chemical and artificial manure works. The hardware góds manufactured at IT. are remarkable for beanty of finish and genuineness of workmanship. The town cujoys unusnal facilities for communication and thansport. For a considerable time, it has commanded canal communication; and quite recently, it has become the focus of a number of converging lines of railway, by means of which it is phaced in direct relations with the important quarters of the country. Its market-day is Wednesday, under a chartcr by Hemy III. (1258). The borough returns two members to the House of Commons. Pop. (1851) of parliamentary borough, 119.748; (1861) 147,670. 1'op. (1861) of municipal borough, 60,860 ; (1807) 66,000.
W., a town of considerable antiquity, was originally called Hampton, and afterwards Wulfrume's Hampton (of which its present narme is a corruption), from the circumstance that Wulirune, the sister of King Edgar. founded here (996), the church and college of which it Peters is the moderu representative. (1571 -pop. of 1 , $1,163,408$.).

Wo'LVERINE. See Glttion.

WOMB, The, professionally known as the Uterus, is a flattened, pear-shaped organ, whose position and various parts will be best understood by a
wards and formaris, and the neck directed slightly backwards. See tis. 2. lu the unimpregnated condition, which we are now considering, it is about three inches in length, two in breadth, and one in thickness, and wcighs about an ounce and a half. On laying it open, or exploring its interior by the introduction of an instrument through the os uteri,

Fig. 2.-Section of Pelvic Viscera, with the parts in position:
A, the uterus: B, the bladder; C, the rectum (the latter two heiner moderately distended;) a a is a line from the lower border of tbe symphysis pubis to the promontory of the sacrum; δb, from the same spot to the lower margin of the fourth sacral vertebra; $c c$, the axis of the uterus. When prolonged, it runs three quarters of an inch in front of promontory of sacrum, and bits the end of the coceyx.
its carity is found to be very narrow, and to contain a little mucus. Its walls are nearly hale an inch thick, and are mainly composed of muscle-cells and filures running irregularly in all directions excent ronud the os, where they make a partial sphincter. This muscular coat, which constitutes the bulk of the organ, is covered externally with a serous coat,

WOMB.

derived from the peritoneum, and is lined internally by a mucous coat coutinnous with that of the eanal called the vagina, by which the interior of the wonl) communicates witls the outer surface of the body. This mucous cont abounds in small mncous follicles, and is provided with eiliated leppithelium ($(9 . r$..) The neck or cervix of the womb is distinguishecl from the boly by a well-marked constriction. The month, or os, projects slightly into the vagina (which is shewn as lad open anteriorly in the figure). This opening is ncarly round in the virgin, and transverse after parturition. It is of eonsiderable size, and is namel the orificium utcri cxtemum: it leals into a narrow canal which terminates at the upper end of the cervic. in a swaller opening, the orificium internum, beyoud which is the shallow triangnlar cavity of the womb, of whicl2 it forms the lower angle, while the two upper angles, which are funnelshaped, constitute the beginning of the Fallopian Tubles (q.v.), whose apertures are so small as only to admit the passage of a line bristle. The bloodvessels and nerves cularge in a very remarkable way during pregnancy, so as to adapt themselves to the iucreased wants of the organ, which, at the minth mouth of utero.gestation, woighs from two to four ponnds. The tern appendages to the uterus is given to the Fallopian Tubes and Ovaries (q.v.), which are enclosed by the lateral folds of the peritoneum called the brond ligaments. The womb is suspended in the pelvic carity in such a way as, by its mobility, to cscape rude shocks from without or disturbance from the varying conditions of the surrounding viscera, while at the same tince to allow of its vastly increasing in bulk with compraratively little discomfort when pregunacy occurs. This is effected by several duplieitures of peritoneum, containing variable quantitics of fibrous and muscular tissuc, and known from their form or connection as the broad, the round, the utero-sucral, and the utcroresical ligaments.
The uterus is an organ peculiar to the Nammalia, and in comparatively few of them (excepting the Apes and Cheiroptera) is it of the simple oral or triangular form which we have describect. It is terohomed in the Ruminantia, P'achyderwata, Solipecdia, and Cetacear; and it is saill to bee diridel where it las ouly a very short Looly, as in most of the Carnivora and Edentata, and sumo Rodentia, which specdily divides both externally and internally, and is continuous with the ovilucts or Fallulian tules. The uterus is actually double in some of the Eden. tata, and in most of the liodentia, including the mouse and hare; in which eacls Fallopian tube passes into an intestinifornu nterus, which has two eompletely distinct openings lying near to each other within the vagina. In the Marsmpinta and Monotremata, the molifications of this organ are stll more singular.
It is imporssille to do more than name the chief offices or functions of the womb. They many le diviled into those which relate to (1) Menstruation (q. r.), (2) Insemination, (3) Gestation, and (4) l'arturition:-For a complete account of the anatomy, pliysiology, and pathology of the uterus and its appendacres, we must refer to a masterly article by Mr Arthur Parre on that sulhject in the last volume of the C'yclupacalia of Anatomy and Phy. siology.
Womid, Disfleses and Dprangemeyt of tie In this article we shall not iuclude the aihaents of the preguant or of the puericeral state, some of which, as Plegmasia Lolens and Puerperal Fecer, liave been noticed in special articles. Many of the diseases, however, which we shall lave occasion to notice may be traced to pregnaucy, misenrriage, or severe delivery, that had occurred months ${ }^{\text {reveviously. A }}$
common result of inflammation that often succeeds miscarriage or a bad delivery is to cleck that process of involutiou by which the womls ought to be restored in a few weels to the size and condition in which it existed previous to tho occurrence of pregnaney. lior a lucid description of the processes which act on the enlarged womh to restore it to its original state, we must refer to l)r W'est Un Disecases of IFomen, 2, wel. p. 90. How innlammation acts in interrupting these processes, is not easily explained; but after it has passed a way, its elfects may remain in the enlarged size and altered structare of the womb, changes which reuler it likely to suffer from the alternation of activity and repose to which the female generative system is liable. In this condition, the enlarged and heavy uterus is very likely to become prolapsed, or to become a seat of permanent congcstion or ehronic indlammation ; and execssive menstruation and a feelng of weight in the pelvis are ahmost always present. Besides this form of enlargement, there is a far less common form in which the culargement of the womb takes place independently of previous pregnancy, and is the result of true hypertrophy. The symptoms are, according to West, ' a seuse of weight in the pelvis, pain usually of a burning eharacter, hremorrhages having gradually come ou, and foreed themselves by their slowly increasing severity on the intient's notice.' The treatment is much the same in both these forms of enlargement-viz, the recumbent position on a hair or spring mattress, attention to the bowels, and local leeching cvery fortnight, to be continued for several months, together with the careful use of iron associated with small doses of iodide of potassium. Temporary scparation from the husbanl's heel should also be insisted on. 'There is also a form of bypertropliy which is confined to the neck of the womb, which necasions great cliscomfort to the patient, anul acts as a mechanical impediment to sexual nuion. In these cases, no relief can be afforded except by a surgical operation, whieh is descrilued in West, op. cit., 1. 77.
From these results of 'simple errors of antrition,' leadiug to increased growth of the organ, we pass on to the ilchatable and much-trolden gronud of inflammation of the womb. Acute inflammation of the umimprognated womb may arise from unaccustomed and excessive sexual intercourse, sudulen snppression of the menstrual discharge, the extension of gonorrhocal inflammation, \&\&c.; but, as it is comparatively rare, and scklom dangerous to life, we shall at once pass on to an affection which by most practitioners is regarled as one of the commonest to which woman is liahle-viz, chronie inflammation aul ulceration of the neck of the womb. It is not forty years ano since a French physician, M. liecamicr, invented an instrumentthe spleculum-for the arplication of local remedics to the neck of the womb ia cancer; but the light which this instriment threw upon nterine conlitions gencrally, led, amongst nther results, to the conchsion, that leucorrheat discharges (popularly known as the echites) were often derived from, and associated with, various morlid appearances of the month of the woml, and could often be romovel by remedies directed to that part. Almost ever since the speculun began to get into general use, a large number of old-fishioned practitioners raised up a ery against its employment, on the gronmls of its indelicacy, its inutility, fec, and denied the very existence of various morlhil conditions, which the cmployers of the instrument declared they saw with its use. Hence two parties have arisen-one who believe in the speculum and its revelations; and another who reject the recent modes of investigatiug uterine discases, who take small

WOMB.

account of the new facts regarding local discase which have been revealed, and who regard uterine ailraents as resulting from constitutional derangements, and who therefore trust mainly to general treatment. Now, althongh the view that the local disease is crerything, may not be unirersally true, the opposite view is certainly untenable; and Dr West and other writers on this subject have pointed out that there are reasons why the womb shonld more frequently than perhaps any other organ be the seat of certain forms of local ailment, and should consequently require the frequent employ ment of local treatment. It would be out of place in these pages to describe the characters of the nlcerations or abrasions of the month of the womb, which are so frequently rerealed by the speculum, or to enter into any detail regarding the high pathological importance attached by some writers to them. The conclusion which Dr West drams from a prolonged investigation of this subject is, that 'the condition of so-called ulceration or' abrasion of the os uteri is far from infrequent, even in cases where no uterine symptoms were complained of during life; but that it is usually unassociated with other important affections of the uterus, such as may be supposed to be the effects of inflammatory action; and, further, that such affections do not seem to be rearlily excited by causes acting on the neck of the womb, either when displaced, or when the organ is in its natural position.'-Op. cit. p. 120. Since uterine pain, disorderel menstruation, and leucorrhœal discharges-the symptoms usually associated with ulceration of the mouth of the womb -are met with by impartial observers almost as frequently willoui as wilh ulceration, it may be fairly inferred that this nlecration is neither a general canse of uterine disease, nor a safe index of its progress; and althougla the local application of canstic to the os uteri is doubtless often successful in restoring the patient to bealth, it must not be considered as a general rule that the attempt, by local remedies, to remore this conditiou is the one and all-important point in the treatment of nterine disease. There is no doubt that, in the great majority of these cases (excepting 2 few of the more severe ones), temporary separation from the husband's bed, the recumbent position (whicln facilitates the return of blood from the womb and adjacent parts), due attention to the diet and state of the digestive organs, and the use of injections of uitrate of silver, which may be applied by the patient, are sufficient in a few wecks to eflect a curc. Chromic uterine inflammation of a more general nature (as of the interior, or body of the womb), with very similar symptoms, is by no means rare. If the disense is met with in the acute form, leeches shoukl he applied to the womb itself; in the chronic form, which is generally olsserved, the pain in the back is best relieved ly a croton-oil liniment, composerl, according to J)r West's directions, of one part of croton oil to ten of the camphor liniment (of the London Pharmacopocia), which shonld le apphed (without rubbing it in) with a sponge trrice a day on the back, at the seat of pain. Belladonna plaster or liniment also gives temporary relicf. The irritability of the hladder, which is a common symptom, is usually associated witl abundant phosphatic deposits in the mrine, and is best relieved loy is combination of ten or fifteen minims of dilute hJdrochloric acid, half a drachen of tincture of henbane, and two ounces or nore of decoction of Pareira-Brava (see Cissampelos), three times a day; and the tepid hip-bath may be used with bencfit. The same general rules as to rest, diet, \&c. Which hare been already giren, must be attended to. Under the best management, a tendency to
relapse is liable to occur at each monthly period, and after several such relapses, the womb is found (on surgical examination) to be enlarged and hardened, and less movable than natural. This condition is best removed by the carcful and prolonged use of bichloride of mercury in small doses, which, as it is a deadly poison, must only be taken by professional adrice; but the pain in the groin which usually accompanies this change, may be relieved or remored by the application of a small blister. The profuse discharge-both menstmal and lencorrhœal-is best reliered by chalybeate preparations, of which the following is i useful and faromrite compound: Take of sulphate of iron, 6 grains; sulphate of magnesia (Epsom salts), 3 drachms; dilute sulphuric acid, half a drachm; syrup of orange peel, half an ounce; caraway water, sufficient to make a mixture of 6 ounces, of which I ounce may be taken thrice dails, after meals; or if there be much hæmorrhage, a mixture of alum and sulplate of iron ($\frac{1}{2}$ grains of the former to 1 of the latter, dissolved in a small tumbler of water) may be taken three times a day. A hip-bath, coutaining half a pound of alum to crery sallon of water, is often rery useful as an astringent. It should be taken in the morning before dressing, and the patient should remain in it at last a quarter of an hoir. For the first time or two, the water may have the chill just taken off. The same importance is not at present attached to raginal injections as when it was believed that the ragina (and not the womb) was the main source of lencorrhoal discharge. In a case of lencorrhoen elischarge of long standing, an excellent astringent injection may be formed by dissolving two drachms of tamin and half an ounce of alum in a guart of water. Special forms of female or vaginal sjringes are sold for this purpose. Of the application of canstics to the mouth of the womb, we say nothing, as that is a matter which must be left solely to the medical attendant.

From these remarks on the cliseases of this im. portant organ, we pass on to a rery brief notice of its occasional misplacements. Thesingılar mobility of the womb (without which pregnancy would be almost an impossibility) exposes it to the risk of displacement to such a degree as often to give rise to great personal discomfort. As all the camses which tend to produce displacement (such as increased weight of the organ during pregnancy, pressure of the superincumbent viscera, \&c.) act in a downward direction, the obrious tendency of the womb is to be thrown downwards, or to sutfer Prolapsus (q.v.), an affection which, in its extreme degree, when the organ is more or less protruded externally, is termed Procilentia. C'anses sometimes come into play which incline the upper part of the uterus either backward or forward, giving rise to retroversion and anterersion, instead of mere prolapse. Prolapisus is sufficiently considered in the article bearing that title; and for a description of the sympitoms and treatment of the two last-namerl misplacements, we must refer our rearlers to the standard works on the Diseases of Whomen.

The tendency of the womb to hypertrophy has been noticed at the beginning of this article: its individual tissucs have a similar tendency to overgrowth, shewing itself at partienlar parts, and thus giving rise to fumours or ontgrowths, which are nore conmon in this than iu any other organ. Under this head may be mentioned scveral varieties of Polypus. which ditfer essentially in structure, but all of which are inrested by the mucous mombrane which lines the uterns, and are liable to be the source of hremorrhage. Their removal hy surcical means is generally a matter of no difficulty . Nuch more important than these is the Filrous Tumour

WOML-WOMBAT.

Which is frequent in its occurrenec, serions in its eflicets, and very sliglitly amenable to treatment. These tumours are of a spherical form and tirm texture, resembling that of the womb itself, and usually oceur in grouls ; several being frequently present, while one or two are considerably larerer than the others. The symptoms to which they give rise vary extremely accordines as the chief tumour lies on the onter part of the womb, and grows into the abdominal cavity, or is developed within the walls of the womb, or jrojects into the interior. 'They may be of almost any size, cases beine on record in whiel they weighed from 70 to 80 lh . In recrard to the sympitoms of this affection, it must be lemensed that sometimes these tumours exist without exciting any disturbance, and that growths on the outcr surface give rise to comparatively unimportant derangements, compared with those which are imbedded in the walls, or veeupy the eavity of the woml. It will be readily understond that women who have passed the chance of life (as it is popularly called) suffer less from these tumours than younger women. The diagnosis of tibrous tumour is eflected partly by manual and instrumental examination (into which we shall not enter), and partly by the symptoms-such as (I) hemorrhage oceurring in ahout 50 per cent. of cases independently of their nature; (2) elisturbance of the menstrual discharge in 62 per cent. of eases, it most commonly lueing excessive, and often painful ; (3) pain, usually constant, and occasionally only at the menstrual period, described by some patients as a burning sensation, by others as a sense of bearing down, and by a few as occurring in paroxy'sms of intense agony; (4) dysuria-pain in voiling mine, or difficulty in discharging it, or frequent desire to prass it. It is usually hamorrlage, or inability to void the arime, that first directs the attention of the patient to her malady. Its tendency to exeite aloortion uften leads the physicim to suspect its presenee. Although, as we previonsly mentioned, this is an atfection little amenable to treatment, a woman with these symptoms shonld at once consult a physician (if possible, the pilysician-acconcheur to a large loslnital), who, by bis advice as to the general management of the case, especially dinring the menstrial periok, may clo much to palliate her sufferings. lodine, bromine (and certain mineral waters containing these elements), and mereury have been vammted as specifics, but nothing. bositive can be saicl regarding their successful action; and certain surgical ulecations have been recommended, which are accompanied with so much danger to the patient that it is needless to refer to them. But althongh the action of medicines on these growths is arowedly uncertain, nature in this as in many other cases not unfreduently strives towards a more or less complete cure. For exanille, if the tumour is pediculated, and lies in the uterine cavity, the pedicle may tinally give way, and the tumour may le expelled; or ecrtain clanges may take place in the interior of a tumour, lewing either to its disintegration and climination, or to its conversion into a chalky mass, which, though not eliminated, induces no local disturlances. These spontaneons cures are lyy no means rare, although we can hardly lead the patient to expect them in any special case.

We shall conclude with a few words on a disease Which is the most painful and lopeless of all the disurters to which humanity is liable-cancer of the uomb. It is a discase whose leading features are tlus graphically-we may almost say, painfullydescribed by Ur West : "l'ain, often exceeding in intensity all that can be imagined as most intulerable, attended by aecidents which render the sufferer most loathsome to herself and to those whom
strong affection still gathers rolund her bed; the general health broken duwn by the action of the same poison as produces the local suftering, and all teutlint surely, swiftly, to a fat:ul issue, which skill cannot avert, from which it ean scarcely take away its Litterest anguish.' The tlirce must eonstant symptoms are pain, and hamorrhage, and discharge. F'rom an examination of 132 cases by the abovenamed physician, the first symbtom was found to have been,
In 58 instances, or $\$ 3.9$ per cent, hemorrhage without pain.

"is " 13 " 130 " lencorrhage or other discharge wehout pain.
"12 " 103 " Jain and discharge sometimes (ffensive.
It is unnecessary to cuter into further eletails regardine the symptoms of this cuisease, as cases of this nature must always be under medical superintendence, and for the same reason we need only say regarding the treatment, that it is divisilule into the pelliative and the curatixe, the furmer beine directed towards the three great symptoms, and the general symjetoms of the cancerous eachexia (or constitution), while in the latter are included the operation of extirpating the whole womb, or remoring the neck of the wombly ligature or excision. It is dillienlt to speak with aceuracy regarding the frequency of this disease. An approximate estimate may lue formed from the fact that, in 155 l , the mortality from eancer in lingland amomitcd to 175 males and sora females; the excess in the latter case, amonnting to 231 S , must be due to cancer of the breast or womb; and according to Tanchou, a French pathologist, cancer of the womb is more frequent than that of the female breast in the rate of 26 to 10. Hence the gearly deaths from uterine cancer in England amount to ahont 1674 . The last-named writer calculated, from ten years' observation of the French recorls of mortality, that this disease canses 16 per 1000 of all female deatlis. The discase is very rare before the ajth year, and by far the most commom period of its aplearamee is between the ages of 40 and 50 years. Its average duration is 16 or 17 months, but it may prove fatal in $i 3$ or 4 months. On the subject of cancer of the womb, WValsh Un Cancer may be consulted; and for further information on the subject of this artiele generally, the reader is referred to the standard works of Churchill, Lever, Simpson, West, fic.

WO'MIBAT (Dhascolomys), a genus of marsupial quadrupeds, constituting a distinct fanily, P/uevevlomydes, and of which only one speeses is linown, Phascolomys liombat, a native uf Australia, abounding chicfly in monntamons districts of New Sonth Wales, Victorin, South Australia, and Vau Diemen's Land, and in the islands of Tass's strait. In many of its characters, it resembles the liodentur. The incisors are two in each juw, long, and chisel-like; they are bollow at the base, and continue to grow as they are wom away; there are no canine teeth; and the molars are five on each side in both jaws. There is a wide grap between the incisors and the molars. The W. is an animal of clumsy form, having stout limus and a blunt muzzle. It is 2 or 3 fcet long, plump, with a thick coat of long grayish lrown, coarse, woolly hair; the head large, tlat, broad, with small cyes and ears, the upyer lip cleft; the feet five-toed, the claws long, exeept those of the inner toes of the hind feet; the tail very short. It is plantigrade, and the soles of the fect are lroad and naked. It is nocturnal in its hahits, slow in its motions; feeds on regetaule substances, and dies u] roots with its claws; it makes its abode in boles among rocks, or in burrows dug by itself.

WOGD-WOOD AND WOODY FIBRE.

It produces three or four yound at a lirth. It is a creature of little intelligence, but gentle, and casily domesticated to a certain extent, not seeming to care much for any chahge of circumstances, so long

Wombat (Phascolomys Wombat).

as its winnts are supplied. It shews eonsinemble snappishness, howerer, if proroled. Its Hesh is lreferred to that of any other quadruped of Australia. It is generally fat, and the flawour is somewhat like that of pork. Wombats have frequently been bronglit alive to Pritain.- The remains of a fossil species have been found in the caves at Wellington Falley; in Arstralia.

WOOOD, Axtmosy, of some note as an antiquary, was horn at Oxford in the fear 1032. His school edncation le received ehietly in the place of his birth, and in 1647, he wias entered at Merton College as a gentleman commoner. In $16 \sigma^{2}$, he took his rlegree as Bachelor, anl in $\mathbf{1 6 5 5}$, became Master of Arts. Deriving from his father an independence, he scems at first to have aimed at being a sort of Jack-of-all-trades, as not bound in penalties of hnnger to follow ont any jarticular onc. He jractised the fiddle assidnonsly, and is said to have attained considerable skill. Painting was also one of his innocent bubbies, but none of his pictures have been preserved to enable us to test his proficiency. In addition to these accomplishments, it was his whim to concern himself with heraidry and other antiquarian pursuits. He laboured much in the libraries, and presently come to be noted for his eurious turn that way. In 1606 . he eame upon Duglale's Antiquities of 15 aruiclshime, shortly betore published, the permsal of which sreatly delighted him, and awoke in him the fire of emulation. He now worlied still morc assiduously; and went about among the tombs, copying old inscriptions. As the fruit of these learned labours, be gare to the world, in 1669 , his History and Antiquities of Osford. For the conyright of this work W. received ¿100 from the university; and Dr Fell, Dean of Cliristchureh, thought so highly of it that he cmployed one Peers, a student, to execute a Latin translation of it. The Historia et Antiquitatrs Unizersitatis Uroniensis was publisbed at Oxford in 1674.

Subsequently, in 1691 , as result of his further investigations, W. published his Athence Uxonienses, containing a full and particular account of all the authors, bishops, \&c., who had adorned that seat of learming from 5001 to 1690 . In this work, he attacked the character of the great Lord Clarendon, deceased; a misdemeanour for which he was prosecuted at the court of the university, and expelled. He did not long survive this disirace, dying :90th November 1695. His books, and a selection of his maun-
scripts, he left to the university of which he had ceased to be a member, and they are preserved in the Ashmolean Museum. His life may be fonnd at large in the edition of his Athene Oxonienses issued by O_{r} Bliss in 1 St 8.

WOOD AND WOODX FIBRE. The hard and compact or tongh and tibrous parts of plants are composed chietly of a peculiar kind of Vascular Tissue (q. v.), which, when compract, is woorl. 1t uxists chiefly in the stems, frequently in the roots, and also in the inner bark of exogenous plants, which yields many of the most valuable tibres used in the arts, and in the midrih and veins of leaves, some very useful fibres being obtained from the leavcs of endorens. See Fibre. Annual plants contain little or po woody fibre, being composed chiefly of Cellular Tissuc (q. v.), which also forms great part of many herhaceous perennials, aud of all plants in a very young state. Woody tibre con. sists of elongated cells tapering to loth extremities, lying elose together, and overlajuing one another, sometimes much elongated into tubes. Wrood is entirely made up of cells of this kind, permeated in exogenous plants by medullary rays. The cells of woody fibre have their walls thickened by successive lajers of cellulose and lignine, deposited in their interior, so that they acquire strength. In the inner bark of exogens, woody fibre is mixed with laticiferous vessels (see LATEX) and cellular tissuc.

Woody fibre has generally no detinite markings on the walls of its cells; but these sometimes appear as simple dises, or as dises with smaller circles in the centre. These discs are formed by concavities on the outside of the walls of contiguous cells, closcly applied to each other, so as to form leuticular cavities between them, as Mr Quekett proved in fossil pine-wood, in which he separated lenticnlar masses of solic matter from luetween the dises. When the smaller circle appears in the centre of the discs, the woody tissue is described as Punctated. This is especially the case in Coniforce, but is not absolutely distinctive of them, the same character applearing also in some otber plants, as in Winter's Bark. The small circle in the ceutre of the disc is formed by the mouth of a canal, often funnel-shaped. These canals or pores, connecting one cell with another, are supposed to give to the wood of the Coniferce its leculiar fitness for making musical instrmments.

Woody fibre is not properly formed unless the leaves of plants are well exposed to the light. 'There is no doubt that the Cambinm (q. v.) lerforms an important part in the formation of wood. There has been much differeuce of opinion among vegetable plysiologists, however, as to the mode of its formation. Two [rincipal theories have long had and still have their advocates-the Morizontal and Fertical theories. According to the former-silpnorted by Duhamel, Decandolle, Schleiden, Mirbel, Nadin, Jenfrey, \&c. - the wood of trees is formed by hori. zontal extension from the stem or from the bark, or from both, for there is much diversity of opinion as to these particulars. According to the latter-supported by Kuiglit, l'etit-Thouars, Gandichaud, Lindley, \&c.-the wood is developell in a vertical direction from the leases, every bul being, as the elder Darwin long ago maintained, an embryo plant send. incr leaves upwards and roots downwaids.
Wood is not only valuable as Timber (q. r.), but for fuel, being the chief fuel used in many parts of the world. To woody tibre we are indelted also for great part of our cordage and textle fabrics, including the very finest of them, as maslin and lace. Tieduced to pulp, it is used for the manufacture of laper.
A kind of factitious or artificial woad, used for

WOODIBNE-WOOD.CHATCOAL.

makint ornanental articles, has recently heen invented in France. It is called Bois clué. It is formed of sawdust, heated to a high temperature, and sulbjected to very great puessure. Its rompactiness and hardness exceed those of wood itself. Annther limel is made by mixing blood with sawdust, amd compressing. Some kinds of costly woul ato also imitatod by mixind their sawdust with glve, and casting the mixture into the lesirul slape in moulds.

WOODIBINE. Sec Honeyskekle.

WOO'DDIIDCAS, a market-town and river-port of Sullolk, ou the right bank of the Deben, which here expants into an estuiury, 11 miles fronn the seil, and 8 miles east-north-east uf I piswich. Vessels of $\mathrm{I}^{2}()$ tuns can reach the town. 'Hhere are a customhouse, it bonding warehouse, and docks in which shipmoldiner is carricel on. I'he churel is a striking edilice of black tlint and freestone, with a magnifiecnt tower. There is also a riehly endowed chacity which supports an excellent and well-conducted glammar-school, commodions and extensive alms. liouses, a public dispensary and library. Corn, flour, and malt are exported; coals imported. In 1865 , 6 6) Peessels, of 37.720 tons, entered and cleared the port. W. is a station on the Great Eastern Liailway. L'op. (186I) 4513.
WOOD.CARVING is probably the oldest lirinels of art. Apparently, the first weapan was a cluh, and the first attempt at decoration was some scratching or carving on it. Amongst the Eryp. tiaus, Grecks, and Romans it was much practised. As a branch of Christian art it was one of the earliest, and attaincel a hish development in the 15th century. It greatly declined during the last century, but has again revived, and promises to attain great importance. The wool-enrvers of Great Britain have shewn great eapabilities, but listherto have lavished too much care upon tineness of finish rather than on the artistic excellence of their designs.

WOOD-CHARCOAL is the most important, ilthongh not tho purest, kiwd of elancoal. Woond cunsists of carbon, hydrogen, and oxysen, tho last two leeing in the proportion to form water. When beated in the open air, it burns completely away, with the exception of a small white ash; but if the supply of air be limited, only the more volatile matters lum away, and most of the carbon remains. This is the principle of the process of charcoalbuming in comntries where wood is abuntant, as, for example, in the Marz Mlountains. "A number of ballets of wood are built up vertically in two or three rows into a large conical heap, which is covered over with turf or moistened charcoal-ash, holes being left at the bottom for the air to get in. A hollow space is also left in the midelle of the heap, to scrve as a flue for the gaseous matters which are evolved. 'fle heap is set on tire by throwing burning pieces of wool into the central opening, near the tup of whicls, however, a kind of grate, mate of billets of wood, is placed, to prevent the burning fuel from falling at once to the bottom. The comInstion then proceeds gradually from the top to the fouttom, and from the centre to the ontside of the heal'; and as the ecuntral portions burn away, fresh wood is continually thrown in at the top, so as to keep the heap quite full. The aplearance of the smuke shews how the combustion is proceeding: when it is gring on properly, the smoke is thick and white; if it lyecomes thin, and especially if a hlue flame appears, it is a sign that the wood is burning away too fast, and the combustion must then be cheched, by partially stopping up the holes at the bottom, or lyy leaping fresh ashes on the top' and sides, and pressing them down well, so as to diminish
the draught. As soon as the combustion is come pletecl, the heap is completely eovered with turf or ithles, and left to cool for two or three days. It is then t:aken to pieces, and the purtions still hot aro couled by throwing water or saul upon them. 100 prarts of wood yicld on the average from 61 to 65 parts by measure, or $2 \pm$ parts by weight of charcoal.' - W'atts's Dichonary of Chemistry, vol. i. 1. 759. The charconl thins prepared is the hest suited for fucl. In Emglind, a large fuantity of elarcoal is olstained in the alry distillation of wood in cast-iron cylinders, for the preparation of crule acetic aciel. The charcoal thus prepared is preferable for making gunpowder, but is inforion for other purposes. A peenliar kinel of claneonl of a redelish-brown eolour, and henco termed charbon roux, is prepared in France for the manufacture of the gmpowilor used for sporting purposes, lay subjecting wood in iron eyliniless to the inction of superheatcal stean muler a pressure of two atmospheres. I'owder made with this charcoal alisorlos moisture more rapidly than ordinary gunpowder.
'lhe general properties of woox-charcoal are, that it is hifack and brittle, and retiuns the form of tho wood from which it was derived; it is insolulle in Water, imfusible and won-volatile in the most intense heat; its power of condensing gases is noticel in the article on that subject; aud from its prower of destroying load smells, it lias been regarded as possessiug considerable autiseptic properties. It is frequently stated that chareoal is a bad conductor of heat, lunt a good conductor of electricity: these properties depend upon the nature of the chareoal, the lighter wood, such as willow, yiclding a porous clareoal, with little power of conducting licat or electricity; while boxwool yields a very compact charcoal, which is a good condnetor of leat ind electricity, and is almiral)ly actapted for the exlaibition of the electric light. Charcoal never eonsists entirely of pure carbon, the degree of purity varying directly with the temperature; thin, chareonl charred at 450° contains 6 per cent. of carbon, while that charred at 750° contivins $S 0$, and that clarred at 2730° contains 96 ; but the loss of charcoal ocersioned by these high temperatures is very great, the three percentages of chircoal corresponding to these temperatures being 50 , 20 , and 15 .
'lle uses of wood-charcoal are mumerons and extensive. It is very largely enuloyed as a fuel, taking the same place in many comtries that coal ocenpies here. From its being proof agivinst all ordinury chemical agencies, 'a superficial charring is frepluently resorted to, witl the view to protect wood from decay, as in the case of piles which are driven into mad or into the beds of rivers to serve as foumetations. For the sime reason, it is a common ractice to char the interior of tubs and easks destined to hold liguids.'-Miller's Inorgrunic Chemistry, $31 \mathrm{ed}$. P. 77. In a finely-divirded stato, it is commonly regarded, as has becu already stated, as an antiseptic; and there is no donlut that the offensive etlluvia from animal matter in an advanced stace of putrefaction dismpear when the putrefyiner substance is covered with a layer of eharcoal ; but in reality the rlecay goes on, without the enission of any odour, till at lengelle the whole of the carbon is clissipated as carbonic acid gas, and the hydrogen as water, while the nitrogen remains as nitric acicl. For these explanations, we are indebted to Dr Stenhonse, who lias shewn that the action consists in a rapid process of oxidation, clependent upon the power Which inely-divided charcoal possesses of coudensince oxygen. In a finely-livided state, charcoal nut only coudenses gases to a marvellons extent, but has the power of absorljing colouring matters, litter principles, sic.; and heace it is of extensive use in

WOODCILAT-WOODCOCK

the laboratory. From the rapidity of its absorbing action, 'Stenhouse has proposed to use a respirator filled with chareoal to protect the mouth and nostrils in an infected atmosphere; and the employment of trays of powdered wood-charcoal in dissectingrooms, in the wards of loospitals, and in sitnations where putrescent animal matter is present, is found to exert a most bencfieial inflnence in sweetening the atmosphere, by absorbing and deeomposing the offensive gases. These properties render charcoal in valuable material in the construction of filters, not only for decolorising purposes, but likewise for assistiog in purifying water for clomestic use. It is now also employed most suecessfully to prevent the escape of noxious vapours at the ventiating openings of the sewers, as it allows tho free passage of air, but coudenses the offensive eflluvia in its pores, where they are destroyed by a process of oxidation.' - Miller, op. cit., p. 78. Besides its employment in the manufacture of gumpowder, it has many applieations in the arts. In Medicine, it is at present chiefly used to destroy fetor; for which purpose it is applied in the form of powder or poultice to gangrenous sores, phagedenie ulecrs, \&e.; it is also largely employed in tooth-powders, as by its mechanical aetion it removes incrustations, while by its chemical action it destroys fetor of the breath. In indigestion, accompanied by much flatulence, it may be given in doses of two or three tea-spronfu's suspended in water, or may lee administered in the form of charcoal-biscuits. Very finely divided poplar eharcoal is regarded as the best for medicinal uses.
WOO'DCHAT (Lanius rutilus), a bird which, notwithstanding its name, is not a species of Chat, lut of Shrike (q. v.). Its whole length is about seven inches and a lualf. The upper parts are mostly black, the under parts white; but there is a white spot on the wing when closed, and other small portions of the wing-feathers are white, as well as the onter tail-feathers, and there is a marrow streak of white ahove the base of the bill ou each side; the crown of the head and nape of the neek are rich ehestunt reck. The W. is a rare bird in Britain, but is abundant in the sonthern parts of Europe. It may be regarded as an African bird, being found from the Meditervanean to the lape of Good Hope. In Europe, it appears only as a summer visitant, but in Africa it occurs at all seasons of the year.

WOODCKUCK (Arctomy/s monax), a species of Marmot (q. V.), inhabiting North America, from

Woodeluck (Arctomys monax).
Mutson's Bay to Sontl Carolina. It is from fifteen to eighteen inches long, blackish or grizzled aloove, chestunt red below; the form thick, the head broad
and flat, with almost no apparent neck, the lers short and thick, the feet large, the tail bushy. The hair is rather soft, the whiskers long and stout. This animal digs decp holes in fields, on the sides of hills, or under rocks in woods; its burrow slants uprards, so that water may not enter, and within are several compartments. It passes the winter in the burow, in a lethargie state. The fool of the W. is vegetable, and it is particularly destructive to erops of red elover. It is easily tamed, and may be fel on bread, milk, and vegetables. It tights successfnlly with a dog of equal size. The name of Ground Hog is sometimes popularly given to it. Its flesh is sometimes eaten, but is rank.
WOO'DCOCK, the popular name of certain birds commonly regarded as of the same genns with the Snipes ($\left(\% . v_{0}\right)$, hut of more bulky form than the ture snijes, and having shorter and stronger legs. The Combion W. (Scolopax rusticola), well knomn as a

Woodcock (S'colopax rusticola).
gamc-bird in Dritain, and highly esteemed as a delieacy for the table, is found also in all parts of Europe and the north of Asia. It is one of the birds of Japan. It is only a winter risitant of most parts of Britain, very larely lorecding in Eugland, but it more frequently breeds in the northern parts of Scotland. Its summer haunts are chiefly the pineforests of the northern parts of Europe and Asin ; but in summer it inhabits higher and drier ground than in winter, when it is chiefly to be found in moist woorls anl swamps, seeking for worms, snails, and slugs as fool, boring with its long bill in the soft ground. The quantity of food which it devours is wery great; a single W. has been known to eomsume in a night more earth-worms than half-filled a garden-pot of moderate size. The W, is about thirteen inches in length; the upper parts raried with ruddy, yellowish, aud ash colour, finely intermingled, and marked by large black spots; the lower parts yellowish rod, with brown zigzag lines ; the quills striped with red and hlack on the outer edge; the tail-feathers tipped with gray above and white below. The fmale is rather stonter and larger than the male, and sometimes attains a weight of fourteen or tifteen munces. A W. of twenty-seven ounces is on record. The W. makes its nest in warm dry situatious, on the ground, of dead lenves loosely laid together. It lays only three ${ }_{5}$ or four egegs of a pale yellowish or reddisín brown colour. As woodeocks usually breed in very dry situations in the recesses of thiek woods, the youmg ones would be left to starve but for the peculiar adaptation which enables the parent to transport them to moist feeding-grounds. It was lung belicved that the female W. used only her feet for earying her young from place to place; but Mr Charles St John, in his Natural Iistory and Sport in Moray, says, that from elose obscrvation he found 'the old woodcock carries her young, even when

WOOODCOCK-WOOD-ENGRAVLNG

larger than a snipe, not in her elaws, which seem quite ineapalile of holding up any weight, but hy clasping the hatle lird tightly between her thighs, and sn moline it tight towards her own botly.' 'The IV. feeds chinly liy might. Great unmbers sometimes appear in some parts of Britain, in their migrations. liesides falling to the gun of the sputsman, they are sometimes eaught by nets placed in the traeks or open glades in woods, by

Woodeock Trap:
The upper portion of the fig, shews the sepatate parts; the Jower portion their arrangement when sct. The part C (being only supported in its position by the pressure of 13) is displaced by the weight of the bird; this relieves tho spring A, and tho prisoner is caught by the legs in the running nooee 1 .
(Frou St Juln's siatural History and Sport in Morny.)
Which they proceed from their retreats to their feeding-grounds, and ly nooses or springes set about the places which they frequent.-The Ambicin W. (srolopax or I'lifulule minor) is a smaller bird than the W. of Burope, being only about eleven inches long; very similar in plumage and habits. Three transverse blaek bands mark the hinder part of the head. It is found in all parts of North America, and is greatly estecmed for the table.

WOOD-ENGLAVINC, of XVLOGLAITIS, t'le art of engraving designs on wood, differs from enper and steel plate engraving by baving the parts intensled to print on the paper, in relef. While phates are printed from the engraved lincs by a laborious and necessarily slow proeess (see Engraving), wool- engravings, having the abject to be represented ability to write was an extraordnary aecomplish. ment even for prinees. It is not, however, until the begiming of the loth e . that we find any evidenee of the existence of wood-engraving, as we now understand it. It appears to have been ised in Cermany at that time for printing play-ing-cards and ligures of saints. The earliest print of which any certain information can he oltained is in the collection of Earl Spencer. It was discovered in one of the most ancient convents of

Fig. 1.
Fermany-the Chartreuse of Buxheim, near Memmingen in Bavaria-pasted within the cover of a Latin MS.: it represents St Christopher carrying the infant saviour across the sea, and is dated $1+23$. Fifg I. is a reduced fae-simile of this curious engravon the surface, in the mamer of a type, may be printed along with the matter it is intended to illustrate in the ordiuary printing-machine. This, of conrse, is an inportant point in the illustration of books, on the grounds of cheapmess and expedition. Another alvantage wood-engravings possess is, that they cau be multiplied to any extent by means of the Stereotype (q. v.) and Electrotype ($\mathrm{q} . \mathrm{v}_{\mathrm{o}}$) processes.

The invention of wood-engraving, like that of gunpowder, has been claimed for the Chinese, whose books have certainly been printed from ch^{-} graved wool-hlocks for ages. It has indeed been asserted that the art of cutting tigures in relief, and printing impressions of them on paper, was known and practised by that nation as early as the reign of the renowned Emperor Wu-Wrang (1120 в. c.). There is no doulth that wood-stampls were used by the ancient Egyptians and Romans for stamping loricks and other articles of clay; and that wood and metal stampls of monograms, \&e., were usel in various European countries, for attesting deeds and other documents, at a very early period, when the 256

Fig. 2.
ing. It is a work of some merit, notwithstanding its alparent rougliness ; the infant Saviour and the drapery of the saint being drawn with considerable skill and vigour. The inseription at the bottom has been thus translated: 'In whichever day thou seest the likeness of st Christopher, in that same day thou

WOOD-FNGRAVIVG.

wilt, at least, from death no evil hlow incur.-1423.' Shortly afterwards, a series of books, printed entirely from wood-engravings, called block-books, were issued. They consisted principally of religious subjects, with short descriptions engraved on the same block. The most important of them were the Apocalypsis, sen Historia Sancti Johamis; the Mistoria lirginis ex Cantico Canticorum; and the Biblia Pauperum, the last containing representations of some of the principal passages of the Old and New Testaments, with explanatory texts. The illustrations, of which Mr Jackson, in his treatise on the History and Practice of Wood-engraring, gires an elaborate account and several specimens, seem to be drawn with a supreme contempt for perspectire and proportion, but bear evidence of the draperies, and hands and faces, having been carefully studied. Fig. 2 is a copy of one of the cuts in the Apocalypsis. It represents St John preaching to three men and a woman. with the inseription: ' Conversi ab idolis, per predicationem beati Johannis, Drusiana to ceteri' (By the preaching of St John, Drusiana and others are withdrawn from their idols). Fig. 3, from the Biblia Pauperum, is curious as shewing the general manner of representing the creation of Eve during the 15 th c ., the same subject frequently oceuring previous to 1500 . Both hare the appearance of careful drawings 'spoiled in the engraring.' Previous to the invention of movable types, whole books of text were also engravel on wood, and the impressions had evidently been taken

Fig. 3.
by rubling on the back of the paper, insteat of steady pressure, as in the printiog-press, the ink used being some kind of clistemper colour.

The Psalter prioted by Faust and Schöffer at Mentz in 1457 (see Gutenberg), is illustrated with initial letters engraved on wood, and printed in two colours, hlue and red, which Mr Jackson considers - the most beautiful specimens of this kind of ornament which the nuited efforts of the rood-engraver and the pressman haye produced. They have been innitated in modern times, but not excelled.' It is worthy of note, that although printed upwards of 400 years ago, the freshness and purity of the colours remain unimpaired.

As printing spread, the publication of illustrated books became general in Germany and Italy, and
reached England in 1476; in which year Caxton (q. v.) published the second edition of the Game and Playe of the Chesse, with figures of the different pieces. They are rery rude, compared with the earlier German works. Fig. 4 is a reduced copy of the 'Knight,' and is interestiog as one of the first

Fig. 4.
wood-engravings executed in this country : several works followed, all, however, in the same rude manner. The first attempt at something finer than simple lines appears in the frontispiece to the Latin edition of Breydenbach's Travels, printed at Mentz by Erbard Reuwich, 1456. It is by an unknown artist, and is an elaborate and really very beautiful specimen of the art. It is also remarkable as being the first engraving introducing cross-hatching to represent dark shadows. The Hypnerotomachia Poliphili, printed at Venice by Aldus, in 1490, is rorthy of mention for the extreme beauty of the designs, which bave been ascribed by some authorities to liaphael, and by others to Mlantegoa. Abont the beginning of the 16 th c ., a complete revolution in the art of wood-engraring was accomplished by the genius of Albert Dïrer. His productions exhibit not only correct drawing, but a knowledge of composition and light and shade, and attention to the rules of perspective, which, with the judicionsintroduction of subordinate objects, elevated them to the rank of finished pictures. Dürer, however, in common with most of the German artists of his day, paid very little attention to the propriety of costume in his religions subjects; one of his drawings in the Mistory of the Virgin (1511), for instance, representing the birth of the Virgin, shews the intcrior of a German hurgomaster's house of his own day, with a number of gossips drinking from flagons, and otherwise enjoying themselves. There has been considerable discussion as to the probability of Dürer having also engraved his drawings. Most of the hest autborities on the subjeet, ineluding Bartsch, Jackson, and Firmin Didot, agree in the negative. Mr Jacksou, who speaks with the experience of a practical engraver, says: 'In most of the wood-cuts supposed to hare been engraved by Albert Dürer, we find cross-hatching freely introduced: the readiest mode of producing effect to an artist drawing on wood with a pen or a black-lead pencil, but which, to the wood-engraver, is attended with considerable labonr. Had Albert Dürer eugraved his own designs, I am inclined to think that he would have endeavoured to attain his object by means which were easier of ceecution.' The reader is referred to the article Du'rer for an account of
some of his numerous works. The best of Diirer's contemporary artists on wood were the painters, IIaus Furgkmair (q. v.), Lucas C'rantoh (ף. v.), and Hans Schituffein. A series of works projected by the Eimperor Daximilian, inclucling The Adeentures of Sir Theurdank, The IFise King, The Triumples of Maximilian, \&c., were illustrated ly these artists; but they are nat equal to those of Dïrer.

During the first half of the 16the., the publication of books illustrated with wool-engravings still increased, and prevailed to a greater extent than at any otber time, with the exception of the present day. The superiority of talent, both in ifrawing and cngraving, hawever, still remained with the Germans. In France, althouch their figure-subjects Were inferior to thase of their Germau neighlours, their ornamental borders in prayer-hooks, \&c., of which a great number were printed at this time, were extremely beautiful. In Italy and England, the art was very far behind. The most remarkable work published at this time was the Dance of Death (¢. v.), issued at Lyon iu 1538. The originil edition of this curious work contained 41 engravings, representing the struggle between Death, generally in the form of a skeleton, and different individuals, such as the Pope, the Emperar, a Judge, Monk, Doctor, Duchess, Old Man, \&c. The drawings, which are characterised by great vigour and skill, are generally understood to have been executed by Hans Holbein (q. v.) ; but whether he also engraved them, as has been alleged, is more than doubtful. Towards the conclusion of the century, however, the art had made considerable progress in Italy, where some of the best productions of Germany were equalled, if not excelled. In England, it did not make much progress. John Daye published almost the only illustrated books of the time, notably Queen Elizabeth's Prayer-book, which contains a tolerably well executed portrait of Her Majesty. There is no certain knowledge ahout any of the artists or engravers, although John Daye is supposed to have engraved some of his cuts himself. At this time also, the practice of printing wood-engravings in colours from different blocks became somewhat common, altheugh the attention of artists in that line was mostly confined to ornamental subjects. From the beginning of the I7th c., the dechine of wood-engraving may be clated; Germany, the cradle of the art, being the first to forsake it; the only works warthy of notice were a series of blocks on various subjects-designed by Fubens, and engraved by Christopher Jegher of Antwern, one of the best wood-engravers of that period-some of which are of great beauty. From this time, the art fell into a state of great neglect, not, apparently, for want of engravers, for wood-cnts of a certain kind were always produced, but for want of artists able, or willing, to make drawings worthy of preservation.

Nothing particularly deserving of notice occurred until 1766, when John Michael Papillon, an enthusiastic professor of the art in France, published an elaborate history of the subject in an unsuccessful attempt to restore it to its former importance. But it was not until the genius of Thomas Bewick (q. v.) was brought to bear on it, that wood-engraving received that impetus which has made it what it now is-one of the most important of the illustrative arts. Bewick's most important works are his Histories of British Quadrupeds (1790) and British Birds (1S04); all the quadrupeds, and almost all the birds were drawn and engraved by himself. The birds, especially are exccuted with a truthfulness and skill which has rarely if ever been equalled. These works are also famous for their collection
of tailpieces, which display an infinite amount of humour and pathos. Fig. 5 is a reducel copy of ono of them-a loor cwe, in the starvation of winter, picking at an old broom in front of a ruined cot-a scene, trilling as it seems, which tells a woeful talo of suffering. He cutirely abandened the elaborate

Fig. 5.
system of 'cross-hatching' which prevailed so mucl in the works of the older engravers, and produced his light and sharle by the simplest possible means. The above eximple affords in excellent specimen of a wonderful effect being produced by a fow simplo lines.

Since Bewick's time, wood-engraving lias continued to llourish without interruption. Ife left behind him several pupils, the most successful of whom were Nesbet, Clennell (who engraved some of the tailpieces in the British Birds), and William Harvey. Earvey, however, forsook the burin for the pencil; aud his drawings illustrating Milton's Paradise Lost, Thomson's Seasons, \&c., especially such as were engraved by John Thomson (perhaps the most skilful engraver that ever lived, and a pupil of Robert Branston, a self-taught engraver), still retain a first-class place as specimens of wood-engraving. The establishment of the Illustrated London Nexes (1 S 42) teuded greatly to familiarise the public with the beauties of wood-engraring. In the pages of that periodical appeared the first drawings on wood of Messrs John Gilhert and Birket Foster. The spirited figure-subjects of the former, and the exquisite landscapes of the latter, have done much to raise the at to the very high place it now occupies in England.

Of late years, the art has also made very great progress in France and Germany. The style of engraving, however, is quite different from the English, so much so, that a practised eye can distinguish a French wood-cut at a single glance. The professors of the arts of drawing and engraving on wood in the present day are so numerous, and their works generally so well known, that it would be needless, even if our space permitted, to attempt even to enumerate them.

Practice of Jrood-engraring.-The wood used for engraving is boxwood, which has the closest grain of any wood hitherto cliscovered. It is principally imported from Turkey for the purpose, as the English box is too small to be of minch use. It is cut across the grain in slices, which are dressed ta the same height as type, for convenience in priating. Inferior kinds of wood, such as American rock maple, pear tree, plane-tree, \&c., are userl for coarser purposes ; and for very large and conrse subjects, such as posting-bills, common deal is used, and cut on the side of the wood with chiscls aml gouges. When Zlocks-as the pieces of wood are termed-are required of a larger size than a few unches square, it is necessary to join two or more pieces together, as the amount of sound wood to be got out of even a large slice is extremely limited.

WOOD-ENGRAVING.

There is, however, for all practical purposes, no limit to the joining process, as blocks have been printed consisting of from 50 to 100 pieces. The wood having been made very smooth on the surface, and squared to the required size, is prepared for the artist by being covered with a preparation of white (commonly water-colour Chinese white); this gives a very good surface for the pencil to work on. The subject is then drawn in the ordinary way, the tints being generally washed in with India-ink, and the details filled in with pencil. When the drawing is finished, it is given to the engraver, who, previous to commencing, carefully covers the block with paper, fastened round the edges with beeswax ; this is necessary, to aroid rubbing the draw. ing out in the process. As the engraving proceeds, he gradually tears the paper off.

The tools or gravers necessary in wood-engraving are of three kinds-riz., gravers proper (fig. 6, a); tint-tools (fig. 6, b) ; and scoopers, or cutting-out tools for clearing out the larger pieces (fig. 6, c).

Fig. 6.
They are arranged in different sizes, to suit the different portions of the work. Fig. 7 represents the method of using the graver. Most engravers

Fig. 7.
use a glass of slight magnifying power, more for the purpose of relieving the eyes from the strain of fixing both eyes closely on a small object, than for magnifsing the work. When gas or other artificial light is used, a glass globe filled with mater, slightly tinted with blue (to neutralise the reddish glare of the light), is placed between the flame and the work: this serves the double purpose of concentrating the light on the block, and keeping it out of the eyes. When the drawing is in outliue, or mostly so, the engraving is very simple: the process consists of engraving a line along each side of the pencil lines, whicle are, of course, to be left in relief, and afterwards cutting out the pieces hetwecn. It will thus be understood that every part of a woodcut which prints on the paper is the surface of the wood left untouched, and that every white part is cut or hollowed out. Fig. 8 represents a little subject outlined; fig. 9 is the same suljject funished. Wheu it is complicated with much slading, trees, \&c., it becomes much more difficult, and brings into play the artistic talents of the engraver to preserve the proper shades, or colour, as it is technically termed, and texture of the different objects. Some engravers of the present day are celebrated for their power of, producing
beautiful pictures altogether by 'graver-work' from drawings made entirely with the brush. Skies and flat tints are engraved with tint-tools which, from

Tis. S.

Fig. 9.
their shape, are best adapted for cutting straight lines; and by the judicions use of the different sizes, the lines are left wider or closer, thicker or thinner, as the tint is wanted darker or lighter. As already mentioned, the tools are arranged in sizes -i. e., those for light tints are broader at the points than those for dark tiuts, so as to cut out more white. Trees, foregrounds, \&c., are cut with pravers, which, as they are like a lozenge in shape, give more scope for freedom of bandling.

Wheu the drawing is all engraved, a proof is taken ly inking the surface gently with printing-ink on a dabber (a ball of cotton covered with silk), and, a piece of India-paper leeing laid on it, by rubbing the paper with an instrument called a burnisher, until it is all printed. The engraver then sees what touching up is required-a light part to be softened bere, a hard dark part to be toned down there, \&c.-before it is finished and ready for the printer.
When large blocks are to be engraved, the pieces of mood are joined with screw-bolts, and the drawing lirepared in the usual manner; after which the pieces cau be taken separate for convemience in engraving, and also for the purpose of getting it quicker finished, by baving an engraver working at each piece-a matter of some consequence in many cases, as, for example, in the large engravings in the illustrated newspapers.

As wood-engraving, however, is at the best but a slow process, it is not surprising that many attempts have been made to introduce a substitute for it. The point aimed at is to produce by some process of ctching (see Engraving), or otherwise, an engraving in relicf, directly from the drawing of the artist, without the intervention of the engraver at all. It would occupy several pages of this work merely to enumerate all the processes which have been invented to accomphish this end. The only one whicl, from its being partially successful, seems deserving of mention, is called the Graphotype Process. The drawing is made on finely-prepared chalk, with a preparation of silica; this hardens the chalk where it is applied; the spaces between the lines remaining soft, are then carefully remored by means of a brush; a cast or stereotype is then taken, as the chalk is of course too soft itself to be printed from. A company was formed in London some time ago to work out the patent, but, so far as we have seen, they bave not yet produced mach more than specimens.

See Jackson and Chatto's History and Practice of Hood-engraring (new ed., Lond. 1861); Papillon's Traité de la Gravure en Bois (Paris, 1766); Bartsch's Peintre-graveur; Ottley's Inquiry into the IFistory of

WOOD-LOUSE-WOODPECKER.

Engrating on Copner and Hood; Firmin Didot, H'sari sur l'Iistoirc de la Gravure sur Bois (l'aris, 186:3).
WOO'D-LOUSE (Oniscus), a Limnaran genus of Crustacea, now forming the fimily Uniscider, of the order lsopodi. The antenne are four in number, hat two of them are very short, consisting of two joints at most; the other two are long and slender. The tail is very short, but is composel of six sersments. Wood-lice are terrestrial, and the respiratory organs are completely enfolded by plates developed from the ahlominal members; the anterior plates beiag perforated by a row of suall holes, through which the air has access to the gills. They frequent damp situations, and are geaerally found in dark and eonecaled places, under stones, in holes of walls, uader the tecaying bark of trees, \&c. They feed on decaying animal and vegetable matter. They rum with some celerity when appreheasive of langer, and sometimes also roll thenselves up iato a ball, so as to exhibit only the plates of the back. The eggs are eaclosed in a pectaral ponch. The Common W. (Oniscus murarius) (Oniscus murarius) is very abundaut in Critain, and is to be foum in ahost cvery locality suitable for it. It is popularly known in Scotland by the name of slater.

WOOD-OIL, the name eommonly given ly Suropeans in India to a balsamic thit, not really an nil, obtainerl from the tromks of trees chiefly of the order Dipleracee (q.v.). The wood-oils of Indian commerce are generally named from the countries or places from which they are lronght, and it is int yet known what trees yield particular kinds, although it is certain that most of them are produced loy species of Dipterocurpus. The name Giur!ina Bulstm, or Goorjun Dalsum, is frequently given to one of the most common linds, the produce of the Goorjun trec, Dinterocarpus fubinatus, and nther sprecies of Dipterocargus. Wood-oil is produced chiefly on the Burmese coast, and in the more sonthern and castera regions. It is obtained by tapping the tree, and applying heat to the incision; or by felliag the tree, cutting a hole in the trunk, and kiadling a fire in it, a groove being made for the exuded fluid to flow into pots placel to reccive it. The trees which proluce it being often very large, a single tree sumetimes yields seven tons of oil. Woor-oil is used in medicine as a substitute for Copaiva (q. v.), and ia the arts as a varnish, often in comlination with coloured pigments, and even as a substitute for tar in praying the seams of shipping. It is very effectual in preserving timber from the attacks of white auts. It is sometimes used in making lithographic inks. Wood-oil has i tive aromatic olour, resembling that of cedar. When allowed to remaia at rest for some time, it separates into two layers, the upper consisting of a clear chestaut-coloured liquid balsam, and the lower a kind of resin io flakes. It is, of course, this resinous part only which remains when it is used as a varnish, and the varnish has dricd.

WOO'DPECKER (Picus), a Linnæan genus of birds, now divided into a number of genera, anel belonging to the fanily Picule, of the order Scansores. The toes are in pairs, two before and two behind, with sharp strong claws; the bill is rather long, straight, and wedge-shaped, with a hard tip, the tip and sides compressed; the tail is usually
lengthened and rigil, althongl in some it is short and rounded; the vertebre of the neek are greatly leveloped, and the last of the caudal vertebre is very large, with a long ridge-like spinous process; the whole structure alapiting these birls to run aod climb with the greatest facility on the stems and branches of trees, in which they aid themselves ly the tail, like Crecpers (q.v.), and to seek their food, which consists chiefly of insects and their larve, by digging in the bark and wood of trees with their bill. In addition to the particulars already notiecul, they have the tongue fitted to serve as an important instrument in obtaining their food; the braneles of the hyoid bone being greatly elongated backwards, and in front moving as in a sheath; a peculiar arraugenent and develnpment of museles enalbing them to extend the tongue far leyond the hill; its tip being horny, and furnished with barhed filaments, whilst its surface is covered with a glutinous saliva, secreted by two large glands. Their powers of ilight are wery molerate, and the ked of the lreastbone is small. The Barlets (q. v.) and Wrynecks (q. v.) are referred to the family Picida. Woolpeckers are diffused over ahmost all parts of the globe, but abound chietly in warm eountries. The species are yery numerous. They are mostly solitary in their habits, and live in the depths of forests. They feed in part on fruits and secds as well as on insects ; but much of their time is spent

Green Woodpecker (Picus rividis).
in pursuit of these, and they may be heard at a considerable distance, tapping the wood of trees with their bill, to discover the place where an insect is lodged, and to get at it when discovered. The common notion, that they are very injurions to trees, is erroneous, as they do more good by preventing the ravages of insects than harm by their pecking. They strike out chips of wood with their strong bill, and in this way enlarge holes in decayed parts of trees for a roosting-place or a nest, carrying away the chips to a distance, esprecially in the case of a nest, as if for precantion that it may not be discovered. The nest consists of a mere hole in a tree, perhaps with a few chips in the bottom of it, but with no other lining. The phmage of woodpeckers is generally of strongly contrasted colours, black and white, or green and yellow, with red marks about the heul. There are several well-marked groups of woodpeckers, differiag in form, plumage, and habits, which also are of different geographic distribution, some of them being entirely, and some chietly confined to particular parts of the world.

Only four species are found in Britain, and one of them, the Great Black W. (Picus or Dryocopus martius), is of rare occurrence. It is about sixteen inches long; black, with a red cal on the head. It is found in the pine-forests of many parts of Europe.-The Great Spotted W. (P. major), also called French Pie and Wood Pie, is not uncommon in some parts of England, but is rare in Scotland. It is found on the continent of Europe from Norway to the Mediterranean. It is about ninc incles and a half in length. The colour is black, varied with white, the under parts grayish white; the back of the head in the male bright scarlet. The Lesser Spotted W. (P. minor) is not uncommon in the south of Eugland. Its whole length is about five inches and three-quarters. It is widely distributed in Enrope and the north of Asia. Its colours are similar to those of the last species, but differently arrangecl. It is frequently to be seen searching for insects on the moss-covered branches of orchard trees.-The most plentiful of all the British species of W. is the Green W. (Picus or Gecinus viridis). It is found in the wooded parts of Scotland as well as in England, but is rare in Ireland. It is common on the continent of Europe from Scandinavia to the furthest sonth. It is about thirteen inches in length; and is mostly of a dark-green colour, tinged with yellow; the feathers over the nostrils and round the eye, black; the crown and back of the head, bright scarlet, a black moustache extending backwards and downwards from the base of the lower mandible, with a brilliant scarlet patch along the middle of it; the edges and tips of the wings spotted, black and white. It chiefly inhabits elm and ash trees, making its roosting-place and nest in them in the manner already described. Among its popular English names are H'oodspite, Yafle, JWhetite, and Woodwall. The Green W. belongs to a group or section of woodpeckers entirely confincd to the Old Continent, and which are more frequently to be seen seeking their food on the ground than the more typical species. The American species of W. are very numerous, and some of them, which want of space prevents ns from describing, are amongst the best-known birds of the United States and Canada; as the Hatry IV. (Picus villosus), which is to be found at all seasons iu woods, orchards, fields, and even in the midst of cities, visiting farm-yards in winter to pick up grain-a lively, noisy, and active bird; the Ivory-billed W. (Picus or Campelophilus principalis), which inhabits the sonthern parts of the United States and Mexico; is called Curpentero by the Spaniards, from the great quantity of chips which it makes; and is valucd by the Indians for its ivory-like bill and searlet crest, which they use as ornaments. The Red-headed W. (Picus or Melanerpes erythrocephalus) is very common in most parts of North America, and feeds much upon fruits and upon young heads of Indian corn, so that a rewari is given for killing it. The largest species in the northern parts of America is the Black W., or Logcock (Picus or Dryotomus pileatus), which is about eighteen inches long, the general colour greenish black, with stripes of white from the eyes along the neck and sides.-The genus Picumnus is the type of a group of Picidec called Piculets, very small birds, with bill hard at the tip, broad rounded wings, and a short tail with broad rounded feathers, not used for support, departing from the typical characters of the family. They inhabit the warm parts of South America, India, and the Eastern Archipelago.

WOOD-PRESERVING. Several processes have been employed of late years for the purpose of preventing the decay of wood from damp, atmospheric
action, or the destructive operations of animals and parasitic plants. The principle in all has been the same-viz., the injection into the vessels of the wood of some mineral material, which, by combining with the albumen of the woody tissue, prevents its decomposition. or gives it a poisonous character. The chief of the methods in use are that called Kyanising (q. v.), creosoting, in which the preserving material is the so-called creosote, or crude carbolic acid of coal-tar, aud the Boncherie process, chiefly used on the continent. In this last, a solntion of sulphate of copper is used. Whilst the tree is still growing, the head of the tree is cut off, and the top of the bare stem is hollowed into the form of a bowl, which is then filled with the solution, which is afterwards supplied as required. The liquid penetrates downwards, killing the tree as it goes, but giving to the wood a most remarkable degree of durability, particularly when aplied to such purnoses as railway sleepers, \&c.

WOO'DRUFF (Asperula), a gems of plants of the natural order Rubiacece, containing a number of annual and perennial species, with whorled leaves, natives of the northern parts of the Old World, and distinguished by a funnel-shaped or bellshaped corolla, a bifid style, capitate stigma, and dry didymous frnit. The Sweet W. (A. odorata) is common in shady woods in Britain and all parts of Earope. It has a creeping root, a stem 5-10 inches long, weak and suberect, four or five whorls of lanceolate leaves, $6-S$ in the whorl, rough at the edge and keel, and small white flowers. The plant, when dried, has a very agreeable fragrauce, similar to that of $A n-$ thoxanthum odoratum (see Verval Grass) under similar circumstances. It forms an agreeable herbtea, and euters into the composition of the popular May-drinto of the Ger-mans.-Dyer's W. (A. tinctoria) is a mative of the continent of Europe

Woodruff
(Asperula odorata).
 and of Siberia, a perennial, with reclining stems alont a foot in lengtl, whorls of six or fonr linear leaves, the upper leaves opposite, the flowers whitish. The root is used in Dalmatia and clsewhere instead of madder; but the crop obtained from a field is inferior in quantity to what of madder.

WOODS AND FORESTS, AND LAND REVENUES, Commissioners of. In ancient times, the principal part of the royal revennes of England consisted of the rents and profits of the crown-lands, which were composed of mumerous lordships and hononrs. with forests and chases. The demesne lands reserved to the crown at the Conquest were at one time very extensive; but while they were often added to by forfcitures, they were also so largely encroached on by grants to subjects, that from the lath to the $14 t h$ c., parliament hat often to interpose to compel the resumption of grants thus made. The contiscation of the property of the monasteries under Henry VIII., greatl

WOOD-SORREL-WOOL.

increased the real estate of the crown; and, notwithstanding aliemations by that monarch and by Queen Elizabeth, who disposed of part of the royal domains, to aroid application to parliament for supplies, the crown, at the accession of James VI., owned very extensive estates all over England. The profusion, however, of James and his successors reduced the royal estates to insignificauce, and no effectual restraint was imposed on their dilapidation until statute 1 Anne, c. 1, prohibiting all alienations of the crown-lands, except ly leases not exceeding 31 years, or three lives. From the reign of Henry VIIl. to that of George III., the crown revenues were sulijected to repeated changes of management; and under George liI., the system was first introduced of surrendering the greater part of them to be consolidated with the rest of the public revenue, ont of which the royal eivil list is paid. The modern administration of the land revenues of the crown is fonnded on a statute of 1810 , establishing a Board of not less than two, or more than three Commissioners, called 'The Commissioners of his Majesty's Woods, Forests, and Land Revenues.' The law relating to the management of the crown-lands was consolidated by act 10 Geo. IV.c. 50, which, repealing a number of previous cnactments on the subject, placed the whole hereditaments of the crown in England, Wales, and Ireland, except advowsons and vicarages, under the management of the Commissioners of Woods and Forests, with large power of selling and leasing them; and provided that the annual land revenues should, sulbject to certain deductions, be carried to the Consolidated Fund during the king's life. This transfer to the Consolidated Fund, the result of a special agreement terminating with the life of the sovereign, has been renewed with his successors. Act 2 and 3 Will. IV. c. 112, empowered the Treasury to transfer to the Commissioners of Woods and Forests the mauagement of the crown-lands of Scotland.

A large addition was made to the duties of the Commissioners of Woods and Forests by 2 Will. IV. c. 1, which, aloolishing the office of Surveyor-general of his Majesty's l'ublic Works and Buildings, intrusted to them the management of the public works. This union, lowever, was afterwards considered inexpedient, and act 14 and 15 Vict.c. 42 , removed the department of Public Works from the Woouls and Forests, and placed it under selurate control. A recent act, 29 and 30 Vict. c. 62 , has introduced various alterations in the details of management. The Commissioners of Woods and Forests act under the control of the Treasury, and are required to transmit annual accounts of the receipt and expenditure of their department, to be andited by the Commissioners for auditing Public Accounts. The yearly receipts from this source amount to about $£ 320,000$. See Woris, Loatid of.

WOOD-SORREL. See Oxalidee.

WOO'DSTOCK, a small town and parliamentary borongh, Oxfordshire. S miles north-north-west of the city of Oxford. The pop. of the borough (which includes several adjacent villages and hamlets) is 7827, and is much larger than that of the town, which contains only 1200 inhabitants. The manufacture of fawn-skin glores gives employment to about 1200 nersons, residing in the town and neighbouring villages. W., or rather Old W., a little to the north of the present town, was a residenco of the early Englist kings; but no remains of the ancient palace exist. Edward, the Black Prince, was born here; Elizabeth was held prisoner by her sister Mlary; and Chaucer resided here for some time. W. is also famous in connection with Fair Rosamond, the
celebrated mistress of Heury I1. It is now douhted, however, if the labyrinth or maze which Henry is saicl to have constructed for her hehoof ever existed. In the immediate vicinity is Blenheim l'arl, the seat of the Duke of Marlborough. W. returns one member to the II. of Commons. (IS71-101, 747.)
WOOD-SWALLOW (Artamus), a genus of birds, resembling swallows in many of their habits, lut differing in the structure of their lills and fect, and belonging to the family of $A \mathrm{mpclide}$, or Chatterers (q. v.). The bill is very broad at the lase, and arched; the upper mandible thick, but not rilged; the gape furnished with bristles; the nostrils wide aprit, naked; the feet short aud strong; the wings very long and pointed; the tail short. Their tlight is rapid. Their food consists chiefly of seeds. They are natives of the East Indies and of Australia. An Australian species (A. sorlidus) is sometimes seen in great numbers, and is remarkable for the lablit of suspending itsclf in clusters on dead branelies, like a swarm of hees, one lird clinging to another, so that as many thus hang together as would fill a bushel.

WOOL is a variety of Hair (q. v.). The term hair is applied, in ordinary language, to a smooth, straightedged filament like hmman or horse hair, without serrations of any kind on its surface. Wool, on the other hand, is always more or less waved, as in fig. I ; besides which, externally each woolly filament is seen under the microscope to be covered with scales overlying each other, and projecting wherever a bend occurs in the fibre; fig. 2 , in which one of the leading varieties of wool is shewn, both in its

Fig. 1.

Fig. 2.
natural state (a in outline, and b complete) and after it has undergone the process of carding (c in outline, and a complete), in each condition hoth as a transparent and as an opaque object. Unon the minute points of difference here shewn, the value of wool chictly depends, especially with regard to the great varicty of its applications. If each fibre were straight and smooth, is in the case of hair, it would not retain the twisted state given to it by spinning, but would rapidly untwist when relieved from the force of the spinning. Whecl; but the wavy condition causes the filbres to become entangled with each other, and the little projecting proints of the seales hook into each other, and hold the fibres in close contret. Moreover, the deeper these scales fit into one another, the closer becomes the structure of the thread, and consequently of the cloth made of it. This gives to wool the quality of Felting (q.v.). By comling, or drawing the wool through combs with angular metal teeth, some of the seales are removed, and the points of many more are broken off, so that wool which has been combed has less of the felting property, and is consequently better adapted for light fabrics ; and yarn made of such wool is called worsted, and the cloths made of it worsted goods. But such is the variety of wools olutained by careful breeding and selection, that these differences can be

WOOL.

got without combing, some wools loing foumd to have naturally fewer serratures, and a less wavy structure, than others. These are consequently kept separate, and are called combing-wools; whilst those which are much waved, and have many serratures, are called carding-wools, from their being simply prepared for spinning by carding-machines. The serratures or points of the scales are exceedingly small, and require the aid of a good microscope to see them. They vary from 1200 up to 3000 to an inch.

Wool is the most important of all animal substances used in manufactures, and ranks next to cotton as a raw material for textile fabrics. Its use as a suhstance for clothing is almost universal in the temperate regions of the globe.

Previous to 1791, British woollen cloths were made almost wholly of native-grown wools. At that time, the whole supply of the country could not have much exceeded $100,000,000 \mathrm{lbs}$. The merino wool of Spain then began to displace them in the best kind of gools, and the imports from that country reached their maximum in 1505 , being in that year $7,000,000 \mathrm{lbs}$. Before 1520 , the German wool liad begun to supersede the Spanish, and was imported largely till 1841. After that, the cheaper wool of the British colonies to a great extent took the place of the German, and the latter is now chiefly used for only the finest cloths.

Wool varies in character according to the peculiar breed of sheep which yields it, and also with the nature of the soil, food, shelter, and climatc. In a wool of first-rate quality, the fibres are fine, soft, elastic, sound, of good colour, and free from deleterious or tronhlesome impurities : the commercial value of any sample depends, therefore, upon the extent to which it possesses these properties. If it be a combing wool, it will also depend upon its length of staple.

For technical purposes, shorn fleeces are divided into two classes, one called hogs or tegs, the other wethers or ewes. The former are the first fleeces shorn from the sheep, the latter are those of the second and succeeding years; but the meaning of these terms varies a little in different districts. The fleeces of yearlings are, as a rule, longer in the staple, and otherwise of superior quality to the wool of older animals. In the soutly of England, it is customary to clip lambs, and the wool so obtained is called shorn lamb's uool. Wool taken from the skins of slaughtered sheep is called shin-wool or pelt-wool, and is of a more variable quality than Heece-wool, on account of its being oltained in all stages of growth.

As long-stapled wools are used for worsted groods, and short-stapled for woollen goods, the varions breeds which yield these two leading kinds are naturally divided into the long-woolled and shortwoolled classes of sheep. The Lincoln, the Leicester, and the Cotswold breeds are considered good types of the former ; and the Down, the Welsh, and the Shetland breeds, of the latter.

The following brief notice of the characteristic properties of the various native wools, is founder upon the description given of them in the Jury lieport of the International Exhibition of 1562 , Class IV.

Of the 'long wools,' the Lincoln las greatly risen in value of late years. It is coarse, of great length, and silky in appearance, so that it is well ndapted for 'lustre' goods, in imitation of alpaca fabrics. Leicester wool is lighly esteemed for combing. It is rather finer in the hair, but not usually so soft and silky in the staple as the last. Cotszold wool is similar to the Leicester, but somewhat harsher. It is not suited for lustre goods. Highland wool is
long stapled, and of coarse quality, but kuown to be susceptiljle of great improvements. The practice of 'smearing' greatly depreciates its value. It is chiefly used for the coarsest kinds of woollen fabrics, as carpets, rugs, and similar articles. It is also used for Scotch blankets.

Of the 'short wools, the different lreeds of Downs partake very mucli of the same characters, but soil and climate so far affect them. The South Hown is a short-stapled, small-haired wool, the longer qualities of which are put aside for combing purposes, and the shorter for the manufacture of light woollen goods, such as flannel. The Hampshire Down differs from it in being coarser, and in having the staple usually longer. The Orford Down, - again, exceeds the last in length and coarscness of staple. The Norfolk Jown, on the other hand, when clean, is of a very fine and valnable character. The Shropshire Down is a breed increasing in importance, and is longer in the staple, and has more lustre than any of the other Down breeds. Ryelands wool is fine and short, but the breed is nearly extinct. The IVclsh and Shetland wools have a hair-like texture, deficient in the spiral form, upon which depends the relative value of high-class wools. They are only suited for goods where the properties of shrinking and felting are not required. Shetland wool is obtained of various natural tints, which enables it to be used for producing different patterus withont dyeing.

Of the intermediate wools, Dorset is clean, soft, and rather longer, and not quite so fine in the staple as the Down breeds. The Cheviat has increased very much of late years in public estimation. It is a small, fine-haired wool, of medium length, and is suitable for woollen and worsted purposes, for which it is largely used.

Some of the British colonies are very important wool-producing countries, Australia in this respect standing far in advance of all other countries whatever. The Australian wool has in general a beantifnl, short, silky staple, well adapted for the manufacture of soft, pliable, and elastic fabrics. All the settled districts of this continent have been found well adapted to the growth of fine-woolled sheep, and the extraordinary increase in the flocks forms one of the most remarkable features of the colony. The breed has sprung from three mexino rams and five ewes taken out by Captain M^{6} Arthur in 1797. The alpaca wool grown in Australia since the creature was introduced some years ago is of inferior quality; but this is supposed to have arisen from rearing the animals too wear the coast, and hopes are now entertained of succeeding better with it inland.

The wool of Cape Colony has of late years been greatly improved by the iutroduction of merinos, and, as will be seen from the table below, the exports from it are increasing very rapidly.

Among the imports from India, wool has of late become an important article, the quantity baving risen from about $2,500,000 \mathrm{lbs}$. in $15 \cdot 10$, to $20,000,000$ lls. in 1860; lut the supply has fallen off a little since. A great deal of the Indian wool is coarse and hairy, and can only be used for low-class goods. We may state here that the most costly of all wools is obtained from the Tibetan goat, and is found next the slin. under the thick hai of the ammal. From it, the far-famed Cashmere shavls are made. The highest price of any quality which is sold is from 6s. to $7 s$, per 1 lb . in the native markets, but the Nabarajah of Cashmere keeps a strict monopoly over the best kind.

Turning now to European countries, it is somewhat sad to think that Spain, the native country of the merinc, which not so long ago sent all the wool

WOOL-WOOLLEN AND WORSTED MANUFACTURES.

for the best English cloths, has allowed its quality to degenerate, and its once large suply to dwindle away. The wonl of Saxony, Silesia, and some parts of A ustria, which is obtained from sheep of the merino breed, is the finest produced in any country; and notwithstauding the lower price aul nearly equal quality of the Australian, German wool is still employed for the finest broadcloths, some kinds of ladies' shawls, and a few other purposes. Great attention is paid to the breeding and reariug of sheep in Germany, and large flocks are reared for their wool alone. In Anstria, the number of sheep is estimated at $30,000,000$, and occasionally a fleece is obtained so fine that twelve hairs of it will only eqnal in thickness one hair from a Leicester sheep, France produces a large quantity both of fine and coarse wool. In Italy, the production of wool from mixed merino breeds has become a source of great wealth. Russia, as might be expected from its great extent, rears many qualitics, frem the finest merine te a very coarse kind. The wools of the remaining countries of Europe are of miner importance.

We must net omit to mention that the wools of South America are now attaining great importance, as will he scen loy the table beluw, lut it is necessary to state that of the $18,000,000$ lbs. imported in 1865, nearly $3,000,000 \mathrm{lbs}$. were of alpaca (including llama and vicuna) wool. See Alpaca. The woul of the alpaea is rery fine, from 6 to 12 inches lung, of various colours, and well snited for certain kinds of goods, which are noticed under Woollex axid Worstri Masufactures. Sonth American sheep's wool is of an inferior quality.

Much finer wool would be produced in Britain than is at present, if it were not that the demanal for mutten, and the unfituess of the merino sheep for supplying that article of good quality, lead our farmers to choose breeds which are primarily mutton-producing.

The following talle will shew at a glance the remarkable changes which have taken place in the sources from which Great Britain has derived its supplies of weol, and alse the stealy increase in the aggregate quantity imported:
impolts of Wool from tar Principal Coontries.

Year.	$s_{\text {prain. }}$	Germany.	Aurtagia	South Afric.	East Indics.	South America.
1810	$\begin{gathered} 162 . \\ 5.952,407 \end{gathered}$	$\begin{gathered} \text { the. } \\ 778,835 \end{gathered}$	${ }^{1 b} .167$	1 b \%	1bs.	lus.
1816	$4,958,607$	2,S16,655	13,611	0,623	Insignificant
1820	3,536,293	5,113,412	99,415	29,717		1833.
1830	1,643,515	26,073,882	1,967,279	33,407) 1033.
1834	2,343,915	22,634,615	3,558,091	141,707	67,703	
1840	1,266,905	21,812,099	9,721,243	751.741	2,441,370	4,378,274
1850	440,751	9,166,731	39,018,221	5,709,529	3,473,252	5,296,643
1855	63,000	6,129,000	49,142,000	11,075,000	14,283,000	7,106,000
1860	1,000,000	9,292,000	59,166,000	16,574,000	20,214,000	8,950.000
1865	115,000	6,853,000	109,734,000	29,220,000	17,105,000	17,867,000

To get the total imports for each ycar, we would require to add the amonnts from countries of lesser importance, which are not given; but in the annexed statement we give the total annual imperts and experts for the three years 1850, 1860 , 1865 :

	1855 (1bes.).	1860 (1b3.).	1505 (1bla.).
Total Ithports, 1 Exported, .	99,300,000	$143,396,000$	$212,246,000$
	29,453,000	30,761,000	
Left for Consumption,	69,847,000	117,635,000	123,761,000

There are no very reliable statistics of the amount of wool annually produced in Great Britain. In 1858, Mr E. Baines of Leeds estinated it at $175,000,000 \mathrm{lbs}$., the value of which he computed to be $£ 10,937,500$, taking it at the average price for the previons thirty years-viz., $1 s .3 d$. per lb . Another estimate of the yield in 1864, makes it out to be nearly the same quantity. The price of the hest Australian wool during the last ten years has probably averaged about $2 s$. $6 d$. per 1 b ., and the best German wool, for the same period, about $3 s$. Gd. per lh. Some very fine qualities of the lattcr have seld at nearly $6 s$. per lh .

To get at the total raw material used in the Woollen manufactures, we require to take in the startling amount of woollen rags, waste, and 'extract' of wool new used in the 'shoddy' trade. For the year 1865 , the estimated amount of these materinls was: shoddy (chiefly rags), home-made, $52,000,000 \mathrm{lbs}$; shoddy (chiefly rags), imperted, $22,000,000 \mathrm{lbs}$; wool 'extract,' $5,000,000 \mathrm{lbs}$.-total, $79,000,000 \mathrm{lbs}$. 'Extract' is the woel recovered from worn mixed fabries where the cotton has been destroyed by a ehemical procese

With respect to the wool, or weolly hair, of animals other than the sheep, which we have not already mentioned, the only one of much importance is mohair, or the weol of the Angora Goat (q. v.). Of this material, there were $5,402,000 \mathrm{lbs}$. importerl in 1565 . It is a white silky wool, with an average length of staple of from 5 to 6 inches. The demand for it is only of recent origin, and, as will be neticed in our next article, it is chiefly used for certain kinds of ladies' dresses. The hair of camels, bullocks, common goats, and sereral furs are also used to some extent for manufacturing purposes.
The grand total of wool, shoddy, and goats' hair employed in the woollen industries of Great Britain in 186.5, cannot, therefore, be far short of $380,000,000$ llos. The total import of raw cotton in the same year was nearly $1,000,000,000 \mathrm{lls}$. ; lat of this, more than $300,000,000 \mathrm{lbs}$. were re-exported.

WOOLLEN AND WORSTED MANUFACTURES. The spinning and weaving of wool was practised from an carly period in Asia Minor, Greece, Italy, and some other countries. It is very probalie that the first lessons which our ancestors received in this art were got from the Romans after the Conquest; lont the origin of the manufacture as a great staple is generally supposed to date from the time of William the Conqueror, when seme Flemish weavers came to England, and obtained the patronage of the queen. The trade, however, fell off during the troubles of succeeding reigns. In 1331, it revivel again by another snpply of Dntels weavers bronght over by Edward III. In 1530, the introduction of the spinning-wheel gave a new impetus to the trade. French werkmen, driven to England by the revocation of the Edict of Nantes in 1655, still forther aided it by their skill in the making of fine cloth, and frem that time to the
present it has steadily prospered. It is hardly necessary to state that the woollen trade has shared, in common with other leading textile manufactures, the great adrancement they have received from the spinning-jenny, the mule, and the powerloom.

There are two great classes of manufactures using wool as a raw material : in the one where cardel wool is employed, the goods are called 'Woollen fabrics;' in the other, where combed wool is nised, the goods are called 'worsted fabrics.' The shall first treat of the Foollen Manufucture.

As our articles on Spinning and Weatiag are general, we shall bere briefly state the chief stages in these processes, as applicd to the manufacture of woollen cloth. A fleece of wool is tirst sorted by experienced sorters into several qualities, as first sort, or 'pick-locks;' second sort or quality; third sort or quabity ; and so on. Sometimes, it is only divided into three, sometimes into as usany as six kinds. The 'scouring' is the next step, and consists in immersing the wool in an alkaline lye, which forms a soap with the natural grease of the fleece. This of conrse acts as a detergent, and cleans the wool thoroughly when it is washed in water. Upon the perfection with which the scouring is performed, depends in great part the beanty of the dye. It is often dyed at this stage, and is then said to be wooldyed; if not dyed till it is woven, the cloth is said to be piece-dyed. For some purposes, it is dyed in the yarn.

Scoured wool, whether dyed or not, next undergoes the operation of 'willying.' The 'willy' is a machine nsed to cleanse the wool from dust and other loose impurities. In many cases, seeds with hooked scales like burs are so thickly entangled in the wool, that it requires to be passed through a 'burring'-machine, and afterwards examined by 'pickers.' This is especially the case with South American wool, including that of the alpaca. After this, the wool is sprinkled with olive oil, which renders the fibres soft, flexible, and better fitted for later operations. The next process consists in tearing open the matted portions, and separating the wool into small tufts by means of a machine called a teaser, tucker, or deril. It has a large cylinder studded over with iron pikes, which performs from 1000 to 2000 revolutions per minute, teasing the wool as it revolves, and throwing it out like flakes of snow.

The two next operations are called scriblling and carding, and are performed by two somewhat similar machines, the essential parts of which will be understood by referring to figs. 6, 7 , and 8 in the article Spinvirg. Each machine consists of a large cylinder surrounded by several smanll rollers, all covered with wire cards or brushes. These, acting like fine toothed combs, open out, mix, and blend the fibres into a uniform and continuous sheet or lap, in which state it leaves the scribbler; but in the carder, the sheet is at length converted into small rolls, say from a quarter to half an inch in diameter, which are afterwards joined t ngether, and form the basis of the thread. In the next machine, called the slub-bing-lilly, these rolls are drawn out, slightly twisted, and, in short, half converted into yarn. The spindles upon which these slubbs or shublings are wound pass them to the spinning-mule, where they are converted into finished yarn.

Comparatively recent improvements have made the operations of scribbling, carding, and slubbing continuous, mainly through the introduction of Apperly's patent feeder, and of a modification of the carding-machine called a condenser, which does away with the use of the slubbing-billy; so that what with the older machines is three separate pro-
cesses, with the newer may be said to be only one. Each of the foregoing operations occasious a certain amount of 'waste' wool, which is worked up again into inferior goorls. It was, in fact, to such waste that the name shoddy was originally arplied. In the spinning process, the warp yarns, baving to bear the strain of the loom, are made in a different way from those for the weft, and they are besides bardened with size.

The difference between woollen and worsted fabrics is owing in creat part to the way the yarn for each is spun. Yarn for woollen cloth is very slightly twisted, so as to leave the fibres as free as possible for the felting process; worsted yarn, on the contrary, is hard spon, and made into a moch stronger thread. On account of the feebleness of woollen yarn, it is more clifficult to weave it by power-looms than either worsted, cotton, linen, or silk.

Woollen cloth is now woven chiefly by powerlooms. Sce Loom and Weatevg. When the cloth is taken from the loom, it has a bare look, and is called the raw thread. It first requires to be brayed or scoured, to reraove the oil added to the wool before spinning, and the size added to the warp. This is done by immersing it in some ammoniacal detergent liquid, such as urine and hog's dnng, and squeezing it between rollers, or beating it in the fulling-stocks, and then rinsing it in clean water. The cloth then passes to the burler, who removes any knots or burls, and helps any imperfections. The next process to which it is subjected is the milling or fulling, and it is a very important one. In some mills, this is still done by beating the cloth in the fullingstocks, which are heary wooden mallets, raised by wheels with projecting cams; but a newer fulling. machine has come into use, in which the cloth is felted by passing it in a confined space between heavy rollers. With either machine, a thick solution of soap is used, and in the fulling-stocks an ordinary broadcloth will take 60 hours to mill, but a cousiderably shorter time suffices in the fullingmachine. The result of the operation is, that the fibres of wool become so interlocked-so thoronghly felted-as to leave no appearance of thread. The shrinkage of the cloth in the milling is sometimes pearly a half in the width, and about a fourth in the length. Another scouring follows the milling, and after that the nap or pile of the cloth is raised by Teasels (q.v.). These curious thistle-like heads are set in frames, which are arranged upon a large cylinder-the whole apparatus being called a gigmill. As the cylinder revolves, the spines of the teasels raise the nap, which is aftersards cut by a process termed shearing. For this purpose, a cuttingmachine with spiral blades arranged round an iron cylinder, is used; and when it revolves, the spiral cutters, acting against a straight steel blade, shear off the nap of the fahric like scissors. The cloth is then boiled, or 'scalded,' to impart a lustre to it, and to prevent spotting with rain. After this it is dyed (if this is not previonsly done in the wool), and finally it is pressed between polished iron plates in a powerful hydraulic press. With respect to the dyeing of black cloth, it may be as well to explain that the term woaded colours, so commonly used in the trade, originally meant that Woad (q.v.) was used in conjunction with indigo as the basis of the colour-a combination which produces the best and most durable colour. Of late years, however, the name has been applied to the colour of the fabric when indigo itself has been used as its basis. It is only the finest cloths that are now dyed in either of these ways-logwood, a salt of iron, and galls being much more generally employed to produce a black.

WOOLLEN AND WORSTED MANUFACTURES.

Names are given to various kinds of woollen cloths according to the style in which they are finished, the special material of which they are made, and the purpose for which they are intended. Broalcluths are classed into 'supertines,' ruming from 56 to 60 inches wide; 'mediums' from 54 to 58 inches: 'double milled' from 54 to 56 inches; and Yeactians, which are twilled fabrics, from 54 to 5 is iuches. The general term broaleloth also includes the following raricties, which, for the most part, have less highly-finished surfaces-viz. meltons, beavers, pilots, clonkings, elina striped cloths, India cloths, elastic glove cloths, and uuinn cloths which have cotton warps and wollen wefts. Narrow cloths, which average about 27 inches wide, include cassimeres, a thin, fine, twilled fabric; doeskin, also twilled, a strong, smooth-finished, sometimes treble-milled cloth, now usually dyed black for trouserings; Tweeds ($q . v$.), which have very much taken the place of fancy docskins; and several other varietics. Then there are special kinds both broad and narrow-such as army cloths, rifle cloths, police cloth, upholstery cloth, carriage cloth, coffin cloths, and many more. Flanuels, lonakets, and some kiuds of shawls, are also included among woollen goods.

The public taste has changed very much of late years with respect to the finish of woollen cloths. Formerly, i firm, close, and hard fabric, with a highly-dressel or glossy surface, was in demand; now, a softer and more pliable finish, withont gloss, is in favour. Foreign manufacturers think, however, that a soft, rich, elastic cloth is apt to lose in strength what it gains in appearance, and do not finish so highly as the English. The desire for fancy woollens is another marked feature of the taste of the present day, and compels manufacturers to expend considerable sums in the preparation of designs and colours. It has also led to the enlargement of old, and the establishment of new artschools in both the woollen and worsted centres in Yorkshire.

Of all the changes, however, which the present generation has witnessed in this trade, the most remarkable is donttless the production of cheap cloths by the use of shoddy; althougle cotton warns have also done much in the same dircetion. Prepared shoddy is obtained, for the most part, by tcaring up woollen rags by a swifl, with ten or twelve thousand iron spikes unou it, revolving inside an iron eylinder. Shoddy now enters to a greater or less extent into the composition of all but the very finest woollen cloths. It began to be used about 50 years ago, but the prejudice against it is scarcely yet overcome. In spite of this feeling, it has become so necessary, that to ston the supply, would be to shut one-third of the woollen mills in the kingdom. The excellent finish now given to woollen cloths containing a large proportion of sloddy, and also cloths with cotton warps, is quite surprising; and, moreover, their cheapness has brought comfortable clothing within the reach of the humblest classes. Cloths with too large an amount of shoddy in them are easily torn; but if a judicious admixture of pure wool has been employed, they wear comparatively well. Formerly, the only use of woollen rags was to make flocks for wall-papers, for sadllers' stuffing, and some minor purposcs-the greater part being used as manure.

In the British Islands, the rarious branches of the woollen manufacture are very extensively diffused. According to a factory return made a few years ago, it was carried on in 22 counties of England, 10 of TVales, 24 of Scotland, and 6 of Ircland. The 1rincipal seat of the manufactare of superfine broadcloth is the west of England-Gloucestershire and 266

Wiltshire especially-where it has cxisted for centuries. But Yorkshire is the great seat of the woollen manufacture, if we take in all the kinds, Leeds and Hudderstield Leing the great centres. One-half of all the operatives in the woollen face tories of the kingdom are employed in Yorkshire, and here, too, the trade has increased most rapidly, both in the last and in the present century, owing mainly, it is helieved, to the success of the manufacturers in producing cheap goods. Blankets are mado chietly at Wituey, in Oxfordshire ; at Dewsbury, in Yorkshire: and some places in the south of Scotland. LIalifax and the surrounding district is the chief centre for flannels, hut they are also made largely in Wales. In Scotland, the woollen manufacture is a very extensive one, lut it has, for the most lart, been already described under Twe:ds.
The most recent anthentic statistics of the woollen industry of the United Kingdom are for the year 1861, and are as under:

NEMBER ANH BIZE OF FACTODIES,

Divisiona and Counticto.	Number of Woollen Iactorict,	Number of spinsles.	Number of Howcrloomr.
England and Wiales-			
Torkshire ,	924	1,296,190	11,405
Devonshire, . .	16	12,585	255
Glonceatershire,	49	59,986	618
Lancashlre,	101	277,655	6,377
Montgomery, .	43	20,920	262
Somersetsbire,	26	31,401	401
Wiltshire, . .	32	44.825	649
Other counties, .	265	103,298	477
Total,	1,456	1,846,850	20,344
Scotland-			
Aberdeen, .	25	12,510	93
Clackmannan, .	15	38,311	214
Peebles, .	7	51,142	101
Perth, . .	16	16,553	
Roxburgb, . .	21	60,547	300
Selkirk, . . .	16	16,368	158
Stirling, *	23	32,950	64
Other countics, -	61	53,804	373
Total,	184	317,1\$5	1,303
Ircland,	39	18,574	123
$\left.\begin{array}{l}\text { Yotal, United İing- } \\ \text { dom, . . }\end{array}\right\}$	1,679	$2,182,600$	21,750

NEABER OF OREQATEES OF EACI SEX EMPLOEED.

$\begin{gathered} \text { Mates-under } 13, \\ \text { " } 13 \text { to } 18, \\ \text { " abore } 18, \\ \text { Total, . } \\ \text { Females-under } 13, \\ \text { " above } 13, \end{gathered}$	Encland and Walen.	Scotland.	Ireland.	Unlted Kingedam.
	3,333	29	\%	3,362
	9,811	1.327	75	11,213
	30,954	3,855	370	35,179
	44,058	5,211	445	49,754
	$\begin{array}{r} 2,598 \\ 09.673 \end{array}$	9 4599		$\begin{array}{r} 2,607 \end{array}$
	$29,613$	4,592	417	34,622
$\left.\begin{array}{c} \text { Tota!, } \\ \text { Total, Males and } \\ \text { Females, } \end{array}\right\}$	32,211	4,601	417	37,229
	76,309	9,812	862	86,983

The number of spindles and looms, as well as the number of persons employed, have considerably increased since 1861, partly owing, no doult, to the rise in the price of cotton goods during the cotton famine.
At Huddersfield, in 1S6C, the following wages were earned, per week of 60 hours: Males-Spinners, 18 s . to 30 s . ; wenvers, 18s. to 23s. 6 c . ; patternweavers, 16 s . to $30 s$; pattern-designers, $30 s$. to 508 . The imports of woollen and worsted yarns (not distinguished in the returns) have increased from 1861 to 1865 as follows: In $1861,1,577,000 \mathrm{dbs}$; in

WOOLLEN AND WORSTED MANUFACTURES.

$1865,4,392,000 \mathrm{lbs}$. The value of woollen cloths imported in the same years was-in 1S61, £119,654; in 1565 , $£ 190,221$. In the annexed table, the trade:
exports of woollen moods are given for 1560 and 1565, and shew the prosperous state of the

	Quantities.		Palle.	
	In 1860.	In 1865.	In ISCo.	In 1865.
Woollen 5arns (lbs.), . . .	not stated	203,929	not stated	£35.691
Woollens: Cloths, coatings, \&c. (yards), .	23,968,000	25,616,000	£2,996,000	4,024.000
Flanrels, blankets, and baizes (Jards), .	12,641,000	14,769,000	S 48,000	1,203,000

Althongh steadily adrancing, yet the progress of the woollen manufacture has been less rapid and extensive than that of other teatile fabrics, which is believed to he owing to its processes being more numerous and complex, to the greater variety of machines and of workpeople required, and to the high price of the raw material.

Hrorsted Manufacture. - Worsted yarn, as has been already said, is spun in a different way from woollen yarn. In the former, the fibres are arranged as parallel as possible; in the latter, they are crossed in every direction, so as to assist the felting or milling of the cloth. For worsted, the wool is first combed, which is still done by hand as well as by machinery. When done by hand, the wool-comber performs his work with a pair of combs, each containing two or three rows of

Fig. 1. steel teeth (fig. 1), which he uses in a heated state. The wool, after being previously oiled, is stuck on one comb, and the teeth of the other are then drawn through it, till the second comb transfers most of the wool to itself. The process is alternately repeated with each comb until the fibres are quite parallel. The dressed wool is then withdrawn, and is called the top; but there remains in the teeth of the comb some short wool, called the noil, which is sold to the clothmakers. In this first comhing, the wool is in a heated state, and requires to be combed a second time at a lower temperature.

The introduction of machines for combing wool has formed quite an epoch in the worsted trade. Previous to 1816, all the machines invented for this purpose were imitations of the hand process, and had the defect of producing too much short and too little long wool. In that year, Heilmann patented in England an ingenious machine, which was not, however, introduced till 1549. Lister's machine, introduced in 1851, was an improvement upon it; but the close resemblance Ied to a protracted litigation, which ended in the Iatter purchasing Heilmann's patent for $£ 30,000$. With the aid of the annexed diagram (fig. 2), Heilmann's machine will be understood by a brief description. The prepared wool is supplied to it at W , and passes down till a pair of nippers seize it at N, leaving a portion of the wool hanging down. A revolving drum or cylinder, D , then moves round till that portion of it shewn with teeth enters the overhanging wool, and combs it. The plain portion of the cylinder follows, and as it reaches the drawing-rollers at R^{\prime}, turns them by friction. These rollers lay hold of the combed wool, and then the nippers open, and press the uncombed portion up into the teeth of combs at C, C'. The drawing-rollers, still holding the tuft of wool, then pass, by a peculiar arrangement, from their position
at I^{\prime} to a lower one at I . Here the partially. combed wool gets a second combing from the cylinder, and passes off by rollers at S in a continuous sliver, which is accomplished by making one

Fig. 2.
tuft of wool slightly overlap the one before it. Two card-rollers at Z remore the noils, or short wool, from the teeth of the cylinder.

Most of the later combing-machines are also patented, and descriptions of them will be found in the specifications of patents. We are not aware that a very decided preference has been given to any special one; and to describe them all, even in the hriefest way, would lead us beyond our limits.

The remaining processes in worsted spinning closely resemble those for cotton, and are sufficiently described under Spinving ; but the following table, which merely enumerates the products of the varions stages, may not be uninteresting: 1. Flecce (Lincoln wool). 2. Combed 'top.' 3. Noils, or short wool. 4. Sliver from first drawing-frame. $5,6,7$, $\$, 9$, and 10 . Slubbings from second, third, fourth, fifth, sirth, and seventh drawing-frames. 11. Roying from roving-frame. 12. Yarn No. 24 for the fancy trade, $10 \frac{7}{10}$ drs. per 560 yards. 13. Yarn No. 36 for cle laines, \&c., $7 \frac{1}{10}$ drs. per 560 yards. 14. Yarn for Coburgs, \&c., $6 \frac{4}{10}$ drs. per 560 yards. Alpaca and mohair are combed and spun in a similar way to the worsted yarns from sheep's wool.

Those cloths manufactured from worsted farns which are figured, are of course woren by varions kinds of looms (see Jaceuard Loom and Loom) ; plain kinds are woven in looms similar to those used for woollens. When worsted goods leave the loom, they require only a superficial dressing, and in this respect liffer much from woollen cloths, which we have seen require elaborate finishing processes.

Worsted stuffs are usually classified according to the materials of which they are composed, viz.: 1. Fabrics composed entirely of wool. 2. Fabrics
composed of wool and cotton. 3. Fithrics composed of wool and silk. 4. Fabries composed of wool, silk. and cotton. 5. Fabrics composed of alpaca and mohair mixed with cotton or silk. The first of these classes inclutes the fabrics so well linown under the name of 'merinos,' and so called because they were first made of Spanish wool: for the 'doubletwilled' kinds, the Frenclu still maintain their superiority; but for the 'single-twilled,' the Yorkshire makers are considered the best. This class also comprises shalloons, says, serges, lastings-all stunt and heavy fabrics-besiles durants, buntings, moreens, damasks, reps, liussells, canlets, and many others, both for dress and furniture. Mousseline de laine was, as its name implies, originally all wool, but it is now more generally mixed with cotton, and printed.
The second class inclutes two fabrios, of which the consumption for female dresses has heen im-mense-viz., Coburg and Orleas eloths, the former being twilled, and the latter plain. Many of the names used in the all-wool class are retained in this, with the addition of the word 'union,' as union merino, mion shalloon, union damask, ic. Winceys, now so popular for ladies' winter dresses, on account of their warmth, are made of wool and cotton, froms yarns of a heavicr and coarser kiad than those used for cloths like Coburgs. Wincers are largely made at Aberdeen. Perth, Glasgow, and other places in Scotland, as well as in Yorkshire.
The third class includes the rich Poplins (q. v.) and Tabinets (q.v.), made chiefly in Dublin, and giving employment there to about i:00 hands. Paramatta or Henrietta cloth. Canton cloth, and others, are made both of silk and wool, and cotton and wool. Some Coburgs, Orleans, Russells, and Damasks are likewise made with silk warps.

The fourth class-viz., mixed goods, in which silk, wool, cotton, and sometimes linen are usedincludes peculiar kimes of some of the fabrics named above, and also vestings, linings, cravats, shawls, scarfs, quiltings, boot and shoe cloths, barèges, \&c.
The fifth class includes alpaca lustres and mix-tures-plain, twilled, and figured; alpaca proplins, umbrella and parasol cloth; mohair lustres, glacés, Verona serges, barèges, ice.

The term 'worsted' is said to have llerived its origin from a village of that name in Norfolk, where this manufacture was first carricd on. U ${ }_{\mathrm{P}}$ to the end of last century, worsted goods were a staple trade of Norwich; but the neglect of the factory system there led to its being transferred to Bradford, which has become renowned as the metropolis of the worsted manufacture. It is also extensively carried on at Halifax aud other places in Yorkshire.

Like the woollen, some of the statistics of the worsted manufacture are not nore recent than 1861, to which year the first two tables apply:

NUZBEB AND EIZE OF FACTOMES.

Divitions.	Number of Facturics.	Number of Spindles.	$\begin{aligned} & \text { Number of } \\ & \text { Yowir-toolsit. } \end{aligned}$
Encland and Wales-			
Yorkshire, *	143	1,149,072	40,577
Other Counties, .	63	96,454	2,391
Total,	512	1,245,326	12,968
Scotland,	17	38,946	80
Ireland,	3	4,700	...
$\left.\begin{array}{c} \text { Total-United\} } \\ \text { Kinstom, } \end{array}\right\}$	332	1,289,172	43,048

NUSGER DF OPERATIVPS OP ROTIS SEXES EBPLOYEH,

Fuginnd and halen.	Scotlund.	1reland.	$\begin{aligned} & \text { Vuiteit } \\ & \text { Klugdont. } \end{aligned}$
	178	12	
17,700	895	$2 \pm$	-6,14
30,392	1,073	36	31,501
$\begin{array}{r} 6,906 \\ 15,674 \end{array}$	4 1,839	139	$\begin{array}{r} { }_{6}^{6}, 911 \\ 47,652 \end{array}$
52,580	1,843	139	34,562
82,9i2	2,916	175	86,0c3

Nearly 90 per cent. of all the operatives engaged in the worsted iadustry were employed in the Yorkshire factories. In 1866 , the average rate of wages carned by thens were, at Bradford: Spinners-Women, 7 s. to 108 per week of 55 hours: Weavers-Men, $18 s$. per week of 60 hours ; women, $12 s$. per week of 55 lours. At Halifax: Spinners-Men, 31)s. per week of (60) hours; women, 7 s .6 Gd . to Ss. 6 id . : Heavers$\mathrm{Men}, 16 s$. to $24 s$; women, δs, to 12 s . The importations of worsted yaras being inchuded along with woollen in the returns, cannot he given separately (see page 266). In 1565, the imports of worsted stuffs amounted to 154,000 pieces, valued at $£ 334,000$, and came chictly from France.
With resplect to the exports, the following will shew the vast increase which has taken place from 1860 to 1865: 1860-Worsted yarn, $26,455,000$ lbs. $(£ 3,575,060)$; worsted stuffs, $148,685,000$ vards ($£ 7,013,0(1)$) 1865-W Wrstell yara, 30,221,000 lbs. ($£ 5,074,(100)$; worsted stuffs, $233,078,000$ yards $(£ 13,361,000)$. A very large trade has been carried on in these goods with France since the conclusion of the commercial treaty with that country a few years aro. In 1S65, it imounted in value to £1,332,000.
The rapid increase of the worsted manufacture as compared with the woollen, is no doult to be ascribed to the greater simplicity of the processes, to the recent introduction of combing-machines, but most of all to the introduction of entton-warps in 1835. which not only eheapencd the goods, hut rastly increased their variety.
Information regarding such special branches of the woollen and worsterl industrics as carpets, shawls, hosicry, tartans, bonnets, \&c. will be found under their separate heads. We may state here that the Scotch honnct-trade, carricd on at Kilmarnock and Stewarton, employs from 2000 to 3000 hands, and sends out about 500,000 bonnets amually.
WOOLLETTT, William, one of the most minent of English engravers, was born in the year 1735 at Maidstónc. Ife went early to London; studied his art under a practitioner of the name of Tinney, now only remombered as laving taught him little or nothing ; tanght himself, however, a good deal, notwithstandiog the aid of Tinney, and developing a manner of his own, soon became known as onc of the most accomplished engravers of his time. In recognition of bis merit, be was erelong appointed engraver to George III. As to his life, except as he is proved to have existed by his works, familiar at this day to every one, nothing is known. He died in London, in the year 1785, after a life of continuous and conscientious labour, as reward of which, a monnment was crected to him in West minster Abhey. His works, more especially in landscape, continuc to be much prized by connoisseurs.

WOOLSACK, the name given to the seat of the Lord Chancellor of England in the House of Lords,

WOOLSTON-WOONSOCKET.

which is composed of a large square bag of wool without either back or arms, and covered with red cloth. The woolsack was first introduced in the Honse of Lords as the Chancellor's seat in the time of Elizabeth, as a memento of an aet which was passed against the exprortation of wool, that commodity being then the main source of the national wealth of Ensland.

WOOLSTON, Tiomis, a heterodox divine of the English Church, equally remarkable for ingenuity and learning, and for the singularity of his opinions, was born at Northampton in 1669. He was educated at Sidney Sussex College, Cambridge; was elected a Fellow of his college; entered into holy orders, and in due course proceeded to the degrec of Bachelor of Diviaity. Gifted with a lively fancy, he became a diligent and appreciative stument of the works of Origen, and by them seems to have been first imbued with a taste for the allegorical interpretation of the Scriptures. That he was disposel to carry this principle of interpretation much too far for his contemporaries, appeared at once from his first work, published in 1705. This was, The Old Apolowy for the Truth of the Christian Religion against the Jews and Gentiles revived. In this work, W. maintained that Moses was only an allegorical person, and all his history typical of that of Cbrist ; that the miracles of the Pentateuch were allegorical, and the miracles attributed to Christ and the apostles prure allegory too; and he stigmatised as atheists and apostates all who received the Scripture narratives as literally, historically true. In subsequent publications, he went further in the same direction; also maintaining that the Quakers approached more nearly in doctrine and organisation to the primitive church than any other religious body; and denouncing clergymen, becanse they made a profession of the pastorate, as 'hireling priests,' worshippers of the Beast, and ministers of Anticlirist. In 1721, he published The Moderator between the Infuled and the A postate, dialognes tending to shew that the gospel miracles, by themselves, could not prove Christ to be the Messiah. This work occasioned great scandal: it abounded in expressions considered indecent and blasphemons; and it was only through the intervention of Whiston, who was friendly to him, and in favour of toleration in matters of opinion, that the author escaped a prosecution. Up to 1720 , W. had continued to live in his collcge, leading a studious and blameless life, and shewing great kinduess to the poor. In 1720, he went to live in London; and in 1721, his college, upon some pretext-really on account of the scandal made by his writings-deprivel him of his Fellowship. The views set forth in the lastmentioned work, W. developed more fully in a series of six discourses during the years $1727,1725,1729$, republished under the title Discourses on the Miracles of Christ. He maintained-representing himself, as in all his works, as the defender of true Christian doctrine - that Christ's miracles, in themselves, were open to the gravest doubts; that, in fact, the gospel narratives, if they were to be taken lit rally, were only a tissue of absurdities; and that the authority of the ancient church was against the literal, and in favour of an allegorical acceptation of them. These views were supported with a good deal of warmth, and mixed up with them were herce denmeiations of the order of clergy. The free-thinkers, both in England and on the continent, were now trimmphantly quoting W. in their favour ; and people who had previously been disposed to treat him as a maniac, whose riapsodies were too wild to call for refutation, began to think it time to rescue the Christian faith from so dangerons and dubious a defender. No less than sixty answers were made to
the Discourses. Now, too-Whiston no longer inter-vening-an indictment, at the instance of the Attor-ney-general, was brought against W., on account of the blasphemous and irreligious character attributed to his works. He was tried before Chief-justice Raymond at Guildhall, found guilty, and sentenced to be imprisoned for a year, and to pay a fine of £100. and ordered to find securities to the amount of $£ 2000$ that he would not repeat his offence. He was imprisoned in the Queen's Bench Prison; and being moable to pay the fine, and boti unable and unwilling to provide the requisite securities, the remainder of his life was spent within the rules of the prison. It was not long protracted. He died on the 27 th Jannary 1731. His leath-bed scene lias often been described as if it supported the supposition that W. was insane, but surely without good reason. It is stated that as he felt death approaching, he closed his eyes with his own fiogers, saying to the turnkey who attenced him, that he desired to die decently ; and his last words were: "This is a struggle which all men must go through, and whieh I bear not only patiently, but willingly.' His body was interred in the churchyard of St George's, Sonthwark.

WOO'LIVICH, a market-town and parish of Kent, the seat of the chief govermment arsenal of Great Britain, stands on the south bank of the Thames, about nine miles east of London. It stretches along the bank of the river for two miles, and reaches back from the river for half-a-mile, as far as the brow of the hill, where are the lioyal Artillery Barracks and Hospital. The general appearance of the town has little to recommend it; hnt the southern suburbs are handsome and regular. There are numerous places of morship-established, Foman Catholic, and dissenting, and there are numerous schools, a theatre, \&e. Its dockyard, its government manufacturiug establishments for the production of matériel of war of every description (except gunpowder), and the fact that it is a great dépot for naval and military stores, and also the headquarters of the great corps of Royal Artillery, combine to render V. a place of great importance. A royal dockyard existed here as early as 1515 , and the Henrye Grace de Dien, which conveyed Henry VIII. to the Field of the Clotls of Gold, is said to hafe been built here, thongh this statement has been disputed. The Royal George (q.v.) was built here in 175l; and latterly, some of the largest ships in the navy have beer launched from it. The yard comprises large dry docks, and a basin 400 feet long by 300 feet wide, and is furnished in every respect with the newest and most efficient apparatus. The Royal Arsenal, the largest in Britain, contains not only the largest stores of all linds-shot, shelle, cannon, \&c.-which are required for our armies, navies, and forts, lut it comprises also establishmeats for manufacturing them, and for constructing gun-carriages and preparing ammunition for cannon and small-arms. These works are carried on in the three departments called respectively the Gun Factories, Carriage Department, and Laboratory. On the common south of the town is the Royal Military Acarlemy, for the education of cadets destined for the Artillery and Engineers. Fop of parish (1S61) 41,695.

WOONSO'ClEET, a township of Fhode Islaud, U. S., on both sides of the Blackstone Iiver, 16 miles north-by-west of Providence, on Providence and Worcester Railway, containing a central and several smaller villages, 20 cotton-mills, 5 woollenmills, $\&$ machine-shops, iron-foundries, sash, blind, and planing mills, factories of thread, silk, gold pencil-cases, jewellery, musical instruments, tinware, marble works, \&c., 7 churches, high school,

2 newspapers, and numerous handsome residences. Pop. about S000.

WOO'RALI POISON. Since the publication of the article Curarr, which is one of the synonyms of this substance, the physiological action of this fearfid poison has been carcfully studied by Drs W"eir, Mitchell, and Hammond, of the United States; and the Essay in which their joint labours are recorded is published in IIammond's Physiological Memoirs (1863). This Essay is so valuable, and contains so much original matter regarding two other allied poisons whose native names are Corraval and I'ao, that we shall give a brief abstract of its contents; premising that, for the best account of the history of this remarkable poison, the reader should consult Bernard's Lecons sur les Effets des Substances Toxiques (1857, 1. 235). We shall notice the physical and chemical propertics of this poison before describing its physiological action. The lest of the earlicr investigations of the poison is that of Toulin and Boussinganlt in 182S, who obtained from the crude 'woorala' an alcoholic extract, to which they gave the name of curarin. This curarin was a solid transparent mass, of an excessively bitter taste, and possessed in an eminent degree of all the virulence of the woorah. Heintz has subsequently examined the precipitate which tanuic acid throws down from the watery solution of the

Woorali or Curari Plant (Strychos toxifera).
poison, but only found that it coutained no nitrogen, and was composed of apparently inert substances, as sugar, gum, resin, extractive matter, tannic and gallic acids, \&c. He songht in vain for strychnine in it. Amongst the chief experimenters on the subject may be mentioned De la Condamine (Mem. de ©Academie des Seiences, 1745, t. 62, p. 391); Brocklesby (Philosophical Transactions, 17.17, vol. xliv. p. 408) ; Herissant (Philosaphical Transactions, 1751 1752 , vol. xlvii. (. 75), who killed a bear with a poisoned arrow in less than five ininutes; and nearly killed himself and a small hoy who was evaporating an aqucous solution of the pioison; both, however, recovered under the influence of fresh anr, a pint of wine, and a quantity of sugar; Fontana (1751), who shewed that (notwithstanding the above experiment) the rapour is not deleterious, and that the state of the stomach at the time when the poison was inhaled modified the result, an animal with a full stomach being able to resist the action of a dose that would prove fatal to one of the same size when fasting; Brodie (Philosophical Transactions, $1811-$ 1S12) ; Virchow and Münter (published in vol. i. of Schomburgk's Reisen in Britisch Guiana), who, inter
alia, shewed that the poison, even after being kept dry for five years, is still intensely active-that its 1hysiological action corresponds with the result of analysis in shewing the absence of strychnine, and that it rather belongs to narcotic than to tetanic poisons-and that death takes place not from any dircet result of the poison, but indirectly, by causing the ecssation of the respiratory process; Bernard and Pelauze (Campt. liend., 1850, t. xxxi. p. 531) ; Vulpian (Compt. Rend., 1854, t. i., , d scries, p .73) ; and Kölliker (Proceedings of the lioyal Society, 1857), who, amongst other important conclasions, arrives at the following: (1) That the urari (as he terns it) causes death very rapidly when injected into the llood or inserted into a wound; and that when introduced by way of the mucons nucmbrane, its effects are slow, aud require a large dose for their production; when applied to the skin of frogs, it is inoperative-(2) it acts throngli the blood, and destroys the excitability of the motor nerves, while the sensery nerves aro hardly at all affected-(3) when artificial respiration is carrice on in animals under its influence, many of the secretions are increased, owing to the paralysis of the vascular werves, and the consequent dilatation of the vessels-(4) that in mammals, the poison causes death by the paralysis of the respiratory nerves and suppressiou of the respiration, which brings on convulsions as a cellateral effect.
The late researches of Weir, Mitehell, and Hammond, on the tro hitherto undeseribed varieties of the poison, named Waarara, variety Corroval, and IWoarara, variety I'a, lead to the following results. The corroval, which is asserted to be the strongest arrow-poison, but of whose mede of manufacture they could learn nothing, was in large lumps of a brownish black colour, resembling regetable extracts of that tint. From its aqueous solution they obtained a substance possessing all the rualities of an alkaloid, and in an cminent degree the poisonous properties of the corroval, to which they assign the name Corravalia. Hence it differs materially in its chemical composition from ordinary woorali. From a large number of experiments on living birds, mice, cats, frogs, and alligators, they find (1) that corroval differs esseutially from any variety of woorali hitherto deseribed in its physiological results; (2) that it acts primarily on the beart through the medium of the blood, prodncing an arrest of the heart's action ; (3) that the annihilation of voluntary and reflex movements is a secondary result of its action, depending primarily on the cossation of the heart's action; (4) that it acts upon the nerres from the surface to the centre, and abolishes both the sensory and metor functions; (5) that it destroys musenlar irritability; (6) that it paralyses the sympathetic ncrve, this being one of its primary effects; (7) that it is absorbed both from the intestinal canal and shin of frogs; and (8) that its poisonous effects are due to an alkaloid hitherto undescribed. The authors devote 42 pages to a history of their experiments on Vao or Baa; bnt as they are of opinion that vao is only a weaker varicty of corroval, it is unnecessary to follow their researches in this direction. It is obvieus that in corroval and vao we have a fcarfnl peison, quite distinet from ordinary woorali; and we have entered inte further detail on this subject than we sheudl otherwise have done, becanse, so far as we know, they have not yet been noticed by any English auther.

WOOTZ is a fiuely damasked hard cast stecl, which is obtained from India. Faraday found alnminium in a sample which he analysed, and referred its peculiar properties to the presence of this metal ; but other chemists hare failed in finding aluminium in wootz.

WO'RCESTERSHIRE, one of the west-midland counties of England. The conterminous connties are those of Warwick and Stafford on the N., Warwick and Oxford on the E., Gloucester on the S., and Hereford and Salop on the W. Area, 472,16a acres, whereof about 400,000 are cultivated. Its greatest length is 38 miles, and greatest breadth, 20 . The surface is undulating, and there are depressed valleys and hilly ranges; troo of the latter are of considerable extent, and adorn its eastern and western sides. On the west, the range terminates in the Nalvern Hills, the highest point of which is the Worcestershire Beacon, about 1100 feet ahove the level of the sea. Its name is derived from its shape, a cone towering beacon-like above the lesser eminences of the chain; but the highest peak of the range is named the Herefordshire Beacon, which is slightly more elevated than the other Beacon, and stands in the county of Hereford. The eastern range is the Bredon Hills, which form part of a chain extending from Bromsgrove Lickey, near Birmingham, to the Cotswold Hills, beyond Gloucester. The county is well watered, and finely timbered, especially with fruit-trees. The elm grows very luxuriantly, and indeed is so common in every corner as to have obtained the name of 'the reed of Worcestershire.' The oak, beecb, and other timber trees thrive well, and of late the larch has been much planted. The principal rivers are the Severn, the Teme, and the Avon. Other streams there are, such as the Stour, the Salwarp, \&c., but except in flood-times, these are mere brooks, and scarcely deserve the name of river. The Severn is navigable from the sea at Gloucester as high up as Shrewsbury; hut from an intermediate place called Stourport, 14 miles above Worcester, the navigation is uncertain, except for barges of very light dranght. There are three canals communicating with the Severn-viz., the Staffordshire and Worcestershire at Stourport; the Droitwich, a little way above Worcester; and the Birmingham and Worcester, in the immediate neighhourhood of the city. The W. portion of the Vale of Severn is ahont 30 miles long; the climate is mild and healthy; but the rainfall is comparatively small, and nearly the minimum of England. The soil consists of almost every variety suitable for vegetation, from strong deep clay aud rich vegetable mould, to light friable sandy ryeland, with tracts of alluvial deposit, marl, and loam. The Vale of Evesham is dependent on the Avou for its fertility, which has long gained for it the repurtation of being the garden of the mid-west. It prodnces abundance of table-fruit, and vegetables of the finest quality, and the rental of its kitchengarden ground is nowhere excelled by cultivated land anywhere, unless in the immediate neighbourhood of London. The agriculture of W. has been greatly improved during these last twenty-five years, and high farning is now much in vognc. Excellent crops of wbeat and other grains, turnips, and patatoes are raised; a large portion of the land remains in the form of meadow, and much of it ancient pasture.

Hop-gardens are plentiful in the western division of the county, and their produce ranks, in the estima. tion of brewers, next to that of East Kent. W. is par exccllence a perry county, as Hcrefordshire and Devonshire are cider connties. Its pear orchards are very beautiful in the time of blossom; and there is a splendid variety, called the 'black pear of Worcester,' which attains a great size, and is supposed to be the traditional pear blazoned on the county's shield of arms.

There is no distinctive local breed of stock, either cattle or sheep. The cattle most thought of are Herefords and Shorthorns; and among sheep, the
favourite varieties are Shropshire Downs, Leicesters, Cotswolds, and cross-breeds. Pigs are abundantly bred and fed. The markets are well supplied with butcher-meat, bred and fed in the county; and London, Birmingham, and the 'Black Country' draw large supplies from Worcestershire. Poultry are raised in considerable quantity, and the W. farmers' wives have deservedly obtained a good name for the condition and neatness in which they are sent to market. The county possesses great mineral wealth in coal, iron, salt, lime: the tirst three are found in the north-eastern quarter of W., but lime is very generally distributed. In 1861, the pop. was 307,397 ; in 1867, it is estimated at 325,000 . Coal and iron mines are largely worked in the neighbourhood of the populons borough of Dudley. Iron-morks abound hetween it and Stourbridge, where glass manufactures of an ornamental character, on a large scale, have taken root; and there are abnadance of coal-mines in the neighbourhood.
The textile fabric manufactures are nearly confined to carpet-weaving, which has long been carried on successfully at Kidderminster; and at present (1867), this branch of industry having suffered a transition from the band-loom stage to power-working, has just emerged from the usual uncertainty which attends all manufactures submitted to that trial, and appears to be thriving with a vigour commensurate to the enlarged capability of its new powers. At Redditch, the needle and fish-hook manufacture is carried on to a greater extent than in any other place in England; nail-making has been practised for.centuries at Bromsgrove; and at Droitwich, about six miles from Worcester, salt has heen manufactured from an inexhaustible supply of brine for many centuries. The specific gravity of the Droitwich brine is considerable, and the supply seems inexhaustible. Of the pop., about 100,000 are connected with mines and manufactures, and the remainder are engaged in agriculture, or dependent on trade. IW. possesses a county regiment of militia, consisting of 850 officers and privates; also the Queen's Own Regiment of Worcestershire Yeomanry Cavalry, 726 sabres; and the Worcestershire Regiment of Rifle Volunteers, comprising trro battalions, each $\$ 00$ strong. The county sends four knights of the shire to narliament, and six members for the boroughs of Eveshan1, Kidderminster, Droitwich. Dudley, Bewdley (and Stourport united), besides two for the city-making a total of twelve members from Wor cestershire. (1871-nop. 338,848.)
WO'RCESTER, a city, capital town of the county of the same name, and a county of itself, stanis almost in the centre of the Severn Valley, and is situated principally on the eastern bank of the river, about 26 miles south-west from Birmingham. W. is of great antiquity; there are abundant traces of ancient iron-smelting works on the banks of the river, adjudged by antiquaries to belong to the times of the Lioman occupation; and the discovery of other remains at intervals, proves that the city was a Foman station. The chief object of antiquity now existing is the cathedral, which is beantifully placed on a gentle elevation on the west bank of the river, and stands within its own precinct, but whicb, since the passing of the act abolishing the isolation of 'peculiars' and 'non-parochial places,' las been incorporated in the city parish of St Mlichael. A cathedral, declicated to St Peter, was founded bere as early as the 7th c. ; but in 983, St Oswald built the church and monastery of St Nary, near the cathedral of St Peter. In lost, Bishop Wulstan laid the foundation of a new cathedral, many portions of

WORCESTER-WOLIDSWORTH.

which remain in the present structure, such as the crypt (one of the oldest and most interesting in Fugland), the bases of and fragments in many of the walls, chapter-house, refectory, and cloisters. In the Civil Wars, much damare was done to the building, but none of its leading features were destroyed. It is now distinguished by the simplicity, if not plainuess, of the exterior, but which is amply compensated by the fine perspective, the lofty roof, anil generally charming ellect of the interior. A thorough restoration, now approaching completion, was commenced some years ago, at an cstimated cost of not less than $£ 60,000$ when completed. The Episcopal Palace in the city has been transformed into the Deanery; and the Bishop of W., since the ecclesiastical commissioners assumed the management of the episcopal and capitular estates, has his residence at Hartlehury Castle. The Bishop of W.'s reveune has been fixed by the ecclesiastical commissioners at $£ 0000$; and the livings in his gift are numerous, and of considerable value. Worcester clapter consists of the dean, 4 canons, -4 honorary canons, and 4 minor canons, including the precentor. Besides 10 chorister boys, there are 40 other boys nu the foundation at the College or Cathedral School, who receive gratuitous education, and are paid £2, 13s. 4d. a year. There are six teachers in the school-three of whom are on the foundation, and threc are paid by the head-master out of the fees received by him from the non-foundation boys, of whom he may receive as many as $]$ resent themsclves. Altogether, the College School at present is attended by more than 100 scholars; and the branches taught include the elements of a classical and commercial education. The parish churches of the city are poor specimens of architecture. The city does not shine in public buildings; and probably, next to the cathedral, the most important and appropriate in constraction is the county prison. The pop. of the city and its suburbs, without refercnce to the census divisious into union anl non-union districts, was, in 1861, about 32,000, aud is now estimated to be 36,000 . The people are employed in glove-making, including leather-dressing and staining; in porcelain factories; iron-works, incluting locomotire-engine factorics; tanning and currying horse-hair weaving, vinegar, British wine and sance making, and coach-building. Chemical manures and agricultural implements are also manfactured on a considerable scale. Glove-making is still considered the staple mannfacture of the city; but one large factory has absorbed a large portion of the business, and now there are not above two dozen of master-tradesmen in the glove-way, great and little, whereas 40 years ago there were nearly 100 in the trade. The porcelain factorics are two, and the number of hands employed by them in all departments is abont 400. The Joyal Porcelain Works are celebrated for fine taste in desiguing and the beauty of excention of the highest class of productions; while the specialty of the other factory, Messrs Grainger \& Co.'s, is utility, combined with purity of design and excellence in work manship. They are celebrated for their semi-porcelain, which is so excellently glazed as to resist the strongest acids. The city sends two members to parliament, and is governed by a corporation cousisting of a mayor, sheriff, 12 aliermen, and 36 towncouncillors. (1871 -pop, 41,486.)

WORCESTER, a city of Massachusetts, U. S. the centre of a fine agricultural district, 45 miles west-south-west of Boston, with six diverging railways, in a valley surrounded by beautiful hills, with delightful sites for residences, broad shaded streets, and famed for its political and philanthropical conventions. Among its institutions
are, the American Autiquarian Society, with a library of $12,0(0)$ volumes, and cabinet; the State Lunatic Asylum, which, in 13 years, out of 2306 pationts, discharged 1000 cured; Oreal Institute, for young ladies; high, grammar, intermediate, and jrimary schools, considered the model-sclomls of New England; also, manufactories of cotton, wonllen, carpets, hollow-ware, pistols, wire, paper, saldles, locks, musical instrmments, \&c. There are 19 churches, 12 periodicals, 3 daily. Pol. (1560) 24,360.

WORCESTER COLLECE, Oxforn, was founded, like 'Trinity and St John's, on the site of an old monastic college. The ancient institution was known ly the name of Glonecster College, lecause it belonged to the Penedictine Monks of that city. After the dissolution of the monasteries, it passed through rarious hands; and latterly. was a Hall attached to St John's College. In 1701, however, Sir Thomas Cookics left $£ 10,000$ for the purpose of endowing some existing College or Hall. This begnest led to the erection of Cloncester Hall into a Collcge, for a provost, six fellows, and sis scholars, by letters-patent of Queen Ame, 1714. Various fellowships and scholarships were afterwards added, until the number of fellows became 21 , of scholars 16 , but almost all restricted to certain counties, or to fonnders' kin. The Commissioners under 17 and 18 Vict. c. Sl reduced the number of fellowships to 15 , open withont restriction, except that caulidates for a fellowship on the laton foundation unst be sons of clergymen of the Chureli of England and 1 reland, and must not be possessel of property or income exceeding $£ 150$ a year. The scholarships are now 15 in number-six on the foundation of Sir Thomas Cookes, for persons educated at Bromsgrove School ; one on the foundation of Dr Finuey, for natives of Staffordshire; five on the foundation of Mrs Sarah Eaton, for sous of clergymen of the Church of England and Ircland ; aud three on the fondation of 1)r Clarke, which are entirely open. The Conkes' scholarshijes are tenable for six years, the nthers for 21 terms. The scholarships are said to be of the valne of $£ 70$ per ammn. There are also some exhibitions-four on the foundation of Sir Thomas Cookes, value £12 a year, for 1 ersons elucatect at Bromsgrove School. There are nine benelices in the gift of this College.

WORD, in time of peace, a signal notified in the orders of the day, in virtue of a knowledge of which a sentry will allow the utterer to pass. In the tield, the officer commanding fixes daily upon'a worl and countersign (for which any arbitrary terms are taken), and communicates them to the sentries on guard, and to such other persons only as lie may choose to permit to pass through the lines. Any person then approaching a sentry without kuowing the word, has a fair chance of being shot; if he knows not the countersign, the sentry will take him into custody, and deliver him to the officer of the guard. Care has to be taken that the 'word' should not suggest the 'countersign.' Auy arbitrary combination is therefore adopted.

WORDSWORTH, William, a distingnished English poet, was born on the 7th April 1770, at Cockermouth, in Cumberland. He was the sccond son of John Wordsworth, attorney, and agent on the estates of the first Earl of Lonsdale. He was sent to school at Penrith, where his parents had gone to reside ; and after the death of his mother in 1778, was transferred to Hawkshead, in Lancashire, at the public school of which his earlicr education was completed. In 1783 , his father died, leaving his family in some difficulty. By Lord Lonsdale, a considerable sum was due to them; but his Lordship, a man of most eccentric character, saw fit to
resist the claim, with all the vexatious impediments which the law so plentifully affords. Enongh, however, remained, with some little assistance from relatives, to carry forward the education of the children. W. remained at Hawkshead till 1757, in which year he was entered at St John's College, Cambridge. Here he remained four years. In the studies proper to the place, his interest was slight; but in his own fashion he was a diligent student; and poctry became more and more his favourite pursuit. In January 1791, he left Cambridge, after taking his degree as Bachelor. During the antumn of the previous year, he had, along with a fellow-student, made a pedestrian tour through France, then in the early fervours of its great Revolution; and thither, after leaving college, he returned. His sympathy with the aims of the Revolution was passionate; and with the party of the Gironde he seems to hare cultivated relations of a somewhat intimate kind, which, in the end, might have seriously compromised him, had not circumstances, probably of the pecuniary sort, determined his return to England some little time before his friends were sent in a body to the scaffold. The republican principles which at this time he held, he lived to renonnce in favour of a reasoned conservatism; and opposed as he was, in its earlier stages, to the war waged against France, no one more patriotically urged it, when the struggle became in effect a life and death grapple on the part of England with the military despotism of Napoleon.

In $1793, \mathrm{~W}^{7}$. came before the public as an author, in two poems, entitled An Evening Halh, addressed to a Iomng Lady; and Descriptice Sketches, takien during a Perlestrion Tour among the Alps. These pieces abound in tonches of refined and criginal observation of nature, but otherwise are not in themselves specially remarkable; and they failed to make any impression, except on a few minds, such as that of Coleridge, then at Cambridge, who afterwards 1 rofessed to have discerned in them the seeds of a great undereloped gevins. W. was now in a position of much perplexity; his little finances were almost entirely exhansted: for the church, which his friends would fain have had him enter, he land at this time an obstinate aversion; poetry had become with him a passion, to which he longed to wholly dedicate himself; and unhappily it appeared that his poetry would not in the least pay. As a poet cannot live like a singing-hird by pecking about the hedgerows, it became necessary for him to bethink himself of some means of support; and he was on the point of proceeding to London, to do liberal politics for the newspapers, when unexpected relief came to him in the shape of a legacy. The name of Raisley Calvert descrves to be remembered with that of Wordswortl. An intimate friend of the poct, he lad formed a high opinion of his genius; and at his early death in 1795, he was found to have bequeathed to W . the sum of $£ 900$, expressly that leisure might for some jears lee allowed for the undisturbed development of his powers. Seldom has money been better bestowed; and small as the sum may seem, to a man of the poet's simple tastes and entire singleness of aim, it conld suffice over a term of years. With his only sister, Dorothy, his attached compamion throngh life, and always a devont believer in the brother, no little of whose gemins she shared, he now settled himself at Racedown Lodge, in Dorsetshire, remoring in 1797 to Alfoxden, in Somersetshire, in order to be near Coleridge, who had established himself some three miles off at Nether-Stowey. Out of the intimacy thus begun, came the famous Lyrical Ballads, published in 1795 by Cottle of Bristol, as a joint adventure of the two pocts. The volume had
no success; but probably no man ever lived more serenely self-appreciative than W^{-}; and he did not allow himself to be risheartened by the neglect meantime of the world. After a short tour in Germany, along with his sister and frient, he returned to his native Cimberland, which he never again permanently left. He settled himself first at Grasmere ; in 1808, he removed to Allan Bank, in the vicinity; and in 1S13, he transferred his household to Rydal Hount, the place which, of all others, remains specially associated with his memory. On the death of the old Lord Lonsdale, the justice of the claim of the Wordsworths against the estates was admitted; and in 1802, a sum of about ESu00 was by his successor male over to the family. To TV. and his sister, their moiety of the money may lave been acceptable, as by this time, one should say, they must meeds have been seeing pretty nigh to the end of Raisley Calvert's convenient $£ 900$. Henceforth, a modest competence was secure to them; and W. was wedder within the year to Mary Hntchinson, a cousin of his own, with whom he had been intimate from his childhood. In IS13, by the lindness of Lord Lonsdale, be was appointed Distribntor of Stamps for the county of Westmoreland, a situation which broucht him, without much to do for it, a salary of £อ00 a year. When, the year after, he published his great poem, The Excursion, he dedicated it to Lord Lonsdale, iu a sonnet, expressive of 'high respect and gratitude sincere ' for this comfortable increase to an income snfficient, perhaps, but certainly not excessive, for a man who had now a family growing up ronnd him. Meantime, and pending the appearance of this elaborate work, the repatation of the poet had been surely, if slowly rising. In 1800, he had 1 mblished , in two rolumes, a second editiou of the Lyricul Ballads, disjoining his own from those of Coleridge, and addling a quantity of new matter; and in 1502 and 1505, further editions had been issned. To these succeeded, in 1807, a new collection, under the title of Poems, in Tuo Volumes. In these earlier writings, there was a good deal which almost wilfnlly seemed to invite ridicule ; and for a good while, W. was merely the laughing-stock of reviewers, more particnlarly of Jeffrey, who, as editor of the great Edinburgh, at this time figured as chief Aristarchus of the day. The more to popularise the ridicule, a nickname was invented; and 'the Lake School,' as it was called, which, with W., included Coleridge and Southey, who chanced to reside in the same district, passed current as an easy name of scorn. It could not be long concealed, howerer, that these rolumes of W., despite an occasional eccentricity in the choice of mean and impracticable subjects, contained a large body of trie poetry of a singularly fresh and original kind. A select circle of passionate admirers, including men like Leigh Hunt, De Quincey, and Wilson, eagerly pressed the true claims of the poet; and after the publication of the Excursion, a volume of high and serious verse, gravely defective in plan, and at times heary aud tedious, lint with little or no trace in it of the earlicr oddities of the writer, it came more and more to be felt that the langhers were getting the worst of it, and that W., however he might now and then indulge himself in whimsical tricks, was really a man of true and lofty genius, against whom ridicule could not permanently avail. Their occupation was not yet, indeed, quite gone; and the subsequent appearance, in 1819, of Peter Bell, a poem not without profound merits, but unhappily with a donkey for the hero of it, allowed them to resume their advantage a bitle. But, on the whole, the day of idle jeer was over; the tide of genuine

WORDSWORTH-WORK.

appreciation had sct in, aud it continued to flow steadily, till, long before his death, W. fouad himself recognised almost nem. con, as at the hearl of the poetical literature of his country. His later days were passed serenely in honour. In 1839, the university of Oxford conferred on him its honorary degree of D.C.L. In 1842 , a pension of $\mathfrak{£} 300$ per annum was assigned him by goverament; ou receipt of which he ceded, in favour of his son, his situation as Distributor of Stamps; and on the death of his friend Sonthey. in 1843, he succeeded to the vacant laureateship. On the $23 d$ April 1850, he peacefully closed a life so pure, serene, and priest-like in its consecration to a lofty purpose, that we must go back to Milton in order to find its parallel. It remains only to enumerate the publications of W. not included above. In 1815, appeared The White Doe of Rylstone, which was followed by The Haggoner, and a scries of Somets on the River Dutdon. In 1822, he published a volume entitled Memorials of a Tour on the Continent; some years after, his Ecclesiastical Sonnets; and in 1835, Yarrow Revisited, and Other Poems, the fruit of a tour to Scotland, memorable by his mournful parting, at Abbotsford, with the dying Scott, which he records in a beautiful sonnet. In 1842, he issued a colleeted edition of his works, rearranged as we now have them, in a somewhat fanciful fashion of his own. Shortly after his death, a long autobiographical poem, in blauk verse, was published, entitled The Prelude.

By remanding it to truth and simplicity of natural feeling as its basis, W. clicl more than perhaps any other writer of his time to forward the great revival of English poetry which distinguished the opening of the century. But he was scarcely the originator of the movement; the new influence was, so to speak, 'in the air;' already Cumperiu England, as in Scotland Burns, had preluded to the melodions outburst which was to follow; and to the last of these more particularly, as bis early guide and exemplar, W. has expressly recorded his obligations in a stanza which, so far as we are aware, has hitherto escaped quotation:

> "I mourned with thousands, hut as one
> Mre decply grieved, for he was gone
> Whose light I hailed when frst it shone, And shewed my yonth
> How verse may build a princely throne On humble truth.'

With the charm of natural simplicity of manner, common to him with these his predecessors, W., however, combined a depth of philosophic meditation peculiarly his own; there was born with him, moreover, a passionate susceptibility to effects of beanty in the material world, such as ferr men can ever have been gifted with; and out of these blended elements arose that mystical communion with Nature which pervades the whole body of his poetry, and constitutes its truest claim to originality. By diffusion of this, and otherwise, his influence on our subsequent poetry has perhaps been as profound as any of the kind ever exercised, and it has been almost wholly beneficial. Fet we need not admire all we find in him. The early ridicule directed against him, thongh it simned by excess and disproportion, was really to a great extent deserved. Had he gone on writing nothing but the 'Betty Foys' and 'Alice Fells' which Jeffrey langhed at, we should not have had in this place to do a biography of him. It is despite of a good deal of this kind of perverse drivel, besides indifferent matter otherwise, and not in the least because of it, that he continues, and must long continue, to be remembered.-Sce Memoirs of

Irilliam Worlsworth, by Cbrist. Wordsworth,

 D.D.WORKK. To do work is to overcome resistance. If we try to lift a ton-weight, however we may fatigue ourselves, we caunot move it, and therefore we do no work. Jhit we can lift with case a hundrecl-weight, and then we do more work in proportion as we raise it higher. In lifting coals from a pit, the work done is evidently in proportion to the depth of the pit, and to the weight of tho coals raised. This and numberless other instances are too well known to need further description. We may therefore at once define the work done by a force as the product of the force into the space through rehich it moves its point of application in its own direction, and it is usually measured by engineers and others who do not require absolute accuracy; in foot-pounds, the work required to raise a pound one foot high. If the motion of the point of application be in the opposite direction to that of the force, the work is done against the force. If the motion be perpendicular to the dircetion of the force, no work is done by or against the force. Thns, the work spent in projecting a curling-stone, in opening a massive gate, or in turving a large fly-wheel or grindstone, has nothing whatever to do with the force of gravity-the body moved, in all these cases, is, as a whole, neither raised nor lowered as regards its distance above the earth's surface. If the direction of the force be oblique to the direction in which the point of application moves, we must resolve the force, by the law of the Parallelogram of Fores (sce Composition of Fonces), into two components, one in the direction of motiou, the other perpendicular to it. The former is the working component; the latter, as we have just seen, does no work. A good illustration of this is found in the ease of raising stones from a quarry by earting them up a series of inclined planes, as contrasted with hauling them up vertically. The work done in either case is measured by the product of the weight of the stomes, and the height through which they have been raised; and thus, for the same load of stones, it will be the same whichever process is allopted. This is evident from the property of the inclined plane-riz., that the force repuired to support a body resting on the plane (which is the force that has to be orercome when we haul it up the plane) is to the weight of the body as the height of the plane to its length. Hence, this force, multiplied into the length of the plane, gives the same product as the whole weight into the height of the plane; and these are the two quautities of work we are comparing.

When work is done upon a body, there is always an increase of velocity, unless other forces act on the body, so that it does an equal amount of work against them. Thus, if we push a movable body, such as a cart, along a road, the velocity gradually increases, and would increase indefinitely were there no friction and no resistance of the air (forces against which worls has to he done), and could we move fast enough to keep continually pushing it, however great its relocity may become. If, on the other hand, by means of a rope and pulley, we raise is stone, if once started, it will ascend uniformly, so long as we pull with a force just equal to its weight, because, then, as much work is done on the stone by the hand as it does against gravity. If we pull with a force greater thau its weight, we do more work on the stone thau it does against gravity, and the upward velocity increases; if with a force less than the weight, the stone has to do more work against gravity than is done on it by the rope, and its velocity upwards becomes less. The measure of the excess of work done on a body over that which

WORK.

it does against resistance is the increase of the product of half the mass into the square of the velocity-i. e., of what was formerly called the I'is-viva of the body, what is now called its Actual, or preferably, its Kinetic Energy. See Force. Hence, as it is erident that if a body, or system, be acted on hy a set of forces which are in equilibrium. it will have no tendency to lose or to acquire relocity, its kinetic energy will remain unchanged, and therefore as much work must be done upon it by some of the applied forces, as it does against the rest, in any clisplacement so slight as not to change the circumstances of the particular arrangement. That is, when forces are in equilibrium on a body, if the body be slightly displaced, the sum of the products of each force by the cffcctive component of the displacement of its point of application is zero-the product being positive when the force does work, negative when work is done against it. This is the celehrated principle of Virtual Velocities, the term virtual velocity baving been, very inconveniently, applied to what we have called above the effective comnonent of the displacement of the point of application of a force. It was often employed as the basis of the whole of Statics. and rery curious attempts
have been made to give proofs of it (independent of the laws of composition of forces), esplecially by Lagrange. But the principle of Work, or Energy, of which that of Virtual Velocities is a mere particular case, and which is at once applicable to the whole range of Dynamical Science, is distinctly enunciated by Newton in a Scholium to his Third Law of Motion. See Dlotion, Latrs of. His words are memorable, and should he umiversally knownSi astimetar agentis actio ex sjus ri et relocitate conjunctim ; et sinititer resistentis reactio astimetur conjunctim ex ejus partium singutarum relocilatilus et viribus resistendi ab earum attritione, colcesione, pondere, et acceleratione oriundis; erunt actio et reactio, in omni instrumentorum usu, sili invicem semper aquales. Newton has defined what he means by the relocity of an agent-riz., the component of the velocity of its point of application which is in the direction of the agent. He has also slewn what is the measure of resistance arising frow acceleration (see Velocity) ; so that, merely using modern terms instead of those employed by Newton, but in nowise altering the scope of the above remarkable passage, we have the following version of it: Work done upon any system of bodies (literally, the parts of any

Descramitas of Worts.	Weight rased	Pelocity per second.	ITuit of Wormper secani	$\begin{aligned} & \text { Lenctio of } \\ & \text { Wirtog } \\ & \text { Day. } \end{aligned}$	Tctal Work in a Day.
A man mounting an easy staircase, or an incline, without a load,	Lbs.	Feet.	Lbo. \times fict.	Hours.	Lbs. \times feot
his worl consisting simply in moving the weight of his own hody,	143	0.5	715	S	2,052,200
A man raising weights by means of a cord and puller, which renders necessars the return of the cord without a load,	$39 \cdot 6$	$\left\{\begin{array}{l} 0.66 \\ =15: 40 \cdot 67 \end{array}\right.$	- 20.53	6	5:3,043
A man raising weights by bis bands, . .	42	$0 \cdot 50$	$24^{\circ} \mathrm{G}$	6	532,224
A man carrjing a weight on his back np an easy incline, and retnraing witbout a load,	143	0.13	13.53	6	401,544
A man raising materials by a wheel-barrow, on an incline of 1 in 12, returning onloaded,	132	0.063	$8 \cdot 58$	10	308,880
A man throwing earth hy a spade a height of 5 feet $\$$ inches,	$5 \cdot 24$	$\left\{\begin{array}{l} 0 . G 6 \\ \{x+0.67 \end{array}\right.$	\} 3.95	10	143,280
A man morking a pin-wheel or a dram-					
1 st , at the level of the axle, 2d, at hotton of wheel,	$\begin{gathered} 132 \\ 26 \frac{2}{6} \end{gathered}$	$\begin{aligned} & 05 \\ & 2 \ddot{4} 4 \end{aligned}$	$\begin{aligned} & 66 \\ & 61.8 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,900,500 \\ & 1,779,840 \end{aligned}$
A man walking and pushing, or drawing horizontalt, in a conlinuous manner,	264	- 2	528	S	1,520.640
A workman acting upon a winch, .	176	2.5	44	8	1,267,200
A workman pushing and pulling alternately in a vertical direction,	$13 \cdot 2$	--5	29	10	1,144,000
A borse barnessed to a carriage goiog at a walking pace, .	$15 \frac{1}{4}$		462	10	16,632,000
" ${ }^{\prime}$ " ${ }^{\text {at a trat, }}$.	96.8	$7 \cdot 22$	699	$4 \cdot 5$	11.323,8.0
A horse in a mill, at a walking pace, . . .	99.0		297	8	8,553,600
" ${ }^{\prime}$ at a trot, .	66.0	6 3 G	433	$4 \cdot 5$	7,044,600
An ox in a mill, at a walking pace, . .	132		:64	8	$7,603,200$
Prule " "	6.0		195	8	5,702,400
Dunker " "	$30 \cdot 8$	267	\$2:2	8	2,365,512

machine) has its equiradent in work done against friction, molecular forces, or gravity, if there be no acceleration; but if there be acceleration, part of the work is expended in overcoming the resistance to acceleration, and the additional kinetic energy developed is equivalent to the work so spent.

When work is expended in overcoming the resistance to acceleration, i. e., the Inertia of a body, we have its equiralent in additional linetic energy. When it is expended against gravity, as in raising a meight or bending a spring, we hare it stored up in a dormant form as Potential Energy. See Force. When it is expended in overcoming friction, there appears at first sight to be no cquivalent-hat the comparatively recent researches of Joule (q. r.) aud others have satisfactorily accounted for its disappearance, by proving its quantitative transformation usually into heat, sometimes into other forms of molecular energy. But to pursue this point would lead us again to questions already treated at some length in the article Fonce. There is one remark, however, which it is important to make. In
compressing a gas, in the receirer of an air-gun for instance, we cau never recover as useful effect all the work expended. The reason is, that a gas is heated by compression, so that part of the work spent is conrerted into this heat. conducted through the metal, and by the principle of Dissipation of Energy lost, at least in yart, to man. Had we a gas which could not be heated by compression (take the imperfect analogy of a space tilled with fine spiral springs), we should recover, by allowing it to expand, all the work expended in the comyression.

One other remark remains to be made. It will be noticed that Newton speaks of the action of an agent as the 1 roduct of the agent and the component relocity of its point of application. This is what we now call hate of cloing Work, or Horsepower. Watt estimated a horse-power at 33,000 ioot-pouuds per minnte, or 550 foot-pounds per second. This is probably too high; but it is constantly employed in engineering calculations. A curious quantity, sometimes employed as regards
steam-engines, especially those employed for $l^{\text {rump }}{ }^{3-}$ ing mines, is the cluty, which is measured lyy the nimber of fout-poumds of work done by a humlredweight of coals supplied to the furnace. i similar mode of comparison is now arplied to steantengines for agricultural purposes, \&c.
The quantity of work which ean be got out of any machine, lumana, animal, or other, depends in many cases on the rate at whieh it is done, in the horsc-power actuaily exerted. An average man ean easily work at the rate of a horse-power for a few minutes at a time; lout if he were to work at no other rate, he wonld do very little work in a day. Various singular investigations lave been made, loth theoretically and experimentally, as to the most profitalle rate of doing work, and their results are lighly interesting. But to disenss them properly would require more space than we ean afford. The table ou preceding page, due to Poncelet, gives at least approximate notions of the horse-power employed, and the whole work done, in a working-day, by men and animals variously apylying their excrtions.
WO'RKHOUSE, the name given to municipal institutions, in England, in which paupers are supportecl and maintainef. The earliest mention of then is to be found in stat. 13 and 14 Car. II. c. 12, authorising workhonses to be erected in the cities of London and Westninster, to which rogucs and wagabonds might be committed, loy any two members of the 'Workhonse Corpuration,' a Board ereated by the act, with the vielv of restraining them from predatory habits, and compelling them to work for their living. The provisions of this act were, for the first time, carried into effect in the reign of William and Mary, when a curporation, heated ly the Lort Mayor of London, fitted up a house in Bishopscate Strect as a workhouse, oue part of which, called the Keeper's Side, was devotel to the purpose contemplated by the act of Charles 1f.--viz, the reception of vagrants and disorlerly persons, committed by two sovernors; while, in the other part, ealled the Steward's Side, poor children were lodged, and taught varions employ. wents and branches of cducation. A very few workhouses were :ifterwards crectel lyy local acts; lut their general adoption throughout England was first provided for by act 9 Geo. I. c. 7, by which the churehwardens and oversecrs of the poor, in any parish or town, were emplowecred, with consent of the majority of the inhabitants, to establish a workhonse, where the poor were to be ledged aurl maintaincd. Two or more parishes might unite in laving one worlkhouse, and oue parish might contract for the maintenance of its poor in the workhonse of another. Under this statute, bniddings lecjan to be erected and hired all over the country, with great zeal fur workhouses, in which the whole poor were housed, industrions and profligate alike. Unt-door relief, which had been prohilited by the above statute, was reintrolucet? by 36 Geo. Ill. e. 23, and before long, lieeame the rule under a variety of systems, ly which assistance was carried so far as to be a bounty on indolence. The poor-rates rose immensely, and it hecame the subject of gencral complaint, that the able-bodich out-door pauper enjoyel a degrec of comfort which lestroyed all stimulus to cexcrion. The result was the passing of statute 4 ane 5 Will. IV. e. 76 , which has remudelled the whole aulministration of the 1oor-law, and greatly extended the workhouse system. The Commissioners appointed by that act, and the public Board substituted for these Commissioners in 1545 , lave been empowerel, under certain restrictions as to consents, to order workhouses to be built, altered, or enlarged as they
see fit, auk may make loy-laws for their government, which the justices are to enforec. The various worklituse officers, including master, matron, schoolmaster, selioulmistress, murse, porter, and superintembent of unt-aloor labour, lave all their proper functions assigned them. J'ersons laving an order, either from the looard of Guardians, the relieving officers, or the overseers, are at all times cutitled to admission; and in cases of necessity, applicants umst be almitted witlout an order. If the house be full, the master is bound to refer the applicant to the relieving officer, whose duty it is to find him relief elsewhere. Casual poor wibfurers, admitted by the master or matron, are to lie kejut in a sepmate ward. There are various statutory ruactments regulating the discipline of workhouses. liefusal to work at any suitable cmploynment, in. toxication, or other misconduct, is ponishecl with imprisomment aul hard lalsour, not exceeding 41 days. A pauper abscondinus with clothes, or otlier property belonging to a workhouse, is liable, under 7 Vict. c. 101 , and 13 and 14 Vict. c. 101 , to inopris. onment and bard labour. The separation of man and wife, which is the usnal rule, is, by 10 and 11 Fict. e. 100 , relaxed when they are above 60 years of age. By 11 and 12 Vict. c. 110 , persons profoss. ing to be wayfarers or wanterers are to he searched on admission, aml any money found on their persons is to be applied to the common fund of the Union ; and an applicant for relief concealing such money, is to be pumished as a disorderly person. In every workhouse, a register is to be kept of young persons under 16 hired as servants or bound apprentices, and the relieving officer is bound to visit them twice a year, and inquire into their food and treatment.

Workhouses are of various sizes. One of ortinary dimensions comprehemels accommodation for 450 to 700 inmates of loth sexes and diticrent ares ; others, in populous neiflhbourloods, as uear Manchester, will accommorlate 1500 inmates. Classifieation as regards sex amd age is an important partionlar, and is asually well attended to. In some situations, the able-bodied immates worle at tield-labour within boundary walls. 'J'liere is no going in and ont at pleasure. A workhouse is a sort of prison under stern, thonerl not unkind discipline, and the leating principle always helel in view is, that the offer of heing accommodated shall aet as a terror to idly. disposed persons, who are inclined to serk parish relief. The establishment of a workhonse really has this salutary effect; where there is no worlhonse, the pressure on the poor-rates is generally excessive. A half-cmpty workhonse is thouglit a proof of good poor-law manasement. The administration of the workhouses of London and some other large towns has recently been the sulject of unfavourable enmment on the part of a large portion of the press and public ; it being asserted that the regulations of the Commissioners are liabitually transgressed, and the comfort and health of the pruper are sacrificed ont of consideration to the rateprayers' ${ }^{1 \text { rockets. The subject is }}$ expecte? to he shority made matter of legislation.
In Ireland, each of the unions of town-lands or parishes into which the country is divided has its separate workhouse, under the management of a Board of fuardians chosen hy the ratepayers, and relicf is administerel almust catirely in the workhouse.
In Seotland, the name worklonse is snmetimes given to institutions for the support of paupers, lint their correct legal designation is Poorrrouss. Previnus to act S and 9 Vict. c. S_{3}, establistrments fur the reception of paupers lind been crected in many of the larger towns of Seotland, and the expense connected with their maintenance was considered

WORK[NG-DRAWINGS-WORM FEVER.

a proper charge on the funds. Admission to these almshouses was granted, as a matter of favour, to the more deserving of the aget, infirm, and friendless poor. No system of discipline was enforced, as any improper conduct could at once be checkecl by expulsion of the delinquent.

Aet S and 9 Vict. e. $\$ 3$, which made a complete change in the poor-law system of Scotland, attords powers for the erection of new poorhouses, and for the enlargement and greater efficieney of those that previously existed. The classes of poor for whom they are designed are describer as "the aged and other friendless and impotent poor,' and 'those poor persons who, from wealiness or facility of mind, or by reason of dissipated or improvident halits, are unable to take charge of their own affairs.' The Parochial Board of any parish, or combination of parishes, which contains above 5000 inhabitants, may erect a poorhouse as soon as a resolution to that effeet has been approved by the Board of Supervision. Two or more contignous parishes, with the concurence of the Board of Supervision, may buikl a poorhouse for their common use ; but no poorhonse can be built, nor any existing poorhouse enlarged or altered, until the plans have been approved by the Board of Supervision. The Parochial Boards of parishes, or combinations of parishes, in which there is a poorhouse, may receive poor persous from other parishes at rates approved by the Board of Supervision. When two or more parishes unite to luild a joint poorhouse, the expense of its erection and maintenance is apportioned as determined by the parishes; and for the purpose of erecting, altering, or enlarging a poorhouse, power is given on certain conditions to borrow money on the security of the future assesswents of the parish or combination.

Parochial Boarls were empowered by the above act, under the sanction of the Board of Supervision, to frame regulations for the management and discipline of poorhouses. But the Board of Supervision has found it expedient, for the sake of greater efficiency and uniformity of management, to fiame a general code of regulations, which, with a few molifications for peculiarly circumstancel parishes, now form the existing rules by which the Scottish poorhouses are administered. The management of each poorhonse is committed to i house-governor and a matron, subject to the orders of a committee of the Parochial lourd or Boards of the parish or parishes to which the poorhouse belongs. There are minnte provisions for the classification of inmates according to age and sex, the discipline, medical attendance, religious instruction, diet of the inmates, and the duties of the different officers. Each poorhouse is to be visited at least once a week by a committee of two or more nembers of the Parochial Board, who are to institute an inquiry regarding a number of specified particulars, the answers to which inquiries are to be sulumitted to the House Committee at each neecting. There are at present about 40 poorhouses in Seotland in connection with 130 parishes.

WORKING-DIAWINGS are the large plans prepared ly engineers and architects to ginde the workmen is executing the design. Many of these are on a large scale, all mouldings and ornamental work having to be drawn out of the actual size of the work.

WORKING-PARTY, a body of soldiers toll off, by command, to perform certain work or labour foreign to their ordinary duties. A small extra pay, called 'working-pay' is allowed, averagingr about 4d. a day.

WO'RKINGTON, a market-town and seaport of

Cumberland, about a mile from the moutl of the Derwent, 7 miles direct north of Whitelaren, aud the same distance by railway. Its harbour, furnished with a breakwater and several quays, is safe and commodious. To the conl-mines in the vicinity the town chiefly owes its prosperity - great quantities of eoals being exported-but iron-foundries, maltkilns, flour-mills, shipbuiding yards, rope and saileloth factories, breweries, and ehemical works are in oneration. Salmon fishery is carricd on in the river. Railways rum north, south, and east from W., establishing communication in all directions. In 1865,1411 ressels, of 125,663 tons, entered and cleared the port. Besides coals, the exports are pig and malleable iron, aud the imports timber, \&c. Pon. (IS6J) 6467.

WORKS, Board of. By 46 Geo. [II. c. 142 (altered by 50 Geo. Ill. c. 52), the manageraent and control of public norks and buildings, of which the expenses are defrayed from the crown revenues or iarliamentary grants, were intrusted to an officer called the Surreyor of his Majesty's WTorks and Public Buildings, whose duties ineluded the superintend. ence of the erection and repair of royal palaces, and buildings usad for the rarions branches of government, and the management of public musenms and parks. In 1832 , the duties of this otticer were transferred to the Commissioners of Whods, Forests, and Land Revenues (see Woons Avid Foresis); but this arxangement eventually resulted in a complaint that the crown revenue was applied too easily to the execution of public works and improvements, by which means the Exelicquer was deprived of the funds which were due to it in exchange for the Civil List, and parliament was unable to exercise the proper control orer an important branch of public expenditure. The department of Public Works was therefore again separated, in 1851, from that of the Woods and Forests, and plaeed under the management of a new Boarl, called the Board of N^{\top} orks and Public Buildings, composed of a First Commissioner, specially appointed, who is a political officer, and has a seat in the cabinet, together with the Secretaries of State, and the President and the Vice-president of the Board of Trade, who are ex-officio commissioners. In addition to the control over public works and buildings, possessel by the former united Board, the Board of Works has also the management of the parks in the metropolis, including the public parks formed under recent acts, and of Richmond, Greenwich, Bushy, Phcmix, and Holyrood Parks, and the mublic gar. dens at Kensington, Kew, and Hampton Court. Among the duties of the Board are, the providing of public walks, and access to the national buildings and collections-a brancla of administration which bas, of late years, assumed a prominence which it did not formerly yossess. The Board is also charged with many arrangements and responsibilities connected with the making of new streets and roads, in London and elsewhere, and the erection and repair of public statues. The Board of Works is under control of the Treasury, to whose sanction all large estimates for public works must be submitted. The Treasury appoint the secretary, clerks, and other officers of the establishroent; and with the sanction of the Treasury, the Commissioners appoint or employ such arehitects, surveyors, \&c. as mayy be necessary. The salaries and expenses of the department, and the charges for all her Majesty's public works, are annually voted by parliament. The accounts of receipt and expenditure are annally transmitted, to be audited by the Commissioners for auditing Public Accounts.

WORII FEVER is a popular name for the 277

WORM-GRASS-WORMS.

affection more scientifically known as Infantile Remiltent Fever. Although it is a discase which presents great differences in its course and symptoms, aceording to the circumstances which have given rise to it, its characteristic symptons will be found to point (as Sir Heury Marsh, the eminent Dublin plyssician, long ago olscrved) to the mucous membrane as the original seat of morbil action. The disease seldom oceurs during the first year of life; but from the second to the twelith ycar, it is an affectiou often met with. Premonitory symptoms usually occur, and may last for some days. These symptoms are thus descriled by Dr Evanson: The child looks ill, and loses his colonr; he is langnid or fretful; complains of pain in thc head or belly, is drowsy, but rests badly, starting in his sleef, or griuding his teeth. The appetite fails, the tongue becomes loaded, and the breath offeusive. Fever now sets in ; or the attack may commenee with high febrile symptoms, and be usbered in by a cold fit. When once established, the fever is remarkable for the distinetness of the exacerlatious, the daily number of which varies is different eases. There is, however, usually one well-marked exacerbation, occurring in the evening, and lasting till morning, and followed by a profuse sweat. Three is a common numbernamely, one in the morning, one in the afternoon, and a third at night. However cool and lively the child may at other times be, it becomes fretful, hot, and heary, as the exacerbation approaches. During the febrile period, all the symptoms become aggravated. As the period of remission approaches, these symptoms gradually become less severe, and more or less perspiration appears. As the general disease declines, the intermissions become lengthened, while the exacerbations diminish in duration and in intensity. Worms are often present in remittent fever, and give rise to many of the aborenamed symptoms; but as the symptoms often remain after worms have censed to be expelled, the latter caunot be regarded as being always the sole cause of this disease.
With regard to the trentment of remittent fever, the first point is to improve the condition of the intestinal canal, and to correct the morbid secretions poured into it. 'From the deranged state of the secretions,' says Dr Evanson, 'the occasional use of a mercurial is often very beneficial; and it may be given combined with an aperient or a diaphoretic, according to the circumstances. The powder of jalap, simple or compound, is that which we prefer, and the addition of some ipeeacuanha increases the effect.' He recommends the following formula : Powdered jalap, 30 grains; powdered ipecacuanha, 5 grains; calomel, 5 grains; white sugar, 10 grains. From 2 to 5 grains of this porder may be given every three hours, till the bowels are freely moved. He adds that, to give cold drinks, and keep the body cool by light clothing and the use of an airy anartment (while we enjoin quietness, and occasionally exclude the light), is cssential to recovery. When the howels are not irritable, a solution of crystals of tartar (bitartrate of potash) given cold, in the form of Imperial (see Tartaric Acid), possesses many advantages, as it acts on the kidneys, while it allays thirst, and tends to keep the bowels open. In the more advanced stages, when debility sets in, we have found the mineral acids useful. They can be employed much sooner than quinine; but the latter may occasionally be prescribed at the close of the complaint. if there are decided signs of intestinal inflammation, lecches must be applied to the aldomen; when there is mere intestiual irritability, Dover's l'owder and the warn bath will give relief.

If diarrhea eannot be checked by other means, turpentine, in doses of one or two drops, rubbed up with gunn-water, may be tried. In relation to djet, the great point is to avoid giving such food as leaves a bulky, indigestible residue. When convalescence begins, change of air often affords remarkable benefit.
WORM-GRASS. See Spigela.
WORMS, or VERMES (Comparattye Ayatomy). Most zoologists regard the worms as constituting a subdivision of the Articulata; but one of our latest and best writers on elassification, Professor Huxley, confines the synonymous terins Articclata and Artirorod a to the Insects, Myriapods, Arachnidans, and Crustaceans; aud places the higher worms, or Innelids, with the above elasses, in a primary division, or sub-kingdom, of Axiclosa ; and the less lighly organised worms, Scolccilds (in which he includes the Rotifera or wheel-animalcules, the T'rematoda or flukes, the Taniade or taperrorms, the Nematoidea or thread-worms, the Acanthocephata and the Gordiacea), in a sub-kingdom, to which he applies the tern Anvoloid. The main reasons of his placing the worms under two grent subdivisions are-(1) that the Anuelids resemble the Arthropoda in the arrangement of the nervous system, which constitutes a ganglionated doulle ehain, traversed at one point lyy the eesophagus ; (2) none of the Scolecids possess any characters in common with the Arthropoda generally, or the Annelids, other than those which they have in common with all animals. No scolecid has a definitely segmented body, or bilaterally disposed successive pairs of appendages, nor has it a longitudinal chain of ganglia. These grounds of differcnce outweigh, in his opinion, the many points of resemblance betreen the Annelids and the Scolceids-as (1) the resemblance betreen the ciliated larra in many cases; (2) the resemblance between the forms of the mature bedies of many Scolecids with that of one of the most familiar of Annelids, which is so close as to have acquired for the Scolecids the popular name of 'Wornns;' and (3) the fact, that in the Annelids we see the representatives of that singular system of yessels which attains a perfect development in the 'water-vascular' apparatus of many Scolecids. The final settlement of the elassification of these animals must be decided by further investigation.

With regard to the general characters of worms, it is well known that they are usnally of a very elongated form. In the higher groups, the division of thic body into a number of segments is rery dis. tinct ; While in some of the lower forms no segmentation can be detceted. The segments, when present, are usually homonomous, or, in other words, are mere repetitions of one another. The soft and contractile body may be eylindrieal or slightly compressed, or it may be flat and broad, and usually presents a distinct dorsal and abdominal surface. The lateral region is often provided, in the higher forms, with special appendages, resembling minute stumps, which take part in the respiratory process. Amongst the cuticular appendages must be mentioned the bristles (setca), hairs, hooks, \&ce., which are often seen. The nervous system of the highcst worms-the Annelids-has heen already sufficiently described in our notice of Professor Hurley's views. From this condition it appears in the Scolecids to become more and more rudimentary, till in the parasitic worms it totally disappears. The mouth is absent in the lower forms, hat in the higher lies in the mesial line of the abdominal surface, in close approximation to the chief nerrous (pre-oral) ganglion, from which most of the organs of the senses derive their nerves, as the eye, the auditory apparatus,
and the organs of touch (especially the lips). Some of the parasitic worms, as the tapeworms, \&c., are totally deroid of an intestinal canal ; others, as the Turbellaria (with few exceptions), aorl the Trematoda, have an intestine, but no anal aperture; while the rest hare an intestine prorided with hoth mouth and anus. The latter, when present, lies on the posterior part of the body, and sometimes (as in many Turbellaria) on the dorsal surface. Except in the Gephyrea or Sipunculacea, the intestine, when present, is simple, and deroid of convolutions, but is often, as in the leech, provided with lateral blind sacs. The rascular system in the most highly organised worms consists of a closed system of arteries and veins, presenting modifications in different genera. A large ressel which runs beneath the dorsal integument may be seen under a microscope to contract and propel the blood forward, thus fulfilling the functions of a heart, and being the homologue of the dorsal vasiform heart of insects; while a corresponding venous trunk conveys the blood in an opposite direction, and runs along the under surface of the body. These great trunks are united at each segment by transverse vessels, which carry the blood from the rentral vein to the dorsal artery. In the Nematelmia, or parasitic roundworms, the system is much simpler; and in the lowest worms, no trace of true blood-vessels is discernible. None but the Annelida (q. r.), or highest worms, possess special respiratory organs. These occur in rarious forms. Thus, in the leech and earthworm, a series of pores on each side of the body lead to as many simple sacculi formed by an inward folding of the integument. In the tubicolous Annelids, such as the Serpula (a common inhabitant in the qquarium), the respiratory organs are in the form of long fattened branchir, radiating from the head, and generally disposed in a spiral form. When not filled by the red circulating fuid, which the Annelids generally possess, they are often beautifully tinted with purple, green, and yellow colours, and form a gorgeous crown. In the Arenicola piscatorum (figured in the article ArneLIDA), the respiratory organs are seen lying as lateral tufts in the middle part of the body (fourteen or sixteen in number on each side). In the lower worms, there are no definite respiratory organs, the process being carried on partly by the surface of the skin generally, and partly by the water-canals noticed in the article Tapeworm As a general role, the worms are hermaphrodites, only one of the five classes into which they are divided-viz., the Nematelmia, having the sexes separate. A large number of the lower kinds are parasitical; the others are inhabitants of sea and fresh water, mud, earth, \&c.

The worms are arranged by V. Carus into the five following classes : (1.) Annulata, corresponding to the Annelids of Owen, and described in the article Asselid.A. (2.) Gephyrea, including the Sipunculus and its allies. (The term is derived from the Greek gephyra, a bridge, because the animals included in it form a connecting link or bridge hetween the Echinoderms and the true articulate animals.) In the article Sipesceles (q.v.), in which, according to the old riew, that animal is regarded as an echinoderm, there is a figure of a British species, the Sipunculus Bernlurdus. (3.) Choetognatha (signifying shaggy-jawed, from the Greek chaiteris, shaggy, and gnathon, a jaw), including the single genus Sagitta, which was formerly erroneously placed among the Nucleo-branchiated Molluses. As the Sagitta is not elsewhere described in this work, we may notice that it is a little fish-like animal with a distinct head, the mouth armed with several pairs of lateral hook-like jaws, with an
elongated body furnished with one or two pairs of fin-like organs, and with a broad and usually bilobed caudal fin. The sagitta (so called from its arrow. like appearance) is of small size, swims with great

Sagitta.
rapidity, and is common in the Mediterranean and in the North Sea (4.) Nematelmia (from the Greek nema, a thread, and helmins, a worm), which are described in a special article. (5.) Platyelmia (from the Greek platys, flat, and helmins, a worm), or Flat-ecorms, which are divisible into the three orders: (1) Turbellaria, including the Planarias, \&c.; (2) Trematoda, including the Flukes; and (3) Cestoidea, including the Taneworms. These orders are described in special articles.

For further information on the subject of this article, the reader is referred to the rarious works and Memoirs of Milne-Edwards, Grube, De Quatrefages (especially his Rambles of a Yaturalist), Schmarda, Blanchard, Lenckart. Williams of Swansea (in the Reports of the British Association), \&c. The British worms have not yet been fully described by any competent naturalist, although the labours of Tilliams of Swansea and Johnston of Berwick (both too early lost to science), are excellent as far as they go. Dr Johnston's Catalogue of the British Non-parasitical Worms in the Collection of the British Museum (Lond. 1565, Pp. 366), with 20 plates, must be consulted by all who take an interest in this subject, although, in consequence of the delay in its publication, much of it is out of date. It is understood that Dr Mackintosh, one of the most distinguished of the younger generation of Scottish naturalists, is preparing a work on the British Worms for the Ray Society.

WORMS, as a Disease of Lifaycy. As we have elsewhere (see Ascaris, Entozoa, Tapeworm, and Vermifuges) treated of the natural history of the worms infesting the human subject, and of the remedies to be employed for their expulsion, we shall mainly confine ourselves in this article to the symptoms which are usually considered to be indicative of the presence of worms in children. These symptoms are, homerer, in reality, only evidence of irritation of the mucous memhrane of the intestinal canal, which may be due to other causes than worms, as, for instance, the presence of indigestible matter, unhealthy secretions, or the existence of a morbid condition of the membrane itself. 'Indeed, thelatter,' says Dr Eranson, 'would seem necessary, in many instances, for the production of any symptoms, although worms were present; as they have been passed by children in perfect health, who experienced no inconvenience on their account. Even the evacuation of worms does not prove that the symptoms present were caused by them, though doubtless they are likely to hare been aggravated thereby. The worm may have been but an accidental accompaniment-a morbid condition of the mucous membrane being the true source of the symptoms.'-On the Diseases of Children, 4th ed. p . 345 . Although all the symptoms commonly referred to the presence of worms may exist without them, yet there is a group of symptoms which pretty certainly indicate their presence, and which, when occurring together, should, at all events, excite our suspicions. These symptoms are divisible into (1) those dependent directly on the presence of worms in the intestines; and (2) those connected with the
sympathetic relations of the digestive organs, and due to some form of reflex nervous aetion.
(1.) 'Worms,' says Dr Evanson. 'may le suspected to be present when a child looks pale and grows emaciated, while his belly swells and becomes harda gnawing, pungent, or twisting pain being felt in the stomach or about the navel. 'The appectite is usually precarious, at times voracions; the breath is fetid; and the bowels often derauged, being alternately purged or costive, and much mucus passed in the stools. There is commonly pieking of the nose, or irritation (often excessive itching) is felt in the lower part of the bowels; and when a clikd is oll enongl, he may complain of a sense of sinking or fainting, which seems to attend particularly on the irritation caused by worms. When symptnms are present, and camnot be accounted for by the existence of disease of the mucous membrame or of the mesenteric glands, we have good reason for beheving that worms are their canse.'-Op. cit., 1 , 347 .
(‥) Amongst the most marked sympathetic symptoms are those of the head. The slecp becomes mquiet, and the little patient is liable to start up suddenly from slumber; grinding of the tecth is common; the pupils are often dilated, and there may be headache, and sometimes convulsions-symptoms painfully like those of Hydroeephalus (q. v.), lont often disappearing on the expulsion of worms. A dry cough, unaccompanied by any signs of disease of the thoracie organs, is regarded as a sympathetie or reflex symptom of worms; and vomiting, hiceough, diarrhoa, tenesmus, and bloody stools often accommany their presence. The Iionud-worm (Ascaris lumbricoides) may be present in the small intestine (its ordinary seat) in large numbers without ocensioning any disturbance; but when it does give rise to symptoms, the most frominent are shari colicky pains abont the navel, faintness, great emaciation, and voracious appetite. The Thread-worm (Ascuris or Oxyuris remiculuris) chiclly oecurs in the rectum, where it often exists in large numbers, looking like lits of cut threal. In a reeently roided stool, they are seen to be in rapid motion; hence they are called Ascarides (from the Greek askaridzein, to jump), and hence also, in all probability, the great distress which they occasion as compared with the quiet round-worms. The elaracteristic sign of the presence of these thread-worms is the itching and irritation felt in the rectum.

WOLMS, an aneient and interesting but decayed town of Hesse-Darmstait, in a highly fruitful district on the left bank of the Rhinc, twenty miles south-east of the town of Darmstadt, and communicating with Mainz and Mannheim by railway. Yop. 10,325 . Among its churches, the chicf is the cathedral, a massive building in the byzantine style, with four towers, founded in the sth, and completed in the 12th century. On a hill near the church called the liehfrauenkirche, a highly esteemed wine, ealled Liebfaucnmilch, is grown. The manufacture of polished leather employs 2000 hands; tobacco is also manufactured, and a trade in the wines and the anricultural produce of the vieinity is earried on. W. is one of the cldest citics of Germany, and is the seene of the Nibelungen-Lied (q. v.). It was necupied by the Iomans, ilestroyed ly Attila, and afterwards rebnilt by Clovis. It was frequently the residence of Charlemagne and lis Carloringian successors, was the place of convocation of many German diets, and was erected into a free imperial city by the Emperor Henry \mathbf{V}. The most famous diet held here was that at which Luther defended his position as a Reformer before Charles V. and the assembled princes and statesmen of the empire. See lifformation. The industry and commerce of W. were great during the 280
midalle ares, and its poph, as far lack ns the time of the Mohenstanfens, averaged $\mathbf{C 0}, 000$, and even amounted to 30,000 at the elose of the Thirty Y'ars' War, lut it was almost wholly destroyed hy the French in the destructive war of 1659 ; and thongh soon after it was rebuilt on a smaller seale, it lias never recovered its former prosperity. The site of the old town is only partially oceupred by the present one, the rest being laid ont in gardens. Here, in 1543 , an oflensive amt defensive alliance was entered into by Grent britain aud dustria with Sardinia.

WORMS, an island witl an area of about 36 si. m ., belonging to the liussian government of Esthonia, and lying to the east of Dagio. It is flat and generally well-wooded in the interior, and throws ont numerons steep $p^{\text {romontories, round which strong }}$ currents run, so that, often for months together, it is ent off from all intercourse with the nuigh. bouring islands of Oesel, Daggi, Rumï, \&e, as well as with the mainland; and thus the inlarbitants, who are of Swedish origin, hase remained umixed with foreigu elements. A stranger is a rare and astonishing phenomenon on this island; and he, in his turn, is not less surumised at the peenliar ohd Swedish dialect, the arclitecture, and the mamners and eustoms of this small, poor, but happy insular people.

WORM-SELD is the popular name for santonica, from which Santonin ($q .6$.) is cxtracted.

WORMWOOD is the popular name for Artemisict absinthium. It not only nets as an anthemintic, as its name implies, but it likewise possesses tonic and stimulant properties, which

Wormwood (Arkimisia absintliunt).
prevent the reproduction of worms after their expulsion. An Infusion of 1Formuood, made by pouring a pint of boiling water over an ounce and a half of the dried plant, letting it stand for an hour, and straining, taken in doses of a couple of ounces once or twiee a day, is a very good domestic tonic, and may be prescribed with rivantage even in cases where worms are not snspected.
WORSAAE, Jens Jacob Asmussex, a distinmished Danish archrologist, was born in 1821 at Veile, in Jutland, where his father held the post of justitsraad, or comeillor of justice. W. received
the rudiments of his education at the Gymnasium of Horsens, from whence he proceeded, in 1533 , to Copenhagen, with the intention of studying theology. Having, however, soon exchanged his theological studies for law, and again as speedily relinquished the latter, he turned his whole attention to the history and archæology of the north, which had from an early age presented special attractions to his mind; and in 1833 he obtamed the place of assistant in the Fioyal Nuseum of Northern Anticuities at Copenhagen, which was then under the direction of the able Danish archæologist, C. J. Thomson, to whom this most valuable collection owes its origin and its present state of excellence. In 1844, appeared W.'s important work, entitled Runamo of liratalla Slaget, in which he, with consummate skill and profound erudition, definitely settled the lung-peading doubts as to the authenticity and character of the Bleking rock inscriptions, and satisfactorily shewed, that the supposed runes were no rumes at all, but the mere weatherings of the rock; and consequently, that the interpretation given by the great Icelandic scholar, Finn Magnussen (q. v.), had no existence but in the mind of its anthor. This bold but conclusive solution of a long-pending problem, which, from the days of the great Danish historian, Saxo Grammaticus, had cccupied the attention of the most learned men of the north, at once placed W. in the foremost rank of northern archrologists; and the numerous worl-s and monographs which have appeared from his pen sivee then, have fully justitied the high promise given by his carly labours. During the ten years intervening between this period and his nomiuation in 1854 to the honorary rank of Professor in the university of Copenhagen, W. made repeated visits to the other Scandinavian lauds, to Great Lritain, Germany, France, and other parts of Central Eurone, which retained traces of the former presence of the Northmen. The Danish government defrayed the expeuses of several of these journeys, the results of which have been the publication of numerons works ant 1 rapers of interest, among which we may instance his Minder om de Dunske oif Nordmenderne i England, Slootlund oy I Iland (Copenhagen, 1Sã1); or Memorials of the Danes and Norwegians in England, \&c., of which an English translation appeared the following year ; and his treatise $O m$ en forhistorisk satkaldet tysk Befolkning i Danmark (Copen. 1819) ; \&c. Some of the most important of his works on the archrology of his native country are his Danmarks oultid oplyst ecel Oldsager (Copen. 1843) ; Blekingske Mindesmürker fra Medenold, 1S46; Dancvirke, 1S4S: and his Aflillninger fra det Kongelige Museum jor Nordiske Oldsuger, 1 S54. W. Las always shewn himself a warm patriot, and a strennous opponent of the spread of German tendencies in the duchies, and his views in this direction were forcibly enounced in his Jylland's Danskhed, a treatise published in 1850 , and especially directed against Jacol Grimm's exposition of the question of German uational law. W's merits have been fully recognised by his comntrymen; and the Danish government has constantly shewn its sense of the estimation in which he was held, by placing him at the head of all important commissions connected with the arebrology of the country, appointing him to important posts in connection with the University and Antiquarian Musums, and bestowing upon him various other marks of confidence and respect.

WO'RSTED. Besides the application of this term, explained under Wool and Toollen ManuFACTURES (q. v.), it is also applied to the thick loose woollen yarn used for knitting stockings, \&c., knowu in trade as fingering yarn.

wort. See Eeer.

WO'lTHING, a fashionable and rapidly-rising watering-place on the Sussex coast, ten milas west of Brightou. The poper in 1566, was about S000. Its importance begau with the century, as, prior to that date, it was merely a small unvisited fishingvillage. The climate is much milder than that of Brighton, the town and its immediate neighbourhood being encircled on the north and north-east by almost an anplhitheatre of hills, which greatly shelter it from northerly winds, and render it one of the best places for a winter resort on the south coast. The town has no noxious trades or manufactures, but is essentially a place of resort for pleasureseekers and invalids. It has one of the finest and longest sea-parades in the kingdom, being nearly two miles in leugth. The town has recently undergone a costly system of drainage, and is well supplied with water; whilst its mortality tables bespeal its salubrity, being for the last seven years at the rate of ouly 145 per 1000 .-See Dr Barker On the Climate of Worthing (Churchill, London).
WOUNDS may be defined to be divisions of soft parts produced by external mechanical force. They have been classified by surgical writers in various ways, but the most useful arrangement is that which is adopted by Mr Paget, in his admirable Memoir on 'Wounds,' in Holmes's System of Surgery, and is bascd on their mode of infliction. They are thus divided, first, into open and subcutaneous wounds: the former including those in which the outer part of the wound is almost or quite as extensive as the deeper part ; and the latter, all those in which the onter part of the wound is very much smaller than the deeper part. These wounds (especially those of the first kind) may be further divided into (1) incisel wounds, such as cuts or incisions, including those which remove a portion of the body; (2) punctured wounds, such as stabs; (3) contused wounds, in which the divided parts are bruised or crushed ; (4) lacerated woumds, in which there is tearing of the tissues; (5) poisoned wounds, in which some poison or venom is inserted ; and to these may be added, as a special variety, (6) gunshot wounds.
Simple, open, incised voounds will be more fully noticed than any of the others, because they have been most fully studied, and in their surgical relations are the most important. In a clean cut, whether made accidentally or in a surgical operation, three things are chiefly to be observed-viz, the opening or gaping by the retraction of their edges, the bleeding, and the pain. The gaping of a wound is caused by the retraction of the varions tissues which are divided. Of the various tissues, the skin exhibits the greatest degree of retraction, and then (in the order in which they stand) elastic tissue, cellular or connective tissue, arteries, muscles, fibrous tissues, nerves, and cartilages. In addition to the immediate gaping of fresh wounds, many wounds, if they he not prevented, will continue to retract for a long time. For example, in stumps that heal slowly, the limb terminates in a cone, in consequence of the prolonged retraction of the muscles. The bleeding from an incised wound depends chiefly on the size and number of the divided vessels, and on their connection with the surrounding parts, but to a certain extent on the previous condition of the wounded part, or on the peenliar coustitution of the patient. Gradually, with or without surgical help, the vessels cease to bleed; and then, if the wound be left ojen, there is an oozing of blood-tinged serous fluid, succeeded gradually by a paler fluid, which collects like a whitish film ou the surface, and contains an abundance of white or colomless blood-cells, imbedded in a fibrinous (and therefore

WOUNDS.

spontanconsly coagulating) fuid. The nature of the pain cannot be nade elear by any deseription to those who have not felt it ; and it is more than probable that a sinalar woumd inflicted on two or three persons woukd occasion different degrees of pain in each. There are also differences, as Mr Paget has pointed ont, "in both the kind and degree of pain, according to the place and manner of the wound. Thus, in regard to the skin, wounds of the face and of the extremitios of the tingers and toes, scem to be amongst the most painful; thoso of the back arnongst the least so ; and wounds cut from within are less painful than those from withont. The skin aplyears far more sensitive to wounds than any of the decper structures, except the nerves of sensition themselveg; but any part (as periostenm or tendons) may become, by disease or distention, highly sensi-tive.'-Op. cit., 1. 5 S1. The local conscquences of an incised wound are indicative of inflammation. in the course of an hour or more, the cdges of the wound and the adjacent parts beeome swollen and abuormally sensitive, feel hot and aching; the sutures (if any have been inserted) become tighter, and the edges and intervening spaces gape in consequence of the swelling. These symptorns gradually sulsside in two or at least four days, unless there is some abiding source of irritation. Except in very severe wounds, no gencral consequences are apparent. In these exceptional cases, as in amputations, for example, a slock and subsequent reaction (both of which are described in the article SHock) are observed. The duration of this feverish reaction or trammatic fever does not seem to bear any fixed relation to the severity of the injury. Sometimes it subsides within twenty-four hours; more often, after large wonuds, it does not subside for three or four days, when the pulse and breathing gradually return to their natural standard, and the skin becomes soft and cool. The beginning of suppuration often coinciles with the subsidence of the fever. If tho fever slould last more than four or five days after the receipt of tho injury, there is probably some persistent irritation or some morbid complication.
The healing of open incised wounds may be accomplished, according to the high surgical authority from whom we have already quoted, in five different ways, if we include those in which the process is assisted by treatment-viz. (1) by immediate union, or (in surgical language) by uuion by the first intention ; (2) by primary adhesion, or union by the adhesive inllammation ; (3) by granulation, or by the second intention; (4) by secondary adhesiou, or the thired intention-i. e., ly the union of gramulations ; and (5) by scarring under a seab, the so-called subentaneous cicatrisation. Healing by immediute union takes place when the wounded parts being placed and maintained in contact, first stick together, and then become contimnous, without the formation of any new material as a connecting medium. For example, a flap of skin is raised by dissection in the removal of a tumour or a mammary gland, and is then replaced on the subsjacent parts. In three days at most, the union may be complete, without any indication of inflammation, there being no evident eflux of blood, no exudation of reprarative material, and no scar. In healing by primary adhesion, lympla exudes from both cut surfaces, becomes organised, gradually connects the cut surfaces, and at length forms between them a tirm liyer of connective tissuc, covered with a thin shining cuticle. These steps are well seen after the operation for hare-hip, for exanple. In healing by granulation, the wound bucomes conted over with the white film, containing colnurless blood-cells, as already described. If these
glazed surfaces are brought and kept together, they will probably unite, the film becoming organised, and contributing to form a bond of uuion; but if the wonnd be left open, the film increases, and takes part in the formation of Ciranulations (q. v.). We cannot enter into the life-history of these granulations, and can only remark, that they are finnlly developed into a scar, consisting of tibrocellular or comective tissue, with a superlicial layer of epidermis. The completion of the healing is accomplished by the graduai inpirovement of the scar, in which the connective tissue hecomes more jerfect in its character, and the cuticle becomes thicker and more opaque. Ifealing by sccondery adhesion, or by third intention, 'is accomplished by the union of two granulating surfaces (e. g., those of two flaps after amputation) phaced and maintained in contact. In this state the two surfaces simply unite, or clse new material, produced from cither or both surfaces, adheres to both, is organised into contiunity with loth, and then unites them.'-l'aset, op. cit., 1. 586. Healing by scabbing, or under a seall, is, according to the same authority, the most natural, and in some cases the best of all the healing processes. In animals, it is often ohserved that if a wound be left wide open, the blood and other exudations dry on its surface, and form an air-tight covering, under which searring takes place, and which is cast of when the licaling is complete. In man, this process is less frequent, becanse, in the first place, exndations seem to be more often produced under the scab, which detach it, and prevent the healing; and secondly, surgieal interference seldom allows this method to have a fair trial.
Such are the several modes of bealing of simple, incised, and all open wounds. We have now to consider the nature of the processes therein concerned. Every wound is followed by more or less tendency to an inflammatory process. This tendency may not jroceed beyond an increased sensilility of the part and a slight cfllux of blood, and there may be no intlammatory cxudation; and this is the best condition for healing ly immediate uniun in whieh no new material is required; or the inflammatory process may go on to the production of lymph, and then cease-a condition essential to lealing by adkesion. In bealing by granulation, a very low degree of inflammation (such as is requisite for the effinsion of the first materials for granulation) is best; wbide for healing by secondary adhesion or ly seabbing, inflarumation must be altogether absent. The duo understanding of these relitions of inilanmation and the healing processes of open womnds, afforis important aid as to the mode of treatment. Nuthing should be done to excite or increase inflammation. So much as may le necessary for some of the modes of healing, is suro to oceur spontaneously, and more will only do harm ; ou the other band, the inflammation excited by the wound does not require special treatment, except in the case of organs (such as the eye, the peritoneum, the lungs, the large joints, \&c.) in which serious mischief may be very rapidiy induced by inflammation. The position of the wounded part is a sulject of considerable importance. 'When comfort has, as far as lossible, been secured, the next objeet should he that the wounded part should be relased, so that the cdges of the wound may come near or together; that no part, and especially no muscle, should be on the streteh, and that the direction of the wound may be such as will allow fluids to flow away from some part of 't.' In the great majority of cases, healing by immediate union, or by pimary adhesion, is most desirable, and slould be aimed atthe exceptional cases being wounds through many structures, and exposing considerable surfaces of
deep-seated bones; deep wounds whose depth far exceeds their length; wounds of which the deeper portions of the sides cannot be kept in good contact ; wounds through parts in a very inflamed or otherwise disordered state; and those which are likely to be troublesome from secondary hromorrhage-in all of whicb there is a fear of the collection of blood and other fluids under the closed integuments. In attempting to induee healing by either of these modes, the points to be attended to are-the arrest of the bleeding, the cleaning of the wound, the exact apposition of its edges, and their maintenance in this position, and the exclusion of the whole wound from the air. If the bleeding arise from vessels of considerable size, they must be tied, tristed, and pressed (according to Simpson's plan) or crushed at their ends; but all these meaus, and especially ligature, should be avoided if possible, because they are impediments to exact union; and spentancous closure of the vessels by the action of coId air or water, and pressure with dry lint, is preferable. The cleaning of the wound is best effected by allowing a gentie stream of water to flow over it. Soft sponges are sometimes useful for this purpose; but they must be used as dabbing (not as scrubbing) agents, and the greatest attention must be paid to their cleanness : the sponge used for the wounds or sores of one patient should never le applied to those of another. Apposition is effected by padding and bandaging, Sutures (q. v.), and adhesive plasters-the former being useful in deep wounds, while the latter two serve for more superficial wounds. Although a simple iucised wound, after its sides have been thus bronglat iuto complete contact, may be left exposed to the air, some eovering to exelude the air is deemed preferable. Whatever is used should be light, not adhesive, and not prone to decomposition-its object being to protect the wound probably from a deleterious action of the air, and more certainly from sudden change of temperature, friction, and dust. Nothing is better for this purpose than lint soaked in oil, or simple cerate on perforated linen. The following remarks on the dressing of wounds are coudensed from Mr Paget's Memoir. No general rule can be laid down regarding the time at which any or the whole of the dressings should be removed. In small wounds about the face, union may be complete in two days; but it is not so firm as to be safe from probable accidents, and metallic sutures possess the advantage of exciting so little irritation, that they may be left in their places for any length of time, till umion is perfectly seeure. They should therefore not be removed for four days, or, in the case of large wounds, for a week, or longer. They should not all be removed at once, and thase that are removed should be replaced by strips of adhesive plaster; the union or scar must be cleaned most geatly, and protected from the plaster with oiled lint. If, on the first dressing, the union or adhesion of the wound is progressing favourably, then it will usually be sufficient to dress it suhsequently on every second day; and if all goes well, the union of small wounds may be regarded as safe at the end of a week, and that of larger ones at the end of ten days or a fortnight.

The rules whieh we have here given for inducing healing by immediate union or by primary adhesion may, in an emergency, be carricd out by any intelligent reader, and ought to be generally known. We do not enter upon the modes of inducing the forms of healing by granulation and by secondary adhesion, as they ought to be carried on under surgical superintendence; nor do we notice the last mode-that of healing under a scab-because it is simply leaving the wound to nature: the most that is required in
this case in the way of auxiliary treatment being to cover the scab with dry cotton-wool, to protect it and the subjacent surface from any causes that may excite inflammation.
Of the other varieties of wounds, it is sufficient to notice the most important points severally peculiar to each variety. Of punctured wounds, the most serious are those which are made with blunt-pointed instruments, such as nails, pitch-forks, iron spikes, \&c., for by these the injured parts are not so divided as that they may retract, but are pressed aside with much bruising, and can close again as soon as the instrument is withdrawn; and in this lies the chief danger of these wounds, because blood or other fluids are likely to extravasate into them, and cannot readily escape. These fluids, by decomposing or by mere pressure, may excite inflammation, and thus cause deep and coufirmed suppuration, and great destruction of tissues. Some of the worst forms of these wounds are those produced hy sharp teeth, probably (as Mr Paget suggests) because of the force with which, as they tend to meet, the teeth crush the intervening parts. In contused wounds, the great question is, whether their union should or should not be attempted. If union is to be attempted, the rules given for the treatment of incised wounds must be followed, especial attention being paid to their careful eleaning, the removal of clots of blood, and their warm covering with some soft material, as cotton-wool. When it would be uscless, from the extent of the bruises, \&c., to attempt union, the following rules, as laid down by Mr Paget, should he adopted : 'The part should be kept at rest, and as nearly as possible at its natural temperature. For the latter purpose, and for protection, an excellent dressing is lint or cotton-wool thoroughly soaked in olive oil, and completely fitted to the part. Dry cotton-wool may be applied over this, or oiled-silk. Water-dressing may be similarly applied, or warm poultices, but they are generally less comfortable. Irrigation is, in some cases, very soothing, especially in ragged wounds, but it should be with tepid water. The methods of the dressing, after the first, may be almost the same as for incised wounds.' - Op. cit., p. 598. The treatment of lacerated wounds is almost precisely the same as that of contused wounds. Poisonous wounds are sufficiently discussed in the article Venomous Bites; and there is a special artiele on GUn-shot Wounds, whieh are, in reality, only an important rariety of contused wounds.

In conclusion, it must be mentioned that various kinds of wounds are liable to certain complications, of which some are local, and others general or constitutional. Among the former are recurring or secondary bleeding, pain, spasmodic muscular movements, and the presence of foreign bodies; whilst the latter include defect or excess of reaction, tranmatic delirium, fever, erysipelas, pyæmia, \&c. Some of these complications are treated of in special articles of this work; and for the treatment of the remainder, we must refer to Mr Paget's Memoir, from which most of the details of the present article are borrowed.
WOUVERMANS, Philif, a Dutch painter of note, was born in 1620 at Haarlem. From his father, Paul Wouvermans, a historical painter, he inberited a taste for art. He studied first with his father, and afterwards with John Wynants. He passed his entire life at Haarlem in the assiduous practice of his art, and died in the year 1663. Though his pictures are now bighly valucd, he is said to have had little immediate success, and to have lived in poverty, pretty much in the bands of the picture-dealers. His pictures are, for the most part, landscapes of small size, with figures profusely

233

WRACK-WRASSE

introduced, conmmonly in energetic action. His loattle-picces, in particudar, are qreatly almired for their spirit and vigour. Ile had two brothers, also prainters, Jons and Petrin, who executial subjuets sonnewhat similar, and whose works have not nufre. quently been attributed to him ; but thonch buth artists of considerable merit, they are plainly monel inferior to Philip.

WRACK, or Slad-WRACK, a name sometimes nulylicd indiscriminately to many of the larocr Alga of the sea-shores, lut also employed to designate the species of the gemus Fuchs (sec Ficcacene), some of tha most aloundant of which are employed an the British shores for the mamufacture of Kelp (\mathfrak{f}. v.), and are also much used as a manure. 'l'ive gemus Iucus lias a leathery, dichotomons, generally flat, linear frond, usually furmished with laree air-cells, which are included in the substance of the frond; the spores arrangel in tubercles, inabeated in mucus, aml collected in recentacles, through the pres of which they are inally discharged. Ir vesiculosus, popularly known as Sea-wure, ficlp. werc, and in Lentland as Liack Tanh, is extremely abumbant on all the rocky slores of Pritain, growing hetween high amd low water mark, and most plentifully near high-water mark, often struggling for existence on the very upper line, and even fonnd amoner grass anil moss in marshy ground occasionally overflowed hy the tide. It is the spocies chietly cmployerl in the leelp manufacture, lecease it is more easily collected than any other. It is of a dark olive-green colour, sometimes two or tliree feet in length; the frome flat, entire on the margin, with a central rib; the air-cells spherical, in puirs, sometimes as large as hazel nuts; the receptacles solitary, terminal, turcicl, conmpressed, mostly elliptical. Oxen. sheep, aml ilecr eat it, and seck it on the sea-shore in winter when other food is searce. In Gothlame, it is looled aml mixed with a little coarse flour as fool for logs. It has been used medicinally in glamlular affections, probably owing its value to the iodine which it contains.- I ' nodosizs is another very common liritish species, sometimes called ǨNobBED WT, growing nearer to low-water mark than the last, and therefore not so often and easily accessible, lut esteemed the very best species for the manufacture of kelp. It las veinless frouds, branched in a somewhat pinmated manner, with large sulitary egg-shaped air-cells, in the eentral line of the frond. It sometimes attains a length of six fect. - E. scruatus is also very common, and is easily distinguished by its serrated fromds, and the want of air-cells. It is sometimes called BLACK WrRACK. It is less usefnl for kelp than the other species. In Norway, it is used as fool for eattle, generally sprinkled with a little meal. It is preferved to other species for packing erabs and lobsters to be sent to malket, as it kecpls them moist, whilst, baring less mucus than the uther species, it is less apt to ferment and putrefy. Some other species of F are common British ilgu, although much less abumlant than these. The use of W. For manure is of great alvantage to farmers on the sea-coast. 'l'his kind of manure is better adaptal for light than for clay soils. The effect is beneficial for almost all kinds of crop. The WV. ought not to be allowed to lie lung in a heap, as it is injured by fermentation, lut as quickly as possible applied to the land, and coveral ly the plough.
some of the 'uci, as F. vesiculosus and F ' serratus, on recciving injury ly which any part of the froml is broken, throw out a cluster of young spronts from the injured piart.

WHANGGLEl:, the mame given at the university of Cambridge to those who lave attained first-class
louours in the public matlematical examinations. These examinations extend over eight days, the puss in the papers of the first three entitling is sturlent to the elureo of Bacliclor of Arts. Thoso only sulomit tu the remaining tive day's' cxaminations who are conneting for mathematical hnmours. The word wrangler is deriver from the pulblic dispritations in which candidates for degrees were in former times required to exhibit their powers, of which the form is still preserved in the exereises. The examination is conlinerl to mathematios, pure and mixed ; it is comblueted lyy two moxlerators and two cxaminers. At the elose of the lirst three days, lists are publisled of those who have massed for the common, or poll, clegree; at the end of the eight days, again, lists are published of those who have merited mathematieal honours. 'l'he honour men who compose the matlematical tripos number usually from 120 to 150 , and are divided into thee elasses-wronylers, senior optimes, and junior optimes -those in the last elass being always the most numerous. The head of the tripos is callal the senior arvangler. The mumber of wranglers, or mon in tho first class, viarics from year to year. It lias rarely been under thirty-five, and las often been forty-five or upwards, the number not being limited otherwise than thronela the aplication of a certain high standard of excellence.

WIVASSE, or LOCK-F1SII (Letbrus), a genus of fishes of the family Labrider (q. \cdot :), of the section having eycloid scales, Cyclolubride of Dlüller. 'They have spiny fins, large thin scalea, aud an uninterrupted

Lallan Wrasse (Labrus Lergyltu).
Interal line. The month is protrusible, with thick Heshy lips, folited so as to appear double. Tho tecth on the jaws are simple, in one or more rows the lower pharyngeal bones are completely fuscal tocrether, and have broad grinding teeth. 'The form is sumewhat pereh-like, with the back more straight. There is a single long dorsal fin, the spines of the anterior portion of which are sarmounted by short membranous filaments, the posterior portion having short aud suljt rays. 'I'he ventral tins are under the peetorals. The colours are generally very hrilliant. The species are mumeroms, abounding in tropical seas, lut several of them are found on the coasts of liritain. 'I'luey chielly frecuent rocky shores, and are generally secn in small sloals, often hiding uncer sea-wceds. They feed on ernstaceans, molluses, and marine worms. They are ofteu cauglit by bait intended for other fisln, but their llesh is not much esteemed. The B.uluaN W. (L. bergylia, or maculafus) is one of the most common Britisla species. It attains a length of about 15 inches, and a weight of more than three ponuds. It is bluish green, paler on the belly, all the scales margined more or less broadly with orange red, the blue prevailing in some specimens, and the orange in others

WREATH—WREN.

The Cook W. (L. mixtus or variegatus) is not unfrequent on the sonthern shores of England. Its prevailing colour is orange, striped transversely with blue, particularly in the male, the colon's of the sexes differing so much that the female has often heen described as a distinct species, and is generally known as the Red Wrisse. There are several other British species of this and closely allied genera, as the Corkwing ('renilabrus melops, or tinea), ahont six inches long, and of a greenish blue colour, varied with yellow. The colours quickly fade after the fish is taken out of the water.
WREATH, WREATHED, in Ileraldry: A wreath is a twisted garland of silk of different colours, otherwise called a torce, on which it lass, since the 14 th c., been usual to place the crest. The side-view of a wreath thus drawn exhibits six divisions, which are generally tinctured with the livery colours-that is, the principal metal and colow of the shield. Every crest is now uuderstood to be placed upon a wreath, except when it is expressly stated to issue out of 2 chapean or coronct. A wreath, when represented alone, shews its circular form. A Moor's head is sometimes encircled with a
Wreath. heraldic wreath. A wreath is always understood to be the twisted garland of silk abore explained, unless otherwise specified; but wreaths of laurel, oak, ivy, \&c. sometimes oceur, and savages used as supporters are often wreathed about the head and middle with laurel. Ordinaries are occasionally arreathed, otherwise called tortille, in which case they are represented as if composed of two colours, twisted as in the heraldic wreath; as in the coat of C'armichacl, argent, a fess wreathed azure and gnles.

Tredee, Farl Philipp, Prince of, a Ervarian field-marshal, was horn at Heidelherg, wilh April 1767. Belonging to a noble family, he early obtained official employment, and in 1792 was assessor to the high count of Heidelberg ; in 1793, was elected 'civil commissary' in the Palatinate, and in this latter caracity accompanied for five years the armies of T'urmser, Duke Albert, and the Archduke Charles, in Italy and Germany; and frequently took a direct share in military operations. In 1790 , his military carcer may he said to lave commenced ly his leading a body of Bavarian volmenteers to join the Archduke Charles, and for lis Cistinguished conduct in that campragn he obtained, Ioth Nlay 1500, the grade of major-general. After the peace of 1800 , he deroted much time and labour to the organisation of the Bavarian army ; and when war was rencwed, found himself at the heal of the Eararian contingent, well disciplined and thoronghly eluipped, fighting side by side with his former foes the French, and took a prominent part in most of the campaigns against the Anstriaus, Prussians, and Tiussians till 1813. But, after the retreat from linssia, offended at some real or fancied insults which had been offered to hims, he returned to Munich, joined the anti-French party, which was headed by the queen and crown-proce: and thongh his intrigues were put a stop to by the victories of Lützen and Bautzen, he soon aiter succeeded in bringing about the treaty of Sth Octuber 1S13, hy which Eavaria joined the coalition against France, and before the end of the same month, was at the head of $70,000 \mathrm{men}$. Attacked by Napoleon with an inferior force, he was, after a blooly and protracted contest, defeated at Hanau. He was chosen soon after to command the fourth corps of Schwarzenberg's army, and thongh unsuccessful in most of his petty contlicts, contributerl consider.
ably to the snccessful andvance on Paris. His services were rewarded by the dignities of fieldmarshal (7th March) and prince (?th June 1814), and lyy the gift of the domain of Ellingen. On the brief renewal of the contest during the 'Hundred Days,' W. was preparing to invade Lorraine, when the battle of Waterloo put an end to the strife. After this period, W. was employed on many important missions, and was charged with the pacification of Rhenish Pavaria during the revolution of 1830. He died at Ellingen, 10th December IS3S.

Wren, Sir Christopiete, a renowned English architect, was horn at East Knoyle, in Wiitshire, on the 20 th of October 163 . His father, Dr C. Wren, was Dean of Windsor, and his uncle, Dr M. Wreu, was Bishop successively of Hereford, Norwich, and Ely. At an early age, young W. was placed at Westminster School, under the celebrated Dr Bushy, and while yet only in his fourteenth year, was entered a gentleman-commoner of Wadhain College, Oxford. Here he made considerable progress in mathematical studies, and attracted the notice of the cultivators of physical science-whether resident at the nniversity or visitors-by his inventions of certain mathematical instruments, and his general zeal and enthusiasm in the pursnit of experimental philosophy. In 1650 , he took his degree of B.A., and in 1653 , that of M.A., having been previonsly made Fellow of All Souls. He now also hecame a member of a society established at Oxiord for the improvement of matural and experimental philosophy ; and in 165t, is spoken of ly Evelyn, in his Diary, as 'that miracle of a youth;' also, in his Sculpturc, as 'that rare and early prodigy of miversal science.' The acquaintance thus begun, ripened into a firm friendship between TV. and Erelyn.

In $1655, \mathrm{~W}$. greatly assisted in perfecting the barometer, then only recently invented. In 1657, be left Oxford for London, where he became Gresham Professor of Astronomy: In May 1661, however, he returned to Oxford, as Savilian Professor of Astronomy. The same ycar, he received the degree of D.E.L. Before leaving Londou, W. had, in conjunction with Lord Bromeker, the Ikm. Robert Boyle, Mr Brtce, Dr Wilkins, Sir Rohert Moray, and others, who usel to meet together at Gresham College, laicl the foundation of the future Royal society. Lefore the Society was formally incorporated, the members felt much the absence of W. from their meetings, and one of their first proceedings was to get the king to lay his commands upou him to perfect a design he had in hand of a glolse of the moon, and to 'proceed in drawing the shapes of little animals as they appear in the microscopu.' The lunar glohe was timished, nuch to the satisfaction of his Mrajesty, who placed it in his cabinet of rarities. He also summoned W. from Oxford to assist Sir John Denham with his advice on architectural sulbjects; the poet Denham having heen appointed Surveyorgeneral of his Majesty's buildings, but prossessing little or no knowlalge of the subject.
The study of architecture was one to which W. had given great attention, while still a very young man, notwithstanding his devotion to mathematics, astronomy, chemistry, and even awatomy. In 1663, in his capacity of Assistant Surveyor-general, he was offerel a large salary to go to 'Tangier, to survey and direct the works at the mole, harloour, and fortifications; but this commission he declined. In the same year, W. was engaged by the Deau and Chapter of St Paul's to make a survey of the catheciral, with a view to certain mojected repairs in that rast fabric. He accordingly drew up a very careful and elaborate account of the state of the building, with suggestions for its improvement, and

WREN.

aceompanying drawings and designs. All of these were laid before the king; but before any further steps were taken for the resturation of St Paul's, that building was levelled to the ground by the memorablo tire of 1666, and W. was dustined to be the architect of the new cathedral, instead of the restorer of the old. Whe dirst work actually built from a dusign by $W^{\text {r }}$. was the chapel at Pembroke College, Canbridge, in 1663 . Sut in the same year he designed the Sbeldonian Theatre at Uxford, which was commenced in 166t, and finishel in 1669. In $166 t$, W. also designed some valuable additions to the buildings at Irinity College, Cambridge; particularly the beautiful western quadrangle knewn as Nevile's Court. To this he added, in 1666 , the Lilurary of Trinity College, said by Gwilt to be sone of his finest prolactions, and one with which he himself was well satisfied. It consists of two orders; a Doric arcade below, npen to a basement supported by columns, which has a flat ceiling. . . The principal story is decorated with three quarter columus of the Ionic order, well proportioned.'

In 1665 , 11 . visited Paris, where he made the acquaintance of Bernini, architeet of the Lonvre, and of other distinguished men. In the following year, he returued, to fiud the Royal Socicty carnestly cagaged in searching out the canses of the great plague, so soon to be suceceded by the great fire which laid London in ashes. This disaster at once opened a wide ficld for the excrtion of W:'s genius. Ife formed a plan, and drew designs for the entire rebuilding of the metropolis, embracing wide streets, magnificent quays along the banks of the river, and other well-considered improvements. In rebuilding Loudon, bowever, few of W':s reeommendations were adopted. IIe was certainly chosen to be the architect of new St Paul's, one of the fimest nomGothic cathedrals in the work; besides which, be designed more than fifty other chumehes in place of those destroyed by the fire. The great church of St Paul, built on tire model of St Peter's at Rome, was begun in 1675 , and completer in 1710 , when the last stone was laid upon the lantern by the arcliteet's son, Christopher. Besides the numerous churches mentioned, W. built the Royal Exchange, Loudon, in 1667 ; Custom-house, Loudon, in 1665 ; Temple Bar in 1670; the Nonument in 16711677; the College of Physicians in 1674-169S; the Royal Observatory; Greenwich, in 1675 ; the Gateway Tower, Christchurch, Oxford, in 16S11652; Chelsea Hospital, 1652-1690; Ashmolean Museum, Oxford, 1653; Hampton Court, 1690 ; Morden College, Blackheath, 1692; Greenwich Hospital, 1696; Buckingham Houso, 1703 ; Marlborough House, 1709; the towers at the west front of Westminster Abbey in 1713; besides the unfinished palace of Winchester, in 1653.

In $1672, \mathrm{~W}$. received the honour of knighthood. In 1674 , he married Faith, daughter of Sir John Coghill, by whom he had a son, Cluristopher, who survived him; and his wife dying, he married, in 1679 , Jane, daughter of Viscount Fitzwilliam, by whom he had issue, a son and danghter. In 1650, W. was elected President of the Foyal Society. In l6St, he was made comptroller of the works at Windsor Castle; and in 1655, be was elected Grand Master of the order of Frecmasons. He Was also elected a member of the House of Commons for New Windsor in 1689, and being unseated on petition, was immediately re-elected for the same place. In 1695 , he was appointed Surveyor-general of the Works and Repairs at the Abbey of St Peter, Westminster; and in the same year, was again elected Grand Master of the Freemasons. IV. died in his chair after dinner, on the 25th of February 1723, aged 90 years, and was buried in St Paul's

Cathedral, where the alpropriate inseription of 'Si monunuentum requiris, cireumspice,' marks lis tomb. During his decliniug years, he was treated with neglect, and even injustice, by the court of lingland; 'one Benson' was ajpointed by George I. to supersede him in the office of Surveyor-general; and sone privato individuals earped at his worlss in a most malevoleut spirit. Stecle, however, vindicated the fame of lis friend in the Tatler, in which W. is introduced in the claracter of Nestor ; and few have been foum sinco that tine bardy cnongh to call in question the well-merited reputation of Sir C. W. as a distinguisbel arehitect, mathematician, and seientific observer.

WREN (Troylodyles), a genus of birds of the Creeper family (Centhiades), laving a slender, slightly curved, and pointed bill, the edge of the mandibles entire; the wines very short and rounded; the tail short, and carried erect; the legs slender, and rather long. Their lumage is generally dull. They are natives ehielly of the northera hemisphere, and most of them are American. They live on or

Wren and Nest (Troglodytcs vulgaris).
near the ground, secking for insects and worms amongst low bushes, and in other similar situations. The Common or European W. (T. vulgaris) is found iu all parts of Europe, and in the north of Asia. It is more abundant in the northern than in the central and southern parts of Europe, and is found even in the aretic regions. It is a very small bird, only about four inches long, reddishbrown above, witl marrow transeerse streaks of dark brown, yellowish white below, the freater wing-coverts with three or four small bead-liko spots of white. From its peculiarity of form, and its active, lively habits, it is one of the most fanniliarly known of British lirds. It frequents gardens, hedges, and thickets. Its flight is not long sustained; it merely flits from bush to busly, or from one stone to another, with very rapid motion of the wings. It sometimes ascends trees, nearly in the manner of ercepers. The male has a leud sweet lsong. The nest is large for the size of the bird, oral, domed above, with an opening on the side, aud is composed of lay or moss, lined with feathers, and generally of materials such that it resembles in colour the ohjects beside it, and is net easily discovered. It is often placed under the thatch of a buidding, under the turf of a turftopped wall, against the side of a moss-covered tree, or under an impending bank, always so as to be sheltered from rain. The egrs are usually from seren to ten in number, and the male is assiduous in his attentions to the female in supplying her with food during inenlation, and afterwards assists ler in the care of the young. Two broods are

WREXHAM—WRIGHTIA

produced in the season. In severe winter weather, a number of wrens often take shelter together in an old nest, or in a hole of a wall; sometimes they roost in byres, to enjoy the warmth proceeding from the cattle. When driven from bushes, the W. is easily run dom; and the hunting of wrens on St Stephen's Day is an old custom in the south of Ireland. 'In general, however, the W. is almost as much a popular favourite in Britain as the Redbreast. The name Kitty I'ren is popularly given to it in many parts of the country.-The North American species of W. are numerous; some of them, however, have recently been placed in new genera.-The House H . (T. cedon) is larger than the European W., being about five inches long. It is reddish-brown abore, barred with dusky, and palo fulvous white below, with a light brownish tinge across the breast. It is abundant in the eastern parts of the United States. It is less shy than the European W., and often builds its nest near houses, and in boxes prepared for it. The nests are made to fill the boxes; and to effect this, a large mass of heterogeneous materials is sometimes collected. The song of the House W. is very sweet. The male is a very bold, pugnacious bird, readily attacking birds far larger than itself, as the lilue-bird and swallows, and taking possession of the boxes which they have appropriated for their nests. It even attacks cats when they approach its nest.-The Winter W. (T. hyemalis) is so similar to the European W., that it is not easy to state a specific difference. It is common throughout North America, from Labrador to Louisiana, and partially migratory. Several other species are common in North America, as the Carolena W. (Troglodytes or Thryophorus Ludoricanus) and the Mafish W. (Troglodytes or Cistophorus palustris), both of which are found chiefly in the vicinity of water. All of them agree rery nearly in their habits with the Common IV ren.

WRE'SHAM, a municipal and parliamentary borough in Denbighshire, and one of the most important towns in North Wales, 11 miles south-south-west of Chester, on an affluent of the Dee. The town is handsome and lively, and the church, a handsome edifice in Perpendicular, was built about the year 1470 , though its tower, 135 feet in beight, was not completed till 1500. This church contains a monument and two medallions by Roulsilliac. In the vicinity are several collieries, which, together with lead-mines, iron-works, papermills, and breweries, give employment to the inhabitants. It is also of very considerable importance on account of its markets and fairs, one of which, in March, lasts for fourteen days, and is attended by traders of all descriptions, and from great distances. W. unites with Denbigh, Holt, aud Futhen in sending a member to parliament. It is a station on the Great Western Ilailway. Pop. (1861) 7562. (1571-S576.)

WRIGHT, THonas, an English antiquary and historian, was born near Ludlow, in 1810, and was educated in the grammar-school of that town. From school, he proceeded to Trinity College, Cambridge, where he took his degree of B.A. in 1834, and subsequently that of M.A. At an early age, W. shewed considerable literary talent, and while still at the university, contributed to Fraser's Mfagazine, the Gentleman's Magazine, the Literary Gazette, and other periodicals. In 1836, he came to London, and at once commenced the career of a man of letters; and from that time to the present, he has been continually before the public in the capacity of author, editor, or translator. In 1837, he was elected a Fellow of the Society of

Antiquaries; and in the following year, published his first considerable work, entitled Queen Elizabeth and her Times (2 vols. Svo). In this jear also, he was one of the two founders of the Camden Society, for which he edited various works at different times, such as the Latin Poems of Walter Mapes, Letters on the Dissolution of the Monasteries, icc. He was also for some years Honorary Secretary of the Carnden Society. In 1843, W., in conjunction with his friend, Mr Roach Smith, founded the British Archæological Association. He also took an active part in the formation of the Percy aud Shakspeare Societies, and for each of these, from time to time, edited volumes. Upon the death of the Earl of Munster in 1812, W. was elected to succeed him as Corresponding Nember of the Institute of France, an honour never before attained by one so young. There were several candidates; but W. was chosen by a large majority, among whom were two ministers of state, MM. Guizot and Villemain. W. is also a member of the Society of Antiquaries of France, of the Ethnological Society of Paris, of the Royal Society of Jorthern Antiquaries of Copenhagen, and of other learned societies on the continent and in America.

Of W.'s various works-said to exceed 100 volumes in number, including, of course, translations and works edited for Societies-the following may be regarded as the principal: Biographia Britannica Literaria, 2 vols., of which the AngloSaxon period appeared in 1842, and the AngloNorman in 1546 ; Essays on Subjects connected with the Literature, Popular Superstitions, and History of England in the Middle Ages (2 vols. 1546); The Archeological Album, or Mruseun of National'Auti-quities-the Illustrations by F: JF. Fairholt (1845); England under the House of Hanover, Illustrated from the Caricatures of the Day (2 vols. 184S); Narratives of Sorcery and Magic (2 vols. 1851); History of Ludlow (1852) ; The Celt, the Roman, and the Saxon: a IIistory of the Early Inhabitants of Britain down to the Conversion of the AngloSaxons to Christianity (1852; 2l ed. 1861); History of Ireland (3 vols. 1854); Wanderings of an Antiquary (1854) ; Cambridge University Transactions (2 vols. 1854); Dictionary of Olsolete and Provincial English (2 vols. 1857); History of France (3 rols. 1856-1862) ; Guide to the Ruins of the Roman City of Uriconium, at JF roxeter, near Sherewshury (18599 ; Political Poems and Songs relating to English History composed during the Period from the Accession of Edward III. to that of Richard III. (2 vols. 1859 -1861). These volumes form part of the series of works published, under the direction of the Naster of the Rolla, in illustration of the medieval history of England; Les Cent Vourelles Vourelles (2 vols. 1858), being a collection of medieval tales from the only known manuscript of the same, discovered by W. in the library of the Hunterian Museum, Glasgow ; Essays on Arclicological Subjects (2 vols. 1561) ; History of Domestic Manners and Sentiments in England during the Middle Ages, with Illustrations by F. W. Fairholt (1861); A History of Caricature and Grotesque in Literature and Art, with Illustretions by F. IF. Fairholt (1865). To these may be added his edition of the Life of King Alfred, translated from the German of Dr R. Pauli (1552) ; and the History of Julius Coesar, by the Emperor Napoleon 111., translated from the French by W. in 1865.

WRI'GHTIA, a genus of plants of the natural order Apocynacece, containing some of the greatest twining shrubs of the East Indies, such as, attaching themselves in the first instance to trees for support, become themselves at last of tree-like thickuess, as well as height, and kill the supporting trees by their

WRIT-WRITERS CJAMP.

choking embrace. The corolla is salver-shaject, with scales in its throat: the fruit consists of two erect follicles. The leaves are simple, generally ovate, or nearly so. The timber of some sjecies, as

Wrightia tinctoria.
1H. mollissima and H. cocciner, is valuable. H. antidysentrica, a native of Ceylon, yields Conessi Banc, a valuahle astringent and febrifuge; 15. tinctoria, common in many parts of India. yields exectleat indigo, ahil was strongly reenmmented for eultivation on this aecount lyy Dr lioxburgh, the prodnee heing large, anl the plant less dependent on rain than the species of Indigofera.
WRIT is a general term much used in the law to dennte a formal document proceeding in the Queen's mame, or the name of a judge wr other officer of the law. Such is a writ of summons commeneing an action at law. In nearly all actions and proecedings, writs of varions kinds are issned, which are named from the nature of the particular act to be done.

WRITER, a term rather ragucly applied in Scotlaml to a law practitinner, or the clerk to a law praetitioner ; and in provincial towns, designating more delinitely one of those law agents who act both as practitioners lefore the shoriff, and generally as factors in the management of private aflairs, like the writers to the Signet and solicitors in supreme courts in Edinbursh. In Aherdecu, this class of law-agents adop,t the name of Adrocates, in virtue of an nld usage, which has latterly had the authority of a charter.

WR1TER TO THE SIGNET, OH CLELK TO THE SIGNET, the name given to an innortant body of legal practitioners in Lidiuburgh, corresponding gencrally to the highest class of attomeys in London. They are said to derive this designation from having been originally clerks in the ollice of the Secretary of State, wlere the different writs that passed meter the king's simnet were prepared. Aet $15: 7$, c. 3?, establishing the College of Justice, mentions the Clerks to the Signct as a previonsly existing loady; and though no charter of ineorporation is extant, the society is considered entitled to all the privileges of a corporation. The keeper of the Signet, in officer ajpointed by the erown, Wppoints one of the members of the Society of preside at mectings of the Society, and, along with certaiu other members named by him as commissioners, tor manage its affairs.

Arlmission to the Society must be preeeded (1) hy attendance during two different sessions, or two full

Winter courses of lectures on the faculty of Arts of a Senttisl university, me of the certificates of attemp. anee locing from a lrofessor of llumanity; (o) ly an apprentiership of tive vears' duratim, which must not be entered on under 16 years of age: (3) ly attendance on four courses of law in the unirersity. Previous to almission, the candidate has alon to uuderen two examinations, one in seholarahip, and one in law: The whole expenses of almissinn
 is $\mathcal{L} 410,15 \mathrm{~s}$. br .

It was long after the institution of the Colleire of Justice before the writers to the Signet hegan to act as asents in the Court of Session. They were prohibited from so acting by repeated regulations of their own body; as well as by statute 1672 , c. 16 , and Aet of Sedernent Fehruaryon, 1678 ; prohibitions which, before the begming uf last century, seem t, have grown altagether obsilete. The writers to the Signet have long been the principal lody of law agents practising lefore the sumbue courts of Scotland; and the individual menbsers of the body are also entitled to practise liefore the Sheriff Court in all matters which have luen transfurred by statute from the supreme courts to the sheriff court, as proceedings in lankruptey. They possess the exclusive right of preparing the warrants of charters of land flowing from the crown, of signing summonses citing parties to appear in the Court of session, and all other writs that jass the Signet as diligenees for affecting the person or estate of the delator, or for compeling implement of the decrees of the supreme court. A very considerable propmortion of the conveyancing business of Scotland is in their hands, aul they are largely cmployed as factors in the management of private affiairs. Most of them are notariespublie, in whieh capacity they 1 rotest bills, anthentieate decels for persons who camnot write, ancl prepare various notarial instruments, the most importaut of which bave leen superseded ly $2 l$ and 2 Viet. c. Fo, substituting registration of conveyances for instruments of sasine. All candilates for the office of notary-public are remitterl ly the conrt to the Society of Writers to the Signet for cxamination. The writers to the siguet are in possession of a large and valuable libmary.

WRITERS' CRAMP. or SCLIVENERS' PALSF, is a peenliar kind of loeal spasm, in which every antempt to write instantly ealls forth uncontrollable movements in the thumb, the index and middle finger, so that the pen starts up and down on the paper, and instend of a legihte dandwriting, a mere serawl results. 'The more,' says Romberg, 'the patient persists in his attempt, the more the difficulty of using his pen inereases; and to the risible and sensible contractions of the muscles of the thumb, contractions of the forearm, and cven of the upper arm, are often superadded. Abnormal sensations, especially of a sense of weight and constrietion of the hand, or of painextending from the urper arm to the back, are oceasionally present. It is diannostic of these attacks that they are instantly arrested when the individual ceases writing; and that the hand is capable of every nther combination of movements and exertions.' -The Verous Disrases of 1lan, vol. i. p. 320. The dissase is chielly confined to middle age, and seareely (-ver oecurs in women; and there can be no doubt that an oceuration entailing much writing predisposes to it, the quality of the paper or of the pen having nothine to do with it. The treatment hitherto juirsued, looth local and general, has, aecording to Romberg, been 'invariably ineffectual.' This is, however, ton strong a term, since he mentions a ease is whieh Stromeyer applied the principle of division of the muscles to the cure of writers' cramp, and in one

WRITERS' CRAMIP-TVRITLNG.

case a brilliant result justifed the antisnasmodic reputation of tenotomy; the patient being perfectly able to write as early as the fourteenth day after the subcutaneous division of the tendon of the long tlexor of the thumb.' The same oprration was, howerer, several times performed by Dieffenbach without success. Mr Solly, it his recently published Surgical L'xperiences, describes several cases of this peculiar affection, in some of which judicious treatment, combined with entire cessation of writing for a considerable time, led to satisfactory results.

WRITLNG is the ort of fixiug thoughts in a pal able and lasting shape, so as to make them known to others. There are two prineiples employed in this process, either separately or jointly -viz, Ideographism and lhouetism. An ideograph is either a picture of the abject the idea of which is to be conveyed, or, at a later stage, some symbol which stands, by common consent, for the object, iu whicl case it is called Symbolism. Phonetism, on the other hand, is either Syllabismi. e., a combination of consonants and vowels which form a word, or component parts of it-or Alphaletism, a system that further breaks up the syllables into their single component parts of rowels and consonants. All systems of writing seem to bave originated in ideographism, and to bave gradually arrived at phonetism. The pictorial mode of ideoyraphy gradually led, as indicated, to the symbolical mode. The former, also called kyriological (Gr. kyrios, principal, proper, the opposite of metaphorical or symbolical) writing, contents itself with representing only bodily thing3, either by fully or partly depicting them, or by merely indicating them ly some special characteristic. The latter-the symbolieal mode-represents abstract things in accordauce with their similarity to enroreal subjects, as in the bieroglyphs of later Egyption times. Examples of the real clelineations of the subjects, or parts of them, which have been replaced by conventional signs, we find at an early period in Egypt, as well as with the Aztecs, with the primitive Assyrians, in ancient China, and in Guiana. Phonetism here no longer aims at a delineation of subjects or symbols, lut of the sounds by which these objeets are conveyed to the mind. The first step in phonetic writing is, as we sairl, the syllabic, which by degrees becomes alphabetical. Difficult though it be in many iustances to fix accurately the onginal idengraphic meaning of many of the letters now in nse, there is yet absolutely no doubt as to their laving once been mere pictures of certain things to which a meaniug was attached, the soumd of which was in sone shape connected with the present value of the letter. Our knowledge of Phenician, whence our alphabet is directly derived, and of its corsuate dialects, enables us, in many instances, to trate them lack to their primitive source. Thus, our A was originally depicted as the bead of an ox, a likencss to which may still be traced in its Pherenician form, and its name (:Meph $=0$) has still survived in Hebrew and (ireck (Aleph or Alpha). This lrocess of the gradual elange of a picture into a character is most clearly traceable in the varions stages of Egyptian hieroglyphics, which, when written more cursively, assumed such different shapes (in hicratic and demotic respectively), that often there remains scarccly a likeness between different forms of the same characters. Among the ideographic methods, there are some, however, which scarcely seem to deserve the name of writing, in the ordinary sense. Such are the Peruvian quippos, or knots, which, by changes in colour, size, arrangement, and the rest, indicate a certain special sequence of ideas; further, the
'khernus' or sticks, which, befure the introlnction of their present alphabet, the Tartars used to circulate among their tribes, to indicate the number of men and horses to he used for some special expedition. Similar to the Peruvian ruippos, Was (according to the cclebrated Chinese work, I-king) also the primitive Chinese mode of writing; while the scandinavian and Germanic runes rather remind of the Tartar staves. Of a more advanced stage arpears the Mexican Pichne-writing, a system by whicth single syllables or words were expressed by 1 honogranns. The Chinese system apjears to combine both the ideographic and phonetic characters; but there is scarcely a dunbt that even the phonetic signs are derivel from ideographic ones. The step to the alphabetic system, hotrever, was never taken by the Chinese.

When and how our Iresent alphabet was invented, has been matter of spreculation from the earliest times. The myths of antiquity ascribed it to Thoth (r. v.) or to Kadmus, which only denotes their belief in its being brought from the East (Kedem), or being perhaps primeral. The Talmud ascribes it to a special revelation. It has been a question whether there were several original alphabetical systems, or whether one is to be assumed as having given rise to the varions modes of writing now in nse. Thus, three principal sources-Semitic, Chinese, Indianare given by Klaproth. It is, however, now agreed on all hands that it is the Phænician character, as we now know it, to which we dircctly owe our own. See Phecitcis. From it many streams have flowed ont. The principal of these appear to have been -First, the Semitic, in which the values of the letters have remained almost identical with those of the original Phanician, with exception, perhaps, of a few sonnds added to them in Persian, for the purpuse of expressing certain Indo-Germanic sounds not existing in Phœuician. This class bas further been subdivided into Hebreo-Samaritan and Aramaic, the latter cmbracins the square or modern Hebrew, which is closely allied to the Palmyrene, the Estranghelo or Syriac, the Sabian, the Arabic in its different forms, the Mongol, the Pehlvi, Armenian, \&c. The second or central division emhraces the writing of Creece, Asia Minor, and Italy, from the Elolo-Doric, Etruscan, Unbrian, Oscan, and other but little known kinds, to the late Pompeian Gralliti. A further group would include the 'Indo-Homerite' claracters, aud seems to lave originated in Central Arabia, whence it appears to have spread to Africa and India, where the Magadhi-the oldest variation the Phenician assumad here-gave rise to the live families of Devanarhari, Pak, Drarilian, Oceanian, and Tibetan.

Fet, when we speak of the Phœnician as beiag the mother of all our known alphabets, we must not be understoal finally to ascribe to the Phenicians the original iuvention of it in the first instance. We shall only indicate here that the thenry to that effect, helu by Gesenins and others, will probably, sooner or later, have to give way tu the more recent results of De Rouge's investigations, who, with great show of probability, believes it to have been borrowed, or rather adapted from certain archaic hieroglyphics of Egypt. It rould appear as if at some very archaic period the Phœencians laad borrowed the bieratic signs then in use; as, indeen, the Prisse Papyrus, the oldest in existence, exhibits striking similarities with the Phœnician characters. Instead, however, of simnltaneously taking the Egyltiau names for these characters, they invented new ones according to their own fancy, aul to the supposed similarity of the characters to some particular thing. The Egyptian origin of the Phœuicion character, if confirmed by

further ruscarches, woull ine a striking instance of the curreetness of the trabition to that eflect, which 'l'a itus las pre urved (Immel. xi. 14).

We have in the conrse of this work treated at full length several pints of this subject. See Ihmionimbucs, C'vetform, Alpithimp, \&e. Wo may therefore, for a fuller clucidation of the details, rofir to those articles. We shall only add in this phace that the manner of writins is very slilleront with many wations. The Nexican picturewriting legins at the bottom; the Chinese and Itipancise, as well as the Dongols, write in columns lecgiming from the top, and going from right to left. The Eyyptian heromylhies have no fixed direction: hit the hieratic and lemotic, though the single letters are formed from right to left, always run from left to right; as is also the case in k'thiopic, ('unciormn, and Indo-Germanic languases senerally: The semitic languages have retamel the Phemieian mode of writing from right to left--all lat the numerals-a mode still retained in archaic Ilellenic and litrusean. By degrees, however, the writer, not wishims to return to the begiming of the line, and continuing right underneath the last word penned, a double mode was introdnced, called the boustrophedon-as the ox plomuse Finally, this too was abanduned, and the direction froms left to right was follower. Ahout the many various styles of moditication our characters lave undergone in the course of time, the pmuctuation of the words, and the rest, we refer to Ahminber. The materials asel for writing were of the most different lime, as were also the instruments employal for the purposc. See Papirus, IEE, fe.

WrITLNG FiJUIDS. Sce Ista.

Who NGDol:le, in Luglish law, as well as populat parlance, is he who commits some wrong for which an action may be brought to reeover damages.

WRINさECK (${ }^{\text {retenx }}$) a gemm of hirds of the Woolpecker family (Picilu), having a short, straight, conical buak; a long exteusile tongue, with

Wryncel: (I"unx torguitu).
a linrny point; wincs of moderate size; a rather short and roundel tail ; the feet with two tocs in front, and two behind. One species, the Comson W. (3°. torgulla) is a summer visitant of Britain amo the north of Europe. F'rom its aplearing at the same time with the enckoo, it has acfuired the mame of ('uckeris alate. It is common in the sonth If England, lut very rare in the northern parts of Iritaia. lt is about seven inches long, of a rusty ash colour, irvegularly spotted with brown and black. It feeds on eaterpillars and insects, and is often seen on the grouml wear ant-hills, feeding on the ants and their "eggs.' The construction of its
tougne resmbles that of womlpeckers, min chables it to seize its insect prey with womlerful eelerity; the tongue is darted oit, and retracted, so that the eye can scaredy follow it; the two prosterior loranches of the lones of the tongue being much clongatecl, anil museles for its extersion attacherl to them. There is also at lone ghatul on each side of the lower jaw, which secretes a glutinwas muens, so that insects adhere to the horny tip of the tonguc. The W. generally makes almust no nest, but deprasits its eggs on framents of decayed wood in the hole of a tree. The young lirds are ensily tamen, and are great favourites with hoys. In France, it is eommon for boys to tie ar string to one of the legs of the bird, and to allow it to chmb trees in scarch of insects. It climbs readily on their cluthes. The name IV. is derived from the halit which the hind has of writhing its head and aneck quickly in various directions, with an umblating snake-like motion, which it does particularly if found in its hole in a tree, making at the same time a laissing noise, so as to alarm the jutruler; but on his ilrawing back, it sudiduly darts out aud esc:rjes.
WULSTAN, or WULFSTAN, and sometimes WOLSTAN, a namo of interest in comection with Anglo-Saxon history and literature. There are three individuals of the uame especially woticeable. -1 A monk of Winehester in the 9th c., author of a reem, in Latia hexameters, on the Miracles of st Swithin, which is reputed the best latin poem of that age produced in England.-2. An Archbishop, of Jork, in 1003 , author of two pastoral letters and several sermons iu Anglo-Saxon, the most remarkathle of which is printed in Hickes's Thexturus, vol. iii.-3. The well-known lishop of Worcester, ame a saint of the linglish calenlar. Ile was hom at leentmm, in Warwickshire, abont 1007 , and cdueated at L'vesham and Peterborough. He became a priest, afterwards a monk and prior of the monastery of Worester, and ultimately, in lug2, bishop of that see. He lived through the troubles of the Norman Conquest, and enjoyed the favour not only of the Conqueror, lut of Willian Linfus, and died in 1095, at the age of 87 . He is ly some reputed the author of the portion of Anglo-Saxon Chroniele which extends from IU.I.I to the deatl2 of the Conqueror.

WUUPPERTIIAL, a celebrated valley of lihenish Prussia (q. \because), derives its mamo from the river Wupper, or Wipper, a small alluent of the Hhine, which rises between the towns of Wipperfiirth and Huiekeswagen, 06 miles north-enst of Cologne. its course is first north, then nerth-west, past liarmen (q.v.) and lilberfeld (q.v.) -the chief town on its lanks-then south-west to its junction with the Thine betreen Wiesdori and lheindorf, 7 miles below Cologne, after a course of 50 miles. The waters of the Wupper are very abmant, and for the length of its course it supplies mative-power to an extraordinary number (about 400) of milla, of various kimels. It is navigable for small craft below Solingen (q.v.). The Valley of the Wupper is the most aetively industrious and most ilerisely peopled in all Germany. Coal is found in abondance.
WU'RNO, a town of the 1lansa States, Central Africa, IS miles north-east of Súkuto, on the Wufkuto, a tributary of the Niger. It is extremely filthythe: small ravine whicli intersects the town forming at most disgusting sprectacle. Liarth expresses his astonishment at the guantity of cotton brouglit into the market, which shewed what the fine vales in the vicinity are eapable of producing. The pol: is stated at from 12,000 to 13,000 .
wütitemberg, Tife Kingdom of, lies in $S^{\circ} 15^{\prime}-10^{\circ} 30^{\prime}$ E. long., and $45^{\circ} 35^{\prime}-49^{\circ} \quad 35$

WÜRTEMBERG.

N. lat., is bounded on the W., S.-W., and N.-W. ly the Grand Duchy of Baden; E., S.-E., and N.-E. by Bavaria; and S., for a few leactes, ly the Lake of Constance and Vorarlberg. Hohenzollem makes a deep indentation into the land from the south, and the entire boundary is very irregular. Detached pieces of territory belonging to W., alsn lie in the irljacent countries. Its greatest length, from the village of Simmringen in the north, to the Lake of Constance in the south, is 139 miles; and greatest breadth, from the liatzenkopf, in the Black Forest, eastward to the castle of Duttenstein in Nerestein, $10{ }^{5}$ miles. The following table gives the 1op., according to the census taken December 3, 1564, and the area in sq. miles:

Circle	Area in Square Míes.	$\begin{aligned} & \text { Fopralation } \\ & (1805) . \end{aligned}$
The Neckar, . " Black Forest, " Jagst, " Danube, Total,	$\begin{aligned} & 1285 \\ & 1843 \\ & 2956 \\ & 2418 \end{aligned}$	
	7532	1,748,328

The pop. averages 232 to the sq. m., in the Danube Circle falling as low as 173, and in the Neckar Circle rising to 399 .

The capital of IV. is Stutigart (q.v.), and there are 5 other towns in the kingdom with a pop. above 10,000 , and 10 more with a pol, above 5000 . The various districts bave no natural capital, and Stuttgart has uo rival as to pop. or importance.

Pleysical Aspect. -The surface of W. is composed of terraces of lill aud dale, the lowest point being 4:3 feet above the sea. lat the Black Forest Circle the mountains attain the lighest elevation, Baiershrouu being a7S1; Schwarzkopf, 35St; Gaiskopf, 345.5; and Lembers, 3313 fect above the soa. The yalleys and plains average 500 feet above the sea. Rich pastures, cultivated fichls, orchards, gardens, liills corered with vines, aud motutains with forests, give the most diversified scenery. In the southe:azt are extensive peat-lands.

Rivera, Lakes, fc.--The most important rivers are: the Neckar (q.v.), with its affluents; the Danube, which receives the lller; and the Tauber, a tributary of the Maine. The Neckar and its streams draiu $4200 \mathrm{sq} . \mathrm{m}$; the Danube, 2037 ; the rivers which fall into the Lake of Constance, 714; the Tauber, 315 ; and other water-consres, 165 sq . miles. The only lake in the interior is the Felersee, near Lueltau, in the Danube Circle. There is much traffic both by steam and sailing ships on the Neekar, and from Friedrichshaven, on the Lake of Constance.
lailwass hare been constmeted to the extent of 305 English miles, from liruchsal to Ulm, Ulm to Frielrichshaven, Bietigheim to IIall, Cannstatt to the Davarian lines, and from Plochingen to liottenburg. From July 1s6') to 1861 were carriel 3, 146,312 passengers. Tho gross reccipts amountel to 4,613,659 Horins, and the expenditure to 2,117,359 thurins, or 42.3 per cent. of the receipts.
The postal scrviee delivered $9,183,000$ letters and crossloand s'icets, $6,959,962$ newspapers, and $2,360,462$ prackets.

Geolo:y, Mincralony, de. -The prevailing rocks are granite, gnciss, limestone, and various sandstoues. Tournaline, cobalt, bismuth, silver, malachite, chalcedony, gyisum, colper, rock-crystal, and iron occur. Λ great variety of fussils have heen found. The peat-lands are extensive, and yield annually 450,000 florins. Fire-clay of excellent quality, earths for dyeing, and mative sulphate of lime, are worked. Building materials, from the
granite of the Black Forest to the tufa of the Alb Falley, abound. Clay-band ironstone, yielding from 30 to 86 per cent. of iron, is worked in cleven dificrent distriets, and salt in five. The mineral products have a probable annual ralue of $2,000,000$ Horins. There are many springs of mineral water, those of Cannstatt and Stuttgart being much frequented.
The climato is mild and healthy, lut in the highlands the winters are long and cold. When west winds prevail, the cold of winter and summer heat are less than in some countries in the same latitude. The greatest quantity of rain falls in summer. In 1861, the cereals and other field-crops occupied $2,623,33.7$ morgens of land; the forests, 1,919,311; hay and pasture, $1,1 \pm 8,538$; gardens aul parks, $101,50-\frac{1}{2}$ ancl the vincyards, 82,921 . The vineyards are chiefly in the Neckar Circle and that of the Jagst. The forests, grain, and pasture lands are nearly equally distributed throughout all the eircles. Wheat, uats, barley, rye, potatoes, beans, maize, turnips, mangold-wurzel, lucerne, de., are the principal agricultural products. The total value of farmjrodnce, including hay, was $118,576,730$ florins, to which must be added that of the rineyards, $3.750,293$ florins, and of the extensive orchards in all parts of the laurl. Cherries, dansons, walnuts, peaches, apricots, and the more common fruits, are larcely grown. Garden produce is valued at $3,500,000$ florins. The stock consisted of 79,711 horses, 957,172 horned leasts, GS3,S42 sheep, 216,965 piss, 43,714 goats, and 104,583 hee-hives: total value, 120,000,000 florins.

Manufachures, Industries, efc.-The manufactures are chielly linen, woollen, cotton, and silk fabrics. Wool and cotton spinning, bleaching, dyeing, printing, iron-founding, makin's inachinery, cutlery, gold and silver articles, glass, porcelain, earthenware, tile, cabinet-work, sawing wood, carriage-building, griuding corn, bouk-printing, and the cognate trades are principal industries. there are many oil-mills, beer-breweries, and brandy distilleries. Water is almost exclusively the motive-jower employed in the manufactories and mills. In W., more than $215,500,060$ bottles of heer, or 125 for each person, are collswned yearly, besides wine, brandy, and liqueurs. The total value of land, houses, railways, movables, \&c., is reckoned at 2710 million florins, and the income of the people at $276,000,000-$ $140,000,000$ being from land frochuce, 131,000,000 from the industries, and $5,000,000$ from interest on foreign funds. The exports are chiefly grain, eittle, wood, salt, oil, leather, woollen, cotton, and linen groods, beer, icc.
Reliyion, Language, Education, de-The population of Oll Wirtemberg is almost entirely Lutheran. The numbers of each denomination will be scan in the subjoined tahle from the census, 31 December 1561

Circles.	Erangelical Lutherans.	Ratholicy.	Other Chrintiams.	Jews.
The Neckar, . 1) Black Forest, " Jurst, " Danube, . Total,	$\begin{aligned} & 456,118 \\ & 318,065 \\ & 259,043 \\ & 146,588 \end{aligned}$	$\begin{array}{r} 36,838 \\ 111,747 \\ 113,114 \\ 265,358 \end{array}$	$\begin{array}{r} 1: 04 \\ 4215 \\ 347 \\ 342 \end{array}$	$\begin{aligned} & 3,015 \\ & 1,438 \\ & 4,249 \\ & 2,636 \end{aligned}$
	1,179,81:	5:7,057	2483	11,338

On the budget stood 710,000 florins for the Evangelieal Chureh, 365,036 for the IRoman Catholic, and 7000 for the Jews.

Several dialects of German are spoken, of which the Swabian and Francomian are the most general. W. has been the native country of many distinguished men, of whom a few may he mentioucd. In poctry:

WÜRTENDERG-WÜRZBULG.

Schiller, Cllamb, Wielanl. Kerner; in theology ant fhilosophy: Breat:: UEolampadins, Benget, Laur, atal Strauss, Cinstavis Werner, \&e.; in scicnce and art: Kerper, Stiefl, Tolias Mayer, the butanists Theq hand Karl lriedrich Gairtner, the chemist Sehouhcin, the painters Elechard Wichter, IFetch, and the famed senhtor bannecker.
livery chidd lectween 7 and 14 years mist attend sthonl. In a district having :3) or more families, is a jomblie school, and a teacher for every 90 children. There are four I'rotestant theological seminarics, with a course of four years; gymussia, grammar, trades, and linh selonols in all the principal towns. The miversity at Thbingen has 41 ordinary professors, 9 (xtrandinary, and 19 tutors. In istis1563 , the students numberel 623 , of whom 167 were forcigners. At Hohenhein is an asricultural and botavical institution, in which farming, manarement of forests, and gardening are seientitically taught. situtgart hats a piolytechnic school, with 25 teachers, 9 assistants, and, in the summer of $180 ; \%, 245$ pupils. The goverument nutlay on education amomes annually to 76,702 Itorins.

Revenue, Espenditure, dre-For the year 1S631564 , the revenue was $10,039,65 S$ ilurins; expenditure, 15,727,547. The civil list and alpamages amount to $1,127,192$ florins: interest of the national deht, $3,285,0 \pm 0$ therins. Of the income, $6,5 \geq 4,599$ florins came from phblic property, and $!1,10,0,08$ florins from direct and ohlher taxes. The ratways yieldel $\because, 045,000$ thorins, and the post-office $-46,000$ thorins of clear revenue. The streugth of the army, including the reserve, is 20.583 men.

Gorernment, arr-'The crowa is herelitary in the male line, and failing that, in the female. Frectom of the press and religion are enjoyed. The privycouncil consists of a president, the six ministers of state, and members uames by the king. The legislative borly is compued of two chambers -the first being formed of princes of the royal family, nobles, and members appointed liy the king, the last named not exceceling a third part of the whole; the second chamber is compused of 13 representatives uf the knighthood, 6 Irotestant general superintendents, the chief bishop, a member of the eathedral chapter, the senior Jioman Cathulic deacnn, 7 representatives from the cities Stuttgart, Tubingen, Ludwigsburg, Ellwangen, Clm, Heilbronn, and Rentlingen, with a representative from each of the 63 bailiwicks. Memhers of the second chamber are not cligible as such before raching their zuth year. The Fing has the power of froroçuing or dissolving the chambers; but in the latter casc, a new cloction must take flace within six months. So 1 mg as there is no incoting, the two presidents. two members elected out of the first, and cight out of the stcond chatuber, carry on the public linsiness.

Mistory.-The earliest imhanitants of W. were probally Celts; but when the Romans came first to know the country; it was held hy the Suevi, who were succeded lyy the Alemanni and the Franks, In 1000, Comad, Coment of Wiartemberg, pestessed a cast'c near Caustatt, and limited territorics, which were larrely added to by Ulric I. from lise to 1265 . Other extensions wo gained liy liberhard 1. between 1279-1:25; by Ulric 11., who, though a man of peace, added Tiil)ingen; Eberhard 1I., who scenred 'Teck, Gutenberg, Kirchhein, Herrenber:, aul other places. lby the marriage of Jeherlturd IN: with the Comitess of Monthétiari, that county became connectel with Wurtembers. At his death, the possessions were divided letween his two sons, each of whom enlarged his portion ; and a few years after their denth, Eberhard Y. secured a reuninn, and the land advanced rapidly in power
and importarec. In 1495, the Limperor Maximilian maised lherhare to the rank of louke, with the title of Liberhard 1. In I5lO, Duku L'hich havinir whendect the swabian League hy some arlitrary acts of "ppression exereised mon the imperial free eaty of licutlingen, he was forcilly ejecterl from W., imel
 harl 111. was Duke ($1628-16.4$), 11. sullered much in cunsegnence of the 'Thirty L'cars' War, Lulwing Engene ($1503-1505$) laving tasken part in the war arainst the Frenchs lepmblic, a lrenels army at tackal and compelled him to resign Muntbéliand, and pay S , 100,000 franes.

With Duke lioeterick 11., who suecected his father in 1797 , the ruost important ferine in the history of W. Leyins. In 1Sou, compelled ly the French to 1lee from his thaketom, he got loack, hy the l'eace uf Lunciville, all his territories exeept Monthéhand, and instead, had others granted, with the rank of Biector. Having aided Nippoleon in the war against Austria, at the l'ate of I'resburs ((ath December 1S(1.), W. was further enlarged, anit mate a kinglom. -1 fter the battle of Leipais, Frederick abanduned the cause of Faproleon, and concluded a treaty with Anstria, in which his lands were guaranteed. Ilis reign was arbitrary; and intermal troubles were thickeuing around him, when he died (30th October 1816), and was succected lyy his son, Willian I., who was born at Luhin, in Silesia, vith Scptumber 1:S1. Lle was cordially welomed to the throme, and the expectations of his sulbjects were realisech. II first acts were to reduce the expenciture, and introdnce other reforms, prominent among which was the liberal constitntion of 1819 . In 1Sts1Sゴ), a strong avitation was legt u1, with the view of ubtaining some permanent modnlications in this constitution, but withont success. For nearly 50 years, he reigned over a people stembly increashim in Mrosperity, and diced 2 th June 1 Sbit, it liosenste in C'astle. Hlis sou, Charkes l'rederick Aleamder, now Charles 1 ., burn $\$ 1$ arch 6, 15 ± 3, succeeted him. Sice Germiny, in Supplemest.

WÜHZBURG, a former sovereign hishopric or ecelesiastical principality of the (icrman Limpire, was foumbed in 741 (accorting to other accounts, itㄹ or $i 46$), and received cmilownents from the Frankish kings, which were aitcrwarls increased by the Cierman emperors. The tirst bishop was Burkhardt, who was eonsecratel by lioniface. The patron saint was kilian (q. w.), who is said to lavee preached the gospul here as carly as iss. liy goml management and ceonomy, the bishops were alje to acquire mumerons possessions of the neighbouring Frankish propuietors; and out of these was gradually fomed the extensive sovereign bishopric of II., ruled over by the prince-bishep as Duke of Franconia. The theal title and antherity were first conceded abont 1 i in). In spirituil matters, the lishons were muler the Archbishop of Mainz 'The area of the bishmpric was as mmeh as 1527
 of 500,000 gnldens. αt the l'ace of Lamérille (IS01), the hishoprie of WI., like the other spiritual principalitics of liermany, was secularised; and in 18U3, the greater prart of it was conferred on the Elector of Bavaria as a secular principality: The last prinee-bishop received a pension, and died at lambery in ISUs. At the l'ence of l'resburg (180.5), Bavaria gave up W. to the Crand Wuke l"erdinamd of Tuseany, and the principality was raised to the dimaity of an clectorate. ln 1506 , the Lelectur Furlinand juined the Confelcration of the lihine, and from that time took the title of Grand Duke of Wiuzalnarg. By a decrec of the Vienna C'ongress, the grand duke received lis hereditary state of T'useany; aud W. reverted to Bavaria, At yreseat, the greater

WÜRZBURG-WYATT.

part of the bishopric belongs to the circle of Lower Franconia.

WURZRURG, eapital of the former principality of Witrzurg, now of the Bavarian circle of Lower Franconia, is situated in a beautifnl ralley on both sides of the Maine, over which there is a stone bridge 600 feet loug, of eight arches. The number of inlabitants amounts to $41,0 \mathrm{~s}_{2}^{2}$, of whom "כ(k) are Protestants. Among the pulbic buildings, the most distmguished are the Episcopal Palice or Lesidence, rebuilt in 1520-1711, one of the most magnilicent royal residences in the world ; and the spacious and excelleatly fitted-up Julius Hospital, established in 15.6. Of the numerons churehes, the mast wortlyy of notice are the richly-decorated cathedral, which was rebuilt in the 11th and following centuries; the Marien-kajelle, one of the most leantiful monuments of nld German art, with 14 statues of the 15 th c. by Tilmann Riemenschneider ; and the Xenmiinster Churel, containing the bones of St Kiliau. The streets adjoining the Palace Square are vide aud straight, but most of the others are marrow and crooked. In front of the Julius Hospital there is a bronze statue of the founder, Bishop Julius, ly Wiedemann, founted in bronze by Miller; a monument of Walther von der Vogelweide (q. v.) stands iu a niche ontside the Nenmiaster Kirche.
The university of 11 . was founded in 1583 by Bishop Julius, vilo also fomded the hospital alsove mentioned. The endowments for both institutions were taken from the possessions of the convents that were destroyed during the Peasant War ($\mathrm{q} . \mathrm{v}$.$) . In order to promote the study of medicine,$ the hospital was put in conneetion with the university, the professors of medieine being made physicians and surgeons to the hospital ; this connection has all along kept the medical faculty in high reputation, and promotal the prosperity of the wuiversity as a whole. The present melical staff includes several nanes of European reputation, among others, Külliker (q. v.) and Virchow (see Supplement). In the law faculty, a professorship of Frencl law was established in 1 S 21 for students from the Phine districts. There is also a faenlty of political economy. The library contains above 100,000 vols. Iu the Musical Institute, any onc can receive instruction gratis in singing or in playing on any instrument; and twice a week there are great musical iieces performed. In W., besilles the university, there is a gymuasinm, a Latin school, a district acriculturai and trade school, a seminary for Catholic priests, and a seminary for training teachers, an orthopedic institution, a yeterinary school, a school for midwifery, a swimming school, a suciety for the improvement of the arts and manfactures, and a female society for the cneorragement of skill in arts and liandicrafts amony women. Busides the Julius Hospital, there are asylums for the deaf and dumb and for the blind, and other charitalle institutions. The manufactures are woollen stntis and cloth, mirror-glass, leather, tobacco, railway carriages, aul sparkling wines. The furtress of Marienberts, built on the site where Drusus fombded a castle, is sitnated on a hill 400 feet high, on the left bank of the Maine, outside the town, and was, till 1Jこ0, the seat of the lishops. On a slope of that hill, called the Leiste, the Leistenwine grows, and on the Steinlerg, opposite the fortress, the Steinwine. W. is connected with many important places by railway:
TWÜRZEN, a small walled town of Saxony, I5! miles cast of Leipzig, jucturesquely situated and surronnded by romantic valleys, on the Mulde, here crossed by two brilges. Pop. about Gove,
employed in brewing, lleaching, weaving, and hosiery-work. It is a station on the Leipzing and Dresden I'ailway.
WYANDO'TS, a tribe of North American Indians, of the Iroquois family, the Hurons of the French writers, who callecl themselves Wendats or Yendats, first known at Montreal, where, in the middle of the 17the., they became Iioman Catholies under the instructions of the French missionaries. Having. as allies of other tribes, beeome involved in a war with the Iroquois, they were nearly exterminated, and the remnant emicrated to the country around Lake Superior; then gathered at Mackinaw, 1670, under the care of Father Marquette, thence came to Detroit, where they furnished 400 warriors to the English in 1812. In 1829, they were settled, to the number of 600 , on the head-waters of the Sandusky liver in Ohio ; and in IS3?, by a treaty with the Unitcd States government, removed to Kansas, where the few remaining have acquired the rights of citizenship, each having of their divided lands a farm of 40 acres.

WYATT, Richard Johns, an Euglish sculptor of great eminence, was born in Oxford Street, London, ou the 31 of May 1705 . He lelonged to a collateral lranch of the family which made the name of 11 yatt famous during tro centuries in connection with architecture and sculpture, sharing their descent from a stock of yeomen long settled at Weeford in Staffordshire. Haring the lias of his family tuwards art, he beeame an articled pupil of Charles Rossi, M.A., sculptor, and aftermards a student of the Royal Acadeniy, whose medal was twice awarded to him during his pupillage. He afterwards passed some time in Paris, studying under Bosio ; and from Caris, in 1821, he went to Rome, and entered the studio of Canova, where he had Gibson for a fellowpupil. The remainder of his life was spent in liome, in complete derotion to the prosecution of his art; and he died at Rome on the 29th of May 1850. His youth had shewn great promise, in the estimation of painters like Lawrence and senl ${ }_{1}$ tors like Canova; and the works which he prodneed in rapid succession, early placed him in the front rank of English ecmptors. Neveral of his works were shewn at the Great Exhibition of 1851, and the medal for sculp. ture was awarded to him, thongh he had died in the previons year. Living only for his art, he laboured at it incessantly-often, it is said, from dawn till after midnight; and the number of his works is very great. Elegance and refinement, singularly comblinet with animation and finish of workmanship, are his characteristic merits, but lis vorks also disclose a lively aud graceful invention. His favourite subjeets were classical and loetical. His most adnired productions are in England, and casts from several of them are to be seen at the Crystal Palace. He ras nut almitted to the honours of the Academy; a by-law of that institution confining its membershij, to artists resident in England.
WYATT. Sir Thonss, was born in 1503, at Allington C'astle in Kent. His father, Sir Heury Wyatt, of a family originally of lorkshire, stood high in favour with Hemy VII. : and not less so with Heury VIH., who succceded him. In 1515, the young W. was entered at St John's College, Cambridge, where in due time he took his degrees of Bachelor and Daster of Arts. Whilst still very young, he was married to Elizabeth Brook, daughter of Lord Cubhan. Throngh his father's influence, a eareer at court was onen to him. In this sphere he was thoroughly well qualitied to succeed; he was one of the must aeconplished men of his day; of a noble presence and fue manners, and withal dexterons and subtle in the management of affairs,

WYATT-WVE.

thonegh of umimpeached honour and integrity. In $15: 36$, he reccived at the hands of the king the honour of kaighthood; and the next year he was made ligh sheriff of Kint. Though necessarily involved in meh perilons cont intrigue, he enn-timed-thongh once or twice in some hazard of losing it-to retain the farour of the king, and was frequently employed by him in prositions of trust and importance. Ilis chicf service was rendererl, as English ambassador at the court of Charles V', in wheh capacity he aequitted himself with much diplomatic tact and skill. In 1542, in token of the king's appreciation of his scrvices, he receivel a sraut of lands, at Lambeth; aud the year after, he was named high steward of the king's manor at Maidstone. He had now very mnch withirawn himself from mblie life, and lived for the most part retired at Allington. On the llth of October 1512, he died at sherborne, of a fever contracted, it is said, on an uverhasty jommey caused by a sudden summons to attend the kinc.

Among the other accomplishments of W . was that of rerse, which he secms to have legun to enltivate early, and contimed throwh life to practise. During his life, he had nequirel considerable reputation as a poct ; and in 1557 , his poems, along with those of the celehrated Surrey, were publisheil in Loulon. As marking in stage in the progress of ont carly literature, they hold a permanent place. His love poctry is somewhat overrm with conreits derivel from the stuly of Italian moolels: hat some of the shorter pieces are models of grace and degance. His satires also possess very considerable merit. More lately, in 1815, an edition of his works, in two volumes, was published in London.
WYATT, SIt THomas, sumamed ' the lonnger,' to distingnish him from the preceling, of whom he was the only son, was bom abont l5:3. After a wid and riotons youth, he rassal at boly of men at lis own expense, aut diel goorl service at the siege of Laudrecies ($\mathbf{5} 54$), displaying eonsiderable military talent ; and contimued in honourable service on the continent till 15.50. In 15.54, when the Spanish matel was in agitation, W. jomed the insurrection, and led the Kentish men to sonthwark, after gaining considerable suceesses owr the royalists; hut fullior to capture Judgate, he beeame separaterl from the main loody of his followers, amb was taken 1 risoner, and soon after cexecnted, 11 th $\AA_{p r i l} 1551$.

WYCLERLEY, Wraram. a eomic dramatist of the period of the licstoration, was lum at ('live, near shrewsbury, in 16.10 . 1 lis father , a cavalior
 are of 15 ; and during his resitenee on the banks of tho Charente, the youth was if favomrite at the comet of the gosernor of Angouleme, whase accomplished wife, the Madane Jambonillet if Veiture, "onverted him to the creal of the ('hurch of lime. On his return to Englamd in 1660, W. sturlied a short time at Oxford, where he was reemeiled to the Anglican Church, and he was entered us the Nietule 'Temple. His first comely, Lore in a Wood, was acterl with great ipplanse, nut publisherl in 1672, and it was followed by three other successful comedies, The Genthmun Drencing-muster, 167:; The Country Mife, 167\%; ant The Plwin Dealer (his best work, " 1677 . Alsuit 1680 , the dramatist was marricd to a young aut rich widow, the Comentess of 1 rogherla, whom hi: had met at Tunbritge. The lauly was listractectly jealous of him, kept him from frefmenting the conrt, which lost him the favour of the king, and watched him closely where ver he went. She did not live long, and she left him the whole of her forture; but his succession to the estate

291
was disputed, and an expensive lawsuit ensmed, the eosts of which, arlder to personal delts, fairly hroke down the unlucky dramatist. Jie was eommitted to the lleet, and suifered to languish there negleoted for seren years. He was partly relieved by the bounty of James II. probahly because be returned to the commmion of the Church of liome-and he succeeded to the patrimonial estate in Shropshire by the death of his father. This rite not, however, much relieve lim, as the estate was heavily mortgaged, and strietly entailed. He was on lail terms witlo the heir-at-law, his nephew; and on [urpose to injure this relative, W., at the age of 7.5, married a young girl, on whom he settled a jointure; and eleven days after this transaction-the last and perliaps the most scautalous act of his life, as Macmulay describes it the ofd dramatist died. His death took phace in Decumber 1735, and he was interval in St Paul's Church, Covent Garden. Besides his comedies, W. 1uhlished a volume of wreteleed Miscellemy looms, 170t; and another volume, partly consisting of 'moral redlections,' was publisherl after his death. The comedies of W., on which his fame rests, reflect the literary taste, the manners, and vices of the times in which he livel. They are, in trath, grossly immoral and profligate. They lave, however, some literary excellence. The language is elear and forcible, the dialognes often witty ancl lively, some of the characters vigoronsly drawa, and the ohservations and maxims scattered throughout the different scenes are shrewd and sensible, and expressed in a terse sententious style. W. was the founder of that school of artificial comoly whicha Congreve, Farquhar, and Shericlan carrichl to its highest perfection, imparting to it an airy grace and mrilliancy far above the reach of its lirst master.
WV゙COMBE, Chmpiac or Hicat, a municipa? and parlianentary bowugh in Bucks, surromated by becels-clad hills, ¿S miles west-nortli-west of Londen, on the Wye, a small alluent of the Thames. Tho church of All Saints is a large and handsome mildinfor, erectel in $1: 273$; it is in the Norman and early Euglish style of architecture, and consists of a borly and two risles, and, with the elancel, is 180 feet long, and the mave 48 fect high. The tower is 96 feet high, and was hailt in the vear 15wi. Thure are cora and paper milts on the TVye; beech-woot chairs are made here, and lace-making is carried on. At two miles' distance is the village of West Wycombe. The boronch returns two members to the House of Commons. It is connectel with the (ireat Westeru liailway. Pon, (ISG1) of muncipal borongh, 4221; of parl. 1. (which includes Chipping W^{\prime}. combe townskips), ssi3. (1571-10,492.)
WYE, a river of Knglaud, of great pieturesque beanty and considerable importance, an alluent of the Severn, has its origin in two cophims springs which issue from the south-east site of Plinlinmon, not two miles from the lead-water of the serern (1.v.). It flows in a sunth-east direction thrown Nontgomeryshire and lialnorshire, forming the south-west and sonth boundary of the latter, east-sonth-cast to the middle of Hereforlshire, and then sonth, dividing in its lower course the comaty of Momonoth from that of Gloncester, and entering the estuary of the Severn below Chepstow. Length of course 130 miles, for 70 miles of which to $1 f$ ereford it is uavigable for barges, though large veasels can. not asoead above Chopstow bridge. At Chepstow ($\mathrm{g} . \mathrm{v}$.), the tide rises higher than at almost any other place in Creat Britain. The chief afluents of the W. are the layg and lthon on the left, and the Dlomow, the C'aerwen, and Ifron on tho right. The part of the river which separates Monmonth from

Glouccster is that chiefly visited for its singular heanty.

WYKEIIAM, Willlam de, was bormat Wiekham, in Hampshire, in 1321. He was ellucatel at Wiuchester. The first office which there is evidence of his having held is that of clerk of the king's works, in his manors of Henle and l'ethampsted. The patent is dated May 10, 1356. He rose quickly in royal favour; and on October S, 1366, by the king's recommendation, he was electerl Bishop of Wiuchester. He was consecrated October 10 of the year following. Meanwhile, he had been appointed Lord High Chancellor of England ; in which office Lhe was confirmed September 17, 1367. He resigned on March 14, 1371, on a petition being presented to the king against the government remainiug too long in the hands of men connected with the church. He now devoted hinself to various objects of lasting usefulness. His preparatory colluge or school at Winchester was opened for teaching in 1373 ; but the building of the college was not begun till 1357. It was finished in 1393. In the college which he instituted at Oxford, teaching had also beglin in 1373; but the building of 'St Mary's College of Wiuchester in Oxford' was not begun till 1350 ; it was finished in 1393. He hegan the rebuilding of Winchester Cathedral in 1395, and jnst lived to see it finished. Meanwhile, he had become the object of resentment to the Duke of Lancaster and party, at whose instance he was indicted for pecuniary defaluation, and other crimes alleged to have been committcd by hin as Ficeper of the I'rivy Seal and Lord Chancellor. He was heard in 1376 before a commission of peers, lishops, and privy councillors, declared guilty, and a severe senteuce was passed upon him. It was, however, ultimately commuted into a fine, which was remitted on the accession of Richard II. in 1277. He was one of the conncil of 14 appointed to the kine in 1386, and in May 1389 he was again made Lord Chancellor. He continned in office till September 27, 1391, when he resigned; and from this date he appears to have taken little active part in public affairs. He was present in the parliament held on September 30, 1399, when Richard II. was deposed. He was also present in the first parliament of Hemry IV. He died at South Waltham, September 27, 1404.-See Life by Dr (afterwarls lishop) Lowth (Lond. 1754), himsclf a distinguished alumuus of Winchester School. W. of Wykeham was one of the most munificent benefactors of the English Church; but he was not a famatic. He loved learning, order, civilisation, and purity of manners; and as Bishop of Winchester, signalised himself by his rigorons reformation of ecclesiastieal abuses; but he had not the slightest temlency towards Protestantism, affording, in this respect, a most striking eontrast to his great contemporary Wicliffe (q. \%). W. of Wykcham may be taken as the type of a class of English Churchmen both lefore and after the Ieformation-men who are ilcstitute of zeal on questions of doctrine, bat zcalous for the dignity, culture, and practical elliciency of the church.

WYNTOUN, ANDREw, an old rhyming Scottish clronicler, lived in the begiming of the $15 t^{\circ} \mathrm{H}$ century. Execpt that he was prior of the monastery of St Serf on Loch Leven, and wrote The Orygynale Cronykil of Scotlund, well known and valued by students of that kind of curious literature, almost no infor-
mation regarding him has been preserved. Though with the usual proportion of extravagant fable, his work is not without considerable historical importance ; while philologically it has very distinct value, as a specimen of the old Scotch, then as nearly as may be identical with the contemporary dialect of England. The Orygynale Cronykil consists of nine books or cantos, of which only the last four are devoted to Scottish history; the first five giving a fracmentary ontline of the history and geography of the ancient world. W. was probably a well-read scholar for his time. He repeatedly quotes such authors as Aristotle, Galen, Livy, Josephus, \&e., and seems familiar with Virgil, Horace, and Ovid, Origen, Jerome, and Augustine. His style is not essentially different from Barbour's, and his versification is the same-the pleasant octo-syllabic. In 1795, a splendid edition of this curious old work was published by Mr David Macpherson, in 2 vols. octavo, from the MS. in the Library of the Dritish Museum.

WYO'MING VALLEY, a beautiful, fertile valley on the Susquehanna River, in Pennsylvama, U. S., 21 miles long by 3 wide, surrounded by monntains 1000 feet high, its name supposed to be a corruption of the Indian Maughwawwame-large plains. It was purchased about 1765 by a Connecticut com1any from the Delaware Indians; but the settlers were soon dispersed by hostile savages. In 1769, 40 families came from Comnecticnt, but found a party of Pennsylvanians in possession, and for sercral years there were continual contests of the settlcrs with the Indians, and with each other. The Connecticut colony finally succeeded, and their town of Westmoreland had 2000 inhabitants. In 1726 they armed for their own defence against the English and their Indian allies; but in 1775, most of their troops were called to join the army under Washington. June 30 , a force of 400 British provincials, or 'Tories,' and 700 Seneca Indians, led by Colonel John Butler, entered the valley, and were opposed by 300 men, under Colonel Źebulon Butler. On July 3, the settlers were driven to the shelter of Fort Forty (so called from the original number of families), with the loss of two-thirds of their number, many soldiers and inhabitants leing murdered, a lialfbreed Indian woman, called Qucen Esther, having, in revenge for her son's death, tomahamked fonrteen with her orrn hand, near a rock which lears her name. On the 5th, the remnant of the troops surrenderch, and they and the inlabitants were either massacred, or driven from the valley, which was left a smoking solitude. Campbell's Gertrude of Jryoming, founded upon the stories of this disaster, contains exaggerations and misstatcments, notably that of attributing the leadership to Brandt, who was not in the expedition. It was not till the commencoment of this century that the disputes between the Connecticut and Pennsylvionian settlers were finally disposed of. The valley is now one of the most flourishing districts in the state.

Wyvern.

WY'TERN, a fictitious monstor of the middle ages of froquent occurrence in heraldry. It resembles a dragon, but has only two legs and feet, which are like those of the eagle.

X

G＊TIll：last lether of the proper Latin alphaibet，and the last lint two of the Fhiglish．It is in reality a superilu－ ans character．heing crpasaleat in English，as it was in Jatim，to lis or gr．In form，it enrresumuls to the Greek x ，lut in power to（ircek y．lt was a later adlition to the latin alphalet，has－ ing been introluced，aceording to Corssen， letween the time of the Decemvirate and the fall of Veii：this aceounts for its position in the alphabet．Sonne lioman sclolars did not acknow－ lelse the character，but wrote $c s$, ，$/$ s insteal ；and this substitution freguently wecurs in inseriptions （o．：s．，ucsori for uxmi）．At ane period of loman literature，$r s$ was often written for x ；＂．g．，sexsum， lexse In the pepular frommeiation，the guttural eloment of the character gradually disappeared，until， in the later period of the Empire，x was undistin－ guishalle from s, s or 8 ：thus，inseriptions shew risit for rixit，milex for miles．This change surrives in monlern Italian，which sulsstitutes ks or s for the Latin x ，as satso $=$ saxum；stranco $=$ extranemm； and nses 3 ouly in forcign words．In Spanish，in the begming of worls，x has at guttural souml， something between ch and $\%$ ．In German，the use of x is mustly confined to foreign words；in mative worls the soum is usually represented by ches，as arachsen，to wax or grow，though some write，e．g．，aue for arhse．－In Algebra，x is the nasual symbel tor the unknown quantity which is to lee determinet．

スヘNTHEIN゙E AND XANTHINEOF FLow kisis．The colouring matters of various finwers lave been earefully examined ly Fremy and Clocz，who believe that the varions tints may lie referred to three distinct substances，of which one is of a hlue or rose colour，while the other two are yellow．These pinnents have received the names uf ryonime，Junthue，aml Xentheine；the first heins ilerival from the（ircek ligunos，skiollne ；and the last two from rumthen，yelluw．None of these sub－ stances have，however，leen extractel in a pure condition，and hence nothing definite can be stated regarling their composition on propertics．

NANTHINF，Or XANTHIC OXIDE $\left(\mathrm{C}_{10} \mathrm{II}_{1} \mathrm{~N}_{11} \mathrm{O}_{\mathrm{A}}\right)$ ，was tirst descraber by Dr Marect，who reqarded it as a very rare constitnent of urinary enlenli，and from its emposition he gave it the name of uric ortice．Durine the last ten yars，it has been proved to be a normal ingredient（althomelh to a very small amont）of haman mine，and has heen fomul in the brain，the spleen，the pancreas，and the liver uf the ox：in the thymus elimil of the ealf；and in the muscular tissue of the horse，the ox，and of tishes；as well as in the liver of various anmals．Calculi composel of this substance are axtremely rare，the total known mumber obtained from the human subject being less than half a dozen．They are of a light－brown cimamon colour， assume a waxy appearance when rubbed，and consist of concentric layers casily selarable from oue another．Xiunthine occurs in such very ninute
quantities in the various tissues，and is so rare an ingrevient of calculi，that it is maneessary for us to mater into any description of its properties， further than tus state that，when dricul，it exists as a jellowish white jwwder，which assumes a glisten－ ing ajpearance when rubbed，and exhilhits na sigus of erystallisation mader the microscepre；morcurer， the chemical difliculties of detecting traces of this sulsstanee are so great，that we shall mot attompt to deseribe its tests．It secins to le inturmediate to mric acil and hypoxanthine，louth in a chomieal and a playsiological pront of view．The eomposition of uric acid is represented ly the formala（ $\mathrm{C}_{2}, \mathrm{I}_{4} \mathrm{~N}_{4} \mathrm{O}_{6}$ ， that of xanthine by $\mathrm{C}_{10} \mathrm{Il}_{1} \mathrm{O}_{4} \mathrm{O}_{4}$ and that of hypoo xathine by $U_{50} 1 I_{d} N_{4} 0_{1 .}$ ．The former two nemer simultancously，not only in the urine，lat in the spucen，the liver，and the brain；while aanthine is not ouly invariably accompanicd lisy large or smaller innantities of hypoxanthine，but the labler can lie made loy the oxudising action of nitric acid to yicld a product irom which xanthine（in juace of hytwanthine）may be obtained ly a process of reluction．Nanthine must be regnridel as a higher stane of oxidation of hypoxanthine，and a proilnct of the regressive metamory hosis of the tissucs，whel， in the ordinary condition of the system，is exereted in a more highly oxidised form of urea，mje acid，\＆e．
This sulstance is stated to have heen fomm loy fiubel in some miental bezoars，extracted from the intestines of ecrtain rmminating animals．It is most prubable that the sulposed bezoars were in reatity urinary caleuli．

XANTIIIPPE，the wife of Socrates，lias acquired the reputation of having lewen an arch－ termagant，doubth＇ss not without some fommation． It ought，however，to be remembered that her naturally intirm temper must have leen not a little tried by the small ecmeern manifested ly Suerates in the regulation of his domestic affairs，which appears ereasionally to have made it ditficult for X．to＇make hoth eads nuect．＇Socrates himself，it is known，haul completely mastered his naturally strong appetites and passions，and had acyuired a temper of jerfect serenity：it is quite natural， then，that contrast－lovers and story－mongers should， as it foil，matelı so great a practical philosupher with a woman of such an ungovernalle temper as \therefore ．is said to have been．Slie herself，if we can trust llato，appears to have really hovel her husband，and he at his death committel her tenderly to the eare of his frimels．Many sturies are tohl of her，as of every other motable character in Listory，to illustrate her peculiar temlency，lut it is diffent to say how mach eredit onght to be given them．

XANTHORLH IE＇A．Sce Griss Trem

FANTHOOXVIUM，a genus of trees amil shruls． the type of the natural wrder Ximthoxyletere，an order closely allied to liutacer，and chicdly distin－ gnished from it by unisexnal flewers，inclaling more than 100 known species of trecs and shrubs， having opposite simple or pinuate leaves with

XANTHOXYLUM-XANTHCS.

pellucid dots, and no stipules, chiefly natives of warm climates, and more Iarticularly of the warm farts of America. The order is generally characterised ly pungent and aromatic qualities, which are strongly developed in the genus \hat{X}. itself. X. fraxinelun, a Nurth American specics, a very low, deciduons tree, with leaves somewhat like those of the ash, cummon from Canada to Virginia, is called Toothache 'lifee, from the use made of the hot acrid lark and capsules fur the relief of toothache. It is also in high repute in the Uuited States as a remedy for chronic rhenmatism, for which it is administered in the form of a prowler,

Xanthosylum fraxineun.
in loses of from ten grains to half a drachm three times a day. Some of the species are popularly called Peppers in their native countries, as in India and Japan, where they are used as a substitute for pepper. The bark of \mathcal{N}. fraxineum is a powerful sudorific and diuretic, and other species possess similar qualities; some are febrifucal, and the seeds and unripe capsules of some are gratefully aronnatic. - To the order Janthoxylaccece belong the Ailasto ($\mathrm{q} . \mathrm{vo}$) and the Wimte lkos-wond (I epmis undulatu) of the Cape of Good Hope, the wood of which is very hard and tough, and is much used for agricultural imblements.
XA'NTIUUS, the name of the capital of the ancient Lycia. anciently called Arina, a city of the Tramile, or Solymi, the primitise inhabitants. It lies at the south-west corner of Asia Minor, and near the village of Kounik. From the earliest historic times to that of Croesus, the Lycians arpear to have been independent under native rulers: but after the fall of Sardis and the eapture of Croesus, the Persian conqueror Cyrus sent an army for the conquest of Lycia, led by Harpagus, in 546 e.c. The most desperate resistance was made by the Lycians, and the people of X . burned themselves in their citadel, rather than surrender to the conqueror, only So fanilies surviving the catastrophe. Reduced to a l'ersian satrayy, they sent 50 ships to the expedition of Nerxes against Cireece, and contributed to the revenues of l'ersia. Little is known of the history of this town till the days of Alexander the Great. Alexander took \mathcal{N}., which is said to have made as determiued a resistance as it did on the former occasion. In the war which ensuenl amongst the successors of Alexander, I'tolemy touk \boldsymbol{X}. from the garrison of Antigonus: and the city subsequently passed into the possession of the I'tolemies and

Seleucids. After the clefeat of Antiochus, it was ceded by the Romans to lihodes, but sulsequently had its liberties restored. In the civil war betreeen Erutus and the Triumsirs (4% д.c.), X. was taken by Prutus. The inhahitants a third time destroyed themselves and their familics, and few survived the capture. From that time, X. Lelonged to the Roman Empire, and suffered in the earthquale in the reign of Tiberius; but Lycia cid not lose all its freedom till the time of Clandins, who reduced it to a prowince. \mathbb{I}. was situated 70 stadia, or 9 miles, from the sea, on the left bank of the Sibres or Sibrus, the Greck Xanthns, or Yellow River, on a I lateau of elevated gronnd, of nearly rectangular shaje, the elevated parts close to the river risiug 200 teet. The most remarkable edifices in the city and its ricinity, ascording to ancient authors, were the Sarpedonion, or Temple of Sarpedon; that of the Lycian Apollo; and Letôon, or Tempile of Leto. On the elevated ground, or Acrorolis, stood the so-called Harpy 'Tomb, and an ancient theatre of Greek workmanship; while in the other part of the city which lay to the east was a mixture of Greek and Ioman buildings. The whole city and its enrirons contained numerous temples and tombs. The discoveries of Sir C. Fellors in 1 S3S revealed the city of $\overline{\text {. }}$, its temples and its monuments, and they applear to fall into the following classcs: 1. The sepulchres of the early inbabitants, placed inside the wall in shape of square columns, with step-shaped bases, and sepulchral chamber on the summit. The most remarkable of these is the Harpy Tomb, so called from the sul,ject of the basreliefs being the Harpies bearing off the daughters of landarus, king of Lecin-executed in a style resembling the earliest efforts of oriental Greek art. A nother, with a frieze of lions and hunters in Persian style, and the inscribed obelisk, with long Lycian inscription and some Greek verses, apparently of the time of Artaxerxes Longimanus, and made about 4 CG E.C. 2 . The tombs of the age of the Persian subjection, with roof-shaped tops and ridges, and imitation of woodwork, the sepulchral chamber for the 1 rincipal dead being at the summit, the others in the middle and base, the sides ornamented with reliefs of a later style of art. Of a later style, but of more beautiful art, was the Ionic peristyle temple or monument of 14 columns, with a solid cella, placed on a base or pedestal, both temple and base ornamented with friezes, surposed to represent the conquest of Lycia by Harpagns, aud with figures betreen the columns. The friezes represent hunts and feasts, the combats of Lycians and Persians, and taking of the city of X . by the latter-the whole treated in a style nct unlike the school of Phidias and his successors. These sculptures have been supposed to represent the exploits of Harpanis, or the suppression of the revolt of the Cilicians by a Lycian satrap, and to hare been made between 450 and 357 b.c. This temple was discovered by Sir C. Fellows in $1840-1811$.

The language found on the monuments of Lycia, written in an alphabet of 25 letters, is an Aryan dialect, distinguished by a preralence of rowels. The letters, with two exceptions, are archaic Circek, and borrowed from by no means the oldest furm of that language. The syntax and inflections are Aryan Indo-European, Zut many of the roots are different from the languages of that family, although certain words may be referred to well-known equiralents-as goda, 'Iom,' to the Persian; tedeeme, 'son,' to the Slavonic ; and lalé, 'wife,' to the Anglo-Saxon. Some words, too, resemble the Zeme. The presence of many Greek toords barbarously transcribed can also be well recognised in the different inscriptions, and some few

ベAVER－NEDEC．

derived from their J＇ersian eonquerors－as gesatrape， or＇satrap］．＇The inseriptions are gencrally short and sepulehral，and folluw the well－known formula commonly used under the Foman Limpire，ame are sometimes aceompanict by（ireck versions or trans－ lations，lselping to explain the Jyeian．One inserip－ tion alone，recording the exploits of one of the farmly of the Ilargagi after the lattle of Burymedon （ $416 \mathrm{~B}, \mathrm{c}$ ），on the so－called oluclisk of K．，is of any len－th．The languare seems to have listed from alount the Sth e．ib．c．tu the lat C．A．D．－Iawlinson， Ih rodotis，vol．i．］11，311，67．．：Symopsis of the Con－ tonts of the Lritish Muscum，1Sj̄̈．l．105；Fellows， Asia lifinor（Lomal．1839）；Discoreries in Lycia（1811）； lirel in the Areherologia，vol，xxx．Il． $176-204$.

XAVIER，St Frisicts，a celdorated missionary of the Roman Ciatholic Clurels，was born of a noble fanily at Xavier，in Navarre，April \bar{i} ，150G．ITaving received lis early elucation at home，he was sent， when in lis 1 St＇s yenr，to the enllege of Sainte l＇arbe， at I＇aris，whre he formed the acquantance of Irmatins de looolu（q．v．），with whom he nlti－ mately lecame assuciated in the foundation of the Jesuit Saciety．Incler that head will be found detailed so much of his listory as regards the first estallishment of the order，and the early labours of its founters in liume．It was while lie was engagel in these carly labours of the suciety in Iomac，that \mathcal{X} ．attracted the notiec of the representative of Jolm 111，of l＇ortugal at lione，furen，who sug－ gestel to the ling the ilea of sending out members of the new order as missionaries to the L＇ortn－ guese colonies ju the East．X．was ehosen for this purpose in the place of Lubadilla，who han！been originally appointerl，but was prevented by sickness from going on the rapedition．IIaving sailed from Jislona，April 7,1541 ，and wintered at Moz－ aubique，he arived at Goa，Jlay 6,1542 ，and pre－ sentel to the bishop his letters ol authorisation from the I＇gle I＇anl III．X．＇s first proceeding，on linding the excessively depraved eondition of the liuropean Cliristians settled in India，w：as to endeavour＇，by stirring il］among them a spirit of penance and religions fervour，to remore the great olstacle to the efficacy of his preaching to the native popula－ tion，which was presented liy the evil exauple of the purdessine Cliristians of the colouy．Ilis eflorts in this prelmmary reformation were cumently successful，and lee was equally blessed in his labours among the pearl－fishing jomnlation of the coast，from C＇ape Comorin to the islaud of Mlauanr． After a etay ol more than a year in this region， be returned to Goa，and witl a fresle stall of assist－ auts，visited the kingdom wi I＇ravancore，where，in the sp：tee of a singie month．he baptised 10,000 natives．l＇assiner thence to Malacea，where he was reinfored by tlrece other Jesuit missionaries，sent by lguatius de Juyola in compliance witls X．＇s carnest solicitations，and having achicved great suceess armong the lesidents of the coast，he pro－ eceded，in 1 Jj 6 ，to the Finmat lslands，to Amboyna， and the Noluccas．In all these phaces his suceess was extraordinary．Having thus effected a dirst estalilishment of the Gospel in many places，bo resolved to retrace lis steps，and revisit the several scenes of his preaching．The arrised at Malace： in 15！\％，aw！thence by Haanssar，near C＇ape Comorin，where lue stayed for some time，lio parsed to the istand of Cicylos，where he con－ verted the ling of Iiandy，with many of lis pouple．In May l5 $\frac{1}{2}$ ，he returned a secomi time to Goa．His great ulject now was to cary unt a pro－ ject for the conversion of the Japanese Empine Which hat been suggested to him by a Japtanese of hish rank，whom Lic hal attached to limself at Mialacen，and who accomprauicd him to Cion．＇i＇lis

Japanese，whom，witl two of Jis domestics，he eon－ virtol amb baptised，breame a nost valuable auxiliary．＂llurough his and， \mathcal{N} ．waq cuabled iluring the voyage to aeruire so much of the Japanese lan－ gunge as enabled lim to translate into Jayanesc amb explain the Apostles＇Crecd；and allhough his success in the dirst island which he visited was vory insimnifieant，yet at Firando，and afterwarels at Miako，his ${ }^{\text {recaching was attented with extraorliu－}}$ ary fruits．At the latter place，le hacd failed signally mon lis lirst visit，which was made in a very poor and humble ginise；lut laving returned with a more inposinc train，and under circumstaners uf greater ontward distinction，lie nbtained a ready and fasourable hearing，aml rade so lasting an impression that the mission which le foumled enn－ tinued to flourish for above jou years，until the tional cxpulsion of Christianity Irom the Japanese Simpire．Ilis mission to Jajan ocenpired about two and a balf years；and in Noveruber lijal，le sailed Irom dmangmeli for the purpose of returniner to Gon to organise a mission to China．Tonching at Malacea，unon his voyicge，he endeavoured to con－ cert with the governor in embassy in the name of the ling of I＇ortural，to China，under coser of which le hoped to cflect an entrance for his missionary enterprise，but on his return from Gpib to Mlalaccia， le foumal a new governor，who wins olpoosed to any such attempt；and lie was obliged to adopt the expedient of sailing in a merchant－ship to the island of Sancian，near Jacan，which was at that time the trading lepot of the Chusese with the merchants of l＇ortugal．J＇rom Simcian，K゙．，laviug procured a Chinese interpreter，lioped to induce one of the mative merelants to laud hims seeretly on the coast；but in this lope alse he was baffled by the fears of the Portuguese，who drearled for themselves the vengeance uf the Chinese anthorities upon this infraction of the law．This disapuointment，coupled with the privations aml labours to which he had been exposed，brought on a violent fever，and under the combinal weight of mental depression and physical sickness，this Cliristian hero sunk upon the very threshold of what he had looked tio as the great enterprise of lis life，in the island of Soncinn un the 2ad December $15 \% 2$ ．Il is remains were con－ veyed to Mlalacea，and thence with great solemnity to Goa，Marcla 15，1．jijt．Many miracles，attested by mumerons witnesses，were reloorted of \mathbb{X} ．in almost all the stages of lis carcer．Amoner these， there have licen some who reckoned the wir－ aculons gift of tonerues．The evirlence of these miracles was sulminted to the usual process of inquiry at liome，and many miracles having been establishen loy the orlinary canonical nroeess， D．was＇beatified＇l，y Pand V．in 161！y，and ＇cauonised＇by Gregory XV．in 1600, liis festival being fixel upon the ofl December．Jis only literary remains are，a collection of Letters，in 5 books，Svo（Paris，16：\％），and a C＇atechism，with some short asectic truatises．His Life，ly I＇ere Foulours，was translated into Einglish ly Jryolen． There is also a Latin Life ly Tursellino（Rome，15yt）； and scveral in Italian，by Bartoli，Dlallei，and others．The most recent English contribution to this interesting subject is that of Mr licun．

IELELC，an armed vescel of great speed，formerly used by the Alycrinc corsairs．It carried three masts，on which square or lateen sails coulil be set． The bow and stern were remarkable for the small anste they made with the water．The sides were low，and the riper deck of great convexity，that the water miglat readily flow of through the senplers．As this rendered them inconvenient for walking on，kratings were laid at the sides of the decl：，to aruid the convexity．＇Theerew walked dry

NEYTA-NENOPHON.

on these gratings, while the water ilowed out underneath. Nelecs carried from 16 to at guns.

Xebec.
A few of these ressels-unarmed-still sail the Merliterranean as carriers of perishable goods.

XE'NIA, a handsome and flourishing town in Ohio, U. S., and iraportant railray junction, on the Little Miami River, $6 \bar{j}$ miles north-east of Cinciunati, the ceutre of a rich and populous agricultural district; it has a large court-louse, jail, two newspapers, sereral churches. Pop. about 6000.

XEXO'CRATES, an ancient philosopher, was born at Chalcedon 396 b.c.. and died 314 . It an early age, he attacled himself to Plato, and in course of time, was so much esteemed for his proficiency in philosophy aud high moral character, that he was thought worthy of succeeding Spensipmus, Plato's successor, in the presidency of the Academy. This post he filled most creditably for 25 years. He wrote numerous treatises uron dialectics, $1^{\text {hhysics, }}$ and ethics, and drew with nnusual precision the boundaries between these three departmeuts of philosophy. Of these works, merely the titles have been jreserved ; and what is known of his doctrines is gathered only from notices of them contained in various anthors. He introduced into the Academy, to a greater degree than before, the mystic Pythagorean doctrine of numbers, in connection with the ideas of Platc. Zeus, the father, ruling in heaven, he called Unity, as being uneven number and spirit ; the World-soul, which operates through all things liable to motion and chance, he styled Duality. This divine world-soul dwells in the heavenly bedies, the Olympic gods, the elements of nature, and also in terrestrial demons, whom he regardel as intermediate betrreen gods and men. In his cthical teaching, he aimed at making the Platonic doctrines more directly applicable to ordinary life in individual cases, and pitched his standard of excellence very high. He held that virtne is in itself valuable, while other things are only so conditionally, and that it extended to thoughts as well as actions. He was himself of irreproachable claracter, of a well-balanced ruind, and temperate in his habits withont eynicism. Ilis couversion of the jouthful debauchee Polemo into an earnest, virtuons man, and his disregard for wealth, as shewn by his refusal of the offers of Philip and Alexancler, are the best known incidents in his long, useful, and virtuous career.
XENO'PHANES, founder of the Eleatic School of P'hilosophy, was born at Colophon, in Asia Minor, abont 580 e. c., or, according to others, about 40 ycars earlier. He spent the greater part of a life which
was prolonged beyond his 90 th year, in banishment. He passed many years in Sicily, and resided for some time at Elea (whence adj. Eleatic), in Lucania. He composed many poems, historical, didactic, and elegiac, which have all perished, except a few fragments. He employed his poetry as the instrument for disseminating his philosophical tenets. He was the first to maintain the Eleatic doctrine of the oneness of the universe ; and recognising clearly the unity and perfection of the deity, he attacked the prevalent mythology and the practice of attributing to the godhead a human form and human weaknesses. He was thoroughly in earnest, but his logic was confused and contrarlietory. While he held the existent to be identical with the deity, and regarded it as the basis of phenomena, he also maintained that the divine essence was neither finite nor infinite, neither mored nor unmoved : not finite, for then it must be limited by another, whereas God is one; nor, on the other hand, infinite, for only non-being is intinite, as having neither beginning, middle, nor end. The distinguishing tenet of 1 . is his Monotheism; and as a philosophical rhapsodist, he sought to inculcate it, though he failed to express it in a clear and systematic manner. His speculations are sceptical in their tendency, and appear to have had great influence upon succeeding pbilosophers. His cxplanations of physical phenomena were crude; but one is recorded in which he has anticipated modern geolocy. From the shells and marine petrifactions found on mountains and in quarries, he inferred that the surface of the earth had risen gradually out of the sea. In the 1Stll c., Voltaire could give no better explanation of the fact of sea-shells heing found on the mountains of Spain, than the supposition that they were the scallop-shells dropped by pilgrims journeying to and from the shrine of St James.

XE'NOPHON, celebrated as a general, historian, and philosopher, was born at Athens 415 B. C. At an early age, he became a pupil of Socrates, and is said to have been sared from death by that pililosonher at the battle of Delium. At the age of 40 or thereabouts, he joined the expedition of the younger Cyrus against his elder brother, Artaxerxes Inemon, king of Persia. After the battle of Cuzaxa, and the treacherous massacre of the Greek generals, N . played an important part in the adrenturous retreat known in history as the Retreat of the Ten Thonsand; and it was bis courage and conduct that contributed mainly to its success. After having returned to Asia Minor, X. led a portion of his forces upon a pillaging expedition, and amassed wealth enough to enahle him to live the life of a country gentleman. Before retiring, he served under Agesilaus, the Spartan general, against the Persians; and at Coronea fought against his orm countrymen. Sentence of banishment had been previously passed upon him at Athens, probably for his share in the Cyrean expedition. His sympathies were entirely Spartan. He soon afterwards settled at Scillus, a small town near Olympia, in Elis, under Spartan protection, where he lived upwards of 20 years, occupying himself with hunting, asriculture, and writing. He is not mentioned as having ever returned to Athens, though his sentence of banishment was repealed, and his two sous were in the Athenian division which aided the Spartans at Mantinea. At last, X . was driven from his retreat at Scillus by the Eleans, and took refuse in Corinth, where he probably died, 359 e.c. His works are numerous, and to judge by their titles and number, all extant. His strle is simple, elegant, but rather monotonous and deficient in vigour. As a philosopher, he holds no very high rank. He possessed excellent practical talents, was a humane, sensible,

スERNES—スIN1：NEX．

religious man，lut seems to brave land neither genius nor taste for speenlative philosophy．Ilis principal works are the Anchessis，or narrative of Cyrns＇s experlition，aml the letreat of the＇Pon＇l＇housand ； a llistory of dreece in contimation of＇Thnevililes ； the cirpopeclice，or education of cyrus the lihler－a sort of pulitical romance，in which（＇yrus is drawn as the monlel of a wise ame groud ruler：In the later work．X．elcarly shews hes prefcrenee of a well－ reçulated momarely to the demucricy of his native comutis．Ile wrote hesides，the lieminisennees （M，Mmarifia）of Socrates，a scries of dialogues intemeal to refinte the charges upon whiel that philosuplaer was execoted；alsotreatises on Mimtin：， ou the 1 Iorse，the Fievemes of Athens，and Domestic liconomy．

XLIRXESI，（the name is perhaps akin to Sin－ scrit lashetre，linge），king of J＇ersin，was the eldest son of D．arius aml his sccond wife Atossa，aul was appointed suceessor by his father，in preferemee tu Artalazames，his cllest son ly his first wife whose chiklren were all lorn before Datrins hecame ling． Dirius died in the beginning of the year 4S．5 13．1．，in the midst of his prepirations for at thind expectition against farece．$\underset{\text { a }}{ }$ ，after liaving sublued the rebel－ livus Egyptians，and appointed his lrother Achae－ anenes guvernor，gave his whole attention to the completion of the prejarations legun hy his father， which ocenpied nearly four years．lmmense lardes of men were gathered together from all parts of the vast Persian limpire，from the stepues of Central A sia，from the banks of the luedus and its tributarics， and from the interion of Afriea；an cmornons theet was fumbled by the lhomicians and other mari－ time nations subject to lersia；stores of jrovisions sutheient to supjort the immense amy were col－ lected at different prints along the intended ronte of march．A btictife of boats，an linglish mile in length，under the superintendence of luyptians and Phecuicians，was bnilt across the llellespont．＇the bridge，however，was destroyed lyy a storm，on whiel （aceurding to the Greek historians） \mathcal{X} ．ordered the heads of the engineers to be cut ult，and was su conraged at the rebellious and lisrespectful sea，that he ordereal 300 lashes to be akministered to it，and a set of fetters to be cast into jt．Another bridge． consisting of a double line of loonts，was built；and a canal was ent throngh Mount Athos，at the point of the peninsma of Aete in Macelonia，on which the llect of Hardonins lad heen wrecked in 402 Lec The preparations wore completed in 4SI B．c．，and in the antum of that jear， X ．arrived at Sardis， where he winterel．In the spring of the following year，the wast assemlilage hegan to march towards the Ilellespont；and，iacoraling to Hermlutus，it took seven days and nights to mareh across the bridge．Nifter crosing the Ilellespont，the march was contimed along the Thracian coast towarls Jurisens on the leburus，where a halt was made on a large plain，and the army munbered．＇The deet drew up hear to Doriscus．According to Ilarod－ otns，the whole number of fighting－men，military and navial，amomnted to nearly $2,500,000$ ，and the Heet consisted of 1207 ships of wiar，luesides $\mathrm{B}(0) 0$ smaller vessels．Thuse numbers were considerably increased during the marel between Durisens and Thermolyle by the Thacians，Macedonians，Mier－ nesians，anel other nations through whose territuri X．passed on his way to Girecec．Herodutus sulj－ juses that the number of eamp－followers，exclusive of emmehs and women，would amount to more than that of the tighting－men；su that，according to him， the whole mumber af poplle assembled on this ocea－ sion wonld lee consielerably over $6,000,000$ ，a number greater than the entire jopulation of lreland．This number is doubtless greatly exaggerated；still，
it cammot le douloterl that this was one of the grenlest multitudes ever loronght together for any jurpuse muler the sum．（irote，who flisermbits the immense numlstrs wiven ly Meronlutus，nevertheless says：＂Me may well belicve that the numbers of Xerxes were greater than were ever assemblow in ameient times， ＂r perhaps at any kuown＂poch uf history：＇This inmense force meseal un withont resistance thronsh
 whare it was iromght to a stanul by the army of I moniulas（q．vo）Althongh the（irecks wore ＂ntirely chefeated anel slann，it was not without heary loas to the l＂wians．On the sane dity，amel on the thiml day after，the I＇ersian Alert，whiels had luce vionsly suthered suverely from in stom，was defeated with luavy loss loy the（sreolis oll（＇ane Artemisium in Euluen．X ．centimued his march on to Athens through l＇hocis，whiel he laid was：＇s，ant limotia， whuse inhabitants jumed him，with the execution of those of I＇latera anil Thucspia，which cities he burnol． A detachment which he sent to attack Delphimet with a signal defeat．When N ．arriverl at Athens （in the summer of $4 S 0$ ，three months after crossin： the I Iellespont），he fomm the city deserted，the Athe－ nians laving sent their families to Truzea，dieina． and sulamis，Athens was destroyod．Meantime the two tleets haul sailed romml frum lablat amd taken n1 their positions in the narrow strait letwern Salamis aml the Attic coast，where the famoms Hival lattle of salamis tow place（áeptemher $480 \mathrm{~B}, \mathrm{O}$ ） See samasis．N ．wituessed the dight from a lofty throne which he hate cansed to be erected on one of the slogey of Mount Fgeglens，

－The rocky brow
 Which looks o＇er sea－burn Salamis．＇

F．was apparently confommed at the mexpected and inglorions result of all his mighty prepneations for the overwhelmine of（ireece，aind lecouning alanncel for his personal safoty， 1 led，umber an escort of 60,000 men，witla all laste towirde the Ilellespont，which hat reached in 4.5 dias．＇I＇he bridge of looats having been arain destroyed by a sturm，he cerossed over to the Asiatic roast in a vessel．Marlonius was left with $3 u(0,000$ men to carry on olemations in Firecce． In 479 I：．$\because .$, the Frecks 1 （ffeated Mardunins in the famous battle of llatan（ $4 . v$. ），and on the same day gained another victory urer the l＇ersians at Myeale in Jonin．Next year（ $4.5 \mathrm{~b}, \mathrm{c}$ ），the I＇ersians lost thacir last josscssion in Lurope lyy the capture of Sestus on the Irellespont．The war was cuntimed for a few years longer，though the strugyle was now virtually at an end．Little more is koown of the personal history of \mathbb{K} ，excelut that，in 465 n． C ．，he was murdered by Artabanus，who aspired to the throne，ind was succected lyy his son Artixerxes． From all that is known of X ．，he appears to have been utterly junnole in claracter，vain－ crorions，licentions，cruel，cowarilly－the very lucu－idial，in short，of the worst kiml of eastern potentate．Jis listory woull be scarcely worth recording were it not for his connection with Greek listory．Ilis fanoms invasion was umber－ taken apparently for no nther purpose than tu gratify a weak－mindel vanity，which was dolighterl with the illea of being able to assemble at one：time ＇ships loy thousands＇and＇men in nations，＇who were at the mercy of lis mppraciplal caprice．

XIMENES，HJASCはS DH CJSNEJOS，ly which latter name lie is eommonly called in Sjuan， the well－known statesman，archbishon，amd cardiual， was horn uf a hamble fanily at＇J＇orrelagnaa，in lastile，in 14：27．De was calncaterl at Aleablii de llenares，salamancis，and fanally liomos，where le
 nomination to a probend in the citthedral of Trolewo．

The archbishop, resisting the pupal claim of 'prorvisor,' refused to arlmit \AA^{2}. ; and on bis persistiny in his claim, put him in prison, where be was detained for a long perionl. On his release, he was named Vicar-general of Cardinal Mendoza at Siguenca; but he gave up this prefermeat, and entered the Franciscan oriler in 148_{2}. His repmation for piety ant learning, led the quecn, I sabella, to choose him, in 1492, for her confessor; and tlree years afterwarls, to name him Arehlishop of Toledo-a dignity which he refused to accent mutil he received an express command from the pope. Haring yiclded in the ent, he continued as archlishop the life of mortification and austerity which he had practisell in his monastery; and he applied to purposes of religion, clarity, and public utility the whole of the princely revenuces of his see. As confessor and contidential adviser of the queen, X., during the lifetime of lsabella, was the guding spirit of Spanish affairs ; and on her deatly in 1504, he held the balance between the parties of Ferdinand and Philip of Burgundy, husband of Ioanna, the heiress of the crown. Oo the death of Philip in $1506, \mathrm{~N}$. was appointer Regent, in consequcnce of the incapacity of Joanna and the absence of Ferdinand, and conducted the affairs of the kingdom through a most critical time with consummate skill and success. In 1507 , he was created Cardinal; and in the followion year, he organised, at bis omn expense, and himself accompanied as commander, the celeluater expedition, consisting of 10,000 foot ancl 4000 horse, for the conguest of Oran, on the African const. Ferdinand died in Jannary 1516, and on his deathbed named X. Regent of spain till the arrival of his grandson Charles; and although the grandees lad organised an opposition as well to himself as to the royal authority, $X .$. ly bis prompt and able dispositions, overawed them into submission; and subsequently, by the same cxercise of vigour and determination, quelled the incipient rccolt of Navarre. In order to the locter consolidation of the royal authority in spain, X. urged very strongly the spreedy visit of charles, who still lingered in his Flemish principality; but it was not till after the lapse of a year and a half, that the king decided on his jouruey ; and meanwhile, the enemies of X . had so worked upon his jealousy and $I^{\text {ride }}$, that be took the uncracious and ungrateful course of dismissing his faithful, but, as he feared, too powerful servant. X. had set out to meet the king, and although labouring under great infirmities, continned to prosecute his jommey, when he was scized with a mortal illness at Eranguillas, near Aranda de Dtero, where he died, November 6, 1517.

As a statesman and administrator, the reputation of Cardinal x^{2}. is deservelly of the very hishest. The social and political revalution which he effected in breaking down the feudal power of the nobles, has often been compared with the amalomous change wronght in Fraace by Richelien. Lut the revolution of λ. was, at least in its lesults, rather in the interest of the pecople than, like that of Cardinal lischelien, of the crown; and while it freel the savereing from the nawurthy position of dependence on the nobility; it established
the municipalities and the commmal representatives in the enjoyment of certain well-rlefined and undoubtelly substantial privileres and inmunitics. His muniticcnce as a patron of religion, of letters, and of art, has lecen the theme of praise in every history of his time. The miversity of Alcalia de Itenares, which be planned, orraniscel, erected, ansl enclowed, was a marrel of enlightencd munificence in such an age, aud may compare adsantageously with even the most princely fonndations of the most enlightened times. His Compluteusian Polyglot (4. v.), besides being the first of its class, was. considering the resources of the period, perlapis the grandest in culcepotion among the projects of its own orler ; and the perseverance with which, duriug the lons periol of fifteen yeas devoted to its prepraration, he watcherl and clirected its progress, is an eviclence that it originated from i gennine love of sacred learning, rather than a lassian impulse of literary enthusiasm. The cust of this gigantic undertaking amounted, on the whole, to 80,000 ducats. His expenditure on churches, hospitals, schools, convents, and other works of religion and beuevolence, was on a scale of correspondiog munificence. He maintained thirty porr persons daily at his own cost, and he regularly set apart one half of his income to the uses of charity:- See Hefele's Der Cardinal Ximenes und die kirchlichun Zustïnde Staniens am Ende des 15, und Aufanye des 16 Jahr/hunderts (Tübingen, 1551).

NILOI'DIN is a substance which is precipitaterl in the form of a white powder, insoluble in water, alcohol, and ether, wheo water is frecly added to a solution of starch in cold nitric acil. Its composition is not determined with positive certainty, but it is probably starch, $\mathrm{C}_{22} \mathrm{H}_{10} \mathrm{O}_{10}$, in which either one or two atoms of lydrogen are rejlaced by a corresponding number of atoms of peroxide of nitrogen, NO_{4}. According to Professor Miller, there is a substitution of two atoms, so that the formula representing xyloidin is $\mathrm{C}_{12} \mathrm{H}_{4}\left(\mathrm{NO}_{4}\right)_{2} \mathrm{O}_{10}$. It explockes when sharply struck, and burns with riolence at 356°. Ey the action of reducing agents, it is again converted into starch.

XYLOL (Gr. mylon, mood) is an nily aromatic fluid with a stronsf refractive power, and luiling at abont 263°. lts composition is represented ly the formula $\mathrm{C}_{16} \mathrm{H}_{1}$, and it is regarded as the lyydride of a non-isolated ratlical. $\mathrm{C}_{16} \mathrm{H}_{90}$ to which the vame Xylyl is given. Aylol, nixed with tolunl, cunol, and cymol, is found amoogst the oils which are separated from crude wood-spirit by the addition of water.

XYLOPHAGA (Gr. mool-caters), a family of Coleoptcre, of the scetion Tetramere, nearly resenbling weevils, but liffering from them in the want of a beak. 'Whey have short antenna, thickened towards the tips, and sometimes leafy from the lnase. The species are numerous, and are arrangel in many rewerat. They mostly live in wod, on which they feed, hoth in their perfect and larval states. Sime of then are very destructive to trees and timber. Nee Bark Beetle and Scolytis Some of the λ. . live in fungi, and feed on them.

Y

TTIIE last letter but rine of the English alphahet，is ilerivel from the Greck or （d）．It had no place in the endicr Latin alphabet，and only cance into use by loman writers in the time of Ciene in spelling words borrowed from the Greek．In the Greek of the chassical ase， （i）no longer retained its pristine power （Ital．u or Ling．oo），lut hat degenerated into a sound like tho French n ，or even nearer to i（ce）；it conld not thacrefore be represented by the Foman uo or u ，which had remainel（and remains yet in morlern Itahian）undegenerated，and thus was appended to the lioman alphabet as a new character． 1ts use in native Latin worls，as sylua for siled， sutyra for satira，is an error of molern editors． Italian has no y ，but uses i instead，as sinfonia，sym－ phony．The other modern languages of Europe have not only retained it in spelling words of Greck origin， lint some of them substitute it for i in native worls， generally in a very capriciuns manner．German orthorraphy has recently been purgel of this alouse； and in Dutch，where it had alwiays the sound of English i（ai），the double chameter ij is now written． In Enclish，it is used to repuesent the semi－conso－ nantal power of i or j（see 1 and J）in the beginning of a word and before another wowel，as yoke $=1$ att． iugrem．or jugum $=$ An⿱䒑⿰－siax．iuc；young $=$ Ang－ Sax．iong $=$ Cier．jun！．It has been suggested that the practice of writing ？at the end of a worl instend of i ，white we replace it by i on adding a syllable（e．g．，low（ly，lovetier），may liave arisen fike the habit of giving a tail to the last unit of the lioman numerals（e．©．， ij ， iij ），in the wish to give a kind of tinish to the word and plase the eye．The womkde antique：spetling ？？？for the，thet，is a hlumer，arising from mistakiug the Aug－siax．p $(=t h)$ for $2 y$ ．

VABLONOI MOUNTMAS，a name that has long hat in place in the geography of the north－east uf Asia，elesignating a riange of mountains which are fumbl to lave no existence，the lo ality in which they were supposed to be placed being in unduat－ ing plateau．

I．ACHT is a small vessel constructed so as best to insure strensth，elegance，and speed，and exclu－ siruly＂mpleyed for jleasure－sailing．Vessels of this sort were lirst constructerl in this country in 160t，at which date a yaclit was built by the king＇s master－shipwright for Henry，eldest son of James I．of Eugliand；the idea of such a ves－ sul being taken from the Dutch，anong whom they lat been employed for some time previons．Frons this time，yachting，steadily patronisel by royalty， became of favourite pastime of the nolility aud gentry，and is now so gencral，that there are no fewer tlan 30 yacht clubs in the United Kinglom， possessing 1200－1300 yachts．This amnsement is encouragel by government，mainly becanse it supplics an excollent training for seamen，who in time of war become available for the royal navy， while in time of peace they are no burden on the
national treasury ；anm accordingly，yachts aro allowel to bear the ensign of the royal navy，sup－ plemented by the special flag granted by the Admiralty to cach club，and to retit and revictual in the royal dockyards．The oldest yacht clubin the United Kinglom is the Liohnal Cork，whielh， under the title of the＇Water Clul of Cork，＇is known to lave existel as early as 1：20；and the next in order of seniority is the Royal 5＂ach Squal－ ron，formald in June 1Slow，and having its hemt． quarters at Cowes，lsle of Wight．The club which stands dirst as to the number of its members and yachts is the Royal Themes 1＂ucht Cheth，which was foumed iu 18：3，and has its head－quarters in London．Of the other chans in this country，$;$ helong to Scotland（ 2 to Glasgow，and 1 to Ldin－ lurgli）， 4 to Ireland（1 to Queenstown，I to Jings－ tuwn，\because to Dullin Bay），ande the rest to England， being mostly located on the Thames，the chanuels between Southamptos and the Isle of Wight，wr along the north coast of Wales，from Liverpuol to 1lolyhead．Half of these cluls have bectu fomiled since 1540 ．Fachting is gaining gromad in foreign comentries and in the British pressessions，the Unitel States ranking next to Great Lritain anl Ireland in the manber and importance of here yacht clubs （the elief of which is the New Iork lacht（lul）； and Holland，Lelginm，France，Australia，Bermula， Uamala，and linssia hare similar associations．

The principles adopted in the construction of yachts lave lluctuated greatly，from the simple unpretending rig，small tomage，and clumsy huild of the early yachts of the Lioyal Cork Club，to the immense canvas area，larger size，aus long narrow luilh of the yacht of the present time．The yacht of the carly part of the century was built with a fine run att，and a blufl how；but about 20 years ago，this style was supplautcl by increased slarp－ ncss of bows and stern，a raking（slanting uparils and lackwards）stern－post，more depth，the drauchit aft domble of that forwarl，sreat fueness of the water－lines，narrow beam，and immense sails．The effect of these changes was a great increase of speed，attember，lowerer，with certain defeets：one of which was that the eliminished hrealth of heam injurionsly affected lnoyancy，and the yachts con－ secuently were more liahle to he wetted in a heary sea．In ISJl，the hollow manner in which the erack yachts of the principal clubs in Fincland were beaten ly the yacht America of the Nuw York lachting Club，shewel their owners and builders that they had still much to learn in the way of improvement；and with few excep－ tions，they wiscly took the lesson．The Americte had great lrealth of heam，comparatively little depth insile，an upright stern－post，extremely sharp entrance，and tine water－lines，and（the most remarkable feature）her maximum breadth con－ siderably abatt the centre．With the excerition of the great brealth of beam，aul littie depth insile，all the other characteristic points of the American yacht were adopted by the builders of yachts in this country；the difference between the
draught aft and forward was diminished : and the result of these changes has shewn that they were great improvements.

The nraterials nsed in the building of yachts are wood, irou, and stcel; woord alone, wood and iron together, won alone, and steel alone, being the various ways in which the materials are employed. Yachts built of wood, or cf wool and iron, iue generally coppred, to protect the plankiog, and secure the smoothness of surface essential to speed. The considerations which determine the relative length, brealth, ilepth, \&ce., are treated of mider Ship-boniding. Considerable stimulus is given to improvements in construction by the numcrous prizes which are offered for competition by the varions yacht clubs, and which anomit to about £ 7000 annually: These small, but powerfully huilt, and thorougbly sea-worthy vessels have traversed every sea on the globe; numbers make trips to Norway and the Meliterranean; a few visit America and the Indian and Southern Oceans; and one or two have circumuarigatel the glohe. Some of the most remarkable performances of yachts are the voyase from N゙cw lork to Liverpool of the Charter Oat, $\because 3$ tons, in 30 days; that of the siylvie, 205 tons, from Halifax to Harre, in $16 \frac{1}{2}$ days; those of the Inca, Fatinka, and lived, 25 tons cach, from England to Australia; and the great Atlantic yacht-race from New York to Cowes, in December 1866, which was won by the Menrictle, 205 tons, after a voyage of 1t days. Yachts may be divided, according to the style of their rig, into Cutters ($(1 . v$. , fore-ant-aft ad square topsail Schooners ($9 . \because \because$), and Ioawls (I.v.). The tonuage of these vessels is very variable, raging from 3 to 420 tons in Dkitain, the average tomnage being 30-50 tons. There are also steamyachts belonging to the varions clubs, but they are too insignificant in number to require more tha: mention. The Victaria and Alber and the Fairy, both belonging to her Majesty, are specimens of this class.

YiJNAVALKIA is the reputed author of the S'atapatha-Brâhman'a (sce Yojurveda, noder Veva), aud of a Dharmas'istra, or law-book (see Savschit? Iitefatche, sec. Leul). His name points to his being a descendant of Jajnavalka; and, accorling to tradition, he was also a descemelant of liswimitra ($9 . v$.$) , and belonged to a branch of the Kiusikas.$ He scems to have occupied an influential position at the court of King Janaka of Videha. Nothing certain, however, is as jet known regarding the age at which he lised.

YAK (Bos grumiens), a species of ox found in Tilut, and domesticated there. It is ranked by Colonel Hamilton Sunith in the genas Bison, along with the Lisun, Gaur, and Gayal, aud by Mr Gray in the new senns Pö̈phagres. The will yak of C'entral Asia is the largest mative animil of 'libet, aml is found only near the limits of perpetal snow, descending into the bigher wooted valleys in winter, anl asceuding in sumber to the pastures of short grass and carices, sume of which are at an clevation of 17,000 feet ahove the sca. It is hunted by large dogs, and is very fierce, falling ulon an adversary not only with its borns but with its chest, and crushing him liy its weight. It is generally black. The yak has heen domesticaterl from time immemorial, and forms great part of the wealth of the inhabitants of the hifhest and coldest regions of Central Asia. The domesticaterl yak is about the height of an Englishox, which it mucle resembles also in figure of borly, head, and lers. It is corerel all over, however, with a thick coat of long silky hair, hanging down like the tleece of a sheep. 'The head is rather short; the eycs large and beantiful; the horas not very large, spreading,
taperiug from the base, a little turned lack at the tips, a space betweon them on the forehead covered with a mass of curling lair; the nose is smooth and convex, the nostrils small. The nech is shmt; the withers high and arched; the rump is low; the legs are short. Over the shonklers there appears a bunch somewhat like that of the zelun, but it consists only of long hair. The hair of the whole rivige of the lack is long and erect, but not harsh. The tail is covered with a prodigious quantity of lons Howing hain, descending to the hock, and has much

Eak (Dos grunniens).
the appearance of a large bunch of hair artificially attached. Not a joint of it is visible. From the clest, between the fore-legs, issucs a larepe pointed tuft of logg hair. The hair of the shoudders, rump, and upper parts of the body is comparatively thick ancl short: but that of the lower parts is long and straight, havging bolur the knce, and sometimes cren to the grouml. Yaks exhibit great variety of colours; but black and white are the most prevalent. It is not uncommon to see the long hair on the ridue of the back, the tail, the tnft on the chest, ant the legs below the lince white, whilst all the rest is jet black. The great quantity of hair, evidently a protection against the cold of the climate for which it is destincl, gives the yak an appacht size far beyond the reality:

Flic yak docs not low like an ox, but nitters a short gronting sound like a pig, as the expression cither. of uneasiness ur of satisfaction.

It delights in steep and rocky jlaces. Itcoker, in his Mimalayen Journal, lescribes the calves as 'tle drollest of animals, like ass-colts in their anties, kicking up their short hiud-legs, whisking their Inshy tails in the air. moshing op and down the grassy slopes, and climling like cats to the top of the rocks.' 'The yak is caprable of lecoming very tame. The Tibetan girls call the yak cows by a peculiar ery to be milkel.

The mille of the yak is very rich, and the curd made of it is much used by the Tibetans, woth fresh and dried, often prowdered into a kind of meal. The lutter made from yak-milk is excellent, and is preserved for a ling time in the dry and cold climate of Tibet in bladders. It is an important article of Tiluctan commerce. The tlesh of the yak is of the tinest quality; that of the calves is much superior to orrinary real. Yak tlesh is often dried in the sua ly the Tibetans, and eaten raw. The yak is never usch for tillage or lianght, lut is 'very much employed as a beast of lmiden, and travels at a slow pace twenty miles a day, where no other beast of buthen could well be cmplojed. The lazy and luxurions lamas of Tibet often ride uron it, an attemkant leading the animal. The hair is spun into ropes, and made into corerings for tents. The soft fur on the hump and shoulders is made into a

YAKSHA－Y゙AM．

fine aml strong cloth．Chas，jackets，cloaks，anel blankets are thade of the skin with the hair on． The tails are the chomeries，or Ily－41aprers，usel in all partsoi Inlia，and which are tolle seen particularly on all oeasinus of state and parale，ami sometimes in the hands of the meanest of grooms，sometimes of the highest oflieers of state．

Where is much reasm to think that the yak deserves a degree of attention which it las not yet received．It is still contined to its natise region， whereas it is probably alaptell to increase the pro－ dnctiveness and wealth of many parts of the world． It semms extremely suitable to おorway；Iceland，and other northern countries，and perhaps might be advantarconsly introbuced into the llighlands of Scotland．Its hair is probably fit for other textile purposes than those to which it has beem applied by the rule＇libetaus．

FAksilA is，in later Hindu Mythology，the name of a kind of demizols，who especially attend on huvera，the god of riches，and are employed in the eare of his garden and treasures．Accorling to the Visha＇u－I＇uran＇a，they were produced by the gol Drahman，as beings emaeiate with hunger，of hideous aspect，aul with long beats；but Brahmanic poetry generally represents them as inollensive，and in the Meghaduta oi Kalidisa（q．v．），it is a Jaksha banisheal from his wife who utters the most poetical thoughts，aud is capable of the tenderest feelings． The Bumdhists，on the contrary，describe them in sume of their legemls as cruel lemons，who feast on serpents and human corpses，and when tilled with the llesh they liave devoured，indulge in fierce com－ bats；but in others，a wain，as beines who also delight in clanees，songs，and amusements，and sometimes even enter the pathas that lead to nirein＇a．In Buddhist legends，they also possess the power of raising storms，and altogether ocemy a far mote promineat position than is allowed them in the Brahmanic pauthenn－See E．Burnouf，Inmoduction a t＇Mistuire chu Budlhisme Indion（1＇aris，1SH）；the same author＇s translation of Le Lotres de la Jome Loi（1＇aris，1Sij）；and spence Hardy＇s Mumul of Budihism（Lomi．1853）．－The Yiakhas of the Brahmanic uytholugy have wives，liakshes，who sumetines appear in the tram of Uima（ 1 ．v．）．

YAkUTsk．See Jakuts：．

YALE COLLEGE，an institution of learning in New Haven，Connceticat．U．N．，founded in 1 万（1）as the collegiate schonl of the colony of Comectiont， under the trusteeship of the ten priacipal ministers of the colony，who each coutributed a gift of books． It was lirst established at Siabrook，and in 1716 removed to New Haven．Anomis its early patrons were（lovernor Yale，whose name it bears，and Bishop berkeles：Of its four faculties，the merlical was fonnted in 1813，the theological and legal in 18：2， am？the scientitic in 1846．Its govermment consists of the givernor of the state．six seuators，its presi－ thent，and ten ministers．＇The library has 40,000 vols．；the libraries of two literary societies， 12,000 vols．each．There is a geolngical and mineralogical cabinet of 30,000 specimens，and the college has the historical pictures and portraits of Trumbull．It has 45 instructors， 600 students，and has had nearly 7000 graduates．

VAM（Dioscorea），a genus of plants of the natural order Dioscoreucce，distinguished by an inferior ovary and membranous winged fruit．The species are mostly tropieal，natives of the East and West Iudies，\＆e．They have tuberous roots and herba－ ceous twining stems．The great fleshy ronts of some of them are very mel used as an article of fooul， in the same way that potatoes are in more tem－ jerate elimates．They coutain much starch，aud

304
annerally Income somewhat mealy and pleasant to the tast＂when hoiletl．Jluis，however，is not the case with all ：the ronts of I ．triphylle，I ．firmo－ mon，D），ribosa，and several nther specie＇s with ter－ nate leaves are vary mansems even when boilded，and are prisonoms．＇lhe tuber＇s of all the yams contain an aerids substance．Which，howewer，is ilissipaterl ly biniling，except in the speces with eonymumb haverso The Wisesen Yiss（ 1 ）．aldeta）is an article of fovel in daily use in the south sea Islands．The routs are 11－3 feet long，aml often 30 lhs ．in weight，with a lrownish or black skin．juicy and reddish within． They vary exceetlingly in form．The stem，which is wingerd，twiues n1 tall peles which are provided for it by the cultivator；the leares are between heart－shapeed and arrow－sliaped．＇I＇wo or three small tubers are generally found in the axils uf the leaves． It is suppused that this species may he the ariginal of most，or perhaps all，of the yains cultivateal in the tropical piarts of Asia，Africian and America－as the Common Vian of the W＇est Indies（ D ．suliva），

Common Yam（Dioscorca sativa）．
Which las a rount stem and heart－shaped leaves； D．bullifira，in which the tubers in the axils of the leaves attain the size of apples；the Prickly lau（D． aculeatet，which hats a prickly stem，and a fascien－ laterl，tulberous root；1）．globosi，the most esteemen yam of lndia，which has very frasrant tlowers，and ronts white internally； 1 ．rubelle，mother Indian linn，with tuhers sometimes 3 feet long tiuged with red bolow the slin；\＆e．The species are not well ascertained．Yams are propiagated ly means of their tubers；tlie small axillary tubers，or the small tubers producel at the base of the stem around the neck of the large tuber．being used for this $1^{\text {marpose．－A species of yam（D．Batatas）has }}$ recently been brought from the tenperate parts of China，where it alppears to bave been long in ealti－ vation，and is found to suceced well in France．It is hardy enourh to culure the climate even of Scotland withont injury；but the heat of the summer is not sufficiently great and long－continned for its profitable growth，so that，in general，the plant merely lives，without produeing a large tuber． The ront is of very fine quality，and attains a very considerable size．The stem requires the support of a pole，round which it twines；the leaves are more elongatel and acuminated than those of the West Indian yans；the root strikes perpendicularly down into the ground，and forms its tuber often at a very considerable depth，which is sometimes

Y゙AMA-YAMIUU.

inconvenient to the cultivator; but this is prevented by putting a slate under it.

YAMA, the Hindu god, who, at the epic and Purîn'ic period of lJinduism (see Indra, sec. Ficligion), is the sovereign of the Manes, and the judge of the dead, is, in the hymus of the R'igreda, a son of J'ivas'u'at and S'aran'yn, and a twin-brother of Iami, whose desire to become his wife he resists. His father is sometimes also called the Gandluarea; and he is further represented there as possessing two fuur-eyed dogs, which guard the road to his abode (see J. Mır, ' Iama and the Doctrine of a Fnture Life, according to the R'ig., Yajur-, and Atharva-vedas,' in the Journal of the Royal Asiatic Society, New Series, 1565, vol. i. p. 287, ff.). The idea represented by these mysterious deities has been differently understaod. Professor Tioth takes Viras'wat for the light of heaven, Saran'yù for the dark storming cloud, and Y. and Yamb as representing the first human pair-the originators of the race, or the Vedic Aclam and Eve produced by the union of the damp rapour of the cloud and the hearenly light. The Vedic hymns, however, do not afford the slightest ground for such a fantastical interpretation of these names; aud as regrards that of Y. and Yami, tley discountenance it even distinctly by describing 1 . as resisting the sexual

alliance with his sister. Professor Max Muller understands J'ivas'wat to represent the sky; Saran'ŷ̂, the dawn; $1 .$, the day ; and Yami, the night (Lectures on the Science of Language, 2l Series, Lond. IS64, p. 509, ff.). But this interpretation, too, is open to the strongest doubts, inasmuch as there is no valid ground for identifying the luminous deity Vivas'wat with the sky, or Saran'yil (from saran'a, going, moving) with the dawn. It seems more probable that the phenomena symbolised by this myth are not of a luminous, but of an aerial character ; the kindred myth of a luminous character being that of the As'uins, who are likemise the twin progeny of Tivas'mat and Saran'yû, or rather of Tivas'wat and 'a form similar to that of Saran'yu, aud who represent the transition from darkness to light, and the inseparable duality produced by the intermingling of both (see J. Jluir, 'Contributions to a Knowledge of the Vedic Theogony and Ilythology, No. 2, in the Journal of the Royal Asiatic Socioty, vol. ii. 1S66). For as I'vas'wat, 'the expanding, probably implies the firmament 'expanding' to the sight through the approaching light, Gandharra, as usual, the solar fire, and Saran'yi, the dark and cool' 'air' (the
moving element), I. and Yami seem to represent the current of air produced by the effect of the solar heat emanating from the firmament on the cool air of the might, when the antagonism between the warm and cold air of which this current consists would he Y. repelling the union with his sister Yami, though, at the same time, they are 'husband and wife while yet in the womb. (of the night-air). And since this phenomenon extends over the whole atmosphere, the two four-eyed watch-clogs of Y . are probably the eight or twice-four regions of the complass, either each couple of them taken together with their intermediate regions-whence both dogs are called spotted-or the four regions and the intermediate four taken separately - whence one dog is also called dark, and the other spoticd. l. being produced by the solar heat, it becomes then intelligihle why it is said of Agni, the (solar) fire, that be is born as Y., and Y. being a phenomenon of the air, why he is also identified with Vayu, the wind, and why the internediate space between hearen and earth is assigned to hin as his lomicile. It is probably a later concention of the Vedic period which describes this abode as having been made for him by the spirits or Manes, and Y . as having been the first who found his way to it; and a still later one, which represents him as the tirst of mortals who weut to that world, for in passages where these icleas are-expressed, there is an association between the moving air and departed life which is foreign to the oldest notions of the Tedas. It led to the position which subsequently Y. assumed as a luminous king who dwells together with the Dlanes, and as the lord of Death-death then becoming his messenger. let in the R'igveda, he has not jet the olfice of judge of the dead which is assigned to him in the later mythology of the epic poems and Purin'as, and probably already in some of the Upanishads. At the epic and Puran'ic period, Ir. entirely loses his cosmical character, though he is still called the son of Viras'wat. He then marries 13 daurhters of the patriarch Daksha, is installed as the liug of the llanes, becomes the regent of the South, and resides in Samapura, a town of the infermal regions, where he sits in judgment orer the souls of the departed which are hrought before him. They are generally fetched loy his messengers, who draw them with nooses out of the badies which they animated; but in the case of very pious persons, he assumes himself the function of separating the sonl from the body. Ifter the soul has been bronglit before him, he orders his recorder, Chitragupta or C'kandragupta, to read to him an account of all the good and bad actions it had done durins its life, and which are kept registered in a book called $A g \cdot \alpha s a n d h a n i$; and according to their merit or demerit, it is sent to heareu or the infernal regions. The precise knowledge which the Purinn'as pretend to possess of all these proceedinss, also extends to the description they give of this recorder, and to their ennmeration of the assessors who co-operate with I. at his court.-I.s sister is「amunû (q. ז.). Amonest his other uames, Dharma ('justice"), Dharmaraja ('king of justice'), Autaka ('the euder'), Kala ('time'), aud S'râdelhadeva ('the god of the S'râddha,' q. b.), are of usual occurrence.-When represented, he is of grim aspect; his colour is green, his garments red, and he rides on a buffalo with a crown ou his head, in one hand bolding a club, and in another the noose.

YAMBU, or IEMBO (Iambia of Ptolemy', a maritime town of Arabia, on the const of the Fed Sea, about 130 miles south-west of Medina, stands on the edge of a barren plain that exteuds between the mountains and the sea, fronting the northera extremity of a narrow minding crcek. It shares

305

YAJUNNA-YANINA.

with other places the title of 'Gate of the Holy City,' and is the third quarter of the caravan road from Caire to Mecea, and is thus a place of considerable importance. I. being the pert of Medina, is supported by a considerable transport-trade and axtensive imports from the western coasts of the Fied Sea. The harbour is good and well sheltered It is surrounded by walls with turrets, outside of which are a few domes and tombs. The strects are wide, the houses stand at a cousiderable distance from each other, are luilt of limestone and coralline, and have luge hanging wiadows. 'There is a large market-place, a custom-louse, some white-washed mosgues of a very simple form, and a few caravanserais. According to Burton, "there is an independent bearing about the people, strange in the East they are proud without insolence, and look manly without hlustering. Horcover, the population has a healthy appearance.' Pop. between 6000 and 7000. See Burton's Pilgrimage to El -Medinalt and Meccah (1555).

TAMUNA, the morlern Jumna, is one of the sacred rivers of the Hindus, mentioned as such as early as in the bymns of the A^{\prime} igpecte. Bathing in it, esprecially where it falls into the Ganges, at Mllahabad, was at a later period, and is new, supposed to have the efficacy of remeving sin, becanse at Allahabad the god Brahman is said to have performed a great horse-sacritice-whence this place is termel Praydga, literally, 'sacritice,' or Dhat t'cpraydga, literally, 'the best sacrifice.' (Thengh Allahabad, whech is a celebratel plaee of pilgrimage, is the Praydga, this term is also applied to other places where two sacred rivers meet, four of which, situated at the condluence of the Canges with the Alakananda, Pindar, Mantakinl, and Bhâglrathi, are, besides Allalnabad, hetd in especial sanctity, and severally called Tanctu-, Karn'(α, Rudra-, and Deva-Prayaga.) In the Puran'ie mythelogy, the Y.-in Sanscrit, a word in the femmine gender-is called a sister of the gol Yamu (q. vo); and a legend is also told in regard to her, according to which Lalarima, the brother of Kr'ishia (sce Vismsiu, the Sth Aratara), once ordered the river to come to hin, and as she disobeyel his bidding, plungel bis ploughshare into her Lanks, and elritgged her to him. Y., the legend continues, was thus compelled to quit her ordinary course, and to follow Balarâma whithersoever he went. At last, however, a pyeased by ber entreaties, he let her go, after she had watered all the comntry. Prefesser Wilson appends to this legend, where occurring in his trauslation of the Vishiur-Purinta, the following remark: "The legend probably alludes to the construction of eanals from the Jumna, for the purposes of irrigation; and the works of the Mohammedans in this way, which are well known, were ne doubt preceded by similar caunls dug by order of Hiudu princes.'- I'ishn'uPuran'a (Lend. IS40, p. 572).

YANG-TZE-KIA'NG, 'son of the great river' or 'sea,' the prineipal river of Asia, the 'girdle of Chima,' connecting together all the central provinces of that compire situated between Tibet and Kokonor on the west and the Pacific Ocean on the east. Its entire length threugb all its numerous windings, under its various names, ean harlly be less, but rather more than 3000 miles, If regard be liad to its tributaries and to the cities to which its waters give aecess, to the richness of the seil, and the variety of the proelucts along its banks, and above all to the vast population scattered far and wide over the valleys. and plains, and hill-sides drained by it and its ennthents, the I. has no equal on the globe. It takes its rise in the same elevater regions of Central Asia which give birth to the Brahmaputra,

Makiang or Mekoag, Salween, and Ilwang-ho or Yellow River. Its course at first is southward, winding its way through an apprently level country, and bearing the name Mura Ussu, or 'Iortuons Waters. The magnitude of the stream must he censiderable even in these upper regions, for it was here, beyond the Bayen Khara Mountains, that tho missionary traveller, M. Huc, in the winter of 1515. saw a herd of wild oxen that had perished, having got frozen up in the ice while attempting to cross the river. Leaving these upper regions, after traversing the wide territery of Kokonor, the Tortuons Waters run southward, and enter the province of Iun-nan at about $2^{\circ} \mathrm{N}$. lat. The river then flows in a south-east direction through this province, and at about 26° N. lat. and 103° E. long, it turns north, forming part of the boundary between the provinces of Tun-1an and Sze-chmen. After entering the latter province, it flows in a north-cast direction under the name of Kin-ska-kiany (liver of Godden Sauds), receiving at this purt of its course many tributaries. On the senth, the tributaries of the previnces of Yuu-nan and Kwei-chow are nuncrous, but not large; the principal one, the O_{o} or $\mathrm{WVog}_{\text {, }}$ flows through the latter. On the north, the tributarics are numerous and large, the princijal being the Ya-loong, the Min or Wen, and the Kia-ling, which force their way through narrow passes, rolling over lefty precipices, and carrying with them large inasses of icc. Two of these rivers are each more than 1000 miles in length. It enters the province of Hu-pe at about $110^{\circ} \mathrm{E}$ leng., shertly before which it receives the name of T'a-kiang (Great River). The Great River next runs east-by-uorth through the entire length of the province of $\mathbf{H u - p e}$, receiving in its progress the waters of many lakes and rivers, the principal being the IIan-kiany, from which the most illustrious dynasty takes its name, which in turn gave to Chiuamen the name of which they are most jroud - Sous of Han. The two provinces Ifu-pe and Hu-nau-i. e., 'North of the Lakes' and 'South of the Lakes'-ceutribute, ly natural or artificial channels, to angment the main stream. One of these lakes, the Tung-ting-hu, is the largest in China, having an area of 300 sq . miles. After receiving the waters of these lakes, the river proceeds in a north-easteru course through the province of Ngan-Lwnu, in which part are situated the citics forming the great mart JIau-kow. Skirting the nerth of the province of Keang-se, it receives the waters of the Po-yang Lake, which receives nearly the whole of the waters of the provinee of lieang-se, and, like the Tung-ting-hu, pours all its contents into the Great Piver. Thence moving in a north-east direction, it becomes broader and deeper as it traverses the province of Ngan-hwui, receiving tributaries from both banks. Enteriug Keaug-su, and passing Nankin, it travels southwards, intersecting the 'Transpert liver,' or Y'un-ho-i. e., the Grand Canal. Through the whole of this province it receives tributaries, helping to swell the flood of waters, till in onc broad expranse, several miles in extent frem nerth to sonth, they disembogue into the Vellow Sca. To name the cities on the banks and tributaries of this rival of the Mississippi, would be to enmmerate a large portion of the cities of the empire. It is navigalle ly stips of the largest class to 900 miles from its month, and for smaller vessels to upwards of 1500 miles. There is a large steam traflic on it up to Ilan-kow, nearly 700 miles from its mouth. By the treaty of Tien-tsin, the I. was opened to foreign commerce as far as Han-kow; and speedily English and American steamers were found plying between Shang hae and Han-kow. - Dr Bridgman in the North China Merald.
laxina. See Janiva.

YANKEE-YARMOUTH.

YA'NKEE, YANKEE DOODLE. Yankee, the popular name for a New Englander in America, and in Great Britain often applied indiscriminately to the whole population of the Uwited States, was in its origin a corruption of the word English as pronounced by the Indians (Yenghies, Yanghies, Iankees). It seems to have been first applied about 1755 by the British soldiers as a term of reproach to the New Englanders, who themselves afterwards adopted it. -Since the War of Secession, the Southern population apply it to the Northern people generally:

The air known as I ankee Doodle was originally Nankee Doodle, and is ns old as the time of Crom. well, to whom, under that name, the doggrel words belonging to it seem to have had a reference. It was known in New Eugland before the Revolution; and one account of its appropriation in America, as a national air, is that after the battle of Lexington, the brigade under Lorl Percy marched out of Boston, playing it in derisive allusion to the then popular niekname of the New Englanders; and that afterwards the New Englanders, saying that the British troops had been made to dance to Yankee Doodle, adopted the air as they had adopted the nickname. The citizens of the United States do not now recognise Yankec Doalle, but Hail, Columbia, as their national air.

YA'POCK (Cheironectes palmatus), a marsupial quadruped of the Opossum family, Didelphider, the only known species of its genus. It differs from the opossums in having only five molars on each side of each jaw, in its aquatic habits, and its incapacity for climbing trees. The muzzle is rather sharp; the ears naked and rounded; the tail long, sealy,

Japock (Ciccironcctes palmatus).
and prehensile; the feet webhed ; the hind-feet with an oppusable thamb. The Y. inhabits Brazil and Guiana. It is rather larger than a rat. It is of a brown colour, with three transverse gray bands, white on the under parts. It feeds on crustaceans, fishes, ic. It has cheek-pouches, in which it stows away its food.

YAR, or YARE, a river of the county of Norfolk, rises about the middle of the coment, llows east past Norwich, and, receiving the Wraveney, widens into the estuary of Preydon Water, is joined by the river Bure at Great Yamouth, 2! miles below which it enters the North Sca, after a course of about 30 miles.
YAIRD (A.S. gaterd, gyrd, Ger. gerte, a rod or wand), the Eritish standard measure of linear dimension (see Wherits and Melsures), is subdivided into feet and inches. The yard contains 3 feet, and each foot 12 inches. The terms 'yard' and 'ell' (the ell being, however, equivalent to $1 \frac{1}{4}$ yards) are frequently (commonly, according to Recorde) used synonymously by old authors.

YARD, in the rigging of a ship, is a timber whieh, when in its normal position, is borne horizontally
at right angles to the ship's length at one of several heights on a mast, for the purpose of sustaining and spreading a square sail. It is upheld by the 'lifts,' and trimmed out of its right angle to snit the wind by the ' braces.' The lower snils or courses are upheld by the main, fore, or mizzen yards. Above these are the tonsail-yards, the topgallant-sail-yards, and the royal-yards.
YALRA'ND, or YERKIANG, the eapital of Little Bokhara, or Eastern Turkestan, in lat. $35^{\circ} 19^{\prime}$ N., long. $76^{\circ} 10^{\prime} \mathrm{E}$., on a river of the same name, a braneh of the Tarim (see Turieestan). It is surrounded by stone walls three miles in circumference, having extensive suburbs, with a supposed pop. of above 200,000 . The houses are built of dried bricks, the streets are intersected by numerous canals, and an extensive commerce imparts to them an animated appearance. This province being the place to which Chimese criminals are banished, there is a large convict population in Yarkand. It is the chief emporium of the commerce between China and the countries beyond the western frontier of the empire. The principal artieles of trade are horses, silk, wool. copper, and jade. Jade is obtained from the river in large pieces-yellow, white, black, and reddish.-Chinese Repository.

YA'RMOUTH, Great, a municipal and, until 1567 when it was disfranchised for corruption, a parliamentary borough returning two memhers to parliament, an important seaport, and fishing and sea-bathing town, on the east coast of Norfolk, 19 miles directly cast of Norwich, and 2021 by railway. It stands about $2 \frac{1}{2}$ miles above the inouth of the river liare, on a slip of land about a mile and a half broad, washed on the west by the Yare, and on the east by the North Sea. Between the town and the suburb of Southtown, or Little Yarmonth, on the right bank of the Yare, in Suffolk, communieation is established by meaus of a bridge. Connected with Southtown is the village of Gorleston, near the month of the river. The principal streets of I. run parallel to the river, and are intersected ly 156 cross lanes or 'rows,' whieh, as a rule, are su narrow as to be impassahle for ordinary wheelcarriages, being generally not more than from 5 to S feet wide. The rehicles by means of which traffic is carried on in the rows, are called ' Yarmouth earts.' They are low, narrow, and well suited for conveying heavy goods. A quay of nearly two miles zuns along the river, and here are the town-hall, the council-chamber, and several other handsome buildings-the finest houses, however, being those built along the esplanade on the beach. There are many churches, schools, and other public buildings, including a sailor's home, fisherman's hospital, and military asylum, the principal church being that of St Nicholas, founded in the 12th c., a haudsome eruciform building with a tower and spire 168 feet high. The town also contains a monumental column 14 feet high, to the memory of Nelson. Ou tho coast are several batteries, three piers, besides two at the harbour mouth, several publie gardens, and a marine drive and promenade 2 miles long. Vessels of over ?00 tons ean enter the harhour, which is formed by the Yare. Y. is the primeipal seat of the English herring-fishery, which employs 400 boats and over 3000 hands; deep-sea fishing, the produce of which is forwarded daily to London, is also carried on, and employs many bands. The euring of fish, especially of herrings, is iuportant, there being consumed for this purpose about 10,000 tons of salt annually; and the 'Yarmouth bloater' is highly esteemed in London and throaghout the country. The quantity of fish sent from Y. by railway in the jear lS64 was 34,432 tons. An
extensive export trade in agrienltural produce，her． rings，and malt is earrical on．Coals，timbur，yines， and salt are imported．Ship－building is earrict on． and it mamufacture of crapc and silk goords．In ISGず， $\because 459$ vessels，of 263,999 tons，cotcred and cleared the port．The niwigation of the coast is dangerons， but Jirmonth lioads，which cxtend between the const aunl a line of sandbanks a slaort distance off shore，are a safe anchorage．I＇ple．（1561）31，\＄10．

YARN゙．I＇lie name applied to the threal spun for the purpose of weaving eloths of various kimls．It vimies not only in the materials of which it is made， but also in the fineness to which it is spurn．This latter quality is of great importance，is upon it depends entirely the evenuess mal quality of the manufacture．in order that uniformity may be insured，a poomd of the material is taken as the staudard，and this is divided into hanks or culs． Thus，with linen yarn，a liank or eut consists of 300 jards；and if it takes 25 of these hanks to make a pound，the yarn is called 25 ；mul if $40,40 \mathrm{~s}$ ：and so on．A hank of wool or cotton consists of S 10 yards． No material admits of such tine spinning as cotton． Nessrs Thomas Hoaldsworth \＆U＇o．of Manehester have mobably produced the finest－that is the thimest－cotton yarn ever seen ；they have pro－ duced 700 s，of which muslin has been made，and this is the dinest crer woven；but to test the won－ derful perfection of their machinery，they liave produced yarn too line to be exactly estimated，but believed to be No．S000 or No．10，000；or 10,000 hanks，each $S 40$ yards，from one pound of cotton－ or over 4000 miles in length．

YAROSLAT．See Jaroslav．

YARILOW．Sice Acmille．s．
Y A＇RLOW，a Seottish stream，rendered famous by song and ballad，rises a little over a mile cast of Loch Skene，at the place where the eonnties of Dumfries，Peebles，and Selkirk meet．It flows in a general north－east direction through selkirkshire， and joins the Ettrick about two miles above the town of selkirk，after a course of Ω^{5} miles．Abont $3 \mid$ miles from its source，it exprands into the Loch of the Lowes，which is a mile long，and a guarter of a mile broad．Leaving the Locli of the Lowes， the small strean enters it Mary＇s Loch，separated ly a narrow neck of land，on which stands St Mary＇s Cottage（Tibby Shicls＇），from the other and smaller lake．st Nary＇s Loeh is $3!$ miles long，and nowhere broater thin 7 furlongs．The peaecful grassy hills which surround the loch slope down－ wards to the water＇s brink，uninterruptell by trees， and compose a seene of great quietude，over which broods the spirit of＇pastoral melimehnly．＇The prevailing ealmuess of the waters is pictured by Wordsworth in the lines：

＇Let

The swan on still St Jlary＇s Lake

Float rlouble，swan and shadow．＇

YiSk．S．See Nrecit．s．

VAW，in the motion of a ship or boat，is the term for clescribing an irregular deviation in the course stecred．A very elopping wind or sea may produce this ellect，but the belmsman would nsually have the eredit of had steering．

YAWIs，a decked boat laving two masts，on the first of which is a lugsail and topsail；and on the aftermost，which rises almast from the stermmost， it lriver or fore－and－aft sail．It is a very easily mathaged rig．

VAVKING may be cither the simple result of dulicient aüration，or may be bronght on by the mere sight of the aet in another person，and is a modilication of the ordinary morements of respir－
ation，in which the inspiration is dever than usual， and is aceoupanicd ly it kind of spasmonlie contrae－ tion of the muscles which repress the lower jiw， and by a great elevation of the ribs and to some degree of the shoulder－blates．＂The purbly iuvolun－ tary eharacter of the movement，＇says Dr Carjenter， ＇is sometimes seen in a remarkable manner in eases of palsy，in whieh the pationt cannot raise his shonlder by an eflort of the will，but does so in the act of yawning．Nevertlieless，this act may be per－ formal by the will，thongh not completely；aud it is one that is partieularly excited by an involuntary tendeney to imitation，as every one must lave experieneed who has ever been in company with a set of yawners．＇－Principles of $1 /$ uman Physiology， Sth ed．，p． 2 SO．

YAWS，known seientifieally as Jrambasia，is a cutaneons eruption of a very peculiar mature， which commonly attacks pegrocs，but has been noticed in Europreans．The disease is preceded by languor and pain in the limbs，and shovering，she－ cecied by heat and restlessness，and is more severe in children than in ulults．After a few weeks，the pure glossy－black colour of the skin gives place to a dirty dull tint；and the patients often not only loath food，but take to eating coils，chall；，earth， \＆e．The skin is then covered for a few days with a white mealy scurf，as if it had been duster with tlour，after which pimples like pin－heads apuear on the forehead，face，neck，groins，fie．，which increase for a week or more，growing into crusted pustules， which enlage until the base attains the size of a sixpence，oreven a shilling．If the erust is removed， a foul sloughing sore is exposed．The pustules may，linwescr，burst spontanconsly，and discharge a thick viscill matter，whiel hardens to a seab ou the surface．In the larger pustules，this surface at length becomes elevated into a red gramulated ex－ crescence，not unlike a wild raspberry（ 1 ；ambersiu）， which is the true and elaracteristic yaw．In size， it may vary from that of a pea to that of a man－ berry，and in colour it varies with the general health of the paticnt from a real to a pale white tint．It has very slight sensibility，and never properly sup－ purates，but clischarges a glutinous ilud，which commmnieates the disease by inoculation．When the yow has remaincd for some time，it diminishes in size，and as the pustule heals，is linally covercd with skin，leaving little or no mark．When the disease seems to have reached its height，one pustule becomes much larger than any of the others，and instead of being elevated，is depressed．This is termed the master or mother yaw，and requires muel eare．When the mulberry－like exerescences appear on the sules of the feet，the resistance of the thick epindermis exeites great prain．They＊are then termed by the negroes T＇ulla，or＇eral yaws．＇T＇his disease is endenie mong certain tribes of mative Afrieans，and is common amourg the negroes of the West Indies and of North and South Ameriea．It is contagions，and canuot be eommunicated except by the aetmal contact of yaw－matter to the abraded skin，or by inoenlation，whiel is sometimes effected by means of a large fly called the yaw－fly．The interval between the reeeption of tho poisou and the formation of the erustion varics from seven to ten weoks．The discase scarcely uver attacks the same individual more than ouce．＂Jaws，＂says Dr Craigie，in his learned work on The Practice of I＇hysic，＇are liable to be confounded with the second－ ary［tertiary \％］or cutaneous symptoms of sy］hilis， with sivvens，＊with the Arabian leprosy，with
＊As Sivvens or Sibbens，and Radesygc，are discases not much known to the general jublic，and not noticed in this work，we may mention that sibbens is a tuber－
radesyge, pellagra, and the red leprosy of Cayenne.' Several writers of eminence regard yaws as the same with the disease described in Leviticus, chap. xiii., as the Jewish leprosy, but the description of the symptoms there given is not sufficiently precise to furnish sufficient evidence regarding their identity. With regard to treatment, mercury does more haru than good, and all that can be done with adrantage is to render the progress of the morbid processes as little painful as possible. The most important remedial agent is the warm bath; and blond-purifying drinks, such as decoction of sarsaparilla, \&c., may he prescribed. The Africans have their own native remedies in the bark of trees called Yuffo and Bullanta, taken in infusion or decoction ; and to destroy the mother yaw, they adopt the following barbarous process: Iron is boiled in lime-jnice with a quantity of the common black ants and of Nalagnetta pepper, and the liquid thus prepared is applied hot to the yaw.

YAZOO', a river of Mississippi, U. S., formed by the union of the Tallahatchie and Yallobnsha, runs south and sonth-by-west in a very serpentine course, in a deep, narrow, sluggish channel, between fertile cotton plantations, and empties into the Mississippi River, 12 miles abore Vicksburg; it is 200 miles long, and navigable at all seasons.

IEAR, a division of time containing a complete course of the seasous, and depending upon the revolntion of the Earth (q. v.) round the sun. Its duration was variously determined by the nations of antiquity, the earliest method being the conventional one of making it include a certain number of lunar months; the lumar month being, after the day, the first period of time which was fixed. Twelve lunar months, giving a year of $35 t$ days, were first taken as a near approach to a course of the seasons. This, though a pretty close approximation to the true value of a year, was yet so incorrect (being defective by more than 11 days) that it was soon fomed to be necessary to intercalate these 11 days, in order to preserve the year in a constant relative position to the seasons. The intercalation was variously effected : thus, the Egyptians, who knew the year of 365 days previous to 1500 B.c., divided it into three seasons ('Winter,' 'Summer,' and 'the Nile,' i. e., the imundation of the N'ile) of four months each, made each montla contain 30 days, and introduced five intercalary days at the end of the 10th month ; the Greeks, who generally retained the lunar year of 354 days, added 3 months in the course of every eight years, giving an additional month to the third, fifth, and eighth year of each cycle; the Romans also added additional days, bnt their system of intercalation was continually changed, not always for the better, till Julius Cæsar crused the adoption of the solar year. The Romans likewise abolished, in Asia, Egypt, and ail the other countries under their sway, the old method of reckoning by lumar years, and compelled the adoption of the Julian calendar, according to which the year was assumed to contain 365 days 6 hours. The substitution of the Gregorian Calendar in the 16th c. introduced for the average length of the solar year, 365 days 5
cular affection of the skin, often extending to the deeper tissues, very infections, and said to be endemic in Dumfriesshire, Ayrshire, and Galloway, first deseribed about a century ago by Dr Ebenezer Gilchrist; while the liadesyge, Spedalskhed, Spedalska, Liktraa, Northern Leprosy, or Marsh Sickness, is endemic in varions parts of scandinavia, consisting in its fully developed form of 'an cruption of pimples, scales, patches, and tubercular pustules on the skin, terminating in pusiforn discharge, with or withont uleeration.'-Craigie, op. cit., vol. i. p. 690.
hours 49 minutes, which differs only by a few seconds from its true value; and this small anmual error, as well as the excess of the true year over the year of 365 days, is compensated for by means of a succession of Leap-years (\uparrow. v.).
The time at which the year began varied much among different nations. The Carthaginians, Egyptians, Persians, Syrians, and other eastern peoples commenced their year at the autumnal equinox, at which time the civil year of the Jews also hegan, though their sacred year was reckoned from the vernal equinox. The commencement of the Greek year was at the winter solstice before Meton's time, and was then changed to the summer solstice. The Romans were the first to adopt the lst day of January as the first of the year, but their example was not followed by subsequent European nations for some time. In France, the commencement was 1st March under the Merovinginns, 25th March under the Carlovingians, Easter under the Capetians, and lst January from 1564. The ecclesiastical year in Europe generally commenced on -5th March (see Date). The ancient northern nations reckoned their year from the winter solstice ; the Russians, till Peter the Great's time, from 1st September, and the same reckoning, known as the Byzantine era, was in use in the Eastern Empire. Of necessity, the commencement of the year among Mohammedan nations has no fixed position in relation to the sun's course or the seasons, it being invariably a lnuar year. Iu Astronomy, there are several kinds of years depending upon the various configurations of the earth in its orbit, and consequently varying in length. First, there is the tropical, or (as it is sometimes incorrectly called) solar year, which, from its being recognised in legislation and history, and commonly applied in the measure of time, has also received the name of civil year. This year is defined as the time which elapses from the sun's appearance on one of the tropics to its return to the same, and has a mean length of $365.2+22414$ mean solar days, or 365 days 5 hours 4 S minutes 49.7 seconds (see Precession). Next is the sidereal year, which is the period required by the sun to move from a given star to the same star again, and this year, affected as it is by Nutation (q. r.) only, is one of the most invariable quantities which nature presents us with, and has a mean valne of 3652563612 mean solar days, or 365 days 6 hours 9 minutes $9 \cdot 6$ seconds. The time which elapses between the earth's arrival at its I'erihelion (q. v.) and its return to the same position, is known as the anomalistic year, and is equivalent to 365.2595981 mean solar days, or 365 days 6 hours 13 minutes $49 \cdot 3$ seconds. The sidereal and anomahistic years have a merely astronomical importance.

YEAST. In the process of fermentation of saccharine fluids containing albuminous matter, as in brewing or wine-making, the originally clear fluid becomes turbid, carbonic acid is evolved, and the substance causing the turbidity gradually separates in a graying foaming mass of a bitter taste and an acid reaction. This is yeast ; and on examining it under the microscope, it is found essentially to consist of aggregations of small oral cells of a vegetable nature, known as the yeast-cells, yeastplant, or Torula cerevisice (q. v.). Jeast, as is well known, has the property of setting up fermentation in saccharine solntions; and beer-yeast, the kind with which we are specially acquainted, possesses, according to Professor Miller, this power in tho lighest degree, as may be shewn by dissolving 4 parts of pure cane-sngar in 20 parts of water, and adding 1 part of fresh yeast: if this mixture be exposed to a temperature of about 80°, in less than

YFAST-YEDDO

an hour, fermentation will have commenced. The investigations of Mitscherlich have led chemists to distinguish two varieties of yeast-viz, the Ober-hefe, or surface-ycast, and the Unter-kefe, or secliment-yeast, the former collecting on the surface of the fermenting fluid, and the latter forming a sediment. Surface-yeast is propagated by buds (sce Tonela Cerevisise) and sediment yeast by spores; and each varicty produces specific results upon the fermenting fluid. The fermentation induced by the surface-yeast is rapid and irregular; while that produecd hy the sediment-yeast is slow and quiet. The surface-yeast is formed when the saccharine fluid ferments at a temperature of from 65° to 77°; while the seliment-yeast is chiefly produced when fermentation takes place at the lower temperature of from 32° to 45°. In their chemical rclations, the two varieties present no apparent difference. On treating yeast with a solution of porash, a celluloselike substance remains, while an allouminate is dissolved. The action of yeast is lestroyed by exposing it to a temperature of 212 , loy alcohol, by the strong mineral acids, chlorine, iodine, and bromine, oxide of manganese, creasote, \&c.; on the other hand, it may be dried at a low temperature, or by pressure, and may be preserved iu this state withont losing its activity. The part which the globulcs of yeast play in exciting the conversion of sugar into alcoliol and carbonic acid, is very obscure ; lint an experiment of Witscherlich seems to shew that the sugar ferments only in those points which are in actual contact with the globukes. Pasteur's experiments render it probable that the process of fermentation is connecterl with the assimilation of the sngar by the yeast-plant during the development of the yeast-globules, or, in other words, that 'the essential condition of fermentation is the conversion of alhmminoid matter into organisel globulcs.'

According to Mitscherlich's analysis, the cells of ordinary washed yeast in a condition to excite fermentation contain (the ashes being deducterl) : carhon, 470 ; hydrogen, 60 ; nitrogen, $10 \cdot 0$; sulphur, 0.6 ; oxygen, $3 \mathrm{~J} \cdot \mathrm{~s}$; while spent yeast (after fermentation had ceased) contained only 5 of nitrogen. The inorganic matter amounted to $5 \cdot 3$ per cent. of the dried yeast, and consisted entirely of phosphates.

The economic uses of yeast in bread-making, brewing, \&c. are noticed in other articles. Beeryeast (Cerenisice formentum) is an article of the British l'larmacopeein. It is employed as a stimulant in the advanced stages of low fevers, and is especially serviceable in cases where, in conscquence of inflammatory symptoms, wine is inadmissible. Neligan has found it of great scrvice in intense tympanitis following parturition. The dose is two tahle-spoonfuls every three hours, and it may be given in camphor misture or peppermint water. Yeast-poultice forms an excellent stimulating application to foul and irritable sores. It is composed as follows : Take of yeast, six fluid ounces; flour, fourteen ounces; water heated to 100°, six fluid onnces. Mix the ycast with the water, and stir in the flour. Place the mass near the fire till it rises. 'Ihis poultice should be renewed every six or eight hours. Its special efficacy depends upon the carbonic acid gas which it evolves.

If surface-yeast or under-yeast be collected and placed on a cloth to drain, and then pressed until nearly dry, it can be kept with cave for scveral months, and in that state is what is called Gersman Yeist, for which a large trade has sprung up within the last few years; the imports to Britain from the continent alone having amonnterl, in the year ending 3Ist March 1866, to 115,06S cwts., or abont 5753 tons. It is chictly importel from Holland and Hamburg, and is obtained
mostly from the great continental distillerics. Nearly the whole of this large quantity is consumed by the lakers. loutent Yeast is exactly similar, but is raised from a wort made purposely from malt and hops. Aietricial Jeast is a duagh of wheat or other flour, mixed with a small quantity of common yeast, and made into small cakes, which are dried. If lejpt free from damp, it long retains its fermentive power.

I' ${ }^{\prime}$ DDO (meaning, as written by the Japanese, ' liver Door'), the largest and most important city of Japan, the capital of the Tycoon or Shogoon (generulissimo), the seat of the excentive government and Gorogio, or council of state, and the de facto capital of the empire.* It is situated on the island of Nipon, on the bank of the river Okawa, where it ilcboucbes into the head of the Lay of Yeddo, in N. lat. $35^{\circ} 40^{\prime}$, \% long. $139^{\circ} 40^{\prime}$. Its site is onc of peculiar beanty. The broad valley in which it lies slopes gradually to the waters of the bay, and for leagues around are wooded hills, smiling valleys, and an crer-luxuriant vegetation-evergreen oaks, eryptogamia, conifere, in great varicty; the cypress, the palm, and the bamboo. In the official quarter, the very heart of the city, parks with magnificent trees, temple-gardens, aud broad green slojes, gladden the eye; while in the suburhs are hedgerows and shady lanes, cluthed for the most part with an evergreen regetation. Fokohama ($\mathrm{f} . \mathrm{v}^{2}$), distant about 17 miles, is the forcign mercantile settlement of Yeddo.

The proximate area of the city lias been estimated to be about 15 miles from north to south, and S miles from cast to west-a total of about 120 sq . miles. Estimates of the pop. vary from $1,700,000$ to $2,000,000$ or $2,500,000$ inhabitants. Entering the city from the suburb of Sinagawa, by the Tocado, or great imperial highway, the visitor meets a continnous stream of people in foot, and others in norimons or eangos, yakonins on horseback, and perhaps the cortége of a daimio, or territorial and fewdatory prince, made up of horse and font, bearing spear and halbert, crest and pennonillustrating the phase of oriental fendalism which still prevails in Japan. Ward-gates, with decrepid municipal guards, are of frequent occurrencc. Shops of all kinds, booksellers', armourers', sword-makers', basket-makers', coopers', pawnbrokers', fruit-shops, and many others, all open in front, succeed each other. After traversing a mile of tocado and a narrow strect, an open space is reached-a sort of boulevard-where fairs are held, on one side of which is the Tycoon's cemetcry, looking like a large and finely-wooded pleasure-ground. Crossing the lridge, the denscly-populated commercial quarter is gained. The shops are scarcely equal to those in a Chinese strect. Their signs are not a little gro-tesque-a disl, tlying a flag aloft, lenotes the stall of the fishmonger ; a large pile of coins, the oflice of the money-changer. There is the street-vendor offering his moring stock of merchaudise for sale. Carts of rude construction, piled with goods, and drawn by human cattle, are seen on their way to the dwellings of the buyers. Tontiug men or boys, outside the silk-mercers' shops, clamoronsly invite the custom of the passer-by. The shops, which are open to the street, and unprotected by glass,

* Strictly speaking, the city of Miako, being tho residence of the Mikado, the one supreme thongh almost nominal sovereign of Japan (see Japas), is the capital of the empire ; but Y., where the Tycoon and actual sovereign holds his court. is practically the metropolis of the country. As the Mikado is the phantom cmperor, and the Tycoon the real sovercign, so Miako is the nominal, and Y. the actual capital of the kingdom.

YEDDO-YELLOW COLOURS.

usually make little show, for the better sort of goods cannot be exposed to the damp and clust. The bath-house, that notable institution of the conntry, is seen in full operation. Dogs aud chiklren abound everywhere. Large fircproof dépôts, protected by a thick coating of stucco, rise higli above the ordinary shops, and patrols march constautly through each ward night and day, to give timely alarm of firc. There are many fire-bells, stations, and well organised fire-brigades. Nor are these precautions unnecessary in a city where water is scarce, and the houses are built for the most part of wood and lath, with a slight coating of mud. The Japanese reckon that the whole of Y. is burnt down by frequent fires, now in one part, now in another, once in seven years. Earthquakes are likewise of very frequent occurrence. In one of the most thickly peopled clistricts of the city, the Nipon-bas, the great central bridge of Japan, spans the river Okawa. It is a wooden structure, strongly fastened with massive iron clamps, and from it, distances are reckoned to cvery part of the empire in ri-a measure of $2 \frac{1}{2}$ miles British. The official quarter, with its triple lines of bastion, rampart, and moat, the yamaskias, or palaces of the daimios, and the Tycoon's castle,* is built on the summit of a range of hills in the centre of the valley, and covers an area of several miles in circumference. This heart of a great city has been compared to a succession of Hyde Parks or Kicnsington Gardens: green slopes, and overhanging groves, undulating lawns, decp moats, fed by tributary rivers, massive walls and gateways, and fine macadamised roads, are amongst its leading characteristics. The Tycoon's palace occupies the centre of the quarter, and the daimios' residences, \uparrow with gateways of elaborate architecture, stand around, and are built on one side of a triple line of great causeways or glaces, about 50 feet wide ; on the other side are deep moats, the home of myriads of wild-fowl-the ibis of Egypt, storks, cranes, and paddy-birds-which are protected by the most stringent laws. Solidly constructed timher bridges (not drawbridges), flanked by high massive gateways, are thrown across each moat in three or four places. The walls and bastions are formed of poly-gonal-shaped blocks of granite, fitted into cach other, but uncemented, to allow them to yield as much as possihle, without displacement, to the oft-heaving ground. No ordnance is visible, and the whole fortification shews ignorance of the principles of military engineering, and appears to be nseless as a defence against artillery.
The climate is better than any other cast of the Cape. The sky is unclonded during the greater part of the year, and this bright weather lasts even through the early winter, and on to ahout the middle of February, when rain and snow, and easterly gales, may he expected. July and Augnst, with a maximum temperature of 92° and a minimum of 63°, are the two hottest months of the twelve. During January and February, the two wettest months, the temperature ranges betwcen 15° and 59°. During March. April, and a part of May, the weather is very pleasant, which is also generally true of the autumn months. There is an astro-

* When Sir Rutherford Alcock had an andience of the Tycoon, August 1860, the palace was rebuilding, having been destroyed by fire the year hefore, November 11, 1850.
+ As a consequence of the moral and political revolution that has been going on in Japan since the opening of the country to foreigners, the daimios have withdrawn from Y., greatly to the injury of a considerable number of the inhabitants.-See Blachwood's Magazinc for April 1867.
nomical school in Y., and an imperial nary-yard stands on the left hank of the river, on the east of the city.
It may here lee noted, as supplementary to the article Japan, that, after much diplomatic pressure, the treaties made by the Western Powers with the Tycoon, and lang ignored by the Mikado, have been ratified by the latter in a decree dated November 24,1865 . This is a measure of the ntmost importance to the interests of the Western nations generally in Japan, as it completes the validity of their position, and leaves the daimios without any pretext for opposing the 'Tycoon in his foreign policy, and insulting the strangers he has admitted into the conntry.

Sir Rutherford Alcock's Capital of the Tycoon (Lond. 1863); Bishop Smith's Ten JFeeks in Japan (Lond. 1861); Oliphant's Narrative of the Earl of Elgin's Mission to China, I857, 1855S, and 1859 (Lond. 1860); Yeddo and Pekin, by Robert Fortune (Lond. 1863); Parliamentary Papers, 1565-1866.

YEDDO, Bar of, an inlet of the North Pacific, on the south-east coast of the island of Nipon, Japan, lying between 25° and $35^{\circ} 40^{\prime} \mathrm{N}$. lat., and intersceted by the 140th meridian of E. long. The city of Yeddo is situated at its north-western extremity. The depth of water, nowhere great, decreases all along the banks, towards the town, which, at low water, cannot be approached within a mile even by a boat. Solicl batteries of grauite, well kept, and in general aspect not unlike those of Cronstadt, have heen erected midway between the anchorage and the shore.

yekaterinburg. See Ekaterinburg.
 YELATOM. See Jelatom.

YELL, one of the Shetland Islands (q. r.), and, after Unst, the furthest north of that group, is separated from Mainland by Yell Sound, and from Unst by Blue Mull Sound. It is 17 miles in length, $5 \frac{1}{2}$ miles in average breadth. Area, $04 \mathrm{sq} . \mathrm{m}$. ; pop. (1861) 2716 . The west coast is rocky and precipitous, but on the whole the surface is tame, and consists largely of moorlands-the greatest elevations being no more than 400 feet above sealevel. Agriculture is in an unusually backward state, and, though the surrounding seas are generally stormy, fishing is the chief employment.

yellow Berries. See French Berries.

YELLOW-BIRD (Chrysomitris tristis), a bird of the Finch family (Fringillidce), a native of North America, where it is very widely distributed. It is rather more than five inches in entire length; the male in summer plumage of a bright yellow colour, with black crown, wings, and tail, the upper and under tail-coverts white. The female is yellowish brown above, and ashy hrown below, and the male assumes a very similar plumage in winter. Yellowbirds are often seen in large numbers, feeding on sceds of thistles and other plants, and sellom alighting on the ground. The nest is made of lichens fastened togetber with saliva, and lined with soft suhstances. The song of the Yellow-bird is very pleasing; and it is a sprigbtly and attractive cage-bird, casily tamed, and capable of being taught tricks. Several allied species are found in the western parts of America.

YELLOW COLOURS. The yellow pigments employed by painters are: 1. The varieties of chrome prepared from chromate of lead. Sce Chromum. 2. Several colours technically aflled pinks-as Brorn Pink; prepared as a lake from a decoction of French berries and fustic; and English Pink and Dutch Pink, both lakes, prepared by different processes from French or yellow

YELLOW COLOURS-YELLOW FEVEL.

berries and turmeric. 3. Naplis I"ollour, a mixture of metallic antimony, ret-lead, and oxide of zine ealciner,, alded to a small quantity of lime, then fused, and afterwarls ground to powder. 4. King's Yellow is a tersulphuret of arsenic. 5 . Putent Yollow consists of as parts of chloride of lead and ${ }^{7}$ parts of carbonate of lead well mixed in powder, and then fused together. 6. Hrle Yellow is prepared from a decoction of Weld (Tieseda luteoke), or dyer's weed, with alum, and is, in fact, mother yellow lake. It is much used in paperstaining. 7. Gamhoge, which constitutes the chicf yellow colour used in water-colour painting.

YELLOW FEVER is a disease entemie in low districts near the sea, but under certain eircumstances sporalic in other places, never appearing beyond 45° of north latitude, nor without a temperature of at least $7 i^{\prime} F$, nor above the elevation of 2500 feet above the level of the sea, depending in part on causes not yet lnown, but in cirenmstances favouralle to its production, capable of being propagated by contagion. It nsually commences suddenly" (generally in the night or early morning) with a sense of collness, a rigor, or actual shivering, followed by wascular reaction, as shewn by the beat and dryness of the skin, headache, especially over the eyes, and pain of the eyeballs, which are suffused, and have a strange drunk-like aspeet. The limbs and hins are painful; the tongue is loaded, and its edges are red. There is a peenliar and characteristic Ilush or suffusion of the face, occupying a zone of about an inch above and below the eyes. Nausea, gastric uneasiness, and a teudeney to vomit soon supervene. These symptoms may gralually lessen, and the patient will then regain his ordinary health in st or "ub hours ; but if the symptoms persist, they soon become more ageravated, and the stomach ejects at first a clear lluid, which soon becomes of a lirty-lrown tint, and is finally suceeeded by the trac black romit. A yellow tint on the conjonetiva is observed, which extenels to the skin of the face; and as the disease alvances, the whole hody becomes of a yellow colour, varying in intensity from a pale lemon to a leep orange tint The anxious conntenance indrates the distress of the patient, who appears to lee agitated by fearful apprehensions or incipient delirium. The skin feels constricted, and is of a pungent heat. The bowels are constipated, and the ral, elean, and tremulous state of the tongue indicates the presence of intestinal irritation, and consequently the inerease of danger. The urine and other exeretions are more or less suppressed. Emetations, hicconghing, and vomiting increase the distress and weakiess. The disease in fatal cases usually terminates on the second or thirel day. The above train of symptoms is by no means constant. Sometimes, when everything scems favourable, black vomit suddenly appears, and the patient inmediately suceumbs. In other eases, patients experience no symptoms exeept severe pains in the legs and sulpression of urine, and die with out taking to their beds. In all cases terminating fatally, albumen appears in the urine on the second or third day. In femalus, the catamenial discharge is sure to appear, whether due or not. The discharges from the bowels, towards the close of the elisease, may le black or dark greeu, and these dark cracuations are succeeded by what is termed the 'eadly-stool', resembling dark sandy mul. As yellow ferer is not a disease of this country, we shall not enter more fully into its symptoms. According to Dr Jackson, who has mritten an excellent treatise on this disease, the usual course of yollow fever in its most concentrated form consists of 12 hous of forming period, 36 or 48 of formed or broper fever, and 24 or 36 of declining or conchuding
period. When the symptoms are less intense, the patient may survive to the 14 th day. In the milder molifications of this disease, the morbid symptoms are prolonged to a considerable extent. Death may occur at any period of the discase, and the mode in Which it owenrs is ly syneope (fainting), uramia (or poisoning of the blood by the aceumulation of ureat, apoplexy, or asphyxia or sutlocation. When the black vomit is plentiful, and the urine free, the intelligence remains umaffeeted, but the skin becomes cold and damp, the pulse small, and dinally imperceptible at the wrist, and death ensues from gradual exhaustion and syncope. When the black vomit is scanty, and the urine is supressed, the poisonel blood acts upon the brain, and the patient exhibits widd delirima, followed by coma, convulsions, and death. The ratio of deathis to eases in the disease is always wery high. From 'Tulloch's statistical lieports on the Discases of Solliers, it appears that in the Windward and Leeward conmand, the ratio was 1 to 23 (or 3 in every 7 cases died), in the Jamaica command it was 1 to $1 \frac{1}{s}$ (or 3 in every + eases died), while in Gibraltar it was 1 to $\mathbf{I}_{\frac{2}{3}}$ (or 3 in every 5 cases died).

There are great differences of opinion as to the proper treatment of this disease. Dr Blair, one of the highest anthorities on yellow fever, holls that the disease may be ent short or aborted by prescribing ' 20 grains of calomel aded to "4 grains of quinine, afterwards followed by two drachms of carbonate of vagnesia, and two onnces of sulphate of magnesia in eight ounces of peppermint water.' These aborting duses were repeated at intervals of fonr or six hours, one dose being generally effieient, lout four have been given before the quinine induced its special symptoms of cinchonism. Miny physicians who have had mueh experience of this disease, have no belief in the abortive treatment; and some treat their cases with antiphlogistic or lowering remedies, and others with stimulants. It is probable that there is no one mode of treatment suitallo for all eases, ant that each shonld be treated aecording to its speciat symptoms. The extreme beat of the surface (a temperature of 107° has been observed in the arm-pit) may be relieved by the frequent application of the wet shect: clp ping or leeches often relieve the head-symptoms; and a blister to the gastric region may relieve the irritation of the stomach. If there is no suppression of urine, and if that fluid is free from albmen, morphia is of great service, but it must be given with great eaution. The food should be of the mildest form, such as chicken-tea, arrowroot, sago, and barley-water, and these should be taken frequently in very small doses, in consequence of the state of the stomach. Similarly, with regard to all drinks, which are most likely to be retained if sucked through a tube or given by tea-spoonfuls. Tea usually disagrees, hat cold infusion of oatmeal, and very dilute brandy and water, are usually relished. Our highest authority on Tropical Diseases, Sir J. lianald Nartin, states that, whenever the disease breaks out, 'the most speely means of prevention [of its spreading] in respect to towns and garrisons, will always be found in the removal of both the sick and the healthy to a locality where the temperature is sufficiently low, such as a neighbouring range, or dry ventilatel gronmd.' In all ships on service on the west coast of Africa and other nnhealthy stations, the following rules (which we horrow from Dr Aitken's Mandbook of the Science and Practice of Medicinc) should be strictly attended to. A prophylactic dose of quinine (five grains) shouhd be admimistered to the men daily (a precaution that sbould be taken in all malarious regions, independently of yellow fever). Whenever the fever appears on board, the ship should at
once put out to sea, and should proceed to the conlest atmosjlhere within reach. The most immediate measures of prevention shonld be, to obviate direct solar exposure, to prevent fatigue, and to check any excesses in the use of spirits. Seamen should be kept as remote from unhealthy coasts as is consistent with duty, anchoring every evening a few miles from the shore, if possible. Duties in boats should as much as possible be conducted during the mornings and evenings, the noon-day heats and the deadly nocturnal emanations being to be equally aroided. When meu are landed, they should be encamped on high and dry ground. Meals should be regularly served and carefully cooked, aud coffee should be given early in the morning, and after umusual fatigue or exposure, and no work should we commenced till the coffee has been taken. Holds of ships should not be cleansed on the spots where the ferer has originated, or during its Irevalence, but the process should he deferred till the vessel is in a colder latitude. Lastl5, green wood should not be placed on board ship in hot climates, but the wood sbould be barked and partly charred.

Dr Craigie, in his learned Practice of Pluysic, gives the following extensive list of synonyms of Iellow Fever: 'Febris jama, Typhus ecterodes, Sauvages and Cullen; La Maladie de Siam, La Fievre Matelotte, Jomito Pricto, Chapetonada, Fielre Amarilla Hispanorum et Hispano-Americanorum; New Distemper of 1691 ; Fiendal's Fever, Pestilential Fever, Bilious Ferer of Gamble; Endemial Causus or Burning Ferer of Moseley; Malignant Pestilential Fever of Chisholm ; Remittent and Bilious Remittent of Hunter; Concentrated Endemic Ferer of Jackson; 'Tropical Continued Fever of Lempriere.' We shall conclude with a short notice of the history of this disorder. Long before the arrival of Cortes in Mexico, an extremely fatal epidemic disease used to prevail amonest the native Mexicans. Epideraics of special sererity occurred in $1545,1576,1736-$ 1737, and 1761-1762. Although Humboldt thinks that the elevation of the table-land of Mexico (7200 to 7800 feet above the level of the sea) is sufficient to exclude any idea of the identity of this disease, known as Matlazahuatl, with yellow fever, there can be little doubt, from the similarity of the symptoms, that the two diseases are really the same. The Europeans visiting the shores of America soon became painfully familiar with the disease; and it is almost certain that 'the jlague' which so often destroyed the English and Sjanish troops at the end of the l5th and the beginning of the 16 th centuries was in reality yellow fever. A disease bearing the character of yellow fever apreared in 1618 among the Indians in certain parts of Massachusetts, and prevailed with much severity till 1622, and it committed great bavoc among the emigrants to Virginia. When the expedition against Hispaniola in 1655, under Venables, returned to Jamaica, they met there ' an enemy (the plague) more severe thau the Spaniards, which in a little time reduced the army, originally 7000 , to fewer than 2000 men.' There can be little doubt that this plague was yellow fever. In 1691, it was very fatal in luarbadoes, where it was known as the j-w Distemper. From about this date, yellow fever has been endemic in the West Indies. It was unknown at Carthagena and along the coast till 1729 , when it committed dreadfal havoc ; the Spanish galleons never remaining any time without interring one-half, or at least one-third of their men. In 1740 , it first appeared at Guayaquil, since which time it has often occurred; aud in all the towns on the coast of the American continent and islands between $45^{\circ} \mathrm{N}$. lat. and 10° S. lat., it appeared in proportion as Europeans becan to visit them. 'In this manner,' says Dr Craigie,
'Vera Cruz, Cumaná, Harana, Acapulco, and La Guayra lave successively become its endemial abodes; and its appearance in these towns is as uniform and certain as the arrival of the sun at the tropic of Cancer. Oi these places, Yera Cruz and Harana may be regarded as the nursery of yellow fever; and from the month of March to that of September or Octoluer, the disease rages like a pestilence among the recently arrived Europeans, and those natives who descend from the elevated table-lands of the interior.' Until the year 1793, the disease was regarded as having a sjontaneous origin, and being due to tropical poculiarities operating on European and unseasoned constitutions; but that year the doctrine of infection suddenly started. In that year the disease appeared with great viruleuce in the island of Granada, and rapidly spread over the Antilles to Philadelphia, and many parts of the state of Pennsylrania, to Massachnsetts, New Iork, Caroline county Maryland, Alexandria in Virginia, several counties in North Carolina, and Caraccas in Yenezuela. This outbreak was preceded hy a few days by the arrival of a vessel from Bulam, on the West African coast, at a harbour in St Granada, in which vessel, when stationed off Eulam, fever had prevailed abont five months before to a great and fatal extent. This disease was at the time termed the Bulam Fever, but soon turned out to be ordinary yellow fever. Since 1763, yellow fever has very ofteu appeared as an epidemic in the West India. Islands and various parts of the American states, and has even been endemic in various parts of the south of Enrope, especially Gibraltar and Malaga. From the testimony of many medical writers, it is certain that a disease essentially identical with yellow ferer prevails endemically along the west coast of Africa, at Senegal, Sierra Leone, Cape Coast Castle, and the island of Fernando Po. Fortunately for this country, this fell disease, which has repeatedly been brought to our shores (Swansea, Southampton, \&c.), is at once nipped out by our climatic couditions. When, last year, it was imported into Swansea, Dr Buchanan, who was at once sent down by the government to watch the disease, and take tlie uecessary measures to prevent it from spreading, recorded 10 instances in which, with filth, bad ventilation, and every other condition farouring the fever, it failed in every case to spread leyond the original victim. Altogether there were 20 cases, of which 15 were fatal. The discase then disappeared.

A disease closely resembling, but apparently not quite identical with yellow fever, is now (1S67) committing great ravages in Mauritius.

YELLOW-HAMMER, or YELLOW-BUNT. NG (Emberiza citrinella), a species of Bunting (q. v.), which is one of the most common of small birds in Britain, distributed over all parts of the country, and is common also in most parts of the continent of Europe, from Forway and Sweden to the Mediterranean. It is about seven inches in entire length, and the male is a bird of brilliant plumage, although there is something in the short thick form of the bird, and in the tints and distribution of its plumage, which prevents it from leing greatly admired for bcauty. It is, perhaps, also the less regarded because it is so common; and in many parts of Britain there is a prejudice against it, so that boys who would think it wrong to rob any other bird's nest, esteem it a kind of laty to rob that of the yellow-hammer. In the summer plumage of the male, the head, cheeks, ear-coverts, and wape of the neck are bright lemon yellow, with a few dusky black patches; the upper part of the back and wings are reddish brown, tinged with yellow; the wing-primaries are dusky black, with

YELLOWTEEGS-YENEN.

narrow external cllges of bright yellow; the sccondaries, tertials, and wing-coverts dusky liack, broadly margined with rich chestnut brown ; the upper tailcoverts reddish chestnut, edged with ycllow; the tail-fathers dusky black, the central pair edged with chestaut, anel tinged with yellow; the chin, throat, and whole under surface, bright lemon yellow, clouded on the lireast and flianks with reddish brown. The tail is slightly forked, and is shorter than that of the Common Bunting. The knob in the pralate is also less conspicuous. The female has minch less yellow about the heal than the malc, ant her plumage is altogether much less vivid. The Y. frequents hedges and low trecs, and is often to be seen. esplecially in winter, in the vicinity of louses, in flocks, with sparrows, clarf. finches, \&c. It generally makes its nest on the

I'cllow-hammer (Emberiza citrinclla), with
Nest and Eggs.
ground, mader shelter of a bush or a tuft of grass, forming it of moss, roots, and lanir. The song of the male is very swect, and consists of few notes, which have been jocularly set to music with the words. 'A little bit of bread, but no-o cheese'. He is remarkably attentive to his mate, and talics his turn in incubation. In Italy, great numbers of yellow-hammers are caught, and fattenel like ortolims for the table. It is a curious and noteworthy circumstance, that this bird is rare in insular situations; in the islanels of the Mediterranean, as well as the Orkneys. The name Yellow-hanmer is a corrnption of Yellow-ammer ; Ammer, in German, signifying Bunting. In Scotland, the Y. is known as the Yoldrin or Yite.

YE'LLOWLEGS (Gambella favipes), a bird of the order Grallatores, and family Scolopacida. It is fully ten inches in entire length; the bill, which is straight and slender, being in inch and threequarters. The wings are long and pointed, the tail short, the legs long, and the lower half of the tilie naked. The unper parts are ash-colour, with many large arrow-headed and other spots of brownish black, edgel witl white; the lower parts are white, with brownish lines and arrowhead markings. The legs are yellow, and are very conspicuous when the bird takes flight. This bird is gencrally distributeri over the eastern coasts of North Arnerica, from Maine to Florida, migrating southwards in winter. Small flocks are scen wading in scarch of food, which consists of the fry of fishes, crustaceans, worms, \&e., sometimes on the margins of lakes, as well as on the sea-shore. In winter, the Y. migrates to the warmer parts of America. In autnmu, it is very fat, and is prized for the table.

YELLOW RIVER. See Ifwayg-ho.

yelilow sea. See Whang-hat.
YE'LLOWSTONE, a river of the U. S., rises in 314

Sublette's Lake, near Fremont's Peak of the Pocky Mountains, and receiving numerous branches from the south, dlows north-easterly through the territory of Montana, and empties into the Missouri liver, in the north-west part of Dakota Territory, lat. $45^{\circ} 5^{\prime}$ N., long. $104^{\circ} \mathrm{W}$. It is 800 yards wide at its mouth, 1000 miles long, and navigable 700 or 500 miles.

VMLLOWTHROAT (Trichas Marylandica), a bird of the Warbler family (Sylviathe), very common in North America, from the Atlantic to the l'acitic, most abundant in the middle states, particularly in Marylaul. It prefers the neightourhood of swamps. It is abont $5 \frac{1}{2}$ inches long; its colour olive green above; lright ycllow on the thoat, breast, and under tail-coverts; the males liave a broad black band on the forehead in summer, which disappears in winter. Its song is pleasing, but not very musical. It makes its nost on the ground. It is one of the hirds best known to everyluody in North America.

YELLOW-WOOD (Oxleya xanthoxyla) a valuable timber-tree of eastern parts of Anstralia, of the natural order Cedrelacec. It is a great tree, often 100 fect in height. The wood is very ycllow. It is nsed for earpentry and boat-building.
YE'MEN, in a wide sense, includes the whole sonth and south-west of Arabia; but, more strictly, is the name only of the south-western corner of the peninsula, bounded on the N. by Hedjaz and Nedjed ; on the E., by Madramaut and tho Dahna, or Great Arabian Desert; on the S., by the Gulf of Aden; and on the W. by the Red Sea. It was known to the aucients as Aralia Pelix (Felix being a mistranslation on the part of Ptolemy of Yemen, which does not meau 'happy,' but the land to the 'right' of Mceca), and they obtained from it much frankincense, myrrh, and other costly balsamic substances, in which it ahounds more than any other part of the world; they obtained also from its ports the products of Iudia, and other eastern regions, with which its inhabitants maintained a constant trade. Tho history of Y. reaches back to the highest antiguity. The Joktanides, descendauts of Joktan or Kahtan, are its first possessors of whom we have any record; and from them it scems to have jassel, about $2400 \mathrm{~B} . \mathrm{C}$., into the bands of tho Ilimyarites, or Homerites. The 1limyarite states and citics of Saba, Thaphar, and Athana or Aden, attained at an early period a high degree of prosperity, carrying on a great commerce both by sea and land, and they exteuled their dominion over a large part of Asia and the north-west of Africa. Sec Sabeans and Ades. The persecution of the Christians by the last Himyarite princes led to the overthrow of the llimyarite power by the Abyssinians, 529 A. D. From this date till 601, Y. was ruled by Abyssimian governors; then for a short time ly the l'ersians, under Khosrn (Chostocs) 1I. The followers of Molammed did not succeed in subdning Y. till they had for a considerable time heen masters of the rest of Arabia. Under all the ealifs, and even under Saladin, IFimyarite prinecs retained a partial independence, which they reacquired when the Turks, who conquerel the conntry in the 16th c., were expelled in the century following. To this day the country is mader the dominion of a number of Himyarite primees or sheiks, the most powerful of them being for a time the 1 man of Sutia (q. v.). The political condition of the country is, and long has licen, very unsettled.

The people of Y. differ considerably in playsical characteristies, dress, and manners from the inhabitants of the other parts of Arabia, and their
language gives evidence of a different origin. See Sabzans.

Our geographical knowledge of Y. has been mueh inereased by recent explorations, and charts of its eoasts have been laid down by officers in the service of the East India Company. Throughout the whole length of the country, at a distance of from 10 to 30 miles from the coast, a chain of monntains extends, between whieh and the sea is a traet of low ground, the Tehama, generally sandy and desolate, but in some plaees very fertile, and elothed with tropieal vegetation. Inland from the mountain chain is a fertule table-land, at a general eleration of about 4000 feet, yielding the productions of warm temperate rather than of tropieal regions. Some of the mountains rise to a height of about $\$ 000$ feet. The slopes even of the more lofty mountains are covered with luxuriant forests, and the mountain valleys are of unsurpassed fertility. The prineipal exports are coffee, dates, senna, gums and gum-resins, wax, ivory, and goat-skin moroceo. Some grain is also exported. There are no rivers; but good harbours are formed in some plaees by natural openings in the coral reefs which line the eoast. The prineipal ports are Mocha (q. v.), famous for the coffee which it exports; Aboo Arish, or Gasim ; Hodeida; Shehr ; and Aden (q. r .), which is now in the hands of the British. Sanaa, the eapital, or nominal eapital, is situated on the tableland. Damar, Taas, Loheia, Beit-el-Fakih, and Zebeed are among the other prineipal towns.

IENIKA'LE STRAIT, sometimes also called Strait of Fertch, conneets the Sea of Azov with the Black Sea, forming a sea-passage between the Crimea on the west and the Caucasus on the east. It is over 20 miles in length, and at its narrowest is less than 2 miles, and so shallow and interrupted by shoals, that cautious sailing and steering are necessary even for swall steamers.

YENISEI', one of the largest rivers of Siberia, formed by the junction of the Oulon-Feme and the Bey-Keme, which rise in the monntains on the southern border of Siberin. It flows north through the eentre of Siberia into the Arctic Ocenn, forming at its mouth a long estuary. In the earlier part of its course, it is interrupted by falls and rapids; but afterwards fows through a great plain or steppe, rocciving many tributaries, of which the prineipal are the Upper Tunguska or Angara, from Lake Baikal; the Lower Tunguska, from the Baikal Mountains ; and the Turonkehan. Its length is 2700 miles, and it drains a basin of upwards of $1,000,000$ sq. miles. A great part of the \mathbf{Y}. is navigable, and is now regularly traversed by steamers.

IENISEI'SK, a town in the government of the same name in Siberia, S50 miles east of Tobolsk, lat. $58^{\circ} 27^{\prime} \mathrm{N}$., long. $92^{\circ} 16^{\prime} \mathrm{E}$., on the Yenisei. Pop. GS24. Y. was founded in 1618 , and is one of the most important towns of Siberia, the chief artiele of trade being furs, which are bartered by the native nomad tribes. It is three miles in eircumferenee, and has a enstom-house and arsenal.

YEO'MAN (Ang. Sax. gemen, common), a term which seems, in carly English history, to have heen applied to a corumon menial servant, but after the 15 th e. eame to denote a class of small freeholders, forming the next grade below gentlemen. The term yeomau is sometimes considered identical with the forty shillings freeholder, possessed of the elective franehise.

YEO'MANRY, a volunteer force of eavalry in Great Britain, numbering about 14,000 men, and costing the country annually about $£(5,000$. It was originally formed during the wars of the French Revolution, and then eomprised infantry as well as
earalry ; but the whole of the infantry corps, and many of the cavalry, were disbanded after the peace of 1S14. The organisation of the corps is by counties, unter the lords-lientenant. The men provide their own horses and uniform; in consideration of which they receive annually a elothing and contingent allowance of $£ 2$ a man, are exempt from taxation in respeet to the horses employed on yeomianry duty, and draw during the annual training 2s. a day for forage, besides a subsistence allowanee of 7 s. a day. If ealled out for permavent duty, they reccive caralry pay, with forage allowance. The yeomanry are available in aid of the civil power ; and in time of invasion, or apprehended invasion, the sovereign may embody them for service in any part of Great Lritain, under the provisions of the Mutiny Act and Articles of War.

YEOMEN OF THE GUARD, a reteran company, eonsisting of 100 old soldiers of stately presence, employed on grand oeeasions, in conjunction with the gentlemen-at-arms, as the body-guard of the sovereign. These Yeomen were constituted a eorps, in 1485 , by King Henry VII., and they still wear the costume of that period. Armed with partisans, and in the quaint nniform, the men present a curious sight in the 19th century. The offieers of the corps are a captain (ordinarily a peer), a lieutenant, and an ensign. There is also a 'Clerk of the Cheque and Adjutant.' All these appointments are held by old offieers, and are considered as important prizes. The whole charge is borne by the sovereign's eivil list. The headquarters of the corps is at the Tower of London, where the men are popularly linown as Beef-caters (q. v.).

YEO'VIL, a small munieipal horough of Somersetshire, 20 miles south of Wells, on the borders of Dorsetshire, a busy, handsome place, built of red brick and yellow Hamhill (a neighbouring quarry) stone, and situated in a pleasing district on a hill-side sloping to the Yeo. The chureh of St John, a strueture of the 15 th e., is much admired. The height of the side aisles, and large size of the windows, give it grace and lightness, and hence it has been called the 'Lantern of the West.' There are several other churehes, besides schools, almshouses, and other charities. Kid and other gloves are bere more extensively manufactured than in any other town in England. There are abont 20 mannfactories, in which are produced abont 10,000 dozen pairs of gloves per week. The number of males alone employed in this manufacture is about 2000; the females, who sew the gloves, all work at home, and are mostly the wives and daughters of agricultural labonrers, inhabitants of the surrounding country, and amounting probably to about 10,000 . Woollen manufactures and leather-dressing are also carried on. It has received its eharter of incorporation since 1851. Pop. (1S61) 7957.

IERCUM, another East Indian name of the plants ealled Mudar (q. v.), and of the fibre which they yield.

IE'SSO, or JESSO, the most northerly of the four prineipal islands which compose the empire of Japan (see Japan), lics north of the eentral island of Nipon, from which it is separated by the Sangar or Tsugar Strait. It is about 350 miles in length from east to west, and is 250 miles in extreme breadth. Area estimated at $62,500 \mathrm{sq}$. m. ; pop. unknown. The surface is mountainous, and the island is rieh in minerals. The chief town, Matsmai, on the south coast, is said to eontain 50,000 inhabitants. After Matsmai, the most important seaport is Hakodadi (q. v.).

YETTHOLM, a parish of Scotland, in the 315

YEW-IGGDRASIt.

north-cast of Roxburghshire, bordering on England, on the east aud north-cast, 15 miles east-morth-cast of Jedburgh. The Beammont Water runs through the parish, and on either side of this strean are the villares of kirk- Yetholn and Town- Yethohn, the former being the head-quarters of the gipsies in Soutland. According to the census of Scotland for 1S61, the village of fictholm contained 544 inhabitants.

YBW (Tarus), a genus of trees of the natural order Taxacee, which is very generally regarded as a sub-order of coniferer, and is characterised by solitary and terminal fertile flowers, with a solitary ovule sessile in the centre of a fleshy dise, forming a sort of drupe when in fruit, and by dicutyledonous seeds. 'The gemus I'uxus is distinguished by a solitary terminal seed, surrounded by a suceulent cup. The species are dilfused over the whole northern parts of the world, and are large and beantiful evergreen trees, with narrow lanecolate or linear leaves. 'The Common Xew ('I'. baccata), a tree

Yew (T'uxus baccuta).
of $30-40$ feet, and a trunk sometimes of great thiekness, branchiog a few feet ahove the ground, and forming a large and dense head, is a native of the middle and south of Europe and of Siberia. Nolle speeimens of it are to be seen in many parts of Britain. It attains a great age, at least 300 or 400 years. Its wool has been much used from very early times for making lows, for which it is preferred to every other kind of wood. It is very hard, and reckoned almost equal to boxwood for tine work. The heart-wood is of an orange-red or deep-brown colour. The fruit is red, and was long reputed poisonous, but the pulpy part is not so; the seed, however, is a dangerous poison. The leaves also are a powerful narcotie; aud although they are sometimes given as a vermifuge, their use is attended with danger.-The Inisul ${ }^{\text {Y }}$ ew (7 'fastigiata of Lindley; TT. Mibernica of Hooker), originally discovered in Ireland, and now very commun in plea-sure-grounds, is by many supposed to be a mere variety of the common species, with upright fastigiate habit, but it differs also in having the leaves seattered, whilst those of the Common Xew are in two rows.-The Mortil Americas Yew (T. Canaden.sis) is of humbler growth. -The name Jaban liew is sometimes given to Podocarpues macrophyllus, a tree of a zenus nearly allied to Taxke, and recently separated from it. It is a large and stont tree, a mative of Japan; its wood much valued for calinetwork. Other species of Podocarpus are natives of
the warmer parts of Asia, of Chili, New Holland, \&c. I' mucifer is a lofty tree of the northern provinces of Japan and mountains of Nejnul, from the seed of which an oil is extracted, fit for culinary purposes, although the sced itself is too astringent to be eaten. To the order or sub-order Taraceas belongs also the genns Sulishuria (see Givano), the
 which the foliage, as in bellsburiu, has a renarkable resemblance to the fronds of ferns. I'. trichomanoides is a large New Zealand tree.

YEKD, a considerable city of Western l'ersia, eapital of the province of the same name, situated on the sonth-west angle of the ereat desert of Khorasan, in lat. $32^{\circ} 7 \mathrm{~N}$, long. $54^{\circ} 50^{\prime} \mathrm{J}$. It is surrounded by a wall and ditch, is said to be five miles in circuit, and consists of an old town aod a large modern suburls. It is the great emporium of the internal commere of the empire, as it is a convenient resting-place for caravans from Kerman, Herat, and Meshed, on the east and south-cast, and which are met here by merehants from Ispalian, Shiraz, Telran, and other places on the west and north-west. Mamufactures of silk stuffs, velvets, cotton and woollen fabries, arms, and loaf-sugar are carried on, and the bazaars are spacions and well supplied. I'op. estimated at 50,000 , many of whom are Guchres (q. v.).

Y'GGDIEASIL, the mame given in Seandinavian Mythology to a tree, the greatest and most saered of all trees, which was conecivel as binding together heaven, earth, and hell. It is an ash, whose branelies spread over all the world, and reach above the lieavens. It sends out three roots in three different dircetions: one to the Asa-gods in heaven, another to the Jrost-giants, the third to the umder-work. Under each root springs a wonderful fountain, endowed with marvellous virtues. From the tree itself drops a honey-dew. Auong its brauches and roots, sereral animals sit or run alout: an eagle, a squirrel, four stags, a serpent, all having their own proper names. The serpent, Nithhöggr, lies at the under-world fountain and gnaws the root of J. ; the squirrel, liatatüskr, runs up, and down, and tries to breed strife between the serpent and the cagle, which sits aloft.

Of this old-world myth too imperfect an aecount has survived to enable us to real its meaning. Some writers in the middle ages bring it into conncetion with the Cross. It is striking to find Virgil (Geors. ii. 291) deseribing the ash as sending its branches as high into the air as it sends its roots into the earth-
Fscnlus in primis, que quantum rortice ad auras Ltherias, tantum radicc in tartara tendit.
Temarkable coincidences, although of a fragmentary kind, are also found in eastern traditions.

Jacob Grimm sees an intimate connection between the world-tree X. and the Irmenseule, of which numerons traces are to be found in the records of German antiquity. This is deseribed by Rudolf of Fuld as a great trunk of a tree sct upright, and worshipped in the open air; the name Irminsul, he explains as meaning the universal or all-sustaining pillar (Ger. Süule, pillar). Such a trec-idol was destroyed by Charles the Great in his conquest of the Saxons in 7Tン, at a place called ITereshurg, in West1halia, wheh was a chief seat of the pagan religion of the saxons. The worl irmin, Ang-sax, cormen, was frequently componded with other words in the earlier stages of the Tentonie languages, in the sense of universal, greatest of all. As the primitive natureworship tended more and more to the personification of particular powers, these trunk-idols were associated with partieular divinities, and pertanps

Y.MOTH-YOGA.

had an image set upon them, or were cut jnto some rude resemblance, as in the case of the Creek pillarimages called hermee (see Hermes). The coincidence of the names irmin and herme, which may, lowever, he casual, has not failed to be remarked. The Christmas tree of moderu Germany may be some kind of offshont of the old notion of Yggdrasil.

Y-MOTH (Plusia gamma), a beantiful species of Moth (q. v.), common in Britain and throughont great part of Europe, about an inch in entire length, without reckoning the antenne, which are not quite half an inch. The colour is lilac, variegated with brown, the upper wings beautifully marbled, with a shining mark nearly in the form of the letter Y, or of the Greek γ (Gamma), whence the names. The lower wings are dirty white, with a broad smoky border, and a white fringe, spotted with black. This moth flies about during the day in summer and autumn. It is very swift of flight. It lays its egges on the under side of leaves. The caterpillar is slightly hairy, green with a yellow line along each side, and tive white ones down the lack. It feeds on the leaves of a great variety of plants, as peas, beans, turnips, cabbages, hemp, clover, oats, and other grasses. It sometimes ravages gardens, but more in France than in Britain.

YOGA (from the Sanscrit $y u j$, join; lindred to the Lat. juny-, Gr. zeuy-, Gothic, jiuk; hence junction, and figuratively, 'concentration, religious or abstract contemplation') is the name of one of the two divisions of the Sinkhya philosophy of the Hindus. See Sinkura. While the first of these divisions, the Sankhya proper, is chiefly concerned in teaching the tatturas, or principles of creation, and the successive development of the latter, the main object of the Yoga is to establish the doctrine of a Supreme Being, and to teach the means by which the human soul may become permanently united with it ; and since the Sinkhya proper is silent on the creation of the world by a Supreme Beingwhence it was charged, though unjustly, by its opponeuts, with heing atheistical-the Ioga, which is called theistical, is considered to be its complement. According to Patanjali, the reputed author of this system, the term Yoga means 'the hindering of the modifications of thiuking;' and by such modifications, which, be says, may be accompanied with affictions, or be free from them, he understands the three kinds of evidenceviz., perception, infereace, and testimony-misconception or incorrect ascertaimment, fancy, sleep, and recollection.' The 'himdering of these modifications' is, according to him, effected either by a repeated effort to keep the mind in its unmodified state, or by disprassion, which is the consciousness of having overcome all desires for objects that are seen (on earth) or are heard of (in Scripture).' Dispassion is conducive to meditation; this, again, is of different kinds, and is attained either' 'impetuously'-in adopting varions transceadent methods-or 'by a
devoted reliance on I. s^{\prime} uarara, the Lord.' This Lord, or Supreme Being, Patanjali then defines as 'a particular Purusha, or spirit, who is untonched by afllictions, works, the result of works, or deserts; in whom the germ of omniscience reaches its extreme limit; who is the preceptor of even the first, because he is not limited by time; and whose appellation is Om , the term of glory.' This word is to be mattered, and its sense is to be retlected apou, for 'from it comes the knowledge of $\hat{1}$ s'wara and the prevention of 'the ohstacles' which impede Yoga. 'These obstacles, Patanjali says, are "illness, apathy', doubt, listlessness about the accomplishment of meditation, want of exertion, attachment to worldly objects,
erroneous perception, failure to attain any stage of meditation, or imability to continue in the state of meditation when it has been reached.' There are several other methods to prevent these obstacles from distracting the mind, and impeding its steadiness. One, for instance, consists in pondering over one single accepted truth; another in 'practising benevolence, tenderness, complacency, and disregard towards all ohjects in possession of happiness or grief, virtue or vice ;' another, 'in forcibly expelling or retaining the breath :' another, in 'dwelling on knowledge that presents itself in dream or sleep;' \&c. When all these modifications have disanpeared, the mind becomes free from 'the tingeing' of the exterior world, as the pure crystal is free from the colour that seems to belong to it, when a coloured sulsstance is seen athwart it. After having described the various modes in which the mind may appear changed into the likeness of what it ponders, the author of this system then proceels to explain the practical Joga, by which 'concentration' may be attained. It comprises, according to him, mortification, the muttering of certain hymns, and a devoted reliance on the Lord. Through it, meditation is established, and afflictions are got rid of. By afflictions, again, he understands ignorance, egotism, affection, aversion, and tenacity of life; which terms are then the subject of an especial investigation into the mature of what is to be got rid of, of what is not desired to be got rid of, of what is constituted by the callse, and of what is the constitutive cause.-There are eight means or stages subservient to the attainment of concentration -viz, forbearance (yatma), religions observance (niyama), postures (asuna), regulation of the breath (pran'ayama), restraint of the senses (pratyâhara), steadying of the mind (dharan'a), contemplation (dhyana), and profound meditation (samadhi).-The tirst stage, forbecrance (yamat), consists in mot doing injury to living beings, veracity, avoidance of theft, chastity, and non-acceptance of gifts; they are the universal great duty.-The second stage, religious observance (niyama), comprises purityexternal as well as internal-contentment, austerity, muttering of the Velic hymus, and devoted reliance on the Lord. - The third stage of Yoga, postures (âsana), is defined by Patanjali as 'that which is steady and comfortable' at the same time. The commentators mention several rarieties of such postures. According to an interesting treatise on the Yoga philosophy by Navinachanurapala, one of thesc, called Siddhisana, is practised by placing the left heel under the anus, and the right heel in front of the genitals, by fixing the sight upon the space between the eychrows, and, while in this motionless attitude, meditating npou the mysterious syllable $O m$ ($\mathrm{q} . \mathrm{v}$.). Of the posture called Padmasama the same treatise says, that it consists in placing the left foot upon the right thigh, and the right foot upon the left thigh, in holding with the right hand the right great toe, and with the left hand the left great toe, the hands coming from behind the back and crossing eack other; while the chin rests on the interclavicular space, and the sight is fixed on the tip of the nose. When the command of such postures is attained, Pataujali says, the Yomin does not sutfer either from cold or heat, hunger or thirst, or similar afllictions.-The fourth stage, regulation of the breath (man'aydma) is threefold, according as it concerns exhalation or inhalation, or becomes tantamount to suspension of the breath, the latter also being termed kumbhaka (from kumbha, a jar), because 'the vital spirits then are as motionless as water is in a jar.' Throngh such a regulation of the breath, the obscuration of the pure quality of the mind is removed, and the

YOGA.

latter becomes fit for acts of attention. Navinachandraphala deseriles different proeesses of the Prân'âyama as selected from different authorities. One, for instance, consists, aceording to him, in the act of inhaling through the left nostril for $7 \cdot 6788$ seconds, suspending the breath for $30 \cdot 715 \cdot 2$ seconls, and exhaling through the right nostril for 15.3.5.6 sconils: then inhaling through the right nostril for $30-7 i 52$ seconds, exhaling through the right 110stril for 7.6788 seconds, suspending the hreath for : $: 0.7152$ seconds, and exhaling through the left nostril for 15.35% seconds; lastly, inhaling through the left nostril for 7.6788 seconds, suspending the breath for 307152 seconds, and exhaling through the right nostril for 15.3576 seconds. To the kumblaka, of which there are eight varieties, the same author observes, two processes are indisjens. able: sitting in one of the postures deseribed; and, by means of an incision in the frenum lingure, and milking, as it were, the tongue, cansing it gradually to become so lengthened as to allow the rima glottidis to be shut by pressing back the epiglottis with the proint of the retroverted tonguc. Such kumbhakas, it is supposed, produce the most wonderful effeets: some of them cure diseases of the head and lungs, dronsy, \&ic.; others make proof against all sorts of inflammation and fever ; the eighth or last variety of the kumbhalio, especially, cures all diseases, purges from all sins. promotes longevity, enlighteus the miud, and awakens the soul- The fifth stage of Yoga, the restraint of the senses (pratyalhura), means the withholding of the senses from their respective objects, and the accommodating them entirely to the nature of the mind. According to an anthority guoted by Navinachandrayata, a Yogin's senses are suspended when be can susplend the respiratory movements for 10 mimutes and 48 seconds.-This stage is preparatory to the sixth, or the stealying of the aniand (dhutran't̂), which menns the freeing of the mind from any sensual disturlance, by fixing the thoughts on some part of the body, for instinee, on the navel or the tip of the nose. This stage, it is snpposed, ean be accomphisleed when the Yogin is alle to suspend his respiratory movements for 21 minutes and 36 secourls; and, according to Navinachaudrapala, it is effiected by different processes -muttering the syllable 0 m 144,000 times, fixing the ejes upon the tip of the nose, or the space between the cyebrows, for two hours, swallowing the tongue fur two hours, \&o.-Contemplation (dhyana), the serenth stage of Yoga, is the fixing of the minl on the one oijject of knowlatge, the Supreme Spirit, so as to exelnde ath othicr thoughts. It is practised in consequence of the 'steadying of the mind,' as detined before; and, aceording to the authority quoted by Navinaehandrapala, a man can accomplish it when he is able to suspend his respiratory novements for 43 minutes and 12 seconds. - The eighth and last stage of Yoga, profound meditation (samadli), is the perfect absorption of thought into the one object of meditation, the Supreme spirit; it is devoid, as it were, of any detinite character, which would suggest a terne as applicable to it. In such a state, Navinaehandrapâla says, 'a ' 'ogin is insensille to heat and cold, to pleasure and pain: he is insensible to liows and wounls, to the effects of fire; he is the same in prosperity and adversity; he enjoys an ecstatic condition. He is free from lust, fear, and anger ; he is lisengaged from all works. He is not affected by honour and dishonour. He looks upon gold, iron, and stones with the same unconcerned eyes. He is the same in love and in hatred; he is the same anongst friends and enemies.' And aceording to the authority he quotes, snch a state may be
318
attained ly a man who can suspend his respinatory movements for 1 hour, 26 minutes, anil 24 seconds. -The last tluree stages are also comprised under one distinctive name, Sam'yama, or 'restraining,' heeause it is chietly on the perfection attained in these three collectively that depend the wonderful results which are promised to a login when ho arplies them to the contemplation of sprecial objects. Such results are, for instance, a knowledge of the past and future, a koowledge of the sounds of all animals, of all that halpened in one's former births, of the thoughts of others, of the time of one's own death, a knowledge of all that exists in the different worlds, of stars and planets, of the structure of one's own body, \&c. There are especially, however, eight great powers which a Yogin will aequire when properly regulating and applying the stam'yamaviz, the power of shrinking into tho form of the minutest aton! ; that of assuming a gigantic body ; that of becoming extremely light; ; that of becoming extremely heavy; that of unlimited reach of the organs (as tonching the moon with the tip of a finger) ; that of irresistible will; that of obtaining perfect dominion over the iunce organs of the body; and that of acquiring mastery over everything. If the Yogin applies sam'yama to the contemplation of the suallest divisions of time, and the successive order in which such divisions occur, he obtains a discrimination which emalles hino to maderstand the subtle elements, and to see all objects at once. When his intellect has lecomo freo from all considerations of self, and his spirit is no louger subject to the result of acts performed, and when both have thus attained the same degree of purity, the Yogin obtains eternal liheration.- In the last chapter of his work, Patanjali then slews that these perfections are not always oltained ly logins in one hirth, but that Prokr'ti, or nature ssee sînKUYA), generally in a succession of births, brings to maturity the result obtained in a yrior hirth. 1 Ce thus makes nature, not actions, the cause of each effeet; meritorions aetions mocrely serving, according to lim. to remove the obstructions which, from bal aetions, would arise to its regular procress, just as water would take its matural course aiter the liuslandman, who would want to lead it from ield to field, hal removed the obstructions that lay in its path. After having then taught that the result of actions, in sucecssive births, consists in the recollection of a prior state, and in the obtainment of a speceial (existence, a special duration of life, and special enjoyments) ; and after laving discussed the dillerent influenees to which the mind may lieenme sulject in its union to different iljjects, Patanjali winds no with deseribing the mode in which tinal liberation graduadly talies place. First, he say's, when a person lans oltained the discrimination conveyed by the Yoga doctrine, all ideas uf self-such as, I am different from another-cease. In consequenec, thought is turned inward, anl this is the commencement of liberation. Fut, as still recollections, derived from former existences, sonnetimes prevail in his mind, they must be abandoned ly him in the same way as he las to overeome the afllictions, above sprecified. When he has succeeded in this, his knowledge will have become so inlinite, that but little will remain for him to be known. Then the cosmieal gun'as, or qualities, too (see sinmmita), having accomplished the main object of spirit, will have gradually arrived at the end of their funetions, and, as a consequence, matter will become separated from spirit. This is kaivalya, or true liberation, for the mere power of the mind to retain its nature after dissolution has taken place, is not yet true liberation.-The practical part of the Yoga was admitted into the later Vedãnta (q. v.). Its ethical
portion is especially dwelt upon in the celebrated episode of the Mahâbhârata (q.v.), the Bhagavoulfîta. But the great porer it has at all periods exercised on the Hindu mind, is less derived from its philosophical specalations or its moral injunctions, than from the wonderful effects which the Yoga practices are supposed to prodnce, and from the countenance they give to the favourite tendeucy of orthodox Hinduism, the performance of ansterities. It is needless, however, to say that frequently these practices were and are merely a eloak for imnosture and hypocrisy, and that the professional Yogins (q. Y.), numbers of whom are met with throughout India, are often nothing but lazy mendicants or jugglers, who, by impressing the vulgar with a belief in their supernatural jowers, convert it into a source of an easy livelihood. Such followers of the Yoga pretend, for instance, to foretell future events; they deal in palmistry, and profess to cure diseases. There are instances, too, where, for a bandsome consideration, they allow themselves to be buried for a certain time, so as to exhibit the power of the Yoga. Two such cases are related as authentic in the treatise of Navinachandrapala; and it would appear from them, that a buman being, after having undergone certain preparations, such as the Ioga prescribes them, may be shut up in a box without either food or drink, for the space of a month, or eren forty days and nights, and yet remain alive. The author of the treatise endeavours, indeed, to shew that the rules laid down by the Yoga regarding the mode of respiration, the postures, and the diet of a Yogin, may have been founded on a careful observation of the nature and labits of hibernating animals; and in support of this view, he enters into a detailed investigation of the effect of the Yoga practices on animal life. If, as it seems, his statements are correct, much of what otherwise would be incredible in the accounts given of the performances of Yogins, could be received as true, because admitting of explanation. The system of Patanjali was tanght by him in a little work called Yogastitra, which consists of four Padas, or chapters, each comprising a number of Sutras (q. v.). The oldest commentary on it is ascribed to a 「yâsa (q. ャ.) ; and this was commented on by lachaspati-Mis'ra. Of other commentaries, those by Iijnînalhikshu, Ehojadera, and Nägojithat t'a are the most approved of.-For a fuller enumeration of works on the Ioza, sce A Contribution towards an Intex to the Bibliography of the Indian Philowophical Systems, by Fitzedward Hall (Calcutta, 1559). The first two chapters of the Sutras have been translated, with annotations, founded on the commentary of Dhojadeva, by the late J. P. liallantyne (Allahabad, 1S53); and a paraphrase, bit somewhat too free, of the same commentary is contained in the 4 th vol. of William Ward's Jiew of the Mistorn, Literature, and Ieligion of the Hindus, dec., 4 vols. (Loudon, 1S17-1S20). For a brief account of the system, see also the lst vol. of H. T. Colebrooke's Miscellaneous Lisceys, 2 vols. (London, 1837) ; and for the practice of the Yoga, A Treatise on the Yoge Philosophy-that referred to above-by N. C. Paul (i. e., Navinachandrapala), (Benares, 1851).

YOGIN, a follower of the Yoga system of Hindu philosophy (see Yogs), but in popular acceptation a term generally denoting a Hindu ascetic or devotee, a man who has entered the fourth stage of religious life as described in the S^{\prime} âstras. large class of such persons forms a division of the votaries of S'iva. Sec S'ALYAS.

YOKOHAMA (meaning, as written by the Japanese, 'Cross Shore'), a town of Japan, in the
island of Nipon, the foreign mercantile settlement of Yeddo, and the head-quarters of the plenipotentiaries of the treaty powers. It is sitnated on the sunth side of a bight of the Bay of Yeddo, about 17 miles from Yeddo, and opposite to Kanagawa.
Y. was substituted (1859) by the Japanese for Kanagawa, the treaty port, which is on the Tocado, or great highway, as the residence of the foreign mercantile community, on account of its greater isolation and distance from the route of the hostile daimios, or territorial princes. The Japanese government built, at a great outlay, solid granite piers and landiag-places, a large custom-house, official residences, and shops for Japanese traders; besides honses and godowns for the foreign community and merchants. Y., which in 1854 was a small fishing-villaze, extends along the sea-shore for about a mile and a balf, and is troo. or three streets cleep. The pop. exceeds 20,000 . The custom-house is nearly in the centre of the town; and east and west of it, lie respectively the foreign and native quarters. The shops are filled with goods to suit the foreign taste-such as lackered ware of rare quality and bronze-work, baskets and porcelain, fancy silks and embroidery, curiosities and articles of rertu. A causeway across the marshy ground connects I. with the higl road at Kanagawa. i deep canal is drawn as a cordon around the settlement on the land-side, which cuts it off most completely from easy access to the surrounding country, and at every point of egress or ingress is a guardhouse, thus placing the whole community most effectually under the watchful and jealous eye of the goverament.
yonce, Charlotte Mary, a novelist of considerable merit and popularity, was born in the year 1823. She is a daughter of the late Whliam Crawley Yonge, Esq: of Otterbourne, Hampshire, sometime an officer in the 52d Regiment. The work by which she is best known is The ITcir of Redcluffe, which had great success, and has goue through several editions. Desides this, she is the author of ITeart's Ease, Dyneror Terrace, The Daisy Chain, The Lances of Lynccood, The Little Duke, \&c. These works exhibit much literary accomplishment, and bave secured for Miss X. a public of her own. The spirit which perrades them is pure, amiable, and pious; and commonly the stories are more or less contrived as vehicles of the High-Church opinions to which the writer is warmly attached. Considerable sums accruing from the sale of her writings she is said to have devoted to the aid of religious missions in New Zealand. In addition to the fictions by which she is chiefly known, Miss Y., in 1863, pmblished in two vols, a work On Christian N'ames, their IIstory and Derivation, in which mnch curions endition is displayed.

YO'NkERS, i village of New York, U. S., on the enst lank of the Hudson River, 17 miles north of Now York City, from which it is accessible by rail and steamboat, filled with beantiful residences, villas, and cottages. It has six churches, male and female academies, and several manufactories. Pop. about 7000 .
YONNE, a department in the north-east of France, bounded on the N. by the department of Scine-et-Marne, on the E. ly Aube and Côte-d'Or, on the S. by Nierre, and on the W. by Loiret. Area, $2 S 6$ s sq. m. ; pop. (1S66) 372,589. The department is watered by the river Yonne, which flows across it in a north-east direction. The surface is hilly, many of the hills being covered with fruitful vincyards, the intervening valleys being beantiful and fertile. The vineyards yield annually upwards of $22,000,000$ gallons of mine.

There are some fine forests in the department. The chmate is generally liealthy, except in the nonth-west, where the marshes oftern give rise to fever. The suil produces abundance of grain, bat the cultivation of the vine is of the greatest importance, the lecst wines produced liere" being those of Chablis, Joigny, suxerre, anl Tonnerre. The clicef mineral products are red granite, marble, lithomraphic stones, pavement, red and yellow oclire, iron. There are manufictures of cottons, woollens, beetroot sugar, brieks, tiles, \&c. The chief exports are timber, corn, and wine. It is divided into five arroudissements-viz., Auxerre, Arallon, Joigny, Sens, '「ounerre. 'Ihe railway from l'aris to lyou passes through the elepartment. The capital is Auxerre; the other chief towns are Avallon, Joigny, Sens, and Tonnerre.

TORK, IIenry Bexedict Mary, Dǔke of, Cardinal, and Bishop of lirascati, the last male descendant of the royal I Conse of Sturart, was the second son of James (111. of England), commonly known as the l'retender. Ile was lorn at liome, March 26,1725 : and after the failure of the attempt of his elder brother, Charles Edward, in 1745, resolved to enter the church. He was admitted to tonsme and minor orders lyy Benedict Xll., and created Cardinal in 17 ± 7. Clement XIIl. consecrated him Bishop of Corinth in partibus infidelium, and afterwards of the suburban see of Frascati, where he took up his residence. He also enjoyed, through the favour of the crown of France, the revenues of two abbeys, which he held in commendam, as well as a pension from the Spanish court ; and the liberal eharity with which he dispensed his income among the poor, and for the other charitable and religions necessitios of lis diocese, endearect hin to lis flock. These resources were lost at the Revolution; but, nevertheless, in the distresses of the holy see which chisued, Cardinal I. sold liss family jewels for the purpose of relieving l'ins YI. in his necessities. On the occnpation of liome, he withdrew to Venice; but he returned in 1801 , on the restoration of the papal authority under Pius VII. George IIl., having become aware of the failure of his former means of income, grantel him a pension of $\not \& 400$ a year, which he auceptel, and enjoyel till lis death. Thase to whom a printed record of the ' Last of the Stuarts' may be interesting, will lind a small collection of his ' 1 'astoral Letters,' in a 4 to volume published in lome, and entitled A Appertic ad Tusculanan Synorlum a Celsitudine Regia Emmentissimi IIenrici Ppiseopi T'usculani (Rome, 176.1) He was appointed by Pius VII. Dean of the sacred College, and held several other dignities, and was much respected, as well by the ltalians as ly foreigners visiting Tome. He died at Frascati, July $17,181 \%$, at the adrancerl age of ninety-two. His last will, which is a very interesting document, is printed ly Artand in his l'ie de Pie 1'11. His monument, by Canova, in St Peter's, was erectell ly order of the Irince liegent, afterwards George IV.

york, Iolise of. Sce l'lantigenet.

YORK, the capital of Yorkshire, is situated at the junction of the rivers Onse and Foss, the three Liidings of the county meeting at the same place, and is nearly equidistant from London and Edinburgh. 1 t is the seat of an archlisishopric, a county in itself, and a municipal and parliamentary borongl. The government is vested in 12 aldermen and 36 conncillors, of whom one, as in the case of London, is Lord Mayor. It returns two members to jarliament. The pop, in 1861 was 40,377 , being an increase from 1851 of 407 t persons, and 794 inbabited houses. Within the l'oor-law Union of which Y. is the centre, there are $\$ 3$ parishes, with
an area of 70,769 statute acres, and a poln in 1561 of $30,15 s$.
Y is anongst the most ancient of British cities. Befure the lioman invasion, it was one of the chief towns of the Bricantes, the most numerous aml powerful of the Dritish tribes. It was eonstitated a lioman station, under the name of Lloracum, hy Agricola abunt $7!$ A. in, and was very soon the prineipal seat of Lioman power in the north, perhaps in Eritain. While the Homan elominion existed ma the island, Y. was a city of the lirst importance. IItre Hadrian lived and Severus died. Here, ton, diel Constantine chlorns, the father of Constantine the Great, and here, as many lelicve, his greater son was born. When the emperors visited the prorince, Y. was thecir chosen residence, and it was the abode of the imperial legates when the emperors were absent. little is known of the city for a century after the departure of the Liomans, about 409 A.D., hut it certainly suffered muclh duriug the long conflict lectween the Britons and the P'icts, against whose incursions Y . was a material defence. it afterwards became the eapital of Nortlumbria. The first metropolitan clurch in England was huilt here ly Elwin, the Northumbrian king whom l'aulinus baptisel: and here also litgar, the first sole wonarch of England, held, in the year 966 , the Witenagenot. Willian the Conqueror was long unable to overcome this stronghold of the morth, notwithstanding his coronation by its archbishop, Aldred. One Norman garrison, numbering 3000 men, was put to the sword in 1069; but William exacted a turrible vengeance in the following year, when he laid waste the whole country between Y. anul Durhan.
The first English parliament was held at IV. in 1160 by lfenry II, and for 000 yars afterwarls parliaments continued to lee sunmunch occasionally to the ancient city. Under IIenry 111., the courts of King's Bencla and Exchepluer sat at Y'. for seven years ; and fur a few months, liechard II. removel thither the courts of King's Bench and Chancery. During the insurrections consequent num the dissolution of the monasteries by licary VIII., \bar{Y}. was seized by the insurgents of the 'Pilgrimage of Grace;' anl in its inmediate neighlourhood, Pairfax, in 1644 , conquered Prinee liupert on Marston Nloor. Typical of a very dilferent time and order of things is the fact that the British Association for the Advancement of Science was first organised at Y. in 1831.
A city so ancient necessarily presents many interesting premorials of anticuity. There are remains or memorials of lioman towers and temples, anil of the earliest British churches. One of the most magnificent of the Anglo-saxon churches was erected at Y. in the Sth e., and this, destroyed ly fire, rebuilt, enlarged, and changed from time to time, is now known as York Mister. A portion of the origmal church was disinterred during the excavations which followed the latest lurring of the minster, in 1829 . The present structure takes rank with the finest specimens of Gothie architecture in the world. It was mainly built in the 13ths and 14 th centuries. Its length, from base to base of the buttresses, is 504 feet, anul its extreme breadtle 250 feet, being $2 \pm$ feet longer than sit Paul's Cathedral, and 149 feet longer than Westminster Abbey; The magnificent east window is 75 Feet high and 32 feet broad, and contains abont 200 compartments, each a yard square, rejresenting script,tural sulbjects. War and fire have conspired to deform or destroy this splendil cathedral. Twiee it has been burned down, once in 1069, and again in 1137, each time to rise more beantiful than before. During the tinles of the Commonwealth, much damage was done by
war and rantonness, and several of its older monuments were mutilated or broken up. In $18 \Omega 9$, it was set on fire by Jonathan Martin, a maniac : and the roof of the choir, 응 feet long, with all the woodwork on each side, was destroyed. While this disaster was being repaired, a workman's candle was carelessly left burning, one night in 1840, and again a terrible fire broke out, destroying the southwestern tower, with its splendid peal of bells, and the roof of the nave. The cost of the repairs exceeded $£ 100,000$.

A monastery of Benedictine monks was built, or rather completed, at \bar{I}. in the time of William Rufus, which was in great part reconstructed about the end of the 13th century. Its abbot had a mitre and a seat in parkiament. Some portions of the original building yet remain. Thirteen seceders from this monastery established, in 1131, the neighhouring Abbey of Fountains, near Ripon, under Cistercian rule. On the site of the Benedictine monastery now stand the museum and gardens of the Iorkshire Philosophical Society. The same order had a priory dedicated to the Holy Trinity in Nicklegate, and a numery outside the walls at Clementthorp. Besides these, the Dominicans, Franciscans, Augustinians, and Carmelites had each a monastery, and the Gilbertines a priory, within the city. In the immediate neighbourhood were 16 hospitals. At the Ieformation, Y. contained 41 parish churches, 17 chapels, 16 hospitals, and 10 religious houses. Twenty-two of the churches yet remain, and several new churches and chapels of ease have been built in or near the city. 'The Roman Catholics hare two chapels, and the rarious bodies of dissenters, 14 .

The educational institutions of I. are numerons and useful. Notable among them are St Peter's School, founded in 1כัธี7; Archbishop Holgate's Free School, dating from Henry VIII.; the Blue Coat School for hoys, and the Gray Coat for girls, supported chiefly by annual subscriptions; the York Collegiate school (proprietary) ; the York and Xinon Diocesan Training-school for Masters; and the Forkshire School for the Blind, dedicated to the memory of William Wilberforce, and conducted in a palace originally built for the Lord President of the Council of the North.

The Iorkshire Philosophical Society was formed in 1822, and possesses a handsome building and gardens on the site of the ruined St Mary's Abbey, with a museum, rich in antiquarian relics and specimens illustratire of natural history. Among other public institutions are the Connty Hospital, the first established in England north of the Trent; the Lunatic Asylum; the Dispensary; the Friends' Fietreat; and very many charitable foundations for the luenefit of poor persons. The ancient castle, with the exception of its imposing Clifford's Tower, is superseded by the modern and commodious assize courts. The Guilchall, a five Gothic building, was erected in 1446. There are also convement assembly and concert rooms, and a creditable theatre.

Whatever the trade of Sork may have been in ancient times-and old writers speak of it in glowing terms-it counts for little now. The making of leathern gloves, combs, glass, \&c., supplies employment to many; some find employment in iron-foundries, in flax-spinning, and the manufacture of linen; and of late, the construction of railway carriages has become part of the city industry.- See Drake's Eloracum: Browne's Mistory of the Metropolitan C'hurch of St Peter's, York; Britton's Cathedral Anti-guities-York; Hargrave's History of York; Gent's York; Wellbeloved's Eluracum, or Fork under the Romans. (15.1 -pop. of p. b. $50,561$.)

YORK, a shire-tom of Pennsylrania, on Codunis Creek, 10 miles south-west of the Susquehanna

453

Firer, 28 miles sonth-sonth-east of Harrisburg, at the intersection of several railways. It has a spacious granite court-house. numerous churches, handsome residences, three banks, four newspapers. Pop. in 1860, S605.
YORK, a river of Virginia, formed by the umion of the Pamunkey and Mattapony, flowing southeast to the Chesapeake Bay, nearly opposite Cape Charles. It is 40 miles long, and from one to three miles wide. Yorktown, an ancient but decayed port, on the right bank, eleven miles from its mouth, was the scene of Lord Corawallis's surrender, October 19, 1781.
YORKSHIRE, which is larger in territorial extent than any other two counties in England, is situated nearly in the centre of Great Britain, ahout midway betreen London and Edinburgh. 'Its extreme points,' says Allen, in his History of the county, 'lie between the parallels of $53^{\circ} 1 \mathrm{~S}^{\prime}-\overline{5} 1^{\circ}$ 40^{\prime} N. lat., and between $2^{\circ} 40^{\prime}$ of W.- $0^{\circ} 10^{\circ}$ of E. long. from Greenwich. On the Nide, it is separated, in its whole extent, from the county palatine of Durbam by the river Tees; from the mouth of the same riser to the entrance of the Humber, the whole E. side is bounded by the German Ocean ; on the S. side it is divided from Lincolnshire by the rivers Humber and Trent. The boundaries between Y. and the counties of Nottingham, Derhy, Cheshire, Lancashire, and Westmoreland are merely conrentional, being indicated by no natural feature of the country.' The longest diagonal of the county, north-west to southeast, extends about 130 miles; the shortest, southWest to north-east, abont 90 . It contains about 5953 sq. m., or abore $3.820,000$ statute acres. It is divided into three Ridings, North, East, and West, and a small district not included in any of the three, the Ainsty of Iork. The Ridings (a corruption of tri-thing or thirding), date hack to Saxon times, and are peculiar to Iorkshire. Each has a separate military and civil jurisdiction, and each its own lordlieutenant and public bnildings. The Forth Piding contains 11 wapentakes; the East, 7 ; the West, 11 . In the whole county, hesides the archiepiscopal city, there are 59 market-towns, 60 poor-law unions, and 1500 parishes and tormships. The North Riding returns 2 county and 9 burgh members to parliament; the East Riding, 2 county, and 6 burgh members; the West Riding, 4 county, and 14 burgh members; and the city of York, two membersmaking a total of 39. According to the census of 1861, the pop. of 1 . was $2,015,541$, of whom $991, S \geq 6$ were males, and $1,023,715$ females. Three-fourths of the whole number were resident in the West Riding. In the ten rears $1851-1860$, there were renistered in the whole county 168,609 marriages, 695,439 births, and 439,313 deaths.

The bistory of the county in early times may lie mainly read in that of its chief city. Apart from the erents which transpired at, and iu connection with York, there is little to lee recorded. It was originally occupied by the Brigantes, and was subjected by the fomans under Agricolla ahout 71 A. D. When the Roman occupation ceased, it was long and greatly troubled, tirst ly Pictish, and then by saxon incursions. Under saxon rule, the traces of Brigantian occupancy were soon obliterated, only the rivers, mountains, and a few remarkable natural curiosities retaining their British mames, while all things else received Saxon designations. The comnty formed part of the kingdom of Northumbria, taking the name of Deira (the Country of Deer), when that kingdom was dirided. In the troublous times which preceded the Conquest, many battles were fought against inrading Danes, and generally with success. 321

YORKSHIRE.

At Stamford Brig, a few miles from York, Harold, the last of the Anglo-Saxon kings, defeated the united Danish and Forwegiau armies, three weeks before he fell before the Normans on the fatal ticld of Hastings. Among the more notable events of later history, may be named the battle of Waketield, where the Duke of Jork was defeated by Queen Margaret in 1460; the battle of Towton Field, near Tadeaster, fought on Palm Sunday in 1461, the most sanguinary conflict of the bitter war between the rival lioses; and that of Marston Moor, whieh gave the final blow to the falling fortunes of Charles 1. Simee that time, with slight exeeptions, the history of Y. has been one of peace and prosperity.
The surface of the county is greatly diversifies. On its north-western border runs a range of lufty hills, many of them eontaming extensive eaverns, and giving birth to wild and romantic streams. Here is Ingleborongh, 2361 feet above the sea-luvel, with its marvellous cave, half a mile long, full of beautifnl stalaetites; Whernside, 2384 feet high, with its sulterranean cataraet of 75 fect in Weathercote Cavern; and the vast mass of Miekle Fell, 2600 feet, which overlooks the waters of the Tees and Lune. Eastward, far away, rise the Hambleton and Cleveland Hills. Lower down are the Wolds, a line of elailk hills stretching fronr Flamborough Head to Ferriby on the Humber. The hills and dales of Craven, which cover a large tract of country in the west, abound in natural beaty. Right lown the eentre of the county, from the Tees to the Ilumber, runs the great Vale of York. Across its northern border flows the 'Tees. Coming sonthward, we fiud the dales of the Swale, the Ure, the Nidd, the Wharfe, the Aire, the Calder, and the Don, all on the western side of the county, each sending a river to the central vale, where the united waters, with the Derwent and a few smaller tributaries from the east, form the Onse; while the Ouse, after unitiog with the Trent, becomes the Humber estuary, which rolls eight-tenths of the I. waters to the sea. The Ribble, rising in Craven, passes by Preston, and falls into the Trish Channel, and is the only Y. river which finds a western outlet. The Esk joins the Gerwan Ocean at Whitby, aud the 'Iecs between Redear and Hartlepool.

Geologieally, Y. is too large a subject for us to do more than toueh. The Vale of I., rarely more than 100 feet above the sea, has on its western sile the long slow elevations which culminate in the Pennize chain, while on the east rise the lower but nore sudden cuinenees of the Wolds and the high grounds of Hambleton and Cleveland. On the west are the millstone grit and mountain limestone, the two eoming together in lufty opposing eminences in many jarts of Craven, where, aloug the line of what is ealled by geologists the 'Craven Fault,' the limestone rises into inagnifiecnt elift's wany luudreds of feet in height, and nearly 2000 above the level of the sea. The limestone is in wany places very rich in lead-ore. On the east lic the Chalk Wolds, and the Oolitie and Lias formations, with the Kimmeridge Clay of the Vale of Pickering, and the accumulations of sant, gravel, and other setiments which make up Holderness. In the sonth-western distriet is a splendid coal-field, intermixed with ironstone, exteuding over 600 st]. miles. Valuable deposits of iron ore have also been discurered recently in Cleveland, in the north-eastern part of the county.

In the north-west, the lower parts of the North Riding, Craven, and the East Fiding, the land maiuly supplies oceupation to the inhabitants. Craven is almost purely a grazing district, and so are most of the upper lands and dales in the county. Excellent eorn is grown in the vales of York and

Cleveland, and the East lidiling has many large and excellent farms. 'Jhe horses of Y., both for the race-course and for use, are too well known to need eulory. The mamufactures of the county are immense. Lecels is the centre of the wollen, as Bradford is of the worsted trade. sheffietel is the principal seat of the eutlery manufacture; while the Cleveland district is rapidly rising into importance for mineral wealth and cuterprise, The large ironworks of Low Moor, Bowling, and liotherham, and the flax and linen manufactures of Leeds and Barnsley, merit a passing notiee, with the blankets and cloths of the Iludersficld district, and the new llama aud alpaca industry introdncel at Saltaire near Bungley, by Mr Titus Salt. Harrogate, Ilkley, Askern, and Croft are the principal inland healthresorts of the county; Searborough, Filey, Brillingtou, and Whithy take the lead on the eoast.

The publie works of Y. rank with the finest in the Kinglon. Among them are the Aire and Calder Navigation, 15 miles long; the Calder and Ilebble Navigation; the navigation of the Don and Sheffield regiou, 40 miles; and the IIndersfiell Canal, one of the most surprisiug engineering works in Euglaud. This eanal is 20 miles in leugth, and rises Letween Inuhlersliehl and Marslen by 42 locks to the height of Ḡ56 feet. At this clevation, the liighest camal-level in the country, it passes by a tuncl more than three miles long under Standedge, a rauge of hills between Marsden aml Saldleworth. The canal terminates near Dukinfield. Aid to these the Leeds and Liverpool Canal-which eost 46 years of labour, and is 129 miles long-besides uany smaller, lut very costly undertakings, and some idea may be formed of the aetivity of Y. in this ilirection. Its railway communieations are excellent, and grow in mumber and completeness every year. On these lines, in conseqnence of the mountainous distriets throngh which many of them pass, are to be found some of the longest and most diflieult tumels, riaducts, bridges, embankments, and euttings which have $y^{\text {cet been attempted }}$ ly engincers in England.
A very brief reference to the antiguities and natural euriosities of the county must sullice. 'Traces of great Roman roads are fouml in many places, as well as of Roman, Saxon, and Danish encanapments. In the Wolds are many tumuli; and it is supposal by some that the singular and imposing nass of roeks ealled Erimham C'rags, whieh overlook Nidderdale, about four miles from I'ateley Bridge, was onee a Druidical temple. The ruins of ancient abbeys and priories are numerous and beantiful. Few can rival the glories of Fonntains and Rievaulx, and the seenery which cacompasses Bolton I'riory is delightful. Lesides these, there are the ruins of kirkstall, Roche, and sellyy in the West Iidiag; St Mary's at Fork; Jervanx, Byland, and Whithy in the North Liding; and many others. Of castles, we may name in the West Riding, Conisborough Castle, near Doneaster, one of the uldest aud most interesting ruins known to antiquaries; Knaresborongh, Puntefract, and Skipton, the last still used as a residence: in the North Ridiuc, Richmonel, with its warivalled Norman keep; Middleham Castle, where the kingmaker, Warwiek, lived, and where Elward IV. was immured; and Bulton Castle, the prison for a time of Mary Queen of S'oots : in the East liidiug, IF resslu Castle, ones the home of the I'ereies. Of old York Castle, nothing now remains but its massive Clifford's 'Tower.

The lover of the pieturesque will find the Y. seenery full of charms. The rapid of Cahlron Snout, on the Tees, 200 feet in descent; 1 iigh Forec, on the same river, a perpendicular fall of 60 feet over a eliff of greenstone marble; Aysgarth

Force and Hardraw Force, on the Ure; the Strid, immortalised by Wordsworth, in Bolton Woods ou Wharfe ; the magnificent Gordale Scar and Malham Cove, each nearly 300 feet in height, on the upper waters of the Aire; and the uncounted glens and streams among its myriad hills, are sufficient to indicate the attractions of its river and mountain aspects. It would require a volume to do then justice. (1571-pop. 2,436,113.)
See Allen's History of the County of York; Whitaker's Histories of Richmondshire, Craven, and Leeds; Hunter's Hallamskive; Gent's York, Pipon, d.c.; Phillips's Geolory of Yorkshire, and Rivers, Mountains, and Sea-coasts of Yorkshire.
YOU'GHAL, a seaport, parliamentary, and municipal borough of the barony of Innakilly; county of Cork, Munster, Ireland, situated in lat. $51^{\circ} 5 \%^{\prime} \mathrm{N}$., long. $7^{\circ} 52^{\prime}$ W., on the estuary of the Blackwater, 157 miles south-west from Dublin. The pop., which, in 1851, was 7410, was in 1S61, 632S. The town is built with considerable regularity, and has some structures of interest, especially the parish church, which is formed of the nave and aisles of the ancient collegiate church, built by the Earl of Desmond in 146t; the 'clock-gate,' which separates the northern from the southern division of the town; and Sir Walter Raleigh's house, now called Dyrtle Grove, which remains, with little alteration, to this day. There is a handsome Roman Catholic church, as also churches of the several other denominations; two conrents; several schools, endowed, conventual, and national ; a fever hospital, a lying-in hospital, and several other benevolent institutions. The trade of Y. is considerable, but lies chiefly in the export of agricultural produce. The harbour, which is obstructed by a bar, does not admit vessels of more than 400 or 500 tons burden; but the fisheries are extensive and valuable, and employ a considerable number of hands. There are several remains of buildings, civil, ecclesiastical, and military; and, according to the local tradition, the potato was first planted at Y. by Sir Walter Raleigh, after it was brought from America. Y. returns one member to the imperial parliament. The constituency in 1863 was 267 . Its municipal affairs are managed by commissioners, 21 in number.
YOUNG, Arther, an eminent writer on agriculture, was horn September 7, 1741, and educated at Lavenham in Suffolk. In lös, he was apprenticed by his father, a doctor of divinity and clergyman of the Church of England, to a mercantile house in Lynn. But Y. had no liking for business, and devoted much of his attention to literature. On his father's death, in 1759 , he undertook the management of a small farm, of which his mother had a lease. Six years afterwards, he became a farmer on his own account in Essex. He seems, at the same time, to have acted as a parliamentary reporter; and as he only saw his farm from Saturday till Monday, it need not be wondered that he found it unprotitable. At the end of five sears, he gave $£ 100$ to a practical farmer to take the lease off his hands. In the meantime, however, he had made notes of the results of numerous experiments on his farm, which he afterwards published, under the title of A Course of Experimental Agriculture. His first successful book was, A Tour through the Southern Connties of England, which was followed by other works describing the state of agriculture in various parts of England, and in Ireland. The enthusiasm of Y., and his lively style, made his writings popular, and by them the knowlelge of many judicious practices, confined to one locality, was spread throughout the whole empire. In 1785, Y. began the publication of the Annals of

Agriculture, of which 45 vols. Svo were published. Three jears later, be was invited by Count de la Ihochefoncauld to make a tour in the south of France. What he saw, induced him to undertake a series of tours in France, through a great part of which he travelled leisurely on horseback. The result was his most important work, The Agricultural Survey of France. The author did not confine his attention to agriculture, but described the social and political condition of the people in a ظively and truthful manner, and his work has hecome, in consequence, the most rehable source of information regarding the state of France just before the Revolution. In 1801, the French Directory shewed the value attached to the writings of Y., by ordering the whole of his agricultural works to be translated into French. They were published at Paris, in 20 vols. Svo, under the title of Le C'ultivateur Anglais. In 1S0s, Y. received a gold medal from the English Board of Agriculture, 'for long and faithful services in agriculture.' He died April $12,18 \geq 0$.

YOUNG, Brighas, American Mormon leader, was born at Whittingham, Vermont, Jume 1, 1S01, and was the son of a small farmer proprietor. In 1532, having become converted to Mormonism, he ras made an elder of the Church of the Latter-day Saints, and began to preach at the Mormon settlement at Kirtland, Ohio. In 183コ, he was appointed one of the twelre apostles of the Church, and sent as a missionary to the New England States, where he was very successful in making converts. After the Mormons had been driven from Kirtland to Missomi, and from the latter to Illinois, and the nurder of Joseph Smith by a mob (1S14), Y. was chosen President in his place. The year folloring, the charter of Nanvoo was repealed by the legislature of Illinois; and after a cannonade of three days, the Mormons were driven from their capital aud temple, and led by President Y. to Utah, where they arrived, after a long and toilsome jonrncy across the plains, July 24, 1S47. Next year, the great body of Mormons arrived and founded Salt Lake City; and at the establishment of the territorial government in 1840, President Fillmore appointed Brigham Y. goveruor of the Territory. Next year, the United States judges were driven away, the governor removed, and Colonel Steptoe appointed in his place; but on visiting Utah in 1S54, he thought it an unsafe residence, and resigned; the Mormon President exercising supreme authority, and saying: ' I am and will be governor, and no power can hinder it until the Lord Almighty says: "Brigham, you need not be governor any louger.". A new governor, Cumming, was however appointed, and sent with a force of 2500 United States troops to protect lim and the Federal officers; but Y. forbade it to enter the territory, cut off the supply-trains, while the troops were reduced to straits by being overtaken by snow in the mountains. A compromise was, howerer, effected, the Mormons pardoned, and the troons remained until 1860, Brigham Y. still (1867) retaining the presidency of the Church, assisted by Heber C. Kimhall and Daniel C. Wells, rith 12 apostles, and two bodies of the priesthood, and maintaining, by the energy and prudence of his character, an almost unlimited authority. See Mormoss, Salt Lake City, and Utaz.
YOUNG, EDFARD, the author of the wellknown Ni,hht Thoughts, was horn in the year 16S4, at Upham, in Hampshire, of which parish his father was at that time rector. He was educated at Winchester School, and afterwards, in 1703, went to Oxford. In $1 \% 08$, a law fellowship in All Souls

YOUNG

Collogo was conferted on him hy Archhishop Tenison. With law, however, he seems pretty mach to have deelined to meddle, wecupying himself, ly preference, with poetry anel religious studies. $\ln 1714$, lie obtained his degree of B.C.L.; and that of D.U.L. followed in 1:19. Neantime, he lade come befure the world as a poet, by pullishing, in $171: 3$, an Ejpistle to Georyp. Lorl Lansloure, on lis being created a peer. For Y., who contimed throngh life one of the most persevering and andacious toadies that ever thattered a patron, this was a characteristic heginning. In the same year, he also published two nther nocms of some length, cntitled respectively The Last Day, and The Force of Religion, or I'anquished Lore; the year following, he again flowed forth in A Coem on the Death of ciuen Annc. These performances procured him some amount of immediate reputation. In 1719, he ventured on the more ambitious effort of a tragedy, which, mimer the title of Busiris, was brought out at Drury Lane. The piece lade a fair success, through which means it probably was that he attracted the notiee of the strange and eceentric Duke of Wharton, with whon, in the end of that year, he was induced to go for a short time abroad. The duke scems to have entertained for hime a real kiuduess, and to liave treated him with much liberality. At the duke's death, Y set forth certain claims against his estates, which he succeeded in making gool to the extent of an ammity of $£ 00$. The details of the case are perplexed, and need not here he entered into. They involve nothing elishonourable to Y., yet convey a somewhat unpleasing impression that the pious author of the Alyhh Thoughts, in his extreme solicitude about the next world, contrival to kepp a jretty sharp eye to bis little pocket-interests in the 1resent one. In 1721, was produced his tragedy, The limenge, which, though unsuccessful at the time, has since had greater acceptance, and is the only one of his lieces still oceasionally acted. His thirel and last attempt in this dield, The Brothers, was produced in 1753 . Detween 1725 and 1728 , an)peated in succession his satires, under the title of The Lore of Fame, the L'uitersal Passion. These hanl a great success, and bromght to their fortunate author money as well as fance. They aboum with wit and vivacious observation, and cren now will very well repay lerusal. Of The Instulment, a poem, issued in $1=\cdots 6$, and adressed to Sir Robert Walpole on his being made a Knight of the Garter, it seems enough to say, that inasmuch as we incilentally hear from Swift of a pension granted him, we may surmise that this was the service to the public by which he had contrived to carn it. lo 1727, Y., having taken holy orders for the purpose, was approinted one of the royal chaplains; and in 1730, he became rector of Welryn, in Hertforlshire. The year after, he narried Lady Elizabeth Lee, danghter of the Earl of Lichfield, and widow of colonel Lce. He is supposed to have been very happy with her, as he exbibited great grief on her death in 17.4. It is believed that from his solenm meditations on the crent, he got the suggestion of the Night Thoughts, legun shortly after, and jublished 1742-1716. Ly this work almost solely it is that he has continnel to be remembered. His mind retained its activity to the last. He pullished varions other works, now so entirely forgotten, that it would he waste of tine to cnumerate them; and in 1562, superintenden a collected edition of his works, in 4 vols. 12 mo , from which he had the grace to exclude certain of the most fulsome of his dedications, probably as having scrved their turn, and not likely to le of furthicr use. His death took place on April 12, 17iJ. since that time, his Aight Thoughts has
passed through editions immomerable, and is more or less familiar to erery reader. It displays much glomy force of pions retlection; and lias passages of fine imagination, freyucitly somewhat mared hy an cpigrammatic mannerism of expression. Certain of its sententions lines have prassel into common use, and locome in a manner proverbial. Thongh now somewhat declined from the estimation in which he was long hehl, J. must eontinue, on the strength of it, to hold a distinct ancl even high place in that interval in our literature which divides the artificial and so-called elassical school of l'ope from the return to a simpler and more matural mamer, heralded some time afterward by Comper. If we except his one great weakness of characteran inordinate appetite fur preferment anel worldly honours, which sought its gratification in ways somewhat servile and unworthy-there scems every reasm to believe that Y. was, on the whole, a very excellent and worthy man, and sincerely devout Christian.

IOUNG, THomas, M.D., one of the most ingenious and original philosophers of this ecatury, and almost as eminent for his scholarship and his linguistic discoveries, as for his contributions to science, was born at Milverton, in Somersctshire, on the 13 th of June 1773 . Ilis parents, Thomas and Sarah Young, were Quakers of the strictest sect; and I. hat the impression that the peeuliar doctrines of the Quakers had a farourable intluence upon his character and career. In particular, he connected with the Quaker tloctrine of divine suggestion the perseverance with which he followed up any, lursuit in which he engaged, to which he, like Butlon, was disposed to attribute all the discoveries which his genins enabled hin to make. Wonderful storics of his youthful precocity have been recorded, and they scem to have more truth in them than such stories usually have. In 1750, he was sent to a boarding-school at Stapleton, near Jiristol, where he remained two years; he was alterwards imt to a school at Compton, in Dorsetshire, kept by a $11 r$ Thomison, who appears to have been an able and judicions teacher. When he left Compton, in his lith year. besides laving a great knowledge, for his age, of (Freek and Latin aud of Mathematics, he harl learned French and Italian, and, without any tuition, had made consideralle progress in Hebrew, Persic, and Arabic. In 1757, he went to live with Mr David Barclay of Youngsbury, near Warc, in Hertfordslire, an eminent member of the Society of Friends, partly as the fellow-pmil, partly as the tutor of that gentleman's graudson, Hudson Gurney. A Mr Hodgkin was called in to assist the studies of the two lads, bnt 3°. soon proved to be surerior in acquirements to his instructor, ant virtually the three became fellow-students. Mr. Hodgkin published in 1793 a work entitled Calligraphia Graca, which he dedicated to Young. I. continued to live with Mr Parclay till 1702, speading the summer months in Hertfordshire, and the winter in Lomdon, studying Greek and Latid, the modern languages, thic Oriental as well as the European, the higher mathematics, and natural philosophy, and, by way of annusement, botany and zoology. IIe tanght himself to write Latin with fluency and elegance, and to write Greek verses, which reccived the eommendation of some of the lrest judges of the time. During the winters of 1790 and 1791, he attended lectures on chemistry in London. It may be remarked, that neither then nor at any sulsequent time did he shew much disposition towards experimenting; his Lias seems to have been towards the pure rather than the observational sciences.

Towards the end of 1792, under the alvice of Dr Lrocklesby, an eminent Lovdon Ihysician, his

YOUNG-YPRES.

mother's uncle, who had been greatly impressed by his abilities and attainments, he began to study medicine; and he attended medical lectures for two years in the schools of London, and afterwards for a year at the University of Elinburgh. After going to Ediuburgh, T. gave up the Quaker dress and the more inconvenient of the Quaker customs ; he took lessons in music and dancing, mixed freely in society, and occasionally went to the theatre. These changes, though not intendel to go further, eventually led to his complete estrancement from the Society of Friends. From Edinhurgls he went to the German university of Gütinger, from which, after nine montlas' residence, he got the degree of Doctor of Medicine. He continued upwards of a year longer in Germany, and risited various merlical schools, returning to England in February 1797. At that time, the membership of the College of l'hysicians was restricted to graduates of Oxford and Cambridge ; and to qualify bimself for it, Y., on his return, entered as a fellow-commoner at Emmanuel College, Cambridge, at which he remained until lie took his degree in 1799. In the year 1800, having become a member of the College of Physicians, he took up his residence in London, and began to practise as a physician. He took the degree of $\lambda 1$.B. at Cambridge in 1SU3, and that of M.D. in 1807. His uncle, Brocklesby, who died in 1797, hat left him $£ 10,000$, besides his house in London, with his furniture, library, and collection of pictures, so that be was in possession of a moderate competency.

In 1801, he was appointed Professor of Natural Philosophy in the Koyal Institution, then newly established, and he began to deliver lectures early in the following year. As a lecturer, be wias not popular, his style being too condensed, and the matter of his lectures unsuited to the miscellaneaus audiences of the Poyal Institution. He published in 1 Soz a Syllabus of a Conrse of Lectures on Natural and Experimental Philosophy, in which, among otber things, he first announced his great discovery of the law of the Interference of Light (see Interference), which by itself, as Sir John Herschel has remarked, would have procured hin a scientific immortality. It was this discovery which first fairly turned the balance of evidence in favour of the undulatory as against the molecular theory of light (see UNDULATORy Theory of LtGat). It is I''s most important contribution to science. He had been elected a Fellow of the Toyal Society as soon as he was 21 ; in 1802 , be became its foreign secretary, a post which he retained till the end of his life. He resigned his professorship on his marriage, in 1804, fearing that his filling a chair of science might interfere witla bis success as a physician. The lectures which be delivered as professor were the fonndation of the Course of Lectures on Natural and Mechanical Plilosoply wbich be published in 1807 -a great work, embodying a complete system of natural and mechanical philosophy, on which he was engaged for nearly five years. A new edition of these lectures Was published in 1845 , edited by Professor Kelland of Edinburgh. I.'s doctrine of Interference was at first unfavourably received by scientific men in England: it was attacked and ridiculed in the Edinburgh Review; and so little interest was taken in the subject, that of a pamphlet which Y. mublished in answer to the Edinburgh Reviev, only a single copy was sold. As has often loappened, the first recognition of the importance and ingenvity of this and others of Y', speculations came from the scientitic men of the continent.
I. was admitted a Fellow of the College of PLyysicians in 1S0S, and was elected one of the physicians of St George's Hospital in 1810. He afterwaris mblished several medical works, which, thouglr
they were little more than compilations, and are now forgotten, shew that he was thoroughly versed in the history of diseases and of medical opinion. His hospital practice, too, is said to have been successful; but he had but little success in getting patients. He retired from practice-retaining, however, his connection with St George's Hospitalin lSlS, on his appointment to be secretary of the Boarl of Longitude. On the dissolution of the Board of Longitude, he became the sole conductor of the N'autical Almanac; and afterwards, when the system of life insurance began to be popular, be held, along with this post, the office of scientific adviser of a life insurance company. During the last years of his life he was a member of a council appointed to advise the Admiralty in scientific natters.
I.'s greatest achievement, after his great discovery of the law of Interference, was made in connection with the subject of Hieroglyphics (q. v.). He was the first to hit upon the process of investigation by means of which the received interpretation of hieroglypbics has been arrived at. His discovery, originally published in papers written for the Society of Literature, and afterwards in the Eneyclopcedia Britannica, was given to the world in a book in 1523 . In his later years, much of his attention was given to this and cognate subjects. He was engaged on an Egyptian Dictionary at the time of his death. His miscellaneous writings, contributions to the Transactions of learned and scientific bodies, to Reviews, and to the Encyclopeclia Britannica, were very numerons. Three rolumes of them, two consisting of Scientific Papers, edited by Dean Peacock, the third of Hieroglyplrical Essiys and Correspondence, edited by Jobn Leitch, were published in 1855.

He died, after sereral months of failing health, and a short period of severe illness, on the luth May 18:9. His character seems to have been singularly amiable, and to have endeared him to a multitude of friends, by one of whom, Dr Peacock, Dean of Ely, an ample biography of him was published in 15⿹ั. Y. was, two years before bis death, elected a foreign Associate of the Academy of Sciences at Paris, succeeding to the illustrious Volta.

IPRES, or YPEREN, a fortified and well-built town of Belgitu, in the province of West Flanders, is sitnated in a fertile plain on bath sicles of the Iperlee, abont 29 miles sonth-south-west of Bruges (5:3 by railway). The marshes around the town at one time rendered it very unlaealtlyy, but considerable improvement bas been effected in this respect by drainage. I. was at one time one of the most important mannfacturing towns in Flanders, the number of inhabitants in the lith c. being 200,000 , and the number of luoms 4000 . Its staple manufacture consisted of the cloth called, according to some, after the name of the town, Diaper. The only remmant of its once flowishing manufacture is the Cloth-hall (Les Halles), standing in the great market-place, a buikling of prodigious size, in the form of a trapezium, in a rich style of Gothic architecture, and surmounted by a stately square tower or belfry, with a clock and chimes. It was begun in 1230 , and contimued till $13 \frac{2}{2}$; the east end, supported on pillars, being added in 1730 . One of the wings is now used as the hôtel-de-ville, and other parts are occupied by different public establishments and concert-10oms. The cathedral of St Martin is a fine Gothic edifice, with an altar of Carrara marble, a richly carred pulpit, and a picture doubtfully attributed ta Van Eyck. Other buildings are the churches of St Peter, St James, and St Nicolas, the ald castle-ward, two colleges, several bospitals, barracks, numerous boarding and day

YPSILANTI-YUDHISHT'HIRA.

schools, \&. The chicf modern mamufactures are thread, lace, Jinens, woollens, cottons, silk, ribhons, leather, oil, soap, tobacco. There are many tanueries, oil-mills, salt-works, dye-works, breweries. The town is connected with the Yser loy canal, and is a station on the West Flanders Ilailway. I'op. (1862) 17,390 .
Y. is a very old town, its origin dating from the $9 h_{1}$ and 10 th ceuturies. In $16 \mathrm{~S} S$, it was strongly fortified by Lonis XIV., and in the great European wars was frequently subject to sieges.
IPSILANTI, a Fanariot family, which falscly pretends to be descended from the imperial stock of the Comneni, has furnished various champions of the Christian population under Turkish rulc. The first of these, Prince Constantine Y., was lom in 1760 at Constantinople, and for his translation of the works of Yauban, was raised to high official rank by Sultan Sclim III., and was subsequently appointed Inospodar of Moldavia in 1799, and of Tralachia in 180\%. His administration of the goverument of these proviuces was marked hy wisdom and energy ; but his ill-concealed sympathies with Russia led (1806) to his dismissal and flight to Transylvania. lie-established in the government of Walachia by the Russians, he shewed his hatred for the Porte by inciting (1807) the Servians to iusurrection; but finding soon after that his allies, the liussians, had views and aims quite inconsistent with his, and unable to strive with both Jinssians and Turks, he took the oath of allegiance to the czar, and retired to Kiev, where he died 2Sth July 1SIG. He has left numerons works, composed in Italian, Frencl, ant Turkish.
His three sons, Alexander, Demetrius, and Nicolas, followed up the same course of poliey. The eldest, Alexaideer, born in I783, served for some time in the Russian army, and was chosen ly the 'Iletairists ' as their chief in 1820. In promntion of the eause of Rouman independence, he enllected a large sum by sulscription in Thssia, and afterwards invading Moldavia, succecded in raising an insurrection in both principalities. Dut, little suited by natural gifts to guide the movement he had originated, he was attacked by the Turks near Galatz, totally defeated, and forced to take refuge in Anstria, where he was arrested and inpurisoned. Iieleased after a time, but brolsen in spirit by chagrin and privations, he retired to Vienna, where he died 31st January 18:3.-His younger hrotleer, Demptrics, who was born 25 th December 1793, also conmenced his career in the Iinssian arniy, and joined his hrother in his schemes for cmancipating from servitude the Christian population of Tukcy. Sent to Greece, armed with powers from his brother, he took a glorious part in the capture of Tripolitza (October 1820), but was less successful in the follow ing year in his attack on Eubæa. His gallant clefence of Argos against the Turks, stopped the victorions march of the latter, and gained (1823) for him the honorary titles of I'resident of Argos, l'rince of the Peloponnesus, President of the Legislative Council, and Senator. His stubborn resistance (1825) to the victorious Ibrahim at Napoli was another valnable eervice to Grcece. In 1827, the grateful Hellenes made him commander-in-chief of their forecs; but some difference arising letween him and the President, Capo d'lstria, he resigned his post in January 1830. He dicd at Napoli di liomania, I6th August 1832. I. was insigni ficant in appearance, but had the soul of a hero; and was as deaf to the allurements of 1 leasure as to the promptings of ambition.
Y'SSEL or IJSSEL, a river of the Netherlands, $\underset{\substack{\text { formed } \\ 3 \times 6}}{\text { by the junction at Doesburg, in Gueldres, of }}$
the Oude (Olel) Yissel from Westphalia and the New Sissel, an ofliset of the liLine, cut by Drusus. After this it flows north and latterly north-west past Zatphen and Deventer, forming part of the boundary leetween Gueldres and Oberyssel, aud, nassing Kampen, falls into the Zuider Zee, after a course of about 80 miles, forming at its month a delta, which is gradually increasing. The principal afluents are the Borket, the Schipleek, and the Grift.-.There is another river of the same name, a branch of the Rhine, in the province of Utrecht.

I'STAD, a seaport town in the extreme south of Sweden, on the lialtic, in the laen of Malmöluws, and about 30 miles soutl-east of Malmö. The town is well luilt, and has a handsouse market-place, two churches, a town-house, barracks, \&c. There is a good harbour, and a brisk and impoving trade is carrici on, steamers plying to Stockhohn, Lïbeck, Kalmar, Stettin, Stralsund, and Copenlagen putting in here. It lias manufactures of tobacco and suuff, chicory, soap, woollen cloths, and leather; there is also some shiplbuilding. l'op. about 6000 .
$l^{\prime \prime T} T R I U M$ is a very rare metal, whose oxide is the earth Fitria, which is found in the Scandinavian mineral Gadenolite (a silicate of yttria, glucina, and an oxide of cerium and iron), in Y^{\prime} (trotantalite, and in one or two other very scarce minerals. Neither the metal, the oxide, nor the salts of tho oxide are of any practical importance. According to Mosander, three bases have been confounded under the single name of yttria; to the most abundant of these he gives the mame yltria, while he distinguishes the others as erbia and terlia.

luCata'n. See Mexico.

IU'CCA, a genns of plants of the natural order Liliacece, natives of North and South America, and some of which are often cultivated in gardens on account of the singularity and splendour of their ajpearance. Y. gloriost is a mative of Firginia ami of more southern parts of North America, lout 'quite hardy in Englana. It has a stem about two or three feet high, the unper part of which pruluces a great tuft or crown of large sworlshajredevergreculeaves, each terminating in a sharpllack spine. From the centre of this crown of leaves arises the flower-stalk, of three feet or unwards in height, branching out on every side so as to form a great panicle. The fluwers are bellshaped and drooping, white with a purjle stripe on the outside of each scgment of the perianth. The fibres of the leaves are used

Iucca gluriosa. by the American Indians to make a sort of cloth and cordage. - The other species have a general rescmblance to this in habit and appearance. The fibre of the Iuccas is similar to that of the Agaves and Brometias, and lurohably is often included under the name Pita Flax or Pita Fibre.
YUDHISHT'HIRA. See Pây'd'atas.

YUGA-YVETOT.

YUGA (from the Sanscrit yui, join; kindred to the Lat. jung-, the Gr. zeug-, Gothic, juk; hence, literally, junction) denotes, in Hindu mythology and astronomy, a long mundane period of years, which is proceded by a perion called Sandhyt̂, 'twilight,' and followed by a similar period called Sandhyam's'a, 'portion of twilight.' Manu, the Mahâbhârata, and the Purân'as name four such periods, three of which have already elapsed-viz., the Krita-, Trela-, and Dwâparc- Iruga; while the fourth, or Kali-Fuga, is that in which we live. The Krita-Yuga, according to these works, consists of 4000 divinc years, its Sandhy'â of 400 , and its Sandhyâm's'a likewise of 400 divine years. The Treta-Yuga consists of 3000 , and its Sandhyî and Sandhyâm's'a of 300 divine years each ; the DwâparaYuga of 2000 divine years, with 200 such years to its Sandhyâ, and 900 to its Sandhyâm's'a ; and the Kali-Yuga of 1000 divine years, with 100 such years to its Sandhyâ, and 100 to its Sandhyam's'a. And since a divine year comprises 360 solar years of mortals, a year of men being a day of the gods, these Yugas, with their Sandhyâs and Sandhyan's'as, would severally represent $1,725,000,1,296,000$, S64,000, and 432,000 , or in the aggregate, $4,320,000$ solar years of mortals-a period called Mahayuga, or 'a great Yuga; ' 4,320,000,000 years being a day and night of Brahmâ. See Kalpa. The notion on which the theory of these Yugas and their Sandhyâs and Sandhyan's'as is based, as may be easily inferred from the foregoing statement, is that of a descending progression, $4,3,2,1$, each of these units multiplied by 1000 , and in the case of the periods preceding and following the luga, by 100 years. The deteriorating process thus indicated in the succession of these Yugas, is also supposed to characteriss the relative physical and moral worth of these mundane ages. 'In the Kr'ita-Iuga,' Manu says, 'men are free from disease, attain all the objects of their desires, and live 400 years; but in the Treta and the sncceeding Yugas, their life is lessened gradually by one quartel:'. .. 'ln the Kr'ita-Yuga, derotion is declared to be the highest object of men; in the Tretâ, spiritual knowledge; in the Dwâpara, sacrifice; in the Kali, liberality alone.' Sce also for other passages the article Kaliyuga. The present or Kaliynga of the world commenced in the year 3101 p.c., when in the year 1867 , therefore, 4968 years of the Kaliyuga would have expired.-The term Yuga is sometimes also applied to other divisions of time. The Tishn'uPurân'a, for instance, mentions, besides the Tugas above named, a Yuga which consists of a cycle of five years, called Sum'vutsara, Parivatsara, Itrat. sara, Amwatsara, and I'atsara (sce Wilson's translation of this Purân'a, od ed., ly Fitzedward Hall, vol. i. P. 49 , ff. ; rol. ii. p. $25-1$, ff.) ; and a Yuga, or cycle of fire years, is, as Colebrooke states (Miscellaneous Essays, vol. i. p. 106, ff.), likewise the cycle described in the astronomical treatises connected with the Vedas. The use of the term luga, however, in such a special sense is not frequent, whereas its application to the four mundane ages is that which generally prevails in the classical and medieval Sauscrit literature.-For other works, besides those already referred to, which afford iuformation on these and other divisions of Hiudu time, see Kiala Sankalita, a Collection of Memoirs on the various Modles according to which the Nations of the Southem Parts of India divide Lime, \&c., by

John Warren (Madras, 1825) ; and Carnatic Chronolopy, the Hindu and Mohammedan Methods of reckoning Time explained, \&c., by Charles Philip, Brown (Lond. 1863).

YULE, the old name (still in provincial popular use) for Christmas. It points to heathen times, and to the anmual festival held by the northern nations at the winter solstice as a part of their system of sun or nature worship. In the Edda, the sum is styled fagrahvel (fair or shining wheel); and a remnant of his worship, under the image of a firewheel, survived in Europe as late at least as $1 \$ 23$. The inhabitants of the village of Konz, on the Moselle, were in the laabit, on St Joln's Eve, of taking a great wheel wrapped in straw to the top of a neighbouring eminence, and making it roll down the hill, flaming all the way : if it reached the Moselle before being extinct, a good vintage was anticipated. A similar usage existed at Trier (see Grimm, Deutsche Mythologie, 1. 556). The old Norse hevel, A. S. heveol, have developed into Icel. hiol, Swed. and Dan. hjul, Eng. wheel; but from the same root would seem to have sprung old Norse jol, Swed. and Dan. jul, A.-S. jeol, Eng. Fule,* applied as the uame of the winter solstice, either in reference to the conception of the sun himself as a wheel, or, more probably, to his wheeling or turning back at that time in his path in the heareas. Goth. hveila, Eng. vchile, denote time as wheeling or revolving. The general nature of the festival, and the way in which the observances rere overlaid, or trausformed and masked by the Christian institution, are noticed under the head of Cimistmas. In the greenery with which we still deck our houses and temples of worship, and in the Christmas trees laden with gifts, we perhans see a relic of the symbols by which our heathen forefathers significd their faith in the power of the returning sun to clothe the earth again with green, and hang new fruit on the trees; and the furmety still or lately eaten on Christmas eve or morning in many parts of England (in Scotland, the preparation of oatmeal called sowans, is used), seems to be a lingering memory of the offerings paid to Hulda or Berchta (q.v.), the divine mother, the northern Ceres, or personification of fruitfulness, to whom they looked for new stores of grain. The burning of the Yule-log (or Fule-clog) testifies to the use of fure in the worship of the sun (see Beleterv).

YVETOT, an old town of France, in the dep. of Seine-Inférieure, is situated on an clevated and fertile plain, 32 miles north-east from Havre, and 23 northwest from Rouen by railway. The houses are mostly of wood, roofed with slates, the principal street being upwards of two miles long; there is a well-planted promenade, but the town contains few objects of interest. There are manufactures of linen, cotton, calico, and velvet, and a considerable trade in cattle and agricnltural produce. Pop; (1566) 8092. The Lord of Y. is styled ' Roi d'Yvetot' in old chronicles, and antiquaries hare been much puzzled to account for the origin of the title. There is a tradition that Clotaire, son of Clovis, having slain one Gaulthier, Lord of Y., before the high altar of Soissons, endeavoured to make atonement for the sacrilegious deed by conferring the title of king on the heirs of Gaulthier.

* In one of the Frisian dialects, jule or jole is used to signify a wheel.

Z

有 had the power of a double consonant, being equivalent to $d s$ or $s l$; in Latin, its use was eonfined to words of Greek origin. In HighGer., in which it is pronounced like ts, it eorresponds to t in the Low-Germanic and the Scamdinavian tongues, e. g., zeit $=$ Eng. lide (time). In Ital., z or $z \approx$ mostly takes the place of the Lat. $t i$, as in negosio $=$ negotium, palazzo $=$ palatium, and is pronounced $t s$, or, preceded by n, $d s$. In Eng. and in Mr., it represents the flat sibilant sound of which s is the sharp. But in Eng., as in the vast majority of eases 8 has always been employed to represent the Hat sibilant somm as well as the sharp (e. g., in almost all plurals, as lones, cards, in words like revise, de.), there is a tendency to drop the use of z, except in a few individual words, such as size, prize. Nany maintain the use of z in words derived from the Greek, esprecially from verbs in izō, as baptize, and also in words formed on the malogy of these, as legalize; but even the advocates of this rule do not act on it consistently, and the mere English scholar is fairly puzzled. This is one of the points of English orthography most urgently ealling for reform.

ZAANDA'M, or SAARDAM, an important town in North Holland, is situated on both banks of the river Zaan, at its entrance into the Y, a deep and narrow bay of the Zuider Zee, 5 miles north-west of Amsterdam on the other side of the bay. In former times, ship-luilding was earried on very extensively at Z., but has now nearly ceased. The whale-fishing, which, in 1701 , empleyed 35 ships, has been altogether abandoned. There is still a considerable shipping-trade. The principal industries are sawing wood, preparing vegetahle oilchicfly from colza-mannfacturing paper, grinding grain, mustard, dye-stuffs, snuff, \&e., making starch, rope-spinning, and iron-founding. At a distance, the town looks like a forest of windmills.
Z. is a pleasant place, and many of the inliabitants are reputed to he wealthy. In 1697, Peter the Great worked in one of the ship-building yards as a earpenter, and the house in which he lived is carefully preserved. It was visited in IS14 by the Emperor Alexander of Russia, and is now surrounted with another building, to prevent exposure to the weather.

There are two Dutch Reformed ehurches, one Lutheran, two Baptist, and two Roman Catholic ehurches, a Jewish synagogue, and several institutions for orphans and old people. Two public schools, a school of design, and two poor schools are maintained by the town. Pop. (1866) 12,320.

ZABERN (the Roman taberno, tavern) is the name of threc towns on the west side of the Upler Ihine, two of them German, and the other Freuch.

The first two are in the Palatinate (Rhenish Bavaria) -viz., Berg-Zabern, a town of abont su00 inhabitants, on the Erlenbach, oceupied chielly with agrieuture and some small manufactures; and Rhein-Zabern, about four miles further cast, on the same stream, with little more than 2000 inhabitants, noted for the two battles fonght there aul at the village of Jokgrin, about two miles further south, between the Austrians and the French, 29th June and 2uth August 1793.
The other, which, to distinguish it from these, is ealled Alsace-Zabern, once likewise a German town, now belongs to France. 1n French, it is called Savrase, and is the chief town of an arrondissement in the dep. of Bas-Rhin. It is situated on the Zorn, which flows into the lihine, and on the l'aris and Strasbourg Failway and highway, and also on the Narne and Rhine Canal, and possesses al pulace and college and 5100 inhabitants, who are employed in making eloth, pottery, leather, anl hardware, and in the transport of wool from the Vosges Monntains. It belonged in the 12th c . to the bishops of Metz, and afterwards to those of Strashourg. There are still some Roman antiquities in the college. In 1696, the fortifications were razed. The stately ialace was rebuilt ly Cardinal Lotis de Rohan, fanous in the story of the Diamond Neckliace (q. v.) ; it served in 1817 and 1818 as barracks for the Austrian irmy of oconpation ; of late, it has leen converted inte an institution for the widows and daughters of the memhers of the Legion of Honour. The sur: rounding secnery is rich in ruins and picturesque effects. A spiral walk, ealled the Zabern lath, albout nine miles long, leads, with many windings and 17 eovered bridges, to the tol, of the Vosges, from which the spectator looks down on Alsace as a garden. The I'ass of Zabern, or Saverne, whiela divides the Upper and Lower Vosges, is only I 325 feet high. The railway, the canal, the Zorn, and highway, all run side by side along the charming valley; aud there is a constant succession of bridges, embankments, viaducts, and tunnels throughout. the 45 minutes' journey from Z. to Saarbourg.

ZA'bISM. In the article on Sabians (q. v.), we spoke chielly of certain inbabitants of Arabian Fulix, the 'Sabaioi' of the Greeks, or 'Sabri' of the liomans. It appears that this name was, in the 4th c. A. D., superseded by that of Himyarites, and belonged to many tribes, that derived their descent from one Sabâ ('a descendant of Eber, or descendant of Noah'), who also was ealled Abd ShemeshServant of the Sun. These Sabreans, who considered themselves pure antochthons, in contradistinction to the immigrated tribes, have often been confoumed with a number of other peoples of antiguity, and with professors of many forms of religions belief and spreculation; in fact, the confusion that has sprung out of the unwieldy mass of information fond respeeting these many varicties, and whiel has been hopelessly mixed up, by jaany gencrations of orientalists and theologians, is almost without parallel. We shall not here survey the manifold systems and theories that have been evolved from
time to time, and handed down earefully, but we shall rather-in the main following Dr Chwolson -ennmerate the principal stages of Z. as it appears, considered as a religious phase of mankind. We must premise that we exelude at once those imaginary Zabians who were taken by the medieval Arabie, Jewish, and Persian writers to be identieal with heathen or star worshippers, as well as those who, like the ancient Chaldæans, the ante-Zoroastrian Persians, the Buldhists, \&e., were vaguely ealled by that name by Mohammedan and other writers of the 12th c. These writers all start from the notion that idolatry, star-worship, and Sahæism were identical, and they ealled nearly all those who were neither Jews or Christians, nor Mohammedans or Magians, heathens or Sabæans. Z. had then become, like Hellenism, from being a nomen gentile, an appellative. Confining ourselves to historical Z., we have to distinguish (1) the Chaldæan Zabians of the Koran. These are the 'Parsified' Chaldee heathens or non-Christian Guosties-the ancestors of the present Mendaites, or so-called Joannes Christians, who live not far from the Persian Gulf, and speak a corrupt kind of ChaldeeAramaic ; and (2) the Pseudo-Zabians, or Syrian Zabians (in Harran, Edessa, Rakkah, Bagdad), or, since $S 30-S 31$ A.D., remnants of the ancient Syrian but Hellenised heathens. These disappear (as Zabians) since the J2th e., but perhaps still exist, under some other name, in Mesopotamia. It is those P'surdo-Zabians who spoke the most refined Syro-Aramæan dialect. They form the chief representatives of Z. emphatically deserving of the name. The first named, or Chaldæan (Babylonian) Zabians, who transferred that name to the Harranic Zabians, and were of great influence upon the development of these latter's peeuliar speculations, are the people meant under that designation hy the Koran, and by the Mohammedaus of this day. They are, as we said, also known as Christians of St John, or Mendaites. Among the Nabathean heathens of the north-east of Arabia and the extreme south of Mesopotamia, near Wasith and Bassra, there arose, in the last decennium of the lst c. A.D. a man named Elxai (Elchasai = Scythianus), born in the north-east of Parthia (prohably an adherent of Zoroastrianism, perhaps also aequainted with Budxhism), and spread among them Parsee ideas and Parsee religious rites and customs. They called themselves Nendaitesi. e., Gnostics. Many of their religious legends and tales they adopted at a later period from their Jewish and Mohammedan neighbours-chiefly, it is presumed, with a view of making themselves less hated by the ruling Mohammedan powers. They receivel the name of Ssabiin from their constant washings, and purifications and baptisms. Their Arabie neighbours occasionally translated this word into the Arabie Al-Mogtasilah, 'those who wash themselves.' About a hundred years after the foundation of this seet by Elchasai, Manes was born of Mendaite parents, and was bronght up among the Mendaites. He remained faithful to this creed up to his Ith year, at which period he founded the new sect of Manichæans (q.v.), which did not at first depart so considerably from Mendaism as it did at a later period (see Maricheass). To these aboriginal Zabians there succeeded, in 830 A.d., a totally different kind of sect under the same name -riz., the Harraman Syrians. They themselves derived them denomination from one Zâbi, who is variously called a son of Seth, son of Adam, or a son of Enoeh or Idris, or a son of Methuselah, or of some fictitious Padi or Mari, a supposed companion of Abraham; while the Mohammedan writers, who, like the Greeks, endeavour to derive everything from their mative tongue, either declare it to be
derived from ssaba, 'to turn, to move,' because they turned to the paths of untruth, instead of that of the true religion-i.e., Islam; or, as the Zabians thenselves sometimes explain it, 'beeause they have turned to the proper faith.' Another Arabic derivation makes them take their name, still more absurdly, from a root ssabia $=$ to fall away from the proper religion, or to turn one's head heaven-wards-i. e., for the purpose of worshipping the angels and the stars, \&e. European scholars have for the most part followed either Brooke or Scaliger, who variously hold the name to have sprung either from an Arabic root, which would point to their laving come from the 'east,' or, again, from the Hebrew word for 'Host,' viz, of heaven, which they were supposed to worship. The real state of the case, however, is that, whatever the derivation of the name, it did not originally belong to the 1 Iarranians, as we have stated already, but was assumed by them, for the purpose of evading the Mohammedan persecutions, from the people mentioned in the Koran.

But it is by no means easy to say who these sodisguised Harranians really were, and what, since it was neither Judaism, nor Christianity, nor Mohammedamism, nor Magism, their religion really consisted of. Former investigators mostly took them to have been a distinet race and people, and their religion to have been composed of Chaldaism, Parsism, Judaism, Christianity, Neo-Platonism, Gnosticism, and Cabbalistic speculations. This, however, is far from being the fact. Broadly speaking, they might perhaps best be described as syrians, who, martly descended from Greek colonists, had been subject so long to Syrian influences that they became in a manner Syrianised. Their religim was heathenism, the old heathenism of their Syrian fathers, which had, with incredible obstinaey, resisted not only Christianity, but rendered even Mohammedan ill-will harmless by stratagem. There ean, however, be no doubt, about certain foreign non-pagan elements having erept into it during the early Christian centuries. Eelecticism prevailed at that period, and it was not only Greeks and Romans that found the influence of foreign, chiefly eastern, metaphysical speenlation irresistible. But apart from that peeuliar syncretism, we find many other new additions to Harran idolatry in the shape of Zabism. There arc, first of all, a certain number of legends abont biblical personages from whom they pretend to be descendants-legends which, it may be presumed, they only, for the nonce, permitted to belong to their sacred traditions. There are further a momber of laws of purity and impurity, and of sacrifiees, which strongly remind of Judaism. Again, names of Greek and lioman gods, such as Helios, Ares, and Kronos, occur, a circumstance that perhaps may be explained from the prevailing tendency of the periorl of exchanging the names of native divinities for Greek and Jioman names. Besides these foreign elements, there are certain metaphysieal and physical views incorporated in their erced which are distinctly traceable to Aristotle, and finally, the theurgico-Neo-Platonic religious philosophy of heathenism, such as it is found in Porphyry, Proclus, Iamblichus, and the rest. All these apparently incongruous elements, however, infused into it by the cirenmstances of the period, do not prevent Z. from being in reality heathenism. Were further proof needed, we should find it in the words of a celebrated Zabiam, Thabit ben Korra, quoted by Barhebreus, in the shape of a panegyric on the town of Harran and its heathenism, uttered, as Barhebreus says, in his 'purblind obstinacy.' After speaking of Christianity-not to its adran-tage-for some time, Thabst rejoices orer the

ZABISM.

blessings that still belong to his native place, Harran, through its laving kept itself utterly unsullied by that faith. 'We,' he contimes (the Zahians or Marranians), 'are the heirs and progenitors of heathenism, which has once been glorionsly spread over this globe. Dlessed is he who thears his burden for heathenism's sake, with firm hopes. Who has civilised the world and built its cities, but the nobles and the kings of heathenism? Who has constructed the harbours and has made the rivers mavigalle? Who has taught the bidden science? To whom else has the deity revealed itself, given oracles, and toid the things of the future, but to the most eclebrated men among the heathen ?

Heatliens have done all these thinzs. They hare brought to light the healing of souls; they have taught their salvatiou; they have also made manifest the art of healing the body; they lave filled the world with institutions of government and witl wisdom, which is the highest good. Withont heathenism, the world would be empity and poverty-stricken, and swallowed mp by great misery.,

Without entering into a detailed accome of the many sources whence our information is derived with regard to the creed itself, we shall loriefly indicate that they are written in Arabic, in Hebrew, and in Greek. The former are the most copions; those iu Hebrew are ehiefly represented by Maimonides; and the Greek are ascribed to various psendonymous writers, among whom figne Aristotle and Hermes Trismegistus. From their various, and, to a great extent, contaulictury statements, we owe the following indications regarding the prineipal points of this creed. The Creator, it teaches, is in his essence, primitivity, originality, etcrnity, One; but in his many manifestations in bodily tigures, manifold. He is chielly personified by the seren leading plancts, and by the goad, knowing, excellent, earthly bodies. But his unity is not thereby' disturbed. It is, the Zabians say; 'as if the seven phanets were his seven limhs, and as if our seven limls were his seven spheres, in which be manifests himself, so that he speaks with our tongue, sees with our eyes, hears with our cars, touches with our hands, comes and goes with our feet, and acts through our members.' Nothing, we are told, is more forcign to Z. than-what holls good of the creed of the Saboans only-rude starworship. Z., according to the authority of Sharas. tani, expresses the idea that God is too great and too subline to oceupy himself directly with the affairs of this world; that he therefore has handed over the ruliug of it to the gods, and that he himself only takes the most important things under his special care; that, further, man is too weak to address himself directly to the Mighest, that he therefore is obliged to direct prayers and sacrifices to the intermediate deities to whom the rule of this workd is intrusted. Thus the vencration shewn to rlanets, and even the worshipping of idols, is nothing but a symbolical act, the consequence of that original idea. There are many gods and goddesses in \%. of this intermsediate stamp. It is not the planets themselves, but the spirits that direet and guide them and deliver them which are taken as deities of this kind-deities that stand to the spheres in the relation of soul to body. Apart from these, there are those gods who canse or represent every action in this world. Every universal natural deed or effect emanates from a universal deity, every partial one from a partial deity that presides over part of nature. Everything that appears in the air, which is formed near the sky or arises from the earth, always is the product of certain gods, that preside over these manifestations, in such a manner that the rain in general, as well as every special

330
drop of it, has a presiding numen. These spirits also mould and shape everything bodily from ene form into the other, and gradually bring all ereated things to the state of their lighest possible jerfeetion, and communicate their powers to all substances, beings, and things. By the movement and guidance of these spiritual beings, the different elements and natural conplositions are influeneed in such a way that the tenderest plant may pieree the hardest cliff. He who guides this world is called the first spirit. These gols know our most secret thonghts, and all our future is open to them. The female deitics seem to have been conceived as the fecling or passive principle. These gods or iutelligences cmanate directly from God without his will, as rays do from the sun. They are, further, of abstract forms, free of all matter, and neither made of any substance nor material. They consist chiefly of a light in which there is no darkness, whiel the senses cannot conceive, by reason of its immense clearness, which the understanding cannot comprehend, by reason of its extreme delicacy, and which fancy and imagination cannot fathom. Their nature is free from all animal desires, and they themselves are ereated for love and harmony, and for friendship and mity. They are not subject to local or temporal changes, and they rule the heavenly bodies, without finding the motion of the most heavy too heary, or that of the lightest too light. Their existence is full of the highest bhiss, through their being near to the Most High, whom day and might they praise, without ever feeling fatigue or lassitude, to whom they are never disobedient, but whose will they always fuifil with supreme delight. They have a free choice, and always incline to the good. 'These spiritual beings, our lurds and gols, are onr intermediators and advoeates with the Lord of lords and God of gods.' All substances and types of the bodily world emanate from the spiritmal world, which is the one from which everything flows, and to which everything returns, and which is full of light, sublime and pure. These two workls correspond to each other, and are to each other like light and shadon. Tho way to approach these gods, and, through them, the lighest essence, is by 1 urifying our souls from all passions, by keeping a strict guard over our words and deeds, by fasting, heartfelt prayer, inrocations, sacrifices, fumigations, and incantations. By steadfastly persevering in these and similar aets of devotion, man may reach so high a step of perfection that he may communicate even directly with the Supreme Power. The planets, as the mincipal representative and intermediate gods, are to be carefully observed, especially as regards-1, the houses and stations of the plauets; 2, their rising and setting; 3, their respective conjunctions and oprositions; 4, the knowledge of the special times and seasons, the hours and days of the ruling of speeial planets; 5 , the division of the different figures, forms, elimates, and countries, according to their dominant starsthe prevailing notion of the Zabians lueing, like that of the Chaldees and the sect of the so-called Mathematicians (according to Sextus Empiricus), as well as of the Neo-Platonists in general, that everything below heaven was subject, in a manner, to the influence of stars, or the spirits that imhabit and rule them. Every substance and every action, every country and cvery hour, has its special planetary deity. It is therefore well to study carefully the special conjunctions and figures, as well as the special mixtures of incense, which might cause the individual numen to be propitious. Thus, e.g., according to the Zabian Lelicf, the first hour of Saturday stands under Saturnus, and it is therefore right and advisable to select at that time such
prajers, seals, amulets, dresses, and fumigations as might be supposed to be particularly pleasing to that planetary god.

In order to address themselves to visible mediators, some of the Zabians are supposed to have directed their devotions to the stars themselves. But they soon found how futile a worsbip it was that addressed itself to things that appeared and disappeared in turn. They therefore manufactared permanent represcutatives of them in the shape of idols-idols wrought in as complete accordance as possible with the theurgical rirles derived from the nature of the deity to be representch. They were of gold, to represent the sum; of silrer, to indicate the moon. The very temples in which they were placed were of as many corners as were supposed to correspond to the form of certain stars.

We know but little with regard to the cosmogonical notions of the Zabians. Sharastani, one of our' principal authorities, only quotes "Agathodremon' as his authority for their assuming five primeval principles, viz. : the Creator, Peason, the Soul, Space, the Vacuum. Out of these, all things are composed. According to another source (Kathibi), however, the Zabians assumed two living and active principlesviz., God and the Soul; further, a passive one, Matter; finally, two which are neither living nor passive -riz., Time and Space. Natter seems to have been held by them to be primeval and everlasting, and to it alone the existence of evil is attributable. God created the sphercs only, and the heavenly bodies therein. It is these spheres (fathers) which carry the types or ideas to the elementary substances (mothers), and out of the combination, conjunction, and motion of these spheres and elements, the varying earthly things (children) are produced. Matter is, as we said, because of its defective nature, the source of evil, of ignorance, of folly; whilst the form is the source and fountainhead of the good, the right, the lnowledge, and the moderstanding. Z. further assumes a renewal of this world after each great "world-year'-a space of 36,495 ordinary years. At the end of these periods, the plants, the animals, and the men that harl existed within it, cease to propagate themselres, and a generation of each of them, different from all previous ones, springs into life. How far this theory is identical with the Babylonian, Egyptian, and Indian theories on the same subjcct, we cannot here investigate; suffice it to call attention to the striking likeness apparent in them all.

Nan, the Zabians teach, is composed of contradictory elements, which make him the vacillating, struggling creature he is. Passions and desires rule him, and lower him to the level of brute creation, and he would utterly lose himself, were it not for such religious rites as purifications, sacritices, and other means of grace, by which he may be enabled to approach the great gods once more, and to attempt to become like unto them. There are different kinds of souls; or rather man's soul partakes partly of the nature of the animal soul and partly of that of the angelic soul. The soul never dies, and punishments and rewards will affect only it, but not everlastingly. But rowarels and punishments will not be wrought in any other future world, but in this, only at different epochs of existence. Thus, all our present joys are rewards for gool deads done by us in former epochs; and the sorrows and griefs we endure, spring in the same manner from cril actions we committed at former stages. As to the uature of the general (rorld-) soul itself, they say that it is primitive, for if it were not so, it would be material, as every newly-created being partakes of the material nature. Fet a material soul would be au impossibility: "The soul, which is thus an immaterial
thinge' says Kathibi, 'and exists from eternity, is the involintary reason of the first types, as God is the first cause of the intelligences. The soul once beheld matter, and loved it. Glowing with the desire of assuming a bodily shape, it would not again separate itself from that matter of which means the world was created. Since that time, the soul forgot itself, its everlasting existence, its original abode, aud knew nothing more of what it had known before. But God, who turns all things to the best, united it to matter, which it loved, and out of this union the heavens, the elements, and other composite things arose. In order that the soul might not wholly lerish within matter, be endowed it with intellizence, whereby it conceired its high origin, the spiritual world, and itself. It further conceived through it that it was but a stranger in this world, that it was subject to many suferings in it, and that cven the joys of this world are but the sources of new sufferings. As soon as the sonl had perceived all this, it began to yearn again for its spiritual home, as a man who is away from lis birthplace pines for his homestead. It then also learned that, in orler to return to its primitive state, it had to free itself from the fetters of sensuous desires, and from all materialistic teudeucies. Free from them all, it would regain its hearenly sphere again, and enjoy the bliss of the spiritaal world.'

From all this, it will be seen, as we stated at the outset-that the Zabians, about whom so much has been theorised and fabled, were simply heathens who had to a certain extent adopted and mudified Neo-Platonic ideas, such as floated in the meutal atmosphere of the early Christian centuries. It would be needless to enter into a discussion about the semi-fabulous personages to whom they ascribe the foundation of their creed, such as A gathodæmon, Arani, Hermes, and the rest; or sume of those mentioned by other writers, such as Zerdusht, Nawassil), Orphens, and the rest.

The life of this sect was but short. After having first been on terms of great friendshap with the unling powers of Mohammedauisan as well as with Chistians and Jews, and haring illed many of the highest and most responsible posts at the courts of the kalifs, they were hy degrees made the lutt of fanaticism anc] rapacity. Nulcted, persecuted, banished at different periods, they disal'pear from bistory since the middle of the Ilth century. Some obscure remnants of them seem to hare survived in remote corners of Mesopotamia, but they, too, no longer alhere to the original creed, but are inixed up with the Mendaites, mentioned above, and the Shemsijel, or sun-worshippers. Thus obscurely ended a sect which, for 200 years, had produced a host of men pre-eminent in every branch of learning and literature, in philosophy, astronomy, history, natural history, poetry, medicine, and the rest. Many of these men, whose name and fame reached Europe, werc confouncled with their Muhawmechan contemporaries, chiefly because they lived in Bagdad, at that time the centre of learning, the seat of the kalifs and the lugh dignitaries of state. The Mohammedans, however, had so high an appreciation of Zabian learning, that it became proverbial amongst them, and they conlel explain it only by tracing it to a supernatural source, notably to Hermes (Trismegistus), the father of the Zibibi, mentioned abore.

We have in our sketch mainly followed Chwolson, who, aided by profound learning and acumen, has been the first to clear up the nature of Z., this terrible stumbling-block of many generations of investigators.-For detailed information on it and all the many other points connected with it, we
must refer our readers to the latec work in which be has embodicel the results of his investigations, Die Ssabier und der S'sabismus (\because vols. St l'eters. burg, 1Sj6). S'ee also Nre-rLatosists, Gwosrics.

ZACATE'CAS, capital of the Mexican state of that name, is situated in the windings of a decp valley or ravine, between high hills, about 320 miles northwest of Mexico. It is lmilt over a vein of silver, which has been decply explured. The streets are narrow and crooked, but it has a fine appearance from a distance, owing to the size and massiveness of its ehureles, and the elegance of some of its resiclences. There are also a college, a guupowder mill, and a mint. 1'op. (ls66) 16,000 .

ZACHARIAS, a Roman poutiff, successor of Gregory 111. in Fil, who is noticeable as one of the series of Creek 1 relates by whom the clestimies of liome and Italy were much influenced in the 7 th and Sth centuries. The mane of $/ \%$, morcover, deserves bonourable mention in conncetion with a work of benevolence and charity, which the Roman Church afterwards consecrated by intrusting it to a special religions order-viz, the redempition of captives from the pagan masters by whom they had been held in slavery: During the troubles arising out of the Lombard invasion, Z., by his interposition in more than one instance in favour of the city of liome with the Lombard kings, contributed to that prestige of the Roman sec, which eventually led to its ohtaming the leadership of Italy, and in the end the temporal sovereignty of liome and the adjoining teritory. Z. died at liome on the lyth March -5.2 .

ZADO'N゙SK, a town of lussia, in the government of Voroncj, 50 miles north of the town of that mame. and about 230 south of Moscow, on the left bank of the river lon. P'op. 6597. The trade of the town is not extensive, owing to the close neighbourhood of the commercial towns Electz and Voronej. The manufactures are iusignificant. Z. possesses a renownel eloister.
ZAFARAN-ISO'LI, a town of Asia Minor, in Anatulia, about 190 miles east-north-east of scutari, at the juuction of two small alluents of the Chati-su. It has four handsome mosques, a charch, large baths and khans, and extensive suburbs. It has a considerable trade in saffron (whence its mane), which is cultivated extensively in the surrounding country. I'op. silj joosed to be about 15,000 .
ZAlFFRE, crmbe oxide of cobalt, mate by roasting cobalt ore and relucing it to powder, with the addition of about three parts of the tinest white sand used by glass-makers. It is extensively prepared in Saxony, and is often imported into Britain. When fused into a glass, it is intensely blue, and is much used by enamellers and poreclain manufacturers as a blue colonr.
ZÄHRIXGEN, a small willage near Freiburg, in Baden, in the Breisgan, formerly a protince of Austria, but annexed to Buden in ISOJ. It is historically noteworthy for the ruined castle from which the Dukes of Ziihringen tools their name, the ancestors of the reigning House of Baden (q_{1}, v.). The Hapsburgs (q. r.) are traced to the same stock. Guntram or Gunthrun the liich, Count of Brcisganson of the famous Erchanger, who raised himself to the dignity of Duke of Swabia and was beheaded for treason in 91% - is assumed as the founder of the House of Zahriagen. The Zabrings claim to be descendel from his eldest son, Geblard; the Mapsburgs, from the younger, Langelin. After the death of Duke Berthold I., 1077, the Ilouse was divided into two lines-the ducal or Zahring line, which became cxtinct in the male line in 1218 , with Berthold V., the founder of Bern ; and the markgraf
or Balen line, from which the present llonse of Baden is descended. The ducal Zahrings exercised a benefiecnt sway over a great part of switzersland.

Z.ALILL. Sce Cosgo.

ZA'MA, a city and fortress in Numidia, abont 301 miles south-west of Carthage, near which Hamibal was defeated by the Tounger Scipio, 201 в.C. The tlower of Hannibal's forces consisted of a small veteran army, that han shared his fortumes for many years; most of the rest were of inferior quality, of many races, varionsly organised, and of suspicious tidelity. But his greatest deficiency was in cavalry, an arm with which he hal repeatedly decided the victory in former battles. In Seipio's army, on the other hand, Numidians, under llasinissa, were present in overwhelming numbers. The onset of llamibal's clephants, of which he had So, was defcated and made worse than useless by the wise precautions of Scipio ; the earalry on his Hanks were scattered by the furious charge of Masinissa and Lelius; his iront line of mereenaries beaten back by the more numerous and better-disciplinel liomans. His reteran infantry, bemmed in on all sides, fought with the courage of despair, and were cut to pieces. Hannibal hawing done everything, both before and during the lattle, which could secure the victory, escaped with a few horsemen. Of the Carthaginians, 20,000 were left dead on the field, and an erqal number taken prisoners. Of the victors, $Q 000$ fell in the actiun.
ZAMBE'SI RIVER AND IREGION. The extensive region in Sonth-east Africa, known to medieval geographers under the general namu of the cmpire of Monomotapa, is shewn on old maps as drained by a river called Zambese, or Zambere, on the banks of which appear large towns, of which the mythical 'Vigita Nlagua' was sulposed to be the most famous. The course of the stream, which is the modern Z., is, however, 1 retty corructly delineated, and even a small lake is shewn in conncetion with it, nut far from the real position of lake N'gami, whose existence tre only became aware of a few years agn, and which we now know may lie considered ne of the most southern collections of inland waters which communicate with the 7. River and the more castern lakes. The Nyassa or Maravi, as well as the more northern lakes, Victoria N'yanza and Tanganyika (the latter in connection with the Nile basin), are also given with such a degree of accuracy that it plainly shews, that in compiling these early maps, the distinctive features of the region must have been well known-principally, it is supposed, from Aral, sources, various settlements of that people inhabiting the east and south-east coast of Africa from the Fed sica to Sofala.

Although the lower region of the $Z \ldots$, for a distance of at least 300 miles from its mouth, has been in possession nominally of the lortuguese since the beginning of the IGth c., forming the captaineies of Lios di Senna, Tete, and Quilimane, yet it is only within the last few years, through the indefatigable exertions of Dr Livingstone ($185 \overline{1}-1856$, and 1858 1561), Mr Oswell, Dr Kirk, Mr T. Baines, Mr James Chapman, Charles Andersson, and other intrepid A frican explorers, that we have got anything like an accurate or scicntitic iden of this rast region, which extends from 5° to 21° of $心$ lat., and from 14° to 37° of E. . long. ; and the total length of what may be considered the main stream (called Leambye in its upper course), from its mouth to the jeint shewn on Dr livingstone's map, whero the Leeba liver, which proceeds from Lake Dilolo-on the sumwit of the watershed which divides the rivers rumning north-west into the Atlantic from those runwing

ZAMBESI RIYER AND REGION゙-ZAMIA.

south-east into the Indian Ocean-joins it, cannot be less than 1200 miles.*

The river-basin of the Z. presents some interesting physical features. On the north, it is coterminous, in all probability, with a portion of the Nile riversystem ; on the south and west, an obscurely marked water-shed, crossing the Kalihari Desert, separates it from the Orange liver basin and the rivers that min through Orampo Land into the Atlantic; on the north-west, its head-waters probahly rise close to the tributaries of the great Congo River; while on the south-east, a well-defined mountain-range divides the rivers flowing inta the Z. from those which form the Limpopo River, which, it is now nearly certain, enters the sea under the name of the Sabia. It thus forms, as it were, a central link between the waters of the Cape Colony and those of EyYTPt, connecting, as it were, the regious round the Cape of Storms with those of the Mediterranean.

The name of Z. is presersed from the mouth of the river, or rather a short distance above it, to the junction of the main stream with the Chobe, in lat. $17^{\circ} 31^{\prime}$ S., long. $25^{\circ} 13$ E., which connects it with the sluggish inosculating streams of the \boldsymbol{N}^{-1} gami region; from thence it is called Leambye; and its course has heen only laid down with any rretension to accuracy as far as its junction with the Leeba (lat. $14^{\circ} 10^{\prime} \mathrm{S}$., long. $\left.23^{3} 3 . j^{\prime} \mathrm{E}.\right)$, when it alpears to turn suddenly to the north-cast, forming a vast network of streams, which auastomose with one another, and appear to form several other connec. tions with the main stream, far to the eastward, through the Fiafue, Loangwa, and other branches, at least if native reports can be trusted. Of the more remote sources of the main stream, except Lake Diloln, we know oothing; but the explorations in which Dr Livingstone (if still alive) is now engaged will probably throw a clear light on this point.

This part of Central Sonth Africa may be considered as an extensire platean or table-land, from $3000-4000$ feet above the sea-level, with an outer fringe or border of basaltic rocks, cutting through which, the Z. River forms one of the most striking scenes in the physical geography of the universenamely: the Victoria Falls of Livingstone, ar Mosiotunga, or 'Smoke sounds there, of the natives. Here, a few miles to the east of where the Chobe joins the 2., the latter-a stream of 1000 fards in widthplunges down into a chasm more than 100 feet deep, forming an immense crack in the basaltic rock, at right angles to its course, and is carried along in a narrow channel some 30 miles in the same direction, hetween steep, basaltic racks, scarce 100 feet apart from each other. The pictorial illustrations of Mr 'I. Bames will give a far more vivid idea of this wonderful fall than any verbal description.

The whole of this vast country. both north-east and west of the upper course of the river, is rery imperfectly known; but it is ascertained that the (H)avango of Andersson, formerly supposed to be one of the branches of Chaneve Iifer, is connected with the 7. basin. As we descend the river to the ocean, it rins in a sontli-east course, varying in width from 500 yards to two miles and more, in the rainy seasons. From the Portugnese town of Tete downwards, it is navigable, although with difficulty in the dry season; and it passes through one or two narrow rocliy gorges in the Lupata Monntains, which

* Lake Dilolo appears to have an outlet both to the north and sauth; and the same thing is reported of another lake to the north, called Kalagwe, whose waters form the Loapnla, or east branch of the Zambesi to the south, while to the north they run inta the Lake Tanganyika; and if the latter lake, as is supposed, is connected with Baker's Albert N'yanza, a connection with the Nile is thus obtained.
form ugly rapids, except when the river is in full Hood. About 80 miles from the mouth, it receives from the north the waters of the Shire, which runs out of Lake Nyassa, the Maravi of old geographers, an extensive sheet of water about 230 miles long, and 50 miles across at its widest prart, extending between lat. $11^{\circ}-14^{3} 30^{\prime} \mathrm{S}$, and it enters the low country about 50 miles from the oceas, where it divides into many branches, forming a large delta, of a rery unhealthy character. The most northern stream is called the Kwaka, or Kilimane, or Quilimaue River ; and the most southern and deepest channel, the Luabo. At Kilimane, or Quilimane, about IS miles from the sea, is the resideuce of the Partuguese governor of the region; but there are various other entrances used by slavers and contralsandists, which are not very accurately laid down in our charts; and it is both difficult and dangcrous to enter the river without a competent pilot.

The Tictoria Falls are estimated to be 2500 feet above the sea-lerel. Tete is considered to be 400 feet ; and the rapids of Lake Nyassa, where the Shire issues from it, are I552 feet above the same; while Lake Shirwa, a smaller lake, soutlu-east of Iyassa, is 2000 feet.

The natives innabiting the coast region drained by the Z. must he considered of the pure negro type; while the Makololo, who are found in the central and upper country, belong to the Betjuana family; or rather, are a sort of link between it and the negro. They are, however, to be regarded as conquerors of the original tribes, called IIakalaka, who may be classed as negroes, and are still numerous. The Zulu tribe of Amatabele, umder Mosilakatze, who inhabit the high region dividing the Limpopo from the Z. basin, have orerrun and conquered nearly all the tribes south of them. The slave-trade is actively carried on in the countries nominally claimed by the Portuguese; and the lamentable failure of our late attempts to plant an episcopate and civilise the natives through missionary intluence, must be fresh in the memory of our readers. The native population may be considered large, as compared with that of the Cape Colony or Betjuana Country:

All the usual tronical productions are found, but owing to the disturbed state of the native trihes, are but little cultivated. The animal kingdom is very similar to that of the adjacent regions of South Africa; and an immense quantity of ivary is exported both from the west and east coasts. The prevalence of the Tsetse (q. v.) makes travelling difficult in the inte rior. Extensive coal-fields exist, and gold is found is the neighhourhood of Tcte and Senoa.-Tide the Travels of Liviusstone, 1st and $2 d$ parts; 'I Baines's Explorations's, Andersson's ORazango, and various articles in Journal of Royal Geographical Society; and Transactions of Royal Geographical Society relative to murder of Dr Livingstone, and expedition sent to ascertain his fate in June $180{ }^{\circ}$.

ZA'MIA, a geuus of plants of the natural order Cycadacece, of which the species are found in the tropical parts of the world. They have a trec-like stem, with a single terminal lud and pinnate leares. The wood consists of concentric circles, with very loose celludar zones between them. The male and female flowers are on separate plants, is tassellated atkins, the scales of which differ in form in the male and female plants. The contral part of the stem contains much starch, especially in old plants, and a kind of sago or arrowroot is made from some of them. The central part of the stem of the Breadtree (Z. cycalis), of South Africa, which is about six or seren feet high, with a scaly stem, is much used as an article of food by the Kaffirs and Hottentots, who prepare it by wrapping it in a skin well rubbed with grease, burying it in the ground until it
undergoes futrefaction, bruising it between two stones, making it into eakes, and baking it in woodasles. There are numerons fossil species of Zamia. Closely allied to it is the fossil genus Zumiles.

ZAMIO'STLOOLUS, the generic name given to several cones from the Seconlary and Tertiary strati, because they were supposed to be the fruits of fossil zamias. But Mr Carruthers has shewn (Journal of Botany, Jamary 1867) that they belong to true Conifera. He has, however, in the same paper, described six species of fruits belonging to zamia-tike cyeads, to which he has given the generic title of Cycadeostrobus. They are all from the Secondary rocks. No cycadean remains whatever have jet been found in newer deposits.
ZA'MITES, the generic name under which are included numerous forms of zamia-like leaves which occur in Sccondary strata. No certain traces of the trunks have yet heen found associated with them, and only one sprecies (Z. gigas) is accompanied with fruit, and this is so anomalous that it casts considerable donbt on the determination of the affinities of the foliage.

ZAMO'RA, a very ancient town of Spain, capital of the province of that name, is situated 40 mides north of Salananca, and 132 north-west of Madrid, on the right bank of the Douro, which is here crossed by an old stone bridge. It is the see of a bishop suffragan of Sintingo. Z. was of great importauce in the Moorish times, and is said to have heen enelosed by seven lines of walls, with a moat between each. It is entered by seven gates, is surrounded by a wall, has a massive square tower with Norman arches, and many interesting remains of medieval architecture. La Maydalena, a church of the Templars, but afterwards belonging to the order of St Juan of Jernaatem, is a simple solid edifice of the 12 th c ., slightly modermised. There are 20 other churches, besides a theological schoul, barracks, a prisen, a normal and other schools, a lihrary, museum, icc. It has manufactures of serges, linens, leather, hats, liqueurs, brandy, and a considcrable trade in wine and grain. Sir J. Moore urged the Junta of Salamanca to repair the defences of Z, and receive there his stores, bnt his retreat had commenced before they had done deliberating. Had Z. been made tenable, Houre would have fallen back on it, instead of on Corunna. The French afterwards got possession of it, and althongh no resistance was made, the town was sacked, neither age nor sex was spared, and the prineipal persons were executed. It was again pinudered by the French, and has never recovered these visitations. Poj. 9926.
ZA'MOSC, one of the most strongly fortified tawns of liussian Poland, in the gavernment of Lublin, 45 miles south-east of Lublin, and 140 sonth-east of Warsaw, surrounded by water and a marsh. All the bouses are built in the Italian style with areades. There is a farge and beantiful eastle opposite the former university, town-hall and arsenat, four churches, monasteries, theatre, \&e. There are beer and porter breweries. Pop, about 5000.

ZAMOUSE (Bos brachyceros), a species of ox or buffato, found in the tropical parts of Western Africa. It is the Bush Cow of Sierra Leone. It differs from the buffalo and all other Bovidee in several important particulars, especially in the very farge size and peeuliar fringing of the ears, and in the total want of dewlap. The forehcad also is flatter than that of the bufialo. The colour is nearly uniform, a pale chestnut. 'The hair is thiu, and nearly erect. The ears have three rows of long hairs springing from
the inside, and a tuft of long hairs at the tij. There is a considcrable space on the forchead between the

Zamouse (Bos brachyccros).
horns, which are not long, extend outwards and upwards, are suddenly incurved, and very sharp.

ZA'NESVILLE, a eity of Ohio, U. S., on tho left bank of the Muskingum liver, and opposite the mouth of Licking River, 54 miles east of Columbus, is a regular well-built town, in a beautiful and fertile valley, with steanboats to the Obio, and several railways. An iron radway bridge of 538 feet crosses the river, and bridges connect it with its submbs, Futnam and South and West Zanesville. It has abundant water-power, and rich coal and iron mines ; cotton, woollen, nail and glass factories; 5 iron foundries, 15 churches, public and free high schools, 5 or 6 newspapers; \&c. Pop. (1860) 9229.

Zangueda'r. See Zanzibar.

ZA'NTE (ancient Zacynthus), one of the prineipai Ienian Istands, abont 9 miles from the west coast of the Morea, and S south of Cephalenia, is abont 24 miles long, 12 broad, and has a superficies of $16-4$ sq. miles. The greater part of the island consists of a plain, stretching from north to south, with a breadth of from 6 to 8 miles, bounded on the west by a line of hills. The vinc is extensively cultivated on the plaim, and the wine produced is considered to be of a sunerior quality. The staphe product of the island, however, is the currant, which is produced from a dwarf speeics of vine, originally brought from Corinth. Pomegrauates, melons, peaches, and eitrons also are grown. Z. is said to havo been colonisel by Acheans from the Peloponnesus; and it is mentioned in Hemer with the epithet 'woody;' which, however, is not apt at the present day, althongh it is jnstly called, in an Italian proverb, 'the flower of the Levant.' It is subject to frequent earthquakes, which, it would seem, are likely to recur about once in 20 years. The most notable mineral feature of Z . is its pitch-wells, described by Heredotus, which are sitnated about 12 miles sonth of the town of Z., in a marshy district. Por. (1864) 39,367.-Zante, the capital, is the largest town in the Ionian Islands, and is situated at the head of a small bay or harbour on the east coast, on the site of the ancient town, of which the only remains are a few columns and inscriptions. The honses stretch along the semieircular outline of the bay to the distance of a mile and a half, and extend un the slope of the castlehill. Most of the streets are narrow, but efean, and the older houses built in the picturesque Venetian style; the lange lattices of wooden framework, resembling those employed in eastern harems, with which the windows used to be fitted, are being rapidly abolished. The principal street is broad
and handsome, the churches are numerous, and the market-place spacious. The harbour of Z. has been greatly improved of late years ; it is now protected by a long mole, and has a light-honse, but is still somewhat exposed and insecure. A magnificent and extensive view is obtained from the citadel in the highest part of the town. Z. is the see of a Greek protopapas, and of a Fioman Catholic bishop. Pop. 20,000 .

ZANZIBA'R, or ZANGUEBAR. The territories of the Sudtan of Z. comprise all that part of the east coast of Africa included between Magdashooa, situated in $2^{\circ} \mathrm{N}$., and Cape Delgado in $10^{\circ} 42^{\prime} \mathrm{S}$. lat. They are bounded on the N. by the independent tribes of Somal and Gallas, and on the S. by the Portuguese province of Mozambiqne. The extent of the coast is abont 1100 miles, and parallel to it are numerous islands, the most important of which are Zanzibar, containing the capital of the same name, Pemba, and Máfia (Monfia on the charts). The territories on the mainland have no defined limit towards the interior, being occupied by heathen tribes, over whom the sultan's authority is hardly even nominal beyond the sea-board. The soil along the coast is fertile in rice, millet, peas, beans, melons, pumpkins, the sugar-cane, cocoa-nut, banana, plantain, \&c., and the forests supply the caoutchouc tree and many raluable species of timber. Cattle, sheep, and fowls are plentiful, and tropical wild animals abound. Rice, sugar, molasses, ivory, gums, gold, and cowries are exported. The heat on the coast is excessive, and the climate very unfaroarable to Europeans. The mane Z. is applied to the coast from $4^{\circ} \mathrm{N}$. to $12^{\circ} \mathrm{S}$.

The island of Z., by far the richest and most important part of the sultan's dominions, is distant from 20 to 30 miles from the African coast; it is about 4 S miles in length, and from 15 to 30 in breadth. It contains an area of about 400,000 acres, and the soil is in most parts of exceeding fertility; being covered with woods and plantations, and the frequent rains cansing perpetual verdure, it everywhere presents a delightful appearance. It is very tlat, the highest point being not more than 300 feet, composed entirely of coral, and abundantly watered by rivulets, Which flow at all seasons of the jear. The principal products are cocoa-nuts, cloves, rice, sugarcane, manioc, millet, and fruits in the ntmost abundance, especially oranges of the finest quality, which can be purchased at the rate of 1000 for four shillings. The island is intersected by paths and green lanes in every direction, affording a never-ending variety of pleasant walks and rides. The countryhouses of the Arab proprietors, and the lints of their slaves, are thickly dotted over the surface, surrounded with gardens and fields. The hedgerows are covered with flowering creepers, and pineapples grow amongst them in wild profusion. In many parts are glades of undudating grass-land, of park-like appearance, dotted with gigantic maugo trees; the ponds are covered with mishes and water-lilies; and the air is perfumed with the blossoms of the orange and clove. The pop. of the islaud is estimated at about 250,000 . The town contains about 60,000 permanent inhabitants; while probably from 30,000 to 40,000 strangers come from Arabia, India, and the northern parts of Africa during the season of the north-east monsoon. The chief people are the Arab landed proprietors, who form a sort of aristocracy, possessing large plantations and numerous slaves; besides these, there are slaves, free blacks, natives of the Comoro Islands and Madagascar, and from 5000 to 6000 natives of India, who keep nearly all the shops in the town, and through whose hands nearly all the foreign trade of the place passes. The language of
the court and of the Arab population is Arabic, while the slares and the free black population speals a dialect called Fisawahéli, one of the great family of South African languages.
The climate of Z. is extremely equable and salubrious, the thermometer having probably never risen as high as 90°, nor fallen lower than 70°. Nearly 200 inches of rain fall during the year, of which half at least falls in March, April, and May.
The capital is extensive, but, like most oriental towns, it is narrow, irregular, and ill built; the houses of the principal inhabitants, and of the European residents, are large flat-roofed buildings, generally with an interior courtyard ; and some of them, and especially the palace of the sultan, may almost claim to be magnificent.
The trade is very considerable. In 1863, it was as follows: Imports, $£ 544,903$; exports, $£ 467,053$: total, $£ 1,011,956$. The imports consist of cotton goods, brass wire, beads, arms, \&c. ; and the exports of gum, copal, cloves, ivory, cocoa-nut, oil-seeds, dye-weeds, and a great rariety of other articles. No export duty is clarged, and only 5 per cent. import duty.
The sultan has a considerable body of rabble soldiery, but nothing approaching to a disciplined stauding army. His naral force consists of 1 frigate, 52 guns; 1 frigate, 32 guns; 1 corvette, 22 guns; 1 brig, 4 guns.
The earliest settlement of Arabs on the east coast of Africa occurred about 924 A.D. ; and for several centuries, flourishing republics, governed by elders, elected by the citizens, existed along the coast. Vasco da Gama visited Z. in 1499, and in 1503 tho dominion of Portugal was recognised by the inhabitants, who agreed to pay an annnal tribute; but the Portuguese never held it for very long periods. About 1783 A.D., they were finally expelled, and in 1784 , the island was taken by the Imaum of Museat, in whose family the government remained until the death of the late Imarm, Seyed Saeed bin Sultan, in 1854, when the Arabian possessions fell to his son, Seyed Thoweni, and Z. and its dependencies to Seyed Majid, the present sultan, each division becoming an entirely separate and independent kingdom.

ZA'RA (ancient Jadera), the chicf town of Dalmatia, on the coast of the Adriatic, 73 miles northwest of Spalatro, and about 12 S south-east of Trieste. The town is strongly fortitied, and is built in the form of an oval, on a narrow promontory, separated from the mainland by a moat, across which is a drawbridge. The town is entered by tro gates, one from the sea, called Porta-Marina, supposed to be partly of Roman construction; and one from the landward side, called Porta-di-TerraFirma. The ramparts, of Venctian construction, and partly plantel, afford a fine promenade to the inhabitants. There is a spacious and well protected barbour, which, however, is somewhat shallow. The streets generally are narrow and ill paved, and the drainage defective; the town is not well supphed with watcr. Of its churches, the most noterrorthy are its cathedral, foumded by Henry Dandolo, Doge of Venice, and the church of the patron saint, St Simeon. There are many convents and monasteries ; a lyceum, gymnasinm, and other schools; a barrack, and a naval and military arsenal; bospitals, a theatre, museum, and other public buildings. There is a lofty marble column, which is all that is left standing of an ancient Foman temple; there are also the remains of a Roman aqueduct. Z. is the seat of the government of Dalmatia, and the see of a Roman Citholic archbishop. The commerce is unimportant. Many of the imbabitants are engaged in fishing and in the
coasting-trade. The chief manufactures are rosoglio, maraschino, leather, silk and linen fabrics. T'op, S850, Italians hy descent, and speaking the Italian language. Anciently, Z. was the capital of Libmruia, in Illyrieum; and under Angustus it was made a Ioman colony:

Zaliagoza. Sce Supplemèt.

ZAllid'SK, a liussian town, in the government of IViazan, 32 miles north-west of the town of Liazan, anl 80 sonth-east of Moscow, a few miles from the right bank of the Oka, a tributary of the Volga. The town was founded in the 13 th c. ; and in 1531, Isan the Terrible crected on the site of the old fortitications a strong fortress, which thrice resisted the assaults of the Tartars, and which still exists. Another noteworthy object is the Cathedral of St Nicolas, which dates from I631. There are manufactures of soap, and candles, as also several tanucries and breweries; these, however, produce only sufficient to meet the wants of the inhabitants. The commerce of the town has greatly declined since 1847, when the new road of Riazan was oprencd, leaving Z. out of the way. Pop. 506?

ZE'A (ancient Ceos), an island of the Grecian Archipelago, one of the Cyelades, 13 miles east of Cape Columa; 14 miles in leugth, and S in greatest breadth. It is somewhat egg-shaped. Its surface rises from the coast in terraces, culminating in the centre in Mount St Elias, whose lat. is $37^{\circ} 37^{\prime}$ N., and long. $24^{\circ} 21^{\prime} \mathrm{E}$. The climate is healthy, and the soil fertile. The products are wine, fruit, barley, cotton, and silk. Attention is paid to the rearing of cattle and silkworns. Pop. 5000. Pliny says that Z. was once mited to Eubcea, but that fourfifthe of it were carried away by the sea. \%. was the birthplace of the lyric poets simonides and Bacchylides. The island once possessed four towns, hat there is now only one, Zea, situated on the northwest slope of the hill, about 3 milcs from the coast, on the site of the ancient Zulis, of which the most important remain is a colossal lion, about 20 feet in length, lying a short distance east of the town. A fen remains are also still to be found on the sites of the other thrce ancient towns. The harbour of Z., I'ort St Nicholas, abont 3 miles from the town, admits the largest vessels, and is well frequented.

ZEA. Sce Mlizze.

ZEBI'D, a town of Arabia, district of Yemen, on the river Zebid, 15 miles from its mouth, 115 miles south-west of Sanaa, and 60 north of Hocha. The towa is of great antiquity, on account of which and of the dark colour of the bricks of which it is huilt, it bas a somewhat gloomy appearance. Z. is strongly fortified, being surronuded by high walls, sair to be a league in circuit, Hanked with numerous towers. It possesses a large mosque, with an clegant octagonal tower. Z. was formerly a place of much commercial importance, hut it has declined into comparative insignificance, owing to the acenmulation of sand in the mouth of the river. Pop 7000.

ZE'DRA, a name sometimes given to all the striped $E_{\text {duider }}$ all of which are natives of South Afrien, and thus including the Danw (q. v.) and ()uagga (q.v.) ; but also, in a more restricted use, designating a single species, Equus or A sinus Zelra, a. native of the mountainous districts of Sonth Africa. In the whole group, the characters more resemble those of the ass than of the horse; the tail is furnished with long hairs only towards the tip, and the hind-legs are without warts; the neck is full and arched, the mave stands crect. The Z. is about 12 hands high at the shonder. It is of a light and graceful form, with slender limbs and harrow hoofs; the bead light, the ears rather long
and open; the ground colour white, or slightly tinged with yellow; the heal, neek, body, and legs striped with black, the noek and hooly transversely, hut not regularly; the liead with hands in various directions, the legs with irregular cross stripes. The Z. lives in small herds, inhaliting the most secluded spots. Its senses of sight, smell, and hearing are very acute, and the least alarm is sutticient to make a whole herd seamper off, with pricked ears aml whisking tails, to maccessible retreats

> Zelora (Asinus Zuru).
among the mountains. When attacked, however; and compelled to defend thomselves, zebras do it vigorously, the berd forming in a compact body, with their heads towarls the centre, and their heels towards the enomy, rejelling eren the lion and leopard by their kicks. The Z. has been domesticated, and used as a beast of burden, but gencrally shews a vicious and untractable disposition. The flesl is caten by the natives and hunters of Sonth Africa. A hybrid lias been 1 roduced between the Z. and the ass.

ZEDU', one of the Ihilippine Islants (q. v.).
ZEDU, INDIAN OX, or BLAAHMIIN OX, a kind of ox, very nearly allicel to the common ox, of which naturalists generally regard it as a mere variety, although sone think it a distinet species (Bos Indicus). The most conspicuous distinetive character is a large fatty hump on the back, above the shoulders. The legs are also rather more sleuder and delicate than in the European ox. The hump attains a very great size in animals plentifully

Zebu or Indian Ox.
supplied with food, and not compelled to work; in those which are ill fed or hard worked, it is comparatively small. It is alleged that intermixture takes place freely with the common ox, and that there is no difference of anatomical structure, but these statements require verification. Mr Vasey found the number of caudal vertebre in the Z . to
le only 18 , whilst in the common ox it is 21 . The period of gestation in the Z. is also said to be 300 days, whilst in the common ox it is 270 . The Z. is diffused over India, China, the Asiatic Islands, Madagascar, and the cast coast of Arrica. There are many breeds, differing very much in size; the largest being larger than any oxen of Europe, whilst the smallest arc not much larger than a large mastiff. The homp of the largest breeds is said to be sometimes 50 lbs . in weight. English residents in India esteem the hump as delicious for the table. There are hornless breeds; but most of the breeds have short horns. There is a breed with two fatty humps, one placed immediately behind the other, which is common in the vicinity of Surat. The voice of the Z . resembles the grunting of the yak, almost as nearly as the lowing of the ox. The Z. is used in India both as a beast of draught and of burden. It is yoked in the plough. It is occasionally used for riding. It can travel from 20 to 30 miles a day. It is very gentle and docile.

The Brahminy or sacred hulls of the Hindus, consecrated to Siva, are all of this kind of ox. They are caressed and pampered by the people, and to feed them is deemed a meritorious act of religion. The Brahminy bull may go where he pleases; it is not lawful to beat him, even if he be eating a valuable crop, or if he enter a shop and derour the articles exposed for sale. He soon learns to despise shouting, which is the ordinary expedient to drive him away, and makes himself at home ercrywhere.

ZECCHI'NO. Sce Dбcat.

ZECHARI'AH, called in the book of prophecy which goes under his name, 'the son of Berechiah, the son of Iddo,' but in Ezra, 'the son of Iddo,' was born in Babylomia during the captivity, and accompamied the first band of exiles on their return to Palestine under Zernbhabel and Joshua. Vcry little is known of his personal history, but enough to assure us that he was a man of influence and a leader among his conntrymen. He combined in himself the offices of priest and prophet. Ezra expressly ascribes to Haggai and lim the merit of stirring up, by their prophetic inspiration, the patriotic enthusiasm of the Jews to complete the rebnilding of the Temple. Later traditions, which are probably more or less in the line of historie fact, state that he assisted in providing for the service of the Temple (various of the liturgical psalms being ascrihed to him), and that be was a member of the great Synagogue (q. v.).

The prophecies of Z. nay be divided into three parts: the first (chapters i.-viii.) consists mainly of a series of visions relating to the building of the 'Cemple, the glory of the city, the removal of all abominations out of the land, \&c., and winds up with a prediction that Jerusalem will become, as it were, a centre of religious worship to all the world. The second (chapters ix.-xi.) threatens Damascus and Phœnicia, and the cities of the Philistmes with ruin; predicts that Judah will be greater than Jaran (Greece), that Israel and Judah will be reunitedthough almost immediately lie symbolically shews the impossibility of this-and that both Assyria and Egypt will be humbled. The third part sets forth that dark times for Judah are drawing nigh, which shall be as an ordeal for the nation. After sore trial, it shall come forth thoroughly purged from iniquity, and then the Lord will appear in his glory on Mount Olivet, fight rictorionsly against the hosts of beathendom, and compel all who are not destroyed by his wrath to worship Him at Jerusalem. A millennium of holiness will then begin: 'In that day shall there be upon the bells of the horses, "Holincss unto the Lord" . . . yea, every pot in Jerusalem and

490
in Judah shall be haliness unto the Lord of hosts" (xiv. 20, 21).

Numerous biblical critics, both in Germany and England, consider the first part only to be the work of Z., and it cannot be denied that the internal evidence strongly favours this supposition. There is a unity, consistency, and sequency in the visionary predictions, and a harmony both of style and matter - the imagery bearing very distinctly the impress of those two master-spirits of the exile, Ezekiel and Daniel-that no candid critic can overlook, while the remaining chapters are totally unconnected in subject with what precede; contain no allusion to the post-exilian age, and speak of idols and false prophets in a way that would be utterly meaningless if applied to the times subsequent to the return from the captivity. The style also is quite different; is softer, richer, more poetical. The spirit of Ezekiel is exchanged for that of Jeremiah or the younger Isaiah. Whether these chapters are the work of one or two authors, has also becn elaborately discussed, the evidence being, on the whole, in favour of the latter view.

ZE'CHSTEIN (Ger. mine-stone), a deposit of calcareous rock which covers the Kupfer-schiefer, and which received this name because it must be cut through before reaching the mineral-bearing beds beneath. It is the equivalent in Thuringia of the fossiliferous limestones of Permian age of the north of England.

ZEDEKI'AH, originally MATTANI'AH, the last king of Judah, son of the 'good Josiah' by his wife Hamutal, succeeded his nephew Jeboiachin. The latter having rebelled against his master, Nebuchadnezzar; king of Babylon, was hesieged in Jemzsalem, and taken prisoner, after a brief reign of three months. Nebuchadnezzar bestowed the vacant throne on Z., doubtless in the expectation of securing a faithful liegeman. If so, he was mistakeu. Z. was a weak umwise ruler, probably incapable of political fidelity: in the phraseology of the Jewish historiau, 'he did that which was eril in the sight of the Lord.' Forgetting his obligations to the Babylonish monarch, he lent a ready ear to the foolish braggadocia of the nobles and princes of Judah, and in spite of the earnest and reiterated remonstrances and warnings of Jeremiah, finally consummated his perfidy by forming an alliance with Egypt, the hereditary enemy of Assyria and Chaldæa. Swift destruction overtaok the traitor. A Babylonish army invaded and ravaged the country, besieged Jerusalem, and after inflicting a crushing defeat on an Egyptian force that was marching to the relief of the city, reduced the inhalitants to such horrible extremities, that they could no longer hold out. Z, accompanied by his wires and children, fled in the darkness of night towards the Jordan, but was orertaken and made prisoner near Jericho. The monarch and his sons were sent to Riblah, at the north end of the ralley of Lebanon, where Nebuchadnezzar then abode. The conqueror, with customary Asiatic cruelty, ordered the sons to be slain before their father's face, and theu deprived the mretched parent of his eyesight. Thus maimed, and bound with fetters of brass, lee was conveyed to Babylon (588 в.c.), where he prob)ably died. The Temple and city were destroyed, the inhabitants carried off into captivity, and the kingdom of David and Solomon ceascd to have a place on the earth.

ZE'DOARY (Arab. Jelucar), the name of certaiu species of Curcuma (see Tursieric), natives of the East Indies, the root-stocks (rhizones) of whicb are aromatic, bitter, pungent, and tonic, and are used for similar purposes with ginger. They are
more used in the East than in Europe, but are imported in small quantities, and sold under the name of Zeloary. The Ilousp Z. of the shops is the produce of Curcuma zeduaria, a mative both of India and China, having palmate root-stocks, strawcoloured within. Losig Z. is produced by C. zerumbet, a native of various parts of the East Indies, having long palmate root-stocks, yellow within. Z. is a powerinl sudoritic.

ZEE'LAND, a province of the Netherlands, consists of the islands Walcheren, North Beveland, Sonth Beveland, Schouwen, Duiveland, Tholen, St Philip's-land, and Staats Flanders. It lies between $51^{\circ} 20^{\prime}-51^{\circ} 45^{\prime} \mathrm{N}$. lat., and $3^{\circ} 21^{\prime}-4^{\circ} 15^{\prime} 54^{\prime \prime} \mathrm{E}$. long., and has an area of 665 sq. miles. The boundaries are: South Holland on the N., the Easter Scheldt on the E., Belgium on the S., and the North Sea on the WV. January 1, 1866, the pop. amounted to 176,169 . The lioman Catholics numbered 4,769 ; the Jews, 632. There are 150 churches, and 21 different cormmunions. The prorincial capital is Middelburg, in Walcheren. Other important towns are Flushing, in the same island; Goes (pron. IIuse), in South Beveland; and Zierikzee, in Schouwen. The greatest part of the soil, which is a rich clay, has been redecmed from the sea; and almost in the centre of the islands Walcheren, South Beveland, and Schourren, there are seen still the high mounds of earth called 'hills of refuge,' which the early inhabitants formed as places of safety for themselves and cattle when a high tide burst over the newly acquired lands. The number of Polders (q. v.), or drained districts, in the provinee amounts to about 400. It is almost entirely arable, and produces the finest crops of wheat, barley, oats, rye, peas, beans, and colza. Potatoes are extensively planted ; and in 1565, the madder crop reached 5,761,671 lbs. The stock of horses numbered 23,394; horued eattle, $52, S 83$; sheep, 37,537 ; pigs, 17,205; and goats, 3S71. In many districts of Z., extensive orchards beautify the farms.
The neighbouring seas abound with fish, and in Schouwen, many eggs are collected, myriads of water-fowls resorting thither to form their nests. The principal industries, apart from agriculture, are the preparing of madder for the market, weaving calicos, rope-spiuning, ship-building, beer-brewing, soap-boiling, laaking vinegar, salt, starch, tobacco, tile and brick, tanning leather, grinding corn, sawing wood, \&c. The people of Z. are kind and hospitable, and in the country parishes, are much attached to their fairs, meetings for merry-making, and other old customs, which might with advautage be given up. Few marriages take place among the agricultural portion of the population till absolutely necessary, but a case of desertion rarely occurs, as it would utterly disgrace the young man who did so.

On the 15 th of October 1866 , a fine ship-canal through the island of South Beveland was opened, and is to take the place of the Easter Scheldt, which is to be crossed by a railway in course of construction, from Flushing, through Walcheren and South Bereland, to join the main Pelgian lines. In February 1807, the works on the Easter Scheldt were begun.

ZEITHU'N, a town and district in the high. lands of Cilicia, lying in $37^{\circ}-38^{\circ} \mathrm{N}$. lat., aud 34° -35° E. long., inhabited by a community of Armenian Christians, virtually independent of the Turkish government, and forming in fact an Asiatic republic. Z. lies in the upper basin of the Jyhun or Pyramus, where that river erosses the Taurus Mountains in descending from the table-land of Asia Mlinor to the low plain of Cilicia, which sur-
rounds the north-eastern coruer of the Mediterranean Sea. It is surronuded on all sides by inaccessible cracss, except on the east, where it is bounded by the deep channel of the l'yramus. The hills are covered with maguificent pines, plaue trees, and evergreen oaks. Springs and brooks, never dried up during the summer, irrigate the meadurs in all directions; but the soil, although abounding in patches of great fertility, does not produce grain iu sufficient quantity to supply the wants of the inhabitants. The mulberry trees are, however, numerous in the orchards, and give constant oceupation to the women in feeding silk-worms. The men are chiefly engagerl in smelting and manufacturing the iron suppbed by the mountains into ploughshares, horse-sloes, uails, \&e., which they exchange for corn and other articles at Marash and Kaisariyeh. The languago of Z is a rude dialect of Armenian, in which the only literature consists of popular songs uot committed to writing. Elucation is much negleeted among children, who, except when intended for tho priesthood, are not sent to school after the age of 10 or 12. The inhabitants, like the kindred race in Armenia, are free from Asiatic vices. They resemble Europeans in their respect for women. Crime is not frequent. No prisons exist, and it is asserted that murder has never been committed in tho country for the sake of gain. There may be exag. geration in these statements, but the Zeithumlus are certainly open-hearted mountaineers. They have, however, shewn the greatest jealousy of foreigners; aud until 1554, when their country was visited by 11. Léon Paul, a French Protestant elergyman, we only knew of them from the statements of Armenian priests, and articles in the Armenian newspapers of Constantinople. Even now, our information about them is rather scanty. The government seems to be patriarchal, vested in elders of the people, with some prerogatives in the priesthood. When a grievauce is felt, complaint is made to the priests, who meet in council, and refer the complaint to the elders assembled as a seuate: they decide on the course to be taken. All oftices are conferred by popular election, the executive power being placed in the hands of four princes. There are 20 villages in the district, and the chief town, Z., is said to contain 20,000 inhabitants. The Zeithumlus can muster an army of from 7000 to 8000 men to defeud the mountains against the Turkish pashas; and they are in alliance with a veighbouring Turcoman chief, also independent of the Turks, who brings 10,001 men into the field. Z. is a relic of the Armenian kingdom of Cilicia, founded in the 11th, and destroyed in the 14 th century. Since that period, the native popalations have been gradually assimilating to the Turks, a change much favoured by the extreme facility with which the Turkish language is acquired. It was not till after the Crimean War that the massacres in the East called special attention to the existence of Z. and other Christian communities in the East, which had some claim to European sympathy. An attempt by the Turks to settle Cireassians near Z., gave Aziz Pasha of Marash an opportunity of attacking the Christians, and the atrocities committed remind one of the worst excesses of Cawnpore. The inhabitants defended themselves, however, with the greatest gallantry, twice defeating in the ficld large Turkish forces; and the struggle was at length terminated by the interference of the French and English governments at Constantinople, and the recall of the pasha Unfortunately, the Turks were allowed to suppress the Armenian newspaper which aequainted the Eurolean public with what is taking place at Z., and rre have ceased to receive recent information regarding it. An interesting accourt of the massacres and the defence of Z. will be fourd
in the Revue des deux Mondes of February 1863. See also Spectator of 26 th August 1865.

ZEITZ, a walled town of Prussian Saxony, in the government of Merseburg, 23 miles south-west of Leipzig, lies in a pleasant and fraitful district, on a steep slope, on the right bank of the White Elster, over which there is a stone bridge. The town is very old, and has some good old public buildings; a cathedral, and four other churches; a good library, containing 12,000 velumes, besides MSS. ; asylums for orphans and lunatics, an old and new castle, \&c. The walls are pierced by six gates. There are manufactures of cotton, earthenware, leather, calicos, hosiery, glores, \&c.; several printfields, breweries, and distilleries. Pop. 11,IU0. It is a station on the Thuringian Railway.

ZELA'YA, a town of Jexico, in the state of Guanajuato, about 120 miles north-north-east of the town of Mexico, on the right bank of the Rio Grande de Santiago, which is here crossed by a handsome bridge. It has a fine cathedral, of mixed architecture, with Corinthian and Ionic columns, and numerous other churches and convents, mhich are rich in works of art. There are manufactures of cotton and saddlery. Horses and mules are bred to a considerable extent in the ricinity. Pop. I4,000.
ZELIOU'A (Planera Richardi), a tree of the natural order Clmacere, with a straight and erect trunk of To- $S 0$ feet high, one-third of which height is without a branch, a large head, elliptical leaves of $1-3$ inches long, and small flowers with bell. shaped perianth, and small roundish dry 2-celled fruit, the cells 1 -seeded. It is a native of Georgia, the north of Persia, \&c., and is sometimes planted in England. The timber is raluable, the sapwood elastic, the heartwood very hard.-P. Gmelini is a low tree, a native of Kentucky, and of some of the more southern states of America.
ZEMINDAT, the name given to the gavernors of districts or large towns in India, under the Mogul rule. Many of the zeraindars occupied in India a position almost similar to the dukes and connts of Western Europe in the middle ages; they received from their superiors, the nabobs or prorincial governors, fiefs of more or less extent, for which they paid a certain due annually, being then exempted from all other imposts whatsoever. The dues paid by the zemindars were of course exacted, with additions, from the ryots or cultivators, and constituted a large part of the imperial revenue. Under the British government, the same system of tax-collection is continued in Bengal, the zemindars in that presidency being looked upon as the hereditary lords or proprietors of their respective districts. The zemindars of the Coromaudel district were formerly called polyghars. Under the zemindars were the havildars, or heads of rillages, whose duty it was to collect their share of the tax imposed by the zemin. dar, and as, like their chief, they took care to collect an additional proportion for themselves, the most atrocious oppressiou π as commonly practised; the - nabob' pillaying the 'zemindars,' the 'zemindar' in turn plundering his 'havidars:' while the 'havildar' more than reimbursed himself at the expense of the Hindu villagers.
ZEND,* the language in which are composed the

- Much nncertainty prevails as to the real meaning of the word Zend. The name Zend-Alcesta ($q \cdot v$. .) is, by the native scholars, nnderstood to mean commentary (peklvi) and text, an opinion supported by the inost eminent Zend scholar of our day, Dr Haug. The opinion of Max Muller to the effect that Zend is identical with the Sanscrit chhandas-a name given to the Vedic hymos-and Avesta = avasthàna, a word which, if it occurred in Sanscrit, would mean scttled test, requires further confirmation.
ancient sacred books of Zoroaster, first became known throngh Anquetil-Duperron (4.v.). Dlany scholars of eminence, like William Jones, Meiner, Henming, W. Erskine, and others, Warmly contested the age of these writings. They held that the idiom iu which they were couched had never been spoken in any part of Persia, Lut mas a Sanscrit dialect which had been introduced from India for sacred use. The so-called Zoroastrian writings, they said, dated from the time of Ardeshir-Babegan, the first Sassanian, in 230 b.C., or had at least been rewritter and redacted at that time. The first who endearoured to lay the foundations for a real grammatical knomledge of Zend was Rask, the Dane, who, in 1816, undertook a journey to India and Persia, in order to make researches into the origin and natnue of this language on the spot. Although he did not live to make known all the results of his inrestigations, he yet proved irrefutably that the sacred languace of the Parsees was closely connected with that of the Brahmans; or, in other Fords, that Zend was akin to Sanscrit, and that, like the latter, it had retained some of the earliest furmations of the dryan dialects. Eugène Burnouf followed in his steps. He was indeed the real founder of Zend studies in modern Europe. By the aid of his knowledge of Sanscrit and comparative grammar, he proceeded to decipher, for the first time, the sacred writings of Zoroaster in the original ; while Anquetil-Duperron, who first made the Zend-Avesta known in a European garb, com. posed his translation only from a modern Persian translation. Both he and Bopp contended for the independent and ancient existence of Zend, bolding that Sanscrit, being a new language which came from the north, was more likely to be derived from the Zend than the latter from Sauscrit. The opinion of Haug, the latest, and by far the most successful investigator of Zend language and literature, is, that Zend is almost identical with the most primitive-the Vedic-form of Sanscrit. We shall give in the following sketch the results of his studies, which unfortunately have as jet appeared only in the preparatory shape of essays.
The Zend idiom, in its widest sense, embraces tro so-called 'Bactrian' dialects, which, together with the 'West Iranian' languages, i. e., those of ancient Media and Persia, form the stock of Iranian tongues. These tongues were once spoken in what the ZendI vesta calls the 'Aryan countries' (Airyâo dankavo). The former, the 'East Iranian' or 'Bactrian' branch, has survired, in its two dialects, in the scanty fragments of the Parsee Scriptures only. The more ancient of them is called the "Gattha dialect,' because the largest and most important pieces preserved in this peculiar idiom are the Gatthas, or sougs; the jounger or 'ancient Bactrian,' also 'classical Zend language,' is the one in which the greater l'art of the Zend-Avesta (q. v.) itself is written. Both dialects seem to have died out in the 3 d c. B. c., leaving $n 0$ linguistic progeny. The general character of Zend, in its widest sense, is that of a highly-developed idiom, inasmuch as it is as rich in inflections (there are no less than three numbers and eight cases) as is the Vedic sanscrit, and is richer even thau the Latin in the variety of forms inherent in its verbs and nouns. There are numbers of compound words in it; and the whole syntax bears the stamp of an adranced stage of linguistic progress. A genuine sister of Sanscrit, Greek, Latin, and Gothic, it is yet only known to us, much as is the Hebrem, in its declining phase. The forms are no longer accurately kept distinct, and a return to the originally uninflected state is noticeable, principally in the verbs. It may be that the Bactrian grammar had never been projerly

ZEND.
fixel by rules, and that, in the alsence of that tender care which the Bralmans took of the preservation of the Sanscrit texts and ilion, many corruptions and ablreviations gradnally crept from the colloquial into the classical language of Zend, anel were thus yerpetuated in the surviving remmants. As soon as the language of the Zoronstrian books died out from daily asc, these books were mechanically copict, time after time; and any number of Hlunders, unchecked by an understanding of the structure or the cletails of the language, erept in unheerled. The oldest copies are the liest, comparatively speaking: the more modern the copy, the oftener the terminations are found as suparate words; vowels are inserted according to the fanlty prommeiation of the writer ; and a mumber of other fanlts, of omission or commission, are patent at first sight, solely due to carelessucss and ignorance. Before indicating the general character of Zend, we shall brictly observe that its two dialects differ both lhonetically and gramnatically ; and the jhonetical differences are so great, that, at first sight, it would almost appear as if they were caused by different localities rather than ages, but, on closer inspection, it is found that the singing of the Githas, whereby certain vowels were lengthened out, las caused many of these striking peculiarities. Grammatically, the Gatha dialect shews many deviations from Zend, traceable to the more primitive state of the Bactrian language which it represents. But the differences between the two are not so great as letween the Vedic and the classical Sanscrit, and letween the Greek of Homer and the Attic dialect. At most, the Gaitha may be reckoned to be one or two hundred years ollele than that classical Zend which formed the classical language of the ancient Iranian Enıpire, as depictad in the earlier parts of the Shüh $\lambda^{\top} \ddot{m}$ meh.

There are twelve simple vowels and about fourteen diphthongs in Zend, for cach of which there are special characters. Of vowels peculiar to this idiom, may be mentioned the a (long, with a nasal sound), used chiefly in the genitive plural termination; further, the \bar{c}, which, in the Gietlia dialect, often rejlaces the final 6 of the usual Zend, ancl which, by the frequency with which writers coufound it with f, wonld also prove itself closely allied to that sound. There is, further, an initial a to be observed, which probably crept into the Zend texts when they were transcribal into their present characters, which, no doubt, are borrowed from the Syriac. This a corresponts to the Alejh prostheticon of the Senitic idions. Again, the short vowels are always lengthened at the end of a word in the Gatha dialect : oving most probably to the circumstance that the Gâtha literature-the most sacred hymus-were sung, and the singer's voice resting upon the final rowel, whether long or short, had the effect of lengthening it eveu in the MSS., written mostly from memory. Of consonants, there are 6 sutturals, 2 palatals, 4 dentals, 3 labials, 4 semivowels, 5 sibilants, 5 nasals. The roots are mostly monosyllabic, consisting occasionally of one vowel only, or being a eombination of a vowel with a simple or double consonant, or of two consonants with a vowel between them; c. g., i, to go; di, to give; gt, to go : mere, to die; us, to be; \&c. Additional sounds added to the simple roots, cularge and otherwise change the meaning of a word-lid, to make, becomes, by the acdition of th, dath, to pince; from mere, to die, is derived morefich, to kill. Three chief modifications are to be noticed in the verbal roots, irrespective of tense and mood-viz., the ' eausal form,' expressing the idea of 'to make,' 'to get made, which is formed by lengthening the vowel of the root, and adding the syllable aya, as
in Sanscrit. Next stands the desidurative form, expressing the wish of obtaining anything, which is formed by the reduplication of the first syllable, and the addition of s to the crule form before the terminations. The last or intensive form, ased to render the verls more emphatic, was originally pruduced by a simple reduplication of the root and the termination ; aiterwarels, only the vowel of the first part was lengthenel, and the consonants following were omitted. Iluree voices-the active, middle or retlective (Lat. delonent), and the passive-obtain in Zend, as in Crreek and Sanscrit; and there are four chicf moods, which maly be used in all these threa voices-the indicative, subjunctive, potential, and imperative. The subjunctisc is of a double nature, the one expressing the 'might, would, or should,' the other the 'may'-a feature lost in classical Sanscrit, and only to be met with in the ancient language of the Vredas. The potential, too, is of two kinds, eorresponding to the Šunserit ' potential" and "precative." There are as many tenses in Zcnul as there are in Sanscrit, thougli fewer than in Greck, which is, in this respect, the richest of the Aryan stock. 'Ihere may be distinguished one formation for the present, four for the past, and two for the future.

The general scheme of the (active) prosent and inmerfect is as follows:

> present. Active Toicc. Sing. 1. mi. 2. hi. 3. t!. Dual 1. Yahi. 3. (lost.) 3. tô, thio. Ilur. 1. mahi. 2. that, dum. 3. uth.
mprereet.
Active Fucd.
Sing. 1. m.
2. s, u.

Dual 1. fira.
Duat 2. (1)nt.)
3. tem.

1'lur. 1, ma.
2. ta.
3. ©ก, aัี.

The division of the 'crucle' forms into ten classes, in use with the giammarians of Sanscrit, is also fully applicable to the Zend. Additions and reduplication make up the distinguishing features. The past tenses are likewise formal, as in the sister tongucs, by angmentation, reduplication, or composition. Apart from those forms which are identical with those employed in Sanscrit, Greek and Lithuanian, Latin, and the ancient Teutome languages, we find the use of two kinds of subjunctives. Equal richness of forms is found in the participle and the infintive, whilst there are fewer gcrunclial forms than in sianserit. Noms are formed out of roots by the addition of suffixes, which generally correspond to those of the cognate languages. There are three genders in Zend-maseuline, fommine, and neuter. The comparative and superlative are formed very nearly as in Sanscrit and Greck. The number of compound nouns in Zend is somewhat less than in the Sanscrit and Greek, oll account of its standing nearer the more simple Vedic idiom. There are three mumbers and eight cases of inflection for singular and plual of nouns; while there are no less than five cases in the dual, no other Aryan langnage laving retained more than three. The terminations of the cases (in words ending with a consonant) are somewhat according to the following scheme:

	sing.	Dutal.	PICJML.
Nom.	s.	fi.	Ô (ac).
Ассия.	em.	Ja.	0 , äs.
Instr.	a.	f bra.	bis.
Dat.	c.	\{bya.	byo (byaç).
Ablat.	at.	a ${ }^{\text {a }}$.	brô.
Gen.	0 (ac).	(ǎ0.	àm.
Locat.	i.	yô.	aėshu, aüshra, hva.
Voc.	$=$ Nom.	11	

There are only pronouns of the first and second persons to be found in Zend, the third being made
up by a demonstrative pronoun. There are some oliter forms to be found in the Gàtha dialect only. Most of the pronouns resemble closely the Sanscrit forms. The relative is sometimes used as a demonstrative. The numerals from one to ten are : aeva, dlya (va, dugê, ayê), thri, chathware, poñcha (meñda), khshvas (khshridem), lapta, asta, nava, daça. The following numbers are formed by the addition of the single cardinal numbers to the ten or daç: : $20=$ viçaiti. $100=$ catem, $200=$ duye çaite, $1000=$ hazanra, $10,000=$ baếrare $, 100,000=$ ahökhsta. The ordinals are: paoirya, first; bitya, second; thritya. third; khtuiryah, fourth ; pukhdha, fifth; \&c. 'Multiplication numerals' are formed by addition of levet and vat-e. g., hakeret, once ; bizhvat, twice; thrizhvat, thrice ; \&c. Particles and prepositions are often identical with those of Sanscrit. The latter may be separated from the verb, if forming part of it, as is the case in the Vedic and Homeric languages, but not in classic Sanscrit or Greek.

We have started with the now fully proved assertion that Zend is closely allied to Sanscrit, more especially to the ancient Vedic dialect. To the latter it bears about the same affinity which the different Greek (dialects (Eolic, Doric, Ionic, Attic) bear to oue another. The ancient Brahmans and the Parsees are but two tribes of the nation which is called Aryas both in the Vela and Zend-Avesta, the former somewhat to be compared to the Ionians, the latter to the Dorians. But in comparing Zend with Sanscrit, it is noticeable that it resembles more the primitive Yedic than the classical Sanscrit. In verbal forms, chiefly moods and tenses, the classical Sanscrit is nuch poorer than it is in its primitive Yedic phase, having lost various forms of the subjunctive mood, most tenses of all other moods, except indicative, the manifold forms expressing the infinitive mood, while all these are found completely preserved in the V'edas, Zend-Avesta, and Homeric Greek. From these and many other signs, it would indeed follow as if the classical Sanscrit had beeu formed long after the separation of the Iranians from the Hindus. The differences letween the Vedic, Sanscrit, and Zend are very minute in grammar, but important both phonetically and lexicographically, like the difference between German and Dutch, But the philologist can easily transform, by slight phonetic chances, the Zend worl into the sanscrit one. As a strilking proof of the origiaal identity of grammatical forms between the two, the cireumstance may be cited of their both exhibiting certain identical irregularities.

For Zend Literature, we may refer both to our articles on Perslavi Livguage and Literature and to Zend-Ayesta. We confine ourselves here to a bricf mention of the principal items. At the bead stand the five Gâthas, which may safely le ascribed to Zoroaster and his disciples themselves. There is no doubt that what now survives is but a scanty fragment of what once existed of this literature. Probably they but represent a selection of verses considered most efficacious for putting down evil influcnees, and for increasing the welfare of the Zarathustrians. The Gathas, as they now stancl, may be compared to the Sàmavecta, which contaius selections from the Rigveda, used at the soma sacrifices. Next in order stand the Yasna, or seven chapters, containing songs and prayers, which dates from a mauch later period; and here again the first portion, or 'Younger Yasna,' is of still later date ; and on the same line stands the Yisparad, the collection of prayers called 'All Heads,' in 23 chapters. The Veudidact, on the other hand, represents conversations held by Zoroaster with Ahuramazda on religions topics, and is most likely the work of the high-priests of the Iranian community of later
pcriods. The Yashts, or song3 and conversations, are the latest. The age of the different works mentioued is fixed by Haug in the following manuer: The Gathas ahout 900 or 1200 e.c. : the larger portion of the Vendidad at about 900 or 1000 R.C. ; the younger Yasna, about $700-S 00$ p.C. ; the latest part of the Vendidad (the Pazend) being written as late as 500 BC ., when the collection of the different parts also seems to have taken place. This computation would give the Zend, or rather the famed Parsee literature, a range of about 800 years, or from 1200-400 e.c. Cf. Haug's E'ssays on the Religion of the Parsees (Bomhay, 1862).-See Persian Language aid Literature, Zend-Avesta, Zoroaster.

ZEND-AVESTA, or mather (as the Pehlvi books have it), A VESTA-ZESD, is the name of the sacred writinss of the Parsees ($q . v$. .). The word Avesta (arasthic) means text, scripture ; Zend, or Zaad, translation or commentary and paraphrase. According to the last rescarches in this province, it would seem as if only a small portion of the entire collection now extant were formed by Avesta, or text, the rest being made up of Zend, or commentary, without text. The term Zend has indeed clanged its meaning repeatedly. From an authoritative interpretation, emanating from the highest source, in time becoming embodied in the text itself, it came to denote, later, a translation into the mative idiom of Persia (the Pehlvi), made by the Zoroastrian priests during the Sassanian , period. Thero is further a special: Zend doctrine 'to be noticed, which difiers considerably from that contaiued in the Aresta. A still further explanation of that Zend doctrine is the Pazzend, a word often to be met with in connection with Avesta and Zend. Of this we shall further have occasion to speak.

But before proceeding with an elucidation of the contents and purport of these Zcud writings, we must devote a brief space to a sketch of their his. tory, or rather of the different phases the acquaintanee with them on the part of the West has undergone. The doctrine of the 'Magi', as the ancient world was wont to call the priests of Zoroastrianism, as well as those of India, Persia, and Babylonia, is first alluded to in Jeremiah, where the chief of the Nagi is mentioned among Nebuchadnezzar's retinue. In the New Testament (Mat., ii. 1), Magi come to worship Jesus at bethlehem. The earliest account among Greek writers is furnished by HeroIlotus, who, on the whole, seems well enough informed for bis time. Besides him, we hear of accounts by Ctesias, the Greek physician of Artaxerxes II., by Deinon, Theopompos, and Hermippos. But only fragments from their writincs bave survived, embelded chieffy in Plutarch and Diogenes Laertius. Pliny, Strabo. Pausanias, Dion C hrysostomus further enlarged the stores of knowledge, which, more or less trustworthy, may be gathered from independent sources. Omitting later Greek writers, stuls as Damascius, Theodoms of Mlopsuestia, \&e. we turn to Armenian writers of the 5 th Christian century: Among them we find Ezuik and Elizeus, from whose records we may gather that the Zoroastrians at their time were split into two parties, the one called Mlig, the other Zendik; the former inlabiting clietly the western parts-Media and l'ersia priucipally acknowledging the Avesta; while the latter, living yrincirnlly in the east (in Bactria), followed the traditional explanations, or Zend proper. To the A ralhis writer Masudi $(950 \mathrm{~A}$ A.D.) we owe a comparatively correct account of the sacred hook; while sharastani (1153 A.D.) is perhaps the first among his countrymen who ranks the Zoroastrians with those other professors of Semitic creeds, the Mohanmedans, Jews, and Christians, and not among the idolaters

ZEND-AVESTA.

and pagans. In his time, they were already split into many sects, those who believed in the transmigration of souls, like the Brahmans, Buddhists, \&c. As a successfully carricd out piece of deception, it is to be noticed that Mohammedan writers, for the most part, seem to countenance the fable palmed upon them during the times of persecution by the Mani, that Zoroaster was identical with Abrahanin which there is not one atom of truth. The nations of modern Lurope came into contact with the adherents of Zoroastrianism in the western parts of India, and in the 17th c., some MSS. of their sacred books were brought to England. But no one was able to read them; and Hyde himself, the celebrated Oxford scholar, was nuable to make any use of them when, in 1700 , he wrote his leamed work on the Fersian Religion. A sort of romantic freak first put Europe into the posscssion of the key to this hook, the language of which had been lost for above a thousand years. A young Frenchman, Anquetil-Duperron, happened to see a few pages that had been copied from a Zend MS. in the Bodleian Library, and he instantly resolved to betake himself to India in quest of the original Zend writings. To achieve this purpose, he, being without means, had to go as a sailor on board a ship belongiog to the Frencli India Company, hound for Bombay, in 1754 . The French government, however, stepped in shortly afterwards, and furnished him both with money to purchase MSs., and with a pension, that he might pursue his studies with greater ease. IIe prevailed upon several of the dusturs, or learned priests, to introduce lim into the mysteries of the holy langnage and rites, and further to sell him some of the most valuahle works conched in it. When he considered himself sufficiently competent in Pehlvi and Zend, he commenced a translation of the whole Zeml-Avesta in Frencl, in 1759. Two years later, he retumed to Europe; and having convinced himself, hy a comparison with the Oxford MSS., that those lie hal acquired of the sacred writings were genuine, le went to l'aris, where be deposited his treasures-180 11 SS . in different oriental languages; and published, ten years after leaving India (1771), the first European translation of the Zend-Aresta, to which was added a great deal of supplementary matter, bearing more or less on the suliject. The work ereated a profound sensiltion throughout Lurope; but, after a while, voices began to be heard ly no means so favourable as had been anticipated by the bold and persevering discoverer. Apart from the objections raised against the new book by lamanuel Kant the philosopher, on the score of its not containing iny traces of philosophy, a much graver question was ventilated in England-viz., that of its authenticity. It was not that Anquetil was charged with forgery, but the priests, it was said, hall found in him a ready dupe. It was principaliy Sir William Jones, who, in a trenchant letter addressed to Anquetil-Duperron (in French, being, as Sir William Jones said, the only language which Anquetil understooda lille), tried to prove the ntter intrustworthiness of the whole work. He was aided therein by Richardson, the Persian lexicographer, who, from four reasons-neither of which, however, is validcame to the conclusion that the book was a spurious fabrication. While in France there was but one opinion on the subject-viz., that English scholars were trying to run down the work out of sheer spite and jealousy-the opinions of Germany were rather divided. Some, bike Meiners and Tyehsen, fully acceded to the proofs arrayed against it; but there arose another renowned German scholar, Klenker, who, in token of his complete and unreserved trust in the genuineness, set about translating Anquetil's

French translation into German, adding several appendices, \&c., and principally pointing out the now generally recognised agreement between the more important heads of the doctrines as contained in the book and in the classical writers. Thus matters stood for a long while. In Germany, Anquetil's translation, as rendered by Klenker, became the standard work even for thicologians; in Eogland, none any longer thought about it, it liaving been fully agreed upon by the lighest authorities that it was uothing but a clumsy forgery. More than fifty years had elapsed from the appearance of that work, when a Dane, liask, undertonk to look into the matter. Having himself acquired many Zend and Pehlvi MSS. in Bombay for the Copenhagen library, he wrote (1826) a pamphlet, in which he first shewed not only the close aftinity between the language of the Zend-Avesta and Sanscrit-which had leen pointed out lyy Erskine and others before -and further proved it to be, not a corruption of Sanscrit, but a distinct language. He also proved that modern Persian was derived from Zend, as Italian from Latin-a step which at onec removal all doubts ahout the genuineness of the work, and confirming, however, bow, to a certain extent, Anquetil, to whom all praise was due for having been the first pioneer, had, through the absence of the requisite philological aids, been occasionally misled in lis version in the most wocful manner. The learned dustur hinself-with whom Anquetil communicated only in Persian-though well aequainterl with the Parsee traditions, and favouring mostly the general sense of the passages, yet possessed no grammatical knowledge whatsoever of the language he pretended to teach. Rask liad pointed out the way; Lugène Burnouf followed it. IIc indeed may le callell the founder of Zend philology. For more than twenty years, this eminent scholar devoted all his energies to elucidating, commenting, and discussing this language and the saerel writings couched in it, and in publishing texts and translations. In Germany, Olslaansen. Bopp, Mïller, Brockhaus, Spiegel, Haug; in Copenhagen, Westergaard, have been busy ever since in editing and translating either portions of or the entire Zend- A vesta; and though the rediscovery of the language is by no means an acenuplished task, yet, thanks to their indefatigalle labours in this field, we are certaio that, sooner or later, we slanll be in the full possession of all the facts connected with the lauguage and its sacred depository, the Zend-Avesta.

We now address ourselyes to the book itself. We know, hoth from the l'arsee traditions and from independent classical witnesses, that the Zend-A vesta was originally of very vast extent, incomparally raster than the work that now exists under that name. Pliny speaks of $2,000,000$ verses composed by Zoroaster ; and an Arabic writer, Attavari, mentions the number of 12,000 cowskins (parchments) of which Zoroaster's writings consisted. No doubt these are but round Eastern figures; but it may safely be assumed that the sacred literature in question must once have been of very great extent. The J'arsees ascribe its loss to Alexander the Great, but it is more likely that their traditions in that respect refer to the Mohammedan conquests. Yet even then, the greater part of the sacred literature was already lost, and the date of Alexander may in so far be correct, that the Greck ideas that followed in his wake turned the believing minds from the primitive faith, and carried a gradual neglect and loss of the documents in which it was contamed, with it. For 500 years-from the Macedonian conquest, 335 в.c., to the accession of the Sassanians to the throne of Iran, 235 A.D. - the Zoroastrian religion was not supported by any kings, and decayed in

ZEND-AVESTA.

consequence. But when the Sassanians assumed the rule, their prineipal endeavours were directed to the revival of the ancient faith ; and their unceasing researches after the ancient fragments of the Zoroastrian gospel have resulted in the small collection which we now possess. Yet the names and the summaries at least of all or most of the lost portions have survived. The whole scripture is reported to bave consisted once of 21 nosks, or parts, each containing Avesta and Zend-that is, text and commentary on it. The number 21 was to correspond to the 21 words of which the most sacred prayer of the Zoroastrians (the Honovar) was composed. The first of these sections comprised 33 chapters, containing the praise and worship of angels; the second (22 chapters) contained prayers and instructions to men about good actions; the third (22 chapters), an explanation of religions duties and commandments, and the way to avoid hell and acquire paradise ; the fourth (22 chapters), knowledge of looth this and the future worlds and their inhahitants, revelations concerning beaven, earth, water, trees, fire, men, and beasts, the resurrection of the dead, and the nassing of the bridge Chinvat; the sixth (35 chapters) treated of astronomy, gengraphy, astrology; the seventh (22 chap)ters), of food, lawful and forbidden ; the eighth (50 chapters, of which, at the time of Alexander, only I3 were extant) treated of the different heads or chicfs in the creation; and the rinth (in 60 chapters) contained a code of laws for kings, goveruors, \&o.-also a portion about the sin of lying; the tenth (60 chapters) treated of metaphysies, natural philosoplyy, divinity, \&c. ; the eleventh (60 chapters) treated of the reign of King Gustasp, and his conversion to the religion, and its proparation by him through the world; \&c. Of all the 21 nosks, however, one only, the twentieth (in 22 chapters), called the Vendidad, bas survired complete. This treats of the removal of uncleanliuess of every description, from which great evils arise in the world. Some fragments of the other parts only, chiefly the fourth and eleventh, have survived. But there are now in sacred use among the Parsees other books either not included in the foregoing list, or but imperfectly indicated in it. Of the former are the Yazna (Izeshne) and the Visparad (Visporatul. To the latter class belong 24 sections called Yashts, and some small prayers of different kinds, such as Afrigin, Nijayish, Gijhs, and Sirozah, or Calendar. Eefore speakiug of these books, we shall say something about their anthorshil, for which point we further refer to Zoroaster (q. v.). By the unanimons consent of both classical writers and the Persians, the whole bulk of the sacred-literature is ascribed to Zoroaster himself. They were supposed to be the substance, or, as was held afterwards, the very words of diviue revelations from God to the propliet, in the form of conversatious. These revelations do not at first appear to have been committed to writing, but to have been orally preserved by his disciples and adherents, and to have been handed down hy them to prosterity. Surprising as this may seem at the sight of what has remained, as the infinitely larger bulk even of what has perished, it must le borne in mind that, e. G., the Vedas, the Talmud, and the Sunnah have been preserved equally faithfully in the mouths of many generations. The name Zoroaster or Zarathustra-in as far as to him is ascribed the authorship of the whole of the sacred writings-is to be taken collectively rather than individually, i. e., as indicating a school of suceessors and high-priests of the fonnder, who is designated Zarathustra Spitama; while the chief divines who took his place in after-times were only called

Zarathustra. That their decisions and sayings were afterwards 'bedged in' with the same reverence as those of the founder himself, need not be argued at length. All that can really be held to emanate from the prophet himself are the five Gathas, which form part of the Iazna (Sansc. yajna, sacrifice). This Jazna consists principally of prayers to be recited at the sacrificial rites-such as the consecration of the Zoơthra, or holy water ; of the Bareçona, or bundle of twigs of a particular tree; the preparation of the sacred juice of a plant called homa -the Indian Soma (q.v.) - taken to be an emblem of immortality; the offering of certain cakes; \&c. The whole of the Yazna now comprises 72 chapters, probably corresponding to the (twelve times six) 'seasons' during which Ahuramazda created the world. It consists apparently of two parts belonging to different periods. The older is written in what Haug calls the Gatha dialect (see ZeND), and was considered sacred even at the time when the other books of the Zend. Avesta were composed. This 'older Yazna' was divided again into the Gâtlias and some minor pieces. The former, five in number, are small collections of (metrical) sacred prayers, songs, and hymns, exhibiting philosophical and abstract thoughts about metaphysical subjects. The name itself siguilies 'song.' Their metre resembles chiefly that of the Vedic hymns. They are without rhymes, and only the syllables are counted. The first bears the heading (which is also intended for the other four), "The Revealed Thonght, the Revealed Word, the Revealed Deed of Zarathustra the Holy; the Archangels first sang the Gáthas.' They are all more or less devoted to exhortations on the part of the prophet to forsake polytheism (the devas, or gods), and to bow only before Ahuramazila. The difference hetween monotheism and idolatry is pointed out in the respective sources whence they flow-riz., 'existence' and 'nonexistence.' The mission, activity, and teaching of Zoroaster are dwelt upon more or less in all Gathas, but chiefly in the secoud. To the other portion belongs further the 'Yazna of seven chapters, ${ }^{3}$ which seems to have been composed by early disciples, and which consists of prayers in prose, addressed to Aburamazda, the angels, the tire, the earth, the Faters, and other spiritual beings-genii presiding over the different parts of the good creation; further, over devotion, speech, \&c. There is further a chapter containing a formula by which the ancient Iranians were received into the new religious community. The so-called younger Iazna, written in the common Zend lauguage, is of more varied contents, such $2 s$, an invitation to Ahmamazda and all the good spirits to be present at the sacrifice; further, picces referring to the preparation and drimking of the homa juice; next, the praises of the genius Serosh, and a commentary on the most sacred brayers. The Jisparad, which forms the next most important part of the Zeacl-Aresta, coutains a collection of pmayers, eomposed of 23 chapters, written in Zend (not Githa), and rescmbling the jounger Iazna. They refer to the same ceremonies -the preparation of the sacred water, consecration of certaiu offerings, \&c. Next are to be considered the Yashts, in $2 t$ divisions. Yasht (yêsti) means worship by prayers and sacrifices, and in the Avesta indicates certain laudations of saered persons and objects-yazatas (izad) =angels; and in so far different in nature from the invocations in the Iazna and Tisparad, that, while in the latter the divine beings are invited promiscuonsly, the single Tashts are addressed to individual numina, such as the archaugels, the sun, the heareuly water, the star Tisfrya, \&c. In these soncs-the work of Median bards, probably-are also found the primary
3 ± 3

ZENGG-ZENOBIA

sources of the legends containcl in the Shâh-nâmeh (q. v.). Defore speaking of the Vondidad, the 'l'entatench' of the Zoroastrian 'canon,' we shall yct brictly mention some smaller pieces, which are now used as common prayers by the Parsces, such as the five Nijayish, or praises, addressed to the sun, the moon, the water, and the fire; the A frigans, or blessings to be recited over a certain meal prepared for an ancel or a deceased person; the live Gahs, or rrayers to the angels set over the five different times of the day aud night; and finally, the Sirazah, ar thirty days, heing a calendar, or rather an enumeration of the thirty divine beings that preside over cach of the clays. It is chiefly recited on the thirtieth day after the death of a man. The lendidod, to which we now turn, is the cole of religious, civil, and criminal laws of the ancient Iranians. It consists of 22 chapters or fargards $=$ sections. It seems to have survived in a fragmentary state only, and is evidently the work of many haads and many centuries. It alppears as if, starting from old sayings in the Aresta, the Iranian high-priests in varions periods had interpreted them often at variance with each other: these their interpretations (Zend) were made the theme of further interpretations (Pazend), and the three phases of interpretation were received in the course of time as equally anthoritative among the faithful. There are three parts to be distinguished in the Vendidad. The first is introductory, containing an enumeration of 16 Aryan countries over which the Zoroastrian religion was spread; further, lcgends of King Yuria, and recommendations of agriculture. The second part (chaps. 4-17) forms, as it were, the gromndwork of the Vendidad, treating of laws, ceremonies, and observances. The third part is a kind of appendix, treating of various subjects, chiefly of a medical kind, such as spells against diseases, \&c. Here also onght to be mentioned the Bundehesh, written entirely in Pehlvi, which scems a compilation of several extracts and fragments of partly ancient, partly recent Zoroastrian writings, forming a sort of compendium or dogmatic handbook of Zoroastrianism. For an account of the latter, we refer to Geebres, P'arsels, and Zoronster. - Burnouf, J'en-didul-Sadé; Olshansen, Vendidud Zend-A resteFrench translation by Anquetil-Duperron, German by Klenker; Spiegel (the German text, with Spiegel's commentary, retranslated into English by Bleek); Task, 1 tter und -Echtheit (ler Zendsprache; Hang, Esscys; \&c.

ZENGG, SENJ, or SEGNIA, an important fortified seaport town of Austria, in Military Croatia, on the Adriatic, 71 miles south-east of Trieste, at the termination of the Josephine Roal, opposite the island of Veglia. Z. is the see of a Foman Catholic Lishop, has a tolerably large and elegant cathedral, an upper gymnasim, a seminary for priests, an academy, and school of navigation; a small harbour (free), somewhat unsafe; and some tralc in grain, honey, wax, wine, sult, tobacco, wool, fish, and cattle. Pup. 5000.

ZE'NITH, a word, like Nadir (q.v.), borrowed from the Arabic, is the name given to that point of the heavens which is directly overhead, i. e., in line with the spectator's position and the centre of the earth. It is thus the upper pole of the spectator's horizon, as the nadir is the under nole. The word Wrould seem to be connected with the Arabic san, a 'point.'

ZENJA'N, a populous and thriving town of Persia, in the province of Irak-Ajemi, about 170 miles north-West of Teheran, and 70 miles sonth-southwest of the Caspian Sea, on the table-land of Azerbijan, at the junction of the roads from Hamadan
and Tcheran to Tabriz, on a tributary of the KizilOuzen, which flows into the Caspian. It is surrounded by orchards, has old walls, a palace, a mosque, bazaars, and a trade in carpets, woollen cloths, arms, lead, and gunpowder. Pop. estimatet at 15,000.

ZE'NO, a philosopher of Elea, a town of Lueania, in Italy, was a favomrite disciple of l'armenicles. He visited Athens, and the illustrious l'cricles was one of his pupils. According to the account usually given, on his return to Elea, he joined a conspiracy to deliver his native town from the tyrant Nearchus, and on the failure of his plot, was captured, and put to the torture. On being interrogaterl as to his accomplices, he naned the principal courtiers, and is said to have bit his tongue off, and spat it in the tyrant's face. IIowever, the historical evidence for this account is unsatisfactory; and whether Z. perished in lus attempt or survived the tyrant, is uncertain. He held the usual doctrines of the Eleatic school respecting the unity and the immutahility of all things, distrust in knowlalge acquired through the senses, and reliance on pruse reason. He did not deny that there were phenomena or alpearances, but he maintained that these were not real existences. In this he anticipated the Berkeleyan theory. But he is chiefly remarkable for having been the first to employ the style of argument known by the name of Dialectics, in which error is refutech, and truth sought to be established, by the reductio ad absurlum-a method so skilfully employed afterwards by Socrates and Plato. He devoted his great powers of argumentation to enforce the doctrines tirst broached by Xenophanes, and more systematically developed by Parmenides. His works were in prose, bat only small fragments have been preserved.

ZENO, founder of the Stoic philosophy, was horn at Citium, in Cyprus. The dates of his birth and reath are uncertain. He flourished in the early part of the 3 d c. B.c., and was a contemporary of Epicurus. His fatber was a merchant, and on his trading voyages brought home with him from A thens some writings of the Socratic school. By these, \%. is saicl to have been attracted to the study of philosoplhy. At the age of 30 , he was shipwrceked oft the coast of Athens, and having lost his lroperty, he willingly adopted the Cynic doctrines, in which contempt for riches is conspicuonsly tanght. He attached himself first to Crates, but soon lecame dissatisfied with the coarse, ostentations disregard for established usages, and the indifference to speculative inquiry, which characterise the Cynic sect. He next joined the school of the Megaric Stilpo, and there became a proficient in the art of disputation. Still unsatisfied, he betook himself to Polemo the Academician. Having thas made himself master of the tenets of the various schools, he proceeded to open a school for himself, wherein he might shew forth the result of all his inquiry, and develop his own peculiar system. See Sroics. He selected for the purpose the 'Painted Porch' (Stoa Poikile), from which his sect has got its name, and there, till his 9 Sth year, as is said, continued to teach those doctrines, which, in spite of serions drawbacks, inculcate that manly euergy and simplicity, fortitude under suffering, and reverence for moral worth, which made disciples of so many of the noblest characters among the Romans. As a man, Z. deserved and gained the highest respect. The Athenians honoured him with a gold crown and a public burial, and his countrymen erected a monumental pillar to his honour. Of his numerons writiugs, scarcely anything remains save the titles.

ZENO'RIA, rueen of Palmyra, succeeded (267 A.D.) her husband Odenatus, who had been acknow-

ZENTA-ZEUS.

ledged by Gallienus as his colleague in the Ioman Empire. Nearly the whole of the eastern provinces submitter to her sway. When Aurelian assumed the purple, be marched against ber with a large army, and after defeating her in several battles, besieged her in Palmyra. Her hopes of being relieved by the Persians and Arabians being dlisappointel, she attempted to escape by flight, but was captured, 273 A.d. Before the conqueror, her comage failed, and she sared her own life by imputing the blame of the war to her comsellors, especially the celebrated Longinus, who was accordingly put to death. Z. π as led in trimmphal procession at Rome, decked with splendid jewels, and almost fainting under the weight of goll clains. She was presented by her conqueror with large possessions near Tivoli, where, iu the society of her twosons, Heronnianus and 'Timolaus, she passed the rest of her life in comfort and even splendour. She was a woman of great courage, bigh spirit, and strikingly beautiful. With purity of morals in private life, she combined prudence, justice, and liberality in leer administration. Her literary acquirements were considerable; she spoke Latin and Greek, as well as the oriental languages, with fluency. The balance of authority is said to be in favour of the belief that she was attached to the Jewish faith.

ZE'NTA, or SZENTA, a town of Hungary, in the county of Bacs, on the right bank near the Theiss, 120 miles south-south-east of Pesth, in a beautiful plain. Cattle-breeding is carried on. Pop. 15,000. It is celebrated for the victory of Prince Eugene over the Turks in 1696.

2E'OLITE (Gr. zeo, to boil), the common name of a large group of minerals, often called the Zeolitic family. They receire this name from their melting before the blowpipe. They are all soluble in acids, and most of them gelatinise in acids in cousequence of silica being set free. They are bydrated silicates of alkalies or alkaline earths, most of them containing alumina. Magnesia is rarely present in them. Their composition, however, is very various. They are generally found in amygdaloidal cavities, or in fissures of trap and other Plutonic rocks, as granite and gneiss, apparently as deposits from water percolating through the rock. They sometimes, but rarely, occur in veins. They are found either in crystals or of crystalline structure, often in plates or fine scales, often in needles or fibrous. Among them are Analcime, Natrolite or Mesotype, Scolezite or Nedlestone (I'eedle Zeolite), Stillite, Heulandite, Brewsterite, - Ipophyllite, Chabasite, Harmotome or Crossstone, and Laumonite. The number of species and rarieties which hare been described and have received distinct names, is very large.

ZEPHANIAH (the name probably signifies a 'watcher of the Lord'), a Hebrew prophet who flourished during the reign of Josiah, in the latter part of the 7 th c. b.c. The subject-matter of his brief 'prophecy' is the temporary desolation of Judæa ('I will utterly consume all things from off the land,' 1.2), on account of the intidelity and worldiness of the inlabitants, Jerusalem being specially assailed by the author for her filth aud polution; the tyranny and the rapacity of her rulers, and the violence and treachery of her priests and prophets. At the same time the prophet predicts the destruction of the surrounding heathen nations, the Philistines, the Moabites, Ammonites, Ethiopia, and Assyria. The close, in which he declares that God will leare a righteous remmant in Israel, and for their sakes will ultimately bless the land with permanent peace, is couched in a strain of tender exultation.

ZERBST, capital of the former duchy of AnhaltZerbst (see AMalt), a town of Forth Germany, in the duchy of Anhalt-Dessan, 10 miles northwest of the town of Dessau, and GS south-west of Berlin, is situated on a level sandy spot on the river Nuthe, a tributary of the Eilhe. It consists of a walled town, with four suburls. Close to the town is a beautiful large palace, the ducal residence. The town has four Protestant churches, a Forann Catholic one, and a synagogne. The church of St Nicholas is a beautiful specimen of Gothic architecture. The town is the seat of a court of justice; has a high school, called the Francisceum; female, industrial, and other schools; a house of correction, and orphan asylum, hospitals, and a workhouse. The chief manufactures are articles in goll and silrer, silk, wax, sonp, stoneware, carriages. There are many leveweries, whose produce is exported in large quantities. The vegetable products are considerable, and the culture of hops is carried on. Handsome baths have been erected over a mineral spring recently discovered here. Pop. 11,379.
ZEULENRO'DA, a town of the North German Confederation, in the principality of Reuss-Greiz, 10 miles west of the town of Greiz, and 51 south-south-west of Leipzig, stands on a high plateau, in a wooded hilly district. Z. has suffered severely at various times from conflagrations, and is now regularly built, consisting of a walled town and four suburbs. It has a spacious market-place with a beautiful court-house, two churches, a burgher and free school, and a hospital. Besides some bleachworks and a trade in cattle, there are manufactures of woollen goods, especially hosiery, the tineness of which is famous. Pop. 5200.
ZEUS (Sansc. div, light, djars, heaven, devas, god; Lat. Ju-piter and Dies-piter, i. e., Father Zeus; Ang. Sax. Tiu, whence Tuesday) was the greatest of the national deities of Greece. According to the most received mythologs, he was the son of Cronos and Rhea, brother of Poseidon and Hera, the latter of whom was also his wife. He expelled his father and the older dynasty of the Titans; assumed the sovereignty of the world, and successfully resisted the attacks of the giants and the conspiracies of the gods. In the allotment of the wolld, after the dethronement of the Titans, Z. gained the rule of heaven and air, Hades of the infernal regions, and Poseidon of the sea; while the earth was left subject to the influence of all three, though Z. was regarded as having the supremacy thonghont all departments. Crete, Dodona, and Arcadia were the places where the worship of Z. was most cultivated; and although originally the inkabitants of these places may not have looked upon themselves as worshippers of the same god, yet, in process of time, all the local gods revered under the name of Z. were at last merged in one great Hellenic disimity; a process which was carried still further out when he was identified with the Jupiter of the Iomans and the Ammon of Libya.
Besides the epithets of Z . from the seats of his worship, he had many titles applied to him from his various powers and functions, moral and physical. He was the father and king of gods and men; the protector of kings, of law and order; the avenger of broken oaths and of other offences; he watched over the state, the assembly, the family, over strangers and suppliants; bis hand wielded the lightniugs and guided the stars; he ordainerl the changes of the seasons, and, in short, regulated the whole course of nature. All prophecy, too, was supposed to originate in him, and it was from him the prophetic gol Phobus received his oracular

ZEUKIS-ZIGZAG

gift. He dispensed, as it pleased him, both weal and woe to mortals; hut whether he could control the Fates themselves, is a point about which the ancients disagreel, as men have done in all ages where the question of free-will and fate is concerned. Of the many epithets applied to 7 ., perliaps the hest known is the Olympian, from that Olympus in Thessaly whose summit was believed to be his residence as well as that of the other gods. His most celebrated festival was the Olympic, held at Olympia, in Elis, after the end of cvery fourth year.

Combined with such exalted conceptions of the majesty and power of Z., we find many stories current respecting his amours with mortals aod immortals; he is represented as acting with caprice, anger, deceit. Probably, in many cases, an ancient Greek of average position and capacity did not view such matters witli any very strong fecling of disapprobation. Others, again, as Xenophanes ($q . v$. $)$, protested against the transference to the gods of Guman passions and failings; or, as Pindar, maintained that they wonld believe nothing of the gods that was discreditable to them; or, as Euripides, argued that such tales were sufticient to disprove their divinity ; or, as Euhemerus, held that the local worship of Z., like that of other deitics, was owing to the fact, that divine honours were paid to deified men at the place of their burial, and that of course it was no wonder to find buman actions assigned to gods who had once been human. In modern times, the varions myths were at one time explained as symbolical of varions celestial and terrestrial phenomena, such as the apparent motion of the sum, the alternation of day and night, the changes of the seasons, and so forth. The most rational explanation is as follows: In early times, men thought and spoke of natural objects as if they were personal agents, employing names for them which were literally, not symbolically significant. But from lapse of time, and the departure of various tribes from their original scats, in many countries the meaning of these words became obscured, and though men still used them, their real signiticance was forgotten, and terms which originally had expressed some process of nature, were conceived to marrate some incident in the history of a person. For example, the cxpression that the sun follows the dawn, was misunilerstoorl, and gave rise to the myth of Phobus pursuing the nymph Daphne, because the word Daphne was no longer understood. Such misconceptions were then, by successive ages, claborated into myths, more or less fanciful, and even revolting. In this respect, Z. has fared no better, or rather much worse, than the other deitics. In the same way as the Greek war-god Ares is a personage much inferior to the Latin Mars, so the serious and unimaginative Jioman's conception of his majestic Jupiter Optimus Maximus (the best, the greatest), was more clevated than that conceived of Z. by the scnsmons Greck. But this might be expected from the different character of the two peoples. Excepit in the grander attributes of omnipotence and fatherly care of the universe, we can trace little in common; frr the Jupiter of the Latin poets, as portrayed in Virgil and Ovid, is drawn entirely from Greek sources, and is merely the Z. of Greck mythology with an altered name.

ZEU'XIS, the celcbrated painter, was born at Heraclea, probably the city of that name in Lucania. He is also styled of Ephesus, which means that he lelonged to the Ionian school of painters. He flourished in the latter part of the 5th c. E.C., and was at Athens about the beginning of the leloponnesian war. He cxcclled in the treatment of light and shade, in accuracy of imitation of natural $\underset{346}{\text { objects, and in expressing the perfection of human, }}$
and particularly female beauty. This last he effected by selecting the finest models be could find for each separate part. Ilis most famous pictures were ' Z eus enthroned, with the Gols standing round;' 'Helen;' 'Tlle Infant Hercules stranglint the Serpents ; ''The Female Hippocentaur.' By the exercise of his art, he attainell to great riches and fanse, and like his rival Parrlasius, was cxccerlingly conscious of his preeminence. Ile repeatedly presented rather than sold pictures to cities that wero anxious to possess them, because he thonght no mones-price conld pay for then. Grecee was plundered of many of his masterpicces by her Foman conquerors ; and one of the noblest, thie 'Hippocen. tanr,' was lust on the passage to liome. Designs on vases, sarcophagi, and other works of antiquity exist allorncd with representations of the same subjects as Z. painted, and probably were imitated from his productions.

ZEYST, a large village in the Netherlands, province of Utrecht, is surrounded by beautiful wellwooded estates and country-seats, the summer residences of many of the first families of Amsterdam. The industrics are making soap, candles, and vinegar, brass and zinc founding, \&c. On a rising groumd, and surrounded ly fine old trees, stands the Dutch Feformed church, built in 1180 . There is also a lioman Catholic church. In 1746, a society of Moravian Brethren settled at Z., where they lavo built a seprarate quarter, consisting of public and private buiddings, erected along the siles of two large grassy squares, called the Laster Plain and the Wester. Besides the church, there is an excellent day and boarding-school, which is resorted to by children of parents belonging to various Protestant communions. The unmarried members live, tho males in the Brothers' House, the females in the Sisters' House. Another building is set apart for widows. There are also family residences, workshops, and warehonses. In IS66, the pop of Z. numbered 5256.
ZIERIKZEE, an old and important town in the Netherlands, province of Zeeland, is situated in the sonth-cast of the island of Schonwen. It was fortified before the beginning of the 11 th c., and owed its rise and prosperity to the shipping-trade and fishing. The walls have been leveller, planted with trees, and formed into shady walks. Z. has two havens, the old and the new, two Dutch Reformed churches, a Lutherao, a Roman Catholic, a small dissenting ehurch, and a Jewish synagogue. There are a gramniar-school, school of design, and other excellent public schools maintained by the town. The principal means of living are trade in agricultural produce, shipping, ship-building, fishing, weaving calicos, beer-brewing, drying madder, sawing wond, grinding corn, \&e.
Z. suffered scverely in the contests hetween Flanders and Holland for the possession of Zeeland. In 1303, the Flemings besieged it with a large army, lont were compelled, by Count William of Holland, to retire, on the 10th of August 1304. In the long war of independence, after an obstinate defence, the Spaniards took Z. on the $2 d$ of July 1576 . Pop. (1866) 7844.

ZIGZAG, in Military Science, a trench of approach against a fortress; so constructed that the line of trench may not be enfiladed by the defenders. See Siege.

ZIGZAG, a decoration characteristic of the Norman style of architecture. It consists of ono or more mouldings running in zigzag lines, and is used with great effect. The zigzags are employed in great profusion, and are sometimes undereut so as to be detached from the mouldings.

ZI'LLEH (ancient Zela), a town in Asiatic Turkey, in the pashalic of Sivas, about 30 miles west-sonth-west of Tokat. It is built on a height, with a small flat conical hill in the centre of the town, which is evidently the mound or road, of which another portion is still seen at Thyana, the construction of which was attribnted to Semiramis. Scarcely any remains of antiquity are to be found here; an ugly fortress of the middle ages having usurped the place of its beantiful temple. This was the field of Julius Ceesar's battle with Pharnaces, of which lee wrote 'Veni, vidi, vici.' There are several large khans, and manufactures of coarse cottons. Its annual fair, of 15 or 20 days, from the middle of November, is often frequented by 40,000 or 50,000 persons from the commercial towns of Asiatic Turkey. There are about 2000 honses, the population being almost entirely Turkish.

ZI'LLERTHAL, one of the principal valleys in the Tyrol, traversed by the Ziller, is about 50 miles long. Towards the south and south-west, it is bounded by lofty glaciers ; but towards the north, where it opens into the valley of the Inu, it is tolerably fertile. Among the eight secondary valleys are the Duxerthal-famous for its precipitons glaciers, 1200 feet high-and the Zemthal, both remarkable for several great waterfalls. The inbabitants of the Zo, who number about 14,000 , are celcbrated even in the Tyrol for their handsome, wellbuilt figures; and their fine Alpinc songs are well known and appreciated in London and Paris. The chief wealth of the Z. is derived from the rearing of cattle. About 5000 head of cattle are exported yearly; but, notwithstanding, the valley is not able to support its numerous population. Many of the men hire themselves out as servants for the summer, while others go about as pedlers, selling essences of herbs and gloves, of which 10,000 pair are made yearly. The principal town is Zell. For some years, the valley has been much visited by artists, chiefly from Munich.

In recent times, the inhabitants of Z. acquired consilerable notoriety by a part of them leaving the Ruman Catholic Church, and emigrating. For a considerable time, they had been in the babit of reading the Bible, and were on friendly terms with the l'rotestant Church, although still attending the Toman Catholic service; but when, in 1520, the Catholic clergy began to enforce auricular confession with greater strictness, a number of them thought seriously of going over to the Frotestant Church. Fre long, they not only objected to the confessional, but to the worship of the saints, absolntions, masses for the soul, purgatory, \&c. In 1830 , they began to leave the church; and by 1532, the number of dissenters had amounted to 240. The Empleror Francis, to whom, on his visit to Innsbruick in 1832, they addressed a petition regarding their religion, promised them toleration; lont after considerable delay, they were toll (1834) that they must either return to the Catholic faith or remove to Transylvania, where there were Protestant congregations. As the Zillerthalers could not agree to this, they formed the resolution, as the Protestants of Salzburg had once done, of secking a refuge in I'ressia. This was granted; and the Zillerthalers, who had been allowed by the Austrian government to sell their property, set out, August 1537, for Prussia. In all, 399 men, women, and children arrived, ad October, at Schmiedeberg, in Silesia, where they were to stay until the arrangements for their reception in Ermannsdorf were completed. The king gave them 22,500 thalers ($£ 3375$) on their settlement, and (1839) made then a further grant of 12,500 thalers ($£ 1875$) for a church and school. The colony
received the name of Z., and is divided into Upper, Middle, and Lower Zillerthal.-See Geschichte der Zillerthaler Protestanten (Nürnb. 1838) ; Rheinwald, Die Evangelischgesinnten im Zillerthal (4 Aufl, Berl. 1838).

Z IMIB, a dipterous insect, exceedingly destruotive to cattle in Abyssinia, as the Tsetse ($\mathrm{q} . \mathrm{v}$.) is in more southern parts of A frica. It probably belongs to the same family, lut this has not yet been ascertained. It is supposed to be the Zebub of the Hebrew Scriptures (Is. vii. 1S). Brnce descrihes it as very little larger than a bee, but thicker in proportion; the wings broader, and without colour or spot; the liead large; the upner lip sharp, having at the end of it a strong pointed hair, a quarter of an inch long; the lower lip with two similar bristles. The
 fight of the insect resembles that of the gadfly, and is attended with a peculiar buzzing. The Z. is found only where the soil consists of a rich black loam; but all the inhabitants of the sea-coast, along the sonthern shores of the Ped Sea, and southwards beyond Cape Gnardafui, are compelled to remove their cattle in the rainy season to the nearest sands, in order to prevent their destruction by this pest, as well as those of more inland districts from the monntains of Abyssinia northwards to the confluence of the Astaboras and the Nile. 'As soon as this plague appears, and their buzzing is heard,' Bruce says, 'all the cattle forsake their food, and run wildily ahout the plain till they die, worn out with fatigue, fright, and hunger.' The camel, the elephant, and the rhinoceros are liable to the attacks of the Z., as well as the ox; but the elephant and rhinoceros protect themselves by rolling in mud, which, when dry, coats them as a kind of armour.

ZIMMERMAN, Johann Geors, a native of the town of Brugg, in the Swiss canton of Bern, in which his father was a senator, was borm on the Sth December 172S. He was edncated at home, in the first instance, and afterwards at Bern, preparatory to his going to the university of Göttingen to study medicine. This he did in the year 1747. By his countryman, the celehrated Haller, he was kindly welcomed; he became an inmate of his house, and had the advantage of bis valuable aid in the prosectation of his stndies. In these he displayed the utmost ardour, not content to confine himself to medicine, but aiming at a large and liberal culture. In his specialty, so great was the proficiency attained, that on his taking his degrec of Doctor in 1751, he published a work entitled Dissertatio Plysiologica de Irritabilitate, which not only at the time attracted attention by its originality of view, but even now is held to be not without value. In 1752 , he began to practise as a physician at Bern with every prospect of success; bnt shortly after, the post of public physician fallo ing vacant in Brugg, his native place, he was induced to transfer himself thither. About this time, he was married to a relation of his friend and preceptor, Haller. Despite the extensive practice he speedily acruired, with such a reputation for skill as brought patients from a great distance to consult him, he continued to cultivate other pursuits; and in 1750 , he pullished a miscellany of prose and verse, remarliable as containing the first sketch of

ZIMMERMAN゙ーZINC.

his treatise 0, Solitude, which afterwards became so famous. In 175 appeared his work on Valiomal Pride, an ingenious aud able dissertation, wheh immediatcly became popular, and carried the name of the writer, by translation, into nearly every country in Enrope. That he did not, however. neglect his special department of study was proved in 1763 by the appearance of an elahorate work on Experience in Medicine (5 on der Erfalurung in der Araencikunst; Zürich, 2 vols. Svol. Of this, the great value was instantly recognised, and it still continues to enjoy some portion of its firstreputation. Z. wats now a man of European note; and among nther adrantagenus offors made to him was that of the post of Physician to the king of Pritain at Hanover, with the title of Aulic Conncillor attached to it. This he accepted; and to Hanover he accordingly went in 176s. His repute as a physician continued here to increase, and from all quarters came flocks of people to have the henefit of his advice. In 1770, he had the misfortune to lose his wife ; and this distress was complicated by an attack of an internal malady, which soon after obliged him to go to Berlin to undergo a perilous operation. This was successfully performed, but did not preclude a return of the complaint some time after. His only daughter now died; and a son who survived sunk under the influence of disease into something like entire idiocy. Z., who had almost from his very boyhood had to struggle against a constitutional melancholy, became now, as it almost seemed, a confirmed and hopeless hypochondriac. From this deplorable state he was rescued for a time by a second marriage, into which lis friends persuaded him; and as fruit of his revived interest in life, he gave to the world, in 17St, his celebrated work On Solitude (Ueber die Einsamkeit; Leipzig, 4 vols. Svo), a hook which speedily became a popular favourite thronghout Emope. In 17S6, he was invited by Frederick the Great, then in his last illness, to attend him at Potsdam. On going thither, be found that the case of the king was beyond the reach of his art. He remained, however, for some time; and as the result of his sojourn, he published in 17SS and 1790, two works on Frederick the Great, the manifold indiscretions contained in which involved him in mnch painful and acrimonious controversy. In excuse of much in the books not easily to be defended, everything seems to shew that they were merely the first indications of a return of his constitutional malady in an aggravated, and, as it proved, a finally intractable and hopeless form. His melancholy hallucinations continned to grow upon him, tal he was at length little better than a mere maniac ; and on the 7th of Octoher 1795, he died at Hanover. During these last sad years, he had continued at intervals to write and publish; but in everything thus produced there was evident the wreck of his once brilliant faculties. As a physician, a philosopher, a man of general accomplishment, and a writer of siogular power and felicity, Z. was unquestionably one of the most remarkable figures of his time. Of Zimmerman on Solitude every one must needs have lieard: it no longer retains the immense popularity it once had; but along with his more expressly medical treatises, which are of interest-if not very mucl now otherwise-in relation to the history and development of his profession, it must still continue for a time to perIetuate the name of its writer.-See Z.'s Eigene Lebensbeschreibung (Autobiomraphy, IVan. 1791); Tissot, lie de Z. (Lausanne, 1797); Wichmann, Z.'s Krankengeachichte (Han. 1756).

ZINC (symb. Zn , equiv. 32.5 , spec. grav. 6.S), or Spelter, as it is often called in commerce, is a hard bluish-white metal, lustrous externally, and when
hroken, exhibits a foliacmous erystalline fracture. At ordinary temperatures, it is sonewhat luittle; but when hoatal to above 212°, it becomes jerfectly ductile and malleable, and may be Irawn ont into wire or heaten into thin plates. At ahont 400°, it again becomes so lrittle that it may le easily pulverised. It fuses at 773°, and at a white heat may be volatilised; and if the vapour lee cxposed to the air, it lurns very brilliantly, and is converted into oxido of zinc, which is Ileprosited in copions white flakes. The temperature of its boiling-point is cstimated by Deville at 1904°. On exposure to the air, zine soon loses its metallic lustre, and assumes a gray appearance, in conscquence of its surface becoming oxidised, while the metal beneath is thus protected from further change-a property which renders this metal especially useful for many economical purposes. It has no action on water at ordinary temperatures, but if a mineral acid be present, it readily decomposes water, and is employed to decompose the water of dilute sulphuric acid, when hydrogen is required. Moreorer, a liot solution of potash acts on zinc, hydrogen being liberated, while oxide of zinc is formed aud dissolved in the alkaline sulution. Zinc precipitates from their solutions most of the electro-positive or lasylous metals less oxidisable thau itself.

This metal is nerer found in the native state: the chief ores from which it is extracted are noticed below.

The commercial zinc obtained by the ordinary methods of extraction usually contains a sinall quantity of lead, iron, and carbon, with occasional traces of arsenic and copper. In order to obtain it in a chemically pure state, a stream of sulphuretted hydrogen is passed through a slightly acidulated solution of sulphate of zine, and after the removal of any precipitate that may be fombd, the solution is boiled so as to expel the gas, after which the zine is precipitated in the form of carbonate, by the addition of carlonate of soda. The carbonate is converted by ignition into oxide of zinc, which must be distilled in a porcelain retort with the purest available form of carbon, as, for example, charcoal prepared from loaf-sugar.

Zine is commonly regarded as forming only one compound with oxygen-namely, the protoxide of zinc (ZnO), although it has been surgested that the film which is formed upon the surface of metallic zinc by exposure is a sub-oxide. Protoxide of zine is obtained by heating the metal in the air, the white oxide thns obtained being formerly known as Lana philosophica, from its woolly appearance; while it was known as Flores zinci, or Flowers of Zinc, in pharmacy. The process of manufacturing this oxide, when it is required as a pigment, consists, as Professor Niller remarks, 'in distilling zinc from clay retorts into chambers through which a current of air is maintained. The volatilised metal burns at the high temperature to which it is exposed under these circumstances ; and the oxide is deposited in a series of condensing chambers.'-Inorganic Chemistry, 3 d ed. P. 545 . The jigment thus obtained is known as Zinc lyhite. The impure axide of zinc, commonly known as I'utty, is obtained from the tlues of furmaces in which brass is melted. A liydrated oxide of zine (Zn, HO) is precipitated in a white gelatinous mass from the solution of the salts of zinc by the addition of potash or soda, but redissolves in an excess of the alkali. Oxide of zinc is readily soluble in acids, and is capable of being reduced by charcoal, but not by hydrogen. The most important salts formed by oxide of zine are the sulphate and carbonate. Sulphate of Zinc, or White ribiol $\left(\mathrm{ZnO}, \mathrm{SO}_{3}+7 \mathrm{Aq}\right)$, occurs in large transparent, glistoning, four-sided

ZINC.

prismatic crystals, resembling those of Epsom salts. At a temperature a little below 212^{3}, the crystals lose six equivalents of their water of crystallisation, and at a somewhat greater heat, they lose their last equivalent, and presiously to losing their water of crystallisation, they fuse in it. This salt is readily soluble in water, requiring $2 \frac{1}{2}$ parts of the latter for its solution at 60°. It is obtained in considerable quantity as a residne in the process of obtaining hydrogen from dilute sulphuric acid and zinc; and it is prepared on the large scale by roasting and lixiviatiog zinc-hleude or sulphide of zinc, which, wher heated in the presence of air, is oxidised into the sulphate. Carbonate of Zinc $\left(\mathrm{ZnO}, \mathrm{CO}_{2}\right)$ constitutes one of the most important of the zinc-ores viz., the common or rhomboidal rariety of calamine, a name which is derived from the property which this substance possesses of adhering after fusion in the form of reeds to the base of the furnace. Carbonate of zine may be artificially prepared by precipitating a salt of oxide of ainc with carbouate of soda, when the required salt falls as a white precipitate; this is, howerer, not simple neutral carbonate, but a basic carbonate, having the composition expressed by the formula $2\left(\mathrm{ZaO}, \mathrm{CO}_{2}\right)$, $3(\mathrm{ZnO}, \mathrm{HO})$. Of the haloid salts, the Chloride of Zinc (ZnCl), formerly known as futter of Zinc, is the only one requiring notice. This salt is obtained in the anhydrous form by burning zinc in chlorine gas, and in the hydrated state by dissolving zine in hydrochloric acid, and evaporating the solntion, chloride of zinc being thus formed, while bydrogen escapes in the gaseous form. In the anhylrous state, it forms a whitish-gray, semi-trausparent mass, which fuses readily, and sublimes at a high temperature. When exposed to the air, it soon deliquesces, and is soluble in water in all proportions. The watery solution has a burmiag and nauseous taste, and in a concentrated state acts as a powerful caustic. It may be crystallised with 1 equivalent of water from its aqueous solution; and it is soluble in alcohol. It forms double salts with the chlorides of sodium, potassium, and ammoninm; and a concentrated solution of the double chloride of zinc and ammonium ($\mathrm{H}_{5}-\mathrm{Cl}+\mathrm{ZnCl}$) is much used for the purpose of removing the film of oxide from the surface of metals, such as zinc, iron, or copper, which are to be united by the operation of soldering.'- Miller's Inorganic Chemistry, 3l cd. 1. 546 . With sulphur, zinc forms only one combima-tion-viz., sulphide of zinc, or blenule (ZnS), which is one of the most abundant of the zinc minerals. Blende, when pure, is of a pale browu colour, but it is commonly blackish from admixture with sulphile of iron. It usually occurs crystallised in rhombic dodecahedra, or allied forms, bnt sometimes is found in the massive state. Sulphide of zine nay be obtained artificially as a white precipitate, which, on drying, becomes yellow, by the addition of sulphide of ammonium to a solntion of a zinc-salt. Zinc furms several important alloys, amongst which brass (consisting of 2 parts of copper to 1 of zinc) and German Silver (q. r.) may be specially noticed. Professor liller sums up the charaeters of the salts of zinc as follows: "The salts of zinc are colourless; their solutions have an astringent, metallic taste, and act rapidly as emetics. They are distinguished by giviag no precipitate in acid solutions with sulphuurtted hydrogen, but they yield a white hydrated sulphide of ziac with sulphide of ammonium.'

IVanufacture.-That the Romans were acquainted with the art of making brass-an alloy of coper and zinc-is prored by the analysis of some of their coins struck soon after the commencement of the Christian era. Iet zinc itself was not known in Europe as a distinct metal intil Para-
celsus described its distinctive properties in the 16th century. Probably the Roman brass was produced by smelting ores containing hoth zinc and copper, some of which are at the present day smelted in Sweden. Zinc, howewer, was hrought from the East by the Portuguese long before it became an article of commerce in Europe, and is supposed to have been known ame made into articles of use and ornament both in India and China from an early period.

There are several ores of zinc, lut anly two of much importance-viz., blende and calamine. Blende, Llack-jack, or sulphuret of zinc, contains, when pure, about 67 per cent. of zinc, but, like most ores, it is rarely found pure. The usual composition of English blende is zine 61, iron 4, aad sulphur 33. It occurs in all the older geological formations, and is often associated with the ores of copper and tiu, but most frequently with lead ore-occurrizg, of course, like these in reins. Bleade crystallises in the form of the rhomboidal dodecahedron. The crystals have considerable brillianey, but their lustre is waxy rather than metallic. In this country, it is usually of a dark colonr, from the sulplanet of iron which it contains-bence the miners' name of black-jack. Sometiones it is sufficiently arcentiferous to allow of the protitable extraction of the silver. Blende is found in Wales, lsle of Man, Cornwall, and Derbyshire. It is also found in a good many localities on the continent-Sweden, in particular, being rich in this ore.

Calamine, or carbonate of zinc, contains, when pure, 52 per cent. of zinc, but it baries much in the proportion of metal which it contains on account of impurities. Its primitive crystalline form is the rhombohedron, but calamine as well as bleude occurs more frequently massive than in crystals. It is usually either of a dull yellow or reddish-brown colour. Like some other useful substances, calamine was formerly exported from England as ballast, through ignorance of its value. It was at one time raised to a considerable extent in Somersetshire, Derbyshire, and Cumberland, but it is chiefly the last county which prodnces it now. Belgium, Silesia, and Carinthia are well-known continental localities; and quite recently, most extensive deposits of it hare been discosered on the north coast of Spain, which are estimated to last for ages.

Fed oxide of zinc is found in New Jersey, U. S., where it is smelted. This is an oxide of zinc with a small quantity of oxide of manganese, which gives it its red colour. Silicate of zinc, or electric calamine, is another rare ore, generally associated when found with calamine. It is said to be smelted in the United States, and to yield very pure zinc.

There are several distinct processes for the extraction of zinc from its ores, and of these the English. the Belgian, and the Silesian are the most important. The English process is as follows: The zinc ore (blende or calamine) is crushed between rollers to the size of hazel-muts, and then roasted for about twelve hours, with occasional stirring, in a calcining frornace. The furnace in which the roasted ore is reduced rery much resembles a glass-furnace. It is either circular or octagonal in form, and usually contains six pots or crucibles, made of Stourbridge fireclay, about 3 feet high by $2 \frac{1}{4}$ feet in their widest diameter. In the bottom of each pot there is an opening, from which a sheet-iron tube, in two pieces, descends about S feet, and under its open end there is a sheet-iron ressel to receive the condensed zinc. Fig. 1 gives a sectional view of this furnace, and fig. 2 a view of one of the pots with its appendages on a larger scale. Zinc being volatile at high temperaturcs, is smolted by distillation, and in the English

ZLNC.

process it is callecl distillation per descensum. An entire charge-that is, a charge for the whole six

Fig. 1.
pots (a)-cousists of one ton of calcined ore mixed with a proper quantity of ground coke. When the pots are charged, their covers are fixed and luted on, the conical portion of the descending pipe (b) being previously securely fixed and lined with fireclay. The hole in the bottom of the pot is plugged with wood, which hecomes converted into charcoal by the heat, and is then sufficiently porous to allow the zinc rapour to pass down, while at the same time it stops the descent of the ceke or ore. The heat of the furnace is gradually raised, and soen produces vapour of zinc in the

Fig. 2. pots, which condenses as it descends the pipes (c), and drops into trays (d) placed at the hottom of each pipe. Sometimes a tube becomes stopped by a lump of zinc, and when this happons, the furnace-man melts it with a bar of red-hot iron. It takes nearly three days to work off the above charge, which yiekls about S cwts. of zinc, and requires about 25 tons of coals for its distillation. It is necessary to watch the pots with great care while the process is going on, as any leakage usually causes much loss of zinc. The rough zinc, as it is called, is removed from the pays, where it accumulates in lumps, and melted in cast-iron pots. It is then well stirred and skimmed, and finally cast inte ingots or cakes of the ordinary commercial sizethe skimnings being werked over again with a new charge of ore.
The Belgian furuace differs greatly in its construction from the English. It consists of from 60 to $\$ 0$ small fircclay reterts, a, a, a, each about 3 feet 6 inches leng, by S inches in diameter, and sett
in a series of rectangular compartments, filling up au arched chamber. Fig. 3 shews a transverse section of this furnace. There is a clay nozzle or courlenser, b, b, b, attached to the front of each retert, and on the end of this nozzle there is a sheetiron receiver, c, c, c, for the condensed zinc. The fireplace is shewn at d, and e is the pit to collect the residue from the retorts. The retorts are charged with ground and roasted calamine, mixed with small-coal free from sulphur. As the upper retorts receive less heat than the lewer ones, they are not so heavily charged, and they are, morcover, supplied with less pure ores. At the end of every six hours, the receivers are emptied of their melted zinc. In this process, a ton of ore can be smelted in 24 hours, and the yield from it is ahout 40 per cent. of metallic zinc.

In the Silesian furnace, fireclay retorts, about 4 feet long by 1 foot 6 inches iu diameter, are arranged in two rows, back to back, and placed horizontally ou a fiat furnace-hed, with a fireplace ou a lower level running along between the backs of the retorts. A condeusing apparatus comes away with a curve from the upper liart of the front of each retort, and descends some 2 feet below it. From this, the zinc, on condensing, drops on the ground, or into a tray placed to receive it.

With regard to the comparative merits of these three precesses of smelting zinc, no very decided opinion appears to be yet arrived at by those who have the best means of judging. The Belgian proccss consumes the least fuel, but requires the greatest amount of labour; the English, on the

Fig. 3.
other hand, is werked with the least amount of labour, but requires the most fuel; whilst the Silesian helds a sort of middle position between those extremes. Each, however, has minor advantages and disadvantages which the others have not. All three processes are in use in England.

ZINC.

Zinc, at ordinary temperatures, is a comparatively brittle metal; but about the beginning of the present century, it was discorered that, if heated to between 200° and $300^{\circ} \mathrm{F}$., its malleability and ductility were so increased that it could be rolled with facility into thin sheets, or drawn into fine wire. Since this was known, the uses of the metal, which formerly was only employed along with copper to make brass, have hecome greatly extended. In sheets, it is used for roofing, baths, water-tanks, spouting, and the like; also for covering ships' bottoms instead of copper. A considerable quantity is consumed for name-plates, for engraving upot, and for galvanic batteries. Perforated sheets with various ornamental patterns are manufactured for screens, blinds, light fences, and similar objects. As a material for casting artistic works, zinc possesses the desirable properties of having a low melting-point, and of taking a sharp impression from the mould, so as to require but little labour from the chaser; it has also considerable hardness. It has, in consequence, become a favourite material on the continent for making casts of statues, statuettes, and different kinds of ornaments.

Of late years, zinc has been applied with great success to the coating of sheet-iron for roofing and other purposes, and also for coating parious kinds of iron wire, especially telegraphic wire. See Galrantsed Iron.

We may remark here, that when zinc is exposed to a moist atmosphere, its surface becomes coated with a thin compact film of oxide or rust, which protects the metal beneath from further oxidation, whereas the rust of iron appears rather to penetrate the body of the metal with greater ease when it has once begun. Hence the value of zinc as a material for roofing, and also for protecting the surface of iron roofs.
The average annual produce of the zinc mines of the United Kingdom, for several years past, may be taken, in round numbers, at 15,000 tons of ore, yielding about 4000 tons of zinc, of the value of from $£ 80,000$ to $£ 100,000$, according to the market price of the metal, which has varied considerably. Our imports, in like manner, have amounted to about 30,000 tous annually of metallic zinc, the greater part of which came from Prussia, Belgium, and Holland.

Oxide of zinc is now employed to a large extent as a white pigment. It is of a purer colour than white lead, does not tarnish and blacken like it with sulphuretted hydrogen, and is much healthier for operative painters, but unfortunately it is deficient in body. It is also used as an ingredient in pottery colours. An impure sulphate of zinc, known as white vitriol, is also employed in various arts.

Medical Uses.-In its purely metallic state, zine produces no effect upon the animal economy, but several of its compounds are very active medicines. As a matter of conremience, we shall consider these compounds alphabetically, beginning with acetate of zinc, a salt not considered in the article on the chemistry of this metal. It is obtained ly dissolving, with the aid of heat, carbonate of zinc in a mixture of acetic acid and distilled water, filtering the liquid while still hot, and setting it aside to crystallise. In this process, the carbomic acid of the carbonate of zinc is displaced by the acetic acid, and escapes with efferrescence. The salt is obtained in thin, translucent, and colourless crystalline plates of a pearly lustre, with a sharp unpleasant taste, soluble in water, from which it may be precipitated, pure white, by sulphuretted hydrogen, and evolves acetic acid when decomposed by sulphuric acid. The crystals contain 3 equivalents of water, and their composition is
represented by the formula, $\mathrm{ZnO}, \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{O}_{3}+3 \mathrm{Aq}$. Acetate of zinc is not much employed internally, but it is one of the most valuable local astringents, and is especially useful (in the form of solution of from 3 to 5 grains in an ounce of water) in the treatment of skin-diseases attended with much discharge, such as eczema, impetigo, \&c., wheu the first inflammatory symptoms have subsided; and it forms a useful astringent in the milder form of ophthalmia. It was the active ingredient in Sir Astley Cooper's celebrated injection for gonorrhœez in the third week-six graius of sulphate of zinc mixed with four fluid ounces of dilute solution of subacetate of lead, when sulphate of lead is precipitated, and acetate of zinc is held in solution. When employed as an ointment in skin diseases, from 4 to 10 grains finely powdered may be rubbed up with cold cream or simple ointment. Carbonate of Zine is obtained for pharmaceutical purposes by the decomposition of sulphate of zinc in solution and carbonate of soda, when the carbonate of zinc is precipitated as a white, tasteless, inodorous powder, insoluble in water, but soluble with efferyescence and without residue in dilute sulphuric acid. This preparation has been introduced as a substitute for native calamine, which formerly had a high reputation, but was so frequently adulterated as to render an officinal salt of known composition very desirable. Either in powder, or in the form of ointment, it forms an excellent astringent application for the treatment of intertrigo (or chafing of the skin), excoriations, and chromic skin diseases attended with much discharge. Turner's Cerate, although not in the Pharmacopœia, is in general use as a durjing and healing ointment, and is one of the most popular remedies for superficial burns and sores. It is made by taking prepared calamine (or carbonate of zinc) and wax, $7 \frac{1}{2}$ ounces of each, aud olive oil 1 pint. Melt the wax, and mix the oil with it, then remore them from the fire, and when the mixture begins to thicken, add the calamine, and stir constantly till they cool. Chloride of $Z \mathrm{inc}$, in the form of colourless opaque rods, obtained by pouring the corfcentrated solution into proper moulds, is used in surgery as a powerful caustic in cases of cancer, fungous growths, \&c. In toothache caused by caries, a minute portion of chloride of zinc introduced into the cavity of the tooth after the remoral of the diseased parts, affords almost immediate relief. In consequence of its powerfully destructive properties, it should never be applied except by the surgeon. The solution of this salt, commonly known as Burnett's Disinfectant Fluid, is of much use in the sick-room or hospital ward as a deodorising agent; as, however, it possesses strong caustic properties, great care must be taken that it is not administered internally in mistake for some other mellicine. Few years pass without several fatal cases of this kind being recorded. Oxide of Z inc is characterised in the Pharmacopceia as 'a soft, white, tasteless, and inodorous powder, becoming pale jellow, when heated, and forming with diluted sulphuric acid a solution which gives a white precipitate with hydrosulphide of ammoma.' It is employed internally with much success as a tonic in chorea and epilepsy, in which it must be given for a considerable period, and in gradually increasing doses till a scruple is taken daily. In doses of one or two grains combined with extract of henbane, it forms an admirable night-pill to check the perspiration in pulmonary consumption. Employed externally, either in the form of powder or ointment it forms a good astringent in cases of excoriation, sore mpples, intertrigo, slight ulcerations, \&c. The officinal ointment containing 80 grains to an ounce of simple ointment, is too strong for ordinary cases,
and is apt to cake upon the surface: these defects may, however, be removed by the addition of glycerine. Sulphate of Zinc is cmployed as an astringent, a canstic, an emetic, and a tonic. As an astriugent, it is given internally in simall doses (of from half a grain to two grains, made into a pill with conserve of roses), in cases of ehronic diarrheen, ehronic bronchitis, and long-standiug lencorrhoza; while it is used topically as a lotion in old uleers (from 5 to 20 grains to an ounce of water), as a collyrium in chronic ophthalmia, and as an injection in the abortive treatment of gonorrhea (i. e., when we wish to cut short the disease before inflammatory symptoms appear). As a caustic, this salt, in its anhydrous state, and finely levicated, las been strongly recommended by Sir James Simpson. He applies it in the form of powder ; of a paste made with glycerine in the proportion of a drachm of the latter to an ounce of the nowder ; or of an ointment consisting of two drachms of prepared lard, rubbed up with an ounce of the powder. It has also been successfully used in the Dublin hospitals. Sulphate of zinc may be given in the same doses as the oxide as a tonic in cases of nervous palsy, and in the exhaustion depeudent nuon sexnal excesses. In large doses, as from I5 to 30 grains, it operates as a safe and speedy cmetic, and is prefcrable to all other emetics in cases of poisoning. In toxicolomical researeles-as in Marsh's Test for Arsenic-great care must be taken to sce that the zinc which is employed is perfectly free from arsenic, which is a not uncommon impurity.

ZINCO'GRAPHY is essentially the same art as Lithography (q. v.), zine-plates leing substituted for those of stone. One form of the art is clescribed under the mame of Anastatic Printing (see Printing). A style of it, called Paneiconography, brought forward by Gillot of Paris fin the purpose of reproducing, by lithographie, autographie, or typographie proof, any drawing with crayon or stump, or any engraving from wood or copper, is thus described: A plate of zinc finely polished is prepared, and if an original drawing is to he copied, it is dove by the artist in lithographic crayon on this plate; autographic writing done with the erayon, lithographs, and fresh proofs of wood or copper-plate engravings, must lee transferred in the nsual way to the surface of the plate ; aud whilst still wet, an ink-roller is passed over, so as to give a deeper impression. Tosin very finely powdered is then sifted over, which adheres to the wet ink, and becomes consolidated, so that the superfluous powder is easily brushed off from the parts not covered with ink. The plate is next placed with its face upwards in a shallow trough containing dilute sulphuric or hjedrochloric acil sufficient to slightly cover it; the trough is then gently rocked, so as to make the acid flow hackwards aud forwards over the plate, and if this be continued for some time-an hour or upwards.all the parts of the plate not covered with the ink and rosin are etched deep enough to be used as a relief-plate for printing from. In impressions where there are large interspaces, it is usual to saw them out; and in some cases, where it is fonnd that the relief is not sufficiently high, the raised parts are re-inked, and again covered with the rosin, and submitted a second time to the action of the acid. Old engravings may he transforred by laying them to become damp on a board wetted with acidulated water, and then applying the ink-roller to the face of the engraving; the ink only acts upon the inklines of the engraving, and is repelled by the acid moisture which has been imbibed by the uncovered white spaces. A slight pressure will then easily produce a cony on the polished zinc-plate, which is perfected by the subsequent operations.

Z1'NGEL (Asmo), a genus of fishes of the perch family, romarkable for the elongated form of the borly, and for laving the mouth situated under the projecting and rounded snout, also for the roughness of their scales. The dorsal fins are widely separated, and the ventral fins are large. Oudy two splecies are known: of which one, the Z. of the

Zingel (Aspro rulyaris).
Danulue (A. zingel), inlabits that river and its tributaries, attains a length of fifteen inches, and a weight of two or three pounds; the other (A. vulgaris) is found in the Rhone and its tributaries, and also in more eastern rivers, although unkuown in those of the west of France, and is only six or seven inches long. Loth are esteemed for the table.

ZINGIBERA'CEA. See Scithmines.

ZlnZendorli, Nicolats Lidmif, Corat von, the founder of the existing sect of the Moravian Brethren, or Herrnhuters, Was born at Dresilen, 26 th May 1700 . II is father, a Saxon state minister, dying while Z. was a child, the latter was educated by his grandmother, a learned and pions lady; the Baroness von Gersdorf. Spener, the head of the Pietists, was a frequent visitor at her house, and his conversatiou, and the devotional exercises in which 7. took part, influcaced his character while a mere child. In 1710, he went to Halle, where he spent six years, uuder the special care of Francke, the philanthropist. Z. founded among his fellowpupils a religions society, to which he gave the name of the 'Orler of the Grain of Mustard-seed.' In 1716, he was sent by his relatives to Wittenberg, where Pietism was in less repute than at Halle; lut he adhered to his early religions impres. sions. Two years afterwards, be travelled through Holland and France, everywhere endeavouring to convert the distimguished nersons whom he met to his own religions ricws. On his return to Dresden, he was appointed a member of the Saxon state council, and married the sister of the Count Reuss ron Ebersdorf. But political life was little to his mind, and he returned to his country-seat in Upper Lisatia. While residing there, he accidentally met a wandering carpeuter, named Christian David, a member of the old sect of Moravian Brethren, of whom sone still remained in Moravia, professing the doctrines taught by John Huss, David described the persceutions to which the sect were exposed ; and Z. invited him and his friends to settle ou his estate. They accepted the proposal, and the colony received the name of 'Herrnhut.' Z. acted with great liberality to the settlers, and their success attracted much attention. In 1734, Z. went under a feigued name to Stralsund to pass an cxamination in theology, and was ordained a minister of the Lutheran Church. In 1736, he was banished from Saxony, on a charge of introducing dangerous novelties in religion. He repaired to Holland, where le founded a Moravian colony, and afterwards to Esthonia and Livonia, where be also founded colonies. In 1737, at the request of King Frederick-William I. of Prussia, he was ordained Eishop of the Moravians. In the same year, he went to London, where he was reccived with much consideration by Wesley. In 1541, he went to North America, accompanied by his daughter, and
founded the celebrated Morarian colony of Bethlehem. The Iferrnhuters, in the meanwhile, by their good conduct and industry, had won the respeet of all elasses in Saxony; and in 1747, Z. was allowed to return to Herrnhut. LLaving reeeived authority by act of parliament to establish Moravian settlements in the English colonies of North America, he returned thither to do so. He finally settled at Herrnhut; and his first wife being dead, married Anne Nitselmann, one of the earliest colonists from Moravia. He died on 9th May 1560. Thirty-two preachers, from all parts of the globe, aceompanied the eoflin to the grave. Z. was the author of more than 100 works in verse and prose. His hymus, used in worship by the Noravians, are objectionable on account of their pious indeecney. The same may be saicl of his sermons, especially of those which refer to the Holy Ghost as a spiritual mother. His writings are often incoherent or mystical, bnt they abound with lassages in which deep and original thought is expressed with great clearness and beanty:-A Life of Z. has been written by Tarnhagen von Ense, 1 mblished in his Denkmalen (Berlin, 1830).

ZI'ON. Monnt Z. is the name of the liall on which the south-west part of Jerusalem, the City of David, or Upper City, with the citalel of David, stood. At the present clay, only the north half belongs to the city, the city wall running obliquely over the hill. On the west, and still more on the south side, it descencts steeply into the Tale of Hinnom, to a depth of 300 feet. NIonnt Z. is 2537 feet above the level of the Mediterraneas Sea. With the prophets and poets of the Old Testament, Z. often stands for the whole of Jerusalem (also called 'Daughter of Zion'), particularly in reference to the Temple. See Jerusalem.

ZIRCO'NIUM (symb. Zr, equiv. 33.6) is the metallie constitnent of the earth zirconia, which is fonnd in assoeiation with silica in the minerals zircon and lyyacinth. The composition of zirconia is usually represented by the formula $\mathrm{Zr}_{2} \mathrm{O}_{3}$, but Swanberg jugards zireonia not as a pure earth, but as a mixture of thace; and to one of the metals, whose carths he thinks that be has isolaterl, he gives the name of Norium. The sources from which zireonitum is ilerived are so scarce (it being foumd only in Ceylon, one district of the Ural, and Sonthern Xorway), that it is moneeessary to enter into any details regarding it.

Zl'RFNITZ, or CZirifilitz, Lake (Ger, Czir\%vitiersee, Lacus Lugeus of Strabo), a small lake of Austria, in Carniola, about 20 miles south-southwest of Laibach, and 30 miles east-north-east of Tricste, is situated in a deep valley to the sonth of Dount Javormik, and to the north-east of Monnt Slivinza. The lake is about 5 miles long, and between 2 and 3 broad, is surrounded with mmerons villages, chapels, and castles, contains four small islandson the largest of which is built the hamlet of Ottokand has no surface outlet: It is abont 56 feet deep in the deepest part, and is very irregular in shape. It is worthy of notice only on account of the very remarkable phenomenon of the oceasional disappearance of its waters for several weeks, and even months, during which the bottom is often covered with luxuriant herbage, which the peasants make into hay ; sometimes also they manage even to sow anl reap a small erop of buckwheat in its deserted bed. The waters, however, are not perfeetly regular in their disappearance-indeed, sometimes for five or six years together they have not retired at all-but generally they drain off in the end of Angust, and return, if the season be wet, in five or six weeks. It takes between 20 and 25 days to

491
empty the lake, but the retnrn of the waters is sudden and uncxpected, its basin being refilled sometimes in 24 hours. The phenomenon is aecounted for by the nature of the bed of the lake. It is composed of limestone, and, like all the Carniolaic platenn, is full of deep fissures and caverns, throngh which the waters disappear at irregular intervals, returning when the rain sets in. Some of these openings are 50 feet cleep, and the chief ones are known to the peasantry by particular names. They communieate with sulbterranean reservoirs, penetrating the interior of the surrounding mountains, through which the waters are replenished or drawn off, There are 12 of these openings whieh discharge water into the lake as well as draw it off, and $2 S$ which draw it off only: Through the former of these the water pours in after rainy weather as from a spout. When the surface of the lake reaches the caverns of Telka-Kiarlanza and Malka-Karlanza, the waters are discharged by these into the valley of St Canzian, and, after disappearing several tinues, fall into the Unz, above Planina. Sometimes, howaver, the volume of water is so great that these eaverns prove insufficient to eary it off, when the lake overflows and covers the neighbouring country', sometimes submersing rillages. In 1834, the lake was drained in January, and remained perfectly dry till the end of February 1835, a circumstance withont parallel since the time that any records of its history have been kept. The lake is pretty well stocked with fish, and at certain times is the resort of great numhers of waterfowl, which afford hoth sport and profit. - There is a small village of the same name on a small stream that falls into the north side of the lake.

ZISKA,* or ZIZKA, Jons, of Trocznov, the famons leader of the Hussites, was born at Troeznor, in the cirele of Budweis, Bohemia, abont 1360. His family being noble, he beeame a page to King Wenceslas of Bohemia, but his gloomy and thoughtful temperament unfitted him, while yet a mere boy, for the frivolous oceupations about court ; so, embracing the career of arms, he served as a volunteer in the English army in Franee, and afterwards joined King Latislas of Poland with a body of Dohemian aud Moravian auxiliaries, and greatly distinguished himself in the war against the Tentonic Knights, deciding the dreadful battle of Tannenberg (in which the Grand Master and 40,000 linights were left dead on the field) by desperate charges at the head of his contingent. High honours were leaped upon hin by the king; but the war (in which Z. had lost his right eye) being now over, his restless spirit led him to jon the Austrians against the Turks, and subsequently the English against the French; and retnrning to Bohemia soon after the murder of John Huss (4. v.), he became chamberlain to King Wenceslas. Z. was an adherent of the Hussite doctrine; and the tragical fate of its apostles, and the tyrannical cruelties exercised by the imperial and papal officers on its adherents, excited in his mind the liveliest indignation and resentment. A widespread sentiment of a similar kind, originating as much from patriotic as from religious feelings, existed in the lingdom; and a powerful party was soon formed, which urged upon the king a policy of resistance to the decisions of the Council of Constance. Z. soon became prominent among the leaders of this party, and his personal influence with the king gained for it the latter's sametion to offer

* It is often stated that John of Trocznor was called Z. on account of his being ' one-eyed,' but this is erroneous; Z. was the name of the family for generations before his time, nor does it signify 'one-eyed' in either the Bohemian o: the Polish language.
resistance, though the king's vacillating disposition incapacitated him from giving effect to his own honest convietions, and taking open part with his subjects against their oppressors. After the outbreak at Pramue (30th July 1419), in which the violent behavinur of the Catholics was avenged by the precipitation of 13 magistrates from the conncil windows, Z. was unanimously chosen leader of the IIussites, and the first great religions conflict of Germany was commenced in earnest. The shock produced by news of this outbreak was fatal to Wenceslas, and his death gave more of a political character to the contest, as when his lyother, the Emperor Sigismunt (the same who had allowed his safe-conduct to Huss to be violated), aitempted, by alvancing an army of $40,000 \mathrm{men}$ into the country, to oltain the throne, his project was frustrated for a time by the Hussites, who insisted on their religious and political liberties being secured, and totally defeated his army with a hastily levied force of not more than 4000 . On the retirement of the imperialists, Z. completed his conquest of Bohemia by the capture of the castle of I'rague in 1421 (the town had been taken in the spring of 1420), and secured his hold of the country ly the erection of fortresses, chief of which was that of Tabor, whence his $\mathrm{p}^{2} \mathrm{rty}$ derived its mame of Taborites (g. v.). The varied experience acquired by Z. in foreign warfare was now of immonse service to his party; his followers were armed with small firearms (then little known) ; and his almost total deficiency in cavalry was compensated for ly the introluction of the Hfagonburg (or' 'cart-fort,' constructed of the bag-gage-wagons), to protect his little army from the charges of the mail-clad knights. Numerons other inventions and ingenious contrivances mark Z.'s brief career as leader of the Hussites, and shew his eminent qualities as an engineer and a gencral. In 142l, he lost his remaining eye at the siege of the castle of Rali ; but though now totally blind, he continued to lead on his troops to a succession of victories almost moxampled in history - the list of 13 pitched lattles fought lyy him, always with much inferior force, including only one tefeat, and that so much resembling a drawn battle, that his opponconts dared not molest his retreat. ITis greatest achievements were the rout (IStl1 Jamuary 1422) of Sigismund's second invading army, which was driven into Moravia, and 2000 men of it drowned in attempting to escape across the frozen lglan; and his great victory it Aussig, over the German crusading army, commanded by Frederick the Warlike of Saxony, and the Elector of Brandenburg. In the latter conflict, the furions onset of Z.'s troons was steadily sustained by the Saxons, who were choice troops, and the fanatic Hussites recoiled in astonishment at a successful resistance which they had never before encountered. Z., aypised of the circumstances, approached ou his cart, thanked his men for their past services, adding, 'and if you have now done your utmost, let us retire.' 'This stimulated, they made a second charge still more furious than before, broke the Saxon array, and left 9000 of it dead on the field. Sigismund was now convinced that the conquest of Bohemia was impossible, and after a time proposed an arrangement with the Hussites, by which full religious liberty was allowed; and Z., who had an interview with the emperor on the footing of an independent chief, was to be appointed governor of Bohemia and her dependencies. But the war-worn old chief did not live long enough to complete the treaty, for, while besieging the castle of Przihislav, he was seizel with the plague, and died, 12th October 1424. He was buried in a church at Czaslav, and his iron war-club was hnng up over bis tomb. A foolish story was long current that, in 354
accordance with Z.'s express injunctions, his skin was flayed off, tanned, and used as a cover for a drum, which was aftorwards employed in the Inssite army ; in order that even when dead he might be a terror to his cnemies.
The only accusation which can with justice be mate acrainst Z. is on the ground of excessive cruelty, the vietims lexing the monks and juiests who fell into his hands. It would have been extremely curions if Z. hat not lad himself open to such a reproach, for the burning alive of the propagators of the faith to which he adherel, the atrocious cruelties practised on such 1Iussite priests as fell into the hands of the imperialists, and the sednction of his own favourite sister ly a monk, were events ill calculated to induce him to moderate the latred entertained by himself and his followers against their opponents. The war was carried on mercilessly by both parties, and it was unreasonable to expect that the party assailed, and the one mumerically weaker, should irst set an example of moderation.
Zl'TTIIU, a town of Saxony, 48 miles east-southeast of 1)resden, and 69 loy railway, is situated near the Bohemian froutier, close to the junction of the Neisse and Mandan. The town is well built, and is surroumed by a double wall; has many churches, the most notable of which is the Byzantine Clurch of St John, finished in 1836; a splendid court-honse, one of the fincst in Saxony, crected 1844; a goord library of 12,000 vols.; a gymmasium, a normal, a free, an industrial, a Catholic, an infant, and other schools; several charitable institutions-as a workhouse, intirmary, asylum for orphans, \&c. Z. is the centre of the linen and damask manufacture of Saxony. There are also woollen manufactures, bleaclifiekts, dye-works, paper, oil, and saw mills, and irou-foundrics. From its proximity to the Ionhemian frontier, it enjoys a considerable trade with that country. Pop. (1864) 14,290 .
ZLATOU'ST, or KlilUCHI (Golden Mouth), a town of linssia, in the government of Orenberg among the Ural Momatains, about 150 miles northenst of Ufa, on the river Ufa. It consists chietly of wooden louses, and the inlanitants are mostly miners. It is the centre of the iron and gold mines of the district. There is an extensive manufactory of sword-hlades, which are consifered the best in the enulire ; other articles of inlaid and cmbossed steel are also manlaetured. P'el. 15,000.

ZMEINOGO'LSK, or ZMIEF, a town of Siberia, in a monntainous district of the government of Tomsk, upwards of 350 miles south-west of the town of Tomsk, on the river Smierka. The town is sitnated in the vicinity of one of the most productive silver-mines in Siberia, which was discovered in 1736, and belonseal to the Demidoff family till 1545, when it became crown property. Since its discovery, it has yielded ncirly the half of the whole quantity of silver ${ }^{\text {rrotheel }}$ by the Siberian mines. Top. 5990.

ZOAR, a village in Ohio, U. S., on the Ohio Camal, 111 miles north-east of Columbns, settled in ISIS, by a German community, who hold in common 9000 acres of land; they have also a woollen factory, several mills, a store, church, and schools, all managed by an agent aud three trustees, elected by popular vote.
ZO'BO, a hybrid between the Yak (q . w.) and the conumon ox of India. It is not very unlike an English ox. It is common in the western parts of the Himalaya, and is valued as a beast of burden, as well as for its milk and its flesh.

ZO CLE , or SOCLE, a square plain plinth under the base of a column.

ZO'DIAC (Gr. zodialios, commonly derived from zoön, an auima!), the name given by the ancients to an imaginary band extending round the celestial sphere, having as its mesial line the ecliptic or apparent nath of the sun. It was fixed at about 16° in width, for the purpose of comprehending the paths of the sun and of the five planets (Mercury, Venus, Mars, Jupiter, and Saturn) which were then known; and as, of these planets, Merenry has by far the greatest inclination of orbit to the ecliptic, and the value of that element in his case is only $7^{\circ} 0^{\prime} 9^{\prime \prime}$, the width given to the zodiac was amply sufficient for the required purpose. But when the career of planetary discovery commenced in the beginning of the 19 th c., the first three which were discovered (Ceres, Pallas, and Juno) at once destroyed the idea which had been long seated ir men's minds, that no planets existed beyond the limits of the zodiac, by exhibiting orbits inclined to the ecliptic at no less angles than $10^{\circ} 36 \frac{1}{2}^{\prime}, 34^{\circ} 44^{22^{\prime}}$, and $13^{\circ} 3 \frac{1}{3}^{\prime}$; and a lorge number since observed have been found to wander from 0° to 18° beyond the zodiac, from which circumstance they have, along with the three above mentioned, been denominated ultra-zodiacal planets. The stars in the zodiac were grouped into 12 constellations, to each of which 30° or $\frac{1}{12}$ th of the whole circle, was assigned, though it often did not fill up that spaee, but was only situated in it; and this equable division into signs was of great advantage in defining the positions of the sun and planets at any epoch.

The constellations, with the appropriate symbols of the corresponding signs, are as follow:

Aries (Ram) \wp
Taurus (Bull) 8
Gemini (Twins) II
Cancer (Crab) 00
Leo (Lion) Ω
Virgo (Virgin) lip

Libra (Balance) \bumpeq

 Scorpio (Scorpion) 111, Sagittarins (Archer) f Capricornus (Goat) Vi Aquainus (Water-bearer) Aw Pisces (Fishes) \neqAs one half of the ecliptic is to the north, and the other to the south of the equator, the line of intersection of their planes is a diameter of each, and the two points in which this line meets the celestial sphere are known as the equinoctial points. The comparative immobility, with respect to the ecliptic, of these points, suggested at once the employnent of one or other of them as a point from which to reckon, and accordingly that point at which the sun crosses the equinoctial from south to north was fixed upon, and called the first point (or commencement) of Aries. After the sun had advanced eastward through this sigu-i.c., 30° along the ecliptic-he entered the sign of Taurus, continuing his course onward through the others in the order in which they are given above, again crossing the equinoctial southwards at the point where he emerged from Virgo, and cutered libra. This was the case with the sun during the time of Hipparchus (q . v.), but though the equinoctial points move very slowly, yet they do so with great uniformity, and the westerly motion of 50 " annually which they describe along the ecliptic, has at the present time separated the sign Aries from the constellation Aries, and caused the former to correspond almost to the constellation Pisces. This gradual retrogression of the signs through the constellations of the zodiac will continue till they accomplish, in about 25,568 years, a complete circuit; after which period the sign and constellation of Aries will coincide, as they did in the time of Fippurchus. Neither the zodiac nor its constellations are of much use now in astronomy, except as, like the other constellations, affording an easy though somewhat fantastic nomenclature for the stars, aud a rude, but sometimes convenient mode of reference to their positions.

The porticos of the temples of Denderah and Esne in Egypt have representations of the zodiacal constellations, which are of great antiquity, and have formed a fruitful theme of discussion. M. Dupuis, in his Origine des Cultes, has, from a careful investigation of the position of these signs, and calculating precession at its usual rate, arrived at the conclusion that the earliest of them dates from 4000 B.C. This conclusion is controverted by M. Fourier, iu his Recherches sur les Sciences, dec. de l^{2} Eyypte, who makes the representations at Esne 1800 years older than the other; but his bypothesis las been in turn overthrown by MM. Ideler and Biot. The truth scems to be that nothing is as jet definitely known respecting these ancient representations; for the manner in which the investigations bave been mixed up with the Biblical question of the antiquity of man, has prevented any truly scientific research. The Grecks would seeni to have borrowed their constellations from the Egyntians and Balyylonians, and this is corroborated, to some extcut, by occasional remarks in Greek writers as to the positions of rarious constollations at certain times, which positions are inconsistent with the supposition of the observer being in Greece. The zodiacal figures of the Hindus, ancient Persians, Chinese, and Japanese have such a remarkable resemblance to those of the Egyptians, that there can be little doubt as to their common origin.

ZODI'ACAL LIGHT is the name given to a singular appearance seen after sunset or before sunrise, at all seasons of the year in low latitudes, but rarely in this country, except in March, April, and May in the evenings, and six months later in the mornings. It is obviously due to illuminated (partly, perhaps, self-luminous) matter surrounding the sun in a very flat, lenticular form, nearly coinciding with the plane of the ecliptic, or rather with the sun's equator, and extending to a distance from the sun greater than that of the earth, since its apex is often seen more than 90° from the sun. It seems to have been first distinctly pointed out ly Cassini, and was long regarded as the sun's atmosphere. This idea, however, is totally irreconcilable with mechanical principles; since, to assume so flat a form, in spite of the enormons attraction of the sun, and its own elasticity, an atmosphere would have to revolve with a velocity so great as to clissipate it into space. The only conceivable explanation of the phenomenon is, therefore, to be found in suppsing it to consist (like the rings of Saturn) of an immense assemblage of small cosinical masses, rocks, stones, and pieces of metal, such as are continnally enconntering the earth in the form of aerolites or meteorites. For the dyumieal stability of such a system, it is only necessary that each fragment should separately describe its elliptic orbit about the sun. The mutual perturbations of the system, on account of the enormons mass of the sun, will be excecdingly small, exceprt in the case of actual collision; but some of the planets will have a considerable effect upon it. That this is the true explanation of the phenomenon, is now generally believed. Some rery curions recent observations on the August and November meteorites of 1866 (see Meteorites in Scpplement) have shewn that these looties move in orbits almost exactly the same as those of two known comets. The comet, then, is merely that portion of the ring of small masses, revolving all nearly in the same orbit, where the greatest number are, for the time, collected: and it is possible that to the collisions, which must most frequently occur where the separate particles are most mumeronsly grouped, are due the spectral lhenomena of incandescent gases which have been cbserved in the heads of coinets by Iuggins and
others. Such speculations, were this the place to pursue them, might easily be extended to the sudden production, and changes of form, of the tails of comets which occur near perihelion, for there the separate masses must necessarily be much more crowded together, and their impacts must be increased both in number and violences
zo'ILUS, a grammarian, born at Amphipolis. Authoritics vary respectiug the age in which he
lived, and the maner of his death. The usual account is that he lived in the time of Ptoleny Philadelphus, and that he solicited, but without success, the patronage of that monareh. He gained notoricty for the bitterness with which he attacked JIomer, whence he was surnanned Homeromastix, Homer's Scourge. IIis name is used proverbially for an austere and malignant critic, as Aristarchus is for one candid and intelligent. All his works are lost.
ZO'LLVEREIN (Ger., meauing 'customs-mnion'), a union of different independent German states, auder the leadership of Trussia, so as to enable them, in their commercial relations with other countries, to act as one state. When, after the war of liberation in 1815 , the political umion, destroyed by the downfall' of 'the holy Fioman Empire,' had been restored to a certain degree in the German ' Bund' (see Germany), internal commerce was felt to be trammeled and depressed by the collection of revenue at the frontiers of every peetty state; nor was it possible, without nuited action, to carry out the policy in regard to foreign commerce which might be thonght best for protect. ing and developing the native trade and nanufactures. The first suggestion of such a minion came from Prussia; but it took many years before an actual beginning was made, and still louger before it reached its present extent, as the plan was opposed for a long time by the jealonsies and siccial interests of many of the states.
From 1819 to $18: 2$, only some of the minor priucipalities enclosel within the Irussian territorics had licen got to conform to the Prussian commercial system; Lut in 1838 , Hesse-Darmstalt, and in 1831 , Hesse-Cassel, gave in. This was followed, in 18:33, by the accession of Bavaria, Wiirtemberg, the lingdum of Saxony, the priucipality of the same name, Schwarzlurg, and Cienss; and in 1835-1836, ly that of Baden, Nassan, and Fraukfurt-on-theMain. The adhesion of other states was given gradually, that of Hanover not till 185l. Recently, Slesvig-Holstein and Lanenburg have, as parts of the Irussian monarchy, also entered the Z. so that at preseut it eublraces all Germany except t the German provinces belonging to Anstria, the three free eities, THamburg, Libleck, and Bremen, and the two duchies of Mecklenburg. During the period of its formation, several rival nions were formed, but none of them lasted long.
The treaty of union is agrect upon for a definite term of years, and is renewed from time to time ($\mathbf{1 s t 2}$, 1Sシ3). The principle of its action is this: the whole territory embraced by the Union forms commercially (in regard, at least, to countries heyond its limits) one state. The duties on exports, imports, and through transports are collected at all the frontiers of the Union according to a uniform tavill (snbject to some concessions, nate on special gronnds, to individual states); and the proceeds, after paying the expenses of collection, are divided among the members of the Union in proportion to their several populations. In regard to the internal trade of the Union, as the duties on articles manufactured for home consumption are different in the different states, a complicated system of drawbacks comes
into play, in order to put the commerce of all on an equal footing. The net proceeds of the Z., which in 1834 amounted only to $12,178,761$ thalers, had risen in 1865 to $23,991,085$ thalers (abont $£ 3,600,000$).
As a proof of the beneticial working of the Z., the adrocates of the protective policy to which it has adhered, poist to the almost eomplete disappearance of foreign goods from the Germau market, the increased demand for ('erman goods (especianly hardware) in other conntrics, and the growing wealtin and prosperity of Germany.

It appears proballe that the Z . will not only be continned in its present limits unter the new order of things. 7ut that the whole of non-Austrian Germayy will soon be iucluded in the union, which is abouit to be reorganised.
ZOLOTONO'SHA, a town of Russia, in the govermment of Poltava, stands on a river of the same aume, a tributary of the Dnicper, about 110 miles west of the town of Coltaxa. The town has two convents. There are no manufactures or trade worth notice. Pop. $6 S 64$.
ZO'MBOR, a town of Sonth Ihungary, on a hroad plain about 120 miles south of Pesth, capital of the district of Bacs, near the Bacs or Francis Canal, by meaus of which it communicates with the Danule. It has handsome county buildings, Greek and Rnman Catholic clurches, gjmasium and other schools, barracks, town-house, se. There are silk manufactures, and a trake in grain and cattle. Pop. $22,106$.
ZONUKIDAE, a family of saurian reptiles, having the heal coverect with regular polygonal shiclds, the body and tail with large scales; the sides furnished with a longitudinal fold of the skin, corered with small scales; the tonsue flat, nicked at

the tip, the eyes with two valvular lids. The species are uumerons, natives of warm climates. The form of some is rather short and thick, others are long and serpent-like. In some also, the limbs are well deyelopech, in others they are merely rudimental, and in some the very rudiments of then are entirely concealed under the skin.
ZOO'LOGY (Gr. zōon, an animal, and logos, a discoursc), the science which has for its subject the Animal Kingdom (q. . ..). This science, itself a bratch of Natural History (q. v.), is divided into a number of branches, which are often $p^{\text {mirsuel }}$ as distinct sciences, the subject leing too large to be thoroughly studied except in this manncr; although it is also necessary that the results of investigation in particular departments should be brought together, so that the animal kinglom may be viewel as a whole, and the relations of the most widely different gronps of animals to each other determined. The number of species of animals is far greater than that of plants, and the diversity among them is also greater, so that a division of the science of Z. into branches relating to different groups, very maturally takes place. Thus, the branch of Z. which has tho

ZOOLOGY.

Mammalia for its subject has been called Mazolngy (Gr.mazon, a teat), an unhappily chosen and essentially incorrect term, which has not come into general use; and it is a curious circumstance that this, which may be called the highest branch of Z., has no popularly received name. It is otherwise with the branches of Z. relating to the inferior classes of Vertebrata; that which has Birds for its subject is universally known as Ornithology (q. v.); that which relates to Reptiles is Herpetology (q. v.), and the subordinate branch relating to serpents is sometimes called Ophiology; that which relates to Fishes is Ichthyoloyy (q. r.). Among Invertebrate animals, the great group of Mollusca is the subject of the science of Malucology ($\mathrm{q} . \mathrm{v}$.), althongh this term is not in such general use as some of those alrealy mentioncd: and when shells rather than the animals which bear them are considered, the term Concholomy (q.v.) is employed. No particular term is commonly applied to the branches of 2 . which treat of the C'rustacea, Aracluida, \&e.; but that which relates to Insects is universally known as Entomology (q. v.), and the term Helmintholory (q. r.) is employed to designate that which has IForms for its subject. No similar terms are used for the branches of this science which relate to other gromps of Invertebrata.
The science of Z., however, divides itself into distinct sciences. not only in accordance with the divisions of the animal kingdom, but also with regard to particular branches of the subject which may be studied either in relation to animals generally, or to any particular species. Thus, Anatomy (q.v.) may be regarded as a branch of Z., when the term Z. is taken in its largest sense, as including man along with the inferior animals, and Ethology (q. v.) must in like manner be considered as belonging to it. The anatomy of the inferior animals is sometimes called Zootomy, and the term Comparative Anatomy is employed when their structure is studied in relation to that of man, and the structure of one division of the animal kingdom in relation to that of the others. Physiolory (q. r.) is one of the most important branches of Z.; and with it that branch of chemistry which treats of animal substances is elosely connected. A very interesting branch of Z. is that which relates to the habits and instincts of animals. It can hardly be said to have been constituted into a separate science, but has received much attention from those naturalists who have deroted themselves to the study of particular groups of animals.

We hare no eridence that the study of Z. Was prosecuted to any considerable extent before the time of Aristatle. In his hands it hecame at once a science, and the foundations of a system of classification were laid. Ňo artificial system of classification has ever been proposed in Z., like the sexual system of Linnaus in botany; but from the very first to the present day, a natural grouping of animals has always been attempted. To this, the widely marked distinctions between the principal groupis almost unavoidably led. Aristotle brought to bear ulon the subject the highest powers both of observation and of generalisation, and some of the groups established by him still retain their place in the most modern systems. Aristotle divided the whole animal kingdom into two great scctions, the lighest, Enaima, consisting of animals having blood (i. e., red blood), and the lower, fnaime, of animals liaving a colourless fluid instcad of blood, the former corresponding to the Trertebrata, and the latter to the Imertebrata of modern zoologists.
No other ancient writer deserves much notice in a historic sketch of zoology. Jlian and Pliny shew no capacity for the scientific treatment of the subject, and in thtir writings, facts are largely mingled with fables. During the middle ages, Z., like other
kindred sciences, was almost completely neglected. For many centuries, the only name worth mentioning, in connection with the history of the science, is that of Albert, Count of Bollstidt, commonly called Albertus Magnus; whose knowledge, however, was entirely derived from Aristotle and other ancient authors, and all he did was merely to call attention to the forgotten science, without making any contribution to its advancement. From his time, in the first half of the 13 th c., to the beginning of the 16 th, Z. was again almost completely neglected; but the new activity of mind which then displayed itself soon sought this as well as other directions, and an impulse was more especially given to Z. as well as to some other branches of science, by the progress of geographical discovery; curiosity being awakened with regard to the strange productions of the New World, and of the eastern and southern regions, till then equally unknown. The names of Belon (q. v.) and Rondelet (see Sepplemext) are the two greatest in this department at this period, and by thein Z. was enriched with many new facts, while attempts were also made at a more perfect classification. Aldrovandi (sce Supplemext) and Gesner (q. v.) soon followed them, besides others who began to direct their attention more specially to particular branches of Z., some of whom greatly extended the science by their observations on the animals of newly discovered countries. It was not till after the midele of the 17 th c. , however, that any real progress was made in classification, founded upou a philosophical study and comparison of animals. The works of Ray (q. v.) are described by Cuvier as 'the foundation of modern zoology.' The materials, however, were in great part prepared, and the first ontline of a system sketched by Willughyy, the friend of Ray, whom Ray long survived, and whose works he edited. From the days of Aristotle, Z. had never been prosecuted with such acuteness of observation, accuracy of description, and breadth of philosophical generalisation as it was by Willughby and liay. The progress of the science now became rery rapid. Buffon won for it, by his interesting deseriptions and brilliant style, the general attention of the educated portion of society, not only in his own but in other countrics, and was almost immediately followed by Limnents, who, extending his studies from botany to Z., not only extended the science by his own observations and discoveries, but rendered it far greater service by gathering together the facts ascertained by others, and by the improvement which he effected in classification. Some of the larger groups established by Linnæus lave been retained by all snbsequent naturalists without essential modification of their characters, and even his smallest gromps-genera-have been very generally retainerl, although now regarded as constituting tribes or families. According to the Linnæan system, the animal kiugtom is divided into six great classes, which are further brought together in gromp of two each, as follows:
Heart bilocular, with two ? Viviparous. auricles, bluod warm, red, 5 Oviparous. Heart unilocular, with one ? With luncs. auricle, blood cold, red. $\}$ With gills. Heart unilocular with one auricle, circulating fluid Witli antennx.
Withtentacula.
J. Mammalia 2. Lirds.
3. Anıphibia. 4. F ishes. (sanics) cold, white,
The orders into which Limmeus divided these classes lave, in the most important instances, been already noticed, either under the classes, or separately. It was, however, in constituting and defining the genera that Linnæus shewed in the highest degree his powers both of obscrvation and arrangement. His labours in the lower departments of the animal kingdom were much less perfect than in the bigher;

200LOGY

but others speedily entered upon the field, and whilst new speeics of animals and their habits continued to be deseribed, the study of comparative anatomy was also eliligently prosecuted, and thus preparation was made for a more complete and philosophieal system of zoology. The uames of l'allas, Hunter, and Blumenbach are particularly worthy to be noticed; but more than any other, the name of Cuvier, who, like Linneus, took a comprehensive view of the whole subject of Z., aud carricd forward the work of minute observation as well as of generabisation. His system of elassification is rather an improvement of that of Linnxus than one fundamentally new, and it has formed a new startingpoint for all further progress. The divisions, the elasses, and many of the orders of Cuvier's system have already been noticed under their proper heads, so that it may he enough here to give the most general outhine of the system, shewing Cuvier's four great divisions of the animal kingdom, and the classes which he arranges under them.

Dif. I. Vertebrata. Class I. Mammalia. " II. Avcs (Birds).
"III. Reptitia (Reptiles).
" IV. Pisccs (Fishes).
Div. II. Mollusca. Class I. Cephalopoda.
" II. Pieropoda.
"III. Gastcropoda.
"IV. Accphala.

- V. Brachiopoda.
"V L Cirrhoroda.
Div. III. Articulata. Class I. Insectu (Insects).
" II. Crustacea
"III. Arachnida.
„IV. Annelida.
Div. TV. Ridiata. Class I. Echinodermatio. ${ }^{1}$ II. Entozoa.
"III. Acalephe.
"IV. Polyni.
"V. Infusoria.
The system of Cuvier has been modified by I,amarek, Virey, Duméril, De Blainville, F. Cuvier, and others; and in consequence of the progress of scientifie discovery, more considerable clanges have recently been proposed by cminent naturalists, some of them amounting almost to a reconstruction of the greater part of the system; whilst in particular departments, and especially those which contain the lower forms of animal life, Cuvier's arrangement, regarded by himself as merely provisional, may be said to have already become completely anticuated.
A complete system of the animal kingdon has been proposed by Agassiz. He adopts the four great divisions of Cuvier, but makes much change in the subdivisions, acknowledging, however, that much is still uneertain, and that a satisfactory arrangement must depend upon anatomical and embryological researches yet to be made. The following is an outline of his system:

Division I.-Radiata.
Class I. Polypi,
Order 1. Actinoidece.
2. Ifaleyonoidec.
" II. Acalepher, Order I. Mydroidece (ineluding Siphonophorct.
2. Discophore.
3. Ctenophorce.
${ }^{n}$ III. Eehinodcrmata, Order I. Crinoidec.
" 2. Asteroidec.
${ }^{\prime}$ 3. Echinoidece
" 4. Holothuride.
Ditision II-Mollusea.
Class 1. Acephala,
Order I. Bryosoa (including the Vorticclidas). - 2. Brachicpoda.
" 3. Tunicata.
" 4. Lamcllibranchiata.

Class II. Gasteropoda,
" III. Cephalopoda,

Division 1II.-- Anticulata.
Class I. Vermes,
Order 1. Trematoidece (in. cluding CestoiICer, Planarike, andIFirudinide).
" 2. Nematoidece (including Acautho. cophali and Gordiacces).
" 3. Aunclide.
" I. Crustacca, Order I. liotifcra.
" シ. Lintomostrace (including Ciraiuo podu).
" 3. T'etralecapoda.
" 4. Dccapoda.

1) IIL. Insecta,

Order 1. Myriajode.
„ 2. Arachnida.
" 3. Insecta prope:.
Ditision N.-Temtebrata.
Class I. Myzonta, Order 1. Myxinoidecr.
2. Cyclostomata.
" II. Pisccs (Fislues
proper), Order I. Ctenoidece.
2. Cycluidere.
" IIL Ganvidere, Order I. Celacantioc.
" . Accipenseroidece.
n B. Sauroilder.
" 4. Siluroidece.
" 5. Plectognathce.

- f. Lophubranchicce.
" IV. Scluchia,
" V. Amphibia,
" V. Reptilia,
Order 1. Chimerce.

2. Galcodes.
" 3. Batides.
Order 1. Crrilice.
\therefore I Ihtleyouli.
" 3. Anurat.
Orider 1. Serpentes.
" 2. Suurii.

* 3. Rhizodnutes.
n 4. Tcstudinata.
" VII. Aucs,
Order 1. Nutator's.
" 2. Grallec.
- 2. Rasores.
" 4. Inscssones (including Seansorcsand Accipitres).
"VII. Mammalia, Order 1. Marsupiulia.
" 2. IIcroivora.
" 3. Carnirora.
The three Cuvierian divisions of Fortebrata, Mollusca, and Articulate have beeu very geuerally retained by systematic zoologists, without much clange as to the classes or even orders of animals included in each, although it is now gencrally adnitted that the Cirrhopoda are not to be ranked among the Mollusca, but, as Crustacecuss, among the Articulata; and the Polyzoa or Bryozoa, formerly placed with other 'zoophytes' amons the Radiatte, have been removed by many naturalists to a place among the Mollusca. Amongst the Radiata of Cuvier, great changes lave been made; and it may be well to indicate here some of the chief of the new gronps which have been proprosed, and pretty generally accepted by naturalists, although their proper order and their relations to each other cannot be so well set forth as in those departments of the animal kingdom which lave been more thoroughly studied. Greater importance has been assigned by reeent naturalists than by their predecessors to the nerrous system as a basis of elassification. The lowest auimals, those in which no

ZOOPHYTE-ZOROASTER.

trace of a nervous system has been discovered, have been formed into a separate division of the animal kingdom, under the mames Acrita and Protozoa (q. v.), the latter of which has obtained general preference. Higher in organisation than the Protozoa are the Nematoneura of Owen, having a mervous system distinctly traceable in a filamentary form, and including all the higher orders of Cuvier's Radiata. Some groups, as Anthozoct (see Zoopirte), still occupy a doubtful intermediate place between Protozou and Nematoneura. To the Articulata, Owen has, with regard to their nervous system, giren the name Momogangliata (q. r.), and to the Mollusca the name Heterogangliata (q. v.). In like manner, he has recently introduced in his classification of the Vertebrata the terms Hematothermal and Ifamatocryal, these being merely words formed from the Greek, and signifying respectively Warm-blooded and Cold-blooded, the former including Mammalia and Eirds, the latter, Reptiles and Fishes. Further information about the recent classification of some of the lower groups of animals, will be found in the article Worms.

In the study of Z., far more attention has been paid recently than formerly to the relation which each part of the animal organisation bears to the whole, as the Respiratory System to the Circulatory System, the Digestive System, the Nervons System, \&c. The study of the scieuce has thus become more philosophical, and the view ohtained of nature more complete; and if the difficulty of classification is found greater than when characters derived from particular parts of the organisation were more exclusively regarded, the result, when fairly wrought out, is a system at once more perfect and more natural.

ZO'OPHY'TE (derived from the Greek aōon, an animal, and phyton, a plant, and signifying an animal-plant) is a term which was employed by Cuvier in the same sense as he employed Radiata -viz., to designate the Iorrest primary division of the animal lingdom, which includes many animal organisms that are fixed to a definite spot of rock, shell, \&c., and have the form of plants. His zoophytes included the anomalous groups of Infusoriu, Entozoa, and Radiaria,* the latter of which was subdivided into the H ydrozoa, Anthosoa, Acalephae, Echinodermata, and Bryozoa.* Subsequent writers excluded the Infinsoria and Eutozoa from the zooplyytes, and left only those constructed on the radiated type. These were afterwards found to present extreme differences of structure, and it became obvious that the lower forms of Hydrozoce and Anthozoa could not be associated with the Eiryozoa, which arproximate closely to the lower molluses. The term is now never employed by scientific naturalists.

ZO'OSPORE (Gr. zōos, living, aud spora, a seed), in Botany, the name giren to those Spores (q. v.), or seeds of acotyledonous plants, which being furnished with cilia, move spontaneously for a short time after being discharged from the spore-case of the parent plant. The motions of their cilia resemble those of the cilia on the Epithelium (q. \because.$) of the higher$ animals, and on the external surface of some of the lower tribes, as Acalephce (q, v.). In these cases in the animal kingdom, as in this case in the regetable kingdom, there is no appearance of volition, the motion being probably owing to changes of hygrometric or of electric condition, or of both. The purpose served by the ciliary motion in zoospores, is evidently the wider diffusion of seeds; and the

* These terms have been introduced since the time of Cuvier-tho former, wo believe, by Owen; and the latter by Farre.
cessation of the motion after a certain time permits the seed to hecome fixed, in order to germination. Zoospores are found in Characear, Algae, Fungi, and Lichens. They have often becn mistaken by observers with the microscope for animalcules. Similar to them, in the property of locomotion, simulating that of animals, is another class of bodies, also counected with the reproduction of acotyledonous plants, called Phytozoa (q. v.).
ZO'RNDORF, a village four English miles north of Kiistrin, was the scene of the bloodiest of the many desperate conflicts of the Seven Years' War (q. v.). The Russians having for the second time been ordered by the Czarina Elizaheth to invade Prussia, advanced towards Berlin, committing frightful devastations, while Frederick the Great, with the bulk of his forces, was engaged with the Austrians in Silesia and Saxony. The Russians, under Fermor, were 50,000 strong, and easily drove before them Dohna's little Prussian army of 15,000 ; but Frederick being speedily apprised of this new inrasion, hastened northwards with such a reinforcement as raised the army to 30,000 ; aud after taking care, by the breaking down of bridges, \&c. to cut off their retreat, eugaged the invaders. The battle, which commenced at eight in the morning of August 25,1755 , and lasted till evening, consisted mainly in a succession of furious charges, accompanied with a tremendous artillery-fire, and was not decided till Seidlitz, by an able movement, tarned the Russian flank. The Russians, now discovering that they were nearly surromnded, fonght with the utmost desperation, and ultimately both armies bivouacked on the field of battle. In the morning, however, Fermor drew off his forces, diminished by 20,000 men, 103 cannon, and 27 staudards; having inflicted on the Prussians a loss of 13,000 men, 26 cannon, and a fews standards. Generals Soltikof, Czernitchef, and Prince Sulkowski were made prisoners by the Prussians on this occasion; and, oddly enough, the first named was the conqueror of Frederick II. in the next great battle between the two horthern powers, at Kunersdorf ($\mathrm{q} \cdot \mathrm{v}$.).
ZOROASTER, or rather ZARATHUSTRA (which in Greek and Latin was cormpted into Zafastrades and Zoroastres; while the Persians and Parsees altered it into Zerdusht), is the name of the founder of what is now known as the Parsee religion. The original meaning of the word is uncertaiu, and though there have been many conjectures formed about it, yet not one of them seems to be borne out by recent investigations. Most probably, it ouly indicates the notion of 'Chief,' ' 'Senior,' 'High-priest,' and was a common designation of a syiritual guide and head of a district or province. Indeed, the fomnder of Zoroastrianism is hardly ever mentioned without his family name-viz., Spitama. He seems to have been born in Eactria. The terms he alplied to himself are either Manthran, i. e., a reciter of Manthras ; a messenger sent by Ahuramazda; a speaker; one who listens to the voice of oracles given by the spirit of nature ; one who receives sacred words from Ahuramazda through the flames. His life is completely shrouded in darkness. Both the Greek and Roman, and most of the Zend accounts about his life and works are legendary and utterly unhistorical. In the latter, he is to a great extent represented, not as a historical, but as a dogmatical personality, vested with superhuman, or rather divine powers, standing next to God, above the archangels themselves. His temptations by the devil, whose empire is threatencd by him, form the subject of many traditional reports and legends.

ILe is represented as the abyss of all wistlom and truth, and the master of the whole living creation. "We worship"-so rans one of the prayers in the Fravarlin I asht-' the rule and the guindian angel of Zarathustra Spitama, who lirst thouglit good thoughts, who first spoke grool words, who tirst performed good actions, who was the first priest, the first warrior, the first enltivator of soil, the first mophet, the first who was inspired, the first who lias given to mamkind mature, and reality, and worl, and hearius of word, and wealth, and all good things created by Mazda, which embellish reality; who first caused the wherl to turn among gods and men, who first praised the purity of the Jiving ercation and lestroyed idolatry, who confessed the Zarathustrian belief in Ahuramazda, the religion of the living God against the devils.

Through whom the whole true and revealed word was heard, which is the life and guidanee of the workl.
Through his linowledge and speech, the waters and trees beeome alesirons of growing ; through his knowledge and speech, all beings ereated by the Holy Spirit we ntituring words of happliness.'

In the old Vizma (see ZLEND-Aviesta) alone, he appears like a living reality, a man acting a great and prominent part both in the history of his conntry and that of mankind. His father's name seems to have been Puurushâspa, and that of his langhter, the only one mentioned of his children, Pomruchista. Very obscmre, however, remains, eveu by this acconnt, the time when he livel. The dates generally given are as follows. Tanthos of Lyelia jaces him about 600 years before the Trojau war; Aristotle and Eutoxus place lim 6000 years before Plato; othors, again, 5000 years hefore the Trojan war. ' Berosos, a Babylonian historian, makes him a Labylomian ling, and the founder of a dyuasty which reigued between 2200 and 2000 BrC over liabylon. The Parsees place lim at the time of Mystaspes, Darius's father, whon they identify with a lineg mentioned in the Shâh-NAmeln (q. v.), from whom, howerer, Hystaspes is totally distinct. This aceonnt would place him at about 5ju r.c. Tet there is searcely a doubt that he must be considered to beloug to a much earlier age, not later than 1000 D.C.; possibly, he was a contemporary of Noses. It is almost certain that Z. was one of the Soshyantûs, or fire-priests, with whom the religious reform, which he carried out boklly, first arose. 'I'liese were probably at first illentical with the Vedic Ithirvans ((iire-priests), as indeed Zuroastrianism is merely an adranced stage of Bralmanisut. The former creed, that of Ahura, by way of cminence, transformed, after the onthreak of the selism, the good beings of the latter into devils or devas; e. gr, the purely Brahmanic Indra, Sharva, Nísatya, \&c.-unless it promoted them into saints and angels (yagatas). The conflict that lecl to this schism between the Iranians and those Aryan tribes which immigrated into Hindustan Proper, and whose leaders leeame afterwards founders of Brahmanism, sprung from many social, political, and religious eauses. The Aryans seem to have origiually led a nomad life, until some of them, reaching, in the course of their migrations, lands fit for permauent settlements, settied down into agriculturists. Bactria and the parts letween the Oxis and Jaxartes scem to Lave attracted them most. The Iranans became gradually estranged from their brother tribes, who adhered to their ancient nomal life; and by degrees, the whilom affection having turned into hatred, considered those peaceful settlements a fit prey for their depredations and iuroads. The hatred thus nourished, by further degrees ineluded all and everything belonging to these devastators; even their religion, originally identical with that of the
settlers. The 'Jteva religion' heeame, in their eyes, the source of all evil. Monkled into a new form, stylal the ' Nluma' ruligion, the old clements were much more changed ihan was the ease when Judaism became Christiasity: Gencration aftel grencration further aulded and took away, matil \%arathustra, with the cancrgy and the clear eye that helongs to exalted leaders and founders of religions, gave to that which had originally been a mere reaction and spite against the primitive 'Bralmanic' faith, a new amd indepement life, and for crer fixed its ingmas. not it few of whicle lave sprung from his own brains.

It is, as we said in the article on the Zaxn- A vasti, chiefly from the Giathas that Ziurathustra's real theology, mumtilated by later ages, ean be learned. 1 Iis lealiug ialea was monotheism. Wrhatever may have canscal the establishment of the dualism of gods, the good and the evil, in the Persian religiona dualism so elealy marlect at the time of Isaiah, that he found it nccessary to motest emphatically against it-it was not $\%$. who proclamed it. His dualism is of a totally different nature. It was merely the principle of his speculative philosopliya supposition of two primeval canses of the real and the intellectual workl. His moral philosophy, on the other hand, moved in a triad-thondrht, word, and deed. There is no complete system of Zoroastrian philosophy to be fomm in the Zend-Avesta, any more than there is a developed Platonic system lajl down explicitly in the Platonie writings; but from what is to be gathered in the doomments refurred to, it camot be donbted that Z. was a deep and great thiuker, far above his contemporaries, and wen many of the most cnlightened men of subsequent ages. If proof were newded for the high appreciation in which lee was hek in antiquity, it might be foume in the ciremmstanec, that even the Greeks amel lomans, not particularly siven to overrating foreign learnine and wisdom, held him in the very higlest estimation, as may be seen by their reiterated praises of the wisdom of lim whose mame thay scaredy knew how to prononnce.

With regard, then, to the first point, his monotheism, it sulliees to montion, that while the tirepriests hefore him, the sushyantos, worshipued a plurality of good spirits called Alamas, as opposed to the Indian devas, he redueci this plurality to a unity. This one supreme being he called Ahuro Nazdaó (that Alura whiels is Mizdao), or the ereator of the miverse-the Ammazala of the emeiform inserij. tions of the Achemenidian kiogs, the Alnwmazil of Sassanian times, and the Hormazd or Ormazi of modern Parsees. This supreme god is by $\%$. conceived to be 'the creator' of the carthly and spiritual life, the lorl of the whole miverse, at whose hands are all the ereatures.' The following extract from the (fâtha (Uistavaiti) will leave nu doubt on that much-contested point: "Blessed is he, blessed are all men to whom the living wise God of his own commzad should srant those two everlastiug powers (vizo, inmortality and wholesomeness). ...I bulicye Thee, O Got, to be the hest thing of all, the source of light for the worll. Everybody shall choose Thee as the sonree of light, Thee, Thee, holiest spirit Mazda! Thon createst all good things by means of the power of Thy good mind at any time, and promisest us, who believe in Thee, a long life. I believe Thee to be the powerful holy god Mazala! for 'Thou givest with 'Tby land, filled with helps, good to the pions man, as well is to the impious, by means of the warmenth of the fire strengthening the good things. From this reason, the vigour of the good mind has fallen to my lot.

Who was in the beginning the fatber and the creator of truth? Who shewed to the sun and the
stars their way? Who canses the moon to increase and wane, if not Thou?. ... Who is holding the earth and the skies above it? Who made the waters and the trees of the field? Who is in the winds and in the storms that they so quickly run? Who is the creator of the good-minded beings, Thou wise? Who made the lights of good effect and the darkness? Who made the sleep of good effect and the activity? Who made morning, noon, and night?' Ahuramazda is thus to Z. the light and the source of light. He is wisdom and intellect; he possesses all good things, temporal and spiritual, among them the good mind, immortality, wholesomeness, the best truth, devotion, piety, and abundance of all earthly good. All these gifts he grants to the pions man who is pure in thought, word, and deed. He rewards the good, and punishes the wicked; and all that is created, gool or evil, fortune or misfortume, is his work alone.
We spoke of Z.'s philosophical dualism, and of its having ofton been confounded with theological dualism, which it is certainly very far from being. Nothing was further from Z.'s mind than to assume anything hut one supreme being, one and indivisible. But that everlasting problem of all thinking minds-riz., the origin of eril, and its incompatihility with God's goorlness, holiness, and justicehe attempted to solve by assuming two primeval canses, which, though different, were united, and produced the world of the material things as well as that of the spirit. The one who produced the reality (gaya) is called Vohu Mano, the gool mind ; the other, through whom the nou-reality (ajyâiti) originated, is the Akem Manô, the naught mind. To the first belong all good, true, and perfect things; to the second, all that is delusive, bad, wicked. These two aboriginal moving causes of the universe are called twins. They are spread everywhere, in God as in men. When united in Ahuramazda, they are called Cpentô Maimyus, and AngTô Mainyus-i. c., white or holy; and dark spirit. It is only in later writings that these two are supposed to be orposed to each other, not within Ahuramazda, but without-to stand, in fact, in the relation of God and Devil to each other. The inscriptions of Darius know but one god, withont any adversary whatsoever. But while the one side within him produced all that was bright and shining, all that is good and nseful in nature, the other side produced all that is clark and apparently noxious. Both are as inseparable as day and night, and though opposed to each other, are indisprensable for the preservation of creation. The bright spirit appears in the blazing flame, the presence of the dark is marked lyy the wood converted into charcoal. The one has created the light of the day, the other the darkness of night; the former awakeus men to their duty, the other lalls them to sleep. Life is produced by the one, and extinguished by the other, who also, ly releasing the soul from the fetters of the body, cnables her to go up to immortality and everlasting life.

We have said already that the original monotheism of Z. did not last long. False interpretations. misumderstandings, changes, and corruptions crept in, and dualism was established in theology. The two prin. ciples then for the first time hecame two powers, hostile to each other, each ruling over a realm of his own, and constantly endeavouring to overthrow the other. This doctrine, which appears first fully developed in the Vendidad, once accepted hy some of the most infuential leaders, it soon followed that, like terrestrial rulers, each of the two powers must have a council and a court of his own. The number of councillors was six, each having to rule over some special province of creation ; hut Ahuramazda,
who at first merely presided over this conncil, came gradually' to be included in their number, and we then read of seven instead of the usnal six Ameshaspentas, or Immortal Saints. These six supreme conucillors, who have also found their way into the Jewish tradition embodied in the Talmud, are both by etymology and the sense of the passages in which they figure, distinctly seen to be lut abstract nouns or ideas, representing the gifts which God grants to all those who worship with a pure heart, who speak the truth, and lerform good actions. The first of these angels or principles (Vohu Nano) is the vital faculty in all living beings of the grood creation. He is the son of Ahuramazda, and penetrates the whole living good creation. By him are wrought all good deeds and rords of men. The second (Arlibehesht) represents the blazing flame of tire, the light in luminaries, and brightness and splendour of any and every lind. He represents, as the light, the all-perrading. all-penetrating Ahuramazda's omnipresence. He is the preserver of the vitality of all life and all that is good. He thans represents Providence. The third presides over metals, and is the giver of realth. His name is Sharavar, which means possession, wealth. The fourth (Issaudarmat $=$ Devotion) represents the earth. It is a symbol of the pious and obedient heart of the true A huramazda Torshipper, who serves God with his body aud soul. The two last (Khordald and Amerdât) preside over vegetation, and produce all kinds of fruit. Dut apart from the celestial council stands Sraosha (Serost) the archangel, rested with very high powers. He alone seems to have been considered a personality. He stands between God and man, the great teacher of the prophet himself. He shews the way to hearen, and pronounces judgment upon bumau action after deati. He is, in the Lazna, styled the Sincere, the Beautiful, the Victorions, who protects our territories, the Trae, the Master of Truth. 'For his splendour and beauty, for lis power and victory,' he is to be worshipped and invoked. 'He first sang the live Gathas of Zaratlustra Spitama;' that is, he is the bearer and representative of the sacred tradition, including the sacrificial rites and the prayers. He is the protector of all creation, for 'he slays the demon of Destruction, who prevents the growth of nature, and murders its life. He never slumhers, but is always awake. He guards with his drawn sword the whole world against the attacks of the demons, eudowell with bodies after sunset. He has a palace of 1000 pillars, erected on the highest summit of the monntain Alborj. It has its owa light from inside, and from outside it is decorated with stars. He walks teaching religion romed about the worki. In men who do not honour hin by prayer, the bad mind becomes powerful, and impregnates them with sin and crime, and they shall become utterly dis tressed both in this life and in the life to come.
In the same manner as Ahuramazda, his counterpart, Angrômainyus, was in later times endowed with a council, imitated from the one just mentioned, and consisting of six devas, or devils, headed by Angrômainyus himself, who is then styled Devânam Devo $=$ arch-deril. The first after him is called Ako Mano, or Naught Mind, the original 'nonreality, or evil principle of Zoroaster. He produces all had thonghts, makes man utter bad words, and commit sin. The second place is taken by the Indian god Indra; the third, by Shiva or Slayurva; the fourtla, by Naonhaitya-the collectise name of the Indian Ashuras or Dioscuri; the fifth and sixth, by the two personifications of 'Darkness' and 'Poison.' 'There are many devas, or devils, besides to be found in the Zend-A resta, mostly allegorical or symbolical names of evils of all kinds. While the

ZOROASTER-ZOŞIMUS.

heavenly council is alrajs taking measures for promoting life, the infernal council is always endeavouring to destroy it. They endeavour to spread lies and falsehoods, and altogether coincide together with their great chicf, with the devil and the infernal hierarelyy of the New Testament.
Thus Monotheism was in later times hroken up aud supersedel by Dualism. But a small party, representerl by the Magi, remained steadfast to the old cloctrize, as opposed to that of the followers of the false interpretation or Zend, the Zendiks. In order to prove their own interpretation of Zoroaster's doctrines, they had recourse to a false and ungrammatical explanation of the term Zervana Akarana, which, morely meaning time without hounds, was by them pressed into an identity with the Supreme Being; whilst the passages on which the present Desturs, or Parsee priests, still rest their faulty interpretation, simply indicate that God created in the boundless time, i. e., that He is from eternity, selfexisting, neither born nor created. Two intellects and two lives are further mentioned in the ZendAresta. By the former are to be understood the heavenly, spiritual wisclom, and the earthly wisclom, i. e., that whieh is learned lyy ordinary teaching and experience. The two lives are in the same manner distinguished as the bodily and the mental, i. e., body and sonl. From these two lives, however, are to be distingnished the 'first' and 'last' lives, terms which refer to this life and the life to come. The belicf in the latter, and in immortality, was one of the principal dogmas of Z., and it is held by many that it was not through Persian influence that it becane a Jewish and a Christian dogma. Heaveu is called the 'House of Hymns,' a place where angels praise God incessantly in song. It is also called the 'Best Life,' or Paradisc. 'Hell' is called the House of Destruction. It is the abode chietly of the priests of the bad (deva) religion. The modern Persians call the former Dehesht; the latter, Duzak. Between heaven and bell, there is the bridge of the gatherer or Judge, over which the scul of the pious passes unharmed, while the wicked is preeipitated from it into hell. The resurrection of the horly is clearly and emphatieally indicated in the Zend-Aresta; and it belongs, in all probability, to Z.'s original doctrine--not, as has been beld by some, to later times, when it was inported into his religion by other religions. A detailed description of the resurrection and last judgment is contained in the Eundehesh. The same argu-ment-the almightiness of the Creator-which is now employed to shew the possibility of the elements, dissolved and scattercal as they may be, being all brought hack again, and made once more to form the borly to which they once belonged, is made use of there to prove the Resurrection. There is still an important element to be noticed-viz., the Messiah, or Sosiosh, irom whom the Jewish and Christian notions of a Messiah are beld, by many, to have been derived. He is to awaken the dead hodies, to restore all life destroyed by death, and to hold the last judgment. Here, again, a later period introducel a ${ }^{\text {li }}$, great prophets are also to appear when the end of the world draws nigh, respectively bearing the names of Moon of Ilapry Rule, Aurora of Happy Rule, and Sosiosh, who is supposed to be the son of Zarathustra, begotten in a supernatural way; and he will bring with him a new portion of Zend-Ivesta, hitherto Ifidden from mau. Even a superficial glance at this sketch will shew our readers what very close parallels between Jewish and Christian notions on the one hand, and the Zoroastrian on the other, are to be drawn; but, as we have noticed under Parsees (q.v.), an attentive reading of the Zend-Avesta
reveals new and striking points of contact almost on every nage.

We have in the foregoing sketel mainly followed Haug, the facile princeps of Zend studies in these days; but we have also taken into account the views of Windischmann, Spiegel, and other prominent investigators, and principally by quoting the words of the saered sourecs themsclues, when feasible, put our readers in a position to judge on the main points for themselves. We cannot, however, do better than thus briefly summarise, in conclusion, the prineipal doetrines of Z., as drawn from a certain speech (contained in the Gathas), which, in all prok. ability, omanates from Z. himself.

1. Everywhere in the world, a duality is to be pereeived, such as the Good and the Evil, light and darkness; this life ant that life, human wisdom and divine wisdom. Only this life beeomes a prey of death, but not that bereafter, over whieh the destructive spirit has no power. 3. In the universe, there are from the beginning two spirits at work, the one malking life, the other destroying it. 4. Both these spirits are accompanied by intelleetual powers, represeuting the ideas of the Platonic system on which the whole moral world rests. They cause the struggle between good and evil, and all the conflicts in the world, which end in the final victory of the good priuciple. 5. The principal duty of man in this life is to obey the word and commandments of God. G. Disobedience is punisher with the death of the sinner. 7. Ahuramazda created the idea of the good, but is not identical with it. This idea prodneed the good mind, the Divine Spirit, working in man and nature, and devo-tion-the obedient heart. S. The Divine Spirit cannot be resisted. 9. 'Those who obey' the word of God will be free from all defects, and immortal. 10. God exercises his rule in the world through the works prompted by the Divine Spirit, who is working in man and nature. 11. Nen should pray to God aud worship Him. He hears the prayers of the goorl. 12. All men live solely through the bounty of God. 13. The soul of the 1 mure will hereafter enjoy everlasting life; that of the wicked will have to undergo everlasting funishment-i. e., as modern Parsec theologians explain, to the day of the resurrection. 14. All creatures are Ahuramazda's. 15. He is the reality of the good mind, word, and deed.' Sice Pifisets, Guemies, Zemd, Zend-Avisia, \&c.

ZOSIMUS, of Constantinople, a Greek historian, who lived in the 5th c. A.D. He wrote the History of the lioman Emperors, in six books, from Augustus to $410 \mathrm{~A} . \mathrm{D}$. His style is concise, clear, and interesting. He seeks to unfold the causes of the clecline of the empire, and being himself a pagan, be adduces as the chief, the neglect of the pagan religion which attended the progress of Christianity. The unsparing severity with which he assails various Christian emperors, especially Cunstantine, has heen considered hy some (e. g. Bentley) to detract from his credibility as a historian. From his own point of view, he shews a considerable degree of acuteness in his remarks. Nothing is known of his personal history:

ZOSIMUS, Pope, and successor of Innocent I., requires a brief notice on account of his connection with the history of the heresiarch Pelagins (q. v.). Z. was a Greek by hirth, and was clected Bishop of Rome, March 1, 417. The African bishops had condemned the opinions of Pelagius, and this judgment had been ratified by Poje Innocent. In the interval, however, Pelagius appealed to the pope; and his disciple, Celestius, came in person to Fome, where be presented a confession of faith in his own justitication. Z., having convened a council of bishons and submitted this to them, was

ZOUAVES-ZUG

induced by the specious explanations of Celestins to suspend the judgment, and eren to write to the African bishops, recommending a reconsideration of the case. This apparent conflict of Z. with his predecessor, although it has been used by the Gallican as well as Protestant controrersialists as an argument against papal infallibility, was nevertheless only temporary. On further examination of Celestius, Z. became sensible that he had been deceived; and eren before the reply of the African bishops, confirmed and renersed their original condemnation of the Pelagian doctrine. He dicd December $26,41 \mathrm{~S}$. His Letters, which are curions and interesting, are found in Constant's Episiolce Romanorum Pantificum.

ZOUAVES (Arab. Zwau*a), a bolly of troops in the French army, which derives its name from a tribe of Kabyles, inhabiting the mountains of Jurjura, in the Algerian province of Constantine. Long previous to the invasion of Algiers by the French, these Kabyles had been employed as hired mercenaries in the service of the rulers of Tripoli, Tunis, and Algiers; and after the conquest of the last named country in 1830 , the French, in the hope of establishing as friendly feeling between the natires and their conquerors, took the late Dey's mercenaries into their service, giving them a new organisation. Accorlingly, General Clausel created, in 1530 , two battalions of Z., in which each company consisted of French and Kabyles in certain proportions, officers, subalterns, and soldiers being selected from either race; the Z., though retaining their Moorish dress, were armed and disciplined after the European fashion; and the battalions were recruited by voluntary enlistment. As it was soon found, however, that the system of commingling the two races did not effect the object intended, the French and Kabyles were formed into separate companies; and in 1837 , they were divided into three battalions, and put under the command of a colonel. Their first colonel was Lamoricière, who mainly effected their reorganisation, and under rhom, as mell as his successor, Cavaignac (q.৮.), they distinguished themselres in many a bloody contlict with the Arabs of the south. Gradually, however, the native element was eliminated, and since 1810 , they may be considered as French troops in a Moorish dress. In 1852 and in 1855, their numbers were greatly auginented, and they now amount to about 15,000 men, divided into four regiments of three battalions each. They are recruited from the reterans of the ordinary infantry regiments who are distinguished for their fine 'physique' and tried courage and hardihood; clad in a loose jacket and waistcoat of dark-blue cloth ornamented with yellow braid, loose maddercoloured trouscrs, brown cloak, madder-coloured Fez cap with a yellow tassel, surrounded by a green turban, a light blue sash of wool, yellow leather leggings, and white gaiters; and armed with a carbine and sword-bayonet. The uniform of the officers and subalterns is the same as that of the hussars.

One regiment of Z., of two battalions, is incorporated in the Imperial Guard. The name Z. was also given to several regiments which sersed on the side of the Federals in the recent American civil war; but except by their brilliant and picturesque dress, they were not distinguishable from the other Folunteer regiments of the army:

ZSCHOKKE, Jomasis Hetvrici Daviel, one of the most eminent German authors of this century, was Jorn at Magdeburg on March 22, 1771. On leaving school at the age of 17 , he joined a company of players in the capacity of a dramatic author. He trarelled with them for some time, after which
he returned to his family, and entered the umiversity of Frankfurt. There he seems to have studied all subjects from divinity to administration (Kameralwissenschaften). He at the same time acted as a private teacher, and publisked plays which brought him some reputation, but no pay. In 1795 , be was disappointed in olutaining the post of Ordinary Professor, for which he applied, and set out on a tour through Germany and France. He settled finally at Peichenau, in the Grisons, where he opened a boarding-school. So much pleased were the governing bodies of the cauton with his establislument, that they presented him with the citizenship. In return for this farour, he wrote a History of the Grisons, published at Zuirich in 179S (Geschichte des Freistaats der drei Bünde in Rlätien). In the same year, horsever, Z. became unpopular in the canton by adrocating its annexation to the Helvetic Republic established by the French, and his school was in consequence closed. He remored to Aarau, then the seat of government, where he mas employed as a commissioner to settle the affoirs of Unterwalden, Uri, Schwyz, and Zug, a trust which he discharged with the utmost ability and good temper. The benerolent interest, indeed, which he mamfested in the sufferings of the population has made his name memorable as a national benefactor. It would be tedious to enumerate the political and administrative affairs in which Z. was actively engaged after this period; we find him at one time protesting against the arbitrary proceedings of the French, and at another pointing out the prudence of concession, but always taking a course marked by practical sagacity and misdom. In 1804 , he was presented with the citizenship of Aargau and appointed Inspector of Woods and Mines. In the same year, he founded the Swiss Messenger (Schweizerboten), a publication which rapidly hecame popular. It was follorred by the Miscellany of the Latest News (Miscellen fïr die neweste Weltdunde), which was continued down to 1813. In 1811, he added a monthly periodical, the Eirheiterungen, to these pablications. He died at Aarau, June 27, 1S1S. Z.'s works are very numerous, and are always characterised by sound information, good sense, and a vigorous and effective eloquence. The most important of his historical works, not mentioned abore, are History of the Farest Cantons, a History of Bavaria, a Popular History of Switzerland. His vovels or tales are more numerous and better known; among the best are The Creole, Alamontade, Jonathan Frock, Clementine, Osucald, and Meister Jordan. As a poet and play-writer, Z. has less merit. The most popular of all his writings was the Hours of Devotion, a Sunday periodical: it supplied a complete exposition of modern rationalism, and yet displayed such zeal and eloquence in the cause of sound morality, that it met with approbation from persons of all creeds. It has gone through 40 German editions, and, with many other works of Z., has been translated into English. A collected edition of the works of Z. was published at Aarau in 1825.-See Life of Zschokke by Munch (Haag, 1S31).
ZSCHOPPAU, a town of Saxony, in the circle of Zwickau, and about 26 miles east of the tomn of that name, on the river Zscloppau. It has a castle and two churches; manufactures of bosiery, cloth, lace, \&ic.; weaving, wool-spinning, dyeworks, bleach-fields. Pop. TG0U.

ZUG, the smallest of the Swiss cantons, is about 14 miles in length by 10 in midth. It bad, in 1860 , a pop. of 19,608 . The south-easterm part of the canton borders on the Alpine region, and is hilly and pastoral : the north-western part, sloping to the plain of Switzerland, and enclosing a gloat part

ZUIDER ZEE-ZULU

of the Lake of Zug, is a rich and beautiful comentry of corn-fields and orehards. The chicf exports of Z. are dricd fruit, eattle, and the products of the dairy. Z. is a representative democracy, all citizens above 19 cnjoying the franchise. There are two councils, one cousisting of 162 members, which discharges legislative functions, and another consisting of $5 \pm$ members, which conducts the administration. The inhabitants speak Swiss-German, and are Roman Catholic. 'line battle of Morgarten, which founded the independence of Switzerland, was fought on the fronticr of this canton in 1315 ; but it was not till 1852 that Z. joined the Swiss Confederation. - Zng , the capital of the canton, bas a prop. of from 3000 to 4000 .

ZUIDER ZEE, a large gulf penetrating decp into the Netherlands, between $52^{\circ} 26^{\prime}-53^{\prime} 20^{\prime} \mathrm{N}$. lat., is about 60 miles in length, and 210 miles in circumference. The islands Texel, Vlieland, Ter Schelling, Ameland, and Schiermonnikoog, reaching in a chain from the most northern point of Holland, are the remains of the former line of coast, which, form a breakwater against the North Sea. From Dunkirk in French Flanders to the north of Holland, the interior is defended from the sea by sandhills or downs. Here, as at the mouth of the Scheldt, the sand-barrier was broken, and the waters overtlowing the low lands, separated the province of Frieslaud from the peninsula of North Holland, and, having united with the small inner lake Flevo, formed the present Zuider Zee. This Hood occurred on November 1, 1170.
In the Z. Z., lie the islands Wieringen, पrk, Schokland, and Marken, with a pop. of alont 5000 souls. Fishing is the principal industry. The lighttower. on the east proint of Marken, stands in 52° $97^{\prime} 37^{\prime \prime}$ N. lat. ; and the inhabitants are a hardy, industrious, and independent preple, who live by fishing and exporting meadow-hay. They cling tenacionsly to their old customs, and never marry excent among themselves. The houses are lonitt on artificial mounds, or 'hills of refnge;' and the island being liable to frequent and heavy floods, few cows or sheep are kept, no gardens or trees planted, the necessaries of life being almost all brought from the mainland.
From the south-east of the Z. Z., a long narrow arm, called the Y (pronounced I), runs nearly due west, through the peninsula of Holland, towards the sand-hills which defend the land from the North Sea. A strong sea-dyke and locks are in progress of construction to cut off the $Z . Z$. from the X, through which a broad ship-canal is being made between Amsterdam and the North Sea, on which a new harbour is to be formed. As the works proceed, abont 15,000 acres of land will be drained, and converted into pastures. There is also a plan devised for dyking in and draining the central portion of the $Z . Z$. from the mouth of the Yssel to Enkhnisen, by which room would be made for 200,000 inhabitants, and a new province, containing 500,000 acres, added to the Netherlands.
$\mathrm{ZU}^{\prime} \mathrm{LU}$, or AMAZULU, is the name of that portion of the Kaffir race who inhabit Natal and the region north-east of it, until they gradually merge into the mere uegro of the east coast, north of the Zambesi. The Kaffir organisation appears to hold aw intermediate place between that of the negro and a higher type; and as we go south and west, from the swamps and malaria of Delagoa Bay and Sofala to the more healthy and bracing regions of Natal and Independent Kaffraria, the Kaftir features appear, as it were, to grow more refinedthe month protrades less, the lips are less thick, and the nose assimilates more to that of the

European, although the distingushing type of woolly hair may still contime.

The Z. Kattir is a far more amiahle savago than his brother the Amakosa of the Cape frontier districts. He is less warlike and predatory, more industrious, and far more willing to act in the eapacity of a farm-labourer or domestic servant. In language, eustoms, hahits, \&c., althourg ecrtain tribal and local differences occur, yet they may be called common to all the nation, as a Z. Kathir las no difliculty in understanding a native of British Kaffraria; and his views of a future state, purchase of wives, \&c., are pretty similar. The \% is by nature social, light of heart, and checrful; his affections are gentle, steady, and enduring; his passions are, however, strong, and called ont when in a state of war. He is comparatively chaste; crimes which stain European or Eastern civilisation are unknown to him. He is hospitable and honest, yet greedy and stingy; he is kind to his own family, yet crucl to dumb animals; and whatever the better nature of his impulses may be, yet when his great clicef commands war, he is conrerted into a demon. He is mond, and very easily can distinguish between an English gentleman and the loafing tribe with which too many of our colonies are aflicted. The writer of this article, by the exercise of a little kinduess and firmness, has expericnced the most utter devotion from individuals of the Faffir race generatly. Their reasoning powers are good, aucd with an improved edncation, a Z. rationalist might not disgrace a chair in the Sorbome.

It is from the Z. country, however, that those terrible tyrants who so long devastated south-eastern Africa, the chiefs Chaka, Dingaan, Moselikatze, \&e. issucd. The training of their sulbjects to a peculiar mode of warfare spread desolation anil havoc for many years amongst the Betjuana and other tribes of the interior, until eventually these mighty chiefs with their thousands of followers, fighting, like Homer's heroes, hand to hand, armed with stabbing assagais and shiclds of ox-hide, the colours of which ilistinguished the elifferent regiments they were formed into, melted away with lroken power into comparatise insigniticance befnre the terrible rifles of a few hundred emigrant Dutch Boers, who, in their turn, gave way to the energetic action of the British authorities (see Natal). The Zulus, although they have very often serions intestine wars amongst themselves, yet live on rery friendly terms with the Natal colonists, anongst whom a considerable number of refngees from the conntry east of the Umtugela dwell in peace and safety, and are, in many cases, fast acquiring a comparative independence.

A number of missionary societies of the Wesleyan, American, Norwegian, and Episcopal churches labour amongst these tribes; and considerable interest has lately, been felt with regard to Pishop Colenso's peculiar views for the evangelising these heathens, and his Z. is becoming almost as famous as Macaulay's New Zealander.
The Amafengu tribe, now settled along the Cape frontier, are a broken tribe of Zulus, driven far to the south-west by Chaka or Dingaan, then reduced to slavery by the Amakosa Kaffirs, and freed by Sir B. Durban in the Kaffir war of 1834-1835. The principal 7. tribes are the Amazulu, the Amahute, Amazwazi, and Amatabele. The last, under the chief Mosclikatze, have emigrated far to the north, where, amongst the momtains which separate the valley of the Limpono from the basin of the Zambesi, they still issue forth, and carry their depredations as far north as the Lake Nyassa, where they ware found by Dr Livingstone thrce or four years ago. It is almost impossible to give an accurate idea

ZULULAND-ZUMALA-CARREGUY.

of the number of those trihes inhabiting south-east Africa: it has been varionsly estimated from half a million to two millions or more. Of the language spoken by the Z. and other Kaffir tribes, it must be observed that that in use by the Natal and Zululand liaffirs is much more pure than that spoken ly the Kiaffirs on the Cape frontier, where Hottentot clicks and vulgar colonial Dutch words have got very much mixel up with it.

ZU'LULAズD. The conntry lying north-east of the colony of Natal, between its east bonndary, the Tmtugela and Umzinyati rivers, lat. $29^{\circ} 10^{\prime} \mathrm{E}$., and Delagon Bay, lat. $26^{\prime} \mathrm{S} .$, long. $32^{\circ} 40^{\prime} \mathrm{E} .$, is generally known under the name of Z., or the Zulu country, inhabited by independent tribes of Zulu Kaffirs, those living in the immediate vicinity of the Natal colony being subjects of the paramonnt chief Umpanda, and his son Keteliwayo, the snccessor of the tyrants Chaka and Dingaan. The great coast chain of monntains, which form in the Cope Colony the Stormbergen, and further to the nortli-east the Kahlamba and Drachenbergen, still continue well defined to the north-east, running parallel to the coast, hut 120 miles distant from it, separating the coast region of Z. from the higher plateanx inhabited by the Dutch Boers of the Transvaal Repulbic, and rising to an average height of 6000 or 7000 feet. East of the Umtngela River, the country spreads out into large, undulating, grassy plains, but sparsely wooded; while towards the foot of the mountains the klaofs afford some excellent timber. The principal rivers are the Unvoluzi or St Lucia River, which enters the sea about $S 0$ miles north-east of the Natal frontier; and the Mapoota and its branches, which drain the nortly part of the region, and fall into Delanoa Bay: The comntry along the coast between the St Lncia Rirer an! Delagoa Bay is very flat, marshy, and nuhealthy. A considerable range of mountains, called the Lebombo, run from the Umvoluzi River almost in a northerly direction to heyond Delagoa Bay, about half way between the coast and the first range we have mentioned, forming a supporting buttress to a platean of high level, similar to those so common in the Cape Colouy and Natal.

This is generally a fertile region, aud, as far as the coast-line, is healthy: Sugar, cotton, and other tropical products can be grown as adrantageonsly as in the Natal colony, to which it forms, as it were, an intermediary link between the feverregions of the east coast and the more healthy climate of Natal and the Cape Colony. The St Licia Piver marks the boundary-line beyond which, to the north-east, Enropeans cannot live. Althongh our traders have tolerably well explored the Zulu courtry, yet no good map of the region exists, and we know very little of its geology or mineral productions. None of the rivers are available for inland navigation, although a large lagoon inside the mouth of the St Lucia Fiver can be asceuded for a few miles. The rivers which fow into Delagoa Bay from the north are sluggish streams, often with no perceptille current, and can be ascended a cousiderable distance. A large quantity of ivory, rhinoceros' horns, hides, \&c. are collected in this region by traders from Natal; and cattle, Indian corm, \&e. thrive well in the country before the swampy region commences. The principal tribes are all of the Zulu race-the Amazulu inhabiting the region bordering on Natal; the Amalinte, Amazwazi, \&c. the comntry in the neighbourhood of Delagoa Bay. The Portugnese have a very decayed fort and settlement on Delagoa Bay, garrisoned by a few mulatto soldiers, and carrying on some trade with the natives and Datch Boers in gunpowder, muskets, calico, \&c., in exchange for ivory, horns,
and other native produce; and a contraband one in slaves is also, we fear, wiuked at by the authorities, as caftures are often made along the coast by our cruisers. The Dutch emigrant Boers, who very much require a port on the sea-board of South-east Africa, would long since have seized on Delagoa Bay, if it were not from a wholesome dread of the very unlealthy climate, which appears to affect those stalwart sons of the highlands of Sonth-east Africa more even than it does Europeans or North Americans.

ZUMILA-CARREGUY, Doy Toscls, the most distinguished of the generals who supported the cause of Don Carlos during the Spanish Civil War of 1833-1840, was born in 1789 at Ormaiztegua, in the Biscayan province of Guipuzcoa. Of an aristocratic, though not wealthy family, he was deeply imbued from infancy with royalist sentiments, which gathered strength with increasing years, till they led him, like the Vendean leaders, to sacrifice fortune and life for a prince wholly unworthy of such devation. At the time of the invasion of the Peniusula by Napoleon, Z. was a student of law at Pampeluna, and like many of the Spanish yonth, he deserted his stulies to take up arms against the invader, serving in Mina's corps till the close of the war. He afterwards served under Quesacla in the 'Army of the Faith;' and on the re-estabhishment of absolutism, was raised to the rank of colonel, and appointed governar of Ferrol. He displayed excellent administrative qualities; but his decided leaning to the party of the Carlists (though he repelled indignantly all proposals to proclaim Don Carlos king during the life of Ferdinand VII.) becoming known, he was tried by a council of war, and acquitted. In 1S32, when the army was purged of all officer's suspected of Carlisun, Z. was dismissed, and retired to Pampelnna, where he lived in retirement till the death of Ferdinand and the rising of the Basque population called him to head the Carlist insurrection (October 11, 1833). His motley army was without uniform, ill fed, ancl ill paid; yet the profound esteem in which 'el Tio Tomas' was held by his followers enabled him to maintain an effective discipline. The overwhelming superiority in number of the Christinos, however, forced him to adopt a defensive system of tactics; so, holding the command of Biscay and Nowarre, and the strongholds of Fuenterrabia and Irun, to assure his retreat into France, if necessary, he kept his opponents at bay, defeated Fodil in the valley of Amescoas (August 1, 1834), routed another force of Christinos at Viana (September 7), gained a second victory in the Amescoas Talley in the following spring, completely defeating Valdez, after a battle of four days, and routed Iriarte near Guernici. These brilliant successes of his skilful and deroted partisan flattered the too sanguine and somewhat weak-minded Don Carlos with the hope of speedily seating limself on the throne, rendered him less willing than formerly to be grided by the comnsels of Z, and led him to interfere with the latter's sclemes, to his own detriment. Accordingly, after another year's successful fighting with the Christinos, Z. was ordered to lay siege to Bilbao; but on June 15,1835 , he received a gun-shot wound so severe that he died ten days afterwards. With Z.'s death, all hope of success for the Carlists was extinguislied; and though the war dragged on desultorily for some years longer, the result was never doulitful. Z. was as distinguished for geucrosity and disinterestedness as for fidelity; and so much had he impoverished himself by liberality to his soldiers, that neither his wardrobe nor his treasury supplied the means for lis decent inter-ment.--See Menningsen's Tuelve Months' Campaign
with Zumalu-Carreguy in Natare and the Laspue Prorinces (2 vols., lond. 1836).

Z U 'liICII, a canton on the north eeastern frontier of Switarland, is drained by the Rhine and its tributaries. 1 ts 1 mp , in $180($, was $266,26 \%$. It is traversed by ridges of lofty hills, ruming north-west and sonth-east, between which lie three valleys, f orminf almost its whole surface-those of the Toss, the Gilatt, and the Limmat. The Lake of Zurich penetrates 7 . for a distance of :'6 miles, and comects it with the cantons of schwyz and Sit Gall. \%. has not a fertile soil, but it is carefully cultivatenl. A considerable quantity of corn is raised in the canton, though not eunugh to supply the wants of the popmlation. Vineyards and orchards are numerons; but the pasture-lamels are of much greater importance, and cattle form the chief wealth of the agricultural population. Z. Was one of the earliest seats of the cotton manufacture in Europe, and the spiuning and weaving of cotton are still lrosecuted with great success. The silk manufactures are nearly as important; and more recently, the progress made in the manufacture of railway locomotives and other machinery, has been a cause of some alarm to English engincers. The mecharics of Z. divide their attention between agriculture and manufacturing inclustry, and are among the most prosperous and best educated working-men in Europe. The government of the canton is a representative demo-cracy-all adult citizens of 20 enjoying the franchise. The great council of 212 mombers is elected chictly by the citizens, but to a small extent by its own members. It appoints an executiye council of 19 members, which continues to act for six years, and which is presided wer lyy the burgomaster. The chief towns are-Ziirich, the eapital, and Winterthar (pop. from 50100 to 6000). But there are a large mumber of populous and thriving villages scattered over the canton, which are now ennnected by a railway system. ($1870-101$. 284.706 .)

ZÜIICII, the capital of the canton of the same name, is situated at the point where the Limmat issues from the Lake of Zirrich, anel unites with its tributary, the silu. Its pop, in 1560 was $19,75 \mathrm{~s}$. It is one of the most presperons manufacturing and commercial towns of switzerland; yet the narrow streets and lufty houses of its oher quarters, on the high ground cast of the river, give it the quaint aypearance of a medieval city: Therc are many interesting old buildingsthe most remarkable being the cathedral, erected in the 11th entury. The miversity, the gymnasinus, and the school of industry have fons enjoyed a high reputation. The town library is extensive : and mumcrous muscums of natural history, \&c., indicate the intelligence amd cultivatel tastes of the population. (18:0-pop. 21,199.)

ZU'RUMA, a town of Ecualor, South America, in the dept. of Assuay, on the west slope of the Andcs, about 30 miles from the west coast, and 90 south of Guayaquil. It is situated in a mining district-its gold aud silver mines having rendered it formerly very populous, but its importance has greatly declinel. Por. about 6000.

ZU"IPHEN, a fortified town in the Netherlands, province of Gelferland, is beautifully situated on the right bank of the Ysscl, where that river is joined by the Berkel, in a picturesque district of country, chicily under cultwation, and variegated with abundance of wood. It is one of the olfest towns in the kingdom, but has many clegant modern louildiugs. The fortifications are promenades, from many points of which lovely prospects are obtained.
Z. has an extensive trade in wood, hark, and grain. There are factories for weaving and spinning,
grain, wool, oil, and paper mills, sany tanneries, a Soap-boiling estalblishment, and a large carpet-mannfactory. The princigal buiding is the Great Chureh, supposed to lave leen founded in 1103 ; it and the hroderenkerk (Church of the Brethren) bedong to the lieformed Commmion; the lioman Catholics, Lutherans, and Baptists have each a church, and the Jews a synagoguc. Besides goml schouls for the ordinary limanelus of education, there are a crammarschool, school of design, a theatre, and a concerthall. The town has seveml charitable institutions for the sick, orphans, and old peopte; also the provincial lunatic asylum, which can receive 220 patients. On the lst of January 1866, pop. 15, 314.
At liysselt. a rillage near Z., is a reformatory; called the Netherlands Mettray, in which a number of boys are cducated, taught farm-labour, aucl various liandicrafts. On the 25th of May 1si6, they amonnted to 149. Since 1S51, when the colony was founded, 115 have been withdrawn hy their parents, and $20 t$ placed in situations by the directurs: Farm-labourers, 54; gardeners, 61; joiners, 14; smiths, 6 ; honse-painters, ${ }^{\circ}$; shoemakers, 8 ; tailors, 9 ; bakers, 6 ; carrier, I; bricklayer, I; miller, 1 ; house-servants, 3 ; scamen, 11 ; soldiers, 21 ; plicc-clerks, 4 ; assistant-teacher, 1; photographist, 1. The reformatory is maintained from ammal contributions, legacies, and a small sum charged for cach loy: The legacies received during 1565 anounted to $£ 505$; gifts for the buikdings, £104; contributions, £1202; for the boys, $£ 1024$; and from the produce of the farm and garden, $\pm 43 \mathrm{~S}$.

ZVENIGOLO'1MKA, an old town of liussia, government of Kiev, on the Tikritch, a tributary of the Bug, about $9 S$ miles south of the town of Kiev. Pop. 10,010. The trade and manufactures arc not worthy of notice.
ZYO'LNIK, a town of European Turkey, in the prowince of Bosnia, on a narrow strip of land on the Ieft lank of the Drina, about 60 miles northeeast of Bosna-Scrai. The town is strongly fortified, standing on the face of a stecp hill, at the summit of which is a strong fortress commanding the valley of the Drina. It has several mosques, Greek and Roman Latholic churches, lead mines, and a considerable trade in timber. 1op. about 12,000 .

ZWEI'BLRÜCKEN. See DEUX-l'oxTs.

Z W' I'C K A U, a picturesque, irregularly built, anciont-looking town of Saxony, in a pleasant ralles on the left bank of the Mlulde, 60 miles sontlu-w 6 cst nf Dresden. The river is crossed liere by three bridges. The town is the capital of the circle of Zwickau, and is the seat of a district court, court of appeal, and other public offices. Of its churches, the most noteworthy is that of St Mary, the finest Gothic edifice in the Erzgebirge, dating from 1453, distinguished by its tall tower, from which an extensive riew can be obtained; it contains a rery fiue altar-picce by the old German master Wohlgemuth, and other interesting works of art. There are also a splendid court-house anel exchange; a cloth hall, a district infirmary ; a gymuasinm, witls a library of 20,000 vols.; a burgher, Catholic, trade, and other schools ; an old castle, which has been converted into a workhouse. The town is prosperous, and the poplulation increasing. There are cloth manufactorics, breweries, dyc-works, chemical works, tanneries, oil and saw mills. The chief source of its wealth, however, and that of the neighbonring villages, are the rich beds of conl in the surrounding district. There are also large ironworks in the neighbourhond. The town is comecterl by railway with Leipzig, Dresden, and other important places, and has a considerable transit trade. Pop. (1S64) 22,432

ZWINGLI, UlRICH, one of the most important of the reformers, was born lst January 1484, at Wildhaus, in the canton of St Gall, Switzerland, and was one of eight sons of the amtmann of that place. He studied first at Bern; then at the university of Vienna, where he devoted himself to philosophy' ; and afterwards at Basel, where, under Wytteubach, he directed his attention to theology. He became gastor in 1506 im Glarus. At this time, his studies were chiefly directed to the Latin classics and the church Fathers; but having begun to learn Greek in 1513 , he from that time devoted himself to the New Testament. He wrote out the Enistles of Paul in the original language, and learned them by heart, which was of great service to him afterwards in his disputations. In the capacity of army chaplain, he attended the campaigus in Lombardy of the inhabitants of Glarus for the pope against the French, in 1512, 1513, and 1515, for which service he received a pension from the pope till 1517. In 1516, the liberal-minded administrator, Geroldseck, invited him to be preacher in the convent of MariaEinsiedeln, famous for its pilgrimages. Here Z. began to preach against many abuses prevailing in the church; he also called on the bishops of Sitten and Constance to hestir themselves for the improvement of the church under the gudance of the Word of God. So little was he then suspected, that the papal legate, Antonio Pulci, conferred on hiu, in 1518 , the diploma of chaplain to the Holy See. He was soon afterwards called to Zürich; and he entered on his office as pastor in the great cathedral there, 1st January 1519, with a discourse, in which he declared himself for the pure gospel unfettered by glosses. In this office, to which was joined in 1521 that of canon in the cathedral, be laiel the foundation of his subsequent work as reformer. The same cause that had stirred Luther into activity gare the impulse to Zwingli. In 1518, Eernardin Samson, a Franciscan from Milan, came to Switzerland for the purpose of selling indulgences for the benefit of the papal court. Z., who was still in Einsiedeln on Samson's first appearance, opposed him both there and aiterwards in Zürich with the whole force of his pulpit eloquence, and succeeded so well that Samson was not allorred to enter the town of Ziirich. From this time, Z., although attacked by the mouks and many of bis brother camons, adwauced with rapid steps in his reforming career; for the magistracy of Zirich supported his measures to such a degree that, as early as 1520, they issued an order throughout their jurisdiction that the Word of God should be taught withont human additions. In 15응, the Reformation was formally established in Zirich. At this time, Z. wrote his first book against the fasts of the Romau Church; he also began to study the Hebrew langnage. The offers of high promotion macle to him by Adrian VI. could not make him waver. In January 1503, the gorerument of Zurich invited all theologians disposed to enter the lists with Z. to a conference at Zuirich, which was attented by 600 clergy and laity. Z. had arranfed the articles of faith, to the number of 67 , which werc to be the subject of the conference, and clefended them so ably against the attacks of the celebrated Joh. Faber, ifterwards Bishop of Tienna, that the council of Zuirich declared in favour of Z.'s doctrines, and upheld him and his assistants in adhering to them. The second disputation, October 1523, at which Z., before more than 900 people, spoke against the worship of images and the mass, was the cause of the removal of all pictures and statnes from the churches of the city of Zürich and its jurisdiction ; and this was followed, in 1524, by the abolition of the mass. In the same year, Z. entered into the
married state with Anna Rheinhard, aged 43, the widow of a nobleman of the name of Mejer ron Knonow. In the following year, he published his creed, Von der wakren unel falschen Reliyion (Of the Trne and False lieligion). . He had thus, io a few sears, placed the work of reformation in his native land on a solid footing. He now pressed zealously forwarl in the same course ; while the magistracy of Zirich, who all along actively supported him, abolished the begging friars, brought matters relating to marriage before the secular courts, and instituted a better management of church property. On a great many points, Z. Was at one with Luther and the other German reformers; only, in regard to liturgical matters, be carried out his reform more radically according to the Bible, and rejected the dogma of the presence of Christ in the Lord's Supper. In order to heal the breach that had, as early as 1524 , broken out betreen the two parties of the new religion on the latter point, a meeting between the Saxon and Swiss reformers was brought about by Philip, Landgrare of Hesse, at Marburg in 1529. The conference lasted for three days, but little progress was made towards unity of opinion. See Sackarievtarias. In 1531, open war broke out between Zürich on the one side, and the Catholic cantons of Lacerne, Schwyz, Uri, Unterwalden, and Zug on the other; and Z., by command of the council of Zürich, havl to take the field with the banner of the cauton, which had always been borne by a priest. On the 11 th October came the conflict; and as their opronents were more than double in number, and also better led, the Zurichers were beaten, and Z. Was among the fallen. His collected works were published in Zürich in 15.55 , in 4 vols.; a selection, in two vols., appeared in 1819-1821, edited by Usteri and Vögelin.-See Rotermund, Z.'s Leben (Brem. 1818); Hottinger, Huldr. Z. und Seine Zeit (Zur. 1812).
Of all the reformers, there is none more fitted to excite our love and respect than Zwingli. Fearlessly honest in purpose; with a clear head and eye for the trath; less violent, if less eloquent than Luther; more candid and open-minded, if less systematic and penetrating in spiritual insight than Calvin; he stands before us quite as original, if not as prominent as these reformers. His work was not so great as theirs, his influence not so extended; but his character was quite as genuine, and his labour, in some respects, quite as enduring.
ZWO'LLE, the capital of the Netherlands prorince of Oreryssel, is situated on the Zwarte Water, and by the canal called the Willemsraart has connection with the Yssel. It is one of the finest tomns in the kingdom, having many beautiful private and public buildings. Both within and without the gates are pleasant promenades and drives, shaded by large trees. The surrounding conntry consists of rich meadows and cultivated fields, adorned by pretty country-seats. Z. has three extensive suburbs-Diezenpoorten, Kamperpoorten, and Sassenpoorten. It is most favourably situated for commerce, haring, by navigable Waters, communication with the provinces around the Zuider Zee, Hanorer, England, and other maritime nations. The trade in farm-produce and stock is very great. Principal industries are shipbuilding, tanning leather, rope-splinning, beer-brewing, soap-boiling, weaving calicos and stockings, book and plate printing, making salt, cooperage, and retining sngar. The most important buildings are the Town House, Palace of Justice, and Great Church. There are many excellent charitable institutions; and besides those for the ordinary branches of education, a flourishing grammar-school, in which Pone Adrian VI. was partly educated, and a school of design. Z. has

ZYGODACTYLA-ZYMOTIC DISEASES

a cabinet of matural history, a literary and a musieal sucicty. Here the poet lihynwis Feith (17.3) 1SO1) was born, and Themas-i-Kempis livel during 71 jears. Between 1815 and 1566 , the pop, has increased from $1:, 570$ to 20,44 .

ZYCODACTYLA (Gr. yoke-fnoted), a name given by some maturalists to a section of Pucluydermata, distinguished by having two principal hoofs upon which the animals walk, so that the foot resembles that of the Prminantio. This scetion includes only one family, the Suide:-The term /agonactilous lirids is often applied, in Ornithology, to those birds which have the tocs in pairs, two before and two behind, as most of the Scunsores, or Climbers (q. r.).
ZIGOPIIYLIAACEA, a natural order of exosenons plants, allied to Pubiacca, and containing about one hudred known species, berbaceous plants, shrubs, and trees, chiefly matives of subtropical countries. They have opposite, gencrally pinuated leaves, without stipules. The flowers are solitary, or two or three together; the calys 4-5-parted; the petals alternate with the calycine segments, and clawed; the stamens twier as many as the petals, generally rising from the back of small hypogynous seales; the ovary simple, a-j.celled, with two or more ovules in each cell. The fruit is capsular, rarely somewhat fleshy; with four or five angles or wings. The most important genus is (finaiacum (q. v.). The ahundauce of species of Zunophyllum and some other genera constitutes one of the most striking features of North African and A rabian deserts. 'the flowers of $\%$ futheyo are employed as a substitute for capers, muder the name of Bean-capers. Those of Mclicnthus major, a native of the Cape of Good llope, abound so much in honey, that it is obtained from them for use hy mercly shaking the branches. The Tiuls use the seeds of Peganum Larmula hoth as a spice and for dyeing rert.
ZYMOTIC DISEASIES have hecn already refored to, and the most important of them are mentioned in the article Nosonocis. The class of diseases to which Dr Farr has assigned this now gencrally accepted term, comprises those which are ipitcmic, andemic, and contryious, as, for example, fever, small-pox, platme, influensa, choleva, hoopingcough, \&e. As Dr l'arr observes: 'The diseases of this class distinguish one country from another, or one year from another; they have formed cpochs in chronology: and as Niéhuhe has shewn. have influenced not only the fate of cities, such as Athens and Florence, but of empires; they decimate armies and disalle fleets ; they take the lives of criminals that justice has not condenmed; they retouble the dangers of croweted hospitals; they infest the habitations of the poor, and strike the artisan in his strength down from comfort into helpless poverty; they carry away the infant from the mother's
breast, and the old man at the end of life; but their direst cruptions are excessively fatal to men in the prime and vigour of age. They are emphatically ealled the morbi populares.' It must not be assumed, as the origin of the worl (zymer, the Gr . for is fement) might lead the reader to infer, that all the so-called zymotic diseases are true fermentations, for the class is intended to compreheme all the principal diseases which have prevailed as epidemics or endemics, and all those which are commmicable cither by human contact or by animals in at state of diseasi, as well as the disenses that result from the scurcity und the detcrioration of the necessary kinds of jood, or from parasitic rnimuls. The discases of this class thus arrange themselves into the four orders of Miasmatic, Enthetic, Dictic, and Parasitic disorders, of which fever, syphilis, scurvy, and worms may be regarded as the types.

Dr Carpenter, in a Memoir on The Predisposmy Cunses of L'pidemics, shews that the conditions which give rise to zymotic diseases may be referred to the thrce following eategnoies: (1.) Conditions which tend to introluce into the system decomposing matter that has been generated in some external source, is, for example, putreseent food, water contaminated by sewage, or other decomposing matters, and air clarged with miasmatic emanations. (2.) Conditions whieh occasion an increased production of decomposing matter in the system itself. The lest example of this class of conditions is afforded in the puerperal state (or childbed), in which the tissue of the womb is undergoing rapirl disinterration, and the decomposing matters which wouk be harmless at other times, are now able to aet mion the blood of the woman, so as to induce that most fatal of all the zymotic diseases, purperal fever. (3.) Conditions which obstmet the elimination of the decomposing matter normally or excessively generated within the system, or abnormally introluced into it from withont. For example, any obstacle to the elimination of urea or mric acid, carbonic acid, biliary matters, lactic acid, \&c., gives rise to as true poisoning as if these sul)stanees had been injected int," the blood-vessels. The most important of the liws ly which zymotic poisons are governed, are noticed in the article「1me".

The average annual rate of mortality in this country at the present time is nearly $\because=1$ per 1000 , or 1 in 4.5 of the population; and the deaths from zymotic diseases vary from 91 to 26 per cent. (or amount to nearly one-fourth) of the tatal number of deaths. Taken in order of their greatest fatality they would be thus arranged : cholera, typhus and other forms of continued fever, scarlatina, hoopingcough, measles, croup, small-1px, dysentery, aud erysipelas- the other discases being less fatal.-For further information on the suliject of this article, the reader is referred to Aitken's Science and Practice of 1folicine.

SUPPLEMENT.

BDEVILLE, a fortifed town of France, in the dep. of Somme, stands on the river Somme, about 12 miles from its month, and 90 miles north-ly-west of Paris. The town is built partly on an island, and partly on the and ill paved, and the bonses built mostly of brick aud wood. The building most worthy of notice is the Chureh of St Wolfram, commenced in the reign of Louis X1I., whose facade is a splendid example of the Flamboyant style, being piereed by three deep portals, and surmounted by three high Gothic towers. The chief manufactures of A. are velvets, serges, cottons, linens, sacking, hosiery, jewellery, soap, glass-wares, glne, paper, \&c. It is a station on the hailway du Nord, and is connected by canals with Amiens, Paris, Lille, and Belginm. Vessels of between 200 and 300 tons can sail up the Somme as far as Abbeville. Pop. (1866) 18,042.

ABBIA'TEGRA'SSO, a town of Italy, in the prorince of Milan, 14 miles west-south-west from Milau eity, on the Cunal di Dereguardo. It has silk manufactures. Pop. 9177.

ABEOKU"PA, a city, or rather collection of small towns or villages, eapital of the province of Egba, in the kinglom of Yoruba, on the west coast of Africa. A. is about 50 miles, by the river Ogun, north of Lagos (on the Bight of Benin), and ?f0 miles west of the Lower Niger. It is situated 567 feet above the sea-level, on an undulatiug plan, fantastically broken by masses of gray granite, ancl covered with bush. Looking down on the eity from a height, Burton says: "The seene before me wants neither grandenr nor beanty; there is a gorgeous growth around-hill, water, forest, and homesteal all are present. The primeval forest has been eleared away around the town, jet there is not a vestige of enltivation; and if joul ask for the farms, you are told that they are distant some 5 to 20 miles. The reason is that, if phaces within reach, nothing could defend them from the depredations of roblers and cattle.' A. is surromed ly a wall of hardened mud, from is to 20 miles in circumference, between 5 and 6 feet high, withont embrasure, and piereed here and there 'with an aperture by way of loophole.' The town itself, Burton form to measure 4 miles by 2 . The houses are square, and built of mud, with tall roofs of thatch; the streets are narrow and irregnlar, and the only scavengers are the sin, the vulture, and the pig. There are a few European traders and missionaries; the suceess of the latter, according to Burton, not hiving been extraorlinary. There is a trade in palm-oil and grain. Pop. estimated at 150,000.-For further interesting details, see li. F. Burton's Abeokuta and the Camaroons Mountains (1863).

ABERA'VON, or PORT TALBOT, a parliamentary and municipal borough on the south coast of Wales, in Glamorganshire, near the mouth of the A von, albout $: 30$ miles west of Cardiff. It is beauti492
fully situated near the valley of Cwm Avon, in which are extensive mininc-works belonging to the Bank of England. The town has a good harbour and docks, is a station on the South Wales Railway, and communicates regularly with Bristol by steamers. The valley of the Avon is shut in by lofty bills, while every available space is occupied by copper and iron works. There is a stone bridge of one areh over the river. A. imports ore from Cornwall; and exports copper, tin, and coal. Along with Swansea, Neath, \&c., it returns one member to parliament. Pop. of municipal borough (1S61) 2916. (1871-3396.)

AEERGAVENYY (the Roman Golcanium), a market-town of England, in Monmonthshire, 13 miles west of Monmouth, is beatifully situated in the valley of the Usk (the garden of Wales), at the junction of the Usk and Gavenny, and is surrounded on every side by high monntains and thick woods. The town is regularly and conipactly built, and many inprovements have of late years been made. St Mary's Church, which was once a fine erueiform structure, and contains many interesting momments, has been spoiled by alterations. The castle, which is very ancient, is now a rum. The principal modern buiking is the lunatie asylum. There are collieries and iron-works in the neighbourhood. The Hereford and Tredegan Hailway passes near the town. Pop. (1561) 4621.

A'BINGTON, a township of Massachusetts, U. S., 20 miles sonth-east of Boston, with a population, in 1S60, of S527, enganged in the manafaeture of bouts, shoes, and nails.

ABOMET. Sce Dahomer.

ABO'RTION is the term used in Medicine to denote the expulsion of the prohuct of conception (the impregnated ovum) from the womb before the sixth month of preguaney. If the expulsion takes place after that date, and before the proper time, it is terned a premature latour or miscarriage. lu liw, no such distinetion is marlc. The frequency of abortion as compared with normal pregnancy is very diflerently estimated by dilierent writers; lut the best evidence leads us to the belief that abortion is of far more common occurrence than is senemally supposed, and that it takes place on an average in one ont of every three or four eases of pregnaney: The following are amongst the couses pecdisposing to this accilent: (1) A diseased condition of either parent, and especially a syphilitic taint. (2) A pectiliar temperament on the part of the mother. Those women who present a strongly marked nervous or sangaine temperament seem to abort with singular facility; and the same tendeney is observed in those in whom the eatamenial or monthly discharge is abundant or excessive. Again, very fat women, while they have a tendency to sterility, are liable to abort when preguancy does occur. Any canse interfering with the normal oxidation of the blood-as, for instance, the constant breathing of inpure air, may provole abortion-a fact excellently illustrated by the experiments of Brown-Seguard on pregnant
animals (rablits), when he shewed that the applieation of a ligature to the windpipe excited nteriuc contractions, ending, if tho experiment were continned lung enough, in abortion, lut ceasing if air was freely reahuitted into the Jungs. Change of elimate, as [rum Iudia to l'nerfaud, certainly predisposes to this aecident; and it has ben observed hy various writers that great political events, the horrors of war, and fomines, excret a simslar action. The marvellous events that oceurmed in l'aris in 1845 were specdily followed by an extraordinary number of abortions and of still-born children; and a similar fact had been previously notical by the elder Nagele and Hollunam during the famine of 1510 and dmring the siege of leyulen. Nor ean there le a doubt that, amonest the causes predisposing to abortion, must be incluiled the employment of such corsets and other garments as by their tightness interfere with the circulation of the blood, and alter the natural position of the womb and of the abdominal viscera. Many diseases supervening during the course of preanaucy, especially the eruptive ferers (as smallpux, scarlatina, \&e.), almost invariably lead to abortion of a very dangerons character; and it has been known from the time of Hippocrates that intermittent fevers have this eflect. Amongst the direct causes of abortion may be placed hlows on the abdoucn, falls, any violent musenlar eflorts, too long a walk or ride on horsebaek (indeul, women with a temalency to aloort shonlel ivoid horsebacels diring pregnancy), it severe mental shock, \&e. Moreover, the death of the fortus from any eause is sure to occasion abortion.

The symptoms of abortion vary aceording to the stage of pregnancy at which it is theatened, and aceording to the exciting canse. Mauy of these resemble those of congestion of the womb, such as a sensation of weight or painfu] pressure in the region of the loins or suermm, cxtending to tho bladder and rectum (with or withont T'enesmus, q. v.) ; these symptoms being ageravated by stanling or walking, and beine accompatiad by chills, aceelerated pulse, loss of appletite, and a general fecling of discomfort. A discliurge of serous 1hid, sometimes slightly tingell witho lhoed, is then observel. The feeling of weight is replaced hy pains, lealing to the expulsion of the orum, which, during the first two monthe, is so sinall as comnionly to eseape detection. In more advancel stawes of jregnaney, the bains are more severe, the discharge is more abundant, and consists chielly of hlood; aud after more or less time, the proluct of conception escapes cither in whole or in prart. In the former casc, the patient has little further tronble; in the latter, hemorrhage will probably continne, and the parts retained may jutrefy, and give rise to serious symptoms. After about the commenecment of the fourth inontli, the symproms gralually approximate to those presented in ordimary liarturition.
ln the treatment of ahortion, prophylactics (or the guarding agrainst causes likely to lead to it) holl the first place. Women liable to this affection shoulil, on the slightest threatening, assume as much as possible the horizontal josition, avoiding all hadily exertion or mental excitement. They shonle use nou-stimulating foods and drinks, and keep the bowr!s opern by gentle aperients-such as manna am! castor-oil, anil carefully avoid aloes and ather medicines irritatiag the lower bowel. Moreover, a separate bedroom must le insisted on by the physician. We shall only enter into the eurative treatment so far as to state that if it is leewed nueussary to check hemorrlage before professional aill ean be ealled ins. eluths soaked in cold water may be apphed locally (cars being taken to change them before they grow warm), and iced water containing
370
an astringent, such as a little alman, way bo given internally: Fiurther proceelings must be leff to the medical attendant.
lhere are oceasional cases (as where the outlet of the pelvis is very contracted) in which it is nezessary to induce abortion by prolessional means, but it would be out of place to enter into this subject in these pages. It cannot be tou generally known, that all attempts at procuring eriminal abortion, either by the administration of powerful drugs, or the apllication of instruments, aro accompanied with extreme danger to the pregnant woman.

ABOUT, EDmonis Francols Valentin, a l'rench littérateur of great and rising reputation, was born at Diemze, on the Ifth Feluruary 1528. He stadied first at the Lyecée Charkmagne, where he greatly distinguished himself; and afterwards at the Licole Normale. In the beginaing of $155^{\circ} 2$, he reccived an appointment to the Freneli School at A thens, an institution sujported by the French government, with no very delinite object, lut with the hope that the members, who are sclucted on account of their attainments and promise in scholarship, and left perfectly free to eliuose their own stadies, should be able to make contributions to the history or the archacology of Grece. A. remained at Athens for abont two years. He wrote, as required by the terms of his appointment, a Memoir for the Academy of lascrıpious, entitled L'lle d'l'gine; but it was as the satirist of modern Grecee, not is the investigator of Grecian antiquities, that his namo first became familiar to the pulbic. On his return to France, towards the end of IS5:\%, he published La Girece Contemporaine, a work which at onee attained to great popmlarity, and was in course of the follow. ing year translated into several fureign languares. This work, full of lively and pointed skcteles, abonmling in slrewd and witty oloservation, its emsures, very screre as they were, scarcely seeming ollinsive, from the ease and perfect good-lumonr with which they were conseyel, at once made its anthor le regarded as among tho most promising witers of the dity. It uncuestionably affected Emropern opinion as to the character amel the eajabilities of the modern Greeks ; the truthfulness of its portriture lecing confirmed ly all who hat special knowledge of this poople. It gave carnest of tho qualities which go to making a brilliant novelist ; aud A. did not lomer delay to come before the public as anovelist. This tirst wovel, Tolle, appeared in the lierue des Deux Mondes, and was republished early in 1S35. It did not disajpoint the high expectations formed of it ; but the anthor liad laid himself open to a charge which, whenever it ean be colonrably sustained, is certain to be lisastrons. Jle hatd taken many of his leading incidents from an Italian work, l"ittoria Siutorelli,]mblished in 1S11, anil soon after withlrawn, the ineidents contained in which were well known as actual oceurrences: and thongl, something of this was hinted in the book, there was no distinct acknowled ginent of it. A lue and cry of plagiarism was got njp agrainst A., from which his reputation took some time to recurer. Ilis comedy, Guillery, brourlst out in Felmanry 1856 at the Theatre I'rançais, lid not nake his jeace with the Iarisians it was in complete [ailure, so fir as the theatre-going public wias concerned, and had to be withdiawn after two representations. A set of stories which he now began to contribute to tho Moniteur, however-Les Mariages de Puris-had a success which more than made up for the savino criticism which le had had to endure: they placed him higl in lublic favour ; and sinee then, his carcer has been a series of suecusses. Les Mariages tle Puris was followed by Le lioi des Montugnes (1S5̃6), Germaine (185̄7), Les L'classes de Mailre I'ierre

ABU-ACCRIXGTON

(1857), and Trente et Quarante (185S)-all novels originally contributed to the Moniteur.

In 1859, after a tonr in Italy, of a portion of which he contributed a description to the Moniteur, A. pmblished a political pamphlet-La Question liomuine-which, displaying the same gualities as his early work on Grecee, but matured, and wielded for a defimite oljeet, and being, moreover, regariled as written with the approval of the Emperor of the French, created a sensation throughout Europe. His olject was to expose the abuses of the ecelesiastical goverument at Rome; and mumerous answers to his work were made by friends of the papacy. In the following year, he pmblished two political pamphlets, La Nourelle Carte a'Europe, and Le Prusse en 1560; both of which, being taken as indicative of the Emperor Napoleon's leanings, underwent eriticism in all parts of Europe. A second work on liome-Rome Contemporaineappeared in 1561. M. A.'s political views are imperialist; and he was decorated with the Legion of Honour in 1858.

Of late years, he has been producing novels with muabated pomlarity; and he has also written several slight dramatic pieces, which have been favourably received. It is unnecessary to put down a catalogue of works which are perfectly familiar to those who are interested in French contemporary fiction. In 1564, he published Le Progrès, a work of cunsiderable pretensions, in which he disenssed at great length, but with his usnal liveliness of style, the existing state of saciety, especially in France, and the methods of improving it. His conclusion was that in France there were needed for progress the liberty of association (for the purposes of production and trade), an amendment of the land-system, ab proper distribution of population as between comintry and town, the absence of police interference in the affais of mivate persons, frectom of religions worship, and other similar conditions. To Englishmen, who have most of these things in some measure alrealy, the bouk might seem unly a collection of common-places neatly put; but in France it led to a good deal of discussion. The most novel part of it, perhaps, was the argument agaiust the subdivision of land which has taken place in France, which, according to M. About, is excessive, and is impoverishing the comenty.
$\Lambda \mathrm{BU}^{\prime}$, a mountain of Indin, in the territory of Serolie, in Rajpootana, rising far above any other of the Aravulli ridge, and said to be abuut 5000 feet above the sea. The lase is lroad, its cireuit being estimated at forty or tifty milu's; the sumnit is very irregular, and divided into many preaks. It is a celcbrated phace of pilgrimase, espeeially for the Jainas, who lave a magnificent group of fonr temples at Dilwara, about the midale of the mountain, one of which is deseribed as "the most snperb of all the temples in India.' Before it, is an ernuestrian statue of the founder, Bimul sah, a Jain merchant of Anhmwara. All the temples exhibit symptoms of decay. The summit of A. is about 40 miles nort] east from the British cautonment of Deesa, and it has lately begun to be used as a samatoriun.

A'CARUS FOLLICULO'RUM is the most generally accepted name fur at microsenpic parasite residiner in the sebaceous sacs and hair-follicles of the hunan skin. It is also known as the Demodex folliculorum, the generic mane being derived from the Greek words demos, lard, and dēx, a boring worm. It was first described by Dr simon of Berlin in 1512 , under the title of A carus folliculorum, which was suggested by the eminent zoologist, Erichsen of Berlin. In the following year, Mr Erasmus Wilson made it the subject of an claborate
memoir which appeared in the Plilosophical Transactions, in which, as there are doults as to its exact zoulogical position, he simply terms it the Entozoon folliculorum. According to Professor Owen, who gave it the name of Demodex, it represents the lowest form of the class Arachmida, and makes a transition from the anuelids to the higher articulata. As regards the size aud form of these animals, there is much variety; they pass their whole exist. ence in the fatty matter of the sebaceous cells, moulting repeatedly during their growth, and being finally expelled from the follicles with the secretions of these organs. Their presence las no reference, according to Mr Wilson, to disease of the skin or of the follicles. They are met with in almost every person, lint are most numerous in those in whom the skin is torpid, in invalids, and in the sick. They vary in length from $\frac{1}{60}$ th to $\frac{1}{100}$ thi of an inch, and the accompanying figure represents the magnified parasite. Their number is various; in some persons not more than two or three can lee found in a follicle, while in others Mr Wilson bas seen upwards of fifteen. The head is always directed inwards, and when a number are present they seem to be collected into a conical imndle, the larger end of the cone being formed by their leads. The situation in which they are most commonly found is the skin of the face, and particularly that of the nose, but they have also been met with in the follieles of the laack, the breast, aud the abdomen. As far as we know, they are never found on the limbs.
A reference to the figure shews that the animal possesses eight thoracic appendares (c, c) of the simplest and most rudimentary lind, each of which is terminated by three short setr. The integument of the ablomen is very finely annulated. The month is suctorial or proboscidiform, consisting of two small spine-shaped maxillæ (b), and an extensive labium capable of being elongated or retraeted ; it is provided on each side with a short, thick, maxillary palp (a, a), consisting of two joints with in narow, triangular labrum above. The sexes are distinct, but the differences between the male and female are not well recog. nised. Ovar are frequently seen, both in the boly of the female and in detached discharred masses. Any of our readers may realily observe their own acari by collecting between two pieces of thin glass the expressed fatty niatter from a nasal follicle, and moistening it
 with a drop of olive oil. Tery similar if not identical animals have been found in the contents of the pustules of mancy dogs.

ACAYUCAN, a town of Mexico, a military port, about 1100 uiles south-south-east of Vera Cruz, laving trale in cochineal. Popl. 6000.
$A^{\prime} C C R I N G T O N$, a manufacturing town of Enc. land, in Lancashire, which has recently increased much in size and importance, lies in a deep valley. surrounled lyy hills, abont 34 miles north-east of Liver 1 oul, and $1: 3$ miles east of I'reston, om the banks of a small strean, the Hindburn. Pop. (1851) i 481 ; (ISGI) 13,57. Christ Church is a fiue Gothie building, erected in 1503 . The inhalitants are mostly imployed in cotton factories, weaving, and calico. printing. A. is considered the centre of the cottonprinting business. There are coal-mines in the neighbounhood, in which many of the inlabitants find employment. It is a station on the Lancashire and Yorkshire liailway.-Old Aceningtos is an adjacent chapelry, also with cotton manufactures.

ACEIINA (ane. Aceral), a town in Sonth Italy, in the pruvince of Caserta, nine miles morth-east of Ni!nles, with which it is commected by ralway. It Was unce fortiliod, lat the walls are nuw crumbling intormans. It las a eathedral and seminary. The comatry aromul is fortile, lut extremely minealthy, leing afllictenl with madaria, e:nsed partly by the sluagish artiticial chammels called the Jeeg Lagni, the representatives of the flanius non uyums - Leervis of Vurail ; and partly by the thax-grounds, where the stallis are left to macerate. Jopr. (1561) $11,717$.
$\boldsymbol{A C L T A I}\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{4}\right)$ is a colourless liquid, of an arrectule oulom, inil a llavour said to resemble that at the hazel-nut. It is one of the prodnets of the slow oxidation of alcubul under the influence of dinely-divided platimm, or of chlorine, of of dilute sulphuric acci an! peroxile of manganese. Its specilic gravity is $0.5 \otimes 1$, amd it boils at $\because 21^{\circ}$. It jields various reactions and products of interest in organic chemistry:

ACETIEIC'A'TION. Since the article ACETIC Acin was writton, a totally new view has been ablopted regrading the prucess ly which wine, beer, cider, and alcololic linids generally become convorted into ancetic acid, when thoy are wipused to the alction of the air, and especially in hot weather. 'Jhe views lach loy Liebig regarding the part that wood-shavings, sand, ash, fic. play in condensing oxygen, am transmitting it to the aleollol, are now sujplaterl by those of l'asteur, who mantains that the true acerifying matter is a very mimato myco-derma-ir special regetable organised being. It is impossible to conceve a more simple form of vegretation, consisting of extremuly minute spores arranged in clatins ; cach spure having a mean diameter not execeding $\overline{7} \mathrm{~F}_{\mathrm{u}}$ th of an imeh, and the length being about twice as great. The rapidity of the development of these spores, under favourable rircumstanees, is almost inconecivable; and the power which they lossess in jixing the oxygen of the air, and of tramsmittiong it to the alcohol, and of establishing an incomplete combustion of the latter, is uo less wonlerful. A surince of a sfunce yaril cosered with this plant, is able, in the course of 24 lours, to fix the oxygen of more than fou0 ruarts of air. The temperature of the surfince of the thind at which this slow combrastion is praceoling is consideralily raised, and often remains for several days at $2 I^{\circ}$ or 25° :ubove tlat of the surombling an: The process which lits just lreen deserihed bears a very close analogy to the respilatory process, the oxygen of the air lecino in une case fixed by minnte vegetable eclls, and in tho other by the bluod corpusciles.

A CELYL (C, $\left.\mathrm{H}_{3} \mathrm{O}_{2}\right)$, known also mer the names Aceloxyl and Othy, is an organic ralieal not yet isolated, but which is suprosed to exist in acetic acil and its lerivatives; the rational formula for acetic acid beim: on this bypothesis $\mathrm{C}_{1} \mathrm{H}_{3} \mathrm{O}_{2}$ \}
Sice Tries, Chmarat. The reason for assuming the existence of this radical in the acetic componnts is, that the formula to which it learis afforis the simplest explanation of the most important reactions of acetic acid. I'hus, whon acctic acid is treated with a motallic oxicle or hyolrate, the basic atom of byidrogen is replaced by a metal, amd an acciate of the metal $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{2}$)
$\mathrm{Mr}_{3} \mathrm{O}_{2} \mathrm{O}_{2}$ is produced. The term acetyl was formerly applied to the radical $U_{3} T_{3}$, and the anhytrons acid was rerarted as a binoxide of this radical. IIence the two other names ior the subject of this article-the former suggested by Folbe, and the latter (an abbreviation of oxygen-cthyl) by Williamson.

ACHALGANJ, a town of Pritish India, in the territory of Omle, and distriet of bounswara. four miles north-east from the (anges, in \mathbb{N}. lat. $260^{\circ} \because \sigma^{\prime}$, and 反. long. 80° 3.'. J'mp, 5000, of whom 500 are Moliammedans, ank! the rust Ilindus.

A'CHORFiS are one of the foms of pustules - viz., that in which the pustules are very small, but lave large intlamed bases. They are most common on the faces of eliklren, and their secretion forms those large, thich, irregular scalos, resembling dived loney, which are fas éonmon on children's chins. 'llsey sem to be inflamed lair sacs or sebacens follicles. Their treatment is the samo as ilat for Impetigo (c). …).

A'CNH (frobably from fir. akme, an eflores. conce) is an important skin discase. It is placel hy some dermatologists in the order Pustulu, and lyy otliers in the order T'ibercula, which inchades soliti, haral clevations of the skin, much larocer than Papule. The sebaceons follicles of the Skin (q. v.) are the primary sent of the affection. Their matiral secretion aceumnlates in their interior, and there is, at the same time, a teudency to inllammation of the follicle and surroumding tissue. It is by no means rare to find on the face and slonhlers of foumig persons about or above the age of puberty a immber of black spots, each of which is placel on a slightly-raised pale base. I'hese black points aro called connedonce. l'ressure at the base occasious the expmlsion oi a little, clongated, spiral, white mass, with a black point or anterior end, eommonly but crronconsly resarded as a worm." Interspersed are other sputs, with the base more raised and in. Ilamed, which become more or less perfect pustules, each of which rests on a conuparativily large red base. In some of the inflamed follieles, congulated lymple (to use the old phrascology) is thrown out, antl a small hardened mass is the result. Secorljng as one or other of these appearances preponderates, we lave different varictios of this ilisease. When the pustule is the most striking foature, the affection is called a cne simples or vulgaris; when the black points abound, it is Acne punctata; and when there is decided inturation, it is Acne imheratu. We have already mentioned the age at whicls this affection commonly occurs: it is nover seen in children, and is rare in aged persons.

As long as there is no inllammation, the treatment simply aims at [avourine the escape of the contents of the sebaceons follieles, by rubbines the face and other affected parts witle cold eream at bedtime, washing on the next morning with sonp and water, and gentle sulssequent frictum with a soft tuwel. Whes acnte inflammation is present, amel the pustules are very tender, there is no better application than tepid water, with or withont a little gelatine in solution; and subsequently the ointment of the hypochlorite of sulphur las been fonml nseful by Wilson ame others. Acne indurate, which is the least tractable of the three forms, is sometimes benelited by the application of 1 ly-hlisters. In all these cases, the state ol the digcestive organs must be carefully attended to.

Acne Rosacea is, aceording to some writers, a much more grave varicty of acne; while othors regard it as a special disease, to which they assign the name of Rosacea, umber which term it is described in this work.

ACQUAVIVA, a town of Sontli Italy, in the proviuce of Bari, It miles sonth of the town of Bari, in a licalthy situation at the foot of the Apenmines. It is survounded with walls and ditches, has a

* In the midst of the white mass of sebaceons matter,
 is, lowercl; usten found.

ACRI-ACUPRESSURE

handsome parish church, several convents, two hos. pitals, \&e. Po]. 6776.

A'CRI, a town of South Italy, in the province of Cosenza. 13 miles north-east of the town of Cosenza, in a beautiful and healthy situation, with a fertile country around. Pop. (1 Sb l) $11,97 \%$.

ACRITOCHRO'MACY (Gr. aloritos and eloromatia, which, when assoeiated, imply "inability to diseriminate between colours') is a term which seems likely to supersede Colour Blindness, Dallonism, Achromatopsia, \&c.

A $^{\prime}$ CROLELN $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ is a colourless, limpiel, strongly refracting liquid, lighter than water, and having its boiling.point at about 125°. It constitutes the acrid principle produced by the destruetive distillation of fatty bodies, and is in part due to the decomposition of glyeerine. It is best pepared ly distilling a mixture of glyeerine and anliydrous phosphoric acid, the object of the latter being to efficet the removal of the element of four atons of water from the glycerine ($\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$), whieh contains the elements of acrolein $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)+$ those of four atoms of water $\left(\mathrm{H}_{4} \mathrm{O}_{4}\right)$. In its state of vapour, it is extremely irritating to the eyes, nostrils, and respiratory organs - in property to whieh it owes its mame. The pungent smell given off by the smonldering wick of a eandle just blown ont is clue to the rresence of acrolein. When mixed with a solution of potash or soda, the irritating odour disappears, and is rellaced by one of ciunamon; while a brown resinous substance is fermed; and certain oxidising agents, as oxide of silver, convert it into acrylic acid $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{4}\right)$.

A'CUPRESSURE, a mode of arresting liæmorrlage from eut arteries. It is based on the primeiple of temporary metallic eompression, aud was first suggested to the scientifie world by Sir James Y. Simpson, Bart., in a paper read before the Royal Soeicty of Liduburgh, Deeember 1S59. The simplest mode of praetising it may be thus described: The weedle is passed through the flaps or sides of the wound, so as to cross over and compress the onitice of the bleediag artery, just as in putting a llower in the lapel of one's coat, one crosses over and compresses the fower-stalk with a pin pushed twice through the lapel. The middle portion of the needle-the only part of it which is in immediate coutaet with the fresl surface of the woundbridges over and compresses the artery at its bleedin't orilice, or perhaps a line or two more on its cardine side. The bead and point of the needle are

First Method.
exposed extemally on the eutaneous surface of the flapor side of the wound. 'When passing the needle in this methorl,' say's Sir J. Y. Simpson, 'the surgeon usually plaees the point of his left forefinger or of his thmb upon the month of the bleeding vessel, aud with his right land introduees the needle from the cutaneous surfice, and passes it right through the whole thickness of the flap till its point projects for a couple of lines or so from the surface of the wound, a little to the right side of the tube of the vessel. Then, by forcibly inclining the head of the
needle towards lis right, he brings the projecting portion of its point firmly down upon the site of the vessel; and after seeing that it thus quite shits the artery, he makes it re-enter the flip as near as possible to the left side of the ressel, and pushes on the needle till its point comes out again at the eutaneous surface. In this mode, we use the cutaneous walls and component substance of the liap as a resisting medium, against which we compress and close the arterial tabe. But in some wounds, a neighbouring bone or otler tirm muyielding texture forms the best and readiest point of resistance against which to pin and compress the artery by the acupressure needle.'

This is the first and simplest mode of applying aeupressure. Six other methods, however, have been suggested; and as eael of them has its peeuliar appropriateness as a hemostatic acgent, it will be proner to enumerate and describe then. The aphiances which these other methods require area pin with a glass head, to almit of sufficient prossure for introduction; a needle threaded with iron wire; and a loop of inelastic iron wire, 5 or 6 inches in leugth. The pins and needles should be of various sizes, and they should also be bayonetpointed; the latter form being superior to the spear-pointed, as facilitating iutroduction, and as Leing less apt to cut the tissues.

Second mode: The needle is inserted in the fresh surface at a little distance from the vessel; it is pushed on, eansing its point to rise up as near the artery as possible; it then briages over and compresses the artery; then its point is made to dip into the raw surface of the wound on the other side of the vessel; finally, it is foreed on until it emerges a sceond time on the wound. The passive or elastie iron wire witl whieh it is threaded enables it to be easily withdrawn. Third mode: 'The needle is entered on

Third Method.
one side of the artery; is pushed behind so that its point emerges on the opposite side of the vessel; a loop of inclastie wire is then passed over its inint, so as to bring the wire over the track of the artery and behind the stem of the eye-end of the needle: fually, the wire is drawn sufficiently to elose the vessel, and is dixed by a twist or half a twist round the needle. The needle may again be withdrawn by the wire which threads it. Fomrth mode: This differs from the third only in sulastituting i long pin with a glass head for the acupressure needle threaled with iron wire. The pin is preferred to the wine-threaded needle, as aroiding entanglement with the wire, and consequent pain in withdrawing the needle. Fifth node: This, which. from its inventor, In Knowles, formerly house-surgeon of the Aberdeen Mosnital, is also ealled the Aberdeen mode, las two varieties, which differ from each other only in the extent of the rotation given to the justrument by whiel the twist is effected. In the former variety, the instrament undergoes a half; in the latter, it muslergoes a quarter, rotation of a circle. In either ease, a threaded needle only, or a long pin only, is required. In the former, the instrmment is inserted some lines to one side of the bleeding artery, and passed behind it; its point is then made
to emerge on the surface of the womed a fow lines on tho wther side of the vessel. Then the needle (or pin) is twisted half a rotation, so as to bring its head to tho sile where its point was lefore making the twist-the instrment being now albove insteal of lulow the artery; and pressed woll down mon it. Finally, the point of the instrument is pushed into the tissmes beyond the artery, so as to secure it in the proper position, and retain the twist. The latter (and preferable) varicty requires noly a quarter-rotatiun to be given to the acupressing instrument. First, the meedle (or pin) is enteral on one side of the blecding artery; then preesed noward a few lines in the same direction as the length of the vessel, so that its point emerges on the surface of the wound. Seconelly, a quarter-rotation is given to it. so as to place it above the artery : and it is well pressed down aqaiust the small protion of tissues between the instrument and the vessel. 'Thirdly, the instrument is secured, and the twist retained hy scmitus the point into the tissues hevom the artery. Sixth mode: 'Jhis was derised by Dr Keith of Aberdeen, and requires a long pin with a duplicature of passive iron wire. The point of the pin is insertend a few lines from the artery; passed billow or hy the side of it ; and afterwards pushed on so as to make the point emerge a few lices beyond the bleeling month. The duplicature of iron wire is then thrown over the point of the pin; then the two ents are crossed behiml the stem of the pin, su as to take the lileeding mouth between them. The empls of the wire are then puller tightly enongls to stop the homorrhage; then bronsht forward ly the sides of the piu (one no each sille), and titally lixed by a half-twist in front of the ping aml chase down unon it. Seventh mode: In this, a long nealle is passed throngh the cutmeons surface pretty decp iuty the

Seventh Nethod.

snft tissues, at some distance from the vessel to be compressed; then it is made to emerge near the ressel; then it lridges over and compresses the artery: then it is dipped into the soift parts on the ulpmisit, side of the vessel ; and fimally, its point is hronglt ont a secoud time throngh the common integmment.

The alvantares of acupressure as a limmostatic arent (thon wh mot yet miversally recognisel, amd inded stronsly lenien loy some practitioners) lave secmel to many emineat sumpons to be these: tirst, it is not only the easiest of application, lont it is the quickest monle yet devisul for arresting hemorrlage; secom, this abridgment of the time reduired for arrestiug hemorrhaze, lessens the risk of suppuration, and other .ffects of the higher grades of inflammation in the stump; thirel, it causes and conelition which must be followed by suppuratimb, whoreas the use uf the ligature has never been known to ribtain inmediate union, ur union lay primary aulhesiun, withont the furmation of pus ; fourth, it has never been followed by lyamia-a constant and distressing result in the case of the ligature ; fifth, the presence of a forcign body in the woumb-always a souree of irritation-is of much
shorter luration in the case of the nealle than of the ligature, while the former loes not divide and strangle the arterial coats, like the latter ; sixth, the paticnt on whom acmpressure has been practised is enmforted hy the assurance, that in a very fow hours after the operation, all foreign matter will he removed from the wound-a consolation which the never enjoyed with the ligature- - Jroceding* of the Joyal Society of Edinburgh, vol. iv. 1. 219 ; Lilinburgh Mrdical Joumal, Jamary 1SG0; Metlicul Times anel Cazelte, Fehruary 11, IS60 ; Acupressure, 1 vol. Svo, hy Sir J. I. Simpison (Lilin. 1 Sijo) ; and A Practical Treatise on Acupressure, ly Mr Pirrie and Dr Kicith (Lond. 1867).

A'DA, a tomn of the Austrian Foupire, in the Woivorlena, eight miles sonth of Zenta. ['op). 8200 .

ADAPU'DLA, a town of the liclattal comatry; West Ifrica, about 100 miles south-east from 'limDuktu, in abont $13^{\circ} 66^{\prime} \mathrm{N}$. lat., and $1^{\circ} 33^{\prime}$ lid long. It is situated in a elry, leaitlyy, and fertile plain, amd is surrounded ly a mud wall. L'op. supprosed to be ahout 24,1100 . A large trade is earrieal on, and slaves form a priucipal part of the merchamlise.

ADAMLNAN, SANT, a member of the early Irisls Church, to whom the worle is decply imblebted for the information about that remarkable community which he left to posterity. II is name was properly Adam, of which Adamman is a diminutive. It is one of the peculiarities of that early church that the genealogies of its eminent members have been preserved with a minuteness searcely riwalled in the days of pecrages. IIe was horn in the connty of Donegal alont the year GOJ. In the words of Dr lieeves: "1lis father, lionam, was soxth in descent from Comall Gullsan, the heal nf one of the two great races of the Northern Hy Neill, and in virtue of his hirth, clamed kin to St Columliaand many of the sovereigns of Irelaml. The fatlace of lioman was Tinne, from whom eame the patronymic Ua lime, or grandsou of Tiune, an appellative which is oceasionally foud complet with A.'s uame. Iomnat, the mother of A., was descended from Enna, it son of Niall, whose race, the Cincl Enna, possessed themsclues of the tract lying between the chamnels of the Foyle and Swilly, which was called the Tir Lnna, or land of Enna, aud answers to the modern barony of liaphoe. Ite was, like many of the eminent Irish clergy, a statesman as well as an ceclesiastic, and we hear of his being sent on missions from his own people to Alfred, kiug of Northumbria. In the year (i5a, he was electerl ibhot of loma. His rule over that commmity was not, however, destineal to be peaccenl and fortuate. The views held by the Irish Church alont the holding of Viaster and the form of the tonsure are now pretty well known as a ehapter in the listery of the church. However little their own importanee might be, they are sirniticant as the object of a hitter contest in whichs that church resisted the rules promulgated from Rome. In his intercourse with the Saxon Chureh, 1. harl alopted the liomish or ortholox views, as they are termed, and endensonred to put them in practice in his nwn commanty: He was thwarted in this olyect, and it is said that mortilication at the failure caused his death. He died in the year jol, on the 2 od of September, which is the day of his translation in the calendar. Ne left behint him an acconnt of the lloly Lame, containing matters which he says were communicated hy Arculfus, at Fromeh icelesiastic who land livel in Jerusalen. It is valualble as the carliest information we possess of 1'alestine in the carly ares of Christianity: But far more valuable is his l'ilu Suncti Culumbr, his Life of Sit Columba, the converter of the l'icts, and foumder of lona. Along with miracles and many

ADENITIS AND ANGEIOLEUCITIS-ADJYGURH.

other stories palpably incredible, this book reveals a great deal of distinct and minute matter concerning the remarkable body to which both the author and his hero belonged. There are several editions of the book, but all others are now superseded by that of Dr Reeves, edited in 1857 for the Bannatyne Socicty of Edinburgh, and the Irish Archæological Society. Nearly all the information to be had abont the early Scoto-Irish Church is comprised in that volume.

ADENI'TIS AND ANGEIOLEUCI'TIS are the terms employed in medicine to indicate inflammation of the lymphatic glands and inflammation of the lymphatio vessels respectively. In most instances of inflammation in the absorbent or lymphatic system, the vessels and glands are simultaneously involved. Although there is plenty of evidence, from the examination of the dead body, that inflommation of the lymphatics may oceur internally, it is ouly observed in the living subject in connection with the skin or an ulcerated surface. The disease usually originates in an open wound of almost any form, as a puncture, a cut, or a blister. This wound is directly infected by some morbid matter, as, fur example, some local inflammatory product, such as the putrid secretion of a sore; but more commonly by some irritating or poisonous matter from without, or some gaseous matter. The inflammation that is thus set up in the lymphaties always extends upwards from the wound, and may be traced by lines of redness following the comse of these vessels, and not of the veins, and terminating where the inflamed vessels enter a gland. In the arm, for example, they never pass the armpit, in which the axillary glands lie. The tenclerness along these indamed tracts is excessive, and extends to the next gland, which appears to arrest the further progress of the poisoned lymph, by becoming itself inflamed. The degree of infammatiou of the gland may vary from slight enlargement with tenderness on pressure, to profuse suppuration. The suppuration may not take place till a week or more after the inflammation of the vessels has subsided, and may excite no rigors or other constitutional symptoms; and a patient may be quite unconscious that there is anything serious the matter with him, when half a pint or more of matter may be collecting in and around a gland in the armpit. The constitutional symptoms attending an attack of acute inflammation of the lymphatic vessels (angeioleucitis) are often severe, and are thus summed up by Mr Moore in his essay 'On Diseases of the Absorbent System' in Holmes's System of Surgery: 'Tigors, nausea, and vomiting, heat of skin, thirst, drymess and coating of the tongue, with constipation, sleeplessness, and a feeling of languor, are usually the severest accompaniments of the disease. If the fever be typhoid, if there be profuse fetid sweats, severe museular pains, high excitement, or dry burning heat of the skin, ank marked delinimm, the poison is no longer limited within the lymphatic channels, but has infiltrated the cellular tissues, and has tainted the blood. As the inflammation subsides, a cutaneous eruption or fetid discharge from the bowels comes on, and the general symptoms become those of exhaustion.'
The following observations on the treatment of infamed absorbents are mainly taken from Ml r Noore's essay. Many of the ordinary duties of life pexpetually expose manual labourers and others to this painful affection. In the way of prevention, the practice of smearing the hauds with oil or grease before touching noxious finids, is found to prevent the mischief which might arise from absorption by a eut or sore, and is a useful precaution in dissection and in post-mortem examinations; and there can be no doubt that the timely application
of a layer of collodion or of court-plaster might avert many attacks of inflamed absorbents. When symptoms of this form of inflammation supervene, the wound should be thoroughly cleansed, by beins laid more open, if all its parts are not freely exposed, and then $p^{\text {rut }}$ under a stream of water, syringed, or soaked in a hot bath, as may seem most suitahle. If recent or punctured, it should be sucked, and then freely touched with a pencil of nitrate of silver. If flabby, it should be treated with a stinuulating lotion of sulphate of zinc or of copper ; if fetid, it should be wrapped in a solution of Condy's Fluid, or in chlorinated lotions; and if sloughy, it should be covered with Peruvian balsam and a poultice of linseed meal, charcoal, or yeast. A warm poultice of one of these kinds, frequently changed, is usually the most soothing application. At the same time, nitrate of silver should be two or three times drawn along the red tender bines indicating the course of the lymphatics, after which the arm should be enveloped in cotton-wool; and perfect rest in a comfortable position enjoined. Due attention must at the same time be paid to the general condition of the system, and especially to the condition of the intestinal secretions.

ADENOCELE (Gr. adēnē, a gland, and hēēe, a tumour) is the term now employed in surgery to indicate a kind of new growth in the female lreast, the tissue of which closely resembles the breasttissue itself. It is synonymous with the terms 'Chronic Mammary Tumour,' 'Pancreatic Sarcoma,' 'Mammary Glandular Tumour,' 'Hydatid Disease of the Breast,' 'Serocystic Sarcoma,' \&c. The diversity of names indicates the diversity of the outward forms seen in these growths. A full account of these tumours, and of the treatment to be adopted (whicl consists in excision), is given in Mr Birkett's article, 'On Diseases of the Breast,' in Holmes's System of Surgery.

ADE'RNO (ancient Adranum), a town of Sicily, 17 miles north-west from Catania. It is situated at the base of Mount Etna, close to the Simeto, on which are some remarkable cascades near the town. It is surrounded by walls, is a very cleau town, and is full of convents and nunueries, mostly founded by the Normans, so that bare walls of lava and grated windows appear everywhere, and the sound of bells is almost incessantly heard. Pop. 13,000.

A'DIPIC ACID ($\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{6}, 2 \mathrm{HO}$) is a dibasic acid of the oxalic series, having the general formula $\mathrm{C}_{2 n} \mathrm{H}_{2 n-2} \mathrm{O}_{8}$; and is obtained in the form of white, opraque, hemisjuherical nodules (which are probably aggregations of small crystals), by the oxidising action of uitric acid on oleic acid, suet, spermaceti, aud other fatty bodies. The name is derived from the Latin adeps, fat, and must not be confounded with that of a similar acid of tie same group, known as Selacic Aciul.

ADJ YGU'RH, a town of British Iudia, in the presidency of Bengal, and province of Allahabad, 69 miles west-nortlu-west from Rewal. it has a fortress, situated on a very steep hill, and accessible only by well-defended paths. The hill, which is of granite, is isolated, and separated from the northwestern edge of a plateau by a very deep and impassable ravine. Within the walls of the fort are two great masses of raius of temples, resembling in architectural character those of Southern India, and covered with the most elaborate sculptures. A. was for a short time the capital of a small Mahratta state, was taken by the British under Lieutenantcolonel Martindell, in 1500, after an obstinate resistance, and restored to its previons possessors, who were Rajputs. The native line of rajahs became cxtinct in 1855. Except the summit of the hill,

ADOW.A-AGUILAII DE IA FRONTERA.

occupied by the fort, which is healthy, A. is very subject to inalari.. The fort is Sto feet above the town, which is 400 fect above the sea. Pop. about 5001 .

A'DOWA, a town of Alyssinia, the colutal of Tigré, 14.3 miles nortb-east from Gonclar. It is situated martly on the slope and partly at the hase of a hill, on the left bauk of the Hasam, a fecter of the Athara, which is at large branch of the Nile. The houses are of the conical form commen in Ahyssinia, regnlarly disposed in strects, and mingled with satelens and trees. Λ, is the chicf antrepot of trade between the interior of 'igré and the coast. It has an extensive transit trate, in which gold, ivory, and slaves are artieles of importance. It lias also manufactures of cotton fabries, and iron and brass wares. P'op. cstimated at about S000.
ADPA (ancient Aulcou), a seaport town of Spain, in the provinee of Granada. and 49 miles southeast from Granali. It is situated on the shore of the Mediterrancan, at the mouth of the Alra. 'lle ancient Abelera, founded lyy the Phenicians, was on a hill, at the base of which the monern town stands, in a sitnation malealthy on accome of swamps. The jort is not gool, being much exposed to the west. 'The honses are generally of one story. There is one tolerably wide street, the rest are narrow and ill paved. From the wateh-tower of A., in former times, a tocsin sounded the alarm on the approach of African pirates. Lead mines in the neighbourkool give employment to many of the inhabitants, and trade to the port. Among the other exports are grapes, wheat, and sugar. Fishing and the distillation of brandy are carried ons. Pops. 7400.

ADU'LLAMITES. An attempt, in the year 1S66, by the goverument of Farl liussell and Mr Gladstone, to carry a measure which would have brought about a sweeping rexluction of the elective franchise, gave occasion to a large mumber of the more moderate liberals to secede from the Whig leaders, and rote with the Conservatives. The designation of Adullamiles was fastened on the new party, in conserguence of Mr Bright having, in the couse of debate, likened them to the political outlaws who took refnge with David in the cave of Adullam (1 Samel, xxii. 1, 2) ; a comparison taken up, by Iord Elcho, who humoronsly replied, that the band congregated in the eave was homly increasing, and would succed in delivering the house from the tyranny of Sanl (Mr Gladstone) and his armourbearer (Mr Lright).

AFFRIQUE, S.unt, a town of the dep. of Avegron, liance, on the Sorgue, a trimatary of the Tarn, 31 miles south-soutl-east from liholez. It is situaterl in a beautiful valley, between two mountains, and is surrounded by mealows, orchards, and vincyards. The streets are broal, but the houses are mostly old and mean. It has woollen and cotton manufactories and tanneries. There is a considerable trade in wool; and a principal article of trade is the celebrated lioquefort Checse, made from ewe-mill, chietly in the momtain pastures aromed the neighbouring village of lioquefort. Almut 10,000 cheeses are made anmally. They are liept in cellars by the cheesemongers to ripen. This kind of elecse was sent to ancient Rome, and is highly praised by l'liny. Pop. (1S66) 507.5.

AFIUM-K゙Al2.1-11ISSAR (0)pium Black Castle), a city of Asia Minor, in the pashalic of Auatolia, 150 miles east-by-north from sinyrna. It stands near the Akar, partly on level ground, and partly on a rising ground amone rocks. Above the city, towers an isulated rock of $300-400$ feet in height, almost
precipitons on most sides, and bery steep on that ly which alone it is accessible. The summit has in former times leen fortitied. The strects of the eity are very narrow. Nost of the houses are of stome, and well hailt. A great trade is carrien on, the city being an catrepot between Smyrna and limone on the one hand, amd Armenia, the cometrics on the Euphrates, and Persia on the other. The products both of burnpe and the bast are to be funad in its markets. A principal article of trate is chinm, produced in the meighhourhool, and from it the eity drives its mame. There are here and in the nem.g. bourhood manufactures of felis, carpets, arinc, amb saddlery. The saldlery of A. was fomerly in request throughout the whole 'Turkish Empire, but the demand for it has greatly fallen off. 'The pril. is supposed to be about 60,000 .
AGAlA'ClIA (Gr, a, not, and galacté, mills). a wat of the due secection of milk. It may depend either on organic improfection of the mamary gland, or upun constitational causes. Th the latter ease, the secretion may often loe axcited !y warmth and moisture, by the stimulus of the act of suching, and if this fail, hy the application of the leaves of the castor-oil plant to the breast.
A'GATA DE GO'TI, SASTA, a town of South Italy, in the province of Bencrento, $1-1$ miles east from Capua, lt is situated on a hill of volcanie rock, surrounded by the lselero, an alluent of the Volturno. It is an episcopal seat, amb has a cathedral, seven other churehes, and an abbey: T'op. 8951.

AGHMA'T, or AGHMET, a fortified town of Moroceo, the capital of a province, on the left bank of the Lalis, a tributary of the Tensift, on the northwestern slope of Mount Atlas, "4 miles south from Morocco. L'op. 6000, of whom about ly00 are Jews. A. is saill to lave been at one time the residence of the Moorish emperor,

AGNO'Nli, a town of South laly, in the province of Molise, and 22 miles north-west from the town of Campobasso. It stands on a hill, ame is said to occupy the site of the ancient Aquilonia. It is celebrated for its copper-works. I'op, in $1561,10,230$.

AGO'STA, or AUGUSTA, a fortified city of Sicily, in the province of Catania, 12 miles morth from Syracuse. It stands on a puninsula projecting into the Meliterraucal. It is said to ouculy the site of the Megara Hyblece of the ancients, but contains no ancient remains. The present city was fomided by the Emperor Frederick 11. in 120., It was the last place in Sicily to hold ont against Cliarles of Anjou, but was betrayeel into the hands of William L'Estendard, me of his barons, in 1266 , when it was sacked, and its inlabitants mercilessly butchered. It remained desolate for years, lut having been repeopled, and begm again to prosper, it was burned and razed to the ground in $1: 360$ in another Sicilian war; and again was taken and burned by the Thrks in 1551. Finally, in 16i3.3, it was destroyed by an eartloquake, when one-third of the inhabitants perished. It has three long marallel streets. The houses are generally of one story: The port is spacious, but of rather diflicult access. Salt is the chief article of export. Oil, wine, cheese, fruit, honey, and sardines are also exported. D'ol'. 9735.

AGUILA'R DE LA FRONTE'RA, a town of Andalusia, Spain, in the province of Cordowa, oceupying the summits and slupes of several low hills on the leit lank of the Cabra, 26 miles south-south-east from Cordora. Many of the houses are of three stories, and the town is remarkable for the whiteness of its houses and the cleanness of its strects. It
has three fine squares, and a dismantled Moorish castle. The chief trade is in corn and wine. Many of the inhabitants are employed in agriculture, and in the breeding of oxen, horses, and mules. I'op. I 1,536 .

AGU'R, it town of Indin, in the territory of Gralior, the jossessions of Scindia's family, on the ronte from Uajein to Kiota, 41 miles northeast from Iioti. It stands iu an open plain, 159 S feet abore the sea, is surrounled by a lampart of stone, and has on one side of it a large and fine tank. Pol. abont 30,000 .

AHMEDNE'GGUR, a Rajpoot district of Guzerat, in the dirision called Myhee Caunta, politically connected with the presidency of Bumbay. It is under the rule of the Irajah of Edur, subject to British sovereiguty. The amount of tribute from A. is £S95 a year. -The principal town is Ahnednuggur, on the banks of the Hant Nlati, a branch of the Sabarmati, in an extensive plain, 92 miles north-north-west from Baroda. It is surromaded by a fine old stone wall. Pop. 9000.

AHMEDPU'la, a town of India, in the native state of Bhawulpur, and 25 miles south-west from Bhawulpur. The houses are mostly built of mud; but there is a larye and lofty mosque, with four tall minarets. 'l'here are mannfactures of matchlocks, gunpowder, catton, and silk. The nol. has been estimated at 30,000 , but uther estimates make it much less.

A1DAN, SAL゙T, one of those distinguished monks of the early Scoto-Irish Church, who were received into the calendar of saints by a sort of acclamation, and withont the ceremony of canonisation. His period is the middle of the th century. He was the first efficient missionary who proparated Christianity in the north of England. Oswald, the celebrated king of Northumbria, requested the conmunity of lona to send to his culurt one of their brethren who wonld teach the Christian religion to his people. As the history has come down to $n \mathrm{n}$, the first person sent was a certain Comma, who was ton dogmatic and intolerant to be a suecessful missionary. On his returning after a failure, A., who possessed the patience, geuiality, and popmar manners fitted for the task, was suceessful. He left a great reputation, and, as the earliest promnlgator of Christianity in the northern districts, is generally counted the tirst in the lists of the Wishopes of Durham.
$A I D O^{\prime} N \dot{E}$, a town of Sicily, in the province of Caltanisetta, 20 miles east-by-south from Caltanisetta. It crowns the summit of a lofty height, commanding a view of the great plain of Catania. It was one uf the settlements of the Lombards, who accompanied Poger the Norman in his conquest of Sicily: The road which leads to the town is very rugced, borlered by Inxuriant prickly pears. Pop. 5920.

AINF-TA'D, a town of Syria, near the source of the Kowek, an affuent of the Euphrates, 59 r.iles north-north-east from Aleppo. It is tolerably well built: the houses are mostly of stone. It is well supplied with water, pure streams of which flow coustantly throuth the streets. It has a castle built upon a moumd, resting on rock, and of very striking appearaoce. The chief trade is in hides and leather; but cotton, slicep's and goat's wool, wax, wheat, and rice are also of commercial importance, being chief articles of praduce in the surrounting district. A. is supposed by some to he tlie ancient Antiochin all Taurum. Pop. . 0,000 , consposed of Turks, Greeks, and Armeuians.

AIRE, or AIIE-SUR-LiADOUI (anc. Ficus Julius), a town of the dep. of Landes, France, on
the left bank of the Adour, 76 miles sonth from Borleaux. It is a bishop's seat; and its cathedral, which has been often destroyed and rebuilt, is one of the most ancient in France. A. has been a $1^{\text {llace }}$ of consequence from the days of the Roman conquest of Gaval, and was the capital of the Visigoths under Alaric, but is now much decayed, and dimin. ishing in population. It has hat manufactories and tammeries. I'op. 2600 in 1560.

ATRE, or AIPE-SUR-LE-LIS, a town of the dep. of Pas-de-Cialais, France. on the LJs, 30 miles sonth-east from Calais. It is a fortress of the third class; the town well built, but its situa. tion low and marshy. 'lhe barracks are capable of containing 6000 men. There are maufactares of woollen stnffs, linen yarn, thread, hats, starch, Dutch tiles, and soap; also some tracle in grain. Osier-work is carried on to some extent. Yo (1566) 4727.

AJERUO'CA, a town of the province of Jinas Geraes, Brazil, 100 miles north-west from Fio de Janeiro. It is situated in a fertile country, at the northern base of the sierra Mantiqueira, on the liver Ajurnoca, one of the head-waters of the Parana. The surrounding district once yielded much gold, which has apparently been exhausted; hut it prodnces excellent crops of tobacco, millet, mandioc, sugar, and cuffee. Swine are reared for the market of Iio de Janeiro. Pop. (including district) about 12,000.

AKEARPU'R, a town of Indin, in the British district of Campore, 25 miles west from Cawnpore, on the ronte from Cawnpore to Etawa. It is the capital of a pergunnah of the same name. Pop. 6330.

AKHALZl'KH, or AKI'SKA, a town of Iussian Armenia, 90 miles west from Titlis, on the left bank of the Dalka, an aflltent of the Kinr. It is situated in a valley of the Keldir Monntains, and at such an elevation above the sea, that the winter is severe, althongh the summer is very hot. A. was anciently called Kieldir or Chaldir. It is withont walis, but has a strong citadel, built on a rock. The mosque of sultan Ahmed, built on the model of St Sophia, in Constantinople, has a library attached to it, which was accounted one of the most valuable in the East; but the liussians, after acquiring possession of 1 ., carried otf great part of its most valuable treasules to st Yetersburg. Maize, wheat, barley, Has, cotton, silk, grapes, fiss, and honey are produced in the surrounding district. Some mannfactures are carried on in the town, and it maintains an active trade with various places on the Black Sca. I'op. 15,000 , two-thirds of whom are Armenians.

AK-1IISSA'R (anc. Thyatira), it town of Asia Minor, in Anatulia, 5o miles north-east from Smyrna, on somewhat clevated ground in the valley of the Hyllus. The streets are paved with carved stone, and other relics of antiquity abound; but there are no ruins of ancient buildings. Cotton goods are exported. Hop, estimated at 600%, of whom about 5000 are Turks, and the remaioder mostly Greeks.

AKHLA'T, or ARDI'SII, a town of Asiatic Turkey, in the pashalic of Vin, and 55 miles northwest from Vinn. It is situated on the north-west shore of Lake Van, and is surrounded by a dunble wall anil moat, and further protected by towers and a citadel. Fop, estimated at 6000 . The oll eity of A., at a little distance from the lresent town, in a raxine, was the resideace of the kings of Armenia, and was the scene of many conflicts between the Greeks, Armenians, and Yersians. It was taken

377

AKHTYPKK—ALA1.AMA

and devastated in 12.28 ley Jelad-ud-deen, and completely destroyed by an earthuuake in 1"16.
AKHTY'RK, a town of European linssia, in the goverament of Lharkov, and 58 miles northwest from Kharkor. It is situated on a small river of the same name, an aflinent of the Dnieper. It was foumbed by the l'oles in 16+1. It has mannfaetures of light textile fabries, and a great annual fair. The neighbourhood is very furtile. Pop. $13,946$.

AKRON, a town of the state of Oluio, North America, the eapital of Summit County. It is situated 30 miles sonth of Cleveland, on the Little Cuyahoga, which falls into Lako Erie, and at the junction of the Ohio and L'rie Canal with the Pemsylvania and Ohin Camal, at the highest point in the course of the former canal, whence its name (Gr. a smmmit). It is also on the Cleveland and Zanesville Iailway. It was lirst settled in 1825 . It has woollen factories, thour-mills, a steam-engine factory, a stove factory, se. The machinery of all its public works is driwn ly water-power. It is a place of considerable trade. P'op. 6000.

AK-SIIEIIL (H/ite City, ane. Phatomelion), a city of Asiatic Turkey; in the pashalic of Karaman, five miles south of the salt lake of Ak-shehr, at the entrance of an extensive mountain valley. The houses rise in suceessive terraces on the slope of a hill. There is here a celebrated carpet manufactory. Pop. estimated at 6000 .

AK'SU', a town of Chinese Turkestan, 260 miles north-east from Yarkank, on an afluent of the Tarim, and on the southern hase of the Ihian-shan Mountains. It is the military head-quarters of this part of the Chinese Empire, and a large garrison is maintained in it. It was formerly the residence of the kings of Kasligar and Yarkand. In 1716, it was nearly destroyed by an earthquake, and in the leginning of the present century; suffered terribly from an immdation, in which atou persons perished. It is celebratel for its manufactures of cotton cloth and elaborately ornamented suddlery: It is much resorted to hy earavians, as an entrepuot of commerce between Russin, 'Tartary, and Chima. The pop. is very varionsly estimateal from 6000 to 20,000 and upwards. Sheep and cattle are extensively reared in the neighlbourbood.

AKYA's, a town of Further India, the chief seaport of the district of Akyab or Aracan I'roper, and the capital of the province of Aracan. It was formerly called Twet-twe, and sometimes still receives that name. It is situated on the eastern side of the sland of Akyab, at the month of the Kinladyne or Coladyne. The houses are well built, the streets hroal and regular. The town is raphlly rising in commereial importance. lient-housus have been ereeted for the benefit of the harbour. I'op', about 5000 in ISGI.
ALadBaidat ThF, an armed ressel of the Confelurate States of America, which inflictud terrible injury upon the shipping of the Northern States of the American Union dining the civil war which broke out in 1861. The carcer of the A. Was in more than one respect unaralleled in the listory of any previons naval war. She was, for a war-ship, a small vessel, huilt for speed, earrying a few guns, aul intended not for lighting, lut for preying upon ilefenceless merchant-ships. She was almost the ouly vessel the Confederate States hat upou the open seas; but the destruction she wrought was so grent, and in ellect so alarming, as to proluce a very warked diminution in the number of commereial vessels earrying the flag of the United States. She was built, too, in a Irritish port, and never, at any time, cutered a port of the state by which she was
commissionel? there was no port available for the disposal of her prizes, and, ship and eargo, they were usually humed. Iker eareer demonstrited how completely, in the present state of commerce, under the conditions of navigation and naval warfare produced hy stean and long-range artillery, belligerents fairly mateherl might ruin each other at sea; and it raisel international questions between the United States and Great Britain, which are likely to be solved ly a new definition of the daties of neutrals in time of war. Liven the end of the A. was singular and instructive: perhaps it was too honomrable an end for such a career as hers. She went down in an artillery duel, quixotically entereal upon for a fancied point of honour, with a vessel protectal by armour: illustrating the impotence, in modurn naval warfare, of the gallantry of the most gallant of semmen arainst advantages durivel from speed, armament, aud armonr.

At the begiming of the civil war in 1861, the Confederate States were without a navy, aud apparently without the means of aequiring one. Their population was arricultural ; they had neither ships nor seamen ; and tho Northern States promptly instituted an effective blockade of nearly all their ports. The able men who had planned the secession of the Southern States from the Americin Union had not overlooked the subject of a navy; but events liad been against them. They had reckoned upon securing a part of the United States Ileet; and lefore the war commenced, they bad determinel unon litting out small anel swift vessels, carrying a few heavy guns, to cruise against the Northern commerce. They had no lack of able naval ollicers; for a majurity of the senior maval oflicers of the Uniteal States were Southern men, and were at their command. Early in 1561, while parleying was still going on between the North and the Soutin, and hopes of a peacealle separation were not extinet, Captain liaphacl Semmes lad been empowered by the Southern leaders to purchase ships and stores for the South; but as regards ships, Captain Semmes appears to have been unsuccessful. It was not till several months after the war began, in Jme 1SG1, that the Confederate States were able to send their first armed erniser to sei. This was the Sumter, a small steamer, which had previously traded between New Orleans and IIavana. Captain Semmes, who was appointed hor commander, was singularly qualified for the work expected of him. IIe was a native of Narylam, alout 51 years of age; he had been a Commander in the United States navy, and now held the sause rank in the service of the Southern States. liesides possessing high professional abilities and attainments, be was a man of acnte intellect and of deciled claracter; and he was thoroughly instructed in the principles and details of internitional law and etifuette. IIo seems to have united with the good gualities of a naval offieer the qualifications of an able lawyer, diplomatist, and pablicist. He conla be trusted to secure for a war-vessel of the Confederacy, Lowever small, every advantage to which she was entitled from neutral powers ; to give to subjects of nentral powers, and of the other belligerent alike, nothing which was not strictly their lue; to carry out without tlinching, unmoved by taunts and abuse, the work of destruction which was expreted at his hands. IIis carcer in the Sumter is a record of triumplus won over neutral governurs and ministers, who were disinclinel to admit the little Sumter to the position of a loclligerent war-vessel ; of elever avoidance of the enemy's cruisers, of which several were always on his track; and of the destruction of valuable ships and cargoes belonging to citizens of the United States. The Sumter ind her captain
were soon known throughout the world. The enemy ealled Captain Semmes a pirate, and could they have eaught him, would prohably have treated him as a pirate. But he appears to have done nothing but what it was lis right as a belligerent to do; at anyrate, lie was sernpulous not to exceed the precedents of international law. It was upon his system of burning lis eaptures, not upon the captures themselves, that the people of the Northern States founded their charge of piracy; but no Confederate port was open to him for the disposal of his prizes ; and his treatment of them, though it greatly shocked an age which had seen scarcely anything of naval warfare, was warranted by precedents, and was prohably, though not unquestionably, within his right. As an occasional resource, to be adopted upon an emergency, the burning of captures made at sea is undoubtedly lawful; it is not so certain that a belligerent is at liberty to carry out a system of burning captures, made withont the hope of being able to lring them into port for adjudication before a prize court. The cruise of the Sumter, Which began on the 30th June 1861, with her escape from New Orleans, then strictly blockaded, was over before the end of the year ; but she had eaptured is vessels, had spread alarm through the Northern seaports, and had put shipowners and merchants to heavy charges for insurance; and by disinclining merchants to ship their goods in Northern vessels, bad seriously injured the shipping-trade of the Northern States. Eventually, she was laid up at Gibraltar, and declared unfit for further service: laad she heen seaworthy, it would hare been very difficult to carry her oit of a port where she ras diligently watched by Northern cruisers. She hal, however, verified the anticipations of the Confederate government; and in $156^{\circ} 2$, this government found a successor for ber, much better fitted for the work to lse done, and ilestined to far greater celebrity. This was the Alabama.

This vessel was built for the Confeclerate govermment by Messrs Laird and Sons at Birkenhead. She was a serew steam-sloop of 10 ± 0 tons register, built of wool, and for speed rather than strength. She was barque-rigged, and tras fitted with two engines of $35 \overline{0}$ horse-power each; she was pierced for 12 guns, and had the means of carrying two heavy livot-gums amid-ships. She cost £ 47,500 withont her equipment ; including her equipment, £51,716. Semmes, now a captain in the Confederate service, was, in June 1S62, appointed to superintend her equipment, and take command of ber when ready for sea. Botl Captain Semmes and Commander Bullock, who bad superintended the building, were enjoined by the Confederate government to keep the clestination of the vessel as secret as possible, and carefully to ayoid any infringement of public law, or of the mumicipal law of Great Britain, which would give the British government a pretext for seizing licr. These instructions were carefully acted 1 uron. The destination of the 'No. 290,' as she was called from her number in the list of steamships constructed by the Messrs Laird, was so well concealed, that she was nearly finished before it was suspected by the emissaries of the United States. Aecording to previons uractiec, there was no great diffieulty in avoiling the infringement of the publie and of the municipald law in such a case. It har! been held lawful to buikl vessels for a belligerent in neutral ports, and lawful to purchase guus and stores in neutral ports, though they might we for the equipment of vessels this built. What had been beld uolawful was the equipment with gans and wartike stores of a vessel built for a belligerent in a neutral port previous to her leaviug the neutral jurisliction. Captain semmes did not
iatend to equip his ressel at Birkenhead, and therefore, supposing the rules of public law to have remained unchanged, he intendel no infringement of the law. But the United States minister called upon the British government to detain the 'No. 200,' submitting some evidence that she was intended for a Confederate war-vessel. He maintained, or, at anyrate, it has since been maintained on the plart of the United states, that her construction, being that of a war-vessel, was so different from that of vessels built for trade, as itself in some measure to constitute an equipment for war. The British government consulted the crown lawyers, who at lirst thought the evillence of destination insufficient. Afterwards, when further evidence was presented, a delay was caused by the illness of Sir John liarling, the Queen's Alvoeate. When an opinion favourable to the detention of the ressel was at length given, 'No. 200' was gone. The huilders, made aware of the danger of a seizure, hand made haste with their work; the ressel, though untinished, was got ready for sea; under pretenee of a trial trip, she made her way down the دlersey to Moelfra liay, where the work remaining to be done was actively carried on; and on the morning of the 31st July 1S62, warning having heen given that she was to be seized that day, the 'No. 290 ' steamed away from the British coast. The ablest English lawyers were of opinion that there had been no infringement of the law, but that a case had heen presented which the British government was bound to submit to a court of law. The detention of the ressel during a protracted lawsuit moukd have served the purposes of the United States almost as well as her condemnation; and as she must have been detained lut for the delay cansed by Sir J. Harding's illness, it is not without a show at least of reason that the United States government now claims from Great Britain indemmitication for the losses consequent upon her escape.
'No. 290 ' made for Terceira, one of the Western Islauds, where she arrived on the 13th of Angust-her speed and sea-going qualities being fully proved upon the royage; and a few days after she was joincd by the Agrippina of London, carrying her guns, stores, and supply of coal, and by the Buhama, with Captain Semmes and his officers on board. By the 24th of Angust, she had shipped ber armament and stores, and was ready for sea; and now Captain Semmes proluced his commission to the sailors, named the vessel the A., and hoisted the Confederate flag. The sailors on board the A. and her consorts were Euglishmen, all entered for a feigned voyage; but with few exceptions, they enlisted under Captain Semmes, thongh the terms uron which they insisted were exorbitant. The erew now consisted of S0 men all toll ; and the armament of eight 3%-poumders. Dy the end of August, the vessel was got into good order ; and she made her fist capture on the 5th of September. Within eleven days of that date, she captured and burned property the value of which exceeded her own cost. The people of the United States were tilled with indignation against Great Britain for permitting the eseape of such a destroyer. Their indignation against 'the pirate Semmes' was only less than the alarm with which they regarded the depredations of the A. Several fast-sailing cruisers Were sent in seareh of her.

Captain Semmes made for the American eonst, which be had determined to make his first crusing ground. He was ambitions of making a few eaptures within sight of New York; but running short of coal, he was obliged to give up this somewhat daring scheme, and make for a coaling-station. He afterwards lay on the track of the Califorma

ALAIS-ALA-SIIEIIR.

mail-steamers running between Aspinwall and New lork; and after waiting for some time, he eaptured the A riel minl-steamer, with 140 marines, several Finted states utlieers, and 500 other passengers on hoard. A heary gumand a quantity of specie were all that he took by this eapture, but it greatly raised the prestige of the A., and increased the alarm of American shipowners. The passengers and crew of the Ariel were too mumerous to he taken on board the A. ; and 23 C'aptain Semmes found yellow fever raging at Kingston in Jamaica, at which port le inteuded to have landed them, he was umable to destroy the vessel, and had to set her free, after taking a loond for a large sun to be paid on the conclusion of the war. Shortly atter, on the 11 th January $156 ; 3$, an encounter occurred between the A. and a United States vessel, which still further angmented the reputation of the former. Cruising off falveston in Cexas, the A. gave battle to the United states gum-boat IIatteras, an old vessel, somewhat her inferior in armament, and sunk her after a few broadsides. The destruction of the Matteras and the capture of the Ariel were the most remarkable events in the carcer of the A. until her closing scene arrived. Her history consists of it monotonous succession of captures made in different seas, her prizes being merchant-vessels incapable of resistance, which were burned, or, when there was convincing evidence of the nentral ownershijp of the eargo, which did not often happen, liberated upon bond. She captured in all 65 ressels; and the value of the property she destroyed has been estimated at $4,000,000$ dollars. It was, however, by the heavy insurance for war-risks to which she suljeeted them, and still more by the diffeulty she caused them in getting freights, that the A.'s eareer inflicted the greatest injury upon the shipowners of the United States. When the pursuit after her beeame too hot on the Ameriean coast, she sailed for the Cape of Good Ifope, and cruised in the eastern seas. Returning to Jurope, she arrived in the English Channel in June ister, and on the llth of June entered the Erench port of Cherbours to refit and supply herself with stores. She had been nearly two years at sea, and hand got into bad condition; her speed and sailing qualities were considerably innaired. l'ermission to make the necessary repars was given by the authorities of the port of Cherbourg.

But withiu a few days, the Unitel States steamer, Fearsaye, commanded by Cuptain Winslow, a former shipmate of Captain Semmes, arrivel at Cherbourg; and sle made a demonstration which the otbicers and erew of the A .-writhing uuder the abuse that hat been heaped upon them, and aware that their career had been inglorions - regarded and resentel as a chal. lenge Captain summes knew, and probably shared their feelings, and determined to gratify them; he sent notice to the United States consul that he would sail ont and light the Kearsage. The two ships were, to appearance, not unequally matched, in reality the fiearstge had considerably the advantage in number of crew, armament, speed, and gencral condition ; besides that, she was protected amil-ships by armour. The fact of her being thus protected, anel the extent of her superiority, seem to have been unknown to Captain semmes. The tight took place on Sunday; the 19th of Junc, nutside the [rort of Cherbourg, all Cherbourg gazing at it from the neighburing heights. The Kearsage, laving the supuriority in sailing, was able to keep at a clistance of about 500 yards from her enemy; her armour iu a great measure protected her from the enemy's shot; and, as might be expected, her guns were better served than those of the Alabama. Before the fight had lasted an hour, Caitain Semmes found his ship, was sinking, and gave orders to pull
down his tlag. The looats were got out, and tho wonnded placed in them; but before the licarsage combla come to the reseuc, the A. went to the buttom. The boats of the Kearselpe saved many of the erew. Others, including Captain Semmes, were picked up by an English yacht, belonging to a Mr Lancaster, the Deerhound, which had heen near during the fight, and had been allowed by Capitain Winsluw to holp in resening the A.'s crew. 'lhese the Deerhound immediately earried within the nontral juris. diction. The American eaptain was very angry at being deprived of his most inportant prisoner ly the Deerhound; and semmes and the others saved by this vessel were afterwards chargel with having broken their faith as prisuners who had asked for quarter from the lieaisaye. liut as regards the Deerhound at least, there was no room for any eharge; the seamen of the A., onee upmin its theck, were entitled to the protection of (ireat Britain, anel no prevlous compact could have deprived them of it.

It is to be hoped that as a result of the nerotiations uow pending between Great Britain and tho United States, any such international complication as that arising out of the ease of the Λ. will loe rendered easily avoidable. A fill account of the Alebame's career will be fouml in a work publisheal at London in ISG4-The C'ruise of the 1 Labama and the sumter, compiled from the jrapers of Captain Liahacl Semmes.
(The elaims of the Linited States against Great Britain for damages done ly the Alabama and other vessels, was finally referred to a court of arbitrators, who met at feneva, and gave a decision against

ALAFs, a town of the dep. of Gard, Franee, situated in a fertile phan, on the right bank of the Gardon, at the lase of the Cevemes Mountains, 23 miles north-west from Nimes, with which it is connected by milway. It embraced the Protestant canse in the religions wars of France; anel Loutis Xll1. in person, aceompaniel by the Cardinal de Richelien, hesieged it, and linving taken it in 162?, demolished its walls. Three years later, the baron of Alais having taken part in the rebellion of Montmorency, the eastle was destroyed. I'rotestantism still prevails to it consiclerable extent. A. is a very flomishing town, and owes its prosperity chiefly to the mineral wealth of the surrounding distriet, which protuces coal, iron, lead, zine, and manganese. The coal and iron mines are of chicf importance. There are large iron-fonndries in the town and neighbourbood. There are also manufactures of ribbons, stockings, gloves, vitriol, and earthenware. A. is an episcopal seat. 1'op. (1566) 12,312.

AIAJUl:'LA, a city of the state of Costa Rica, Central America, 23 miles west-north-west from Cartago, and a little on the western side of the water-shed between the Atlatic and the J'acilic. It contains many good honses, and has extensive suburls of cletaehed honses, cmbowered amoug trees and flowering shruls. The neighbourhood is chiefly elevoted to the culture of the sugar-cane. l'on', including suburbs, $10,575$.

A'LAMOS, Los (i. e., The I'oplers), a town of Mexico, in the state of Sonora, amd department of Simaloa, 110 miles north-north-west from Sinalua. It is situated in a barren plain, but in a region famous for its silver mines. The houses are mostly of stone or brick, eovered with stuce. I'rovisions are dear, being bronght from a distance, and the town is very insufficiently supplied with water. 1'이․ 10,000
ALA-SHEIIR (i. e., The Exalled City, ancient

ALAUSI-ALBERT N'YANZA.

Plitadelphia), a city of Asia Minor, in the pashalic of Auatolia, 75 miles east-hy-south from Smyrna, at the north-east base of Nlonnt Tmolns. It was fonnded by Attalus Philadelphus, king of Pergamos, alont 200 b.c., and is famons as the seat of one of the 'Seven Cluurches of Asia.' It is still a place of considerable importance, and carries on a thriving trade hy caravans, chiefly with Smyrna. It is surrounded by a wall, and is of large extent; but the streets are narrow and dirty, and the houses generally meau. There are many interesting remains of antiquity. Pop. supposed to be about 15,000 .

ALAU'SI, a town of the repulilic of Ecuador, South America, in the 1 movince of Chimborazo, 70 miles east from Guayaquil, at an elevation of 7950 feet alonve the sea, in a valley of the Andes, on the river Alausi, which flows into the Gulf of Gnayaquil. The valley of the Alausi is extremely fertile, proclucing sugar, grain, and fruits. There are manufactures of woollen aud cotton cloth in the town. P'up. 6000.

A'LBA (ancient Alla Pompeia), a very ancient city of North Italy, in the province of Cunen, on the right bank of the Tamaro, 31 miles south-east from Turin. It is situated in a plain surrounded by hills. The neighbourhood produces much wine and silk, besides corn, oil, and fruits. The town has an extensive trade in eattle. It is an episcopal seat; the cathedral was founded in 1486 . Pop. 9677.

ALBACE'TE, a town of Spain, capital of the province of the same uame, in Murcia, li:S miles sontheast from Madrid, and a station on the railway from Madrid to Alicante. It stands in a fertile but treeless plain, is huilt with some degree of regularity, and contains a uumber of sepuares and many good houses. It is a place of considerable trade, and has great eattle-fairs in September. It is noted in Spain for the manufacture of knives and other steel goods, which, however, are very inferior to those of Sheffield. Pop. 11,000.-The province of Albacete is partly formed from the former kingdom of Murcia, and pratly from New Castile. It is generally billy, and in some parts mountainons, some of its mountaius attaining an altitnde of 5000 feet; lut it contains also rich plains and fertile valleys. Agriculture is in a more advanced state than in most parts of Spain ; corn and wine are largely probluced, as also oil, hemp, tobaceo, saffron, fruits of various kinds, and honey. Great numbers of sheep, goats, oxen, horses, mules, and asses are reared. The mineral wealth of the province aprears to be considerable, but is not turned to much account. The area of the province is $5066 \mathrm{sq} . \mathrm{m} . ;$ pop. $201,11 \mathrm{~s}$.
ALBAY', a town of the island of Lazon, Philippiue lslands, the capital of a province of the same name, in the sonth end of the islanal. It is sitnated about tro miles from the Bay of Allay, which is an excellent harbom, and very near a volcano also called Albay, which is in a state of constantactivity. Earthquakes are frequent, but the province is very fertile. The town is regularly built, contains some good houses, and is a place of considerable trade. Top. 13,115.

A'LBERT N'SANZA (the Little Lita Nzige of Speke), a large lake of East Central Africa, one of the reservoirs of the Nile, situated in a deep rock. hasin, distaut, at the nearest point, $S 0$ miles west of the Jictoria N'yanza. So far as yet known, the A. N. is of an oblong shape, and extends from lat. $2^{3} 45^{\prime} \mathrm{N}$. to 2° s.--10 wards of 300 miles. Where crossed by the equator, it is 92 English miles in breadth. On the east, it is fringed by preeipitons cliffs, having a mean altitucle of 1500 feet, with is alated peaks, rising from 5000 to 10,000 feet. The surface of the lake is 2720 fect above the sca, and

1470 feet below the general level of the country ; its water is fresh and sweet, and it is of great depth towards tbe centre. The north and west shores of the lake are bordered hy a massive range of hills, called the Bhe Mlonutains, which have an eleration of about 7000 feet. The existence of this vast lake first became known to Enropeans through speke and Grant, who, in 1862, heard of the Luta Nzige as a narow reservoir furming a slanlow back-water of the Nile. See map to article Nile. When Spelie and Grint, after the discovery of the Victoria N'yanza, were, in 1863, descending the Nile on their return to Europe, they met, at Gondokoro, Mr (now Sir) Samuel White Baker (I . v.), who was aseending the river in the hope of meeting with and aiding these travellers. As soon as they informed him of the repmated great lake, Baker agreed to undertake its exploration. Joining a trading party, he travelled south-eastwards to Latooki, which he deseribes as the linest country he had seen in Africa. His course was now south and south-west, through the countries of Obbo and Marli, crossing the Asua, a tributary of the Nile, on 9th Jannary 1864. Journeying next in a south and south-eastward direction over manhalited prairies aud swampy bollows, he came upon the Nile at the Kanma Falls, lat. \sim° 17^{\prime} N., at the ilentical spot where it had been crossed by Speke and Grant. Being prevented, hy the jealonsy of Kiug Kamrasi, from following the course of the stream to the westward, he was forced to proceed, by slow marches sonthward on the west side of the Nomerset or Nile, to M'rooli, leasing whiel, his course lay sonth-west on the sonth side of the Kafoor Piver. After a toilsome march of eighteen days from M'rooli, the party came in sight of the glorious cxpmese water. Eaker says : "Weak and exhausted with more than twelve mouths' anxiety, toil, aud sickness, I tottered down the steep and ziszag path, and in abont two hours reached the shore. The waves were rolling mon a bank of sand; and as I drank the water, and bathed my face in the weleome flood with a feeling of true gratitude for snecess, I named this great basin the Albert N'yanza, in memory of a great mann who had passed away:'

The spot where the party lirst reached the lake, Vacovia, is in lat. $1^{\circ} 14^{\prime} \mathrm{N} ., 30^{\circ} 40^{\prime} \mathrm{E}$. Embarkiur thence in canoes, the party coasted north-eastward, and in 13 days arrived at Magungo, lat. $2^{\circ} 10^{\prime}$ N., near the mouth of the somerset Iiver. At this part, the lake was under 20 miles in width, and appeared to stretch away in a north-west clirection. From Magnugo, 250 fect above the lake, the travellers had a view of the Nile Valley for 15 or 20 miles northwards. Ascending the somerset, at a distance of 25 miles from its month, the canoeroyage was interrupted hy a grand cataract 120 feet high, which was named the Murchison Falls. The explorers proceeded south-eastwards for about 30 miles to Kisoona, and then a march north-east for ahout the same distance brought them to the Karuma Falls, where they first entered the lakeregion. The uame Somerset is alopted from Speke's first map, in order to distinguish that river from the Nile proper. It issues from the Victoria N'yanza at the Lipon Falls, and Howing north-west and west for about 230 miles, it enters the A. N. within 30 miles of its northern extremity, and soon quits it to form the true Nile. From the Lipon Falis for 30 miles north, and from the Karma to the Murchison Falls, 45 miles, the somerset forms a series of rapids. The A. N. receives the drainage of a great equatorial mountain range, where rain falls during tell montlis of the year. The seenery of the lake is described as extremely beantiful. Salt, which is very abundant in the soil on the

ALBOSTAN゙ーA1ハスUDETE

eastern shores of the lake，is now the only artiche of trade to the inlabitants．Formerly，Magungo was a large town，when the trade from Karagke， in lat． $2^{\circ} \mathrm{B}$ ．，was conducted in large boats scnt by limmaniki，the king of the comntry，with cowrie shells and briss bracelets from Kanghebar，to le exchanged for wory．

ALbOSTA＇N，at town of dsiatie Turkey，in the pashalie of Marash，and ；9miles north－east－ly－morth from Naraslı．I＇op．estimated at 9000 ．

ALDO＇ E, a town of Andalusia，Spain，in the pro－ vince of Almeria， fol miles northerast from Almeria，2 un a small athment uf the Almanzora，whieh divides the town into two parts．It has some gom？strects amd buildings，and a line square．lilankets，coarse linen and hemunn 「abrjes，and earthenware are manufacturea．＇Tlscre are also corn and vil mills． ＇There is a great innmal fair in November，lasting fur a fortuight．J＇ous． 7430 ．

ALIJU＇CiO is a term cimploged in Surgery to designate the white opacity that often follows ulaciation of the cornea of the eye．In infauey，the comparatively rapiel interchange of materials will often diminish to agreat extent both the extent and deasity of these spots ；but in after－life，they do inot madery similar absorption，nor are they amenable to surgical relicif．

ALBUE゙O＇L，in town of Spain，in the province of Girauada， 41 miles sontli－east from limanda，and abont 3 miles from the coast of the Nediterranein． It is a well－bnilt town，with clean paved streets． ＇Ilse surrounding district abounds in vineyards，and is also very productive of ligs and almomels．The making of wiue aud brandy，and the dryiner of raisius，are the chice necupations of the inhibitants of the town itself．Pop， $56 t$ ．Ihe port of A ．is a small place called Lat Rabita．

ALJBUY QUELEQUĖ，a town of Jistrcmadma， Spain，in the province of learlajoz，und $2 t$ miles north from Jialajoz．It is a decayiner place．Cutton and wonllen falurics ase mamufactmoed，allso earthen－ ware，suity，ant chocolate．The neighbombood is frutful，producins corn，wine，oil，hax，humey，and ［ruits．Ion） 5170 ．

ALBUQUFIRQUE，a town of Temalillo Comaty， Nuw Mexico，U．太．，on the luft hank of the Jioo lif：vo dul Noute， 11 miles sonth－south－west from Sasta Fé．I＇op．©（o）

ALCALA＇DE GUNDAISA（The Custle of thro Gimadara），the ancient（＇urthinimim／／imippu（＇ulace ，if many springs＇），a town of Andalusia，Sjain，in the province of seville，and 7 miles east－by－sumth from Siville．It stamels near the filudaira，partly （ma a hill，so that some of the strects are rery stery， and is overlonkenl by the rnins of an aneiont iloorish cistle，once one of the most impurtant，as its ruins are still among the linust，in Spain．This town is luantifally situated，aml on aceomet of the salubrity of its climate，is much resurted to as a smmmer resi． dence by the indiabitants of serille．It is celebrated for producing the finest breal in Spain ：there are more than fifty bakeries in the town，and Seville is clictly supplicd From it．The water－mills and mule－ mills for makineg flour are mure than sou in number． aml with the bukcries，give edaployment to great part of the population．Jivery prucess commecterl with the making of breal is comdueted with the gruatest care Soville is also supplied with water from the lill alove A．s which is perionated by tunnels，some of them 6 miles in length，forminir undergronnd cauals．Some of the tumels are believed to be lioman works，lut most of then are known to have been made lyy the Noors．The water tlowing through the subterranean canals is
as clear as crystal．Tho meighbourhood of A．is fertile，proklueing corn，wine，onl，sill，Lonuj，ami fruits，also sheep and oxen．Iop．670：
ALCALA＇IA 1REA＇La（The lioyul Custle），a eity of Audalusia，spain，in tho provinco of lacn，and abmiles north－west From Granala．It is situated on a conical hill，in a narrow valley，on the uosth site of tle mountains which separate the province of Jaen froms that of Granadia，at au elevation of nearly 3000 fect above the sea．］t is a very pietmresque town， irregnlarly built，with steep aml narrow streets and hold towers．It was the stronghuld uf the Alcaide lun Zaide ；and heing taken in $1: 340$ ，by Alonso II ． in person，it obtained tho name lieul．It las a hosprital，formerly an abbey，a yery fine building． ＇I＇he neighbourhond produces grain and fruits of tho dinest quality，and the inhabitants of the town are mostly engaged in argiculture．There is some trado in wine and wool．＇1＇up． $11,5 \circ \mathrm{l}$ ．
$\Lambda^{\prime} L C A M O$ ，at town of Sicily，in the provinee wf Trapmi，and 23 mites east From＇Joapani，in the Val di Mazzara，on the higheroad between Palermo aud ＇l＇rapani．It is said to lave leen founda？loy the Arabs，on their first invasion of Sicily in So7．Plac original town stood on a lilld，and long retained a Moslem popmlation，who were hliven out by the Enuperor Freterick II．in 1：3：3，3，aul the new towa was built at the root of the hill．A．is surromeled liy a battlemented wall of the 1411 ceutury ．＇lhe houses are mostly mean，and tlo strects irregulin and dirty ；the whole place havieg an an of poverty anl decas：It enntans，however，some fine old churches and palaces．Jop．（1061） $10,51 \mathrm{~S}$ ．

Al．CAN I＇／，at town of Aracon，Spain，in the pro－ vince of＇Terwel， 63 miles sunth－enst from Siangossa． It is situated on ar risibis ground on the right laank of the Guatalupe，which is here crossed by a bothle of nine arehes．It is a well－built town，with wide parcel streets，and it Hamber of sanurus．It has it magnificent collegriate church，in which are many finc tombs and pictures．I＇lucre are manufactures of silk，woollen，atul coarse dinen fithries，hats，and so：ur there are also flome and wil mills，and some trade in grain，eattle，and the mannfactures of the towa．Pogs lituo．

ALCA＇N＇PAl：A，a seaport town of limazil，in the provence of Niwimlan， 17 miles north－west from Maranham，near the month of the bay of St Marcos． Most of the lionses ane only of one storg．The more wealthy rosidents are mostly cotton－planters；the pouro elasses Iive chictly loy fishing，and hy makiur hammocks of some of the peenliar fibres of the country：There are salt－pits zut far from the town． Cottons，riee，and salt are explortul．I＇up．10，000．

ALCAliA＇K，it lown of hat Xanclaz，spain，in the movince of Albaceete，and 36 miles west－sontl－west from A llancete．It stants on the slope of an isulatul hill，on the deft bank of the Guadmmona，a fecdur of the Guadalguivir．A ruined custle erowns the summit of the lifll ；and there are also the remains of a line lionnan anpueduct．Sonne of the streets are very steep．＇Jhe inlabitants are jartly cmpluyed in wearing and irom－working，patly in agriculture．

 Andalnsia，Spinn，in the province of Jicn，and $2: 2$ miles south－west from Jian．It is situated in a follow，enclosed by three hills，on an atlluent of the Guadalquivir，is overlouked by the ruins of an ancient castle，and is tulerably well built．＇I＇here are fine pietures in some of the clurches．Oil and rope makiug，wcaving，and agriculture we the chief employments of the mhabitants．Grain，silk，oxen， shcep，goats，pigs，mules，and asses are prodnecd in the neighbourhood．I＇on．624．

ALCA'ZAR DE SAN JUA'N (anc. Alce), a town of New Castile, Spain, in the province of Ciudad Theal, and 49 miles north-east from Ciudad Real, on the Madrid and Alicante Railway. It is regularly built, and has two good squares. There are manufactories of soap, nitre, and guppowder. Pop. 70.10.

ALCT'RA (anc. Scebaticula), a town of Spain, in the province of Valencia, 20 miles south-hy-west from Valencia, on an island in the river Xucar, the two branches of which are here crossed lyy stone bridges. It is surrounded by old walls, with strong towers. The principal streets are wide, but the town is ill built. The inhabitants are chiefly cmployed in the manufacture of earthenware, the production of silk, and agriculture. The surrounding country is much intersected by eanals, exhibiting an adnimable speeimen of the system of irrigation introduced by the Moors. Pop. 9250

A'LCOHOL, Physiological and Poisonous

Action of. Alcohol, in a concentrated form, exerts a local irritant action on the membranes and tissues of the animal body. According to various circumstances, as, for example, its greater or less dilution, the quantity in which it is administered, the emptiness or fulness of the stomach, and the nature of the animal on which the experiment is made, alcohol may either act as a gentle stimulus, which assists the digestive process, or it may excite such a degree of irritation as may lead to the disorganisation of the mucous membrane. It is well known that dilute alcohol, in contret with animal matter, at a temperature of from 60° to 90°, undergoes acetic fermentation, and it was maintained by Leuret and Lassaigne that a similar clange took place in the stomach. It appears, however, that only a small part of the alcohol undergoes this change; and it is the small part thus changed which produces the penetrating and disagreeable acidity which characterises the crnctations and vomiterl matters of drunkards. Alcohol is, however, for the most part, rapilly absorbed in an unchanged state, either in the form of liquid or vapour ; and this absorption may take place throngl the cellular (or connective) tissue, the serous cavities, the lungs, or the digestive caual. This is shewn by the experiments of Orfila, who fatally intoxicated dogs by injecting alcohol into the suljeutaneous cellular tissue, or by making them breathe an atmosphere charged with alcoholic vanour; and ly Rayer, who injected abont half an onnce of proof-spinit into the precitoneum of ralsbits, which almust immediately became comatose, and died in a few bours. It is, however, only with absorption from the intestinal canal that we have to deal, in relation to man. Almost the whole of this alsorption is effected in the stumach, and it is only when alcohol is taken in great excess, or is mixed with a good deal of sugar, that any absorption beyond the stomach occurs. The rapility of the absorption varics according to circumstaneus. The absorption is most rapid when the stomach is empty and the drinker is fatigued; while the action is dulayed by a full stomach, and especially by the presence of acids, tamin, or the mucilagrimous and saccharine ingredients of many wines. F'atty matters have a similar aetion, and hence it is that (as we leam from Dr Terrin's elaborate article on "The Ihysiology of Alcohol,' in the Dictionnaire Encyclopulique des Šciences Médictles, vol. ii. p. 577, 1865) 'We must accome for the English habit of taking a very fat soup, or even a glass of oil, before procceding aux libutions. The mode of action of alcohol on the system, and the various phenowena of drunkenness, are sufficiently described in the article Intoxication. Previously to the year 1560, the actual presence of aleohol in the blood had been
attempted to be proved ly many chemists, but no satisfactory evidence upon this point had heen adduced; and its presence had also been sought fur in the expired air and in the secretions, but the results were equally doubtful; and Liebig's view, that alcolnol was oxidised in the blood, and after passing through various stages of oxidation, was finally converted into, and climinated from, the system as carbonic acid and water, was almost generally accepterl. In that year, bowever, an clahorate work, abounding io well-devised experiments, and entitled, Du Fiôle de l'Alcohol ct des Anesthesiques dans l'Oryanism, was published by three well-known physiological inquirers, MM. Lallcmand, Terrin, and Duroy, and received a $l^{\text {rize }}$, with higl commendation, from the Academy of Sciences. ln this work, it seems to lee proved beyond all doubt that 'aleohol stays for a time in the blood, that it exercises a direct and primary action on the nerwous centres, whose functions it modifies, perverts, or abolishes, aceording to the dose; that neither in the blood nor in the expired air are any traces to be found of its transformation or destruction ; that it accumulates in the nervous centres, and in the liver ; and that it is finally discharged from the system by the ordinary channels of elimination.'-Perrin, op. cit., p. 580. So far from earbomic acid being one of its tinal products, it is now ascertained that alcohol causes a diminished exhalation of that gas. The alcobol, when it has entered the blood, is diffinsed over the whole organisn, remains during, apparently, different periods in different organs, and almost immediately begins to escape; and if as much wine or spirit is taken as contains SO grammes, or rather more than $2 \frac{2}{3}$ ounces of alcohol, the urine passed some hours afterwards yields, by distillation, an amount of alcohol capable of burning; and the elimination by this channel continues for 16 homs or more. The elimination by the lungs continues for about 8 hours. The authors believe that in man the cluef excreting channel is the skin, but they have no data to shew how long this climination is continued. They further shew that, when a quantity of v in ordinairc, equivalent to half an ounce of alcobol, has been taken by a healthy man, the presence of alcohol may be readily detected in the blood, the expired air, the urine, and the cutaneons exhalation in the course of balf an hour after the wine has been taken. In amimals destroyed when intoxicated, the fortions of the brain and of the liver are found to yield, weight fur weight, considerably more alcohol than the blool. The fact of the retention and accumulation of alcohol in the ncrvons centres and liver, tends to throw much light on the special diseases of drunkards.
The action of any kind of alcolbolic drink in moderate doses, is that of a somewhat rapid stimulant. The bodily and mental powers are for a time excited beyond their ordinary strength, after which there is a corresponding depression. Although the aleohol which is introdnced into the system cannot act as a true food (ior in that calse it would not pass through the system unchanged), it indirectly takes the plave of food, by diminishing the wcar and tear of the system, ant thus rendering less fool suthicient: a fact whieh is proved by chemical experiments, shew: ing that less carbonic acid and urea (wheh are the ultimate products of the earbonaceons and nitrogcuous tissues) are given oft when alcohol is administered in moleration, than when it is totally withheld.
The influence of an excessive dose of alcohol has bcen demonstrated by various series of experiments on animals, and unfortunately by many observel cases in man. If a poisonous dose of alcoliol is

ALCOHOL

given to an amimal (a dog, for example), its action on the morvous system is the first point that is noticul. The log ceases to exhbit the orlinary eontrol over its muscular movements, which seem to be no longer muter the influence of the will. It walks with nreurtain antl doulotful steps, till the limd-legs lose their luwer, the fore-legs still preserving some activity. The gencral sensibility becomes more or less abolished, and the animal ean no louger see or feel. Anom afterwards, the respiration fails; and finally, the circulation is arrested, and life coases with the last beat of the lacart.

As cases are of frequent oceurrence in which it is almost impossible for mon-professional persons (the pribe, for example) to distinguish between extreme drunkenness and ecrtain other morbid comlitions, as arnplexy, conenssion of the brain, aud opium-poisoning, it may he pactically useful if we lay clown a few rules on this subject. In eoneussion and in very extreme intoxication, there is profound coma or sleepiness ; lint in the latter case, the odour of the Ireath remores all dillienlty of diamosis. The most diffieult cases are those in which the sumptoms of conenssion or apoplexy are associated with an alcoholicentour of the loreath; in such cases, the heal should be most carefully examined for matss of violence, and every cllort shonld be made to ohtain a histury of the case from those who had previonsly scon the patient. In poisoning ly opinm or laudanum, the peculiar smell of the drug may gencrally be detected in the breath (a test which, however, fails if morphia lias heen taken). In poisoning by opium, the face is pale, and the pupils of the eyes are coutractal; while in Irumkemess, the face is llushed, and the pupils are generally dilated. Another dillirence (to which Dr A. S. Taylor calls attention) is this-that white perfect remissions are rare in poisoning by opium, in poisoning with alcolobl the patient often recovers has senses, and subsequently dios. In either kind of poisom, the stomachpump shonki le nesed. and the ejected eontents of the stomach may facilitate our aliaruosis. A sulphate of zince emectic should be prescribed, if there is no stomach-pump at hand; abl after the stounach has lieen well eleared ont, eoffee amd other strong stimulants should be sriven.

ALCOHOLS. During the last few years, our linowledge of the properties of ordinay alcolsol and of the ganeral elass of bodies to which the term Alcohols is applied, in consequence of their resemblance, in certain chemieal reactions, to ordinary alcolus, has lewen very much enlarged. We shall first make a few supplementary adiations to the article Alconon, and shall then proceed to notice the elass of Alcohols.

In the article srotmesis, a method is ilescribed lyy which Herthelot artiticially formed alcohol from inorganje compounds. He has since deviscd another methon, which throws much light on the nature of the composition of this substance. On combining the hyodro-carbon ethylene, or oletiant gas $\left(\mathrm{C}_{4} \mathrm{IL}_{4}\right)$, with hydriodic aciel (III), we obtain iodicle of etlyy? $\left(\mathrm{C}_{4} \mathrm{II}_{5} \mathrm{I}\right)$; and by prolongel boiling with eaustic fortash, the fomer componnd may be converted into alcohol, as is shewn in the equation,*

IIere it is seen that the iodine of the iodite of

[^2]ethyl ahstracts the potassium from the liydrate; while the group $\mathrm{C}_{3} 11_{3}$, which constitutes ethyl, is sulstituted for the metal. Alcohol may thus be regariled as a hydrate analomons to liydrate of 1utash; and if the latter is regrarled as water in which one atom of hydrogen has bech replaced by one of potassinm, si aleohol may be regarded as water in which one atom of hylrogen has heen reflaced loy the anomatomic radieal ethyl. Hence, while aleohol was regarded, aceurding to the compound radieal theory, as hydrated oxide of ethyl, $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}, \mathrm{IlO}$, it is now regarded, according to the olid theory of rypes (y. v.), as water in which one atom of hoidrogen is replaced ly one atom of ethyl, $\mathrm{C}_{\downarrow} 3 \mathrm{I}_{3}$, and is expressel by the formula $\left.\mathrm{C}_{4} \mathrm{ll}_{5}\right\} \mathrm{O}_{2}$.

The action of oxygen on alcohol requires a brief potice. In a mearly anhydrons state, alcoliol has little tendency to oxidation, but when freely diluted, and exposed to the air, it rupilly becomes oxidised into acetic acid, ar result shewn ly the equation,

$$
\overbrace{\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}}^{\text {Alconnt }}+4 \mathrm{O}=\overbrace{\mathrm{C}_{4} 1 \Gamma_{4} \mathrm{O}_{4}}^{\text {Aoctic Acht. }}+2 I f \mathrm{O} .
$$

This conyersion is, however, not a direct one, an intermerliate eompound, termen Aldehyde (q. v.), being first formed, which is rapidly axidised into acetic achl. The oxidation of alcohol into aldehyde is repesented by the equation,

$$
\overparen{\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}}+20=\overbrace{\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2}}^{\text {Aldenyytae }}+2 \mathrm{HIO}
$$

while the further oxidation of aldelyde into acetic acid is represented by

$$
\overbrace{\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2}}^{\text {Aldebyile }}+20=\overbrace{\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}}^{\text {Acetle Acib }}
$$

Chlorino and alcolars react singularly on each other-the final products heing hydrochloric acid, and a very remarkalble colombess oily fluid of a pecnliar $1^{n m e t r a t i n g ~ a n d ~ i r r i t a t i n g ~ o n l o u r, ~ e a l l e d ~}$ (hlmad, which is represented by the formolit, ('f '13IO. Dilute aleohol listilled with chloride "f lime (bleaching-powder), vielils ehlorofom ; and this is the most ceonomical process for olstaining this invalmable componnd. Heated with an excess of sulphuric acid, alcohol loses all its oxygen in the form of water, and is convertel into ethyleac, the result being shewn by the ergation,
A less complete delydration, nader the action of sulphuric acil, converts alcolol into ether. The process is a complicated one, but the linal result is expressed by the equation,

$$
\overbrace{2\left(\mathrm{C}_{4} \mathrm{IH}_{6} \mathrm{O}_{2}\right)}^{\text {Alcoling. }}=\overbrace{\left(\mathrm{C}_{4} 1 \mathrm{H}_{5} \mathrm{O}\right)_{2}}^{\text {E.thor. }}+\overbrace{1 \mathrm{I}_{2} \mathrm{O}_{2}}^{\text {Wacer. }}
$$

The hest tests for discovering the presence of alcohol are-1. Its hot jungent taste, its odour, aud its preat volatility. 2 . Alsonhed in asbestos, it huras with a prale blue flame, which deposits no earbon on white porcelain; and when burned in the wouth of an inverted test-tube, containing a few Iropis of solution of baryta, it produces a well. marked deposit of earbonate of baryta-carbonic acid and water being the products of its combustion. 3. It dissulves camphor. 4. It sets free green oxide of chromium when looiled witl a few ilrops of a saturated solution of bichromate of potash, mixed with sulphuric acid. The chromium test, originally discovered by Dr Thomson in 1516 , is that ou which

ALCORA-ALDEHYDE.

the French playsiologists Jallemand, Perrin, and Duroy relicd in their investigations regarding the presence of alcohol in the blood, urine, expired air, \&c.-See Alcohol, Physiological Action of.

Alcohol is of a double use to the clomist, inasmuch as it furmishes a cleanly and valuable fuel when usca in the spirit-lamp, and possesses remarkable solvent powers without in general excring chemieal aetion on the dissolved substances. It dissolves many of the gases more freely than water, as, for cxample, nitrous oxide, carbonic acid, phospharetted hydrogen, cyanogen, and the hydrocarbons, as, for instance, ethylene. Amongst the mineral substances which it dissolves may be mentioned iolline, lromine, boracic acid, the hydrates of potash and soda, the elulorides of calcium, stroutimm, magnesium, zinc, platinum, and gold, the perehlorite of iron, corrosive sublimate, the vitrates of lime, magnesia, \&c.; whilst amongst organic matters, it dissolves many organic acils, hases, mud neutral bodies, the resins, the soaps, aucl the fats, which latter, however, dissolve more freely in ether than iu alcoliol. The alcolsolic solations of anlostances used in medieinc are called Tinctures.

In the article Polyatomic Alcohols (q. v.), the seneral characteristics of the class of bodies now known as alcohols are biefly given. 'The tern alco. hol is now so far exteuded as to inelute all neutial compounds of carbon, hydrogen, and oxygen, which react upon acids in such a way that water is eliminated while ethers are produced. We shall encleavour to elncidate the nature of the different classes of alcoliols by giving one example of each principal Kind. In a monatomic alcohol (see Polyatomic AleoJools), laalf the laydrogen in the primary type for water, II $\}$ O., is replacel lyy an organic radical; thas, in metliyl-alcohol, or wood-spirit, one equivalent of lydrogen, H, is replaced by one equivalent of the organie radical methyl, $\mathrm{C}_{2} \mathrm{H}_{3}$-the formula for methyl alcohol being $\left.\mathrm{C}_{2} \mathrm{H}_{3}\right\} \mathrm{O}_{2}$, or $\mathrm{C}_{1} 11_{3} \mathrm{O}_{3}$; while in ordinary vinic or cthyl-aleohol, there is a similar replacement by the ratical ethyl, $\mathrm{C}_{4} \mathrm{I}_{3}$-the fommala for this (tie ortinary) alcoliol being
$\left.\begin{array}{c}\mathrm{C}_{4} \mathrm{H}_{5} \\ 1 \mathrm{l}\end{array}\right\} \begin{array}{ll}\mathrm{O}_{2} & \mathrm{ol}^{-} .\end{array}$ $\mathrm{C}_{4} \mathrm{II}_{6} \mathrm{O}_{3}$.
The monatomic alcohols are more abunliont tlian all the polyatomic alcoliols together. 'lliere are several series of them, of which the most important are alcolols whose radical is of the form $\mathrm{C}_{2 n} \mathrm{H}_{2 n+1}$ (as $\left(\mathrm{C}_{3}, \mathrm{C}_{3} \mathrm{II}_{5}, \mathrm{C}_{6} \mathrm{H}_{7}\right.$), amd which are represented by the formula $\mathrm{C}_{2_{1}} \mathrm{H}_{2 n+2} \mathrm{O}_{2}$, or $\mathrm{C}_{2 n} 1_{2 n+1}\left\{\mathrm{O}_{2}\right.$. Of these, twelve are at present known. They are intimately related to the fatty acids, whose general formulit is $\mathrm{U}_{2} 1 \mathrm{I}_{2 n} \mathrm{O}_{4}$, which may be formed from the alcoliol ly oxidation- O . being substitnted fur HI_{2}. Tlius, alcohol, represented generally ly $\mathrm{C}_{24} \mathrm{H}_{2 n+} \mathrm{O}_{2}$, Jiclds the fatty acid represented $\mathrm{l}_{\mathrm{y}} \mathrm{U}_{2,2} 1 l_{2 n} \mathrm{U}_{4}$; for example, methyl-alcohol, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2}$, , ields [ormic acic, $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$; etliyl-aleohol, $\mathrm{C}_{4} 1 \mathrm{H}_{4} \mathrm{O}_{2}$, , yields acetic acid, $\mathrm{C}_{4} \mathrm{I}_{4} \mathrm{O}_{4}$, and so on. The three highest alcoliols of this set, whose formule are $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}_{2,}^{5} \mathrm{C}_{34} \mathrm{H}_{2} \mathrm{O}_{2,2}$, and $\mathrm{C}_{62} \mathrm{I}_{62} \mathrm{O}_{2}$, known as eetylic, cerotylic, amd melissylic alcohuls, are sulid wiaxy or fatty matters. Tluere is one alcolmo whose radieal is $\left.{ }_{10}\right]_{17}$, and whose formula is $\mathrm{C}_{10} \mathrm{II}_{15} \mathrm{O}_{2}$-viz., the solid sulastance known as Bornco Complior (see liesisis) ; and in cholesterin (an ineredient of the bile), whose formula is $\mathrm{C}_{52} \mathrm{H}_{4} \mathrm{O}$, the ratieal is $\mathrm{C}_{52} \mathrm{II}_{43}$. Diutomic alcohols belong to the \left. sceondary water type, ${\underset{H}{2}}_{\mathrm{H}_{2}}^{\mathrm{H}_{2}}\right\} \mathrm{O}_{4}$, in which, as before, luilf the hydrogen, H_{2} (which, in this case, is two atoms), is replaced by one atom of a compound ratical. The radical is often marked with two
dashes in such eases as these, to indicate that one of its atoms replaces two of hydrogen. 'Ihus, the most important diatomic alcolsol, glyeol, is represented, according to the theory of tyjes, by the formula $\left.\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)^{\prime \prime}\right\} \mathrm{O}_{2}$, its ratieal being $\mathrm{C}_{4} \mathrm{II}_{4}$. In the triatomic alcolools, we take $\left.\begin{array}{l}\mathrm{H}_{3} \\ \mathrm{H}_{3}\end{array}\right\} \mathrm{O}_{6}$, er the tertiary type of water, and replace lialf the liydrogen-viz., three atoms, by one atom of an organic radical, which we consequently mark with there dashes. The wellknown substance glycerine is the only example of the triatomic alcohols. Its radieal is $\mathrm{C}_{6}\left[\mathrm{I}_{5}\right.$; aud as this replaces three atoms of hydrogen, its typical formula is $\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}^{\text {n' }}\right\} \mathrm{O}_{6}$; its ordinary formula being $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$, which throws no light on its internal constitution. One tetratomic and one hexatomic alcohol have been diseovered.* The former is erythrite, a substance obtained from the litums lichen; one atom of its raclical, $\mathrm{C}_{8} \mathrm{H}_{6}$, replaces four atoms of hydrogen, and its typical formula is written $\left.\left.\left\{\mathrm{C}_{8} \mathrm{H}_{4}\right)^{6}\right\}\right\} \mathrm{O}_{8}$; while the latter is mannite (the chief ingredient of the well-known sulostance Nanna, clescribed in the article SCG.sIf), in which one atom of the radical, $\mathrm{C}_{2} \mathrm{H}_{5}$, replaces six atoms of hydrogen, its typical formula beincr $\left.\left(\mathrm{C}_{1.4} \mathrm{HI}_{0}\right)^{n i}\right\} \mathrm{O}_{12}$, while its ordinary formula is $\mathrm{C}_{15} \mathrm{II}_{15} \mathrm{O}_{15}$.

We lave entered somewhat fully into the eonsicleration of this somewhat diflicult subject, because it is one of great general interest, as shewing the close chemical conueetion between various groups of borlics of apparently totally different natures. No one conld have anticipated, ten years ago, that such very different sulistances as cholesterin and mannite were allied to ordinary alcoliol.t

ALCO'RA, a town of Yalencia, Spain, in the province of Castellon, 43 miles north-north-east from Valencia. It is tolemalny well luilt. Many of the inhabitunts are employed in the manufacture of earthenware and the clistilling of brandy. C'oru, grapes, silk, and hemp are among the princinal productions of the neighbourhool. Fruits are a chief article of export. Pop. 5609.

A LDDEIIYDE $^{\prime}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ is a volatile fuicl 140^{-} duced by the oxiclation and destructive distillation of alcohol and other organic compounds. Its rliscoverer, Döbereiner, called it light waygen ether; its mesent tem is an ablreviation of alcohol clehydrogonitum, its composition being represcnted lyy that of alcohol from which two atums of hydroren have licen alstracted. In the article on this suliject in Watts's Dictionary of Chemistry, ten diflerent mules of olntaining this sulnstance are given. It is sulficient here to state that the lest modes of preparing it may be found in that work, or any recent treatise on organic ehemistry. It is a thin, transparent, colourless liquid, very intlammable, burning with a blue flame, and laving a spec. gr. of $0 \cdot S$, a boiling-

* A sceond tetratomic alcolıol, propylplycite, $\mathrm{C}_{6} \mathrm{II}_{5} \mathrm{O}_{8}$, has been lately artifiaially formed by c'arius; and dulcite, which is isomeric with mannite, is now regarded as a second hexatomic alcohol. We mention these facts to shew what constant additions are being made to this class of bodies.
+ There can be no doubt that the sugars will soon be universally admitted to be alcolnols, as Berthelot surggested a few years ago. In one of our best and latest works on cliemistry Naquet's Principes de Chimie, fondie sur les Théorics Modernes (2d ed., 1867), cancsugar, melitose, trelialose, mycose, mélézitose, lactose, and parasaccharose (most of whieh are deseribed in the article Sugar, q. v.), are placed under the head of 'Alcohols Polyglucosides.'

ALDEHIDES-ALDSTONE

print of ahout ${ }^{2} 1^{\circ}$, anl a pmgent, suffocating oldour. It mixes in all proportions with water, alcohol, and cther, and dissolves sulphar, phosphorus, and iontine. As is slewa in the article Alcorons, it constitutes an intermediate stage in the oxidation of alleolol into aceutic acid. Aliclyyde must be regarded as a monolnasic acil, inasmuch is it containg one atom of hyibogen replaceable liy a motal. Thas, when potassium is gently heated with idfleyale, one atom of 11 is replaced by one of K, the resulting empmond heing aldehydate of potash, $\mathrm{C}_{4} \mathrm{It}_{3} \mathrm{k} \mathrm{O}_{\mathrm{A}}$. Virinus salts of this kimi may he formed, of which the most important is alichydate of ammonia, or aldehycle-ammonia, $\mathrm{U}_{1} \mathrm{H}_{3}\left(\mathbb{X} H_{4}\right) \mathrm{O}_{3}$, which is oltained in tramsparent shining erystals, and is a compound that has led chemists to the discovery of a large mumber of very remarkable derisatives.

ALDLEHVMSS are a class of organic compoumls, intermediate betwech alcohols and acils; the ordinary aldehyde, deseribed in the preceding articte, being, as vie have seen, intermediate hetween ordinary alcohol and its corresponding aciel-viz, acctic acil. It has heen shewn in the article Acconols that the compounds of this class related to the falty aciuls are repurscuted ly the sencrab firmula, (u, $1_{1 n_{+2}}$), while the corresponting acirls have the fommin, $\mathrm{C}_{2 n} \mathrm{H}_{2 n} \mathrm{O}_{4}$. Each aldehyle is terived from the corresponding alouhol by the ahstraction of two atoms of hydrogen, ame each alkelyde is comerted into its corresponding acid by thic arlation of two atoms of oxygen. These essential facts are shewn in the equation,

$$
\overbrace{\mathrm{C}_{2 n} \mathrm{H}_{2_{n+2}} \mathrm{O}_{2}}^{\text {Alvolut. }}-\Pi_{2}=\overbrace{\mathrm{C}_{2 n} \mathrm{II}_{2 n} \mathrm{O}_{2,}}^{\text {Antchyte. }}
$$

and

$$
\overbrace{\mathrm{C}_{2 n} 1 I_{24} \mathrm{O}_{2}}^{\text {Aldetigde. }}+\overbrace{\mathrm{O}_{2}}^{\mathrm{C}_{2 n} 11_{E_{n}} \mathrm{O}_{2}} \text { Aeid }
$$

Nine alichydes of the form Cen H_{n} ne corresponding to $n=\because, 3,4,5,7,8,11, \frac{12,}{2}$, anl 16 , wre at present known, the simplest beng urdinary or
 nhlelyyile, $\left.\mathrm{C}_{32} \mathrm{I}_{32}\right)_{2}$. It is ohvious that, as far as is yet known, there is not of necessity always an alitelyde intervening between the alcohol amd correspmong acil; for example, methylie and caproytic alcohols have not yet yideled ao ablelyyide.
Amonst aldelyides not connected with the preceding group may be mentioned sarions organic compunds which have been recently shewn to colong to this class-thus, acrolcin, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{6}$, is aterytic aldehyde; camphor, $\left.\left({ }_{3} H_{1}\right)^{\prime}\right)^{\prime}$, is enmpholic aldehade; hitter-almund cil, $\mathrm{U}_{21} 11_{1}, \mathrm{O}_{2}$, is benzoic aldehyile; oil of cumin, $\mathrm{C}_{10} \mathrm{If} \mathrm{O}_{\mathrm{s}}$, is emminie alitehyile; sil of cinnamon, $\mathrm{C}_{1} \mathrm{H}_{5} \mathrm{O}_{2}$, is cimmamic aldeliyde; salicytous acid, $U_{1,1} I_{1} 0_{4}$, is salicylic aldehyde; and anisytons acid, $\mathrm{C}_{16} 1_{8} \mathrm{O}_{4}$, is anisylic alieliyde. Mast of these alikelydes are olstaneal directly from planta, and cither exist in then realy formed, or are given off as volatile oils on distillation with water.
for the hest acconnt of the aldehydes with which we are aeguainterl, we mast refer to the chapter on that subject in the second edition (1867) of Nirgnet's J'rincipes de Chimis fondresur les 'Thiories Modernes,
 accoment of the aldehydes derived from the monatomic alenhols, of the modes of preparing them, of the properties common to all aldehyides, and those specially belnging to different series, the rational formule amb eonstitation of aldehydes, and the aldehyides derived from diatomic alcolols or plycols, in which this chemist includes not only salicylons, salicylic, and glycolic aldelyydes, hut that remarkable synthatic protuct, liurfurol (q. v.).

ALJIOOVANDI, Uivsses, ome of the mnst distinguished maturalists of the l6th e., was horn at Bologna, probably about the gear 152.2 . Ite was desccurdel of a molle family, and receivel an excelleat ellucation, partly in lis mative city and purtly at I'alna. Sone of his religions opinions having heen ealled in guestion, he trivelled to liome in 155), to vindicate himself ; and whilst there, sturled Roman antiquities, ant wrote a treatise on ancient statuary: At liome, le formed the acquaintance of Rondelet. On his retmon home, he deroted himsulf to the study of hotany, and having taken his degree in medicine at the University of Bologna in 15.53, he was in the following year appointed to the chairs of Dhilosopliy and Locic, and also to the Lecturcship on Butary: Ife practised medicinc for some time in Bologua, and appears after a short time t, have cxchanged some of the chairs whieh ho lehed in the university for that of Natural llistory, to the study of which science he applied himself with great devoteduess. He established the Butanical Garden at bolugna in 1:97. He was much employed, during many years, in forming a museum of natural history, collecting specimens with great assiduity, and cmploying dranghtsmen to make tigures of them for the great work on natural history which the contemplaterl. In the pursuit of his faromite science, he trawelled into different countries, but no particular record of lis travels remains. Inspiring others with a zal similar to his own, he hat the pleasure of secing his muscum rapilly increase. He finally bequeather it to the senate of liologna, and it became the fommation of the spladid public massum of that city, where many of Λ.'s specimens remain to this day. Je left behind him, also, at his death, a proligions mass of raluable manuseripes, which still remain in the pmblic library of Bologna, a store of whicle proper use has never yet been mades, and in which there is probably much correspondence of eminent men, interesting as showing the tirst steps of jumgess of the scicuce of matural histeny, iffer the long dormaney of the midelle ages. All his stndies and collections were male suhservient to his work on Natural 1 fistory, the first volume of which-on Birds-apleared in 1509. Six volumes appeared during A's life; other seren were pulb. lished umber the direction of his colleagnes amel pupils alter his death, which took phace in 160. It hars beenstated in many notices of his life, and was lons commonly believed, that, hy his scientitic pursuits, A. reduced himself to circumstaners of grent poverty, and that he died in a mblic hospital at Bolurnia; lat the story, although Bayle has adopted it in his lictionary, rests on mo sutlicient evidenes, and there is reason to think that it is not true. It is difficult to procure a complete edition of tho works of A, and the volume on Minerals is especially rave. A. has been consured for excessive cupintsness in things of little importance, and at hest merely serving to illustrate his subject amb render it interesting. IIe shews, however, great anxiety to set forth all that is linown on every sulbject of which he treats ; he writes of matural listory in a way which shews that he greatly loves the science, and at the same time with a devont and reverent spinit, always belmoling in the works of creation the traces of the C'reator's liand.

A'LDSTONE, or ALSTON, sometimes called Alsron Moon, a market-town of the comoty of Cumberland, Englanal, 30 miles east-south-cast from Carlisle. The parish of A. contains extensive aml very prolnctive lead mines, fommerly lefonging to the Barls of Derwentwater, aml now to the Lorls Commissioners of the Admiralty. The town has manufactures of worsterl yarns and Hauncl. It is sitnated in a momatainous district, on the declivity

ALESSANDIULA DELLA ROCCA-ALTONSINE.

of a stecp hill, near the confluence of the Nent and South Tyne. It is connected hy a lmanch with the Neweastle and Carlisle Railway. L'op. in 1561, 291S; in 1567, about 2700.

ALESSA'NDRIA DE'LLA RO'CCA, a town of Sicily, in the province of Girgenti, aud 37 miles north-by-west from Girgenti, nicturesquely situated in a mountainons district. Pop. of commune, 5214.

ALEWIFE (Alosa tyrannus), a fisln of the same genus with the Shad (q.v.), which, in the end of Spring and beginning of summer, appears in great numbers on the eastern coast of North America, and enters the months of livers to spawu. It appears in Chesapeake Boy in Mareh, on the eoasts of New York anl New Linglamel in April, and on those of the British provinees abont the 1st of May. It abounds in the Bay of Fuudy, lut is more rare in the Gulf of St Lawrence; and the Eay of Mira. michi appears to be its northern limit. It ascends livers only as far as the tide extends, and after sparning, returns to the sea in the midalle of summer. It prefers a soft, muddy bottom. Its length is not more than 12 inches. The A. is called $S_{m} m$ int Herring in some places, and gresperau by the French Canadians. It is inferion to the herring. 3 et it is a valuable fish. Ihe fishery is proseented in the rivers, by small-meshed seine.ncts, set across the stream. Large quantities are taken in the rivers of New England, New Brunswick, and Nova Seotia. The larbonr of St John's, New Branswick, alone produces from 12,000 to 20,000 barrels anmually. T'his fish, in a salted state, forms a considerable article of export from the nortliern parts of Anerica to the West Indies.

ALEXANDRI, or ALERSANDRT, Y'ASilio (Basil), a Iomman poct and littratcur, was born at Jassy, the clicef city of Moldavia, in $15 \geqslant 1$. His family was of Venetian origin. After spending several years at a French boarcing-school at Jassy, le was sent, in his fourteenth year, with a tutor to Paris; and in clue comrse he obtainet from the University of Paris the degree of Bachelor uf Letters. Ite is said to have thereafter made trial in suce assion of the study of medicine and the sturly of law, and to have fonnd neither of them to his liking; he certainly followed up neither, hut without fualifying himself for any profession, went back to Jassy in 1539. He fomnd at Jassy a l:and of y.ung men edueated, as he himself had been, in Frasee, whose minds liad been formed upon the literature and the political ideas of France; who, besides being ambitious of literary distinction, were zealous for political equality and for Rouman mationality and independence. IIe naturally became the associate of these men; and soon after bis return, made his début in literature by contribnting a story, The Flouer-gind of Flovence, to a periodical condueted by them unler the editorship of Cogalniceano. Ile became a frequent contributor to this perimical. Unfortunately, it was not destined to live long, being suppressed lyy order of Irince Stourdza. It was in 1852 , arter a long excursion among the mountains of his native proviuce, that he first made his appearance as a poct, pulblishing several pieces, most of them strongly tinged with mational feeling. It this time, ton, it was that he began to write the songs and ballads tpon which his chief claim to literary reputation at present rests. In 1544 , he suddenly attained to an almost unbounded loeal popularity as a play-writer. Ilaving become concerned in the mauarrement of two theatres at Jassy, the one İrench, the other Moldavian, he produced a series of pieces, some in French, athers in Iomman, which, though mostly slight and Lasty performances, had merit enough to excite the
enthusiasm of lis countrymen. Gcorges de Sulagoura, Jassy en Curnival, La Pierre de la Maison, La Noce l'illageoise, are the titles of the most important of them. In 15 ± 4, he had also, in conjunction with Cogralniceano and I'rince John Ghilsa, set on foot a new periodieal, devoted to literature and science; but this, like the one already mentioned, was not suffered to live long-it was sup. pressed by the goverument, after a carcer of only vine months.
A. was engaged in the revolutionary morement which took place at Jassy in the year of revolutions, 1845 , and on its failme, had to betake himself for a time to Paris. There, throngh the press, during the short periol of his exile, he laboured to arouse public opinion in favour of the independence of the Loumans; and his efforts, though they were unsnceessful at the time, lielper, with those of others, to prepare the way for what took place scveral years after. It was to the Russian war that Muhdavia and Walachia were destined to owe their virtual emancipation from the yoke of Turkey, and the eliance of obtaining self-goverument ard union. The union of the two principalities was carried by the resolution of their inlialistants, backed by the support of France, in spite of political obstacles that seemed almost insurmomatable ; and A. did not a little to inspire the resolution of lis countrymen. A song which he wote at the critical moment in 1556, The Hour of Union, becane excecdingly popular, and, by its stirring appenls to the feeling of liomman pationality, leelped to allay the jealonsios which divided the two princijali. ties, and to make them work togcther for the mion. A. took a prominent prart in all the politica! transactions which enlminated in this resnlt. It should be stater, that two years earlier, when the death of his father had put him into possession of the family estate, he had emancipated the seris who lived upon it ; and that this example fomnd so many imitators that the government found itself almost immerliately compelled to decree a gencral measure of enfranchisement.
A.'s Popular Ealluels of Pommania, whicls lie liad begun to compose in $184:$, apleared at Jassy in two parts in 1832 and 1833 . Une of the parts, translated into French by limiself, was afterwards published at Paris moder the title of Bullules ot Chantes Pomuluires de la lionmanie. His enlleeted dramatic works were published at Tassy in 185%. Another volume of poems appeared at I'aris in 1853; and of this volume a lrench translation, with the title, Les Doines, I'uesies MIColelores, was soon afterwards producel lyy 11. Tanesco. Le Collier Litfertirn, it miscellineons collcetion of pieees in prose an! veree, many of which hial provionsly apreared in periondicals, he pmblished in 1857. A., as may be inferred from facts already stated, has written largely in periodicals, but mostly mpon subjects of lassing interest. All his works, hesides their intrinsic merits, which are very cousiderable, are interesting from the connce. tion they have with the grow th of a national fuceling among the liommans.

ALEXA'NDIRI, a town of Dumbartonshire, Scotland, on the west hank of the Lecren, npposite to Bonhill, three miles from Dumbartom, nis the (ilasgow, Dumbarton, and Vale of Leven Railway. It is a town of reent growtle, of a neat and pleasing appearance, in the midst of veautiful scenery. It has extensive cutton-printing works, and other public works. I'op. in 1861, 4242.

ALFONSI'NI, it town of Italy, in the province of liavenna, nearly four miles north-west from Iavemna, in a level, irrigated, and fertile district. Pop. of commane, 6741.

ALFEETON゙ーAL．IINS．

A LHRETON，a marliet－town of Ierloyshire， Fuglaml，IO miles morth－morth－east from jorlyy amil one mile and a half cast from the lealsy and Leuls liailway．It has mitunfactures of lats，stock－ ings，aml hown earthonware．There are collieries aml irm－worlis in the vicinty．＇The town is irre－ coularly built，and contains many very uld lonses， Fint has uf late rapilly increascil．It is sain to clerise its name from Alfred the Great．Pops． （1561）410 0.

AIII A＇AI A（Arab．The Petle；the Toman A stigine Juthensis），is tuwn of Aulalusia，Spain，in the province of Gramala， 25 miles sonth－west from （iraualia．Its situation is extremely picturesque， on the edge of a projectine rock，overhanging a deep chasu1 of limestene hills，through which the riser Marcham foams，and with nonntains in the back ground rising to the height of some feet．Vine－ yards and gardenis mingled with the honses on the steep slopes and to the interest of the scenc．A．is a decayed town，although its warm sulphureons laths are still frecfuentet ly ，visitors in the begin－ ning and unil of summer．The hoors derived a large revenue from its laths．it was a fanous furtress of the Moors；and its capture，in 145？， prepared the way for that of tranada．There aro still remains of the Muonish castle aull town wall． There are ruins also of a Roman aqueduct：the principal lath still in use is a Momish elifice；and at smaller one is supposed to be fimman．I＇op，62Si．
Alifalid，a town of Mmein，Spain， 17 miles south－west from Murcia．It is celelnated for its warm mincral waters，and is resorted to for bathing． It has a ruinell castle．1＇op，6935．
ALHAUEI＇N EL GRA＇NDÉ，a town of Gravala，Spain，in the province of Nlalaga，and 19 miles west from Malaga，on the north side of the Sierra de Mijas，and near the Fanli，an allluent of the Gualalherce．It is a well－built town，with a number of syluares，wile well－paval strects，and many fountains．There are remains of a liuman aqueduct and of an Arab，fortification．Many of the iuhalitants are employel in working the marble， freestone，and granite quarrics of the vicinity，and its leall aul antimony mines．1＇ip， 5.514.
Allis，a turn of Sicily，in the provinee of Pilermo， 30 miles sumtle easi from Palumo，pictur－ esyuely situatell on the crest of a hill，in a monn－ tainous and cragey district，near a torrent called the liume＇Torto．Pop．512．${ }^{2}$ ．
AlicA＂TA or Iflinta，a town of Sicily，in the province of（iirgenti，and 26 miles south－east from （Girgenti．It is most beantifully situatech on the sea－cnast，at the mouth of the Salsa（ane．Himera Mcridionalis），one of the largest rivers，if not the laryest，in sicily；its buildings stretel along the shore，anm occuly the steep slope of the hill，which is crestenl lyy the great ofld fortress，now indecd of little strength，hint of imposing apprearauce．On the brow of a lith to the west of the town，is the dismantled castle of St Angelo，sail to oeenpy the sitc of that in which the tyrant Phalaris kejet the brazen bull，his celdrated instrumeat of torture． A．itself is generally beliereal to stame on the sumt where the ancrent Phimkets was built（ 250 b．e．） lyy l＇hintias，tyrant of Agrigentum，after he hat destroyed ficla，the inhazitants of which he trans． furrel hither．The place anm immeliate neigh－ lwurhool were the scene of some momoahlile battles in the wars between the Carthaginians and Sicilians， and lietwren the Carthavinians anll Iiemans．In the middle ages，A．suflierel severely from the illperlations if Barliary corsains．It las a very land lurt，the sea being so shallow that only vessels of small size can apprivach the town；larger vessels
are compellet to amehor about a mile from tho town，and atre loaded and nolowled by the aid of small craft．let A．lias a consiclerablo trabe， exprortiner com，mataroni，fruit，almonels，pistacho－

MII，SOULS＇COLLE（iL，Oxforl，was fommded in 1437 loy Jlenry（lhiclucle，sometime fullow of New Cullece，and suceessively Bishop of St 1）ivirls and Archlishop，of Canterbury，for a waraten，$t 0$ fellows，－chaplains，and clerks．1Towever，by an ordinance framed loy the commissioners appointed uncler the statuto 17 and $1 S$ Vict．e Sl，ten of the filluwships lave been suppressed in order to the embomment of two professorshijs，to le ealled＇the Chichele Professorslip of Intcrmational Iaw amd Diplomacy，＇aml＇the C＇hichele Professorship of Modern llistury：＇＇The remaining felluwships are oper to all，irrespective of hirth flate or place）， position，or profession，provided only the eandidates have［rassel］all the examinations recjuired for 1B．A．， and lave obtained either some prize or scholarship open to general eompetition，or a＇lirst－elass＇place is one of the public examimations of the miversity． The candidates also must be examined in Juris－ promence and Modern Mistory．＇The patronace inclutes 19 benefices，situated in Kent，Oxford， Lissex，Gloucester，Lerks，Incks，Ilerts，Northan！${ }^{\prime}$－ ton，Salepr，Surrey，and Writs，of an anmuil valuc of £゙うこう．In 1866 ，this college hat 101 members of convocation，and 117 on the books．
 represented when in combination by $\mathrm{C}_{6} \mathrm{H}_{5}$ ，aukl when in the free state by $\mathbb{U}_{12} \Gamma_{10}$ ．The lirst compound tiscovered was iotlide of allyl，which was obtained by Berthelot and Ite Luca in IS5t；two Jears later， they isolatel allyl；and shortly afterwards，Ver． theim demonstrated its existenec in the oils of mustard and garlic．Its properties，and those of some of its most important compommes，are clescribed in the artiele（iafilic＇，Oil or：

AIsMA＇J）A，a town of Jortugal，in the province of Estremadura，on the south bank of the Tacrus， opposite to Lisbon，and distant from it less than two miles．There is frequent steam－eommunieation with Lisbon．A，is huilt upon a height，from the summit of which，above the town，there is a mase－ nifieent view of Lisbon and the＇Tngus．A．has a strong eastle on a ruck．The surrounding comery is well eultivaterl．A．has long been eclelbrated for its figs．Near it is the gold mine of Adissa．I＇Ul！． 5500 ．

ALMA＇GRO，a Lown of New Castile，Spain，in the province of Cindad Real，and 13 miles east－sonth： east from ciudad lieal．It is situaterl in a high arid plain，but is very well built，with wicle paved streets，a fine square，aud a public walk lined with trees．Its most noteworthy building is an olil chmels of beantiful arelsitecture．It is a place of greater activity than most Spaish towns，and its whole appearance indicates prosperity；Bramely， soap，and earthenware are mannfactured，aud laee． making gives employment to about $S 000$ women in A．aud the acighbouring villages．＇Ilse surrounding country is celelorated for its mules．＇flhere are two great anmal fars，at which mules and lace are sold． Pop． $12,605$.

Af，MA＇S゙SA，a Lown of Murcia，Spain，in the province of Nbacete，mal 43 milo＇s cast－lyy－south from Albacete，on the Malriel and Micante liailway． It is situated in a wille plain，amd is tolerably well built，and rather llourishing．I＇he vega，or pllain aroumel the town is irrigated by water from a large reservoir called the I＇centeno of Albufero，and is very fortile．Many of its ague－brecting swampls have been drained and brought under ealtivation．

ALMAS-ALPES MARITIMES.

A. carries on manufactures of linen, hempen, and cotton fabrics, the materials of which are smpplied [rom the ueighbourhood, also of brandy, leather, and soap. Pop, $8730 .-$ Near A. the French, under the Duke of Berwick, matural son of James 11. of
 an army of Spanish and English troops, commanded by Heury de Lavigny, Earl of Galway. The French were more than twice the number of their opponents. Ravigny fonght under orders from home, contrary to his own judgment, and was deserted by the Spaniards aimost as soon as the battle began. The battle of A. was, in its results, one of the most important in the War of the Spanish Succession. See Succession Wars.

A'LMAS, a town of the Austrian Empire, in the Woiwodina, 16 miles west from Naria Theresiopol. The inhahitants are almost all Loman Catholics. Fop. S000. -A hanas is the mame of many small towns and villages in Hungary.
ALMAZO'RA, a town of V゙alencia, Spain, in the province of Uastellon, four miles south-ly-cast from C'astellon de la Plana, in a plain on the left bank of the Mijares, three miles from its mouth. It has sonve wide aud well-paved streets and squares. Linen aud woollen falrics and paper are manufactured. The surromding comitry is fertile, producing wheat, barley, maize, oil, oranges, \&c. Pop. 5150.

ALMODO VAR DEL CA'MPO, a towu of New Castile, Spain, in the proviuce of Citudad Real, 2.2 miles sonth-west from Cindad Iieal. It stands on the summit of a ridge, near the Vega, a branch of the Guadiana. The streets are tolerahly clean, but ill paved. There are ruins of an ancient castle. The juhabitants are chiefly employed in agriculture, and the only manufactures are domestic. I'op. 5620 .

ALIIO'RA, the principal town of the British district of kimman (q. v.), India, 87 miles north from Bareilly, on the crest of a mountain ridge, 5337 feet above the sea, on the head-watcrs of the Kosila, a brauch of the Ramgunga. It consists chietly of one street, three-quarters of a mile long. The houses have a gromnd story of stone; the upper stories are of wool, covered with a sloping roof of hewy gray slate, ou which small stacks of hay are sometmes erected. The gromal story is geverally white-washed and tricked ont with grotesque paintings. Detacheal honses, both of Eurojeans and Frahmans, are scatterel along the face of the mountain below the town. A. is a British military station, the lines of the regular troops and Fort Moira being close to the town. Since it came under British sway, it has been rapilly increasing in prosperity,

AhMORAVIDES ('The Morarides'), or MOLA-

 JiETHUN, the name of an Arab dymasty that mule in Africa and Spain in the-llth and loth centuries of the Christian era. The name A., which is conmonly given to this dynasty by Western writers, is a corruption of the Arabic word 11 -morabeth, 'the champion of religion.' This scet took its rise ahont 1050 among the Arab and Berber tribes which dwelt on the slopes of the Atlas range facing the Atlantic, and was fonnded by a Moslem teacher called Ablalla-hen-Iasim, who undertook to rescne these tribes from the gross ignorance in which they were planged, and instrncted them in the doctrines of the Mohammedan faith. The new proselytes soon exhilited the fruits of this teaching ly descencling from their hills, under the leadership of a chicof named Abu-bekr, and conquering the lingdom of Fez. The aljoining kinglom of Morocco shared the same fate; and the victorious enthusiasts, wuder the famous 'ussuf-ben-Taxfiu, the consin ofAbu-bekr, next crossed the Strait of fibraltar, anel snbducd Spain to the Tagus on one sile, and to the Ebro on the other. But this extensive and powerfal dominion was of too rapid growth to possess much stability; and during the reign of Ali, the son of Inssuf, arose the sect of the Almohades (q. r.), which after a time expelled the A. from Africa, and in 1144 subduel their power in Spain. It was the Almoravide princes who introduced the Mararedi (q. r.) into Span, and in that and the word Marabuto (4. v.) their name is still preserved.

ALMUÑECA'R (Arabl. Al Mumecalb, the gorge), a seaport town of Audalusia, Spain, in the province of Granada, 31 miles sonth of Granada. The port is somewhat exposed. The town is generally well built. It was a place of importance in Moorish times, when the const of Grauadir was highly cultivated and extremely productive, prarticularly in sugar and cotton. Leforts have recently again been made to extend the eulture of both. The imhabitants of A. are chiefly engagel in agriculture and sugar-refining. There is a considerable trade in cotton, sugar, and fruit. Pop. 5000.

ALO'RA, a town of Andalusia, Spain, in the province of Malaga, 18 miles north-west of Malaga, on an elevated site near the right lank of the Gradalherce. Some of the streets are woll built and well pared; some are very stecp and irregular. There are ruins of an ancient Gothic castlc. The inhabitants are mostly employed in agriculture. Soap and sulphate of soda are manufactured. The neighborwhood produces much oil and excellent wine. Pop. 6701.
ALPES MARITIMES, a dep. of Frauce, in the extreme sonth-cast. on the shores of the Mediterranean and confines of Italy, formed in 1860, of the ancient connty of Nice, then ceded to France, and formerly belonging to the kingdom of Sardinia, and of the arrondissement of Grasse, detached from the department of Var. The chain of the A. M. forms the northern lonndary of the department, and from it numerous spurs run seaward, among which are lovely and fertile valleys. The chicf rivers of the department are the Loup, the Far, and the Paillon, at the mouth of which Nice is sitnated. The climate is mill and pleasant in the vicinity of the sea, and in the lower valleys, althongh the higher montains reach to altitudes where winter always reigns. The vine aul olive are much cultivatel in the more [avoured localities; orauges, lemons, and figs are produced in abumlance and of excellent quality; a consilerable extent of land is devoted to tobaccu, and not a little to the cultivation of herbs and tlowers for the preparation of essences and perfumes. Grasse is particularly famous for the manufacture of perfumery: In many parts of the department, there are nolle forests. In the more elerated parts, much land is used for the pasture of slecp, and also of goats, of which these regious possess a highly esteemed breed. The silk-worm is reared to a considerable extent, and the keeping of bees is a source of no little wealth, honey being largely produced and exported. The mineral ricles are not great. There are some quarries of white marble, and some mineral sprinis. Among the chief branches of industry, hesiles those which are etrictly rural, are brass-fondeling and the making of bijonterie. The tunny, anchory, and sardine fisherics gire employment to many ieople on the slores of the Mediterranean, and great guantities of anchovies and sardines are cointed from the port of C'aunes. The department is divitled jutor three arromlissemeuts-Nice, Puget-Thenicrs, and Grasse. The capital is Nice (y. r.), and the other
principal towns are dintiles（1．v．），Villefranelie，
 （ $1 . \mathrm{V}^{\circ}$ ），on the enstern frontier．－＇lhe eonnty of Nice
 fizroy，am！latteriv formed part of the kinemom of simlinia till ISGO，except that it was seimul by lirance in 1702 ，and for a time formen into the department of Alpes Maritimes．It was restored to Nonlinia in 181．う．After the treaty of 1860 was enncludenl，it was aprrehenclen that the people of this resion，on accomit of their race，eustoms，and Janemase，wnitul mot shew the same willingmess to be tranaforvel to Fixane as the people of Sivoy； but no transference of territury was ever more easily acemajplished，or with less aplarent dissatisfaction of tluse must nearly concerueri．＇The jop）of the department in 1 Sub was 198,518 ．

AL＇PAI＇JIOUNTMINS．Since the artiede AETAI was written，the explorations of liussian surveyors have lad to a more lelinite knowledge of the form and limits of this important range，which is now deseribel as a seprate system，one of the four par－ allel chains which constitute the skeleton of Eastern High Asia，eoverinst the great talbleland．The A． forms an alpine srivile，intersected by wile vallers traversed hy many strenms，amonof which are the Tiz river，flowine west to the Ulosia Nor（lake），ank］ the Kolrlo，flowing south to the Tlie Aral Lake． The general direction of the range is from west to east，about the paralle］of jo north．It extenels between the meridians of $S f^{\circ}$ and 100° east．On the east，the it．is separatel from the linurian monntain－ system by lakes liosenal inul binkial ；on the west，it tomminates in the K゙atumak Mountains，a suall iso－ Jateil fronj，in which Dount Belnkat rises to 1．2，子： 0 fect．firs alouve the line of peremainl snow，with extensive glaciers on its western limks．＇Ihe climate of the A ，is not so severe as minht be inferverl from its position．The winters are frociucntly mile，and conmpartively little show f．blls．The monmenin slopers are covered with rich wrass，mul their lianks are in many parts alonsed by mannilicent cemar finests．Stions，hame，nin！wrolves abound in the Jower，asm lrears in the hidher portions of the rance． The A ．is celchrated for its whel，silver，and leat minus．Liunanl，on the northern slope of the lance． is the chicf mining town；and the villige of Zemino－ gonski，south of Barmall，is in the centre of the riehest silver mines in tlic linssian limpire．Suth－ of the Uhisa Nor（fike），the Thagutu Ulik Jommains， commected with the A ，on the morth，rise to npwarls of 11,001 feet．Jhey furnish abuadance of white marble of an exucllent quality．

AITAIIU＇lis，a town of Sontle Italy，in the province of Bari，whl as miles south－we＇st from Firs，its the easturn liasm of the Ipemmione It is a well－huije and beantiful town，sumpumded with walla，ani having a ：an fulicent cathedral．＂I fe surwamling eonnitry is fertile，problues much mil and wine，and abounds in rich pastures．d ．is sulupsed to ocerpy the site of the ameliont Lupeciut． Nimy tine Gireciats antiquitics have been duy mj） 1＇（1）．（1Sil）17，193．

ALTLE＇，a seaprort town of Gibencia，Spain，in tow province of dlicante，ami go miles nortlo－east from Alicante．it stands on a rising ground．on the rientr bauk of a smail river called the Alys， and at the liend of a hays．It lins wide strects，but many of them ore stere．The iubshitants are mostly encenemi in agricuture；some of them are lishers and sailors．limen falries，ropes，and soap are namnfactured．I＇op． 5502.

A＇J＇T＇ENA，a town of Westphalia，Prussia，in the gnvernment of Arusherg， 40 miles north－east fiom Colonne．It stauls on the right bank of the Lenne，
in a cleep anil picturesque valley，It has large ［ublie works，the machinery of which is moved by water－power，and maunfactures great quantities of nectles，pins，amd uther small aticles oi larelware． There are also stocking maunfactorics and tanneries． Ioj．615\％．

ALT－U＇FEN，a tuwn of Hungary，on the right bank of the Danube，about two miles above Ofen or Jucla，of which indecod it may be considered a subarl）． Tlae tuwns are almost uniteri．A．is a decayed plisec，but of great antipuity，and is beljeved to ocempy the site of a liomas fown，Sicambrite or Ayuincum．licmains exist of a lioman arpueduct，a hatl！，and an amphitheatre．Attila made this his capitat．I＇up．11， 230 ．
$A^{\prime} \mathrm{A}^{\prime} \mathrm{TON}$, a town of IJamphire，Luglame，of consicierable antignity，near the Wey，if miles morth－east from Wimelester．it is pleasantly situated among picturesyuc hills and wouls． liost of the hunses are of brick，but sounc aro of stonc．The principal etreet forms part of the main row from Loudun to Winchester．＇Vhe churels was erecterl in the reign of llenry fif．，and is in the lerperadicular style．Its tower，obler than the rest of the editice，Jils massive Norman arehes．A branch railway comnects A ．with the sintli－western Kailway．Jombazines were formerly manufactured here（food hogs are grown in the metyhhenthoot， and tlicte are laryce brewerjes in the town，the ale of which is much estcemed．Iop．（1861） 3.69 ．

ALTON，a city and pront of entry of lllinois， U．S．，an the left liank of the Nississipril liver，21 miles alowe st Louis，？mijes above the：munth of the Missumi liver，the terminms of the Chienge amel Aton lailwiy，ame comtre of a large commerce． The city contains a lioman（＇atholic cathedral， 10 churclues，＂－elaily aml＂wcekly newspapers，state penitentiary，ami mumerous mills and mannfactories， with an almmlant strply of coal anel limestone． I＇013．（1560）6：3．3．3．

ALTOO＇N゙A．a villige of I＇enusylvani：，U．S．，ou the Contral liaifony，at the eastern hase of the Alleghanies， 211 miles west of l’aidalelphiar ；cun－ tains 11 churches，\because banks， 0 butels，imm bawe locrmotive worlis anil madine－slinjs．Latid ont in 1819．I＇01）．（186．5）5．．．00．

A＇I＇I＇lilN＇C＇IIAX，a marliet－tuwn of C＇heshire， Furland，on liowelen I）uwns，eight miles south－west from Namehestor．It is situated on the clueshine Diclland latilway，and near the Duke of Bristre－ water＇s（＇anal，which las contibnitul greatly tu its prosperity．It is a rery noat and clean town，and on aceonnt of the salularity uf the air，is much resorted to by insalids from Manclester．It Jass manufactures of eotton yams，cloths，amd bobbins， but a chicf employnacne of its inlabistants is the raisiner of fruits and verettlhle：s for the market of Manchestcr．I＇nj．（1561）6028．

A＇LVA，a village of Stirlingshire，Scothand， pleasantly situated on nearly level gromarl at the month of a romantic cylern of the Ochi］Hills， 7 miles north－cast from Stirling．＇The part of Stir－ lingshire in which A ．is sitmated is detached from the rest of the comaty，armi enclosed between the conntios of clackmansan and Perth．A，is a place of ercat industrial activity，having extensive worllear factories．Fommerly the prevailiner loranch of inlustry was the blanket trinle．In later years this bas been contirely supersenled by the mannfice－ ture of shawls．＇IWeeds are also being introulncent． The mmber of lomms employed is about 1100 ，the steam－looms laving heen introduced during the present summer（156j）．＇Io the east of the village is a glen，named the Silver（ilen，where two jits are still to be seen，marking the site of uhd silver mimes．

The communion cups still in use in the parish church are made of silver derived from these mines.
Immediately behind the town is Alva Glen, noted for its pieturesque beanty avd magnificent waterfall. About a mile to the west of the village is Balquharn Glen, also a very romantic spot. Pol. (iS61) 3147 ; at present (1S67) above 3500 .

ALVARA'DO, a town of Mexico, in the departnient of Vera Cruz, on the Gulf of Mexico, at the mouth of the river Alyarado, 50 miles sonth-east from Vera Cruz. The situation, elose to a lagoon, is unhealtlyy. A luar at the month of the river prevents the entrance of vessels of more than 12 or 13 feet dranght, but within the har, the harbour is sheltered from every wind. Great part of the town consists of cane-built cottages, roofed with palm-leaves. The river has a course of not much more tuan 100 miles, but colleets the waters of an extensive swampy district. Much rice and caeao are proluced in the country around Alvarado. Pop. 6000.

ALWUR, or MACHERY, a Rajpot state of India, under the control of the goveruor-geveral's agent for the states of Rajpootana, lut having a consideralnt measure of independence. It lies between N. lat. $27^{\circ} 4^{\prime}-25^{\circ} 13$, and between E. long. $76^{\circ} 7^{\prime}-77^{\circ} 14^{\prime}$. Its area is abont 3570 sq. miles; its pop. estimated at 250,000 . The capital, Alwur, is a small ill-butt town, surroundel by a wretched mud wall, situated at the base of a rocky range of quartz and slate, 1200 feet above the auljacent country, and at least 2100 feet above the sea, 94 niles west-north-west from Agra. The palace of the liao Hajah is a curious square building, having its walls piercel with a great number of small windows, and covered with glaring and grotesque paintings. The revenne of the hao Rajab is estimated at about $£ 180,000$. The military force of the state amounts to about 3000 infantry and 4000 eavalry. The inhahitants, who are called Mewattis, are a rude and savage race. In former times, the Mewattis were a predatory tribe, and from the 13 th to the $1 \overline{\text { th }}$ c., carried their raids even to the gates of Delhi.

AMARA'NTE (ane. Ante Broranam), a tomn of Portugal, in the province of Minho, on the Tamega, a brauch of the Douro, 32 miles north-east from Oporto. The Tamega is crossed by a handsome stone bridge. The town is well built, but dull and decayed. A church, erected in the lGth c., is an interesting specimen of the Flamboyant style. A. was the sceve of a fierce conflict between the French and the Portugnese in 1 S09, wlen the bridge was defended by the Portuguese for several days, and the French committed great barbaritics. I'op. 5500.
ADA'SIA, AMASIEH, or ANASLAYAH (anc. A masia), a town of Asia Minor, the principal town of the prashalie of Siras, on the right bauk of the Yeshil-Irmak, about 50 miles from the month of the river, and 200 miles sonth-west from Trebizond. It stands in a deep and narrow valley, and the river flows through a narrow channel, between precipitons rocky banks. The streets are narrow and crooked; the houses mostly of wood, although some are of stone, all covered with tiles. The river is crossed ly three stone lridges, and one wooden bridge. One of the stone bridges is supposed to be Koman. The ancient town, the lirthplace of Strabo, oceupied both banks of the river, and the remains of the Acropolis crown a lofty rock on the side of the river orposite to the present town. There are numerous other interesting remains of antiruity, particularly the tombs of the lings of Poutus, whose capital A. was, excavated in the
face of a steep rock, and some Saraceoic buildions. Water is raised from the river by means of wheels driven lig the fiver itself, for irrigation of the garlens and mulberry plantations. Much silk is produced in and aronud A.; also winc, eotton, corn, and madeler. Silver, copper, and salt mines are wrought io the neighbowhood. Silk and salt are the chief articles of export. A. is the seat of an Armenian bishop. Po1r. 25,000, of whom aluout 3000 are irmenians.
AlATRI'CÉ, a town of Sunth Italy, in the province of Aquila or Abrnzzo Clteriore II., on the right bank of the Tronto, 21 miles north-hy-west from Aquila. It was formerly a place of mueh greater importance than it is at present. It has five elurches. The iuhabitants are ehictly mployed in agriculture and the manuacture of ulankets. Pop. 22 42.
AMBA'TO, or ASIENTO D'AMEATO, a town of Ecuador, on the north-castern slope of Chimborazo, 66 miles south from Quito, Ssisy feet abore the sea. It was destroyed in 1695 by an eruption of Cotopraxi, but was soon rebuilt, and became more flumishing than before. It carries on an active trade in grain, sugar, and cochineal, the prolucts of the surroundin's country. Pop. 12,000 .
A'MBER, a decayed city in the Rajpoot state of Jeypos, India, fuur miles north-hy-east from Jeyloor, in $26^{\circ} 39$ N. lat., and $75^{\circ} 55^{\circ} \mathrm{E}$. lung. It is situated on the margiu of a small lake, in a deep hollow among hills; and its temples, houses, and streets are scattered among ummernons ravines opening on the lake. Cumparatively few of its honses are now inlabited; but everywhere are to be seen ghastly Hindu asceties, sitting amidst the tombs and ruined honses. On the slope of an adjacent hill is the vast and gorgeons palace of Amber, a bnikling remarkable for its massiveness and solidity:

AME'LIA (anc. A merria), a town of Central Italy, in the province of Perugia, 21 miles south-west of S_{p} oleto. It is picturesquely situated on the mountains betreen the Nera and the 'Jiber, about seven miles from the junction of the two rivers. It is the seat of a bishop, and has a cathedral Yop. of commune, 7024.

A'M1DES are a group of organic compouods, derived, under certain conditions, from ammonia $\left(\mathrm{AH}_{3}\right.$, or NHHH , by the exchange of one or more atoms of hydrogen for a corresponding number of atoms of a metal, or a compound ranlical. The first of these componods that was cliscovered was that in which ore atom of hydrogen was replaced by one of potassium (NHHL , or $\mathrm{NH}_{2} \mathrm{~K}$), the resulting produet being regarded as a compound of $\bar{X} H$, (amidoyen) with potassimm, and being terned amide of potassium. At jresent, the term amide is restricted to the case in which one or mure atoms of hydrogen are rellaced by an acid radical, and the anides are called primary, secondary, or tertiary, accurding as one, two, or all three of the atoms of hydrogen are replaced by the acid radical. The primary amides may be oltained in various ways, of which we shail mention two: (1.) If we heat an ammoniacal salt, two atoms of water are given off, and the amde corresponding to the acid is left; thus, acetate of ammonia $\left(\mathrm{H}_{3} \mathrm{O} \cdot \mathrm{C}_{4} \mathrm{II}_{3} \mathrm{O}_{3}\right)$ - water $\left(\mathrm{H}_{2} \mathrm{O}\right)=$ acet$\mathrm{U}_{4} \mathrm{H}_{2} \mathrm{O}$. $\left.\mathrm{C}_{4} \mathrm{H}_{3}\left(\mathrm{NH}_{2}\right) \mathrm{O}_{2}\right\}$, which, expressed ty incally, is $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{2}$)
${ }_{\mathrm{H}}^{\mathrm{H}^{-}}$, N , where $\mathrm{C}_{3} \mathrm{HI}_{3} \mathrm{O}_{2}$ is the ralical of acetic acid. (2.) If an aulaydride is subnitted to the action of ammonia, there are simultaneously formed an amide add an arononiacal salt. 'Thens, valerianic or' valeric anhydricle $\left(\mathrm{C}_{1}, \mathrm{H}_{1} \mathrm{O}_{3}\right)_{2}+$ anmonia $\left(\mathrm{NH}_{3}\right)_{2}=$ valerate of ammonia $\left(\mathrm{N}_{8} \mathrm{O} \cdot \mathrm{C}_{10} \mathrm{H}_{y} \mathrm{O}_{3}\right)+$ valeramide?
$\left\{\mathrm{C}_{4}, \mathrm{I} \mathrm{I}_{9}\left(N H_{2}\right) \mathrm{O}_{2}\right\}$, which, expressed typically, is $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}, \underset{2}{ }$, where $\mathrm{C}_{20} \mathrm{H}_{9} \mathrm{O}_{2}$, is the acid ratical of II valeric acirl. The amides are, for the most part, capalble of being obtaincel in a erystalline form, and are fusible volatile boxies. For a deseription of the more complicated forms of anides, and for a history of their general properties, the reader is referred to the article "Amides' in Watts's Dictionary of (Chemistris, ame to the eliapter on Amides in the od edition ($1 \mathrm{SG} \%$) of Narnet's Princines ale chimic, vol. ii. 11. 31 - 363 . If, in place of an acilb ruticul, a tase radical replaces one or more atoms of hydrogen in ammonia, a class of eompomets, termed amines, is forman, whose composition is noticed in the article Ontanic lhaslo.

A'MLTVC'II, a town of Anglesey, North W:ales, on the noth coast of the istiant, it miles northwest from Jeammaris. It stamels on a rising gromod cluse to the sea, and consists of one principal strcet, with aiverging strects and lanes. It is a lonsy lout rather dirty town, deriving its importance and wealth almost entirely from the rich eopper mines in its vicinity, the mines of the l'arys Monntain. Copper-smelting is carried on in A., and contribates not a little to make the town unpleasant. A larbome has leen furmed by exeavation ont of the solid slate rock, at the expense of the mining companies, and is eapalle of receiving vessels of 600 tons burden. It is protected by a breakwater. A brauch of the Cliester and Jolyhead Railway terminates at Ambweh. A. is assuciated with Jeanmaris, Holylhead, and Liangefni, in returning one member to parliament. Pop. (1S61) 3207.

AMO'L, a torn of J'ersia, in the provinee of Mazanderan, on the Heraz, a river which flows into the Casphinn Ser; 76 miles north-east from Tcheran. The town is mwalled, but has good bazars, aml is a place of considerable prosperity and wealth. 'lic river, which is powerful and rapil, is crossed by a bridge of twelve arehes. Lxtensive ruins indieate the former importance of Amol. Its most notable building is the mansoleum of Seyed Quam-u-deen, king of Siur aud Amol, who died in 1378. In the suburbs are a grand palace, which once belonged to Shah Ahbas, and three towers, said to have been temples of the ancient Guelores, or tire-worshippers. The inhabitants of A. cultirate rice and cotton, or are employed in thee iron forges and emmon-fonndries of the district. 'I'se pol. in winter, when greatest, is estimated at 35,000 or 40,000 ; in summer, many of the imhabitants retire to summer residences in the mountains, which approach within abont tive or six miles of the town on the south.
AMPHIU'MA, a chrions genus of Batrachia,

Amphimma means.
laving an ecl-like form, a large head, thick and extensile Tips, depressed and romuled snont; the
neck contracted, with a transwerse fulil at the throat; numerons small teeth on the maxillary ami palate loones, a single spiracle on each side of the neek; four legs, all wery small aud two-toed. A. means is found in the sonthern and sonth-western parts of the Cnited States. It attains a length of more than two fect, and is of a haish-Jack colonr. It lives in modely water or in mod, horrowing like a worm in the ditches of rice-fieldes, and feeds on small fish, nollnses, and insects. It is regarded by the negroes as highly venomons, lust there is no reasou for the notion.

AMUURNA'tII, a eave amidst the momatains which bound Caslmere on the north-east. It is it matural cave in a rick of gypsmm, ahont ion yarels wide, 30 high, and 5ur decp. It is believel hy the Itindus to be the residence of the gexd sixa, and is thecrefore visited lyy multitules of pilgrims. It is inhahited lyy vast numbers of doves, which fly out in alam on the loud shonting of jrayers lyy the pilgrims, and this is supposed to indicate the acceptance of their prayers.
AMY'GDALJN ($\mathrm{C}_{40} \mathrm{H}_{2} \mathrm{NO}_{2}, 6110$) is a crystalline principle existing in the kernel of hitter atmonds, the leaves of the Cerasus lamo-cerasus, and varims other plants, which, ly distillation, yielel hydroeyanic acil. It is olstainel, by extraction with boiling aleohol, from the paste or calie of hitter almonds, which remains after the fixed oil has been seprarated loy pressure. The alcoholic sulntion nsutlly eontains more or less oil, which must be removel by deeantation or filtration; it must then be evaporated till is syrup is left, which mast le diluted with water, mixed with yeast, and set asilo to ferment, in order to get rikl of any sugar that nany be present: on now filtering and evaporating, the amygdalin erystallises in thin transparent ueedlelike prisms. It has a swectish somewhat hitter taste, and is not poisonons, and when treated with alkaline solvents, ammonia is expellect, and amysdalic acid, $I 10, \mathrm{C}_{40} \mathrm{H}_{30} \mathrm{O}_{24}$, is prodned. Its most remarkalle change is, however, that wheh is noticed in the article Almoshs, Volathere Oif of, and whieh may he thins brielly stated. When the bruised almone kerncl, or almond paste, is bronght in contact with water, the peulliar oclom of biter almonds is almost immediately evolved; anel in twenty-four hours, all traees of amygdalin will have disappeared, its place being taken by essential oil of ahmonds, lydrucyanic aeid, sugar, and formie acid. This transformation is due to the presence of a peculiar nitrogenous matter ealled Emulsin (g . r.), or synaptase, which sets up a limel of fermentation. As the proportion of hydrocyanic acid which is liberated by the aloove reaction is fixed, Liebig and Woulder recommend that amygdalin should be ernployed in preparing that acid for medicinal purposes. Amygdalin may be dissulved in water for any length of time withont undergoing elange; but if it be mixed with an emulsion of swect almonds, immediate decomposition ensnes. Seventeen grains of amyglalin, when dissolved in an ounce of emulsion of sweet almonds, farnish exactly one groin of pure hydrocyanie acid, which may lee readily diluted to the strength of the Plarmacopeial acid.

A'MYI, $\left(\mathrm{C}_{20} \mathrm{H}_{11}\right)$ is the fifth in the series of alcohol radicals whose general formula is $\mathrm{C}_{2 n} \mathrm{H}_{n+1}$, and of which methyl and ethyl are the first two members. It is obtained by lieating amyl-iodide with an amalgani of zine in a closed tube at a temperature of about 350°, and is one of the natural products of the distillation of coal. It is a colourless licquid, with a spee. grav. of 32°, a boiling-point of 311°, and a somewhat aromatic odour, and it cexerts a righthanded rotatory action on a ray of polarised light.

It enters into a large number of chemical compounds, most of whieh-as, for instance, iromirle, chlorite, ioclide, \&c.-are derived from amylic alcolol, which bears precisely the same relation to amyl that ordinary alcohol bears to ethyl $\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)$. Amylic alcoliol is sufficiently described in the article Ftisel Orl, which is the name given to the crude alcohol. It scems invariably to accompany orlinary alcohol when the latter is prepared by fermentation, and apparontly occurs in largest quantity in those liuquids which remain most alkaline fluring fermentation.

ANAGNI (anc. Anctmict), a town of Central Italy, 37 miles east-sonth-cast from lione. It stands on a hill in the midst of a fertile district, and although an ill-bnilt town, is the residence of many poble families. It is the seat of a bishop. There are some remains of ancient buildiugs. The aucient Anarmia was the chief city of the Heruici. It was a place of importance during the whole period of Roman history, and Tirgil mentions it as the ' wealthy Anagnia.' Iop, 6000.

ANCA'STF, a town of the Argentine Republic, Sonth America, in the province of Catamarca, 23 miles north-east from Catamarca. Pop. (1863) 8000.

ANDENNE, a town of Belgium, in the province of Namur, 10 miles east from Namur, and nearly 2 miles sonth from the Maas. It has manufactures of delft-ware, porcelain, and tobacco-pipes, for the last of which it is particularly famous. Cottonspimning, bleaching, and other brauches of industry arc also prosecnted. There are bods of pipe-clay, quarries of marhle, and lead, iron, and coal mines in the neighbourliood. Pop. 6458.

ANDERA'S, or INDELAB, a town of Bokhara, fulepencleut 'Tartary', on the northern slone of the Hindu Kush Nountains, and on the right or northern bank of the Anderab or Inderab Fiver, is brancll of the Gliori or Kundaz, itsclf a branch of the Jihun, $S 0$ miles south-south-east from liunduz. It is surromided by gardens, orehards, and vineyards. It is a principal entreput of commerce Hetween Persia and India. Pop. supposed to be about 6500 .

ANDKHUY', a town, formerly of Bulihara, but now of Afghanistan, Central Asia, about 200 miles south of Bokhara, on a river flowing north towards the Jihun, but only part of which has as yet been traced. It lies on the high road to Iferat, and is mueh exposed to the attacks of the Emirs of Bokhara and Afghanistan. Down to the year 1St0, it is sail to lave been tolerably flourishing. It was then subject to Bokliara, and was compelled to oplose the victorious march of Mohammed Khan, who besieged it during four months. and at last only took it lyy storm. The city was plundered, and left a heap of ruins. The present sovercign, Gazanfer Ihhan, to preserve himself from ntter destruction, threw himself into the arms of the Afghans. A. contains (1863) about 2000 honses, which form the city, and about 3000 tents, which are either in the environs, or scattered over the oases in the desert. The pop. is estimated at 15,000 , consisting priucipally of Turkomans, with a mixture of Uabegs and a few Tadjiks.-Vámbery's Travels in C'cneral Asia.

A'NDRIA, a city of South Italy, in the province of Bari, 31 miles west from the town of Bari. It stands on a plain, and in its vicinity are numerous caverns (antra), whence its name. Its cathodral, a fine edifice, was foumled in 1016. During the wars of the Parthenopean licpublic (q. v.), it was besieged by the republican army umier Gencral Broussicr, and being taken after a gallant resistance, was lurued, at the suggestion of Ettore Carafa, Count of Ruvo, himself its fendal lord. The neighbouring
country is famons for its almonds, whiel are a principal article of trade of the eity. Pop. (1861) $30,067$.
Λ^{\prime} YIUROS, an island of the Grecian Archipelago, the most northern of the C'yclades, separated from Eubca by a chamuel, the Doro Chamel, six miles broad. Whe island is 25 miles long, and about 10 miles in its groatest brealth. Its eastern coast is vory irregnlar. It is very momntainous, and on some of its mountains suow lies during great part of the year. 'The soil is very fertile, and wine, silk, wlicat, barley, lemons, oranges, and pomegranates are prodnced. Silk is the chicf article of export. The prop. is supposed to be about 15,000 . The chief town, Axdros, is situated on a bay of the eastern coast. It has manufactures of silk ancl carpets, and a large port, which, howevor, is suitable only for small vessels. Top, 5000.

ANDU'JAIR, a town of Andalasia, Spain, in the province of Jaen, 24 miles north-north-west from Jaen, on the right bank of the Guadal ruivir, at the lase of the Sierra Morena. Its streets are irregular, but many of the houses are well huilt. The river is crossed by an old dilapiclated bridge. The situation of the town is mhealthy. The inhalitants are mostly emplojed in agriculture ; but there is some trade in grain, fruit, oil, and eattle, the produce of the neighbouring country, and the town is famons for the manufacture of the porous cooling clay watervossels which are in general use throughout Spain. The Convention of Baylen was signed here on 23 l July 180S. I'op. 9353.

ANGEIOLEUCI'TIS. See ADExitis.

ANGHIA'RI (anc. Custrom Augulure), a town of North Italy, in the province of Arezzo, I'uscany, 10 miles north-east from Arezzo, on the slope of a hill near the Sovari, one of the heari-waters of the Tiber. In 1440, a battle was fought here, in which the Milanose were lefoated by the Florentines. Pop. of commune, 6941.

ANGOLRNOW' or NGOTNU, a town of Bornu, Central Africa, on the south-western bauk of Lake Tchad, 15 miles sonth-east from Kinkawa. The surrounding country is very level and monotonous, but fertile. The waters of Lalie Tchad are usually some miles distant from the town, yet the whole intervening plain is sometimes covered with water, and the town itself is liable to destructive inundations. It is a place of considerable commercial inportance; the principal articles of trade are slaves, colton, amber, coral, and metals. The pop. is surposed to be abont 30,000 .

A'NGRA, the eapital of the Azores, beantifnlly situated on the south eoast of the island of Terceira. lts harbour is the best in the island, but is exposed to violent storms cluring certaju months of the year. The principal exports are wine and grain. The town is strongly fortified. It is the seat of the Bishop of the Azores, and has a cathedral. The strects are broal, and liave footpaths, and the houses are mostly of three stories. Pop. about $13,1000$.
$A^{\prime} \mathrm{NGILI}$, a town of Sonth Italy, in the province of Salerno, and 17 miles north-west from Salerno, not far from the Naples aud Nocera Iailway. 'I'he surrounding country abounds in vineyards and cotton [1]antations. Pop. 6021.

ANIIY'DRIDES is the term now commonly given to the compounds formerly known as anhyitrous acids, which was a very unsatisfactory name, sceing that these boclies do not present any of the ordinary properties of acils. In some cases, they are the result of the dehydration of acids, and in all cases they represcnt in their connposition the acid minus.

ANIYDRIDES-ANILINE.

water. One of the most eminent lirench ehemists, l'rofessor Wiutz, lays Aown the [ollowing general principles: " (l) The antydrines of monobasie acials (a) contain the clements of two molecules of a monobasic acid, minus one molecule (which eorresponds with two atoms) of water; (i) the anhydrieles of libasic acids (b) contain the clements of a molecule of a libasic acid, minus a moleeule of water ; (3), the anhydrides of tribasic acills (e) contain the elewents of a tribasic acid, minus water.' 'Thus, using the modern formulie and the type theory, we give a case of each [om of avid:

$$
\begin{aligned}
& \text { (i) } \left.\quad \mathrm{S}_{2} \mathrm{O}_{2}\right\} \mathrm{O}_{4}-\Pi_{2} \mathrm{O}_{2}=\mathrm{S}_{2} \mathrm{O}_{4} \mathrm{O}_{2} \\
& \text { (c) } \left.2\left(\begin{array}{c}
\text { I'loaphoric Ach } \\
\mathrm{Il}_{2}
\end{array}\right\} \mathrm{O}_{5}\right)-3 \mathrm{H}_{2} \mathrm{O}_{2}=2\left(\mathrm{I}^{3} \mathrm{O}_{6}, \mathrm{O}_{3}\right)
\end{aligned}
$$

The reader who may not at once be able to interpret these formula, will realily see that $\left.\left(\begin{array}{c}\mathrm{NO}_{4} \\ \mathrm{II}^{2}\end{array}\right\} \mathrm{O}_{2}\right)=\mathrm{N}_{5} . \mathrm{HO}$, the old formula Ior nitric acid, that $\left.\mathrm{S}_{2} \mathrm{O}_{4}\right\} \mathrm{O}_{4}=2\left(\mathrm{SO}_{5} . \mathrm{IIO}\right)$, the old formula for sulphuric aciel, which is nois miversally placed amongst the bibasic acids; and that $\left.\left(\begin{array}{c}\left.1^{\prime}\right)_{2} \\ 11_{3}\end{array}\right\} \mathrm{O}_{6}\right)$ $=\mathrm{PO}_{5} .3$ IIO, the old formula [or tribasic phospluric acil. According to the oll system, the three anlig. driles wonld le represented by $\mathrm{NOO}_{3}, \mathrm{SO}_{3}$, and ! O_{0} respectively. We mifht have takeu organic acils, as, for example, acetio acil, succinie acid, in flace of nitric and sulphuric.

The anhyiriles of the monobasie acils are formed in vitriuns ways; thus, hypochlorous anhyilride is formed by the action of chlorine on oxide of nerenry ; nitrie anhyarible is [ommed by the action of chlorine on mitrate of silver, \&c. By the action of ammonia, the anhydrikes of monolrasie acids are converted into amides; thus, honzorie anliyriride $\left(\mathrm{C}_{34} \mathrm{II}_{5} \mathrm{O}_{3}\right.$) + anmonia $\left(\mathrm{N}_{1}\right)=$ hemzamide $\left(\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{NO}_{2}\right)+$ water (IIO). The anlyburides of tribasie acirls are often formed hy the mere action of heat on the acids, as is the ease with lactic and tartaric acjels.

The anhyolrides present 10 uniformity of appearance; for example, carlonic anlyolrite (commonly known as carlonic acid, which in reality is (0.110$)$ is a gas ; phosplumic anhydrite is a white ponver ; nitric anlydride ocems in erystals; sulpharic anhyoride is a dnctile wax-like substance; while the anlyydrides af the organic acids are oily hodies heavier than water.
'Ihe most important property of this class is their conversion into the corrosponding atids, under the indluence of water.

A'SlliINH is now unipersally regarelul as, in a technologieal pront of view, one of the most imprortant orgimic compounds yet discuvered (sec Dris-SyUrFs). Its chie[physical and chomical channeters are described muder the head of I'lomyl (1. \%.), an oreanie ralical, rejresented by (1,11 which, if anilime is (as Hofmann believes) : derivittion of ammonia, replaces one of the atoms of hydrogen, yielding $\left.\mathbb{C}_{2:} I_{5}^{3}\right\} \pm$, or $\mathrm{C}_{22} I_{7} \mathrm{~N}$, which is the [amman for thiss enmpount. There is nae salt of aniline which requires notice, because its theraputic balue las hem hieghly praised-viz.., the sulplate of andine, which is pregared ly satmation a certaisu amount of aniline with dilute suluhuric acil,
3.1
evaporating to dryness, and extraeting the residue with boiliner alcohol, which, on coling, leaves white silvory scales of sulphate of aniline. 'I'o olitain the salt quite pure, it may he dissolved and selwated a second time, alter which it must bo preserved in well-stopuered hottles. The importance which the aniline mamulacture as a dye-stuif has açuired during the last few years has leal to the study of its physiological, therapentieal, and toxieolugical propurties, aud bence to the lygienic precantions whiels shomld be adopited in the chemieal works devoted to its preparation, as well as to the inlluences which the aniline colon's may exert on those who employ them in dress, ic.

The phaysiatorgical action of aniline has been recently studicd loy nearly a dozen inclependent observers, ant the following are the principat results at which they have arrived: (a) When alministered internally in a morlerate ciose, this sulistanco causes a considerable muscular excitement, lasting For some minutes, and then gradually disilplearing. When given in a poisonous dose, it causes an immediate thow of viscid saliva, from which the animal tries to free itself by rubbing its month on the cromnd ; in ahont ten minutes jt jecomes gubet and dull, and cohluess sujprvenes, which continues and increases till death. The other most ajpmrent symptums are convulsive spasms, which first affect the lind leas, but soon extemd to the anterior extremities. The eyclids are widely sepraraterd, while the pupils are sumewhat contracted ; and the fumultuous heating of the heart amd the hurried respiratory movements shew that the ennvulsive state of the other museles lias extemided to those which regnlate the most impurtant vital Functions. From ten to lifteen alrops of aniline will thas prove fital to a rabluit or to a dog of medimu size. In still larger doses the poison causes the animal's heal to be convonsively drawn hackwards, amd death rapidly ensues. On examination after death, an oubur of aniline is found (o) he given ofl by the blool, whose globules, when microsednically examined, are foumd to be partially disinter rated and depriver of their red pignont. (价 Its chlects on aninals, as wedl as those of nitrobenzine, from which it is produced, when infalul in a state of vetpow, hiwe leen carefnlly studical by M. largurow, whose experiments were so arranged as to imitate the conditions to which workmen are expused in the aniline mannfactories. As might be expecter?, the effects of amiline are slower and less maked than when the substance is introllued into the stomach, lut are of the same charateter-the spinal cord and muscular system boing more or less excitrl: while the vapur of nitro-bonzine, whicll seems to act primarily on the lran, eanses stupur. On the whole, the expriments temiled to shew that aniline, notwithstanding the terrible spasmunlic symptoms which it cxites, is less serienus in its comserpunces and more triusiont in its action than
 ments on animals closely eorrespond with thase Which have becon olsocived in casos in whely man has been expused to the noxicous vipmur. "J'lie following case recorded ly Mr kinatges secuas weld to illnotrate the effects of jnhaling a large duac of aniline vapur: A workman lornke it carloy containing a large quantity of this liguin, which foll over him withent cntering his month. In trying to wiue up the aniline, be respired the vilpour for swae time, felt giddy, amd comblajmed of his head and chest. Whon seena some hours afterwards, his face amd body were of a lisid beadinl lile; the lips, gimms, toume, aul eyeg ar a corpso. lilic lolush pallor; be was lreathing by rasping, aml appearel at the $]^{\text {mint }}$ of death. There was then wo couvulsion, and he wats quite seusible. Ilis pulse was small and irregular:

Under very energetic treatnent (alcolol, ammonia, chloric ether, internally, and cold atfusions and sinapisms externally), he recovered. Accorting to Dr Letheby, who has reprorted a similar ease, the aniline undergoes ehanges in the blood similar to those which it undergoes in the formation of the dye-stuffs ; and the mauve, magenta, \&e., that are thus formed in the cirenlation, oeeasion the blue or violet colour which the grmas and ontcous membrane of the month present in these eases.

The symptoms observed in the varions experimants on animals led several physicians to try its therapentic action in diseases of the nervons system. Sulphate of auiliue was the form selucted, and chorea the disease on which it was especially tried, although it has also been auministered in enilepsy and other nervons diseases. The results are contradietery; and till further evidence of its value is admeed, it is not likely to supplant other medieines of the same class.

The workmen employed in the fabrieation of nitre-benzine and aniline (for the two are prepared in the same works) suffer, for the first day or two after commencing this oceupation, from severe supra-orbital headache, frequently accompanied with uansea and romiting. While sume persons suffer so severcly that they are eompellei th seek another enplloyment, most, after a furtnight's experience, cease to feel the il! effects, except aceidentally, as after extra work or intense heat. Till they beeome seasonel, most suffer from vertigo, which rapidly disalpears on exposure to a current of fresh air ; and sometimes the vertigo is suceceled by loss of conscionsness. Sometimes the face becomes congested, the patieut staggers and falls to the gromad in a semicomatose state like a drunken man; in the course of an hour or two he wakes up, suffering only a fecling of fatisul. In other cases, regular ejileptiform convuloions of the limbs an! tetanie spasms of the neck are olserved, the patient often remaining in this state for an hour or wore before recovery, suel, may be regarded as the acute symptoms exhibited by new hanls. Those who have become seasoned, complain of great general langhor, a partial loss of sensation in the mpere extremities, and constipation of the bowels; and they almost always present a decolorisation of the skin and mucous membranes, in consequevee of the impoverished state of their blood, whieh is said to he rapicily restored by making the pratient inhale oxygen gas or courpressed air: In ruference to the intluence of the aniline colours on the health of those who use them, it may be remarked, that even if they were $\mathrm{i}^{\text {poisonons, }}$, they anllere so tenacionsly to the stulls that are dyed with them, that there is no fear of the detachment of a noxious powder, as in the ease of the arsenical greens. But fortunately they seem perfectly harnless even when taken interailly, according to Sonneokelb, proviled they are eompletely freed from the arseuic, leal, mercury, or ther joisonous metal that has lueen enployed in the oxidation of the aniline. Heace, when they are guite pmre, fuehsine and the alliel pigments may le saiely euployed in ecluming swcetmeats, liqueurs, eonfectionery, ieus, \&e., which it is rery satisfactory to know, secing how largely they are at the present day emphoyed.

A'SliLaM, or ANCLAM, a town of Prussia, in the province of Pomerania, it miles north-west from Stettin, on the right bink of the l'eene, and 4 miles from its month in the Kleine Haff. The river is navigalite to A., which earries on a ennsiderable commerce, aud lias loog been a place of commercial importance, having heen admitted into the llanseatic Leagne in 1319. It has mauffactures of linens and woullens; it has also several breweries, soap-works,
and tanneries, and ship-huilding is actively proseeuted. During the middle ages, A. sulfered more than almost any other town from fire and pestilence; and in the wars of the 1 th and 1 Sth centuries, it was again and again besieged and sacked. On the eluse of the seven Years' War, in 1762 , its fortifieations were happily dismantled. It is still, however, surromuded by an old wall with three gates. It contains unany interesting specimens of the Hansuatic or North Germau architecture, very like the Flemish. Pop. I2, 133 .

A'NNABERG, a town of the kingdom of Saxony. in the distriet of Z wickan, on the right bank of the Sehm, 18 miles sonth from Chemnitz. It is situated 1500 feet alhove the level of the sea, in a mining district; the surronding hills containing mines of silver, tin, cobalt, and irou. It has exteusive manufactures of lace and of silk riblons. The ribbon manufacture was introduced here by Protestant refugees from lelginn, who tled from the persecution earried on by the Duke of Alva. Pop. (1864) $10,537$.
ANNECI, a town of the dep. of Haute Saroie, France, at the nosth-western extremity of the Lake of Anneey, ani 21 miles suuth from Geneva. The Lake of Anneey is 1420 fect above the sea, aud is surrouncted by maguilieent monntain seenery. It is abont 9 miles long and 2 miles broad. Its waters flow by the Fieran to the Ihone. In the 1Othe., A. was called Ameciacum novam, to distinnish it from Ohd A., Anneciacum vetus, which oeenpied the slopes of a neighbouring hill, and was a place of some eonsequence in the times of the Tomans. In the earlier part of the midule ages, A. belonged to the Counts of Genera, and on the extinction of that Honse, it passcd to the IIonse of Saroy, in whose possession it remained, except for a brief period uader the Freuch Empire, ratu the transferenee of Savoy to Frauce in 1560. It has manufactures of lineus, eutton-yarn, glass, sulphuric achl, and stcelwares. Its linen bleachtickls bave suljsisted since 1651. The town is cleav, and has an air of respectable antisulty: The shops in many of the streets are nuder areades. The most remarkalle bnildings are the chatean, onee the residence of the family of Genevois-N'emours, the old bishop's palace, the eathedral, and the modern church of St Francis, the latter of which Loasts of possussing the relies of S_{t} Francis of Sales and La Mere Clantal. Poj. (IS6C) 9305.

ANNONAY (ane. Annoneum or Annonticum), a town of the dep. of Ardeche, France. at the jmmetion of the Deame with the Cance, which mite in the centre of the town, 37 miles sonth from Lyon. It is an aetive and prosperous mamfacturimg town, the chicf manufaeture being that of pajer, of which 300,000 reams are produced anumally: There are also manufactures of glove-leather, mostly from licl skins, and of silk and cotton twist, and woullen eloth. The laper-mills of A. were estaldisherl hy the father of the eelebratal aieronauts, Montgolfier (1. v.), who were horn here, and to whom there is a nonmment in the Grande Place. The situation of the town is picturesque and remariable; the heuses are I laced anong rocks, and some of the strects are very steep. A large guantity uf silk is produced in the neighlourhoot. l'op. (1sí6) $1 \bar{u}, 697$.

ANSIACH, or, more properly, Assbacit a town of Bavaria, the eapital of the circle of Mikile Franconia (Hitel-Franken), on the liezat, 2.5 miles sonthwest from Nürnbery. It has manufactures of cotton and half-silken fatries, tobacco, earthenware, llay-ing-eards, cntlery, and white lead; also a considerable trade in wool, flax, aud eorn. The situation is pleazant, but there are no remarkable buildings,

ANTACIDS-ANUS.

except the leserted palace of the former margraves of A., surroundeal by gardens, and the church of st Gmuibert, said to occupy the site of a cluarel erecterl in the bth e., aroumd which the town grew. The margraves of A. were a branch of the family of Jlohemzollern. The last of them sold his possessions in 1791 to Jrussia ; and in 1506 , Napoleon I. transferred A. to lavaria. I'op. (1861) $12,983$.

ANTA'CIDS are melicines which enrrect ahnormal acidity of the stomach and intestimal eanal by directly combining with the free acid that may loe present. Their action is olviously morely temporary, as, unless combiued with other medicines, they do not correct the morbid comlition which causes the undue acidity; and their too prolonged use must be carefully aroded, since, at all events, some of these molicines, as the alkalies and their carbomates, are liahle to induce a state of general anamia, morbind deposits in the urine, and a series of symptons not unlike those of scurry. Antacils are best given in association with vegetable tomics; and for the reasons already stated, their alministration must be carefully watched, and should he nceasimally omitted. Or Neligan makes the following excellent remarks on the particular remedy tu be employed for sprecial forms of acidity: "When the acill exists in the stomach in the gaseons statc, ammonia or its carbonates should be jreferred, as, in ennsequence of their rolatility, a gaseous acid which would clude the action of the fixed alkalies, may be nentralised by then. If the acility be present in the lower lowel, as in the cacmu or colon, magnesia or lime onght to be administered, as being less likely than the other antacids to be nentralised or alsorbed before it reaches that portion of the intestinal eanal. When the acid exists in the urinary organs, the alkalies will be found hest adapted, as they lave a teudency to act more lirectly on the kielneys ; and when it is lithic (or uric) acid which preponderates in the urine, the preparations of lithia or potash should lue preferred to those of soda, as the salts formed by the two former with tho acill in question are much more soluble than thuse formed with the latter. In persons of a corpulent habit of hody, potash is to le preferred to ammonia or soda when the use of an alkali is indicated. And limally, ammonia and its preparations are lest adapted for the old and debilitated, as also for those of enfecbled constitution.' 'I'he antacids inclule solutions of ammonia, lime (commonly knowu as lime-water), potash, and soda, varinus carbonates of these substances, magnesia and its earbonatcs, and the carbonate and citrate of lithia.
Many of the medicines of this class possess other properties besiles that of neutralising free acils; but a notice of such properties does not fall within the scope of the present article.

ANTISPASMO'DICS. See Spasm.

ANUPSIIUHU'R, a town of India, in the Britishs district of Bolundshuhur, North-west Provinces, ou the right link of the Ganges, $7: 3$ miles east from I) ellii, on the route to Barcilly. The chaunel of the Ganges is here abont a mile wite, but only about one-lifth of that space is ocenpied by the stream in the dry season. The town is ill built and crowded, the houses either of mud or ill-cemented brick. 1'op. 8917.
A^{\prime} NUS, Tile, and trs Diseases. The term anus is applied ly anatomists to the lower or (in the ease of animals) the posterior aperture of the intestinal canal; the rectum terminating externally in the anus. With regaril to its anatomy, it is sufficient to state that it is kept firmly closed on ordinary oceasions by the external and internal sphincter
museles, the former of which contracts the integnment around the opening, and, by its attachment to the coccy: hehind, and to a tomelinous centre in front, helps the lever ani muscle in suphorting the aperture during the expulsive efforts that are male in the jassage of the frees or intestimal cracuations; while the latter or internal spuincter, is an ageregation of the circular muscular fibres of the luwnst lart of the rectum, aml acts in contracting the extremity of the tuhe. She main function of the lector ani muscle is expressed in its name, it being the antagonist of the cliapluragm and other muscles which act in the expulsion of the facees. The integument around the amns lies in radiating plaits, Which allow of its stretehing without pain during the passage of the feces; aud the margin is provided with a number of sebrecous glauls, which, in somo of the lower animals, scerete itroncly oforous matters. Sue Anil (ilavids. Iufants are oceasionally born with an imperforate anus, or congenit:l] clusure of the rectum. In the simplest form of this affection, the anus is merely closed hy thin skin, which sonn lecomes distendel with the Meconium (q. v.). Mure complicatecl cases are those (1) in which the gut termmates some distance above the seat of the anus in a blind sac or pouch; (ㅇ) where the rectum terminates in the bladker, \&e. Fortunately, the closure hy a layer of skim is far the most common form of imperforate anus, and the little patient is at once relieved ly a very simple surgical ojeration. If, howerer, no treatment be arloptul, which is too often the case, in consequence of a popular delusion that the affection is incuralbe, the abdomen becomes distended and hard, vomiting enmes on, the romited matters soon assume a fecal smell, and the infant dies in a few clays, either from exhanstion or rupture of the intestines.
sparm of the sphincter Ani is by no means a rare aflection; it is characterised ly violent pain of the anus, witlo difliculty in passing the freces. On attempting an examimation, the muscle [eels larel, and resists the introluction of the finger. It usually occurs in sudeden paroxysms, which soon go off ; but sometimes it is of a more persistent character. Its causes are not clearly lnown, and althongh most surgeous regard it as a special affection, some consider that the spasm is not a discase in itself, hut merely a symptom of some slight excoriation us ulceration. Suppositories contaning opism us belladoma introducel during the perime of relaxa. tion, are sometimes of use; and if there are ulects, they must be specially treatel. L゙leeration occurring as a breach of surface at one or more points around the anus, but not extebiling within the orifice, is by no means uncommon in persons whe are not attentive to cleanliness, and especially in women with vaginal discharges. sitrict attention to cleanliness, the patient leing directed to apply warm water to the parts at least twice elaily with a sponge (which after each operation should be earefully rinsed out), and one or two applications of the solin nitrate of silver, followed hy llack-wash, whal cflect a speedy eure. If the ulcer is seated partly without the anms and partly within the rectum, the distress is much more severe, and the treatment oftem requires the use of the knife. Fissum of the anus is a term applied to an affection consisting in one on more cracks, excoriations, or superticial ulecrations, situatel between the fohls of the skin aml mucous membrane at the verge of the ams, and only slightly involviug the rectum. They give tise to intense pain during the passace of the evacuations, and for some hours afterwards to great discomfort, smarting, aml itching. The treatment to lo adopted is to encleavour to procure regular and somewlat soft evacuations, and to sponge with wamb water
immediately afterwards, the parts being dried with a soft cloth. One or two alplications of solid nitrate of silver will sometimes cure the disease ; and an ointment of oxide of zine, or one containing chluroform, will sometines serve to allay the irritation and heal the parts.- l'turitus eni, which simply means intense itching and irritation of this part, is perlaps rather to be regarded as a symptom of certain morbel ehanges rather than as a special disorder; but as it is a very common affection, and is productive of math suffinge, it must not be passed over. It is often associated with an unhealthy state of the intestinal secretions, or with simple constipation ; with a congested state of the mucous membraue; with a disordered condition of the womb; with the presence of thread-worms in the rectum, \&e. ; and it is peenliarly common in persons whose ocenpations are sedentary: The affection is often much aggravated by the patient's being unable to refrain from seratelning the parts, which leads to excoriations, ulecrations, thickening of the skin, \&e. The symptoms are usually most severe when the sufferer legins to get warm in bed. If the affection arise from worms, or a loadel state of the large intestines, enemata and purgatives will give immediate relief. If unhealthy excretions exist, attention must be paid to the diet, and the oceasional admin. istration of a pill containing a grain of calomel and four grains of watery extract of aloes, together with the local application of soap and water to the parts, will often stop, the itching. If there are any eracks or ulcers, nitrate of silver must be applied until they heal. To prevent the reappearance of these sores, the patient shonld bathe the parts night and morning with a strong solution of alum. An ointment composed of a drachm of calonel and an onnce of larl is strongly recommended hy Mr Smith of King's College Huspital, when other means lave failed; who also states that the daily introduction of a well-oileth bongie, made of black wax, will sometimes succeed in rery obstinate cases. The other principal affections of the anus are Fistula, Piles, and Prolapsus, which are disenssed in sprecial articles.
AONLAGANJ, or AOUNLAH, a town of India, in the British district of Larcilly, 21 miles southwest from Bareilly, on the route to Allygurh. It has a large bazar. Pop. 7649.

APATH1'N, a town of Hungry, in the county of Baes, near the left bank of the lambe, 49 miles south-west from Theresiopol. It has manufactures of woollen cloth, and a considerable trank in hemp, silk, mader, and woad, the products of the vicinity. Pop. 9753.

A'PELDORN, a beautiful villase in the Netherlands province of Gelderland, is situated about 17 miles north from Armhem, on a canal which joins the river Grift, a branch of the S'ssel, by which, and the public roads from Aruhem and Utreeht to Deventer and Zutpien, it has muely traffic. The Loo, a hunt-ing-lodge of the king, is in the neighbourhood. Besides ayriculture, making paper, grimling com, fonnding copper, mandacturing blankets and conse woollen cloth, \&c., are the principal iudustries. $\mathrm{l}^{\prime} \mathrm{op}^{2}$. of A . and aljoining hanlets (1865), 12,057 .
APllA'SIA (Cir: a, not, and phessir, speeell) is a term adopted by the eminent Freuch physician, Troussean, to denote a remarkable sympitom of certain conditions of the nervons system in whieh the patient is more or less uable to express his thonghts in speech. The diserse has been easually noticed by many earlier observers, amongst whom Dr Carry of Bath may be especially noticed; but it was not until within the last five or six years that it has received the attention whieh its great singularity
demands. Before receiving its present name, it had loen termed Aphemia (from a, not, and pherni, 1 speak), and Alulia (from latco, I talk). Voisin, in an elaborate Dlemoir on this subject, $p^{\text {mblished }}$ in 1865, olserves that it may ledue to several canses. It may lue congenital or aequired, and in the latter case is the to some form of lesion or injury of the anterior lobes of the brain. This fact was observed as long ago as 182.5 by Douilland; but in 1861, during a discussion of the Anthropolegieal Society of Paris, as to whether certain faculties, such as language, are or are not localised in special parts oi the Irain, Broea advanced the view, that the faculty of lauglage has its seat not only in the anterior lobes, but in the left lobe, and ocenfies exactly the external left frontal convolntion, where the anterior lobe meets the midhle lobe immediately in front of the fissure of Sylvins. 'Ihis singular conclusion was deduced from only two post-morten examinations which had just occurred at the Bieitre, but a mmber of previously published eases supported it ; and Dr Hughlings Jackson, of the London Huspital, 'has seen about seventy cases of loss or defect of spreech with hemiplegia, and in all but one, the hemiplegia was on the right side, indicating disease of the lejt side of the brain.'-Lencet, November 20 , 1864. Moreover, in the two cases which during the last year proved fatal in the Ediuburgh and Glasgow Indirmaries, Dr Sanders and Dr. Gainduer traeed the disease to the exact spot deseribed by Broea. It may be cansed by wounds, tumours of various limels, including hydatids, or by softening of the left anterior lobe, and has oceasionally, but very rarely, been found in association with lesions of other parts of the cerebrum, and even of the ccrebellum and spinal cord. According to Voisin, in 146 eases, the left anterior lohe was affected in 140, and the right in only 6 eases. A rariety of aphasia has been noticed in typloid fever and in the first stage of small-pox; also in certain chronie cachexias or intoxications, as, fur example, in syphilis and chrouic alcoholism; and there are cases in which the affection is purely nervous, and results from epilepsy, an over-taxed hrain, \&e. The patients in whom true aphasia from disease of the brain oecurs, are excelleutly described by Dr Gairdner in his essay On the Functions of Articulute S'peech, \&e. (Glasgow, 1866). This description, in a condensed form, is as follows: These patients have been the subject of some form of disturbance of the cerebral functions, sometimes with, but sometimes also withont a manifest disturbance of the intellect. It may have lieen epilejsy or apoplexy, in which latter case, as has been alrcady noticed, there is often paralysis, alinost invariably on the right side of the boty. This paralysis may le of any extent of completeness, but in many cases the patient has such command over the movements of the tongue and lips, as to shew that it is not from paralysis his speeell is affected. The states of intellect and conscionsness are equa'ly variable, the patient oceasionally appearing and luehaving as if he were in perfect bodily and mental health, except for the aphasia. Norcover, the aphasia itself shews itself in the most varied forms. In the more trivial cases, it is little more than an aggravation of the common defect of forgetting, or heing nable to reeall the name of a person or thing when wanted. Ir Gairduer records the case of what he ealls 'an aphasic,' who conld conduct an ordinary conversation pretty well, but who conld not wame the days of the week, and would, for instance, call Monday 'the first working-day;', and who had forgotten, or conld not give ntterance to his own name. Sometimes a patient will perfectly articulate such expressions as these: ' 1 want - I I want - Where's the',_, almost always stupling short at the name

APIIONLA-Al:Cl

of the oliject. Sumetimes the patient's vocalulary is limitel torne of two common worls, as "lies' or 'S゙u;' or proraps lie utters only one or more mintelli rible words, as in the case of one of 'J'ronssean's pationte, who for forar months nttered mothing but - 'omsisi' to every possible rucstion, unless when in mmments of great irritation, and le womld then articul ate 'Sicon, sacon'-probably an abbreviation for a J'woll wath. Strange to sny, curtain aphasics who ean artienlate absolutely nothing else, call swear with periect farility. Such exclamations as 'Oh!' '1) catr me!' "(iombloless my life!' ame 'l)-n it!" are "f.t.un lee anly utterances of these patients. Dr 11. Jackson, in a Jemasir on Aphasia, in the first volume of the Lomelon Jospital lipports, has made sone exedlent rematis on this pecularity, whiel are well wortly of perusal hy all who stuly mental philonamby. He ingeniously regaris an oath not as a part of langnian', hant as 'a sort of dectonatin! comma.' 'The peheral reater may also reand with alfontage the histories of two caseg recombed ly 'lrmascath, in which lirenchmon of high mental capareity, ind well negnainterl with the discase (one of them an eminent physician in l'aris, who hat specially stadied the diseases of the hrain ; and the other, J'rofessur Jopdat of Montpellier), have passend throngh attacks of aphasia, liave recovered, aud hive describer their own cases.

Aphasia maty he either tomporary no persistent ; in thic former case, lowing dine to Joss of nervons cmerry, conerstim, or some other functional disariler ; while in the hatter ease, it is probably assuciated with disease of structure. It is umbecessatry to duscribe the treatment, which varies aceoreding to the peonliarity of cach individual case, and mist be left solely in the hands of the physician.

APIIO'NIA (Gr. a, not, amd phone, roice) is the tom used in Medicine to signify a more on less complete loss of voice. It is altomother distinct from matism, in whinh it is impossilslo to form artienlate somman, aml in most wases the Foice is not entirely gone, lont mily more or less last or supuressed. The voice is essentially producel (as lases been proved in the suecial article on that subject) lyy three distinet argents-viz., (1) the expiration of air, (2) the onening of the olottio, and (3) the tension of the rocal corils and bunce anything interfering with expimation, or with the functions of the gluttis and voeal cosels, may canse aplonia. 'Thus, it may result from paralysis of the respiratory museles, from fulmonary empliysema, and sumetimes from juchmmsia; or it may be cansed by diseases of the laryox, as elamone laryngitis, whem of the ghattis, polypus, \&c. ; or by pressure on the liaryn: cansed ly abseesses, veretations, and any lind of morbid growth; or it may be traced to somo furetional or organic rlisturbance of the inferior vocal cords. Thes, the unsenlar liberes which aet on these conls may becume alfietenl in acute laryngitis ly extension of the inflammations. (ir their action may bu impalal by the pressure of false membrane in eromps. In typhoil fever, the aplonia which is so commonly observer is dine to nlecration extending to these structures. Again, in eases of leal or phosphorns poisoning, there is aphonia due to fatty degueration of these muscles. Nut unfrecpently, aphonia may be triaced to eomspressinn of the recorrent or inferior laryngenl nerse, which is the nerve supplying motor power to nll the museles of the larynx, with one trifling execpitim.

Such pressure is not unfrequently eaused ly an aneurism, an aloscess, tumour, de. In the same wily, a wount or contusion of the pmeumogastric nerve, or one of the recurrent branches, will cause aphonia, or, more commonly, an extremely hoarse modification of the voice, in consequence of the laryngeal
mascles being paralysel on ane side, abt remaining active on the othur. T'luere are casers of direct nervons action being interfared with; hut there are many eases of what may be turnerl reglex riphonia, as when the voice is often more or less lost in the comso of pregnancy when accompanicd with convulsions, or in ennsequence of the presence of intestinal worms, or after the raphel suppression of an exanthematons rash, or of a long-contimed liemormargic alischarge. Aphonia is, moreover, very commonly associated with hysteria.

Whan inhonia is not due to irremovalile eanses, as tumons pressing on the recurent norve, fitty degemention of the laryngeal museles, \&e., it generally disappears after a lonwer or shorter intersal. It occasionally assumes remarkable intermittent shapes. In oue instance, the affection came on recrularly at the same time uf the jear for seventeen years, begiming daily at mon, amel lasting the remaineler of the day, for a period varying from three to sepen months. Another case is recombed in which, iming fourteen years, a young womm could only spuak diurine two or three lomus daily.

In those eases which are amenable to treatment, eunctics, electricity, stryelmine, leeching, hlistering, croumn-oil liniment, aml intermal application of nitrate of silver, have been fomb to lee the most uscful remedies.

APO'T, O., , town of the grame duchy of Saxic-Weimar-Eisenach, Germany, on the Werlity, a feeder of the Same, eight miles north-east from Weimar. It is a station on the Thuringian liailway, between Weimar and Weissenfels. It is a place of much industrial activity, having extensive mamufactures of hosierg: I'opl. (1S61) Si3l.

ARAlBClR, or ARABKIL (anc. Anabracr), a town of Asiatic 'lumbey, in the parlmalic of Sivas, in a monntaisous amel rocky district, not far from the limplrates, and 150 miles south-sonth-west from Trebizond. It eontains a juppo of aboust 30,000 , marly merfonrth beine Ammenians, the other thecefunrtis Turks. It is ta the enterbuise and industry of the Ammenians that the town owes its prosproity. It is specially noted for the mambacture of gorels from English contom yarn. The neighbouring commtry is inlazhited by 'Inrcomans.

AlaACO'NA, a town of Sicily, S miles morllpmortlecast from (iirgenti. It is a puor fown, and stames. in the midst of hare frean downs; lint the litlls above it are clothed with pincs, cypresses, olives, almonds, and carolis. 'lice unly oljject of interest is the ohl castle of the prinees of Aragona, a lonse buhkine, in the licnaissanes: style, which has fallen much into decas. J'op. Fy 27.

ARAVU'UJI, a range of momntains in W'esteris

 uf the range sinks into commaratively low rocky hills. The north-western sile is very boll and precipuituns, the sontlicastern less so. 'Heluce is mond britclicalle for wheel-carriuges acruss this range for a clist.unce of 200 miles.

A'JCE (ame. Aror), a town of Sonth Italy, in the province of Caserta, 60 miles east-smutlee ast from liome. It is situated un a lill near the liris; and the summit of the hill, which is lofty ami, precipitons, is crownesl hy an interesting malicual fortross called lionce d' i iee. This fortress was consillered impregmable till it was sealcil and taken ly the invaling army of Chanles of $\Delta n j o u$ in 1260 . Numerous inserjptions in which the name of Cjecro occurs liave leen discoverel near A. ; and some
ruins near the town aře known as L'aja di Cicerone, or Cicero's Barn. l'op, of commune, 5467 .

ARCIDO'SSO, a town of Central ltaly, in the province of Grosseto, 23 miles north-cast from Grosseto, on a feeder of the L'mbrone, among the Apennines. Pop. of commune, $5 \$ 59$.

A'RCUS SEN I'LIS, a not very well clasen term for a change necurrime in the cornea of the eye, in consequence of fatty degencration of its marginal part. 'The term is objectionable, becausu the change usually commences before the advent of ohd age, and further, beeause the arcus, or arch, is usually converted into a complete circle by the time that the patient has reached the age of sixty or sewenty years. The arcus sempis nsually commences at or even before the age of forty years, as an oprapue whitish crescent, skirting either the npler or lower margin of the comea; and from this eommencement it extends along the elge, till it finally becomes a complete circle, which sometimes assumes a chalky whiteness, and gives to the eye a very peculiar appearance. On careful examination, it nay be seen that a narrow interval of partially elear comea always intervenes between the arens and the opaque sclerotic. As far as the eye is concernel, the formation of this circle is of little importance, but it is of great diagnostic value to the physieian if, as Mr Canton and several late ohservers maintain, its presence indicates the cocxistence of fatty degencration of the heart.

ARDOVE, a town of Belgium, in the province of West Flanders, 17 miles south from Bruges. Linen-bleaching is the principal branel of industry. Brewing and eandle-making are also carried on. Pop, (inchnding the communc, which is not large) 647 s.

ARECI'BO, a town of Puerto Rico, Spanish West Indies, on the north coast of the islamd. It is the chief town of a province of the same name. It has a consiterable trate, and a railway las been proposed to connect it with Siu Juan. P'op. 11,187.

ARGliNTA, a town of Central Italy, in the provise of Ferrara, and is miles south-cast from Ferrara, on the lino, in the plan near the Marshes of Comacchio. Pop. (1561) of commune, 15,926 .

ARIA'NO (Ariumem), a city of South Italy, in the province of [rimeinato Ulteriore, beautifully sitnated on a sterp hill of tertiary limestone, at the hicight of zou0 feet above the sca, in one of the most frequenten passes of the Aponnines, on the main road from Naples to l'uglia, 50 miles northcast from Naples. It is a bishn's seat, and has a fine eathedral. The chief manufacture is carthenware. 'llhere is a considerable export trate in winc and in butter. A. is said to have been founded by Diomed. Loger 11. helt a parliament here to settle the affars of the province, after his defeat of the allied armies of Iope Immocent 1 l . and the Irince of Capua. In the sonthern face of the hill on which the city is built, lindreds of eaves have licen dug, which are the babitations of many of the poorer inlabitants. 1'ol. 12,55S.

ARLON (anc. Orolamum), a town of Belyinm, the capital of the province of laxemburg, 34 miles west-north-west from Luxembsy. It is a station on the ralway between Namur and Luxemburg. It is a neat and prosjerons town, and has a considerable trade in cum, woollens stalls, leather, iron, \&c. It has frequently suffered the zavages of war. The French pilhaged it in $1-0: 3$, after a vietory won in its neighboumood over the Austrians. P'op. (18G1) $56 \div 7$.

ARMPNTIERES, a town of the dep. of Norel, France, on the lys, near the Belgian frontier, eight
miles north-west from lille. It is a station on the railway between liazehronck and liile. The town is well hivilt, and is active and prosperons, laving manufactires of cutton, linen, lace, thread, sailcloth, beet-ront sugar, and suatp, and a consilerable trale in grain and lricks. Large quantities of bricks are made in tha neighbouldood, and are exported by boats on the lys. Pop. (Istii) 13,901.

A'RMOUL-PLATES. The ennloyment of thick slahs of iron to protect the sicles of ships of war and the fronts of fortifications, is guite a recent inverntion; or rather, the modern system is the practical realisation of plans suggested long agn by Mersenne and others. In 1842, Mr Thamamo of Now York proposed that war-ships should be elad with several thicknesses of iron plate, riveterl one npon another, the plates being indivichally $\frac{3}{1}$ th inch thiek. Soon afterwards, Mr Stevens, an American shipmilter, made further suggestions on the same subject, and other practical men kept the matter before the attention of the anthorities in rarinus comutries. In 1S54, the French sent seperal iloating-hatteries to the Black Sca, clad with iron plates; ancl the English Admiralty hastily imitated this example, producing eight very slow and mmanageable batterics in 1855-1856. Then came in a flont of suggestions for arming our regular ships of war in a similar way. The Admiralty, dismayed at the thought of dismantling the existing theet, which had cost so much, delayed the subject as long as they could, but withont ahanloning it. In ISGi), the Freuch sent to sea La Gloire, a timber-huilt ship of war, altered from a 90 -gun thre-decker to a 40 -gnn corvelte, clad with 4 -ineh iron plates, having a burden of 3000 tons. This proceeding at once set the Enclish government on the alert; they saw that further ielay would be imprudent, and they set about the creation of an armour-clad navy. Nany problems lad to be solved-whether to case old wooden ships with armour ; to build and case new wooden ships; or to hidd new vessels, of which the hull as well as the armour should be of iron. Then arose further problems-how near the bulwarks shond the armour-plates come, how ncar the bottom of the vessel, how near the stem and stern; also, what thickness of iron, and whether the same thickucss in every part.

From 1 stil to 1867 , the British Admiralty lave been engaged on a scries uf costly constructions and reconstructions, intcueled to aflurd eventually solutions to the above prohlems. Scveral of the shits built have enst from $£ 300,000$ to $£ 450,000$ each; several half-tinished timber three-deekers have been cut down and converted into jron-clads ; and variations of iletail almost innumeralle lave been introduced. Referring to other artieles for information on war-ships cencrally, we here give a list of English vessels which form the iron-clath nayy, thrown into groulps to facilitate comprison. Those which are wholly clai-i. e., covered with armour-plates in all parts of the hnll needing protection-are the Minoture, Agincourt, Northumberland, Royal Ouk, Prince Consart, C'alcdonia, Ucean, Lord Clyde, Lord 11'arden, lioyal Socereign, l'rince Albert, Scorpion, Hysern, Erebus, Terror, Thunderbolt, Lha, Thumder, and Ilerculcs. Those which are partially elad -i. e., covered with armour plates only in the more cxposed portions-eomprise the Black Prince, "I'urriur, Defence, Resistunce, Achilles, Ifcctor, Intiant, Royal Alfird, Bellerophon, Zatous, Fallus, Furourite, Hesearch, Einterprise, l'iper, l'ixen, I'atemvitch, Penelope. Regarded as to the material of which the hulls are mostly lonitt, and on which the armour-plates are lait, the following are timberbuilt: Royat Oak, Prince C'onsort, Culedonia, Ocean, lioyal Aljied, Zealous, Lord Clyde, Lord H'arden,

Pallas, Farourite, liesearch, lintoprise, lioyal Sore. veign, Eima, and Thumeder. The lixen is wood and iron; all the rest are iron. The dimensions and weight of these ships, larlen as they are with armonedates varying from 3 to 7 inches in thickness, are enormons. The load displacement of three of them is about 10,000 tons each; three, 9000 to 10,000 ; three, 7000 to 5000 ; ten, 600 to 700 ; three, 4000 to 6000 ; and the remamimer, under tuo0. Whatever the thickness of the amnour, the plates are nicely tonguel anel grooval to tit elosely together edgewisc. The bolts which fasten them to the ship are generally about two inches thick, expanded at one end to furn a head, and having a screw-thread at the other to receive a mut.
It is not jet known whether the thiekest armour will resist any shot that ean be lurled against it ; whether, in other words, the thickest jracticable armour will overcome, or be overcome by, the heaviest practicable shot. Experiments at enormons cost have been conducted by the government for some ycars to letermine this important question: a nittural result has been that cannon are made larger and larger, and armour-plates thicker and thicker, in the striggle between artillery and ship-buihling. The experiments (se far as England is conecrned) have leen conducted principally at shoeburyuess, but also on board the Thunderer at Portsmontls. The usual mote is, to eonstruct a target resembling the armed side of one of our iron-clads, and then to try to pieree it with shot fired from guns at various distances. A Wurrior target, for instance, consists of a $4 \frac{1}{2}$-inch armour-plate, backed by is inches of teak. and an imer skin of sth inch iron; while a Lored I'arilen target has $4 \frac{1}{2}$ inches phate, 30 inches teak, aud 13 inch skin. A few examples will serve to illustrate the method of procedin:-
In Aurnst lsb6, a Harrior tareet was built up at Shocbury-i. e., a target similar in strugth and

 with GOO-punder Amstrong Giun.
construction to the side of that ship. Alderson's stecl shell, Armstrong's conical shell, and l'alliser's

Fig. 2.-Eack Tiew of do.
chilled-iron shell were fired at it from a 7 -inch gnm at 200 yards: the Palliser shot excelled the others,
going clan throngl, the target, armour and all, and hursting behimi. On another oceasion, a l'alliser $11 \overline{5}-$ 11). slot went throngh the target even at an ande of 30° from the perpembienlar. The Lord Witalen target has been pierced by ?! aud 10 inch shot at

Fig. 3.-Section of do., shewing the hole made hy tho Coo-lb. shell, and displacement of the upper plate. a, armour plating, 4 ! in , thick (diaplaced); b, teak backing, 13 in. Hisk: c, boiler-plate sbin, ${ }^{\circ}$ in. thick; d, wrought-iron beams; e, platform.
a distance of 1000 yards; while the thinner IV arvior target was pierced at 2000 yards. The Bellerophon target is more pomlerous than the IFarrior, laving 6 -inch armour, 2,3 inches of teak backing, and 1 incli iron plate behind all. Still more peaderous is the Hercules target, with 9 -ineh armour. Some of the targets tried ilo not resemble the sides of any particular ships, but have the armour-phate backed "l, by some peculiar combimation of wood nad iron which secms to the inventor alvantagcons. One of these, invented hy. Mr Chalmers, has attracted mach attention ly its power of resisting shat and shell. As more than half in munler of our ironclals are weaker than the frarrior, amd as the Warior target lias been repeatedly piereed through and through by the l'alliser 115 -Ib. chilled shell, the future valite of those ship's in warfare is an anxious prohlem. Whether artillery will overeome armour- plates 7,8 , and 9 inches in thickuess, is a fuestion of calibre and rante.

Armour-clal forts are also attracting attention. Varions experiments on this sulpect were made in 1561, 1562, and 1563. In 156:1, a line of iron-clal fort was built np at Shoelury, to test several moules of constraction. la the same year, the liussian govern. ment employed the Milhwall Company to Duild a wrunght-iron shield, as an experiment for the defences at cronstadt. The front was made of 12 inches thick of iron in lorizontal lars ; this was backed by 1.f inches of thickness in upright lars; and the whole strengthencl with enormons struts, brackets, ribs, and iluretails of iron. The shield was to form the facing or armour fur a battery of three of liruppls 600 -pmanler steel guns, and measured 43 fect by 10. The shiehl, with its fommation-plate, weighed 140 tons. In one experiment at shochury, a plate 13 inches thick was placed in front of a mass of grauite 14 fect thick, and fired at with 200 -pounders: four shots eracked the granite, although the plate was not pierced. The Americans made an experiment in Chesareake Bay, in Keptember 1866, on a temprary fortification, male of enormons granite blocks faced with 10 -inch armour : slots of 430 and 600 lhs . were fircd from liolaan guns, at a range of 350 yards, and cleven such shots destroyed the whole fabric. The Thunderer has been litted up as a target-ship at Purtsmonth, partly to test very thiek plates at very short distances. The plates are fastened to an enormous bulkhead near one end of the ship, and the gnns placed near the other end. On one occasion, in 1566, a l'alliser 115 - H . chilled shot, with an extra charge of pewder, fircl at $\because \overline{5}$ feet off, went clean through a 7 -inch plate and 45 inches

ATOKSZALLAS-ARTERIES

of teals bulkhead. On another occasion, in the same year, a IIercules target, with a 9-inch plate, was fired at with an S-inch spherical shot at 30 fect: the sloot made a dent $2!1$ inches deep, but dil not further disturb the plate. Some of the plates experimented on in this ship, in March 1867, were 10 feet long, $3 \frac{1}{4}$ wide, and 7 inches thick; otbers were shorter, but 4 feet widc, and weighing 5 tons.

On the relative strength of armour-plates and great guns will depend, not only the general character of future iron-clacl navies, but also the employment of iron in fortilications, either as a facing to granite walis, or as a matcrial for revolving turetfurts, such as lare been suggested for Spithead.
liegarded as articles of maunfacture, armour-plates were at first produced mainly by hammering, several thicknesses of iron being welded one upon another, at a white heat, by blows of a ponderons steanlammer; but it is now more customary to produce thom hy rolling thata ly lammering-pressure being consilered to produce more satisfactory results than percussion. Whatever the thickness of the slab is to be, operations are commenced with plates about an inch thick: these are heatel, rolled, cut, riled up, heated and rolled over and over again, until the recpuired thickness is produced. The rollers are placel further and further apart, as the slab becomes thicker and thicke. Some of them are truly enormons masses of metal, solid cylinders S feet long by 32 inches dianeter. At the Atlas Wonks of Messrs Brown \& Co., Sheffied (the chief manafactory for armour-plates), there has been produced arolled slab, 17 feet long, 7 feet wile, and 14 inches thick, weighing 30 tons; and there is no reason to doult the power of modera appliances to exceed these dimensions, if necessary. For armonr-plates, the metal is very serupulously selected, and every part of the processes coullucted with great caution. The bolts, tou, for fastening to the teak are undergoing many experiments, to dctermine the best form of head at one end, and of screw at the other.

Al:OKSZALLA'S, a town of Jazygia, Hungary, it miles north-east from Pesth, and in entrepût for the trale between that eity and Upper Homgary: It stands in a plain on the Gyöngüss l'atak, a small stream, by which it is almost encireled. The surrounding country is fertile, and afforls excellent pasture. Pop. S170.

AIOMATICS constitute a class of medicines, which owe their propertics to the essential oils, to benzoic and cinmamic acide, to volatile products of distillation, or to odorons glandular secretions. The plants that contribute to this class of medicines are those which yield essences, camfhor, or outorous resias, and amongst the families which yichl the urost important aromatics are the Labiatar, L゙mbellifere, Lauracee, Myrtaceæ, Aurantiacer, Conifere, Scitaminere, Orchiter, \&c. In some cases, the aromatic matter is dillused thronghont all parts of the plunt, but it is usually condensal in particular organs, such as the root, in the ease of ginger and galanga; or the bark, in the case of cimmano canella, and cascarclla; or the flowers, as in the case of cloves; or the fruit, as in the case of auise and ranilla; or the wood, as in the case of sandal-wood and aloes-woorl; or the leaves, as-s in the case of most of the Labiater, Umbelliferee, \&

Aromaties may be ariangel in the following sub-classes: (1.) Those in which the active principle is an essential oil, as the oil of thyme, laventer, cajeput, neroli, fenuel, \&c. (ㅇ.) 'Those containing camphor, or an allied body, such as artiticial caniphor obtained from turpentine. (3.) Bitter aromaties, in which there is a mixture of a bitier principle and
an essential oil, as chamomile, tansy, worm-woot, \&c. These are tonics and vermifuges. (t) Those of which musk is the type, such as ciret and amber; and certain plants with a musk-like odour, such as Multa moscute, Mimulus moschetus, and IItitiscus abelmoschus. (5) Those containing a fragiant resin, as benzoin, myrrh, olibanum, storax, aud the balsams of Pern and Tolu, which poseess stimulant 1 roperties. (6) Lastly, those which are artiticially procluced by destructive distillation, as tar, creosote, benzol, or the varions empyremmatic oils.

As a general rule, these substances act as diffusible stimulants of more or less power, and as antispasmodics, while those in which a bitter principle is 1 resent act os vermifuges and tonics. The whole class were formerly regarded as possessing disinfectant and antiseptic properties, anul there is no donlut that some, as coal-tar, creosote, \&c., strongly possess this property: In this country we usually associate aromaties with other melicines; bat in France aromatic infusion, lotions, baths, \&c., are much prescribed. It will suffice to give the composition of aromatic infusion as an illustration. Take equal parts of the leaves of sage, ordinary and lemon thyme, lyssop, origanm, wormwood, and mint. Intuse 50 parts of these leaves in 100 parts of boiling water.

ARTEREOTOMI, or the opening of an artery, is an operation that laas been strongly advocatel in those cases in which it is desimable to produce a more decided and immediate effect upon the cerehral circulation (as in severe forms of sanguineous apoplexy) than could be produced by ordinary rencsection. It is supposed by some surgeons to relieve pressure on the brain more efficiently than opening the jugular vein coukl do; and whether this is the case or not, it is a simpler ame less dangerons operation. The ouly vessel operated on is cither the temporal artery itself or one of its main brancles. The cperation is a simple one, but should, of course, only be untertaken ly a surgeon. To arrest the flow of blool when sufficient has leen taken, the artery shonld be completely divicled, and after the parts have been sponged, a compress, or small pad, shoutal be applicd to the wound, and secured hy a bandage, whicle must be carefully aljusten, so as, if possible, to remain undisturbed for four or live days, when it may be remorel, and the wound coverel with a strip of plaster

A'RTENIES, Disfases of. Most of the important morbil conditions of the arteries are those which are oceasioned by the deposition of atheroma (a Greek word signifying a tumour or deposit containing matter like ath ice, meal or groats) on the free surfice of the inner cont of the vessel ; a new inner lining to the artery being thus furnisbed. As atberoma has the effect of weakening, enlarginc, and occluting arteries, accorling to the extent and period of the deposition, it is expelient briedy to notice the most important stages of its progress. In the earliest stare, atheroma consists of a thin, soft, and clear membrane, lining a part or the whole of the tube. It scems to be a mere addition to the artery, in whose original conts there is no appearance of clisease. It is most probably a deposit on the inner surface from the blond. On the inner surface of the new coat, a similar layer grarlually forms, and in course of time, becomes the foundation of subseguent formations: and when many strata have thus been deposited, the collective mass ceases to be transparent, and becomes converted into an opaque material similar to liardened albmen, and finally to ligament. Lutil this cousolidation occurs, the coats of the artery are not minch affected; but by their adhesion to the harlenel deposit, the ${ }_{\text {4il }}$

ARTERIES-ALTIFICIAL LIMDS

lose their strength, clasticity, and matural colour, and their functions are destroyed. 'The indurated deposit may now undergo one or other of these elanmes: it may cither soften in its interior, in which ease it dugencrates into a $]^{\text {milj }}{ }^{\prime} y^{\prime}$ mass of cliolesterine, oil-globules, allmmanous aud clatky molecnles: or it may be convertal into a layer of havel, chalky', bone-like matter. This lather chance (cretefaction or ossilication) takes place only in the external ollest layers of thick deposits ; and nothing intervenes letweer the bony plate and the mindle coat of the atery, for the inner or lining coat partakes in the morbirl change. It is obvious that citber of these clances (softening or lardening) mast gradually leal to disense of the arterial coats generally. The process of chance is slow, and the clange jtsclf can only be detected in the living subject when it is in an advanced stace. In tho ralial artery amb others which lie superficially, the finger can uften detect rings or tubes of cbalky matter. Most commonly, however, the state of the arteries is detected by some sccomlary symptom.

Atheromatons delosit is at first attended with a narowing of the calibre of the vessel, varying with the thickness of the deposit, and most marlicel at the points of lifurcation. Smaller arteries may le completely obliterated, whilst the larger arteries may be very much contracted. Thas, the common iliac has been founcl to lave its caual diminished by about one lialf, ind the great ascending branches of the arch of the aorta, the subclavian and carotid arterics, lave been found very nearly closed. A later consequence of the same elisease is dilatation of the vessel. 'Ihe power of the onter coits lueing insullicient to compress the deposit and to close iu mon the blood, hy which each contraction of the left ventricle of the heart distends them, they remain wide and distended during the relaxation of the ventricle, and the artery thus slowly expands; the enlargement being most marked at parts where there is most olustruction to the blood-current, as, for example, in curved arteries. These dilatatious are apt to terminate in resplatar ancurisna. The changes which we have alreaty described have an efliect on the retractile power of the artorics. A liealthy artery, if cut across, may sliorten to the cxtunt of an inch and a half, is has been actually
 in'Ilolmes's System of Suroury, vol. iii. 1) 329) ; Lut the retractile power is destroyed by the deposition of bony rings or plates. But although incapable of shortening, the arterics sonsetines lecome abonormally lengthened, and consequently become not culy dilated, but also tortuous. If the outline of superlicial arteries thess aftected be watehed, cach pulsation of the heart is seen to inerease their curvature; amd decp-seated arteries (as tlie iliac) are thats often forcel from their nommal positions. Another condition involving much dinger is this: an ossilied artery loses the suootbuess which the interior of the vessel meglit to present, and from the thisplacement or crackine of a bony jliate, there may le sharp rough projections exposcel, to which the fibrin of the circulating blowl may allocre. J'hese little elots beconing detached, may he earried with the blood till they beconme arrested, and plos up an artery, thus puscntiner caes of cmbolism or 'l"hrombosis ($(\mathrm{I} \cdot \mathrm{r})$). Again, the relation of this discasc to accidents amel surgical oprerations on arterics is obvions. A blow may crush a diseased artery, When a healthy elastie vessel might have esenped injury. Such a shight movement is suddenly lifting the arm to the lical, for the purpose of securing the lat in a shard gale, has been linown to lave leen followed lyy anearism of the axillary artery. A lignture aly ${ }^{102}$ lied to any ossilied atery, is very apt to
eause it to break, and the dillienlty of sceuring such vessels is often very great. It is to this form of diseaso that most of the failures of operations for ancurism are lue. Having thus noticed the most important chanres which are induced in the arteries lyy atheroma, and the evil consequences to which they may give rise, we sladl uow direct attention to an importiunt cause of occlnsion-that, namely, in which the canal is cosed lyy an imported foremon body, and especially lyy fibrinoms plugs orjginally formed in the beart, and transported to other jarts in the stream of the blond. When a large artery, as, for example, the prineipal artery of one of tho limbs, is "suddenly" plugered in its ligher part, a sensation of severe pain is commonly the immediato result of the accilent. In some cases, the finin cxtends aloug the comre of the vessel, which, thongh pulseless, is extrencly tender ; in others, the suffering is referred to soma distant part of tha limb, as, for instance, to the calf. Signs of a deficient cirenlation suceecd, and they mity anoment to pallor, loss of temperature, numbiness of the surface, or even to that "torpor" which is olserved to precede the total deatb of a limb in certain enses of injuries of vessels. Such torpor inpllics not only a loss of circulating blook, but also a cessation of all feeling and motor power in the limb.'- Noore, op. cit., p. 335. Although Gangrene ($\mathrm{q} . \mathrm{v}_{0}$) is always to be feared as the result of an obstructed artery of large size, it clacs not invariably folluw; as a collitteral circulation may be established, and the life of the limb may be thins saved. Very younde persons will enclure the obliteration of very large vessels without gangione ; and a case is on record \{Med. Chir. 'Trans., vol. xxix. p. 214) in which 'all the main arterics of both upler extremities and of the left side of the neek were rednced to solid cords,' and yet no gangrene ensucd. From the deseription of the sympitoms, the natire of a ease of sulden occlusion of a darge artery by a blug may possibly be recormised, or, it all events, suspucted even by a non-professianal observer: Medical aid must at once be souglat. The early indientions of treatment are to preserve the temperature of the part, to favour the establishment of a collateral circulation, to protect the limb from irritation or injury, to give nourishing blool-making food, and to relieve pain by the judicions use of opiates. The later treatment, if the aflection is not checked, is that which is described in the article Gavianese. Arteritis, or Inflummation of the Arteries, was a discase which was formerly recognised by playsicians. Nu such specitic general disease is now ledieved in; but the clanges which hare been alrendy elescribed as uccurriug in consolichated atheromatous depositscitlecr suftening or ossitication-are accompanied by an unnatmally vaseular condition of the attemated arterial walls, extenciag to true local iulfammation, and evern to suppuration. - Aneurism \{ia tumour contrining blood, and conmmicating with the catvity of and artery) bas been cunsidered in a special article.

Al'I'IFI'C'lAT LIMBS. With the execrption of the celchrated artificial hame of the Gumman knight, Lütz von Burlichingen*-who llourished
*The iron lame of this knight, who has lacen immontalised ly Gocthe, is jreserved at Jixthausen, Hear Heilhemn, and a riuglicate of it is the silhluss at libach, in the (Menwald. It is stated in Siott's Border Atriquitics, vol. ii., p. 206, that the family of Cleplane of Carslogio 'have been in pussession from time immenorial of a hand made in the exact representation of that of a man, curiously fommed of stect,' which wats conferred by one of the kings of Scotland on a laird of Carslogie, who had lust his liand in the scrvice of lis country.-Sce Notes and Qucrics for July 17, 1867, p. 35.

ARTIFICLAL LIMBS

in the early part of the 16 th c. (1513), and who was named The I ron-handed-which weighed three pounds, was so constructed as to grasp a sword or lance, and was invented by a mechanic of Nuremberg, our knowledge of artiticial limbs dates from the time of Ambrose l'are, whose Qurres de Chirurgie were published in 1575. The twelfth chapter of that volume, as translated by

Fig. 1.
Thomas Johnson in 1605, shews 'by what meaus arms, legs, and hands may be made by art, and placed iusteal of the natural arms, legs, aud hands that are cut off or lust.' The accompanying figures

Fig. 2.
are copies of his drawings of 'an hand made artificially of iron (fig. 1), and of 'the form of an arm made of iron verie artificially (fig. 2).' He also gives a drawing of 'a wooden leg made for a poor man' (fig. 3), which is simply the common wooden leg with bucket receptacle still in usc. No improvements worthy of record were made from the time of Ambrose Paré to the becinning of the present century, when Baillif of Berliu constructed a hand which did not exceed a pound in weight, and in which the fingers, without the aid of the natural hand, not only excreiseil the movements of lexion and extension, but coull be closed upoa and retain light objects, such as a hat, and even a pen. 'Artificial hands,' says Mr Heather bigg, 'are now constructed, by meaus of which a pin may be picked ap from the ground, a glass raised to the lips, food carried to the month, and a sword drawn from its scabbard, and held with considerable firmness; while a combined arm and laand is fabricated, which is equal to the ordinary requirements of histrionic declamation.'-Orthopraxy, 1S65, p. 157. The utility of an artificial arm depends much on the nature of the stump. A stunp above the ellow is best suited for an arm when it gradually tapers to its lowest end, and terminates in a rounded surface. When an arm is removed at the shonlder-joint, and there is no stump, an artificial arm can still be fixed in its proper place by means of a corset. In amputation below the elbow-joint, the best stump
is one which includes about two-thirds of the forearm; while a stump formed by amputation at the wrist is very unsatisfactory. The sunplest form of artificial arm intended to be attached to a stump terminatiug above the elbow, 'consists of a leathern sleath accurately fitted to the upper part of the stump. The lower cad of the sheath is furnished with a wooden block and metal screw-plate, to whicls an be attached a fork for holding meat, a knife for cutting food, or a hook for carrying a weight.'-Op. cit. p. 160. The arm should be so carried as to represent the josition of the natural arm when at rest. It is retained in its position by shoulder and breast straps, aud forms a light, usefu, and inexlensive substitnte for the lost member. More complicated, and therefore more expeusive picces of appratus are made, in which motion is given to the fingers, a lateral action of the thumb is oltained, and the wrist-movements are partially imitated; aud a degree of natural softuess is given to the hand by a covering of gutta-percha and India-rubber. Sncha a hand, siys Mr Bigg, is often more symmetrical in aspect than the natural haud, but it possesses no efficient grasping power. Hence provision has to be made for attaching various instruments to its palm, such is special hooks, which can be removed at Heasure, for driviag, shooting, \&c. ; apparatus for using the knife and the fork, for grasping the pen, \&c.: indecd, the number and variety of instruments capable of being applied to an artificial hand are extremely great. Nothing Inas tended so much to the very highest develonment of artificial arms and hands, as an accident which happened nearly a guarter of a century ago to the celebrated Freach tenor, M. Toger, who lost his right arm above the elbow. It was necessary, for his future appearance on the stage, that he should have an artificial limb, which would serve the purposes of histrionic action, and permit him to grasp a sword and draw it from its scabbard. Such a contrivance was invented in 1815 ly Yan Petersen, a Prussian mechanician, and the French Acadcmy of Sciencos commissioncd M11. Gambey, Rayer, Velpean, and Magendie to report upon it. For a history of the nature of the limb, the reader is referred to the report which appeared in the Comptes Rendus for that date, or to Mr Bigg's Oithopraxy, pr. 176-181. The aplaratus, which reighs less than 18 onnces, was tested upon a soldier who had lost both arms. Hy its aid he was cnabled to pick up a pen, take bold of a leaf of paper, \&e.; and the old man's joy during the experiment was so great, that the Academy presented him with a pair of these arms. F"an l'etersen's conceptions have been extended and improved by Mesara Charriere, the celebrated surgical mechanics of Paris, aided by M. Ingaicr, the well-known surgeon. A very marvelluns arm has also bcen almost simaltaneonsly constructed by M. Bechard, which, 'by means of a single point of traction, placed in pronation, cxecntes lirst the movement of supination, next in succession the extension of the fiogers and abduction of the thumb: the hand is then wide open.'-Bigg, op, cit. P. 190.

Artificial legs laving fewer requirements to perform than artificial arms, are compara. tively simple in structure. We horrow the description of our

Tig. 3. figure of the ordinary bucket leg in common use

ALTVIN-ASIAGO

amonert the power clasies frmm Mr Bigg's Orthopraxy. 'It emnsists of a loollow sheath or bucket, A, arenuat ely comformed to the shape of the stimp, and havine-in lien of tho more symmetric propartions of the artificial keg-a 'pin, l', placed at its lwer end to insmre connection between it and the gromml. This firm of lom is stomgly to be recommended when expense is an olject, as it really fullils all the comlitions excepting external similitule embracel hy a better piece of mechanism. lt is likewise oseasionally employed with henclit by those patients who, froni lack of confilence, yefer leamine the nse of an artilicial ley by first practisin! with the commonest substitute. As, when the buly rosts on a simple lug, the contre of gravity dasscs through the thhorosity of the ischimm, it is essential that tho bucket shoull he so mule as to hwe its sole point of learinge agninst this part of the melvis.

Of the more complicated forms of artiticial leg thares are especially popular. The tirst of these is of English origin, and owing to its having been a loptel liy the late Maryuis uf Anglesea, is known as the Angleser leg. Fur a description of it, the realer is referred to Gray's work on Artificial Limbs, one of the firm of firays having been the constructor of the legs usel ly the marouis. This was for a long time the fashionable artilicial leg. The secoml leg worthy of notice is that invented by an American named Palmer, aml called the Pulmer l\% lonam its lightuoss anl the greater case of walking with it, it has loner supursedel the Inelesea leg in Ancrica. In the t!ind of these lega, also invented in America, and known as H or Blys leg, the principal faults of the two other legs have heen completely overcome. The alvantages of this leg are thus summed up hy Mr Biser, who has fully described and tigurel its mechanism: (1.) Atlaptation to all amputations eit?er above or below the knec. (2.) liotation aml lateral action of the ankle-juint. (3.) Power on the part of the patient to walk with ease on any surface, however irregular, as, owing to the motion of t?e anlile-joint, the sole of the foot radily accommolates itself to the unerenness of the groumel, which is an alvantage never before possessen hy any artiticial limb. (4.) The amkle-juint is renelered perfectly indestructible by ordinary wear, owing to its centre being composed of a glass l,all resting in a cup of rulennite; thus it nerer gets ont of repair, as the Anglesca leg Lut too freyuently locs, and the original cost is almost the only one the patient incurs. (5.) The action of the ankle-joint is created by five temlons, arranged in accordance with the position assigned to then in a natural los. 'lhese tembons are carpable of hoing renlered tirlit or louse in a few instants, so that the wearer of the leyg has the juwer of :uljusting with precision the exact dacpes of tension from whic! he linils the greatest comfort in walkiner, and also of giviag tho fout any position most pleasing tos the Ye. (6.) There is a seli-acting spring in the knee. joint, urgint the lerf forward in walking, and impart. ing automatic motion, thus avoiding the least trouble to the patient, who tinds the leg literally and not metaphorically walk by itscli. (7.) The whole is eaveres hy a heatiful flesh-coloned enanuel, thus avobling the clumsy appearance of the wool, as is alwazs foumd in an Angleser lece admit. ting of its being washed with sonp and water like the human skin. (S.) it the knee-juint there is a mechanical arrangement represcuting the crucial ligaments, and atiording natural aution to that articulation by which all shock to the stmmpin walking is avoided. This log is patented, and as might be expected, is somewhat exprensive.

In cases of arrested derelopment of the lower
limbs, sloort-logged persons may be male of the orlinary height hy the use of two artificial fect placed twelve or more inches helow the tric fe t, amal attacherl to the leas by means of metallic rods, jointed at the knce and ankle.

Other prorts not entitled to he called limbs, can also he replacel lyy mechanical art-such as the nose, lips, cars, palate, cheek, an! eye. In the present alranced state of plastic simgery, deticiencics of the nose, lips, and pialate ean usually lic remedied by an uperation; eases, however, may occur where an artilicial organ is reguired. Artificial ears are monlded of silver, painted the natural colour, and fixed in their place by a spring over the vertex of the heal. Loss of an eye causes sad clisfisurement ; lut the artiticial eyes of Boissomean (sce his licnseignemento lénéroux sur lis Ieux Artificicls, leur Asloption et lew L sug.), which have been shewn in all the recent public exhibitions, comletely throw all athers in the shade, and cannot be detected without the closest inspection. Fur further details oa all these subjects we must refer to Mr Birg's volume, which is a complete eucjehnredia on these and allied topics.

IRTVI'N, a town of Asiatic 'lurkey, in the pashalic of Trebizund, 100 miles east from the town of Trebizond. It is sitnatel in a ravine, on the T'lomb, which is here crossel hy a britge. The houses are mostly luilt of woorl, lut some are of stone. The inlarbitants mostly belong to the INoman C'intholic Church. Olive aud mulbery groves mingle with the houses. 'There is some trale in butter, wax, honey, olives, and oil, the products of the neighbourhood. l'op. supposed to be about 6500 .

ARZIGSA'NO, a town of North 1 taly, 11 miles west-by-south from Vicenza, in a plain surrounded lyy hills, near the . Imo. It has manufactures of woollens, leather, and silk twist, also an active trade in wine and in cattle. In the neirgbourhood are brick-works, lime-works, aml coal mines. Pop. 7257.
dSCII, a town of Bohemia, in the cxtreme west of that country, close to the borler of Franconia, about four miles north from the Eirgelirge, on a small aflluent of the E aer, and 100 miles west-morthwest from liser. It has cotton, linen, and woollen manufactures. Pup. T120.

ASCII'SO, a town of Tuscany, Nortl Italy, in the province of Siena, 12 miles sonth-east from Siena, on the left bank of the Ombrone. The town stands on the slope of a hill. Its clurrebes contain sume line pictures. I'op. Wusz.

A'SHISORNE, or ASHBURN, a market-town of Derbyshire, England, a short listance from the left hank of the Fore, in a fertile valley, amid beantiful seenery, 13 miles north-west from Iorlyg. The structs are jretty regnlar, the houses mostly of brick. The parish elourd of 1 . is supposed to have been erected in the lioth ecotury. There are a grammax anl a frec schnot, and a numlece of well-entowed charities. The eotton manufacture is carried on here to a considerable extent; the lace manufacture to a sinall cxtent ; and tlece is an actire traile in malt annl checse. A. is connected ly a branch with the North Staffordshire Hatilway: l'op. (1561) 3501.

ASIITABU'L. 1 , a rapidly increasing town of the state of Ohio, Nortlı America, on tlec Clevelaud and Eric Liailway, 3 miles fronı Lake Erie, and $\cdot[9$ miles norlla-east from Cleseland. It stands on a river of the same name, which flows into lake Frie, and at the month of which there is a harhour. It is a jlace of cousiderable trale. Pop. (1860) 12,040 .

ASII GO, a town of Forth Italy, 22 miles morth

ASINALUNGA－ATLAN゙TIC TELEGRAPH．

from Vicenza．it stands on a ridge，among the southern spurs of the Alps．It is celebrated for the manufacture of straw－hats，and also for carpenter－ work and turning．Pop，Eltu．The surrumbing distriet，known as the＇Seren Commmes，＇is well wooled，and abounds in sheep and cattle（see §frté（OMmesi）．

ASINALU＇ズGA，or SINA LONGA（anc．Ad Ifcusulast，a town of Tascany，North Italy，in the 1rovince of Siena， 22 miles south－east from Nicna， on the siena Railway．lt is beautimily situated on lills loordering the Val di Chiana，and is a well－Luilt town，with wile and well－paved streets，and a hanel－ some eollegiate church，in which are many line laintings．Pup．of commune（1561）S330．

ASO＇CA（Jonesiat Asoca），an Indian tree of the natural order Leguminosce，sub－order Corsalpinece， remarkable for the beanty of its red and mange flowers．The leaves are abruptly pimate，shining， and very beantiful．The A ．is often mentioned in Inclian poetry，and is connected also in varions ways with the Hindn my thology：

ASO＇LA，a fortified town of Northera Italy，in the prorince of Brescia，situated on the left lande of the Chiese， $\mathbf{1 9}$ miles west－מorth－west from Mantua． It is a place of great antiquity．The chief branch of industry，not agricultural，is the manufacture of silk twist．Pop．of commune（1861） 5441.
ASPARAGISE（ $\left.\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{6} .2 \mathrm{HO}\right)$ is a crystalliue substance which exists realy formed in common asparagus，in the marsh－mallow，in comfrey，in potatoes，in chestants，in the leaves of the deadly nightshade，in liquorice－root，in the millsy juice of the lettuce，in the tubers of the dahlia，and in the young shoots of retches，peas，leans，\＆c．Accord－ ind to liria，the young shoots of these plants， when formed in the light，contain as much aspa－ ragine as when they are grown in the dark，but the asparagine disappears as the plant amives at the flowering stage．Other chemists，including Pasteur，fint that retches grown in light are free from asparagiue．This substance is readily ob－ tained from the expressed juice of the young shoots of asparagus，of young vetches，\＆c．，whieli， after filtration aud evaporation to a syrup，soon deposits it in crystalline prisms of a right rhombic form．These crystals dissolve freely in boiling water，the cooled solution havin．a mawkish and eooling taste，and a slight acill reaction．Aspara－ gine exhibits two remarkable transformations．（I．） When its aqueons solution is heated with alkalies or acids，it is decomposed into aspartic acied $\left(\mathrm{C}_{5} \mathrm{H}_{-} \mathrm{NO}_{5}\right)$ and ammonia；from this and other reactions，there is no doult that it should be regarder，accorling to modern views，as the Amide （q．v．）of aspartic acid．（2．）Whale a solution of pure asparagine－crystals remains unchanged，it any colour－ ing matter is present the solution passes into fer－ mentation，and the whole of the asparagine is conserted，ly the assimilation of hydrosen，from the pigment into succinate of ameronia，a reaction which may le expressed as follows ：

$$
\mathrm{C}_{3} \mathrm{HI}_{3} \mathrm{~J}_{2} \mathrm{O}_{6}, 2 \mathrm{HO}+\mathrm{HI}_{2}=2 \mathrm{NI}_{4}, \mathrm{C}_{3} \mathrm{HI}_{3} \mathrm{O}_{5}
$$

Like most of the amides，this sulstance unites lotil with acids and alkalies，bit the resulting compounds are of little general interest．That asparagine plays an important part in the plysio－ logy of plants，is obvions from its wicte distribution．

A＇SPE，a town of Valencia，Spain，in the province of Alicante，and 21 miles west from Alicante，near the river Elcha．It is pretty well luilt，but the streets are narrow and winding．It has numerons tlour－nills and oil－mills，also soap－manufactories and
brandy distillerics．There is a considerable tratle in wine．lop．674．

ATESSA，a town of South Italy，in the province of Chieta，and 23 miles south－south－east from Chieta． It has a beantinul collegiate church，and several other churches aud convents．Pop of commune， 9171.

A＇THERSTONE，a market－town of Warwids－ shire，England，on the borders of Leiccstershire， 16 miles north－east from Dirmin liam；in a valley sur－ ronnded ly finely wooded hills，on the Roman road called Watling Street，the Crent Valles Railway， and the Corentry and Fazely Cianal．The town is irregularly lmilt；many of the houses are vory ancient；the ohl houses are of stone，the modeln ones of briek．Some of the modera churches an l other public buildings are handsome structures． Hats，stockings，and ribbons are mannfactured here． Pop．（1861） 35 57．

ATLANTICTELECRAPII．Teferring to other articles for details concerning the scientifie and mechanical principles of clectro－telegraphy，the Atlantic cables may more ospecially be described here．
The possibility of laying an electric cable in the Atlantic，from Europe to America，was sucg－ geste： 1 by Professor Nlorse so far back as 1843 ；but it was not nutil 1554 that Mr Cyrus Field and others discnssed the means of practically realising the idea．Lieutenant Manry disenvered that the leed of the Atlantic，between Ireland and Lewfound－ land，forms a kind of Ilateau，covered with soft ooze，favourably situated as a resting－place for a calie．In 1855，negotiations were carried on，partly in America，Lut chietly in Eugland，to establish a company and raise capital；which oljects mere attained in 185b．The＇New Tork and Newfond－ land＇Telegraph Company＇connected Newfoumb－ land with the mainland of America by calles and land－wires ；but the＇Electric Telegrajh Company＇ undertook the laying of a cable from Newfomil land to Ireland，with a capital of $£ 350,000$ ，in shares of $£ 1000$ each．A length of 2500 English miles of cable was ordered，and was completed hy the summer of 1557 ．The conductor consisted of 7 fine copper wires，Nัo． 2.2 gauge，twisted tightly tngether，forming a cord $\frac{1}{7}$ th inch thick， and weighing $\mathrm{TO}_{\mathrm{O}} \mathrm{l}$ lbs．per mile．This thickness was increased to $\frac{3}{5}$ th inch by a core of three layers of gutta percha．Outside the core was a jacket of hempen yarn，saturated with pitch，tar，becs－wax． and boiled linsecd oil．＇The outer sheatly consisted of 15 strands，each formed of TMo． 22 iron wires．The whole diameter was about $\frac{6}{10}$ th inch，and the weight 1 ton per mile．In the manufacturing processes， the wires and yarns were toristeal round each other by revolving druns and circular tables workel by steam－power；while the coatings of gutta percha were applied by forcing the substance thround dies which lad the copper conductor jassing through their centre．The Vugara and the Ayamemnon， the one leat by the C＇nited States government and the other by the English，took 1250 miles of the cable each，and steamed forth from Valentia（west const of Treland）on August 7，185\％．The Fiugara baid out her portion of cable as she went．On the llth，in an attempt to slacken the rate of pay－ ing out，the cable suapreel，and the end sank in ooco fathoms water，at 250 miles from lrelaml．The applinnces on board were not sufficient to remedy the disaster，and the two ship＇s returned to Ply． month，where the two portions of cabse were placel in tanks until the next following year．

The Atlantic Telegraph Company raised more capital，made 900 miles adilitional calble，and pre－ pared for a new attempt in 1858．The Niayara and

ATLANTIC TELEGLAPII.

Agamemnon were again cmployed; but the submersion was to begin in mid-ocean, one slap procecling eastward, and the other westward, after splicing the two halves of the cable. They left Valentia, Jume 10 ; but it was not till the 2Gth that they conld linish the splice and commence tho submersion. On the n9th, a donble breakage took place, and Itt miles of cable went to the bottom, wholly severed from the rest. The Agamemnon returned to England for improved appliances and further instractions ; and a month was thus lost. On July 29, the two ships again spliced their two halves of cablo in mid-ocean, aud proceeded with their work without further disaster. On August G, the Agamemnon reached Tialentia, and the Niagarce Newfoundlaud, ant exchanged congratulatory messages through the whole length of cable. Soon afterwards, grectings were exchanged hetween the Queen and the I'resident, and between many public bodies aud official persons. The station at Newfoundland was
eonnected by wires and cables with the general telegraphie system of Anerica; and that at Vilentia with the general system of Furope. The cable continued working until September 1, semling 109 messages (of about 11 words each on an average) from England to America, and 271 from America to Eugland. The signals then ceased, and the calulo has never spoken since; it is supposed to have leeen injured by the winter's sojourn at I'lymouth.

From 1558 to $156-1$, the Company were engaged in endeavouring to raise new capital, and to oltain increased subsidies from the English aud American governments; while scientife men were making improvenents in the form of calble, anil in tho Tplaratus for sulumerging it. At lengtla the Sulegraph Construction and Maintenance Comprany (formed ly an amalgamation of the Gutta l'erclia Company with the wire eable-making firm of Glass and billiott) made an entirely new calle, much thicker and more costly than the former one. 'lhe

Grect Eastom paying out the Athantic C'obic.
comlactor, 300 lbs . jor mile, aisl $\frac{1}{6}$ th inch thiol, consisted of seven No. 15 coipler wirus, each a ${ }^{3} 0$ tl inch thick. The core was formed of four layers of gutta percha alternating with four of Cliatterton's Compound (a solution of gutta percha in Stockholm tar) ; the core and comluctor together were 700 lus. pel mile, and ?ivth inch thick. Ontside this was a jacket of hemp or jute yarn, satmentel with preservative eomposition. "J'he sheath consistel of 10 imon wires, No. 13 gange, each previously eovered with 5 tarcel Ilanilla yarns. 'The whole cable was l'th inch thick, and weiglaed $3 J^{\frac{3}{7}}$ ewt. per mile, with a breaking strain of 7 It tons. Diring the processes of mamufacture, the clectrical quality of the cable was tested to an extent never befure practised. The portions of finished core were tested by immersion in water at rarious temperatures; then noder a pressure of 600 lbs . to the square incl, to imitate the oceau pressure at a profouml depth; then the 400°
condection of ti:e coppore wire wias tusted ly a gillfinuoneter ; anl then the insulating property of the rutta percha, by various means. After the jieces Find in these ways been testerl, they were sjliecd end to end, and then the splices or joints tustenl. Nuthing wis talien 'upon trust.'

As tlie cable (2,00 miles) wifighed more than 4000 tuns, it was resulyed to e:npluy the Ciecre Rivatern steam-ship to parry it ont anl lay it. Three cnormous irnn tanlss ware built in the fore, milalle, and aft holds, from 50 to 60 fuct dianceter eacls, ly 20 ! feet deep; and in these the calne was deprosited, in thece vast coils. On July 23, 1S6j, the Circal Liestern started from Viuleatia with her burclen, the main cable licine joined end to and to a more massive shore cable, which was drawn uy the cliff at Eoilhummerum bay, to a telegraph house at the top. The electric condition of the cable was liept constantly unter test during the jrogress of the
ship; and more than once, the efficiency was disturbed by fragments of wire piercing the gutta percha, and destroying the insulation. On Augnst 2, the cable snapped by over-straining, and the end sank to the bottom, in 2000 fathoms water, at a distance of $106 \pm$ miles from Ireland. Then commenced the remarkable process of dredging for the cable. A fire-armed grapnel, suspended from the eut of a strong iron-wie rope, five miles long, was thrown overboard; and when it reached the bottom, it was dragged to and fro across the line of cable by slow steaking of the Great Eustern; the hope being that one or other of the prongs would cateh hold of the cable. A series of disasters followed, by the breaking of swirels, and the loss of grapmels and ropes; until at length, on August 11, it was found that there were no more materials on board to renew the grappling. The Great Eastern returned to England, learing (including the operations of 185\%-185S) nearly 4000 tons of electric cable useless at the bottom of the Atlantic.

A new capital, and new commercial arrangements altogether, were needful for a renewal of the attempt. Another cable was made, slightly differing from the former. The jacket ontside the core
near to it as calculations could establish. Certain bnoys, left anchored there twelve months previonsly, had been carried away by the storms of the pre ceding winter; but the latitude and longitude hat been very carefully registeren. The Gireat Lastern started from Heart's Content on the 9th, and then commeaced a series of grappling operations, which continued through the remainder of the mouth. The cable was repeatedly caught, and raised to a greater or leas height from the ocean-bed; but something or other suapped or slipped every time, and down went the cable again. At last, after much trial of patience, the end of the cable was safely fished up on September 1; and electric messages were at once sent through to Yalentia, just as well as if the cable had not had twelve months' soaking in the Atlantic. An additional length having been spliced to it, the laying recommenced; and on thic Sth the squadron entered Heart's Content; haring thins succeeded in laying a second line of cable from Treland to America.

During the winter 1SC6-1567, the two cables continned to work nninterruptedly; but in May 1867, the 1866 cable was injured by an iceber: which seraped over it about three miles from the Newfoundland shore; but the damage was soon repaired; again in July 1867, the same cable broke about fifty miles from the Newfondland coast. The earlier cable, that of 186.5 , is up to the present time (August 186\%) in perfect working order. The charge for telegraphic messages was at first very high, $£ 20$ for 20 worls and under; but this was reduced in 1866 to $£ 10$, which is still (Sep)t. 1S6") the rate. The increase of trade more than counterbalanced this decrease of charge; the cables gradually earned more than $£ 1000$ a day on an average. The rapidity of telegrapli. ing las increased from ${ }^{2}$ words per minute (in the old lS5s cable) to S or $10-0 r$

Section and External A ppearance of A tlantic Cable of 1866.
was made of hemp instead of jute; the iron wires of the sheath were galvanised, insteal of being left in their uatural state; and the Manilla hemp which cove:ed them was left white insteal of being tarred. These few changes made it weigh nearly 500 lbs. per mile less, mainly throngh the absence of tar, While its strength or breaking strain was increased. Enough of this cable was made to span the Atlantic, with allowance for slack; while a sufficient aldition of the $1 \leq 65$ cable was provided to remedy the disaster of that year. Fiverything connected with the stowing of the cables in the ship, the rate of speed, the paying out, the testius Juring the royage, the grapling in case of breakage, and the apparatus for signalling, was rigorously examined, aull buterons improvements introduced.

The Atlantic telegraph operations in 1860 were of a remarkalle and interesting lind. On July 13, the Greal Eastern set forth From Valentia, accompanied by the steanmers Terrible, Medecey, and Allamy, which were to assist in the submersion and in subsidiary matters. The line of route was chosen milway between those of the 1855 and 1565 cables, fur the most part a few miles from each. The Great Easlcirt exchanged telegrams almost continnously with Vialentia during lier progress. The mishaps were few in number, and easily remedied; and the Grcat Eustern safely entered the harbour of Heart's Content, Newforndiand, on the 27 th. There then ensuet a series of congratulatory messages similar to those of 155 s . After this, operations commencel for recovering the end of the 1565 cable, and comrleting the smbmersion. The Allamy, Medicay, and T'errible set off, on August 1, to the spot on the ocean beneath which the end of the cable was lying, or as
even 16 for familiar conversation. As the apparatus employed is now exquisitely sensitive, feebler impulses will suffice; and this is found to be better for the cable. As an experiment, one drop of acid and one morsel of zine, it a percussion cap, have prodneed battery power enough to send an impulse through the whole length of cable.

A short new cable, $42 \frac{1}{2}$ ewt. per mile, was laid in the summer of 1067 , to replace the former one from Newfondland to Cape Breton.

Several plans have beea proposed for telegraphic cables to cross the Atlautic, some north, and some south of the existing lines. One that mects with ennsideralle favour woull go riâ scotland, Farüe Islands, Icelaud, Greenlanel, and Labrador; it would, in fact, consist of four cables, with connecting landwires.

A'TRI (anc. IIculrice Picena), a town of South Italy, in the province of Teramo, and 14 miles southeast from Teramo, on a steep hill, 6 miles from the Adriatic. It is of rery great antiquity, and some of its coins bear a legend in Etrusean characters. Numerous remains of public buildings, baths, and walls attest its ancient importance. In a hill near the town are some remarkable subterrancan chambers, supposed to be excavations of a very remote are. They are fomad with the greatest remdarity; hut their purpose is unknown. A. is a bishop's see. It has an aspect of stagnation and decay. Pop. 3632.
ATROPIA, or A'TROPINL ($\mathrm{C}_{3} \mathrm{H}_{23} \mathrm{NO}_{6}$), is an alkaloid existing in all parts of the dearly nightshade (Aropa Leiludome), and in the seeds of the thorn-apple (Datura stramonium) ; hence it has also been called Datura or Diturise The Thamnacopucial directions for extracting it frum the roots of

Lellatoma liy means of alcohol are somewhat compliented. It is tirst taken up in combination with malic acid, which is removed by the addition of lime; sulpharic acid is then added, which throws down the lime and forms sulphate of atropia: the atropia is liberated by earbonate of potash, which also separates mel resolves impurity, and is taken up ly chloroform, which, after being distilled off, leaves atropia, which must be tinally pmritied ly decolorisation with elareoal, and crystallisation from an alcololic solution. The crystals acenr in enlomrless silliy needles, muited in tults. It is so lighly poisonons, that no one has ventured to nse it internally in medicine. A single dop of a solution containing one grain of atropia, one minim of hitric acid, there minims of spirit, and a deachm of distilled water, let fall on the lower eyelid, will dilate the pupil to fully double its ordinary size in the course of about tell minntes, the dilatation lasting for font or five lays. The solution thus used is now generally prefered to the dirty practice of smearing the vicinity of the eye with bellodonan ointment, in all those cases in which the oculist reguires the pupil dilated.

ATROW'LI, a town of Britislı India, the elief pace of a perstumah of the same mame, in the district of Allygurh, North-west Provinces, 6.3 miles north-morth-east from s gra. The strects are wide, the bazanar good, and the supply of water almudant. l'op. 12,722.

AUBAGNE (anc. Allania), a town of the dep. of Lonelres-du-libone, Firance, stamds on the 11 uveanne, 9 miles east from Marseille, with which it is comected by milway. It is built with some regularity and elegance. The ancient town stood on a hill, at the base of which the present town is situated. It was the eapital of the Albicii, who were sublued by Julius C'irsar: The castle, once of great strength, is now in ruins. The church was fonnded in 116%. This town is a place of considerable activits, manfacturing pottery, tiles, piapre, \&e. It has also tameries and distilleries. 1'op. (1866) 453s.

AULUSSON, it town of the dep. of C'rense, lrance, 125 miles west from liyon. It is picturesquely situatal on the C'rense, in a narrow valley or gorge, surrumded with monntains amd rocks. It is a well-huilt town, consisting chicelly of one hroad strect. It is celebrated for the mamfacture of earpets, which is satid to have been introdued ly the Aralis or saracens, who settled here in the 8th century. 'Tuning and dyeing are carricd on, and there is some trade in winc. I'op. (I860) 6061.

AUGiele, Gullaume Victon Emile, a French dramatist of empiderable reputation, was born at Valenee, on the 17 th of September 1S20, aml was chacated for the profession of an alvoeate. He snon, however, shewel a ruedilection for letters, especially the drama. In 1sit, he comproser a piece in two acts, and in verse, cutitled La Ciguë, which he offered to the Théatre Frauģais, but withont suceess. The Oden, however, reecised it, anl it was played at that theatre with considerahle aplanse for nearly three mouths. This, while it is the first, is said to be likewise the best of A.'s works, containing some excellent moral lessons, set in a framework of the autigue, and made attractive by elegant versifieation. In the following year, the Theatre Frangais sought his serviecs, and he proluced for that theatre his sceond comely, eulitlel l'n Homme de Bien, in three acts, and in verse. This was a comedy of the day, and was only partially sutceessful. A thirel, L' 4 venturicre, which appeared in $184 S$, was better received; still there was said to be too much of common-llace in the moral sentiments with

403
which it abounded. Gubrirle, in five aets, ant in verse, which appeared in ISI9, was also a hingly moral piece, and gained for its author the Monthyon prize. In 1S.i., A. wrote a drama, entitluel Diene, in which lianhel took the mineiphal part, but in spite of all her cforts it puroved a failure. He was more fortumate with Lat Dicre de Touche, a prose comedy in live acts, written in partnership with Jules Saulean, amb prodneed in 18.3. In the same year he wrote a verscecomedy, in three acts, entitled Philiserte, said to be a charming yeme pinece, in which the grace of the details supplies the absence of intrigue. Ilis subseguent pieces, however, belong all more or less the the comedy of intrigne. Such are le Altoruycul olympe; Le cendre de 1I. P'oiriö, written in partnership' with Jules Samben ; and Lat leeranche de Coorges Dendin-all proluced in 155\%; La Jemesse, in 1858; Les Lionnes P'uurves, in the same ycar, written in conjunction with l : Fonssier ; and the Been Muriage, also in conjunction with Fonssier, in 1853. Jither singly or in conjunction with others, M. A. has also written Les l'jliontes, Le fils de Giboyer, Bhaitre (inérin, Lu C'hasse cut Romen, L'Jubit 'rert, and Supho-the last mentioncl an opera, the musie by Gounod. In 1506 , he published a small volume of P'oésies, some of which are very elegant both in thought and expression. I'sually: A. is regarded as one of the leaders of the school of good sense ; in his later picees, however, approaching too much to the manner of the yomger lyumas. In 1Süs, M. A. was elected a member of the Acalcmie Frangise in the place of Sulvamly, and in the same year was promoted to the rank of officer in the Legion l'Momen.
AUCUSTO'WO, a town of Poland, the eapital of a eircle of the same name, on the Netta, a feeter of the ling, 133 miles north-east from Warsall. It was fonndel by Sigismund Augustus, ling of l'oland, in 15.7. It has woollen and linen manufactures, and some trade in loorses and cattle. Great part of the surroundiag district is occupied by lakes and marshes, or corered with forests. Pop. S 19 I.
AUTAPOLAY' or ALEP'PI, a town of India, in the native state of Travancore, on the sen-coast, in $9^{\circ} 30^{\prime}$ N. lat., and $76^{\circ} 24^{\prime} \mathrm{E}$. loug. There is no shelter for shipping, but ships anchor four or five miles from the shore. There is, however, a considerable trale in timber, betel-mit, coir, lepper, and earamoms. This town communicates with Quilon and 'Trivaudrum on the south, amd with Coclan ons the morth, by eamals parallel with the sea-coast, and connceting a series of lakes or back-waters. Between these and the sea is a cammonication by a wide creek, through which the timber for exportation is tloated, which is brought from the forests of the Liajalı of Travancore on the Western Ghants.
AUMALE, a town of Ageria, on one of the headwaters of the Sahel, 57 miles south-east from Algiers. It is situated on the great road from 11 giers to Constantine. It is a strong military post, with larracks, magazines, ami hospitals. I'ol. (ISGI) 5196, of whom 1.168 are Europeans.
AUSTIN, Jonn, a distinguishel witer on jurismudence, was born on March 3 , 1790. At the age of 16 , lic entered the army, and serval as a subaltern with his regiment in Sicily. But he left the service after the 1 reace, and in 1818 was called to the bar. In 1520, he married Miss Sarah Taylor of Norwich (see following article), to whom he had been attachel for many years, and weat to live in Queen Siquare, Westminster, next door to Jeremy Dientham and Mr James Mill. In their society, his attention was naturally turned to the subjects he afterwarils eultivated with success. He was comprelled by bad

AUSTIN-AUSTRALIAN EXPLORATIONS

bealth to abandon his practice at the bar, about the time when the university of London was fomded, and he then rescivel the appointment of Professor of Jurisprudence. '1'o lit himself for the chair, in the autumn of 1527 he settled at Bown, then the residence of Niebuhr, Brandis, Schlegel, Arnit, Welcker, and Mackeldey, and he remained there throughont the winter. He returned to England well acquainted with the writings of some of the most emineat of the continental jurists. His lectures were well receivel by a few distinguished men ; but the sul,ject was not recognisel as a neeessary branch of legal study, and evidently did not supply that lind of knowledge best calculated to momote practical success in the legal professions. A. believed the position of a German professor of law to Le the most enviable in the world; and with a small but sure income, he would have devoted his great pawers to the exclusive cultivation of the subjects discussed in Lis lectures. But, unfortunately, no provision was made for the Chair of Jurisprudence beyoul class fees, and in the absence of students A. in 1832 , was reluctantly compelled to resign his appointment. In the same year, he published his Province of Jurisprudence Determined, a work, at the time, little appreciated by the general public, ancl the small success it met did not encourage him to undertake other publications on the allied suljects. In the estimation of competent julges, however, it placed its anthor in the highest rank among writers on jurisprudence. In 1833, he was appointed by Lorl Brougham a member of the Criminal Law Commission. The post was not much to his taste, as he did not helieve that the publie receired any advantage from snch bodies, in the effeacy of which for constructive purposes he put no faith. 'If they would give me £200 a year,' he saill; 'for two ycars, I would shut myself up in a garret, and at the end of that time I would produce a complete map of the whole fieh of crime and a draft of a criminal corle.' These, he thought, a commission might with some profit revise and amend. A. was afterwards appointed a member of a commission to inquire into the grievances of the Maltese He returned to England in 1S3S, not in good health, and was alvised to try the springs at Carlsbad. Daring his stay in Lonn he liad been delighted with the respect the Germans manifest for knowledge, their freedom of thought, and the simplicity of their halits. With his slender means, decent existence in England was scarcely possible, and he removed with his family to Germiay, living at Carlsbad in summer, at Dresten and Berlin in winter. The revolation of 1848 drove him back to England, and he then settleal at Weybrilge, where be died in December 1859 , universally respected for the dignity and magnanimity of his character. His lectures on the principles of jurisprudence had remained in munscript and imperfect. Since his death they have beed prepared for the press ly his widow, and published between 1861 and 1863 , under the title of Le:tures on Jurisprudence, being a Sequel to - The Province of Jurisprudence Determined,' dec. On this work his fame now rests.
A.'s great merit consists in his having been the first Euglish writer who attached precise and intelligible meaning to the terms which denote the leading conceptious underlying all systems of jurisurudence. With a very perfect knowledge of the methods of Roman and English law, he displayed genius of the lighest order in devising a nuvel system of classification for the subject-matter of his science. The work lie did is incomplete, but it forms a sure foundation to future labourers in the same licld. 1t is miversally recognised as an eulturing monnment of learning and genius, and it entitles its
anthor to take rank with Hoblies and Bentham, as one of the three Englishmen who have mate contributions of importance to the philosophical study of law. A. said of himself that his sjecial rocation was that of 'untying knots'-intellectual knots; and it was so. He set himself to the task of exposing the errors hid under the phrases and metaphors eurent among writers on law, and this he accomplished with such skill and subtlety as to make his works models of close and sound reasoning. In education, they now perform a most important part-that of disciplining the mind of those who devote themselres to the staly of law and of the mental sciences generally in the diflenlt art of precise thought; and in this way they exercise an inlluence it is searcely possible to over-estimate on the rising generation of lawyers, prublicists, and statesmen. - See Memoir of A. prelixed to the Lectures on Jurismudence, and an article on A. in J. S. Mill's Dissertations and Discussions.
AUSTLN, Mrs Safah, wife of the preceding, is well known as the translator of many of the best contemporary French and German works. She belonged to the 'Taylors of Norwich, a family remarkable for the men and women it has producel distinguished by literary and scientific ability. A faithful aud devoted wife, she spent a great many years with her husband abroad, and she enjoyed the friendship of many of the most cuinent persons in continental society. Mrs A. translated from the German, Characteristics of Goethe, by Falk, \&e., with notes (1S33); Fragments from the German Prose Hriters, with notes (1S41); and The Story without an End, liy F. W. Carove (several editions). She also translated from the German, lianke's l'opes of Rome and his Mistor? of Germany cluring the Refor: mation. Such is the excellence of these works, that they have been commended by the best judges as deserving to retain a place in English historieal literature. Mrs A. translated from the French M. Consin's Reprort on Public Elucation in Prussia (1S31), and M. Cuizot's work on The English liero. lution (IS50). She puhlished in 1839 a work On National Lilucation; and in 1557, Letlers on Cirls' Schools and on the Training of Working-rcomen. From 1861 to 1863 , she was engagel in editing her husband's lectures from his manuscripts, a duty sle discharged with very great ability. She died at Weybrilge, on the Sth of August 1567.
AUSTRALIAN EXPLORATIONS. Since the article Austradia was written, alditional information collectel by the varions exploring expeditions which have repeatedly traversed this island continent, has largely moditied the character there given of its interior. The expeclition of Sturt from Sonth Australia to the centre of the country in 1545, dispelled the notion of a great inland sea, but it substituted the much less hopeful one of a rast and burniog lifeless waste; and this opinion appeared to be corroborated lay the fate of the gallant Leichhardt, who, after liss successful overland journey from New South Wales to Purt Essington in North Australia, starter in 1817 to traverse the island from Quecnsland to Western Australia, and was never more heard of, it was for a time universally considerel as decided, that a million of square miles in the interior was hopelessly larren, and in consequence, further explorations were abancloued. However, in 1S5S, John M'Womall Stuart, a compawion of Sturt in his travels, having made a short expedition to the north-west of the colony of South Australia, brought back the cheering news, that a rery extensive tract suitable for colonisation existed in that quarter, well supplied with lakes and running 'ereeks,' and presenting millions of acres of

AUSTRALIAN EXTLORATIONS.

excellent pasture. Despite, therefore, the arrival of Gregory in the same fear from the north-east of the colony with additional unfavourable reports, Stinart resolved to resume once more the exploration of the interior from soutly to nortls; and starting from Soutlo Australia in 1860, he lield a generally notth-by-west course, till his further progress was stoppel by the threatening aspuct of the natives, at a point in lat. $15^{\circ} 17^{\circ} \mathrm{S}$., long. 134° l. Retuming with his two compar nong to urganise a stronger forec, he retracel his steps (1S61) on the previous track; but after travel. ling 100 miles further than belore, was liallled by an inpenetrable sernb, throngh which lie in rain somglit a passage. Want of provisions fored him to relurn a sicond time; Jut nothing danntel, he started once more in ISG2, along the now familiar path, and on July 2lth of that ycan stood on the shore of the Intian Occan at Van Diemen's Gulf. Mr Viterhouse, the naturalist, who aceompanied Stuart in his third expedition, diviles the country passel through into threc regions: the tirst, exteuding as far north as lat. $27^{\circ} 1 \mathrm{~S}^{\prime} \mathrm{S}$., is watered by springs, and is suitable for pastoral purposes, thongh subject to great heat and dronght in summer. The springs either issuc from the surface of the plains, or from the tops of curions conical eminences evidently of voleanic origin; these cminences varying from the size of a beclive to a considerable hill. The second region, extending northwarels to lat. 17° i $6^{\prime} \mathrm{S}$., is much more defective in water-supply, and its vegetation eliofly consists of a pungent-1lavoured coarse grass, knowu as 'poreupinc grass' (otherwise Spinifex or "rioulia mengens), good pasturo being only found in the hollows of erecks. This recgiou also presents severnd ranges of hills of low elevation, the maximum leight being 2000 feet above the plain. The third region, whieh extends from lat. $17^{\circ} 30^{\prime} \mathrm{S}$. to the sea-const, possesses a rich soil, sometimes lacustrine, and sometimes alluvial, clothed with the usual abumdance of tropical vegetation, and well tiubluered.

The resumption of the exploration of interion Anstralia hy Sturt laad the ellect of arousing general attention to the subject in the otliel colonics; and accordingly, while Stuart was on Lis 1560 expectition, the colony of Victoria was fitting out another party for the same pillpose. This expedition, which was put under the command of Lh. O'llara burle, consisted o[a large farty with a momber of camels (which lial a sluert time previonsly been imported by the Victorian govermment from Indiat, and left Melbournc on Aupust 20, 1S6', reaching Cooper's Cruck in the makde of Deccmber. J'maling that lis eomunay was too מumerons, and too much eventalsered, Iourkc leit the greater portion at the ereck umbur biralic, to await his return, and with his scoond in command, William John Wills, aul two others, Gray and K゙ing, started, with 6 eancls, 1 horse, and 12 wecks' provisions, in a northerly direction, reaching the mouth of the Flinders River, at the head of the Cinlf of C'arpentaria, on lobruary 11, 1SG1, being the first explorers who crossed A instralin from sea to scar. Unable, however, to obtain a view of the ocean, on account of the extensive marshes which slirt the coast-line, they commencel their retirn jouncy: amd arriving at Cooper's Creck on A pril 2l, foumb, t. their astonishment, the camp completcly deserted. J'rom indications marked on a tree close by, they were indueed to dig at its [oot, and found a small supply of provisions, and a note to the effect that the party in waiting had left Conper's Creck to return liome; the note beiug lated April 21 , the rery day on which the exlanusted explorers renched the camp, and having been only seven hours written
when reard by Eurlic. In their worn-out condition, it was a hopeless task to think of following this fresh party to the river Darling through 400 miles of desert, though, had they done so, they would liave met Bralse returning with a thirel ecetion of the expelition, which he hal met at the Joarling, and led back to Cooprer's C'reck, reachines it on Dlay S, but retracing the road to the lowling, on finding \{after a very slight examination) 10 signs of Jurke's party having arrived there; so Barke, rosolving to gain tlie nearest pastoral station of Soutli Austrialia, 150 miles distant, the three travellers (Gray lout alrealy succumbed to fatigne aud faminc) pursuad this new ronte at the rate of $1-5$ miles per clay, till want of water compelled then to rebirm to tho Cooner, though, laal they linown that the station they sunght was not more than 50 (imsteal of, as they thought, 100) miles off, they might by a stiones effort base reaclacel it, anil beer savel. Insteail of this, they retumen to Cooper's Creck; and their camels being now all dead, and their provisions nearly exhansted, they resolved, as a last resourec, to scek out some camp of natives, where they might remain till assistance reachel them from the colony. But their limbs were growing feebler and feebler; at last, on Junc 2S, Wills lay down to die, requesting the others to go on ; and on June su, Burke also suceumbed. King, the sole survipor, succeeded in reaching the natives, with whom lic lived for $2 \frac{1}{2}$ mont! 1 , till is party under Jlowitt, which was sent out from Vietoria in quest of Burko and Wills, arrived at the ercek, and rescned lim. Burke's experiences of the interint are, as far as we can gather from the seanty records, equally favourable with those of Stuart. He found some gnod] grassy country north of the Conjer, then piassel through a samly and stony district; but from the tropic of Capricourn to the sea, a large proportion was richly elal with verelure and well watered, with now and then a range of hills traversing it.

The nnaccounted for absence of Lurke and Wills prodnced much excitement in the two southern colonies, ami gare hirth to three separate expealitions, with the view of bringing ail to the suissing explorers. I'wo of these were litted ont by Vietoria, andi none by Sunt! Anstralia. The former two were intenled to act in concert, anil were sent romul from Mclbourne to Rockhamptoin, in Quecusland, in the Firefly of 200 tons. At liocklimupton, Wralker and his party were laneled, in orter to make the Gulf of Carpentaria oserland, while the bris pursued her voyage to the head of the gilf, and landed Sands. borongh and his party at tise month of the rivel Alsert, in the mitille of October 1561. On the 17th, Landshorougla commenced his marcl, and following aut lis instructions to malie for Stuart's 'ecutral'3 momet, followed up the Albert aml (isegory ifers, and thence divererins more to the west, fomme that the water-supuly hat wholly falcol. "luming then sonthwarks alons the river IIcrbert, his small party of tlirco whites and two alonginines in all were compelled to stop in lat. $2 U^{2} 111_{5}^{\prime}$ S. by the menacing attitule of the matipes, and peturned to their depot on the Albert, which they reached on Jamuary 10, 1862. I Iere they learned that Walker hut arrived on December 7, bringing the important news that he had foumd tiaces of Lurke's party on the P'linders; and Landsborough accordingly resolved to penctrate in an casterly direction. On reaching the Flinders, he fowni all traces obliterated by the rains, but notwithstanding ascended the river for 250 miles, then erossed to the Thompson, followed it up for the greater part of its course, afterwarels strikiog out castwards to the barcoo or Cooper, and failing to reach Conjer's Creck on account of the extreme drought, made for the

AUSTHALIAN EXPLORATIONS-AUXERRE

settlements on the Darling, and arrived at Melbourne in Angust 1862. Landsborough found the country between the grulf and the Thompson to consist of good soil thickly grassed ; and, with rare exceptions, water was renerally abundant.
The South Australian expedition was got up on a much larger scale, consisting of S men, 4 camels, 26 horses, 12 bullocks, and 100 slicep, and was put under the command of M'Kinlay, an experienced explorer. It started from Adelaide on Augnst 16, 1S61, and on September 24, had passed the furthest settlements of the colony; erossed the formerly mysterious Lake 'Torrens, which was at that time a dry desert; and came into a district abouoding with lakes and creeks, and lixuriantly clad Whth grass whenever the rain afforded surport to animal life. Here it was learned that the fate of Burke and Wills had been ascertained, and the party then held northwards for the Gulf of Carpentaria. Leaving the lake clistrict, they enterel the Great Desert, whose inhospitable mature had been so vividly described by Sturt sixteen years before; but enriously enough, in a district in which Sturt had almost perisled of thirst, M'linlity's party were almost carried away by a Hood. In lat. $2 \bar{\circ}$ ' S., they emerged on ao extensive country, abounding in grassy flains, waterei by rivers, and intersected by hill ranges; and in lat. $\underline{2} \mathrm{O}$ S. they entered upon a country of tropical character, reaching the Lechhardt, which they followed down till the deep and broml mangrove creeks and boggy flats which form a wide border round the beach of the gulf, hindered their further progress; so that, like all the preceding explorers, with the exception of Stuart, a glimpse of the oceaz was denied them. From the Leichhardt River they then proceeded in an east-by-sonth course, reaching Bowen at Port Denison, in Qucensland, in the beginning of August 1862, and thence reached Adclaide by sea.

The results of thesc explorations of interior Australia asree in this, that there is a much larger extent of territory available for colonisation than was formerly believed; that, in fact, by far the greater fortion of the iuterior is more or less suitable for colonisation, and that only to that portion of it lying in the centre in lat. $27^{3}-25^{\circ} \mathrm{S}$. can the term ilesert be with justice permanently applied. Yet Sturt's desert was certainly no faney, and his ronte to the centre of the interior was throngha barren waterless waste, while M'Kinlay, who fullowed nearly the same track, was delighited with abundance of rich piasture and water. The trath seens to lie between the two extremes; Sturt's expedition was carricd out during a year of nusual drought, while the receat expeditions here sketehed took place during exceedingly moist scasons, the year $1861-1862$ being the wettest the colvoists of Victoria hal ever known. Conserumeatly, we should err in supposing the interior to be a mere desert on the one hand, or a blooming, well-watured expanse on the other. It is in reality a surface covered with soil more or less fertile; the basaltic rocks and clays being the most, and the quartz, sandstone, and granite least fertile; and the rainfall is sufticient, in ordinars seasons, to revive the durmant germs of regetable life, and corer the surface with a crop of grass more or less luxuriant. On the other hand, the oceasionally long continuance of drought, accompanied with an excessive amomet of evaporation, wholly (lries up some streams, converts others into a series of pools, connected by threads of water, or 'creeks,' reduces extensive lakes to marshes or to shallow pools, in which the coneentration of the soluble salts of the soil renders the water so brackish as to be wholly undrinkable, and restores the verdant surface for a time to the
coodition of a desert, herhage remaining only on the banks of crecks. The rainfall, which is the sole water-supply in the central distriets, does not ocenr at regular intervals, but there is every reason to suppose that the excessive drought experienced by Sturt has not reappeared since $1 S 45$. Occasionally, the fall of rain is so execssive as to convert the whole of a plaia, as far as the eye can reach, into a shallow sea, which, however, soon disappears by the drainage of the rivers and erecks, or under the influence of the excessive evaporation, and in an almost ineredibly short periol thereafter, the ground is elothed nith verdure. The climate of the northern districts is very different; there we bave a temperature even liigher, but its effect on regetation is remdered very favourable by the frequent and moderate rains; and this recion is well suited for colonisation.

Up to the present time, the western half of Central Australia has not been explored.
These expeditions have also contributer a few facts respeetiog the rivers of North Australia. The Flinders, which was explored by Laudsborongh to 350 miles abore its source, was estimated by him to he fully 500 miles, and the Albert 100 miles long; the Roper was found by Stuart to be a deep wide river at abont 100 miles from its month; and, on the whole, the river-system of North Australia is considerably more exteusive than was formerly supposed.
In $186 \mathrm{~J}_{\text {, an }}$ an expedition under the command of M'Intyre, an experienced explorer, was fittel ont for the purpose of searching for evidence as to the fate of Leichhardt aal his party, but it could not advance further than Cooper's Creek. However, in the eut of 1566, another expedition was being organised for the same object, and though its results are not yet known, hopes are entertained of its snecess.

M-Kinlay's exploratory tour in Northern Australia in the middle of 1866 also [ailed, his party, as in his previous celebrated march across Anstralia, having been nearly carried away hy a suldeu flood.
A new colony is (1567) to be founded at Port Auson in Arnhem's Land, in lat. $13^{\circ} 30^{\prime}$ S., long. 130°.

AUNERRE (anc. Autissiodorm), clief town of the dep. of Yome, lrance, stands on the lunne, 90 miles sonth-east from Paris, with which it is conneeted by railway. It is situated on the slope of a hill, in a rich and beantiful district abomeling in rineyards; but the city itself is generally ill built, the strects narrow, crookel, and dirty: Its aspect from a clistance is very imposing, the most proninent feature being the cathedral, a grand and beantiful cdilice. It is dedicatel to St Siephen, and althougl part of it is as old as the I3the., it is not yet completed. The creater prart of it is in the Flamboyant style, but the choir is in the Early Gothic. The panted glass of the windows is very splendid. The chapter of A. was at one time one of the riclest in France. The ehurch of St Germain is another line buidding, with a lofty choir and transepts, and a very ancicut detached tower. It coatains crypts in which are the tombs of the early counts of Auxerre. The ehurch of St Pierre is a Leantilul specimen of the ltalianised Guthic, built ia the l6th and lith centuries. There is a curious old clock-tower over a gate-house, with an ugly skeleton spire of iron bars. The aucient walls of the city have been couverted into boulevards. A. was a tlourishing town before the Roman invasion of Gaul. It sucecssfully resisted the II uns uvder Attila, who ouly ravaged its suburbs. Cloris took it from the liomans. After his death, it hecame part of the kingdom of Burgundy. The English took it in 1359, but it was retaken by Du Gueselin. Charles MI. gave it up to the Duke of Burgundy: lt was finally waited to the kinglom of France by

AVALLON゙ーAYOR.I.

Lonis $\mathcal{X} t$. It has a communal college, a muscum of antiquities, and a botanic garken. The priacipal manufactures are of strings for misical instruments, woollen eloths, losiers, earthenware, and leather: The fonne hecomes nwigable here, and large qu'utities of burgundy wines are sent down it to l'mis; there is also a consitemable export trade in timber and in chareoal. Pop). (1566) $13,06 \pm$.

AV'ALLON (anc. Ahedlu), a town of the dep, of Fonac, Prance, 26 miles sonth-east from Auxerre, rim a steep hill of red granite, nearly surroundel hy the Consin, which lere dlows throngh a ravine. Around the town runs a broad termee-walk, slanded with lime-tices, about 50 I feet abure the bed of the river. The surronding country is fertile, yickling mucl wine and grain, and abounding also in exedlent pastures, on which great mumbers of eattle and sheep are fed. The town is gencrally well buit, and has broad and elean strects. The charch is ancient, and bas a curions Romanesque portal. Manufactures of various kinds are actively carricd on, particularly of woollens and paper ; and there are distilleries, tauncrics, glass-works, \&c. 'There is also a considerable trade in the produce of the neinhboubloot. A. is a very aacient town, of Celtic origin. It was sacked by the Saracens in 731 A.D., and hy the Normans in S43; taken by Charles VHI. in 14i33, retaken by philip the Groorl, Duke of Burgundy, in 1455; and pillaged by the troops of the Leagne in $1593 . \mathrm{l}^{\prime} \mathrm{op}$. (1866) 1916.

AYEIRO (anc. Arveimm, a city of Portugal, in the province of Beira, 31 miles north-west from Coimbra. It is situated on the Ria d'Aveiro, a salt lake or ligom, extending five leagnes to the north, and separated from the sea by a narrow bar of saul. Into this lake the Vonga, the Autua, and some smaller rivers llow. During a year of great drought, the sami-har elosed up the seaward opening, it vast mass of sand quickly aceumulated, and the low grounds were inundated, the water of the rivers escaping only ley filtering through the samb. In summer, the liake thus made is partially dried, and marsloes are formed, the eflluria from which have reulered the city very unhealthy, so that its pupulation has fallen frous 11,000 to 5000 , its present number. In 1808, the government opened a new passage throngh the samd-bar, and executed other worlis which dried part of the imundated gronnds, and improved the sanitary conditions of the city, which, however, are far from beine good. A. is a lisisho's see, but its eathedral is 'a squalich ais l tawilry room, up one pair of stairs.' It is a place of considerable activity; it has manufactures of carthenware, but the chicf article of trade is salt, which is made in the marshes in summer. Other important articles of trade are fish, wine, oil, and orantes. 'I'he anclovy, sardine, herring, and oyster lisheries are actively proseeuted. The city has a deserted appearance. its streets are narrow and dark, and seamed with filthy camals of salt-water.

AVE'LLA (ance Abella), a town of Central Italy, in the province of Avellino, 20 mites cast-north-east from Naples. It is delightfully situated in a hilly district, and commands a very extensive view. A ruinel castle warks the site of the ancient city, which was founded ly one of the Greek colonies from Chalcis, and was celebrated in lioman times for its apples and pomegranates. Virgil speaks of it as matifier Abella. Pop of commune (1861) 529s.

AVEZZA'NO, a town of Sonth Italy, in the proviuce of Acpila, 22 miles sonth from Aquilit. It is situated in a beautiful and fertile plain, coverel with almond trees and vineyards, about a mile from Lake Fucino. It has a large sranare, in which is a palace of the Colonna family. The town belongs to
the bablerini family, whose baronial eastle is a conspicnons ulject from the shores of the lake. The castle and some of the churelses contan mumerons ancient marbles with insenjutinas recovered from the lake. The pesent town is ahout two miles distart from the site of Alba, the city of the Marsi, ccle. lnated in the history of the lioman liopulie, whith oecuphed the crest of a hill ; a small villate on the site still retains the name of Alloa. l'op. (Isebl) 4111 .

AVIGLIANO, a town of fonth Italy, in the province of basilicata, ten miles north-west from Botonza, on one of the heal-waters of the Sele, near the bifurcation of the dpenmines. It stamls on the brow of a hill, part of which gave way, after lonr-contimed rains in $182 t$, carrying with it a portion of the town. A. has an clesant eollegiate clurclo. The pastures of the neighbourhood are eclehated

AVHAB's (ane. Flarigneriat), it town of Asturias, Span, in the province of Ovielo, amd 19 miles north-by-west from Uriedo, at the month of the chief branch of the Aviles, which is here erossed by a brikge, and is navigable at high water for vessels of the largest size uip to the town. It has screral good sfuares, but the strects are irregular and arcaded. There are eopler-mines in the vicinity, and a considerable trade is enviol on in coppier vessels manufactured from their proluce, as well as in coal, which is olitained not far from the town. Blanufatures of cathenware, glass, linen, \&e., are also carried on. A. is one of the cralles of the Spanish monarchy, and contans a number of eurions ah buildings. 'lhe charter grantel to the town by Alonso VII. in 1135 is preserved amont the public records. l'op. 6000.

AVRANCHES (anc. Abrancer), a city of the dep. If Manche, France, near the left lank of the Seez, 33 miles south-sonth-west from it Ln. It stands on the sides and summit of a high hill, which extends in a long rilge, and the aseent of which is by zigzag roads on terraces. This hill commands a very wide and heautiful view of a linely wooded and cultivated district, with a winding river, which expands into a broad estuary, at the mouth of which is the high islet peak of Mount St Nichel. A. was formerly a bishop's sec, and its cathedral was one of the most margificent in Normandy, hut was totally destroyed by the mob during the Revolution. A stone still preserved on the site of the eathedral is said to be that on which 1Lenry 11. of Englame linecled befure the prapal legates to reccive absolution for the murder of Lecket. Before the lioman conquest of Gaul, A. was the capital of the Abrineatui. It was a place oi importance during the lioman period. Charlemagne fortilied it, but it was taken by the Normans in siby. It was afterwards a frequent olijeet and seene of strife during the wars between the liench amd English. It has manufactures of liece, tiles, and bricks, and a little trade in grain, Lutter, eatcle, \&e. I'on' (1866) 7756.
AYAMO'NTE, a town of Audalusin, Spain, on the left bank of the Guadiana, ame near its month, where it forms the bomdary between Spain and lortugal. It stands on an acelivity. The upper part of the town consists of narrow and irregular streets; those of the lower part are remular and wide. There are three public syuares. The principal ocenpation of the inhabitauts is tishing. Eoatbuiding aml lace-making were once very extensively carried on, but both have greatly declined. Pop. St00.

AYORA, a town of Spain, in the province of Valencia, and 50 miles south-west from Valencia on the upper part of a river of the same name, an ?

AZIDABAD－BAILEY．

situated in an extensive hollom at the base of a lime－ stone monntaiu．It has four squares and wide streets．On the summit of the hill are the remains of an old castle，close to which the town once stood． The inlabitants are chiety employed in husbandry and vil－making l＇op． 5412.

AZIMABA＇D，or TIROWLL，a town of Sirhind， Ludia，in $20^{\circ} 40^{3}$ ．lat．，and 77° E．lon⿱宀八犬，on the ronte from Kurnal to Lodiana， 9 miles north－west from liurnal．Its site is slightly elevated above the neighbouring lain，which is inumdated in the mainy season．It is surrounded by a high brick wall，piercel with loopholes for nusketry，and haviug bastions surmonnted with towers．A large
enravanserai is enclosed with a lofty cmbattled wall， having a tower at each corner，and surroundel by a decp ditch，eapable of being filled with water．
$A Z U^{\prime} A$ ，a town of the island of San Dominge， nut far from the south coast．on the Bia，and near ita month，GU miles west from St Domingo．Pop． $60 v 0$.

AZUA＇GA，a town of Estremadura，Smain，in the province of Badajos， 20 miles east from Llerena．It is situatel in an clevated district，drained by the head－waters of the Matachel，a branch of the Guadi－ ana ；the surrounding country produces mueh grain， is partly covered with extensive oak forests，and con－ tains large tracts of heath，leright in summer with the blossoms of different species of cistus．Pop． 6400.
ACOLOR，a town of the island of Luzon，Philippines，the capital of the province of lampanga，es miles north－ west from Manila．Fop．S737．It stands in a plain，near the river Pam－ －panga，with which it is connected by a caual． BA＇CUP，a rapidly－increasing and very prosperous town of Lancashire，and station of the East Lancashire liailwas situated in a beatiful valley near the borlers of Jorkshire，IJ miles north from Manchester，and 12 miles east－by－ south from Blackbura．Great improvements have been and are still being made in the condition and appearance of the town．There are many churches of all denominations，a mecharics＇and a literary institute，readios－rooms，\＆e．，and in Ancust 1567 was opened a heautinl market－house．The pop．was 6951 in 1551，and $\mathbf{1 0 , 9 3 5}$ in 1S61．B．has extensive cotton－factories，dye－works，brass and iron foundries． There are numerons coal－mines in the neighbour－ hood；and within a mile from the town，large woollen manufactories．

DADARKA，a town of Oude，India，in the dis－ trict of Bainswara，four miles cast from the Ganges， and five miles east from Cawnpore．lop．S000，of whum only 50 are Mussulmans．
EAGA＇RIA，or BAGHERLA，a tomn of Sicily，in the province of Palermo，nime miles east－by－south from Palermo，with which it is connectel by railway：Pop．（1861）11，762．It is beantifully situated at the base of the isthmus which separates the Bay of Palermo from that of Termini，and is surrounded by groups of lalatial villas of the Sicilian mubility，abradonct after the proprietors had ruined themselves by the festivals here cele－ brated in honour of Queen Carolne，at the cons－ meucement of the present contury．

BACiNA－CAYALLO，an inland town of Italy， formerly belonging to the Papal States， 11 miles west from Ravema，in the province of that name． 1＇ol．（1561）3S65．B．was a Roman city，called Tiberiacum，in honour of Tiberius．The present town is walled，and was formerly famous for its strong castle．It has a cathedral，dellicated to St Michiel the Archangel．It is connected by a canal with the l＇o di Yrimaro．

BA＇GXI DI LU＇CCA（Batha of Lucca），a large iuland village of Italy，in the province of Lucca，and 13 miles nurth from the city of Lucca．Pup．of commune（ 1561 ）S23S．It is one of the most fre－ rumented bathing－1laces in Italy，and is situated in
one of the finest ralleys of Tuscany，the valley of the river Lima，a branch of the Serchio．There are hot springs of rarious temperature from 96° to 136° Fahr．，scattcred over a limited neighbourhood． Their waters contain sulplate of lime，sulphate of magnesia，muriate of magnesia，and other salts． The rock from which they issue is a Tertiary sandstone．Great part of the population of Bagni di Lucea consists of English ani other visitors． Gambliag was at one time cartich on here to a great extent，but was suppressed in $1 \$ \pm 6$ ．

BAGFO A RIPOLI，a famous Italian bathing－ place，in the prowince and circle of Florence，fise miles cast－north－east from the city of Elorence．

BAGYO IN ROMAGYO，a town of Italy，in the province of Florence，and 35 miles east－by－ north from Floreace city，on the right bauk of the Sario，not far from its source．It is a much frequented bathing－place，having hot springs of temperature $105^{\circ}-110^{\circ}$ Falir．It has a fine old church，and another masuificent oll building used as a bathing establishment．The neighbourhood is fertile，particularly on the banks of the river；the mountains are clothed with forcsts of pine，chest－ nut，beech，and oak，on the futit of which swine are fed．

BAGFOLO，a town of Piedmont，in the province of Cunco， 12 miles north－west from Saluzzo，on the left bank of the Grana，at the foot of the Alps． －Another small town near Lrescia bears this name；also a town in the proviuce of Reggio，in Enilia；and a towa of the province of Lecee，in South Italy，as we！l as many villages in Italy．

BAILA＇L，or BELIAR，a town of Bengal， 34 miles south－east－by－sunth from Patna，the chief town of a British district of the same name（sec Dumail．It had，mpwarls of 50 years ago，a pop．of nearly 30,000 ，but is now a decayed town， the original city being indeal nearly deserten，and the present town consisting of houses scattered about its remains，and interspersed with fic！ls， gardens，and groves．There are sume remains of fine mosques．The ruin of this town besan with its sack hy the Mahrattas about 1742，and was com－ pleted by a famino some ycars after．－The 1 resent district of Bahar is but a small protion of the great province which was called by that name in the empire of Delhi．

BAILEEY，SAsutel，a writer on politics，political economy，mental philosophy，and ocher subjects， was born in 1791 in Sheffeld，where he receired his

DAILMENT- H.AKER.

education, and has contimed to reside. 1le was by ocenpration a banker, lut is melerstoon to be now retired from business. His works are: lisselys on the I'ursuil of 'rath and on the l'rogress of K nowledege (1521); Qucstions for Discussion in Politics, Political E'conomy, rend other Deparlments of Finowledye (1833); A Critical Dissertition on the Frature, Measures, and Causcs of Value (1825) ; A Letter to a P'olilical L'cononist, occasional by an Article in the Ifrestminster lieview on the Sulject of Value (1S20); Visays on the F'ormution renl Publiation of Opinions (15:3)-a sequel to his work on the l'ursuil of I'rulh; A Jiscussion of P'arlicmmentary lieform (1S3l); The lintionale of Political liepresentution (1535); The Fight of Primoyeniture Lxeumined (1537); Money and its l'icissitudes in Value (1S37); A Defonce of Joint-stock Lemios and Gountry Issues (1810); A Lirvicw of Lerkcley's Throry of bision (1S4:); A Letter to a Philosopher in lieply to some lirecht Allomite to rinelicate Borkeley's Theory of I'ision (1543); The Theory of Reasoning (1551); Discourses on J'wriones Suljecto, Literary anel Ihilosophical (1S52) ; Leiters on the Philosophty of the Ifuman Wind (three serice, 1855, 1S5S, 1563); On the licceived I'cxl of Shah'speare's Dremalic IFrilings, and its Improvement (2 vols. 1 S62, 1 S66).

11 r B.'s warks on the Pursutil of Truth and the I'ublicalion of Opinions gave a great impetns to liberal and arlvanced views. J Lis writines genemally are distinguisheal by independent thinking, logical 1recision, a careful English style, and warm aspirations for the improvement of mankibe. Jlis treatises on the mind, while abonnding in original surgestions, expancl and enfuree the views of the school of Locke in metaphysios, and what is termed the cluetrine of Utility in morials.

IBI'LMIBNT, au Englisb law term, defincel to be a delivery of goods for a particular purpose, "pon in contract, express or inyplied, that the purpose shall be carried into eflect, and that, when that is clune, the goods slaill be restored by thre bailee, or person to whom they aro delivered, to the owner or ',ailor, or according to its dircctions.'-T'omlin's Dict.
13.11N, AlexANEER, writer on mental philosoply, was hom it A herdeen in 1SIS. He entered Maris: elial College and ['niversity in 1836, and graduated in $1 \$ 10$. From $1 S+1$ to $15 t 1$, he assisted the l'rofessor of Moral I'hilusopliy in Marischal College, and in 181.1-1SL5, fanglt the class of Natural lhilosopliy: In the winter of $18.15-1816$, lie lectured on Natural Hhilusupliy in the Aurlersonian University, (xlaseow. In 1597, le hecane Assistantsceretary to, the Mctromblan Sinitary Committee, and wias thence transferred to the smme olliee in the (ieneral loord of llealth, which olliee lie resigned in 1850. In 1857, he was first appointed Hxaminer. in losje and Noral lhilosophy in the niversity of 1.ondun. For screral years, he acted as Examioer in Mental l'hilosopliy it the enmpetition for the Imlia Civil Service. In 1860 , he became Irofessor of Logic in the miversity of Aberdeen.

Mr 1 . Jegen as a writer in 18.10 , by contributing to the IV emominster licuicr. He also contributed a considerahle mmber of treatises to the publications of I^{+}. and li. Chambers, especially in the ellncational repartment; among them was an edition of the Moral Plitosophy of Pulcy, with Dissertations and Holcs (1552). In 1855, he hought ont The Senses and the Julullect, and in 1859, The Lemotions and the H'ill, completing a sjestem of the baman mind. In 1S61, apmarel The Study of Charcteter, inclusling an Fxamination of l'hrenology. In 1863, he published an E'ulish Grammar, and in 1806, a Mitnual of English Composilion amel Mhetorie.

As a thinker and witer, J. is remandsable fur the subtlety and minuteness of his imalysis aud the elarness of his exposition. He belonss decidedly to the empirieal or experimental selool of philosophy, in opposition to the a priori, or transceulental. Ilis chiel work, The Semses and the Inlellocl, togetlicr with Jhe limotions anl the llill, is the most complete systematic exposition of the phanomena of the lmanan mind in tho binglish, or premaps in any langlare. L.'s lisycholory is baseif on phoysiolong, aftor the mammer of llathey's; Lut instemi uf considering the luman organism as cajnlje only of receiving impressions and of actiner in respunse thereto, he finds in it a power of oriminating intive innmlses (see Spowraverry), anl thus obviates mimy of the defeets alleged by a priori philosophers to inlmere in the system of sensationalism, as hitherto exlibited.

BA1TOO'T, or BEITOOS, a fortified town of Fritish hulia, in the presidency of liengal, and territory of Sangor and Nerbudela, fo miles nortl. east from Ellicbpoor. It is the eapital of a pergumath, which las an arco of 900 sq . m., inme n pop. of 93,411 . It is situated on the small river Jizelnan, in tributary of the 'Towa, in a pleasant valley at the south baso of the Satpoonn range, 13 , came into the possession of the Bitish in 1SIS.

JB'JMAK, a large village uf the Austrian Empire, in Upper Bacs, in the Servian II oiwodscheft, 16 miles sonth-west of Tlieresienstalt. Pop'. 5610 .

BAKEli, Sir Simuel, Whare, K.B., an Aficau travellur, was born in 1821. Ile is the son of Mr Sammel Baker, of Thorngrove, in Woreestershire. l. wins calicatel as an enginecr, ancl at an carly age, went to Ceglon. I'here, led lyy the love of fielelsports into the recesses of the island, lie gave evielence of that jove of achentme which was to make him famons as an explorer. In 1854 , he published a work entitled The lidfe and the Hound in Ceylon; and in 1S5̄5, Lïght "car's' IF comlerings in Ceglon. 13. afterwards superintended the construction of the railway which conneets the !amule actoss the Dubrulsclia with the Black Soa. In 1800, 13. married Florence, the dangliter of F. von Sass, a joumg IItncarian lady of great talent and enterprise; and in company with her, ho umber. took is journey of cxpluration on the Upper Nile. Ihey scet out from (iaro in April 1561 ; amill. deroted has attention first to the Athara and Pho Nile, the elnief afluents of the Nile, which descend from the highlands of Alyssinia. In Jume, he arrivel at the course of the Atbanc, which was at that season dry, or matrked only lyy a few starnant pronls. On the abk, when the Alyysinian bany season had set in, a noise like distant thunder was leard, and in a few seconds the siver-bed liarl been convertel into a turrent 20 feet deep. Jieflat days later, it had become a great river, charged with mnul, washed from tlu hills, which it carried down to the Nile, to canse the inmolations and mad deposits of Eyyit. B. reached lilaritomen in June 186:, and there be hal an oplostmaty of contrasting the blue ank Holite Nile. He found the former, like the Atbara, to be a mometain toment, rising and falling with the Alyssinian inins, but always free from deposits of mun. The Whinte Nile did not thes rise and fall, and its water, never jure, had a clisagreealjle taste of recectation, slowing that it procculed from lakes and marsles. When B., with lis wife, quitted Klabtome to ascend the White Nile, he lad in his pay an escost of 90 persons, 29 camels and asses, and three large boats. Acter lassing through a wonderfnl region of forests and marshes, the triwellers reached Gondulioro, a rendezvous of tho

BALAGHAT DISTRICTS-BANSWARRA.

ivory-merchants or slave-dealers from the Lower Nile, and the traders of the interior. They had ouly been there a fortnight, when they were joinch by Spelse and Grant, who bad penetrated into those regions from the south, and whom they were able to relieve when much in need of assistance. Speke and Grant toll B. of the Tictoria N'yanza, which they laad just discovered and explored, and that the natives lind described to them another great lake, named Luta Nzige, which they had been unaifle to visit. D. resolved, if possible, to reach this lake. With an escort rednced to 17, he and his wife again set ont; and after a series of adventures, in which Mrs I; exhibited nnparalleled tact and dariug, they arrived, on 14th March 156t, on the top of lofty cliffs, from which they beheld a vast inland sea, the third of the great Afrieau lalics, aud the equal of the Victoria N'yanza. To it B. gave the nume of the Albert N'yanza. In 180t, I). Lad awarded to him, for his relief of Spreke and Grant, the patron's medal of the Geographical Society ; and in 1SCE, as a reward for his discoveries, he received the lionour of knighthood. In 1866, le published the Allert N^{n} yanza, Grcat Basin of the Wille, and Lsplorations of the rile Sources.

DALAGHAT DISTRICTS, the name given to a large tract of elerated country in the sonth of India, $2 \mathrm{~S}, 669 \mathrm{sq} . \mathrm{m}$. in area, and extending from the rivers Tumbuddra and Krishna in the north to the furthest extremity of Mysore in the south. It includes Mysore, and the districts of Bellary, Cuddapah, and Kurnul. It was part of the ancient Hiudu kinglom of Bijyanagar, or Carmata, was conquered by the Mohammedans, and foll into the lands of the British on the final overthrow of Tiphoo (q.v.). The name Balarghat signifies albove the Ghauts.
BALASINO'RE, or BALASINESIIWAR, a petty native state, or jughire, of India, in the province of Guzerat, protected by the Dritish governwent, and politically connected with the presideney of Bombay. It extends from N. lat. $0^{\circ} 53^{\prime \prime}$ to $23^{\circ} 17^{\prime}$, and from E. long. $73^{\circ} 17^{\prime}$ to $73^{\circ} 40^{\prime}$, and contains an arca of about $2 J 5$ sq. miles. The river Mahi flows throngh the jaghire. The native ruler is styled Nawab of Falasinore. He has a revenue of 41,545 rupees, of which he pays 10,000 rupees as tribute to the Eritist goverument. The pop. of E. is estimated at 19,052 . The Nawab maintains a force of ouly Shorscasen and 50 foot-soldiers, who are employed iss revenue, police, and other services.-The capital of the jaghire also bears the name of Dalasinore. It is rather a thriving town, and is sumounded by a wall. It is 51 miles north from Baroda.

BALOTRA, a town of India, in the Fajpoot state of Joulpore, 59 nuiles south-west of the city of Joudpore. It is sitnated on the right lank of the river Loonce. Leing on the high-road from Joudpore to I warka, a celebrated place of pilgrimage in the west of Guzerat, it is a great resort of pilgrims, with rhom its bazaar is often crowded. Many of the inhabitants of the town salsist ly providing for their wants. The town is supplied with good water from 125 wolls, lined with masonry. Top. 7275.

BAMPURA, MHAMPURA, or BHANIURA, a town of Hindustan, in the territory of Inclore, on the Rewa, 131t leet above the level of the sea, about I sil mifes south-west of Gwatior. It is situated at the lase of a range of hills, is surrouniled by a wall, and has an unfinished fort, built of stone, which encloses au nufinished palace. Buth iralaec and fort were begun by Jeswunt Row Holkar, of whom there is a beantiful marble statue in the palace. B. is the principal place of a pergannah containing 70 villages. 1'op. 20,000 .

BA'NAS, or BUNAS, the name of three rivers of India.- 1. A river of Rajpootana, rising on the western frontier of Mewar, in the Aravulfi Mountains, about $\mathrm{N} . \operatorname{lat} .24^{\circ} 47^{\prime}, \mathrm{E}$ long. $73^{\circ} 25^{\circ}$. Fluw ing through Mewar ior 120 miles, in a generally north-castom direction, weceiving the Beris, or Beruch, on the right, and the Botaseri on the left, it fasses the town of Tonk, where it changes its course to the south-cast, and falls into the Chumbul in 5. lat. $25^{\circ} 54^{\prime}, \mathrm{F}$ long. $76^{\circ} 50^{\prime}$, after a total course of 320 miles.-2. A river which also rises in the Aravulli Mountains, and after a sonth-westward conrse of 180 miles, is lost in the liumn of Cutcl, terminating in a number of small and intricate channels.-3. A river of Rewah, in Bumdelcund, having a north-westward course of about 70 miles, and fatling iato the Sonc near Thampr.

DANAWARA'AL, a town of India, in the territory of Mysore, in a fine open comtry, among the head-waters of the Ilugri, 81 miles north-west from Mysore. It is a town of some antiquity. It was taken in $169 \frac{1}{2}$, in a night-assault by chika Den, Rajah of Mysore. When it hat fallen under the dominion of Hyder Ari, the inhabitants were in geat part removed to Nagapuri, a new town which Hyder had founded in the vicinity. Trevious to this removal, the pop. was about 10,000 . The new town proving extremely umbealthy, the survivors of the people of B. were pemitteal to rcturn to their oll lablitations.

BANDAJA'N, a mass over the Himalaya, forming the sonthern houndary of Kimawar. It is amidst monntains of gneiss, and is covered with perpetual show. The summit of the pass is 14,554 fect abore the sea, and is in N .12 t . $31^{\circ} 22^{\prime}$, E. long, $\mathrm{T}^{\circ} 4^{\prime}$.

BA'NDON, or BANLONBRLDGE, a town of the county of Cork, Ircland, on the Bandon, I2 miles south-west from Cork, with which it is connected by a railway. The houses are buift of stonc. Tlece are several good streets, and numerous ecclesiastical and other Imblic luildings. B. was originally poppled ly a colony of English Protestants, and wats so strictly l'rotestant, that till alout the leginuing of the present century, no lioman Cathulic wonle have been altower to settle in it. Nore than threefourths of the population are now Toman Catholics, and there is a lioman Catholic convent. D. was at oae time a prosperons mannfacturing town, cottonspinaing and weaving boing extensively carried on; but these branches of industry have locen almost entirely relinquished, and the pop., which was 9049 in 1S 11 , had diminished to 6243 in 1801. It returns one meubber to the IIonse of Commons. The comintry aromicl D. is very, beautiful, well wooled, meluating, and jastoral. The river Landon rises in the Carberry Mountains, and at its mouth forms the Lambour of Fimsale. Spenser deseribes it as 'the pleasant Bandon, crownel hy many a wood.' It has a course of 40 miles, for 15 of which it is navigable, to lunishannon, 4 miles below Baudon.

BANJOLMA'S, a town of Java, 22 miles from the south coast, in S. lat. $7^{\circ} 33^{\prime}$, and E. long. $\mathrm{t} 19^{\circ}$ 20^{\prime}. It is situated at the opening of an extensive and very frnitful valley. It is tolerally well built, and carries on a considerable trade. Pup. 9000. I. is the residence of a Dutch governor, and has a fort and gatrison. It is the capital of a frovince of the same name, which is one of the richest and most prollactive in Java.
BANSWA'1:RA, a Rajpoot state in the Trest of Malwa, bordering on Guzerat. It exteuds from N. lat. $23^{\circ} 10^{\prime}$ to $23^{\circ} 43^{\prime}$, and from E. long. $74^{\circ} 2^{\prime}$ to $74^{\prime} 41^{\prime}$, and has an area of 1440 sq . miles. The pop. is supposed to be about 144,000 . This state was dependent on the chupire of Dellii until the

BARBACENA－BALNES．

aseencency of the Mahrattas，hy whom it was fear－ fully oppressed．In ISIO，the ruler made overtures to the British govemment，offoring to beeome tribu－ tary on condition of protection；and an arrangement to this effect was concluded in 1515 ．－＇lhe capital， also called lhanswarra，is on the route from Mliow to Deesa， 123 miles nortli－west from Nhow：The majority of the inhalsituts are llinulas，bint the Mussulmans are also pretty mumerous．＇l＇he palace of the liawul，or ehicf，is a large，turreted，battle－ mented hnikling，on in rising ground overlooking the town，neur a beantiful tank，overlang with trees．
l：AMEACENA，a eity of Brazil，in the provinec of Minas Geracs， 150 miles nortli－wust from lio de Janciro．It is sitnated on the tap of two hills in the Sierra Mantiqueim，and at an clevation of abont 3500 feet above the sea，so thiat，allhongh within the tropies，it cujoys a mill elimate．＇Jhe strects are broul and straight，the primeipal mes paveal amd provided with foutpathe．The honses are low，and have garelens behind．The inhabitants are chicily engaged in golel－mining and in exporting colfee and cotton to lio de Janciro．Il．is the centre of a mo． duetive listriet，the pop．of which is $1: 2,00 \%$ ．

13AIRBA＇1）OES LEC，which semen to be iflentical with the Elephentiasis of the Arals，is a clisease which is characterised hy hypertrophy of the skin and of the subcutancons areolar tisenc．Notwith－ standing its mame，it may afteet the arm，female breast，\＆e．It begins with acute febrile symptoms， and inllameantinn of the superlicial lymplatie vessels． ＇lhe prart swells，and beccimes uneasy from tension， the ghads lexing especially large and hard．＇The skin varies in aplearanee，being sometimes white and slining，and in other cases of a darlk culour， and stulded with arojecting veins．＇I＇he swelliner is sometines pery great，nuli guite hard．In some prarts of the hodly，skin which would naturally weigh less than a couple of onnees，is thus comverterl juto a tumonr weighing from 100 to 150 lbs．＇The disease is culdmie in the tropies；and in the eases which we see in this country，it always appears that the dis－ case commencel in a bot eonntry．

Iodine is recommended liy sonic doctors，and well． regulated prossure by others．The log lias been amputated，in consequence of the aumoyonee eamsed by its great weight；but this should be regarded as an llfimate resource，and ligation of the femoral artery，which often eanses great sulsitemee of the swelling，shonld be first tried．

BARCELI．O＇NA AND POZZO DI GO＇T＇O， two towns of Sicily，jn the province of Meesima， staudin，close together，so as really to form one town，the two garts of which are seprarated ly a small stream，the Fiume di Castro Iieale，sujpuecd to be the Loncrans of antipnity J＇op．（IS61） 13，257．＇lie chief strect is a long street of mean houses of a single story． 13 ．is situated in a hroad plan，between the monntaius and the sea，abounding in corn，wise，oil，and fruit．It is 2：miles west－ soutli－west from Messina．

BARCLAY，Joms，M．D．，lecturer on matomy in Edinburgh，and eminent for lis attainments botli in human and eomparative anatomy，in physiology， and in wther branches of natural science，was born 1）ecember 10，175s，at（＇aim，near Drmmmaqulanee， in l＇erthshire，Scotland，and was educated at the parish sclool of Nuthil，amel afterwarils at the university of St Andrews．Ile stulied for the ministry of the Chureh of Scotlanel，and was licensed as a preacher，but afterwards deroted him－ self to the profession of medicine，amd partionlarly to the study of nuatomy．Ile obtained the degree of X．D．from the university of Ehinburgh in 1796. After spending a year in Lomlon，be became a
private lecturer on Ifuman amel tomparative Ana－ tomy in Edinlourglr．Je published in 150\％，d Fio Awatomical Nomenclature；and in ISOS，a treatise on the Muscular．Motions of the IVumen Borly．In 1812，alymared his Description of the Atritries of the I／wmen Body，a work of vast lalionar amd needrato olisurvation．In isa，not long liefore his death，he pmblished An Inguiry into the Opiniuns，Ancient amel Modern，concerving life and Ortannivelion．IIe diarl at Lidinburgh on Olst August IS26，luving to the linyal College of Surgeons in Ealuhurgh lis admir－ able amatomical collcetion，for the reception of which a suitable and splendid hall was erected．

IBA＇liJI，a small town of Italy，on the left hank of the Ceno，obl miles west－sonth－west from l＇armit， in the province of Piacenza．The town is cons． mameled by a eastle，sithated on a hill，erceted in the 9th ecutury：In the vieinily are mable furests of chestnnt，breeh，and oak．H．was formerly the enpuital of the duchy of Bardi．
 town of Italy，in the prowince of Hueca， 25 miles north－morth－cast from l＇isa，near the left bank of the sorchio．If．has a fine collegiate chumeh，and is eclehrated for its gumpoweler mamufnetorics． The sirles of the neighbourin momatains are covered with noble chestint forests．

13．RGA PASS，in the ILmaliya，in N．lat． 31° 16^{\prime} ，lis long． $75^{\circ} 19^{\prime}$ ，the highest part of it alount 15,000 feet above the seat．

DA＇IIKIN゙F，is town of the comnty of Esser， Encrland，in a low flat sitnation，on the loft bank of the liokling，abont two miles above its junction with the＇llhmes，and five miles northeast of London，on the Nortl Woolwich liailway．Iop．（1861）50゙った， amon！whom are many fishermen，who fursue their veenliation on the Thames，the tide flowing nu the Fouling to the town．The month of the lioding is often called Barking Creek．The neigh－ bombond sevds large prantities of potatoes ambl vegetables to the Lonlou markce．There is also a transit tracle in eonl and timber．The charch of St Margaret is an edifice of considerable leearty，in the Perpendicular style，and probably of the hergin－ ning of the lath c．；but it contains three columns of the limly Norman style，surbosed to liave been brought from the ruins of the arljacent abbey：－ Berkin！Abbey was one of the richest nunneries in lingland．It was foumded about G77 A．I．，in the reigns of Selba and Sighere，kings of the List Saxons，liy St Frkenwald，Bishop of London，whose sister，St Ethulburgil，was the lirst abhess．In 5\％O， it was hurred to the ground by the bines，and the nuns kilked or dispersed．It was rebuilt and？ restored to its former sjlendour by King lilgar，in the milale of the loth century．The Abhess of Binking was one of Tom ladies who held the rank uf baroness in right of their offiee．she lival in great state，and always formished in quotia of men to the ling in time of war．She was recpured also to maintain certain cmbanknents on tle Thanes． Soveral queens of England，and other ladics of very high birty，assumed the otlice of Abbess of Barlinng． After the suppression of convents by llemry VIII， the abbey bunlings sonn went to rum，and searecly any remains exist excent the gate－house．

DARNES，Iiev．Willian，poet and philologist， is author of three eollections of poems written in the dialeet of Dorsetshire，the first entitled I＇oems of liural Life in the Horset Diulect，with a Disscratation and Cilossary（Lond．istif）；the seeond，／fwomely lihymes，se．（Lond．1859）；and the third，I＇opms o， Hiwal Life，\＆ic．（Lomil．186\％）．The first of these collections reached a sceond cdition in 1847，slew－ ing that at least some interest was taken even at

BARNUM-BARQUESIMETO.

that early period in Mr B.'s 'hwomely rhymes.' They were not critically noticed, however, so far as has been ascertaincl, until November 1559, When a highly enlogistic review of them appearel in the North British Review, pronouncing Mr B. to be 'the best writer of rustic eclognes since Theocritus.' The reviewer also says, speaking of Mr B.'s poetry, 'that it combines in a high degree the special merits of Wordsworth and Burus, lut in a way which is so perfectly original, as to bear no trice of even a pernsal of those joets ly the author.' Snech praise, ilthough exaggerated, is not altogetler withont foundation. Mr B. is a true poet, combining with a genuine love of natnre, as seen in the rich grazing-lands of Dorsetshire, a keen sympathy with the rustic popmation, their hopes and fears, loves, joys, sorrows, and superstitions. It is for this andience that Mr B. professes to write, and it is muly such that can thoroughly appreciate his verse. Had he written in the language of books, his poetry would have obtained a wider circle of readers. Attentiou was again called to Mr B.'s poems by a writer in Macmillan's Magazine for June 1862, in an article cvidently from the sume pen as that in the North British, anl claiming for Mr. L. a place 'at the very head of the properly idyllic poetry of England.' In that article, we are informed that in the previons year (1861), the pension-list, which announced a yearly grant of $£ 50$ to Mr Close, in consideration of his deserts as a poct, mentioned one scarcely larger in anount coufcrred on Mr B. in cousideration of his acquirements as a phitologist. Mr B. was born of humble parentage at Rush-hay, Bagber, Dorsetshire, in 1S10, and was for many years Master of the grammarschanl at Dorchester. He is B.D. of St John's College, Cambridre, was ordained in 1847, and was promoted from the curacy of Whitcombe to the rectory of Winterbourn-Came, in Dorset, in 1862. Besides the collections of proems mentioned, Mr B. is author of An Investigation of the Laus of Ciase in Language (Lond. 18t0) ; An Arithmetical end Commercial Dictionary (Lond. 1810); The El?ements of English Grammar (Lond. 1842); The Elements of Linear Perspective (Lond. 1S42); S. Geflyste (the Helper): an Angla-Saxon Delectus (Lond. 1849); Notes on Ancient Britain and the Britons (Lond. 1858) ; Tiews of Labour and Golld (Lond. 1859); The Song of Solomon in the Dorset Dialect, from the authorised English J'ersion (Lond. 1859)-printen at the expense of Prince Louis Licien Bonaparte; Tiw, or a I'iew of the Roots and Stems of the English (s a Teutonic Tongue (Lond. 1862). The philological works of Mr B. shew considerable learning and ability.

BARNUM, Paneas Tatlor, American showman, was born at Bethel, Comnectient, July 5, 1810. His father was a tavern-keeper; and while young B. attended the village school, he traded with and played practical jokes upon his father's customers. At the age of 18, be was employed in a country store; and about five years afterwards, went largely into the lottery business. When only 19, he married clandestinely, and then moved to Danlury, where he edited The Ilerald of Preedom, and was imprisoned 60 days for a libel. In 1834, be removed to Ncw York, where, hearing of Joice Heth, murse of (reneral Washington, he hought her for 1000 dollars, and with the aid of forged documents and puffing, exhibited her to considerable profit. Reduced again to furerty, he sold Pibles, exhibited negro dancers, and wrote for newspapers, mutil he hought the American Miscum in New York, which he raised at once to prosperity by exhibiting a Japanese mermaid, made of a fish and monkey, a white negress, a woolly horse, and tinally,
a noted dwarf, styled General Tom Thumb, whom he exhibited in Errope in 1844. In 1847, he offered Mademoiselle Jemy Lind 1000 dollars a night for 150 nights, and received 700,000 dollars-the concert tickets being sold at auction, in one case for 650 dollius for a single ticket. He built a villa at Bridgeport, in imitation of the Brighton Pavilion, and engaged in various speculations, one of which -a clock-factory-made him bankrupt. Settling with his creditors in 1857, lee engaged anew in his career of andacions enterprises, and made another fortune. In 1566, he stood as a candidate in Connecticut for a seat in the United States Congress, but was unsuccessful. His Aututiography (1854) has the merit at least of frankness. Mis Lectures on Temperance and Making Money drew large andiences.

BAROA'CH, BROACH, or BHARUCH, a large town of British India, giving its name to a collectorate in the presidency of Bombay. It is situated on an elevated mound, supposed to be artificial, about 80 feet alove the level of the sea, on the north bank of the Nerbudda, 25 miles from its mouth. The Nerbudda is here a noble river, two miles wide eren at cbb-tide, but shallow, and the navigable channel winding and difficnlt even at high water. It abounds in fine fish. B. is a very ancient town; it is supposel to be the Barygaze of Arrian. Situated in the midst of a most fertile district, it was formerly a very flourishing town, with a large popmlation; but fell, in cousequence of political troubles, into decay. It has of late begun to recover prosperity, and its commerce is increasing. Its present pop, is estimated at 12,971 , within the walls; but including the suburbs, which are exteusive, the pop. is reckoned at 18,361 . 13. belonged to the Mussulman kingdom of Guzerat, on the overthrow of which liy the Enperor Akbar, it was assigned to a petty nawab; and falling under the dominion of the Peishwa, was taken by the British in 1772, ceded to Scindiah in 1783, in acknowledgment of the kind treatment of some British prisoners; and again stormed ly a British force in 1803, since which date it has remained in the possession of the British. The heat at B. is often excessive, and the situation is regarded as mbealthy. B. carries on a considerable trade with Bombay and Surat-the priacipal exports being raw cotton, grain, and seeds, It was long famous for its mamufactures of cloth; but that of the finer kinds has fallen off very much, in consequence of the importation of English grooris. Many of the weavers of E. are Parsees, of whom also are some of the more opulent classes-as ship-owners and ship-brokers. B. has one remarkable institution -a Bralmanical hospital for sick animals, into which horses, dogs, cats, monkeys, peacocks, and even insects are received. It is ostensibly attended by a number of Brahmans, who derive a good income from lands devoted to it, and from voluntary contributions.

BARQUESIAETO, a city of Veneznela, the capital of a province of the same name, situated on au afluent of the Portugnesa, in a high plain, 156 miles west-south-west from Caraccas. B. was founced by the Spaniards in 155.3 ; and in the begiming of the 19th c. was a flourishing town, with straight wide streets and some fine buildings, the pop. about 15,000 ; but in 180°, it was almost totally destroyed by an earthouake. The existing town has been mostly built from the ruins. The pop, is supposed to be about 12,000 . -The province of Barquesimeto extends aloug the const of the Caribbean Sea, coutains an area of $2305 \mathrm{sq} . \mathrm{m}$. , and a pop. of about 113,000. Wheat, maize, coffee, cacro, indlige, and cattle are its principal products.
495

BARRA MANSA-bAUD.

BARLA MA'NSA, a town of Lrazil, in the province of Rio de Janeiro, and 70 miles north-west of the eity of that name. It is situated on the right bank of the I'arahiba. Pop. 6000 .

BA'RROW-IN-FURNESS, a seaport and mpidly increasing town of North Liweashire, England, situanced on the south-western coast of the peninsula of Furness, opposite to a small island ealled Barrow Islind, whieh is tranlitionally reported to have been in former times a burial-place of Norse rovers. It is 5 miles south-west from Ulverston, and IS miles rest-north-west from Laneaster. It is comneeted by railway with Dalton (q. v. in Supplement), from which it is not quite four miles distant, and so with the whole railway system of England. The growth of I3. las of late years been so rapid as to be almost unparalleled in the history of the towns of England. In 1817, it was an insignificant fishing-village of about 300 inhalitants; in 1557, the population was more than 2000 , a large proportion being sailors and fishers; and now (IS67) the popmation is estimated at unwards of 12,000 . This rapid increase is owing to the great quantity of iron ore, of the best quality-red hematite-which exists in the neighbourhood, and the establishment both of mines aud smelting-works. A small quantity of iron ore from this neighbourhood was, for many years, exported to be smelted elsewhere; but about ten years since, smeltingworks were established at B. by Messrs Schueider, Hannay, \& Co.. which soon gave employment to t great number of men, and converted the old fishingvillage into a prosperous town. In 1S65, these works produced about 160,000 tons of iron. In 1S6G, the Barrow iron-works were taken over by the Barrow Hematite Steel Company, which has now 11 Wlast-furnaces in constant operation, arranged in a straight line along the sea-shore. The Company raise their own ore, and the production of the mines for the present year (IS67) is estimated at about 400,000 tons. The amount of pig-iron made weekly is abont 4000 tons, of which about 800 tous are taken to the steel-works, aud there converted by the Bessemer process into steel. Grcat quantities of limestone and coke are used in the iron firnaces and steel-works. The red hematite of 13 . yields an average of 57 per cent. of iron. The D. steel-works are the largest Bessemer steel-works in Britain, and their creat enlargement is proposed. In the B. works, the iron is conveyed in a molten state from the blast-furnaces to the "converters," where it is made into stecl. Some of the stean-hammers emnloyed have heads of five tons weight, and some of six tons. Copper as well as iron ore is olitained in considerable quantity near D ., and is exported to the amount of about 3000 tons annually. About 20,000 tons of slate are also annually quarried in the neighbowhood, and sent by coasters or lyy rail to other parts of Great Britain.

The town of B . is built on a regular plan, mostly in rectangles. St George's Church is a haudsome Gothic budding, erected chiefly at the expense of the Dukes of Devonshire and Buecleneh, the principal land-owners of the town and neighbourhood. There are other places of worship belonging to the Church of England and other denominations.

The Furness Riailway Company bave recently expended a large sum of money in converting the channel between the mainland and Barrow Island into docks. The total cost is estimated at $£ 200,000$. One doek, about 30 acres in extent, has been recently completed and opened (September 1867). It is expected that Barrow I sland will soon. become a great seat of iron shiphnilding. Various other branches of industry have also legun to be attracted to Barrow. Its foreign trade is still inconsiderable, 418
its chief import being timber from Canala. The harlour, however, is excellent, being formed by the island of Walney, a low island about cight miles long, and nowlrere much more than a mile in breadth, which extends along the south-western coast of Furness. This island is separated from the mainland by a channel which, inmediately to the north-west of Larrow Island, is very narrow, but on the south-west expands into a bay or basin of about three miles long ly two broad, opening from Morecambe Bay. From the excellence of the harbour, the abundant facilitics of railway conveyance, and the mineral wealth of the ciistriet, it may confidently be expected that B. will soon become a very important commereial town.

BARTHÉLEMY, duGUSTE-MARSELLLF, a Frenclı poet and politician of some eminence, was born at Marseille in 1796 . Whilst still very young, he was sent to the college of Juilly; and he bide scarcely completed his studies when he beran to acpuire repntation in his mative town as a poet of clistinct promise. He was naturally attracted to Paris, where, at lirst, his verses, published without his name, did not attract 1 ued attention. Gradually, howerer, he became known ; and in 1505 , in conjunction with his fellow-townsmau, M. Méry, le issued a collection of satirical epistles, under the title Les Sidiemes; and the year after, a moekheroie poem, La Jillitiade, ou la Prise slu Chalcau de Rivoli. This vigorous political squib lada a great success: in the course of the year, it lan througl. fifteen editions, and is said to bave put into the pocket of the young anthors some 24,000 francs. Contiuning to work together in opposition to the government of Charles X., and in the interest of Fapoleonic ideas, they put forth upwards of 20 pieces of a like satirical cast before 1S30. The Revolution of July of that year found B. in Irison for an offence done to the government in one of his later publications. His liberation of course was immediate; and along with his friend Néry, he celebrated the victory of the people in a poem dedicated to the Parisians, and entitled L'Insurmection, which is characterised by the great critic, M. de Sainte-Beuve, as one of the happiest productions of the writers. A pension of 1200 francs, bestowed on him by Louis-Philippe, did not deter B. from attacking his ministers with the same asperity he had exercised towards those of the dethroned mouareln; and in consequence, it was within a year or two withdrawn. Diring all the chauges which followed, B. was indefatigable as a versifier on the political events of the day; but, exeept for readers intimately versed in the dutad of these, the mere list of his numerous productions conld have only the very faintest significance. The forec and brillinney of his satire is on all hands admitted; and though, in his later years, his popularity somewhat cleclined, his writings throughout exercised considerable influence in determining opinion among the lively population of Paris. He was, from the first, a warm supporter of the present Napolconic régime. His death took place, Angust 1567, at Marseillo, of which city he was librarian.

BASANTGA'NJ, a walled tom of Onde, India, in the district of Salon, 55 miles north-west from Allahabad. Pop. 6000, of whom one half aro Iussulmans.

BAUD, a town of the dep. of Morbilan, France, situated on the Evel, 20 miles north-west from Vannes. Pop. (1866) 1413. B. has some trade in grain, cattle, hemp, butter, and honey. Near B. is \therefore statue of granite, known as the J'enus of Quinipily, worthless as a work of art, but remarkable ou

BAUPETTAH-BEET-ROOT SUGAR.

account of its history. Its origin is unknown, but it is supposed, from its Egyptian character, to be a Gallic Isis. Down to the 17th c., it was worshipped with foul rites, and even now is regarded with superstitious veneration by the peasantry. It appears to have been first called Venus in inscriptions ou the pedestal set up in 1689.

BAUPE'TTAH, a town of British India, in the presideacy of Madras, 20 miles from Guntoor. Pop. supposed to be about 20,000 .
BAYA'AO, or SAN SALVADOR, a town in the eastern part of the island of Cuba, 60 miles northwest from Santiago. It is situated in an unhealthy plain, near the left lank of the Canto, a small river which falls into an arm of the sea called the Canal of Bayamo. The town carries on a considerable trade. Pop. (1861) 711 .
beauregard, Peter Gustave Toussalnt, a general of the army of the Confederate States of America during the War of Secession, was born of a family of Cauadian French descent, on his father's plantation, near New Orleans, Lonisiana, about 1821. He graduated the second of his class at the military college of West Point in 1835; was appointed second-lieutenant of artillery, and transferred to the engineers; won his brevet of Captain at the battles of Contreras and Churubusco, in Mexico, and of Major at Chepultapec, where he was twice wounded After the Mexican war, he was engaged upon the fortitications of the Mississippi, and was, for a time, superintendent of the military academy at West Point. At the secession of Lonisiana, be resigned, February 20, 1861, and was appointed by the Confederate government to the command at Charleston, South Carolina, where, April 11, he commenced the war by the bombardment of Fort Sumter (q. v.). July 21, he won the battle Bill Run. March 5, 1862, he took command of the Army of the Mississippi, under General A. S. Johnston, and on April 6, fought the battle of Shiloh-on the first day a victory, and on the second, when the Federals had been reinforced, a partial defeat to the Confederates, with the loss of General Johnston. After holding General Halleck in check for two months, he was obliged, hy his failing health, to retire for a time from active service; hut in 1863 defended Charleston; and in 1864 commanding at Petersburg, aided General Lee in the long and gallant defence of Richmond, the capture of which closed the war. He has since beem appointed President of the New Orleans and Mississippi Railway; and in 1866, in the interests of the Company, he visited New York, London, and Paris, being everywhere received with the highest distinction.

BE'CSE, NEw, a market-town of Austria, about four miles east from Old Becse. Pop. 6472.

BECSE, OLD, a market-town of the Austrian Empire, in the Servian Woiwodschaft, 24 miles north-north-east from Neusatz. Pop. 11,222.

BEDNO'RE, or NUGGUR, a large city of Mysore, India, situated in the midst of a basin in a rugged tableland of the Western Ghauts, at an elevation of more than 4000 feet above the sea, in N. lat. $13^{\circ} 50^{\prime}$, E. long. $75^{\circ} 6^{\prime}, 150$ miles porthwest from Seringapatam. It was at one time the seat of government of a rajah, and its pop. exceeded 100,000 . In 1763 , it was taken by Hyder Ali, who pillaged it of property to the estimated value of $£ 12,000,000$, and subsequently made it the seat of his own government, calling it Hydernuggur (Hyder's Town), of which the name Nuggur is in abridgment. It was takeu by the British under General Natthews in 1783 , but soon retaken
by Tippoo, at the head of a vastly superior force, when General Matthews and all the principal British officers were juut to death. The neighbouring country is mostly corered with dense and luxuriant forests.
BED-SORES are often a very troublesome complication of disease, to which a patient is liable when for a loog time confined to bed, and is either unable or is not allowed to change his position. Thus they are liable to occur in cases of continued fever, or any other prolonged debilitating disorder, in paralysis from injury of the spinal cord, and in cases of fracture of the thigh. The skin, at certain projecting bony parts, chiefly about the region of the buttocks, or on the heel, is apt to inflame, ulcerate, and slough, especially if the patient is not kept perfectly cleau-as, for example, when the evacuations and urine escape involuntarily. The patient sometimes complains of a sense of discomfort at the parts, as if he were lying on dry crumbs of hread; at other times, he seems to feel nothing. Hence, in all cases of prolonged supine position, the parts naturally pressed upon by the weight of the body should be carefully examined every day or two, as prevention is far easier than cure. When a long confinement to bed is expected, attempts should be made to thicken the cuticle, and enable it to bear pressure better, by mbbing the skin with a stimulant such as spirits or ean-de-Cologne. If the part, when first seen, looks red and rough, further danage is often prevented by covering it with a piece of calico, on which soap-plaster has been spread; the local pressure may be remored by air-cushions specially constructed for cases of this kind, and iu many iustances, Arnott's Water-bed (q. v.) affords great comfort. If the case is one in which it is admissible, the patient should be made to alter his position frequently. When there are excoriations, and a threateniug of sloughing, a poultice composcd of equal parts of bread-crumbs and of finely-grated muttou suet, mixed over the fire in a saucepan, with a little boiling water, is often a comforting and useful application. After slonghing has fairly hegun, stimulating applications, such as resin ointment, must be applied. It is worthy of notice, that bedsores come on earlier in cases of fractured spine than in any other: they generally appear by the fourth day, and have been seen two days after the accident. They commonly form one of the most powerful agents in destroying life in cases of this accident, diseases of the urinary organs being the other.

BEET-ROOT SUGAR. Recent statistics of this manufacture afford the following results: The quantity of beet-root sugar made on the continent in two successive jears was, in round numbers, as fullows :

In 1865-1 866 , there was a very large increase of quantity, nearly, but not quite maintained in 1866 -1867:

It is evident from these figures that France has fluctuated more than auy other of the contioental countries in the quantity produced. The beet is
more precarious than the cane, both in the produc. tion of plant per acre of land, and of sugar per ton of plant. There were $\mathbf{3 3 6}$ beet-sugar factorics in lussia in 1864, 270 in the Zollwerein in 156.5, 139 in lirance in 1866. A good yield is saial to be 20 tuns of root per acre, ancl one ton sugar from 12 tons root; lut sometimes there is the far lower estimate of 1000 lbs. sugar per acre, seeing that clumsy processes as well as had seasons lionit the yichl. The United states liegan the beet-sugar manfacture in 1862; the civil war interrupted it; lout in 1866, a new (ierman company was estalhlished at "hatswortl, in Illinois, with new seeds to plant, and new refining appratus. In the autumn of 1866, they had 600 aeres of beet growing. The attempts to make lreet-sugar a profitable manufacture in Ireland, have never met with much success, although often renewed. Were it not that English land is so very valuable, this branch of industry would probably have talsen root among us.
The distilling of spirits from beet has nut been so successful as the making of sugar. It received at temporary impetus from the Reports of the I'aris Exhibition in 1555 ; but there has always been a difficulty in making the residue available as eattlefoml. A new distillery was estallished at Linenln in 1s\%s, for obtaining spirit from beet anel mangohlwurzel; and a new mode of applying the residue (half a ton from every ton of root) as cattle-fool. But these and all other attempts in England have failet. The Commissioners of Inland Lievenue said in 1864: 'After pationtly watching these experimental distulleries for seven years, we are relieved from further anxiety on the subject by the final relinquishment of the manufacture ly the last of those gentlemen who had embarked in the nudertaking. We unclerstand that in all these cases the experiment hats entirely failed as it commercial speculation.'

As to its nes in other ways, Payen recommends the mixture of beet fariua with flour, in the jroportion of 1 to 2 , for breat, which he says makes and lakes well, and keeps good for five days. Beet has been made into a kincl of pasteboard or papiermảché, in Haute Marne, for ten-trays and ornaments. Beet coffee, or betterare torrêfice, mixel with an equal weight of West India coflee, is nsell to some extent in Frauce, as being less heating, aul requiring less sugar than the latter singly:

IELLJU'IRIE, or BAILJURIE, a town of India. in the British district of Moradabad, North-west Provinces, two miles north-west from Kashipur. [op. 7354.

BRLLEYTLLEE, chief town of the county of Hastings, Canala West, sitnated on the Bay of Quinté, Lake Ontario, and on the Grand Trunk lailway of Canada, 42 miles west from Kingston. It is a very thriving town. Here are several iron foundries. Pop. (1561) 7000.

ImLLLOWS. See Blowivg-mincmises.

IBRLLLU'R, a large town in the territory of Mysore, India, 40 miles north from Seringapatam, with a fort, which has a strong mud rampart inul ditch. The town itself was formerly protecteal by a similar ranpart, which is now rumous.-Another town of the same name, also in Mysore, is situated b0 miles west-north-west from this, a mile from the west bank of the river Tagachi, or Bhadri, one of the heal-waters of the Caverg.

LELOIT, a city of Wisconsim, U. S.o on Tiock River, on the Southern State Railway, $\%$ miles southwest of Milwarkce, built on two jiains, one 70 fcet above the other, with broad shaded streets, groves, and handsome residences. It has a college, 9 tine churches, several flour and paper mills, foundries,
and manufactories of agricultural implements, \&c. I'op. (156゙5) over 5000.

BELPA'SSO, a town of Sicily, on the lower part of the sonthern slope of Monnt litua, in the province and S miles north-west from the town of Catauiar Iop. (1861) 70:S. Below the town is an expanse of brown lava, lut the surrounding country is generally rich and fruitful. A town called Mel lasso, from the alundance of honcy in its neighbourhool, stood not far from the site of the present town, lut was destroyed by an cruption in 1669) when the inlabitants removed to a locality a few miles off, in the plain, and built a town of which the desolate remains are still to be scen, bearing the name of Belpasso I'ecchio: malaria compelled them to leave it, and to return to the monntain-sloje, notwithstanding its occasional dangers.
BE'LPER, a market-town of Derhyshire, England, on the Derwent : a station on the North Midland Railway, seven miles north from Derby, It is well built, in great part of gritstone, which is obtained in the neighluourhoor. One of the most conspicnous public buddings is a church, of recent erection, on an eminence aloure the town; the mion worklouse is also worthy of notice, being a splenclid lunilding in the Elizabethan style of architecture. B. is, to a considerable extent, a town of recent growth, and owes its prosperity to the establishment of cotton-works here by Messrs Strutt, one of whom was recently clevated to the pecrage as Lord Belper. In these works, a very great number of operatives are employed. The mannfacture of silk and cotton hosicry is also largely carried on in B., giving employment to upwards of 2000 persuns. Nail-making and the manufacture of brown earthenware also give employment to many of the inhalitants. 13. was at one time the resilence of Johm of Gaunt, part of whose mansion still remains. Pop. (1S61) 9509.

BENAVE'N'TE, a town of Spain, in the province of Zamora. It is situated on the western or right bank of the Esla, opqosite to the mouth of the Cea, 34 miles north from Zamora. It is overlonken hy a huge half-ruined castle, and surronmded hy a lecayed mud-wall, in which are six gates. It las spacious streets and squares, six churches, a number of schools, three hospitals, a bishop's palace, \&c. The castle was formerly the seat of the family of Pimentel, Counts of Eenarente, to whose progenitor it was granted in 1394. The interior of the eastle was desolated by Sonlt, on his retreat from Oporto, and fragments of sculpture still lie scattered abont. It was at \mathbf{B}. that Noore's retreat commenced, 28 th December 1809; and it was the scene of other interesting events of the Peminsular War. The manufactures of B. consist of linen, woollen, silk, and cotton fabrics. Pop. 12,464 . There is no bridge at Benavente. The Esla is crossed loy a ferry-boat.

BENEDICT BISCO1', au Euglish ccelesiastic of the Fth c., who exercised a most important intluence on Anglo-Saxou civilisation and learning. He was born about the year G29, of a noble Northumbriau family (his 1 natronymic, according to Edlius, being Baducing), and until about his Eath year, was a courticr of Uswin, kiug of Northumberlaud. About that time, he gave up his court-life, and accompanied Wilfrcel to Fome ($6 \bar{J}$), where he spent about ten years in study, and from which he seems to have returved soon after the synod of Whitloy in 664. In 665, he was in Pome a secoud time, heing sent on a mission by Alelfrit, king of Northumbria. After a stay at Rome of a few months, he procceded to Lcrins, in Provence, where he became a monk, received the tonsure, and spent
abont tro jears, thus acquiring a knowledge of monastic lliscipline. He returned to Rome in 66S, came to England with Theodore and Adrian, and was made abbot of the monastery of St Peter (afterwards that of St Augustine) in Canterbury. This be resigned two years after, and went to Fome for a third time, for the purpose of bringing bome the literary treasures which he had already collected. He returned about 673, bringing with hin a large collection of valuable books, and repaired to Northumbria, where King Ecgfid gave him land near the month of the Wear, on which he founded the famons monastery of Wearmonth. Workmen were brought from France to build and glaze the church and monastery, this being one of the earliest instances of the use of glass for windows in England. He also introduced from Gaul and Rome (which he visited again in 67 S) church utensils and vestments, relics, pictures, images, and again a vast number of books. He also brought with him John, archchanter of St Peter's, who introduced the Eoman choral service. On bis return from this visit to Rome, King Eegfrid presented bim with more land on the other side of the Wear, at a place called Girwi, on which be built a second monastery, dependent on Wearmonth. B. made bis tifth and last journey to Tome in 655, and, as on former occasions, came home loaded with books and pictures, bringing with him also, according to Bede, two silk pails 'of incomparable workmanship.' Shortly after his return from Rome, about 657, be was seized with palsy, under which he languished three years, dying on the 12th January 690. During his long illuess, he often anxiously exhorted his monks to look carefnlly atter his books, and presurse thern from loss or injury.

The benetits conferred by B. on Anglo-Saxon civilisation, which was then only in its dawn, and the impulse given by his lahours to Anclo-Saxon learning, were greater than can now be estimated. It is not certain that be wrote any books, and those ascribed to him are of little value; but by his personal teaching, and especially by bis founding at Wearmouth such a valuable and, for the time, extensive library, be implanted in the nation a taste for literature aud learning, which soon was fruitful in results, and contimued to be so for many centuries. Berle, who was his pupil, has written a life of B., and the nmmerous works of this 'venerable' author are the best proof of the extent and variets of information to which be had access in the monastery of Wear-mouth.-See Wright's Biographia Britamica Literaria.

BENEDICT, TUles, a musician and composer, German by birth, but, since 1836, resident in England. He was born at Stuttgart in 1505, and studied first under IIummel at Theimar, and afterwards under Weber at Dresden. On Weber's recommendation, he was, in 1824 , made music director of the Kärnther Thor Theatre, Vienna; and he afterwards filled the same post in Nalles. While in Naples, he produced an opera buffa called Gracinte ed Ernesto, aul an opera seria, I Portogesi a Goa. In Paris, and aiterwards (1S35) in London, he appeared with great success as a pianist. In 1836, be took up, his permanent resilence in London, and was. during that year, director of the opera buffa at the Lyceum, where he producel an operetta of his own, composed in Naples, C"u Amo ed $u n$ Giomo. Turning biss attention afterwards to English opera, be composel The Gipsy's IF arniny (1S38), The Brides of I'mice (1S44), and The Crusctler's (1S 16), three worlis which, translated into German, bave been well receifed in the composers native cometry. He conducted the opera in Covent Garden Theatre in $1 S 43$ and 1S44, and the Norwich

Musical Festival in 1545, and bas since conducted much at concerts and great musical gatherings in London and in the prorinces, besides being a successfu! pianoforte teacher. In 1850 , be conducted at Mademoiselle Jenny Lind's concerts in America. In 1560, he produced a cantata, Undine, at the Nor. wich Nusical Festival, which was very well received. His Lily of Killarney, first given in 1862, at Covent Garden, was his greatest operatic success. He has since prorluced a cantata, Richard Cour de Lion: an opera di camera, The Bride of Song; a romantic opera, Lsmerelde ; and a cantata, St Cecilia. His operas bave much dramatic ant melodic beanty, aud in style and feeling are singularly English, to be the compnsition of a foreiguer: B. has also composed music to The Tempest and Macbeth, besides numerous songs, orchestral pieces, and pianoforte works both in the classical form and of a lighter style.
LÉPU'R, or BEYPORE, a scaport of India, on the western const, six miles sonth from Calicut, at the north side of the estnary of a small river which rises in the Western Ghauts. Its situation is very beantiful. It has a considerable trade in timber, particularly teak, which is floated down the river for exportation. Iron ore is found in the neighbourbool, and iron-works bave recently becn established bere. B. is the terminus of a railway now in course of construction, across the peninsula of India from Madras, and will probably soon become a place of great importance.
EERCE'TO, a town of Italy, in the province and 2. 5 miles south-west from the city of Yarma, beantifully situated amonyst the Apenmines. It is a clean, well-built town. The church is an old Gothic building. The mountains rise rapidly to the west of B., and soiue of the scenery which they present is very wild and desolate.
DE'RGA, a town of Catalonia, Spain, situatert newr the river Lobregat, 52 miles north-morth-west from Barcelona. Its streets are pared, but mostly narrow and crooked. It bas fire squares, three churches, several convents, a hospital, schools, \&c. It is overlooked and defended by a castle with a strons battery. Pop. 6333, mostly employed in husbandry and as muleteers; the produce of the fields, rineyards, and olive-yards of the neighbonrhood giving rise to a considerable trade. Cotton fabries are also mannfactured in B., and this branch of industry is on the increasc.

BEIRGEDOLRF, a town of Geranany, on the Berlin Railway: 10 miles east-soutb-east from Hamburg. It is a place of considerable trade, and is the capital of a very small territory, of about $36 \mathrm{sq} . \mathrm{m}$., under the joint government of the free cities of Hamlurg and Lübeck. Pop. of territory above 12,000 . l'art of this territory is known by the name of the Four Lands (Vicrlënder). It is inhabited by a welIconditioned and industrions population, mneh occupied in the cultivation of fruit and regetables, not only for the market of Hamburg, lut for that of London. Peach and apricot orehards, and fields of strawberries, extend over grcat part of the district. Cattle-hnsbandry is also carried on, and much attention is levoted to the rearing of poultry. The people of the Four Lands are distinguisbed from their neighbours by peculiarity of dress, and even each of the fonr small communities from which the name has been derived has some disturgnishing peculiarity of its own.
BE'RI, a town of India, in the British district of Rohtuk. North-west Prorinces, in N. lat. $25^{\circ} 40^{\prime}$, E. long. $76^{\circ} 40^{\prime}, 36$ miles west-by-north from Delhi. Pop. nearly $10,000$.

BERKHAMSTEAD-BETHLEN-GABOR.

BEREHA'MSTEAD, GJEAT, or BELKHAD STEAD ST PETEN'S, a market-town of Ilertford shire, England, situated in a deep valley, on the right bank of the small river Bulloorn, on the Grancl Junction Canal and the Loudon and North-western Railway, is miles north-west from London. The main street is about a mile in length. The town is well built, mostly of brick. 'The parish church, a cruciform building in the centre of the town, is chiefly in the Perpendicular style. The father of the poet Cowper was rector of 13 , and the poet himself was born here. The town is supposed to be of Saxon origin, and the kings of Mercia had a palace or castle here. Willian the Conqueror met the mobles and prelates at B., and took an oath to rule according to the ancient laws and customs of the comitry. He bestomed the castle and manor of \mathbf{B}. on his half-brother, the Earl of Moreton. The castle was rebuilt in the reign of King John. 'Ihe property having reverted to the crown, was bestowed by Edward III. on his son, the Black Prince, when he created him Dukc of Cornwall, and has since been beld by the Princes of Wales as Dukes of Cornwall. A few massive fragments of the wall of the eastle still remain, to the east of the town. A free grammar-school was founded in the reign of Edward III., and still subsists, having been lately much enlarged and eariched by the establishment of several exhibitions. A charity-school was founded under the will of Thomas Bourne in 1727. Straw-plaiting is carried on to a consilerable cxtent in \mathbf{B}., and a vast number of wooden articles are made, as bowls, ericket-bats, hoops, toys, sc. The curing of ham is now extensively carried on. There is a weekly corn-market. Pop. (1S61) 3631 , since which time it has consideraluly increased.

BERNA'LDA, a town of South Italy, in the province of Potenza, 32 mil 's west-hy-solith from Tranto. Jop. (1861) 5S62.

BERNARD, CLALDL, a distinguished physiologist, was born at Saint-Julien, near Villefranche, in the dep. of the Rhone, on the Ioth July 1813. He stodied medicine at Paris; was admitted in 1839 as a pensioner in one of the hospitals; and in 1811 , became Dagendie's assistant at the College of France. He graduated in 184: as Doctor in Medicine, and ten years later, as Doctor in Science; and was appointed in February 1554, to the ehair of General Physiolugy in connection witlı the Faenlty of Sciences in Paris. The same year, he was chosen member of the Academy of Sciences; and in 1855 , he succeeded Marendie as I'rofessor of Experimental Physiology in the College of France. B.'s first researches were devoted to the physiological action of the rarious secretions of the alimentary eanal. His Nemoir, pulblished in 1844, in the Gazette Médicale, treats of the mechanism by which the gastric juice is secreted, and also of the modifications which alimentary sub. stances undergo from that liquid. To the Comptes Rentus of the Biological Society he also contributed papers on the Saliva, on the Intestinal Juice, on the Intluence of the Different Pairs of Nerves on the Digestive Apparatus, and on the Respiratory and Circulatory Systems. His first really original paper, however, was that on the Fumetion of the Panereas, in which he demonstrated that that viseus is the true agent of the digestion of fatty bodics. This essay obtained, in 1519 , the grand prize in experimental physiology, and was minted in the Comptes Rendus of the Academy of Scicnees in JS56. In 1S49, appeared his first researches on the Glyeogenic Function of the Liver, estallishing the doctrine, that the blood which enters the liver does not contain sugar; while blood which leaves that organ, and goes to the heart ly the hepatic veins, is charged
with it. He also shewed the influenco of the nerrous system on this function, and produced artificial diabetes by division of the pneumogastric. Fur this discovery, which was licenly eriticiscd, but is now regarded as sound, he ohtained, in 185l, the grand prize in experimental physiology. In 1852, he laid before the Institute his Experimental liesearches on the great Sympathetic System, and on the Infuence exerted Ly Division of this nerre on the Animal Hent. This paper procured him, for the third time, the prize of exiperimental physiology in 1853. Since $185 \pm$, when he succecded Romx as Member of the Institute, he has eontinned his rescarches on the glycogenic function of the liver, and has also published his courses of lectures at the College of France, on Experimental Plysiology in its Application to Mrclicine (185.)1S50) ; on The Effeds of Toxic and Mcdicated Substances (1857) ; on The Physiology and Pathology of the Nervous Systcm (IS5S); on The Physioloficind Propertics and the Pathological Alterations of the various Liquids of the Organism (1559); on Vrutrition and Devclopment (1S60) ; and his Introduction to the Siudy of Experimental Medicine (156ā). In 1861 , be was elected Member of the Academy of Medicine (Anatomical and Physiological Scetion); and ou the 31st July 1862, he received the distinc. tion of Officer of the Legion of Honour.

BERNAY, a town of France, in the dep. of Eure, plcasantly situated on the right bank of the Charentonne, 26 miles west-north-west of Evrerr. Pop. (1S66) 5731. Woollen, linen, and cotton mamu. factures are actively carried on, also paper-making, hleaching, dyeing, and tanning. There is a consideralle trade not only in the products of these manufactures, but in grain, cider, horses, and cattle. B. is the scat of the greatest horse-fair in Iratuce, which is beld in Lent, and is attended by nearly 50,000 persons, who congregate from all prats of France, ehiefly to purchase post and diligence horses, for which Normandy lias long been eelebrated. B. is the seat of a tribunal of commerce. The chureh of St Croix bas a large aud macnificent altar, and marble statues and sculptures: the church of La Conture was formerly celebrated for the cure of persons passessed of evil spirits. The grainmarket ocenpies part of the remaius of an interesting old abbey church. B. has a communal college, and a hospital.

BLERTINO'RO, a town of Italy, in the province of Fork, formerly belonging to the Papal States, six miles sonth-east from Forli, pleasantly situated on a bill, the slopes of which are famous for their wincs. At the foot of the hill, to the west, flows the Ionco. B. is the seat of a bishop, and has a cathedral, three other churches, and five convents. It was one of the ancient fiefs of the Nalatesta, by whom it was given to the chureb. I'ol. of commune 6358.

BESSEGES, a larce and thriving village of France, in the north of the dep. of Gard, 11 miles north from Alais. It is situated on the river Ceze. A railway connects 13. with Alais. There are extensive coal-mines in the neighbourhood. Pop. (1866) 7969.

BESSENO'TA, a large villarge of the Austrian Empirc, in the Woimodena, on the north bank of the Aranka, eight miles west-south-west from Sit Nikios. Pop. 7596.

DETHLEN-GALOR (or, as be would lee ealled in Western Europe, Gabriel Bethleiremi or PerifleN, it being a common custom in Hungary and Transylrania to make the baptismal follow the family name) was descended from an ancient and distinguished Protestant family of Upper Hungary,
which also possessed important estates in Transylvania, and was born in 1580 . He rose to prominence during the troubles which distracted the principality in the reigns of the two Bathories, Sigismund and Galriel ; and on the death of the latter of these unfortunate princes, succeeded (1613), by the aid of the sultan, in being chosen sovereign prince of Transylvania, the House of Anstria being at that time in no condition to offer effective opposition. In 1619, when the Bohemians rose in defence of their religious and political rights, they looked eagerly for support to B., who liad already gained a wide reputation as a warrior and a champion of Protestautism; and the Transylvanian prince, too glad of such an opportunity to gratify his ambition at the expense of his enemy, Anstria, eagerly proffered his support. He accordingly marched into Hungary, took Kaschau, his advance more resembling a triumphal procession than a hostile invasion, and on arriving under the walls of P'resburg was greeted with every mark of joy by the citizens. With an army now swelled by Hungarian volunteers to nearly 100,000 men, he pursued his route towards Vienna, driving before him the Spaniards under Buequoy, and the Austrians under Dampierre ; and would donbtless have captured the capital, had not the severity of the season, and the want of provisions, combined with the remforcement of his opponents, and the defeat of his lieuteuant, Ragotski, in Hungary, compelled him to retreat for a time. However, though he retired as far as Kaschan, he did not relinquish his hold of Hnngary, of which, by the assembled diet, he had been crowned king at Presburg, 25th Angust 1620; but, resuming the offensive, on the defeat and death of Bncquoy, before Neuhausel, he recovered the fortresses which the imperialists had retaken, and spread terror and devastation to the gates of Vienna. His allies, the Protestants of Germany, being apparently crushed, B. conclnded peace with Ferdinaud II., receiving the town of Kaschan, with seven Hungarian counties adjoining Transylvania, the principalities of Oppeln and Liatibor in Silesia, and the dignity of prince of the empire. This treaty, however, was soon broken by the emperor, who thought so farourably of his own situation as to imagine he could violate his agreement with impunity; but he was soon undeceived, for B. raising an army of 60,000 men, invaded Moravia, obtained the solemn renewal of the former treaty, and then retreated homewards. Ilis marriage with Catharine of Brandenburg in 1625 involved him once more in the Thirty Years' War; but he finally retired from the contest in the following year, and thenceforth devoted himself exclusively to the internal affairs of Transylvania. He died in 1629, after a lingering and painful illness. B.s reign was a glorions and flourishing epoch in the history of the little principality ; for not ouly did the great successes achieved through his military talents give a prestige to its arms, but his protection of science and letters, in both of which he was well accomplished, did much to aid the progress of learning. He founded the Academy of Weissemburg at Karlsburg, and in stalled there, as 1 rofessors, Opitz, Alstedt, Biesterfild, and Piscator:-His brother STEPHEN succeeded him, but was soon compelled to resign the throne. -To the same family of Bethlen belong Joun and Wolfgatg, both Chancellors of Transylvania, the former of whom is celebrated for his work Rerum Transylvanicarum, libri iv. (Hermannstadt, 1653), which gives the history of the principality from 1629 to 1663 ; and the latter of whom wrote a History in 16 books, the MS. of which, from long neglect, had been much damaged, hut which was afterwards restored and completed, and published
(6 vols.) at Hermannstadt in 1792, under the title of Holfgangi de Bethlen Historia de Rebus Transylvanicis (1526-1609).
BeUst, Friedrich Ferdinand Freinerr vor, Austrian prime-minister, nue of the most prominent modern politicians. His family is of old nohility, distinguished both in the field and the cabinet. B. was born on 13th January 1809, at Dresden, and after a careful preliminary education in Dresden, he attended the universities of Göttingen aad Leipzig. Having conceived early a liking for politics, he devoted himself to diplomacy. After spending some time in travel ($1831-1835$), he served as secretary of embassy, first in Berlin, and then in Paris. In 1838, he represented his government at Mumich, where he began to shew his diplomatic talents, and soon acquired a certain celebrity. Eight years later, he went to London in the same character, from which he was removed in 1848 to Berlin. When called back to Dresden in IS49, he received the portfolio of Foreign Affairs. In this office, he declared against the adoption of the new constitution for the German Empire, and when thereupon an insurrection broke out in Dresden, he called in the assistance of Prussian military, which speedily crushed it. A few years later, he mas made Minister of the Interior. On the death of Frederick VII. of Denmark (1863), B. came forward prominently as the exponent of the German national feeling on the Slesvig-Holstein question. In the name of his government, he clisavowed the London protocol, and urged a prolicy favourable to the wishes of the Duchies, and in harmony with the national feeling of Germany. And, indeed, so prominent and popular did he become at this time, that he was sent as representative of the German Bund (the first that ever was sent) to the London Conference, where he stood his ground firmly, taking for his basis the principle of nationalities. Always the friend of Austria, he naturally. supported that country in the crisis of 1866 , joiming in the declaration of war against Prussia, against the wishes of at least the liheral party in Saxony. After the termination of the 'six weeks' war,' and the decided defeat of his party, he was obligel, at the dcmand of Prussia, to resign his office, on acconnt of his hostile attitude towards that country. He las since entered the service of Austria, and risen to the head of affairs. The chief result of his policy in the reorganisation of the empire is the reconciliation of Hungary (1867) on the footing of its remaining a separate lingdom. See Gerahity in Supplement.

DEU'THEN, or BÜTON, a town of Prussian Silesia, the eapital of a circle of the sane name, in the government of Oppeln, and 50 miles sonth-east from Oppeln, near the Polish frontier. It has mannfactures of woollen eloths and earthenware. The lan. guage generally spoken is Polish. Pop. (1864) 12, 552.
BE'ZDAN, a market-town of the Austrian Enpire, in the Woiwodena, ahout three miles east of the Danube, and 12 miles west-north-rest from Zombor. Pop. 778き.
EHADA'RSA, a town of British India, in the district of I'ackhamrat, in Onde, on the Tons, 75 mites east from Lncknow. Pop. 5000, of whom 2000 are Mussulmans. Here is an eleemosynary estahlishment, founded by the Nawab Vizier Asaf ud Dowlah, with an endowment of 15,000 rupees a year, the proceeds of which are divided indiscriminately among Mussulman and Hindu religious mendicants. It is under the charge of a Seiad, or descendant of Fatima.
BHANPURA. See Banpura.
BHATGO'NG, one of the chicf towns of Nepaul, 423
situated about 9 miles south-east from Khatmandu. It contains a palitee of striking appearance, and other notable buillings. It is the favourite residence of the Brahmans of Nepanl, who form the sreater part of its inlabitants. Its present popl, is estimated at $1 \therefore 000$, lut it is supposed to lave once coutained 60,1000 inhabitants.

JilIOJP'U'I, a town of Onde, India, in the district of Bainswarya, live miles from the left bank of the Ganges, anl 50 miles south from Lucknow. Pop. about 9000 , of whon only 150 are 11 ussulmans.

BIIOWA'A, BHOWANY, or BHEW ANNEE, a town of British India, in the district of Rohtuek, North-west Provinces, 55 miles west of Delhi. It has a fort, and was formerly the stronghold of a petty chief, on accomet of whose hostile acts it was taken by the British in 1509 . The pops. is said to be 29,442.

BHU'JI, or BIJI, a small hill-state of India, extencling for about 20 inites along the left bank of the Sutlej, ancl about 7 miles at its greatest breadth. Its centre is in abont $31^{\circ} 13^{\prime} \mathrm{N}$. lat., $77^{\circ} 16^{\prime} \mathrm{E}$. long. Its pop. is supposed to le about 25,000 . Having been overrun by the Goorkhas, it was, on their expulsion, bestowed by the British goverument on the present family.

EIA'NA, a town of India, in the teritory of Bhurtpore, $\mathbf{3 \prime}$ miles sonth-west from Shurtpore. It is situated on an eminenee in a small plain, between two ranges of lills. It was once a place of much greater importance than it now is, and was one of the most famous forts in India. The town contains many temples, and the whole rilge of the hill is covered with the remains of large buildings. A high pillar of stone called Bhim Lat, or the Steif of Bhim, is conspicuous over a wide extent of country.

BIGAHPU'R, a town of Oude, India, in the district of Bainswarra, four miles from the left bank of the Ganges, and 40 miles south-west from Lucknow. Pop. 6000 , of whom only about 100 are Mussulmans.

BIIA'R, or B.AHADURGANJ, a town of Oude, India, 44 niles north-west from Allahabad. It has a fort. Pop, about 10,000 .

BIJAPO'liE, a town of India, in Guzerat, in the Guicowar's territory, on the route from Mhow to Deesa, 200 miles north-west from Mhow, and 60 miles sonth-east from Deesa. Pop. 12,000.

BIJAWU'R, a town of Bundelcund, India, the capital of a swall territory of the same name. It is situated in a monntainous tract, 115 miles west from Rewa, in $24^{\circ} 37^{\prime} \mathrm{J}$. lat., $79^{\circ} 31^{\prime}$ E. long.-The raj or state of Bijawur contains an area of 920 sq . m., and a pop. of abont 90,000 . It pays no tribnte, but is required to maintain a force of 100 cavialry and $1: 300$ infantry.

BIJNO'UR, a town of India, the chief town of the British district of the same name, North-west I'rovinces, in $29^{\circ} 22^{\prime}$ N. lat., $78^{\circ} 11^{\prime}$ E. long. It is on the route from Noradabad to Mozuffurnugintr, 31 miles east from Mozuffurnuggur. Pop. about 11,000.-The district of Bijnour has an area of 1904 sq. m., and a pop, of about 696,000. Cotton, sugarcane, and wheat are the principal erops.

BIKANI'R, or BEEKANEEIR, a town of India, the capital of a Rajpoot state of the same name, in N. lat. $25^{\circ}, \mathrm{E}$. long. $73^{\circ} 22^{\prime}$. It is situated in a singularly desolate tract, hard, stony, aud utterly unfit for cultivation. The town is surrounded with a battlemented wall, and las a very imposing appearance. The pop is estimated at 60,000.-The state of Bikanir extends from north to south about 424

160 miles, and from uast to west about 200 miles. Its area is $17,6,6$ sq. miles. The climate is remarkable for extrome changes of temperature, the temperiature during the uight being often very cold, whilst the rlay is very loot. Ice is often formed on ponds in winter during the night, whilst the summer leat luring the day sumctimes reaches lan Fraln. The majority of the population are lyy descent Jants, a people inlabliting from a very remote periol a great extent of country between the IFimalaya and the lmbian Occan. 'I'io rajah and dominant race are liajuouts. Jirahmans are mumerons, but if they ilu not cat, they trade in oxen. There are many Jains. The burning of widows was in former times extremuly prevalent in Likanir. One corlse is saisl to have lieen burned with $S 4$ victims. The anmual revonue uf the state is about $£ 65,000$. The military fore anounts to about 5000 . Tbe pop. is about 540,000 .

BI'LSA, or BHILSA, a town of Jaclia, in Malwa, in the territory of Crwalior, Scintlia's dominions, on the right bank of the Betwia, 188 miles south from Gwalior, and : $: 2$ miles north-east from Plopal. It is situated on an clevated mass of twap rock, and has a fort enclosed by a stone wall, anil furmished with square towers and a ditch. Ontsicle tloe walls, are some spacious streets, and many good houses. 13. was taken from the Hindus by Samsuddin Altansh, sovercign of Delhi, in 1230 ; and alter several times changing lands between llindin and Alussulman masters, was finally incorporated with the empire of Delhi by Akbar' in 1570. "The pop. is about 30,000 . S. and the pergumah of which it is the capital, are said to yield a revenue of 325,000 rupees. The finest tobacco produced in India is from a small piece of land, about three aeres, near Bilsa. Its superiority is said to be entirely owing to careful cultivation. 'There is at B. a brass camon, of beantiful workmanship, said to have been made by order of Jehangir, 191 fect in length, with i bore of 10 inches.

BI'MAI, a river of India, a liranch of the Kistnah (q.v.), rises in the table-land of the clistrict of l'uona, in the presiduncy of Bumbay, at an elevation of 3090 feet abore the level of the sea, and following in a south-eastward lirection, falls into the l istna, in N. lat. $16^{\circ} 24^{\prime}$, E. long. $77^{\prime} 20^{\prime}$, after a course of more than 500 milcs.

BINO'NDO, a town of the island of Luzon, Pbilippines, on the right bank of the Pasig, opposite to Manila, with which it is connected hy a mannificent stone bridge, 411 feet in length. This briilge is regarded as the greatest structure erected by Europeans in the East. B. is chictly inlabited by uatives of the Philippines, but is also the residence of some Europeans. It is the seat of govermment of the province of Tondo. Pop. 29,200 .

BIO'RNEBOIRG, a seaport town of Finland, on the Gulf of Pothnia, at the munth of the Fiumu, 76 miles nortl-north-west from Abo. Pul. (lSG1) 7105. Shipbuilding is carried on. Timber; piteh, and tar are the principal experts.

BIRCII, Sambet, keeper of the Oriental Antiquities in the British Musenm, is a son of the late liev. S. Birch, rector of St Mary Woolnoth, in the city of London, and was born in London, in the year 181\%. B. was edncated at Merchant Taylors' School. In 1S34, he entered the pulblic scrvice under the Commissioners of I'ublic liecorils; and in 1836, he obtained the appointment of assistant in the department of Antiquities, British Dluseum. In this capacity, P. aequired an extensive acquaintance with archreology in all its branches. He studied not only Greck and Foman antiquities, including numismaties, but applied
himself with untiring zeal to Egyptian lieroglyphics. In process of time, he so distinguished himself in this difficult branch of learninis, that he gained the notice of the celebrated cheralier Bunsen, who gladly availed himself of B.'s knowledge in the philological portion of Eyypt's Placc in Cuiversal History. The chevalier, in his preface, thankfully ackuowledged this assistance in the following terms: 'This English edition owes many valuable remarks and additions to my learned friend, Mr Samuel Birch, particularly in the grammatical, lexicorraphic, and mythological part. That 1 have been able to make ont of the collection of Egyptian roots, printed in the German edition, a complete hieroglylhical dictionars, is owing to him. To him also belong the references to the monumental evidence for the signilication of an Egyptian word, wherever the prouf exlilited in Champollion's dictionary or graminar is not clear or satisfactory.

The work nary now be said to contain the only complete Fsyptian grammar and dictionary, as well as the ouly existing collection and interpretation of all the hicroglyphical signs; in short, all that a general scholar wants, to make himself master of the hieroglyphic system, by studying the monuments.' After Bunsen's decease, B. was engaged to 1 repare for the 1 ress and edit the fifth and concluding volume of Egypt's Place, a task which he has performed in an admirable manner, giving the results of all the discoreries made by Egyptologists, siuce the publication of the first volume, in 1818, down to the present year (1867). B. has also prepared a second edition of the first rolume of Eqypt's Place, $l^{m b l i s h e d ~ a t ~ t h e ~ s a m e ~ t i m e ~ a s ~ r o l . ~} 5$, and in which the same care has been taken to make the work correspond with the most recent investigations of hieroglyphic scholars. It was by the particular desire of Bunsen, as expressed on his death-bed, that B. undertook the revision of his work on Egypt. B. is now universally recognised as the foremost Egyptologist in this country. In 1844, npon the retirement of Mr Barnewell from the office of assistant-keeper in the department of Antiquities, B. was appointed his successor. In 1861, upon the retirement of Mr Hambins from the post of keeper of the Antiquities, that department was divided into three separate and independent departments, riz, the department of Oriental, Medieral, and British Antiquities, and Ethnograply; the department of Greek and Roman Antiquities; and the department of Coins and Medals. B. was appointed keeper of the first-named collections: but last year, a fonrth department was constituted out of these collections, viz., that of British and Medieval Antiquities and Ethnography, at the head of which Ir Franks was placed, the consequence being, that B . is now the keeper only of the Egyptian and Oriental Antiquitics. In 186\%, B. received the honorary degree of LL.D. from the university of St Andrews. He is a corresponding member of the Institute of France (Académie des Inscriptions et des Belles-Lettres) ; also of the Academy of Berlin, of the Academy of Herculanerm, and of the Archæological Institute of Rome. B.'s principal publications are as follow : Gallery of Antiquities selected from the British Museum by F. Arundale and J. Bonomi, with Descriptions by S. Birch (1842); Jiexs on the Nile, from Cairo to the Second Catarere, draun on Stone, from Sketches taken by Owen Jones and J. Goury, with Ifistorical Notices of the Monuments by S. Birch (1843); Catalogue of Greek and Etruscan Tases in the British Maseum (1851), drawn up in conjunction with Mr Newton; An Inlroduction to the Study of the Egyptian Hicroglyphs,
eontributed to Sir J. Gardner Wilkinson's work, The Egyptians in the Time of the Pharcolls (1557): II istory of Incient Poltery (2 vols. 1S5S); Description of the Papyrus of Tos-khem, Priest of A men-ra, cliscovered in an Excaucuion madeby dirtation of II.R.II. the Prince of llales in a Tomb near Ciournale at Theles (privately printel by command of the Prince of Wales, 1863). Eesides his Egyltian and classical labours, B. has also studied Chinese, and in that dircction is author of the following bricf contribntions, riz, Analecta Sinensia, short storics from the Chinese (1St1) ; The Friends till Duath, a tale translated from the Chinese (1S 45) ; and Chiness Romance-The Elfin Foxes (1863). B. has likewise contributed papers to the Archacologia, to the Transactions of the Royal Society of Literature, the Recuc Archeologique, the Archäologische Keitung, and the Zeitschrift für A egyptische Sprache und ilterthumskuncle. He has also written many articles for the English Encyclopodia, principally on subjects comected with Egyptian antiquities and hieroglyphics. In the same class of suhjects, he has been a much ralued contributor to Chambers's Encyclopedia.
BISCE'GLIE, a seaport tomn of Italy, on the Adriatic, in the province of Bari, in the former kingdom of Naples, 21 miles north-west-by-west from Bari. It is built on a rocky 1 romontory, defended by strong fortifications. The port admits only ressels of small hurden. B. is a bishop's seat, and has a cathedral, besides tro collegiate and several other churches, convents, a seminary, a hospital, \&c. Rain-water is collected is publie reservoirs, the water-supply being otherwise very insufficient. Pop. (1861) 16,427. Around the town are many fine villas and country-houses. The neighbourlood produces good wine, and has acquired particular celebrity for its currants, which are said to be equal to those of the Ionian 1slands. During the Crusades, B. was famous for its hospital, foundeil by Bohemond, for pilgrims from the Holy Land, of which some ruins still exist.

BISMARK-SCHOENHAUSEN, Graf C.ite Orto vos, Prussian prime minister, perhaps at this moment the most prominent man in Europe, was born in 1813 at Brandenburg, of an old family, of which varions members have gaincd a reputation both as soldiers and statesmen. B. received his university edncation at Güttingen, Berlin, and Greifswald, where he studied law. After lie had finished his studies, he lived for a time on his estates. Before 1847, he was little heard of, but about that time he began to attract attention in the Prnssian parliament as an ultia-royalist, and an adrocate of the extremest absolutism. He was one of those who opposel the scheme of a German Empire, proposed by the German parliament of 1849. His diplomatic carecr commenced in 1851, when he was appointed chicf secretary of the Prussian legation, at the resuscitated German diet at Frankfurt. Here he began to manifest that zeal for the interests and aggrandisement of Prussia, which has since underiatingly guided him, often regardless of the means. In the diet, he gare open expression to the long-felt discontent with the predominance of Austria, and demanded equal rights for Prussia. In St Petersburg, whither he was sent in 1859, he is said to have tried to bring about an alliance between France, Prussia, and Russia, but without success. By this time be had acquired the special regard and confidence of the king, Whe sent him, in the slring of 156%, as ambassador to Paris, in order to sive him an insight into the politics of the Tuileries, before taking the direction of aflairs at home. In autumn, when the king's govcrnment could not obtain the consent of the

BISULNUGGUR-BLACKBURN.

lower honse to the new military organisation, B. was recalled, to take the portfolio of the ministry for Foreign Aflairs, and the presidency of the cabinet. Not being able to pass the re-organisation bill and the budget, he closed the chambers (Octol)er 1S62), annonncing to the deputies that the ling's government woukl be obliged to do without their sanction. Accordingly, the army reorganisation went on; and the next four sessions of prlament were closed or dissolved in the same way, without the government obtaining, or even caring to obtain, the sanction of the house. The people wre now looking for a coup? d'état, and the govermment for a revolution. At this crisis, the death of the king of Denmark opened up again the Slesvig-IIolstein question, and excited a fever of national German feeling, which B. was alroit enongh to work so as to aggrandise Prussia by the acquisition of the Duchies, and reconcile his opponents to his high-handed policy by being able to joint to the success of the newly-modelled army. Thronghout the events which ended in the Gnmiliation of Anstria and the reorganisation of Gerinany under the leadership of Prussia (see Ger:MaNy in SUPPLEMENT), B. was the guiding spirit; and such is the magic of success, that from being universally disliked, he has become the most popular man in Germany. What is perbaps still stranger, the man who, of all others living, has heen the most strenvous upholder of absolutism, and has all along manifested the strongest contempt for public opinion, recently (Nay 186%) received the thanks and congratulations of the extreme demoerats of Great Britain for giving to North Germany a constitution based on universal suffrage. The truth probably is, that B. never cared for the unification of Germany, on which his yopularity among Germans rests ; it is more than suspected that he even disliked it. What he did care for was the aggrandisement of Prussia; and the national aspiration for union presented itself as the only means to attain lis end. But in order to give this national feeling a fair field of action, it was necessary to swamp the obstructive 'particularism' of the aristociats and bureancrats in the petty states by the rotes of the neople, and hence the democratic constitution of the new German parlianent. B. prolably sam that thus, and not otherwise, would the leadership of Prnssia be real. D.'s personal appearance is that of a man of energy; in social life, he is genial and witty; in the discharge of his public duty, earnest and stern; he possesses a great dcal of personal courage, and has shewn limself cool aud fearless in battle.
BISULNU'GCUR, or BISANAGAR, a town of India, in Guzerat, in the territories of the Guicowar. It is situated on the ronte from Mhow to Deesa, 82 miles north-west of λ How, and 44 miles sonth-enst of Deesa. It has a considerable transit trade, in sending iron and other heary goods to Marwal. The manufacture of cotton eloths is carried on to a considerable extent. Pop. 1s,000.

BISULPU'R, a town of India, in the British district of Bareilly, North-west Provinces. It is 24 miles sonth-east from Lareilly. It has a good bazaar, and is abundantly supplied with water. Pop. 7245.
dittenfeld, Herwarit ton, a Prussian general, one of the three leaders that commanded the invasion into Bohemia in ISG6. B. was born in 1790, and gained lis first martial laurels in the War of Liberation, cspecially in the battle of Leipzig. In the year 154S, he commanded the first regiment of the Guards. In 1863, raised to the rank of general, he acquired great fane through his daring crossing of the Sund, and capture of the isle of Alsen. In

420
the campaign of 1860 , he was intrusted with the occupation of Saxony; and then with the command of the army which advaneed from Saxony into Bohemia, and co-operated with that of Prince Wrederick (harles in the advance on Gitachin. Ife contrilonted larcely to the brilliant victories of Hünerwasser, Gitsehin, Minchengritz, and König. gratz; and stands in the highest farour looth with the people and the sovereign, who has conferred on the aged hero the order of the Black Eagle.
BLA'CKPULRN, an inland town of Laneashire, England, 21 miles north-north-west from Nanchester, and $12 \hat{2}$ miles by malway cast-by-south from Preston. It stands on a stream, from which it appears to derive its name, a branch of the Ribble. The surrounding district, formerly known as Blackbumshive, or Blagbonshire, was long very wild aud dreary, but is now rery populous. Conl and lime abound in it. B. harl aequired some importanco as a market-town in the 16 th century. Its manufacturing prosperity can be traced back at least to the middle of the 17 th c ., when it was noted for the production of a kind of linsey-woolsey known by the name of Blackhurn Checks, afterwards superseded by the Blackburn Grays, so called from their being printed unbleached. In the course of the 18th c., the cotton manufacture became the chief industry of the town, which is now one of the chief seats of it, the number of cotton factories being very large, and many of them employing from 1000 to 2000 operatives. The value of the calicos and other cotton goods aunually produced was estimated some years ago at nearly $x^{2} 2,000,000$ sterling, and is now certainly much more. The steam-power employed in the works for spinning and weaving cotton has been more than doubled within the last 20 years. Many improvements in machinery for the cotton manufacture have been made in B., among which the first place in importance as well as in date must be assigned to the invention of the spinning-jenny, by James Hargreaves (q.r.), a native of the town, in 1767. Jlis invention, however, was regarded with so much popular dislike, that he was compelled to remove from the town, and it was not till the beginning of the present c., that it came into general use in the cotton-works of Blackburn. The pop. of J. in 1851 was 46,536 ; and in 1861, it had inereased to 63,126 . It is now (IS67) probably about 75,000. A range of hills on the north of the town shelters it from the coldest winds. Many of the streets are spacious, and the town is generally well built. A park of 50 aeres, knorin as the Corporation Park', has recently been lairl ont for public recrention. The most elevated part of this park is about 700 feet above the level of the sea, and commands a very extensive riew. The parish church, St Mary's, is a very beantiful Gothic building, erected between 30 and 40 years ago. There are numerons other places of worship, both of the Established Church, and of varions denominations of dissenters. The Grammar-school was founded hy Queen Elizalbeth in 1507 ; and there are many other educational establishments, and many benevolent and religious institutions. The finest building in the town is the new Exchange, recently erected, in the Gothic style, and containing a magnificent room, 40 yards hy 20 . The town-hall is also worthy of being mentioned. B. is supplied with water from capacious rescrvoirs, which have been constructed in the neighbourhood. The Leeds and Liverpool Canal, passing on the south side of the town, affords important facilities for the conveyance of goods ; and B. is connceted by several railways with all the meighbouring towns, and so with all parts of the lingdom. 13. is governed loy a mayor, 12 aldermen, anil 36 common-councilmen. It sends

BLACK DEATH-BLOWING-MACHINES.

two members to parliament, a privilege which it obtained under the Reform Bill of 183 2.
bLACK DEATH, Tine Recent, is the title commonly given to a very fatal disease which oecurred in Ireland, in an epidemic form, in the years 18661867. It is described under the title of Epidemic Cerebral Meningitis.
BLA'CKlOOL, a flourishing town in the township of Layton-cum-Warbreck, in the county of Lancaster, is now a very considerable place, lying on the const of the Irish Sea, between the estuaries of the Fibble and the Lune, distant from Poulton-le-Fylde 4 miles, and from Preston 15 miles. The pop. in 1861 was 3506 , and since that period it has very considerably inereased; but the uumbers who resort here during the bathing-season far exceed the permanently resident inhabitants. C_{P} wards of 100.000 visitors annually come from East Laneashire, Manchester, Yorkshire, and other parts of the kingdom. B. is one of the most frequented bathing.places in the west of England, the sands being excellent. It has a brauch railway conneeting it with the Preston and Wyre Liailway, which affords easy access from Preston, Liverpool, Manchester, and all parts of the kingdom. There is also another railway connecting it with Lytham, another favourite bathing-place on the Ilibble, about 7 miles to the sonth. B. has a fine pier stretching out into the sea about 500 yards, which cost £15,000; also another pier, now (1567) in the course of construction, which, when finished, will extencl firther. There are three established churches, a Roman Catholie chapel, and tive other chapels for the Wesleyans, Indejendents, \&c. Besides excellent streets and terraces of houses elegantly built, it has many large hotels (one of which, recently erected, cost upwards of $£ 12,000)$; there is also a theatre, libraries, news-rooms, \&ic. There is no trade or manufactures; the lodging-house keepers depend solely on the large concourse of visitors. Fishing is the employment of many during the winter months.
blaNC, Le, a town of France, in the dep. of Indre, on the Crense, 33 miles west-south-west from Chateauroux. It is beautifully situated, and is a neat and well-built town. It was formerly strongly fortifier, but the fortifications are dismantled. Its principal industries are the manufacture of coarse woollen cloths, and tanning. Vinegar is also made bere; and there is a considerable trade in the wine of the district, and in iron, fish, wood, and pottery. There are several iron-works in the ricinity. Pop. (1866) 45̊s.

BLOWING-MACHINES. The earliest blowingmaeline was, doubtless, some form of the common bellows, the idea of which is supposed to have been derived from the lungs. A vers primitive form of this instrument is still in use in some Eastern countries, consisting simply of the skin of some animal sewed into a rude bag with a valve and nozzle. The olter formas of domestic bellows are all constructed on the same principle-riz., a clamber formed of two boards with tlexible leather sides, having at one end a nozzle with a narrow mouth; and in the lower board, a valve of cousiderably larger area for the aduission of air. When the bellows are distended by drawing the boards apart, air is sucked in by the valve, to replace the vacum which would otherwise be formed; and then, when the boards are being closed, the valve, which only opens inwards, is shut by the compressed air; aud the latter, having ne other escape, is forced out at the uozzle.
The great fault of the common bellows is, that it gives a succession of puffs, and not a continuous blast. One remedy for this was to use two bellows, so that one was blowing while the other was filling;
but it was afterwards found that the donble-bellows secured a still more uniform blast. This machine, slewn in fig. I, is merely the common bellows with

Fig. 1.-Section of Double-bellows for a Tortable Forge.
a third board of the same shape as the other two placed between them, so as to form two chambers instead of one. The middle board is fixed, and both it and the lower one have valves placed in them opening inward. A weight ou the lower board keens the under chamber filled mith air; and when this looard is raised by a lever or otherwise, the air which it contains is forced into the upper chamber. The exit-pipe is attached to the latter, and a weight is placed on the upper board sufficiently heavy to press the air ont in a continuous stream, the continuity being maintained by the large quantity of air always present in the upper chamber, and the uniform pressure of the weight. Sometimes a spring is used instead of a weight to press ont the air. Even with the double-bellows, however, the constant refilling of the upper portion from the lower prevents the blast from being quite remular.

For such purposes as the supplying of a continuous stream of air to a flame lor glass-blowing or soldering, a very conrenient form of apparatus has been constructed by Mr P. Stevenson of Edinburgh, which the diagrams (tigs. 2 and 3) will explain. By means of the common lellows worked by a treadle,

Fis. \because.

Fig. 3.
air is blown into the lower portion of a small cylinder containing a quantity of water, and having a diaphragm in the middle of the beight, with a mide pipe reaching nearly to the bottom. When the apparatus is at rest, the water remains below the diaphragm, as shewn in fig. 2 ; but when air is blown in, it gradually rises through the pipe to the position shewn in fig. 3. The water as it descends then presses ont the air in a steady stream by the exitpipe, as a valve prevents it returning to tho bellows.

BLOWHNG-』ACIILNES.

Bellows mate entirely of wond except the nozzle, first made in Germany in the 16 th c., are in use in some continental cointries. They are usually of large size, and the contrivance eonsists in baving two boxes, of which the sides of the upuer enclose those of the lower, so that the former can move up and down on the latter without almitting air except lyy a valve, as in the common bellows, of which, in fact, they are only a moditication.

The ('hinese lave a very simple form of bellows, shewn in fig. f, which is wot only interesting in

Fi\%. 4.-Chinese Elllows.
itsclf, lut also beeanse its action is almost the same as the blowing-engine. It is merely a square chansber of wood, with a close-fitting piston, which, when drawn from the nozzle, opens the valves r, v, to admit air, and when pushed in the opposite alirection, slunts these ralves, and forees the air ont by the nozzle.

For blowing a domestic fire in a climney, the wost effective contrivance is a metal screen to close the front of the aperture above the grate, so that the supply of air must all pass through the fire. This kind of blower, however, will ouly act when the fire is already producing as much heat as to cause a sensible dranght $n \mathrm{p}$ the chimney.

For smeltiog and refining furnaces, where a luast with a pressime of $3 \mathrm{nr}^{*} 4$ lbs. per square inch is required, blowing-engines of large size are nsually employed. In our article lras, this kind of engine is referred to, and a small furnre of one given; but we shall here describe the howing apparatus itself more in detail. A blowing-engrine consists, as shewn in fig. I, article Iron, of a steam-engine, with the ordinary steameylinder at one end, and a lilastcylinder at the other enk of the leam. Such, at least, is the construction preferred for the largersized engines; but sonnetimes a horizontal arracrement of the cylinders is adoptal for those of smat] size. The howing-cylinder, X, shewn in fit. 5 , is of cast-inon, with all air-tight piston, I, which, as it asceuds and descends with the mation of the engine, altervately inhales and expels the air at each encl. 'T'0 effect this, a scries of valves are provided, and these are arrangel as follows: Inlet valves are placed on the top of the eylinder at A, and also on three silles of the box at B , but on the fourth side of this box there are two outlet valves at \mathbf{C}. These valves consist of numerous openings, against which leather flaps lie when they are slant. Valves of a similar nature are placed at the bottom of the cylinder; those for the inlet of air at D, E, and F ; and those for withet at G . W'hen the piston descends, it would create a vacuum in the upper portion of the eylinder, provided there were no openings in it; hut the extemal air pressing on the inlet valves, opens them, and fills the sprece above the piston; at the same time, the ontlet valves at C , which only open outwards, are tightly closed lyy the air pressing inwards from the pipe M. Agnin, when the piston ascends, it compresses the air above it, and exactly reverses the action of the valves; that is to say, it shats the inlet valyes at A and B, opens the valves at \mathbb{C}, and allows the compressed air to pass along the mintlet pipe M, which is male of large size, so as to offer as little resistance as prossible to the passage of the air. The valves at the bottom of the cylinder work exactly in the same way, the inlet valves, D, E , and I^{3}, opening when the piston ascends, and shatting when it descends, thus compelling the inhaled air to pass into the pipe M by the lower outlet
valves at G. The air is conducted by the pipe M into a receiver of large eapreity, which serves to equalise the blast before it passes to the tuyeres. See In:aN, fig. 1.

A blast-engine at Shelton Iron-works, of which the blowing-cylinder is S feet 4 inches in dianeter, and has a 9 -feet stroke (represented in tig. 5), working with IS6 horse-power, aud making 32 sinerle strokes of the piston per minute, inhales 15,700 eulic feet of atmospheric air per minute; lut this is compressed by the blowing-eylinder to a pressure of 3 lbs. per square inch above the atmosphere, which reduces the volume supplied by the eylinder to I3,05: culric feet. Its volume, however, is largely increased again, when raised to the hot-blast temperature, before entering the furnace. Nuch valuable information respecting blowing-engines and blast apparatus will be fonnd in I)r Percy's large

Fic. 5.-Section of a Mlowing Cylinder, Shelton Ironworks, Stoke-upon-Trent.
work on Detallurgy, vol. ii., from which the above figure is taken.

In the Catalan forges of Spain and tle south of France, there is a rery ingenious water-blowing machine in use called a Trompe: but it can only be advantageonsly employed where a fall of a few yards of water is available. Its construction will be understood by an inspection of fig. 6. A strong wooden cistern, C, to act as a reservoir for the water ; woolen pipes, P (generally two in number), throurch which it descends; and a wind-chest, W, to allow the air and water to separate, constituta the essential parts of the apparatus. It is put in operation by lifting the wedge v with a lever; this allows the water to rush down the pipe, and in doing so, it drars in air through slopings holes, a, a, callerl aspirators, at the throat of the pipe. A continuons current of water and air is thus supplied to the wind-chest, which is provided with an opening at o for the escape of the water, while the air passes ont in a regular stream by the nozzle-pipe at n. The leight irom which the water falls determines the tension of the blast; but the height seldom excceds

BLOWING-MACHINES.

97 feet, which gives a pressure of from $1 \frac{1}{2}$ to 211 s . to the square inch. It is asserted that no other blowing-machine gives so equable a blast as the trompe, and it is the least costly of any; but it has the serious defect of supplying air more or less saturated with moisture. The theory of this sincular machine has never been satisfactorily explained, although one or two able philosophers, who have specially studied the matter, incline to

Fig. G.-Trompe, or Water-blowing Machine (vertical siction).
the belief that much of the air is carried down the pipe by becoming entangled in water. It is found that the separation of the air from the water is greatly promoted by allowing the falling current to impinge on a narrow platform at p.

The fan, or Fanners (q.v.), as it is sometimes called, is another machine of great value for producing currents of air. It has loug been in use as it winnowing-machine for agricultural purposes, and also for creating a blast to molt pig-iron in foundries. More recently, it has leen employed instead of lellows in smithies, on account of its greater convenience and the steadier blast which it yiclds. A domestic bellows has even been introduced on the fan principle. The fan is also much used in the rentilation of buildings, ships, and mines. For the last, it is now considered preferable to the plan of furuace-ventilation, especially where there are ficry seams of coal.

In its construction, the far is like a wheel, having the arms tipped with vanes, instead of leing joined by a rim. It is placed inside a chest-usually in
an eccentric position-with openings on each side round the spindle for the admission of air. The motion is given by steam or other power; and as it revolves, the centrifugal action sucks in air at the contre, draws it towards the tips of the ranes, and

Fig. 7.-Fan (vertical section).
these impel it forward through the exit-pipe. Fig. 7 represents a vertical section, and fig. S, a plan of a blowing-fan, in which v, v, v, v are the four vanes; o, one of the central openings; c, the chest or fan-case; and e, the exit-pipe. Engineers differ as to the proportions which shonld be adopted for the fan, and as to the extent of spiral which the fan-case should have. For foundries and smithies where the pressure of the blast required is from four to five ounces per square inch, the following have been fond to suit wery well in practice: the wilth of the vanes, as well as their length, made one-fourth of the diameter of the fan; the iulet openings in the sides of the fanchest, one-half, and the degree of eccentricity, onetenth of this diametcr. There is a segmental slide shewn at s in fig. 7 , by which the opening into the delivery-pipe may be increased or diminished. For

Fif. S.-Fan (horizontal section).
such purposes, fans vary from 3 to G feet in diameter, and they are entirely constructed of iron. Double fans have been introduced by Mr Chaplin in England, and by M. Perrigault in France. In these, two simple fans are so disposed on one spindle that the blast produced by one passes in its compressed state through a tube to the other, which largely angnents the working pressure. In Ilatt and Schiele's silent fan, the air cuters ly a central entrance at oue side only, and is expelled from the case at the opposite side. The yanes are a peculiar shape, and describe what the inventor (Schiele) calls an antifriction curve. It is said to he very efficient, and so also is another form of noiseless fan by Mr George Lloyd, London.
For the use of the fan in rentilation, see that head. In some eases, fans are of large size; some also are of peculiar construction. Agricultural fans (see Fanners) are not usually placed in an eccentric position in their cases, and only some kinds of rentilating fans are. One of the happiest applications of the fan has been to draw off and render harmless

BLUEFISH—BODE.

the fine stecl dust in the operation of needle-grinding. It has been lately employed to recover the waste gases in blast furnaces. A hot-air fan of an ingenious liind las been introduced for lieating and drying purposes by Mr J. I. Davidson, London.

A moditied form of the fan, called a centrifugal alisc, patented by Mr Fimmell (Patent No. 271 S , Nov. 1860), has been successfully employed by the P'nemmatic Dispatch Company for the transmission of the mail-bags. See Preumatic Dispatcif. This machine can also be used to produce a blast, to raise water, and to propel vessels.
In the Paris Exhibition of this year (1867), there is an excellent blowing-machine, something on the priveiple of the fan, by Messrs Roots of Connersville, U. S. It is thus described in the Engineer for August 23, 1867: 'A pair of horizontal shafts, geared togrether at both ends, traverse a case of the form of two semi-cylinders, separated by a rectangle equal in depth to the diameter of the semi-eyliuders, and in wilth to the distance between the centres of the shafts. \qquad These shafts carry a pair of solid arms, each baving a section somewhat resembling a ligure of eight, the action of which, as they revolve, takes the air in by an aperture at the bottom of the macbine, and expels it with considerable pressure, if requirel, at the top.' Fig. 9 will further explain

Fig. 9.-Roots' Blowing-machine.
the construction of this machine. It gives a much sreater pressure of blast than is attaiuable by the fin.

For the purposes of ventilation, and also for cxpelling accumulations of hot air, dust, waste flyiugs, \&c., in faetories, a machine has been constructed by Mr J. Howorth, Farnworth, Bolton, called a revolving Archimedean screw-ventilator. It consists of an Archimedean screw enclosed in a tube with proper means of lubrication. Its diameter is 30 inches, and it is made to be set in motion by steam or other power, but it is also furnished with a hood, on the top of which there are curved vanes, which turn the screw by the action of the wind. Immediately beneath these, there is another series of lateral vanes for the escape of the loot air.

BLUEFISH (Temnodon sallator), a fish of the family Scomberidue, of a genus having no detached finlets, no isolated dorsal spines, and no lateral armature of the tail, two dorsal fins, the first of which is small, and two deeply-hidden spines in front of the anal fin. The only known species is a native of the east coast both of North and South America. The upper parts are of a bluish colour, the lower parts whitish, a large black spot at the base of the pectoral fins. The month is crowded with teeth, the jaws are furnished with large ones. The B. preys on other fishes, as the weak-fish, menhaden, and mackerel, the shoals of which it pursues. It is very swift, strong, and voracious.

It sometimes attains a leugth of three fect, and a weight of 14 lbs . It is nuch esteemed for the talile, and great numbers are brought to market in New York, Philadelphia, and other towns about the end of summer. It is often eaught by trolling, as it bites readily at any objeet drawn swiftly through the water. It frequently ascends rivers even to fresh water.
BOATBILI (Cancroma cochlearia), a hird of the IIeron ($1 . v$.) family, the only known species of a genus differing from the true herons in little elso

Boatbill (Cancioma cocllcaria).
than the form of the bill, which is comparatively short, and very broad, the maudibles resembling the bowls of two spoons placed one upon the other, the upper mandible overlapping the lower, Fecled on its upper ridge, and hooked at the point. The 13. is about the size of a domestic fowl, has shorter limbs than most of the herons, but resembles then in plumage, and is abundautly provided with elongated feathers on the back of the head and neck, which it erects when irritated. Its general colour is rusty red, the forehead and breast whitish. It inhabits Casenne, Surinam, Brazil, \&c., sits perched upon trees which hang over streams, and darts dowa upon fish, which seem to be its principal food.
bODE, The Barons de, a family of doubtful nationality, hest known in England in conncetion with a claim for indemnity frequently brought before parliament. The first member of the family connected with England was Charles A. L. I. de B., a baron of the Holy Roman Empire. He was born at Neuhof, in Germany, in 1741, and became an officer in the regiment of Nassau, which, although in the service of France, consisted exclusively of Germans. The baron had landed property in Germany, and remained German when he married a. Miss Kennersley, an Englishwoman. Two years afterwards, a son was born of the marriage at Looksley, in Staffordshire, named Clenient J. P. P. de B., who returned when a child with his parents to the continent. In 1787, Baron Charles purchased an estate in Lower Alsace, held under German feudal tenures, in terms of the treaty of Muinster, and thither he went to reside. The Revolution, however, broke out, and in 1791 the baron considered it prudent publicly to surrender his estates to his son. Two years later, the family was obliged to emigrate, and the property was confiscated. After leaving France, Baron Charles bought a fief held of the Archbishop of Cologne, and he died a German in 1797. Clement, his son,
became an officer in the Tussian artillery, married a Russian, and, with his regiment, entered Paris in 1814. After the peace, conventions were entered into, under which British residents who had suffered during the Revolution by confiscation were to be indemnificd. A large sum was handed over by France to England, to be divided among the claimants, one of whom was Baron Clement. The fact that he had been invested as proprietor of the estate in Alsace at the time of confiscation, that his mother was Enghish, and that he had been born in England, secured at first a recognition of his claim to the extent of making it an item of the calculation for fixing the amount of the indemuity; but it was afterwards repudiated, on the ground, that Baron Clement was not au English subject at the time of contiscation, and that he had sustained no loss through his connection with England. He died in 1St6. His son, Baron Clearent A. G. P. L., took ont letters of administration to his father, and prosecuted the claim of his family; rutil now, however, without much success. He petitioned the House of Commons in 1852, and his case was fully discussed. See J. Hodgkin's, Case of the Baron de B. in its Present Aspect (1560). Baron Clement is naturalised as a British subject, and has married an Englishwoman. He has acquired reputation as an Eastern traveller, and is the translator of Bokhara, its Emir and People, from the Russian of Khanikoff (1845), and the author of Travels in Lauristan and Arabistan (1St5), and of an interesting Account of Hilly Daghestan and the Lesghi Tribes of the Eastern Caucasus, referred to with approbation by Earl de Grey in his address to the Geographical Society in 1860 .

BEEHME'RLA. The China-grass plant, B. nivea, has receutly been introduced into cultivation in some of the southern parts of the United States, under its Malay name of Ramee. It succeeds well, and the results as to produce of fibre have proved very encouraging.
boissonade, John Fraxcis, a distinguished classical scholar, born at Paris, Angust 12, 177t, of a noble Gascon family. He was originally intended for the administrative career, but after experiencing some of its more violent vicissitudes, he renounced it for philology, in which le had alrays found his favourite recreation. He soon made himself known to the critical world by his acute and learned contributions to the literary journals, was appointed Professor of Greek in the Academy of Paris in 1S09, and entered on the active duties of the chair in 1812. In 1813, he was admitted into the Academy of Inscriptions; and in 182S he succeeded Gail as Professor of Greek Literature in the College of France. Beyond this high position he never aspired, but pursued his investigations with an energy which no mere social or public ambition could distract. His more important works are these: Philostrati Heroica (Paris, 1S06) ; Marini Vita Procli (Leip. 1S14) ; Tiberius Rhetor de Figur is (Lond. 1S15) ; Sylloge Poetarum Gracorum (Paris, 1823-1S26); Babrii Fabuke (Paris, 1S44) ; \&c. He contributed in his earlier years numerous papers on philological subjects to Parisian, English, and German journals, and gave the cause of classical study in France a powerful and still perceptible impulse by his eloquent and attractive lectures from his chair. In spite of his many and laborious philological works, he also signalised himself as a French lexicographer and belle-lettrist, and was one of the most copious and valued contributors to the Biographie Universelle. He died in 1859, leaving behind him a reputation for learning alrmost German in its profundity, and more than English in its elegance.
$\mathrm{BO}^{\prime} \mathrm{LI}$, or BOLY, a town of Asia Minor, in the pashalic of Anatolia, on the left bank of the river Boli, and on or near the site of the loman Hadrianopolis, 136 miles east from Constantinople. The town occupies an eminence, at the extremity of a fertile plain. It has several mosques. There are mineral springs near the town, and baths much frequented by the Turks. E. is on the caravan route from Constantinople to Erzeroum. Pop. 6000.

BOLSWA'RD (Lat. Eolverda), an old town in the Netherlands, province of Friesland, lies 15 miles south-west from Leeuwarden. It is surrounded by a high earthen wall and broad canal. The church of St Martin, in the Gothic style, is the largest and handsomest in Friesland. There are several henerolent institutions, and a grammar-school. The trade is chiefly in butter, cheese, and cattle. Sbip. building, tanning leather, making brick and coarse pottery, spinning worsted, carding wool, \&c., are the priacipal industries. In 1S64, pop. 4617.
BOMI JARDIMI (i. e., Good Garden), a town of Brazil, in the province of Ceara, 20 miles south-byeast from Crato, in a rich and beautiful mountain valley. It is the centre of an extensive district, yielding mandioc, sugar, \&c. Pop. 6u00.

BONI'LLO, a town of Spain, in the province of Albacete, and 31 miles west-north-west from Albacete. Pop. 59S0.

BONYHAD, or BONHARD, a market-town of Hungary, in the county of Tolna, 20 miles northeast from Fünfkirchen. Pop. 5340.

BO'RA SA'MBA, a curious little half-independent state, or raj, in India, within the jurisdiction of the political agent for the south-west frontier of Bengal. Its central point is in N. lat. $20^{\circ} 5 \overline{5}^{\prime}$, E. long. $83^{\circ} 10^{\prime}$; its area is about $62 \mathrm{sq} . \mathrm{m}$. ; the pop. is estimated at 25,000 . The country is rugged, and the people savage. Outlaws from other parts of India have too often found refuge here. The revenue is about $£ 400$ a year. A tribute of $£ 16$ is paid to the British government.
BORGETTO, a town of Sicily, in the province of Palermo, and 13 miles west-south-west from Palermo. It is a long straggling town, of mean houses, but picturesquely situated on a wooded cliff overhanging a plain, and itself overhung by a lofty precipice of red rock. Pop. (1S61) 5977.

BORGOMANE'RO, a town of North Italy, in the province of Norara, and 19 miles north-northwest from Novara, situated near the left bank of the Agogna. It is a walled town, well buuilt, and contaius a communal college and an hospital. It has little trade. Pop. (1861) 4601.
BO'RGO SAN DONI'NO, a city of North Italy, in the prorince of Parma, situated in a plain, 14 miles north-west from Parma, on the railway between Parma and Piacenza. It is surrounded by walls, has several good streets, is an episcopal see, and has a cathedral (the oldest part of which is in the Lombard strle), several churches, and several educational institutions. Manufactures of silken, linen, and woollen fabrics are carried on; and oil and wine are produced in considerable quantities. The city derives its name from a saint, who is said to have been a soldier in the army of the Emperor Maximian, and to have suffered martyrdom here. The shrine of St Donino has long been one of the most frequented in Italy. There are some curious remains of very rude medieral sculpture in the cathedral. Pop. (1S61) 4119.

BORGOTA'RO, a town of North Italy, in the province of Parma, and 35 miles south-west from Parma, on the left bank of the Taro, a tributary of

BOROVJTCHI-BRADDON

the l'o. It is encireled by walls, and is well built. I'op, (ancluding eommunc) 693S. The surrounding district is lilly and wooded.

1:OROV1 TCHI, a town of Russia, in the govern. ment of Novgorod, as miles east of the town of Noverorod, on woth sides of the river Msta, near sume rapile. Pop. S\%06. Its situation on the great eanal and river water-way which comects the Folga with Lake Ladoga, ruders it of considerable commercial importance.

I:O'RZNA, a town of Iiussia, in the gevernment of Ithermigov, 50 miles south-east of the town of 'lehernigov. I'op. 5341.

BO'SCO REA'LIE, a town of Sonth Italy, in the province of Naples, at the south base of Monnt Vesuvius, 10 miles east-south-east of Naples city. It contains several churches and convents. l'op. (IS61) 1553. Good wine is prodnced in the neighbourlinod, and much silk. This town was in imminent danger of destruction by the eruption of Vesuvius in IS50, when a stream of lava advanced towards it with a front of about a mile and a half broad, and a depth of about $1: 2$ fect, enveluped the town, and consumed the wood on both sides of it, in which were many magnificent oak, ilex, and ash trees. The larger trees, as they were envelopert in the lava, poured out jets of hissing steam from every knot and braneh, and then expluded with 2 loud noise, leaping into the air to the height of 10 or 20 fect.

130UCICAULT, Dros, Aramatic antlor and actor, was born at Dublin on the 26th of December 152.. He was brought up under the giardianship, of Dr Dionysius Larducr, the well-known popular writer on sciunee, and was edneated at University College, Lundon. Ile produced his first dranatic work very early-before he was I! years olel. It was signally suceessful, and its suceess determined his eareer. This was London Assurance. It was first performed at Covent Garden Theatre in March 1S4l; and it has ever since remained a favourite with playgoers, both throughont Great Britain and in America. Much of the success it hard in Loudon must he ascribed to the admirable acting of Mr Charles Mathews ; but it harl merits of its own suflicient to secure to it the favourable verdict of the public. The plot was slight, but ingenious; it abounded in comic sitmations; the clialogne was lnisk and sprightly; there was no lack of wit, and there was perhaps somewhat too much of those fippuncies and pleasant impertinences which average theatre-goers prefer to wit. Once embarked in the career of a play-writer, B. produced piece after biece in rapid succession, and greatly increased the reputation which his first attempt had brought lim. Old Meads and Young Ilearts, Love in a Maze, Lsed LP, Louis XI., and The Corsican lirothers were among the most popular of his early works. Several of these are still stock pieces at our theatres; and to playgoers, the mere enumeration of their mames will shew that B. clistinguished limself efually in comedy, faree, and moludrama. When he went upon the stage, as he soun did, he adeled a high reputation as an actor to the repintation he had previously gained as an author, I'rom 1553 till 1560 , he was in America, where his pupularity was scarcely less than it had been in Encrland. On his return to England in IS60, he produced at the Adelphi Theatre, a play, The Colleen Dawn, which proved among the most successful of moderia times, and which, if not the first of a new schonl, las at least supplied a new eleseriptive mame to nur dramatic literature. The Colleen Jiaun was, happily cnough, described as a 'sensation drama; 'its interest depended largely mpon scenery, mainly upun
432
startling incidents and astounding stage.effects. It was not a hich kind of work, or fit to stand the tests of a good dramatic piece, as nobody knew better tlan the autlon ; but it suited the public taste, and the anthor made a fortune by it. It has bem performed at almost every theatre in the Enitud Kingdons it had a great run in America tuo; it was even translated into l'rench, and brounlat out at the Ambigu Theatre at I'aris. Mr 33. subsequently produced at the Adelphi-of which he was for sume time joint-manager with Mr B. WVebster-another 'sensation' drama, The Octoroon, the popularity of which was only inferior to that of The C'olleen Burm. laving quarrelled with Mr Webster, he, in IS62, opened a new theatre in Jondon, the Westminster, erected on the site of what had been for grenerations known as Astley's Amplitheatre; but this specuda. tion turned out unfortumate, and 13. was ruincd by it. He has since, however, re-established his fortumes hy new plays, brought ont at the L'rincess's, the llolborm, and other theatres, in some of which lie ant his wife-formerly Miss lioluertson, a very popular actress-5ook the leading parts. The Streets of London and Flyins Scul have leen the most popniar of his recent works, all of which are of the 'sconsation' school, with which, it may be said, ho first familiarised the public. He has written upwards of 150 dramatic picces; and in illustration of the facility with which he has composed works which-all deductions made-are of considerable merit, it may be saic that lie lately stated to a royal commission that be would undertake to write plays for all the theatres in London. He is mudonbtedly capable of writing better works than any he has yet written; but he found the pmblie taste bad, and instead of making thankless attempts at improving it, le lias been content to gratify it ; and in fact las helped to lebanch it. As an actor, l’. has alwass been popmar, without attaining to high excellence in his vocation. He wants some natural gifts, without which a man cannot be a great actor: he has an immobile conutenance, an indifferent voice, and a too artificial manner. Any suceess lie has land has been gained by the soundness of his judgment, lis great cleverness, and his intimate linowledge of stage business.

BOU'FARIK, a village of Algeria, in the province of Algiers, and 16 miles sonth of Algiers. It is an important military station on the road from Algiers to Blidah and Oran. It has well-frequented markets, and a considerable trade in corm, cotton, olives, uranges, tobacco, raisins, ancl cattle. Pop. 5100.

BOUVARDIA, a geuus of plants of the natural orter Cinchonacea (q. v.), and of the same tribe with the Cinchona (q. v.), or Peruvian Bark. Ihe calyx is 4 - partite, with tecth between the segments; the corolla tubular and 4 -fid; the stamens 4 , included within the corolla; the capsule 2 -celled. The species are natives of Mexico. One of them, L. triphylla, with oblong ternate leaves and trigonons branches, lias olstained a place among the favourite ornaments of flower-borders in Britain, but requires earcinl protection from frost. 'Tu preserve it, the roots are generally taken up, and are sometimes placed in a grecuhouse or frame for the winter, sninctimes in a dry cellar. Its beatiful corymbs of scarlet Howers are jroduced from June till November.

BRADDON, Miss Máry Elezareth, one of the most popular novelists of the day, was born in Lundon in the year $1 \$ 3 \%$. Her father, Mr IIenry Braddon, was a solicitor. She very early shewed ia turn for literature, which she indulged in the usual manuer, by sending verses and other trifles to the
magazines and newspapers. In 1860, she essayed a somewhat more sustained effort in a little commedietta called The Lores of Arcadia, which was brought out at the Strand Theatre; and the year after, she published a volume of verse entitled Garibaldi and other Pooms. Neither these, however, nor the tales which she now began to issue through the mediums of the Tenople Bor and St James's Magazine-Larly Liste, The Captain of the Fulture, Ralph the Eailifi, \&c.- in any decisive way succeeded in drawing to her the attention of the public. Her first great success came with the publieation, in 1862, of Lady Audley's Secret, which instantly attained a great popularity. This has since been extended by the appearance of Aurorct Floyll, Dleanor's Victory, John Marchmont's Legacy, Henry Dunbar, The Trail of the Serpert, The Ladies' Mile, Sir Jasper's T'enant, Only a Clod.' The Doctor's Hifo, and Rupert Godwin. Than these, whatever may be judged their exact nerits, few books of the perind have secured a wider circle of readers. They mainly depend for their interest on good bold effects, of what is termed, in the slang of the day, sensation, and the art of their appeal to 'that low vice curiosity ' in the conduct of astory, carefully leading up, to some suspended and unforeseen dénowement. In their particular way, thongh without much claim to attentiou as regards either character or sentiment, they display undoubted talent: in style, they are fresh and vigorous, and their narrative jower strongly excites the reader's interest. Miss B. is still in uninterrupted literary activity; and as her facility of production is great, she will probably continue to produce books in rapid succession, so long as the public contimes to read them, as now, with avidity:

1; R A Y, Mas Anya Eliza, an authoress, is clanghter of the late John Fempe, Esq., of the N'ew Kent Rond, Surrey, and was born towards the end of last century: At an early age, she shewed much of the imaginative faculty, and a taste for design, which latter brought her the acquaintance of the celebrated Mr Stothard, M.A. From Stothard she took lessons in trawing; and in February 1818, married his second son, Charles Alfred stothard, also an artist, and author of a well-known work cutitlen The Momamental Lhipies of Great Brituin, selected from our Cathedral's and Churches, \&c. In July 1S1S, she accompanied her husband to France. Their tonr and residence in France lasted until about the mildle of November in the same year; and Mrs Stothard wrote an agreeable and lively account of her first forcign experiences, under the title of Letters written cluring a Tour through Normandy, Britteny, and other perts of France, in 181S, with Sumerous Engravinys after Drawings by (. Stothard, F.S.A. (Lond. 1820, 4to). Subsequently, Mrs Stothard accompanied her husband on a similar tour in the Netherlaads. In May $18 \geqslant 1$, however, slie had the severe misfortune to lose ler husband, who was killed by falling from a ladler. In 1823 , Mrs Stothard wrote a life of her hnsband, eutitled Menoirs, including Journals, Letters, Papers, und Antiquariten Tracts of the late C. A. Stotharl, with Comective Totices of his Life, and some Acconnt of a Journey in the Fethertends. Distress of mind brought on ill health, and Mrs Stothard suffered from an affection of the eyes, which olliged her to give up hiterary labour altogether for more than two years. In 15\%5, she married the Rev. E. A. Bray, vicar of liaristock; and in the following year, published a historical romance entitled De Foix, which she had hegun during her first husband's lifetime. The idea of this romance was conceived during the tour in Normandy; and similarly, that of her second

496
romance, The White Hoods, daring her tour in the Low Countries. This was published in 1828, and was followed by The Protestent, also in 1828; Fitz of Fit-Ford, a Legered of Devon (1830); The Talla, or Moor of Portngal (1S30); Harleigh, or the Fatal Orth, a Legenel of Deron (1834); Trelawny of Trelawne, on* the Prophecy, a Lergend of Cornwall (18:37); Trials of the Heart (1839); Henry De Pomeroy (1812); and Courtenay of Falredion, a Romance of the IFest (1S44). A collective edition of all these romances was published in ten volumes in 1845, with a 'general preface,' in which the writer mentions the circumstances under which each was proluced. Mrs L. is also anthor of The Borders of the Tamar and the Tary (1836), The Mountains and Lakes of Switarland (1841), Triuls of Domestic Life (3 vols. 1S48), Life of Thomas Stothart, R.A. (1S5̃1), A Peep at the Pixies (1Să4), and Hundel, his Life, Personcl and Projessional, with Thonfits on Siacred II usic (185). In July 1857, Mrs B.'s husband died: and in 1859, she $p^{m b l i s h e d ~ P o e t i c a l ~ R e m a i n e, ~ S o c i a l, ~ S a c r e d, ~ a n d ~ M ~ i s-~}$ cellaneous, of the late Edword Athins Bray, selected and edited with a Memoir of the Author, by Mrs Bray (2 vols.). We are not aware that anything has issued from Mrs B.'s pen since this publication.

BliAY, a maritime town, situated partly in the county of Dublin, partly in that of Wicklow, 13 miles south-east from Dublia, with which city it is connected by two different lines of railway-the Dublin, Kingstown, and Bray liailway, and the Dublin, Wicklow, and Wexford liailway. The pop. in 1861 was 4182, of whom 3455 were Roman C'atholics, 665 l'rotestants of the Established Church, and the rest of other demominations. Some years since, B. was a small and unimportant tishingvillarge; but the beauty of its situation, and the facilities of access to Dublin, have male it a popular watering-place, as well as a favourite position for villa residences; and under the enterprise of a few active proprietors and speculators, it has not only grown in its dimensions, but the extensions have Feen carried out with excellent taste and spirit. The most striking buildings are the new hotels, and a spacious and highly decorated Turkish bath. The afliars of the municipality are administered by town commissioners.

PRAZIL CABBAGE, or CHOU CARAÏBE (Caladium sagittifolium, or A'unthosome sagitifolia), a plant of the natural order Arececo, nearly allied to Cocco ($q . v$.), and very similar to it, althongh it differs in liaving arrow-shaped pointel leaves. It is supposed to be originally a yative of tropical America, but is now in common cultivation throughout the whole tropics: not only the rout being used for food like that of cocco, but also the leaves, boiled as greens. Both roct and leaves are almost entirely destitute of the acridity so generally characteristic of the order.
BREECH-LOADING ARMS ANO NEEDLEGUNS. To be loaded at the breech, and to be fired by the penctration of a needle into a detonating can within the cartridge, are distinct attributes in a weapon; and althouch the latter system has only been before the public for about thirty years, systems for breech-luading have been tried, accepted, and abandoned without number during the last three ecnteries. Indeed, a sort of instinet dictates that loading the breech is the preferable course; ancl all the earliest muskets were so made, the system being donbtless abanduned from the difficulty of accurately closing the breech, in those days of rough workmanship. The extraordinary efficacy of these principles, especially in combination, have, however, only been very prominent
during the wars of the last fow rears, and notably in the l'rnssian campaigns of 1864 against Demmark, and of $1 S 66$ against Austria. The successes of the l'russian arms were attriluted in no small degtive to the rapidity with which their troons could fire as compared with the enemy. They hand, in greater or less numbers, borne these same rifles since 1 sis., but these were the first opportunities of using them in warfare. To all the other powers, whose men still carried muzzle-loading ritles, and who had delated, without pactical result, for years past the question of ammament with breechloaders, soldiers thus armed appeared irresistible. From July 1866 to the present moment, the hammer and the anvil have been busy night and day throughout the civilised world iu making the weapons of death yet more deally. Scarcely two countries seem to have adopted the same plan: each nation has elaborated a system from among its own inventors. Those possessing no great reserve of rifles have prepared new arms : but the majority of governments have been content. in the first instance, to convert their existing stock into needlefiring breech-loaders of as good a construction as circumstances would permit. Thus, Britain, after offering a handsome lerize for the best design, selected one said (subject to some controversy) to be the iovention of the late Mr Snider.* As this weapon has been produced already to the number of uearly a quarter of a million, and as it has confirmed the favouralile anguries entertained of it by accuracy of fire, and by loading thrice to the muzaleloader's onee, much of the following article will be devoted to a consideration of it. At the same time, it is to be borne in mind that the Sritish goverament only regards the Snider arm as a make-shift, rescriad to itself the ultinate selection of a pattern on which to mamfacture new weapons. It is not to be understood from the foreroing paragraph that Lritain adopted a breech-loading arm in a sort of panic after the lattle of Sadowa. It was after the Danish eampaign, on the 1lth July ISG:4, that it was decided as an abstract question to arm the liritish infantry with breech-loaders; a portion of the eavalry having for nearly ten years prast been armel with Sharp and Terry carbines, loading at the breech. The selection of an arm took longer ; but by the beginning of 1555 it had been decided to convert our great stock of rifles on the 'Snider' system.

Lreech-Loading.-The adrantage of hreech-loading is obvious: to be able to insert the charge at the head of the barrel instead of at its month, is to save time, and to ayoid exposure to hostile fire during the operation of loading and ramming home, which of necessity involves considerable outstretehing of the limbs. The great condition of success is, that the bullet shall be propelled with equal force, and with equal safety to the rifleman, as from the muzzle-loader.

* The originality of the invention, though claimed by Mr Jacob Snider, was disputed on behalf of Mr 1. E. Schneider, and also of a Cornishman, Mr John Poad Drake. Really, there was little originality about it, for there are in the Tower armoury two muskets with a breech apparatus scarcely perceptibly difierent from the present gun. However, the War Department recognised substantially Mr Snider's claim, and paid him-or his representatives, for he died October 25,1866 -a reward of £14,500 for his ingenvity; while a small sum was paid to a Mr Wilson in consideration of some share he liad in the invention. There was a controversy between Snider and the government; lut it hinged not on any refusal to admit his claim as inventor, but rather on legal doubts, occasioned by money difficulties, as to the person capable of giving a valid acquittance. Snider died before this question was definitively settled.

434

When a charge is ignited, the constituents of the gunpowder, assuming a gaseous condition under the beat engendered, expand into a volume of light gas many times greater in bulk than the powder before occupied. On the amount of this expansion, and its sudden action on the projectile, the force of the shot depeads. Any joint in the breceh-picce through which a portion of this gas can escape, withont having imparted its thrust to the ball, tends, therefore, to lessen the range and penetration; while the shock of the explosion falling more severely on this than on any other part of the barrel, tends yet more to dislocate the breech-piece, and diminish the closeness of the joint's fit. In weapons which do not call for a long range, as revolver pistols, a perceptible interval is left between the chamber and barrel, through which much gas escapes; but in ritles, which have range and penctration as principal objects, there is primi facie ground for 1 referring a muzzle-loader. The gas, however, is far from pure as generated in the barrel, for much water is produced and held in suspeusion, while there is also a solid residuum consisting of uaburned materials of the powder. In the muzzle-loader, these clog (or, technically, foul) the barrel, filling the grooves, and rendering the ramming home of succeeding charges more and more difficult. The effect is, that a solid mass of nuburned matter is gradually forced by rammiog into the head of the barrel, clestroying the accuracy and usefulness of the weapon. In the breech-loader, this solid deposit must be provided agaiost both ways. The hackward throw on firing (for, of course, the charge explodes with equal power in every direction) tends to force it into the mechanism of the joints, preventing their proper fit, and contibually augmenting the escape of gas. On the other band, the deposit is prevented from accumulating in the barrel by the fact, that succeeding charges are insertcd bchind it, and, by their explosion, force the solid matters out at the muzzle. Thus, in the matter of fouling, if tho gases can be prevented from blocking up the Urcech-apparatus, the breech-loader has a great advantage over the muzzle-loader. This protection of the breech-apparatus is the problem which inventors have had to solve.

A moderate escape of gas in front of the first position of the ball, is not found to be any material disadvantage. If, then, the barrel could bave an opening, as in fig. 1 , at a, where the cartridge could
-

Fig. 1.
be inserted, and then pushed backwards towards b, an escape of gas through the joints by which a might be subsequently elosed would be comparatively immaterial; but this formation would be impracticable, because the explosion of each cartridge Tould drive the fouling more and more towards b, till ultimately the chamber between b and a would be unable to contain the cartridge. It is clear, therefore, that the charge must be inserted either at the barrel's head 6 (in fig. 2), or, if the
\square
Fig. 2.
harrel be opened, in a space close to that head, as c. In cither of these cases, the breech at b must he solidly closed to resist the explosion. A third case, as in the Snider, is where the cartridge is inserted, as at c, and then pushed forward to the position d,

BREECH-LOADLKG ARMS AND NEEDLE-GUNS.

the aperture c being closed by a solid breech-piece which completely fills that portion of the barrel, and forms, with the barrel's head, a massive foot to resist the backward pressure of the fired powder. But a perpendicular moring joint is found, in practice, to lead to a serious escape of gas : such a joint is shewn in fig. 3 , and is naturally the most convenient in an arrangement like the Snider, where the breech-piece turns on a hinge. In the Prussian needle-gun, the end
Fig. 3. of the barrel is the frustum of a cone, which fits into a corresponding cavity in the fore-cnd of the breech-piece a, as in fig. 4 ; this also is a service-
$\stackrel{a}{ }$ able form, precluding any deleterious escape, but only available when the breech-piece is pushed up from the rear. In the Sniler and several ather breech-loading weapons, the cartridge is made itself to close hermetically the
Fig. 4. aperture between the barrel and the fore-end of the breech-piece. This is done by learing a groove. as at a in fig. 5 , round the hinder-end of the barrel: the

Fig. 5.
cartridge, d, has a jortion of its case at the rearend flattened out into a rim, which fits the groove α. This rim is seen on a Snider cartridge in fig. 6 . The cartridge being enclosed in thick paper or nietal,

Fig. G.
or in thin paper ontside brass foil, this material is expanded at the time of the explosion until it completely fills the open rim, and presents any escape between the barrel and the loreech-piece. In the Snider arm, the cartridge was enclosed in thin brass, with a brass dise at the foot, which seemed to expand better than any other material ; and its blocking nower is aided by the presence, in the foot of the cartridge. of a dise. a, of millboard; but in the latest cartridge an iron dise has been substituted for that of brass, on the ground of economy: On the whole, no arrangement has been iound more efficacious than this for breechstopping.

Having now shern the principles of elosing the breech, the mere needle-arrangement may be generalised in a few words, the remainder of the article being devoted to a more particular description of the two most prominent needle-guns-the Prussian Zundnadelgewehr and the British Snider. The needle is no more than a steel shaft-not necessarily pointed at the end, which can be drawn back and fastened in that position. It is, when released by prlling the trigger, impelled forward by a spiral spring or other appliance, and riercing the cartridge, it explodes a small cap of highly-sensitive detonating powder, placed either at the rear-end of the cartridge, as in the Snider, or in front of the powder. as in the Prussian cartridge.
The Prussian gun, which was first in the field,
consists, as regard its breech-apparatus and needlelock, of three concentric hollow cylinders, with a solid cylindrical bolt inside the last (see figs. $7, S$, 9). The rear-end of the barrel is firmly screwed into the head of the chamber a, which is fixed to the stock of the piece, and is open at the rear-end. The upper half of the cylinder is cut away at the frontend for rather more than the length of the cartridge: this constitutes the opening in which the musketeer inserts the cartridge. From the rear of this opening to the back, a groove is cut, sufficiently wide to allow the square pillar of the breech-handle, c, to pass along it. In the middle of this groove is a rightangled shunt, offering a stop to the breech-handle when drawn backwards, unless it be likewise turned downwards, when it may be passed completely out at the rear-end. Next within the chamber is the breech-piece d, which, to admit the cartridge, is drawn back for a sufficient distance by the breechhandle along the groore. When the cartridge is deposited in the recess in the chamber, this breechpiece is closed against the heel of the barrel by moring up the haudle to the front-end of the groove, and then turning it down to prevent it from being drisen back on the explosion of the charge; representing, indeed, the resistance offered by the heel of an ordinary muzzle-loading barrel. Firmly screwed within the breech-piece, at a short distance from its front, is a solid block of metal f, on which impinges the first force of the explosion. Projecting from this block to the base of the eartridge, is a strong tige, or pillar, \%, around which a space containing air is left. Throngh this pillar is the channel for the needle to work. Fitting within the rear-end of the breech-piece is a smaller eylinder h, constituting the lock of the gun. It slides within the breech-piece, and is retained from falling out backwards by the spring i, which catches in a notch at the end of d. Along the bottom of this cylinder is a groove to admit the passage of the trigger k; and at the back is a short upright handle, by means of which the weapoa is cocked. Lastly, within the lock is a bolt l, pressed forward loy a spiral spring, and laving the needle, m. rigidly fastened to its front end. Haring now described the several parts of the rifle, it is easy to follow it from the moment of a shot being fired until the next is ready for discharge. At the moraent one shot has issued, the rifle will present the appearance in fig. 9 every part being as far forward as it can go. The soldier's first step is to press down the spring i with his finger, relcasing the catch below it, and enabling him to draw hack the lock to the next eatch on the spring, into the position shewn in fig. 7. Having done so, he raises the breech-handle to the perpendicular, and passes it along the groove to open the breech. This done, he places the cartridge in the opening thus made in the chamber, and again moring up the breech-piece to close the breech, the tige in it pushes the cartridge forward into the barrel, and the rifle is at once at 'half-cock.' as in fig. 7 ; for in drawing back the lock, the front point of the spring i forced the bolt l (including the needle m) with it, and the projection, n, on it laving passed over the liead of the trigger k; is caught by the latter in a way which ean only be released by the falling of the trigger. It will be observed that at half-cock the needle is ready to penetrate the cartridge, but that the spiral spring is loose and without power. To 'full-cock,' no more is necessary than to push h back to its original position. It cannot take the bolt, l, with it, as the trigger retains it to the rear. The position (fig. S) is now obtained, in which the bolt, l, projects at the back, and the spiral spring is comprossed into a state of passive strength.

BREECII-LOADING ARAIS AN゙D NEEDLE.GUNS.

All that is now needed to fire the ghn is to press sjimal spring asserts its power, and drives the needle upon the trigger, until the point o beirs, when the into the heart of the eartridge, the parts all resumbolt l, being released by the depression of l, the, ing the positions in tig. 9. At first sight, oue can-

Fig. .-Prussian Ncedle-gun : Malf-cock.
not help exclaiming: 'What a complicatel apparatus with the four cylinders and the springs;' but, in reality, it is as simple as almost any other gum. for the whole mechanism of the Lock ($\mathrm{q} . \mathrm{v}$.) is disprensed with. If it be desired to take the neerle-gon to pieces, press the trigger till the point, p, bears. If the brech-handle lee then in the hinder part of its groove, the breech-piece with its contents will slip out of the chamber. Pressing down, next, the spring i, until the second catch is passed, there is nothing to retain the lock, k, in the loreech-piece;
and the lock being free, the neclle, with its attached bolt and spring, falls readily out of its fore-encl. The gun is thns taken to pieces in a few seconls, and ats many suffice to put it again in fightiner order. The most delicate portions are the needle and the spiral spring; but in case of accident to these, there is a spare one in a small eavity opening by a spring in the butt-end of the stock. The worst feature about this celebrated gun is its Weight, 12 lbs., or $3 ;$ per cent. heavicr than the lentield or Suider ritle.

Fig. 8.-Prussian Noedle-gun : Full-ceck.

The convertal Enfielil or 'Suider' riffe was selecter in 1805-1866 by the British govermment from the specimens submitted at an open competition of inventors. It is an extremely simple weapon, and though by no means free from faults, has given very satisfactory results up to this time. The ordinary Enfield harrel is shortened by about three inches, and the heel of the remainder is screwed in to a strong ring, a (figs. 10, 11), with which is connected by a powerful hinge, b, the solid breechpiece, c, which, when shat, as in lig. 11, completely eloses the lreech. Throngh this passes the needle or bolt from a to e; the normal position of the 436
needle is maintaincd by a spiral sprine within the niplle f (which screws into the upper side of c), and is such that the needle does not project at 0 , while it does project at d. At g in the breech is a small compressible knol, which fits into a niche in the breech-piece, and serves to keep it from shaking up by ordinary motion, but is too weak to oppose onening ly the finger on the projection h. Given the breech open as in tig. 10, the cartridge is inserted and pushed forward into the barrel, where its metal rim fills the groove left around the barrel's heel. The breech-piece, c, is closed down. as in fig. 11, the bammer, i, drawn to full-cock, and the picce is ready

BREECH-LOADING ARMS AND NEEDLE-GUNS.

for discharge. On the trigger being pulled, the into the detonating cap of the cartridge, with a hammer falls, Jrives in the ucedle at d, and out $/ \operatorname{sharp}$ blow at e, tining the charge. The hammer is

Fig. 9.-Prussian Necdle-gun : Instant of fring.
drawn lack to half-cocl:, the needle flies up to its \| former position, the breech-piece, c, is thrown back,

Fir. 10.-Snider : Open.
and slid on its linge b, along the pin k, until the \mid part b touches the part l, a process during which

Fiz. 11.-Snider: Closed.
In small catch, m, hooks back into the breech by its | the hinge moves the breech-picce to its former place, projecting rim, the empty cartridge-case. A motion I and the gun is ready for another charge.
of the finger now throws this out, a spring within I The cost of altering an 'Enfield' to a 'Snider'
varies from 15s. to 20s: already (Octaber 186\%) about a quarter of a million have been converted; and by the end of Narch ISGS, it is intencled that 330,000 shall be ready for use. The government factories can convert 1100 rifles daily.

At first, the firing of the Sniler was inferior to the old Enfich; hut, hy alterations in the bullet, effecterl by Calonel Boxer, in the direction of aleereasing the specific gravity at the apex ly the insertion of a wooden plug (see fig. 6), this condition has been reversed, and the Snider now fires 30 per cent. better than the old linficll. Of course, these changes add to the cost of the cartridge, which lias, however, these great perfections-first, that it is absolntely inpervious to wet ; and second, that fire can scareely lo commnnicated to it otherwise than through the detounting cap. A single cartridge has been fired within a barrel of loose cartridges without explorling any of the others.

Adverting to lig. 6 , which is as nearly as possible two-thirls the size of an actual Snider cartridge: the thole is enclosed in a roll of thin brass foil, ontside which is a covering of oiled paper. Next the foot is the round of millboard a, eneireling the percussion cap b, which communicates with the powder c. between the powler and the ball is a layer of wool, d. The ball, c, has, as explained above, a peg of wood inserted at the apex, and a conical hollow is made at the hase: into the wider part of this is dropped the wouden phigg, while on the circumference of the bullet, and outside this conical hole, are four small cannelures or cuts in the lead. When the powder explocles, the wooden pling is driven forwards to the head of the hollow, iriving the base of the bullet outwards till the lead completely fills the grooves of the rille-a process aided by the comparatively less resistance at the cannelures. These cannelures aro also receptacles for a wax lubrication which prevents fouling, interposing always it film of wax between the bullet and the barrel. The charge and bullet are held together by the copper sheathing being pressed into the cannelures. lieturning to the percussion-cap, we should hind, if it were cularmed, an apparatus-as in fig. 12 -where a is a thin plate of copper closing the mouth, b is a brass bead called the 'anvil,' and c is detonating powder of great sensitivencss. The needle pierecs a, drives the anvil down upon the detonating powder, which explodes, and through the opening d, communicates with the powder in the cartridige. The weight of the bullet is 480 grains; of the powder, 70 graius: the cost being about fis jer thousand.

From this deseription, it is evident that the Suider cartridge is a complieated arrangement; but in the first place, it is not mueh more so than that of the Zuinelnadelgewehr, though vastly more
Snider Cap.
matter, which is held to be of suflicient importance to precipitate or delay political complications. Prussia adheres to its nceile-gum. England converts on tho Snider prineiple (with a hore of 577 inch), rescrving the question of a smaller loore ritle for now supplies. Belgium and Turkey convert as Sniders; lut the latter has alopted the 'Samson' rifle for now weapons. Jrance does not convert, but selects the 'Chassepot' for new supplies, with a bore of only 433 . Austria converts after Wänzl. Portugal's and Italy's new rifles are to le Weatley Richarls'; Sweden's, Hiigstorm's; Jinssia's, Laidlej;, while her present stock are converted on 'Terry's principle. The United States lave chosen the Berdan and Spencer systems. Switzerland converts on the Amsler-Nilbank principle, ant makes new arms on that of Winchester, an American.

The breech-loaders with and without the needlearrangement are too mumerous even for mention; one of the most remarkable is the Spencer Magazine Ritfe, lasing, in a tube in the stock, a suries of eartridges, which, by a simple action, pass into the larrel for discharge. As the gun ean ordinarily be loaded at the breech without drawing on the magazine, it is doubtless that this reserve would be a 1 owerful means of defence in a moment of langer, as in resisting cavalry; but among its drawhacks are weakening of the stock, scrions increase of weight, and, worst of all, great complexity and delieacy-fatal objections in the rough usage of active service.

BRE'NNER PASS, a pass in the main ehain of the Alps, on the road hetween Innsbruck (y. v.) on the north anel botzen ($\mathrm{g} . \mathrm{v}_{\mathrm{B}}$) on the south, conuecting the sonth of Germany with Venice and the north-east of Italy. The L.. 1'. is the lowest which crosses the main chain of the $A l p s$, the summit being only 4775 feet above the level of the sea. Lofty monntains rise above it to the further lleight of more than 7500 fect, yet the scenery of the pass is less sullime aud less interesting than that of any other of the great passes of the $\mathrm{A} \eta_{\text {ps }}$. It is open at all scasens of the year. At the summit of the pass is the village of Brenner, a resting-place for travellers, with a pop. of about 400 . The climate here is so severe that corn seldom ripens. FIere the traveller finds in close contiguity the Eisach, a small stream, which, after growing to be a considerable river, joins the Adige, and the sill, a tributary of the Inn; the one stream flowing to the Gulf of Venice, and the other into the Black Sea. On 1 Sth Augnst 1567, a railway through the B. I'. was opened, and thus a complete line of railway communication is established hetween Germany and Italy; Botzen having already lieen connected by a railway through the valley of the Adige, with Verona, and so with the wholc of Italy-Innsbrack being likewise eonnected with the railway system of Germany. This work was begun lyy the Austrian government when Yenctia belonged to the Anstrian Einpire, and with the view not muly of facilitating military ojerations, but of restoring the commercin] prosperity of Venice, by making it the port of Southern Germany. The prosecution of the works, however, was not arrestel by the great political changes which took place. A liberal commercial treaty, recently made between Austria and Italy, linds the two comntries together in community of interests, restoring, in fact, the matural state of things with which political animosities had long interfered; and it has already begun to le apparent, from the activity with which the roads are being repaired on some of the Alpine passes, and particularly that of the Stelvio, that both Germans and Italians appreciate the importance of an intimate commercial intercourse. The distance from

BREZOWA-BROOM-CORN.

Innsbruck to Botzen in a direct line is only 52 miles, but by the windings of the road or of the railway, it is much increased.
BREZO'WA, a market-town of Hungary, in the county of Nentra, on a river of the same name, about I9 miles north-west of Leopoldstadt. It has a Poman Catholic church and a Protestant church, tanneries, and distilleries. Pop. 5516.
BRI'ERLY HILL, an ecelesiastical district of Staffordshire, England, two miles north-north-east from Stourbridge, on the Oxford, Worcester, and Wolverhampton Railway. It is a place of much activity, the district abounding in coal, iron, and fireclay; and there are here mumerous collicries, large iron-works, glass-works, brick-works, and Iotteries. The manufacture of steam-boilers is extensively carried on. Pop. (1861) 10,755.

BRITA'NNIA METAL. The present composition of Britannia metal at Birmingham is usually 90 tin $+S$ antimony +2 copper, without any zinc or bismuth; although some manufacturers deviate a little from this formula, by adding one or both of the metals last named. The manufacture was begun at Sheffield by Hancock and Jessop, in $17 \% 0$; it reached Birmingham towards the close of the century, and made gradual progress. At first, the articles were made by stamping with dies, and soldering up into form ; this, being a slow operation, rendered the articles expensive. Afterwards, the curious process of metal-spinning was introduced; and this, with the subsidiary operation of swaging, rendered a great reduction in price possible. In the spinning process, a thin sheet or piece of Britannia metal is placed upon a wooden model shaped like the article to be made; the model is made to rotate in a lathe; and burnishers and other tools are employed to press the yielding metal into all the curvatures of the model. Ductility is an essential quality to the attainment of this end with the metal; how complete it is, may be seen in such articles as Britannia metal teapots and dish-covers, the principal forms of which are not given by hammering, stamping, or casting, but by spinning. Besides spinning and swaging, the processes include stamping, soldering, casting, and polishing. When electro-plating was introduced, an increased use of Britannia metal arose, as it forms a good ground or basis for the deposited silver. Britannia metal spoons and ladles, made by casting, stamping, and burnishing, have been nearly driven out of the market by German silver; but the former metal is more largely used than ever for hot-water jugs, soup tureens, gravy-dishes, regetable and side dishes, dram bottles, drinking-cups, sandwich cases, winecoolers, soap-boxes, liquor-frames, cruets, waiters, trays, Sc.; and as a basis for electro-plate. Birmingham is the chief seat of the manufacture.

BRI'XHAM, a market-town and scaport of Devoushire, England, beantifully situated on the south side of Tor Bay, 5 miles sonth from Torquay, and 22 miles directly south from Exeter. The town occupies the sides of two hills, and is divided into two parts, called Upper and Lower B., the former consisting chiefly of a long straggling street. Some of the more recently erected parts of the town are well built, aud contain good houses, but the older parts are mean. The prosperity of \mathbf{B}. depends chietly on its fisheries, it being the head-quarters of the great Devonshire fishery of Torbay, in which many vessels are employed, mostly trawlers, of which there are about 200 . These are decked sloops of 40 to 50 tons burden, and generally managed by three meu and a boy. Great quantities of fresh fish are sent to Londou, Bath, and Bristol. Considerable quantities of iron ore are raised in the neighbourhood and
shipped here. B. has also a number of vessels engaged in the coasting and foreign trade, the foreign trade being chiefly with the Mediterrancan. The Admiralty have an establishment here for watering the Havy. Near B, is a station of the South Derou branch of the Great Western Railway. It was at B. that the Prince of Orange, afterwards William III., landed, November 4, I6SS. Pop. (1561) 4390.

BRO'ILGROTE, a market-town of Worcestershire, England, near the small river Sal warp, 12 miles south-south-west from Birmingham. It is Is mile east from a station on the Birmingham and Bristol Railway. The Birmingham and Worcester Canal also passes near it. It is situated in a highly cultivated and richly wooded valley. The principal street is about a mile in length. There is a very flourishing grammar-school, founded by Edward VI. in 1553. The linen manufacture was formerly carricd on at B_{i}; button-making and nail-making are at present the principal branches of industry. B. returned two members to the House of Commons iu the reign of Edward I., but was afterwards disfranchised on petition of the inhabitants themselves, because the trade of the town had declined. Pop. (IS6I) 5262.
brooks, Chaples Shirlex, novelist and journalist, is the son of Mr Tilliam Brooks, an architect, and was born at Brill, in Oxfordshire, about the year 18:0. B. was educated chiefly by the late Rer. T. J. Bennett, canon of St Paul's; and upon leaving school, was articled to an attorney. Upon serring out his time, he passed with distinction the examination in the Law Society's Hall. Literature, however, had more charms for him than the law, and he had not long been settled in London, before he tried the experiment of living ly it as a profession. He wrote dramas-Our New Gorerness, Honours and Tricks, thee Creole, The Daughter of the Stars; and he contributed at the same time to some of the leading periodicals and journals. An introduction to the editor of the Morning Chronicle procured him a steady engagement as writer of the Parliamentary Summary for that journal. He was also sent by the proprietors of the Chronicle on a mission into Russia, Syria, and Egypt, to report on the condition of labour and the poor in those countries; and the results of his observations appeared in a series of letters in that journal. B. has also been a contributor to P unch from the commencement of that periodical. The 'Essence of Parliament' in Punch is said to be regularly contributed by him. He has also written for it "Hiss Violet and her Offers,' 'The N'aggletons,' \&e. B. has also contributed political and other articles to the columns of the Illustrated London Fiews. As a novelist, B. is a graceful and pleasing writer, and therefore deservedly poptular: He is anthor of Asper Court, The Gordian 1 Inot, and The Silver Corl, the last mentioned having been originally published in Once ra Week. B. is likewise anthor of The Tussians of the South, which appeared in the Travellers' Library, vol. vi.; and he is now publishing in numbers a new norel, under the title of Sooner or Later.
BROOM-CORN, a grass cultivated in North Ancerica for the manufacture of brooms and whishs, which are made of the tops of the culms and the branches of the panicle. It is regarded as a mere variety of the same species (Sorghum saccharatum), of which the shaloo, or sngar-grass (see Sugar-case and Durira), is auother variety. It has been much longer cultivated in North America, however, than the sugar-yielding rariety. Its introduction is ascribed to Dr Frankliu, who, seeing an imported

Whisk in the possession of a lady of Philadelphia, fonme i single seed on it, and planted it. It is sain? to have heen lnomint from the East Indies. It is now extensively cultivated in all parts of the Uniterl States, and especially ly some branclaes of the religions society called shakers. The manufactme of Trooms is annually beoming of greater importanee, moch capital heing invested in it. The crop of 1:. has a beautiful appearance when near maturity: It uften attains a height of $18-15$ feet. The stalks are loner and hard, and mostly used for manure, althongh cattle will feed wn them before they are touched by frost, aud cattle are very fond of the leaves. The sem is used like ludian eorn, for feeding poultry, ind somctimes for fecling cattle and horses. 'The nsual practice in harvesting 13. is to lead the stalks :2!-3 feet from the groums, and leave them a few clays to dry, then to cot them over 6-8 inches below the pancle, laying the tops in heaps, to be conveyed to the scraper, which is often wrought by horse-power, and which removes the seed from them. haproved machinery has recently begm to be emploged in the manufacture of broons and whisks from h., and they are therefore produced with much greater rapility than before. It is supposed that, in 1860, about 10,000 acres of 13. Were cultivated in the state of New York, 9000 in Illinois, 6000 in Ohio, and abont an equal amome in all the other states of the Union, or 30,000 acres in all ; the value of the produce alout $1,590,000$ dollars. Great numbers of hrooms and whisks of this material are exported to Britain.

Jilo 0 N N, Chanles Foster, an Ameriean hmmorist, better known as 'Artemus Ward,' was born in Waterford, Maine, in 1836, and gradmated from the free village school into a 1 minting-orlicethe American hoy's college. As a printer's boy, he worked in all the prineipal towns in New England, until settled at Bustun, where he began to write comic stories and cssays. A roving disposition carried lim to the West, and he was engaged as local editor in Toledo, and later in Cleveland, Ohio, where his letters from 'Artemus Ward, showman,' a pretended exhibiter of wax figures and wihd beasts, first attracter general attention. In $1 \$ 60$, he became a contribator to l'enity F'air, a New lork comic weekly pnper ; and being invited to leeture, soon beeame very popular and attractive. As a leeturer, in $186: 3$, he visitenl California, making the overland trip, visiting salt Lake City, the Momon capital, and drawing erowds in cvery town he visited. In $186 \cdot 1$, he openeil his illustrated lectures on California and Utah in New York with immense success: and in 1S66, was induced to visit England, where he became a contributor to Punch, and gave his lecture on the Mormons in the metropolis, at the Eggptian Hall, Piceadilly. But while convalsing erowded audieaces with lauglater, he was wasting with pulmonary disease. Early in 1867, he went to Guernsey for a milder air, but with no benelit; and was ibout to embark for Ameriea, when he died at Southampoon, Dareh 6,1867 . ITe was tall, slender, with striking features, and a most amiable character, which attracted and attaehed to lim many friends. By his will, after providing for his mother, leaving legaeies to his friends, and his library to the best boy in the sehool of his native village, he left the luilk of his property in trust to Horace Greeley to provide an asylum for printers. His collected writings, which have had a wide circulation in America and England, are Artemus H'ard His book; Artemus Jiuril among the Mormons; Artemus liard cmong the Jenians; and a posthumons collection and biography entitled Artemus Ward in England.
LRSHESI'NY, an iusignifieant town of Poland,
in the govermment of Warsaw, 62 miles south-west of Warsaw, near the railway that comects Wirsaw with Viema and other places. !'op. 5375.

JBLYOPll ${ }^{\prime \prime} L L U M$ (Gr. Lrym, moss, and phydlon, a leaf), a genus of plants of the matural order Crassilaccas (q. v.). 3). calyrinam, a suceulent slmubly plant, a native of the Moluceas, with grinate or almost pimate leaves, oblong deeply crembated leallets, and panicles of large pendulons greenish-yellow flowers, is not unfrequent in Britisla hot-housts, being regardert as an oljject of interest, nion accome of its prolucing luds on the edges of the leaves more frequently than almost any other phant. These buts are capmble of forming inclependcat phants. "Ihis curious mode of propagation is fonmd also in the Bing Orchis (Maluxis puludona), a plant of a very different natual order. See BuD and Lesp.

TBRUISL, or CONTUSION, signifies an iujury intlicted lyy a blow or sudden pressure, in which the skin is not wonded, and no bone is broken or dislocated. Both terms, and especially the latter, are employed in surgery to inclute all such injurics in their widest range, from a black eye to a thoroughly crushed mass of muscle. In the slighter forms of this injury, as in ordinary simple inuises, there is no tearing, but only a comenssion of the textures, the utmost damage done leing the rupture of a few small blood-vessels, which oeeasions the discoloration that is always olsserved in these cases. In more severe coutusions, the subjacent structuresmuscles, connective tissuc, vessels, \&c.-are more or less ruptured, and in extreme cases, are thoroughly crushei, and usnally become gangrenous. The quantity of blood that is extravasatud mainly depends upon the size and number of the ruptured hlood-vessels. but partly also on the nature of the textures of the injured part. 'Thus, a lax tissue, as that of the eyelids, favours the escipe of blood into the surrounding parts. Moreover, the constitation of the patient has some influence, and many persons, especially (according to Mr Jugct, in his artiele on 'Contusions' in Holnes's system of Surgery, vol, i.) pallid, fatty, soft-skinned women, though suffering from wo apparent disease, are subjeet to extrava. sations, and eonsequently to diseolorations, very disproportionate to the injuries that cause them.

The most characteristie signs of a recent contusion are more or less Shock (q. v.), pain, swelling, and discolonation of the surfaee from effused blood (eommonly known as Lcchymosis, q. v.). There is nothing special in the character of the shock, but it is worthy of notice that it is most severely felt in injuries of special parts-as the testes, the breasts, and the larger joints, which are often followed by remarkable general depression, faintness, loss of muscular power, and nausea. The immediate pain following the blow is succeeded ly a feeling of numbness, which, after a warying time, unless the part is killed, gives place to a heavy, aehing pain. Although some depression may usually be ohserved immediately after the infliction of the blow, swelling of the parts rapidly follows, as may be well seeu in the case of a child reciving a hlow on the heani, or of the wale that rises after the lash of a whip. In lax parts, sueh as the eyelids, the swelling is often considerable, and may remain for a weels or more; but in other ${ }^{\text {rarts, it }}$, nsnally subsides in two or thrce days. The diseoloration of the skin consequent on hlows is of a more or less purple tint; varying from black to crimson or pink. "Llaekness,' says Mr laget (op, cit.), 'usually indicating intense injury, is probably due to the extravasation of a large proportion of entire blood; crimson or pink tints, to the prevalence of a blood-stained Huid;
blue. to the degrees in which Hackness is veilerd by the cuticle and skin, as the colcur of blood in reins is; and perhaps some of the shades of pink to the partial aerration of the blood by the penetration of air through the epidermis. After a variable time, proportionate to the severity of the injury, these colours fade out, passing most commonly through gradually lightening shades of brownish olive, green, and yellow.' The eauses of these changes of colour are not elearly known ; as, however, the changes are not observed in bruises of parts removed from air and light, they are probably lue to oxidation and actinic agency. When a severe bruise tends to a natural cure, and there is no inflammation or sloughing, the eftused blood is generally absorbed, the liquid portion rapudly disappearing, while the blood-cells are more slowly removed. In some cases, it is probable that the eftiused hlood becomes organised into vascular conneetive tissuc, which takes part in the repair of the injured tissue. We need not follow the course of a bruise in which active inflammation with suppuration ensues, or im which sloughing takes place, as these complications mist be treated according to the ordinary rules for those affections. There are, however, one or two ill consequences following partial recovery, which require notice. Tbus, in some organs, as the lreast, abscess may ensue long after a blow; or a sensitive indurated lump may remain; or (more commonly) there may be longeontinued pain, without ehange of texture; or, lastly, eancer may ensue. Blows on superfieial hones, as those of the skull, are not nufrequently followed by very painful thickening of the periostenm ; and a muscle violently struck may be paralysed, and rapidly waste away; and constitutional fliseises, such as gout and rheumatism, are well known to localise themselres with special severity in parts that bave once been seriously bruised.

With regard to treatment, smple and not very scvere bruises require little treatment but the rest necessary for the aroidance of pain; but the removal of the swelling and discoloration may he lastened by the application of various local stimulants, which seem to act by accelerating the circulation through the bruised part, and promoting the absorption of the ettused Huid. Friar's balsam, compound soap liniment, or poultices made with the roots of black bryony beaten to a pulp, are popular remedies of this elass. Mr Paget regarls the tincture of arnica as the best application. Where the skin is thick, it may be gently rubbed over the hruised part in an undiluted state; where the skin is thimer, it should he mixed with an equal bulk of water; or, which is probably better, it may be coustantly applied as a lotion if diluted with five or six parts of water. I'ugilists, who are probably better acquainted with ordinary bruises than any other elass of men, are in the lablit of removing the swelling of the eyclids that often naturally occurs during a prize-fight, to such an extent as to close the eyes, by at once puncturing the cyelids at several points with a lancet; and their favourite remedy for a black-eye or other brnise on the face is a fresh beef-steak applied locally, as a ponltice. Bruises of a more severe nature, as when there is mueh breaking or crushing of the tissues, must, of course, at once be placed in the hands of a surgeon.-For further details on this subject, the reader is referred to Mr. Paget's excellent article, from which we have freely quoted.

BUCCA'RI, or DAKAlR, a free port of Austrian Croatia, on an inlet of the Gulf of Quarnero, 5 miles east-south-east from Fiume. It is beautifully situated on the slope of a lill, and has a small but very good and safe harbour. The linen manufacture
is carried on here, and ship-building is actirely prosecuted; but the inhabitants are principally sailon and fishermen. The tunny fishery is the chief fishery of this part of the Adriatic. The vine is extensively cultivated in the neighbourhood of B ., and good wine is made. Pop. 50.0.
buCKLAND, Francis Trevelyay, a son of the Rev. Dr Fnekland (q. vo), horn at Christ Churelı College, Oxford, December 17, 1826. He was edueated at Winchester School, and at Christ Churel College, Oxford. He derated himself to the study of medicine; and after heing house-surgeon of St Gcorge's Tlospital, Londou, was appointed assistantsurgeon to the $2 d$ Life-gnards in 1854 . From this situation lie retired in 1863. In 1860, he was appointed Tnspector of Salmun Fisheries for England and Wales. From his boyhood, he manifested an enthusiastic delight in natmral history, especially when it could be applied practieally to the cultiration of useful guadrupels, lirds, or tish, in which study be was cncouraged and guided by his father. He bas contributed a vast number of brief papers on various branches of his favourite science to the Times, Field, Queen, Land and Water, \&c. He is also the anthor of Curiosities of Natural I/istory (Lond. 1857; second series, 1860; third scries, 2 vols., 1866), and of a work on pisciculture, entitled Fish-hatching (Lond. 1863) ; and editor of a new edition of his father's Bridgewater Treatise (Routledge, 18コ5). He was first secretary to the Acclimatisation Society of Great Britain and Ireland. He is an achte observer, and his writings on subjects of natural history in great part exhibit the results of fresh and original observations, which his sprightly style exhibits in a most interesting manuer. He has long taken a great interest in fish-culture, and has been actively concerned in the recent endeavours to promote it in England. He has, at bis own cost, established under the Science and Art Department, South Kensington, a 'Museum of Economic Fish-culture,' illustrating the natural history of salmon and sea-fish by meaus of plastereasts, which he makes with his own hamels, and by preparations and dissections in spirits. He has also collected a series of oysters, illustrating tbeir natural history and eultivation. He has received one silver aud two bronze medals from the dish-enlture exhibitious at Bonlogne and Arcachon.
$\mathrm{BU}^{\prime} \mathrm{CZACZ}$, a town of the Austrian Empire, in Galicia, 30 miles east-north-east of Stanislawow, on the Stripa, a considerable afluent of the Dniester. A treaty of peace betreen the Poles and the Turks was signed here in 16%. Pop. S503.
IBUDAO'N, BUDAUN, or BUDAYOON, ¿ town of India, 140 miles north-west of Lueknow, giving its name to a British district of the Fohilcond division of the lientenaut-governorship of the North-west Provinces. It is situated in $28^{\circ} 2^{\prime}$ N. lat., and $79^{\circ} 11^{\prime}$ E. long. Its pop. was officially ascertained in 1848 to amount to $\because 1,360$. It was occupied by the mutineers and a body of liberated prisoners from Bareilly, June I, 185\%. The Europeans eseaped by flight. It was captured by General Whitelock, Aluril 19, 185S, and the rebels in this quarter were soon afterwards entirely subdned.The district of Budaon contains an area of 2368 sq. m., and a pop. of $1,019,161$, of which nearly six-sevenths are Findus, and the remainder mostly Mussulmans. The district is a level, fertile tract on the Ganges and tributaries of it, of which the chief is the Ramgnnga.

BUDHA NUH, a town of India, in the British district of Mozuffurnuggur, North-west Provinces, on the ronte from Kurnonl to Neerut, 43 miles south from kirnoul. The surrounding country is
wooded and well eultivated, and the bazar of the town is well supplicd. Pop. 6750.
1)U'rliO (lal. from corrupt Latin Uufiu, a slap on the chack, as practised by clowns and mountchanks in farces), an Italian theatrical term applied to an actor or operatic singer who takes the light or Jumorous part in an opera or play. A burlesque opera is called opera buffi, and a burlesque play, commedia buffí.

BU1ll:EA'ClI, a town of Oude, India, the mincipal place of a district of the same name. It is in N. lat. $27^{\circ} 34^{\prime}$, E. long. $81^{\circ} 33^{\prime}-65$ miles north-cast from lucknow. It is an old town, of considerable size, situated in a pleasant wooded jlain, on the left bank of the Sarju. The hotises are mostly built of mud and covered with thateh ; but the mansoleums, mosquies, and residences of merchants are of brick and lime-mortar. North-east of the town is the tomb of Selar, a reputed Nussulman saint, to which there is a great concourse of pilgrims annually in the month of May.

BU'KKUR, a town of the Pimjab, about three miles east from the Indus, on a water-course derived from the great river, and flowing parallel with it, 190 miles west of Lahore. It is situated in a fertile district, and carrics on an active commerce. Poj. 5000.
$\mathbf{B U}^{\prime} L L A$ are collections of serous fluids of considerable size, sitnated immediately bencath the cuticle, and rising from the true skin. 'lhey differ from resicles only in size; and no very definite line can be drawn between a large vesicle and a small bulla. They usually vary in diameter from a quarter of an inch to two inches. They may be followed by erusts or by uleerations. 'Ihey constitute a special order of skin-diseases, which ineludes Pempligus and Iinpia (q. v.).

1;U'LLAS, a town of Spain, in the province of Murcia, and 26 miles west-north-west of the town of Murcia. It is situated on a hill, 1840 fect above the sea. The strects are stecp and unpared. B. has manufactures of linew and hempen fabries, earthenware, and brandy, and a considerable trade in mannfactured goods and grain. Pop. 5145 .

BULRAMP'UR, a town of Onde, India, near the frontic of Nepaul, in N. lat. $27^{\circ} 2 t^{\prime}$, E. long. $52^{\circ} 15$, on the Riptee, in a plain, 90 miles north-enst from Lucknow. It is a town of considerable size, but mostly of mud houses, covered with thatch. From B. there is a magnificent riew of Dhawalagiri. 'The town is on one of the most frequented routes between Lucknow and Nepaul, so that during spring and summer it is muel thronged by trulers, exehanging the produets of Ifindustan aud 'Tibet.

IUU'LSAR, a seaport of India, in the British district of Surat, presidency of Bombay, on the estuary of a small river of the same name, which falls into the Gulf of Cimmbay. It is 44 miles south of Surat. It is a thriving place, with manufactures of ginghams, and a considerable trade in grain, salt, and sugar. 1'op. 7000, chiefly weavers and sailors, but partly also employed in agriculture.

BULUBGU'RH, or BALLANC.IRH, a town of India, the jrineipal place of a jaghire of the same name, called also Furreclabad. The town is situatch on the route from Delhi to MInttra, 29 miles south of Delli, in a pleasant well-cultivated country. The town is not lar e, and is very erowded, surrounded by a high briek will, with mud bastions and a decp ditch. The jaglire has an area of 190 sq . m., and its pop. is supposed to be about 57,000 . The British have wever interfered with the civil or eriminal affairs of the jaghire,
except when their interference was requested, during the minority of the present rajali; but the Rajah of B. derives his rights from the Eritish government. The revenue of the state is estimated at 160,000 rupees. 'The rajah maintains a small force of 100 cavalry and 350 infantry.

BU'NDI, or BOONDEE, i town of India, in N. lat. $25^{\circ} 26^{\prime}$, Tis long. $75^{\circ} 43^{\prime}, 190$ miles south-west from A gra, the capital of a small state of the same mame. It is situated in a valley nearly sutrounded by rocky hills. The palace of the rajah is on the slope of the hill above the town, and is of great magnifieence and heanty, consisting of a number of parts built at different clates, but harmonising cxtremely well together. The town contains few notable eclifices. It has two good bazars, lut it is is place of little commerce. It is celelurated for its iron manufactures. - The raj or state of Bundi Ias an area of 2n91 sq, miles. A range of monntains, running north-east and south-west, divides two nearly equal level tiacts-that on the soutli-cast extending to the river Chumbul, and that on tho north-west to the base of the mountains towards Ajmere. The climate is said to be mhealthy. Although the rajal and dominant portion of tho inhabitants are liajpoots, the greater part of the population, particularly iu the mountains, aro Meenas, supposed to be an aboriginal race, who aro indefatigable frecbooters. The military foree of the state, including the troops of the feudal chiefs and the police force, is 6170 mm . The revenuc is about $£ 50,000$.

ISU'NGAY, a market-tom of the county of Suffoll;, Euglane, 30 miles north-north-east from Ipswich. It occupies the sides and summit of a gently rising hill, on the right bank of the Waveney, awd is a well-built town, with wide streets, the principal ones diverging from the market-place. The town grew around Bungay Castle, which is supposed to have been creeted by the Bigods, Earls of Norfolk, and of the walls of which some ruins still remain, The ruins of a Bencdictine minnery are also to be seen in the town. The Chureh of the Holy Trinity is an edifice with a round tower, supposed to be of the time of Edward the Confessor. There are numerons places of worship, belonging to different denominations, and schools, charitable institutions, assem-bly-rooms, \&c. What was formerly the theatie is now used as a corn-lall. B. carries on a considerable trade by the river Wiweney in corn, malt, flour, coals, and jime. Pop. (1S6I) $3 S 05$.

BU'NION is a term applied in Surgery to eularged bursx, or synovial sacs, situated in the anterior part of the foot, and especially over the metatarsal joint of the first or the fifth toc (see loot), and accompanied hy morc or less distortion of the joint. In the great majority of eases, bunions are directly produced hy the pressure of lawly-fitting boots; and if the boots are constructed of patent leather, or any material which stops the excreting action of the skin, tlis, too, may be regarded is an indirect cause of their formation. A bunion begins as a painful and teuder spot over one of the meta. tarsophalangeal joints ; the part gradually enlarges, and there are indications of an effusion into a natural bursa or a newly-formed sae. 'The progress of the affection may stop here, the bursa remaining, and serving to protect the subjacent parts from pressure ; but far more frequently it undergoes repeated atticels of inflammation, causing its enlargement; or becomes the seat of corns ; or suppuration of the contents of the cyst ensnes. The last accident may be followed either by obliteration of the cyst, and eure, or by a tronblesome form of uleer, especially in persons of languid circulation.

It is only in its early stage that there is any hope of removing the disease; subsequently, the treatment must be only palliative. The tender spot that precedes the enlargement should be covered by night with wet lint and oiled silk, while by day a boot or shoe exerting no pressure on the part should be worn. If the part is very tender, it may be covered during the day with soap-plaster spread on wasl-leather. As soon as a cyst can be detected, the part should be occasionally treated with strong tincture of iodine, with the view of promoting absorption. The writer of the article on this snbject in Holmes's System of Surgery, recommends an ointment of biniodide of mercury (ten grains to an ounce of lard) for the cure of bunions when unintlamed, and for such as have much fluid within them. It shonld not be applied so constantly as to blister the skin. When, from any cause, inflanmation takes place in the sac, water-dressing, or a poultice, should he applied; and as sonn as there are definite signs of suppuration, a free incision should be made, which at once relieves the pain, and is often followed by a complete cure.
The ulcers resulting from the bursting of a bunion are rery difficult to heal, especially in old persons whose circulation is languid. Stimulating local applications, such as ointuient of resin, should be applied, while opium and stimulants should he prescribed for internal inse, together with nourishing diet. Such ulcers, under the best treatment, not very unfrequently form the starting-point for seaile gangrene.

BU'NzLAU, Jeng or Neue (New Bunzleu), a town of Bohcinia, on the left bank of the lser, a tributary of the Eibe, 31 miles north-east from Prague. It is well built of stone, bas several chnrches, a Jewish synagogue, barracks, a hospital, a Piarist gymnasium, \&c. It has manufactures of cotton and woollen fabrics, soap, and leather. It is said to lave been founded hy King Boleslaf in 973 , and the fort built by him still exists. Its Bohemian name is Mlada Boleslau: Pop. 7779.
BURA'SS, 'a town of India, in the British district of Paneput, North-west Provinces, on the route from Kornal to Kythwl, in N. lat. $29^{\circ} 45^{\prime}$, and E. long. $70^{\circ} 49^{\prime}$. Top. 30,0506 .

BURE'NDA or BROANG PASS, a pass across the most southern range of the Mimalaya, in N. lat. $31^{\circ} 23^{\prime}$, E. long. 's $5^{\circ} 12^{\prime}$. It is reached from India by travelling up the Pahur River nearly to its source. The highest part is 15,095 feet above the sea.
BURE'N゙G, a remarkable valley of Caslmere, in N. lat. $33^{\circ} 20^{\prime}-33^{\circ} 30^{\prime}$, E. long. $75^{\circ} 10^{\prime}-75^{\circ}-6^{\prime}$, and extending in a direction from south-east to north-west. Its upper extremity reaches nearly to the summit of the Snowy Panjal Mountain. The whole valley appears to be loneycombed by caves and subterraneous water-channels. The Bureng River, which flows throngh it, suddenly sinks through an opening in its rocky bed.
BURHANPOTE, a town of Bengal, India, in the British district of Nloorshedabad, on the left bank of the river Bhagruttee, a great offset of the Ganges. It is rather more than four miles south from Moorshedabad, and the village of Gossunbazar lies between. The situation is low and moist, and was deemed very unhealthy for Europeaus, cholera and other endemic diseases prevailing greatly; but sanitary measures recently adopted hare been attended with very beneficial results, and as a military station, B. is said to be as healthy as any in Bengal. Many fine houses have been erected loy Europeans, the place being the site of the civil estahlishment of the district, as well as of a military cantonment.

BURHAUSPPU'R, a large tomn of India, in the territory of Gwalior, or possessions of Scindia's family, on the right bank of the Tapti, in N. lat. 21° 15^{\prime}, E. long. $76^{\circ} 20^{\prime}$, 250 miles north-east from Bombay. The banks of the Tapti are here bold, rising 60 or 70 feet above the stream. The town is surrounded by a rampart of brickwork, and contains a palace hnilt by Alkbar. A few of the wealthier merchants have good bouses, built of teak, and profusely decorated with earvings. The most wealthy and influential are the Borahs, a Mohammedan tribe, who inhabit a distinct ward, which they shut up at night, excluding all other persons. There are manufactures of muslins, flowered silks, and brocades, for which the place was formerly famous, so that, in the 17 th c., they were exported in great quantities to Persia, Egypt, Iussia, and Poland.

BURNS, Ret. Jabez, D.D., a Baptist minister, and one of the most prolific religions writers of the present day, was born at Oldham, near Manchester, in 1805, and was educated at Chester, and afterwards at Oldham Grammar-school. After belping his father as a medical practitioner, and acting as assistant in a drapery establishment, he joined the Methodist New Connection, and remored at the age of 21 to London. In 1525 and 1829 , he published his first two works, The Christian Sketch-book and The Spiritual Cabinet, which gained him much popularity among the religions public. After having exercised the functions of the ministry at Perth, in Scotland, for a few years, he returned to London in 1 835 , to become minister of the General Baptist congregation assembling in New Church Street Chapel, Marylebone. Here his fame increased so much, that it was found necessary twice to enlarge his clapel during the first ${ }^{5} 5$ jears of his ministry, in order to afford room for the large numbers who flocked to hear him. He has been elected by the hody to which he belongs to fill various posts of honour, and has lectured in all parts of the United Kingdom on Temperance, Peace, Abolition of Capital Punishment, \&ic. In 1839, Dr B. became editor of the Temperance Journal. About 1846, he received the degree of D.D. from the Wesleyan University of Middleton, Connecticut. Meantime his pen has not been idle, the number of his separate works being uprards of thirty, some of them consisting of a number of vols., and one of them, Sketches and Skeletons of Sermons, of 15 vols., having reached the 14 th edition. The following are the names of a few: Christian Exercises for every Lord's Day (1S5S); Christian Philosophy, or Materials for Thought (1S49); Dealhbed Triumphs of Entinent Christians; Light for the House of Mourning (1850); Pulpit Cyclopodia, \& vols. (1St6-1S60); Marriage Gif-book and Bridal Token (1862) ; \&c., all of which are of high popularity among a large section of the English and American evangelical religious world.
BURNU'GGUR, a town of India, in Guzerat, the territory of the Guicowar, 59 miles north from Ahmedabad, in N. lat. $23^{\circ} 4 \mathrm{~S}^{\prime}$, E. long. $72^{\circ} 3 \mathrm{~S}^{\prime}$. It is a place of considerable trade, which is mostly in the hands of wealthy Brahmans. Pop. 12,000 .
builton, fichard Francis, one of the most daring and successful of modern travellers, was horn in 1821 in Norfolk. He is the son of Colonel J. N. Burton, and was educated in France and England. In 1842, he entered the lndian army, and served many years in Sindh. While in this employment, he exhibited a remarkable facility in acquiring the Eastern languages, and a still more remarkable dexterity in imitating the appearance and habits of the natives of India. In 1851, he published his first important work-Sindh, and the Races that inhabid the Valley of the Indus-full of graphic description,
and ioteresting to all readers. B, had acquired a very faniliar acpuaintance with Jiudustani, l'ersian, and Monltani. He had devoted special attention to Aralic, and had made such progress as to he able to speak it like a native. J'ossesser of these qualilications, he resolverl to explore Arabia in the disguise of an Agglan pilgrim; and after a visit to Endland, he set out on his journey. I'olitical commotions prewented him from traversing the whole country, as he intended; but his Personul Forarative of a Pilgrimage to Ll Mcdinah and Meccah (155:i) records une of the must daring feats on record. A jerpetual strain on the ingenuity was necessary to feep up his assumed character, most dithicult in moments of fatigue, and in the miilst of shrewd and observant fellow-travellers. The next journey undertaken by B , was into the country of the Somanlis, in Lastern Africa. It proved less successful than was anticipated. B.'s companion, Lientenant Stroyan, was killed, and F, himself was wounded. IÍc succecled, however, in reaching Harar (q.v.), a most important town in Eastern Africa, not before visited lyy any European, and in prenctrating a vast and populons region scarcely known to geographers. The journey led to a still more important series of expeditions-those to the country of the Upper Nile. Towards the end of 1850, B. set out in coupany with Lieutenant Speke, also of the Indian army, to ascertain the truth of the reports collected by the missionaries, that a vast sea existed in the heart of the continent. The journcy is one of the most memorable of our time. It led to the discovery and exploration of the great lake of Tanganyika, and the opening np of the eastern part of the continent. B. was rewarded with the medal of the Gcographical Socicty. His health had been affected by his African journeys, and he sought to recover it by a journey in North America, from which he brought the first reliable account of the Normons. In lstil, J. was appointed consul at Fernando Po, on the west coast of Africa, and while holding this appointment, he visited the Cameroons Mountains, aud went on a mission to the king of Dahomey, the incilents of both journeys being recorded in two of lis most interesting works. 13. has since become consul at santos, in Erazil. He was entertained at dinner, before his departure, by the ambers of the Anthropological Society, and in a speech by Lorl Stanley, who presided, will be fund an interesting account of his carcer.-See Requart of Farewell Dimer to Captain Burton, reprinted from the Anttropological Review (ls(īั).

The following is a list of the principal works of Captain B. not mentionel above: Sindh, or the Unhutpy ' 'alley (1851): Goa and the Bue Mountains, or Sut Monthe of Sick-lecte (1S51); Falconry in the Valley of the Indus (1552); First Footsteps in Last Africa, or an Lxploration of Hurar (1856); The Lake Regions of Cientral Ajrica, or a l'icture of Exploration (1560); The City of the Saints, ant Across the liocky Mountuins to Californice (1861); Abeokuta, or the Cameroons Mountains (IS63); The Nile Lasin-I'art I., shewing Tanganyika to he Ptolemy's Western Lake Reservoir, \&c.; and Part H., Capitain Speke's discovery of the source of the Nilc, a Review by J. N•(!ueen (1S64) ; A Mission to Gelele, King of Dahome, with Notices of the so-called A mazons, \&c. (1564).

1:USSAMI'R, a hill-state of Northern India, on the border of Chinese Tartary, in N°. lat. $30^{\circ} 50^{\circ}-$ $32^{\circ} \mathrm{S}^{\prime}$, and E. long. $7^{\circ} 34^{\prime}-75^{\circ} 52^{\text {. }}$. It is one of the most elevated and mountainous conntries in the world, the lowest part being more than 3000 feet above the sea, and much of it from 7000 to 12,000 feet. 'The Sutlej flows throngh the conntry from east to west. The district on the north of 44
the Sutlej is called Funawur, that on the south is B. I'roper. The climate in the lower parts on the southem frontier is almost tropieal, and there are many genial and fertile distriets of mikl temperate climate; other distriets are near, aud within tho limits of perpetual snow. The vine sucecels andmirably in many places, and it is supposed that some parts of this state are extrenely suitable for the culture of tea, which, indeed, is eultivated to some extent. Very rich dejosits of copper ore have been diseovered in Kumawhr, and copper-mining is prosecnted near the south-wust frontice. The inhalitants are little advanced in civilisation; many of those in the more northern jarts have strongly marked Dlongolian features. Polyandry prevails anong them, and the females left ummarried take refuge in Lamaic convents. The rajah and upper classes in the southern parts are liajpoots, and the people generally are of Hindu race. Their observance of Hinduism, however, is very partial ; they eat readily any kind of flesh, except that of the ox. The liajah of B. holds his dignity ly a grant from the East India Company, made on the expulsion of the Ghoorkas in 1815 . The tribute praid is む'1500. The pol. is estimated at 150,000 .

IPUSTO-ARSI'ZIO, a town of Northern Italy; in the province of Milan, and 20 miles north-west from Milan. It stands in a fertile phain, which prodnces mach winc. In one of the churches are mumerous statanes and fine paintings, by Daniel Crespi, a native of the town. licmains of aucient buildings shew that B. was in ancient times a place of consilerable importance. It is a place of active trade, and has a cotton-thread factory. Pop. (IS61) 997S.

BUTERA, a town of Sicily, in the province of Caltanisctta, and S miles north-north-west from 'Terranova. It stands on a height on the left bank of the Manfria. liuins of great antiquity exist in the neighbourhood, but the ancient nane is miknown. In S5̄3, B. was besiegel for five months by the Saracens, who raiserl the siege on the surrender of 6000 prople as slaves. B. was almost the last town in Sicily taken by the Normans, having held out against Count Lioger till 1059. The present castle is of Norman ercetion, and contains a number of medieral antiquities. P'op. 45ッ7.
bU'TLER, Benjamis Frısiklir, gencral of Volunteers, U. S. army, was born at Deerfield, New Hampshire, November 5, 1s18. He graduated at Waterville College, Maine, in 1S3S, studied law at Lowell, Massachusetts, where he was admitterl to the bar in 1S41, and became distinguished as a criminal lawyer and democratic politician. He was a member of the state legislature in 1553 , of the state senate in 1859-1860, and a delegate to the Democratic National Conventions at Charleston and Baltimore in 1560 , where he surported the nomination of Jefferson Davis and John C. Breckenridge, and was nominated as the Hemocratie candilate for governor of Massachusetts. B. had risen to the rank of brigadier-general of militia; and at the outbreak of the War of Secession, April 17, 1861, he marehed with the Sth Massachusetts Brigade, and after a check at Great Bethel, was appointed to the command of Baltimore, and sulsequently of Eastern Virginia, with his head-quarters at Fortress Monroe. In February 1S6:, he commanded the military forces sent from loston to Ships Island, near the month of the Mississipli; ; and after New Orleans had surrendered to the naval forees under Commander Farragut, he beld military possession of the eity, and by his severity, and especially by an, at least apparently, atrocions order respecting the treatment of women, brought upon himself the intense detestation of the Southern people, and a very general

CABEZA DEL BUEY-CALABAR DEAN.

feeling of reprobation. Relicved of his command, he returned to Fortress Monroe, acted under General Grant in his operations against Petersburg anel Richnond, and, Jnne 13, 1565, by his refusal to co-operate with the naval forces, caused the failure of ihe first attempt to take Fort Fisher, the chicf
defence of Wilmington. Returning to Massachusetts at the end of the war, he took an active part in prolitics as an extreme Radical, advocated the impreachment of President Johason; and in 1866, was elected member of the Honse of Liepreseutatives of the U.S. Congress.

C

ABE'ZA DEL BUEY, a small town of Spain, in the province of Butajos, 86 miles cast-south-east of the town of Badajos, on the north slope of the Sierra el Pelrose. The town is tolerably well built, and has a bumber of churches and other public buildings. Pop. 5395, eogaged chiefly in the manufacture of woollen and linen cloths.
CADA'MBA, or KUDUMD.A, the wood of several species of Nauclea, a genns of trees of the matural order Cinchonacece, matives of the East Indies, having flowers with a fumel-shaped corolla. 1. cadamba is a noble tree, with orange-colonred fragraut flowers, collected in heats about the size of a small apple. The leaves are from six to teu inches long. The wood is yellow, soft, ind finegrained. The tree is highly prized for the shate which it affords; the wood is used for varions purposes. N. cordifolia is a large tree, plentiful in mountainous districts of Hindustan; the wood yellow, elose-grained, and used for flooring-qlauks, packing-bozes, and many other purposes, as is also that of V. parviflora. All kiuds of C . wood are, however, liable to be injured by moisture, and can only be used where they are to be kept dry.

CAHE"TE, or CAETE, a small town of Prazil, in the province of Minas Geraes, about 250 miles north of Tio de Janeiro. The town is tolerably built, has some churches, a hospital, primary sehool, electoral college. Agriculture and mining are carricd on. Pop. ahont 6000.
CAIVA'NO, a town of Southern Italy, in the proxince of Naples, and S miles north of the city of that name. It was a place of considerable strength in the middle ages, and still retains many remains of its walls and towers, though they have suffered severely in the various revolutions of Naples. Pop. 9114.

CALABAI BEAN a wery remarkable medicinal arent, which has just ijeeu introduced into the new edition of the Eritish I'harmacopreia (1S67). It is the seed of Physostigma renenosum, a twiming, halfshrubby plant, a native of Western Africa, of the matural order Leguminosa, sub-order P'apiliontcece, nearly allied to the kidney bean, but of a genus distinguished by the hood-shaped stigma, and the deeply-furrawed hilum of the seal. The following are the leading characters of the bean itself: 'Abont the size of a very large horse-bean, with a very tirm, hard, brittle, shining integument, of a brownish-red, pale chocolate, or ash-sray colour. Irregularly kiduey-shaped, with two dat sides, and a furrow rnaning longitudinally along its convex margin, ending in an aperture near one end of the seed. Within the shell is a kernel, consisting of two cotyledons, weighing on an average
abont 46 grains, harl, white, and pulverisable, of a taste like that of the ordinary edible leguminous seeds, without bitterness, acrimony, or aromatic flavour. It yields its virtnes to alcohel, abd imperfectly to water.' It is used in the form of an cmulsion by the natives of Airica, as an orteal when persons are suspected of witcheraft. Abont twelve years ago, Dr Chwistison very nearly fell a victim to his zeal for science in experimenting on some specimens of this bean which hal been seat to Edinburgh by some African missionaries. In 20 minutes after taking 12 grains of the powdered seed, he was seized with giddiness and a general fecling of torpor ; on which he took an emetic, and thus emptied his stomach. The giddiness, weakness, and faintness, however, increased to such a degree, that the physicians who were called in fonnd him prostrate and pale, with the heart and pulse very feeble and irregular, and the faintness so great as to threaten immediate death, the mental facnlties remaining perfectly clear. He complained of no pains or uneasy feelings, nor did the faintness of the heart's action give him any discomfort. Under the use of stimulants, warmeth, polsation, and the power of moving gradnally returned, and the next day he was quite well. In 1854, 50 children were poisoned by eating these beans, which were swept out of a ship at Liverpool. A boy agel six years, who ate six beans, died very rapidly. The chief symptoms in these cases were griping, vomiting, and contracted pupils; the face was pale, the eyes bright and protriding, and iu trying to walk, the children staggered as if they were dinuk. According to Dr Harley, this agent destroys life by paralysing the respiratory muscles, and although it weakens the heart's action, is rather a respiratory than a cardiac poison. Dr Fraser, in a praper which he lately communicated to the Royal Society of Edinburgh, on the subject of this poison, maintains that, iu mammals, death is generally produced by a combination of sylucope (faintness) with asphyxia (suffocation); the symptoms of the one or the other dependiug on the dose, which, when large, at once destroys the heart's action. It has been tried medicinally in small doses (one to four grains of the powder, or $\frac{1}{10}$ th to $\frac{2}{8}$ th of a grain of the extract) in chorea, tetanus, and other diseases of the uervous system; but its value as an intermal medicine can liardly be said to be as yet established. Its principal use at prosent is to prodnce contraction of the pupils. This can be done by introducing into the eye either a miunte quantity of the extract, or of paper, or gelatine rolled in a shect, saturatel with the extrict, and divided into small squares, one of which is sufficient to produce the desiral effect, which commences in about 10 miuntes, and lasts for about 20 lours. It is regardel as a very valuable addition to our ophthal. mic remedies.

CALASCIBETTA-CALTAVUTURO.

CALASCIBETTA, or CALATAS-CIBETTA (Saracemic $=$ Castle of Xibeth, or Scibet), a town of Sicily, near its centre, 54 miles sonth-east of J'alermo, in the province of Caltaniscta. The town is mean and dismal looking, and is built on a steep and isolated height, the summit of which is 2570 feet above the sea, and commands a magnificent riew. It was founded in 1080 . The only olject wortlyy of notice is the tower of the principal church, which is of early architecture. Pop. 5255.
C.A'LLA, a genus of plants of the natural order Aracce, or, according to some botanists, of the

Calla palustris.
natural order Orontiacece, which is distinguished from Aracece only by having hermaphrodite flowers. Tho genus Calla is characterised by a Hat sjatbe
(q. v.), within which is a cylindrical spudix (see Srathe) covered with naked Howers, appearing as a mere mixture of stamens and pistils, and is nue-celled ovary with $6-8$ erect ovules. The known species are few, and natives of very differeut climates. C. palustris is found in swamp is in Europe, Siberia, and North America, lut not in Britain. It las a crecping ront-stack, and heartshaped, stalked leaves, the midril) of which is prolonged beyond the blade into a point; the spathe is white, and the spadix yellow. The root-stock is extremely acrid and caustic; but being deprived of its acridity ly grinding, boiling, and macerating, is made by the Laplanders into a kind of lucad called Missebroed, which they hoh in high estima-tion.-The well-known and beariful Richardia Ethiopica was formerly included in this genus, and is often still called Calla,

CA'LLERNISH, a district on the west const of the island of Lewis, abont 16 miles from Stomoway, remarkable for its circles of Standing Stones (q.v.). There are four circles, at no great distance from one another, but without any visible relation. The principal one, of which the figure gives a bird's. eye view, is of a more than usually elaborate clesign. - A double line of upright stones run parallel to each other in a northerly direction, while a singlo line of similar stones is projected from the south, east, and west points, thus giving a cruciform figure to the structure. A stone of larger dimensions than any of the others occupies the centre of the circle, and completes the whole. That the position was chosen and laid down from astronomical observation, can casily le demonstrated by visiting the spot on a elear night, when it will be found that by bringing the mpper part of the single line of stones extending to the south to bear upon the top of the large stone in the centre of the circle, the apex of that stone coincides exactly with the ןole-star. The stones themselves are not

Callernish Circle.
columar, or shaped into any form ; they are simply loroad, that blocks of gneiss-the all-prevailing rock from tho Butt of the Lewis to Barra Head. The following are their dimensions: diameter of circle, about 40 feet; length of west line, $4:$ feet; length of east line, 38 feet; length of south line, 69 feet: length of avenue, 270 feet; brealth of avenue, 27 feet; average height of stones, 6 to S feet; leight of centre stone, 12 feet. There are 13 stones in the circle including the centre one, 10 in the avenue, 5 in each of the east and west, and 6 in the sonth arm. The measurements of height are taken from the present level; but it must be borne in mind that there is a bed of peat-moss, 4 or 5 feet thick, through which the stones rise from the clay beneath; this gives a height of 16 to 17 feet to the centre stone, and from 10 to 13 feet to the
athers, exclusive of the foundation.' - Notice of the Stone Circle at Callemish, communicated to the Society of Antiquaries of Scotland, by Mr IIeury Callender, Marcl 1557.

CALTABELLO'TA (a Saracenic name $=$ 'the Castle of the Cork-trees'), a town of Sicily, Cirgenti, 7 miles north-east of Sciacen, most picturesquely situated around an ancient castle, which crowns a steep rock overhanging a stream (anc. Crimisus), of the same name as the town. Of its churches the Chicsa Matrice is a beautiful retic of the middle ages, resembling a mosque, with a single row of columns down the middle. C. was captured by the Saracens in St1 A.d. Pop. 557..

CALTAVUTU'RO, a town of Sicily, province of Palcrmo, and 37 miles south-east of the city of that

CALW-CANADA.

name, on a small river, the Grande. The town is of Saracenic origin. Jasper is found in the neighbourhood. I'op. 5119.

CA'LW, an importaut manufacturing town in Wütemberg, and capital of a bailiwick of the same name, in the Circle of the Black Forest, lies in the valley of the Nagold, on botiz sides of the stream, over which are two stone bridges. Cotton and woollen spinning, dyeing turkey-red, manufaciuring woollen and cotton fabrics, making leather, stout shoes, cigars, \&e., are the principal industries. Though the streets in the old torn are irregularly built, there are many larce and beautiful houses. Pop. (IS64) 4397, nearly all Protestants.

CA'MDEN, a city of New Jersey, U. S., on the left bank of the Delaware River, opposite Philadelphia, with which it is connected by 4 steam-ferries. It is the terminus of the New Jersey Central and Cape Island and Atlantic City Railways. It has a court-house, 2 banks, \because railway députs, 15 churches, ship-yards, iron-works, foundries, mannfactories of machinery, \&c. Pop. (1865) 18,000.

CANO'RNA, the name of a secret society, existing thronghont all parts of the former kingdom of Naples, the members of which are called Camorristi, and have exercised lamless force to a great extent over the humbler classes of society. Uuder the Bourbons, they openly presented themselfes at markets, hackney-coach stations, publie speetacles, and all oceasions of popular amusement; assumed the right of deciding disputes; extorted a portion of whatever money passed from hand to hand for purchases, rents, wages, and the like, or in games; undertook also the transport of smuggled goods, and contracted for the cominission of serious crimes. Their readiness for violezce and murder, and their close association among themselves, made them so much dreaded, that even Camorristi who had been thrown into prison, succeeded in exacting money from their fellow-prisoners, and from the jailer himself. The society has a central rendezvous in every large provincial tomn, and twelve such in the eity of Naples. Those who belong to each of these sections of the society are under the absolute government of a chief elected by themselves, with whom is associated a treasurer. The latter has the charge of the common fund into which all the Camorristi of that section pry their whole gains, for equal distribution among all their associates. Candidates for membership must shew that they have neitber been guilty of espionage nor theft ; also that neither their wives nor their sisters are prostitutes; and must swear npon an iron crueitix a fearful oath of fidelity and secrecy. The candidate remains for a year, with the designation of Picciotto dConore, as a pupil under an old Camorrista; and haring completed this probation, and given Iroof of his courage and obedience in circumstanees involving danger of life, he is advanced to the rank of a Picciotto di sgarro. Finally, after a longer period, and when he has given proof of his fitness ou a number of oecasions, be is admitted to full membership of the society as a Camomista. Each Camorrista carries about with him two linives of peculiar form, by wbich the members of the soeiety recognise each other. They are held under the strictest discipline. Disobedience is punished by flogging, suspension from employment, or expulsion ; treacbery, even on the part of a member who has been expelled, is punished with death. If two Camorristi quarrel, their chief decides the question between them; but in difficult cases, a duel with daggers is the mode of clecision. Under King Ferdinand II. the Camorra was tolerated for political reasons. The government of Francis II. endeavoured to put down the society, and the police
received instructions to seize and transport all known members of it. Those who remained entered into alliance with the Garibaldi committee, and rendered essential service in the expulsion of the Bourbons. An attempt was now made to employ them in the police service, but completely failed. The Camorra having fallen out with the new government, the members of the society now ehietly live by rohbery in South Italy.-See Monnier, La Camorra, Arotizie Storiche (Filor. IS63).

CAMPA'NHA, a town of Brazil, about 150 miles north-west of Rio de Janciro, surrounded by bare hills, much ent up by gold mines. The houses are built chiefly of earth, and surrounded by gardens. C. has several churches, a Latin school, an hospital, theatre, \&c. Pop. 6000.

CAMPI'NAS, or SAN CARLOS, a town of Brazil, in the province, and 70 miles north of the city, of Sao Paulo, is situated in a fertile and picturesque distriet, on a small river, the Piraticaba, a feeder of the Parana. There are large coffee and sugar plantations in the surromding district, and large quantities of sugar are exported. Many of the houses are built of mud or clay, and the immense church, whose walls are five feet thick, is composed of beaten earth. Pop. 6000.

CANADA has recently aequired a more enlargel signification. An act of the imperial parliament (called shortly the British North America Act) was passed 29th March IS67, and came into force 1st June of the same year, uniting federally the former separate provinces of Canada, Nova Scotia, and New Brunswick into one Dominion, under the name of Canada. The upper and lower divisions of the former Canada (q. v.), which had been politically united since 1840 , are again dissociated, so that the federation consists of four members or provinces, as under :
$\begin{array}{cc}\text { Enqlish } & \text { Estimated } \\ \text { Square Miles. y'on. (} 1867 \text {). }\end{array}$

The constitution of the Dominion is after the model of the mother-country. The parliament consists of the Queen, an Upper Honse styled the Senate, and a House of Commons. The Queen is represented by a Governor-general (with a salary of $£ 10,000$), who exercises his authority with the aid and advice of a eouncil, styled the Queen's Privy Council for Canada, ehosen from time to time by the governor. The Scnate consists of not more than 72 members, 24 for each of the provinces of Ontario and Quebec, and 12 each for the maritime provinces. The senators are chosen by the governorgeneral, and bold the appointment for life. Among other qualifications, a senator must have real property to the value of 4000 dollars, and must be resident in the province for which he is appointed. The Speaker of the Senate is nominated by the governor-general. The Honse of Commons consists (for the present) of 181 members- 82 for Ontario, $6 \overline{5}$ for Quebec, 19 for Novia Scotia, and 15 for New Brunswick. The duation of a House of Commons is five years. Until the parkament of Canada otherwise provides, the frauchise and other regulations are to be the same as those hitherto in force in returning members to the House of Assembly in the several provinces. The Honse of Commons elects its own Speaker. Any bill passed by the houses of parliament, even though assented to by the governor-general in the Queen's name, may

CANANDATGUA-CANDLE-FISH.

afterwards be disallowed lyy the Quecn in Commel. Lach province has an executive and legislature of its own, presided wrer hy i lientenant-governor, and constituted in the monatime pretty mueh as bofore the nmion. 'I'lue licutenant.governors are alponated by the govemor-general. The provincial parliaments may, under the provisions of the aet, mmend from time to time their own constitutions.

In the distribution of legislative power between the general and the provincial parliaments, certain classes of suljeets of a lueal nature are assigned exclusively to the legislatures of the provinees. while subjects of morc general concern are assmmed ly the prarliament of Canada. Anoug the sulijects enumerated in the act as coming under the latter description are: the public alebt and property; taxation (for ferleral purposes), postal serviec, military and naval defence, the salaries of the civi! officers of the general government; the census; navigation; money, weiglits, and measmes; colyrights; marriage and disorce eriminal law. The provincial legislatures, again, have the power of taxing themselres for provincial purposes, and of borrowing money on the sole credit of the province; of regulating aud paying provincial ofticers; of establishing asylums, \&e. Education is also left to the provineial legislatures, with certain provisions against encroachment on the rights of religious minorities.
The clebts of the several provinces, at the mion, are assmmed (with certain limitations) by the fedoral government ; and, on the other hand, certain duties and revennes, and certain pmblic works and $p^{\text {ro- }}$ perties belonging to the several provinces before the union, are talien possession of, to form a consolidated revenue fund for defraying the interest of these debts, and for the other expenditure of the federal govermment.

Provision is male for the introduction of miformity of laws, which, Iowever, must he with consent of the legislatures of the several provinces.
The union of the varions British American provinces lad lieen long and eagerly discussed, pilblic opinion in Camada being generally in its favour, hut in the other provinces, strongly opposel to it, from the natural apprelcusion, that the immense preponderance of C. in popmlation, wealth, and general importance would utterly swamp the others. However, after much and careful consideration, the great tulvantages which it was shewn the scheme would confer, overcame the provincial jealousies, and the profederalists in Nora seotia and New Brunswick came to preponderate. Newfonudland ant Prince Edward Island bave litherto withstood all attempts to bring them into the confeleration, but the state of feeling on the sulbject has changed mueh of late in looth of these colonies. In Iritish Columbia, and in the Red River S'ettement, there is a manimons feeling in favour of annexation; and should those settlements, as well as the lludson's Bay and North-west territories, le inchuded in the confeleration, its extent would amount to :3,369,300 English sq. m., ancl surpass that of the United states. (In Istl, British Columliai and the lied River Setllement, the latter under the name of Manitola, were admittel into the Dominion.)
In 1865 , the mercantile marine of the provinces constituting the new Dominion comprisell 6575 vessels, of 2 n aggregate tonnage of 943,533 tuns, aud ranks in importance next after those of the United Kinglom, the United States, anil France. The imports in 1566 amountell to $\$ 75,270,566$, and the exports to $\$ 71,951,699$; the revenue for $1 \leq 65$ was $\$ 13,023,169$, and the expenditure $\$ 14,173,071$; and the total delit of the eonfcderation is $\$ 77,500,000$.

CANANDAI'GUA, a beautiful village in New
lork, U.S., at the morthern extremity of the lake of the same name, on the liochester and Syracuse lialway, 2:0 miles west lyy north of Albany. Its broad shadel streets of villas aul gardens aro surrounded by fine secnery. It contains the connty buildings, 7 churches, 3 hrinks, 2 newspajpers. l'op. abent 5000 .

CA'NCRUM O'RIS, knownalsnas soma, IFatercancer, and H ator-canker, is a peenliar form of mortifieation, arising apparrently from ilfefective nutrition. The disease sehtom occurs except hetween the second and eleventh years, and is usually preeeded by measles, remittent ir intermittent fever, or some other serious disease. The following is the ordinary train of symptoms: more or less general disturbance of the system, accomprnied ly loss of appetite, fullowed hy swelling of the salivary glands, and a profuse flow of saliva, which escaples from the nuouth involuntarily during stecp; ulecration of the gums, which swell and beeome livil! luoseness of the teeth; and the appearance of ash-eolourchl spots on the gums and aijacent mucous membrane, which turn into dark-colourcel sloughy sores. These sorcs spreal rapilly by a gaugrenous proeess, expose the lone, and finally make a large apherture in the eheek. In some cases, the entire clieek has been destroyed in a very few thays. Fortunately, this terrible disease is mere rare in this country than in some parts of the continent, and most of the cases recorded are deseribed by forcign writers. Van Swieten describes a case in which he saw the tirst set of teeth fall out, the second set ilestroyed, the lower jaw exfoliated, and the lips, checks, toncue, and chin eaten away before the clikh died. The obvious indications of treaturent are to remove the paticnt to pure air, to administer tonics, nourishing food, and (in moleration) stimulants ; to tonch the diseased parts with mitrate of siver, or glyceride of carlhoie acid, and to wash out the month frequently with a wealk solution of Condly's fluil.

CANDE'LA, a town of Southern Italy, province of Fogria, 22 miles sonth of the town of Foggia. Pop, 6057. It is 1 leasantly situated on the summit of an eminence. The surrounding district is very fertile.

CANDLE-FISH, or EULACION (Thatechthys P'ucificus), a remarkable fish of the family Salmomide, nearly allied to the Capelin ($\mathrm{q} \cdot \mathrm{v}$.), and, like it, strietly a sea-fish, approaching the coasts to spawn, but not entering rivers. The C. inhalints the Pacilic Ocean, near the western shores of Ameriea, from Vancouver's Island northwards. It is not larger than a smelt, has a somewhat pointel and conieal heal, a large month, tecth on the pharyngeals, and the tongue rough, but the lower jaw, pulatines, and vouner destitnte of tertlo. The colour is greenish olive on the back, frassing into silvery white on the sides and belly, sparsely spotted with dirty yellow. it is probably the fattest or most olenginons of all fishes, or indeed of animals, and is used lyy the Indians not only as an article of fool, but for making oil. To broil or fry it, is nearly impossible, becausc it almost completely welts into oil. Indecd, the Indians often use it, in at tried state, as a lamp for lighting their lodges, merely drawing throngh it a piece of rushpith, or a strip from the immer bark of the "Cypress 'Tree ' of these regions, 'Thuja giyantecta species of Arbor Vite-as a wick, a long needle of hardwood being used for this propose; and the fish being then lighted at one end, burns steadily until it is all consumed. In order to use the dried fish for fool, the Indians often melt it into oil, by the application of heat, and drink the oil. It is also eaten uncoolsed. Drying is aecomplished without
any gutting or cleaning, the fish being fastened on skewers passed through the eyes, and hung in the thick smoke at the top of sheds in which wood-fires are kept bimning. They soon accuire a. flavour of wood-smoke, and the smoking helps to preserve them. They are then stowed away in large frails, made from cedar-bark or rushes, in order to be used for food in winter. Immense shoals of C. approach the shores in summer, and are canght in moonlight nights, when they come to sport at the surface of the water, which may often be seen glitterine with their multitudes. The Indians paddle their canoes noiselessly amongst them, and catch them by means of a monster comb or rake - a piece of pine-wood from six to eight feet long, made round for about two feet of its length at the place of the hand-gripe, the rest flat, thick at the luack, but having a sharp edge in front, where teeth are driven into it about four inches long, and an inch apart. These teeth are usmally made of bone, but the Iudian fishers have learned to prefer sharp, iron mails when they can get them. One Indian, sitting in the stern, paddles the canoe; another, standing with his face to the bow, holds the rake firmly in both hands, the teeth pointing sternwards, sweeps it with all its force through the glittering mass, and brings it to the surface teeth upwards, nsually with a fish, and sometimes with three or four, impaled on each tooth. This process is carried on with wonderful rapility. When a sufticient quantity of C . has been dried for winter, the rest that are caught are made into oil, being, for this purpose, piled in heaps until partially decomposed, and then placed in large square pine-tree boxes; a layer about three deep in the bottom of each box, covered with cold water, and a layer of hot stones put in, then a layer of small pieces of woord, another. layer of fish, stones, and so on. The oil is skimmed from the surface of the water in the boxes. A vast quantity of oil is thus obtained. The \mathbf{C}. is an excellent article of winter-food in a climate of which the winter is severe; and notwithstanding its excessive fatness, is of arreeable flavour. It has not yet become an article of economical value to the civilised inhabitants of North-western America, but seems very likely to do so, and to acquire a very considerable commercial importance.

CAPRE'RA, or CABRELAA, one of a group of small islands called the Buccinari Islands, in the Strait of Bonifacio, to the east of the north point of Sardinia (q.v.). They helong to the Italian province of Cassari. C. is separated from the coast of Sardinia by a strait of little more than a mile in brealth, and by a similar narrow strait from the island of Maddalena, which lies to the west. Its greatest length, from north to south, is about six miles, and its breath is from two to three miles. Like Maddalena and the rest of the Buccinari Isles, and the neighbouring coast of Sardinia, C. is rocky, bare, and unfertile. It has no streams, and is in few places adapted either for the pasture of cattle or for the plongh. In former times, it was the abode only of wild goats-whence its name (Lat. and ltal. capret, a goat)-and rabbits, and was occasionally visited by goat-herds and fishermen. It has recently acquired celebrity as the orlinary residence of Garibaldi, who acquired a property and built a house here in 18501 . He dwelt here from 1854 to 185 S , and again made it his abode in the autumn of 1 SGO . It was to C . that he was reeently (September 1867) sent in honourable banishment by the Italian government, after having been taken prisoner at Asinalunga, in consequence of his design of entering the Riouan territory to promote an insurrection and overthrow the papal government.

497

CAPROIC, CAPRY'LIC, AND CAPRIC ACIDS are represented by the formule $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{\mathrm{s}}$, $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{O}_{4}$, and $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3}$, and are members of the acetic or fatty-acid series. They derive their names from capra, a goat, in consequence of their more or less resembling in smell the odour of that animal. They may all be obtained from butter by pressing ont the portion which remains liquid at 60°, saponifying this nil, and distilling the soap which is thus formed with sulphuric acid. The liquid which passes over contains these three acids, together with butyric acid, whicls, by being converted into baryta salts, are separable from one another. All three of these acids are also obtained by the nxidation of oleic acid by pitric acid ; and capric acid is also obtained by acting upon oil of rue with fuming nitric acid; hence it is freqnently called rutic acid.

Ca'PULETS and MO'NTAGUES, the English spelling of the names of the Cappelletti and Montecchi, two noble families of Northern Italy, chiefly memorable from their connection with the legend on which Shakspeare has founded his play of Romeo and Juliet. According to tradition, both families belonged to Verona; but this does not appear to have been the case. The Cappelletti were of Cremona, and the fact that their buryinc-ground and the tomb of Juliet are shewn at 户ेerona, only proves how easy it is, in a country of ruins like Italy, to connect fact with fable. It has also been asserted that one family was Guelf and the other Ghibelline; but this is disproved by a reference to them in the Purgatorio of Dante (canto vi. 1. 106). The poet is blaming the Emperor Albert for neglecting Italy, the very garden of his domain. 'Reckless man,' he snys, 'come see how the Nontecchi and the Cappelletti are oppressed;' and the context shews that the Guelfs were the oppressors in both cases of these great Ghibelline families. The Emperor Albert was murdered in 1308, and this event has supplied the Veronese with a date for their legend. The first publication in which we recognise the essential incidents of Shahspeare's play is the novel La Guilictta, by Luigi da I'orto, printed in 1535 , after the denth of the author. He states, in an epistle prefixed to the work, that the story was told him 'hy one Perigrino, a man fifty ycars of age, much experienced in the art of war, a pleasant companion, and, like almost all the Veronese, a great talker.' In 1554, Bandello published in his collection of tales another Italian version of the legent. It was entitled The unfortunute Death of two unhappy Lorers, one by Poison and the other of Grief. Both writers fix the date of the event by saying it took place when Bartholomew dalla Nala or Scaliger ruled Verona. A French version of the tale was published by Pierre Borsteau in Belleforest's Histoires Tragiques. It was translated into English in 1567, and published in Painter's P'alace of P'leasure. About the same time, Arthur Brooke published an English poem on the same subject, entitled The Trayical Mistory of Romeus and Juliet, written first in Italian by Bandell, and now in English. There is evidence that an English play had appeared previonsly, and that before Shakspeare's time the story was so well knowu in England that it had supplied subjects for tapestries. Shalsspeare's play seems to have been principally hased on the English poem. It was Brooke who first called the Montecchi Montagnes, and the Prince of Terona Escalns. instead of Scala. Wright and Cary, in translating Dante, have followed the example of Shakspeare, and puzzle English readers by referring to the 'C'apulets and Montagnes' as Ghibelline families. The historical date of the tragedy has not, however, been adopted by modern stage managers and Shakspearian critics, who very properly
bring down the action from the heginning to the close of the 1 -4th c., when commercial opmlence, and the revival of arts aud letters, supply accessories inore in kecping with the drama than the ruder age to which history must assign the 'civil broils' and the fall of the Capulets and the Montagues.-See notes to Uante in Classici Italiani, and Knight's and Dyce's Shukspectrc.
CARBIDES, formerly termed Cardenifts, are compounds of earbon with metal. None of them occur in a natural statc.

CAIBBO'LIC ACID. Since tho article on this substance appeared in the Encyclopadic, much has been ascertained regarding its uses, both as a therapentic agent and as a disinfectant. It has been introduced into the new British Pharmacopoia (1867), where its characters aud tests are thus deseribed: 'In eolonrless acieular crystals, which at a temperature of 95° become an oily liquid, having a strong odour and taste resembling that of ercosote, which it also resembles in many of its characters and propertics. Its specific gravity is 1.065 ; boiling point, 370°. The crystals readily absorb moisture on exposure to the air, and they are thus liquefied; the acid, however, is but slightly soluble in water, but it is freely soluble in alcohol, cther, aud glycerine. It does not redden like litmus paper ; a slip of deal dipped into it, and afterwards into hydrochloric acid, and then allowed to lry in the air, acquires a grecnish-blue colour. It coagulates albumen. It does not affeet the plane of polarisation of a ray of polarised light.' It may be taken internally in doses of from one to three grains in the same class of eases as those in which ereosote is prescribed. Its principal uses are as exterual applications, in which, in various degrees of dilution, it is serviceable in unhealthy uleerations, gangrenous sores, ozena and all fetid discharges, gleet, the destruction of lice, and especially, as Professor Lister has shewn, as an application in eompound fractures (in which it coagulates all albuminous effusions, and forms a solid crust, impormeable to air, over the broken surface), and to abseesses immediately after they have been upened. Indeed, it is most probable that his investigations on the treatment of abscess will, like those on the treatment of eompound fractures, lead to a total alteration in this department of surgery. The olservations of Pasteur and others have shewn that, in even apparently the purest air, numerous organic germs are always Hoating. In a hospital ward, these germs are multiplied to an extraordinary degree. In any wound exposed to the atmosphere (as a compound fracture), decomposition takes place by the action of these germs, and hence it is necessary to introduce the earbolic aeid, which has the power of destroying these germs, into the interior. In an nononed abscess, no septic organisms are present, and the object of the surgeon is to guard against their introduction from without, and at the same time to afford a free exit for the discharge of the contents of the abscess. The following are the outlines of Professor Lister's mode of proceeding: A square piece of rag is dipped in a solution of one part of crystallised carbobic acid and four parts of boiling linseed oil, and is laid upon the skin where the incision is to be made. The lower edge being raised, a sealpel dipped in the oil is pluaged into the eavity of the aluscess, and a sufficient opening made; and the moment the knife is withdrawn, the raised part of the rag is dropped upon the skin as an antiseptic curtain, beneath which the pus escapes. The cavity of the abseess is firmly pressed, so as to remove as nearly as possible all the existing pus, and if it should seem expedient, a piece of lint dipped in the 450
oily mixture may be introiluced, so as to clecek bleeding and prevent primary adhesion of the cut surfaces. 'Thus,' says Professor Iister, 'the evaenation of the original contents is aceomplished with perfeet security against the introduction of living germs. This, bowever, would be of no avail unless an antiseptic dressing could be applient that would effectually prevent the decomposition of the strean of pus constantly flowing out beneath it.' Ife finds that the most suitable dressing is made as follows: Six tea-spoonfuls of the oily solution are mixed with common whiting (carbonate of lime) so as to form a putty, which is spreal upon six incles square of common tinfoil, strengthened with adhesive plaster to prevent its tearing. The tin thos spreal with putty is laid upon the skin, so that the middle of it corresponds with the point of incision, the antisep, tie rag used in opening the abscess being removerl the moment previonsly. The tin is then fixed with adhesive plaster, the lowest edge being left free for the eseape of the discharge into a folded towel plaeed over it, and secured with a bandage. The dressing must be removed every day, and a piece of rag dipped in the oily solution must be placed on the incision when the first tin 'is removed, so as to guard against the possibility of the entrance of germs during the cleansing of the skin with a dry cloth, and pressing out any disclarge that may exist in the cavity. If a picce of lint was inserted into the wound, it must be removerl when the tin is applied. From the absence of the irritation excited by decomposition, pus almost at onee ceases to be formed under this treatment; and large abscesses, after their original coutents have been evacuated, often yield in 24 hours only a few drops of serven in the course of a few days. The Tharmacopeia gives the glyceride of earbolic acid (consisting of one part of the acil to four of glycerine) as a good form for local application; but the proportion of acid must vary with the ease.

The value of earbolic acid as a disinfectant is placed beyoud all doubt by the investigations of Mr Crookes, made at the request of the Tioyal Conimissioners, who were appointed to obtain information and report on the eattle diseasc. Is an account of his experiments is reprinted, in a very cheap form, from the Appendix to their Third Feport, and is aceessible to cvery one, we will merely insert the recommendation of the Commissioners: "That the use of earbolie acid should become general through. out the country in unjnfected as well as in infected distriets. There is little doubt that evelu were there no danger from eattle-plague, the great purifying effect of the substance on the air of cattle-sherls would contribute greatly to the health of the animals.

CARI'PE, a town of Venezuela, South America, situated in a fertile valley of the same uame, 50 miles south-east of Cumana. The valley is noted for a eavern frequented by the remarkable bird called Gnaclaro (q . $\mathrm{\nabla}$.). Pop. of town and valley, 5000.

CARLI'SLE, the eapital of Curuberland eounty, T'emsylvania, U. S., 18 miles sonth hy west of Ilarrishurg, the centre of a rich agricultural country; seat of Dickinson College, a Hourishing Methodist institution ; with 12 churehes, 2 banks, 5 newspapers, machine shops, rail-car factory, and United States harracks ; was shelled by the Coufederates, July 1, 1863. Pop. (1860) 5664.

CA'RLOS, Sax, a town of Tenezuela, South America, in a ralley on the Aguare, a feeder of the Orinoco, 120 miles south-west of Caracas. Before the wars of independence it was a place of considerable importance, having been one of the riehest towns in the province. The town is handsome and
well laid out. The pop. was formerly 10,000 , but is now considerably less. The inhabitants are engaged chiefly in the rearing of cattle, and the cultiration of indigo, cotton, and coffee, of which there are still considerable plantations in the neighbouring savannahs.

CA'RLSHANIN, a fortifed town on the south coast of Sweden, ahout 30 miles west of Carlscrona, at the end of a beantiful ralley. The harbour is small but secure, and a considerable trade in iron, timber, pitch, and tar is carried on. There are manufactures of sail-cloth, tobacco, hats, soap, and leather ; there are also dje-works and ship-building yards. Pop. (186t) 5892.

CarNarvon, Henry Howard Molyneux Herbert, fourth Earl of, horn in Grosvenor S'quare, 1831. His family is a branch of the House of Herbert, Earls of Pembroke, springing from Majorgeneral the Hon. WV. Herbert, whose son, Henry, was created, in 1780, Baron Porchester of Highclere, Hampshire, and adranced to the earldom of Carnarvon in 1793. The present earl was educated at Christ Church, Oxford, where he was first-class in classics in 1852. His father dying before he was of age to sit in the House of Commons, he lost the advantage of the training in public speaking and statcsmanship which the sons of peers usually enjoy during the lifetime of their parents, in the Lower House. He took his seat ou the Conservative benches, and soon shewed himself ambitions of parliamentary distinction. His earlier speeches in the House of Lords were not thought to exhibit much vigour and grasp of intellect, and were marred by a simpering and affected delivery: He was appointed governor of Carnarron Castle in 1854. In 1S5̃s, he became Under-secretary of State for the Colonies, in the administration of the Earl of Derby, and displayed much industry and business antitude in the discharge of his official cluties. In 1859, he was elected High Steward of the University of Oxford. He resigned office with the Conservative ministry in 1859, and availed himself of the period of leisure thus obtained to risit the East. The feuds of the tribes in the Lehanon had broken out in a massacre of the Christians; and the Earl of C. gave the world the benefit of his investigations, in an interesting work, entitled the Druses (q. v.) of the Lebanon. On his return, he delivered lectures in the country, and speeches in the House of Lords, on prison-discipline, education, and other social subjects. When the Conservatives again returned to power in 1866, C. was offered by Lord Derby the high office of Secretary of State for the Colonies, with a seat in the cabinet. His appointment was regarded with some misgiving, doubts being entertained whether he had acquired the weight and aptitude for affairs which belong to experience. He soon, hotrever, obtained for his colonial administration a large share of puhlic confidence. He censured in calm and measured language the misconduct of the courts-martial during the Jamaica insurrection, and especially the trial and execution of Mr Gordon; and the pacification of the colony satisfactorily progressed under his instructions. During the recess, he dereloped and framed a plan for the confederation of the British North American colonies; and when parhament met in 1867, he explained the provisions of the measure in an elaborate speech. The bill met with general approval in both Houses, and it passed; but before it obtained the royal assent, C. had, with two other colleagues in the cabinet, resigned office upon the Reform Bill of the Derby government, which he regarded as democratic in its operation, and dangerous in its results. When the Reform Bill came before the House of

Lords, C., in an animated speech, rindicated his consistency at the expense of his colleagues; and in the discussions in committee, he addressed the House with a degree of vigour and argumentative ability, which give promise that he will occupy a prominent place in the fnture debates of the Uper House. As a sjreaker, he is fluent, but somewhat pretentious in manner, and his roice so weak and thin, that he is unequal to the delivery of a long oration. He married, iu 1861, the only daughter of the sixth Earl of Chesterfield.

CAROTA. a town of Venezuela, Sonth America, in the province of Caro, 210 miles west-south-west of Caracas, and 60 miles east of Lake Maracaybo, on the Tocuyo. The town is well built, has a handsome parish church, convent, hermitage, \&c. There are manufactures of leather, ropes, and fine hammocks from the fibre of the Agave fretida. A trade is carried on in agricultural produce, and in the aromatic balsams, resius, gums, and wild cochineal for which the district is famous. The pop.. which was formerly much larger, is now about tiovo.
CAROUGEE, a town of Switzerland, in the canton and about one mile south of Genera, on the left bank of the Arre. It is beautifully situated, regularly built, and surrounded by villas, orchards, and meadors. It has a handsome Foman Catholic and a Protestant church. There are manufactures of thread, clay pipes, leather, watches, and pottery. There is a bridge across the Arre connecting the town with Genera. Pop. 581\%.

CARRAPA'TO, a species of Tick (q. r.) of the genus Irodes. which infests dry bushy places in the interior of Brazil, hanging in clusters of many hun. dreds on rery slender twigs, and ready to attach itself to any quadruped or man that passes, instantly burying its beak in the skin, from which it cannot be detached without considerable force. Horses and oxen suffer very much from the attacks of the C., of which in dry seasons the numbers are so great, that whole herds of cattle are destroyed by the exhaustion which they produce.
CARVIN-EPINOY, a torn of France, dep. of Pas-de-Calais, 11 miles south-south-east of Lille, and about the same distance by railway. There are manufactures of beet-root sugar, starch, earthenware, and leather. Pop. (1866) 5180.
CA'SIA, or POET'S CASLA (Osyris alba), a shrub of the natural order Santalacea, a native of the south of Europe, $3-4$ feet high, with linear-lanceolate deciduous leaves, long supple branches, numerous small white flowers, and red drupes (stonefrnit) of the size of a pea. The branches are used for making crates. The shrub has been much admired for its modest beauty. Keats speaks of
'The drooping flowers
Of whitest casia, fresh from summer showers.'
CASSIDA'RIA, a genus of molluses-class Gasteropoda (q. v.), order Pectinibranchiata-with univalve sheils, generall regarded as belonging to the family Buccinidec or Thelks (q. v.), but as forming a connectins link with the family, Muricide (see MOREX). The shell is ventricose, with a moderately elevated spire, the aperture elongated, and the canal recurved, but not very abruptly-much less abruptly than in the nearly allied genus Cassis (see Helmet SHELL)-the columellar lip covered with a plate, and the outer lip similarly margined within. The recent species, which are not numerous, belong to tropical and subtropical seas. Fifty fossil species have heen described. The genus first appears in the Upper Cretaceous measures, where a single species occurs. In the Eocene 11 have been found,
and about 10 in the Pliocenc. It has its fullest develnpment as a recent shell, no less than 70 species being linown.
The name Cassidarice is sometimes given to a family of coleopterous insects, of which the type is the genns C'assida. See 'lortulse Belthi-

CASTIGLIO'NP, a town of Sicily, province of Catamia, on the north slope of Momnt Litua, on the right bank of the Cantara, 35 miles south-west of Nissina. The town stands on a square rock rising abruptly from the valley, and having a drouble crest, on which stand a domed church and the ruins of a feudal castle. Mere, in 1297, in the war of the Vespers, Almiral lioger 'Joria raisel the standard of rebellion against his sovereign, Frederick of Aragon. In the district are several large mutplantations, which produce the best sicilian hazelnuts. Jop. (1S61) 4220.

CA'THA, a gemus of the natural onder Celcastracea, The frnit is a threc-corneral capsule.-C. chellis, sometimes called Amaban 'lima, the kuit of the Arabians, is a shrul with ereet smooth branches, elliptical ol,tusely serrated leaves, and small tlowers in axillary cymes. It is a wative of Aralia, and the Arabs ascribe to its leaves, even carried about the person, extraordinary virtues as a preventive of plague, with probably about as much reason as our forefathers had for esteeming the rowan tree formid. able to witches. When fresh, they are stimulant, nareotic, and intoxicating, and are caten with greediness ly the Arabs. They are very antisoporifie, so that a man, after using then, may kecj, watch for a whole night without drowsiness.

CATTLD-ILAGUE, RINDERPEST (Ger.) or STEPPE MUPLAAN, is a contagious eruptive fever, or exanthema, of the bovine species; sheep, moats, deer, and other allied specius occasionally, however, catch it from cattle. It occurs indicenonsly on the plains of Western Iussia, whence it has at various times overspread most parts of the Ohil World. The specitic virus from diseased or infected animals is the only souree of eattle-plague; no lilth, overcrowding, or other health-depressing cause has hitherto produced it. As in smallpox, searlatina, and other cruptive fevers, an ineubative stage, varying letween two and twenty days, intervenes luctween the introduction of the virus into the system, either ly inoculation or contagion, and the development of the eharacteristic symptoms. These consist essentially of congestion of the mucous and cutancous surfaces, with a sort of aphethous ermption, and thickening, softening, and clesquamation of the superficial investing menubranc. The disease runs a toleralily fixed and definite course, which is not materially altered ly any linown remedial measures. It seddonn attacks the same individual a secome time.
/Iistory.--The cattle-plague has been recognised for upwards of a thousand years. It appears to have destroyed the herds of the warlike tribes who werran the Ioman Empire during the fth and 5ith centuries. About 810 , it travelled with the armies of Charlemagne into France, aml about the same period is also supqosed to have visitel Faglanl. Several times thronghont the eonrse of every century it spread from the plains of linssia over the western countries of Europe, and is stated to have again visited Jingland about lion5. Athough neca. sinning, every few years, great losses on the continent of Europe, the plagne does not alpear to have again shewn itself in England until 1714, when it appeared at Jslingtun abont the midde oi July, was very destructive for aloont three months, but was again got rid of towards Christmas. In $\mathbf{1 7} 44$, it was in Holland, destroying there, in two years, 200,000 cattle: in Denmark, from 1745-1749, it killed

250,000 ; in some provinces of Sweden it spared ouly \because per cent. of the horned eattle. It made terrible havoc throughont Italy, destroying 400,000 lreasts in l'ielmont alone. In April 1,45, the phague was arain imported into England, probahly ly some white calves from IIolland, where, as already statel, it had for some time prevailed. It contimed its devastations for twelve years, but it is now impossible accurately to diseover the losses it necasionel. In the third and fourth years of its ravages, 80,000 eattle were slaughtered, and double that number are supposed to hari died. In 1747, 40,000 cattle diel in Nottingham and Lancashire alone; whilst, so late as $1757,30,000$ perishad in C'lacshire in six months. In Mareh 1750, the disease was lorought with some hay from Holland to I'ortsoy, in the Moray Firth; several eattle died, and others, to the value of ± 709, $12 \delta .2 l$., being destroyal, the further spreal of the pest was preventel. By the wars which wasted Europe towards the close of the last and first eighteen years of the present century, cattle-plaguc was spread widely over the continent, and occasioned, wherever it occurred, terrible losses. Since then, at short intervals, it has spreal-always being traceable to its source on the Iussian plains-over Toland, Hungary, Austria, Prussia, portions of Gemony and ltaly, and from the Black Sea has extended to Egypt.

The British outhreak of 186.0-186\%, like its predecessors, undoubtedly came from liussin. The steamer Tonning from lievel, bronght 331 cattle and 330 sheep into Hull on '29th Day 156.i. A portion of the cattle lad come from the interior of liussia, where the plagne then was, or recently had loen; the cargo was rapidly landed, and very hurriculy inspected. Nearly lialf of the eattle were distributed in varions lots to butehers in Leeels, Derly, and Manchester, but, curiously, these io not appear to have left any eontagim in their trail. One hundred and seventy-tive came to Lomblon, remained from the Alomlay evening until Thursday's market in lairs at York lionl, adjoining the cattle. marlect. It is stated, in a leader in the Times of 15 ch Angust, that rinderpest was scen in the metro. politan market as carly as loth Jume. Certain it is that more than one lot purchaserl on lath Jlune carricd the disease to several daries in and ahont London. The first cases were mistaken for cases of poisoning, the cows they had stowl lesible were sent into market, and thus the subtile disorder in a few weeks spread into many dilirics, buth in town and country. Twenty three Dutch cattle, after liaving stood over for several markets, were sent buek to Holland on 21 Jnly; carried with them the contagion, were placed in a fich near Schicham, lat soon sickened and died, thus sprealing the disease in II ${ }^{2}$ land. During the next six months, flague cases were repeatedly remported thence into Eig. land. Until 11 th August 1SG5, no restrietions whatever were put upon the removal of eattle; disensed and inlected animals were freely taken to fairs and markets, were openly travelled ly road and rail ; whilst the metropolitan market continued every weck to send forth infectel cases, not only to the neighbouring counties, but to Hampshire, Birminghau, Herford, Liverpool, Elinlburgh, ant even to Alberdeeushire. As carly as 1 Sth July, the pest was brought from Londun to llantly ly four calves; sulssequent ontbreaks ocenrred in the same way. The stamping-out system was, howewer, carly and rigidly enfored in Alberdeenshire, and eight distinct outhreaks of the plague were promptly got rid of.

In Edinburgh, it appeared probably about 9th August, was brought from London by some lowpriced foreign cows; in six weeks, about $\$ 00$, or one half the dairy cows in Edinburgh, lad died-200

CATTLE-PLAGUE.

having heen buried in one trench. By the end of January, four-fifths of the dairy cows had perished, but Edinhurgh was reported clear. In Glasgow, the first case occurred ou 19 th August, in a cow sent frow Edinburgh. By 30th September, 432 cases were reported, and it continued to spread. By the middle of October, it was in Mr Harvey's valuable stock of 800 , of which 25 died in one night, and to save further loss, 50 healthy animals were in one day disposed of to the butcher. From Falkirk Trysts, as from Barnet, Norwich Hill, and other large English fairs, the disease was transmitted into fresh localities. From the autumn trysts, it was carried into Perthshire, Forfarshire, and Fifeshire. Diseased cattle passing along in railway trucks, appear to bave snread the contagion over the fields adjoining the line at Thornton, Fifeshire. Into West Lothian it was conveyed early in September by lambs from the Edinburgh market.

The rapid spread of the insidious disorder may be gathered from the fact that, whilst, during the week ending 24th June 1865, there was only one outbreak at Mrs Nicholl's dairy at Islington, and 30 animals affected, by 30th September there were 1702 farms, sheds, or other places in which the pest had appeared, and 13,263 animals had been attacked. Three months later, 8252 separate places had heen risited, and 60,743 animals attacked. During six months, the aggregate of cattle attacked was 76,002 . During the three months to 30th March, 13,443 farms and other premises bad been infected, and 147.275 cattle attacked. In December 1865, the fresh cases each week reached 9000 ; but in spite of remedial and presentive measures, of orders in council, and restrictions on the movement of stock, the number of weekly cases steadily increased to 15,06 in the third week of Febmary. 'The Cattle Diseases Prevention Act’ passed ${ }^{0} 0$ th February 1 1866, and the advantages flowing from the restrictions thus tardily imposed on the trade in cattle, and the slaughter of diseased and infected animals, were speedily apparent. In four weeks, the mumber of cases was reduced by one half. During the three months ending 30 th June, 25,276 cases were reported; during the next three months to 30th September, the מumbers fell to 210 S ; whilst, to 29th December, the three months' cases were but 149 ; to 30 th March $1867, \$ 9$ new cases were noted. Throughout April and May the number of cases continued steadily to decline; but during the week ending 25 th May a fresh outbreak occurred in the Finsbury district of the metropolis, and 81 animals died, or were slaughtered to prevent the further spread of the pest. With the excention of an isolated outhreak in Essex, which was promptly stayed by slaughter of the ailing and suspected animals, the country was free of 1 lague during August. By the 'Consolidated Order of Council' (August 1867), foreign cattle, from 13th September 1867, are to be slaughtered at the ports of debarkation, and the reintroduction of cattle-plague into Great Britain is thus tolerably effectually guarded against.

The total mimber of animals aflecterl in freat Britain to 31st August 1867, has been 2-9,923; about 125,000 have died, whilst nearly 00,000 healthy cattle have been slaughtered to prevent the further spread of the disease. The numbers of cattle in England, Wales, and Scotland, attackel, killed, \&c., may be thus approximately stated: about 11,000 cases known to hare been attacked are, however, unaccounted for.

	Atracted.	Eilled.	Diecs	Recotered
England,	223,672	102,740	90,450	21,589
Wates,	8,383	1,180	5.791	1.117
Scotland,	46,863	6,263	23,088	1 1,707
Total,	278,923	110,183	124,332	33,413

Causes.-The development of cattle-plague by filth, overcrowding, miasmata, hot weather, or other such causes, is untenable. Faulty hygiene, by lowering vitality, probably renders the animal more prone to the attack, and less able to bear up against it, but it cannot originate plague. Like hydrophohia, smallpos, or syphilis, it is developed only by the special virus, which appears to lave its habitat on the Iussion steppes. This virus occurs abundantly in the blood of every plague-stricken beast, in the discharges from its nostrils, mouth, or eyes, in the off-scourings from the bowels, probably even in the breath. It may be transferred to healthy beasts by moculation. A little of the blood or nasal or other macous discharges of a plague case, if introduced underneath the skin of a healthy cow, develops the disease within a few days. The transference of the virus or contagion from the sick to the sound animal, is not almays so direct and evident. As with other catching diseases, the virus may be carried considerable distances in the air; its particles are minnte, but they have powerful vitality; it may adhere to the food that bas lain before infected beasts; to the litter from the stalls, or even after it has been heaped for weeks; to the clothes of attendants; to the floors, walls, or stalling of buildings; to imperfectly cleansed cattle-trucks. So subtile and potent is the plague poison, and so endowed with the power of self-multiphication and growth, that a very minute portion of it finding access to the blood of a healthy animal of the bovine race increases so rapidly, that, to use the words of the Commissioners' Report, No. III. p. 4 , 'the whole mass of the blood, weighing many pounds, is infected ; and every small particle of that blood contains enough poison to give the disease to another animal.' It may gain access to the blood probably through the air-passages, perhaps also by absorption throngh the mucous surface of the bowels, or even through the skin.

Symptoms.-In from three to six days after an animal has heen exposed to the virus of cattle-plague, or about 36 to 45 hours after heing purposely inoculated, the temperature of the body is raised by several degrees. A delicate thermometer, if introditced into the vagina or rectum, instead of marking about $102^{\circ} \mathrm{F}$., indicates 104° to 106°. As yet, the appetite, secretion of milk, breathing, and pulse are scarcely if at all affected, and but for the elevation of temperature, accompanied sometimes by dulness, the animal might be supposed to be in the best of health. Two or three days later, or usually within six or eight days after the beast has taken in the subtile virus, the mucous membrane of the mouth is generally observed to be slightly reddened, and soon a granular yellowish-white eruption, consisting of thickened epithelium cells and gramles, appears on the gums round the incisor teeth, and by and by on the lips and dental pad. Some hours later, the same eruption extends to the cheeks, toncue, and hard palate. Within 45 hours, or about the sixth day of attach, a crust of epithelium covers the gums, lips, and mouth, and when wiped array, or accilentally rubbed off, leaves the abraderl membrane red and vascular, and exhibitiog patches of erosion. The membrane lining the ragina indicates very similar appearances; it is reddened and vascular, dotted with grayish translucent elevations about the size of rape-seeds, covered with a whitishyellow, usually sticky discharge, and occasionally marked with patches of excoriation. The skim, like the mucons surfaces, is cougested ; there is hence a perrerted development of scarf skin, and of the oleaginous secretion of the irritated sebaceons glands. The skin is thus invested with a furfuraceous desquamation; whilst on its thinner portions
about the lips, between the thighs, and on the whler, there are papular eruptions or elevations. About two, on exco three days after the temperature has been incteased, and usually one, or even two tays after the appearance of the characteristic eruption on the gums, the constitutional symptons present themselves. The anmal is duil, hangs its head, arches its back, the eyes are leaden and watery, and from both cyes and nose there latterly comes a dirty slimy discharge. Appetite and rumination are irregular, and in dairy eows, the secretion of mill rapidly abates. The breathing, espeeally towarts the sixth day, is oppressed, expiration is prolonged, and accompanied ly a pecnliar grunt. The pulse is small and thready, and quickened as death approaches. The bowels, usually at first confined, become, towards the sixth or seventh day, much relaxed; the diseharges passed, often with pain and straining, are profuse and lituud, ollensive, acrid, pale coloured, and occasionally mixed with blood. The pratient loses weight and strength, totters if it attempt to walk, and prefers to lie rather than to stand. Death usually oecurs about the seventh day, and is meceded by muscular twitchings, a peculiar sickly, ofteu offensive smell, a cold clammy state of hody, moaning, grinding of the tecth, and rapidly increasing prostration.

Prognusis.-Cases nsually terminate mfarourably when about the lifth or sixth day the animal temperature falls lapidly; the pulse becomes small, ynick, and weak; the breathing more diffienlt, distressed, and monuing ; the diarthoa increased; and the depression more notable. A more faromable termiuation may be anticipated when, after the fifth day, the beightened temperature, so notable eveu from the carliest stages, abates gradually ; the breathing becomes easier; the pulse firmer: the visille mucous membranes appear healthier; and patches of extrarasation, or crosion speedily disa]pear.

Sheep do not take rinderjest spontancously, and erca when kept with diseased cattle, or inoculated with cattle-plague viras, they do not catch the disease so certainly as cattle do. When diseased, they exhibit, however, very similar symptoms, but Professor Rëll, and other observers, record that upwards of 40 per cent. recover. Goats, deer, autelopes, gazelles, yaks, and indeed all animals taking rinderpest, exhibit with tolerable uniformity the same characteristic symptoms.

Post-mortem Appearcences.-The mncous membranes are generally deeper coloused than natural, are congested, softened, marked in places with the same gramular patches discoverable during life within the month and the vagina, and in bad cases exhibit wedema, hremorrhage, and sloughing. The first three stomachs sometimes contain a good deal of food, but shew less declension from health than the fourth stouach, of which the mucons membrane is clotted with spots of congestion and extravasation. The coats of the bowels are thinned and easily torn. The mucous coat, especially towarls the middle of the small intestines, the opening into the crecum, and posterior half of rectum, is much congested, bared of epithelinm, and sometimes ecchymosed, but never ulcerated. Peyer's glands, so generally intlamed in the somewhat analugous typhoid fever of man, are perfectly healthy. The liver, spleen, and pancreas scldom present any special appearances. The respiratory mucous membrane, like the digestive, is vascular, and marked with submucons banorrhage; the liugs are generally euphesematons, the heart often marked with petechial spots. The urino-genital, like the other mucous mernbranes, is congested in females, especially towards the lower liart of the vagina and vulva; the lidneys
are sometimes rather softened; the scrous memlranes and nervous centres are perfectly unchanged. Dr Jeale, hy his microscopical olservations, fliscovers in the eapillaries a great increase of nuclear or germinal matter, and white hlood-corpuseles, which he helieves may account for the local eongestion. The llow itself is dark in colour ; in the later stages it contains less water, prolably owing to the draining diarrhea, and about double its nshal proportion of fibrine. The mascular tissues are softened, easily broken down, and contain an abnormal amount of soluble albumen. The urine is little altered in quantity; but from the first rise in the animal temperature, it contains an increase of wrea varying from 5 to lis per cent. The chicf change in the milk is its rapid diminution in quantity, and the increase of its fatty matters. The bile is watery, offensive, and prove to decomposition.

I'reatment.-Cattle-plague is proved to be an ermptive fever. When the specific paison, on which such disorders depend, has entered the body of a susceptible suljeet, no remedy has yet been discovered which ean destroy it, or even materially shorten or mitigate its effects. Until such an anticlote is found, there can be no hope of a certain cure. The Cattle-plague Commissioners have collected information regarding the four following methods of treatment-ramely, the antiphlogistic, the tonic and stimulant, the antiseptic, and the special. Diverse as are these systems, the percentages of recoverics, varying from 25.83 to 27.45 , were so nearly alike, that it is fair to conclucle that no one of the systems tried exereised any netable influence in cheeking the mortality: l'artly, jerhaps, from the varying virutenee of the plagne, partly from the differences in the mursing and care bestowed on the animals, the jroportion of recoveries has varied creatly in different localities. Up to the end of 1865, in Huntingdon they were only 4 .66S per cent.; in Norfolk they were lolloz; in Flint, 15.909 ; in Scotlane, 19.889 ; whilst in Fifoslite they reached 24.552 ; and iu Jorkshire, 29.731 ler cent.

Like smallpox, measles, and other eruptive fevers in mans, rinderpest rums a definite course which cannot safcly be interfered with. Rational treatment is therefore limited to warting off untoward symptoms, careful nursing, aud husbanding the failing strength. It must, however, be remembered that thronglout the progress of the disease there is constantly given off from the sick body minute particles, which are eapable of developing the disorder in healthy cattle. Hence plague-sulbjects, by the orders in conneil, are very properly desired to be immediately destroyed. Except, therefore, for purely scientific purposes, and with careful precartions to prevent the spread of the poison, it is unvise to attempt remedial treatment. Where, however, a beast is to lave a chance of recovery, so soon as the elevated temperature indicates the accession of the disease, saliel indigestible food should be withheld, and the patient restricted to mashes, gruel, boiled linseed, malt, and other food, which can be digested withont the necessity for rumination. The parnmount importance of such a dietary is clearly demonstrated in the returns of the Elinburgh Cattleplague Committee to the government commissioners. The recoveries amongst 310 cattle 'fed with dry food, and treated medicinally with drugs, were 13.6. Amongst 303 cattle treatel with mixed food and hay, 222 recovered. Where mashes were given during sickness, but dry food supplied during convalescence, the recoveries reached 51.5 ; whilst in 05 cottagers' cows, whose chicf oxdinary dictary consisted of mashed food, and which were fed in
the same manner throughout both sickness and convalescence, and were besides carefully nursed but not doctored, the recoveries reached 73.7 . Where the bowels at the outset are costive, a dose of oil, or a very small quantity of some saline purgative, may be required. Cold water, gruel, mashes, or stale bread soaked either in water or beer, should le offered at short intervals throughout the attack. The animal, kept in an atmosplere of about 60°, should be comfortably clothed, and have its legs bandaged. The hot-air bath and wet-packing has been repeatedly tried, but although probably nseful in the earlier stages, appear, when the disease is fully established, to harass and weaken the patient. Small and repeated doses of sulphite of soda have in some cases proved usefnl, and may be conjoined with carefully regulated moderate doses of such stimulants as ale, whisky and water, sweet spirit of nitre, spirit of ammonia, or strong coffee. It is most important, however, that these and other such medicines should le drunk by the animal of its own accord in its gruel, water, or mashes, as the forcible horning over of drenches always disturbs the patient. The inhalation of chloroform, although temporarily relieving the distressed breathing, does not appear to exert any permanent benefit.
Prevention.-From what has been stated regarding the nature and canse of eattle-plagne, it must be evident that its prevention can only be effected by the destruction of the specific virus, or by removing beyond its influence all animals on which it might fasten. Sparks fall harmless where no inflammable materials lie within reach. Into Great Britain and Ireland, fresh importations of plague must be guarded against by greater care and increased restrictions in the introduction of foreign cattle. These should be admitted only into certain legalisel ports, provided with suitable markets, lairs, and abattoirs, whence no fat stock should be permitted to be removed alive. Store stock from ahroad, or home-bred animals that have stood in the metropolitan or other large markets where foreign beasts are admitted, should be placed in quarantine yards or fields, under proper inspection, for at least fifteen days. By neglect or evasion of such precautions, plague, during IS65 and 1866, was almost every week carried from the Islington and other large markets. By attention to such regulations, not only would cattle-plague be prevented or confined to the narrowest limits, but the spread of pleuro-pneumonia and month-and-foot disease would also be similarly checked. Sheep, fresh hides, lay or other fodder, and litter from countries where plague exists or has recently visited, ought not to be allowed to enter British ports.
Finderpest being found to resemble smallpox in men and sheep, it was thought that its propagation and rirulence might be abated by vaccination with cowpox lymph ; but cattle, oven when effectually vaccinated, which is often a difficult task, readily take rinderpest, often in its most mortal forms. Inoculation with the discharges from mild cases and from young calres has been tried as a palliative; but the disease, thus artificially developed, loses nothing either of its severity or of its dangerons contagious character. Cattle in Oxfordshire receiving for several weeks daily doses of sulphite of soda are stated to hare had the plague in a mild form.
Where an outbreak occurs, the diseased animals must be promptly destrojed, and all cattle in immediate contact with them should likewise be slaughtered. This 'stamping-out system' prevents the multiplication and diffusiou of the virus, and hence saves still further losses. It is rigidly and successfully carried out in many continental coun-
tries. By stamping out and strict isolation, eight or ten outbreaks in Abercleenshire were got rid of without serious loss. A French outhreak on the Belgian frontier in September 1865 was stamped out with the sacrifice of forty-three ammals. The disease was imported to Paris in November by two gazelles purchased in London by the French Acclimatisation Society. Before it was stayed by slaughter and segregation, thirty-four animals, including yaks, antelopes, deer, gazelles, goats, and peccari, died or were destroyed. The determined slaughter of diseased and infected animals, and the restrictions on the movement of all stock, were the only means that reduced the number of attacks during the Britisl outbreak of 1865 and 1866. As is officially recorded in the Commissioners' Iieport, No. IV., p. 6, 'where the percentage of killed is high, the ratio of increase of the disease is low, and vice versa. This has generally been noticed under each county and district.'

When plague is in the neighbourhood, it is desirable daily to sprinkle the walls, wood-work, and floor of the sheds and hovelling with carbolic acid solution, and to keep up throughout the premises a continual odour of this useful antiseptic, and even with a diluted solution of the acid, or with M'Dougall's disinfecting soap, to wash over the cattle twice a week. The animals should be carefully fed on digestible soft food; receive daily about an ounce of sulphite of soda in a mash; and, in order to note the first access of the disease, should have their temperature examined by the thermometer every night and morning.
The recommendations of the Cattle-plague Commissioners for the purifying of infected sheds, litter, and manure must receive careful attention. In Whatever premises infected beasts have stood, the walls should be lime-washed, a pint of carbolic acid being added to each pailful of the whitewash. The floors and wood-work, after being washed and scrubbed with boiling water, should be sprinkled with a strong solution of carbolic acid. The sheds being emptied of their living inhabitants, and the doors and windows closed, sulphur should be burned, and the vanours allowed to float about for a couple of hours before the sheds are again thrown open to the purifying influences of abundance of fresh air. A pound of sulphur placed on a shovel of burning coals will suffice for a twelve-stalled shed or byre. Where cattle-plague has raged, this cleansing and fumigation should be repeated, and, if possible, several weeks allowed to elapse before the premises are again occupied by sound animals. All shovels, forks, buckets, or brooms that have either directly or indircctly come in contact with diseased or infected animals, should be washed with the carbolic acid solution. The clothes and boots of atteudants, inspectors, and others coming in contact with plague-stricken animals must be similarly cleansed. The manure should be sprinkled with carbolic acid at intervals of a ferr days, and then covered over with a foot of earth, freely mised with soil, or carted away and ploughed in. It is safer thus to put the manure on the arable land than to use it as a top-dressing for the pastures.

Authorities.-Official Reports of the Commissioners appointed to inquire into the Cattle-plague, Nos. I., II., III., and IV.; The Cattle Plague, by Professor John Gamgee.

CAVARZE'RE, a town of Northern Italy, prorince of Veoice, 22 miles south-sonth-west of Venice city. Pop. 11,903. It is situated on the Adige, which divides it into two parts called C. destro and C. sinistro. Its soil is fertile, and its inhabitants carry on an active trade in cattle, silk, and wood for fuel.

Cl'CLLIN, a town in Southern Italy, province of Yeece, 15 miles nortlecast of Taranto. I'oj). (ls61) 11,261. It produces much grain, and lias fine pastures.

CLIED. 1 , a city of Sorthern Italy, province of Treviso, 3 (i miles north of Venice. Dop. S17s. It stands at the bise of a monntain. It is an apiscopal see, has a very liandsome modern cathedral and a fince monolithic fountain. Under the republic of Venice, it was rich, and faned for its manufaetures of woollen eloth, silk, and paper. C. is very ancient, dating from the time of the lomans, Lut now it is a lecayed city.

CHAILLUU, Pave B. DU゙, a distinguished triaveller, was born in the south of France, about $15: 20$. His father was for many years a merchant trading on the Gaboon ($q . v$. River, in Western A frica, and thither he was carried when a boy. ILe lived there for several years, and became familiar with the lablits and languages of the natives, thus-as well as in his habituation to the climate-unconsciously frepring himself for the explorations which he was afterwards to unlertake. In 1S12, the French male a settlement and luilt a fort on the Gaboon. Under the protection of this fort, both the clder and younger $\mathrm{D}_{\|} \mathrm{C}$. resided and carried on their cominercial putsuits for some years. Dil C. afterwarls went to America, where he resided for a numleer of years, and was naturalised by the lugisla. ture of the state of New York. In Octuluer 185.5, le sailed from New York to West A frica, where he spent four years in explorations, making many interesting discoveries, and travelling, as he himsclf tells us, about 5000 miles, always on foot, aml unaccompanied by other white men. The returnud to America, and after subjecting his specimens in natural history aud ethmological notes to the examination of the scientific men of New Fork amel Foston, he crosscd the Atlantic to England, and mablished a volume of travels-Explorations and Adeentures in E'quatorial Africa, with Accounts if the Manners and Customs of the I'eople, and of the Chase of the Gorilla, Crocodile, Leopard, Elephant, anel other Animals (Lond. 1S61). His triocls were in a region lying between N. lat. $1^{\circ} 30^{\prime}$, and S. lat. 2°, and extending from the const to about IS. long. $14^{\circ} 15^{\prime}$; and the work in which be gives an accomnt of them contains very important contrilutions to geographical, ethnological, ant zoolomical seicuce. Uuder the first of these heads must be ranked, as of chief importance, the information concerning the Fernand Vas, Ogobai, and Pembo rivers (see OcobaI in SeppremexT), and concerning the mountain chain which, between the equator aud S. lat. 1°, stretches from west to enst from the neighbourhood of the coast far into the interior of Africa. IIc made known the cxistence and described the characteristics and labits of a number of Afriean tribes, among which prarticular iuterest attached to lis account of the Fans ($(\mathrm{r} \cdot \mathrm{v}$.$) , a cannibal tribe, imhabiting a region on$ the western side of the coast-range of mountains, just to the nortl of the equator. Ilis contributions to zoology related not only to the gerilla and other remarkable ajes, some of them previously quite unknown, but included also many new species of mammals and birds. Many of the statements contained in his volume, however, being very extraordinary, it was rectived with mucll distrust, and was subjected to very alverse criticism; to which it was the more exposed because the author's journals laving been put into the hands of a literary gentleman in America to be prepared for the press, separate journeys were mixed up in the narrative, and the chronology was thrown into confusion. Much discussion took place in newspapers and
periodicals, and some writers went so far as to assert tlucir belicof that I) C^{\prime} 's stories about the gurilla wore cutirely* falulous, aud that he liad never secn the animal alive, but hat purchased the specinens which he bronglit to England from artives on the enast. Jlis alescriptions of nostbuikling ajes were, of eourse, also ruceived with inercdulity, and the truth of his aceount of tho eannibal lians was much doulted. The maps drawn up by Dr Burtl aud Dr l'etermann in $15^{\circ} 2$ moved the positions of all the places which lie lial visited much nearer the evast than he had fixed them, so as greatly to ruluce the lunctlo of his routes. The general trustwortliness of Du C.'s uarrative was, however, maintained by some men of tho highest eminence, aul particularly by Sir Roderick Murchison and Jr Owe Du. Du C. resolved to confuto his opponents, and vimlicate his owu rejutation, by another expedition to Africa, for which he propared himsclf by a course of scientific study, to enable him to mate astronomical and other olservations, and by acquiring the ant of photompaphy. During his first cxplorations, he had laid down the position of jlaces from companss-bearings only. The substantial accuracy of his observations was, however, in the meantime confirmel by a French govermment expedition unden Messrs Derral and Griffon du Edlay, which explored the Ogobai liver in 1S6: ; and Dr Petermann tlen reconstructed his map of that part of Africa as Du U. had originally laid it down. Ilis statements regarding the caunibalism of the Lans were also contirmed ly Castain Burton, who limself travelled among them. Din (., lawerer, proceded on his second expe: dition. He freiflited a small schooner, and sailed in Jice from England on (ith August 1563, carrying with lim not only an ample store of scientifie apparatus, but also of gools for presents to the natives, or barter witl them. II reached tho montl of the Fermand Vas Liver on loth October, and wias warmly welcomed by the dfrican chiefs whom he had formerly known; but lie sustained a gricrous misfortune in the luss of all his scientific instruments aud many other valuable articles, through the swamping of the canoe by the surf, as they were being landed from the schooner. Ilo was compelled to send tos Englani for another set of instrumunts, and to wait till they arrived. Meanwhile, he made several cxcursions in the neighbourhood of the coast, through the almost impenetrable jungle which covers the western coast regions of equatorial dfrica, and had abmulant opjortmity of conlinming his former ofoscrvations regarding the gorilla. He also liad live mues canght and brought to lim lyy the matives. In September 1S6.4, Du C. having received his new supply of instruments from England, started on his expalition for the exploration of the interion: Ile was attenderl by a body-guard of ten Commi uegroes, in thick eauvas trousers, blue woollen shirts, aud worsted caps, cach man having a blanket to keep him wam at vight. 'Ihare was difficulty, huwever, in getting leave to set rut on the expredition at all. It is the universill rule amonis the coist tribes of West Africa to prevent, if possible, all stringers from penctrating into the iuterior, even if it lu only to the next tribe, through fear that the exclusive privilege of trading with that tribe shoulal le lost. A grand pulurer was held on the subject, aud it was at last agreed that $\mathrm{D}_{11}($ '. should be allowed, its a special fayour, to ascend the Fernand Vis or Ogobai, as his oljject was not to trale, but to shoot animals, and to bring away the skins and boues. 'Truly", the chicfs and eonncillors said, 'we do not know what Claillie has in his stomach to want such things, but we nust let him go.' Du C.

CHANBRE INTROUVABLE-CHANK.SHELL.

revisited some of the scenes of his former explora-tions-the Ogobai, the Rembo, and their brauches. He suffered great hardships, being sometimes at a loss even for food, and his attendants being almost all at one time ill of smallpox, which made fearful haroc among the artive propulation, and exposed hin to the dangerous suspicion of haviug cansed it ly witchcraft. He passed through a forest district so dense that animal life is scarcely found in it, and an almost mbbroken silence prevails by day and by night. He found also in his journeyings many scenes of extreme beauty, scenes of mountain and mendow, hill and pasture-land, groves of plantains, groves of lime-trees remarkable for dark fohage, stately palms, and clear sparkling streams. An unfortunate misunderstanding took phace at last between Du C.'s party and the inhabitants of a village which he liad reached. A conflict took place, the natives became exasperated, and it was with difficulty that the traveller escaped, being obliged, however, to resign all thought of praceeding further. He reached the mouth of the Fernand Vas River on 21 st of September 1865 , and found a vessel there loading for London. He had lost everything but his journals; all the treasures in watural history which he had collected were gone. He brought home, however, his astronomical obserrations, which have been carefully examined by the most competent persons, and the map of western equatorial Africa has been made much more complete and correct than before. Du C. did not penetrate, ou any of his journeys, much more than 240 miles in a direct line from the coast, but his discoveries have becn numerons and important, and amongst them are about eighty new species of mammals and birds. No one now affeets to doubt the right of Du C . to be ranked among the most enterprising of travellers, and the truthfulness of his narrative is universally admitted. The account of his second expedition to Africa is entitled A Journey to Ashango-Land, and Further Penetration into Equatorial Africa (Lond. 1867).
Chambre introuvable (Fr. unfindable chamber; i.e., the chamber the like of which is not to be found again) was the name sareastically given to that Chamber of Deputies in France which met after the second return of Louis XVIII. (July 1S15), and whicl, by its fanatical royalty, began to throw the conutry and society anew into commotion. The former chamber, which had shewn much moderation, had been dissolved under the influence of the court party ; and the ministry, led by Talleyrand, had done everything to procure for the ruling party at least a manageable chamber adapted for business. The number of the deputies was arbitrarily raised from 959 to 392 ; and to secure the victory of a complete restoration, all rushed forward who snw in the constitutional charter an encroachment on their privileges and protensions. When it is cousiderch, in addition, that the elections, at least in the depart. ments of the south, took place under terror and the sanguinary ontrages of a populace in a state of political and religious excitement, that the press was stitied, and the people deprived of all freedom of expression by the foreign armies, nitra-royalism could not fail to be completely triumphant. When the ministers saw this startling result, they did not venture to open the session ; they resigned, and gave place to the Richelieu ministry. Theu broke out the mast frightful excesses in the southern provinces. At the elections in Nimes (22 l A August), more than 100 persons were killed by the royalist bands. At last, on 7th October, the king opened the chamber, ou which he enjoined quietness and moderation ; and it appeared as if it did take this advice to heart for an instant. But when, in one of
the first sittings, Boyer d'Argenson asked for the interrention of the chamber in behalf of the Protestants, who were being slaughtered in the sonth by the ultra-royalist bands, the speaker was called to order, and the chamber from that time ceased to observe any bounds or moderation. The fanatical legislation of this chamber inspired the ministers, the king, and especially the Einperor Alexander, mith so much aversion and apprehension, and also met so decidedly with the disapprobation of all peaceful and sincere friends of the throne, that the news of its dissolution, on 5 th A pril 1816, was received with universal rejoieing. The electoral law of $\overline{\mathrm{t}}$ th Felruary 1817 prevented the return of a similar chamber; and it was not till by the modified electoral law of 1820 that ultra-royalista regained Ω predominating intuence in parliament. It is said that Louis XVIII. first used the epithet Chambre Introuvable in an ironical sense, and that the majority of the chamber tools it seriously as a compliment.
CHA'NDAH, a town of India, on the south-west frontier of the territory of Nagpore, on the left bank of the river Erree, near its junction with the Wurda, 90 miles south of the town of Nagpore. Its walls, built of cut stone, and surrounded by a high parapet, are 6 miles round, from 15 to 20 feet high, and Alumked with round towers large enough for the heaviest grus. Within the place, and almost equidistant from the north and south faces, is a citadel ; the rest of the interior consists of straggling streets, detacherl houses, and plantations. It is well supplied with water. In 181S, C. was taken by the British.
CHANDHAIREE', or CHANDERI, a town of India, in the province of Malwa, in the territory of Gwalior, in a hilly and jungly district, 105 miles sonth of Gwalior, near the left bank of the Betwa, a tributary of the Jumna. It is at present much decayed, on account of Mahratta oppression, the scourge of war, and the decay of its mannfactures, which are nudersold by the cheaper fabrics of Britain ; but the extent and architectural excellence of its ruins indicate its splendonr and importance in former times, when it is said to have contained 14,000 stone houses, 354 markets, 360 cararanserais, and 12,000 mosques. The fort of C., formerly decmed impregnable, consists of a strong rampart of sandstone, Hanked by circular towers, and is situated on a high bill. Among other remains of former greatness, is a pass ent through a solid rock 100 feet high. During the uative wars, being a place of importance, ©. rias frequently besieged. Under Mahratta sway, it became a hant of freebooters, yery troublesome to the native districts under British rule or protection; and on the conclusion of the treaty of 1841, it was, among other lands, assigned for the manntenance of the incrcased Gwalior contingent, commanded by British oflicers.
CHANTDPOO'R, a torm of British lndia, in the North-west I'rovinces, district of Bijnaur, about 930 miles north-west of Calcutta, and s0 morth-east of Delli. It is of cousidcrable sizc, and has a pop. of 11,491 .
CHANK-SHELL, the popular anme of the shell of several sjecies of Turbinella, a genus of gasteropodous molluses of the group siphonostomate (q. v.), natives of the East Indian seas. These shells are obtained chiefly on the coasts of the sonth of Iudia and Ceylon, and form a considerable article of trade to Calcutta. They are much used as ormaments by Hindu women, the arms and legs being encircled with them ; and many of them are buried with the bodies of opulent persons. Those which are thrown

CHARLES X.-CHARLES XI.

up on the beach, after the death of the molluse, and have become whitened, are little valued, but fresh shells readily find purchasers. The commereial

Chank-shell.
returns shew an exportation of chank-shells from Nairas amounting to the number of $2,460,727$ in one year, 1853-1854, the value of which was about \&10,000. The quantity ordinarily exported is smaller. A chank-shell opening to the right is rare, and is highly prized in Calentta, so that a price of $£ 50$, or even $£ 100$, is sometimes paid for one.

CHARLES 天․, or CHARLESGUSTAVUS, king of Sweden, was born at Nyköping, Sth Novemher 1622. After studying at the university of Upisala, he travelled through France, Germany, and Switzerland, joined the army of Torstensohn (q. v.) in 1642, foucht at the battles of Fankoritz and Leipzig; and at the elose of the war was the representative of Queen Christiva at the conferences which were held for giving effuet to the treaty of Westphalia. On the abdication of Christina, CharlesGustavus, who was the son of Gustavns Adolyhus's eldest sister Catharine, and John Casimir the Palatin of Zweybruck in Clerburg, succeeded as next leir, 17 th June 1654 , to the throne of a kingdom which, after his accession, he discovered to be in an almost bankrupt condition. There was a dcbt of $10,000,000$, while the revenue did not amount to 500,000 crowns, out of whiel one-fourth was granted as a pension to the ex-queen, whose earelessness and extravagance lad brought about this deplorable state of matters, and who, in the words of the aged chancellor Oxenstierna, 'had cost Sweden dearer than ever an euenry did.' She had taken away everything belonging to the royal residences which was portable; and C. wras foreed at first to borrow even a set of kitehen utensils. C. was the second of the three great warrior-monarehs of Sweden, but unlike his nncle, who could plead religious grounds, and his grandson, who was at first forced to fight for self-preservation, C. seemed to make war principally for war's sake. First lie attacked Poland in July 1655, beeause the Polish monarchs had not resigned their claim to the Stredish throne; eaptured in the same year Warsaw, Cracow, Thorn, Elbing, Posen, and Kalicz; and drove the king to take shelter in Silesia: he theu assailed the Danes, who had deelared war against him, crossed the Belts on the ice, and spredily made himself master of all the continental possessions of Denmark. Next marehing from isle to isle over the frozen sea, he ultimately, by menacing Copenhagen, compelled the treaty of Roskild (7th Mareh 1658), which gave to Sweden, Holland, Scania, Bleckingen, Bornholm, and the other Danish yossessions beyond the Sound, and emancipated Sweden from the Sound Dues. Charles, however, still cherished enmity against the Danes; and after fruitlessly propusing to the Dutch and Enclish ${ }^{2}$ lartition of Denmark, he invaded Zeeland, and
attacked Copenhagen in 1650. The eapital, however, defended itself valiantly, ailed by succour from the Prussians and Duteln ; and the Swedish monareh was compelled to abandon the siege. Soon after, while labouring to effect a completo reconciliation with Poland in order to be free to attack the Danes in Norway, he died suddenly at Gothenburg, February $23,1660$.

CHARLES XI, one of the ablest kings of Sweden, was the son of King Charles (X.) Gustavns, and was born November 21,1655 . Whide he was little more than four years old at his father's death, the government was committed to his mother Fedwig as regent, and a council. The peace of Oliva (May 3, 1660) with P'uland, by whieh Sweden obtained Esthonia, part of Liwonia, and Oescl, and the Polish monareli renounced all pretensions to the Sredish crown; and that of Copenhagen (June 6,1660), generally confirmatory of the treaty of Ioskild with Denmark, were the first important acts of the government. A treaty with liussia on the basis of the status quo followed in 1661; and from this priod till 1672, the kingdom was free from foreign wars. Iu December 10-2, C. (whose education had been so ill attended to that he had reaelsed manhood before he could read) took the reins of govermwent, and by the allurements of France, was induced to make war on lirandenburg. This unprovoked attack was disastrous to the Swedes, for they suffered a severe defeat from the elector at Fehrbellin (1675) ; and though C. revenged himself by defeating the Danes (who were allied with I'russia) at Halmstadt, Lemd, and Landskrona, his flect was defeated by the Dutch near Oeland, and again by the Danes at Bleking and Kiöge ; and many of Sweden's reeent aequisitions were wrested from hor. These, however, were restored by the peace of Saint-Germaill-en-Laye (17th September 1679), whieh elosed this needless and unfortunate contest. In 1650 , a struggle commeneed between the erown, supported by the burghers and peasants, on one land, and the nobles on the other; and a considerable diminution of the power of the nobles was the eonsequence. The resumption of all the erown lands which had been alienated sinee 1609 , Was a fatal blow to the preponderating power of the nobles; and by a voluntary declaration of the states, December 9, 165n, the king was invested with absolute authority. This voluntary erection of a despotism by the people, a thing of rare oceurrence in the world's history, is yet more extraordinary at the close of the 17 th c ; and it speaks highly for C. that he never employed his unlimited authority otherwise than for the best interests of his kingdom. By a judicious administration of the revenues, he was enabled to extinguish the public debt (1656), reorganise the fleet and army, and by 1693 to dispense with the ealling up of extraordinary sulusidies. Though absolute, he never imposed a tax but with consent of the states; and he every year published a detailed account of revenue and expenditure. In 1693, he was formally declared absolute by an act of the diet. The foreign policy of the country was also conducted in a manner equally satisfactory and effective. Denx-Ponts fell to him as heir to his cousin Friedrich-Ludwig, the last palatine, in 1681 ; the attempts of the Danes upon Holstein were rigoronsly repressed, and many small outlying territories were bronght under his sway. His anxiety for his subjects ${ }^{3}$ welfare was particularly shown by commercial and maritime regulations superior to any that then existed in Europe; and by his numerous journeys to all parts of his dominions to examine for himself into the remote details of the administration. A codification of the laves was commenced, but was unfinished

CHATSK-CHEMISTRY

at his death, which took place at Stockholm, 15th April 1697.

CHATSK, or SCHAZK, a town of European Fussia, government of Tambor, 155 miles south-east of Moscorr, on a small river of the same name. It is situated in the midst of a vast fertile plain, contains a number of churches, and has a trade in hardware, grain, and cattle. Pop. 72 Sl.

CHAUVINISME. Chanvin was the name of the principal character in a French comedy, which was played with immense success at the time of the Restoration. He represented a bragging reteran of the empire, who was continually talking of his achievements at Austerlitz and Jena, and his determination to take a brilliant revenge for Waterloo. Since then, a chauciniste has come to meau a man who is always seeking quarrels with his neighbours, and will not admit that any one is brave or great but himself.

CHEADLE, a small but neat market-town of England, in the moorland district of the noith part of the county of Stafford, 14 miles north-north-east of the town of Stafford, 3 miles from the Froghall station on the Churnet Valley branch of the North Staffordshire Railway, and 4 miles from the Blyth Bridge station on the main line from Derby to Crewe. The town is seated in a pleasant rale, surrounded by hills mostly planted with fir and other trees. The parish church (St Giles) was a very ancient structure, but was rebuilt in 1837183S. A magnificent Roman Catholic church, erected at the sole expense of John, Earl of Sbremshury, was opened in 1846. There are sereral dissenting chapels, various schools, a mechamics' institute, a large tape manufactory, and also one for silk. There are copper and brass works a short distance from the town, and coal and limestone abound in the ricinity. Pop. (1861) 3191.

CHE'LIFER, a genus of Arachnida (q. v.) of the order Trachearia, and of the family to which, from their resemblance to scorpions withont tails, the name Pseudo-scorpions, or False Scorpions, has been given, the true scorpions belonging to the order Pulmonaria. The genus C. consists of minute species in which this resemblance is very strong. The palpi are elongated and armed with pincers. The species lire under the loose bark of trees, in chinks of old furniture, \&c. One species, C. cancroides, about a line and a half in length, is frequently to be seen in old books, herbaria, \&c., and is called the Book Scorpion; it is said to be useful as feeding on the insects which are most destructive to books and collections in natural history.

CHELII, a town of Russian Poland, in the government of Lublin, 126 miles sonth-east of Warsaw. It is the seat of a United Greek bishop, and has a theological seminary. The Poles were defeated here by the Russians, June 4, 1794. Pop. 5640 .

CHENICAL TOYS, which during the last two years have been brought prominently before the public, deserve a brief notice. 'Pharaoh's Serpents,' which have been already described in the article Sulphocyayoges, are highly poisonous, and druring combustion erolve dangerous vapours. Larmes du Diable, or 'Crocodiles' Tears,' are formed of metallic sodium, burn with extreme violence if thrown into water, or even if moistened with water or heated, and scatter particles of caustic alkali, which may inflict scrious burns. 'Sunshine in Winter Evenings,' "Fiery Swords,' \&c. are formed of ruaguesium, and, like the preceding, may cause serious burns. 'Sensation Cigarettes' are charged with grun-cotton, and project, when fired, noxious vapours into the mouth; while pyroxylin, which is
bibulous paper rendered highly explosive by the action of strong nitric and sulphuric acid, and which is identical with gun-cotton, is the active agent in the various toys known as 'Will-o'-the-wisp Paper,' 'Parlour Lightning,' 'Fireflies,' 'Aërial Glow. worms,' ' Chinese Fire-paper,' \&c.

The use of these toys in teaching rudimentary chemistry to children and foung persons is quite incommensurate with their danger.

CHEMISTRY. It is impossible in this article to do more than briefly describe some of the most important of the numerous changes which have been introduced into the science of chemistry within the last six or eight years (186?).

1. The system of measuring temperatures, lengths, weights, and volumes has been altered. The centigrade has completely superseded the Fahrenheit thermometric scale in all recent chemical works, and the French metric (which is a decimal) system has been adopted for all measurements and weights, inches and their fractions being replaced by I0ths or 100ths of a mètre, and grains by grammes. It has this adrantage orer all other systems, of possessing one fundamental linear unit, from which all the ramifications of linear, superficial, or solid dimensions, and of weight are derived. See Metre, Litre, Gramue, Frasc. This unit is the 10 millionth part of a quadrant of the meridian, or of the distance from the pole to the equator. It is only to measures of weight and capacity or volume that we need here refer. 'Ifultiply,' says Dr Hofmann in his energctic appeal in farour of the metric system, 'the cubic metre by oue million, and you hare a fit measure in terms of which to express the capacity of the Atlantic, or its cubical contents of brine; divide the cubic mètre by one million, and you arrive at the petty volume of the gambler's ordinary die.'- Modern Chemistry, p. 124. This last-named rolume, the millionth of a cubic metre, taken as so much distilled water at a temperature of $4^{3} \mathrm{C}$. (its point of greatest density), furnishes the metrical unit of weight called the gramme, which thus forms a link connecting weight with measure. Again, dividing the edge of a mètre cube, which is a linear metre, into 10 parts, called decimetres, and cubing one of these parts, Tre obtain a unit of rolume or capacity to which the term litre is applied. The various weights in use are all multiples or divisions by tens. Thus, 10 metres form a decametre, 100 a hectometre, and 1000 a kilometre; while $\frac{1}{10}$ th of a metre is called a decimetre, $\frac{\pi}{100}$ th a centimetre, and $\frac{1}{1000}$ th a millimetre, the Greek prefixes in all cases denoting multiplication, and the Latin dirision. The reader will do well to recollect the following rough comparisons between the chief French and English measures chietly used in chemistry, as othermise he can form no conception of the length, size, or weight of the substances treated of: A mètre $=$ nearly $1 \cdot 1$ linear yard $=39.37$ inches; a millimètre $=0.039$, or nearly $\frac{1}{2}$ th of an inch; a centimetre $=0.39$, or nearly $\frac{2}{5}$ ths of an inch; and a decimètre $=3 \cdot 94$, or nearly 4 inches ; a gramme $=15 \cdot 43$ grains; and a litre $=$ rather more than 61 cubic inches, or a pint and three-quarters. The accompanying figure represents a cubic decimetre. Two of the edges of the front side are divided, as may be seen, into 10 linear centimetres; and the space occupied by a culic centimetre is shewn on the upper right-hand corner of the tube. Now, a cubic decimetre is employed as a unit for mensures both of weight and of volume, for in the former capacity it contains, at $4^{\circ} \mathrm{C} ., 1$ kilogramme, or 1000 grammes of distilled water, and in the latter it loses its name of kilogramme and receives the appellation of litre, which corresponds

CHEMISTRY.

to 1000 cubic centimetres, or Tofoth of a cubie metre. Chemists have long felt the want of an appropriate volume, with its corresponding weight, to serve as standard units of measurement, aud Professor Llofmann has selected 1 eubic decimetre $=1$ litre, as the most appropriate unit of volume, and the weight of this measure of pure liydrogen as the unit of weight, bydrogen beinir taken at $0^{\circ} \mathrm{C}$.
temperature, and $0^{m} 7^{*} 6^{*}$ pressure. To this standard ucighteunit, which $=0.0896$ of a gramme, ho assigns the name of crith, from the Greek krithe, a barley-corn, signifying figuratively a small weight; and the weight is now in universal acecptation amongst modern british chemists. There is probably no figure in chemienl seience more important than this one (0.0596 of a gramme)

to be remembered and kept rendy for calculation ; for it is the standare multiple or co-efficient liy means of which the weight of 1 litre of any ather gas, simple or compound, is computed. 'For example, the relative volume-weight of chlorine leing 355 , that of oxygen 16 , and that of nitrogen $1 \cdot 1$, the actual weights of 1 litre of each of these clementary gases at $0^{\circ} \mathrm{C}$. and $0^{\mathrm{m}-6} \mathrm{C}$ pressure, may be ealled respectively 35.5 criths, 16 crilhs, and 14 crilhs. So again with reference to the compond gases, the relative volume-weight of each is equal to half the weinht of its product-volume. Hydrochlaric acid (HCl), for example, consists of 1 volume of hydrogen +1 volume of chlorine $=2$ volumes, or by weight, $1+355=365$ units; whenee it follows that the relative valne-weight of hydrochloric aeid gas is $36: 5$ $\frac{36}{2}=1525$ units; which last figure therefore ex-
presses the number of criths which 1 litre of hydrochloric acid gas weighs at $0^{\circ} \mathrm{C}$, and $0^{\text {n }} 76$ pressure, $1825 \times 0.0596=1.6352$ as the actual weight in grammes of hydroehlorie acid gas. Again, as the 1 roduct-volume of water-gas $\left(\mathrm{H}_{2} \mathrm{O}\right),+$ taken at the abuve temperature and pressure, contains 2 volumes of hydrogen +1 volume of oxygen, and therefore weiglis $2+16=18$ units, the single volume of watergas weighs $\begin{aligned} & 18 \\ & 2\end{aligned}=9$ units, or substituting as before the eonerete for the abstract valne, 1 litre of water-gas weighs 9 criths; that is to say, 9×0.0596 graminc

* It is alnost unnecessary to notice that $0^{m} 76$ signifies $0^{\circ} \mathrm{i} 6$ of a metre, or nearly 30 inches-the ordinary atmosphcric pressure at the level of the sea, and at lat. 511°.
+ The reason why the formula $\mathrm{H}_{2} \mathrm{O}$, instead of HO , for water is used, will be presently explained.

CHEMISTRY

$=0.5064$ gramme. ${ }^{1}$-Op. cit. p. 131. In concluding this subject we will ouly further remark, that when a closely approximative result suffices, the crith may be estimated at 0.09 gramme.
2. Such terms as atomic weight, atom, ant molecule are now employed in a stricter sense than formerly. Every element has been held from the time of Dalton to have a number called its atomic weight. This unmber, according to Dr Franklaud, one of our most distinguished modern chemists, is made to represent, as far as possible: ' 1 st, 'The smallest proportion by weight in which the element enters into or is expelled from a chemical compound -the smallest weight of hydrogen so entering or leaving a chemical compound being takeu as unity. $0 d$, The weight of the element in the solid condition at any given temperatnre contains the same amount of heat as seven parts by weight of solid lithinm at the same temperature. $\quad 3 d$, The weight of the element which, in the form of gas or vajour, occupies, under like conditions of temperature and pressure, the same volume as one part by weight of hydrogen.'-Lecture Notes for Chemical Students, 1866, p.2. Recent investigations have led chemists to assign to many of the elements double the atomic weights that were previonsly assigned to them. Thus, taking as formerly the atomic weight of hydrogen as the unit, the atomic weight, or, as it is now often styled, the atomic number of oxygen is changed from S to 16 , that of carbon from 6 to 12 , that of sulphur from 16 to 32 ; and this doubling is by the latest writers extended to most of the elements except the balogens, bitrogen, phosplorus, boron, the metals of the alkalies, gold, and silver: The old atomic weights are still recognised as combining or equivalent numbers. The reason why this doubling of the mumber has been adopted will be preseatly given. The distinction luetween an atom and a molecule must be clearly recognised. "We may define an atom of an elementary body to be the smallest proportional weight thereof which is capable of existing in chemical combination; and we may define the molecule of an elementary body to be the smallest proportioual weight thereof which is capable of existing in the free or uncombined state.' This, which is Hofmam's definition (Modern Chemistry, p. 157), is now generally accepted. Thus a molecule (or clementary molecule, as it is often termed) may consist either of an isolated atom, or of a group of atoms.
The bulk of a molecule, or the molecular rolume of an element in the gaseons or vaporons state, is the same as the molecular volnme of hylrogeu at the same temperature and pressure, and in a large number of cases the moleculur weight of an element is twice its atomic weight. Dr Frankland gives the following list of the elements whose molecular volnmes have as yet been determined: The molecules of mercury, cadmium, and zinc contain one atom, and are termed monatomic molccules ; those of hydrogen, oxygen, chlorine, bromine, iodine, fluorine, nitrogeu, sulphur, and selenium contain two atoms, and are termed diatomic molecules; the molecules of oxygen, as ozone, contain three atoms, or are triatomic; while those of phosphorus aud arsenic are tetratomic, and those of sulphur under certain conditions are hexatonic. Thus an element, as in the eases of oxygen and sulphur, may, under different conditions, have two distinct molecular weights. We shall presently refer more fully to the subject of atomicity.
3. We shall now proceed to explain the reasons why many of the atomic weights have been doubled. 'It is obvions,' says Dr Odling, in his elaborate article on 'Atomic Weights' in Watts's Dictionary of Chemistry, vol. i. p. 456 , 'that the atomic weights
of an element and of its combinations should be selected so as to express the entire series of combinations by the simplest series of formula; so as best to accord with the chemical properties ame metamorphoses of the bodies ; so as best to illustrate their analogies with other bodies ; and so as to be in relation with their $l^{\text {hi }}$ ysieal properties, such as their specific volumes, specific heats, isomorphism, \&c.' We shall endeavour to shew how he applies these views to prove that, in the case of oxygen, 16 parts of that element, or the quantity thereof which mnites with 2 atoms of hydrogen, is the smallest proportion of oxygen that can enter into a combination. 'We find, in the first place,' says Dr Ouling, "that the quantity of oxygen contained in the great majority of definite oxidised compounds must necessarily lee represented by 16 , or some multiple of 16 parts. Thus, the molecules of all hydrates, donble oxides, acids, oxisalts, aldehydes, ketones, alcohols, oxacid-ethers, and a great number and variety of other compounds, doubtless forming together 99 per cent. of all known compounds of oxygen, camot be represented save with 16 parts, or some multiple of 16 parts of oxygen. For example, the molechles of hyarate of potassium,* benzoic aldeliyde, acctone, chloral, hypochlorite of sodium,* \&c., each contain 16 parts of oxygen. The molecules of spinelle, brown luematite, camploor, benzile, acetate of sodiam,* benzoic acid, \&c., each contan twice 16 parts of oxygen. The molecules of nitric acid, glycerin, chlorate of potassium*, salioylic acid, aujite, \&c., each contain three times 16 parts of oxygen.' We need not carry the quotation further, it being sufficient to remark that Dr_{r} Odling gives similar lists of substances whose molecules each contain $4,5,6,7$, \&c. times 16 parts of oxygen. Hence it follows that, when two bodies only differ in composition by the different proportions of oxygen which they contain, that difference amounts to 16 parts, or some multiple of 16 parts of oxygen. This is well shewn in the two following series of bodies given by Odling, in the former of which the symbols are arranged accorling to modern views:

KCl , Chloride of potassium. kelo., Hypocitorite of putash.
KClO_{4}, Chlurite of potash.
$\mathrm{kClO} \mathrm{O}_{6}$, Chlorate of potash.
KCiO ${ }_{3}$, Perchlorate of potash.
$\mathrm{C}_{4} \mathrm{H}_{4}$, Ethylene.
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2}$, Aldehyde.
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$, Acetic acid.
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}^{-1}$, Gly colic acd. $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{8}$, Glyoxylic acid.

It is obvious that in both these series each term differs from the preceding one simply by O_{2}, or 16 parts of oxygen. Again, the quantity of oxyren which can be liberatell by any reaction, and which, either alone or in the form of water, can be added to or separated from a compound, must be 16 , or some miltiple of 16 parts. Thus, each molecule of nitrate of soda ($\mathrm{NaO}, \mathrm{NO}_{5}$), when decomposed by heat, yields nitrite of soda ($\mathrm{N} 2 \mathrm{O}, \mathrm{NO}_{3}$) and O_{2} (or 16 parts of oxygen) ; simularly, each molecule of permanganate of potash, when decomposed by sulphuric acid, yields manganese, alum, and O_{4} (or twice 16 parts of oxygen) ; and each molecule of chlorate of potash ($\mathrm{KO}, \mathrm{ClO}_{5}$) is decom iosal by heat into chloride of potassim (FC l) aud O_{6} (or three times 16 parts of oxygen). Again, water (and consequently its main constituent, oxygen) is always climinated in clumble or some higher even atoms. 'Thus, formic acid $\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}\right)$ yields carbonic oxide $\left(\mathrm{C}_{2} \mathrm{O}_{2}\right)$ and two atoms of water $\left(\mathrm{H}_{2} \mathrm{O}_{3}\right)$; alcohol $\left(\mathrm{U}_{4} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ yields olefiant gas $\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)$ and two atoms of wator $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$; oxalate of ammonia (NH_{3}, $\mathrm{C}_{2} \mathrm{HO}_{4}$) yields cyanogen ($\mathrm{C}_{2} \mathrm{~N}$) and four atoms of water $\left(\mathrm{H}_{4} \mathrm{O}_{4}\right)$; and innumerable additional examiles

* In these cases, one of the new forms of nomenclature is introduced.

CHEMISTRY.

might bo given. On theso grounds (and many adilitional ones might be adduced if space permitteil) it becomes ohvious that if tho vast majority of oxidised borlies were correctly formulated, they would he represented more simply by the formulio in which $0=16$ than by formuto in which $0=8$. Iicasons of a similar nature have led to the duplication of the atomic weight of carbon, sulphur, and many of the other elements. There must obviously be some means of distinguishing when O indicates S or 16 parts of oxygen, \mathbb{C} indicates 6 or I2 parts of earbon, \&e. Varions modes of distinction lave been adoptel by different chemists. In Watts's Dictionary of Chemistry, now in the course of [ublication, the new atomic weights are represented by the same symbols which have hitherto been adopted for the old weights; while the latter (when they are occasionally introducel) are printed in italic capitals; thus, water is represented by $\mathrm{H}_{2} \mathrm{O}$ in tho new and by $M O$ in the old system, acetic acid by $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ in the new and by $\mathrm{C}_{4} \mathrm{I}_{4} \mathrm{O}_{4}$ in the old system, \&c. A more common means of indicating when the value of the symbol of an element is doubled in value is by drawing a horizontal bar through it, a notation due to Berzelius; thus, $C, 0, \$$ represent respectively an atom of carbon, of oxygen, and of sulphur in the new system. 'this system is useful in forming, as it were, a bridge to facilitate the passage from the old to the new system, and will gradually disappear when all chemists recognise the doubled atomic weights. Naquet, Miller (in the 3ll edition of his Chemistry, 1864), and others, adopt this barrel system, and the latter frequently gives the formule pertaining to both systems; for example, $\mathrm{FeO}, \mathrm{SO}_{3} \cdot \mathrm{HO}, 6 \mathrm{HO}$, or Fe $\mathrm{CO} \mathrm{SO}_{4} \cdot \mathrm{H}_{2}-0,6 \mathrm{H}_{2} 0$, represents the composition of the erystallised sulphate of protoxide of iron often described as protosulphate of iron.-Inorganic Chemistry, 3d cd., 1. 6. Some writers, as Trankland, in his Lecture Votes for Chemical Students, 1866, following the plan of Watts and tho contributors to his Dictionary, unreservedly adopt the doubled atomic weights, and represent them by the old formule; thus, O, C, and is represent in these works preciscly double the weight of oxygen, earbou, and sulphur that these capiials represent in the lst and od editions of Miller's Chemistry, Fownes's Manual of Chemistry, and other standard works published a few ycars ago. It is now customary for the writers of chemical papers who object to the barred symbols as being inseemly, to insert at the cominencement $\mathrm{C}=6,0=8$, or $\mathrm{C}=12,0=16$, in order that the reader may be able to recognise which system is adopted.

Chemical Nomenclature is still in an unsettled state. The chemists of all countries are, with one notable exception, agreed as to the names and symbols which should represent the different clements. The French chemists persist in designating nitrogen by the name of azote, and of using Az instead of N for its aymbol; and in laly the term azoto is still employed, but as it is often coupled with the symbol N, it will probably soon be exchanged for the more general term nitrogen. When the elcmentary bodies unite together, they form a binary compound. The nomenclature of the binary compounds is in a transitional state. The compounds of sulphur with metals used to form sulphurets, latterly they have been termed sulphides, and now they are denominated after a third fashion; sulphuret of potassium (for example), after having been for some years sulphide of potassium, now being termed polassic sulphide. In order to obtain uniformity, the following rule is adopted by the representatives of the modern school. The names of binary compounds are formed from those of their constituents, the English or

Latin name of the positive constituent with the terminal ic preceding that of the negative constituent, which is made to end in uife. Thus: potassium and sulplur form potassic sulphide; sodium and oxygen form sodie oxide (formerly sod. or oxide of sodum) ; silver and chlorine form argentic chloride (fermerly ehloride of silver) ; leal and iodide form plumbic iodide (formerly iodide of lead); calcium and chlorine form calcic chlorido (formerly chlorite of caleium), \&c. When the same elements furm two compounds, the one whieh contains the smallest proportion of the negative element is distinguished by chaging the terminal syllable of tho name of its positivo constituent into ous, while the terminal ic is retained for the compound containing the larger proportion of the negative element. Thus, I atom of iron and I atom of oxygen form Ferrous oxide (the old protoxide of iron); 2 atoms of iron and 3 atoms of oxygen form Ferric oxide (the old peroxide of irgn). Sometimes the same elements form more than two compounds with ono another, and then the prefixes hypo and per are employed. When a binary compourd contains oxygen, and becomes an acid when made to unite with water, or becomes a salt when united to a base, it is termel an Anhydride (q.v.) or anhydrous acid. Thus 1 atom of carbon and 2 atoms of oxygen form carbonic anhydride, formerly known as carbonic acid gas; I atom of sulphur and 3 atoms of oxygen form sutphuric anhydride, \&c. In a considerable number of cascs, the trivial or common name has not been displaced by the new systematic name; thus water, ammonia, hydrochloric acid, phosphuretted hydrogen, sulphuretted hydrocen, \&cc., are not as yet replaced by hydric oxide, hydric nitride, hydric chloride, hydric phosplnide, hydric sulphide, \&e.; and soda and potash are still preferred by some chemists to sodic and potassic hydrates.

The term acin was originally applied only to substances which, like vinegar, pussessed an acid taste; it is now made to include a large number of compounds which do not possess this property. The most general definition of acills is that of Gerhardt, which is adopted in Watts's Dictionary of Chemistry-namely, that 'acids are salts of hydrogen.' A more intelligible definition to ordinary readers is that which is adopted by Frankland, in which an acid is described 'as a compound containing ono or more atoms of hydrogen, which become displaced by a metal when the latter is presented to tho compound in the form of a hydrate.' Thus, using the new nomenclature and atomic weights, nitric acid and sodic hydrate yield sodic nitrate and water-

in which reaction the hydrogen of the nitric acil is displaced by the sodium of the sodic hydrate (or soda), and as only one atom of hydrogen is displaced, nitric acid is said to be monobasic. When an acid admits of the displacement of two atoms of hydrogen, it is termed dibasic-as tartaric, oxalic, and, according to recent views, sulpharic acid; and when three atoms can be replacel-as in the case of common phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, in which II_{3} may be displaced by K_{3} or Ag_{3}, the acid is termed tribasic. The nomenelature of the compounds of acids with bases is still unfixed. The names of the alkali-metals (potassium, sodium, and lithium) and alkaline-carth metals (barium, ealcium, \&c.) are now commonly substituted for those of their oxides in the nomenclature of the corresponding oxygen salts-as, for example, carbonate of sodium and sulphate of calcium for earbonate of soda and sulphate of lime. The names of these bodies aro

CHEMISTRY.

thus brought into uniformity with those of the salts of iron, copper, \&c. In Watts's Diclionary and Frankland's Lecure Fotes such compounds are denominated sodic carbonate, calcic sulphate, sodic nitrate, \&c.; and these terms will doultless soon be generally adopted for the metallic salts of the oxygen-acids generally. The nomenclature of complex inorganic bodies is foumded, for the most part, on the theory of types, the bames of particular compounds being obtained from the name of the type by prefixing to it adjectives which express the nature of the element by which the bydrogen of the type is replaced and the number of atoms of it contained in one molecule of the compound. By way of illustratiou, we give a simple and a complicated example : $\mathrm{Bi}\left\{\begin{array}{l}\mathrm{Cl} \\ \mathrm{O}\end{array}=\right.$ bismuthic oxychloride, while $\frac{\mathrm{Hg}_{4}}{\mathrm{H}_{4}}\left\{\begin{array}{l}\mathrm{Cl}_{2} \\ \mathrm{O}_{2} \\ \mathrm{~N}_{2}\end{array}=\right.$ tetramercuro-tetrahydric dioxi-dichloro-dinitride. The nomenclature of organic compounds is founded on the same principles as that of inorganic bodies; but our limited space prevents our entering into this subject.
Chemical Notation has been considerably altered by certain members of the receut chemical school ; but on the whole, the modifications, since the time when the system of Berzelius was introduced into England in the third edition of Turner's Elements of Chemistry, are not numerous. The most important are the introduction of 'general formule' by Gerhardt, in which letters of variable value are used as cocfficients instead of numbers, and Odling's method of denoting the atomicity of polyatomic elements and radicals by means of accents placed above the symbols, which are then called dashed symbols. See Triads. Chemists are still at variance as to whether, when two or more atoms are represented in a compound, the figure indicating the repetition should be above or below the symbol; whether, for example, water should be represented by $\mathrm{H}^{2} \mathrm{O}$ or $\mathrm{H}_{2} \mathrm{O}$, and alcohol by $\mathrm{C}^{2} \mathrm{H}^{6} \mathrm{O}$ or $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$. The ordinary
or dualistic system, according to which the elements combine in couples to form compounds, which similarly unite by twos, led to the division of salts into two classes-viz., into salts composed of an oxygen acid and an oxygen base, which were hence called oxygen salts, as $\mathrm{NaO}, \mathrm{SO}_{3}$, and KO , NO_{5}, which in the oll notation represent sulphate of soda and nitrate of potash; and binary or haloid salts, of which chloride of sodium, NaCl , is the type, which are formed by the union of the radical in hydrogen acids with some metal. Davy considered that the former class might be made similar to the latter by regarding them as composed of a metal and a compound radical having the same electro-negative chemical relations as the radicals in the hydrogen acids. According to this viem, a radical, SO_{4}, not yet isolated, combines with hydrogen to form sulphuric acid, and with a metal to form sulphates, sulphuric acid being represented by $\mathrm{H}, \mathrm{SO}_{4}$, and sulphate of lime by $\mathrm{Ca}, \mathrm{SO}_{4}$. In like manner, nitric acid and the nitrates were supposed to contain a radical, NO_{6}. Against this view Gerhardt urges that we know nothing of the proximate constitution, but are merely acquainted with the ultimate composition of compounds. Hence we now no longer use a formula for sulphuric acid indicating its supposed constitution ($\mathrm{HO}, \mathrm{SO}_{3}$), but regarding it as a dibasic acid, express it, either as Miller cloes, by $\mathrm{H}_{3} \mathrm{~S}_{\mathrm{L}} \mathrm{A}_{4}$ or by $\mathrm{H}_{2} \mathrm{SO}_{4}$ (where $\mathrm{S}=3^{2}$ and $\mathrm{O}=16$), or by $\left.\mathrm{SO}_{2}\right\} \mathrm{O}_{2}$, if we adopt the type-notation ; and we must not omit that Frankland, who may he regarded as the leading representative of the English school of modern chemistry, represents it by the formula $\mathrm{SO}_{2} \mathrm{Ho}_{2}$, when Ho is the abbreviated formula for HO , and represents a compound radical, to which he gives the name of hydroxyle, and which is commonly known as hinoxide of hydrogen, being expressed, according to the old system, by HO_{2}. The following examples may enable the reader to pass from one system to another :

	Old $\mathrm{Sj}_{5} \mathrm{stcm}$.	Barred System.	New Atomic Weights.	Frankland's Notation.
Sulphate of potassium,	$\mathrm{KO}, \mathrm{SO}_{3}$	$\mathrm{K}_{2} \mathrm{SA}_{4}$	$\mathrm{K}_{2} \mathrm{SO}_{4}$	$\mathrm{SO}_{2} \mathrm{Ko}$.
Sulphate of zinc,	$\mathrm{ZnO}, \mathrm{SO}_{3.6} \mathrm{HIO}$	$7 \mathrm{ZSO} .7 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{ZaSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	SOHozZno".60H.
Nitric acit, ${ }^{\text {a }}$	$\mathrm{HO}^{1} \mathrm{NO}$	HNO_{3}	HNO_{3}	$\mathrm{NO}_{2} \mathrm{Ho}$
Nitrate of sodium,	$\mathrm{NaO}, \mathrm{NO}_{5}$	NaNO_{3}	NaNO_{3}	$\mathrm{NO}_{2} \mathrm{NaO}$

The Ko, Zno", and Nao in Frankland's notation represent compound radicals, to which he has given the names potassoxyl, zincoxyl, and sodoxyl, and which are represcated in the ordinary new notation by $\mathrm{KO}, \mathrm{ZnO}_{2}$ and NaO . These new names will prohably soon get into general use in consequence of Frankland's great influence as the teacher of chemistry in the government School of Mines, and at the Royal Institution.* We must refer to the article Triads for a description of what is meant by atomicity, or, as Hofmann terms it, quantivalence, and the reader will do well to study Lectures 10 and 11 of his Modem Chemistry. In the article just mentioned, we have stated that the degree of atomicity of an element is indicated by the number of dashes with which it is furnished. In the so-called Graphic Notation, which,

* Another peculiarity of Frankland's notation is the introduction of thick letters (Egyptian capitals). His formule are so written as to denote that the element represented by the first symbol of a formula, and printed in this type, is directly united by points of attachment or londs with the other elements or compound radicals following the first symbol. Thus, to use his own illustration and notation, the formula $\mathrm{SO}_{2} \mathrm{Ho}_{3}$ (sulphuric acid) signifies that the hexad atom of sulphur is combined with the four bonds of the two atoms of oxygen, and also with the two bonds of the two atoms of hydroxyl. (By hexad we mean an atom with siz honds, one of which is subsequently figured in the text.)
in the hands of Kekulé, Crum Brown, Naquet, Frankland, and others, has proved a most valuable aid in explanation of the constitution of chemical compounds, the degree of atomicity of an atom is thus expressed: H^{\prime} by ($\mathrm{H}-, \mathrm{Zn}^{\prime \prime}$ by $-\mathrm{Zn}-, \mathrm{B}^{\prime \prime \prime}$ (boron) by B, C_{i} by - C N^{2} by $S^{\text {ri }}$ by -s.-5 'No clement,' says Frankland, 'either alone or in combination, can exist with any of its honds disconnected; hence the molecules of all elements with an odd number of bonds are generally diatomic, and always polyatomic-i. e., they contain two or more atoms of the element united together. Thus:

Hydrogen,	$\begin{gathered} \text { Symbolic. } \\ \mathrm{H}_{2}^{\prime} \end{gathered}$	Graphic. (H)-(IX)
Chlorine,	Cl_{2}	(C1) (CI)
Nitrogen,	N\%	(3)
Phosphorus,	$\mathrm{P}^{\boldsymbol{\top}}$	

An element with an even number of bonds can exist

CHEMISTRY.

as a monatomic molecule, its owu bonds satisfying eath other. Thus:

	Symbolic.
Mercurs,	H5"
7inc,	$2 \mathrm{n} \mathrm{\prime} \mathrm{\prime}$

This graphic motation is most uscful in fixing upon the mind the truc meaning of symbolic formule, and in chucidating the internal arrangement of the very complex molecules which often ocenr in both mineral and organic compounds. It also afforls an easy means of shewing the causes of isomerism in organic bodies. The following example will suffice to illustrate our meaning. The simplest of the alcohol family, methylic alcohol, is derived from marsh-gas by the substitution of one atom of lirankland's lyydroxyl, Ho or $H O(O=16)$, for one of bydrogen.
$\mathrm{CH}_{3} \mathrm{HO}$ (or $\mathrm{CH}_{4} \mathrm{O}$).

Marsh-gas.

The Classification of Organic Compounds has,
during the last few years, been much improvel? Until a comparatively few years ago, orgame componnds were arranged, accorling to their most ohwions properties, into acids, hases, fatty bodies, de. Now the great majority of thesc compounds are arranged in series, of which each group ditlers from the preeding one by a tixed additional mumber of ecrtain atoms. Thius (sce Miller's Oryenic (Chemistry, 3d ed. 1. 3!) eleven alcohols are represeated by the general formala $\mathrm{C}_{n} \mathrm{H}_{2 n+2} \mathrm{O}$ (new notation), the first being representel by (1I $H_{4} 0$, avd the whers dilfering from it by an alditional number of multiples of Clt. Bothes of analogons properties thus united are termed homolozous. Again, every compound in a homologous series yiehls other compounds differing in composition from that from which they are flerived, but yet hearing in different relation to it. Thus, alcohol yiehls ether, ahtehyde, and acetic aciel, and these so-called heterologous houlies form collateral series. This mode of classification is daily extending. It includes the oryanic radicals, such as methyl, cthyl, allyl, phenyl, cyanogren, sec.; the hydrides of the compound rudicals, such as methylic hydride or marsh-gas, benzol, cyanic hydride or hydrocyanic acid, ice. the alcolols, which form one of the most important of the families of organic compounds, and which are considered in a special artiete in this Suprlemest ; the culdchepdes and cthers, both of which are specially described; the acids, of which the monobasic acids alone include six series, amongst which are the acetic or fatty series, represented by the general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}}()_{2}$, and containing 19 or 20 distiuct acids, the oleic series, the lactic suries, the benzoic or aromatic series, itc. - while the dibasic acids may lee divited into four series, in which occur the suceinic series, coutaining nate acids, most of which present soveral modifications, and the tartarie series; the Anhylrides ($\mathrm{q} . \mathrm{r}$.), of which those belonging to the acetic acid groul' may be arranged in serics; the Letones or acctones; the compounds of nitrogen containing the amimes, amides, imides, se.; and, in short, exeepting the natural alkaloids, the proteincompounds and their derivatives, the uric acid group, ligments, \&c., there are few organic com-

464
prouds which will not soon find a definite place in a suries.
In this article we have strictly confined our remarks to the sulbjects hearing on general, and for the most part on theoretical chemistry. We may, however, allude, in conclusion, to two subjects which have undergone a great devehpment during the last fow years-viz, lolumperic Anatlysis and the Simnthesis of Organic Bodies, both of which are disemssed in special articles.

The general tenor of this article shows that elnmistry is at present in altogether a transitimal state. As lrofessur Amberson of Cilasgow observes in his recent address th the Chemical section of the liritish Association (September 1567), the atomic thenry, which, at the commencement of the presint century, sufliced to explain all the facts of chemistry that were then known, is now quite inalequate to that end. At that time, chemists were acpuanted with comparatively few compounds, and in these, oxygen was of such jreponderating importance, that the science might have been almost termed 'the chemistry of oxygen.' Oxygen is now deposed from its high place, and is supplanted by carbon to such a degree, that one of the first living chemists has actually proposed for organic chemistry the name of 'the science of the carbon-compounds." Facts gradually accumulated in the course of time which dial not admit of explanation on the Daltonian theory; and as their mumber increased, such terms as eatalysis, allotropy, \&e., were invented, moder which such facts were grouped together as were supposed to depend on similar canses. Such gromping may have certaia temporary advantages, provided it is distivetly understood that, to nise Professor Anderson's words, it is 'the gromping of ignorance.' It was not, he adds, till thie introduction of the theory of atomicity (see Trands), which shews itself in evory chemical fact, that the donlts of all thonghtenl chemists legan to lime distinet expression. The time has come when we must either totally abandon the atomic theory of Dalton, or must so completely modify it as to render it suhstantially a new theory. Jost chemists are as yet reluctant to abandon a theory which has converted a crude mass of isolated facts into a com. paratively perfect science; whilst a few, whose claims to our contidence are, however, of the highest order, hold with sir Benjamin Brodie, that the atomic theory ean no longer be advantageonsly used to elncidate chemistry as it now exists, and that the time is come for the adoption of some other system of symbolic expression or notation than the graphic and other formula which have recently been introduced into our text-books and Iectures. In his Calculus of Chemical Operations, whieh was jublished in the Philosophical Trensac: tions for 1566, and in his recent discourse On Idend Chemistry, read before the Chemical Society on June $6,1560^{7}$ (and minutely rejorted" in the Chemicoll Feus for Jume 14, and the Laborctory for June 15), Brorlie has made a systematic attempt to express the composition of ciremical compounds hy a methol in which the idea of an atom has no place. In his system, the exact facts of chemistry are to be expresseal by symbols, at symbol being a rigid expression of a fact, not a tigure of an olject, and not of necessity having an arithmetical meaning. 'Symbols,' he olserves, 'are of two linds. We may have symbols of things, and we may have symbols of operations. Symbols of operations are simply symbols of what we do to things. Talke

* It is mainly from these reports that we have endeavoured to give the following abstract of Sir Benjamin Brodie's views.
a popnlar case. Ordimary langnage is an imperfect symbolic system, and here we have just these two kinds of symbols. A " dog" is the symbol of a thing ; and "beating," "caning," "coaxing," and so on, are the symbols of operations, or of somethins which we may do to a dog. We have marks by which we express things, and marks by mhich we may express what we do to things. We might also lave a third kinl of symool; we might have the symbol of an operation and a thing together. Thus, if we did not wish to represent particularly what sort of ammal we were groing to beat, we might have a single mark for "beatiug an animal:" the thing and the oncration being included in one.

In the fundamental conception of his ideal chemistry, all chemical substances are supposerl to be bronght into the condition of perfect gases. "Oif course, we may deal with the properties of the combinations of solids and kquids, but here it is far more difficalt for us to arrive at any intelligible and simple results; and, whether rightly or wrongly, beiore lieginning to think about the nature of a chemical substance, 1 , for my part, always conceive it as brought into the condition of a gas. Aud to go a little further, and to speak a little more detinitely, we shall always consider the chenical substance brought into the condition of a gas at the temperature of $0^{\circ} \mathrm{C}$., and at a pressure of 760 milli metres. This is the sort of ideal chemical world with which te hare tu deal. It is a world of sases.'

The two units employed in his system are the unit of matter and the unit of space. The fornser is thus defined : The unit of ponderable matter is thret portion of ponderable matier which, at a temperature of $1^{\circ} \mathrm{C}$. , and at a pressure of 760 millimetres of mercury, occupies a sprace of 1000 centimetres.

From considering the unit of matter, be passes to the consideration of the unit of spacc, which is, the molume of 1000 cubic centimetres. 'And,' he observes, 'just as, before we begin to think about chemical substances, we must bring them all, theoretically, to tive state of gas, so, before beginning to think about the unit of chemical substances, we mnst begin by thinking about a unit of space. This is the fundamental conception of this method: and it is a notion which appears to me to be almost essential to any constructive chemistry at all-that is, the concepition of the unit of space; let us therefore clearly understand what the unit of space means.' [The lecturer here exhibited a hollow cube, with glass walls, and of the dimensions abore assigned to the unit of srace.] "You hare to do something else, howerer, lefore you get the unit of space. It is indeed the space of 1000 cubic centimetres which is confined within these glass walls; but before you can met at the unit of space, you have to go a step, further, and by the process of imagination, or by the efforts of reason, you have to divest this cube of glass weisht, and take out of it all the ponderable matter which it contains, and conceive the space within the walls dirested of matter altogether. Fow, this unit of space is so fundamentally important to us, that I shall begin by giving it a mark to itseli. The mark which $\overline{1}$ give to that unit of space is the symbol l. When you see that mark, it is to recall to your mind the matter contained in the unit of space. Now, what is that matter? It is simply no matter at all; there is no ponderable matter in it.'

The next point is to connect the units of space with those of matter. How are we to conceive a space becoming matter, or of matter getting. chemically, into space? This is effected by the aid of an operation, by which the empty unit of space is operatio
498
turned into a unit of ponderable matter. The symbol x is used to represent this operation. x], then, represents the operation of putting matter of a certain density into the unit of space, at $0^{\circ} \mathrm{C}$. and 760 mm . The same kind of matter, at double the density, and containel within the same space, but still under the same conditions of temperature and pressure, would be represented by $x x l$, or $x^{2} 1$; of three times the density, by $x x x l$, or $x^{3} 1$. Again, auother kind of matter might be represented by y; then $y l, y^{2} 1$, and $y^{3} 1$, would signify the anit of space filled with matter of y under its ordinary density, or double or three times this density. lut always under the same conditions of temperature and pressure. These symbols might be combined thus, ryl would mean the unit of space filled with x and y at the same time, but under the normal conditions. The symbols theu represent weights and kinds of matter: x and y may be said to be operations of combination. Let A be the matter of x, and E the matter of y, then x mould mean the operation of combining A, and y mould mean the operation of combining $\mathrm{E} . \quad x$ l then would mean combine A. with the nnit of space,' and $y p l$ would represent - combine A with B in the unit of space.'

By this mode of constructing symbols, we may. represent such facts as the following:
\because rols. of hydrochloric acid contain the same ponderable matter as 1 rol. of hydrogeu and 1 vol. of chlorine ;

Or, 2 rols. of water contain the same ponderable matter as 2 vols. of hydrogen and 1 vol. of oxygen.

Ur, to express a similar foct in the language of the calculus-

2 units of space of ammonia contain the same ponderable matter as 3 mits of hydrogen and 1 unit of nitrogen.

In orler to be able to construct a defimite system of chemical symbols, we must start with an hypothesis of some kind, or must have some one known symbol. The hypothesis, in this system, is, that the unit of hydrogen is a simple weight whose symbol is expressed by a prime factor 0^{*}, which is termert the modulus of the srmbolic system. The symbols in the subsequent tables, as indicating chemical operations, must be regarderl as symbols of primary operations, or operations which cannot be resolred or decomposed into any other symbols. 'When I say,' observes Prodie, 'that the symbol of hydrogen can be expressel in chemical equations by one letter, 1 mean, that in the changes and transiormations of chemistry, that unit of hydrogen is never broken up or decomposed into parts. It is constructed at once, by one operation. Let us now take a more complex substance, oxygen; it is not easy to conceive of its wit being made up by less than two operations.' As an illustration, he suggests that if each combination, as it occurred, was indicated. by a vocal sound, we should have one note when hydragen, and two notes when oxygen, was formed. Hence, the symhol of oxycen, \uparrow which is ξ^{2}, must indicate that it is formed by two operations.

* The term prime factors is applied by Brodic to the symbols of simple weights, from their analogy to the prime factors of numbers. The subject is discnssed in Nection V. of his memoir on The Calculus of Chemicul Operations. The reader will readily see the reasons wby $\xi_{1} x, y, c$ and z are sulected as the prime factors of osygen, chlorinc. nitrogen, phosphorus, and carbon; i and θ represent mercury and sulphur respectively, as being the initial consonants of the Greek words

+ The mode by which such symbols as $\approx=$ for oxygen, α_{5}^{5} for water, $\alpha \%$ for hydrochloric acid, and αx^{2} for chlorine, are arrived at, may be explained as follows:

Water is representel by ${ }^{2}$; it is made by two operations, one of which is identical with the opera. tion by which hydrogen was made, and the other with one of the operations by which axygen was made. Hydric peroxide is made by three operations, one of which was identical with that by which hydrogen was made, and the other two with those by which oxygen was made. It is therefore represented by $a_{5}^{\varsigma_{5}^{2}}$. Chlorinc, $a \varepsilon^{2}$, is made hy three operations; hydrochloric acid, $\alpha \chi$, is made by two operations, one of which was the same as that of hydrogen, and the other, one of the three operations by which chlorine was made. Nitrogen, αv^{2}, is made by three operations; ammonia, $a^{2} v$, ly three operations. These symbols, in fact, aro condensed equations, uncombined with extrancons matter.
We are thus led to the singular result, that there are at least threc classes of clements, represcuted by three kinds of symbols:
Those of the first class are clemental bodies, the units of which are made by one indivisible operatiou, and include hydrogen, a, and mercury, δ, probably also zinc, tin, and cadmium.

Those of the second elass are double chements, and are made lyy two operations, as oxygen, 䍂; sulphur, ${ }^{2}$, sclenium, λ^{3}, and pierhaps carbon, but as this last is not certain, the element is represented by x^{n}.
The third and largest class contain the elements made by three operations; chloriue, α^{2}, aud nitrogen, a^{2}, may be taken as its rejresentatives. There are many compounds, as, for cxample, peroxide of hydrogen, $\alpha{ }_{\xi}^{2}$, , which are analogous to the members of this group both in their properties and their symbols.
The following tables shew at a glanee how a considerable number of the common chemical clements and their componals are expressed according to this system, the first containius symbols of hydrogen, oxygen, sulphur, and chlorine, and their compounds, with iodine aud bromine; the second containing symbols of the combinations of carhon, hydrogen, and two or three other clements; and the third containing symbols of compounds of nitrogen, hydrogen, oxygen, phosphorus, aud chlorine:

The question naturally arises, What is the meaniug of these symbols? Are they the symbols of portions of matter, or do they merely represent imaginary relations betireen portions of hypothetical matter? The answer is, that they are ideal. They represent matters and operations which may exist or not. Thus, the compround nature of some of the elements, which is indicated by their symbols, is at present quite hypothetical, but these bodies might prove to be compound. Larse numbers of the elements are

It is known by experiment that \because units of water can be decomposed into 2 units of hydroge: and 1 unit of oxysen. Now, let

$$
\begin{aligned}
\alpha^{m} \xi^{m} m_{1} & =\text { symbol of the unit of water, } \\
\alpha^{n} & =\text { symbol of the unit of hydrosen, } \\
\alpha^{n} n_{1} & =\text { symbol of the unit of oxygen, }
\end{aligned}
$$

where α and $\%$ are the symbols of simple weights, and m, m_{1}, n, n_{1}, pesitive integers. Then, expressing the chemical fact symbolically, we have the equation, $2 \alpha^{m} \xi_{n} n_{1}=2 \alpha+\alpha^{n} \xi_{1}^{n_{1}}$, and to this are attached the conditions that $v(\alpha)=1$, and $m+m_{1} w(\xi)=9$, where $w(\alpha)$ signifies the weight of a unit of lydrogen. Now, Brodie, in the 4 th section of his memoir, shews that the weight (or matter) of which $x y$ is the symbol is identical with the reight (or matter) of which $x+y$ is the symbol ; and hence he lays down the anomalouslooking equation, $r y=x+y$, which is tormed the fundamental cquation of the calculus. Now, in the case under consideration, the fundamontal equation (which the reader will not thoroughly understand without consulting the original momoir) gives the followingresult: $\left(\alpha^{m} \xi^{m}\right)^{2}=\alpha^{2} \alpha^{n} \xi^{n_{1}}$, whence $2 m=2+n$, and $2 m_{1}=n_{1}$. Selecting from the possible solutions of
maknown in the free state in nature-for instance, hydrogen, chlorine, and, above all, hlmorine; sis that there may still be simpler forms of matter than those at present known, and they may lave all existed in the scparate am.l gascous condition at one time, and gradually combined to form the sul) stances at present known on the surface of the globe. The spectra of the nebulie and rariable stars have disclosed some curious facts; some of them exhibit only portions of the spectra of well-known
these "puations the minimum solution that accessary and sutlicient to satisfy the conditions, we have

$$
\begin{aligned}
& m=1, n=0, \\
& m_{1}=1, n_{1}=y,
\end{aligned}
$$

which give symbol of water, α, F-; while the relative weights corresponding to the prime factors α and ξ are $w(\alpha)=1$, and $w(\xi)=9$.
In the casc of chlorine, it is known that two volumes of hydrochloric acid can be decomposed into ore volume of hydrogen and into one volume of chtorize. Hence, putting $\alpha^{m} x^{m}$ as the symbol of the unit of hydrochloric acid, and $\alpha^{n} x^{n_{1}}$ as the symbol of the unit of chlorine, we have $2 \alpha^{m_{1}} \chi^{m_{1}}=\alpha+a^{n} \chi^{n_{1}}$, and, hy the fundamental equation, $\left(\alpha^{m} x^{m_{1}}\right)^{2}=\alpha \alpha^{n} \chi^{n_{1}}$, whence $2 m=1+n$, and $2 m_{1}=n_{1}$, the minimum values of which aro

$$
\begin{aligned}
& m=1, m_{1}=1 \\
& n=I, n_{1}=2
\end{aligned}
$$

Since the density of hydrochloric acid is 18.25 , tee find the absolute weight of x by the equation, $m+m_{1} 2(z)$ $=18 \cdot 25$, or $x(x)=17 \cdot 25$, and substituting the former values of m, m_{1}, n, n_{1}, the symbols of hydrochloric acid and chlorine are αx and $\alpha \chi^{2}$ respectively.
elements. May these not be the spectra of some of the components of those matters which we, in the present state of our knowledge, regard as simple bodies? May they not, in fact, be some of those prime factors which have been represented by the symbols $\chi, y, \xi, \ell . \quad . .$. Another system of symbols might have been constructed in which the unit of hydrogen would be represented by α_{p}, and the formule would then have held a simpler relation to the existing system of chemical symbolism, but there are strong reasons for preferring the use of the sjstem in which $\&$ is employed to represent the standard amonnt of matter.
We have endeavoured, in as brief a space as was compatible with clearness, to lay this very complex subject before our readers. Many ohjections will doubtless be hrought against any system that would almost entirely uproct all our recognised opinions; but when we find Sir Benjamin Brodie's views received with approhation by the most eminent physicists and chemists of the day (as may be seen by the speeches of Clerk Maxwell, Stokes, Williamson, Odling, \&c., at the close of the delivery of the lecture, and by the numerous articles the subject has called forth in the scientific journals), we do not think that we should be doing justice to our readers if we had not introduced them into this article.
CHERUBINI, Luigi-Carlo-Zevobio-Salva* tore-Maria, an eminent musical composer, was born at Florence in 1760, and received his early musical training there under the Fehici (father and son), P. Bizzari, and C. Castrncci. He afterwards studied for a year at Bologna under Sarti, to whom he owed his thorough knowledge of counterpoint and fugue. He visited London in 17S.4, where he brought out two operas, La Finta Principessa and Giulio Sabino, and afterwards settled in Paris for the remainder of his life, paying occasional visits to Italy. His Ifigenia in Aulide appeared in 1788; and in 1791 his Lodoïska, which work first secured proper appreciation for his genius, and effected a clange in the whole character of the French school of composition. These operas were followed in succession by Elisa, Medea, Les Deux Journécs (also known as Die Wasserträger), Anacreon, and L'Hotellerie Portugaise. His latest opera, Ali Baba, was produced, after a long interval, in 1833 . Besides operas, C. wrote numerons masses, motets, aud other sacred compositions of so great merit, that Beethoven regarded him as the greatest living master of sacred music; also quartets for the riolin, viola, and violoncello, and symphonies. His latest work, Cours de Contrepoint et de Fugue, appeared in 1835. C. dicl at Paris in 1842, and his Requiem, the last of his masses, was performed at his funeral service.

CHicopee, formerly Cabotsville, and ineluning Chicopee Falls, a manufacturing town of Massachusetts, U. S., on the left hank of Connecticut River, at the mouth of Chicopee River, $5 \frac{1}{2}$ miles north of Springfield. Chicopee Falls snpplies water-power to numerous cottou and woollen factories, papermills, brass cannon and bell foundries, and the Ames Sword Factory, the largest in the United States. It has 10 churches and several newspapers. Pop. 1866, 7261.

CHIFF-CHAFF (Syluice hippolcis), a small species of warbler, very widely diffused, being found hoth in Englaud and in the neighbourhood of Calcutta. It is common in the south of Europe, is in Britain a summer bird of passage, arriving, however, very early in spring, and does not extend northward into Scotland. Its general colour is hrown;
the under parts lighter. It is a very sprightly little bird; but its song consists merely of a frequent

repetition of two notes resembling the syllables which form its name.

CHILLICO'THÉ, or CHILICOTHE, a city of Ohio, U. S., beantifully situated on the right bank of the Scioto River, 45 miles from its confluence with the Ohio, and the same distance south of Columburs, on the Cincinnati and Marietta Railway, and Ohio and Eric Canal ; has 13 churches, 3 hanks, court-house, foudries, steam-engine and agricultural implement factories, \&c. Founded in 1796, and former capital of the state. Pop. (1860) 7626.

CHINANDE'GA, a town of Central America, Nicaragua, stands in a fertile plain at the foot of some mountains, about 18 miles north-west of Leon, and about 10 miles from the Pacific coast. The houses are straggling, of one story, huilt of adohes, and many of them are euclosed by gardens and plantations. Maize, sugar, cotton, hides, and poultry are produced in the vicinty. Pop. about 10,000.Old Chinandega, which is contiguous, has a pop. of about 4000 .
CHINESE EDIBLE DOG. The kind of dog nsed as an article of food in China, and reared in order to be so used, being esteemed as a delicacy, is a small dog of greyhound-like form, with somewhat

Chinesc Crested (Edible) Dog.
terrier-like head, and muzzle more clongated than in terriers. It is fleet and active, gentic and affectionate. The skin is almost destitute of hair; but there is a varicty having a crest of long hair ou the head, and a large tuft of hair at the tip of the slender and otherwise naked tail.

CHI'TTAGONG WOOD, the wood of rhiclrussia lubularis, a tree of the natural order ('ellecluceer, a mative of the monntanoms comatries to the east of liengal. In some parts of India, it is called Codere or Fisturd Cedur, names, howerer, which are also givela to other kimels of wook. (\because. W. is mueh valud in India, and is used for all purposes for which mahogany is used in Britain. It makes beautiful and light furniture, but is apt to warl, in very dry weather. Beantifully reined amb mottled pieces are occasionally met with, and are highly valued.
Clllu'SA. La (so called from the ground having been oricinally enclosed as pasture-lam for horses), a town of Sielly, in the province and :0 miles somth-subuth-west of Palermo, on the slope of some hills. The town was built in 1320. Agates are found in the vicinity. I'op. (IS61) 6092n.
('HLO'RODINE is a patent or yuack medicine of considerable popularity, inverated by a l) Collis Jirowne, but largely imitated ly varions chemists. It
 ably Indian hemp, and is flavoured with sugar and peppermint. As it is apt to separate juto two lipuids on standing, it shonlil never be taken unless it has previonsly been well shaken; and as, in taliing a dose of chlorvdyne, the patient swallows an unknown quantity of three or four of the deadliest נrisons with which we are acguainted, it is always advisalle to legin with small loses. It is unquestionally a compmond which sometimes sueceeds in allaying pan and intucing slect, when opiates have failed: hat whether a physician is justificed in recommending a remedy with the complosition of which he is unaermanterl, is a donbtiul question. Ten or tifteen drops is the average dose.

CHOPIN, Fmenernc, a lolish masical composer of consiterable note, He was lonm at Zcla-Zowa-Wola, near Whasnw, in IS10, and stmbied musie at Wैarsaw under Professor Josch h Elsner. Au exile after the revolution of 1830 , he took up his residence in J'aris, where he lived admired both professiomally and in society: Hlis health, always delicate, broke down in $18: 37$, when be went for a time to Mlajurea, from which he afterwards returned, benclited by the change. After arain suffering much from illness amd depression of Spirits, he risited England and Scothant in IS4S, and in London was weleomed with cuthusiasm in pulbic and private, lle never recoveral from the fatignes of this journey, but died in Paris, I7th October 184!), and was buried, by his desire, besile Rellim, in the eemetery of Pere-liClaise. His compositions, restricted to jianoforte music, are in ligh esteem among musiciaus, aud consist chicfly of prefudes, nottornos, polonaises, mazurkas, and valses, with it fow coneertus and sonatas. They are pervaded by a sensitive, restless, amd highly puctic fancy, and aboum in subtle jdeas, graceful and original harmonic etlicets, and rich ornamentation. 'j'he so-called polonaises, mazurkas, and valses are not danee music, but dremy eom. positions suggestive of the rhythmand character of these dances, in which the peculiarities of l'ulish mational musie are blended with l'rench clegance and taste.

CHROANOGI:APH. Different forms of timemeasurers, or time-recorders, under this designation, lat ve been invented within a reeent period.

Limson's chronograph is intended to measure intervals of time down to tenths of a second, for use at horse-races and other oceasions where a seconds wateh is not exactly suitel. It has an ordinary quick train lever movement, earrying hands which move over a dial. One of these is a seconds Lanal, very peculiarly made. This seconds hand is
double, consisting of two distinct hands, one super. pused on the other. 'The outer emi of the lowermost hand has a small enu, with a manute hole at the buttom; while the correspondint enel of the uppermost hand is lrent over so as exaetly to reach this puncture. 'The little enp' is filled with ink, having a consistency between that of writing thid and printers' ink. Syprose that a horse-race is about to take place. The observer keeps a steaty look-out for the fall of the starter's flag, or whatever the signal may be; he gives a pull to a cord or striug connected with the mechanism peculiar to the instrument ; hy this morement, the outer and bent end of the mper secomels hand dipe down through the jul:eup in the lower hand, and throurh the plancture to the dial. A small black spot or marle is thas made upon the dial-plate; and this is repeated as cach harse phsses the wimning-post. If the eye and hand of the operator are quick and aceurate, there is a reliable record thas presented hy the instrument of the churation of the race, sometimes as close as onetenth of a secoml. The instrument is now adop,ted at the prineipal races as a suitable one for tho purpuse; recent instanees were the Derly, the Oiks, the Coodwood, the Nowmarket, and the St Leger of 1867. It will prolably be available for many other purposes.

Strange's chronograll is designeal for a more seientific purjose, anl constrncted with more eareful actails. The ubject is to measure extremely short intervals of time, for the determination of longitudes in great trigonometrical surveys. The ohserver, when a barticular star traverses the field of his telescone, tonches a small ivory key; and on the instant, a lot or mark appears on in shect of paper coiled round a barrel. The instrument beiner connected with an astronomical clock, there is a dot made for every beat of the pendulum; and as these dots are a consilerable space apart (considerable, that is, for the refincel instrmments of the present day), it is prossible to determine so wonderfully minnte an interval as one-hundrelth of a sceond. Une of these machines, made at l'aris under the direction of hicutenant Strange, was exhibited in 15i6. at the Soirée of the Jresident of the Joyal Soeicty; it was intended for use in the great trigonometrical survey of India.

Other forms of chronograth have been adnpted by astronomers. One was suggested lyy I'rufessor C. A. Younes in ISG6 to assume the flunctions of a recording chronograph, by marking the instant of observation in lours, minutes, seconds, and hundredths of a secoml, in printed characters, and in a form suitable fur preservation and rednction. Diagrams of the apmaratus, given in the Ameriean Journal of Seience and Art, shew is somewhat elaborate combination of wheels, cylinders, magnets, armatures, keys, dials, type-wheels, se.; but the plan, we helieve, has not yet been practically tried.

CHIRSOBALANA'CEAE, or CHILSOBALANE.T, according to some botanists, a distinet natural order of plants : according to others, a suborter of Rosacese (l . v.). They are distinguished from the other plants usually included in the orter Iiosacee by their irregular petals, and hy having the stamens also irregular, either in size or position; the ovary stalked, its stalk adhering on one side to the calyx, the style proceeding from its base. The fruit is a drupe of one or two cells. The species are trees or shrubs, natives generally of tropical and sulb-tropieal regions. About 50 species are known. The fruit of many is eatable, as the Cocoa P'Lums (g . V.) of the West Indies (Chrysolalanus), the frnit of Parinarium excelsum in Sierra Leone, and that of Moquilea grandiflora in Brazil. The kernels of some resemble sweet-almonds, as those of

Parinarium campestre and P. montanum. A nseful oil is expressed from the seeds of Prinsepice utilis, a spiny plant, common in some parts of the Himalaya Mountains, and which is also planted for hedges in the Khasia Hills, at an elevation of 5723 feet above the sea; whilst in Sikkim, it is only found where the elevation is above $S 000$ feet. This plant would in all probability succeed well in Britain, and an attempt should certainly be made to introduce it.

CHUCUI'TO, or CHUQUITO, a town of Bolivia, in the dep. of Puno, and 100 miles east-north-east uf Arequipa, ou the west shore of Lake Titicaca, at the mouth of a stream flowing from the Aades. It was formerly of math greater size and importance than it is at present, having had, it is said, at the heginning of the 1 Sth c., the incredible number of 300,000 inhabitants. Its present pop. is only about 5000 . In the province of the same name, of which it is the capital, there are mines of silver and gold, and interesting antiquarian remains.

CHU'NAM, the Indian name for a very fine kind of quick-lime made from calcined shells or from very $l^{\text {rure }}$ limestonc, and used for chewing with Betel (q. r.), and for plaster. Both recent and fossil shells are used for making chunam. Extensire beds of fossil shells employed for this purpose oceur in the south of India, particularly in low marshy situations near the sea-coast. The shclls used are in the first place very carcfully eleaned; they are then calcined in kilns, with wood charcoal. When chunam is to be used for plaster, it is mixed with fine river-sand, and thoroughly beateu up with water. A little jaggery (coarse sugar) is also addecl. When very beautifnl work is desired, three coats of chunam are given to the wall, and the result is a plaster almost eqnal to marble in its polish and beanty. The third coat is applied in the form of a very fine paste, consisting of four $1^{\text {narts }}$ of lime and one of tine white sand, heaten up with whites of eggs, sour-milk, aved ghee (butter). After it has been rubbed on with a wooden rubber, the surface is washed with a cream of pure lime, and is rubbed with a polished piece of quartz or rock crystal. During this process, the wall is sprinkled with powder of pot-stone, and the rubbing is continned matil the wall is quite dry, every trace of moisture being finally removed by a cloth. Chunam is an important article of trade in India.

CHUR (Fr. Coire, auct. Curia Ihcotorum), a town of Switzerland, eapital of the Grisons, in the valley of the Upper Rhine, in a fertide plain abont $\mathbf{2 0 0 0}$ feet above the sea, and surrounded by high monntains, 60 miles south-east of Zurich, on the Plessur, about a mile from its junction with the Phine. It is of importance as standing on the great road to Italy by the Spliigen and Bernardin passes, and thus possessing a considerable transit trade. C. stands on uneven ground, has narrow streets, and is divided into a high and low torn. The bishop's palace, and the quarter around it, inhabited by the Tioman Catholics, occupy the summit of an eminence, and are separated from the rest hy walls and battlements, closed by double gates. In the same quarter stand the old eathedral, a round, arched, or Byzantine edifiec, founded in the Sth e. ; the Church of St Lucius or the Dom, a curions example of early-pointed Gathic, including fragments of earlier buildings. It contains singular old carving, paintings, and statues, and also, it is said, the boncs of St Lucins, who was a British king. Behind the episeopal palace is a kind of ravine lined with vineyards. In the lower town there are also some very ancient buildings. Fomansch is still spoken iu the vicinity; a newspaper in this dialect is published in the town; and a considerable collection of Tomansch literature is to
he found in the library of the cantonal schools. There are several new roads leading in ditlerent directions throngh the Grisons ; and a railway connects the town with Zurich and other places. There are manufactures of zine wares and cutting tools. Pop. (1560) 6990, of whom about 1000 are Catholies.

CLALDini, Exrico, sou of Giuseppe C'ialdini, civil engineer in the Mudenese service, was borm at Castel Tetro, in that duchy, Augnst 10, 1813. Incurring the displeasure of his Jesuit preceptors, he was sent by his parents, who designed him for the medical profession, to study at the unirersity of Parma. When the abortive insurrection of 1831 broke out in the duchies, C . joinel the volunteers of Reggio ; and on the capitulation of Ancona, embarked for France. Here he resumed his medical stndies, living in the Tue de la Harle, and eking ont his seanty means by translating for the booksellers. The struggles against absolutism in the Iberian Peuinsula opened amew the career of arms to the ltalian exiles. He determined to join the legion raised by Don Pedro in France against the Mignelists. A severe attack of cholera delayed his departure till March 1833, when he sailed for Oporto with letters of introduction from several Parisian notabilities. Arrived off the port, he threw the letters into the sea, determined to trust to his merit alone, aud enlisted as a private in the $2 d$ Regiment, composed mainly of Italian refugees. His great personal courage sonn secured his promotion; and the unanimons vote of his comrades pronounced him the worthiest man to receive the Order of the Tower and Sword decreed by the government to his company.

After the capitulation of Evora, C. joined (October 22,1835) the legion of Oporto, formed uader Borso di Carminati for service in Spain. In this force, in which Fanti and Durando were officers, C. gained further houours. At Cherta he received the Cross of San Ferdinand; and in the retreat from Morella, by a great effort of strencth and courage, saved the life of his brother Guido. In 1839, he exchanged, with some sacrifice of rank, into the regular army, in which, at the close of the war, he found himself captain with another decoration. The fact that some of his olit chiefs conspired against Espartero in 1841, seems to have caused him to be sent on half-pay to Talencia, where he married a lady of good fanily. In 1843, he followed Narvaez in his march against Madrid; was made by him colonel of the regiment of St Ferdinand; and afterwards employed in organising the Civil Guard on the model of the French gendarmerie. He was in this force when Charles Albert headed the Italian rising in 1848. A loold and loyal soldier, C. had almays kept aloof from the plots of the secret societies; but now he at once threw up his appointments in Spain, and hurvied to Italy, arriving in time to aid his old comrade Durando in the defence of Vicenza. ITere he reccived a clangerous wound, and fell into the hands of the Austrians. On his release, he was employed by the Sardinian government in the arduous task of redncing to regular disciptine the umuly volunteers from the duchics. IIe succeeded at last, and fonght well at the head of his new regiment in the brief campaign of 1849. During the ten years that elapsed from the defeat of Norara to the renewal of the war in 1S59, C. was actively employed. In the Crimea, he commanded the 3 l division of the Sardinian Contingent; and on his return was appointed inspector-general of Bersaglieri aud aide-de-camp to the king-a rare distinetion for a man of plebeiau origin. He was entrusted by Carour with the formation of the famons Cacciatori delle Alpi, placed under the command of

CICLNDELA-CITRIC ACID.

Garibaldi after the declaration of war, amd co-oper. ated actively with them at the head of the 4 th alivision. The victory at Palestro was his chief avoloit, the further progress of the Italians lecing stipped ly the peace of Villafranca. In 1860, the success of Garilaldi in the south, and the formation of a lipal army, led to the intervention of l'icdmont. Fanti entered the States of the Church with two divisions, one of which was under the command of Sicutenant-general Cialdini. The eampaign thus commenced was the most brilliant in C.'s history: He rednced l'esaro ; intercepted, hy a prompt and skilful movement, the march of Lamoriciere on Ancona; defeated bim at Castelfidardo, and compelled Ancoma to surrender. Then turning southwards, where the irregular forces of Garibaldi were beginning to weary before a firstclass fortress and a reteran army, he defeated the troops of Fraucis II. on the Garigliano. Diplomacy delayed the fall of Gaeta till February 13, 1S61, when it yielded to C. after a vigorons bombardment, as did the citadel of Messina shortly afterwards. Turin erected a statue to C . (Fincitore Sempre), amd lieggio elected him deputy in April. In the following summer, lie was sent as governor to Naples; but was relieved in a few months at his own request. 11 c had also to act against Garibaldi on the occasion of the second Sicilian expedition. When the army of Italy was reorganised in 1863, C . was approinted to one of the chief commands, with Bologna as head-çnarters. Senator in March 186t, le signalised himself by bis brilliant speceh in favour of the transfer of the capital (December 1564). In the war of 1S66, the advice of La Marmora was followed, and the defeat of Custoza was the result. C. was thus prevented from acting on the line of the l'o; and before a new campign could be fairly opened, the cession of Venetia put an end to active operations. La Jlarmora resigned his command as chief of the staff in favour of \mathcal{C}., and some litter words are said to have been exchanged on the occasion.
CICINDELA, a genus of insects of the order Coleoptera, section Pentamera, the type of a large farnily, Cicinelclifle. This family is nearly allied to Carabide, and the insects belonging to it are among the most voracious of those beetles which, lwth in their perfect and larva state, prey in other insects. They have a strong head, with projecting toothed mandibles, and are particularly distinguished by a sort of hook or nail, which is articulated by its base to each of the lower jaws or maxilla. They are more abundant in tropical than in cold conntrics; a few species, none of them large, are found in Iritain. The head of the larva is large, concnve above, and the lack furnished with two remarkable hooked spines, which are saill to be used as anchors to fix it at any part it chooses of its burrow in the earth; whilst the soil which it excavates, is carried to the month of the burrow in a sort of natural basket formed of the concare back of the bead and the recurred mandibles. The larva lies in wait in its burrow, its head just level with the ground, till its prey comes within reach, upon which it suddenly rushes.-C. campestris, a green sjecies with whitish spots, is common in most parts of Britain, in dry sandy places exposed to the stin.

ClNALO'A, a tomn of Mexico, in the state of the same name, on the lio Cinaloa, about 50 miles from its entrance into the Gulf of California. It is a thriving place, with gold-washings in the vicinity. Pop. about 9000.

CINI'SI, a town of Sicily, in the province of Palermo, 14 miles west-north-west of Falermo, near the const. It is a neat, cheerful town, with straight, regular strects, and has 6714 inhabitants. The Benedictine convent here was once a feudal castle.

CINNA'MIC ACID AND THE CINNAMYL SERIES. Cinmanyl is a compound radical, as yet unisolated, which is represented by the formula $\mathrm{C}_{14} \mathrm{HI}_{7} \mathrm{O}_{2}$, and which includes amongst its compounds cinnamic acil ($\mathrm{C}_{18} \mathrm{H}_{7} \mathrm{O}_{3} .110$), oid of cinnamon, which is chomically a slightly impure aldehyde of cinnamic acid, or a hydride of cinnamyl ($\mathrm{C}_{28} \mathrm{ff}_{7} \mathrm{O}_{2}, \mathrm{H}$), chloride of cinnamyl $\left(\mathrm{C}_{3}, \mathrm{H}_{2} \mathrm{O}_{3}, \mathrm{CJ}\right)$, styrone or ${ }^{\text {ec土- }}$ urine, known chemically as cionamic alcohol $\left(\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{O}_{2}\right)$, cinnamol and styrol, each representel by the formula $\mathrm{C}_{16} \mathrm{H}_{3}$, and styracin $\left(\mathrm{C}_{19} 1 \mathrm{H}_{16} \mathrm{O}_{4}\right)$. We shall briefly notice the most important of these compounds-viz., cinnamic acid and oil of cinmamon. Cimamic Acid $\left(\mathrm{C}_{15} \mathrm{H}_{4} \mathrm{O}_{4}\right)$ erystallises in colourless prisms, which are sparingly soluble in cold water. but dissolve readily in boiling water, alcohol, aud ether. It fuses at 266°, and boils with or without decomposition, according to the manner in which it is heated, at about 570°. It is converted by most decomposing agents into benzoyl compounds, such as benzoic acid, oil of bitter almonds, \&c. ; for example, when fused with hydrate of potash, it assimilates the elements of water, aud breaks up into acetic and benzoic acids; when boiled with peroxide of leal, it is converted into oil of bitter almonds and henzoic acid, de. It exists naturally in a free state in liquid storax, the balsams of Toh and Peru, and grm benzoin, and is often deposited in large crystals from ohe samples of oil of cinnamon and from cinnamon water. It is alvays formed from oil of cimamon when the latter is exposed to the action of the air, and it has been synthetically or artificially formed ly exposing equivalent quantitics of chloracetyl ($\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{U}_{2} \mathrm{Cl}$) and oil of bitter almonds $\left(\mathrm{C}_{24} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ to a prolonged heat in a closed glass tube. Oil of Cinnumon and Oil of Cassia, although prepared from different kinds of trees, are virtually identical in their couposition, each consisting mainly of cimamic aldelayde, or hydride of cumamyl, mixel with certain resinons matters. Oil of cinnamon is an article of the materia medica, and in duses of one minim to a fire-grain pill, forms an excellent aromatic addition to cathartic pill-masses.

CI'TR1C ACID ($\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{14}$, or $\left.\mathrm{C}_{22} \mathrm{H}_{3} \mathrm{O}_{11}, 3 \mathrm{HO}\right)$ is a powerful tribasic acid, which crystallises in large transparent colourless prisms. These crystals are readily soluble in water and alcohol, but are iusoluble in ether. The crystals contain two atoms of water of crystallisation (not expressed in the abore formule), which are expelled at a temperature of 212°. Uitric acid has a strougly acid taste and reaction, and displaces carbonic acid fronn the carbonates. Its watery solution quickly becomes mouldy on exposure to the air, and the acid is then fonnd to be converted into acetic acid. When heated to about 350°, vapour of acetone and car bonic oxide are given off, and as residue of aconitic acid $\left(\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{O}_{12}\right)$, an acid occurring in the leaves and roots of monkshood and other species of Aconite, is Ieft; and when fused with potash, it assimilates the elements of water, and is decomposed into oxalic and acetic acids, as shewn in the equation:

$$
\overbrace{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{24}}^{\text {Cleric Acld }}+2 \mathrm{HO}=\overbrace{\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}}^{\text {Oxulic Acid. }}+\overbrace{2 \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}}^{\text {Acrice Acti2 }}
$$

CIVITANOVA-COAL-SUPPLY.

These reactions illustrate the changes which organic acids maturally undergo in the vegetable kingdom. It is to the presence of citric acid that a great many fruits owe their agreeable acidity. It occurs in a free state either alone or associated with malic and tartaric acids in oranges, lemons, cherries, currants, raspberries, gooseberries, strawberries, whortleberries, \&c., and in several tubers and bulbs, as in the potato and onion. It also exists in combination with potash or lime in potatoes, onions, and artichokes.

This acid, which is almost always prepared from lemon or lime juice, is thus obtained. The juice, after undergoing incipient fermentation, is filtered, and neutralised with chalk; and the insoluble citrate of lime thus formed is decomposed with very dilute sulphuric acil. On the remoral of the sulphate of lime that is thus formed by filtration, the solution of citric acid must be concentrated till a film begins to form, when the crystals readily separate on cooling. Citric acid has also heen prepared from unripe gooseberries, whose juice is allowed to ferment ; and after the removal of the alcohol by distillation, the acid is separated in the may already described. 100 lbs. of gooseberries yield 10 lbs . of spirit of slee. grav. 0.928 , and 1 lb . of crystallised acid.

Citric acid is used largely in mauufactures; calico-printers employ it for discharging the morclant from the cloth in patterns; and it is used in dyeing silk with saffower, and for heightening the tint of cochineal. The raw material from which the acid for these purposes is ohtained 'is a black fluid like thin treacle, which comes from Sicily, and is obtained by inspissating the expressed juice of the lemon after the rind has been removed for the sake of the essential oil.' -Watts's Dictioncry of Chemistry, vol. i. p. 99 ป.

The most important of the numerous salts of citric acid are the citrates of lime, potash, ammonia, and iron. Citrate of Lime $\left(\mathrm{C}_{12} \mathrm{H}_{5} \mathrm{O}_{11}, 3 \mathrm{CaO}+4 \mathrm{Aq}\right)$ is formed in the preparation of citric acid, and is a fine white crystalline powder, more soluble in cold than in hot water. Citrate of Potash $\left(\mathrm{C}_{12} \mathrm{H}_{5} \mathrm{O}_{11}, 3 \mathrm{KO}\right.$ $+2 \mathrm{Aq})$ is formed by neutralising the acid with carbonate of potash, and crystallises in clear deliquescent needles, insoluble in alcohol. Citrate of Ammonia $\left(\mathrm{C}_{22} \mathrm{H}_{5} \mathrm{O}_{11}, 3 \mathrm{NH}_{4} \mathrm{O}\right)$ can only be obtained in solution. Citrate of Iron is prepared by dissolving freshly precipitated peroxide of iron in a warca solution of citric acid; a reddish-brown solution is formed, which, on evaporation, yields brilliant scales of a light-brown colour. Excepting the first, all these salts are employed in medicine-the citrates of potash and ammonia as diaphoretics and febrifuges (see Aerated Waters), and the citrate of iron as a tonic. Lcmon juice, in which citric acid is the most active ingredient, is a most valuable medicine iu scurvy, active hamorrhage, rhemmatism, \&c.; and when it cannot be obtained, citric acid is the best substitute. The general uses of citric acid in combination with an alkali have been already noticed.

CIVITANO'VA, a town of Central Italy, province of Macerata, 12 miles mest of the town of Macerata. Pop. (1561), including the port, 427S. It stands not far from the Adriatic, and has a fine harbour, much frequented. Its lands produce vines, olives, and pasturage. It is an industrial and commercial city.

CLAVA'RIA, a genus of Frugi of the division Hymenomycetes, suludivision Clavati. The spores are produced equally on all parts of the surface. The species are numerous, some of them simple and club-shaped, some branched. Some are natives of Britain. C'. Botrytis, a species common in oak and beech woods in Germany, growing on the ground,
among moss, grass, heath, \&c., is gathered when younc, and used as food, having a very agreeable sweetish taste. It ceases to be edible when it becomes old. Anather German species, C. flavu, which grows on sandy gromed in fir-woods, is used in the same way. Other species appear to possess similar properties, and Liebig found them to contain the saccharine substance called Mannite. C. Botrytis is the Keulenpilz, and C. flara the Ziegenbart (goat's-beard) of the Germans.

COACH-DOG, or DALMATIAN DOG, a variety of dog apparently allied to the hounds, although it is said to be deficient both in keenness of scent and iu sagacity. It is often kept in stables, becomes attached to the horses, and may be seeu ruuning after carriages. Its general light colour and numerous dark-brown spots are coustant characteristics ; as are also its short hair, tail destitute of brush, and iuoffensive disposition. Its origin is uncertain; the name Dalmatian is prohably altogether misleading; and it is supposed that it may have been brought from India, where a very similar kind of dog exists.

COAL-SUPPLY. Referring to CARBONTFeroos Sistem and Coal for varions details conuected with the localities of coal-beds, the diversity of qualities, and the modes of working, we shall treat here of a question which has recently been accepted as one of great importance to the welfare of the nation-viz, the amount of available sup1ly. All the coal now existing was formed untald ages agr, when the conditions of temperature and moisture on the earth's surface were different from those now prevailing. Coal is not a growth annually renewable, but an accumulation which we are gradually spending. We are living, not on the interest of our coal, but on the capital. This is a truth which scientitic men have recognised for some time past; but statesmen and manufactirers, mine-owners and merchants, have paid singnlarly little attention to the subject, under the supposition that the existing stock will last for so great a period as to relieve us from all anxiety on the matter. John Williams in $\mathbf{1 7 5 9}$, Sir John Sinclair in the Statistical Account of Scotland, Robert Bold in 1812, and Dr Buckland in 1830 were almost the only writers, until recently, who cautioned England that her supply of coal will not last for ever. Two volumes on the Coal Question, hy Mr Hull and Mr Jevons respectively, have now, however, effectually roused public attention to the matter.

At the Newcastle meeting of the British Association, in $1864, \mathrm{Sin}$ W. G. Armstrong, as chairman, forcibly urged the subject ou the attention of scientific and practical men. He said: 'Contemplating the rate at which we are expending those seams of coal which yield the best qualities of fuel, and can be worked at the least expense, we shall find much cause for anxiety.

We have already drawn from our clooicest mines a far larger quantity of coal than has been raised in all other parts of the world put together ; and the time is not remote when we shall hare to encounter the disadrantages of increased cost of working, and diminished value of produce.' He urged especially that we ought not to squander our coal as at present. We waste nearly all the smoke, heated air, and heated gases from our furnaces; we waste sadly in our open fireplaces; and there is a vast quantity of small-coal recklessly burned at the pit's mouth. Various statisties as to supply and consumption had furmished Sir W. G. Armstrong with his data. So widely have estimates differed as to available quantity still in store, that betwcen 1792 and recent times, the conjectures, for Northumberlanil and

Burhanz alone, varice from 200 years to 1700 years, as the period during which the whole nation cond We supplied from this one coal-lield; but more earnest attempts have been made in late years to arme at approximate fignres. In 185 , it was "stimated that the coal-fielle of the United Sitates covered 1:0,000 su! m. ; L'nited Kingdom, 1:, 140 : span, 3400 ; France, 1700 ; Belgiun, ©(M): and that the ammal prolnce was in the United Kingdons $: 31,000,0160$ tons; Belgium, 5,000,000; France, 4, 1000,000 ; and United Siates, $4,000,000$. lhat this 'stmmate for the United Kingdom was very far below the trutly. In 18:7, M. de Carral, a Prussian mining-enginecr, estimated the whole coal-mining of that year in all emmeries at 125 miltion tons, with an average value of 78 . per ton at the pit's mouth; he crolited l'russia with enough unexhansted coal to suphly all the worle for 900 years. In $1561, \mathrm{Mr}$ liobert liunt ascertained, hy reliable mineral statisties, that Great lisitain raised 56 million tons in the year ; that the guantity was increasing ly nearly three million tons every year; and that we were working our mines at thrice the rate which lat been in force 20 years before. These facts liad much influence in drawing the attention of public nen to the subject. The produce of Great Britain in 1861 was from 3052 collieries; and the different districts joined in the supply as follows: Durham and Nurthumberland, 19 million tons: Lancashire, 12; Yorkshire, 9 ; Stafforlshire and Woreestershire, 7; South Wiales, 7; Derbyshire and Notting. hanshire, 5 ; Scotland, 11 ; all other districts, 16 amounting to a total of 86 million tons. M. lurat, in his Situation de I'Industric IIoutlire en 1S6t. estimated the coal-produce of the worl at 141 million tons, of which he credited Great Britain with about four-serenths. In the stmue year, sir IV. (I. Armstrong, taking Mr 1 Full and Mr Il unt as his authorities, estimated the available stoek of coal in the United Kingdom at so,000 million tons, rejueting all seams lulow 4000 feet as tou deep to work, and all less than two feet thick as too thin to work. Taking 1564 as a standard of consmmption, it would last 930 years ; but at the rate of increase of recent years, it would only last"l"y years, beeanse this rate wonld be geometrical and nut merely aritbmetical in its progression. He further estimatel that the available scams of the Tyne, Wear, and Tees district, at the presunt rate of increase, will barely last 100 years-esplecially if we continne, as at present, to burn ot million tuns per ammun at the pit's month in the Durhan and Northumberland collicries. In 1805, the estimate of 1 roduction was 93 million tons, of which :30 million was used for our own domestic fireplaces, $2 \overline{5}$ jnillion in iron manufactures, 9 million exported, and 29 million miscellancons. For the year 1866 , the produce exceeted 100 million tons.

In the year 1866 , the question came into the arena of the British parliament. On April 17, during a discussion in the llouse of Commons on the malttax, Mr J. Stuart Mill urged the propricty of commencing some arrangements or other for paying oll the national delot; recommending the present prosperous state of the nation as a suitable time for making a heginnind, and not postponing it to a date when the exhaustion of our coal would place ns at a relative disadvantage. He dwelt on the fact, that coal is one of our greatest sources of mational wealth; and he aceepted as trustworthy the calculations of Mr Jevons-that m three or four generations, we shall have scarcely any usable coal at a less depth than 4000 feet, a depth which will either be unworkahle, or workable only at a greatly increased onst. This speech made a great impression on the llouse; aud the government, a few days
afterwarle, motertouk to ascertain what facts the oflicers of the Geolntieal survey 1 wssessed on the subject. On Day :t, the C'haneellor of the Exchequer, Mr Cladstone, made his dimancial statement for the year, in which he aecepted Mr Mill's riews, hased as they were on the opinions of Sir lionderiels Murchison, Sir John Huschel, Sir W: (i. Armstrong, Dr L'erey, Mr Hull, Mr fevons, anel other anthorio ties. Jle assented to the probalibity that by the year lā0, if matters go in at their present rate, we shall have no coal left. a dishoheve and disapprove, he added, of all attempts to limit ly law the consumption of coal. In vain wonle it le to think of stoppring the consumption of coal in this conntry; in sam would it be to think of liminishing that consumption by the imposition of a tax; and it would be more vain still to think of prohibit. ins its exportation.' la other worls, the remely, if any, can not be by legislation. Nr Clamstone introduced the subject again on May 21 , when proposing a plan of terminable annuities to conmene the redemption of the national dulat. During the delate, dhr Laing, Professor Finwect, and Mr Samaclson disputel the theory that the rate of increase in consumption will be in geometrical progression, and they consequently demurred to the conclusion that our available store of coal is so near exhaustion. 'When,' said Mr Laing, 'coal becomes scarce, certain branches of industry in which coal is very largely consumed, will have to lee given up to a great extent, and other branches of industry in Which coal is less extensively used, will be earrich on instaad.' The yuestion was brought to a deeisive point on June 12, when Mr Ilussey Vivian moved an address to the erown, maying for the appointanent of a royal commissiun to iovestigate the whole matter. In an claborate and cxhanstive speech, le stated his reasons fur beliering that the forebodings of Mr IIull and Mr_{r}. Jevons are too gloomy-that advancing science will emable miners to contend against the temperature and pressure of deeper mines than have hitherto been thought practicable; that we slabll be better able thau ever to ventilate and drain the deep workings; that the area of coal workable even with our jresent means is larger than has been estimated; that the matrnesian limestone and now red sandstone beds are likely to atford an "prening for new stores of coal quite incalculable in amount; that the theory of an increase of consumption in a geometrical ratio is not temalle; and that we shall probally economise consumption in future years ly the adoption of new processes, new furnaces, new stove-grates, smokeconsuming apraratus, and the utilisation of waste heat and gases, Althunghe entertaining these farourable views, he nevertheless suggesterl offeial inguiry. The government assented; and a loyal Commission, comprising the Duke of Aygyle, sir laderick Murchison, Sir W. G. Armstrong, Mr Vivian, Mr I'restwich, Dr Percy, Mr Jukes, Mr Robert Ilunt, and several other experienced men, was appointel in July 1866 . The labours of this important commission were still in progress in September 156%.

COA'T1BRIDGE, a rising and prosperous towar of Scotland, in the parish of Old Monkland, abont cight miles dircetly east of (Ilasgow, on the Monkland Canal and Citedonian Railway. The town is straggling, has some good houses, and a number of small villayes or subarls on its outskirts. There are six churches busides the parish church, two aculemies, and several other schools, banks, \&C. The town is in the centre of a mineral district, is surroumbel ly about fifty smelting-furmaces, and coutains eight malleable iron works, one tin-work (the only one in Scotland), and several other works connected with the iron mannfacturc. C., owing

COBAN-COHESION-FIGURES.

to the great increase in the iron trade, has grown very rapidly in size and prosperity within the last 20 years. Pop. (1831) 7t1; (1S41) 1599; (1851) S564; (1861) 10,501 ; and still rapridly increasing.

COBA'N, a town of Central America, Guatemala in the clep. of Vera Paz, in a fertile valley on the lio Dolce, 55 miles north of the town of Guatemala. The inhabitants are nearly all Indians, are generally industrions and some of them wealthy, and possess plantations of sugar-canc, bananas, pimentos, and various kinds of fruit-trees. Pop. estimated at 1-1,000.

COCCOMILIA, or COCUMIGLIA (Prumes coccomilia), a species of plum, a native of Calabria, and of which the bark-prartieularly of the root is much used in that country for the cure of intermittent fevers. Its valuable qualities have been strongly attesterl by J̌eapolitan physicians, and it is cmployed both in private practice and in military hospitals, but it has not come into use in other conntries. The C. has obovate leaves, short double flower-stalks, and austere tawny-yellow fruit.

CO'CUNI OIL, a solid oil or vegetable butter, obtained from the seeds of Garcinia purpurca, an Indiau tree of the same genus with the mangos. teen. It is white or pale greenish yellow, brittle or friable, with a faint and not unpleasant odour. It melts at 95° F., but when cooled after being melted, remains liquid to $75^{\circ} \mathrm{F}$. It is used for mixiug with ghee (butter), and is exported to Britain for mixing with bear's grease in the manufacture of pomatum.

COHESION-FIGURES, a remarkable class of figures produced in liquids by the action of their natural cohesive attraction for the surfaces of other liquids or solids on which they are deposited, or by iuduced cohesive attraction effected by the means of electricity. They may be described under four Leads: (1) The Surfaee-cohesion Figures of Tomlinson; (2) The Submersion-figures of Toulinson; (3) The Breath-cohesion Figures of Strethill Wright: (4) The Electric-cohesion Figures of Strethill Wright.

1. The Surface-coltesion Figures of Tomlinson.This class of figures was submitted to the Chemical Section of the British Association by Mr Charles Tomlinson of Kivg's College, London, in 1S61. He shewed that a drop of au 'independent liquid,' such as an oil, alcohol, or ether, when gently placed upon chemically clean water, spreads itself out into a ilefinite ligure as it enters into solntion or diffuses itself over the surfiace. He stated that each figure is characteristic of the tuid employed, and that any change in the chemical or molecular state of the tluid is attended with a corresponding change in its 'cohesion-figure.' Hence he recommended that these figures sheulel be applied to the qualitative analysis of various liquids whose orlinary methods of testing were inoperative or inadequate. Cohesion analysis, performed as he directs, has been applied with signal success in the verification of oils and balsams, and as a ready means of indicating the changes whieh take place in those bodies by age or oxidation. The cohesion-figures of Tomlinson, from their great beauty and variety, combined with the exquisite harmony of colouring displayed by many of them, have been employed, like those of the kaleidoscope of Brewster, to suggest forms for the pattern-designer.

In the production of cohesiou-figures, water was the receiving surface generally employed by their discoverer ; but in certain cases, he also employed other fluids, such as mercury, acetic aeid, cocoanut oil, and castor oil in the cold state; and spermaceti, white wax, lard, and sulphur in a
state of fission. On eacli of these substances, the liquid to be tested formed a different and characteristic figure, and hence addlitional means of comparison itud verification were afforded. Fig. I

Fig. 1.
shews the surfacc-cohesion figure of oil of lavender on water.
2. The Submersion-figures of Tomlinson.-In the Philosopłical Magazine for Jnne lSGt, this anthor hrought forward a new series of cohesion-figures of liquids, in which the drop, being of great specific gravity, instead of forming a figure on the surface, sank beueath it, and formed a figure as it slowly made its way to the hottom of the vessel. In order to exhibit these phenomena, he employed a column of liquid in a eylindrical vessel. He states that a solution of cochineal dropped into water formed a figure typical of a large class of these figures. A arop laid on the surface sank down, opened into a ring, which beeame depressed at two opposite points; from these points, lines of fluid descended, which terminated in secondary rings; the secondary rings, in like manner, ruooped down into lines carrying tertiary rings, and so on, until the lower part of the ressel becanie crowded with a complicated system of drooping rings and lines. Oil of lavender in a column of alcohol, fusel oil in parafinn

Fig. 2.
oil, in benzole, in ether, sic., gave varions and distinctive ligures. lle founl that similar figures were obtained by the use of oils dropped into columns

COIIESION-FIGURES.

of hot spermaceti, lard, wax, \&c.; and that these figures underweut considerable variation under the inthenco of change of temperature. Fig. \because shews the submersion-figure of oil of lavender in alcolnol; fig. 3 , that of fusel oil in parafinn oil. We have already stated that each of these ligures, whether surface-figures or submer: sion-figures, is characteristic of the thunk which forms it ; and Tomlinson considers, with regarel t, the surface-figure, that it is a function of the cohesive force and diffusibility of the liquid, and the adhesion of the surface on which it is deposited : he also considered that it might be a function of the solubility and the diffusilitity of the fluid in question, or of the solubility, the density, and the molecular attraction: while with regard to the sub-mersion-figure, he thought each ligure to be a function of the solubility, the dnsity, and the nolecular attraction.
3. The lireath-coluesion Figures of strethill Wright. - These tigures were discoverel by Dr Strethill Wright of Edinburgh, and comnanicated to the linyal Scottish Society of Arts on December 12, 1864. This author, who lad long been engaged in observing phenomen: enunecter with tie woditication of cohe ive attraction proheed between solids and thids lyy heat and electricity, was induced to take up, the subject afresh loy the publications of Tomlinson, and one of the results was the production of hio su-ealled "breath-enlawion tig rures.' IIc

Fig. 4.
employed as the recipient surface a freshly-split, anel therefore chemically clean, surface of mica; on this he placed a single drojn of the thid to be experimeuted on. He then breathed upon the surface, and instantly the droj, flashed ont into a figure characteristic of the fluid of which it was composed.
lly this means, a varicty of substances, such as vegetable extracts, tinctures, and essential oils, and anmal thids, such as seram, beceine lymph, bile, mucns, and urine in its various pathological conditions, could be examined. ly dusting the tigures with lair-powder or lycopotinn, he was also enabled to render them lermanent, and to exluibit them in his lectures, expanded to a diameter of fonrten feet by the oxybydrogen microscope. Figo I shews the cohnsion-figure of vaccine lymph; 1is.

Fig.
5, that of urine containing a small proportion of bile; lig. 6, wil oi bitter almomis. In general appearance, the breath-cohesion tigures hear a strong resemblance to vegetable forms, especialiy to the fronds of the Desmidica. In many of them, as in

Fi. \% \%
the Deamidica, a very distinct bilateral symmetry is apparent. Others, arain, simulate the forms of the larger Alyer. A great many are respleulent with the hues of the soap-bubble, arranged in concentric bands and curves of excessive beanty; while others are veined throurhaut so as to resemble sections of arate. Wr Wright considers that the breath-colesion tigure is the product of electric attractive force developed ou the freshly-split mica, as a well-known consequence of cleavage.
4. The Electric-cohesion Fipures of Strethill Hright. -These figures were described by Dr Wright to the Royal Scottish Society of Aits on April 11, 1S64, and are producel by electrifying drops of various

COMAYAGUA-COMPRESSED-AIR ENGLE

fluids placed on a clean plate of glass, rulcanite, mica, or other smooth non-conducting substance. By this method, an endless rariety of beautiful dendritic figures are produced, differing not only with the tuid employed, but also with the slightest change in the character of the surface on which it is placed, and with the electricity, whether positive or negative, which is imparted to the drop. The electric-cohesion figures are produced in the following manner: A sheet of plate-glass is laid upon a plate of blackened metal, and in the centre of the glass a drop of the fluid to be operated on is deposited with a clean glass rod. The metal plate and the drop are then connected with the opposite poles of an induction coil (capable of giving a spark of about half an inch in length) in full action. and immediately branches protrude from the drop, which slowly creep over the glass until they closely corer a circle of four or tive incbes. The accompanying figure (fi: 7) shews that produced on a surface of mica by the positive 1 ole

Fig. 7.
from a solution of cyanile if potassium. Sulphuric acid, and solntions of potash, deliquescent salts, and organic fluids, give the lest figures; while nitric and muriatic acids and distilled water do not form figures under the electric influence.

COMAYA'GUA (formerly Valladolid La Neres), chief city of Honduras, C'entral America, 190 miles east of Cruatemala, in a fine but unhealthy ralley, 1800 feet above the sea, on the right bank of the Humura, which flows into the Pacitic. The city was founded in 1540 , is the see of a bishop, has a cathedral, college, ecclesiastical seminary, several couvents, and a rich hospital. Pop. So00; it was 18,000 previous to 1827 , when the city was burned by the monarchical faction of Guatemala, and has never since wholly recorerel.

COMMEMORA'TION, or ENC.E'NIA, the great festival of the Oxford academic jear, nsually takes place on the thirel Wedncslay after Trinity Sunday: It is of rery ancient date, public exercises and recitations haring been held from time immemorial in honour of the act, or period when Jlasters of Arts and Doctors complete their derrees, at first in St Mary's Church, but subsequently to the erection of the Sheldonian Theatre (1609), in that building.

At present, the proceedings consist of a Latin oration in honour of founders and benefactors, delivered in alternate years (according to the luequest of Lord Crewe, Bishop of Durham) by the Public Orator and the Professor of Poetry; the
presentation of the honorary degree of D.C.L. to strangers eminent in scieuce, politics, \&c., who are introduced to the Chancellor, or, in his absence, to the Vice-chancellor, by the Public Orator, in a short Latin speech; and the recitation of the Newdigate or English prize poem, the Latin prize poem, and the Latin and English prize essays, the three last named prizes being the gift of the Chancellor. During the ceremonial, the northern extremity of the theatre is occupied by the Yice-chancellor, doctors, proctors, \&c.; the area or pit by Masters of Arts and their friends; the lower seats in the semicircle by lady risitors; and the upper, or gallery, by Bachelors and Undergraduates, who claim on this occasion all the time-honoured privileges of a gallery andience. Commemoration Day itself is only the culminating point of a week of gaiets, in which concerts, balls, theatrical representations, \&c. replace the usual studies of the uuiversity, and in which heads of houses and tutors are only tolerated in so far as they give a sort of official sanction to the general festivity. In the theatre itself, the more strictly academic and solemn portion of the proceedings receives but scanty respect from the majority of the audience. A momentary pause may perhaps be made when the 'Sewdigate' is being recited, or When some 'lion' of uusual mark advances to receive his degree; but as a rule, the noisy humours of the gallery command much more attention than the stately periods of the Public Orator, or the timid recitations of the prize essayists. Of late, however, a feeling has sprung up among the senior members of the university (shared in, it is said, by sereral distinguished strangers) that the licence of the gallery has exceeded all due limits, and it is not impossible that before long the date of commemoration may be altered to a time when the under. graduates are not in residence.
The Tice-chancellor, who holds his office for fonr years, generally presides at Commemoration, but it is insual for the Chancellor to do so once in the period of each rice-chancellorship. These occasions are called Grand Commemorations.

COMMESTRY, a town of France, in the dep. of Allier, eight miles south-east of Montluçon, on the EEuil. It stands in the centre of one of the most important coal-fields of France, and within the last thirty years has risen from a mere village to be a busy and populous town. Pop. (1S66) 7920, mostly engaged in the coal-mines and iron-works. A railway connects it with Montlucon and other places, and with the Canal de Berry. In 1846, an immense fire consumed an enormous quantity of the coal in the mines.

COMPRESSED-AIR ENGINE. One mode of employing air as a motive-power is described in Caloric Eagive (q. r.). Another obrious way is to compress it, and then apply it in the manner of high-pressure steam. Althongh compressed air has been used for working small engines in confined situations, such as Tunuels (q. r.). it is not at all likely that it will ever come into extensive use, owing to the great waste of power attending it. This waste arises from two causes-lirst, the friction due to forcing the compressed air alung a great leugth of pipe; and secondly, the loss from the dissipation of the great heat which results from its compression. If, say, 100 cubic feet of air is compressed into 1 cubic foot, it will become very hot, and although it is very easy to keep in the air, it is impossible to keep in the heat. In spite of every precantion, the heat will find its way through the vessel in which the air is confined, and through the pipes in which it is being transmitted, and this is equivalent to a portion of the air itself leaking out,

COS゙CORD-CONGESTION.

heennse, when the air is permitted to expanel in working the engine, it will not attain tha lolk it originally liad of 1100 enbic feet. The greater the original conipression of the air, the higher its temperature will rise; an! as this caloric, which camnot be keput from escapiner, is mactieally in part of the bulk uf the air, it follows that the loses uf power from this cause will increase with the pressume or tension of the air. Even were it possible to prevent the cacape of the leat. by envoring the vessels and pibes with some non-conclueting sul, stanee, it would not be practicable to use the lut air in the same way as steran is used, lucause the lubricating material wecessary to kecp the piston and slide-valves from 'teariug' would he deenmposed by the high temperature. In steam-engines, there is alorays a small quantity of water in the eylimers aml slide-valres, arisiug from the condensation of a portion of the steam, and this suffices to labricate the piston and valves. It is well known that wheu steam is superhected so bighly as to prevent a slight condensation in the eylinder and slide-valves, they are rery mally destroyed. Air rises is temperature when very minch compressed, aud we cannot use it until its tenuperature falls; and as this involves a great waste of power, it follows that where conomy is of any consequence, air camnot be used as a mode of transmitting mechanical power. Indeed, no Hluid can be coonomically used for transmitting power for any rreat distance. We have just seen that compressel air is very unsuitable; steam is eren more wasteful, heeanse it condenses into water in long pipes. Water itself loses much of its force from friction in passing through long pipins, unless they are of very large size : and in applying it to working IIydranlic C'ranes ($\mathrm{q} . \mathrm{v}^{\text {. }}$), where the weicht to be raised varies, great waste of power arises from the fact, that the eylimder, in which the ram works, has to be filleal every time the crane is worked with water at the full pressure of 600 or 70011 s to the square inch, even when a pressure one tently of that amonnt would suffice to raise the wejght. In sluort, the power actually used in working a lyy? even when the woight to be raisel is a minimum. It uses as much prower to lift a lundred-weight as it does to lift a ton. The extreme landiness and other practical adrantages possessed by the hydratulic ranes leave a large hatance in their fivour, notwithstanding their waste of power.

In boring the Jont Cenis Tumnel (see Tessiss). air is compressed at the mouth of the tumel by the abundant water-power easily obtainable there. and forced along to the working face through small iron pipes, for working the boring-machines. (icneral Hanjet, ans able American curineer, who has heen engaged in some extensive tunuelling operations in the United States, has proposed a plan for usin! ordinary steam hoders and engines close to the working face in the tunnel, and drawing out the smoke and vitiated air through a wooden trunk, by means of a large fan at the montly of the tumnel. This scheme offers the very great alvantage of having to leal only with air and smoke miner pressure differing but little from that of the atmosphere. A wooden trunk of no great streugth, ant involving little difficulty in keoping it sufficiently air-tight, would take the place of strones cast-iron pipes, which require to lee perfectly airtight, and are necessarily, from their considerable cost, of surcll it small size as to involve creat loss of power in foreing high-pressure air through them.

CO' CCORD , the capital of New Hampshire, U.S. - called Restrond before the American lievolution, from which Count Iinmford took his title-is on
the right loank of the Merrimae liver, 09 miles north-west of Boston, lat, $13^{\circ} 12^{\prime} 29^{\prime \prime}$ N., loug. 71° 2!' W' (". is a handsome village, extending two miles along the river, with state-louse, state-prison, state lunatic asylum, eity hall, two railway deputs, uine charches, font or tive newspapers, and mannfaetures of carritges, iron, steel, maelinery, musieal instruments, woollens, leather, \&c. 1'op. (ISG0) 10, sig 0

CONDOM, a town of France, in the dep, of fiers, pheasantiy situated on a height on the river laise, here crossed hy two bridges, 2.5 miles morth-north-west of Auch. The town is very oll, laving been founded in 721 , is ircegularly huilt, but has handsome sulburhs. It has a handsome Giothie church. an exchange, and two losppitals. There is a very cousiderable trale in grain, flour, wint, and lrandy, and mannfactures of cotton and mixed fabrics, cotton yarn, and earthenware. C. was formerly the eapital of an extunive district, now eomprised in the departments of Gers, Landes, and Lot-et-faroune. linssuct was at one time Bishop of Conlom. l'op. (1866) of the town proper, 4897 .

CONGE'STION may be defined to le 'excess of blool in the ressels of a part, with diminished motion of that blood.' 'l'he cliucf causes of congestion may be classed under the two heals of (1) congestion from venons obstraction, and (2) congestion from want of tone in the vessels.

1. Congestion from renous obstruction is casily illustrated loy tying up the arm, as is done beforo opening a vein, when the veins are compressed more than the arteries. If the ligature is kept on for a sutficient time, the reins swell, the fingers become red, and then livid, and the whole limb is swollen. Cold appliad to the surface of the body acts similarly on it, and contracts the veins more rapirlly than the arteries, which lie deeper; and the purple eolour of the hands and face after exprosure to cold shews tho congested state of the capillaries. 'Cougestions,' says Dr C'. J. B. Williams, 'are eaused in exterual organs loy an obstruction of the veins learling from them. Thns, eungestion of the brain may be producel lyy a tiglat eravat or by a tumour pressing on the jugular yeins. Etforts of straining, conghing, holding the breath, and asthmatic paroxysms which impede the tlow of blowl through the lungs, cause congestion in various parts. Tubereles in the lungs canse congestion of that organ. Obstruction to the transit of blow through the liver eanses congestion in the ahdomen, hemorrhoids, icc.'-Principles of Mudicine, 21 erl., p. 1 so.

Congestion from acant of tone in the ressels includes a numerous elass of cases. In atony of the vessels generally, as in extreme debility, certain fevcrs. \&ic., there is general congestion of the parenchymatous organs-the lmors, liver, \&c.-and the blond gravitates to the lowest parts, giving rise to what is termed lypostatic congestion of the posterior parts of the lungs, the skin of the hack, se. In other cases, the weakness is local, as when the fect swell after long standing, in eonsequeace of over-distension of the reins. Dimilarly, a eontimed stooning posture may necasion healacle, giddiness, and the other symptons of concestion of the brain. Congestive aflections of this kind are often mistaken for inflammation, and instead of being treated ly tonies, are treatrod by depletion, which, althongh allording temporary relict, inereases the evil.

Another eause of congestion is over-exeitement of the vessels, and this often occurs at an early stage of intlammation, or as a restult of that process.

Wैe must pass over the symptoms anl effects of congestion, because thes vary very much according to the organ affected, and shall conelude with a few words on the general remedies for congestion. First

CONGOON゙ーCONSANGUINITY

in order，we must notice such as remove the cause， as the loosening of a ligature，or the removal of a tumour compressing veins，elevation of the head in affected Lrain，and the recumbent position in con－ restion of the bremorrhoidal or uterine vessels． I＇ressure，by supporting the weak ressels，and fric－ tion，by increasing the onward movement of the blood in the veins，are often of great use．Astrin－ gents，such as solutions of alam，sulphate of zinc， tannin，oak－bark，\＆c．，may be applied with artran－ tage locally to certain parts，as the eye，throat， rectum，\＆c．；and stimulants may be similarly used， as a capsicum gargle to a relared sore throat． Medicines of these classes may also be given inter－ nally．Thus，the priacipal action of bark，quinine， and arsenic in the cure of agze is supposed to lie in their reducing the great visceral congestion that is always preseat．A glass of strong hot brandy and water will often remove a congestive headache，and \approx stimulant dranght will often relieve the pulmo－ nary congestion which follows a tit of asthma． Various remedies are supposed to bare a special power of removing the congestion of certaiu organs： thus，mercurials are recommended for congestion of the liver；digitalis and cantharides for congestion of the kidneys；and squills，benzoin，and the kal－ sams for bronchial congestion．－For further details， the reader is referted to the excellent work of Dr Williams，from which we have quoted．

CONGOO＇丸，or KOJGUN，a town of Persia，on the Persiau Gulf， 30 miles south of Shiraz．It has an excellent aud safe roadstead；and both wood and water，which are generally scarce in the gulf，may be oljtained here．Pop． 6000.

CONSANGUI＇SITY（Lat．con，together，and sanguis，blood），the relationship which subsists be－ tween persons who are of the same blood．It is either direct－which is the relationship between ascendauts and descendants－or collatercl，between persons sprung from a common ancestor．In the direct line，a son is said to stand in the first degree to his father；a grandsom，in the second degree to his grandfather ；and so on．In the collateral or oblique line，tro different modes of uumbering the degrees of consanguinity lave beeu in use，the one that of the civil，the other of the canon law．By the civil law，the degrees are separately numbered downwards to each party from the common ances－ tor，the common ancestor not being counted．Thus， brothers are in the second degree of consangnimity； uncle and nephew in the third；cousins－german in the fourth；and second cousins，or the children of cousins－german，in the sixth degree．By the canon law，consangruinity in the equal oblique line， i．e．，where the parties are equally removed from the common ancestor，is computed by the num－ ber of degrees between one of them only and the common ancestor；brothers being said to stand in the first，and cousius－german in the second， degree to each other．In the mequal oblique line， i．e．，where the parties stand in different degrees of relationslip to the common aucestor，the degree is determined by the number of steps between the common ancestor and the party further re－ mored from him：thus，uncle and nephew are computed as in the second degree to each other， because the neplucw，the further removed of the two，stands in the second degree to the common ancestor，his grandiather．The canon law computa－ tion is more generally used by English lanrsers， though statute 22 and 23 Car．I．c． 10 adopts that of the civil law．Scotch lawyers，since the Refor－ mation，have generally used the civil law mode of computation．

Afinity is the relationsbip bronght about by
marriage between a husband and the blood－relations of his wife，or between a wife and the blood－rela－ tions of her husband．The relations of one sponse in any particular degree of consanguinity stind in the same degree of affinity to the other spouse． There is no relationship by affuity between the blood－relations of the lusband and those of the wife．

Consamgrinity and affinity lave been at different times and in different parts of the work more or less looked on as impediments to marriage between the parties related．Amons the ancient Persians and Egyptians，marriages are said to hare been sometimes sanctioned between brother and sister， and even father and daughter．The Athenians， while permitting mariages between brothers and sisters uterine，prohibited them letweeu the same relations by the father＇s side or the full blood．In the book of Genesis，we read of Abraham marrying his half－sister．The Levitical law prohibited mar－ riage between relations in the direct line，between brother and sister，neplew and aunt，and apparently by implication，uncle and niece．A son was pro－ hibited from marrying his father＇s wife．

The Roman law prohibited marriage between asceudauts and descendants，a prohibition extended to relations by aloption，and even after the dissolu－ tion of that tie．In the collateral line，the pro－ hibited degrees included brother and sister（eatend－ ing to persons so related by adoption where the tie continued to exisi），and all cases where one party stood in loco parentis to the other，as uncle and niece．Nlarriage between cousins－german．at one time prohibitcd，was declared lawiul by Arcadius and Honorius．The degrees prohibited in consan－ guinity were by Constantine also prohibited iu affinity：

By the old canon larr and early decretals，mar－ riages were prohibited between persons as far remored as the seventh degree of consanguinity or aftinity－i．e．，between persons who might，by the civil law computation，be within the twelfth degree to one another．The fourth council of Lateran， 1215 A．D．，narrowed the prohibition from the seventh to the fourtl degree；i．e．，the grandchildren of cousins－german．Affinity was held to be constituted not merely by marriage，but by the spintual rela－ tionship of standing sponsor at baptism，and by illicit intercourse；marriage being prohibited be－ tween persons one of whom had had carnal connec－ tion with a relation in the fourth degree of the other． A marriage between persons related in any of these ways was accounted incestnous，and the children bastards．The pope assumed the right of granting dispensations from impediments to marriage arising from consanguinity and affinity，a power which seems to bare been first exercised in the 10th cen－ tury．In no instances have dispensations been granted to relations in the direct line，but one or two dispensations are said to have been granted between brother and sister；and between uncle and niece，they are still occasionally granted in countries Where the canon law continues to be binding． Between remoter relations，they have been common． The exteut to which these probibitions were carried， and the possibility of their being dispensed with， naturally tended to encourage protligacy and lax ideas of the marriage tie，it being hardly possible to say of any marriage that it might not one day be proved invalid．The Council of Treut restricted the impediment of affinity from illicit intercourse to the second degree．

In the countries which embraced the Feformation， a general relaxation took place in the prohibitions to marriage from consaaguinity and affinity．In Eugland， da Hen．VII．c． 35 allored all persons
to marry who were not prohilited by the Tevitieal law; and aceording to the interpretation put on this statute, the prohibitions meluded all relations in the direet line, brother and sister, and collaterals, when one party is brother or sister to the direct asceudant or descendant of the other; the degrees prohibited in consanguinity Jeing equally prohibiter in athinity: The prohibitions from consanguinity have been held to extend to hastard relations. But down to 183., marriages within the prohibited degrecs were valid and the issue legitimate, unless the marriage had been annulled by a declaratory sentence of the Eeclesiastical Court, which could ouly be obtained white both sponses were alive. By act 5 and 6 Will. I5. c. 54, all marriages within the prohibited degrees of consanguinity and adinity were made absolntely void.

In Scotland, for a very short time after the Reformation, the papal power of dispensation was exercised ly the crown. Acts 1567, c. 14, and 1567, c. 15, professing to take the Levitical law as the standard, assimilated the prohibitions from consanguinity and aflinity to those of England. Tneest, or sexual intercourse witli persons within the prohibited degrees, was, by the former statute, made a capital crime. As to marriages between bastard relations, the law of Scotland is in a doubtful state; but there is no prohibition against marriage with a relation however near of a person with whom one has had sexmal intercourse.

In France, the Code Napoleon prohibits marriage between ascendauts and desceudants lawful or natural, aul persons similarly connected by allinity; and in the collateral line between brothers and sisters lawful or natural, and persous simidarly counected by affinity. Marriage betwcen uncle and mieee, and annt and nephew, is also prohihited. In Spain aud Portugal, the canou-law restrictious are in full force, with the corresponding system of permissive dispeusations. In varions countrics of Enrope, as Denmark, $n 0$ prohibitions from atlinity. execpit in the direet line, are recognised. In most of the United States of America, narriage is allowed between uncle and niece.

CONVALE'SCENT HOSPITALS, although as jet rare in this conntry, are institutions of the greatest importance. All who are aecnainted with cur ordinary hospitals, which are often sitnated in cromded parts of populons cities, must feel that a very consilerable number of patients must almost of neccssity die soon after returning to their own unlealthy homes, simply for waut of an institution where convalesceuce may be developed into perfect health, under the general influences of pure air, gentle exercise, and a nourishing and well-regulated diet. The convalescent hospital rust be regarded as a stage in the process of cure intermediate between the ordinary hospital and the patient's home : it is an equally necessary aldition both to civil and military hospitals. One of the greatest of our military smrgeons, liwbert Jackson, writing in 1503 , recommends 'separate and detached houses,' and the removal of couvalescents 'to other apartments or hospitals.' He states his firm conviction, as based on long and most extensive experience, that soldiers, in a state of convalescence, recover their health better and snoner in sheds, huts, and barns, exposed oceasionally to wind and rain, than in the most superls hospitals in Liurope. 'Pure air,' he adds, 'in this respect, is alone superior to all forms of eure, and to all other remedies without such aid.' The same great authority frequently nutices relapse as being the leading eatise of mortality in gencral hospitals. With regard to the nature and construction of snch linspitals, Sir James R. Martin, one of our highest living anthorities on sanitary matters, remarks that
'there must le separate and "fanlly well-ventilated apartments for the refreshment of sleep and for that of meals, lesides covered-ways for exereise in had weather, and "pen spaces for exercise in fair weather. The scale of diet must also riso with the adwance towards health. Where practicable, a cero tain number of convalescent hospitals should be ennstructed on the sea-Loard.' - On Convalescent 1Iosnitals,' in 1 Holmes's System of Suryery.

The magnilicent establishment at Vincennes, founded in 155% ly the Emperor of the French, may be taken as a type of what convalescent hospitals onght to be. Wu borrow the details from Sir James R. Alartin's article. It is composed of a main buiding, with two long wings, two stories high, with a ground floor, and contains more than 401 beds. It eontains a ehapel, airy diming-halls, with marble tables and convenient seats, a library and play-rooms; the wings in both stories being sultdivided into rooms, each containing three beds, and looking towards the south. Each patient has the use of a press, with lock and key. There is ample garden-ground attached to the building. The instithtion is filled by convalescents from the Paris hospitals, from charitable boards, from aecideuts received in the pmblie slockyarils, from members of benefit societies, \&ic. The mean duration of residence is 22 clays, the patient remaining till he is either completely cured, or declared incurable. The diet is remulated by the director and head physician, and usually consists of soup at 7.30 A.M. ; meat and verretalules at 10.30 A.M.; soup, roast meat, vegetaliles, and salul or dessert at 5 P.M. ; each convalesceut receiving a lint of Burgundy, and as much bread as he may choose. The head physician may modify this liet as he pleases. Numerous means of diversion, as skittles, balls, dranghts, dominoes, \&c., are afforded, but cards are prohinted; and the lilrary, the greater part of which has heen presentel by l'aris booksellers, is much resorted to, there being on an average fifty readers. The conduct of the inmates is exemplary ; submitting with. ont murmur to the regulations, hein's polite to cach other, and respectful to the office-bcarers. They are carcful of the forniture, gardeu-1lowers, \&e., and are attentive to the eleanliness of their rooms, They are allowed to sce their friends either in the parlour or the garden on sunday, Monday, and Thursday. The officers are : a director, treasurer, head physician, and three honse-surgeons; six nurses, a chaplain, tive elerks, a stove-keper, four oversecrs, and forty subalterns. The simple fact, that this hospital, in less than three years, administered relicf to $1-1,000$ convalescent artisans, alfords undoubted evidence, were such evidence required, of the utility of suel institutions. Several establishments of the kind are already in operation in England. A convalescent liospital of some size has been recently (1567) ereeted in the neighbourhoord of Edinburgh by the munificence of William S. Drown, Esq. Woodhatch, Surrey. It cost $£ 12$, nik). and is caleulated to accommodate between 50 and G0 patients. It is attached to the Royal Infirmary of that city, and is supported by voluntary contrilutions.

CO'PRA, the dried kernel of the cocoa-nut, from which eueoa-nut oil lias been expressed. It is nuch uscd in India as an ingredient of curries, and is a considerable article of trade betreen one part of Inlia and another, as from the Malabar coast to Bombay; from which it is re-exported to Calcntta.

CO'TPTS. Very similar to the C. trijoliata, nuticel in the article Cortis, is C. teeta, the Gollen Threud of Assam, the root of which has long been in hich repute in Assam and neighbouring countries. It
has come into extensive use in India as a bitter tonic, and is sold at a very high price. Great efficacy is ascribed to it as a tonic for patients beginning to recover ; but it is of no value as a febrifuge.

COQUI'TO (Jubcea spectabilis), a beantifuI Chilian palm, of the same tribe with the cocoa-nut, rising with a naked stem to the height of 40 or 50 feet, and bearing a crown of wide-spreading pinnated leaves. By cutting off the cromn, the sap is obtained in great quantity, continuing to flow for months; and when boiled down to the consistence of treacle, becomes a rery sweet syrup, and forms, under the name of Palm-honey (miel de pulma), an article of great importance in the domestic economy of the thilians.

CORATO, a large town in Southern Italy, prorince of Bari, 25 miles west of Bari, is situated on a fertile plain, where much cattle is reared. Pop. (1561) $24,5,6$. It is an ugly, dirty town, although it boasts of having been founded by the Normans. It has a fine church, fine consents, and an orphan asylum. It was between C. and Andria that the famous 'Challenge or Tournament of Earletta' took place between 13 Italians and 13 Frenchmen on February 13, 1003, in which the Italians were rictors.

CORNWALLIS, Caroline Fraxces, was born on the 12th July 1786, and was the younger daughter of the Rev. William Cornwallis, rector of Wittersham and Elam in Kent. Her childhood was precocious; but she escaped the usual fate of precocious children. She lived to a good old age; she was even more remarkable as a woman than as a child; and her mind was growing, if not in rigour, in boldness and freeness, eren to the last. Hercharacter, as well as her intellectual powers, appear to have been early developed; and from expressions in her mother's Diary, we learn that her premature sensibility at the age of seren caused her relatives no little concern. When she was a little older, she began to produce literary works; and the writing of histories, poems, commentaries, and essays, though not pursued to the exclusion of the ordinary interests of her age, appears to have occupied much of her time, and to have been her chief delight for several years. Some specimens of her jurenile compositions hare been included in a volume of her Letters and Remains, published in 1864 . In character, and in respect of the tastes and abilities which they display, they certainly are very remarkable as the prodnctions of a child. Notwithstanding this early promise, Miss C. was not destined to be an early anthoress. She ras brought np in the decorous life of an English country parsonage; she was sensible of, and at first, perhaps, was not unaffected by, the prejudice against female authorship, which prevailed thirty or forty years ago. It was not till she was getting old that she began to publish books, and even then she was careful to keep her authorship a secret.
She receired the school educatiou usually given to young ladies in her time; a worthless education, as she afterwards thought. She was encouraged by her mother and other friends in supplementing it by severer and more useful studies; but the ill-health of her father, which imposed many duties upon her, and the state of her orn health, were considerable obstacles to her progress. Gradually, however, she acquired a thorough knowledge of Latin and Greek, and a considerable knomledge of Hebrew; and made herself conversant with nearly every study which occupies the more thoughtful of men-with philosophy, theology, history, natural science, social science, politics, and even law. In her latter days, her knowledge of most of these subjects was only
surpassed by that of men who had taken them for their specialty. From an early age, she carried on a correspondence with many persons whose intimacy was calculated to stimulate and aid her; and a selection from her Letters has been published. They are often intrinsically valuahle and interesting; and, moreorer, they present a curious picture of the Irogress of her mind and the development of her opinions. In style, they are always excellent, and the subjects treated are very various, and seldom ephemeral. Theology, philosophy, history, politics, and social questions afford the themes she most often discussed with her corresponlents. To these Letters we are indebted for what little has been made kuown to us of her life; Miss C. haring desired that her Life should not be written, and haring carefully destroyed the papers which might hare snpplied the materials of a memoir. As regards religion-the great interest of her life-we learn from these Letters hom, under the influence of enlarged knowledge and retlection, she gradually drifted awny from the narrow orthodoxy in which she had been lorought up, and adopted views which some woull call more eularged and rational, others latitudinarian. It is to the study of the Greek Fathers, and to the influence of a long residence in Italy, which began in 1826 , that she ascribed the complete change which took place in her religions opinions. It is right to say, that while she was bold and fearless in accepting beliefs far removed from those of her age and country, her faith in Christianity became stronger instead of weaker, and that she was always careful not to wound the honest opinions or prejudices of others. Among the most esteemed of her correspondents was Sismondi, who is said to have made her an offer of marriage when she was about 20 years old. The offer was declined, but without causing any abatement of friendship or admiration on either side.

Her first work, Philosophical Thcories and Philosophical Experience, by a Pariah, appeared in IS12. It was the first of a series entitled 'Small Books on Great Subjects,' Which she had formed the idea of writing with the help of a few friends. Of the 20 volumes of this series which appeared between 1812 and 1854, nearly all-all the most important-were written by Miss Cornwallis. The subjects discussed were very rarious-the Connection of Physiology and Intellectual Science, Ragged Schools, Grammar, Criminal Law, Chemistry and Geology, Greels Philosor,hy, and the History and Influence of Christian Opinions. The works in which the last. mentioned subject was treated-The State of Man before the Coming of Christ (1 rol.), and The State of Man after the Coming of Christ (3 vols.) - were the most important of the series. She liad designed to add to them one more volume-a Surrey of the Present Condition of England, Social, Political, and Religious; but this was never completed. The series attracted much attention in this country, and still more in America; and the books in which Christianity and its influence were considered were so judiciously written, that, though presenting a system of thought and belief entirely difierent from our orthodox Christian teaching, they Were favourably received ly many of every religious party. These are still the best short and popidar account we have of subjects of great interest ancl importance, of which the majority of the clergy eren were 1 rofoundly ignorant twenty years ago. In illustration of the igmorance which prerailed amongst Anglican clergy at a time still recent. Miss C. used to sa; that she once met a clergyman who had never heard of the Fathers; and that among a multitude to whom she applied for information about their writings, not one knew anything about them. Besides
the 'Small Books on Great Subjects,' Miss C. pul, lished in 1547, I'iricles, "Tale of Allens, which good judges have leclared to be an admimable jicture of Athenian life; and in 155:3, she published at prize essay on Juvenile Delingueney.

From an eady" period of her life, her health haut heen infirm; in her later yeas, it was very precarions, and slie was for the most part contined to hed. She lived latterly at Hhwills, near Tumbridge Wiells. She diel there on Janmary $S, 1$ Sis. I voluminous author, her name was at her death unknown to the workl, and it remained monnown until the publication of ber Letlers amel lemains in 1564. She had two reasons for making a seeret of her authorship. First, there was a strong prejudice agaiust female anthorship in her young days, and even when she began to write; and she feared not the ridicule or scorn, but the neglect which might await her books were it known that they were witten ly a woman. She wrote in the bowe of doing some goorl, and she concralcal her name, that her purpose might not be frustrated. Secondly, she wished to shew the world what the female intellect was eajable of, and the concealment of her name made her secure of impartial criticism. She believed firmly that the intellects of women were not inferior to the intellects of men, and that their apparent inferiority was entirely the result of inferior training. She regarcled the praises hestowed mon her books, the acknowledgment of their miginality, accuraey, and vigour, as a twibute not to herself lout to her sex. If the books do not arove the intellectual efuality of the sexes, they certainly prose that Hiss C . was a very exceptional woman. We linow from lice letters and from the testimony of her friends, that her masculine lorain and a great stock of erudition did not prevent her from aflos ling a beatiful example of the graces and charms of the feminine character.

COIRRE'GGIO, a town of Northern ltaly, pro. viuce of Reggio, 20 miles east of Parma, on it camal that communicates with the Po. lop, $\because=99$. It is very handsome, regularly built, and lias a castle, a eathedral, and a theatre. It was a barony of the lords of Correggio, who were great jatrons of letters. It is the hirethplace of the panter Antonio Allegri, surnamed Correggio ; and of the engraver Jesi, \&ic.

CÖTHEN, or KOTHLEN, an ancient town of Germany, in the duehy of Anhalt-Dessan-Cüthen, 으 miles south-west of Dessan, and about 52 sonth. west of Berlin, on a tributary of the saale, and at the junction of railways from Berlin, Magdelurg, Bernburg, and Leipzig. The strects are broad, the town is neat and well built, is surrounded by high walls, and is divided into the old and new town. It contains a castle with three towers, several churches and schools, a synagogue, a library, a handsome railway station containing a gaminghouse, and various charitable institutions. I'op'. (1864) 11,985.

COTONEASTELE, a gemus of plants of the natural order Tiosacea, sub-order Pomacen, having jolygamous flowers; a toj-shaped calyx, with tive short teeth; five small, erect petals; erect, short stamens; and a top-shaped fruit, the nuts of which adhere to the insile of the caly x, lint du not colsere in the ceutre. The species are pretty numerous, shrubs or small trees; some of them evergreen; with simple undivided leaves, more or less woolly heneath; small thowers in lateral cymes; and small fruit not agreeable to the palate, but the bright colour of which, and its remaining on the tree in winter, make them very ormamental. C. rulyaris is a deciduous species, a native of hills in Europe and Siberia, and said to be fornd wild in a single
locality in Wales. C. tomentosa is also found in the Alps. Most of the species are natives of momutainous parts of Asia; they are sufficiently hardy

Cotoneastcr vulgaris.
for the climate of Britain, and have hecome among the most common of our ornamental shruls. Some of them, as C. rotundifolia and C. microphyilla-both from the north of Imlia-are much used for covering walls.

COTTON FANIINE The history of mamfacturing industry does not present a more striking episode than that which was connected with the eflects of the Civil War in America on the entton manufactures of Great Britain in 1861 and following years.

The years 1859 and 1800, unparalleled for the macenitude of the cotton manufacture, had much to Ao with the collayse that followed. So rapidly has this brawch of industry increaserl in Iancashire, that the immigrants into that county from other districts have varied from 10,000 to 20,000 a year for a long series of years, irrespective of the natural increase of population by the excess of births over deaths. The imports of raw cotton, the exports of manufactured cotton, the number of mills, the mumber of hands, all were at their maximum in 1860. The imports were 1890 million lbs., of which 10.51 millions were worked u], in Great Britain. There were 1920 mills in Lancashire, 275 in the adjacent portions of Cheshire and Derbyshire, and enongh elsewhere to make up a total of 2650 . There were 410,000 hands employed in these uills; by age, 90 per cent, adults and young persons, and 10 per cent. children : by sex, 41 per cent. males, and 56 females. The machinery was worked by steam-engines having an aggregate of 300,000 horse-power. There were more than $30,000,000$ spindles, making from 4000 to 6000 revolutions jer minute; and 350,000 power-looms. The tixed capital in mills and machinery was ralued at \&. $1,000,000$; while the money paid for wages in that year was $£ 11,500,000$. The cotton goods of rarions kinds manufactured for home consumption used up 180 million lbs. of cotton, and were ralued at $£ 24,000,000$; while the exported goods-consisting of 27.6 million yards of calico, muslins, \&e., and 197 million lbs . of yarn-were valued at the enormous sum of $£ 50,000,000$; besides $£ 2,000,000$ more for cotton hosiery and small wares. The 430

COTTON FAMINE.

total ralue for lome consumption and export $£ 76,000,000$, exceedel the total imperial revemue for that year. Consilering that, of $1: 390$ million lbs. importerl, no less a weight than 1120 millions came from the United States, there is at once evidence afforden of the tremendous effect that would be produced by any stoppage in the American cottontrade. Irrespective of this, bowever, there would have been a stagnation in our manufacturing districts in 1S61, even if raw cotton had been plentiful and cheals. The mamfacturers had glutted all the markets by the wholly umprecedented extent of their operations in 1860. The English warehouses, as well as those elsewhere, were full ; and time was neecled to carry off the immense stock. There were cotton goots on hand in Great Britain at the end of the year walued at $£ 20,000,000$; while in India our merchants continued to pour in goods eren when the consignments of 1860 exceeded £17,000,000.

Fort Sumter was bombarded in April 1861. This was virtually the beginning of the American Civil War, and the beginning also of the rise in the price of cotton. A blockade was early established by the Federal government of Washington; and it was only by 'rumning' this blockade that cottonladen ships could clear from the Southern or Conferlerate ports. The price of Middling Orleans (the kind of cotton mostly used, and that which governs the price of all other kinds) rose from 7^{3} d. to $9 d_{\text {., }} 10 d_{l}$., and 102 ., as the year adyanced. There was thus a twofold motive for lessening the operations of the Lancashire mills-the markets were so fully supplied with manufactured goods, that no immediate angmentation was necessary; while the increase in the price of the raw material rendered manufacturing less profitable than before. The Liverpool dealers made colossal fortuncs by the enormons rise in price of every bale of cotton which could reach the country from any quarter; while the manufacturers were also prosperous, because they could sell their accumulated stocks of calicos and yarns at much higher prices than had been olstamable in $\mathbf{1 8 6 0}$. It was the operatives who suffered. One by one, the mills were put upon halftime, because the mill-owners had not much inducement to spin and weave, under the extraordinary double influence idove adverted to. It was not until antumu, however, that these effects were hearily felt, wheu there was the enormous quantity of 1000 million lbs. of cotton, raw and manufactured, on hand in Great Britain. When half-time began at the mills in October, there were, in Lancashire ant the two neighbouring counties, $\$ 90$ spin-ning-mills, 593 wearing-mills, 635 spinning and weaving mills, and 152 other cotton-mills of miscelIaneons kinds, employing 369,453 factory-hands; and all these four classes of establishments became equally embarrassed. India or surat cotton could still be had in considerable quantity, at $10 d$. per 1 lb . instead of its former price of 5 c. . ; but it was greatly out of farour, on account of its dirty condition, and the shortness and hardness of its staple. In Novenblber, there were 49 mills stopped, throwing out 5063 hands, while 119 were working half-timeplacing something like $\because 0,001$ persons on half their usual wages. In December, Midlling Orleans rose to $10 d$. So singular was the state of things, and so unlike what would be called a 'famine,' under other circumstances, that the actual quantity of raw cotton in Great Britain at the end of the year (250 million lbs.) was greater than ever before linown in the history of the trade; but as the narket-price of yarns and piece-gools at that time scarcely equalled that of raw cotton plus wages, the manufacturer could scarcely operate without a
loss; and therefore, he either closed his nill, or placed his hands on half-time. It was not so much a famine of cottou as a famine of employment.
The year 1862 opened very gloomily. Relief committees began to be formed in Manchester, Wigan, Blackburn, Preston, and other towns, to distribute subscribed funds to such of the lands as were totally out of work. The streets were thronged with the unemployed; but there was no disturbance, and scarcely any loegging. Sewing-schools were estallished by ladies in the several districts, to teach the factory girls useful dornestic needle-work -of which they are generally very ignorant-to get them to make clothes for themselves and others; and to shield them from the vicious temptations which would beset them during a period of illeness. The ladies also won upon the affection of the girls by reading to them, and sympathising in many ways with their sorrows. Many of the manufacturers set apart large rooms as school-rooms and somp-kitchens for the boys and men, and abundant stores of soup, were provided at $\mathbf{l d}$. per basin. The Poor-law Board sent down instructions to the local guardians how to give as much elasticity as possible to the system of parochial relief. In April, Blackburn had only 18 mills on full-time ont of $S t$, the rest being either on half-time or closed; and there were 9000 of the inhabitants receiving parochial relief. Most of the other towns were in nearly as bad a plight. In Hay, matters were worse; Preston had 10,000 operatives out of work, and Blackburn had just about half-employment for 27,000 . Viddling Orleans rose in price to $15 d$., and manufacturers had more inducement to speculate in cotton than to spin it. Meanwhile, great efforts were made to assist the distressed operatives. The letters of a 'Lancashire Lad' in the Times, with the text, 'Con yo help us a bit?' made a great impression. The Daily Telegraph raised a fund of £5000 by its own exertions. The Lancashire landowners established a 'Cotton District Relief Fund ' in London, to which they subscribed $£ 11,000$ in one day; the Lord Mayor established a 'Mansion-bouse Committee,' which received sulbscriptions from all parts of the world; Manchester established a 'Central Relief Committee,' as a nucleus for various local funds; while a great county meeting brought in $£ 130,000$, of which $£ 70,000$ was subscribed in one day in one room. Mr Farnall was sent down by the Poor-law Board, as speeial commissioner, to superintend the plans for parochial relief. A Rate-in-aid Bill was passed through parliament, to enable the government to issue Orders in Council, authorising parishes to raise money on the guarantee of future rates; it was only to be clone where the current poor-rate had already reached a high figure, and the money raised was to be applied strictly to nitigate the distress of the operatives. Notrithstanding all these sources of assistance, the workpeople became reluced to great distress. "The pawnlorokers' stores,' said au eyc-wituess, 'were glutted with the heir-looms of many an honest family. Little hoards were drained to meet the exigences of the time. Many found it the sorest trial of their lives to ask for food; and it is a happy ciremstance for all to remember, as it is honourable to those of whom it is recorded, that none suffered more severely than those who lad a struggle to overcome their unwillingness to subsist upon food which they had not earnel. Fents were falling in arrears, and many a house which had held only one family, was now occupied by three or four, in order to economise rent, fuel, and furniture.' Nevertheless, none died of privation, and the average sickness was even less than usual. It was a fact well ascertained that spirit-drinking was less indulged in than
in times of full wares. Meanwhile, the manufacturers began to make great prolits; the prices of yarns anil ealicus rose rapilly, and the stocks were sold off which had heen so long on hand. Middling Orleans rose to $2 s$ s. 3ul. in Octoler, and thus there was less inducement than ever to purchase for the sake of manufacturing. Strange as it may appear, 50,000 bales of cotton were resold liy the manufacturers themselves during the year, at the very time when the phrase 'cotton famiue' was on the lips of every one: but the simple fact was, that more profit could be made by reselling than by manufacturing.

It was a gloomy winter, that of $1862-1863$, for the mill-hands. In October, the loss of wages was estimated at $£ 136,000$ per week. In November, there were 208,000 persons in the laneashire distriet receiving out-door prarochial relief, and 144,000 others aided by subscribed funds; there were at the same time $\quad 20,000$ mill-girls at the sewing-schools. At Christmas, there were 250,000 hands totally out of work; those, and about as many more dependent on them, received $£ 41,000$ a week from the parishes and the committees. Viast sums were sent from various parts of the world to be spent in winterclothing only, and prodigious stores of sceond-hand elothing were contributed ly private families. As the money relief seldom exceeded \imath_{s} or \overbrace{s}. Ge l. per week per applicant, to purchase clothing out of this was of course inpracticable. The small shopkecpers also suffered greatly; for there was only one-third the amount of wages received ly their customers per week that had been received two years befure. Emigration schemes were much discussed, hut were not carried on very largely, because Lancashire men felt convinced that trade would revive after a time. Menuwhile, the mete of wages was not lowered; few mill-owners proposed it, and the operatives were rooted!y against it; however small the quantity of work, it was paid for at the old rate.

No date can be named for the actual cessation of the distress; it died out hy degrees. When the manufacturers had solel off their old stocks, they recommenced lmying more to spin and weave; because, although the price of raw cotton was enormously high (2 L .5 F . for Middling Orleans in May 1S63), the selling price for calicus and muslins was now proportionably high, and therefore they couhl mannfacture at a profit. In Jume 1s03, a ' Public Works Act' was passed, to rnable the government to advance $d, 200,000$ for public works in the cotton districts-partly to make good drainage, roads, water-supply, sec., and partly to yield $\pm 600,000$ or $£ 700,000$ as wages to the nnemployed cotton-hands in doing so much of the work as they could manage. The money fo be repaid by parish rates at subsequent dates) was to be advanced by the Exchequer Loan Commissioners on the recommendation of the l'oor-law Board, and a government engineer was to examine and sanction the several works to be executed. All these operations were to be confined strictly to the cotton districts, where the distress existed. Mr I. A. Arnold, the resident government insjucetor of these public works, states in his IFistory of the Cotton Fumine, that by the month of June 1S65, there had been works plannel, and in great part executed, under the clauses of this and a supplementary bill, to the amount of $£ 1, \$ 46,000$. They comprised the making or improring of 276 miles of street anil highway, 304 miles of main sewer, reservoirs for 1500 million gallons of water, several parks and cemeteries, and a larse area of land-drainage. Nearly 30,000 yersons had been fed by the wages of the cotton operatires on these works. The subseriptions to meet the distress reached the vast sum of $£ 2,000,000$; 432
while the out eloor fewr rehef was abont $\pm 1,000,0$, 00 more than in an equal period of averave times.

The tluctuations in the value and quantity of cotton available luring this extraordinary perion? are strilingly shewn in the following paralled colums, relating to the raw cotton importcal, and the money paid for it:

	¢ \%s.tites (Cwto.)	Value.
1860,	12,510,000	435,53\%, (11\%1
1 Sci, .	11.. $2.3,400$	38,653,000
1842.	4.) 78.000	31,093,000
186\%, .	$5.78,000$	86,278,00
1864.	7 \therefore 76,000	78.20.140
1865, .	$8.7 \times 2,000$	66.032.(mu)
1566,	12,290,000	77, 3 2 1010

Temark here the sudden and tremendons increase in the amount paid for cotton in the latter half of the previod; the payment, indeet, of forty millions sterling more in 1566° than in 1500 , for abont the same gnantity: To sliew how India and Egypt benefited by this unprecedented state of affiiss, we give (in pounds," not ewts.) the yuantities imported from those countries as compared with the impurts from the United States:

	Ualted Suses.	India	Estpt.
1860	1,119,000,000	204,000,000	$43,0 \cdot 10,607$
1851.	816,000,000	369.000,000	\$1,01FU,000
1862,	13,524,000	393,000,000	$59,000,000$
1863,	6,394,000	434,000,000	194,000,003
1564,	14,145,000	507, (0011,000	125,000,000
1805,	133,000,000	446,000,000	177,000,000
186G,	520,000,000	615,000,000	118,000,000

Look, again, at the prices per ewt. : *

	Lubled Statea	India	1-20.
1800.	${ }_{2}^{2} 004$		\boldsymbol{E} \therefore 3 15
1861.	3125	2175	449
186:.	1024	659	711
1863.	11.58	81811	10118
1864,	13110	890	12153
1865 ,	918	65	816

Eritish India eertainly ought to shew lwaticial results from the fact that, whereas the exprorter cotton in 1560 brought only $\pm 2,500,000$, in 1s64 it brought $£ 34,(100), 000$, and about as much in 1865.

CO'VINGTON, a city of Kentucky, U. S., on the south bank of the Ohio liver, and west of the mouth of Licking River, opposite Cincinnati, with which it is connected ly a lofty suspension-bridze and steam-ferries. It has a city hall, ten churches, the Western Theological College, a Roman Catholic cathedral, and manufactories of cotton, hemp, silk, tobacco, and iron. There is also an extensive estal)lishment for packing pork and beef. Pop. (1560) 16,471.

CLAE, loger, a singular sectary of the English Revolution, had served for seven years in the l'arliamentary army, and though he had his 'skull cloven' by a royalist trooper, yet, for some breach of discipline, Cromwell sentenced him to death, a punishment subsequently commuted to two years' imprisonment. After his release from jail, C. set up in business as 'a haberdasher of hats' at Chesham, in Puckinghamshire. His wandering mind, probahly not improved by the skull-cleaving operation, then

- Tho Board of Trade Tables, from which theso figures are taken, are often difficult to consult, on account of the fuantities of cotton being stated sometimes in balcs, sometimes in cuts, and sometimes in pounds.
imbiloed the idea, that it was sinful to eat any kind of animal food, or to lrink anything stronger than water. Determined to follow, literally, the injunctions given to the young man in the gospel, he soln off his stock in trade, distributiog the proceeds among the poor, and took up his residence in a hut. situated on a rood of ground near Ickenham, where for some time he lived on the small sum of threefarthings a week. His food consisted of bran, dockleares, mallows, and grass; and how it agreed with him rie learn from a rare paraphlet, principally written by himself, entitled The English ITermit, or the Wonder of the Age. 'Instead of strong drinks and wines,' says the eccentric Roger, 'I give the old man a cup of water; and instead of roast mutton and rabbit, and other dainty dishes, I give him broth thickened with bran, and pudding made with bran and turnip-leaves chopped together, at which the old man (meaning my body) being moved, would know what he had done, that I used him so hardly. Then I shewed him his transgressions, and so the wars began. The larr of the old man in my tleshly members rebelled against the law of my mind, and had a shrewd skirmish; but the mind, being well enlightened, held it so that the old man grew sick aud weak with the dux, like to fall to the dust. But the monderful love of God, well pleased with the battle, raised him up again, and filled him full of love, peace, and content of mind, and he is now become more humble, for nor he will eat dockleaves, mallows, or grass.'

The jersecutions the poor man inflicted on himself, caused him to be persecuted by others. Though he states that he was neither a Quaker, a Shaker, nor a Ranter, he was cudgelled and put in the stocks; the wretched sackeloth frock he wore was torn from his back, and he was mercilessly whipped. He was four times arrested on suspicion of being a wizard, and he was sent from prison to prison; yet still he would persist in his course of life, not besitating to term all those whose opinion differed from his by the most opprobrious names. He published another pamphlet, entitled Dagon's Dorenfall, or the great Idol digged up lloot and Branch; the Enylish Hermit's spade at the Ground and Root of Idulatry. This work shers that the man was simply insane. We last hear of him residing in Bethnal Green. He died on the llth of September 1630, and was buried in Stepney Churchyard. -Chambers's Bual of Days, rol. ii. p. $33 \pm$.

CREUZOT. LE, a town of France, dep. of Saone-et-Loire, 12 miles south-south-east of Antun. It is situated in the midst of a district rich in coal and iron, and possesses large iron-foundries, which turn out cannon, anchors, steam-machinery, \&c., and which employ $\quad 000$ workmen. A short railway connects the town with the Canal du Centre, which traverses the coal-field. There is also a glass manufactory, one of the most important in France. C. has of late increased rapidly in size and importance. The pop., which in 1541 was 4000 , in 1866 had reached 22,685.

CRO'QUET, an open-air game, in which two or more players endearour to drive wooden balls, by means oí long-handled mallets, through a series of arches set in the ground according to some pattern. The player who first makes the complete circle of the hoops or arches wins the match; but during the progress of the game, ench player may have the progress of his ball retarded by his adversaries, or assisted by his allies; and these friendly aids and hostile attacks constitute the chief interest of croquet. Although generally spoken of as a modern game,

it seems to be really a revival with modifications of the sport with a mallet and ball which was popular in England in the dlays of the Stewarts, and gave the name Pall Mall to localities in various towns in England as well as on the contioent (see Enill). The name (It. palla, a ball, and maglio, a mallet ; Fr. palemaille) suggests an Italian origin ; but the crame was early in vogue in France, anil thence passed into England, probably in the beginning of the 17 th century. Blount's Glossograplia describes the game as groted in the article Ball, and gives figures of ths mallets, which are here re! roduced. This game seems to have gone out of fashion early in the 1Sth century: Who resuscitater it in its modern form, and how it got the name of croquet, are questions that have not been answered; but since 1550 it has been growing in popularity, and is now the most prevalent of all summer amuseraents. One advantage of the game, ant the chief ground, perhaps, of its popularity, is, that it is oue of the fer out-door amusements in which the two sexes can join on equal terms.
A croquet-ground should be a well-rolled level grass plat or lawn, not less than thirty yards long by twenty yards wile: nor, for play unon the grandest scale, more than a huadred yards by sixty. The boundaries of the ground should be well defined, either by a raised
 walk or a trench. The game may be very well played on an ordinary cricket-tield, or in an enclosed meadow. Indeed, the grass plats in the squares of large towns have of late been very generally appropriated to croquet. Croquet can also be played upon a well-rolled gravel-ground, or upon the sea-shore, where the sands are hard and dry. Hardness is essential, so as to prevent the ball from sinking into the ground while making the 'croquet.'

The miplemevts used in croquet are mallets, balls, posts (or sticlss), and hoops (which are called indifferently hoops, wires, or arches). To these are sometimes added a cage, or a pair of tunnels; or hoops, tunnels, and cage may be all employed in the same game. The progress of each player may be marked with either clips or a marking-board.

The Mallets should be light and handy; with ash shafts, and boxwood or ash heads. The heads of the mallets are of rarious shapes-as the dice-box,

Mallets used in Croquet.

Which is the most common shape; the plano-convex, the hammer-head, and the cue-shape. The last, which has only lately come into use, has a flat end and a pointed end; the latter, like a billiardcue, being tipped with leather. The head of the mallet should be from four inches to four and three-quarters in length, by not more than two 483

CROQUET.

inches aud turee-cighths at its greatest diameter, so that the centre of the mallet-head shouln correspond to the entre of the liall. The hande or shaft shoud be from two feet nine inches to three feet in length. Next the head there should he a ring of paint, correspomling in colour to the player's ball, and the scries of colours on the starting anel turning posts.
The balls are made of hox or beech, thoronghly well twrued and seasuned. Boxwovid is generally preferred, but there has Iately been introduced a ball composed of cocoa-mat tibre and indiarublser, which is very pleasant to play with. These balls are perfectly round, are made of the correct size and weight, and are known as 'Nicholson's l'atent Compound 'roquet Balls.' The proper size of the balls is three inehes and a half in diameter. Where woolen balls are employed, they shombl he kept rubbed with linsect-oil when out of play:

A full set of eroquet balls consists of cirft, severally painted, in whole or in part, bue, piak, black, yellow, brown, orange, green, and red, so as to determine the order of play.

The Posts are two or

The Post. three in number, according to the partieular style of game played. They are each about two fect in height, round in slape, pointed at the lower end like a cricket stomp, and panted in rings corresponding to the colours of the balls-the top line bine, and then pink, black, \&e., as in the diagram here shewn.

The Hoons (wires or arches) are nine or ten in number, aceording to the plan of the game played. Each hoop is about two and a half times as wide as the ball. The hoops are mate of galvanised iron, or iron painted white, and are cither round or flat at the top; and wheu set, should stanel about 15 inches

Hoops.
out of the mround. When ton hoops form the 'set.' cight of them should be marked with a ring of colour like the balls, and two left catirely white. By haviug the hoops painted white or galwanised, they are easily distivguisher in an imperfect lifht.

The Tumels are made of wood or iron, smaller than the hoops, with 1lat sides. When uset, the player is sometimes restricted to one way of ruming them. They merely add to the difficulties of the game, and are not very popular or essential.

The Cage consists of an additional pair of white hoojs placed crosswise in the ground, either with or withont a suspended bell at their junction.

Clips or discs of tin, markel with the several colours, are sometimes used to mark the game by being lung on the hoops as each player passes

Tunsel.

The Cage.
through; but many players do without the elips altorether. In the place of the clips, a markinghoart, the same in minciple as the pool-board in billiards, is now oftern used.

Terms used on the Game.

In eroquet, as in other games, there are various terms employed, which, to the uninitiated, often sound strange and meaniugless. We mention the most indispensable.
lioquet (pronounced rokay). -The word is used to denote that when both balls are 'in jlay,' the phayer's ball hits or strikes another ball. The making a roquet gives the player the privilege of erocueng (pronomeed brokaying) the ball strack. The roquet can only be made once in each turn upon the same ball. A second roruct, without a print in the interval, does not comnt ; but it may be made for the propose of driving away an opponent's ball, cannoning, sc.; the player's turn ending there, unless liy the same stroke lie make a point, or roqnets another ball, which he has not previonsly struck during the romm, and since making a point.

Croguct. - When one ball has ropued mother, the

player sets his foot on his own ball, and with a blow of the mallet, drives the ball in contact with his own in any direction. The croquet may be either

CROQUET.

'tight,' ' loose,' or 'rolling.' The heel of the player either rests on the ground, with the front of the foot on the ball, or the middle of the foot or toe presses on the ball. The first plan is the best, as, if the ball move from under the foot, there is no jar or fall.

A Tight Croquet is made by the player placing his ball elose to the one he has roqued, then fixing his ball in position with his foot, he strikes it with his mallet, and drives the other ball away. But if the player's ball slip from nader his foot, the stroke following the croquet is forfeited.

A Loose Croquet is made in three ways: first, by the player placing his ball close to the one he has roqued, and striking the former, in a line passing through the axis of each-by which plan the playeres ball remains stationary while the other flies forward; secondly, by the player striking the ball at any angle, so as to drive the balls in opreasite directions. This is called a 'splitting eroquet.' And lastly, by tonching the roqued ball slightly, with as little movement in the player's ball as need be. This last stroke is called 'taking two turns off' the roqued ball. In any case, the latter must be sufticiently moved to satisfy the umpire as to the fairness of the stroke.

A Rolling Croquet is made by placing the two balls in juxtaposition as before, and the player striking his own ball in such a way as to make it follow after the ball struck. This is also ealled a 'following stroke,' and is made by striking your ball high; while in a tight croquet, you hit your wall below its centre, and with a sulden drawback motion of the hand, as in making the serev in billiards. Either eroquet may be made with one hand, or with both hands, and with the foot nom your ball, or withont it. Considerable jndgment is required to make the eroquet in such a way as to assist your own game and encumber that of your opponent by one and the same stroke.

The Side Stroke.
The Sile Stroke is made ly raising the mall to the shoulder, and hitting your ball full in the centre.

The Straight Strole is made with the mallet hell
straight to the axis of the ball, perpendicularly in front of the body.

Spooning is simply pushing the ball, which is considered unfair. The test of a spoon is that it makes no noise. The umpire must deeide, on leeing appealed to, whether the Lall is a syoon or a tap.

When a ball has been rorned, the player takes up his own ball, and places it close to the ronned ball. He then makes his croquet as above described.

In Play.-A ball is said to be 'in play' as soon as it has rum the first hoop; and it remains in play till it makes a roquet, when it is

In Hand. - The ball being 'in hand,' cannet score till it has made a croruet, after which it is again 'in play;' but unless it makes a point, it continues 'in hand' to the ball or balls it has croqued for the remainder of its turn. When it has made another point, it is 'in play' again to all the balls, as at the beginning of its turn.

Dead Ball.-A hall is said to be 'dead' when it has rom all the hoops 'in order,' and has struels the winning-post.
In Order.-This term is used to signify the hoops, tunnels, caces, posts, \&c., in their regular order of play, aecorling to the plan or arrangement adopted in placing thew in the ground. When a player has made the complete round of the hoops in their proper sequence, he is said to have made his 'tour' or 'round' of play. The game is won by the side or player succeediag in first driving the balls though the hoops, in order, to the turning-post, and then back again to the winning-post.

The Sturting and Hinning Post is the stake from which the play in the game proceeds. The 'I'urningpost is the stake placed at the other extremity of the hoops, clirectly opposite the starting-post ; and round which the player nust strike his ball before he makes the return-ronte.

To Dismiss a lall, is to strike it to a distance. Running e Hoop is when a ball is struck fairly through the hoop vext in order of play. Rueing a Hoop is the failure of a ball to reach the hoop aimed at. The player who misses his first hoop is by some players known as a booly. Ricochet is the striking of the player's ball against two balls in succession. This stroke, whiel is sometimes called the double roquet, is precisely similar to the camon in billiards. A Hired ball is one which camnot be eroqued, by reason of the leg of the hoep intervening. A Rover is a player who las male the complete tour of the hoops, "in order,' and elects to remain in the game to assist his side and enemmber their adversaries. Roquet-croquet. - This tern is sometimes applield to a croquet made without the foot of the player being placed on his ball.

The Points of the Crame.

The points reckoned are-l. limming a hoop; … Ruming a tunnel or eage: 3. Striking the winning10st: each in the regular order of play.

1. A hoop is said to be 'run' when a ball hats fairly passed through it while in play. A ball is eonsidered to have 'passed its hoop' if it camot be touched by a straight stick-as the handle of a mallet-laid on the ground parallel to the hoop on the side whence the player struck.
\therefore In running a tumel, the ball must pass completely througla; and in rnuming a cage, the same test may be applierl as for the hoop. Where a bell is suspended-as in the Eglinton Game-it must be rung before the point can be scored by the player.
is The winning-rost must be fairly list, so that
tho hlow may he heard, or the prost be seen to be moved from its position.

Any hoop, tunnel, cage, or post, moved from its perpendicular ly a blow from a ball or mallet, is to be sit straight by the eaptain or umpire.

The player is not compelled to play for a roquet or point. It is sometimes hetter play for him to striko his ball towards a particular spot, so that on his turn coming round he may make his hoop the more easily. But, of course, he is liable to be roqued by a suceceding pllayer.

Tho order of the colours on the posts, and consequently the succession of the players, is not arbitrary; it may be arranged in any way chosen by the players; but the plan here given is that which is usually alopted.

The Game.

The game of croquet may be played by any number of players not exceeding eight-four on each sidc. It is common, indeed, when two players engage in a match, for each to have two balls. In the opinion of many, croquet is best played by two or three players on each side. The hoops being set according to one of the flaus following, or in any other way decided on ly the players, the game commences by the choosing of 'silles.' The players, for distinction's sake, take bails and mallets of opposite colours-those on one side choosing, say, blue, black, hrown, or green; those on the other the light balls-pink, yellow, orange, or red. This done, the players address one another as pink, hrown, \&c., according to the coluur of their balls.

The player whose ball is nearest the top of the post-according to any succession of colours that may he adopted or determived on-starts from a mallet's length of the starting-post, and endeavours to strike lis ball through the first hoop. If he fail in 'running his hoop,' he must wait till his turn comes round again; bis ball, meanwhile, remaining on the ground to be struck (rojued) or eraqued by any of the succceding players. If, however, the player succeed in making his tirst hoop, he gots on to strike his ball through the second hoop, and so on till he fail; which, from the peculiar angles or lines of direction lectween the hoops, be will nrobably do at his third hoop. The other colours then play in their order. It is unnecessary to follow all their strokes; but let us suppose that orance, whom we will make a lady, is just passing throngh her second homp, blue, piuk, black, yellow, and brown, lying in various positions in the neighbourhood of the third and fourth hoops, one or other of which they are severally desirous of threading. Orange, having passed her ball through a hoop, is entitled to another bit. Carefully ealculating ber distance, she strikes her partner, yollow, gently, just impelling that ball towards the mouth of the hoop through which yellow bas to pass. The same stroke brought orange nearly below the third hoop, which a long stroke would caable it to pass. Like passing a hoop, striking another ball-friend or foe-gives another turn ; consequently, orange has a choice lefore her. She may aim for the third hoop, and, as she is a good player, probally passes it ; but the distance is considerable, and any pebble or slight irregudarity in the ground may cause her ball to diverge from the direction in which it was struck. On the other hand, as there are several balls in her vicinity, she prefers to work her way to the hoop hy successive strokes among her neighbours, distributing favours as she gocs. Blne, an enemy, lies nearest, still anxious for his third hoop. A gentle tap. with the mallet lorings orange against him. This entitles ber either to another free stroke or to a croquet. She chooses the latter, and to perform
it, selects a spot as unfavourable as possible for blue. The turning-post scems suitable; she lifts her ball, places it at the side of blue farthest from tho turning-post, firmly phants the ball of her left foot on her own ball, and loringing down the mallet with a sharp stroke upon her owa ball, while she lokls it firm with her foot, sends her azure enemy flying over the lawn in the direction of the turning-post, and even beyond it. Having croqued, she is entitled to another turn. Sbe similarly eroques pink; but pink being a friend, she croques him through his hoop avel well up for bis fourth hool. Black escapes orange's atteution, and she, after croqueing pink, passes the boop herself, by so doing acruiring another turn; and as she bas passed a hoop between, she may again aid yellow or pink, or Inss on to ber other hoopls herself, as she pleases. With the aid thus obtained from other balls, a good player may sonsetimes pass the whole round of hoops withonit beine once stopped. There is also what is calleal 'taking a stroke olf' another ball. This consists in first litting it, as if to make a croguet, and then placing your own ball by it, to strike your hall in the direction you wish to take, merely tonching the other ball as you go. The touch is essential, or the player forfcits the right to play again.

When a player has passed all the hoops on the one side, he makes his way round the turniug-post, and proceeds to ruu the hoops on the other side, in the contrary direction, but with the same restrictions and methods as before. Having passed through the last hoop, be may procced to strike the starting-jost, which is also the winning-post. l'y doing so, be is out, or 'dead,' and of course can play no nure. If, however, he be a good player, he may considerably benefit lis friends and annoy his enemics by hecoming a 'Rover,' and travelling about from hoop to hoop aiding his partners against their foes. Of course, if a Rover be a elever player, the opposite side will do their best to strike his ball against the winning-post, and so stop his further ravages. On the other hand, if he lee an awhward crouneur, it is best to let him live, as lis side cannut win, though all his partners le out, so long as he can be kept afield.

This description, with the aid of the Rules and Definitions of Terms, will, we fancy, emable anyboly to play croguet without much tronble.

Finch side should choose a captain or leader to conduct the game; and it is also well that :m umpire, who thoroughly understands the theory and laws of eroquet, should be selected to deeide disputed points.

The Arrangement of the Hoops.

Various plans for the placing of the hogps have been adopted lyy croquet players; but the general principles of the game are the same in all cases, whaterer the shape of the ground or the disjosition of the arches. The following is the original plan, and the casiest way of settius out the loops ; and a clever plajer may make the entire round witnout stopuing.

To set out the hoops in this fashion, drive in the starting-post (which is also the winning-post), and set the first hoop in a straight line from it at a distance of 12 feet. Set the second hoop 10 feet farther on ; then draw a diagonal line of 20 fect, and set up the third hoop, with the fourth hoop 10 fect distant in a straight line, and the tifth hoop 10 fect farther. Then draw another diagonal of 20 feet, and set up the sixth hoop immediately opposite the second; carry the seventh hoop 10 feet lyack in a straight line, and fix the turning-post 12 fect back, to correspond with the starting-1 ost. Aiterwards, complete the other side in Irecisely the same
way. Thus, the order of play will be from the starting-post to hoop 1, and so on to the turningpost, and thence back to the winning-post. The perfect lines shew the onward march of the balls, and the dotted lines their return. This arrangement is carried through all the diagrams here given.

Starting and Winning Post.
The Original Plan for Ten Hoops.
Of course, the distance from hoop to hoop must be greatly governed bs the space of the ground; but tine proportions here indicated should be generally observed. A tape or line marked in feet or jards will be found of great assistance in setting out the hoops.

In the following plan, the players will find a little more variety and difficulty. Jine hoops only are cmplosed, and instead of the centre hoop, there may be a cage cither with or without a bell. Care must be taken to place the hoops in directly correspouding situations on either side, with the starting and turning posts at equal distauces from the first aud last hoop at each end. The colours of the hoops should correspond with the order of the colours on the posts-bIue, pink, black. \&c.-with the middle hoop or cage white. Sowetimes a post is set up in the centre instead of a hoop or cage. In this latter case, the post must be struck with the ball. Tarious modifications of this plan will suggest themselves to clever players.

Sometimes ten hoops are placed in a circle, with a cage in the middle, which arrangement makes the game rather more difficult; sometimes two extra posts are added; in fact, the variety of figures which may be improvised by an ingenious captain
is almost endless. But whaterer the number of hoops, posts, \&c., and whatever the arrangement

Starting and Tinning Post.
Arrangement for Nine Hoops, or Eight Moops and a Cage or Post.
adopted, the main elements of the game are the same.

Laws of Croquet.

In the following rules, we adopt the principal conclusions arrived at by a committee of players selected by the editor of The Field, the Country Gentleman's New'spaper, a great authority upon all points connected with out-door sports and amusements.
I. The order in which the players follow each other is to be decided by lot.
II. Each player commences by placing his ball on the ground, and striking it through the first boop, from any place not more than a mallet's length from the starting-post.
III. If the player miss making his first point, his ball is taken up, and remains in hand till its turn of play comes round again.
IV. The player who makes his first hoop, goes on as long as he can do so 'in order.'
V. Any player roqueing a ball, must croquet it before he plays for his next hool.
VI. If a player roquet a rover against the winningpost, he cannot take croquet, as the ball is 'dead:' he therefore loses his next stroke.
TII. A ball 'in play,' driven through its proper hoop, or cace, or hitting a post, 'in order,' by any stroke, whether by a ball on his own side or by an antagonist, counts that hoop, cage, or post.

TIII. If a ball, after roqueing another, iun a hoop

CROQUET-CSERVENKA.

or eage, hit in just, or make another roquet, before it has taken its eroquet, it is eonsidered to be in hand, and camnet mark the point.
IX. If a ball, while passing through a honj, roquets another, the croquet must be taken, and the honp does not eount.
A. A ball which rests under a hoop slall not be considered to have passed that houp if a straight edge laid against the front legs of the loop touch the ball.

X1. All strokes mast lee made by the player stamling on one sule of his ball, excepit in games in which it shall be matnally agreed to use the side stroke or the straight stroke indiflurently.
XII. Eitler one hamd or hoth hands may be used in striking the ball, but no player shall be allowed to mrasp his mallet at less than fifteen inehes from its liead.
XIII. All strokes must be made with the end and not with the side of the mallet. But either encl of the mallet may be used. When a ball is struck with the side of the mallet-liead, the stroke is to be forfeited, and any balls moved are to be replaced to the satisfaction of the eaptains.

NIT. The player who finds another ball touching his own, may strike the latter as sharply as he pleases, and afterwards-boing in hand-take the croquet off it.
XV. A rover may roquet and eroquet any ball belonging to either lis partuev or antagonists; lut he is allowed to do so only onee during each turn, when he then takes another stroke after each eruquet.
XVI. The rover may be roqued and eroqued by any ball in play; and if it be struck against the winning-post, it is deat, and must be taken u] from the gromnd.
XVII. When a ball is struck beyond the limits of the ground, it must be immediately replaced within lalf a mallet's length of the edge of the ground, measured from the spot where it went off, at right angles to the margin.

XVIlI. Where clips are used, it is the business of the captain on cacls side to place them on their jroper hoops; but where clins are not in usc, each player must remember his hoop next in order. In cases of doubt, the player may ingure of the eaptain on the other side as to his proper hoop 'in order.'
XIX. The game is won by all the players on one or other side making the complete round of the hoops, in order, and striking the winning-post: the side which dirst succeeds in doirg this, wins.

犬゙X. The umpire shall deeide all eases of dispute, on loeing appealed to, and his decision shall be tinal.
XI. Penalies.-1. If in making a tight croquet, the player allow the ball to slij from under the foot, he luses his next struke, and must allow his ball to remain where it rolls.
\because. If in 'taking' two turns' off a ball, the player' fail to move it, he loses his next stroke.
3. If a jlayer tonch or stoj, any ball that is in play and rulling with hand, foot, dress, or mallet, or in any way obstruct its promess, he loses his turn for that round ; but if either of these aets le done liy a pllayer on the other side, the owner of the ball may either take the stroke over acman, or allow his hall to remain where it was moved, and proceed with the game.
4. If, in taking aim, the player strike the mong ball, the latter must be replaced to the satisfaction of the captain (or umpire), and the player loses his turn.

5 . If a player, from any cause, strike a hall a second time, he loses his turn, aml forfeits lis stroke; and the ball so improperly hit must be repliaed, to the satisfaction of the eaptain on the other side. 453
6. Any player going on out of lis turn, loses any and all points lie has male, providerl the error he discovered bifure the next jlayer makes lis stroke. I'he liall or balls so struck are to be replaced or allowed to remain where they are struck, at the option of the eaptain on the other sille. Lut if the mistake be discoverel rifer the next player has male a stroke, then the ball played in error must stand.
T. The player loses all bencfit from lis stroke if he play witl a wrong ball, or crognets a ball to which lae is mot entitled to llag: In suel a ease, the player's turn is lust, and the ball or balls must le replaced. Kut if a sceond stroke le made before the errur be diseovered, no penalty ean be exacted, and the player procueds as thongh he hal made no mistake. Ent if, in the opinion of the mmpire, on being appealed to, a wrong lall was wilfully palyed with, or a wrong hall wilfully erogneted, the player loses his tura, and the balls must be replaced or allowed to remain as they are, at the option of the opposite eantain.
S. The phayer who pushes or spoons at Jall loses his turn and all points he may have made by the stroke, and the balls must be replaeed to the satis. faction of the adyerse capitain (or mopire), or allowed to remain where they roll.
9. If the player, in taking aim, more a ball moro than the lengtly of a mallet's loal, he must be eonsidered to have made his stroke; but if his ball be moved less than that listance, he may make his stroke over again. 'The decigion as to distance to be determined by the umpire, on being appeated to.

FARIOER CROQEET.

During winter evenings, or in wet weather, the lovers of eroquet may jlay at the gane within cloors, either in a large jlay-room or on a talile. Sets of implements for various parlour and table games akin to the eroquet of the liwn, are now produced by various makers. The hoops for parlour croquet are set on fect, so that they will stand

The Croquet Stand.
straight and firm. All the rules of ordinary eroquet are obscrved; while for the other games, rules are given with each set of implements.

CSERVE'K.I, a town of IIungary, in the county of C'per Baes, on the Franzens C'anal, about 130 miles south of I'esth. Iop., which is German, G682.

CULLE'RA, a fortified maritime town of Spain, on the Mediterranean, at the month of the Jucar, in the province, and 23 miles south-south-east of the town, of Valencia. C. is irregularly built, but clean; has an old castle, several churches, schools, convents, a hospital, extensive barracks, \&c. From its position, it is considered a place of great military importance. It stands on the outskirts of an agricultural district, 'an Elen of fertility;' and the inhabitants are mostly engaged in agriculture, cattlerearing, fishing, and the production of oil and wine. A considerable coasting-trade is carried on with France and the Mediterranean. Pop. $78 \% 1$.

CU'LNA, a town of India, in the British district of Burdwan, presidency of Bengal, 47 miles north of Calentta, on the right bank of the Hooghly. The town contains a rast number of temples, is a station of the Free Church (Scotland) Mission, and has a Hourishing English school. It is a place of considerable trade, rice, grain, silk, and cotton being the chief articles of commerce; and of late years, the traffic has greatly increased, in consequence of its being found a convenient station for steamers plying between Calcutta and the upper proviaces. \mathbf{C}. is said to have 60,000 inhabitants, the chief part of whom are from different parts of the country carrying on trade here.

CU'MBERLAND, a tornship of Rhode Island, T. S., on Blackstone River, and Providence and Worcester Railway, 10 miles north of Providence, containing extensive manufactories of iron, machinery, cotton, boots and shoes, \&c. ['op. (1860) 8339.

CUMBERLAND, a city of Maryland, U. S., on the left bank of the Potomac River, at the foot of the Alleghanies, the eastern terminus of the National Road, and the western of the Chesapeake and Ohio Canal, 179 miles west-by-uorth from Baltimore. C. is a station on the Baltimore and Ohio Railway. It contains comnty buildings, 8 churches, 3 newspapers, flour-mills, ic. The C. semi-hituminous coal is supplied from this region. Pop. (1S60) St7s.

CURTIUS, Eriess, a distinguished German philologist and antiquary, born Septemher 2, 1814, at Liibeck. After a good preliminary education at the High School of that place, he attended several German miversities (Boun, Göttingen, and Berlin) as a student of philology. In further pursuance of the path he had chosen-viz., the investigation of Greek antiquity-he went (1837), in company with Professor Brandis, to Athens, where he stayed several years. When his teacher, O . Müler ($\mathrm{q} . \mathrm{v}$.), came to Athens, U . accompanied him in his travels throngh Greece. On the death of Muller at Athens, in 1840, C. retmrned to Germany, visiting many places in Italy lyy the way. He graduated in Halle, and after he had taught for some time at two Berlin gymnasiums, he received an extraordinary professorship at the university of that place. His Anecdote Delphica, Inscriptiones Altice Duotecim, and The

Akropolis of Athens, were published about this time. In 1844, he was called to the honourable position of tutor to the present Crown-prince of Prussia. Six years later, he retnrned to his aeademical office, until, in 1850. he accepted a call to Güttingen, as Professor of Classical Philology. One of his prineipal works is Peloponnesos, a description of the conntry of Greece with reference to its traditions, history, and monuments. In his Attic Studies, he has begun to publish the results of a second journey to Greece in IS62.

CURTIUS, Geore, a distinguished elassical scholar, the brother of the former, who has acquired a high reputation for the light he has thrown on the Greek and Latiu languages, by applying to them the comparative method. Born April 16,1520 , at Lubeck, he studied at Berlin and Bonn. After a short activity at Berlin, and a longer stay at Pragueand Kiel universities, he accepted (1862) the Professorship of Classical Philology at Leipzig. Of his published works are to be noted, De Nominum Grecorum Formatione (Berl. 1842) ; Die Sprachergleichung in ihrer J'erhültniss zur Classischen Philologie (Dresd. 1815) ; Spracherogleichende Beiträge zur Gr:: und Lat. Gram. (Berl. 1St6); De Nomine Momeri (Kiel, 1855). IIis Griech. Grammatic (2d ecl., Pragne, 1S55) is in high repute, and his Grundzüge der* Griech. Etymologie (Leip. 1862) is a most raluable contribution to that department of philology.

CU'RUKU OIL, or BRAHMADU'NDU OIL, a pale yellow, limpid oil, oltained in large quantities in India from the seeds of the Argemone (q. v.) Mexicana, or Prickly Poppy, a plant accidentally introduced, but which now flourishes luxuriantly in all parts of Inclia. It is used for lamps, and for other purposes, but possesses properties which render it nufit for food.

CUTTEAMU'NDU, the juice of the E'uphorbia Cuttimundu, a species of Spurge (q. r.), a native of India, particularly of the Northern Circars. It is used for cementing iron with other substauces, as for uniting the blade and liandle of a knife. The fresh juice is used as a vesicant. In a dried state, it is capable of being monlded into any form, and a great variety of articles may be made of it, as of gutta percha. A medal was awarded to Mr Elliot at the London Exhibition of 1851, for the introduction of this interesting substance to notice.

CY'DIUNI, a genus of fishes of the family Scomberitue (q.v.), having a long first dorsal, detached finlets, an elongated body, a keeled tail, no peetoral cuirass, and no armature on the lateral line, compressed trenchant teetli in the jaws, and rery mmerous villiform teeth in other parts of the month. A number of species are natives of the seas of the East ludies, some of which are much esteemed for the talle; and one species, C. Commersoni, is used in a dried as well as in a fresh state; and in a dried state is, to some extent, an article of commerce in India. A $\ddot{E} T$, a town of the island of Luzon, Philippines, situated on a river of the same name, which falls into the Bay of Sau Miguel on the eastern side of the island. Some of the houses are built of stone and some of nipa palm. Pop.马702.

DA'LIAS, a town of Andahsia, Spain, in the province of Almeria, aud is niles west-sonth-west from Almeria, about nine miles from the Nediterranean, on a small river, which is navigable for boats up to the town. The immediate neighbourhood is a dreary sandy plain; but not far of are mountains containing lead and antimony mines, which afford employment to many of the inlabitants of the town. Musbandry and fishing are the other principal occupations. The streets are mostly irrecular, and the town is ill louilt. It sufferel considerahly from an earthquake in 1804 . Near D., on the sen-side, are mineral baths, much frequented. Pop. 9000.

DALIII', a tuwn of Ayrshire, Scotland, on the Garnuck, near the month of the liye, 20 miles sonthWest of Glasguw; it is a statiou on the Glassow and South-western liailway: The vale uf the Garnock is naturally beantiful and fertile; Lut its mineral wealth in coal, lime, and iron has recently eaused a great change in its aspect, and it is much ilistigured Dy blast-furuaces, \&c., and by vast heaps of refuse from mines. D. was recently a small village, but has of late rapidly increased in population and importance in consequence of the establishment of iron-works at and near it. D. possesses also a larye woollen mill, which gives emplomment t_{1} upwarils of 400 hands. Pop. (1851) 2\%06; (1861) 423:? (156 .) about 5000 . It is feared that the increase in population and prosperity will not long continne, as the ironstone is being rapidly exhausted.

DA'LTTON, a town of Furness, Lancashire, England, on a gentle acelivity, about three miles and a half from the sca, and is miles west-north-west from Laneaster. It is connected lys railway with the railway-system in Lancashire on the one hand, and with that of Cumberland on the other. There are iron mines and foundries in the sicinity, and malting is carried on, but not to so great an extent as formerly. Near the town are the ruins of Furness Abley, founded in 1127 by Stephen, Count of Foulogne, and aiterwards king of lingland, for monks of the Cistercinn Oider. Pop. (in 1S61) 3200.

DARAGU'NJ, a town of India, in the British district of Allahabad ($\mathrm{q} . \mathrm{V}^{\circ}$), on the left bank of the Ganges, opposite to Allahabad, with which it is connected by a ferry: The bed of the Ganges is here about a mile wide, two-thirds of the width leing orcupied in the dry season with wet sand ant manl, over which the jassage is difticult. Pop. 91, \because.

DARJEELING, a sanitary station of Pritish Indiat, in a district of the same name, in the Sikkim ITimalaya. It is situated at an elevation of 7400 fect abuve the sea, on the side of a great hollow or basin, in which flows the Runjeet, a branch of the Teesta Forest-coverel mumtains rise above it, where the rholodendrons of the Himalay? grow in great luxuriance. It commands a magniticent view of the snowy ranges of the Ilimalaya to the north and west. Jotwithstanding frequeat beavy rains, and a yery great annual rainfall, the climate is very salubrious. D. is ouly about 36 miles from the plain of Fengal, and 30 s miles north from Calcuttio It was oldained by the British govermment from the Rajah of sikkim in 1835 , in order to be made a sanitary station. A further portion of the territory of Sikikn was annexel to the district in 1850, in consequence of outrages committed by the rajah on British subjects. "Tua culture has recently been introduced; and in 1562, there were 5762 acres under tea-the estimated produce being i $S, 20.1 \mathrm{Ibs}$. of the first quality:
DA'TENPORT, a city of luwa, $\mathrm{L} . \mathrm{S}$., on the right Lank of the Mississippi, at the foot of the upper rapils, and opposite Iivek Island, Illinois, on the Great Western route from Chicago, is 330 miles abore St Louis. It is connected with liock Island by a railway drawbridge across the Mississippi; contains 13 churches, 3 banks, Griswold College, cotton, woollen, and other manufactories. Coal is abumlant, and a large trade is carried on by rail and river. The scencry is of the finest on the Northern Mississippi. Yop, in 1560, 11,267; 1S65, about 17,000 .

DAWLEY MAGN゙S, or GREAT DAWLEI, a town of the cunaty of salop, Ligland, on the Severn Valley Railway. I'op. (ISül) $636 \bar{\circ}$.

DEAK, Frasz, Hungarian politician, was bom in 1503 at Kehida, in the Hungarian county of Zala. Having studied law at Iizab, he began to practise as an adrocate in his mative connty, and soon became noted for his cloqnenco and enlightened patriotism. Elected in 1832 to the national diet, he quickly placerl himsclf at the head of the liberal opposition. Not less averse to all violent measures than intlexible in adherence to the constitutional rights of Hungary as an indepeadent kingdom, he began that policy which he has undeviatingly pursued, of opposing, by legal and constitutional means, cvery attempt of the imperial goverument to infringe ou these rights. This firm and moderate policy has cuabled him to effect more than one reconciliation between Hungary and the Austrian emperor as her king-temporarily in 1840, am now (1567), it is to be hoped, more permancutly. While upholding the imlependence of his cumntry, he laboured for its internal improvement, promoting measures for the elevation of the peasantry, and advocating the abolition of the odious exemption from taxes enjoyed by the nobility. His riews on this last puint

DEAK—DEBTS

displeased the party of the nobles, and for some years after 1540 his county did not return him to the diet. He still, howerer, continued to guide the councils of the moderate liberal party, and in spite of his aversion to extreme measures, he promoted the association for national defence, in the riew of a possible struggle with Austria. After the revolution of March 1S4S, he became Minister of Justice in the cabinet of Count Batthyanyi (q. r.), and had formed the project of effecting a general reform in the administration of justice in Hungary, which, however, the war rendered impossible. D. used every effort to ward off the war, and come to an arrangement with Austria. On Kossuth's coming into power (Septeraber $1 \overline{7}, 154 S$), D. resigned his portfolio, and retained only his place in the diet. In the last months of 1Si9, at the approach of Prince Windischgritz, he proposed to sue for peace, and was one of the depnties sent for this purpose to the Austrian general. It is well known that that step failed, and that D. was eren for some time a prisoner at Pesth ; he then withdrew from public affairs, and retired to his estate. When the Hungarian rerolution was surpressed, he refused the invitation sent him by M. de Schmerling, Mlinister of Justice at Vienna, to take part in the legislatire conferences, as he disapproved of the policy followed by Austria with regard to Hungary. He did not return to public life till 1S60, when a constitution was granted to his country.

On hearing of the arrest of Count Laclislas Téléki, D. set ont for Yienna with M. Eütrös, and procured the release of his countryman, as well as the promise of an independent Hungarian ministry. Returned by the city of Pesth to the diet in 1861, he became in it the leader of the moderate party, at the same time that the extreme party collected round Count Téléki. The death of the latter (Sth Nlay) destroyed the only intluence which could counterbalance that of D.; and the diet appointed him to draw up the address to the emperor. D. demanded, in that paper, the constitution of 1 S 4 S , a Hungarian ministry resident in Pesth, the return, without restriction, of the exiles, and the restitution of their property. Rejected at first by the emperor, this address was again drawn up with some modifications in the details; the emperor answered it by a rescript which with difficulty dissimulated his repugnance to such an arrangement; and in his turn, D., in name of the diet, protested publicly against the imperial rescript. On the 23 d , the emperor pronounced the dissolution of the Hungarian Liet, which did not separate withont protesting anew, under the direction of D., against the illegality of the measure which dispersed them. Among the erents consequent on the war between Austria and Prussia in 1S66, has been the final trinmpih of D.'s policy in the establishment of that constitutional relation between Hungary and the Austrian crown for which he has all his life contended, and in the arrangement of which he las taken the leading part. See Germaiy in Supplement.

DEBTS, Iecovery of. Couits of lam, besides serving to decide cases in which questions of fact or law are really in dispute, serre an important purpose in facilitating the recovery of debts, against which the debtor has no defence other than that he is unable, or unwilling, to pay. The great majority of the cases in which the services of courts are required is of this kind. The statistics of the English county courts give a striking illustration of this. Of the number of cases which are entered for judgment, it appears that about 95 per cent. end in favour of the plaintiff; whereas, had therc been any question really in dispute, the defendants, with the adrantages they
possess, might have been expected to be at least as often right as the plaintiffs. The knowledge of this has had much to do with modifying judicial proceedings. Another cause which has operated in the same direction is, that the consequences of issuing a decree are now much less serions, as a creditor holding a judgment has not now the exorbitant powers over his debtor that he once had. The theory, accordingly, on which judicial proceedings are based, has very much changed. For merly, lawyers thought that every case should come into court, prepared for being disputed on every point, and thus a great deal of expense was incurred before it was known whether there was to be any dispute at all. The end now in riew is, that there should be a cheap means of obtaining judyment in undisputed causes : and that, at the same time, every precaution should be taken, that if the defender has any good ground of defence, he should hare the opportunity of stating it; and that, when stated, it should receive due attention. Yarious law reforms have been carried to facilitate the recovery of debts with this end tacitly, at least, in view. In England, as might have been expected from the courts of law being situated in a great commercial capital, law reform has proceeded further in this direction than in Scotland; but in both countries, it has made great progress.

Understanding by debt the price of services rendered, or goods furnished, it may be useful to point out shortly the proceedings that must be taken to recover it. If the debt exceed £50 in amount, the creditor must, in England, proceed in one of the superior courts of law: and, in Scotland, he may proceed either before the superior court or before one of the sheriff-courts; but in any viem, he must prepare for considerable expense-the services of professional advisers being in practice nnaroidable -and for a more or less tedious litigation. If the debt do not exceed £50, the creditor may proceed in the English or Scotch county courts (in Scotland called the sheriff-courts), and the proceedings are simple and expeditious.
In E'ngland, the first step to recover a debt not exceeding £50 in the county court, is for the ereditor to go to the registrar of the district within which the defender resides, or to the jurisdiction of which he is on some other ground amenable (30 and 31 Tict. c. 142*). He there fills up a printed form, called a plaint, shortly stating the claim and the ground of it. The registrar upon this issues a summons, and gires it to the bailiff of the court, who serves a copy of it on the defendant. This summons names a dlay on which the parties must appear before the judge. No written pleadings are in general necessary; but if the debtor has any special defence-such as, that he has a counterclaim against the plaintiff, or that he (the defendant) was a minor at the time the debt was contracted, or that he has been discharged under the bankruptcy acts-he must give the creditor notice in writing fire days before the hearing. If he simply denies the debt, he has nothing to do but to attend the hearing. with what witnesses he may require. If the witnesses are not likely to come voluntarily, summonses to enforce their attendance (as well as the production of documents) may be obtained at the registrar's office. At the hearing, the judge (unless a jury have been required) proceeds himself in a summary way to try the cause. He examines the witnesses on oath, keeping no record of the evidence; and, on hearing the parties,

* This act contains a schedule enumeratinco the statutes regulating proceedings in the English county courts.

DEBTS—DECAMPS

gives judgment at once. If he decides for the phantiff, he may make the sum payable at once, or by instalments. The costs are according to a fixed seale, which may be seen in the court or in the registrar's oflice.
There are provisions for parties having their case tricd by jury, and also for appeal on questions of law. Either party who wishes it, may ask for a jnry; aud if the sum clamed exceed $£ 5$, the elemand must be complied with. If there be a jury, the number of jurymen is tive, and their verlict must le manamons. The party dissatisfied with the verdict may ask for a new trial, and the judge, if he thinks right, may grant it on such terms as he thinks reasonable. This power to try by jury is used very rarely indeed-less than one per cent. of all the eases which go to trial being tried in that manaer. The right to appeal is against decisions in point of law, and against the admission and rejection of evidence. The appeal is to the superior courts of law at Westminster. It is taken by requiring the judge to state a case for the opinion of the higher court, and thereafter entering it for discussion there. The appellant must give security for the costs of the appeal, and (if defendant) for the amount (both of principal and costs) contaived in the juelgment. The right of appeal is not much exercised, and the partics lave it in their power to agree beforehand (in writing) that there is to be wone.
When juigment is for the creditor, and the order for payment is not complied with, execution may issme against the goods of the delotor. Ta certain cases, the dehtor may also be imprisoned. The delitor is summoned to shew cause why he has not obeyed the julgment. At this hearing (whether the debtor attend or not), the creditor may get an orden to commit, if he can shew to the judge's satisfaction that the delptor obtained credit on false pretences, or by fraud, or that be vilfnlly incurred the debt withont a reasouable expectation of being able to pay it, or if he have mule awny" with or concealed any of his property to defraul his creditors, or if he has lial, since the julgment, sufficient means to pay it without defrauding other creditors, and has refused to do so. Imprisonment under these judges' orders is of very frequent occurrence, and-exceptionally in England-it has not the effect of extinguishing the delit. If the elcbt recovered (exclnsive of eosts) exceeds $£ 20$, and there are no goods, the julgment may be removed into a superior court, and there enforcerl by the same modes of execution as a julgment originally obtained there.
Although it is competent to proceed in the county courts for sums as large as e50 , they are not muelr used for sums above $£ 0$. When the debt does not exceed $\mathfrak{L}(0$, there is a certain compulsitor on the creditor to resort to the county court, for if he resort to a superior court, and recover no more than that sum, he will have no costs, unless he satisfies the court that he land sufficient reason for taking that course. In point of fact, there is only abont one case for a sum excecting fol 0, for a humtherl which do not execed it; and the average amonnt sucel for is between $£ 2$ and $£ 3$.
In Scotland, debts not cxceeling ± 12 may be recovered in the Sheriff Small-lebt Court. The creditor takes two copies of his accomnt to the oftice of the sheriff-clerk for the circuit in which the debtor lives; from him he obtains a summons, in which the day for the trial is fixed; and this summons he takes to an officer of the court (slierif-officer), who serves a notice, with one of the copies of the account, on the delstor, at least six days before the trial. looth parties may employ an ufficer to cite such witnesses as they require. The ereditor must alpear at the trial, either ly himself or by one of
492
his family, or hy such other person as the sheriff may permit. Law-agents require speoial permission to appear, unless where both partios consent. If the clefencler intenil to plead a comuter-claim, he must cause a sheriff-officer to give a copy of it to the pursuer, at least one free day before the trial ; otherwise, there are no written pleadings. On the day fixed for the trial, if the debtor does not appear, decree is given against him, with expenses, as a matter of course; against which he can afterwards be 'reponed' only on consignment of the expenses and a sum of 10 . If both partics appear, the julge hears the case. If the pursuer or the defender have elearly no good ground of action or defence, he disposes of it at once; but if not, he examines the wituesses on oath. No record of the evidence is taken. At any time before julgment, the ease may be remitted to the 'ordinary court' of the sheriff, where it is comlueted by agents on written pleadings and written proof. Otherwise, the whole proceedings are concluded in onc day, aljourmments not being permitted, except in spucial cases. After judgment, there is no appeal, except on the groumd of want of jurisdiction, malice, oppression, or wilful neglect of the statutory forms, in which cases there is an appeal to the Court of Justiciary. If the sum decerned for, together with the expenses, do not exceed £S,6s. Scl., there is only execution agrinst the elebtor's goods; above that amount, there is aiso execution against the person.
liecently, the Delits Reeovery Aet, IS67 (30) and 31 Vict. c. 96), has extendel the small-debt jurisdiction, with important alterations, to £50. The class of clebts that may be sued for between $£ 1$? ancl fõo, has been linuited to those which most require summary proceedings-namely, those which Irescribe if not sued for within three years, such as all ordinary merchants' aecounts, arul accounts for professional services or for servants' wages. The principal differences between this and the proper small-debt proceedings are, that agents are allowed to appear ; that there are two days in court, one at which the grounds of action and defence are stated, and an aljourned one, at which the witnesses are examined; that the judgo makes a note of the pleas of the parties ; that a record is kept (if required) of the almissions in fact and of the evidence; and that there is a right of appeal, if the alebt loes not exceed ${ }^{205}$, from the sheriff-substitute to the sheriff, and if it exceed £ロJ, also to the Court of Session. If the julge be not asked to take a note of the evilence, there is no appeal in matters of fact. All the fees and costs, whether layable to the sheriff-elerk, the otheers of the court, or the law-agents, are distinctly stated in the act, aud must be hung up in every court. In other respeets, the procectings are analogous to those in the Small-delht Court, and, like them, may proceed either at the prineipal town of the county, or at one of the towns at which sherilf's cirenit-courts are held.
In England and in Scotland, there are other courts which deal with the recovery of aldes beside the county courts. The Sheriff's Court of the city of London lass a jurisdiction similar in general to that of the Luglish county courts ; and there are local courts, such as the Court of l'assage at Liverpool, and the Manor Court at Bralford, which exercise jurisdiction in small as well as other alebts. In Scotland, the magistrates of royal burghs, and the justices of peace, possess a small-delt jurisdiction for delts not exceeding fis in amonnt. The 1 rocedure in them is similar to that of the sheriff Small-debt Court.
DECAMPS, Alexandre-Gabrifl, a celebrated French painter, mas born at Paris in 1803. He was

DECTAUN-DELIRIUNI TREMENS.

a pupil of M. Abel de Pujol, the well-known historical painter, but he seemis not to have been very amenable to tuition. Ile was one of those who cannot be made to imitate approvel models, and he soon began to strike out a style of his own, which was new to the public, and was long in becoming popular. About 1830 he mate a tonr in the East, which had a considerable effect upon the character of his works. For several years after his return he painted chiefly Easteru subjects. Either the novelty of his subjects-Eastern scenes and customs being then comparatively unfamiliar to Europeans-or the novelties of his manner, made the public hesitate in its verdict upon these works; while they were not unfrequently rejected by the jury at the Academy of Paintings. Gradually, however, they grew into farour; and the prices fetched by these and the other works of D. shew that he is now among the most esteemed of the artists of his time. He painted landscapes, genre-pieces, and historical pictures; but though lie has produced works in each of these kinds which are of the highest order of merit, his animal pictures are those which first attained to popularity among his countrymen. D. had a great deal of humour; and he loved to paint animals of all kinds. The monkey was his specialty; and a series of humorous pictures in which the monkey, or groups of monkeys, are intro-duced-now widely known by engravings or litho-graphs-were among his best and most popilar works. In one of this series, Les Singes Experts, he managed to convey a stinging criticism upon the judges at the Academy who were so slow to admit his merit as an artist. Successful as he was in animal painting, D. was much chagrined by the preference shewn by the public for his genre over his historical pieces-which, by English critics at least, are now considered among the finest productions of the French school. Of his landscapes, and even of his historical works, the majority are taken from Eastern subjects. It was perhaps a consequence of the tardy recognition given to him by critics and other authorities, that not more than ove of his pictures is now in a public collection in France. His works are in private hands; but at the Exposition Universelle of 1555 , sixty of them were brought together, and an opportunity was thus afforded of comparing them with the more accessible works of other contemporary painters. His pictures divided attention with those of Ingres, Delacroix, and Vernet, and received the award of a medal. D. was made a chevalier of the Legion of Honour in 1839, and was promoted to the grade of officer im 1S51. He died at Fontainblean on the $22 d$ of August 1860, of injuries which be sustamed by falling from his horse.

Humour, as has beeu indicated already, was one of the principal characteristics of D.'s most popular works. His really great-his historical-works were remarkable for the fineness, in many cases the grandness, of the conceptions, and for a large and free style of treatment deemed over-daring and irregular by connoisseurs, but usually resulting, nevertheless, in a very impressive tout ensemble. Undoubtedly, his execution had considerable faults, lut they were closely associated with its merits. His drawing was often careless, and when some favourite effect was to be produced, he never hesitated to set perspective at detiance. The boldness of his colouring, and the startling light-effects introduced in his pictures, were what critics at first found most fault with. These are, however, the pecudiarities of his manner, and now that they are no longer strange, they find not only apologists but admirers. If they were merits, they were of a kind which, in the hands of imitators, were very apgt to
degenerate into faudts, and the French artists who hare taken D. for their model, have, by their exaggerations, done not a little to imperil the reputation of their master.

DE'CTAUN, a town of India, in a detached portion of the native state of Gwalior, belonging to Seindia, on the route from Mow to Baroda, twenty miles west from Mow. It is the capital of a pergunnah of the same name. It is 1 SSI feet above the sea. Pop, estimated at 6000.
DELFTSHA'VEN゙, an old torn in South Holland, is situated on the Dlans, two miles west frum Rotterdam. It is defended from floods by three strong dykes. The principal buddings are the Reformed Church, which is a handsome cruciform building, the Roman Catholic Church, and the town-house. There is some trade and shipping; but the chief sources of wealth are distiling spirits, beer-brewing, ironfounding, ship-buulding, sawing wood, and other industries. In 1565, lop. 5424.

DELI'RIUM EBRIO'STM, a term intended to denote a form of acute mania, having intoxication for its exciting cause. It is often mistaken for Delirium Tremens (q. r.), and doubtless has frequently been dealt with as such in criminal cases. It originates either from a single fit of intoxication, or a short course of intemperance-frequently of periodical occurrence-in those who are mentally excitable from hereditary peculiarity of constitution, or from some previous injury of the head, and who may have experienced some cause for depression of spirits. It is marked by an uncontrollable desire for drink, which, when gratified, only leads to further imperious demands, until the thing itself is loathed, and a fit of sickness brings about recovery. In the course of the paroxysm, bowever, more or less of indecorons conduct or wild and vicious passions are displayed; so that, unless the affected is restrained, and stimulants withdrawn, violence is apt to be offered to any one coming in the way. It is in this state that homicide and murder are so frequently perpetrated. On the delicate question of legal responsibility counected with this state, we do not here enter.

DELI'RIUM NEERY'SUM or TRAUMA'TI-

 CDM, a term given by Baron Dupuytren, the celebrated French surgeon, to designate an attack of delirium with tremors, which frequently supervenes on severe bodily injuries, such as gunshot wounds, burns, and fractures-chiefly met with in large hospitals-in the case of persons of weakly constitution, and who are irritable and nerrons, and have been intemperate in their habits. It has heen considered by some as identical with Delirium Tremens (q. v.), but it only simulates that affection, being bit a symptom of a sympathetic ferer, having a typhoid character.DELI'RIUM TREMENS is the term given to a disease origiuating from the abuse of alcoholic stimulants by those of a nervous and irritable temperament, characterised by a combination of delirium with muscnlar tremors. The tremors are general, but chielly of the hands, and of the tongue when protruded; aud the delirinm is of a muttering, sight-seemg, bustling, abrupt, anxious, appreheusive kind. The individual affected cannot follow out a train of thonght, explain an illusion or perverted seusation, or perform any act correctly; and althongh at one moment partially conscious and rational, is the next incoherent and excited by the most ridicnlous fancies of a spectral kind, such as visitors in the shape of devils, cats, rats, and snakes, or by alarming occurrences, such as robberies, fires, and pursuits for crimes. All this is ushered in and

DELIRIUM TREMENS

attended by complete sleeplessness; and during the attack, in an uncomplieatel form, there is no violence or ferocity of demeanour (see article Dendfirim Enriosera), although mischief to himself or others may he done under false impressions; and he is casily pleased by gentleness and indulgence, and fretted by restraint and opyosition. The face has generally a pale dirty colour, and anxious expres. sion; eyes startled but lustreless, sometimes considerably suffosed, and the pupils not contracted, unless umler treatment with opium, or when intlammation of the membranes of the brain las supervenel; skin warm and moist, often perspiring coniously; tongue sometimes loaded, but generally pale, moist. and reuarkably clean ; appetite small, but the individual will often take whatever is presented to hin; thirst by no means urgent, with seldom or never any craving for spirituous liquors: alvine evacmations bilions and offensive; uriue seanty, high coloured, and often albuminous; the pulse usually ranges from 90 to 120 , and is generally soft, but of various degrees of fuluess and smallness. The precursory symptoms are not peeu. liar to or pathognomonic of this disease, but consmon to many other febrile affections implicating the functions of the sensorinm, of the circulation, of direstion; and the paroxysm-distinguished by the above jhenomena-runs a remarkably uniform course, independently of age and constitution. In gennine uncomplicated cases-that is to say, when not precipitated by other illness, such as bronchitis, pueumonia, crysipelas, and fever; or some aceulent, such as contusions and fractures-when the illness is more of the nature of the Delirium Tranmaticum (q. v.) -the paroxysu runs its course in from two to three days, and terminates in sleep, from which the individual generally awakens convalescent.

The above description has licen taken from a pader by Dr l'eddie of Edinlurgh, referred to underneath, whose views shall here be further devaloped. Previous to its publication, the generally received opinions regarding the essential nature of delirium tremons were, that it is a disease of exhaustion or irritation of nervous power, and that it has the habitual abuse of intoxicating liquors for its predisposing, and the alsstraction or diminution of the aecustomed stimuli for its exciting, canse ; and consequently, that the proper treatment consists in the continuation of stimulants-' a liair of the dor that bit'-together with large opiates to act on the same principle, and force on the salutary; or what las been called the critical sleep. Sinee then, however, a great revolution has taken place in the views of the medieal profession regarding the pathology and treatment of delirium tremens; and in consequence of this, a fatal result in a genninc case of the discase now seldom or never oecurs, where these views are understood and acted on.

It has been shewn that the more the history and 1henomena of the affection are examined, the greater will the difficultics surrounding the second jart of the proposition above stated become. It has been shern that the affection is specitic and peculiar, uniform in its symptoms and progress; and that it is essentially a form of nervous poisoning-a toxicologieal result from the aecumnlation of alcohol in the system throngh the continned abuse of stimulants. It has been observed that the alcohol-in whaterer way it may be atomically changed or chemically combined-acts on the nervons pulp of the brain throngh the medium of the circulation, and sets up in it an alcobolism or alcoholic erethism, manifested by a certain amount and kind of exhaustion of the cerebral and muscular functions, together with decided over-action in the meningeal vessels; and that the alcoholic principle, although
aeting at first slowly, begins ere long to poison the cray mattor of the bain, so that every additional drop thercafter brings it more and more into a poisoned condition, until at length, unless arrested by judicious treatment, the state of irritation temls to intlammatory action and serions encephalic misehief. Whille, therefore, the first part of the above proposition is true-thongh explainable in a very diflerent way from fornerly received opinions-the sceond part, viz., that the dimination or abstraction of the accustomed stimulus, is the exciting cause of the discase, is altogether untenable. Analory will not bear out the assertion. Nereurial fumes, or the oxides of mercury, when long inhaled or absorbed into the body, as in the case of quicksilver miners, gilders, and others, in the course of time produce an attack of shaking maralysis-the trimblement ancreuriel of the lrench pathologists; but will the workmen thus long exposeal be more likely to becomo affected with tremors when removed from this poisonous ntmosphere and occupation, than if continuing at their work? 'The reverse is well known to be the fact, not only in the case of such artisans, but of those who are beginning to suffer in a somewhat similar way from lead-poisoning. In both affections, when the symptons are precursury or receat, a cure caa be eflected only by removal from tle injarions oecnuation: otherwise, the sjamptoms deepen with hourly increasing rapidity, antil tremors are succceded by sleejulessness, delirium, aad ultimately coma Then, too, for example, salivation from any of the jueparations of mercury, and narcotism from any opiate, are not intensified by withdrawing these agents after a certain point is reached. On the contrary; a continuation bryoud that stage, particularly in some kinds of constitution, moro rapidly develops their jeenliar plyysiological manifestations; and now, an infinitesimal close will do what a large dose in an earlier stage could not. Thus is it with alcoliolic stimulants in the production of delirium tremens. In those of a highly sanguine temperament, and of a nervous irritable disposition, the effect of a certain length of indulgence is to indnce this condition (just as in subjects with the tenicney to gout, a certain amonnt of higl-living is apt to prorluce an attack of that affection), and heyond that stage, a small quantity of alcoholic stimmlus will keep "p and deepen the effect, which, Irevionsly, a large dose would not do, or, in another imlivitual, conld not produce, whatever quantity is imbiloch. Thus is explainable the fery common erroneons statement made in regard to an individual affected with deliriun tremens; that althongl for a considerable time he luad systematically indulged in considerable quantities of spirits, wine, or malt liquor, or in all of these, yet for a week or two he lad drunk very sparingly, and, within the last few days, little or none; indecd, that he was now sullering from tho withdrawal of his monted stimulus, in meritorious efforts to free himself from a babit of which he had begun to be ashamed. All this seems nlausible: but the statement should rather liave loeen that, although consuming large quantities of drink at one time, he lud felt latterly a smaller ruantity affect him; that he then reduced still further the amount, but exjerienced an equal if not greater constitutional effect thereirom ; and thus, from day to day, redaction was forced on him by his own sensations of gastric irritation, nervous cxcitement, and muscular debility-these feclings being, in fact, neither more nor less than the premonitory symptoms of an attack of delirium tremens, and just what might be looked for on the vicw that the alcololic principle is in such instances a cumulative poison, and the exciting as well as the predisposing cause of the

DELITZSCH-DELUNDUNG.

affection. That such is the true solution of the problem, cannot be doubted; and if a suspension or diminution of habitual supplies of stimulants be at any time followed by symptoms of delirium tremens, this is not to be regarded as the result of the change in the practice of the individual, but as occurring in spite of it, and becanse the constitutional effect is already produced, and the premonitory stage of the disease begun. In a cousiderable number of instances, drink is taken freely up to the period when the disease is developed, there heing no diminutiou of the çuantity consumed, and no interval in the practice; and when there really is some diminution from the amount of previons supplies, it is on account of the system being already affected so much that a less quantity now produces a greater or equal effect. On the other hand, it may he safely averred, in contradiction to the popular error, that although stimulants are at once taken away from the habitual dram-drinker, a paroxysm of delirium tremens will not be produced if the peculiar diathesis is not yet established, and the precursory symptoms of the disease are not already begun. He may experience much mental disquietude and physical discomfort, and feel weak for a time, just as a gourmand would feel lowered and depressed by the abstraction of his accustomed good living; but this would soon pass off, withont the occurrence of the usual signs of delirium tremens, more especially without those spectral illusions or phantasms, which are common to poisonings with several other agents of the narcotico-acrid class.

It seems unnecessary to add more ou this part of, the subject, than that experience derived from some of our large prison-establishments shews that while fully three-fourths of the criminals committed belong to the intemperate classes, and a large number, especially of the debtor class, are habitual drinkers mp to the moment of admission, no bad effects are observer from the sudden withdrawal of the wonted stimuli, and the substitution of prisonfare.

In regard to the treatment of this remarkable disease, it is evident, from a common-sense consideration of its phenomena and pathology, that the nonstimulating and non-opiate plan must be the safest and hest. If more spirits deepen the paroxysm, by producing greater cerebral determination, then why administer even one drop additional? And if opiates combined with spirits, or given alone, act in the same manner, and tend to occasion congestion in the blood-ressels of the brain, why run the risk of inflammation, convulsions, and coma, in an endeasour to force on the salutary sleep? It must not le overlooked that this sleep is the normal termination of the paroxysm, and is not to be viewed as a part of the affection, or in the same light as we are accustomed to regard a critical sweat or other discharge. It indicates diminished activity of the cerebral circulation and functions, and the commencement of convalescence. Hence, in a large proportion of instances, the sleep will take llace spontaneously, and it will be safer to do nothing at all. The object, therefore, of treatment should rather be to remove all hindrances to sleep than to force it. In the more severe cases, this is best done by a moderate and mell-regulated course of tartrate of antimony, the action of which, in this affection, appears to be remarkably sedative. It greatly diminishes excited action, induces weariness of muscle, general nerrous exhaustion, and mental languor. It thus removes all obstacles to the occurrence of the salutary sleep, and favours it; and when the individual exhausted seeks his couch, he finds repose-not as a drugged sleep, but naturally, and profoundly-awaking in general with restored reason and muscular control

Digitalis has beeu siven with the same riew, also ipecacuanha and aconite; but none of these answer the various ends so well as antimony. In the milder cases, hotrever, no medicine is required, and it seems enough to do ia such, what is csseutially necessary in the sererer attacks-to support the strength-the organic functions of life-hy suitable nourishment, such as soups, café au lait, and white-of-egg, and to soothe in every possible manner the excited feelings of the pratient. Nothing is more hurtiul in delirima tremens than restraint, particnlarly that of the strait-waistcoat. It increases the cerebral excitement by the never-ceasing strnggles for liberty which ensue, so that fatal convulsions hare very frequently been the result. All the control required is the presence of one or two judjcious attendants, who will humour the patient in bis thims and fancies; who ivill speak and act regarding them so as to assure him of safety, and to reliere him of that apprehension which is the most characteristic feature of the delirium ; and who will mildly but firmly interpose, if he attempts anything which may accidentally prove injurions to himself or athers. The apartment, however, in which the patient is confined should be well secured, for he may rush ont at the door, or leap from a window, in the fright and frenzy of imagined danger. The larger, too, the room is, the better, that he may have space to adrance and retreat, according as he wishes to scrutinise or avoid a suspicious or distressing object of his fancy; to arrange and rearrange the furniture; or to carry on, after a fashion, the imaginary duties of some bustlinef occupation. Besides this, there shonld be abundance of light, so as to dissipate terriyjing hallucinations. The expenditure of muscular effort withont any restraint, aids greatly in producing a safe kind of mental and physical exhaustion ; and the individual, languid and morn-out, lies down voluntarily, and falls into the desired and restorative sleep.-The Pathology of Delirium Tremens, and its Treatment with out Stimulants or Opiates, by A. Peddie, M.D., F.F.C.P.E., \&re., pp. 51, Sro. (Sutherland and Knox, Edinburgh, ISอ̄年.)

DE'LITZSCH, a town of Prassian Saxony; 15 miles north from Leipzir, with which it is connected by railway, on the right bank of the Lobber, a small river. It is an old but well-built town, and has manufactures of tobacco, woollen cloth, and hosiery. It is the capital of a circle, for the most part flat, but producing much corn and fruit. Pop. (IS64) 7643.

DE'LLTS, a seaport town of Algeria, 49 miles east from Algiers. The French part of the town has wide streets, and a square planted with trees. The Arab part, which is greatly more populous, retains its old character : its streets are narrow and tortuous. The climate of D. is reckoned very salubrious. The vine and the olive sncceed well in the neighbourhood. Bechena, a kind of sorghum or durra, is a principal crop. There is a considerable trade in grain, oil, and salt. Pop. (in 1861) 3600.

DELPHINORHY'NCHUS, a genus of. cetacea of the family Delphinida, having one dorsal fin like the true dolphins, but the beak not distinguished from the forehead by a furrorr. D. Bredanensis, or D. rostratus, a species abont eight feet long, black abore and reddish below, has been thrown ashore on the French Atlantic coast. A much larger species, D. coronatus, attaining the length of thirty to thirty-six feet, is clescribed as one of the whales of high northern latitudes, having been seen in numerous flocks among the ice-islands near Spitzbergen.

DELU'NDUNG (Prionodon gracilis), a carnivorous animal inhabiting the forests of Java, referred

DEMAVEND-DERAYEH.

to the family liverrider, but regarded as a connecting link between that family and Felield. It is of

Delundung (Prionodon gracilis).

slender form, with a long cylindrical tail, and is prettily streaked and spotted.

DEMAVEND, Mocxt, an extinet volcano of Persia. It forms the loftiest peak of the Elburz Chain, which separates the low shores of the Caspian Sea from the high tahle-land of Persia. A thongh no longer subject to cruptions, D. bears traces of its having been an active volcano within the most rceent geological cpoch. Its summit is conical, covcred with sulphur, and rent by beated fissures. The crater is still visible, and the surface of the mountain is in many places covered with scoric. At its basc hot springs give evidence of the continned existence of voleanie fire at no great distance beneath the surface. A great deposit of sulphur covers the summit of D ., and is brought down to the phains in bags to be disposed of as an article of commerce. Although the path that leads to the peak is, for this reason, familiar to the inhabitants of the adjoining districts, the mountain was not ascended by any European till 1837. In September of that year Mr William T. Thomson of the English Embassy at Telneran, with the view of taking important bearings from a point which commands an extensive view of the shores of the Caspian, determined to reach the summit. He set out from the base with four guides, three of whom deserted him when they experienced the effect of the rarified atmosphere on their breathing. The first night he slept below the snow limit; the sccond night in a sulphur cavern near the summit, so liighly heated that it was jmpossible to place the hand near a crevice of the interior. On leaving this place of shelter, the traveller's wet clothes were instantly frozen with a bitter blast from the Caspian. The height, as recently determined by the Russian Survey, is 21,000 feet.
D. towers high above the neighbouring mountains, the adjacent summits not exceeding two-thirds of its eleration. At all times it has been a conspicuous, object from the great trade ronte between India and the West, aloug the edge of the Persian tableland. It is not then to be woudered at that it is conneetel with the earliest Persian as Etna is connected with the earliest Grevk traditions. There seems indeed more than an accidental coincidence lutween the fables which relate to the two mountains. According to the Greeks, the giant Typhon was buried nuder the volcanic region of Sicily, and the earthquakes and eruptious were canscd by lis eflorts to escape. Fire procecded from his month, and be was figurerl with one hundred snakes growing from each shoulder. Zohak, a personification of
the bad principle, was in the same way supposed by the I'ersians to be buritad under Demavend. He was figurel with one serpent growing out of each shoulder; and in other respects he had much in common with the Greek monster.

DENNERY, or J'lENNERY, ADOLPIE PutLIPPE, a l'ronch dramatic writer of Jewish extraction, was born at Paris on June 17, 1811. His first em. ployment was that of clerk to a notary; lie gave that n, to become a painter; and afterwards, while still very younc, le became a contributor to the newsparers. The first dramatic work in which he had is hand was bronght out in $18: 31$; this was Emile, ou le Fils el'un Puir de Frence, and it was produced hy him in concert with MI. Charles Desnoyer, a well-known litterateur and theatrical critic. It had some suecess, and D. followed it up with two or threc others, which hat so mucli popularity that his services as a play-writer came into considerable demand. He was a ready writer, and always able to come up to a fair standard of merit ; and, encouraged by the theatrical managers of France, he has been one of the most prolific of dramatic authors. He has prodneed, by himself or in concert with others, about 200 pieces in one style or another; and a few years ago, nearly a hundred of his, pieces might be seen upon the stage at one time. Latterly, D. has been a man of business as well as an anthor. IIe was appointel director of the Thêatre Mistorigure in 1850, but resigned this appointment almost immediatcly. An attempt which he made in 185.5 to establish a new theatre, which he first proposed to eall the Thiatre du Peuple, and afterwards the Théatre dn Prince Impérial, dicl not succecd; but since that, he has had a large slaare in establishing and in managing a public company, in which many persons connected with the press and with tho theatres were concerned-the Societe Thermale de Cabourg-Dives. Of this company, whose spreculation consisted in dereloping the attractions of a new watering-place (in the dep. of Calvalos), he has heen successively secretary and managing director. D. was decorated with the Legion of Honour on the 10th December 1S49, and was promoted to the rank of officer on the 16th of August 1859.
DENTA'RIA, a genns of plants of the uatural order Cruciferce, having a lanceolate compressel silique. One species only, D. balbifera, is found in Britain, and is a rare plant, with a simple sten, the lower leaves pionate, the upper leaves simple, and rose-coloured flowers, the axils of the leaves producing bulbs, and the crecping rhizome having tooth-like knobs, whence the name 1., and the English name Coral-root. The root, when dried, is said to have greater pungeucy than pellitory of Spain, and was formerly used in the same way for toothache. D. diphylle, a North Ancrican species, is called Pepper-root from the same property.

DEOBU'ND, a town of India, in the British district of Suharunpore, North-west 1 rovinces, 20 miles south-east from Suharunpore, on the route from Suharumpore to Mozuffurnuggur. It is situated between the rivers Hiadun and Kiali Nuddce, the one a branch of the Juman, the other of the Ganges, in an open cultivatel country. Pop. $15,638$.

DEHASEEH, or DEREY'EEYAII, a town of Arabia, formerly the capital of the Wahabees. It is situated near the centre of Nedjed, 430 miles northenst from Mecca. It was a town of some consequence before the time of the Wahalees, but attained its highest importance under their dominion. S'ee Warinets. It was taken lyy Ibrahim Pasha in 1819, after a siege of seven months, and nearly destroyed. It stands in a valley abont half a mile in breadth, filling the whole brealth of the valley,
and may probably have at one time contained 40,000 inhabitants, whereas now its pop is not astimated at more than 15,000 . The situation is very beautifnl, and rich gardens and fields are interspersed with the houses and seattered around the city.

DE'SIO, a town of North Italy, in the province of Milan, 11 miles north of Milan, on the Mlilan and Como Railway. It is a well-built town, surrounded with gardens and vineyards, and has a fine hospital. The inhabitants are chiefly employed in agriculture and the rearing of cattle. Pop. 45.4.

DEW'A'S, a town of Malwa, India, 24 miles north-north-east from Indnr, on an affluent of the Chnmbul. It is the capital of a petty state or raj under British protection, held conjointly by tro chiefs of the lineage of the Puar or Pramara Rajpoots, once very powerful, although now of fallen fortune. The miliaary force of the state consists of 175 horse and 500 foot; the pop. is about 25,000 , the revenue about $£ 40,000$.

DHO'LKA, a town of India, in the British. district of Ahmedabad, presidency of Bombay, 22 miles south-west from Ahmedabad. It is situated in the midst of ruined palaces, mosques, mausoleums, and spacions tanks lined with masonry. It is surrounded by a mud wall four miles in circuit. Pop. 25,000 .

DIAPA'SON REGULATOR. The French, who give the name of diapason to the tuning-fork, have lately made attempts to use that instrument in connection with clockwork, partly as a means of connting very small intervals of time. M. Duhamel made an arrangement in which a cylinder, by means of a screw-tapped end, was made to adrance a little in the direction of the axis; this cylinder was covered with blackened paper, and was rotated by means of clockwork. A diapason had a style or marker, made of a small bit of pointed spring, fixed to the end of one of the prongs. On the diapason being sonnded in the nsual way, and the spring placed lightly against the cylinder, the style traced a sinuous white line on the black paper. The sinnosities became visible representatives of minute interrals of time, the prongs vibrating possibly hundreds of times in a second. M. Lissajous devised an electrical aplaratus to prolong the vibrating of the jrongs ; but it was too complex for practical use. 11. Breguet then proposed clockwork for this purpose, superseding the pendulum and the spiral spring by a diapason. The diapason regulates the rate of motion of the train of wheels by the equability of the vibration of the prongs, while the train of wheels tends to increase the time during which the prongs vibrate and sound. An index, carried by an arbor ronnd a dial, may be made to count or record the vibrations. Breguet's experiments liave gone as far as instruments giving 200 simple vibrations (100 double or to-and-fro vibrations) per second. There are means of making the diapason more or less acute in sound, or with a greater or less number of vibrations in a second, by mechanical treatment of the prongs : it can, by a proper distribution of metal, be made to yield any reqnired note within eertain limits; and thus, with the aid of the style, the paper, and the cylinder, it may be made to give a kind of risible existence to excessively minute intervals of time, such as $\frac{1}{2}$ th part of a second. Fuller details are given in Breguet's description of the apparatus in the Revue Chronometrique.

DI'CHLOISM (Gr. dis, twice, chroma, a colour) is a term chiefly used in Crystallography to designate the property which many doubly-refracting crystals possess of exhibiting different colours. when viewed 11 different directions. It, or the allied term, 500

Dichromatism, has also been applied to those fluids which appear of different colours when viewed by reflected and refracted light; when seen in thick or thin layers, \&c. For example, yenous blood, or any blood impregnated with carhonic acid, hydrogen, or nitrogen, appears, when seen in moderately thin layers, to be of a purple colour; while in extremely thin layers it appears green.

Dieterichs, Joachim Frederich Christlan, an eminent veterinary surgeon, was boru on the lst of March 1792, at Stendal, in Prussia. He was at first a farrier; but at the age of 21 , he obtained a fellowship at the Veterinary College of Berlin, where he soon attracted notice by his proficiency. In 1817, he gained, after a brilliant examination, the title of Superior Veterinary Physician. In 1818, he undertook, at the instance and expense of the Prussian government, a tour through France, Würtemberg, Bavaria, Austria, and Hungary: On his return, he was appointed to a chair in the Teterinary College of Berlin, which he held for four years. In 1S30, he accepted a post in the General Military School of Berlin, where, in 1841, he was appointed Professor in Ordinary. His publications, which are widely known, and have been translated from the German into various languages, are on Pulmoncry Consumption in Cattle (Berlin, 1S21); Manual of Veterinary Surgery (1SE2); On the Art of Shoeing Horses (1523) ; On the Breeding and Propayation of Races (1824); Manual of General and Special Pharmacology (1825); On the Education of IIorses (1825); Manual of Special Pathology and Therapeutics for the Use of Veterinary Surgeons (18®S); Manual of the Practical Knouledge of IIorses (1S34); Manual of Ubstetrics (ISt5) ; Manual of the Education of Domestic Animals (1S4S); The Principal Defects of Horses, and the Mode of Diamosing thern (1853); Names of the Particular Regions of the Horse, with Indications of Maladies and Deficts (1853).

DIETRICH OF BERN, the name under which the Ostrogoth king, Theodoric ((\%.v.) the Great, appears in the German heroic legends; in which by Bern, his capital, Verona, is to be understood. As early as the Tth c., he would seem to have become the centre of a distinct cycle of legends. A little later, he was, with a not unusual disregard of all historical truth, bronght into connection with the traditions of Attila, or Etzel. According to these legends, D. is said to have fled from Italy before Ottacher (Odoacer), or Ermanarich; to have met, along with his attendant vassals, with a hospitable reception from Etzel ; but after many years, to have again got possession of his kingdom. The extermination of the royal House of Burgundy by Attila, which is an historical event, was the cause that D., as well as Etzel himself, was woven into the Burgundian and Frankish Siegfriedssage; and thus he appears, in the second part of the Nibelungen, at Etzel's court, and is handled by the poet with special predilection. There have been numerous poems, besides, of which D. was the centre and principal hero. It is very probable that the Hildebrandslied, of the Sth c., is the fragment of such a poem. Except this, we have only late versions of these legends; for example, Schlacht vor Raben (Ravenna) of the 13 th c., Alphart's Tod (13th c.), Zuerg Laurin, oder der Mleine Rosengarten (15th c.), Dietrich's Ahnen, Dietrich's Flucht, \&c.

DHKAMA'LLI, a gum-resin which exudes, in amber-coloured transparent drops, from the ends of young shoots of Gardenia (q. v.) lucida, an Indian tree. It has a very powerful fragrance, and has been found extremely useful in hospitals, in keeping away flies, and especially as a dressing for wounds

DIKOWA-DIOGENES

aod running sores. It has lut recently beeu brought into use.

DIKOW A, or DEEEGOA, a large town of Bormu, Central Africa, about 60 miles sunth from Kiouka, and about lialf that distance from the south-western angle of Lake Tehal. It is in a great cotton-growing district, and is a place of considerable trade. The spinning aud weavine of cotton are also extensively carried on. The houses are mostly of clay, but each has its court-yard; and within the town are many magnifiecnt fig-trees, the foliage of which contributes mueh to the beauty of its appearance. Fop. supposed about 30,000 .

DI'MA, a large town of Abyssinia, in the state of Amhara, on an alluent of the Abai, $1 \overline{0} 0$ miles south-south-east from Gondar. The houses are mostly of stone, and the chureh is one of the largest editices in Abyssioia. The town is divided into many quarters by stone walls.

DIMIDIATION, in Ieraldry, a mode of marshalling arms, adopted ehiefly betore quartering and impaling accordiog to the modern practice came into use, and subsequently retained to some extent in continental thourgh not in Jinglish heraldry. It consists in cutting two coats of arms in half by a vertieal line, and uniting the dexter half of the one to the sinister half of the cther. Coats of husband and wife were often so marshalled in England in the 13 th and 14 th centuries. Mr Planele traces the double-headed eagle of the German Empire to a dimidiated coat, with half an eagle for the eastern, and another half for the western empire.

DINDIGU'I, a town of India, in the Eritish district of Madura, 1 resideney of Madras, at the extremity of a valley of the same name, on a feeder of the Cauvery, 217 miles south-west of Madras city. It is 700 feet above the level of the sea, and built on a geatle deelivity; the streets are wide, the houses well built, anil tho Lazaar plentifully supplied. The pop. is supposed to be between 6000 and 7000 , exelusive of the military. The fort is situated on a weltre-shaped mass of gneiss, whieh rises to a height of OSSO feet, perfeetly naked, exeept near the summit, where some stunted trees and shrubs grow on patches of thin soil. The ascent is on the eastern side by a flight of stoue steps, the other sides being nearly perpendicular. Jear the summit, there is i well of great depth, popularly reputed unfathomable, which yields excellent water.

DIOCLETIA'NUS, VALERICS, born in humble life near Sulona, in Dalmatia, $2 \neq \overline{5}$ A.D., inherited from his mother, Dioelea, the anue of Jioeles, which he afterwards eularged into D., and attached as a cognomen to Valerius, a name of the most patrician associations. He adopted a military eareer, and served with distinetion under Probus and Aurelian, aceompaniel Carus on his Persian eampaign, and finally, on the murder of Numerianns haviog been discovered at Chalcedon, he was proclaimed emperor in 254 by the army on its homeward mareh. The suspected assassin of Numerianus, the prefect Arrius Aper, he slew with his own haads, in order, it is alleged, to fulfil a prophecy communieated to him, while still a Iad, by a Druidess of Gaul, that he should accede to a throne as soon as he had killed an aper (wikd-bonr). In 2SJ゙, D. commeneed hostilities against Carinus (the joint-emperor along with the deceased Numerianus), who, although rictorious in the decisive battle that ensned, was murdered by his own officers, thus leaving to D . the undisputed supremacy. II fis first years of government were so molested by the incursions of barbarians, that, in order to repel their growing aggressiveness, he took to himself a colleague-namely, Maximianus-who, under the title of Augustus, became joint-emperor
in 2S6. D. reserved for himstit the charge of the eastern empire, aul gave the westeru to Maximian. Still the attacks of the barbarians contimued as for* midable as ever. The empire was menaced lyy the Persians in tlie east, by the Germans and otler luarbarians in the west; and in orler to providu for its permanent sceurity, I). suljejected it to a still further division. In 292, Constantius Clilorus and Galerius were proelaimed as Casars, and the distribution of the Joman Empire was now fourfold : 1). taking the East, with Vicomedia as his seat of govermment; Maximian, Italy and Africa, with Milan as his residence; Constantius, Britain, Gaul, and Spain, with Treses as lis healquarters; Galerins, Illyricum, and the entire yalley of the Danube, with Sirmium as his imperial abode. It was upou his collensues that most of the burden of engaging actively in hostilities fell, as 1 . seldom took the feld in person. Among the conquests, or rather re-conquests, that were made under his rule, may be euumerated that of Jritain, which, after maintaining independence under Carausius and Allectus, was, in 996 , restored to the empire; that of the l'ersians, whu were defeated, and eompelled to capitulate in 29S; and that of the Mareomanni, and others of the northern barbarians, who were driven beyond the Roman fronticr. I), after $2 l$ years ${ }^{3}$ harassing temure of government, desired to pass the residue of his days in tranquillity. On the lst of Ma5 305, accordingly, he abdiented the imperial throne at Nieomedia, and compelled his colleague, Maximian (mueh against the latter's will), to do likewise at Milan. D. sought retirement in his uative province of Dalmatia, and for 8 years resided at Salona (see Spalato), devoting himself to philosophic reflection, to rural reereation, and to horticultural pursuits. Two years before his abdication, he was instigated by his colleague, Galerius, to that determined and sanguinary perseeution of the Christians for which his reign is chiefly memorable. He died in 313.

DIO'GENES, the Cynic plilosopher, was a native of Sinope, in Pontus, where he wis born about 412 E. C. Ilis Iather, Icesias, or Icetas, by mame, and a banker by oceupation, was convicted of having swindled, and so the young D. harl to leave Simpe. IIs youth had been that of a spendthrift and a rake; but on eoming from sinope to Athens, be beeame interested in the character of Antisthenes, by whom, however, his first advances were repelled. In sinite of his inhospitable reeeption, D. renewed tho attempt to find favour with Antisthenes; but though often driven away by blows, his perseverance at last prevailed; and Antisthenes, moved with compassion, consented to admit hin as a pupil. D., from being an extravagant debauchee, plunged into the opposite extreme of austerity and self-mortification. He would roll in hot sand during the heat of summer; in winter, he would embrace a statue covered with snow. His clothing was of the coarsest, his food of the plainest. His bed was the bare ground, whether in the open street or under the porticoes. His permanent residence (if such it could be ealled) was a tub which belonged to the Metroum, or the temple of the Nother of the Coods. Hiscecentric life dill not, however, eost him the respect of the A thenians, who admired his coutempt for comfort, and allowed hin a wide latitude of comment and rebuke. Iractieal good was the chief aim of his philosophy; for literature and the fine arts he clid not conceal his disdain. He langhed at men of letters for reading the sufferings of Clysses, while negleeting their own; at musieians who spent in stringing their lyres the time which would have been much better employed in making their own diseordant natures harmouious; at sarans for gazing at the heavenly
bodies, while sublimely incognisant of earthly ones; at orators who studied how to enforce truth, but not bow to practise it. He was seized by pirates on a voyage to Egina, and carried to Crete, where he was sold as a slave. When asked what business he was proficient in, he answered: 'To command men.' His purchaser mas Xeniades of Corinth; but the slave soon came to rule the master, acquired his freedom, was appointed tutor to the children, and spent his old agte as one of the household. It was here that he had his interview with Alexander the Great. The king opened the conversation with: 'I am Alexander the Great,' to which the philosopher answered: 'And I am Diogenes the Cynic.' Alexander then asked him in what way he could serre him, to which D. rejoined: "You can stand out of the sunshine.' Alexander is said to have been so struck with the Cynic's self-possession, that he went away, remarking: ' If I were not Alexander, I should be Diogenes.' In spite of his early excesses and his subsequent prirations, D. lived at Corinth till 323 B. C., when he died, at the age of 90 .

DIPSOMA'NIA (Gr. clipsa, thirst, and mania, madness, or eager desire) is a term intended, whether correctly or not, to denote a condition in which certaim individuals manifest an irresistible craving for alcoholic drinks. Onvomanta (Gr. oinos, wine), used by German writers; and the English Drinkivg Irssisty, are also intended to designate the same state. It is of importance to distinguish dipsomaniacs from ordinarily intemperate and drumken individuals. In our streets and in society, we are only too familiar with the various phases of the habit and vice of drunkenness, and the different grades and circumstances of drinkers, such as the morning Iram-drinker; the jolly social drinker; and the individual who, knowingly and intentionally, gives himself up to a debauch. While many thus of their own choice degrade and injure themselves, they are generally able, for a time at least, to perform tolerably Fell their usual occupations during business-hours. Many hard drinkers can exercise wonderful control over themselres, choosing the time to drink and the time to keep sober ; and while sober, can discharge all their family, professional, social, or even religious duties-so far at least as outward appearances go. Some of them may drink continuously, until attacked by what is called Delirium Tremens (q. v.), or fall into the state of Delirium Ebriosum (q. v.) ; but When the supplies are stopped, and the necessary treatment is undergone, they are soon able to resume their usual duties, and too soon, in general, their former practices.

There is, however, especially in persons of a nervous and sanguine temperament and constitution -and more readily in women than in men-a condition in which the mere vice is transformed into a disease, the vicious habit into an insane, impulsive propensity, and then the drunkard becomes a dipsomaniac. The alcoholic principle, by habitual abuse, perrerts the action, if not the nutrition of cerebral matter; and the frequent disturbances of the mental furctions from fits of intoxication, the loose and irregular habits engendered, and the alternate states of remorse and attempts to drown conscience by more copious libations, all combine to create the dipsomaniac. He loses entire command over his will; has no power to resist the craving for alcoholic stimuli; and is transformed into the involuntary slave of an insane propensity. Physically, the dipsomauiac has a lamentably brokendown aspect; limbs feeble and tremulous; risage paie, leaden-coloured, or sodden; and eyes watery and lustreless. But in the manifestations of mind and heart, the change is still more sad. A process of mental deterioration goes on simultaneously with
the habit of indulgence; the main aim of life is how to obtain liquor; capacity for business is limited to the means of gratifying the craring; the precepts of morality and religion, the ties of nearest and dearest kin, have no sway over him ; indeed, no consideration, human or divine, will interpose any barrier in the way of gratifying the propensity, whenever it is possible. Nor does he now drink with real relish, socially and conrivially, but will swallow spirits, away from society and olservation, eveu as it were a drug; and the only satisfaction derived from the act is, that it secures insensibility to the wretched state of mind which prompts the insatiable desire. When this has gone on for some time, although a suspension of the use of stimulants be imposed by the interference of friends, or the occurrence of an attack either of the form of delirium or maniacal excitement mentioned, yet his mind has suffered so materially, that unless control is exercised over him, and continued for a considerable period, be returns immediately like the ' \log to his vomit.' His moral feelings become more and more perverted, and his intellectual powers weakened. He is thus rendered either facile or wasteful, and incapacitated for the ordinary business of life; or he is irascible, resentful, or mischierous, and torments and annoys those about him, or commits homicide or suicide ; or he becomes decidedly insane. Such is acquired dipsomania. But rery frequently it is met with as a disease, $a b$ origine-a constitutional, and, in the greater proportion of instances, a hereditary affection. When it takes this character, dipsomania resembles other constitutional diseases; and such cases especially illustrate its affinity to insanity. It is well known that gout and rheumatism, or disease of the heart, may be developed from errors in the mode of living of imdividuals in whose family connections there is no sign of predisposition; while, on the other hand, these diseases may also exist in virtue of a strong hereditary tendency, without any appreciable infringements of the laws of health. And so also dipsomania; for, while frequently resulting from acquired ricious habit, it occurs likewise from an insane hereditary taint, very frequently visited on children by the sims of their parents, especially if the latter have suffered from repeated attacks of delirium tremens, or have been in reality confirmed dipsomaniacs. Indeed, it has even beeu met with in the offspring of dipsomaniacs during the years of childhood, and that also in the suddeu paroxysmal form. But what goes still further to prove its affinity to insanity; is the well-known fact, that in the family of the dipsomaniac, not only several cases of the imsane drinking propensity are often met with, but marked instances of mental disorder in other forms. Some interesting examples of this may be found in the Edinburgh Medical Joumal for April 1SJS, by Dr Thompsou of the Perth prisons. When dipsomania thus occurs from constitutional organisation, the disease is assuredly of a worse type than when it springs merely ont of the vicious habit of drinking. There is generally more eccentricity of habit and deportment, more perversity of mind and disposition, and more untruthfulness and deceit, which is a remarkably uniform feature in this malady. The victim of it is more unscrupulous in the means employed to gratify the ruling desire of existence; and when the disease is fairly dereloped, and allowed to take its course unrestrainedly, the moral sense becomes utterly perverted, and the imtellect annibilated, so that the affected is readily led to the commission of crimes which would not otherwise be perpetrated, or sinks into a state of complete imbecility or hopeless mania. Whether, therefore, the disease exists in its ordinary phases and

DIPSOMANIA.

intensity from voluntary intemperance; or whether it springs out of the propensity, as a eonsequence of abnormal organisation-and these are sulliciently charaeteristic to present in marked line of alistinetion from the orlinary vice of intemperance-the pathologieal and mental phenomena and results ares the same-viz, all insatiable eraving for alcoholic stimulants, with complete loss of sclf-respect and self-control in gratifying the clesire, despite all obligations due to God and to man. There are generally also some special features in cach easp. affording additional evidence of decided mental unsoundness. Some of these are wastefulness and senseless extravagance; ridiculous eceentricity of conduct ; gross indecency of hehaviour, and obscenity and profanity of language; teudency to theft of articles of little or 110 vilue-often of one class or kind of things; extreme perverseness and vindictiveness of disposition ; adud impulsive violence, which leads readily to the eommission of homicide or sujeide.

These, then, are the leatures, variously combined in ditferent cases (of which many examples could be easily given), which distinguish instances of dipsomania from ordinary drunkenness, and warrant the opinion that tle condition describel is a form of mental affection-a lisease, like any other insanity. Almost all medical men, we believe, now hold this view, or at least that it slonld be treatel as an insinity; and it has of late been very widely aecepted by the general public, at anyrate by all, without exception, who have come in contact with instances in their own fanilies or among their friends.

If such, then, is a correct view of the ease, it follows that special physical treatment must be adopted before moral and spiritual agencies ean le expected to operate with any ehance of success; and as the dipsomaniac is incapable of governing his own will, and making any effort to sulistue his ruling desire, it is evident that he should be placed under the power of others who have the means of con. trolling lim. From the very nature of the nalaly, however, it is searcely to be expectel that the inveterate drunkard will voluntarily subwit to control, or continue under it for a sulficient length of time to reecive lasting benetit; and therefore it seems essential, as in the case of other insanities, that legal power, with proper preeantions and restrictions, should be available, to secure the posses sion of his person, and the protection of his property: It is undoubtedly the duty of a goon and wise government to provide for such eare, when it is so well known that the consequenees of unrestrained action maty be so serions to the individual ehiefly concerned; when familics are so oftern thereby plunged into deep distress or absolute ruin ; and when the amenity of socicty is so frequently ontraged by is display of mischicrous cecentricity, or glaring indeeency, or by the aecurrence of some tlagrant crime. "The liberty of the sub. jeet' is a precious trust, but the absence of law to mect the ease of the insane drunkard, is in reality licence for evil, since no precantion is taken to prevent most gievons infringemonts of the liberties of others. It is certainly an overstrained delicacy in legislation to shirk interference with a elass of eases which lead to so much 1 rivate miscry and public expenditure, as the records of omr courts of law, prisons, poor-houses, and lanatie asylums can amply attest. Lint considering the ease of the dipsomaniae from anotlee point of view, in facility by law to control, would confer on himself an unspeakable benefit. It wonld thus afford him his only chance of eure and restoration to soeicty, instead of permitting him to go on 500
to wreek and ruiu. Indeed, the negleet of law to provide such a eheck aul remedy, seuss inconsistent, unjust, and inhnunane, when we consider, that while it permits the insensate dymbiard to endanger his life, to waste his property, and deprive his family of that which they are justly entitled to expect from his hands dhuring life, or to fall to them at his death, it holels hinn responsible for any criminal act he may commit. No doubt, the law assumes that lie drimks voluntarily, aml with his eyes open to all the consequences, and that his practices there. fore form an aggravation of lis guit ; lut such is not the case, for he lrinks-as has luen shewninvoluntarily, and without any reflection as to ultimate consequences; amblle is manifestly unable to exercise his reasou aright, or govern his will. That the existing law of lunacy dous not mect the easo of insane trinkers, is well known, and much felt. One would imagine that the definition of insanity - 'a jerson so diseased and affected in mind as to render him unfit to be at large, either as regards his own personal safety and conduct, or the safety of the persons and p10perty of others or of the public' (20 and 21 Vict. e. 71, s. 3) ; and again, ' a person of unsound mind' (25 and 26 Vict. e. $5 \cdot 4$, s. 1)-recognises a dipsomaniac as a tit object for control. But the ancient dicta of English aud Scotch judges, as to the mature of insanity, still appear to athere to the legal mind; and as medical eertifiers now require to state the facts on which they form their opinion, the statement that one or the chicf manifestation is excessive intemperance, or an uncontrollable craving for intoxicating liquors, is quite enough to prevent a sheriff-or at least some sheriffs-from granting the wished-for warrant. He declines to interfere unless there is cvidence of some furiosity in the ease, or the existence of a delusion : and in all probability, were he to do otherwise, and the ease be earried into court, a leliverance would he given agaiust the plea of insanity. At anyrate, the uncertainty in the arministration of law in sneh cases, and the danger of subjection to amoyance and expense, crea did they gain their pleat, deter medical men from granting eertiticates, which, otherwise, they would most inhesitatingly do. In the last lumacy Amendment Act (20 and 30 Vict. c. 51 , s. 15,1866), as permission is given to the superintendent of any asylum, with assent, in writing, from one of the Commissioners in Lunacy, to almit as a boarder any person wishing to sulmit himself to treatment-whose mental condition is not such as to warrant certiticates of insanity-it was supposed likely to open a door for the almission of dipsomaniacs. But it has only in a very few instances, and for a very brief perionl of time, heen taken advantage of, under the temporary pressure brought to bear on them by iriends, de. Indecd, there is the same difficulty in getting imdivishuls to go volmntarily into private samitaria, refuges, aud boardinehouses for inebriates-where bo legal steps are available-or, when admitted, to detain them sufficiently long so as to efleet a cure.

Establishments for inelariates, on a suall scale, have existed in this conntry for many ywars; and thore are at present several excellent ones, for the middle and upper elasses, in various parts of the comtry, particnlarly in Argyleshire, Ross-shire, Inveruess-shire, and Pcrthshire; besides, several medical men, clergymen, and famers throughont Scotland receive one or two boarders of this class. Into these places, however, only a very fuw individuals go quite voluntarily ; in fact, it is generally undur more or less constraint. Straitened circimstances, bodily sufforing, the tears and entreaties of relations, threatenings of being east olf altogether, and such-like influences, may succecd perhaps in ono

DIPSOMANIA.

out of ten or twelve instances; but soon abstinence from drink, judicious medical treatment, good diet, pure air, exercise, occupation, and amusement, so improve the physical condition, that ere long, and before deeper and more radical changes can be effected, or the tone of the moral feelings restored, they become restless, and demand liberty as a right, which they know well cannot be disputed. Out in a few weeks or months, therefore, fully three-fourths of those admitted go, or are taken by injudicious or timid friends, and the result may easily be imagined. Years rather than months of control, and gradual trials of liberty on probation, are necessary to effect a permanent cure in any considerable proportion of the more confirmed cases of this malady. Taking into consideration, therefore, these uncertainties, there is evidently not much inducement for parties to invest money in the establishment of a desirable and trustworthy institution. For a good building, in a pleasant and salubrious situation, with some ground attached, must be secured; the furnishings must be comfortable, the cooking good, and considerable opportunities must be provided for within-door and ont-door occupation, amusement, and cheeriness. In fact, all the arrangements must be made so as to provide such new and relishable enjoyments as will counteract or take the place of the crarings for alcoholic stimnli, and prevent, as much as possible, discontentment with the situation in which they are placed. Admission to the private boarding-houses, which do exist in this country is generally at the rate of $£ 100$ per annum-unless some extra accommodation or arrangements are required; and payments are made quarterly in adrance. The chief stipulations made on entrance are, that no pocketmoney be allowed; that no stimulants are to be placed on the table, or given, unless in particular circumstances, under medical direction, since the smallest quantity tasted is apt to keep up or excite a desire for nore; and that should there happen to be any hotels, taverns, or spirit-shops in the locality, intimation be made at these places, that no debts will be paid for drink furnished to the boarders. The only public institution in Great Britain for the treatment of incbriates is the Queensberry Lodge, Edinburgh, in connection with the House of Fefuge. Into the latter, from 100 to 200 intemperate persons -chiefly of the lower classes, and mostly females, have for a number of years been admitted; but a year ago, a handsome building, distinct from the Refuge, was tinished, and comfortably furnished so as to accommodate 27 female boarders of the better classes, at the rates of from $£ 40$ to $£ 100$ per aunum, according to the accommodation given. Already a considerable number have been admitted; and in several instances, apparently with excellent results, although, as yet, there has not been time to test satisfactorily the success of the institution. It is to be hoped, however, from the excellence of its design and management, that its social results will be most valuable; and that it will prove the practicability of working such an iustitution, after it is once founded-and even with lower scales of payment for board-so as to become self-supporting. From this, a good hint may be taken by any one who has money to bequeath for a truly benevolent purpose.

In several cities of the United States of America, somewhat similar institutions are in active operation, some of them amply endowed, others partly supported from public funds, although into all the admission is only voluntary. Of these, in the state of Massachusetts, the Boston "Washingtonian Home' was incorporated by the legislature in IS59, and is pointed to as a model institution-although on a small scale-with results highly satisfactory. But the institution about which we have heard
most is the New York State Inebriate Asylum, at Binghampton. It is a massive and costly structure sufficient to accommodate about 200 individuals, amply endowed, and possessing every arrangement and apl liance for the treatment of the unfortunate class requiring its aid. But its usefulness has apparently been much checked during past years by the occurrence of a destructive fire, and some other untoward circumstances. It has been recently restored to working order, and placed under the superintendence of Dr Albert Day, who was previously so efficient in the management of the Washingtonian Home; and a great amount of good is expected to result from his labours in this new and larger sphere. It is evident, however, from the number of boarders reported as annually undergoing treatment in these American asylums, that they receive all sorts of drunkards; and we fear that the good accomplished must, in a large proportion of instances, be only partial and temporary. Thus, the Washingtonian Homewhich has accommodated hitherto an average of about IS persons daily-is sail to have had from 250 to 300 cases annually under treatment ; so that the necessarily brief average residence of each, holds out little hope that much lasting benefit can have resulted in the cases, at least of such confirmed inebriates as we hare described under the name of dipsomaniacs, and for whom we desire some legislation. Doubtless, such institutions must be of much social value, were it only in contributing, for a short time, to the greater happiness of the individual chiefly concerned; but it is only a somewhat prolonged course of physical, mental, and moral treatment under judicious control, followed by carefully extended probationary liberty, that can permanently benefit the real dipsomaniac.
The Americans appear to be in adrance of us in legislation regarding the care of the person and property of inebriates; for to the magistrate, or rather judge, is coromitted the care and custody of all insane persons, and of all persons who are wasteful and incapable of conducting their own affairs, in consequence of habitual drunkenness; and he is empowered to provide ont of their estates for their safe keeping and maintenance, and for the maintenance of their families and the education of their children. Hence it might be inferred that lega] power is given to enforce the care and treatment of insane drinkers in lunatic asylums, or in reformatory asylums, such as those at Binghampton or Boston. But this does not seem to be the case; and aithough much good must be done to this unfortunate class of individuals under the coluntary system, au infinitely greater amount ronld, we conceive, be accomplished were compulsory measures resorted to in the morst class of cases, when voluntary submission is unattaiuable or utterly unarailing.

It is pleasing to see the freelom of legistation on this and other subjects in a new country, where antiquated precedents and prejudices do not drag the wheels of reform, and where commou-sense views of social interests prevail. In Southern Australia, a great step lias lately been taken in the right direction, chiefly through the exertions of Dr M•-Irtly of Melbourne, who had considered with lively interest the late discussions in this country regarding the treatment of dipsomaniacs. In March last, after a full ventilation of the questiou, the government brought in and carried through the houses of legislature a measure placing imveterate inebriates in the same category with insane persons, and providing, in connection with a Lunacy Amendment Act, for their voluntary admission to any asylum or refuge, or compulsory control and

DISS-DISSECTION WOUNDS.

maintenance there, should satisfactory evidence be brought before 'the Master in Lunacy' of the necessity for the step. Fre long, our law-makers will have hefore them the results of this Australian tentative legislation; but in the minds of many in Scotland a conriction has long since been felt that some law is absolutely necessary to meet the case of insane drinkers; and in 1557 and 1561 , our Commissioners in Lunaey gave utterance to most decided views to that cffeet. Some with them have thought that provisions of this kind should be embodied in a Lunacy Act; but we inchive rather to the opinion, that tle ease refuires special legislation; and that separate asylums, sanitaria, reformatories, or by whatever name inebriate institutions may be called, should be provided and licensed for this class of the unsonnd in mind. Interference with personal liberty wonld thus be more in accordance with the delicacies of the case, less painful to the feelings of those chiefly concerned, and more likely to seeure the humane and remedial objects contemplated. Lesides, the arrangements proposed mould greatly relieve ordinary asylums, in which the dipsomaniae inuates have hitherto been confined, and in which apparently they have occasioned much trouble and annoyance, from their comparatively early return to sanity, consequent on abstinence from stimulants, while as yet they had undergone very little moral improvement; and apart from this, the malady itself could in many respects be much better treated when separated from other insanities.

Were sufficient facilities afforded, under government sanction, for the control of dipsomaniacs, and their detention until fit for liberation, we have no cloubt numerous institutions-aud better than those hitherto existing on voluntary enterprise-would spring up in various parts of the country, to aceommadate individuals of all grades of society. Institutions so licensed, and endowed with neecssary powers, would not only be productive of mueli publie good, but be remunerative. Even supposing it necessary that goverument should establish three or four inebriate asylums in central situations of the conntry, these would soon be found to a great extent to be self-supporting, while they would assuredly lessen the burdens of the conntry otherwise, by the diminution of disease, destitution, and erime. Parochial boards, too, might send their inveterate drunkards into such asylums with more benefit and more ceonomy than they can kecp them in the wards of a workhouse. Into these houses, ready and immediate admission might be afforded for eases of sudden and wild delirium or mania from drink-say, on a medical certificate attested by is magistrate, justice of the peace, or clergyman; but snelh eases not to be detained longer than the acuteness or violence of the attack lasts, without information being given by the superintendents to the authorities appointed for this purpose, and the proper forms gone through. The other conditions of admission would be either voluntary or compul. sory-the former with consent of the dipsomaniac, without a formal marrant, and resideuce to continue only so long as he desired it; and the latter at the instance of any friends, medical men, or other parties applying to a sheriff for the necessary powers, or at the instance of a public prosecutor, for the good of the community, supposing no other parties are found willing, or could be compelled, to take the requisite steps. All arrangements in regard to forms of application, medieal certificates, sheriff's inquiry and permission, the character of the institutions to be licensed, the publie and private duties of superintendents in regard to the reception, protection, care, detention, and dismissal (whether probationally
or finally) of boarders, could easily be adjusted, if the chicf matters were agreed on.

There are just two other points to be brought into view so as to remove the objections which otherwise might naturally ho urged against these proposals. The first is, that careful inspection of the proposed institutions slould be made by cornmissioners appointed for the purpose, so as to see that all necessary humane and remedial arrangements are properly carried out, and that no one is detained longer than is esseutial for recovery; and the secoud is, that they, along with the medical superintendents, should decide when the inmates, although still under control, are sufficiently sane to execute any testamentary deeds, or to conduct other business matters, or to perform-nnder more or less surveillance of course-any external civil privilege ; or when they may be allowed probational leave of absence, as a preliminary step to final liheration. These latter arrangements would do much to remove the odium connected with personal restraint, and the 'supposed infringement of civil privilege; anct would effectually prevent any one from seeking to iuplose or prolong control from imbroper motives.

In the foregoing descriptions and remarks, we loave drawn freely from Dr Perklie's papers on The Necessity for some legalised Arrangements for the Treatment of Dipsomania, or the Drinking Insanity (Edin., Sutherland and Knox, $155 S$) ; and Dipsomania, a Proper Subject for Legal Provision, read before the National Association for the Iromotion of Social Science at Glasgow, in 1S60. To these we refer for a fuller elucidation of the subject; and we would also specially refer to Dr Christison's admirable lecture On some of the Medico-legal lielittions of the Habit of Intemperance (Edin., Adam and Challes Black, 1S61).

DISS, a market-town of the county of Norfolk, Englind, on the right bank of the Wraveney, 19 miles south-south-west from Norwich. It is a station on the Great Eastern Railway. The town stands on the slope of a hill; its streets are narrow, but many of the houses very good. 'There are brush manufactories and breweries. The church of St Mary is a large and handsome Gothic building. Pop. (1861) 316

DISSE'CTION WOUNDS. The practical study of anatomy is attended with eertain dangers, which, however, during the last quarter of a century havo been much lessened. The atmosphere of the dis-secting-room, now comparatively pure by the application of proper ventilation and other samitary measures, was, less than a generation ago, too commonly loaded with noxious emanations, which more or less poisoned the blood of those who continuously inhaied it, and consequently produced nausea, sickness, diarrbcea, a bad taste in the mouth, and other symptorus. Dissection wounds, which are alkilys attended with a certain amount of risk, were rendered more dangerous by the low state of the system, induecd by the depressing influence of the surrounding air. Now, probably in consequeneo partly of the purer air, and partly of the general and extensive use of antiseptic injections into the vessels of the subjects to be dissected, it rarely happens that severe symptoms follow a cut or puncture. We may incideutally remark that a puncture in making a post-mortem examination, when the body is comparatively fresh, is much more likeiy to be followed by serious consequences than a wound in the dis-secting-room in which the bodies have been lying for some weeks.

In the great majority of cases, punctures or cuts in the dissecting-room are followed by no umpleasant results; it being an established rule, that every

DIVIRIGI-DÖLLINGER.

puncture should be carefully sucked as soon ${ }^{-2}$ as it is observed, and then freely touched with nitrate of silver. When, however, the poison has been ahsorbed, and is going to act, the patient begins to have a feeling of gencral illness in less than 24 hours. He is low-spirited, faint, and chilly, and ofter complains of nausea. Then come rigors, intense headache, rapid and sharp (but weak) pulse, a coated tongue, romiting (sometimes), and great restlessuess. The first local symptom is intense pain in the shoulder of the wounded side. which is followed by fuluess of the neck and armpit, extending in the form of a doughy swelling down the side of the trunk, and assuming a pinkish tint.

The general symptoms increase in severity, the breathing becoming difficult, the pulse very rapid and weaker, the tongue dry, brown, and often tremulous when protruded, and the skin more or less yellow. The case may terminate fatally at or before this stage ; or abscesses may continue to form, from which the patient may more slowly sink; or if he survive, the arm may remain stiff and useless, or some of the fingers may be destroyed by gangrene. In the article Poisons we have noticed the rapidity with which death occasionally ensues in thesc cases. The essential points of treatment are briefly summed up as follows by Dr Druitt in his excellent remarks on this subject in The Surgeon's J'ademecum: 'The indications clearly are to eliminate the poison from the blood ; to support the streugth ; and to relieve pain, and promote the discharge of pus or sloughs.' The treatment, hoth general and local, is, however, so similar to that of Pyemia, that it is sufficient to refer our readers to that article.

As a precantionary measure in post-mortem examinations, the surgeon, especially if he be out of health, or if the patieut bare died from a disease of an erysipelatous character, should thoroughly anoint his hands with lard. Very thin india-rubber gloves have been recommended as a safeguard to dissectors; but they have not been foum to answer ; probably from the constraint to which they subject the action of the fingers.

DIVIRIGI (anc. Tephrene), a town of the province of Rumili, Asia Minor, on the Kurner-Su, a branch of the Euphrates, 28 miles north-west from Arahkir. Pop. supposed to be about 10,000 .

DOE'SBORGH (Drususlurgt), a town in the Netherlands, province of Gelderland, lies 11 miles east-north-cast from Arnhem, on the right bank of the Issel. It was formerly fortified, but the walls have been broken down, planted with trees, and formed into pleasant promenades. An entrenched camp has been constructed on the north-east side, letween the Issel and Old Issel, which here unite. The streets are broad, and many of the houses handsome. There are several benevolent institutions, a srammar-school, boarding-schools for boys and girls, and good public schools. The trade is considerahle. Ship-huilding, book-printing, the making of Eau de Cologne, preparing mustard, \&c., are carried on. In 1864, pop. 4064.

DO'KKUMI, a town in the Netherlands, province of Friesland, lies 12 miles north-east from Leeuwarden, on the Ee (pronounced $A y$), which cuts it into two irregular parts. Within the town is a broad laven, suited both for sea-going and inland ships. There are seseral regularly built streets and many neat houses. The trade in flax, cattle, wool, and chickory is extensive. In the Dokkummerdiep, shrimps are largely taken. Ship-building, gin-distilling, beer-brewing, carding wool, \&c., are principal industries. There are a grammar and other good schools. In 1864, pon. 453 J.

DOLI'MA, a town of Austrian Galicia, in the
circle of Stryi, 60 miles south from Stryi, on an affluent of the Swica, a branch of the Driester. It has extensive salt-mines. Pop. 5974.

DÖLLiNGER, John J. Jgnatius von, one of the most distinguished of the divines and theologians of the modern Roman Catholic school of Germany, was born at Eamberg, February 2S, 1799. He was educated in the episcopal seminary of Würzburg, where he received holy orders. For a short time, he engaged in parochial duties in his native diocese; but having manifested a peculiar fitness for a literary life, he was appointed professor in the seminary of Aschaffenburg, whence, in 1826, on the establishment of the nem university at Munich, he was transferred as a member of the Theological Faculty, being appointed to the chair of Ecclesiastical History of that important iustitution. From the first, he was distinguished as a ready, no less than profound, writer. He inaugurated his new professional career at Mnnich by a work on The Doctrine of the Eucharist during the First Three Centuries, in 1826 . The studies of his chair, however, lay rather in the direction of history than of doctrine; and his first essay as a historian was a volume on the IIIstory of the Refornation, which was designed as a continuation of the unfinisbed Handbook of Church History lyy Hortig. Eeing dissatisfied with this work, he projected an entirely new History of the Cluurch, of which the first volume was published in 1833, and the second in 1835, and which was speedily translated into French, and also into English. This work, however, was only carried in its extended form as far as the 15 th c.; although a compendium which came down to the Reformation, was issued between the years 1836-1843, in which jears Dr D. published several otber works, the most important of which, for general literature, is a very learned and suggestive essay on The History, Character, and Influence of Islamisn (4to, 1838). A still more curious work is a large compilation in three massive volumes, entitled The Reformation, its Internal Development and Effects (1846-1848). The design of the work, which consists almost entirely of extracts (connected by a very slight thread of narratice) from the mritings of the leading reformers, especially Germans, and of other contemporary Protestant writers, is to present, in the words of the actors in the great religious drama of the 16 th c., a picture doctrinal, moral, social, and political, of that memorable revolution and of its results; but as the great body of the authorities are German, the interest of the work is mainly national, many of the names being little known beyond the limits of Germany.

For a time, having relinquished the chair of history to his friend Dr Möhler, D. undertook that of Dogmatic Theology ; in which capacity he delivered lectures on 'The Philosophy of Religion,' on 'Symbolism,' and on 'Patristic Literature,' none of which, homerer, have been published. But he was a frequent contributor to the well-known Munich journal, the Historisch-politische Blätter, many of whose volumes contain articles and series of articles from his pen. He published also about the same time several pamphlets on subjects of occasional interest or of local controrersy; and he was one of the projectors and (in the early volumes) chief contributors, of the well-known Catholic cyclopredia entitled Kirchen-Lexicon. His articles on Luther, on Bossuet, and on Duns Scotus, attracted much attention, and are distinguished by great learning and brilliancy, as well as by much moderation. In the politico-religious movement whicb agitated Germany in ISI61847, D. was called to a prominent position, being elected to represent the university of Munich in the Bararian chamber. Several of his speeches hare been
published; but in the strange upturning of parties which took place in the latter year, 1). was deprived of his professorslip, and thus beeame disqualitied to sit in tho chamber; but in the German parliament of Fraukfurt in 184S, be was restored to public affairs, and was at once recognised as the leader of the Catholie party. Nost of the measures of importance bearing on the relations of elurch and state, which (however ineffectively) were originated in that assembly, were prepared or suggested loy him. In 1849, he was restored to his prufessorship at Dhmich, and also to his place in the Bavarian chamber, which he held till 1852 . Since that year, he has devoted himself entirely to theologieal literature. His work on the well-known Philosophumena of Iippolytus (q. v.), entitlel IFippolytus und Kallistus (1853), is a masterpiece of patristic criticism; and the still more comprehensive work called Meathenism and Judaism, the Vestibule of the History of Christianity, is considered the most masterly survey of the religious, moral, and social condition of the world at the advent of our Lord, which has appeared in any language. It was followed lyy a work in two volumes, The FFirst Ages of Christianity, to which it was designed as an introduction, while the latter work itsclf was intended to form the introduction of the history of the development and progress of the Cliristian religion. In the agitation which pervaded the Catholic world during the early discussions of the question of Italian unity, D. delivered an address at Monich, which, in consequence of a lasty and garbled report, was represented by the jonrnals as hostile to the temporal sovereignty of the pope. In order to vindicate himself from this charge, and at the same time to explain his real opinious on that important (question, D. published, in 1861, an elaborate work entitled The Church and the Churches, which is partly a comparative survey of the social and constitutional conditions, as well of the several non-Catholic communions, as of the Catholic Chnreh itself, and partly a résumé of the history and the present condition of the J'apal States; the objeet of the writer being to shew, that while the possession of temporal sovereignty is, in the present order of things, the means providentially established for maintaining the spiritual independence of the papacy, yet such sovereignty is ly no means essential; that the papacy long existed without it, and that even if it were overthrown, l'rovidence would devise another means of attaining the same end. The second lart of the work enters into a criticism of the civil and ceonomical administration of the Papal States. The pullication of these strietures is understood to have given dissatisfaction to the authorities, as being, althongh well meant, inopportunc, and from this inopportuneness, unfriendly. A similar feeling is said to have been drawn forth by the part taken more recently by Dr D. in reference to an association of German Catholies called the Catholic Union, some of the prineiples of which were supposed to trench clangeronsly upon the province of anthority in matters of religious inquiry; but his orthodoxy and learning are ninquestioned, and his influenee, especially among Catholics of his own nationality, is very great. In addition to bis accomplishments in book-learning, Dr D.'s attainments as a linguist are very remarkable. Besides the learned languages, in which he possesses a rare mastery, he speaks and writes most of the modern languages with remarkable ease and purity.

DO'LO, a town of Northern Italy, in the government of Venice, and 12 miles west from Venice, near the Venice Lailway, on the Brenta and Brentano. It is a station on the railway between ladua and

Venice. In the vicinity are many tine villas of the Venctian nohility. T'op. 5523.

DO'NA, SAN, a town of North Italy, in the province of Venice, 18 miles north-east from Venice, on the left bank of the J'iave. I'op. 6098.
1)O'RCHESTLR, a heautiful eity of Massachusetts, U'. S., on lhoston hay, four miles snuth-east of Boston, It contains many .legant residences, 16 churches, two lonks, and manufactories of paper, iron, entton, elocolate, and fumiture, which is a large trarle. The fortification of Dorchester Ileights, in 1766 , empelled the eracuation of loston. 1'on. in 1860, 9769 .

DORE, Padl Gestaye, a Frencla artist of great and versatile power, was born at Strashurg in 18:32. He was educated at Paris, and very early gave indieation of superior ability: IIis first attempts were sketches, contributed to the fournal pour lite and others of the l'aris periodicals. In 1855, he exlibited his pieture of the 'Battle of the Alma,' which was followed by the "Battle of Inkermann' in 1857. In this year he first beeame heard of in England by the reissue of his ilhustrations of the legend of the 'Wantering Jew,' the power of weird and grotesque imagination displayed in which ennld not fail to arrest ittention. The snccess of this work might seen to lave determined the future career of the artist, who las since chiefly worked as an illustrator. Ilis productiveness in this field has been, and continues to le amazing. His chicf undertakings bitherto lave been illnstrated editions of Rabelais, of the Contes Drolatiques of De Balzae, of Dante's Divina Commerlia, and of Don Quicotc-to which must be adderl a vast manss of miscellaneous work. At Christmas 1866, there was issued a splendid celition of Temyson's Elrine, enriched with a series of his choicest designs. He is now (1867) engaged in illustrating tho Bible; and it is understood that, on the conclusion of this great work, he is pledged to procced with Homer and Shakspectre. In addition to his work of this kimel, he has, from time to time, reproduced as pietures and exhihited in Paris certain select designs from the works on which at the time lee chaneed to be engaged. D. is unquestionably one of the most remarkable geniuses of his time; and in 1561, he received the decoration of the Lecrion of Ifonour, in recoguition of bis claims as an artist.
DOUGLASS, Frederich, American orator aud journalist, was born at Tuckahoe, near Easton, Maryland, about 1817. His father was a white man, his mother a negro slave, and he was reared as a slave on the plantation of Colonel Edward Ifloyd until ten years old, when he was transferred to a relative of his owner at Baltimore. There he worked in a ship-yard, and tanght himself to read and write. At the age of 21, he eseaped to New York, and thence to New Bedforl, in Massachusetts, where he married a woman of colour, and worked until 1841, when he attended an Anti-slavery Convention at Nantucket, and spoke so eloquently on the subject of slavery, that be was employed as an agent of the Massachnsetts Anti-slavery sueicty, and lectured for four lyears with great success. In 1845 , he published his Antobiography, and aecepted an invitation to make a lecturing tour in Great Britain, where, in 1846, a contribution of $£ 150$ was made to louy his frectom. Iecturning to America, lee established, in 1847, Frederick Douglass's I'aper, a weekly abolition newspaper, at Jochester, New York ; and deserting the extreme party of Garrison disumionists, he denonnced slavery as unconstitutional. In 1855, he re-wrote his Antobiography, which, with the title of My londrage and my l'reedom, attained to a rapid sale of 20,000 . Mr D. is a tall, dark mulatto; a

DOTVNING COLLEGE-DUFOUR.

bold, vigorons, earuest, and fluent speaker, and a ready and able debater.

DOWNING COLLEGE, CAntbridee, founded solely by Sir George Downing of Gamlingay Park, Cambridge, who, by a will of date 20th December 1717, devised his estates in the comnties of Cambridge, Bedford, and Suffolk to various relations in succession, and on failure thereof, to brild and fonme a college on a plan to be approvell of by the two archbishons of England and the masters of St John's and Clare Colleges. Owing to various litigations and other difficultics, it was not till 22d September 1800 that the college received its charter, sealed with the Great Seal, nor till May 1821 that the buildings were sufficiently advanced to admit of undergraduates residing and keeping terms. The college will consist of a master, two professors (one of Law and one of Medicine), at least $\$$ fellows, and at least 10 scholars; but as yet only the master, professors, and 5 fellows have been appointed, the election of the remainder being deferred till the building is completed. Of the S fellows two must be resident, and of these one must be in holy orders ; the resident fellows hold their fellowships for life, but the tenure is affected by marriage; the 6 non-resident fellows, who are presumed to be persons actively engaged in the studies of law and medicine, hold their fellowships for 12 years. This college had, in 1565, 46 members of senate, 28 undergraduates, and 90 members on the boards.

DRAINAGF-TUBES, in Surgery, are a recent but important addition to the surgical appliances for which this profession is indebted to a distingnished French surgeon, M. Chassaiguac. They are composed of india-rubber, about $\frac{1}{6}$ th of an inch in diameter, perforated with mamerons holes, and of varions lengths. They are of great use in chronic abscesses, Empyema (q. v.), \&c.; and the method of employing them is as follows: In the case of a large clronic abscess, which it might be dangerous to empty at once, the surgeon takes a long trochar (a tapping instrument such as is used to draw off the fluid in abdominal dropsy), introduces it at the top of the abscess, and brings it ont as near the hottom as possible. Through the tube of this instrument a drainagetube is inserted, which is secured in its place; the tulse of the trochar being removed. Through the drainage-tube the pus oozes out, drop by drop, and the abscess is thus emptied. Like all new inventions, it has its advocates and opponents. Thus, while Mr l'aget, in his article 'Sinus and Fistula' in Holmes's System of Surgery, says: that ' drainage, for which the perforated caontchouc-tube of M. Chassaignac is a very happy invention, is applicable to a great number of cases; but chiefly to those in which a sinus or incomplete fistula depends mainly on pus collecting at a level below or distant from the aperture of discharge, or more gencrally, when pus is apt to be retained '-Mr Paget's surgical colleague at St Bartholomew's Hospital, in his article 'Abscess,' which immodiately precedes that from which we have just quoted, objects to the drainage-tube on the grounds that, as a foreign body, it sets up irritation, and adds that 'if a proper opening he made there can be rarely any occasion for a drainage-tube ; and however carefully it is inserted, it must of necessity inconvenience and distress the patient.' Notwithstanding $11 r$ Coote's objections, drainage-tubes are gradually getting into nse in hospital practice.

DRAPLRR, John William, American chemist and physiologist, was born near Livcrpool, England, May 5, 1811, and cducated at a Wesleyan school at Woodhouse Grove, and later pursued his studies in
chemistry under Dr Turner of the London University. In 1833, he joined some of his relations who had emigrated to America, and in 1836, took his degree of Doctor of Medicine in the university of Pennsylvania, and was appointed Professor of Natural Philosophy, Chemistry, and Physiology, in Hampden Sidney College, Virginia. In 1839, removing to the city of New York, he was connected with the preparatory department, and in 1S41, joined Doctors Mott, Patterson, \&c. in founding the Medical College of New York University, in which he was at first Professor of Chemistry, and in 1S50, of Physiology. He is a clear and able lecturer, and a voluminous writer, baving been a liberal contributor to the American Journal of Medical Science and the Edinburgh Philosophical Journal, and published a treatise on The Forces which produce Organisation in Plants (4to, 1844); Text-book of Chemistry (I2mo, 1846) ; Text-book of Natural Philosophy (Svo, 1847); Iuman Physiology, Statical and Dynamical, or the Conditions and Course of Life in Man (Svo, 1856). This work is a thorongh treatise on the chemico-vital theory, and profusely and admirably illustraterl. Dr D. has also mublished Thoughts on the Future Policy of America (Svo, 1865).

DROY'LSDEN, a large and rapidly increasing village of Lancashire, England, in the parish of Manchester, and 4 miles east from Manchester, a station on the Lancashire and Yorkshire Railway. It is situated on an elevated plain, is irregularly built, the houses of brick, but many of them very neat. The cotton manufacture is extensively carried on; there are also print-fields, dye-works, and copperas-works. Pop. (1861) 5980.

DUBU'QUE a city and port of Iowa, U. S., on the right hank of the Nississippi, 450 miles above St Lonis, built on a bluff 200 feet high, contains a city hall, market-house, U. S. custom-house, Episcopal seminary, surveyor-general's office, 14 Protestant and 3 Catholic churches and cathedral, 5 newspapers, of which 3 are German. Settled in 1788 , by Julian Dubuque, a French trader, it became the centre of a large trade, and is the chief clepot of the great lead region of Illinois, Wisconsin, and Iowa. Yop. (1S60) 13,012; (IS65) about 16,000.

DUFOUR, Guillaume Hevri, a Swiss general, was born at Constance iu 1787, of a Genevese family. While Switzerland formed part of France, he studied at the Polytechnic School of Paris for two years ; and on leaving it, he received an appointment as an officer of engineers in the French army. At the fall of Napoleon, he entered the Swiss service, and rapidly rose to the rank of colonel. When the government survey of Switzerland was undertaken, he was appointed Director-at the same time acting as the Principal of the Srriss Military School at Thun. 1n 1840, he published A Treatise on the Artillesy of Ancient and Medieral Times; and in 1542, A Mantal of Military Tactics. In 1847, be was raised to the rank of general, and intrusted with the command of the army employed against the Sonderbuml. He defeated their forces at Freiburg (13th November) and at Lucerne (2lth November); and by his promptitude and skilful maneuvres, secured a triumph for the liberal party in time to prevent the interference of foreign powers, diplomatically or otherwise. The diet voted him a gift of 40,000 franes, and for a time he was the most popular man in Switzerland. His politics were not, however, those of the Genevese democrats, and in 1845 they deprived him of the public offices he had previously held. In 1856, he was again admitted to the council of Genera, and sent on a special mission to Louis Napoleon a propos of the dispute between

DUPPEL-DURUY.

Switzerland and Prussia about Neufchatel (sec lienn in Sopplement). In 1S64, be acted as president of the confcrence held at Geneva relativo to the treatment of the weunded in time of war.

DÜPPEL or DYBBOL, a small fartitied town of the duchy of Slesvig, in the peninsula of Sundewitt, near the Als Sund-the strait which scparates that peninsula from the isle of Alsen, and 16 miles north-east from Flensburg. During the war between Germany and Denmark, it was bombardel for more than a month by the Prussians, and finally taken, April 18, 1864.

DU'RKlIEIM, a town of Rhenish Mavaria, on the Iseaach, 20 miles north from Landan. It stands at the entrance of the valley of the lscnach, at the base of liills which skirt the plain of the lihine, and the neighbourhood is very beautiful. Many invalids resort to D. on account of its amenity, and to take the grape-curc. It has manufactures of tobacco, cutlery, and paper. D. was fornerly the residence of the priuces of Leiningen-Hardenburg, whese palace was burned by the French in 1794. Not far off are the salt-works of Phillipshall. The summit of a neighbouring height is crowned by a rampart of loose stones, $6-10$ feet high, $60-70$ fect wide at the base, ancl enclosing a space of about two sq. m., called the Heidenmaucr (heathens' wall), which the lomans are said to have built to keep the barbarians in check, and where Attila is said to hare passed a winter, after haring wrested the fortress from the Tomans, when pressing on his way to Rome. Pop. (186t) 5581.

DURUY, Victor, historical writer, ex-professor, and Minister of Public Instruction in Prance, was born at Paris in 1811. Members of his family were employed as designers in the lace-works at Gobelins, and he was, in his boyhood, intended to follow their occupation. He was, on this account, somewhat late in begioning his elassical studies, which he did at the College Kollin, then called the College Sainte. larbe; bnt the progress he made was rapid enough to enable him to enter the Ecole Normale in his nincteenth y'car. Here his career was sufficiently distinguished to obtain for him, in $15: 33$, in succession, the presition of teacher of history in the College of Rheims - which he only held for two months-and that of teacher or Professor af History at Paris, in the College IIenri Quatre, now the College Napoleon. This college (as well as the former) is a school of secondary instruction, in which history forms part of the programme of studies of the second (the next to the highest) class. The pest which D. obtained in it was therefore by no means a high one. He continued to fill it till 1861. He had meanwhile gained a considerable reputation as a teacher of history, and as a writer on history and geography. Most of his books trere school-books, bnt they were so good that they had a great inflnence upan the teaching of history in Frencla schools. He got the degree of Doctor of Lettersin 1853. In 1861 and the following year, he passed through a rapid course of promotion. He was first appointed an Academy. inspector of the Academy of Paris (an inspector of scheols of secondary instruction in the district under the jurisdiction of that Academy); next, Master of Confercnces at the Ecole Narmale; then Inspectargeneral of Sccondary Instruction; and, finally, Professor of History in the Ecole Polytechnique. From the last-named past he was, on the 234 June 1863 , by imperial decree, adranced to the office of Minister of Public Instruction.
D., wha, by activity and ability combined, had made himself distinguished while filling ir somewhat humble office, was no sooner charged with the control of Public Instruction, than he began to carry
out inportant changes in the educational system of France-which lad undergone scarcely any modification since the introduction of Guizat's Education Law in 1833. He instituted a tribunal for trying charges bronght against professors. Jfe has since remodelled the examinations for the degree of Bachelor of Letters. He first suspended, and afterwards abolished, the division of the highest class, which had 1 revailed in schools of secendary instruction, into two sections: the one rhetorical or literary, the other philosophical (scientific)-thus making the study of science obligatory uron all who passed through the school enrriculam. IIe introduced other changes into the course of secondary instructiou, of which the most important-at any rate, that which has been most discussed-was the teaching of contemporary history in the Lyceums, or departmental public schools. Previously, the textbooks used in teaching history in these schools were Bossuct's Histoire Universclle and Mentesquieu's Grandeur et Décadence des Romains-these works being supplemented by the lectures of the professor. D. had a text-book prepared for their use, containing a compendium of French history to so late a period as that of the recent French invasion of Mexice; and it has been alleged that this work, and the circulars which the minister published for the instruction of teachers of histery, disclosed a systematic attempt to imbue the youth of France with a Bonapartist view of recent history-to malio the teaching of the schools a source of future strength to the Empire. Perhaps it would be diflicult altogether to acquit D. of the Machiavellian design imputed to him. As to primary instruction, he officially proposed to the Emperor to make it compulsory and gratuitons; but the proposal was badly receised by the publie, and the Emperor witliheld his sanction. He bas, during the present year, procured legislative sanction for a measure which will greatly increase the number of primary schools, especially of girls' schools, for which the provision made had previously becn inadequate. The night-schools for adults, too, have been greatly improved and extended under his care; and the educational liburies established in connection with them are proving very effective aids to the education of the working-classes, Last year, be procured an enactment for establishing schools of special sceondary instruction, intended mainly to teach the elements of science to boys of the lower middle class who are to be engaged in manufactures or commerce, and, in the country districts, to give systematic instruction in the methods of agriculture and herticulture.

The matters which have been mentioned are only a few of those which D., with bold and mensparing hand, lenving no part of the system of education untouched, has dealt with since his entry upou office. It is unquestionable that he has in many casces effected improvements; but the spirit and tendency of his administration have been strongly impugned, and his conduct has been jealously watched ly the best portion of Frencl saciety. It is alleged that he has been steadily attempting to secure the entire control of education for the state; and to use national schools as a state instrument. For example, the changes which he introduced in the examinations for the degree of Bachelor of Letters are said to hare been intended to force candidates to study at the gorernment establisliments ; and they do seem, if their working has not been misrepresented, to place candidates educated elsewhere at a disadrantage. In such charges as this, there may be exaggeration or misconception; but D. is an ardent Bonapartist, and it is natural to suppose that he has intended the results which his acts are

EAGRE-EDENKOBEN.

calculated to produce. He is still Minister of Public Instruction. He was decorated with the Legion of Honour in IS45, and was promoted to be an officer of the order in 1863. He has been an officer of the Turkish order of Medjidie since 1857.

Of D.'s numerous works, not a few were written for a series published under the title L'Histoire Universelle, of which D. was the editor. His earliest work, Géographie Politique de la République Romaine et de l'Empire, first appeared in 1838 ; it was followed by Géographie Historique du Moyen Age in 1839; Géographie Historique de la France in 1S10; and Atlas de Géographie Historique Universelle in 1841. In 1810, he published the first volume of a work of greater pretensions than these-Histoire des

Romains et des Peuples soumis a leur Domination; a second volume appeared in 1844; a third in 1553, under the title L'Etat du Monde Romain vers la Fondation de l'Empire; but the work appears to be still incomplete. Histoire Sainte d'après la Bible (1545), Histoire Romaine (184S), Inistoire de France (IS52), Histoire Grecque (1851), were among his subsequent productions. In 1862, appeared two volumes of his Histoire de la Grèce Ancienne, a work which has been crowned by the French Academy. Histoire Moderne (1S63), ITistoire Populaire de la France (1863), Histoire Populaire Contemporaine (1864), Introduction Générale à l'Histoire de France (1865), were works prepared under his direetion, aud some of them partly consisting of extracts from his previous writings on French history.

E

$A^{\prime} G R E$, another name for the Bore (q. v.) in tidal rivers

EAR, Diseases of the. See Deafness and Otimis.

EAU DE LUCE is the name given to a preparation which was formerly a very popular stimulant, and is still occasionally used. It is a mixture of oil of amber with alcohol and ammonia, and has a milky appearance. It had a great reputation in cases of snake-bites. R ECRASEUR, the name of a long steel guished French surgeon, M. Chassaignac, and consisting of a fine clain which, passed round any structure-as the base of a tumour, for examplegradually constricts it, and finally crushes its way through it by means of a screm or rack for tightening it, which is worked at the end of the handle. The adrantage of this instrument orer the knife is, that it causes little or no bleeding, the torn vessels spontaneously contracting and closing. It is specially applicable to cases of cancer of the tongue, piles, polypi, and rarious kinds of tumours. When a solid mass-as, for example, a considerable portion of the side of the tongue-is to be removed, the chain is sometimes pressed throngh the centre, and made to cut two lines successively in the form of a T , in which the diseased structure is included. As the pain which is caused by this instrument is very great, the patient should be placed completely under the action of chloroform before it is applied.

ECRICO'K, or ICRICOK, a town of Guinea, tbe capital of a petty chief, on the Old Calabar rirer, about 100 miles from its mouth. The river is here about a mile broad. The town consists of mud-houses, erected on platforms.

ECTHY'MA is a pustular disease of the skin, in which the pustules often reach the size of a pea, and have a red, slightly elevated, hardish base. In the course of tro or three days after the appearance of the pustule, it is replaced by a scab, which adheres firmly to the base, and is somewhat concare. On its remoral, a deep red mark, a nert scah, an ulcer, or a healed scar remains. The disease mny be acute or chronic. The acute form is ushered in by slight constitutional, not amounting to febrile, symptoms, and by a burning or pricking pain at the seat of
the eruption, which is usually confined to the neck and shoulders. The disease runs its course in ten days or a fortnight. In chrouic ecthyma, the pustules which follow in crops (often for several months) are usually scattered over the extremities. This form of eruption indicates a low state of the system. It sometimes follows the acute disease, and not unfrequently is a tertiary symptom of syphilis. Pustules, which in no respect seem to differ from those of ecthyma, are produced by various local irritants. Thus the affection of the hands, popularly known as the grocer's itch, is produced by the irritation of brown sugar, perhaps by the acari which are so often present in it. Stone-masons are said occasionally to suffer from a similar disease. With regard to treatment, the acnte form would in most cases doubtless disappear in the course of a fortnight, if left entirely to itself; but as tbe bowels are usnally disordered, an occasional alterative aperient, as a few grains of gray powder with a little rhubarb, may be prescribel, and tepid water applied locally gives great relief. The patient should, moreover, be kept on a moderately good, nutritious diet. In the chronic form of the affection, a meat diet and the use of wine or porter are essential; while tonics, such as a combination of bark and nitric acid, are called for. Tepid baths are often useful, and if there is sleeplessness, an opiate should be taken at or shortly lefore bedtime.
EDA'MI, a town in North Holland, lies 12 miles north-north-east from Amsterdam. It has seven entrances, and lies within a green dyke, ornamented by two rows of elm-trees. There is an extensive trade in wood and cheese. The principal industries are ship-building, rope-spinning, sawing wood, tanning leather, \&c. There are a Lutheran, a Baptist, a Roman Catholic, and two Reformed churches, one of the latter having beautiful painted windows. In 1864, pop. 5180.
E'DENKOBEN, a town of Rhenish Bavaria, in the circle of Pfalz, six miles north-north-west from Landau. It has a station on the Mannheim and Strasburg Railway. It is surrounded by vineyards, which Prodace mnch wine, but not of rery good quality. Cbestnuts are also produced in large quantity in the neighbourhood. There is a bathing establishment at \mathbf{E}., also several mills and manufactures of fire-arms. It has important grain markets.

EDUCT-ELCJIO.

Near it are the royal villa of Lulwigshohe, and the chureh and tower of the ruined convent of ILeilsbruck. F'op. 5140.

F'DUCT is a term employed in Chemistry to indicate that the body to which it is applied is separated by the decomposition of another in whieh it previously existed as sueh. It thus stands in opposition to product, which denotes a compound not previonsly existing, but formed during elecomposition. Thus, the volatile oils which pre-exist in cells in the fruit and other parts of plants, and oil of sweet almonds obtained by pressure, are wluets; while oil of bitter almonds, whieh does not preexist in the almond, but is formed by the action of emulsin and water on amygdalin, is a product.

EI'BENSTOCK, a town of the kingdom of Saxony, in the circle of Zwickau, and 16 miles south-south-east from Zwickan. It stands in a ligh and hleak district. It has extensive manufactures of chemieal products, muslins, lace, tobacco, and tinware, and a considerable trade in eattle. Medieimal plants are very extensively eultivated. Fol. (IS64) 6.400.
F.JU'TLA, a town of Mexica, in the provinee of Oajaca, on a small river, 250 miles sonth-south-east of Mexico city: It was the eapital of a dep. of the same name, in the new division of the country made by Jaximilian. Jop. 712 S .

EKHMI'M, or AKHMIM, a town of Upper Egypt, 53 miles sonth-south-east from Siont, on the right bank of the Nile, and about a quarter of a mile from it. It oceupies the site of the ancient Chemnis, or Panopolis, one of the great cities of the Thebaid. Remains of aneient buildiness exist. Cotton fabries are mannfactured here. Hop. supposed to be ahout 10,000 .

EL BASSA'N', ALBASSAN , or ILBASSAN, a town of European Turkey, in the province of Albania, on the Scombi, 35 miles east from the mouth of that river. It stands in a fertile plain, surrounded by monntains, is the capital of a sanjak, and the seat of a Circek bishop. It has manufactures of iron and eopper wares. Pop. 5000.

ElciIO, Fraxcis Wemyss-Charteris-Dotglas, Toord, born Angust $4,181 \mathrm{~S}$, is eldest son of the cighth Earl of Wemyss. This ancient Scottisl family has a traditional descent assigned it from the Ilouse of Macluff, Earl of Fife. Sir Mlichael de Wemyss in 1200 was sent to Norway by the lords of the regency in Scotland to conduct the voung Queen Nargaret to her dominions. He swore fealty to Edward I. in 1:96, and was a witness to the act of settlement of the erown of Scotland by King Fobert 1. at Ayr in J35. I'rom him lineally descended Sir Johu Wemyss, who was ereated a baronet in 1625 ; raised to the peerare of Scotiand as Baron Wemyss of Eleho in 1625^{5}; and advanced to the dignities of Earl of Wemyss in the county of Pife, and Lord Ekeho and Nethel, in 1633. Alhough indebted for his honours to Charles I., he was engaged cluring the subsequent ciril wars on the side of the parliament. David, fourth earl, was alpointed by (ueen Anne Lord-high-admiral of Scotland, and one of the commissioners for eoneluding the treaty of Union. 'The eldest son of the fifth earl having taken part in the rising of 1745 , escaped to France after the battle of Cinlloden, and was attainted. At his death, the family honours were taken uply his brother Francis, sixth earl, who, having inherited the estates of his maternal grandfather, Colonel Charteris, of Amisdiekl, connty Haddington, hal assmmed the surname of Charteris before that of Wemyss. Franeis, his grandson, beeame heir to the titles of Earl of Dareh, Viseount Peebles, and Laron Donglas of

Neidpath, on the demise of William, third Earl of March, and fourth Duke of Quecnsluerry, in 1810. In 18:l, he was male Baron Wemyss of the United linglom, by which title the possessor of the earl. dom holds his seat in the LTouse of Lords. A parliamontary reversal of the attander of Lord Lleho, olftained in $18^{2} 6$, put beyoml question the suecession to the Senttish honours. Ilis son, the present earl, is Lorl-lientenant of Jeelblesslire, and lieutenant-general of the Joyial Arehers.
lord E. was elmented at Clurist ' 'hureh, Oxford, where he graduated B.A. in IS4I. He was returned to the llouse of Commons as M.I' for East Claneestershice from July 1841 to Felmuary 1816, and has sat for Iladdingtonsline since $18 \frac{17}{4}$ to the present time (5867). Jle took his seat on the Conservative benches, but aceepted oftice, with other members of the prarty of sir Iobert Peel, in the coalition government of the Larl of Aberdeen, and was a Lord of the Freasury from January 185:' to Feluruary 185.5. In 1850, the menacing attitule of France, and the periodical recurrence of scasons of alarm, cansed by the unprotected state of our shores, and the possibility of invasion, led to an organisation of lifle Volnnteers in Great Pritain. In this movement, Lord Elcho took the varlicst and most prominent part. He organised a regiment of London Scottish Volunteer Rifles, of which he was appointed major in 155%, and lientcnant-colonel in 1560, and went to Hythe Barracks, to receive instruction in the use of the Lufield rifle, and to the camp at shornelifle, in order to beeome familiarised with regimental duties and brigade movements. Lord Eleho also projected the National Association for the Promotion of Rille-shooting, the first shet at whiel was fired by her Majesty, July ", 1860, at Wimbledon. He and other patriotic noblemen and gentlemen associnted with him in the Volnnteer movement, lawd the satisfaction of assisting, in 186io, at two grand reviews loy the Queen of viarions brigades of Volunteer Ifitle corps-of 20,000 men in Hyde Frark, and 22,000 men in Edinburgh. The Wiar Otlice assisted in organising the force, and thins was consolidated the Volnnteer army of Great Britain, who adopted as their' motto, 'Defence, not Defiance,' The National Rifle Association, mainly under the auspiees of Earl Speneer and Lord Li, has become an established institution-the centre and leystone of the Volunteer movement. Lord E. has since given additional efticiency to the Volunteer movement by watcling, in his place in parliamont, its financial relations with the government. In IS65, Lord E. took a more active part in parliamentary politics tlian had been possible during lis laluours in promoting the Volunteer movement. He spoke against the $£ 6$ franchise proposed by Mr Baines, and gave notiec of a motion for a lioyal Commission to examine into the extension of the franchise. When the government of Larl liussell bronght in the Iieform Bill of 1866 , Lord E . organised a secession from the Whig party, under the leadership of Earl Grosvenor, which was nicknamed the 'Cave of Adullam,' but which suceceded in defeating the Jill, and displaeing the government. Lord Derby, on his accession to the premiership, offered a post in his government to Lord E., but the offer was declined. In 1567 , his party found themselves powerless to prevent the passing of a more demoeratic Reform Bill than that whieh in the previous year they lad thrown out. Lord E. is a fluent and Heasant speaker, and he is exceedingly popular with the Volunteers both of England and Scotland. He married, 1843, the Lady Aune Frederica, second daughtcr of the first Larl of Lichfield, who has assiduously assisted in

ELECTRIC LOOM-ELECTROPHONE.

the great work of his life-the organisation and success of the Volunteer movement.

ELE'CTRIC LOOM. A reference was given in Jacquard Loom to Weaving, for a notice of Bonelli's electric loom; having been accidentally omitted in the last-named article, the notice is inserted bere. The machine is not so much a loom, as an electric appendage to the Jacquard apparatus. Although not at present brought much into use, its principle is very beautiful, and is likely to be suggestive of other applications. The apparatus will suit auy Jacquard loom. The desiga or pattern to be woven is painted with a brush and black varnish on an endless band of paper covered with tinfoil. When in action, the band passes under a series of metallic teeth connected with a galvanic battery. Whenerer the foil touches a tooth, a galvanic current is sent through them both to coils of wire surrounding small bars of irou: the bars become temporary magnets; but as soon as the varnish on the foil touches a tooth, the galvauic current and the magnetism alike cease. There are thus produced rapid alternations of action, which are made to work the Jacquard apparatus in a remarkably ingenions way. Small iron rods are placed opposite the ends of the small bars; when the latter are in a magnetic state, they attract or draw forward the former to a small distance; but when the bars are not magnetic, the rods are not attracted. The rods fill like pistons, but without tightness, a series of holes in a vertical iron plate, and are drawn a little way out of these holes whenever the bars are magnetised. Now, the pattern on the foil coutinually changes the contact of the foil and the varuish with the teeth; this change makes the bars alternately magnetic and non-magnetic; this, in its turn, varies the order in which the rods are drawn out of the hales; and this, finally, converts the plate into a sort of Jacquard card, with its holes partially opeu and partially closed, in accordance with some determinate pattern, and changing these openings and closings continually. A treadle moves the plate towards the bars, with a swinging motion; and each swing is accompanied by oue throw of the shuttle. This is for onecolour thread; if there are two or more, there must be as many bands of tinfoil as colours: the arrangement is more complex, but the principle is the same. By varying the velocity of moving the band, the patteru may be made larger or swaller, and thicker or thinner in the closeness of the weh; while the design may quickly be changed by substituting auother strip of foil.
ELE'CTRO-ME'TALLURGY. Since the writing of Galvanism, mauy advances liave beeu made in the art of electro-metalhurgy: At that time it was nearly always the case, in electro-plating, that the silver presented a dull appearance when drawn out of the trough, requiring to be polished by a burnisher and a scratch-brush. Messrs Elkington have, however, derised a mode of causing the galvanic action to polish the metal. If bisulphide of carbon be added to the bath, or, better, if the article be dippel into a bath containing this liquid after imuersion in the usual acill solution of silver, a thin but hard and bright layer of silver is deposited on the main layer, brilliant enough to do withont polishing. There are certain difficulties iu the pracess which reuder it only applicable under some circumstances.

Both copper and brass are naw made by electricity. Messrs Elkington have a plan for lringing copper ore, by the usual processes, to that degree of refining called 'pimple' or 'hlister' copper; after which the rest of the operation is performed by
electricity. The pimple copper is cast into plates eighteen incles square by three-quarters of an inch thich, one of which is used to form the positive pole in a battery; the negative pole being a very thin sheet of pure refined copper, abont one-thirtieth of an inch in thickness, and perhaps twelve inches by six. This thin plate forms the basis on which any amount of pure copper may be deposited. Particles of pure copper, by the electric action, separate themselves from the crude plate of pimple metal, and attach themselves to the thin plate of pure eopper. By this meaus plates twelve inches by six, and an iuch thick, are proluced, fitted to use in varions ways for casting or rolling. The metallic impurities of the pimple copper fall down as a residue, which has a value for some purposes.
M. Heeren, of Hanover, makes brass by electrodeposit. Brass is a compound of copper and zinc, and he brings these two elements together in the trough. An article of any kind, which is to be covered with brass, is placed in a hot solution containing, among other chemicals, sulphate of copper and sulphate of zinc; and an electric current is sent through the bath. As copper is more electro-negative than zinc, and separates more easily from its solution, the deposit would be wholly of copper under average circumstances; but by adopting means to retard the action of the copper, and accelerate that of the zinc, the two metals are deposited in the propartion to constitute brass. Dr Bradbury has invented a mode of depositing pure zinc on an engraved copper-plate, with such exquisite thinness and regularity as to preserve all the fine lines of the engraving. In one hour a layer may be thus applied, from which fifteen hundred to two thousaud impressions can lue taken; and then it may be stripped off, and a now layer deposited. The object held in view is, to multiply greatly the number of impressions that may le takeu from any one engraved copper-plate.

The manufacture of electro-plate has now become a very large and important branch of industry, chiefly at Birmingham. Cups and competition trophies for all kinds of contests; presentation plate, dinner services, tea and coffee services in various degrees of completeness; forks and spoons, cruet-stands, liquor-stands, mut-crackers-are now made of electro-plate, in immense quantities; a thin layer of pure silver being deposited ou a foundation of nickel, German silver; or some other white metal.

The making of large copper or bronze statues by electricity instead of by casting, is another clepartment of the art which is making great stridcs. Between the years 1561 and 1S66, Messrs Elkington produced in this way statues of Crompton, Gold smith, the Queen, the Prince Consort, Lord Hill, Mr Fielden, Lord Howe, General Murray, Lord Hopetoun, Lord Comhermere, General Seaton, and the Earl of Eglintoun, varying in height from 6 feet to $13 \frac{1}{2}$ feet. The last-named colossal statue, that of the Earl of Eigliutoun, weighs two tons. There is a trough or deposit-tank at the works of this celebrated firm, 15 feet long, 9 feet wide, and 9 feet deep, that will coutain 6600 gallous of acid solution.

The French are also making great progress in the art. M. Oudry has taken electro-casts of the hasreliefs on Trajan's columu at Rome, covering 700 square yards. He has also coated many thousands of the iron lamp-posts of Paris with copper by electrodeposit, as well as numerous fountains, \& C.., producing most of the good effects of bronze at a much smialler expense.

ELE'CTROPHONE, an instrument devised by Dr Strethill Wright for producing sound by electric currents of ligh tension. In its simplest form, the

ELEPHANTIASIS-ELLIS.

electrophone consists of two metallic plates separated by a shect of cartridge-paper, the whole leing closely pressed together by a heary weight or screw: Such an instrument, when its plates are connected with the terminals of a small induction-coil, forms a sonorous condenser, the note of which varies with the rapidity of action in the electrotome or contactbreaker. The more complicatcd electrophone commmicated to the Royal Scottish Socicty of Arts, 2Jtl April 186t, by Dr Wright, of which a diagram is shewn in fig. 1 , is composcd of four curved plates of the thinnest sheet-zinc, each two by four fcet, arranged as in the figure, and each separated from its neighbour by a double layer of imitation silvered paper, the silvered sides being in apposition to the zinc. The plates 1 and 3 and 2 and 4 are connected by fine wires, c and d, which also connect the instrument with the induction-coil. When this instrument is connected with a small coil, the terminals of which afford a spark almost inaudible, it becomes charged and discharged with each impulse of current, each charge being attended by a sonorons tap giren ont by the whole mass of metal thrown into vibration, and the rapid succession of taps producing a prolonged trumpet-note, the power of which may be increased by adding battery-power to the coil. The electrophone has been recommended by its anthor for use as a telegraphic relay capable of giving two or four signs with a single wire, with

Fig. 1.
the adrantage orer other relays that perfection of contact was not necessary to its working. Fig. 2 shews the mode of working the electrophone as a doulle relay with four signals and the galvanometer of Thomson; A represents the
 needle of the gal vanometer, 15 and C the wires communicating with an electrophone. When the necdle is deflected to the right, it falls on the points B and C, nod sounds the clectrophone through B, A, C. The signals are produced by long and short contacts, is in the code of Morse. The second set of signals are prodinced by the reFersal of the line-current, which throws the needle on the points of the arrangement D, connected with a second electrophone of diifferent tone. The elcetrophone has heen cmployed as a lecture table instrument to report to a large andicnce rcsults of processes which can only be rendered sensible by the most delicate galvanometric apparatus. Thus, the effect of acids and salts on the conductibility of water and flame, the retarding effect of diapliragms and of distance in rarious solutions between the elements of the voltaic pile, and cven the most difficult of all experiments, the determination of the slightest rariation in the clcctric cquilihrium of muscle and nervous tissue,
may be indiented in loud and varying tones by the chenist and physiologist to lis class, and phenomena litherto only perceptible to a single close observer may be rendered manifest to tho thousands who crowd the lecture-rooms of popular scientific institntions. Fig. 3 shews the adrptation of the

Fig. 3.
clectrophone to the galvanometer. AB ropresents the needle of the galvanometer suspended by a silk fibre, C; D is a small vessel of mereury communicating by a fine wire with the contre of the needle; while a similar wire, attached to the end of the needle B , dips into the curyed trough EF, containing distilled water. The wires inserted into D and F connect the coil with the clectrophone, the cirrent passing through $\mathrm{F}, \mathrm{E}, \mathrm{B}, \mathrm{D}$. When the needle is deflected, the tract of water hetween E and F is shortened, and the electrophone gives forth a gradually increasing sound. By a delicate system of levers attached to the wrist, as in the Sphygmo. graph (q..), the rhythm and character of the hnman pulse, and its variation in disease, may be indicated to the class ly the physician. Further, the clectrophone may be adapted to the telephone by placing the primary wire of the induction-coil in connection with the membrane of the latter instrmmont (sce Telepuone), and thus a song gently sung in one place may be repeated in trumpet-tones in another hundreds of yards distant.

FLEPHANTI'ASIS is a term applicd to two varicties of skin-disense, in which the limbs, from their enlargement, and from the changed condition of the skin, hare a slight rescmblance to those of the elephant. There is the elephantiasis of the Greeks, which is usually regarded as the same as the castern leprosy, and as the spedalshhed of Norway; and the chief fcatures of which are described in the article Leprosy. In this affection, the size of the limbs and the state of the epidermis are comparatively slightly altered. In the clephantiasis of the Arabs, which seems to he idcntical with the Barbadoes Leg (q.v.), there is great enlargement of the affected parts, and the skin is much thickened.

ELLEZE'LLES, a large village of Belgium, in the province of Hainaut, 16 miles north-cast from Tournay. Linen-weating is extcosively carricd on. There are sereral flour-mills, breweries, and a saltrefinery. Pop. 546s.

ELLIS, Willias, an English missionary, born in the latter part of last century. In January 1516, le sailed with his wife for the Soutl Sca Islands, as a missionary of the London Missionary Society, and laboured there for nearly ten years. He set up in Tahiti the first printing-press in the South Sen Islands. In $1 S 2 t^{2}$, he returned to England, on accomnt of the illness of his wifc. He vas for some years employed at home in the business of the London Dissionary Society. In 1826, he published a Narrulive of a Tour through Owhyhec; and in 1829, Polynesian Researches, 2 vols. In 1839, he published

Abstract

a History of Modagascar, 2 rols., compiled from government papers, and information received from missionaries. In IS35, his mife died, and two years aftertrards he married Nliss Sarah Stickney, who for many years conducted a school for girls at Hoddesdon, in Hertfordshire, and who is well known as the authoress of many popular works, among which are The Women of England (1838), The Daughters of England (1S42), The Wires of England (IS43), Hearts and Homes (IStS-1S49), and The Mothers of Great Men (1859). Her works are all of an excellent moral and religious tendency, and hare been rery widely circulated both in Britain and America. She was educated among the Society of Friends, to which her parents belonged.-In IS53, Mr E. was sent to Madagascar by the London Missionary Society, to iuquire into the state of things iu that island, and particularly into the condition and prospeets of the Christians there. In IS59, he published an interesting and valuable work, entitled Three Visits to Madagascar, during 1S53-IS56, with Notices of the People, Natural History, \&c., a work to which we are largely indebted for our present information concerning that island. In his Polynesian Researches, as well as in this work, Mr E. gives much information concerning the inhabitants, scenery, and productions of the countries which he visited, and few works of greater general interest or higher ralue have come from the pens of modern missionaries. In IS 6°, he published another work, the nature of which sufficiently appears from its title, Madagascar Revisited, describing the Events of a New Reign, and the Revolution which followed, setting forth also the Persecutions endured by the Christians, and their Heroic Sufferings, with Notices of the Present State and Prospects of the People.

ELSSLER, FANNy, a celelirated dansense, was born in 1810 at Vienna, where she receired her early training, and appeared at the age of seren on the boards of the Kärnther Thor Theatre. Along with her sister Teresa, she went to Italy to complete her education in 1S27. On their return, the two sisters were received with immense enthusiasm in Berlin, Yienna. Paris, St Petersburg, and London; Mademoiselle Fanny more especially, who, lyy her wonderful dancing of 'La Cachncha,' was considered to have almost eclipsed Taglioni. In IS 41 , loth sisters excited, if possible, a greater furor in America. Returning millionaires, F. E. retired to a villa in the neighbourhood of Hamburg, while Teresa entered into a morganatic marriage with Prince Adalbert of Prussia.

E'MBOLSSM (derived from the Greek word embolon, a plug) is the term employed by recent pathologists to designate the plugging-up of a vessel by a clot of coagulated llood-fibrin, by a detached shred of a morbid growth from a diseased cardiac valve, \&c. It is in cases of ill-nomished, brokendown constitutions, or after a protracted or a debilitating illness, that the morbid tendency of the fibin to coagulate spontaneously within the veins chielly exists, and in such cases very trivial circumstances may call it forth, especially if they lead to any pressure on the vessel. Clots, or portions of a clot, may be transported by the blood-current from the renous system to the right side of the heart, and block up the pulmouary artery either entirely or in part: if the occlusion is entire, sudden death is produced; while, if it is only partial, gangrene, or inflammation of a part of the lung, commonly ensues. Many of the sulden deaths of women in child-bed (till recently quite inexplicable) are due to this cause, the plug being formed in the inflamed uterine veins, or possilly, in some cases, in the right side of the beart, aud passing from thence to
the spot where its arrest proves suddenly fatal. Several cases of this kind are reported in Simpson's Obstetric Memoirs. Similar accilents may happen in the arterial system. A detached fragment of a diseased tricuspid or aortic valve of the heart, or a separated fragment of coagulated fibrin, may lee driven onwards in the blood-current, and enter and occlude some of the cerebral arteries, causing softness of the brain, by cutting off the due supply of nourishment. For further details, the reader is referred to an exhanstire treatise on this subject published a few jears ago by Cohn, entitled Ueber embolischen Krankleiten.
E'METINE is the alkaloid which forms the active principle of ipecacuanha root. It is a yellowishwhite powder, which is slightly soluble in cold water, lut dissolves readily in alcohol. When taken internally, it exhibits violent emetic properties, $\frac{1}{20}$ th of a grain being sufficient to cause vomiting.

EMMANUEL COLLEGE, CAMBridge, was founded in las 4 by Sir Walter Mildmay, Chancellor of the Exchequer and privy-councillor in the reign of Queen Llizabeth. The foundation fellowships are 12 in number (to be increased to 13 when there are sufficient funds), and are open to all her Majesty's subjects who are members of the Chureh of England and hold the degree of B.A. All the foundation fellows are obliged to proceed regularly to the further degree in Arts, Law, Medicine, or any other facnlty they have selected. There must be four of them always in Yriest's orders; and any who are not tutors or bursars in the college, are bound to be in orders at the end of the seventh year of their fellowship, at the risk of forfeiting it three years afterwards. The college also possesses two fellowships and four scholarships on Sir Wolstan Dixie's foundation (but the Dixie fellows have no voice in college affairs, nor any claim to the offices or dividends of the college) ; I2 scholarships of $£ 60$ a year, paid from the general rercnues of the college; fire of $£ 30$ a year, founded by Dr Thorpe; other five of the same value, founded by various lenefactors; and other fire (of $£ 50, £ 3 \pm, £ 16, £ 1 \Omega$, and $£ 10$), for which candidates from certain schools liave a preferable claim. The patronage of the college consists of $2 \pm$ benefices, situated in the eastern and south-western counties of Eugland; and of two scliools, one in Norfolk, and the other in Suffolk. In $186 \overline{3}$, this college had 260 members of senate, ti3 undergraduates, and 404 members on the boards.

ENCEPHALOCE'LE (derivel from the Greek encephalon, the braia, and kele, a tumour) is the term applied to a tumour projecting through the skull, in one of the parts where the bones are incomplete in infancy, and consisting of a protrusion of the membranes of the brain, containing a portion of brain itself. The most common situation of such tumours is in the middle line and at the back of the head. Surgical interference is scarcely ever justitiable, and all that can usually be done is to give uniform sulport to the tumour, and to defend it from injury:

ENCHONDRO'MA is the term employed in Pathological Anatomy to signify an abnormal cartilaginous growth. These growths most commonly occur in connection with the boues, and they are not unfrequent in some of the glandular structures. See Tranotrs.

ENCUMBERED ESTATES' COURTS. See Lnccheered Estates' Cocrts in Supplement.

ENDETMIC AND HYPODERMIC METHODS OF TREATMENT. These terms are, as the names imply, usel to designate certain methods of making the skin an ageut for the reception of

ENDRÖD-EÖTVÖS.

medicincs. The endermic method consists in raising a blister by the ordinary process, opening it by a small puncture, which must not be at the lowest part of the bladder, gently pressing ont the fluid contents, and then injecting a medicinal solution, by means of a small syringe, through the puncture into the emptied sac ; or, if the medicine is in the form of powder, it may be scattered over the raw surface. The endermic method is now almost entirely superseled by the hypodernie method, in which medicines are introduced into the subcutaneous cellular tissue ly means of a very fiuely peinted syringe. For the invention of this process, the science of medicine is indelted to Dr Alexander Wood of Edimburgh. It is chicfly, but not solcly, to anodynes that these methods are especially applicable. It has been found that morphia given by 1Dr Wooll's method acts more specdily and more powerfully than when given by the month: moreover, the medicine given in this way dous not disturb the functions of the stomach, and may lee administered in those cases of irritation of that organ in which medicines introduced into it would be rejected by vomiting. A solution of acetate of morphia, carefully freed from any excess of the acid, and of such strength that three mimms shall contain one-third of a grain, is commonly employed, the dose varying from one to three minims, or from onc-ninth to onethird of a grain of the salt. If the general effects of the morphia (as relief of pain and slecp) are required, any convenient part of the body, as, for instance, the fore-arm, may be selected: the skin, linehed up between the fore-finger and thumb of the left hand, is penetrated by the point of the syringe, and the solution iojected. When a local action is required, as in the case of various forms of neuralgia, the solution should be injected as near as possible to the seat of pain. As some patients are remarkably susceptible to the action of moryhia administered in this method, it is advisable to legin with the smallest of the above-named doses.

A scientific committee appointed ly the Royal Medical aml Chirurgical Society of London to iuvestigate the $1^{\text {he }}$ ysiological and therajeutical effects of the hypodermic method of injection, have just sent in their Feport, which was read in June 1867. Amongst the most important physiological facts which were observed, the following may be especially mentioned. Watery solutions of drugs subentaneously injected were far less rapid in their action than when they were introdnced into a veid. On comparing the cffects of medicines subeutaneonsly injected with those produced when they were adininistered by the mouth, or by injection into the lower howel, it was found that, in the case of some drums, the local action was different according to the mode of administration, although the general effects produced were of the same lind. Thus, aconitine given by the mouth affected the salivary glands; when given ly the rectum, it causel irritation of the gut; and when given by the skin, it occasioned local pain. The smallest dose fatal to rabbits was, by the mouth, $\frac{1}{8}$ th, by the rectum, $5^{\frac{1}{7}}$ th, and by the skin, Juvth of a grain: it was thus five times as energetic when given sulcutaneonsly as when given in the most usual way. The effects of morphia when injected under the skin were also more rapidly manifested and more intense than when given by the month or rectum. A solution of nodophyllin, which, when administered by the month, acts as a powerful cholagogue (bile-provoking) aperient, when injected into the skin, gives rise to iree action of the kidueys. The investigations of the therapcutic value of this mode of administering drugs were limited by the fact, that many substances (acouitinc, for example) give

512
rise to great local irritation when used subcutaneously. In cases of simple meuralgia, atrojine was found to have a very beucficial effect when thus given, and in some cases more permanent relief followed its injection than that of morphia. The value of the latter drug was found to be much increased by this method, the reguired action being of longer duration, anel being produced with greater rapidity and intensity: The same advantages followed this mode of giving quinine in internittent fevers, but some caution is requisite iu giving large doses, as irritation may arise from its presence under the skin. Amongst the conclusious at which the committee arrives are the following: (1) That, as a general nule, only clear neutral solutious of drugs should be empluyed, decidedly acid or alkaline solutions locing apt to canse irritation, and even local nlcers, at the point of application ; (2) that, as in the case of podoplayllin, symptoms are observed to follow the administration of some drugs by the skin, which are wanting when the same drugs are otherwise administered ; and (3) that the advantages to be derived from this method of introducing drugs are (a) rapidity of action, (b) intensity of effect, (c) cconomy of material, (d) certainty of action, (e) facility of introduction in certain cases, and (f) in some drags, the avoidance of unpleasant symptoms.
$\mathrm{E}^{\prime} \mathbf{N D R O D} \mathbf{D}$, a large village of Hungary, in the county of Beles-Csanad, on the Köros, 90 miles east-south-east from Pesth. I'op. 7519. The surrounding district produces much corn, wine, flax, honey, and cattle.
ENSCHEDE, a town in the Netherlands, prorince of Overyssel, lies about four miles from the Hanoverian boundary, and 30 miles west-northwest of Zutphen. Lesides fustiaus and dimities, cottons for export to Java are largely manufactured. Cottou-spinning, bleaching, dyeing, and ealendering also employ many of the inhabitants. There are several benevolent institutions, a lieformed, a Roman Catholic, a Paptist Church, a Cliamber of Trade, and granmar-school, in which French, linglish, and German are tanght. In 1864, pop. 4664.

EÖTVÖS, Joserlf, Banon, a Hungarian writer, born September 3, 1S15, in Ofen. He received an excellent education in his parents' house, and (1 825 -1831) studied philosonhy and law at the nnirersity of Pesth. After passing as advocate in 1833, he entered on a professional carcer, which he, lowever, soon abandoned, in order to devote himself entirely to literature. As early as 1830, he began to publish several works-riz., the comedies Kritikusok and II izasulưk, and the tragedy Bosza, which met with great approbation. After his retnun from a journey through Germany, France, England, Switzerland, and the Netherlands, his work ou Prison lieform (1'esth, 1S3S) appeared, which called forth an entire literature, and gave the impulse to numerous reforms of this kind in Hungary. This was followed ly his novel, The Carthusiun (Pesth, 1S3S), which took its place as one of the best productions of Hungarian literature. The excitement which arose with Kossuth's appearance in journalism drew E. also into the arena; and his defence of Kossuth, Kclet népe s' a Pesti IIirlap (Pesth, 1841), against Szechenyi in the contest hetween these two leaders, surpassed even Kossuth's writings in clearness and skilful reasoning. When the liberals, in 1S4t, split into Municipalists and Centralists, E. became one of the most cloquent advocates of the latter. His articles on this sul)ject, pullished in the Pesti Hirlap, distinguished for their varied knowledge, richness of thought, and eloquence of style, appeared collected under
the title Roform (Leip. IS46). About this time too, arpeared two large novels. A' Falu' Jegyzöje (The Village Notary, 3 vols., Pesth, $1544-1546$ Ger. by Mailath, 3 vols.; ㅇd ed., Pesth, 1851) and Magyarorszag 1514-ben (Hungary in 1514, 3 vols., Pesth, 1547-154S; Ger. by Dux, 3 parts; Pesth and Leip., 1850), of which the first describes, with masterly truthfulness and vividness, the country life of the present time; and the latter, the rising of the peasantry of the Dózsa in 1514. After the revolution of March IS4S, he was appointed Minister of Public Worship, but fell far short of the expectation entertained of him, as, being too little a man of action, he was not fit to cope with the stormy times. He left the country even before the dissolution of the Batthyanyi ministry in August 1S4S, and went to Munich, where he stayed till 1Sal, occupying himself exclusively with literary studies. The most important fruit of his labours of this period is, The Iuftuence of the Ideas of the 19th Gentury on the state and Socirty (Hung. and Ger., Pesth and Vienna, 1551). Besides which, he published in the German language, Die Gleichberechtigung der Nationalitaten (The Equal Fights of Nationalities, 2 d ed., Vienna, 1 S51). In 1851, E. retorned to Hungary, and was an adherent of the policy of Deak (4.v.). His anobymous publication, Die Garantien der Jacht und Einheit Oesterreichs (Leip. 1859), marle a great moise. In 1865, E. began a weekly political paper, and in the same year published a work on the question of Nationalities. (At his death, February 1871, every newspaper in Buda-Pesth assumed mourbing for three clays.)

EPIDEAIC CE'REBRAL MENINGI'TIS is a disease which has been noticed and described by many American physicians since the year 1911, when Dr North specially dres the attention of the profession to it . In $1838-1540$, it appeared in France, and committerl great ravages in Versailles, where the mortality was $2 S$ per cent. ; in Strasbourg, where the mortality was 42 per ceot.; in Lyon, Nancy, and other garrison tourns. The patients, iu these cases, were almost entirely yonng conscripts; and the disease was regarled as noninfectious. In the spring of 1546 , it appeared in the Dublin aud Belfast workhouses, boys under 12 years of are being the only victims, while girls under similar circumstances escaped; it likewise appeared in the constabulary depot, in the same year, amongst the recruits. In 1863, it was very fatal in the United States. In 1865, it ravagel West Prussia : of 2000 cases recorded, half died; and of 345 cases, 330 were under 14 years of age. In this epidemic, no mention is made of the purple spots which have excited such alarm in Ireland; and in the United States, tro forms of the disease are recognised-one marked by shock, weak pulse, purpled limbs, and coma, death happening within the first day; the other presenting signs of cerebrospinal mischief, such as tetanoid spasms, and death here occurring in three days. Purple spots were present in 27 oirt of 44 cases.
We now pass to the cousileration of the so-called Black Death, which, duriag the Iast and the present year, 1566 and 1867, has causel such intense alarm in Ireland, and especially in Dublin. The history of this disease is as follows: A healthy medical student, aged 19, residing in Dublin, fell ill with chilliness and malaise about noon on March IS, 1S66. When he was visitell in the evening, it was found that he had vomited frequently aud was very prostrate ; purple blutches appeared on his skin during the night, and about noon next day, he suddenly fell into stupor, and was deall at two, or about 26 hours from the apparent commencement
of the symptoms. Drs Stokes and Benson, who, with Mr Croly, saw the case, at once recognised it as presenting a novel type of disense. A girl, aged 1s, presented similar symptams on April 2, but recovered. Fatal cases were recorded on May 12, 13, anil 17. According to Dr Mapother-from whose excellent Fieport 'On the Maliguant Purple Fever Epidemic in Ireland,' read beiore the Epidemiological Society in July 1867, the materials of this article are almost cntirely drawn-it appears that 63 fatal cases have been registered (up to July) in the Dublin district. exclusive of eight deaths amongst soldiers. This able physician gives the following description of the symptoms, which include tro types of very different severity, and in this respect he agrees with the American observers. In the graver, life is rapidly extinguished as if by a bloorl-poison; in the milder, the symptoms are those of inflammation of the cerebro-spinal axis, or its membranes. Dr Stokes, however, regards these latter phenomena as secondary to the essential disease, and behieves that they will always appear, if the patient lires long enough for their development. The earliest symptoms are chilliness and a sense of impending danger, and romiting of a persistent character soon follows. There is constipation till shortly before death, when the evacuations are involuntarily discharged. The tongue is dry; the pulse abnormally compressible, and usually over 100. The dark purple blotches, caused by the escape of dissolved hrematin (colouring matter of the blood) from the smaller vessels, are situated in and under the true skin of the legs, hands, face, back, and neck. These patches vary in size from that of a pin's head to that of a walnut, and are often sufficiently raised to be detected by the tonch. The skin is dusky and moist, sometimes even bathed in streat. lu some cases, stupor, and in others, delirium and intense restlessness, are the formuners of death. The rapidity with which this disease runs its course is appalling. A healthy boy, aged $10 \frac{3}{2}$ vears, sauk in less than five hours from the time of his seizure; and of 41 investigated fatal cases, 14 terminated within 24 hours. Of these cases, 21 were females, and 20 males. Youth predisposes very strongly to the disease. No position in life affords exemption: one young nobleman, three medical students, two undergraduates, and several inhabitants of the lowest hovels-the seats of typhus and cholerawere amongst the victims.
With regaril to treatment, almost every kind has been tried, and each has been found equally unarail ing. The external application of cold to the spine and head, as advoeated in varions forms of disease by Dr Chapman, cleserves a trial. Dr Mapother suggests that the disease is due, like senrry, to the want of fresh regetables as an article of food; and if this view is correct, it is satisfactory to feel that if this terrible malady is incurable, it is at all events preventable. A few cases of this disease bave been recorded as occurring duriog the last few months in various parts of England. They would probably have passed unnoticed but for the Dublin epidemic.

EQUI'NIA, or GLANDERS. In the body of this work, glanders has been consilercd simply as a disease peculiar to animals, and cspecially the horse. We shall here consider it as a disease affecting man, to whom it is transmissible from animals. $1 t$ is remarkable that although the disease in the horse and ass has been recognised from the time of Aristotle (who describes it as common in the ass), it was not till the year 1810 that Wallinger of Vienna drew attention to the fact, that special precautions should be taken io the dissection of horses affected with glanders and farcy, inasmuch as the most serious and often fatal consequences might arise

513
from the inoculation of the morbid matter. Strangely enough, however, lie does not seem to have noticed that the disease thus induced in man is jdentical with that of the horse: and it was not till 1 S21 that Sehilling recognised this important point. It ras not till a living physician, Dr Fltiotson, published his Memoir Ont the Glanders in the If mman Subject, in 1830, that the attention of the medical profession in this country was directed to the sul)ject. In 1837 , Rayer, in his Memoir De la Morve ot du Farcin chez lIIomme, collected all the eases that had been olserved up to that date, and gare a complete description of tlic varions forms of glanders both in the horse and in man; and in 1813, Tardieu published his investigations, De la Morre et du Farein Chromirues. It is to these writers and to tho brothers tiamgee ("Glanders-Equinia, by Arthur Gamgee, M.D., and Johu Ganıgee, in liey. nolds's System of Medicine, vol. i. $186 t$) that we owe almost all our knowledge of this terrible disease.

In the great majority of cases, the clisease is transmitted from the liorse, the ass, or the mule to mand; but several iustances have been recorded iu which it has been transmitted from one human being to another. The disease is no dombt generally due to inoculation, but the virus is also probably capable of being absorbed by umbroken mucous membrane. Most of the recorded cases have occurred in wen of good constitution and in the prime of life. The four varieties of this disease which occur in the horse have also been observed in man-riz., (1) Acute Glanders, (2) Chronic Glauders, (3) Acute l'arcy, and (4) Chronic Farey.

Acute Clanders is the commonest form. The period of inoculation ranges, in the majority of cases, from three days to a week. If there is a distinet wound or abrasion through which the poison has been absorbed, the parts around the broken surface become red, tense, and painful, often before the appearance of any of the constitutional symptoms, such as a general feeling of illness, great depression of the spirits, headache, rigors, increased rapidity of the pulse, and pain in the joints. A characteristic pustular cruption, often accompanied by bulle or blebs, appears on the face and limbs; and abscesses frequently occur on the face and abont the priucipal joints. A yellow, purulent, fetid discharge, often mixed with blood, exudes from the nasal mucous membrane, which is invariably the seat of a pustular cruption, or of ulceratious. The mostration which is observable from the begiming inereases during the coursc of the clisease. The pulse becomes weak and frequent, the breathing difficult, the voice feeble, and the bowels very relaxed, the stools being extremely fetid. Delirium now sets in, which is followed by coma and death. Death usually occurs about the end of the sccond weck, but the duration of the discase has been known to vary from three to fifty-nine days.-Chronic Glanders is so rare an affection in man that it hardly requires notice. The course of the disease usually extends over several months ; and only one case of recovery is reported.-Acute Farcy seems only to differ essentially from acute glanders in the fact of there being no affection in the mucons membrane of the nostrils. The cutaneous ermption may or may not be present; iu the great majority of eases, it is present, and the disease then follows exactly the same course as glanders. When there is no eruption, there is merely an inflammation of the lymphatic vessels and glands, or Angeiolcucilis (q. v.), aecompanied with the formation of soft subcutancous tumours at various parts. This form of the disease often terminates favourably, or may merge into Chronic Farcy, which is characterised by the formation of an abscess on the forehead or cisewhere,
which is followed hy indalent and fluctuating tumours, which follow one another in various pats of the boly, opew spontancously, and form vary intractable nleers. The disease usually runs its conrse in about a year. Of tweaty-two cases recorded by Tardien, six recovered.

Little need be sail regarding treatment, since no remedies have been found to exercise any inlluence in checking the course of acute glanders. Arscuic, combined with stryehnia, has been found useful in chronic glanders in the horse, and is recommended by the brothers Gamgee as worthy of trial in man; and some relief might probably be afforded by the application of weali injections of carbolic acid iuto the nostrils.

ERCIIMANざ-CHATRIAN (EM1L! ERCKMaNA and AlELANDRE CHatrias), two Firench men of letters, the first of whom was horn ?0th May 180a at Plaalsbourg; the seennd, al December 1526 , iu the village of Soldatenthal. commune of Abreschwiller, both in the dep. of Meurthe-one of those departments of France which formed part of the old duchy of Lorraine. E., the son of a bookseller, went through a rather irregular course of study at the college of his native town, went to Paris in 1842 to sturly law, which he broke off several times, and only passed his third examiaation in 1857, and finally abandoned the study in the following year. During the interval, he had set himself to make a name in literature, in co-operation with M. Chatrian. The latter, belonging to an old family of glass-makers in Meurthe, ruined ly rererses in trade, was acting as tutor at the college of Phaisbourg, when in 1S47 le was introduced to M. Erckmann. From that time the two friends employed their pens in the same uorks, which they signed with the two names united in one; and it was only about $186: 3$ that the authors informed their readers that the numerous trorks of fietion, which had obtained a widespread popularity; and were supposed by the general public to be the work of a single writer, were the fruits of their friendly coliaboration. Their early works attracted comparatively little notice; and it is said that their first work was rejected by all the newspapers of Paris, and by many provincial journals. In 1 SHS , they published several feuilletons in the Dimocrale du Rhin, which had just beeu started: Le Sacriyice a Abralum, Le Bourgmestre en Bonteille. \&e., whiclı they lave since published separatcly. It the same time they wrote a drama, Le Chasseur des Iruines, for the Arabigu-Comique, which the theatre aeeepted, subject to chaoges, which they refused to make. They produeed another drama. L'Alsace en 1814, for the theatre of Strasbourg, which was sup. pressed by the prefect on the second representation. They wrote numerous novels at this time for different journals, some of whieh were very little noticed, while others remained in MS. for years. Despairjug of being ahle to live by their pens, E recommenced his law studies, and C. obtained a situation in the office of the Eastern Railway. It was not till 1559 that L'Illustre Docteur Mathéus (1559, in15 ; 3d edition, 1864), published by the LilurairieNonvelle, gave a certain eclat to the collective name of Erckmann-Chatrian. Since then, they have written a great many novels and tales: and their reputation as remance-writers has steadily increased. The secret of their success lies in their having faithfully depicted the manners of the simple, hardy, and warlike population of their native province. Le Fou Yégof ($1 \mathrm{~S} 62, \mathrm{in}-18)$ is one of a series of novels, the subjects of which are taken from their national history, and gives a picture of the invasion of 1814. Iegof, as the name indicates, is a mad. man, whose hallucinations are brought in to explain

ERNST-EXHIBITIONS.

the marvellous in the tale. Le Conscrit de 1813 (1S64) and Waterloo (1S65) are fragments of an autobiography, and are supposed to be the recollections of a common soldier, and relate the disastrous campaigns of 1813 and 1814. "These may be called the gems of their collection. Le Joueur de Clarinette (1863), a simple story of a village musician, and Les Amoureux de Catherine, another tale of village life in the same rolume, are nearly perfect. The last work of MMI. E. and C., L'Homme du Peuple (1865), is less farourably spoken of as a mork of art. It pictures the life of the modern French workman, with political discussions from his point of view.

ERNST, Heivpicit Wilhecry an eminent riolinist, born at Brunn, in Moravia, in 1S14. He early became a pupil of the Vienna Conservatorium, studying under Seyfried and Mayseder. At the age of 16 , his talents excited mnch interest on his appearance in public at Munich, Stuttgart, and Frankfurt; and he soon afterwards performed in Paris. His first risit to London was in 1S43; and he returned in subsequent years, spending the intervals in Paris and in different parts of Germany His playing mas characterised by immense bril liancy, combined with passion and sentiment. He suffered much from acute neuralgia, which latterly interfered with the exercise of his art; and the last seven years of his life were spent at Nice, where he died, October S, 1SG5. E,'s compositions hare generally a bravura character, and include works for the violin and orchestra, quartetts, \&c.

E'SCHWEILER, a town of Phenish Prussia, in the circle of Aachen, and nine miles east-morth-east from the city of Aachen (Aix-la-Chapelle), is a station on the railway between Aix-la-Chapelle and Cologne, and stands at the confluence of the Inde and Dente. It has extensive manufactures of ribbons, woollens, canras, needles, iron-wire, and machinery, also of wax-cloth, lace, glass, vitriol, and vinegar. In the vicinity are mines of zinc and lead. Top. 13,737 .
E'SliAR, a term applied in Ireland to certain objects in the superficial drift, which occur in several parts of that country, and are not unknown in Scotland, but which are more abundant in Sweden than in any other known country, being there recognised as c̈sar. An eskar is generally a long linear ridge of rounded gravel, including pieces of considerable size ; in Sweden, they often hare rough erratic blocks deposited upon them. It is an unsettled point whether they are connected with glacial action; if connected with it, the whole appearances and consistency demonstrate at least subsequent marine action. There is a remarkable eskar on a moor spreading below Dirrington Lam, in Berwickshire (900 fect above the sea) ; another, about a mile long, has been pointed out amidst a rast alluvial accumulation at St Fort, Fifeshire.

ESQUI'S゙TLA, or ESCUIN'TLA, a town of the state of Guatemala, Central America, 25 miles south from Guatemala, on the virer Michatoya, mhich falls into the Pacific Ocean. It has a fine church. Pop. 6000, consisting in great part of Indians.

ESSEFCES. This term is frequently used as synonymous with rolatile oils.

EVANS, Miss Mary A, understood to be the daughter of a dissenting minister in Derbyshire, was born about the jear 1S̊0. Before she became known as the author of the remarkable series of fictions with which her name is popularly associated, sle had already acquired reputation in the literary circles of the metropolis as a writer of distinguished ability. She contributed largely to the Westminster Rerieur, of which she is said to hare been at one
time joint-editor, and is known to have lieen the translator of the fanous Leben Jesu of Dr Strauss, an English version of rhich was published in 1846. During 1S57, there appeared in Blackeood's Magazine. With the signature of George Eliot, a series of stories under the title of Scenes of Clerical Life, the very unusual merit of which instantly attracted attention. They seemed to proclaim with great distinctness the advent of a new norehist of fresh and original power. It was from the first sufficiently well understood that the signature was a mere nom de plume; and no little curiosity was excited as to the personality of the author monnorn. This feeling rias much deepened by the publication in 1S5S, by the Nessrs Blackwood, of the novel of Adam Bede, whicli attained an immense success, and at once secured for the writer almost undisputed rank with the most eminent norelists of the day. This was followed, in 1S59, by The Mill on the Floss, Which amply sustained the reputation of the writer; and in 1 S6l by Silas Marner, the lyeaver of Raveloe, a tale in one rolume, which, as to art, is perhaps the most perfect of any of this series of works. In 1861, the Sicenes of Clerical Life were republished from Blackwools Magazine, to meet with a renewal of the farour with which they were originally received; and in 1S63, Romola, an elaborate histo rical norel of Italian life, was published by Messrs Smith, Elder, \& Co., in whose Cornhill Magazine it had previously from month to month appeared. This work has never had quite the popularity of its predecessors, but is considered by a selecter circle of readers-and perhaps on the whole with justice -the greatest intellectual effort of the author. Meantime-though the avowal has never in any formal fashion beer made-it had by degrees hecome positively certain that Miss E. was the 'George Eliot' of these works; and by not a few competent critics a place had been frankly assigned her at the very summit of this branch of our biterature. Her last book, Felix Holt, the Radical. published last year (1S66) by the Messrs Blackwood. was distinctly the book of the season, and was almost everywhere received with acclaination. Cool critics here and there however, will probably be of opinion, that whilst it indicates no declipe in power, and contains passages in rarious kinds as exquisite as any produced by the writer, it is distinctly, perhaps on the whole, her least complete and satisfactory performance. In virtue of the finish and mellow harmony of her writing, with its reflex of general culture and accomplishment, her gemuine whilosophic porrer of thought, her deep and serious view of life, admirable humour, and mastery of the springs of pathos, there cannot certainly be more than one or two novelists now living who are to be ranked on a lerel with George Eliot.

ENHIEITIONS, Isdestrial. Since the articie on this subject appeared in the Encyclopadia, three intermational exhibitions have heen held-one in 1862 in London; the next in 1S65 in Dublin; and the third, that of Paris, during the present year (1867). That of 1562 was held in a rast brick building, lighted by a roof and two immense cupolas of glass, designed by Capotain Fowke, R.E., and erected on a large space of land acquired by the Royal Commissioners of the Great Exhibition of 1551, adjoining the beautifnl garden of the Horticultural Society at South Kensington. The space covered was $1,291,500$ square feet, or about 17 acres, including some portions of the buildings of the garden, lent by the Horticultura] Society, for refreshment-rooms, sc. Of this vast space, 391,146 square feet were occupied by objects exhibited, besides 2S4,670 square feet of wall and other vertical space made by internal partition, \&c.; to which must be added 93,220 of
horizontal ami vertical space oceupied by works of art, arranged in one of the most admirably collstructed galleries ever designed for such a purpose. It was evilently the idea of the projectors of this builing that it might be retained and devoted to other purposes after the exhibition, in the same way as the Palais de l'lndustrie, in which the Paris Exlabition of 1 Sis. was held, is still retained, and is both a useful and ornamental aequisition to the brench eapital. But neither this project nor the building itself fonnd favour with the public, and it was destroyed in 1S63, a year after the elose of the exhibition. It will give a good idea of the vastness of these great international exhibitions if we give a few figures shewing the number of exlibiters, visitors, and other statistics of that of $180^{\circ} 2$. Thus, there were 26,348 exhibiters in the Intustrial Division, whose exbibits were arranged in 36 classes; and 2305 artists, in four classes, in the Fine Art Division : or in all, $2 \mathrm{~S}, 653$. Of these, 8487 were British manufacturers, and 090 British artists ; and 17,561 forcign manufacturers, and 1315 foreign artists. The extent of the Fine Art collection surpassed all expectations: it comprised 3370 paint ings in oil and water colonrs, 901 picces of sculpture, 1275 engravings and etchings, and 983 architcetural designs. The number of visitors averaged 36,325 per day. 'the aggregate number was $6,211,103$ from the date of opening, May 1 , to its close, October 31. The money taken for admission amonnted to $£ 328,3$ as . There were Gi20 persons appointed to examine the articles exhibited, and ailjudicate the rewards, which consisted of medals and certifieates of Honourable Mention. The entire cost of this gigantic atlair was $\{321,000$. This was secured against all risk of failure by a voluntary guarantee cutered into by 1152 gentlemen of all ranks, who pledged themselves in variuns sums, amounting, in the aggregate, to $£ 450,000$. The following are the classes into which the enormous aggregate of the world's prodnetions was divided: 1. Mining, Quarying, Metallurgy, and Mineral 1'rodncts. 2. Cbemical Substances and l'roducts, ant Pharmaceutical l'rocesses. 3. substanees used for Food. 4. Animal and V'egetable Substances used in Manufactures. 5. Railway Plant, including Locomotive Engines and Carriages. 6). Carriages not counected with liail or Tram lioads. 7. Maunfacturing Machines and Tools. 8. Machinery in General. 9. Agricultural and Horticultural Machines and Implements. 10. Civil Enginecring, Arehitectural, and Building Contrivances. 11. Military Engineering, Armour and Accontrements, Ordnance and Small-arms. 12. Naval ArchitectureShips' Tackle. 13. Philosophical lnstruments, and Processes depending upon their Use. 14. 1'hotographic Apparatus and Photography. 15. Horological Instruments. 16. Musical Instruments. 17. Surgical Instruments and Appliances. 1S. Cotton. 19. Flax and Hemip. 20. Silk and Velvet. 21. Woullen and Worsted, including Nixed Fabries. 22. Carpets. 23. Woven, Spun, Felted, and Laid Fabrics, as Specimens of Printing or Dyeing. 24. Tapestry, Lace, and Embroidery. 25. Skins, Fur, Feathers, and Hair. 26 . Leather, inclnding Saddlery and Harness. 27. Articles of Clothing. 2s. Paper, Stationery, l'rinting, and Bookbinding. 29. Blucational Works and Appliances. 30. Furniture. Paper-langing, and Decoration. 31. Iron and General Hardwarc. 32. Steel Cutlery and Edge 'lools. 33. Works in Precions Metals and their Initations, and Jewellery. 34. Class, for Decorative and llouschold Purposes. 35. Pottery. 36. Toilet, 'l'ravelling, and Miscellaneous Articles. 37. Arehitecture. 3S. Paintings and Drawings. 39. Sculpture, \&c. 40. Etchings and Engravings.

Cotwithstaming much opposition and ill-feeling, the International Exhilition of 1862 proved a great stucecss. Iike its preclecessor in 1551 , it gave a vast impetus to trade gencrally, and it coabled the public to form correct opinions upon the progress of our mannfactures, and their shortomines when compared with others. Bach of the following foreign comotries respondel to the invitation of the liogal Commissioners, and was amply represented; and from nearly all, a staff of cummissioners and nfficers were sent to comluet their business, and wateh over the interests of their exhibiters in london: Central Africa, Western Africa, belprime, Brazil, Chima, Costa Rica, Demmark, Leualor, France and its Colonies, Germany-Anstria, Zollverein (1)uchy of Anhalt- Bernburg. Duchy of Anlalt-Dessan-Cöthen, (irand Duchy of Biden, Biwaria, lirunswiek, t'rank: furt-mi-Nlaine, Hanover, Hesse-Cassel, Grand Duchy of Hesse, Prineipality of Lippe, (irand Duchy of Luxemburg. Nassan, Grand Duchy of Oldenburg, Kiugdom of Prussia, Kingdom of Saxony and l'rincipality of licuss [J. L.], Grand Duchy of Saxony, Duchy of Saxe- 1 Itenburg, Juchy of Saxe-Coburg: Gotha, Duchy of Saxe-Aleiningen, Principality of Schwarzburg-Rudolstadt, Principality oi Schwarz-burg-Sondershansen, I'rincipality of Waldeck, Würtemberg), Mecklenbirg, Lianse Towns (Bremen, Hamburg, Liibeek)-Greece, Hawaiian or Sandwich 1slands, Mayti, Ionian Islands, Italy, Iapan, Liberia, Madagascar, Netherlands, Norway, Peru, l'ortngal, Rome, liussia, Siam, Spain, Sweden, Switzerland, Turkey, United States, Urugnay, Venezucla.

The next exhibition of importance was that held in Dublin in 186.5, which was originated by a company; whose olject was to establish the principle of decennial exhibitions, and, if possible, make this one pay the expense of crecting the magnificent building in which it was held, and therely form a permanent home for such exlibitions and other useful purposes in future. This building was of brick, coverel with stuceo, and the roof of glass and iron, light but commodions galleries running entirely round the interiur. The whole surface occupied by the structure was 5,00 sipuare yards. It was, in every respeet, well arlapted for the purposes for which it was raised, and had an extensive pleasuregarden nearly surromudins it. The exhibition was successful in everything lut its pecuniary results. It was amply patronised both ly foreign exhibiters and visitors, and like that of 1802 in London, and the previons ones of Dublin and laris, it combined fine arts with the manufactures, miniug, and other industries.-The present year has witnessel, in l'aris, the greatest of all international cxhibitions, both with respect to its extent and to the seopre of its jhan. Its site is on the Champ-he-Mars, the great military parade-ground of l'aris, and it occulies the enormous space of 37 acres. It eonsists of a large building of an elliptical form, arranged in twelve concentric circles, with a small open central garden. 'the outer circle is much more lofty and broader than any of the others, is roofed with corrugated iron, and lighted with clerc-story windows, and is devoted to Machinery of all Kinds, and to the processes of mannfacture in various lranches of industry: Ontside this cirele are placed practical illustrations of the food department, in the form of restuarants of alf nations-the exhibition of specimens of food-substances being in small courts within tho outer wall, or loack to liack with the restaurants. The first circle within that for Machinery is for Metallurgy, Chemistry, Dyeing, \&e. ; then follow Textile Materials, Clothing, Houselaold Furniture, l'ersonal Ornaments, Plate, P'orcelain, \&c.; then matters relating to General and Special Elucation. Then comes the Gallery of Fine Arts, in which the

EXHIBITIONS-EYRE.

paintings, sculpture, and other fine-art warks of all nations are exhibited; and within this circle, again, is another, in which an archrological collection from each conntry is displayed for the purpose of slewing the rise and progress of industrial art in every country. This is a novel and most valuable addition, which has been admirably conceived and carried out. Another most important feature in the Paris Exhibition is the Park, or out-of-door portion, which occupies by far the larger part of the whole space. In this are shewn actual examples of the styles of domestic and palatial architecture of most countries, and even the tents of same of the nomad tribes, such as the Kirghis Tartars, and Samoyeds of the Russian Empire, the Bedoun Arahs, \&c. The beasts of burden of different nations, such as horses, camels, \&c., are also shewn, and all kinds of civil and military erections of general importance. The Exhibition has had great and deserved success; it has been visited by most of the principal monarchs of the world, and vast multitudes of people of all nations. For same reason, however, no reliable statistics have been published, and it is feared that, pecuniarily, it will not succeed. It seems to be the culmination of industrial exhibitions, and it will teach the lesson, that it is possille to go too far in this direction, for in many respects it has been quite ummanageable, and shews the necessity of narrowing the limits of future exhibitions, if we desire to oltain the best results.
EYRE, Edward JoHs, a distinguished explorer and Englist colonial governor, is the son of the late Rev. A. Eyre, Vicar of Hornsea, and Rector of Long Reston in the East Riding of Yorkshire, and was lorn in 1817. He was educated at the grammarschools of Louth and Sedbergh. He was originally intended for the army; but at the age of 17 , he resolved to emigrate, and seek his fortune in Australia. After serving a short apprenticeship with a settler on the Hunter River in New Sonth Wales, he became a squatter on his own account in the same colong, and invested in the business a capital of $£ 400$. The idea struck him, that eattle might be prafitably driven overland by the Murray River from New South Wales to South Australiathas saving the difficult and circuitous vayage from Sydney to Melbourne. He made the attempt; and it proved so successful that, with the profits, he was able to purchase an estate on the Lawer Murray, where he took up his abode. He was appointed resident magistrate and protector of aborigines. The natives had been cruelly ill used loy the colonists who had penetrated farthest inland, and had even been shat and poisoned with impunity. Mr E. sought to remedy these evils, and discharged the difficult task of settling the disputes between the settlers and natives in a manner admitted by all to have been most judicious, just, and humane. movement was made, in 1539 , to explore the unknown region between South and Western Australia, lying north of the Great Australian Bight. Two rontes were suggested-one north of Lake Tarrens, the nther alang the sea-coast. E. warmly alvocatel the former, and offered, if it were arlopted, to head the expedition, and pay onethird of the expense; and the subscribers to the fund at Adelaide accepted his offer. In 1840, he set out with a company of fonr Englishmen and two native boys; but the expedition proved unsuccessful; and after wandering for months along the muidy or sandy shores of Lake Torrens, the party were compelled to return to Port Lincoln, whence they were conveyed to Adelaide by a vessel sent for their relief by the governor. Then E. determined to attcmpt the southern route. In February

1841, although strongly urged to abandon the uudertaking, he set out, accompanied by a man named Baxter and three alooriginal boys. Baxter was killed, two of the boys deserted, and E. was left to complete the journey with one boy, named Wyllie, a native of Western Australia. For a week at a time, E. was withont water, and he would have fimally fallen a victim, like ather Australian explorers, to fatigue and thirst, had he not obtained a fortnicht's rest in a whaler anchored off the coast. He reached King George's Sound on the 7th July, having thus accomplished a jomrney of 1000 miles in four months in one of the most sterile regions known to exist. His journey proved that no route of any value can be opened up alony the southern coast of Australia, and that no fertile spots break the waste-a fact of immediate importance so long as Western Australia remains a penal settlement. E. published a Journal of his Expedition, in which be included an account of the natives and their relations with Earopeans. In 1845, he returned to England; and in the following year, he received the appointment of Lientenant-goveruor of New Zealaud, under the goveruor, Sir Gearge Grey. It was his special duty to administer the goverument of the middle island. At the expiry of the customary six years' service of a colonial governor, E . returned to England, and received the appointment of Lientenant-governor of St Vincent. In 186: he was appointed governor of Jamaica, for which his success in dealing with the inferior races in Australia seemed ${ }^{\text {pre-eminently to tit him. When, }}$ in October 1865, the negro disturbances broke ont in Jamaica, E., acting in conformity with the almost universal feeling of the white population, and guided by his knowledge of the negro character, resolved to check the progress of disaffection among an ignorant and half-savage population by prompt and energetic measures. A general panie prevailed. Martial law was proclaimed under a local statute. A Mr Gordon, believed to hare taken a leading part in the rebellion, was hurriedly tried on a Saturday, by court-martial, and hanged on the following Monday, after the sentence had been confirmed by Eyre. The insurrection was successfully repressed. Complaints, however, were made that Gordon had been condemned irregularly and on insufficient evidence; and that other excesses of severity had been committed. A commission sent out to inquire into the facts came to the conclusion that such was so far the case, and E. was recalled. He returned to England, and took up his abode at Adderley Hall, near Market-Drayton, Salop. English opinion was much divided as to the course he had taken. Those who disapproved of his conduct, represented by Mr John Stuart Mill, M.P., and Mr P. Taylor, M.P., resolved to prosecute him on a charge of murder. An Eyre Defence Fund was raised, aud a committee appointed for his defence, in which the most prominent place was taken by Mr Thomas Carlyle and Sir Foderick Nurchison. E. was summoned before a London police court, but declined to attend, on the ground of non-residence. On the 25th of March 1867, he appeared before the petty sessions at Market-Drayton, where the charge of murder made against him was dismissed by the magistrates. No one doubts that E. is a brave, kind-hearted, and honourable English gentleman ; but it must be admitted that he committed a grave error of judgment in endarsing the sentence against Mr Gordon, without seeing that the evidence was sufficient, led away, as he no doubt was, by the panic around him.-See Journal of Expedition of Discavery by Eyre, and Life of Eyre, by Hamilton (Hume, 186テ).

F

ACTORY ACTS. Importaut ex. tensions and various modifications of the factory acts have recently been made. The acts 23 and Ω Vict. c. 7s, 26 and 27 Vict. c. 3S, and 27 and as Vict. c, 98, have extended the provisions of the factory acts to bleaching and dyeing works, calentering works, and works in which the processes of finishing, hooking, or lapping, or of making and packing yam or cloth of catton, wool, silk, or flax, are carried ou. The provisions of the acts nere applieal to persons cmployed in lace factories by the act 21 and 25 Vict. c. 117. The Factory Aets' Extension Aet, ISGt (27 and 2 S Vict. c. 4S) , refers specially to certain trates regarded as more than usually nowholesome -namely; the manufacture of carthenware (exeept common brieks and tiles), of lncifer-matelaes, of pereussion-eaps, of cartridges, paper-staining, and fustian-cutting. It provides that every factory to which it applies shall be kept in a cleanly state, anil be ventilated in such a manner as to render harmless, so far as is practicable, the gases, dust, or other impurities generated in the process of mannfacture that may be injurions to health; and it gives the manufacturers power to make special rules, with the sanction of the Home Secretary, for the guidanee of the work-people, so as to prevent the requirements as to cleanliness and ventilation from being infringed, and to punish any breach of these rule's by a jeualty not excecting £1. The Factory Acts' Extension Act, 1567 (30 and 31 Yict. c. 10.3), is the most important act which has been passed on the sulbject sinee the passing of the leatiog act in 1844. It extends the scope of the acts very cousiderably, making them apply to (1) blastfurnaces, or premises in which the process of smalting is earried on ; (2) copper mills; (3) mills for converting iron or steel; (4) foundries for iron, copper, brass, or other metal; (5) 1 remises in which mechanical power is used in the manufacture of machinery, of any artiele of metal, or in the mannfacture of india-rubber or gutta-percha; (6) 1 remises in which the manuacture of paper, of glass, or of tobaceo, letter-press printing, or beak Tivding is carried on; and lastly (7) any premises constituting one trade establishment in which fifty or more persons are employed in any manufacturing process. The act makes a nomber of temporary modifications of the preceding acts, so as to prevent hardship by the sudden introduction of their provisions into the new trades. It also contains a number of permanent modifications of their provisions, of which the principal only can be pointed out. It gives power to the Home Secretary, in all trades whose customs or exigences require it, to authorise the occasional employment of males of 16 beyond the hours allowed by the factory acts; to authorise children, young persons, and women to be employed at different hours; to modify the regulations as to fencing machinery; and to modify the arraugements as to holidays, and as to working on Saturday afternoons. These powers the Home Secretary can excreise only within certain narrow linits. Power is also given to him to sanction certain deviations in regard to the hours of labour in some specified trades, such as letter-press printing and bookbinding. The act also cuntains some regulations to be kept in view in

513
alplying the former factory acts to the glass, paper, and others of the now trades. Amongst its general provisions is an important one to prevent such over-crowding in factories as might bo prejudicial to health. It most be confessed, however, that althongh its provisions are very beneficial, the act of 1567 has not left the law in a satisfactory condition in so far as its arrangement is eoncerned; but it is understoorl that it is in contcmplation to consolidate at some early periorl all the acts relating to the employment of persons in factories. See Woth. Shop Regelition Act.

FAII ISLE, an island about 3 miles long ly 2 broad, lyiug letween Urkney and Shetland, or 25 miles from either; ecclesiastically, it lelongs to the parish of Dumrossuess, in Shetland. It was on this rocky isle that one of the vessels of the Spanisly Armada, having on board the Duke of Dedina Sidonia, was wrecked in the attempt to escape nurthwards, 15SS. The vessel having gone in pieces, the crew were thrown on the hospitality of the poor islanders. The Duke, after a time, got to Quendale House, on the mainland of Sletland, and weutually landed in safety at Dunkirk. From the Spaniards on this occasion, the natives of Fair Isle accuired a knowledge of the art of forming woollen articles, such as eaps, mittens, and scarfs, in divers colours, the prepration of which is still a staple employment in the island for purposes of export.
FA'RNWORTH, a town of Lancashire, two miles and a half south-east from Boltou-le-Mloors, near the Tonge, a branch of tle Irwell. It is a station on the Manchester and Bolton Iailway. It has a picturesque embattled chapel, of the 15th century. The manufacture of sail-canvas, and the making of watches, tiles, \&c., are carricd on. I'ol. (1SG1) 8720.

FARRACUT, David Glascoe, Vice-admiral of the American nary, was born near Knoxville, Tennessee, in 1801; and at the age of eleven jears entered the navy as midshipman, under Capstain David Porter, in the Essex frigate. At the age of 2I, he was made lientenant, and appointed to the Norfolk Navy-yard; in 1S33, he commanded the Natchez, on the Brazil statiou, and in 1838, in the West Indies; in 1847, be was appointed to the sloop-of-war Saratoya; in 1851, made Assistant. inspector of Orduance; in IS54, scot to construct a navy-yard in California; and in 1855, with the rank of eaptain, appointed to the steam-frigate Brooklyn, in the home squadron. In January I862, he was appointed to the command of a naval expedition to act against the Confederates in the Gulf of Mexico; and on April 24, after a beavy cannonade, his squadron 1 inssed the forts at the month of tho Mississippi, and ou the 2 Sth, he reccived the surreuder of Neir Orleans. Ascending the Mississipni, he touk Natchez; and aided by a fleet of gun-boats, which had descended the river, made an attack on Vickshurg, which failed; and he withdrew to Pensa. cola, and operated agrinst the coast of Texas: Raised to the rank of vice-admiral in March 156:, he once more passed up the Mississippi, successfully ran past the heavy Confelerate batteries of Fort Hudson, and aided Gencral Grant in the combined attack on Vielshurg, which resulted in its eapitula. tion, July 4. In Augnst 1864, after a furious

FECHTER-FENTAN SOCIETY.

engagement between his fleet and the Confederate forts and vessels at Mobile, in which the Tecumseh monitor was sunk by a torpedo, with the loss of all on hoard, he succeeded in capturing the forts, which led to the fall of the city. Admiral F . has been one of the most active and successful commanders in the American navy, and out of 50 years was only 11 years unemployed at sea.

Fechter, Charles Albert, an actor of some eminence, and manager of one of the London theatres, was born in London about the year 1823, his father being a Frenchman, and his mother an Englishwoman. When only three or four years old, he went with his parents to France, and was there educated as a sculptor. His predilections were, howerer, in favour of the stage; and, believing himself capable of interesting the public as an actor, he appeared for the first time at the Salle Moliere, in a piece called Le Mari de la Teuve. Afterwards, he acted for some weeks at the Conservatoire, and then went with a travelling company, which performed in the principal cities. In IS46, F. performed in Berlin with considerable success; in the following year, at the Vaudeville in Paris, and the St James's Theatre, London. After this, he played by turns at the Ambigu, the Tariétés, the Thétitre Historique, and the Porte St Martiu. In 155̄3, he re-appeared at the Tandecille, where he created the part of Duval in the Dame aux Camélias. His acting also brought success to the Fils de la Nuit at the Porte St Martin, and to La Belle Gabrielle, in the performance of which he met with an accident that almost cost him his life. F. was also the original performer in those two melodramas, Les Fries Corses and Pauline, since so celebrated on the English as rell as the French stage. While making these preliminary essays, as if to qualify himself for a still higher class of impersonations, F. used to appear, as the season of the French plays in London came round year after year, at the St James's Theatre. At length he was announced to appear in an English version of Ruy Blas at the Princess's, on the 27 th of October IS60. This being his first appearance on the English stage, there was considerable interest taken in the performance. F. however, passed through the ordeal triumphantly. He threw himself heart and soul into the character, and so perfectly identified himself with it, that people almost forgot his French accent, in admiring the energy and finish of his acting. On the 20th of March in the following year, he appeared in the character of Hamlet, the highest flight that can be attempted by any actor. There were prophecies of failure and prophecies of success, but neither of them came perfectly true. F., in the performance of this great character, while abandoning the traditions of the English stage, sherred himself capahle of appreciating the difficulties he had to contend with, and in some measure of surmounting them. He was the scholar and the gentleman throughout; and it was certainly a curiosity for the English public to listen to an actor who, as it was said at the time, 'went straight from the book to the boards,' and gave a thoroughly independent conception of the character of the Danish prince. Of course, there was much in it that was to be condemned: there was both exaggeration and distortion; while many passages in the play which ought to have told with great effect, seemed to make little impression on him, and consequently little or none on the audience. Still, the impersonation was, upon the whole, one that marked F. as an actor of very high powers. The same may be said of his impersonation of Othello, in which he appeared in the following Octoher. Subsequently, $\overline{\mathrm{F}}$. became the lessee of the Ljceum Theatre, where he produced

The Duke's Motto and Bel Demonio, hoth of them pieces which, although they had a long run, depend more for their success upon the accessories of dress, scenery, and startling situations, than upon intrinsic merits as dramatic compositions.

FELANI'TCHE, or FELANITZ (anc. Canatix), a town of the island of Majorca, 27 miles east-sontheast from Palma. It is situated in a valley, surrounded by mountains, and is well built, with a number of squares and wide streets. It has a conrent and a hospital. On a neighbouring hill, is an ancient Moorish castle, with snlbterranean vaults. Linen and woollen fabrics are manufactured; ropemaking and brandy-distilling are also carried on. There is some trade in the products of the neighbouring country-rice, coffee, sugar, wine, brandy, fruit, and cattle. Pop. 8102 .

FE'NIAN SOCIETY, a political association, chiefly of Irish or Irish Americans, secret in the beginning, hut eventually acting by open warfare, the object of which is the overthrow of the English authority in Ireland, and the establishment of a republic, in which the rights of the native race should, as far as practicable, be recognised and represented. The etymology of the name has been the subject of some discussion; its origin being by some confounded with that of a secret society, with very similar objects, which existed in lreland some years back, under the name of the Pherician Society. It is certain, nevertheless, that the name is taken from that of the ancient Irish military organisation called Fionna Eirinn, which took its appellation, though not its origin, from the celebrated hero of Irish legend, as well as history, Finn (or Fionn) MacCumhail. The accounts of this renowned hody, with which the bardic literature of Ireland abounds, are most curious. It was designed as a national militia, and its origin is ascribed, by Keating, to Sedna II., who was monarch of Ireland about 400 years E.c. In time of peace, it consisted of three bodies, each formed on the model of a Roman legion, and consisting of 3000 men ; but in war, it was capable of heing enlarged to any required limit. In winter, it was maintained in quarters at the public cost. In summer, the men were to maintain themselves by bunting and fishing. Candidates for enrolment were required to be of an honourable family, to be irreproachable in morals, and to bind themselves to observe the laws of justice and morality ; they were required to be of a certain height, and strong, supple, and rigorous of body; each being suhmitted, before enrolment, to an ordeal, in which his powers of speed, strength, eudurance, and courage were tested by trial with his future comrades. The bardic accounts of some of those conditions are extravagant and amusing in the highest degree, but the generally historical character of the institution is unques tionable ; and it subsisted until the reign of Carbry son of Cormac MacArt, by whom the body of Fionna Eirinn was disbanded, and the members having, in consequence, transferred their allegiance to Mocorb, king of Munster, suffered an almost total extermination in the battle of Garra, 2S4 A.D., which formed the theme of many a bardic poem from the days of Oisin (known in Gaelic legend as Ossian), son of Finu MacCumhail, downwards.

Adopting the name of this ancient military association, the modern Fenians (or Finians) are a secret association for the purpose of overthrowing by force of arms the alien ascendency of the Saxon, and of restoring to the ancient Celtic population their legitimate status and influence in their native country In its present form, it is of recent origin, being in the main the work of certain among the political exiles of I84S. It had its first seat in America, where the

1rish population has largely increased since the lrish famine of $1846-181 \%$. Jiany of the emigrants of that periol being driven from their homes, whether by process of arbitrary ejectment, with a view to the consolidation of farms, or from inability to pay any longer the rent wbich, until the failure of the potato, they had contrivel to maintain, carried with them a sense of fancied wrong, which prepared them for almost any canterprise which secmed to promise revenge. Others had alrealy been sympathisers, if not participators in the insurrectionary projeets of 1845 ; and almost all were deeply imbucd with that spirit of general politieal and social discontent, which, from a variety of causes, has long been the normal characteristic of the peasantry and working population of Ireland. By all these, the prospect of a secret organisation for the establishment of Irish independence was eagerly accepted. The most openly active seat of the orgauisation was in the western states, especially Chicago; but the movement was directed from New Fork, and possessed ramifications in almost every city of the Union containing any considerable Irish population. The association was conducted by a senate, and consisted of 'cireles,' each directed by a centre, and comprising smaller circles with sulbordinate centres. The duty of the centres was to enrol members, who bound themselves, generally by oath, 'to be faithful to the Irish liepublic as at present virtually established;' to instruet and practise them in military exercises; to raise fumels for the purposes of the association, especially for the purchase of arms and munitions of war; and to extend the organisation by every means at their disposal. Agents were sent into lreland, and to the chief seats of the lrish population in Lugland; anel while the work of seeret corolnent was industriously carried on in Ireland, measures were opeoly concerted in Ameriea, as well for the rasing of funds by private contributions, as for the purchase of arms and military stores. Opportudely, too, for the purposes of the enterprise, the termioation of the civil war in America set free a large number of military adventurers who had served as privates or as otheers in one or other of the American armies, and whose experience of scrvice was turned secretly but most actively to account in the training of the young recrnits curolled in the Fenian conspracy in Ircland. Newspapers, moreover, both in America and in Ireland were established or subsidised for the purposes of the conspiracy; and journals, broadsides, hallads, and other intlammatory publications were largely circulated among the peasantry and artisans. Taverns, alehouscs, and other phaees of entertainment were the ordinary places of meeting; and in such places of entertaioment was commonly laid the scene of one of the most formidable of the plans of the conspiracy-an organised attempt to seduce the lrish soldiers from their allegiance, anel to prepare the way for their deserting to the ranks of Fenianism, when it should bave reached the expected degrec of maturity. It became apparent, moreover, that in this, unhke almost all similar movements, 1 nins were taken by the organisers to exclude the Catholic elergy, by whom the Fenian confedcration had from the first been steadily resisted, from all knowledge of its character anh objects, as well as of the names or number of its members in the several localities; and many of the most active of the leaders were distinguished ly the freedom of their religious opidions, and by their unconcealed disregard of clerical authority.

For a time, these designs were earefully concealed, and even when a certain publicity was given to them, the scheme appeared so widd and impracticable that it was regarded with incredulity, or was
looked on but as an imprudent attempt, on the part of a lody of umprincipled arlventurers, to practise upon the patrintic suseeptibilities of the innorant and exeitahle Irish, especially in America. By degrees, however, partly from the impunity arising from this contemptuous incredulity, the movement acyuired more solidity, and the government ascertained by relialbe information that Fenianism, bnwever corrupt in some of its sources, and however wild and extravagant in its aims, was nevertheless a reality with which it hat become necessary to grajple. Measures were taken with great promptness and determination. The llabeas Corpus Aet baving been summarily suspended, all the known leaders in Dublin and in the provincial districts of Ireland (most of them Irish Americans) were at once plaeed under arrest. The chicf journal of the conspiracy was sulpressed and seized; alditional troops were moved into Ireland, and other measures of repression were vigorously carried out. By these energetic measures, public tranquillity was maintained in Ireland; and although prosecutions were instituted, and a few imlividual eonspirators convicted, so universally was the movement condemned by the pullic opinion of the country, that most of the prisoners were discharged, on condition of their leaving I reland. But althongh thus in aphearance extinguished, the embers of discontent continued to smoulder annong the poorer peasantry and the working pepulation of the towns : and a certain prestige was given to the fallen eanse ly the eseaje from prison, under circumstances of much mystery and a high degree of romance, of the most active and erafty of the leaders of the conspiracy: His return and that of otherexiles to America renewed the agitation in that country. In the early summer of IS66, a raid was attempted into Cinada, and although it proved so nitter a failure as to cover its projectors with ridicule, an organisation was secretly dursued both in Ameriea and in Ireland, which resulted, in the spring of the present year (1867), in an insane and utterly abortive attempt at insurreetion at home. The plan of the conspirators was to seize the castle and military stores at Chester, and having cut off telecraphic communication, to convey these arms to Dublin, in which city, as well as throughout the country generally, a simultancous rising was to take place in concert with the enterprise at Chester. The attempt was defeated through the treachery of one of the conspirators, by whom the plot was revealed. A partial insurrection, however, took place concurrently with the intended attack on Chester, in the county of Kerry; and a few weeks later, a more extensive movement was attempted in the counties of Dublin, Louth, lipperary, Limeriek, and Cork. But the persons engaged in it were for the most jart either American and Irish-American alventurers, or artisans, day-labourers, and mechanics, generally unprovided with arms, and in many cases saarcely beyond the years of bnyhood. The only military enterprises undertaken l,y them consisted in a series of attacks on the barracks of the rural constabulary, in almost every instance unsuceessfin; most of the parties dispersed, or were made prisoners aiter a single night's campaign. The rest betook themsclves to the mountains, and after a few days of exposure and hardship, in which they managed to evade pursuit, and carefully avoided all encounter with the military, they were either captured or dispersed. The leaders have been tried at a special commission held within the spring of this year (1867), and for the present, tranquillity has been restored in Ireland. Nluch disconteat, however, still exists; and as the foreign organisation is uncontrolled and still actively maintained, it is impossible not to look to this as a serious element of danger, and a persisting incentive
to domestic disaffection. The latest of the Fenian enterprises in England we are able to record has been the attach on a police van at Nanchester, with the liberation of two suspected Fenians, and the murder of an officer of police, September 186%.
FERNA'NDO DE NO'RONHA, a lonely island of the Sonthern Atlantic, in lat. $3^{\circ} 50^{\prime} \mathrm{S}$., and long. $32^{\circ} 25^{\prime}$ W., about 125 miles from the coast of Brazil, to which empire it belongs. It is about eight miles in length. The surface is rugged, and rises into a peak about 1000 feet high, the upper part of which is very steep, and on one side somewhat overhanging. The island is mostly covered with wood; but as little rain falls, and sometimes two jears elapse without any, there is little of tropical luxuriance. It is used as a place of bapishment for Brazilian criminals. No woman is allowed to land on the island.

FEROZABA'D, a town of Iadia, in the British district of Agra, North-west Prorinces, $2 \pm$ miles east from Agra. It is the principal place of a pergunnah of the same name. It was formerly named Chandwar, and was a place of much greater importance than at present. Its fine edifices are mostly deserted and in ruins; most of the inhabited louses being cottages thatched with straw. It is surrounded by a wall, outside of which are many mounds and shapeless ruins. Pop. 12,6.t.

FESCH, Joseph, Cardinal and Arehbishop of Lyon, was horn 3d Jannary 1763 at Ajaceio. His father, a Swiss officer in the service of Genoa, had married a widow, whose daughter by a former husband, Letizia or Laxtitia Tamolino, became the mother of Napoleon Bonaparte. F. was thus the half-brother of Letizia, and the uncle of the fnture Emperor. He had entered the clerical profession, but left it at the outbreak of the Freach Revolution, and, in 1795 , became commissary to the Army of the Alps under his nephew in Italy. The First Consul having resolved on the restoration of the Catholic worship, F. resumed the clerical habit, and was active in bringing about the concordat with Pope Pius VII. in 1801. He was now (1802) raised to be Arehbishop of Lyon, and in the following year to be eardinal. In 1804, he was sent as French ambassador to Fiome, where he ingratiated himself with the pope by his adroit management and ultramontane sentiments, and contributed to induce the pope to undertake his mission to Paris to consecrate Napoleon as Emperor. F. accompanied the pope, and assisted at the coronation; and for his services at Rome, he was rewarded by the office of Graud Almoner and a seat in the senate. In 1806, the Arehbishop of liegeusburg, Areh-chancellor and first Priace Elector of the just-expiring German Empire, and about to become the Prince Primate of the nascent Confederation of the Rhine, chose F. to be his coadjutor and suecessor ; and, along with all these dignities, he received a stipend of 150,000 florins a year. In 1809, Napoleon wished to invest him with the Archbishopric of Paris, but F. declined it, as he had long been dissatisfied with the Emperor's poliey iu regard to the papal chair. In 1S10, he presided at a national conference of clergy assembled at Paris, and the views which he maintained there, with even more than usual keeuness, bronght him into complete disgrace with the Emperor ; who was still further exasperated against him by a letter which F. wrote to the pope, then (1812) in captivity at Fontainebleau, and which was intercepted. He lost his imperial dignities and pension, and the prospeets of the Primacy of the Phine Confederation were also taken away by the appointment of Prince Eugene to be Grand Iuke of Frankfurt. After this, F. lived in a sort of banish-
ment at his bishopric of Lyon. At the approach of the Austrians in 1814, he fled to Rome with his sister Letizia, the mother of the Emperor, where he was received with open arms by the pope. The return of Napoleon brought him back to France, and during the Hnndred Days, he was nominated a member of the Chamber of Peers, though he never took his seat; but, after the battle of Waterloo, he had again to take refuge in Italy. The royalist clergy now persecuted him with accusations and lampoons which he in no way deserved. His resistance to the will of his nepher, and indeed his whole eouduct, seem to have been actuated by sincere zeal for what he considered to be the interests of the church. When ealled upon by the Bourbons to resign his epriscopal office, he obstinately refused; and it was not till 1825 , after receiving a papal brief interdicting the exercise of his clerical functions, that he resigned the charge, but not the title. In 1837, an attempt was made to reinstate him, to which, however, the French government refused assent. He lived in the greatest friendship with his sister, Madame Mère, as she was styled, till his death. He died 13th May 1839. Of his famous and very large collection of paintings, he bequeathed a part to the city of Lyon, and the rest was disposed of in a series of auctions at Rome after his death.

FEUILLEA, a genus of plants of the natural order C'ucurbitacer, named in honour of Lonis Feuillee, a French botanist and traveller in Chili. The species are generally half-shubby climbers, natives of the warm parts of America. The seeds, at least of some of them, as F. cordifolice and F. trilobate, contain a great quantity of a bitter fixed oil, which is obtained by expression, and is used for lamps. It has also a high reputation in the West Indies and Brazil as a cure for seruent-bites, and an antidate to some kinds of vegetable poisons, and is certainly, in smail doses, an active and safe emetic and purgative.

Field, Chres West, an American merchant, one of a family distinguished for ability, was born at Stackbridge, Massachnsetts, November 30, 1819. At the age of 15 , he went to New York, and entered upon a commercial career, which he pursued with such energy and success that he was enabled in 1853 to partly retire from business, to spend some time in South American trarel, and then to engage with great enthusiasm in the promotion of the Atlantic telegraph, for which he seenred a charter from the colonial government of Newfoundland for 50 years; and heing joined by Peter Cooper, Moses Taylor, and other American capitalists, he organised, in 1854, the New York, Newfoundland, and London Telegraphic Company ; and in 1856, the Atlantic Telegraph Company. Devoting himself entirely to the work of uniting the Old and New World, he crossed the ocean nearly thirty times in its prosecution; and on the laying of the first cable, 1855 , was received by his countrymen with enthusiastic plaudits. Indiscouraged by the speedy failure of the first eable, he continued his exertions; and on the success of the cable of 1565 , received a gold medal at Liverpool, and a rote of thanks from the American Congress. See Atlantic Telegraph.

FIGLI'NE, or FIGHINE, a town of Central Italy, in the province of Florence, and 15 miles south-east from Florence, on the left bank of the Arvo. It is surrounded by a rectangodar wall, and is traversed by a fine street, through whieh passes the great road from Florence ap the valley of the Arno. The silk of F. is reckoned the best in Tuseany. Pop. 4533.

FIGUEIRA, a town of Portugal, in the proviace of Beira, at the mouth of the Mondego, $2: 3$ miles west-by-south from Coimbra. Its harbour, is a
small hay or estuary of the Mondego, and is safe, but difficult of access, particularly for large vessels. It carries on, however, a considerable trade. The chief exports are salt, wine, vinegar, oil, Iried fruits, and oranges. The wine shipped from F is known in England by the uames of Fimeira and Bairrada Wine. It is quite different both from port and from sherry. It is best when new, and loce not bear keeping long. F. is much resorted to as a bathingplace. Pop. 3267.

IVLADELLFIA, a town of Sonth Italy, in the province of Catanzaro, 18 miles west-sonth-west from Catanaaro, on the western side of the A peurines, aud on a branch of the Angistola. Pop. 4939.

FINA'LE, a town of North Italy, in the province of Modena, on the l'anaro, 22 miles nortl-cast froun Moitena. It is surrounded by walls, has manufactures of lineu and silk, and an active gencral trade. Pop. (1561) 4722.

FIOIENZUUO'LA (Florentiola), a town of Northern Italy, in the province of Piacenza, on miles west-north-west from Parma, on the Arda, in a beantiful and fertile plain. It is a station on the railway between Parma and Piacenza, and is also on the ancient Emilian Way. It is well built, and a place of considerable activity. It formerly had numerous conventual and other ecclesiastical estallishments. The principal church is still collegiate, and contaias some curious relies of ancient art. There are some interesting relies of medieval times in Fiorenzuola. It is supposed to ocenpy the site of the ancient Fidentia. Pop. 2967.

FIREOLGS, the name given in the fabulous early history of Ireland to a tribe said to lave descended from the Kemedians, who, under their leader Nemedius, landed in the island about 2260 B. $\mathrm{C}_{\text {; }}$; and after 217 years, left it, on account of the oppression to which they were subjected by pirates called the Fomurians. The emigrating Nemedians formed three bands-one went to Thrace, and from them descented the F.; a sccond to the north of Europe or Luchlan, from whom descended the Tuatha de Danann; and the third to Alban or Scotland, from whom sprung the Britons. The F. returned to Ireland in three tribes, one of which more especially bore the name Firbolg; the others were called Firdomnan, and Firgailian. The three tribes, however, were under fire leadors, by whom Ireland was divided into five provinces. With Slainge, the first Firbolg king, who began to reign 1934, B. C., and reigned only one year, the Irish historians begin their aecount of the Irish monarchy and list of kings. The F. were driven out, after they had been thirty-six years in Ireland, hy their kinsmen, the Tuatlia de Dazand, from Scotland, they haring previously passed orer to that conntry from Lochlan; aud these, in their turn, were expelled or conquered by the Milesians. The most recent isvestigators of the early history of Ireland regard the story of the F. as having some basis of truth, but no chronological accuracy; the different tribes laving long subsisted in the country together, and with warging furtunes as to temporary superiority. Sce Iretaint.

FIRAINY, a town of France, in the dep. of Loire, six miles south-west from St Etienne, with which it is connected by a brauch railway. Near it are rich coal-mines. It is a place of mucle activity, and has manufactures of silk, class, and hardwares. Iiblbons and nails are among the articles of manufacture most largely produced. Nuch lamp-hlack is also made. I'on. (1866) 717.

FILOLA, a genus of gasteropodous molluses, of the order Meleropoda, entirely destitute of shellalthongh there is a small branehial sholl in the
nearly allied genus Carinaria; of a very elongated form, having the mouth situated at the extremity of a proboscis; tentacula wanting, or anerely rudimentary ; and generally remarkable for great transparency of substance, often enlivened with golden spots. They swim by means of the foot, which is compressed into a fin, are often to loe seen at the

Firola Frederici.
surface of the water in calm weather, and are abundant in the warmer temperate and tropical seas. The oxygenation of the blood is supposed to take place in part through the delieate tissues, as there are no special hreathing organs but a ciliated band.

FISHING. The capture of fishes for food has been carried on in a rariety of ways from the most remote antiquity, and is probably at least as ancient as the lunting or trapping of any kind of wild animal. The supply of food yielded to man ly the waters seems always to have borne a very consiterable proportion to that yielded by the land. Of all modes of capturing fish, the most simple and primitive is that of taking them with the hand, which is still an amnsement of boys, who thus catch trout in small streaus by groping below the stones where they hide. This is called in the east of Scotland gumping, in the west ginneling or guddling. Even seafish are sometimes taken by the hand, approaching the shore in such dense shoals that the water seems almost to be filled with them. This is particularly the case on the north-western coast of North Ameriea, a region which appears to abound in fisls more than aoy other part of the world ; and there, besides the occasional use of the mere hand, the Indian often catches fish by means of a hand-nct or a basket, paddling his canoe into the midst of tho shoal, and, as it were, baling the fish out of the water. The use both of the net, in various forms, and of the bouk and line, as well as also of the fishing-rod, are rery ancient. Allusion is made in several places of the old Testament to the use both of pets and hooks in the capture of fish. Some of the most important fisheries, as the herring-fishery, are carried on almost exclusively by the net. For different fisheries, however, nets of very different kinds arc used. See Fisheries and Ners; also Iferrivg, Salmon, and other articles on the most important kinds of tish. The capture of some very valuable kinds of fish-as cod, haddock, and others of the same family-takes place chiefly by means of the hook and line, and cither by what is called the longline, to which many hooks are attached, and which is extended horizontally over a bank frequeuted by the fish, its place being marked by tloats, and drawn after the lapse of at least several hours; or by the hand-line, which, being let down over the side of a boat with a sinker proportioned to the strength of the current, is watched by a fisherman holdiag it in his hand, and hauled up immediately on a fish being felt to bite. The baits are, of course, various, according to the opportunity of procuring them and the kinds of fish. The use of the fishingrod along with the hook and line is not so general for the capture of sea-fish as of fresh-water fish. See Angling. A rude fishing-rod, however, is often used for the capture of some sea-fish. The Pollack (q. v.) or lythe, the mackerel, and some other fish of the British seas, are oftcin caught by

FLAHAULT DE LA BILLARDERIE-FLOATING-DOCKS

rod-fishing from boats under sail. The young of the Coal-fish (q.v.) are caught in great numbers by the fishing-rod from rocks on the British coasts; and this, which is chiefly an amusement for boys in most parts of Britain, supplies no inconsiderable part of their food to the inhabitants of Orkney and Shetland. The shooting of fishes with arrows is practised by some of the South American Indians; some very large kinds of fish-as the Arapaima (q. v.)-are oceasionally harpooned ; and many large fish, both of the sea and of the fresh water, are killed by weans of spears-a mode of fish-capture common enough in some parts of Scotland, and much emploged by salmon-poachers, the spear-three-prongedbeing knowu as a leister. Torches are also used by might in many parts of the world, both in sea and river fishing, to attract fishes by the light, which in this way has an almost eertain effect. The poacher on a Scottish salmon-river conjoins the use of the torch with that of the leister, and this is popudarly known as 'burning the water.' It is now wholly illegal, as is the nse of the leister under any circumstances. The flying-fish is similarly attracted by torches on the coasts of the South Sea Islands, but a small net is nsed instead of a fishspear. The inhabitants of the South Sea Islands take advautage of the habit of some fishes, of leaping out of the water when alarmed, to catch them by mears of rafts in the shallow lagoons, encircling them so that they finally leap upon the rafts. The Indians of North-western America soluetimes adopt a similar method of cajturing the Tiviparous Fish (q. v.) of their coasts. Other very peculiar modes of catching fish which are in use among them are described in the articles Casplefisil and Salmor of North America in the Supplement. They also take the Vrancouver Island herting (see Herrlig, Yaycouter Island, in Supflement) bs constructing long dams of latticework on flats left dry by the retiring tide, in which the fish are caught which hare come in with the tide. This method of taking herring, horrever, has l.ng been known on the British coasts; and cruives, which are lattice-rrork constrnctions of a smaller size, have been used with great success in many places. Cruives are also very effective in the capture of salmon, a suitable place of the river heing chosen for them, and they being so contrived that the tish readily get in, but do not readily get out. A very peculiar mode of taking fresh-water fishes is practised in Ceylon, by means of a fumel-shaped basket, open at both ends, which is suddenly lunged down, the wider end domnrrards, till it sticks in the mud, when, if a fish is felt to leat against the sides, it is taken out with the hand.

The capture of fresh-water fish by means of vegctable poisons of various kinds, is practised equally in the East Indies, in Africa, and in the warm parts of America. The poisons used do not render the fish poisonous. The poisoning of trouts and other river-fish with lime is too frequent in some parts of Britain, and is one of the worst kinds of poaching, all the fry, as well as the fish fit for the table, being destroyed, and the mischief often extending far farther down the stream than the perpetrators of it proceed in pursuit of their spoil.

Cormorants are trained by the Chinese for the eapture of fish. Otters have also not unfrequently beeu traincl and employed for the same purpose. For a full account of sea-fishing, and the apparatus employed, the reader is referred to The Sea Fishermen, by J. C. Wileocks.

FLAHAULT DE LA BILLARDERIE, Argtste Chafles Joseph, Comte de, a French soldier and diplomatist, was born at Paris on 20th A_{1} ril $I 785 . H$ was destined for the army liy lis
father, a general officer; and when a mere lad, be crossed the Alps with N'apoleon as a volunteer in a caralry regiment. He was rapidly promoted to the rank of aide-de-camp of Napoleon. He distinguished himself in the Peninsular War and the Russian campaign; and in 1813, received the title of Count, and the rank of general of division in the new army. On the return of Napoleon from Elba, he was one of those who recommended him to abdicate in favour of his son. He became an exile after Waterloo; and while in England, married a Scotch heiress, Lady Keith, the proprietor of Tulliallan, in Clackmannanshire, and a British peeress in her own right. His name was afterwards removed from the list of exiles. After the revolution of $1830, F$. returned to France, and was restored to his rank in the army. He entered the household of the king, and was appointed ambassador to Vienna, a post he held from 1842 to $1 S 48$. After the establishment of the second Empire, F. mas called to the senate; and in 1860, sent as French aunbassador to London, a post for which his acquaintance with this country, and connection throngh his wife with the higher classes in England, well titted him, and which he retained until 186:. In 1864, he was uamed Grand Chancellor of the Legion of Honour. F. has no son. His daughter married the fourth Marquis of Lansdowne.
FLOATING-DOCKS. So longas ships remained of a small size, no difficulty was found in effecting repairs on their bulls by the simple method of laying them on any convenient beach or sandbank at liigh water. The receding tide would leave them high and dry for a few hours at a time; and by actively working at the repairs during low water, they could generally be accomplished, without any special contrivance for taking the ressel out of the water. This plan is not, however, applicable to the larger vessels now in use. The rise and fall of the tides is in many localities insufficient for the purpose of leaving the hull dry at low water, and the larger the ship the greater the risk of 'beaching.' Numerous plans have been adopted for getting at the bottoms of large vessels. Fig. 1 represents a mode of heeling

Fig. 1.
over ships which answers rery mell. A is a lighter of sufficient size and weight, provided with very powerful 'heaving-down tackle,' consisting of strong ropes, B, passing through very large blocks. These tackles are made fast to the masts of the vessel, which are previously secured by extra stajs, on the upner side at D; and then, by working the tackles, the hull of the vessel is heeled over until it assumes the position shewn in fig. 1. Of conrse, this plan necessitates the remoral of the whole of the cargo. When the vessel is lightened of all remorable weight, the whole of one side, and even the keel, can be thrown out of the water, the other side offering sufficient buoyancy to carrs the whole reight of the ressel. By hauling the vessel over first on one side, and then on the other, the whole of the hull can be got at without any difficulty:. Of course, still-water is required to carry out this method mith safety: Where there is no rise and fall of tide, the lighter, A, is not required, as the tackle, B, can be made fast to the quay or pier. Graving or Dry Docks (q. r.) offer a very
easy plan for repairing ships; but they are always very costly to construct, and in many localities, sulficiently firm fomdations are not attainable.

Floating docks have been in use for many years. Until quite recently, they have been luilt of timber, in the form of a large box with a Hap-door falling down on strong hinges at one end. They are moored in still and shallow water, with a deptli just sutficient to allow the ressel to float into them as they rest on the bottom. The Hap-door is then raised up, and the water pumped out. Those timber docks are incapable of being nsed in deep water, in conscquence of their want of stability. If the vessel being docked happened to be so light that the dock began to float lefore the water was all jumped out of the doek, it was very ajt to heel over, and thus cause the water to rnsh to one side, endangering both ship and dock. A consiulerable nnmber of wooden floating-docks, of a size sufficient to dock large vessels, have been built in the United States of America. Some of these American docks have heen built in sections; that is, a number of short doeks are joined together to make a structure long enough to take in a long ship; but those wooden erections have little strength or durability.

It was not until the introduction of iron as the material for constructing them, that Hoating-docks were made capalhe of working in deep water, and able to take in the largest class of ships.

Mr f. WW. Thomson, C.E., of Elinburgh, designed in 1559 a great iron floating-lock for the port of Sourabaya, Java. The task of making this duck was offered to several of the principal iron shipbuilders, lat the high price demanded for its construction led Mr Thomson to devise a now mode of executing such works. Hitherto, the plan followed was to buidd up the structure in this country, fastening all the parts together ly means of screvbolts, puitting on each individual piece in its place a mark indicative of its special position, pulling the whole down again, and re-erecting it abroad. In fact. the entire work had to be done trice over. Mr Thomson determined to make every sepmate piece of the Sourabaya Dock from draw: ings, and to dispense altogether with the costly opecration of building up in this country. Some idea may be formed of the skill and care required for the proper fulfilment of this midertaking, when it is stated that there were upwarls of 75,000 scparate plates, ribs, and angle-irons, every one of them slapeal, punched with numerous holes, and ready in every respect to be riveted into their places without any further preparation. It was absolutcly necessary that every one of the two millions of holes that were to be punched in all these plates and pieces of iron should be accurately in its right place. The making of special drawings for so many separate pieces was, of course, out of the question; but Mr^{2} Thomson succeeded in carrying out his system so completely, that there were only about 450 separate forms to be made. Not only was the variety of the forms of pieces reduced, but the uniformity of the pieces of any particular form was so provided for that each would lit into any one of the places where its class appeared. Thus, a plate belonging to the bottom of the dock would fit equally well into any part of the bottom; it could even be turned upside down, or end for end, and still all the numerous holes punched in the plate would fall precisely opposite the equally numerous holes already made in the rihs, isc., to which the plate was to we attached. It was the same with all the other classes of pieces -they, and all the boles in them, would tit preciscly in any of the localities for which they were destined. By systematising the work in this manner, it
became possille to spend sufficient time and care on the making of drawings and templates for each of the separate 450 forms which composel the whole dock, to insure almost mathematical acenracy in the form of each piece, and in the positions of every hole in it. Another advantage of this method is the immense saving of labour in erecting the dock. Under the old plan of shaping each priece of iron so that it would iit only into one special place, it hal to the searched for amid thonsands of pieces similar to, and yet not capable of being sulistituted for it. The mere turning over of the innumeralle plates and angle-irons in search for individual pieces lecomes a source of great expense. Mr Thomson's system rendered this costly and weary toil unnecessary by the fact, that any one of Irerhaps a thousand pieces that first cance to hand wonld answer equally well. When the material for the docks is discharged from the shipis, each of the 450 classes of prieces is piled up, by itself, and the workmen have nothing more to do but to take the jiece on the top of the pile, perfectly sure that it will fit accurately any of the thousand possible positions to which its class belongs. A nother point kept steadily in view by Mr Thomson in designing the Sonrabaya Dock was to use only the ordinary forms and sizes of iron made for general commercial ${ }^{\text {mur }}$ poses. Iron of this kind can always lee procured cheaper, and also more readily, than when it has to he made of unusual shapes and sizes. All the iron for the Sourabaya Dock was used just as it came from the rolling-mills. The jiates were all tlat and rectangular, and the angle and 'T-iron all straight. The structure was so designce that no leuding or heating of the pieces was required. It can casily be imagined that a dock so carcfully planned would be cheally made.
Fig. 2 represents an end view of the dock. The water-tight compartments $A, A^{\prime}, B, B^{\prime}$, and C, were all completely nuder the command of the powerful centrifugal steam-pumps, so that they conld be separately filled or emptied in a very short time. In tig. 2 , the dock is sliewn heeled over to one side, for the purpose of getting at the

Fig. 2.
bottom for repairing or cleaning it. This tilting over could be accomplished ly tilling the compartment A ', and emptying all the others. The watertight compartments were divided in their longitudinal direction into five separate divisions, making in all 25 water-tight compartments, any one of which could be filled or cmpticd at pleasure; thus affording complete command over the dock, and admitting of its being I ut into any required level, notwithstanding any irregularity in the distribution of the weight resting ou the dock.

FLOATLNG-DOCKS-FLOATING WAREHOCSES.

The French government had to provide a dry dock at Saigon, in Cochin-China, for the use of the large stcamers which had been subsidised by it to rum between France and China. The soft muddy character of the soil at Saigon rendered the construction of a stone graving-dock impracticable. The French admiral, commander-in-chief of Cochin. China, hearing of the construction of the Sourabaya floating-dock, and having examined the plans of it, recommended his government to bavc a similar
dock, on a much larger scale, constructed for Saigon. This great dock has just been erected at Saigon. Fig. 3 is a view of it. The performances of the Saigon Dock are in every way most satisfactory. It has lifted, high and dry out of the water, the 70 -gun frigate Persivérante, and is capable of lifting any ship in the French navy. Another great dock on Mr Thomson's principle has been erected at Callao, and is likewise answering its purpose admirably. It has lifted ont of the water many large

Fig. 3.-Floating-dock at Saigon, with the Persévérante of $\mathbf{i 0}$ guns. (From a Photograph.)
ressels, among others the United States man-ofwar Fateree, and the Peruvian iron-clad Indepembencia. The latter ship weighed, when lifted by the dock, 3300 tons. As the Callao Dock floats in au open roadstead, some apprehension was felt that the swell would cause too much movement to admit of ships being safely docked, but it has done its work in the most satisfactory way. None of these iron docks have doors or gates for excluding the water. The bottom part is made of sufficient depth and buoyancy to fioat the vessels clear ont of the water, and the equilibrium of the dock is maintained during the time it is under water, for the purpose of admitting a vessel, by the great displacement offered by the hollow sides, AA' (fig. 2). The total weight of these docks varies from 1000 to 3000 tons, and they cost from $£ 20,000$ to $£ 60,000$ ready for work.
FLOATING WAREHOUSES. The danger that attends the storing of petroleum and other inflammable and explosive chemicals has led in France to the construction of warehouses, store-
houses, or magazines that will float in a dock or basin, and can be moored at a distance from buildings on land. So far as concerns England, au act of parliament was passed in 1866, relating to the carriage and storing of dangerous substauces: it applies more especially to nitro-glycerine, but it gives power to the Privy Council to apply the prorisions to other daugerous substances. The precautions, however, go very little further than this, that all casks or packages containing the substance are to be marked 'specially dangerons; ' and that every, carrier and every warehonse-keeper may exercise a choice as to whether he will warehouse or carry the article or not. In France, as we have said, floating warehouses have been constructed, two being finished in 1864, and others added in later years. They, or some of them, are in a large commercial dock and entrepôt, established at St Onen, between Paris and St Denis. The constraction of the floating fabrics is remarkable. Each warehouse or magazine consists essentially of 100 hollow iron cylinders, arranged in four rows of

25 each, firmly lashed or strapped together to form a kind of raft. Each cylinder, sixteen feet long by six or seven in diameter, has hemispherical ends, with a man-hole at ono end. They are placed upright when in position, so as to be filled with petrolenm, glycerine, gunpowder, or any other sulstance, through the man-hole. As they will hohd 25 tons each, their united capacity is 2500 tons. There is a wooden covering to the top of the collected mass of cylinders, and round the sides as far down as the line of flotation, to shield the iron from fluctuations of temperature. This covering is maile of thick planking, fastened to the cylinders by angle-irons which have been riveted to the latter. At the head and stern are large hawserholes, to admit hawsers for towing and mooring the floating fabric, bringing it into anil taking it out of a basin or dock, and warping it to a quay or dock wall; or, when the ressel is moored in the midlle of a basin, far away from buthings, a barge may deliver or receive the dangerons cargo, and thus the vessel be kept altogether away from quays and wharfs.

FLORI'DIA, a town of Sicily, in the province of Noto, seveu miles west-north-west from Syracuse. It stands in a wite plain, amidst vincyards, olivegroves, and corn-hields. The houses are mostly low aud small. Pop. 7030.

FLOTOW, Friedrich vos, a living operatic composer of (icrmany. Born at Tentendorf, in Mecklenburs, in 1811, he was at first intended for the diplomatic profession; but finding a musical carcer anore congenial to him, he took lessons in composition from Reicha, in Paris. His earlier operas were refused by the managers of the Paris theatres; and his reputation was first established by his music to Le X'aufrage de he Médusc, produced in 1838 at the 'lheatre de la Renaissance, which was a great success. Nince then, he has composed varions light opras, including Le Forestirr, L'Lsclave de Camoins, Alessandro Strulelli, I'Ame en Peine, Mertha, and Rübezahl, which have attained considerable popularity both in France and in Germany, and are characterised by easy and lively dramatic action, readiness of invention, pleasing melody, anci graceful instrumentation. Martha has, since it was produced in London, become a great favourito in this country. After residing alternately in l'aris and his mative town, F. was, in 1854 , appointed intendant of the theatre at Schrerin.

FOKTCHA'NY, or FOKTSHAN, a town of Walachia, on the Milkov, a branele of the Sereth, 105 miles north-worth-east from Bucharest. The Milkov divides Walachiar from Moldavia, and a large suburb of F . is in Moldavia. In 1759, F. was destroyed loy the Russians. It was burned by the Thurks in 1822 . The inhabitants are mostly Greeks and Jews. Pop. (1860) 13,164.

FOOD. The food of man is derived entirely from the vegetable and amimal kingdoms.

Of animals used for food by man, the catalogue is very large. Savages, impelled by hunger, and unrestrained by any of those opposing considerations which are always powerful with civilised man, eagerly derour almost every animal on which they can lay their hands, vertebrate or invertebrate, and whether in a fresh state or far gone in pritrefaction.

There is no vertebrate animal of which the flesh is known to be poisonous or positively unwholesome, except some species of fish, chiefly found in tropical seas. Of vertebrate animals, every class-Mammals, Birds, Reptiles, and Fishes-affords common and much esteerned articles of food. Of mammals, those prineipally used for this purpose are the herbivorous
quadrupeds, and most of all the ruminants, of some of which the milk also is wuch employed. Tho flesh of some of the pachyderms is also used, particularly that of tho hog ; and that of some of the rodents, as the hare, rablit, eapybara, \&c.-although the idea of eating others of the rodents, as mice and rats, would be rejected with disgust by all except savages. The flesh of monkeys is eaten in some parts of the work, although at strong aversion to it is more generally eutertained, at least by civilised nations, but probably altogether on the ground of resemblance to the luman form ; for travellers who have been compelled to eat monkey-flesh, declare it to be very goocl. The flesh of whales and other ordinary Cetacea is scarcely used execpt by unde tribes; althouch that of porpoises was formerly in great request in Englaud, especially during Lent, the porpoise passing for a fish. The flesh1 of the herbivorous Cetacea, as the manati and slugong of tropical seas, is estecmed. The flesh of some of the herbivorous marsupial quadrupeds, as the kangaron, is eaten; but that of the carnivorous marsupials and of earnivorons tuadrupeds generally is rejected.The same general remark applies to birds: the flesh of birds of prey is rank, coarse, and unfit for hmman food; but that of amost all birds which feed on leaves, sects, and other regetable substances, or on insects, worms, molluses, \&c., is good for cating. Web-footed birds, particularly the Anctider, and gallinaceous hirds (including piseons), are more extensively used than any others; but hirds of other orders are also eaten; and some of the small Insesiores, as ortolaus, bee-fins, larks, icc., are lronght to market as delicacies.-Of reptiles, one order-that of Ophidian reptiles, or serpents-affords food only to savages; but some of the Cheloniau reptiles-turtles-are in high esteem; the 1:atrachian order contains the frogs, which tind a place on the most luxurions tables in some countries of Eurone; and to the Saurian order, or lizard-like reptiles, belong species-as the ignanas of South America, creatures of sutlicientiy meouth appear-ance-which, however disgusting to British rcaders in general may le the thought of eating them, many of their countrymen have learned to estecm as a delicacy. The cgges of turtles and igunans are also used for food, as well as those of many kinds of birds. Of mammals, birds, and reptiles, the parts chiefly used for foorl are the muscles or liesh, and the fat; but other parts of some animals are also used, as the kidneys, the lungs, the livers, the stomachs of zmminants (tripe), the gizzards of birds, \&ic.- Very many kinds of tishes are excellent for food, looti of cartilaginous and bony fishes; and they belong to many different families.

Of invertebrate animals, some of the molluses are very generally used. It is unnecessary to do more thin name oysters, mussels, and the snails of Italy as examples. Comparatively few molluses, however, form articles of human food. The same remark applics to crustaceans, although crabs, lobsters, cray-fish, prawns, and shrimps are well-known exceptions. It may almost be sajd that no articulated animals of any other elass are used for foorl excent by savages; the occasional use of locusts and of the larvo of some coleopterons insects (gru-griz worms, \&c.), searcely requiring a qualification of the statement. And of the radiated animals, the same general statement may be made; the Béche-de-mer; or Trepang-of which, however, the use is almost contined to the Chinesc-being the only considerable excention.

Honey; although collected and modified by insects, is rather a product of the vegetable than of the animal kingiom. The same remark applies to a very different substance, the sea-weed gelatine of

FORTUNE-FORT WAYNE.

which certain swallows of the East Indies make their edible nests.

All the great divisions of the vegetable kingdom yield food for man-the phanerogamous, however, much more largely than cryptogamous plants. Of the latter, the mosses and lepatica contain no species that is used for this purpose; the same may almost be said of lichens, notwitbstanding the tripe-de-roche and Iceland moss; but numerous species of Algoe and of Fungi are edible; and a fer ferns supply unimportant articles of food. Of phanerogamous plants, it is perhaps impossible to say Thether the endogenous or the exogenous are most important in this respect, notwithstanding the place of the cereal grasses among the former. The plants yielding food are also distributed among many natural orders, although some, as Gramineer, Leyuminosc, and Cruciferce, contain a large number of the most useful species. The parts of plants which yield food are very various: the roots and tubers, bulbs, \&c. of some; the stems of others; leaves; flowers; the fleshy part of fruits; the seed, \&c. The part which man appropriates to himself is either used uncooked, or requires to be cooked in order to fit it for use. Sometimes, also, other previous preparations are necessary, as the grinding of cōrn, \&c. Except in the case of ferns, when the cryptogamous or acotylectonous plants are used for food, the whole plant is used, e. g., mushrooms, carrageen, Iceland moss. Sometimes no part of the plant is itself fit for use, but it contains some substance which is, and which man extracts by suitable processes, as in the case of arrow-root, sago, and other kinds of starch, sugar, \&c.

The first place among articles of vegetable food must be assigned to corn, the seeds of the Cerealia (q.v.). The next place, perhaps, belongs to the potato and yam, after which come the banana, cassava or mandioc, and the different kinds of pulse.

Regarded more hotamically, the articles of food are-

1. Poots, properly so called, of which the turnip, carrot, parsnip, beet and mangold, cocco or eddoes, may be mentioned as among the most important; but the number of esculent roots and of roots yielding articles of food, is very great.
2. Tubers, of which the potato, yam, and batatas or sweet-potato, are the most important; with the cassava or mandioc and the arrow-root as yielding starch ; but of which many others are also used, as the melloco (ullacus), the oca (oxalis), the earthnut, \&c.
3. Phizomes, or root-stocks, of which some are simply boiled, whilst others are chiefly valucd for the starch (arror-root, \&c.) which they yield.
4. Bulbs, as those of the omion, garlic, shallot, \&c. The most important are alliaceous.
5. Stems, which, in some cases, are eaten along with the leares, whether as salads or boiled vegetables ; but of which some are more important as yielding sago and other kinds of starch. The eatable part of asparagus is a stem in the begiuming of its growth, and the same statement applies to some other plants; the eatable part of kohl-rabi is a peculiar swelling of the stem.
6. Leares and leaf-buds, as those of kale and cabbage, with other greens of all sorts, spinach, lettuce and all the other salads; the tcrminal buds of palms (palm-cabbage), \&c.
7. Florrers and adjoining parts, as in cauliflower and artichoke.
S. Fruit (exclusive of seedis), used either as a principal article of food, as in the case of the banana, and, to some extent, of gourds, or more generally as an article of luxury. See Fruir.
8. Seeds, of which the most important are those of the cereal grasses (see Cerealla), along with which must be mentioned those of buckwheat, quinoa, the lotus of the Nile and other water-lilies, the nelumbo, the water-chestnut and other species of Trapa, many kinds of pulse, as peas, beans, lentils, kidney-beans, chick-peas, \&c., and nuts of many kinds, some of which, as the chestnut and cocoa-nut, afford, in some countries, substantive and important articles of food, whilst the greater number are rather articles of occasional use and of luxury. There are also other seeds which are capable of being used, and are occasionally used as food.

Sugar, which may well be reckoned among important articles of food, is obtained from the juice of stems, as of the sugar-cane, some palms, and the sugar-maple, and of roots, as of the beet, \&c. Alcoholic beverages are obtained from vegetable substances and juices which contain sugar, or which, by some artificial process, are, in the first instance, converted into sugar; as the juices of fruits (the grape, apple, \&c.), the juices of stems (the sugarcane, palms, \&c.), the juices of roots and tubers (beet-root, potatoes, \&c.), and the seeds of the cereal plants (barley, rice, \&c.).

Besides the substantive articles of food, aud beverages more or less generally used, there are very many condiments, which are obtained from the vegetable kingdom, and of which the botanical sources are almost equally varions, as mustard, pepper, giuger, cloves, capers, \&c.
FORTUNE, Robert, a distinguished botanist and traveller, was born iu the county of Berwick in 1813. After completing his education at a Scotch parish school, be served an apprenticeship as a gardener, and obtained employment in the Royal Botanic Garden at Edinburgh. There he had good opportunities of obtaining a sound knowledge of botany and the higher departments of his own profession, so far as they relate to the cultivation of subtropical and tropical plants under glass in a temperate climate, and these opportunities he turned to good account. He afterwards obtained a situation in the gardens at Chiswick, where his abilities and acquirements attracted the attention of London naturalists. He was, in 1842, sent by the Botanical Society of London to Northern China to make a hotanical exploration of the country. His journey was most successful, and he sent home a very large number of new and valuable plants. He gase an account of his adventmes in his Three Years Wanderings in Jorthern China, a work which places its author in the foremost rank of contemporary explorers. F., on his return to England, acted for a time as curator of the Physic Garden at Chelsea. In 1S42, he was appointed by the East Iudia Company to proceed to China to make investigations relative to the cultivation of the teaplant; and on his return to England he published a work entitled Two Jisits to the Tea Countries of Clina. He has since been employed by the American government to collect for them seeds, chiefly those of the tea-plant, in the East. The latest important work by F. was published in 1863. It is entitled Ycdo and Pekin, a Narrative of a Journey to the Capitals of Japarr and China. It derotes special attention to the natural productions and agriculture of the districts visited.

FORT WAYNE, a flourishing town of the state of Indiana, North America, at the coniluence of the St Joseph and St Mary rivers, which form the Staumee, and on the Wabash and Erie Canal, 122 miles east-north-east from Lafayette. It is a great railway centre, and its growth has been rery rapid.

FOULA-FREDERICK-WILLIAM.

A fort was erected here ly orter of General Wayne in 1794, and it continued to be a military prost till IS19. l'op. (in 1860) 10,3SS.
lo $\mathrm{OU}^{\prime} \mathrm{LA}$, or ROULAll, an island of Shetlamb, parish of Walls, from which it is distant 20 miles in a westerly direction. It extends 3 miles in lencth by 11 in breaith, and rises to a height of 1309 feet

Fig. 1.-General Appearanec of Foula from the Sea.
above the sea. It is solitary, and with it there is no regular communication. F. hass abont 250 inhabitants, who sultist by fishing and farming on a small scale. On the island, there is a scbool maintained by the Society for Propagating Christian Knowledge; there is also a chajel connected with the Church of Scotland, and a chapel with a missionary maintained by the Congregational Union of Scothand. F. is chiefty remarkable for its subtime clifls of red sandstone on its north-western side, where the precipice rises from the sea-margin to a hoight of nearly 1200 feet, being the grandest thing of the kind in the British Islands. Among the sea-birds which oceupy the cliffs is the Skua Gull, or Bonxie (Lestris caturactes). Of this powerful bird there are ahout 13 pairs, which are prized by the natives for their services in keeping down the numbers of the cagles on the clifls. The landing-place on F . is at a seattered hamlet of wretched thatebed huts on the south-east. Here there is a store, at which imported

Fig. 2.-A Foula IIut.
commolities are bartered for fish and other articles, and at which an apartument is let to strangers, there bong no inn. lí, bowever, is rarcly visited by strangers, and little is known of it even in Scotland.

FOURCHAMLOULT, a rapidly increasing town of France, in the department of Nievre, live miles north-north-west from Nevers, near the right bank of the Loire, whieb is here erossed by a suspension bridge. It is a station on the railway between Orleans and Nevers. There are great iron-foundries, employing between 2000 and 3000 workmen. The manufacture of arms is extensively carried on. lop. (in 1566) 6250.

FRA'A, a town of Spain, in the province of Saragossa, 63 miles west ly south from Saragossa, on the left bank of the Cinca, which is crossed by a suspension brilge. The town stands on a slope,
and is por and half-ruinous, with ill-paved streets. The environs abound in pomegranates and figs. The small green figs of this district are celebrated as particularly delicions, and when tried form the chief article of export. F. is supposed to occupy the site of the ancient Gallica Flacie. P'op. 50 ?s.
FREDERICK-CHAJLLES, a l'russian prince, son of l'rince Charles (brother of King William), was born at Berlin, 20th March 1S2S. In his early youth, he manifested it great liking for warlike occupations; and the first Slesvig-Ifolstcin war (1849) saw him in the fich as captain, and not withont honour to himself; in the eampaign in Baden also he gathered laurels and honourable wounds; and in the sccond Slesvig-IIolstwin war his name became famons through the storm of tho Düppel entrenchments. But his chief title to fame rests on the prart he played in the campaign of 1866 against Austria, where he commanded one of the invading armies, and where his able generalship contributed not a little to the final suceess of the war. Ite has indeed heen blamed for excess of caution in advancing through Bohemia to the rendezrous at Gitselin, where his more prompt appearance, it is said, would have saved the silesian army from the danger of serious disaster which it cncountered in passing the defiles; but it may, in fairness, be assumed that the caution was necessary until the contrary is proved.
The prince is not only practically but theoretically distinguished in his profession. Besides his services in the reorganisation of the cavalry, he has written several military works of great merit; one of them, entitled How to Beat the French, attracted a good deal of attention when it appeared.

The prince is a soldier from his very heart, and as such, mole esteemet and liket by both otlieers and men. He was married to Marie Amma, l'rineess of Auhalt, in 1851.
FRE'NERICK CITY, a city of Maryland, T. S., two mites west of the Atonacacy liver, 44 miles north-west of Washington, 65 ly railroul west of Baltimore, on a branch of the Baltimore and Ohio Railroad; a handsome town with 12 churches, three banks, college, acalemy, seminaries, two newspapers, and manufactorics of iron, wool, leather, fluur, and tolacco. Pop. (1SG0) \$142.

FREDERICKSHURG, a city of Virginia, U. S., is built in a fertile valley on the right bank of the river Lapphamnock, at the head of tide-water, 110 miles from Chesapeake Bay, 65 miles north of Jichmomd, and had, in IS60, the county huiklings, five churches, two seminaries, orphan asylum, and extensive manufactories of Honr and tohaceo, and a pop. of 5022. December 13,1862 , it was the scene of a lattle between the Federal army; commaudel by General Burnside, and the Confederate army unter General Lee, in which the former was repulsed, and hiven back acruss the river with a loss of 12,321, while the Confederates, strongly posted on the hills south of the eity, suffered but trifling elamage; but the city itsclf was ncarly destrojed.

JREDERICK -WILLIAM, Crown-prinec of Prussia, only son of King William (q.v.) of l'russia and Queen Augnsta, nee Duehess of Weimar. Born 1Sth October 1831. His earnest character ancl eminent talents were early developel under the care of excellent masters, among others of Ernest Curtius (q. ソ.), who also accompanied him to the university of Bonn, where the mince was matrienlated in the law faculty. After the completion of his education, the priace visited several foreion countries, among others, England, where it seems he became attached to the Princess lioyal, cldest
danghter of Queen Victoria, and was married to her on the 25th Jamuary 1S5S, with the highest approlation of both nations. Of the issue of this union, there are now living two sons (the eldest, FrederickWilliam, born 27th January 18509). Since his father ascemled the throne, the crown-prince has taken lart in the more important affairs of state. He served in the Danish cannpaign in a subordinate capacity; nevertheless he gave sufficient proofs of his great ability to cause the king to intrust to him an important (according to some, the most important) task in the war with Austria in 1S66, namely, the command of the left Prussian wing operating in and from Silesia. How ably the prince played bis part, and how his timely appearance on the battle-field of Königgraitz decided the fortune of the day, is well known (see Germany, in Surplement).

Through the brilliant results of the war, the Prince and the other members of the royal family have acquired a popularity among the Prussian pople which they by no means formerly enjoyed. The crown-prince is said to be of a noble, frank, and humane character. His figure is tall and monly, and his features unusually handsome.

FREGENA'L DE LA SIE'RRA, a town of Spain, in the province of Badajoz, and 30 miles sonth-east from Badajoz. It stands in a valley among mountains on the right bank of the Nartiga. The streets are wide and well paved, and the honses in general well built. There is an ancient castle, erected by the Templars, within which is the bull-ring, capable of containing 4000 people. Leather and linen fabrics are extensively mannfactured. Pop. 5975.

FREIRI'RA, a seaport of Chile, in the province of Atacama, at the mouth of the Cuasco. It is a place of some trade. Pop. 10,000 .

FIRESNI'LLO, a mining town of Mexico, in the state of Zacatecas, 30 miles north-west from Zacatecas, on a feeder of the Santiago or Tololatlan. It has a spacions square, in the centre of which is a splendid fountain. In the neighbourhood are silver and copper mines, which are among the most productive in Mexico. Pop. 12,000.

FREU'DENSTADT, a town in Würtemberg, and capital of a bailiwick of the same name, in the circle of the Black Forest, 40 miles south-west of Stuttgart, is situated on a rock which is washed by the Murg. It was founded in 1599 loy Duke Frederic I., and peopled by Protestant refugees from Austria. It has a considerable trade in wool, cattle, and fruit. Cotton spinning, weaving, lleaching, smithwork, especially making nails, \&e., are the principal industries. The town is regularly huilt. It has a good market-place with arcades, and a graminarschool. The environs are beautifnl, and 1 resent many interesting prospects. Pol. (1561) 5131, nearly all Protestants.

FREY'STÄDTEL, FREYSTADT, or (Hung.) GALGOCZ, a town of Hungary, in the circle of Nentra, 84 miles north-west from Pesth, on a beight above the left bank of the Waag, opposite to Leopoldstadt. The Waag is here crossed by a long hritge. F. contains a fine castle belonging to Connt Erlody, situated on a steep limestone cliff, with fine gardens. There is also a curinus round tower, sup)posed to have been a Turkisls minaret. Varions articles of wood are extensively manufactured. There are important cattle-markets. Pop. 6098.
FRIEDELERG, a malled town of l'russia, in the province of Brandenburg, 56 miles north-east from Frankfurt, on the Peza. Around it are several lakes. It has woollen manufactories and
tamneries, and some trade in cattle. Pop. (1Sç4) 5895.

FUE'八゙TÉ A'LAMO, a town of Spain, in the prorince of Murcia, is miles soutls from Murcia, at the northern base of a range of hills, and at a short distance from the canal of Murcia. Pop. 6250.

FUE RTE DE ANDALGA'LA, sometimes more brietly called ANDALGALA, a town of the Argentine Confederation, in the province of Catamarca, 72 miles north by west from Catamarca, in a monntainous district. Pop. 5500.

FUERTE, or VILLA DEL FUERTE, a town of Mexico, in the province of Sinaloa, 75 miles north by west from Sinaloa, on the Rio del Fuerte, which flows into the Gulf of California. It is a place of some commercial importance. Pop. S000.

FUNA'RIA, a genus of Mosses, with terminal fruit-stalks, and oblique doulle peristome, both the inner and outer having sixteen teetls. A few species are found in Britain, one of which, F. hygrometrica, is an object of particular interest on account of the hygrometric 1 roperties of its fruit-stalk. which, if moistened in the lower part. twists several times ronnd in one direction; and if moistened in the

Funaria hygrometrica :
a, plant, natural size ; b, leaf, magnifiel ; c, capsule, magnised : d, capsule, inagnified, with lid removed.
upper part, trrists several times round in the opposite direction. 'This is owing to a peculiar arrangement of the cellular tissue, which is spiral in one direction at the base of the stalk, then straight, then spiral in the opposite direction. The structure of the fruit-stalk has been closely examined and commented ou by Dr Lankester (Annals of Nat. Hist., vol. iv.). F. Aygrometrica lias very concave, ovate, entire, apiculate leaves. It is very common on old buildings and on dry barren soils ; and is said to be almost always foumd where a wool-fire bas been burning on the ground, as on the site of gipsies' encampments, \&c.

F \ddot{U}^{\prime} NFHAUS, FU \ddot{U}^{\prime} NFHAUSEL, or HA'NGENDENLISSEN, a town of Austria, in the circle of Unt, about 2 miles north from Vienna. It has silk, satin, woollen, cotton, and red leather manufactures. Po1. $15,639$.
FUSA'RO. LAKE of, a small lake of Sonth Italy, in the province of Naples, 11 miles west from Naples, on the peninsula of Baie. It is not far from the site of the ancient Cumæ, of which it is supposed to have been the port. Numerous remains of massive bnildings, villas, and tombs are still to be seen in the neighbourhood. At the southern extremity of the lake is a canal of Roman construction,
commanicating with the sea, now known as the foup det fusaro. 'The water of the lake is brackish, more salt thau fresh. The lake is famum for its oysters, which hiwe been eultivited here (see Orster) siuce the times of the ancient lionans. They are larger and of tiner flavour than those of the Bay of Niples. The lake is supposed to be the crater of an extinct volcano; and, in 1S38, great quantities of moxions
grases were emitted, ly which the oysters of the lako were killent. The lake of F. receiver from tho ancients the name of Acherusia Pulus, probably at first bestowed on it by the Cireeks of Cume in consequence of its proximity to Avernus, and its craterlike character. ln the later times of the Foman Empire, however, its banks were adorned with the villis of wealthy liomans.

G

ADJA'TCII, or GADITCII, a town of South Finssia, in the province of Poltava, and 65 miles north-by-west from Poltava, at the confluence of the Khoral with the Psiol. It has seven churches and a monastery, and an active trade in agricultural roduce. Pop. (1863) S312.
GAI'S1N, or GAJSSSIN, a town of Sontle liussia, in the government of Podolia, $1 \% 2$ miles north-by-west from Olessa. Pop. (1563) 9630.

GALLARA'TE', a market-town of North Italy: in the province of Milan, and at miles nortl-west of the city of Milan. It is situated on the eastern side of the Somma Hills, at the commencement of the fertile region that extends to NIILa, with which place it is connected by railway. It is well built, and surromaded by ancient walls; has extensive steam cotton-mills, and an active trade in agricultural produce. l'op. 4184.

GALLIA'TE, a town of North Italy, in the province of Novara, four miles cast-north-cast from Novara. It is rather a mean and dirty town, with in old castle and an old church. There are silkmills here, and cotton-stuffs are also mannufactured. G. lias an anmual fair, which lasts three days. l'oll. (1S61) 6503.
GA'NGI, a town of Sicily, in the province of Palermo, 53 miles south-east from l'alermo. It occupies the summit and slopes of a steep and lofty hill. A more ancient town of the same name stood two miles to the south, and is supplosed to have occupied the site of the ancient Enguium. The old town of G. was destroyed in 1299 by Frederick 11 ., for the rebellion of Francesco Ventimigha, its feulal lorl. One of the best Sicilian printers of the 15-th c., Giuseppe Salerno, was born here, and is generally known as Lo Zoppo di Gangi, from his lamencss. One of the churches contains a much-admirel painting of the 'Last Judgment,' from his haud. P'op. (1861) $10,535$.

GANGS, AGRICCLTURAL, a ame specially given to companies of women, and boys and girls, brought together for labour in the fen-districts of England, or the low and level tracts which lie south of the Wash in the counties of Lincoln, Cambridge, Norfolk, Suffolk, and liutland. Not many years ago, the part of the country referred to was a marsh crossed by streams which had not the uccessary fall to carry their waters to the sea. Dykes and canals have, howeyer, been constructed to drain the wilderness, and it has been converted into one of the most fertile agricultural districts of England, prodheing magnificent crops of every kind. While the surface supported only scanty herds, and was overhung with malaria, it had no inhabitants. It might have been expected that when covered
530
with corn-fields, an agricultural popudation would have spreal into it, and that houses would have been erected for their accommodation. This, however, is not the case. English landlorls shun tho responsibility incurrel under the existing poor-law, by the ercetion of houses for lahourers; and capitalists avoid an investmont which is never foumd 1rofitable. The reclaimed land is accordingly cultirated by labuurers brought from the villages, which are numerous on the high ground that buralers it; and, to save expense, they consist, as much as jossible, of women, rirls, and boys, paid at the lowest rate given in Englad for agricultural labour. They work in two kinds of gangs-privato and public. The former consist of from 12 to 20 persons, and are directly hired by the farmer, and placed under the clarge of an agricultural labourer. The popufation so employed mambers 20,000 . The public gangs are hired by a class of contractors known as gans-masters, who personally superintend and pay the labourers. Fach public ging eonsists of about 30 fersons, and the total number so employed is 7000. Whoy plant potatores, thin turnips, weed with the hoe or hands, and pull thruips and bect. Their squalur and immorality have long attracted notice, and, two years ago, Lord shaftesloury called attention tu it in the Huuse of Lords. A Lioyal Commission was appointel, and their Reports lave been published. They give a picture of this system of labour, which is declared to be even more horriblo than any given of Anerican slavery ly Mrs Stowe. The gangs consist, in large proportion, of girls and boys from 11 to 17 years of arre, who not only work six days a week in the fiells from 8 to 5 riclock, but must go to and from their work. The distance in some cases is 16 miles, so that they are compelled to leave their homes before 5 in the morning, and to return after 8 at night. Children of C are even pressed into the service. While at work, the gang-masters compel the weak to keep paco with the strong, and often do so by striking anci kicking them with the utmost brutality. The gangs often work ankle-deep in unul; they trulge all day throurl standiog corn, wet with rain and dew; and they freqnently return wet up to the waist. Colds and rheumatism impair their health, and it is needless to say they lose all self-respect, and become quite unfit for houschole duties. The worst remains to he told. The boys and girls return home withont any control on the part of their seniors, often in the dark, and the greatest protligacy is the conscquence. Their precocity exceeds that of the most neglectel town promlations, and the number of girls unler the age of 17 who become mothers is perfectly frightful. Among the last acts passed at the close of the session $1566-1867$ was one for the regulation of africultural gangs. It applies exclusirely to Eugland, is to come into operation on lst January

GANGUE-GAS-LIGHTING IN ILAILWAY TRAINS.

1S6S, and provides that, after that date, no woman or child is to be employed in the same gang with men or hoys, and that no woman or girl is to be employed in any gang under a male gang-master, unless a womad licensed to act as superintendent is also present with the gang. Licenses are to he granted by justices in divisional petty-sessions for six months, and for acting without a license the penalty is to be twenty shillings a day. Proof is to be given to the justices that the applicants are proper persons to be licensed; and they may annex conditions as to the distances within which chiklren are to be allowed to travel to their work. The evil, it was helieved, is too deeply rooted to he dealt with by one enactment, and it is expected that the present act will be followed by more sweeping measures.

GANGUE (Ger. G(ang, a vein), the stony matrix in which metallic ores occur. Quartz is the most common gangue, but calc-spar is also very frequent, sulphate of barytes and thor-spar not unfrequent. Large portions of the gangue are generally worked and submitted to metallurgic processes for the sake of their contents.

GAS-ENGINE. Many attempts have been made to utilise, as a motive-power, the expansive force arising from the explosion of a mixture of common coal-gas, such as is in geveral use for illuminating purposes, and common air. The only attempt of this kind which has had a considerable success is that of Lenoir, a French inventor. The cut represents his engine. It resembles in its general features

Gas-engine
A, electric battery; F , distributor of electricity; C , electric igniters; D, admission of air (atmospheric) ; E, adnission of gas (common coal-gas); F, exhaust pipe; G, water-pipe (inlet) ; 11, water-pipe (outlet) : I, India-rubber pouch.
an ordinary horizontal steam-engine. It has two slides, one on each side of the cylinder, which are opened and closed by eccentrics in the usual way. Through one of the slides, air and gas flow into the cylinder, in the proportions of about 11 of air to 1 of gas, until the cylinder is nearly half full, when the connection with the galvanic battery is made by the revolution of the shaft at B, causing a spark inside the cylinder, and consequent explosion of the mixture of air and gas. This explosion forces the piston from the middle of the cylinder to the further end. The products of the explosion then escape from the cylinder by the other slide-valve, which opens at the proper instant. The momeutum which the fly-wheel has now acquired will carry the piston back to the middle of the cylinder, sucking in behind it, through openings, which are made by the action of the eccentric on the slide, a fresh supply of air and gas ; and when the piston has reached to the middle of the cylinder, the further inflow of air and gas is stopped by the slide closing, and at the same instant a spark of electricity is sent into the air and gas, exploding it as before. The first half of the stroke of the piston is thus
employed in sucking in the requisite quantities of air and gas, and the last half of the stroke giving off the power arising from the explosion of the mixture of air and gas. Notwithstanding the high first cost of this engine, for it exceerls that of an ordinary steam-engine (including boiler) of equal power, it las come into rather extensive use, especially in France. It is much used in Paris in hoisting up the huilders' materials in the great building operations going on there, aud also for numerons purposes where a power of two or three horses only is required. The gas-engine requires no stoker, and the saving of the wages of this attendant turns the scale of economy in favour of the gas-engine, when his wages exceed the outlay for coals. It consumes about 50 or 60 cubic feet of gas per hour for each horse-power, or about 1000 cubic feet per day for an engine of two horse-power-say 24s. per week. Now, it is ohvions that the wages sared by dispensing with a stoker will go far to pay the total cost of keeping the engine going. The difficulties attending its use arise from the heat developed by the explosions in the cylinder, which burns the lulbricatiug material necessarily used to make the piston slide easily on the cylinder. However, by keeping a entrent of cold water slowly circulating through the jacket of the cylinder, the heat is kept within moderate hounds ; and for purposes where a very small power is rerpired, not exceeding 2 or 3 horses, and where gas does not cost more than 4ε. or $5 s$. per 1000 cubic feet, it can he kept going for less cost than a small steam-engine of equal power. In consequence of the piston doing useful work for one-half of the stroke only, the cylinder requires to be considerably larger than the cylinder of a steam-engine of equal power. A 2 horse-power gasengine has a cylinder 8 inches diameter, and 16 inches stroke. A high-pressure steam-engine of this size would be 6 borse-power at least.

GAS-LIGHTING IN RAILWAY TRAINS. Many methods have been tried within the last few years for lighting railway carriages with ordinary street gas; but, although talerable success has been oldained, no one plan has yet completely fulfilled all the conditions of the ease.

The more prevalent selemes are those in which the gas is contained in an elastic receptacle. Mr Allen's plan, tried on some of the Scotch railways, is to place an india-rubber bag or hox in the guard's compartment; it is protected by iron rods or bands, and weighted to press out the contents as the exhanstion goes on. The bag is filled with gas at the station from whence the train starts. A tube from the bay passes out by an opening from the van, and leads up to metal pijpes that rum along the roofs of the carriages. An india-rubber tube forms an elastic link from carriage to carriage; and small pipes bend down through the roof to supply burners in the interior of each carriage. The guard can regulate the supply, making the lights brighter or dinnmer by easy apparatus under his control. The chief disadvantage of such plans as this is, that no carriages can be added to or deducted from the train witbout disturbing the arragements, seeing that the tubing forms a connected system from end to end.
Mr Dalziel's plan, tried on the South-eastern and the Great Northern lines, euahles each carriage to maintain its light irrespective of the others in the train. There is a reserroir underueath the floor of the carriage; consisting of a boiler-like wroughtiron vessel, nine or ten feet long lyy a foot and a half in diameter; it is invisible, and in no way incommodes the passengers. It is filled at the station, before the train starts, with gas enough to last all the burners in the carriage during a douhle
throngh-journey to some distint station and back again. l'ipes lead np the embls of the carriage, aml aloner the top to the spouts where they bend down to supply the burners. The gradual exlanstion of the reservoir would produee a constantly decreasing pressure on the gras, and a consequent dimness of the light; lut this is prevented by the use of an antonatic eompensating valve, which mantains the pressure equably. 'Ille gas, in the first instance, is forced into the reservoir it a pressure of 120 lbs. on the square inch.

The Detropolitan or Underground Tailway, running for so great a part of its length through a dark tunnel, would be insupportably gloomy if the carriages were not well lighted. A very brilliant system of gas lighting is therefore arlopited. At the l'addington or Bishop's liond Station, before the starting of each train, gas is conveyed from a gasholder up through clastic tubes to the top of each carriage, where an oblong box extends from ent to end. This box or chest contains enough gas to last for two short journeys, supplying from 12 to 16 hurners for each earriage. The briefness of the journeys renders pacticable here a plan which would not be arailable for a jonmey of several hours.

GEMO'NA, a town of Venetia, 1.3 miles nortle-bywest from Udine, on a feeder of the Tacrliamento. It is situated in a deep basin among mountains, and is a well-built town, surromeded ly walls. G. has a large transit-traile, and two important annual fairs. Pop. (1857) 6583.

CENGA'NO, or GEASANO, a town of the Papal State, ltaly, 17 miles south-by-cast from Rome, in a district of hills and ravines. (i. has several broal and straicht streets, proceeding from a lianlsome sfuare, which is ornamented with a heantiful fonntain. On one of the hills alove the town is the fendial mansion of the Cesarini family. G. is celebrated for an anmal fostival, held on the eightle day after Corpus Clerisil, called the Inforala di Cienzano, from the custom of strewing the streets with flowers, so as to represent arafesques, heraldic devices, figures, \&c. On vecasion of the festival, many visitors are attracted from liome. Iop. 5000 .

GLERANIACEA, a natural order of exogenons plants, consisting of herbaceous plants and shrubs, of which about 500 species are known, distributed over the whole world, and particnlarly abundant in South Africa. The stems are jointed, nsually tumid, and easily broken at the joints. The leaves are simple in some, kivided in others, opposite, or alternate, with flowor-stalks opposite to them; they have membranous stipules. The calyx eonsists of five persistent sepals; the corolla of five jetals, which are elawed. The stamens are mited by their filaments, hypogynous, twice or thrice as many as the petals. The ovary consists of five carpels, placed aromud a long awl-shaped torus or carpophore, to which the styles coltere; ripening into a fruit which consists of five small one-seeded shells, colsering iround the base of a long beak, the indurated style of each earpel finally curling back from the base upward, and carrying the sced along with it. The indurated styles are in many suecies extremely hygroscopic, and their twistings and untwistings seen intended to more the seed after it has fallen, until it reach a fit place for its germina. tion. See Geranium.

GERMANY. Since the article on Gr. was written, important changes hase taken phace in the politieal relations of its component parts ; and we propose herc to give some account of these changes and of the war which led to them. The immerliate occasion of the war was the difference that arose between

532

Prissia anel Austria as to the occupation and dis posal of the territory taken from Denmark (sco Clisvin) after the Courention of Gastein (1865). But the real gronnds lay in that rivalry between the two states for the leadership of G., the germ of which is as old as the time of the Great Elcetor (see F'rederick- (1titliam), amu which las shewn itself at many cpochs of the history (see Gimanar, /Iistory). There can be little clunlit that the fecling of the German peopsle, as distinguislied from the prinees and burcaucracy, has, in recent times at least, been in fixour of the purcly German Prussia as their londer, rather than Anstria, the great mass of whose pupmlation are Slaves and Nagyars. And when the parlianent of Frankfurt, in 1550 , offered the imperial erown to the king of I'russia, the unity of G. might have been secured without bloodshed, had the mounrch been resolute, or liad he had a Bismark for his adviser. But that Opportunity heing let slip, and the inculnis of the 'Bund' being restorod, it became apparent that the knot must be cut by the sword.
fiy the treaty of Gastcin, Austria and I'russia agreed to a joint ocenpation of the Elbe duchies; but to prevent collisiou, it was judged prulent that Austria should oceny Ilolstein, and I'russia Slesvig. Already a difference of poliey had begun to shew itself: D'russia was believed to have the intention of annexing the duchies; while Austria began to favour the claims of l'rince Frederiek of Angnstenburg, and wished t_{0} refer the disposal of the matter to the Bund. In the meantine, both nations were making realy for the struggle. In fact, the preparations of Prussia had beeng guing on for two or three years ; and the new organisation of her army, which had oecasioned the protracted contest between the govermment and the bouse of deputies, hat been made with a view to some smel eventuality as was now to oceur. The preparations of Austria were made more openly, as she conld pleal the necessity of meeting the warlike attitnku of 1 taly; which power, looking upon the quarrel between Anstria and Irussia iss a precions oplortunity, was actively arming, with a view to strike a blow for the liberation of Fenctia, and had secretly entered into an alliance with Prussia.

At this crisis, Eusland, Franee, and Mussia invited the disputants to a conference. Prussia and Italy readily consentel; but nothing came of it, through the olustiuate lride of Austria, who wonld not allow her pesition in ltaly to be ceven taken into consileration. Never, perhaps, was in greater blunder made. Hal she at this moment ceded Vonetia for a reasonable compensation, she would have replenished her empty treasnry with a goorl many millions, have made Italy fricudly, or at least nentral, and set free her best army of $\mathrm{S} 0,000$ vetcrans for the incvitable contest with her northern rival. A few weeks later, she made tlie concession with a bad grace, without compensation, and to no purposc.

On the failure of the conference, Bencdck, com-mancher-in-chief of the Anstrian army of the north, issued an order of the diy. dated 19th May, in which he annonneed that he himi been appointed 'to lead the brive and faithful Anstrian army against the unjust and wanton foes of the empire.' It ouly remaincel to find a formal gronnd for the declaration of war, and that ground was found in the Slesvig. Inolstein question. In the sitting of the German diet, June 1, 1866, Austria, disregarding the Convention of Gastein, Haced the whole matter at the disposal of the Bund, and then proceeded to convoke the states of Ilolstein 'to assist in the settlement of the future destination of the duchy:' Prussia protested against this as an insult and a violation of treaty; demanded the re-establishment of the joint

GERMANY.

oceupation ; and, while inviting Anstria to send troops into Slesvig, marched traops of her own into Holstein. Instead of responding to this invitation, Austria withdrew her forees altogether from Holstein, under protest ; and then, calling attention to this 'act of violence' on the part of Prnssia, proposed that the diet should decree 'federal execution' against the enemy of the empire. This eventful resolution was carried by a great majority on the 14th June 1SG6; Hanover, Saxony, Hesse-Cassel, Hesse-Darmstaxit, and the 16th Curie voting for it. The resolution having passed, the Prussian plemipotentiary, in the name of his government, declared the German Confederation dissolved for ever, and immediately withulrew.
When the news of the federal execution was receivel in Berlin, i, ilentieal notes were sent to the conrts of Saxony, Hanover, and Hesse-Cassel, demanding the reduction of their armies and assent to the convocation of a common German parliament; un which condition, Prussia would guarantee their territories and sovereign rights as her allies. Twentyfour hours were allowed for the decision; and when the term had expired withont assent, the Prussian troops, which had previonsly been concentrated on the frontiers, crossed at once into the three kingdoms, anll took military possession without resistance. The Saxou army retired into Bohemin, to join the Anstrians ; that of Hanover, after vainly trying to make its way south to join the army of the Bind, and bringing on the useless affair of Langensalza, was forced to lay down its arms, and return home.
Pesides the moral advantage gained by this display of prompltitude in paralysing her declared enemies and securing the adhesion of waverers, Prussia had by these occupations secured her rear, and, in Saxony, had won a fayourable basis for operating against Austria. The Prussians now lost no time: war was declared acganst Austria; and, following the example set by Frederick the Great, the troops immediately legan to march into Lohemia. To their own surprise, as well as that of all Europe, they were allowed to pass the easilydefended defiles without opposition, or even seeing an enemy. So great was the reputation of Benedel, that every one now hegan to look for some decp. laid plan by which the enemy was to be enticed into the heart of the country, only to be completely and at once overwhemed. But, as it turned out, there was no plan at all. With their usual sluggishness, the Austrians were taken by surprise in a state of nureadiness-ill organised, ill equipped, ill provisioned; and although in aetual engagement the soldiers fought bravely, they were animated with a very different spirit from their opponents. The Prussian people liad at the outset been rather averse than otherwise to the war; and in some places, it required strong measures to make the Landwehr take the field. But once nuder arms, and as the object of the struggle became nore apparent, they entered into it with enthusiasm, and manifested a rare comlination of solldierly qualities, the results of a nuiversally diffused education, and military training. And while such was the quality of the men, seldom if ever lias an army taken the field so well organised, with the plan of the campaign so well laid, the arms so efficient, and the equipments in every way so complete.

The Prussian host invaded Bohemia at three several points: the eentral army, under l'rinee Fred-crick-Charles (q. v. in Supriement), entered from Eastern Saxony, erossing the frontier range of the Erzgebirge by Krottau, Friedland, and Neustadt, towards Reiehenberg; the western or 'Elle' army, under General Herwarth von Bittenfeld, starten from Dresden, aud entered Bohemia by Neustadt
and Schlukenau towards Gabel; while the eastern or 'Silesian' army, under the Crown-prince, Frederick-Willian (q.v. in Supplement), invadeil from Silesia by the Laudshut and Nachol passes, marching towards Tranteniur and Skalitz. The first of these amies numbered 72,000 infantry, 11,000 cavalry, and 29.1 guns; the second, 34,000 infantry, 3900 cavalry, and 132 guns: and the third, 92,000 infantry, 12,500 cavalry, and 34 S guns-in all, 225,400 men, and 774 guns. To oppose these, the Anstrians had 55,000 infantry, 5400 eavalry, and 172 guns (inelusive of the Saxon army, which had been withdrawn into Eohemia on the approach of the Prussians), nuder Count Clam Gallas, stationed along the frontier north of Turnau and Leitmeritz; and 156,000 infantry, 16,000 cavalry, and 544 gnns, under Marshai Benedek, the commander-in-chief, in Eastern Bohemia, behind the Riesengebirge-in all, 262,400 men, and 716 gums. As the Austrians expected the attack from silesia, hy far the greater portion of their army was stationed belind the Riesengebirge ; so that when Von Bittenfeld and Prinee Fr.- ${ }^{\circ}$ arl crossed the Erzgebirge (June 24), they formd themselves opposed by ouly the outlying brigades of Clam-Gallas, which they forced to retire towards Turnans and Miunchengritz, after defeating them in some insignificant combats at Reichenherg, Langenbrück, Liebenan, and Turnan, and in a severe struggle at Fodol, whicl cost the Austrians in all 2400 in killed, woinded, and prisoners ; the loss of the Prussians leeing only 124 men. The first and second Prissian armies, now muited, allvanced leisurely, driving the enemy before them towards Minchen. griitz, where Clam-Gallas had strongly postel himself, and where, on June 2 S, he was attackel by the combined l'russian armies, and after a brief but severe contest, forced to retreat in haste. By several rontes, the combined armies under Princo Friedrich-Karl now eontinned their onwarid mareh, routing the detached corps of Austrians and Saxous which attempted to bar their progress : and after a severe contest (June 29), which cost the Irnssians 2000 men, and the Austrians about twice as many, took possession of Gitschin, and eneamped on the following morning betwenn that town and Horzitz, having estallished communications with the Crownprince; while Clam-Gallas retirel to join the main body under Benedek, after having, with a foree only half as numerous as his opponents', and still more inferior in guns, compelled his antagonists to spend six days in making an advance of 40 English miles.
Meaumhile, the third Prussian army had advanced in two divisions, the right wing through the passes of the Riesengebirge by Landslunt, towarils Trantenan; the left by Glatz, towards Nachod and Skalitz: while the centre divisions erossed ly Prannan, all crossing the frontier on June 26 . The lefiles were traversed without oplosition, the Austrians being noly posted at the mouths of the passes; but as the left wing under Steinmetz debouched towards Nachoid, it was assailed (June 27) ly Ramming's Austrian corps, and driven back into the pass. Steinmetz, however, , persevered; and by the aid of his guns, and rejeated charges of eavalry, snceeeded, after a contlict of six hours, in extricating his corps from the defile, at a cust of 1191 killed and womded, to 6000 on the part of the Austrians. Both armies heing reinforced, the contest was renewed at skalitz on the 2 Sth; but, thongh long and bloody, it was on all sides favourable to Steinnetz, who beat the Austriaus baek upon Josephstailt, with a loss in killed and wounted of $5 S 15$, and 5550 prisoners, with five guns. The Prussian right wing, under Bonin, haal also a double conflict with the Anstrinus, who were posted to receive them; for, afterextrieating themselves from the Landshutilefile,
and snizing Trautenan, they were met (June ${ }^{27)}$) hy
Gemeral (iallentz, and, after a long-continued tight, Geur ral Gablentz, and, after a long-continued tisht,
were driven lack to their previons eampung- cround, lusing, howerer, only $1+23$ men, to abont 3.5016 of the Austrians. Gablentz being much exhaustel with his hardly-won victory, obtained reiuforeements from l'enedek; and the Prince of Wurtemberg, with a curps of Guarils, heing sent by the Crown-prince (who marcheed with the eentre, ready to afford support to either wing when necessary) to attack (Gablentz ly Eypel, fell upon him (June 2S) while be was prepraring to complete the defeat of Bomin, and, after a severe combat, or rather series of partial uncenneeted combats, the Austrians were this time defeated, with a loss of 4000 men , and an equal number of prisoners; the l'russian loss being only 83.4 killed and wourded. The three l'russiai armies having thus effectel a firm lodgrneat in Bohemia, movel steadily forward in lines, conversing to a point north of the Austrian army, which was now concentrated between Josephstadt and Königgriitz; and the king of Prussia, who lad arrived (July 1) at the heaid-quarters of the lst and 2d armies, hearing of Benedek's intention to assault them before the Crown-prince's army conld come to their aid, resolved to anticipate him, and ordered an attack on the Austrian position at S A.m. on July 3 , at the same time sending off an urgent dispatel to hasten the arrival of the Crown-prince, whose host, at 8 A.m. on the 3 d , was 15 miles off. The l'russians, at the commencement of the fight, believed they had to do with only the half of the Austrian army, but they were sonn undeceived. for, after carrying the villages in front of the Austrian position, and advancing up the slope, they were met by such a crushing fire of artillery as completely stopped their further progress. Benedek then directed his rescrves against the Prussian left, in order to cut it off from the Crown-prince, inut all his endeavours to drive it permanently from its prosition failed. The conflict, which was mainly an artillery fight, thus continued withont intermission, and the l'rnssian left was almost on the pinint of giving way before the overwheluing numbers of its assailants, when the wavering of the Austrian right unmistakably shewed that a prortion at least of the third army had arrived, and attaeked them in flank. This new assailant becoming more formidalile every mimute, speedily rolled up the Austrian riglit wing; and the advance of the lst and $2 d$ armies, by partially enclosing the Austrians between two fires, threw them into great confusion. Their array was soon broken, and dissolved in preeipitate flight; multitudes perished in the morasses, in the waters of the Elbe, and under the whecls of the flecing baggage-wagons; but the undaunted attitude of the splendid Anstrian cavalry, and the deticiency of the Prussians in that arm, greatly mitigated the horrors of the rout. The Irrussiaus lost upwards of 9000 killech and wounded ; the Anstrian loss was 16,235 killet and wondeded, and 22,681 misoners, with 174 guns and 11 standards. After this decisive defeat, ath hope of staying the advance of the Prussians with the army of Bencelck was at an end ; a truce was askel for, lont refinsel; and the victorious Prussians pushed forwarl toward's Vienna, whither Benedek, by a long and circuituus march, hal drawn lis beaten forces. At the same time, the sonthern army, whiel had been employell against the ltalians, was collected at the capital, auld every preeantion was taken, by the erection of entrenchments, fortifieations, \&c., to insure the safety of Vienna, when, by the argency of the Eimperor of the Frenelh, a truee was agreed to, which afterwards led to a treaty of peace.

A fer days before this eampaign had comuenced, 634
the Italians, burning with eagerness to free Venetia from the yoke of the alien, and combining with all the entlusiasm and heroic spirit of a young nation, no small portion of its overwecning presumption, had assembled an army of 200,100 men, one half of which, under General Della Marmora, was destinel to cruss the Mineio letween Peschicra and Mantua; while the other half was statioued round Bologna, to operate on the lower P'o. T'o oppose this foree, the Archduke Albert, the commander-in-chief in Venetia, had about 90,000 men mear Verona, lesides the Larrisons of the Quadrilateral and Yenice, which, of courss, were not available for field-scrviec. On June 23 (on which day it was notified to the Archuduke that hostilities would be commenced), La Marmora's arny erossed the llincio, nuopposed by the Austrians; and the Italian commander, nut expecting attack, masked the fortresses of P'eschiera and Mantua, and marched the rest of his army forward in a somewhat earelcss fashion. The Arelduke, however, had been all along watehing his opponent; and after having suceeeded in getting him entangled between the river and the hills, he attacked him (June 24) with his whole force. The Italian left was speedily broken and driven back, and would have been wholly destroyed had not Gencral Pianell, whose division was on the right bank of the Mincio, crossed the river, and hedd the assailants at bay during the rest of the day. The Austrian attack on the Italian right was, lowever, at first unsuecessful. In the eentre, where were sitnated the village of Custoza and Monte Belvedere, the keys of the 1osition, an obstinate struggle was maintained on both sides thronghout the dily, luat towards 4 P.M. vietory inelined to the Anstrians, and som after they gained possession of the josition whiel decided tho day. The Italians fell baek, in fair order, towards the Mineio, nnpursued by their exlausted orponents, and on the following day, were all again assembled on the right bank of the river. The ltalians lust in killed, wounded, and prisoners, 8175 men, and several prieces of artillery; while the loss of the Austriaus was abont soot men. This plan of the campaign laving failed, the Italian generals set alwout devising another, and spent more than a week in deliberation and disenssion. It the end of this time, news eame of the great defeat which the Alstrians had sustained in the north, and of the cession of Tenetia, by the Emperor of Austria, to the Emperor Napolcon. Thongh it was not for a moment in duibt that this cession was only a rommelatout way of surrendering the province to Italy, the Italian government, true to the Prussian alliance, refused to conclude a sepmate treaty; and (the Areluduke's army having been, as before mentioued, withdrawn for the defence of Vieman Cialdin's arny erossed the Po (July 7), and oecupied Padua, Vicenza, and Trevisu; while Garibaldi, at the head of his rolunteers, and General Medici, with a division of Cialdini's army, aulvaneed up the Lake of Garda into the Trentino, the small body of Anstrians in the district being wholly unable to ofter a snccessful resistance to such an overwhelming attack. Not content, however, with attacking Anstria by land, a fleet was equipped, and despmatched, under Admiral Persano, to assail the Dalmatian coast, and retriece for Italy by leer nary the dis grace which had fallen upon her army; and, accorlingly, P'ersano directed an attack on the ishand and forts of Lissa, and failel. News of this altack being communieaterl to Admiral Tegethoff, the commander of the Austrian flect in the Adriatie, he sailed at once for the relief of Lissa; and though his shijs were inferior in number, size, and weight of orduance, aud only 7 of them ironclads, to 12 more powerful vessuls of the same sort in the Italian

GERMANY.

flect, he bravely led his ships to the attack, destroyed or sunk two of the largest of the enemy's vessels, broke throngh his fleet, and took up a position in front of Lissa, ready to renew the fight if necessary. The ltalian tleet, however, drew off, and on the following moruing, was out of sight, making for Ancona.

Thus baffled both on land and sea, Italy, though vigorously professing her determination to go hand in hand with Prussia, was very loath to agree to the armistice signed by the two helligerent German powers at Nikolsburg, on July 26; and attempted to salve ber chagrin by insisting upon the surrender by Austria to her of the Trentino. Prussia, however, having agreed with Italy only for the cession of Venetia, was not inclined to support this demand; and Italy, seeing that she must either make peace or fight for the Trentino, single-handed, against Austria, gave way reluctantly, and agreed to the armistice, August 12.

A third contest was, abont the same time, in progress between Prussia and those minor states of Germany which had raised armies to support Austria, viz., Bavaria, Würtemberg, Baden, and HesseDarmstadt. After the capture of the Hanoverian army, the Bavarians, who, under Prince Cbarles of Bavaria, had heen advaneing slowly to join them, took post, on June 30, at Suhl, in the valley of the Werra. A second army had been assembled under Prince Alexander of Hesse-Darmstadt, and had been drawn together in front of Frankfurt. To prevent the junction of these two armies, the Prussian general, Vogel von Falkenstein, who bad 4S,000 infantry, 3300 cavalry, and 96 guns, threw a part of his forces forward toward Fulda, and with the remaiuder attacked the Bavarians, who were inferior in number, and ronted them at Dermbach, Kaltenordheim, and Hünfeld, driving them towards Kissingen; be then turned his superior force against Prince Alexander, whom he forced to retreat towards Darmstadt. The troo armies were now completely separated, and Von Falkenstein found little difficulty in keeping them apart during the rest of the brief campaign, aud in routing the Bavarians at Kissingen and Hammelburg, and the Darmstadters at Aschaffenhurg, and driving the broken remnants of the two armies south of the Main. He then crossed the Main, and oceupied Würzburg, in Bavaria. After some little delay, peace was concluded between these four minor states and Prussia; but, unlike Anstria, of which they were merely the allies, some of them were foreed to submit to a certain loss of territory.

The states north of the Main which had taken up arms against Prussia, were completely incorpor-ated-viz., Hanover, Hesse-Cassel, Nassan, Frankfurt, and a small portion of Hesse-Darmstadt, as well as Slesvig-Holstein and Lauenburg; and the other states north of the Main were united with Prussia in a confederacy of a more intimate nature than before existed, ealled the North German Confeleration.
Bavaria, Baden, Würtemberg, the part of HesseDarmstadt south of the Main, and Lieclitenstein were not included in this union, but were invited to reform their armies and enter into a closer mutual relationship, with a view to a nilitary and political connection with the Confederation.
Saxony, which had prominently figured in the contest as an ally of Anstria, was doomed by Count Bismark to incorporation; but Austria, supported by France, so steadily opposed this arrangement, that it was abandoned, and the little kiugdom was admitted into the Confederation.
Austria, by the treaty of Pragne (23d Angust 1866), was completely excluded from ${ }^{\text {'articipation }}$
in the new organisation of the German states, and formally agreed to the surrender of Venetia to ltaly, to the ineorporation of Slesvig-Holstein with Prnssia, and to the new arrangements made by Prussia in Germany. A portion of the fifth artiele of this treaty secured that, if the 'inhabitants of the northern districts of Slesvig declare, by a free vote, their desire to be united to Denmark, they shall be restored accordingly.' Though losing no territory to Prussia, Austria had to pay 40 millions of thalers for the expense of the war, after which payment the Prussian troops were to be withdrawn from the imperial territories.

Saxony resigned to Prussia the right of garrisoning Konigstein, and of partially garrisoning Dresten, and paid ten million thalers of war-indemnity; Bavaria (by treaty of Berlin, 22d August) surrendered several districts of Lower Franconia to Prussia, and paid 30 millions of gulden for warindemnity; Baden (by treaty of Berlin, 17th Angust) and Würtemberg (by treaty of 13th Angust) surrendered no territory, but paid, the former six, and the latter eight, millions of gulden; while Hesse-Darmstadt (by treaty of Berlin, 3d September) surrendered various districts of the province of Ober-Hesse, receiving in return several districts formerly belonging to Electoral Hesse, Nassau, and Frankfurt, and paid three millions of gulden for war expenses; also the province of OberHesse, into which were to be incorporated the districts ceded by Prussia, was to form a part of the North German Confederation, the other parts of the grand duchy sonth of the Main being uneonnected with it. Even the little principality of Keuss had to pray 100,000 thalers into the fund for Prussian invalids.

This extensive rearrangement of territory will be more distinetly shewn in the table on the following prage, giving a list of states which are members of the new North German Confederation.
The sontheru German states, as yet independent of the northern confederation-viz., Bavaria, Baden, Würtemberg, Hesse-Darmstadt, and Lieehtenstein -have a total area of $43,990 \mathrm{sq} . \mathrm{m}$., and a population (1866) of $8,524,460$. The new North German Bund, as now constituted, possesses a common parliament, elected by miversal suffrage, in which each state is represented aceording to its popmlation. The first or constituent parliament, which met early in 1867, was employed in deliberating over the details of the proposed constitution for the Bund, which was drawn up and sulmitted to it by Count Bismark. After a few weeks' deliberation, the draft, with a few modifications, was agreed upon and submitted to the chambers of the several states for their assent, which, in most cases, was at once given. The new elections then took place, and the first regular North German parliament met in September 1867. The items of the constitation most interesting to non-Germans are, that there is to be a common army and flect, under the sole command of Prussia; a common diplomatic representation abroad, which must, of neeessity, be little else than Prussian; and to the same power are intrusted the management of the posts and telegraphs in the Confederation. The Zollvercin (q.v.) has also been remodelled, and a treaty including the southern states as members is all but concluded, a step, which pares the way to their entrance into the new conferleration. As the southern states are aIready bound to Prussia, by treaties of alliance offeusive and defensive, the king of Prussia, in case of a war, would have at his disposal an armed force calculated at upwards of $1,100,000$ men.

The hope of a united Germany, which has long been cherished by ardeut patriots, aud which, under
the old Buml, was manly deferred by the existence /German Confederation, is thas in a fair way of being of twe jowerful rivals, Austria and l'russia, in the realised.

	Eng. Sq. Billem.	P.42, (1001)
1. Prusaia, including the		
Former Kimgdon of Pruspia (including Louenturg since 1865), . . .	$\begin{array}{r} 108,093 \\ 14,843 \end{array}$	$\begin{array}{r} 19.304,843 \\ 1,923,492 \end{array}$
Ilesse-Ctrssel,	1,818 3,673	-737,283
Nrasali, Free Cofy of Crankfurt,	1,810	466.014 89,837
Steseig-Molstein,	6,809	89,837 910,996
Dintriets ceded by Bavnria - riz., Caulsdorf, Gersfeld, and Orb,	214	34,976
Districts ceded hy llensp-Darmatadt-viz., Messe-Homburg, Amt \} Jlomburg, and Amt-Meisenheim,	423	75,102
	135,904	23,590,543
2. Kingdom of Saxony, ${ }^{\text {a }}$	5.777	2,343,994
3. Graud-Duchy of Mreklenburg-Shhwerin, -	5,143	532,612
4. " Mecklenburg-Streliz	1.052	93,060
5. " Oldenhurs, . . .	2,123	301,812
6. ${ }^{\text {Saxc-Weimar, }}$	1.403	280,201
8_{8}. Duchy of Brnnawick,	1.424	292,708
8. "1 Anhalt, Saxc-Meiningell,	1,026	193,046
10. " Saxe-Coburg-Giotha,	759	164,527
11. ") Saxe-Altenhurg, . . .	S10	141,839
12. Prineipality of Lippe-Detmold, . . .	438	111.336
13. "1 Waldeck, - . .	433	59,143
14. " Schwarzburg-Rudolstadt, .	314	78,752
15. "1 Schwarzburk Sonderahiusen, -	332	66,189
16. " \quad lieuss (Jounger branch),	320 145	86,472
18. "" schaumbnrg-Lippe,	171	31,382
19. Free City of Mambure,	136	229,941
${ }^{20 .}$ " Llibeck,	127	50, 114
${ }_{22}^{21 .}$ Part uf llesse-Darmstadt (prosinec of Ober-llesse),	74 1,268	104,06, 225,696
Total of North German Confederation,	160,245	29,220,922

In the spring of 1867, difficulties arose between Prussia and France respecting the occupation of the fortress of Luxemburg by the former; and as the latter had purchased the province of Luxemburg from the king of Holland, though the formal deed of sale was not drawn up and signed, she maintained that the fortress was part of the province, and that the right which I'russias formerly pussussel of garrisening the eity ceased when the province was excluded from the list of Germam states. A war seemed imminent between the two powers, when, by the gool offices of the British gevermment, a congress was assembled in Lomlon, at which representatives of the great powers (Italy taking her place among them) were present ; and after a few sittings, it was agreed that France shond not proceed with ber scheme of purchase, that Prussia shoull evacuate the fortress, and that the province shoullt remain to the king of Holland, and be regarded as a sort of nentral ground, uader the combinel guarantee of the powers represented at the congress.

Anstria (which, curiously enough, theugh enmpletely beaten by I'russia, lost to that power not an inch of territory, and though decisively victorions over Italy both on land and sea, lost to her vanquished alversary one of her fairest provinees) has been fully employed since the eonclusion of peace in conciliating the various nationalities under her sway. By granting to Hungary the constitution for which that kingdom rebelled in 1818, and which involved a separate internal administration, the Emperor Francis-Jnseph has succeeded in conciliating the great majority of the high-spirited and independent Hungarians, aided greatly tewards the production of this result ly the politic connsels of his chief adviser, Baron von Benst ($4 . v$. in Surplement), and hy the conciliatory bearing of the moterate liheral party in lIungary, which, under the leadership of Deak (ig. $\%$. in SLCPiement), has in
ita firm stand for Hungarian freedom, not forgotten to give a prominent place to the interests of the Austrian Empire generally. Still, however, the attitude of the non-Hungariau provinces, Transylvania, Croatia, and Slavonia (especially of the latter two), which are now politically unitel with it, and are representel in the Hunga. rian diet at Pusth, gives rise to considerable uneasiness; these three provinces having been long jealous of Magyar supremacy, and stcadily opposed to any direct union with IIungary.

The weakness of Austria's present position consists in her possessing a large German population in the western provinees, which, imbued, like all other Cermans, with the enthusiastic love of 'Fatherland,' may at any moment, by external or internal agency, be impelled to seek remnion with G., and consequent emancipation frem allegiance to the Austrian emperor. Italy, though baffled in a military point of view in the contest of 1 $\$ 66$, obtained Venctia, and concluded a treaty of peace with Austria.
[The result of the war between lrance and Germagy in 1570-71 (see France) was to complete the fusien of the northern and seuthern states of the latter country, and to raise the king of I'russia to the dignity of Emperor of Germany. One of the terms of peace was the cession of Alsace and part of Lorraine to Germany.]
GE'RMERSHEIM, a town of the Rhenish Paliatinate, or Rhenish Bavaria, on the left bank of the libine, at the mouth of the Queich, eight miles south-west-by-south from Spircs. The situation is marshy and unhealthy, hut it was chosen by the Romans for a station and fortress, which was called Vicus Julius. The Enperer Conrad 11. built a eastle herc. The town was founded beside the castle by the Emperor liudolph I. in 1276, and endowed with all the rights and privileges possessed by Spires. Having passed into the hands of the Electors I':atatine, G. Was taken by Leopold of

Austria in 1622; and fell into the hands of the French in 164, by whom it was restored to the Elector Palatine at the peace of Westphalia; but it was again taken by the French under Turenne in 167t, when the walls were demolished, and the towers burned. After the death of the Elector Charles, the French scized the town and the district belonging to it in 16SS, as pertaining to Alsace. Hereon followed the C. War of Succession, and the country was desolatel. The peace of Ryswick restored G. to the Palatinate; and baving been fortified, it was assailed in vain by the French in 1715. It was in the midst of the scene of greatest conflict between the French and Austriaus during the middle of last century. The Rhine is crossed at G. by a bridge of boats. The town is strongly fortified. It contains a ruinous old castle, in which the Emperor Rudolph of Hapsburg died. There is some trade in corn, hemp, Hlax, \&c., and a fishery of some importance in the Rhine and Queich. Pop. 5322.

GEROME, JEAN-LÉOr, one of the most eminent of living French painters, was born at Tesoul, in the dep. Haute-Saône, on the 11th of May 1824. He received his early education in his native town, where his father followed the trade of a goldsmith. In his serenteenth year, he went to Paris, and entered the studio of Paul Delaroche, at the same time attending the course of instruction given at the School of the Fine Arts. He continued till 1844 the pupil of Delaroche, whom, in that year, he accompanied on a tour of considerable length in ltaly. It was not till 1847 that one of his pictures was exhibited at the Louvre; since then he has scarcely ever failed to exhibit, and his works soon gained for him the reputation of being one of the most promising artists of the time. A slight indication of the position be had made for himself by 1851 is the fact, that he was commissioned by the minister of state to furnish a design for a rase which was to be manufactured at Sevres in commemoration of the London Exhibition of that year. In 1853, he travelled for some time iu Turkey and upon the eastern raters of the Danube. He has since extended his knowledge of Eastern scenes by a long journey which he made in Egypt and the adjacent conntries in 1856, during which he made a valuable collection of sketches, besides accumnlating experiences of great value to an artist, and the subjectmatter of future p ictures. In 1855, he received the Cross of the Legion of Honour ; and in 1863, be was appointed Professor of Painting in the School of the Fine Arts, a position which he continues to hold. Many of his piotures have been exhihited in London, and there are few contemporary French painters whose works are so well known to the British public, or so high in favour with English critics. Among his countrymen, his reputation is very high, and is still rising.
From the commencement of his artistic career, G. painted pictures which shewed him an admirable colourist and a promising designer, but it was not till 1855 that he attempted a really great subject. In that year, his picture, 'Le Siecle d'August et la Naissance de Jésus-Christ' was exhibited; it was much canvassed by the critics, on the whole was received with favour, and ultimately was purchased by the state. It was an allegorical composition, intended to be symbolical of the close of pagan civilisation and the dawn of Christianity-a work to try the greatest powers; and the artist not only aimed at the high mystic flights which had taxed all the might of the liaphaels and Michael Angelos, but attempted to combine with these a representation of the highest views of modern philosophy. To say that, in trying so much he had wiscalculated
his strength, is only to say that his powers fell short of the very highest; but the attempt shewed an elevated taste and a noble ambition; the execution, too, was in many respects excellent, and the work greatly raised the author's reputation. Many of his subsequent pictures have had a success in no degree equivocal ; several of them are now widely hnown by engravings. In 1859, he exbibited his noble picture of Roman gladiators in the amphitheatre, with the motto: 'Cæsar, ave, Cæsar Imperator, morituri te salutant,' which raised to the highest pitch his reputation as a colourist and painter of the human figure, while making a profound impression by the success with which the human interest of the scene was rendered. With 'Phryne before her Judges,' exhibited in 1861, he won fresh honours as a colourist and draughtsman. In the same year, he exhibited, among other pictures, his 'Socrates searching for Alcibiades at the House of Aspasia;' 'Denx Angures non jamais pu se regarder san rire;' and a portrait of Rachel. 'Louis XIV. and Moliere,' 'The Prisoner,' and the 'Death of Cæsar' are among the best known of his subsequent works-the last, a finely conceived and nobly painted picture, which, for its architecture, its colour, and the subserviency of details very strikingly rendered to a definite human interest, demands the highest admiration. The 'Death of Cæsar,' the 'Phryne,' the 'Gladiators,' and 'Louis XIV. and Nolière,' are among the pictures of G. which have been exhibited in Loudon. G. has painted admirably several Eastern subjects; aud of the mural pictures which he has executed for the city of Paris, one, the 'Plague at Marseille,' painted in one of the chapels of the church of St Severin, has received the highest enconnums. Thongh not to be ranked among painters of the first class, as a colourist and figure-painter he probably has wo superior among living artists.

GHOSTS, OptICal. Nany remarkable exhibi. tions have been introduced in recent years, based on certain simple laws of opties long known to seientific men. The mysterious phantom appearances have led to the designation of ghosts; but nothing necessarily either ghostly or ghastly attaches to the exhibition. No new principle has been discovered; it is nothing more than an ingenious application of mechanism to render visible to a body of spectators certain phenomena of reflection and transmission, by varying the intensity of light passing upon or through large plates of class, and by adjusting the prosition of the actors with reference to the glass and to the spectators.
Mr Dircks, in a paper read before the British Association at Leeds in 1855, and afterwards embodied in a volume, said that his attention had long been directed to this matter. In 1838 . he devised something which, under the name of a 'transparent mirror,' he thought likely to be productive of curious optical effects; hut he abandoned the subject for nearly 20 years. In 1856, he happened accidentally to see a solid body so peculiarly placed as to appear to be transprarent; and this led hin to nake a variety of experiments, to combine an object with its shadow or its reflection in such a way as to render their discrimination difficult. He supposed a theatre or room, with spectators placed on an elevated and darkened series of seats; and he shewed how they might see two illuminated figures on a stage, without knowing that one was a reality and the other a reflection. By following out the idea, he saw how an actor might get behind a plate of glass, and seem to communicate with the sbadow or 'double' of a secoud actor-how, in other words, a living or solid figure might be so associated with a mere phantom, that the two conld play a sort of drama together, suddenly terminated,

(iHOSTS.

perlaps, by one of them fading away, and vanishing through the wall or furniture of the apartment.

Ilr Dircks constructed a emall hox or model to illustrate the principle; and as it really contains the germ of most of the harge sulsequent exhibitions, we will describe it. The accompanying diagrams shew the outside view, the vertical section, and the ground-plan. ABCDE is an oblong box enelosed on all sides, higher at one end than at

Fig. 1.-Outside View.
the other; F, G are two doors at the sides of the hox; II, I, J are three flapreed or hinged openings at the top of the box, 11 for the eye of the speetator, I to put in the models or figures, and J to adinit light; $K K$ is a transparent vertical plate of glass, forming a partition in the box; L, λ are two compartments separated by this partition; N is an opaque screen, to shield a portion of the compart. ment L from the eye of the speetator. Now, with small figures or models, very eminus opitical effects ean bo prescutel in this box. Mace two figures, Y and Z, in the two compartments, one in each. An cye at A will see the real figure Z, and the

Fig. 2.-Vertical Section.
reflection $\mathrm{Y}^{\prime \prime}$ of the figure Y , but not Y itself; and both will appear to be in the same compartment. By opening in various degrees the flap J and the side-doors F and G, or by closing any one of the three, and opening the two others, the admission of light may be so regulated as greatly to modify the efficts. In order that Y^{\prime} may appear real, no solid loody should be phaced immediately before or behind it, or its transparency would at once be detected. If the apparatus were large enough for living, perfonners, Z would not see Y^{\prime}, although he would see Y; but by a little rehearsal,' Z and \bar{Y}^{\prime} might appear to act together. If, omitting Z, two figures exactly
alike, or two similar globes or cubes, were placed at Y^{\prime} and Y^{\prime}, then $\mathrm{Y}^{\text {" }}$ would appear to a spectator like a substance and a phantom combined; and

Fig. 3.-Ground-plan.
according to the mode of throwing the light more strongly on the one or the other, the substance might seem to dissolve away into the phantom, or the phantom into the substance. By supposing a small theatre or large room to bo used instead of a box, living performers instead of model figures, and ranges of seats instead of an eye-hole, this apparatus would become a yhantom exlibition for many spectators at once.
The exhibition of Messrs Dircks and Pepper, patented in 1863, gave celebrity and popularity to the subject, being shewn at the Polytechnic Institution, Landon. The main purpose, as described in the sprecification, is, 'to associate on the same stage living persons and phantoms to act together.' There is a stage like that of a theatre; and an under-stage at a level six fect or so lower, lectreen it and the spectators. The stage can be seen ly all the persons in the hall or theatre; but the under-stage (though nearer) is so managed, hy means of screens, dimness of light, and dark laize lining, that its existence is scareely even suspected by most of the spectators. There is a large plate of unsilvered glass nearly upright, between the under. stage and the stage, so artfully framed and nuljusted as to be invisible, and allowing persons on the stage to be seen almost as elearly as if there were no glass there. An actor, whom we will eall the hidden actor, is on the under-stage, entirely below the level of the real stage, and out of sight of the spectators. A strong light is thrown upon his face and figure, and is reflected from the front of the glass towards the spectators, who ean thus see the reflected image, but not the hidden actor who produces it. For lrevity's sake, we will eall this reflected image the phantom. In order that the refiected light may come in a proper direction to the spectators, the glass is placed either upright or slightly leaning forward at the top, according to the height at which the seats of the spectators are placed. If the light is very strong on the hidden actor, and rather faint on the glass, the phantom appears with womlerful force and vividness. By means of a trap-door closing over the understage, the phantom may be male to disappear instantly; or by varying the intensity of the light, the phantom may seem to dissolve gradually. If the under-stage is too small for this, a small bust or model may take the place of the hidden actor; while, on the other hand, if the under-stage is very large, and all the arrangenments planned on a complete scale, there may be a whole group of hidden actors and actresses earrying out the details of some story ly being reflected into phantoms all at ouce, or one or two at a time; they may cren dance and sing, making their phantom reflections appear to do the like. In all this, there is no mirror or silvered glass, nor is there any focussing lens. The visilbe actors on the visible stage may take up such positions

GIARRE-GILLS

as to be near the phantoms, and combine with them to play a dramatic scene. By having a trap in the under-stage, up which a hidden actor may ascend, or one in the proper stage, up which a visible actor may ascend; by arranging the transparent sheet of glass in such a way that it may be varied in inclination, and either raised or lowered; and by throwing light of varions colours on the hidden actors, the ghostly effects may le very strikingly diversified.

Most of the subsequent patents relate to extensions of this method, with certain minor additions. Munro's patent (1863) is concerned chiefly with placing between the lamps and the hidden actor screens and media of various kinds, so as to let light fall on some parts, and leave others in darkness. In this way a phantom may be shewn as if dismembered, head severed from the body, legs and arms separated, \&c. By placing a movahle mirror or silvered glass near the hidden actor, and shifting this while the action is going on, the phantom may be made to go up and down and across the transparent glass. By the ail of two or more mirrors, the phantom may be magnified or diminished in size. By other arrangements, the visible actor may seem to enter a solid cube, or may seem to give a bottle or a letter to the phantom-effects due, in fact, to the superposition of a reflected image upon an object seen by transmitted light. Maurice's patent (1865), instead of causing a hidden actor to be reflected as a phantom, malies the visible actor himself hecome a sort of phantom before the eyes of the spectators. The phantom of a hidden object is superposed upon the real form of the actor, by mice adjustment; and then, if the light is dimmed which falls upon the actor, and the light brightened which falls upon the hidden object, the former will appear to fade away into invisibility; or the arrangements may be so managed as to make him seem to go throngh a solid wall, or to be suspended in the air, or walking, or Hying.

Without further describing particular arrangements, we may remark generally, that the most striking effects of these illusions are those which are due to the superposition of two pictures or scenes, one reflected from the glass screen, and the other seen through it. It is easy to see what room there is for the exercise of ingenuity in contriving combinations of effects. The details of clramatic scenes can be enacted by phantoms and real persons combined. Punch and Judy can be made to go through their ragaries and batter each other, one being a real figure, and the other a phantom; and it is not until Yunch sinks through the solid floor that the spectator knows which was the phantom.

GIA RRE, a town of Sicily, in the province of Catania, 42 miles south-west-by-south from Messina, on the slope of Nount Etna, and not much more than a mile from the sea. . It is a rapidly increasing town. Nany of its inhabitants are vine-growers and exporters of wine, the surrounding district beins famous for its vineyards and the quality of their produce. Pop. (1861) 6026. The shipling port of \mathbf{G}. is Riposto, aloont a mile distant; pop. (1861) 4803. It is a husy place, and many small craft are built. G. has a doubtfud claim to be regarded as the ancient Callipolis. About five "niles abore the town, on the slope of Mount Etna, are the remains of the celebrated Castagno de C'ento Cavalli, supposed to have been the greatest chestaut tree in the world. Sce Chesyut.

GiLL, Jous, D.D., a Eaptist minister, of some eminence as a theologian. and especially deserving of remembrance as one of the few Enghish divines who have brought rabbinical learning to bear on the interpretation of Seripture, was born at Kettering,

Northamptonshire, November 23, 1697. His parents were in humble circumstances, but they placed him at the grammar-school at Fettering, from which, however, they were compelled to withdraw him before the completion of his course, on account of the enforcement of a rule requiring all the scholars to attend the parish church. He pursued his studies in private, and by his own unaided efforts, attained considerable proficiency in Latin, Greek, and Hebrew. He afterwards devoted himself much to the study of the rabbinical writers. Having begun to preach at an early age, he became, in 1719 , pastor of a Eaptist church at Horsleydown in Southwark; from which, in 1757, he removed to a new chapel in Carter-Lane, near London Bridge, and there continned to minister till his death, Octoher 14, 1771. G. was a very voluminous author; many of his works were on controversial suljects, often of mere temporary interest, but he produced also some which are still studied or consulted by divines. His first important work was an Exposition of the Song of Solomon (fol. 1728), in which he vindicated the authenticity of that book against Whiston. His Exposition of the New Testament appeared in three folio vols. in 1746, 1747, and 1748; and his Exposition of the Old Testament subsequently at several dates in six folio vols. The complete work, a commentary on the whole Bible, has been since republished (9 vols. 4to, Lond. $1809-1810$). G.'s other principal works are-A Bolly of Doctrinal Divinity (2 vols. fto, Lond. 1769), and A Body of Practical Divinity (1 yol. 4to, Lond. 1770), which were afterwards republished together as one work (3 vols., Lond. 1795). He wrote also, as a controversialist, in defence of the doctrine of the Trinity and of Calvinism. He was a very high Calvinist. As a writer, he is extremely discursive and diffuse, by which the value of works full of thought and learning is much diminished. G. received the degree of D.D. from the Marischal College and Criversity, Aberleen, iu 1748 . Me sent to Dr Kennicott a collection of quotations of the Old Testament in the Talmud, differing from the ordinarily received text, which Dr Kennicott made ase of and acknowledged in his great work.

GILLS, or BRANCHLE, are the respiratory orgaus of those animals which obtain the oxygen necessary for their well-being not directly from the atmospluere, but from the air held in solution in the water in which they live. In animals modified for atmospheric respiration, the air enters the system to meet the blood, a peculiar set of movements, more or less complicatel, being appointed for its constant renewal. In aquatic animals, on the other hand (excluding aquatic mammals), a different plan is required, in consequence of the small quautity of air contained in the water; and hence the aërating surface is extended ontwardly, so as to yield a larger space than could be ohtained in the interior. The blood is being perpetually driven along this surface, which is so constructed as to admit freely of the passage of air; and by the natural morements of the body, or by others of a special nature, a fresh supply of aërated water is constantly afforded. The chief forms of respiratory apparatus in different classes of animals are shewn in the accompanying diagram, borrowed from Dr Carpenter's Comparative Pleysiology. 'Let AP represent the general exterior surface of the body; then at a is shewn the character of a simple outuard extension of it, forming a foliaceous gill, such as is seen in the lower Crustacea; and in like manner, b may represent a simple internal prolongation or reflection, such as that which forms the pulmonary sac of the air-breathing gasteropods. A higher form of hranchial apparatus is shewn at c, the respiratory surface being extended

GILLS.

by the sululivision of the gill into mimute folds or filanonts, as we see in fishes; and a more clevated form of the pulmonary alparatus is seen at l, the membranous surface being extendad by subdivision of the intcrual cavity, as in birds and mammals.

Fig. 1.
Lastly, at c is shewn a plan of one nf the " pulmo. nary branchie" of the Arachnidla, which forms a lined of transition between the two sets of organs-the extent of surface leing given hy gill-like jlications of the membrane lining the interior of a pulamonie cavity:'

We slanll motice a few of the different forms of gills that oecur in various classes. It is in the Annelida that we find the first distinct organs of this kind. Their blood is transmitted to a series of gill-tufts, which are composed of a delicate membrane prolonged from the extreme surface, and which may assume the form of branching trees or of delieate brushes made up of a buntle of separate filaments. These tufts are supplied frecly with blood-vessels; and fresh portions of blood and of water are being constantly l, ronght into contact by the natural movements buth of the animal and the surromding medinm, and ly the aetion of the cilia covering the respiratory organs. The tufts are sometimes attached at intervals along the whole length of the body, as in Arenicoln, in which there are 13 lair (see Anvelida); while in other eases they occur almut the heal unly: In the latter case, they are extremely beantiful, liaving the appearance of a flower endowed with the most brilliant tints. Two animals eommon in the apuarium, the sirpula and the Terelellu, owe their resplument heanty to these tuits (see figure muler serpula). In all of the Crmstacea, exeepting some of the lowest forms, whese general surface is solt, gills are present. The Branchiopoda, belonging to the sessile-eyed Crustacea, or Etriophthetma, are so ealled because their tius or feet 1 resent the form of simple plates or flattened vesiches, which float in the surrounding fluill, and expose the hlool to the oxygen which the water contains. The branchire may le appended to the thoracie limbs in the form of membramous plates (as in Amphipoda), or to the ableminal limbs as sublivided lamelle (as in Isopodta), or the hranchial plates may exprand into resicles attached to the thoracic feet (as in Leemodipoda). Amongst the Crustacea with eye-stalks, (1. Podophthalma, the respiratory plates, in the order Stomapodu, are external, and are appendages of distinet locomotive organs, each plate being divided into a series of sniall filaments or tubes, so as to resemble a broul feather. Their position is abdominal, as is seen in Squilla. Here the gills have bernn to assume more of the character they present in tishes, the laminated or leaf-luse form heing replaced hy oue in which the surface is greatly extended by minute subelivisions into delicate filaments. In the order Decapolo, including the crals and lobster, the respiratory organs are of a more special character, and are lodged in branchial chambers protected by the earapace. A special apparatins is here found

of water over the aerrating surface. 'lhe gills in these animals are in the form of long, slender, quadrangular fyramids, and consist cither of numerous thin piates or minute eylinders arranged perpendicular to the axis of the pyranml. There are I) such hranchial mramids on each side in the erahs, while in the lobster there are os. Fior further aletails on the respiratory organs of the Crustacea, the reader is referred to l'rofesser Owen's Lectures on the Comparutive Anatomy and Ihysiolog! of the Invertebrate Animals, all edit., 15\%, $14,30-32$.

In the sub-kinglom Moklusea, we find several modifications of gills. In the Lamellimenchiuta, or common hivalyes, there are, as a general rule, two gills on each side. Here the gills are internal highly vascular folds of the mantle lining the valses, and are strengthened by delieate jointed tilaments, which support several rows of vibratile cilia, whose constant motion gives rise to regnlar respiratory currents. This form of gill may be readily examined in the ojster or common mussel. In the brounchifcrous gasteropola, the form and lusition of the gills are very variable. In the Nulihronchiatis (see Alder and Ilanook's splendid monegraph on this orter as occurring in the Rritish seas), they are disposed, as their name implies, without any protection, over various parts of the boly, where they often form leautifnl tifts of delieate leaf-like or arboresecut appentages, as may he seen in loris (I. r.). One of the arborescent prucesses forming the gills of Doris Johustoni separated aml magnified, is shewn in the accompanying fig. .. The linghest ant must mumerons sub-

Fig. ..-Gill-process of Doris, marnified. division of the branchiferous gasteropodi-the order Pectinibronclicelederives its name from the penliar comb-like arrangement of its gills, which lave a special eavity at the fore part of the back, eansed ly an arching of the mantle. The gills of Paludina vinipere are shewn in tig. 3. Finally, in the highast class of mol-luses-the Cephalopola-the gills are the organs

Fig. 3.
The pectinated branchim aline are feen. The concave surface rents on the intestime.-The entire fisure of J'aludinn rirmma, copied from ('uvier, is to be fuand iu Carpenter's Cumparatice Physiology.
usel for classifieation ; there heing two ordersvik, the 'Tetralranchiata, with fonr gills, and the Dilranchiata, with two gills. The arrangement of these gills, and their relations to other organs, are seen in the aecompanying figure of Sepia (tig. 4).

GILLS.

In the article Fishes, the gills are of necessity hriefly noticed, but all details regarding them have been postponed to this article. The fullowing

Fig. 4.-Scpia officinalis.
In the Dibranchiates, of which Sepin may be taken as an example, each gill consists of a number of trinugular vascular lamine, extending transversely fiom either side of a flebly glandular stem, and decreasing in size to the extremity of the gill. Eacholate is composed of smaller transverse lamine, which are themselves similarly subdivided; the entire gill presenting the tripinnated structure, which affords an extensive thaugh close-packed surface for the subdivision of blood-vescels. The number of plates in a gill varies in different genera; in Sepia there are thirty-six pairs. The stem of the gill is not only attached by its base, but by a thin nembrane, through most of its lengtb, to the mantle. The above description, and the figure, bave been borrowed from Owen's Lectures on the Comparative Anatomy and Physiology of the Incertcbrate Animals, $2 d$ edition, p. 624. The original figure is duc to Mr Spunce Bate.
remarks on the gills of fishes are condensed from J'rofessor Owen's Anatomy of the l'ertebrates, vol. i. 11. 475-188. In the Cyclostomi, which, if we except the lancelet, constitute the lowest order of fishes, and inchule the genera Myxine and Petromyzon, of which the hag and lamprey are examples, the branchire or gills are sacciform, with external spiracles, and six or seven in number on each side. Each gill-sac receives its proper artery either from the branchial artery or one of its branches. 'The leading condition of the gills in other fishes may be understood,' says Professor Owen, 'by supposing each conpressed sac of a 11 yxine (m in figs. 5 and 7) to be split through its plane, and each haif to be glued by its outer smooth sille to an intermediate septum, which would then support the opposite halves of two distinct sacs, and expose their vascular mucous membrane to view. If the septum be attached by its entire margin, the condition of the

Fig. s.-Two Gill-sacs of Bdellostoma.

Fiz. G.-Two Gill-sacs of Lamprey.
gill in the Plagiostomi (sharks, dog-fish, rays, skates, \&c.) is effected. If the septumbe liberated at the unter Irart of its circumference, and the
vascular surfaces are produced into pectinated lamelligerous 1 rocesses, tuits or filaments proceeding from the free arch, the gill of an ordinary osseous fish is formed. Such a gill is the homologue, not of a single gill-sac, but of the contiguons halves of two distinct gill-sacs, in the Myxines. Already, in the limpreys, the first stage of this bi-partition may be seen (fig. 6), and the next stage in the sharks and rays; consequently, in these fishes a different artery goes to the anterior branchial surface of each sae or fissure from that which supplies the posterior branchial surface of the same fissure; whilst one branchial artery is appropriated to each supporting septum or arch between the fis. sures, as it is to the liberated septum or branchial arch in the ordinary osseous fishes.'-Anatomy of Vertebrates, vol. i. p. 476.

The Iampreys, myxinoils, and plagiostomes (sharks and rays) are termed fishes with "fixed gills,' because in them each sulporting septum of the anteriur and posterior branchial mucous surfaces is attached to the pharyugeal and dernal integument by its entire outer margin, and the streams of water How ont by the same number of fissures in the skin (as at k, iu figs. 5 aud 6) as those by which they enter from the pharyin, f. In the osseous and in the ganoid fishes there are 'free gills,' the outer borler of the supporting brauchial arch being unattached to the skin, and playing freely backwards and forwards, with its gill-surfaces, in a common gill-cavity, which has a single outlet, usually in the form of a vertical fissure.

In the myxinoids (as the lag) there are (see fig. 7) six or seven branchial sacs, m, on either side, and their outlets are produced into

Fig. 7.- Pranchial Organs of Jyxine. short tubes, which open into a longitudinal canal, k, directec baciwards, and discharging its contents by an orifice, h, near the middle line of the ventral surface; betreen the two outlets, h, h, is a third larger one, i, which communieates, by a short duct, with the end of the cesophagus, l, and admits the water, Which passes from that tube by the lateral orifices, f, leading iuto the branchial sacs. These sacs, which are developed from the cesophagus, aud which may be regarded as the simplest form of piscine gill, have a highly vascular, but not a ciliatel, mucous mentbrane, which is arranged in radiating primary and secondary folds, so as to increase the surface. In the lampreys, there is a further separation of the respiratory from the digestive tract, for each intermal blind duct communicates with a median canal, bencath and distinct from the eesophagus.

In all the higher fishes, the inlets to the brauchial interspaces lie on each side of the fauces, and are equal in number with the interspaces; while, excejt in the plagiostomes, there is ouly one outlet on cach side. These ontlets vary extremely in size, being relatively largest in the herring and mackerel families, and smallest in the eels and lophioid tishes (as the Angler, q.v.). The length of time that different hishes can exist out of water depends on the modifieations for retaining water in the branchial chambers. As a general rule, the chamber is largest when the outlet is smallest, as in the eels, Blemies, and lophioids, and these are the fishes that survive the longest out of water, except in such cases as the Climb. ing Perch (q. v.) or Anabas, in which the branchial apparatus possesses complex labyrinthic appendages.

The maio olbject of the gills of fishes being to expose the venous blood, in very thin-walled vessols, to streams of water, the branchial arteries raljidly subdivide into capillaries, which constitute a net-work in one layer, supported by an elastic plate, and covered by a tesselated

Fig. 8.-Diagram of the circulation of the Plood through the Branchial Leatlets. but non-ciliated epithelinn. 'Ihis covering and the capillary wall are so thin as to admit frec interchange to take place between the blood, loaded with carbonic acid, on the one band, and the aerrated water on the other. The extent of res. piratory surface is increased in various ways, of which by far the most common is, "by the production of the capil. lary-supporting plates from each side of loag, compressed, slemder, pointed processes, extending. like the teeth of a comb, but in a double row, from the convex side of each branchial arch.' In this figure, the course of the blood throngh a pair of branchial processes is shewn: a is a section of the branchial artery; d is the branch going along the outer margin of the process; e is the vessel receiving the blood from the capillaries, after it las been changed, and retuming it, along the inner border of the process, to the branchial vein, c. The number of vascular plates or lamellio attached to each branchial process has been estimated at 135 in the carp, 700 in the eel, 1000 in the cod, 1400 in the salmon, and 1600 in the sturgeon.

From the above imperfect sketch of the beautiful structure of the ordinary type of gill in fishes, we pass on to the consideration of these organs in Amplibia or Batrachia. In the lower or perennibranchiate memhers of this order, the gills exist jermanently, but iu the great majority they are mere temporary orçans. The subject is briefly noticed in the article Batrachia ; but one or two additional observations may be made. In the newt (Triton), a little animad

Fig. 9.-Head and Branchial Appendages of the Larva of a Newt, magnificd.
common in most parts of Eagland, and readily kept in a vessel of fresh water, three pair of external gills are developed, at first as simple filaments, each with a capillary loop, but speedily expandiou and giviog off looplets. The gill is covered with ciliated
epithelium, which loses the cilia before the absorytion of the organ, and this takes place after a few days of larval existence. In the larval frog, the gitls, which are on a simpler plan, diminish abont the $4 \mathrm{th}_{\mathrm{h}}$, and disappear on the $7 \mathrm{Tl}_{3}$ day: The parts of the branchial framework which supports the deciduous gills never get beyond the cartilaginous stage. They thes readily shrink, and become more internal as the head increases in size. As the gills of the perennibranchiate amphibians, in all essential points, rescmble those already described, it is unnecessary to notice them. - The present articlo must be regarded as sumplementary to lifspiration, Olgans and Procfes of, in which the comparativo anatomy of the subject was altogether omitted.
GLMICNA'NO, SAN, a very ancient town of Central Italy, in the province of Siena, and 22 miles south-sonth-west of Florence, is situated on the top of a bill 1220 feet above the sea. One of the most curions features of the town is the number, 14, of lofty square towers in so small a space, the largest of which is built on an arch under which passes a strect, and was crected in 1298 . Of the many churches aod monasterics which the town once contained, most are in ruins. The principal of those still standing are the Collegiatce or Assunta, which contains some fine old frescoes by various masters; the chapel of St Fina, with frescoes by D. Ghirlandajo ; and the church of St August in, begun in the 13th, but not completed till the end of the 14 th c ., also containiog frescocs. There has been of late years established in the suppressed monastery of Sian Domenico, a house of correction for convicted females, who are sent here from all parts of the surronading country. Pop. 0557.
GIOVA'NNI (SAY) IN FIO'RE, a town of South Italy, in the province and 24 miles cast of the town of Cosenza, is situated at the confluence of the Neto and Arvo, in the Sila Forest. Pop. (1561) 9154.

GIOVANNI (SAV) ROTONDO, a town of South Italy, in the province of Fogyin, and 19 miles northeast of the town of that name, near Mount Gargana. There are manufactures of linen and woollen fabries Pop. (1861) 67S6.
GI'TSCHIIN, or GICZIN, a town of Bohemia, the capital of a district or circle, stands on the Cydina, 49 miles north-cast of Praguc. It cousists of the town proper and four suburbs, and had a population in 1857 of 5715 . There are important cort-markets. The former Jesuits' college is now used as barracks; but there are a gymmasium and other schools. G. was once the capital of the duchy of Fricdland. When Wallenstein chose it in 1029 for his resitence, it was merely a collection of some 200 miserable hovels; his activity and munificence soon converted it into an clegant and prosperons eity, in which he built ($16: 30$) a splendid palace. 1his body, in 1639, was had in the neighbouring Carthusian monastery of Walditz; three years after the Swedish general Baner sent the head and right hand to Sweden; the remains lay neglected for a century, until they were removed by Count von Waldstein to Minchergriitz.

GIUGLIA'NO, a market-town of South Italy, eight miles north-west of Naples. It contains four churches, a castle, and a bospital. Pop. (18G1) 10,512.

GLA'DBACH, or BERGISCH-GEADBACH, a town of Rhenish Prussia, in the former duchy of Terg, and in the government of Cologne, eight miles north-cast from Cologne. It is a place of considerable industrial activity; and has mannfactures of nets, paper, and percussion caps. Pop. (1864) 55 tS .

GLADLACH, or MÖNCHEN-GLADDACII, a
town of Phenish Pinssia, in the government of Dusseldorf, 14 miles west from Düsseldorf, pleasantly situated on a rising ground near the left hank of the Niers. It is a principal seat of the manufacturing industry of Rhenish Prussia, and has increased very rapidly within the last twenty-five years. Besides being a station on the railway between Aix-la-Chapelle and Westphalia, it is connected by another line with Dusseldorf. Among the branches of manufacture carried on, are the weaving of linen and cotton, druggets and velvets. There are also extensive dye-works and bleachfields. Much flax is grown in the neighbourhood. G. is a very ancient town, having existed at least as carly as the days of Charlemagne. It formerly contained a famous Benedictine abbey, fonnded by Archbishop Gers of Cologne, in 972. Pop. (1564) 15,675.

GLADE-NET, a kind of net used for the capture of birds in the glades of forests. It is mucla used both in Englaud and in some parts of the contiment of Europe for the capture of woodcocks. It is made of a breadth suitable to the glade in which it is to be suspended, through which the birds are known to be accustomed to pass; and is made of fine thread-netting, edged with cords, having weights attached to it below, so that when the rope by which it is held up is let go, it falls at once to the ground; a rope from the upper part of it passing over a pulley in a tree, and being leld by the hand of the fowler. When the net is ready, the neigh. bouring parts of the wood are beaten, to disturb the woodcocks; and when they approach it, it is let down, or drawn up, as may be necessary. In England, the use of the glade-net is common chiefly among poachers and gamekeepers, who, without the knowledge of their employers, but tempted by the high price of woodcocks, resort to this method of obtaining money. Other hirds and sometimes hares are also caught in the glade-net. In Siberia, the glade-net is employed for the capture of wild-fowl, and glades are opened, in order to its use, between one lake and another, or between a lake and a river near together.

GLADO'VA, a town of European Turkey, province of Servia, on the Danube, immediately below the 'Iron Gate' or rapids of that river, 110 miles east of Belgrade. The place is of little importance, except as being the chief quarters of the Danube Steam Navigation Company, its inlabitants couveying merchandise by land betwixt it aud Orsova, ahout 13 miles further up the river. About $2 \frac{1}{3}$ miles below it are the remains of the briclge built by Trajan across the Dauube.

GLA'NDFORD BRIGG, or BRIGG, a markettown of England, in the Parts of Lindsay, in the county of Lincoln, and 22 miles north-north-east of the city of Lincoln, on the narigable river Ancholme, which falls into the Humber about 10 miles from Glandford Brigg. It is a station on the Sbeffield and Lincolnshire branch of the Great Northern Railway. The town is clean and regularly bnilt, has a handsome modern church with a lofty spire, several other places of worship, a corn exchange, schools, \&c. Its free grammar-school was founded in 1669. A considerable trade is carried on by means of the Ancholme, in corn, coal, and timber. The town relies mainly for its prosperity on the cornmarket, which is one of the best in the counts. The corn exchange is a large buikling, admirably adapted for the purpose for which it was erected. Formerly, a large business was done in the dressing of hare and rabbit skins for the use of hat manufacturers, but there is now (1567) only one establishment of the kind remaining. Pop. (ISG1) 3135.

GLASS SNAKE (Ophisaurics), a genus of reptiles, belonging to the group Saurophidia of Gray, ranked by some naturalists among serpents, and hy others among saurians. There is only one known species, a common native of the United States. It is sernentlike in form, and entirely destitute of limbs. The head is like that of a lizard. The eye has a movable lid, as in lizards. The length is sometimes three feet and a half. The body and tail are marked with transverse lines of black, green, and yellow, each scale exhibiting these three colours. The mouth is small, and the animal feeds on insects, molluses, \&c. It frequents dry places, and can neither climb nor swim. It is remarkable for the readiness with which the joints of the tail break off upon any irritation, so that it is very difficult to secure a perfect specimen. The joints thrown off are soon reproduced. The caudal muscles do not pass from one joint to another, so that the breaking of the tail iurolves no rupture of miscular fibres, but only a separation of one muscular plate from another.
GLO'SSOP, a town of Derbyshire, England, 19 miles west-north-mest from Sheffield, on as small river which falls into the Etherow, a branch of the Mersey. A branch railway, about a mile in length, connects it with the main line of the Manchester, Sheffield, and Lincolnshire Railway. It is situated in the midst of the beautiful scenery of the Peak, on a rising ground, ahove a deep valley, the Dinting Vale, over which the railway is carried by a viaduct of 16 arches. The suburb of Howard's Town exceeds the older town of G. in magnitude. G. is the chief seat of the cotton manufacture in Derkyshire. There are also moollen and paper mills, dyeworks, print-fields, bleach-fields, and iron-fonndries. The parish church of All-Saints' is an ancient edifice, recently enlarged and improved. Pop. (1861) $19,126$.

GMELI'NA, a genus of trees of the natural order Verbenacece, baving a small 4-5-tonthed calyx, and a large, obliquely bell-shaped corollan (f. arbarea, called Goonibar, or Koombar, in India, is the most valuable for its timber. The tree attains a great size, and is widely diffused, botb in Hindustan and the Eastern Peninsula. It has heart-shaped leaves and pannicled flowers. The wood resembles teak, but is closer in grain, and lighter. It bears exposure to water better than most kinds of timber. It is used for many purposes, as tor fonndations of buildings, decks of boats, Venctian blinds, picture-frames, $\& c$.

GMIUNDEN, a town of the Austrian Empire, in Upper Austria, 32 miles sonth-west from Linz. It is situated at the lower extremity of the Traunsee or Gmumdensee, the Lake of Traun or Gmunden, where the river Traun issues from it, in the midst of scenery at once extremely grand and beautiful, and where a region of mountains, precipices, and gloomy pine-forests passes into one of gentle hills and rich enltivation. G. is a well-built town. It is conuected by a branch-railway with the railway between Liuz and Salzburg. The salt-mines of the vicinity give occupation to many of the inhabitants, and the town is a chief station of the salt-trade. Steam-boats ply upon the lake. Pop. (1857) 56.23.

GOHA'NUH, a town of British India, in the district of Rohtuk, in the North-west Provinces, 45 miles north-west of Delhi. It is situated on the Rohtuk branch of the Delhi Canal, aud near the northern extremity of a great depression of the soil, extending about 50 miles southrards. Pop. 666s.

G OLD-Extraction by Sodiom Amalgims. Certain difficulties which attend the separation of gold hy amalgamation-cansed by the presence of other metals which, from their easy oxidation, cover
the gold with a film of tarnish, and prevent the complete action of the mercury on the geld-have led to the employment of sodinm amalgamated with mercury in various proportions. The compositions lave been made the sulijects of two patents, one hy In Whutz of New Jork in 1864, the other by Mle (troukes of London in 1865. Three kinds are now prepared in this country by Messrs Johmson, Matthey, \& Cis of London, and are sent in considerable quantities to the gold districts, where their use is said to increase the yield of the precions metal by fully one-seventh part. The separate compositions are known in commerce as P'atent Amalgams (A, B, C), supplied in harrels of 2 to 5 cut. each, or smaller quantities in tins or jars. These amalgams are of different metallic compositions, suited to various classes of ores. They are prepared in accordance with the formule of the patentee, aml each contains the same tixed yroportion of sodium. The average strength required for use with ordinary ores may be considered to be 10 los. of cither of them (as the mature of the ore reguires) to from 200 to 300 lbs. of mercury: The price is $3 s$. G d. per pound. - Concentrated Amalgan (A), five times the strength of the above ; preparet in solid bars for shipment when the exjrense of freight or land-carriage is great. Proportion for use- 10 llss of this amalgam to from 1000 to 1500 lus. of mereury. The price is 5 s. jer 1 l .

GO'LDBERG, a town of Prussia, in the province of Silesia, and in the government of Liegnitz, 12 miles west-south-west from Liegnitz, on the Kat\%bach (q. v.), a branch of the Oder, famous in the history of the war of 1813. The town is sitmated on a rising ground, on the right bank of the stream. It is partly surrounded by walls, and protected by three forts. There are extensive manufactures of woollen cloths, hosiery, and gloves. I'op. (1864) 6S50.

GONORRHEEA, described also as BLestormamial by some writers, is the unost common furm of venereal disease. It has been known from very remote times; it is generally believed that the sanitary measures inculeated in the 15 th chapter of leviticus have reference to this disorder as ocemrring amongst the Jews; and it was described by the Greck and Loman physieians. It consists in an inflammation of the mucous membrane of some part of the generative organs, producing a muco-purulent or purulent discharge from the discased surface. Ilence its name of gonorrhea, which is formed on the crroucons supposition that the discharge consists of the spermatie fluil, is unsuitable, and the attempt to substitute blennorrhagia, which signifies 'a tlow of mucons matter,' has been made. Nthough it is termed a venereal disease, it is totally distinct from Syphilis (q. v.). Although gonorrliea is, in the great majority of eases, the result of direct contagion from sexual intereourse witl a person who is similarly affected, there is no doubt that a very similar nrethral discharge may arise from constitutional and other canses irrespective of contagion, as in serofulons, gonty, or rheumatic suljects. Noreover, it is certain that this disease in the male may proceed from intercourse with a woman in whom no morlid change of the mucous membrane can be deteeted ly the speculum. Ricorl, a lirenels playsician of great authority in this department of medicine, lays down the jroposition, that "gonorthow often arises from intercourse with women Who have not had the disease.' Diday; another high authority, maintains 'that from the very fact of a woman having a discharge, no matter what its origin, she is liable to give a discharge to a man.' English surgeons are gradually taking a similar
view, and admit that gonorrhon may be the product of other causes than a specific poison. The fact of the disease licing usually caused by impure intereonrse is proof of the presence and action of the poison, but is no evidence of that poison leeing of a specitic character; any poison caprable of being generated by simple inflammation being probably sufficient to induce the disease.

Ifen are so much more liable to contract this disease than women, that we shall confue our remarks to gonorrimea in the male. The symptoms ustally appear in from three to tive days after exposure to contagion. The patient feels an itcling or tingling sensation at the extremity of the urcthral passage, whose oritice has an ahmormally florid appearance, and is usually closed by a viscid, culourless secretion. This premonitory stage may last for a day or two, when there is swelling of the parts, and a thick cream-like pus exules from the uretlora. The bassage of the urine is aecompanied by a sinarting or sealuling sensation, and takes place with considerable difficulty, in a contracted or twisted stream. At nicht, a painful condition of the parts, known as chordee, and clue to spasm of the muscular fibres of the mrethra, is apt to come on. This stage may last, with slight variations, for a space varying from one to three weeks, its length depending on the patient's mode of life, and the number of previous attacks, the first being always the worst, anil each succeeding one being gradually milder. The disease having thus reached its height, gralually sulsides; the various symptoms aloate in severity, and after a period of uncertain length, the discharge either ceases or assumes an almost cutircly mucous claracter. If it ceases, the pationt may be regarded as cured; if the mucous disclarge contime, it is known as glect; and it is only to this condition that the term blennorrhagia is truly applicable. This gleet often remains, in definnce of all treatment, for months, and its jresence often preys very munecessarily upon the patient's mink, so as to derange his health, and to suggest munceessary fears recarding the loss of his virile powers, It is from patients of this kiad, who cannot he persmaded that the discharge is unaccompanied hy any further mischief to themselves (further than possil)] amoyance arising from the fact that they should not marry so long as any divelerge exists), and that it is sure in due time to cease, unless there is stricture or some other exciting canse, that advertisinto ruacks draw their greatest profits.

There are considerable discrepancies of opiniou amongst the hichest medical authorities regarding the treatment of this disease. Various quack medicines, in the form of prophylactic washes, to be cailloyed after exposure to jossible contagion, are daily advertised in certain chcap and disreputable juurnals; lut as Dr Druitt somewlat quaintly but very truly remarks: "The only prophylactic to be relied on is chastity; next to this, soap and water, followed by an alum wash.' To these directions he misht have addel, tlat the urine should be discharged as soon as possible afterwards, so as to wash out the urcthral passage. If the patient apply for adrice on the first suspicion of the disease, before any acute inflammatory symptoms liave set in, and if he can devote his whole time to lis cure, he should keep a constantly recumlent position, should live on a farinaccous dict, avoiding meat, wine, and heer, and the abortice treatment should be tried. This consists in the injection into the urethra, every four or six hours, by means of a glass syringe, of a solntion of two grains of uitrate of silver in eight ounces of distilled water. By about the second day, the discharge will begin to lessen, and the use of the injection must be stopped; and if any tinge of
blood has appeared in the discharge, the remedy must at once be discontinued. If the diminution extend in a few days to a total disappearance of the discharge, the patient is cured ; if a slight discharge contime, a weak solution of sulphate of zine (one grain to the ounce) may be injected two or three times daily for a few days. During this treatment, the bowels should be kejt freely open by an antimonial saline wixture, and the patient should drink freely of barley-water, linsced-tea, and similar mucilaginous fluids. If this treatment be adopted at the very first, we con usually cut short, in a week, an affection that might possibly be tronblesome for months; if it be tried after inflammation is fairly establishen, it is very apt to give rise to stricture. If a patient does not seek adrice till the acute stage has set in, perfect rest in the recumbent position should be insisted on; lut if, as is too often the case, the patient is unable to carry out this important regulation, all exereise must be aroided as far as possible, and the parts affected should be properly supported ly a bandage, specially sold for that purpose, and termed a suspensory handage. A very low, unstimulating dict must le insisted on, and all stimulating drinks strietly prohibited, while he sloould partake freely of mucilaginous diluents ; and as a medicine, an alkaline sabine diuretic should be prescribed, such as a combination of a scruple of acetate or bicarbonate of potash, lalf adrachmof tincture of henbane, and twenty minims of nitrous ether, with a little tartar emetic in urgent cases, administered in a small tumbler of water, containing a little gum in solution, or of barley-water, three times a day: As an outward local application, nothing is better or more soothing than water as hot as the patient can bear it. When, under these means, the scalling pain in micturition and the local swelling subside-but not till then-certain medicines which exert a succial influence on inflamed mucous membranesviz., copraiva and eubebs-should be administered. Copaiva may be administered in half-drachm doses three or four times daily; and after a few days, the dose may be increased, if necessary, to double that amount. Under no conditions can it be made an agreeahle medjeine. Some practitioners combine it into an emulsion with yolk of egg, liquor potasse, or gum-arabic ; others recommend that it should be taken floating on a wine-glassful of water to which a little tincture of orange-peel has been added. If the gelatine capsules of copaiva can be depended on as being genuine, they afford an easy mode of taking this medicine. In whatever form it is taken, it is liable to produce an erurtion of the skin, consisting of small red patches somewhat resembling nettlerasl. Althengh the rash is perfectly harmless, and speedily disappears on the discontinnance of the nedicine, and the administration of one or two saline purgatives, it often causes great alarm to a patient who has not heen duly warned of its possible occurrence. Cubelis is a less umpleasant medicine than copaiva. To be of service, at least a drachm of the powder should be taken three times a day suspended in milk. A confection formed by mixing powdered cubebs with balsan of copaiva, which may he swallowed as a bolus with an envelope of moistened rice-paper, is an efficacious form of prescribing these medicines. In the third stage, when the urgent symptoms are abating, the patient should continne the use of copaiva and cuhebs, and should Legin to use injections, commeneing with one composed of a scruple of bismuth ant half a grain of acetate of morphia in an ounce of water containing sufficient mucilage to keep the bismuth in suspension, to be used thrice daily. After a few days, it may he replaced by one of sulphate of zinc (one grain to an ounce of water), which may be 503
increased in strength if nccessary. If a gleet remains, it must be treated with tonic medicine, especially tincture of iron, excreise in the open aid; sea-bathiog, goot diet, \&c.; and the under-side of the urethra may be painted with tincture of iodine, or in very obstinate cases, treated with a slip of blistering tissue. A well-marked case of gonorrhcea, when left entirely to itself, rarely runs a shorter course than from three to four months. Various forms and complications of gonorrhea occur, into which it is unnecessary for us to enter in this work.

As has been mentioned in the article Ophthalma, the purulent diseharge of gonorrhea, if brought in contact with the conjunctiva, may oceasion destructive disease of the eye. There is also a troublesome affection, aceompanied hy pain, swelling, and tenderness of the joints. with feverishness, which is apt to supervene towards the decline of the discharge, which is known as gonorrhocal rheunutism.

From what has been statell regarding the so-called abortive treatment, it is obvions that, by aplying for medical aid on the earliest suspicion of contagion, the patient may save himself from a long and troublesome disease, which, if neglected or badly treated, may give rise to a serious local affectionnamely; stricture of the urethra. As patients with diseases of these organs are apt to entertain remarlable and altogether erroneous views as to their constitutions being irretrievably ruined, and to the possible outhreak of secondary and tertiary symptoms, it is the duty of the practitioner always to impress upon them that, as a general rule, gonorrheea is merely a local affection, and cannot give rise to any subsequent constitutional symptoms.
GOODSIL. Jonis, Professer of Anatomy in the nniversity of Edinhurgh from 1546 to 1867, was horn in 1814, at Anstruther, Fifeshire, in which county his father and grandfather harl, for many years, practised the profession of medicine with great repute. Very early in life, bis studious habits and thoughtful disposition attracted attention, and when little more than a boy, he was sent to the umiversity of St Andrews, where he passed through a four years' course of literary and philosophic study: He was afterwards apprenticed to Mr Nasmyth, deutist in Ediuburgh, and during his apprenticeship, attended the medical classes both in the university and extra-mural school in that city. He studied anatomy nneler Dr Knox, and natural history under I'rofessor Jameson, and was the intimate friend of Edward Forbes, George Wilson, Sammel Brown, and other young men, who have since made for themselves names as ardent students of the natural sciences.
The position of his natire town on the sea-const had very early caused his attention to be clirected to marine zoology, and along with his younger brother, Harry, who was afterwards lost in the unfortunate Franklin Expedition, he had begun to disseet marine animals, and study their forms and structure, lefore he commenced lis medical studies. His training as a dentist led him to undertake an investigation into the Development and Structure of the Tecth, which he afterwards published in an elaborate momoir, and in which he gave the first consistent account of the various stages through which these important organs pass. This Essay, published in I839, at once caused him to he recognisel as an observer of great originality and acuteness. On obtaining his diploma at the College of Surgeons, in Elinburgh, he returned to Anstrnther, to assist his father in practice; and though actively engages for some years in the arduous duties of a country doctor, he jet found time, not only to pursue numerous important pathological investigations, but to continue and extend his studies in anatomy and natural history. He formed at the same time an Auatomical Musenm,
characterised by the great beanty of the preparations, which was afterwards açuired by the government for the use of the Queen's Colloge, Cork.

Ine retumed to lidinburgh about 18.40 ; and on the conservatorship of the Museun of the Royal College of Surgeons beconing racant, he applicil for, and obtained, the olfice. Having now aurpuired a more extensive dich for pathological researelh, he devoted mach attention to the stricture and mode of growth of tumotrs, and wher products of disease; aml in 1512-1543, delivered courses of lectures on the discases of bone, eartilige, and of the various clanges which take place in inflammation of these and other importaut organs. The improvements in the construction of the compound microscope, abont this period, funished him with a most valuable instrament for conducting his inquiries into the more reconditg structural phenomena, which constitute the fundamental mature of the clanges from a healthy to a diseased condition of tissues and organs. At the same time, lie also investigated the minute structure of tho healthy tissues, more especially with reference to the mode in which they performed their functions. He was one of the first observers who strongly insisted on the general diffusion, throughout the animal textures, of the minute bodies called mude i; and he pointed ont their importance in comnection with the processes of growth, seeretion, and nutrition. Nlis Memoir on Secreting Struetures, pubished in 18t2, in the Transuctions of the hioyal Sucicty of bilinturyh, shewod, in a most conclusive mamer, the influence exereised ly the cells witbin a gland on the secretion formed in its interior. Io the same year, he pmblished a lescription of a ease, in which a very remarkable veretable organism, now known as the Surcina rentriculi (sue SAbersa), was periodically discharged in the fhide ejected from the stomach during vomiting. In the following year, lse comnunicaterl to the liogal socicty of Ediuburgh an acconnt of the structure of the Human Placenta, which is regarded as a most impurtant contribution to the amatony of that complex organ. Nany of his physielogical and pathological essays were alterwaris incorporatel in a special vohme, pulthished in ISt5, and the facts which they contain have contrilnited very naterially to establish the important modern pathological doctrine of the orimin of morbid prohucts from changes in the pre-existing elements of the tissues of the bouly.

His studics in comparative anatomy and uatural history were not, however, neylecteil during this period. He was an active member of the Wernerian Society, and, along with his fricnd, Elward Forbes, communicated both to it and other seientifie bodies several piapers on the Anatomy of Animals, new to science, which they had discovered. His papers on Pelonaia, I'lalassema, and Amphoxns attracted especial attention.

In 1S14, he was appointed assistant to Dr Monro, Professor of Anatomy in the university of Edinburgh. His cnthusiasm and devotion to anatomical work rapially gathered aromnd him a large class of students, and on the resignation of Dr Monro in 184G, he was appointed by the town-conncil to the Chair of Anatomy. His reputation as an anatomical teacher now loceme materially extended. numerous students were attracted to his class, and for many years the attendance cach winter-session amounted to between : 014) and 400 . His great success as a teacher was the, not so much, perhaps, to any special aptitude for public speaking, lut to the earnest and painstaking way in which he brought his subject before his students; to his thorongh linowlelge of anatomy, not ouly in its minute details, but in its relations to physiological and pathological processes ; and to the influence exerciscd by his manly and straightfurward
elaracter. He ilevated much of the timo mot ocenpied in the cluties of his class to the extension of the Anatomical Muselm of the university, and dissected and prepared a large mmber of specimens to illus. trate the modifieations, in form and structure, of the organs met with in the dissection of different kinds of animals. His preparations of the cchinodermata, mollusea, and cetacea are especially worthy of notice.

He had a keen sense of the leanty and symmetry of organic forms, and his philosophie mind carly led him to muthertake an investigation into tho constitution of the skeleton in the yertelnata, the genemal results of which he conmmaicated, in 18506 , to the British Association for the Alvancement of Seience. A collectel cdition of his writinrs, elitell hy his brother, the liev. J. T. Goodsir, and his suceessur in the chair, l'rofussor 'lumer, is in course of preparation.
llis devotion to work, and his nuremitting attention to tho duties of his chair, at length began to tell on lis robust frame; and for some years before his death, signs of failing Lealth were visible. Larly in 1867, he was olliged to withdraw from all active work; and ho died at South Cottage, Warlie (near Elinburgh). March G, in that year.
(G.'s intellect was eminently comprehensive. He was not a mere techuical anatomist, but studied his science in its relations to morphology, teleolugy, and pathology. In his philosophie grasp of principles, in the extent of his acquirements, and in his devotion to his seienee, he was a worthy discinle of lis great compatriat, Jolun Munter.

GOODVEAR, Cifarles, American inventor, was born at New Haven, Comnecticut, Decenluer 20, 1500 , the son of an iron-mannfacturer, with whom, at the age of \%l, loo went into business in Philadelphia. Failing in the iron trale, his attention was attracterd to the manufacture of india-rubber, and he expended all his means, and reducel his family to utter destitution, in experiments with various mixtures and processes, the most suceessful of which were with magnesia, lime, and nitric acid, to make it available for waterproof slioes, clothing, \&c. His ciforts were a scrics of failures, excepting a partial suceess in trating the surface of rubber gools with nitrie acid, until he bought of one Hayward, a rival experimenter, au invention for mixing india-rnbber with sulphur. The great secret of vuleanisation, in which the two substances, submitted to a high temperature, are convertel into the clastic, enduring, and heat anet cold defying fabries now in use, was au accidental discovery male while standing by a stove, aud idly subjecting a mixture of rubber anl sulphur to its heat. This new product he patiently perfected, diseovering new uses to which it could be applied, until it required sixty patents to secure his inventions. Some of these rights were secured by other persons in Englanel, and in France they were forfeited by an informality; so that, by these means, and in conserucnce of expensive law: suits, he has gathered little from ten years of toil and privations, hat the honours awarlet to his skill and jerseverance in giving to the world a stajle now applied in different countrics to 500 uses, ind employing 60,000 workmen in its maunfacture.

GOOLAI'REN or GOMU'I, PSSS, an important pass in the north-west of India, across the Suliman range from the Derajat into Cabul. It enters the monntains at their eastern base, in lat. 3 영 6 N., and long. $70^{\circ} \mathrm{E}$. It holls its conrse, which is very winding, by broken rugged roads, or rather the watereunrses of the Gomnl, throngh the wild and monitainous country of the Muzarces. It is of great importance, being the middle route from

Hindustan to Afghanistan, as the Khyber is the northern, aul the Bolan the southern. Immense caravans, cousisting principally of Lohani Afghans, every spring traverse it westward from the Indus and the adjacent countries, and returning in the autumn, winter in the Derajat. It is much infested by freebooters of the Vaziri Afghan tribe, and the caravaus have often to fight their way with much loss of life and property:
Golkica, a town of the Austrian Empire, in Croatia, 10 miles south-south-east from Agram, in the valley of the Save. P'op. (1557) 7902.
GOSSELIES, a town of Belgium, in the provinee of Hainaut, four niles north-hy-west from Charleroi, and on the canal from Charleroi to Brussels. It has manufactures of weollen cloth, hats, nails, cutlery, soap, \&c.; also bleachfields and tanneries. There are coal-mines in the ricinity. Pop. (1SG3) cs6t.
GOUGH, JoHی B., American temperance lecturer, was born at Sandgate, Kent, Englaud, August 22, 1S17; his father, a pensioner of the Peniusular War; aud his mother, a village schoolmistress. At the age of 12 , he went to Ameriea as an apprentice, and rorked ou a farm in Oneida county, New York. In 1531, he went to New York City, whicre he feund employment in the binding departmeut of the Methodist book establishment ; but habits of dissipation lost him this employment, and reduced him to that of giving recitations and singing comic songs at low grog-shops. He was married in 1839; but his drunken habits reduced him te poverty aud delirium tremens, and probably cansed the death of his wife and child. A henerolent Quaker induced hiup to take the pledge; and he attended temperance meetings and related his experience with such effect as to influence many others. In 1812, he had a short relapse inte drunkenness; but an eloquent confession restored him to farour, and he lectured in various parts of America with great success. In 1853 , he was engaged by the Londou Temperance League to lecture twe years in the United Kingdom, where he drew large erowds by his earnest, and by turns amusing and pathetic orations. An Autoliography, giving the details of his experience, and a volume of his Addresses, have had a wide circulation.
gounod, Félix Charles, an enineut French operatic composer. He was born in Paris in 1S1s, studied at the Conservatoire there under Haléry, and also under Lesueur aud Pauer. Obtaining the first prize of the Institute in 1533 , he was sent to Rone to complete his musical education; and while there, devoted himself chielly to relighous music. On his return to Paris, he was for a time attached to the church of the Missions Etrangères, where his carliest compositions were performed : one of them, a Messe Solennelle, was the first work which brought him into general notice. For a time, he contemplated taking orders, and went through part of the preliminary novitiate. His first opera, supho, was produced in 1551; in 1552, he wrote chornses for Ponsard's drama of Ulysse; and in 1554 appeared his opera of $L a$ Younc Sanglente. His comic opera, Le Médecin malgré luik, produced in 1S5s, was a great sucecss; it was follewed in 1559 by Foust, which at once attained a widespread European popularity, and raisel its composer to the feremost rank of contemporary nusicians. Philémon et Baucis followed ia 1560; and in 1562, La Reine lle Saba, which has since become popular in England under the name of Irene. The opera of 1 ireille was produced in Paris in 1861 ; and the oraterio of Tobias, written in 1864, was first performed in London in 1560. In G.'s compositions are to be found decp rnusical science,
a profusion of new and original combinations, and au almost unequalled command of the resources of the orehestra. There is great dramatic power in his operas, and one of their marked features is the prominence given to declamation over melody.

GRa'fRATH, a town of Rhenish Prussia, in the government of Disseldorf, and 12 miles east-bysouth from Diusseldorf, on the Itter. It has manufactures of cotton goods, silk rilbons, and iron-ware; and has recently much increased in manufacturing industry, wealth, and population. Pop. (1864) 532.2.

GlRAND-COMBE, LA, a tern of France, in the dep. of Gard, 35 miles north-west of Nimes, with whieh it is connected hy railway. Near it are some very important cellieries, which supply the French steam-nary at Toulon. In the town are eil-mills and glassworks. Pop. (1866) s;06.
granier de cassagatac, beraard Adolphe, a name well known among Parisian journalists, aud not unknown in the Palais de Justice, was born at Averon-Beryclle (dep. Gers), in 1sos. He was educated at the college of Toulouse, and contributed for a short time to the sonthern press, but soon quitted the provinces for laris, where Victor Huge introduced him to the Journal des Débats, and lievue de Paris. Here his vehement style did not give satisfaction, and he was engaged by 11. Girardin to write literary criticisus for $L a$ Presse. In 1540, he sailed for the Antilles, in hopes of political advancoment, ingratiated himself with the planters, although lie narrowly escaped being murdered by the blacks, married a Creole lady; Mademoiselle Beanvallon, and returned to Paris as deputy for Guadeloupe. Not being able to arrange a satisfactory engagenient with La Presse, he founded the Globe, ultra-Orleanist, and violent to such a degree that the opposition journals agreed to ignore it (la conspiration du silence, as it was called). The Globe failed; and in $1 S 45$ G. de C . started L'Epoque, also violent, and also a failure. It was merged in the Presse, not, however, before its editor had been openly accused in the Chamber of Deputies of selling his influence with the gevernment. Shortly before the Ievolution, he was employed by II. Guizot to set up a minuisterial paper at Rome. In 1S18, he returned to France, and after a while reappeared in Paris, as an ardent supperter of the Prince President, and a bitter foe to his old patrons, the House of Orlewns. He edited the Pouroir (1850), and wrote for the Constitutionneb with au excess of zeal and a pretence of exclusive information whicla led to au arerlissement. In 1s52, he was electel as the government caudidate for Miraude (Gicrs), for which he has heeu re-clected in 1857 and 1563 . In the Chamber, he spuke in favour of the Arny Dotation Dill, adveeated direct taxation on all descriptions of funded property; additional protection for the interests of literature, and the formation of at local railway in his department. On the 23 of 11 ay 1557 , he was made Crand Officer of the Legiou of Honour, and at the close of the same year, founded Le liêrecil, a weekly religious organ, which died the next ycar. Ho has since heen principal editor of the semi-official Pays, and in 1 s 63 was mauager of the Nation. The attacks on Lelgium this year (1S6i) in the former paler were disavewed in the Alforiteur. The appearances of G. de C. hefore the courts of justice have been rery numerons. In 1St2, he was tried for a duel with M1. lacrosse, of whose father he had written disrespectfully, and whom he lawed for life. In $1 \$ 45$, he prosecuted 11 . Hilbey for libel in his pamphlet on the Jenality of the Press. In 1547, he was mixed up in the duel in which his brother-in-law, Beauvallon, Eilled Dujarricr of La P'rcose, and about

G1RANMICIIEL心-GRANTT.

which strange things were said. He was also sued by Itwasalg: for a delat which he dectared he had
 publiaher proceeded against him for non-delivery of a Als on tho Eastern War. The duet between f'aul de C. of the J'uys and a writer in the Solcil (in which G. de (6 secomed his son), and the maseemly guarrel between the Cassagnaes and M. Vermonl of the Courvir Framsais, are matters of recent roturicty. His most important works are: A Ioynge to the Antilles (181-4); The Quern of the Prairies, a romance (1815) ; The fouses of the litench licrolution of 1 -S9 (1S50) ; The Histnry of the Dirce(ory, a reprint from the C'onstitutiom (1851-1806) ; The Full of Louis I'hilippe (1Sin); The Giamdins and the Massaeres of Sotember (ISG1), \&e. All his writings are remarkable for vigour of style, but the thorongh-geing partisanship of the author greatly impairs their historical value.

GRANMLCHE'LE, a town of Sieity, in the province of Catania, and 30 miles south-west from Catania, on a meuntain ridge, at an devation of 1765 fect above the sea. Beantiful marbles are prodnced in the neighbourboorl. The town was founded in the end of the 17 th c. by the Branciforte family, and peopled with the inhabitants of the neighbouring town of Ocehiali, which was destroyed ly the earthquake of 1693. J'op. (IS61) 9931.
GRANT, Fhavera, Lom C'llese, a Scottish julde and politieal writer, was the son of Archibald Girant of Belinton, a cadet of the family of Grant of Griant, chief of the clan of that mane. He was born about the year 1660 , was chueated first at Aherdeen, and aiterwards at Leyden, adopted the jrofession of the law, and distingushed himself by his loyat zeal For the successive govermments of Willian Ill., Queen Ame, and George 1. He wrote in favour of the L'inun, on the Olservance of the Sablath, on the Inw of I'atronage in the church, essays on law, lieligion, and Ehheation, and Leflections on the liebellion of 1715 . Fior seventeen years, he filled the prosition of a julde with great ability and integrity. Ife died at Lilaimurgh in $1 / 26$.

Gilant, Iatrick, Loh Llemers, a Scottish julge, was horn in 1690. He collected the leeisions of the Court of Session from 1733 to 1757, and wrote ammotations on Lord Stair's Institntes. Ite was celelorated as an acute and learned lawyer. He died in 1763.- Ilis sun, Jons (ibastr, became one of the Barons of Exchequer in S'cotland.
ChR.ANT, J.mps, of Corrimony, in Inverness-shire, 1,orn in 17tis, lied in 153.5, was author of lissays on the Origin of Sociely, 175", and Thoughts on the Urigin and \dot{X} cscrut of the Giant, 181\%. The latter is a learned and ingenions work, inlned with Cedtic feeling and cuthusiasm.
GllANT, Mtss, of Carron, anthor of the popular song of Roy's Itife of Aldivallorh, was born near Alerlume, in linnfshire, alont the year 1ith. She was twiee marricd-first to her consin, M10 (irant of Carron, near Elehies, on the river spey; and sceunlly; to l)r Murray, a plyssician in Bath. She died at liath about 1sid.

GRANT, Sar Whmmar, an eminent lawger, was descented from the firants of liahlomie, and was lom at lichies, in Strathspey, in 1751 . De was some time Attomey-general in C'anada, then M.I' fir shafteshury, and sulsequently for liantishire ; was sixteen years Master of the Rolls, from which he retired in 1817, and died in 18:32. Lovd Djoughan thescribes him as the greatest magistrate that ever adorned the English bench; and Charles James Fux declared that he was the only man in the House of Commons whom he had any difficlence in replying
to. This arose from the fact, that Grant was a most logical debater and close reasoner.

GIRANT, Mrs Asxe, a miscellanenus writer, whose works were anong the lirst to draw pultic attention to the ronantic seenery and peculiar manners of the Scottish IIighlanls, was forn in Glasgow in 1755 . She was the daughter of a Lritish ollieer named M'Vicar, who beeame barrack. master of Fort-Augustus. She married the liev. James Grant, chaplain of the fort, and subsequently minister of hargan. Left a wilow in destitute circumstances, Mrs (7. published by subseription a Yolume of Poems (150.3), which were well receivel : in 1SOG, Letters from the Mountuins-a highly popular work; in 150S, Ilemoirs of an Americen Ludy; in 1S11, L'sarays on the Suppratitions of the Mightenders of Scothanl; \&c. In 1S25, Mrs G. received from fovernment a pension of 2100 a year. She died in Is:3s.

GRANT, Chasles, Lord Ghemple, was born in India, at kidderpore, presidency of liengal, in 1789. He was of a Hiyhland family, the Grauts of shewglic. Ilis grandiather (who was slain at the lattle of Culloden) married one of the 入acheans of Kin. chyle; and his fatber was born in Atcourie Ilouse, on the banks of Loch Ness, also the hirthplace of Sir danes Mackintosh. The father of Lord Glenelg (also Charles Grant) went carly to India, became one of the most distinguished directors of the last India Company, represented for many years the connty of Inverness in prarliament, and was, along with Witberforce, 'llornton, Zachary Maeaulay, and others, a leading member of the Clapham sect, described by Sir Jancs Stephen in his Eiclesiastical Etsays. He died in 18:3, aged 77. Charles, his eldest son, was carcfully educated, and distingnished himself at Maghalene College, Canalridue, where ho touk his degree of M.A. in ISO4. In 1505, he published a poem on the liestoration of Leamang in the East, which had earried the university prize awarded by lor Claudius Buchanan. He was called to the bar in 1507, but never practised. In 1511, he was elected M.Y. For the Inverness distriet of burehlis ; and aflerwards succeeding his father in the comty representation, he contimued in the louse of Commons for a period of 25 years, at the expiry of which he was raised to the preerage by letters-patent bearing date May S, 1S35. G. held for five years the office of a Lord of the Treasury; and in 1510, sheceeded to the important appointment of Secretary for Ireland, which he continued to fill for about two years. He was the first Seeretary Ior Ircland that sought to carry out conciliatory measures. He endeavoured to suppress the Orange demonstrations, to secure the impartial administration of justice, and to devise a system of mational cducation alapted for Catholics as well as Irutestants. Nearly all that has since been done was proposed by this enlightened statesnan, and the future histurians of lreland will point to him as one of the genuine though ill-requited lenefactors of that country. From 1823 to $18: 7$, (1. was Vice-president of the Board of Frade; from 1530 to 1834, 1'resident of the loand of Control; and from November 1534 to Felbruary 1839, Secretary of State for the Colonies. After this perion, G. withdrew in a great mensise from public affairs, but supportel the Liberal party Iy his vote. He died at Cannes, in France, in ISG6. Lorl Brongham pronounced (f. to be 'the purest statesman he had ever known.' Ite was an eloynent sfeaker, though partly from diffulenee, and jrartly from indolence, le spoke lut seldom. Some of his despateles as Colonial Secretary, on the rights of the natives in the colonies, on repressing illulatry, and abolishing slavery throughout the British
posscssions in Sonth Africa, are models of elevated and just thought, and of fine impressive English.
GRANT, Sir Robert, governor of Bombay, brother of Lord Glenely, was born in 1755 . In 1501, the brothers took their degree of B.A. together in Cambridge, Charles being third, and Robert fourth wrangler, with the additional distinction of Charles being first, and Robert second medallist. The latter was calleel to the bar at Lincoln's Inn in 1507, sat for sonse time in the Honse of Commons as menuber for Inverness, and aiterwarls for Norwich and for Finsbury. In 1834, he was knighted, and anpointed governor of Bombay. He died at Daponric in 183s. He was author of two treatises on Iudiau Affairs, and of several hymos and short poetical pieces, greatly admired, which were collected and published by Lord Glenelg in 1839.

GRANT, Sir Friveis, fourth son of Fradeis Grant of Lilgraston in Perthshire, was Lorn in Edinhurgh, 1803. He received his edneation at Harrow and at the university of Edinhurgh, and was, it is said, originally intended for the seottish bar, but soon abanduned all thoughts of legal honours, to follow his natural genius for painting. He studied drawing under Somervile, a local artist of some repute, and was enabled, hy the kindness of Lorl Elgin, to furm his taste in that nolleman's gallery. A noble portrait by Velasquez is said to have exercised an especial inflnence over the young painter's future art-eareer. His first picture was exlubited in 1531 , when he at once took rank among the best portrait-painters of the day, and was regarded as a worthy successor of the courtly Lawrence. His most famons works are those in which he has combined the likenesses of distinguished eharacters with scenes of Englis! sport. The 'Meet of H.M. Stag-hounds,' painted in 1537 for Lord Chestertield, add containing no less than 46 portraits; the 'MeIton Hunt,' executed for the Duke of Wellington; and the 'C'uttesmore,' for Sir R. Sutton, are the best kaown in this class. Among his other paintings, may be mentioned the equestrian portraits of the Queen and Prince Consort for Clirist's Hospital; the picture of the beautiful Marchioness of Waterforl; and those of Lords Palmerston, Russell, Gough, Macaulay, Hardinge, \&.. In 1S $12, \mathrm{Mr}$ G. was elected Associate, and in 1551, Academician. In 1SJ̄, he received one of the three gold melals awarled to British artists at the Paris Exhilition (for his 'Meet of H.M. Staghourds"), ant was also elected Mcmber of the Belgian Academy. In 1866, the President's chair in the loyal Academy laving become vacant, through the death of Sir C. Eastlake, and neither Sir E. Landseer nor Maclise being desirons of the post, Mir G. was elected in Febrnary by 23 votes out of 29, and soon after received, according to aueient precedent, the honour of knighthood. Sir Francis has been twice married. His tirst wife was a Miss Farquharson of Invercanld; his second, Isabella, daughter of Mr and Lady EIizabeth Norman, and niece to the Duke of Cutland, by whom he has a mumerous family.
GRANT, Ulysses S., Liertenant-general of the army of the United Statcs, was born at loint Pleasant, Clermont county, Ohio, April $9^{-}, 18 \% 9$; graduated at the military academy of West loint in 1543, and served under General Taylor in the war with Mexico, 1S46, up to the eapture of Monterey. His regiment was then transferrel to the expedition under General Scott, and he took part in crery action from Vera Cruz to Mexico, and was brevetted first-lientenant and captain for meritorious conduct at Jolino del Rey and Chapultapee. In 1852, he gerved in Oregon; but in 1553, having little taste
for the routine duties of a peace establishment, he resigned his commission, and settled at St Lonis: Missouri, whence, in 1859, he moved to Galena, Illinois, and engaged in commercial pursuits. At the beginning of the Wrar of Sccession in 1861, he volunteered his services, and was arpointed colonel of an Illinois reginent. In August, he was appointed hrigadier-general, commanding the important post of Cairo, occupied Paducah, and led an expedition on the Mississippi. In February 1562, he distinguished himself in the caziture of Fort Donaldson, on the Tenuessee River, and was made major-general. April 6, at Pittshurg Landing, or Shiloh, the Federals were attacked by denerals Johnstone and Beauregard, and driven to the shelter of their gunboats; latt on the followiog day, being rcinforced, they drove the Confederates to their entrenchments, with heary loss, including that of General Johnstone; General G ., with six regiments, leading the charge which mon the battle. Succeeding General Halleck in the West, he commanded the land-forces which, in conjunction with the nary, reduced Vickshurg, July 4, 1S63, soon followed by the fall of Fort Hudson, and the opening of the Mississippi. He then took command of the army of Tennessee, which had suffered a disastrous defeat under Geocral Rosencranz, and defeated General Brags at Chiekamanga; and was, in 1S64, appointed Lieutenant-general and Commander-in-chief, and jersonally directed the operations of the great final struggle in Virginia, in which the northern forces, thongh often repulsed with heary losses, finally eompelled the evacuation of Richmond, April $\stackrel{\rightharpoonup}{2}$, 1S65, followed on the 9 the by the surreniler of the Confederate army under General Lee, and soon after of the entire Confederate forces. General G. issued a congratulatory address to the armies of the United States, June 2, 1865, and has since held the post of commander-in-chief, and been considered the probably successful candidate for the presidency. Simple, reticent, earmest, and persevering in his character, he owed his military success not so much to strategy as to superior numbers and resources and hard fighting, in which even a series of victories left his enemy less able to resist. Congress, in recoguition of his enunent services and success, placed in his hands the military government of the conquered South; and in September 1S67, on the suspension of Mr Stanton, secretary of war, General G. received, and to the astonishment of many, accepted the appointment of Secretary of War ad interim from President Jolinson.

GRAPE-HYACINTH (Mu\&cári), a genns of bulhous-rooted plants, of the watural order Liliacce, nearly allied to the hyacinths, but differmg in the globose or subeylindrical perianth, contracted at the mouth, and 6 -toothed. The species are natives chiefly of the comntries near the Iediterramean, and the warmer temperate parts of Asia. Some of them are frequent in our flower-borders. M. moschatum has a smell of musk. M. racemosum is a somewhat doubtful native of the south of Eugland. The Howers of the grape-hyaeinths are mostly blue.

GRA'l'HIS (Gir. grapho, to write), a genus of lichens, which gives its vame to a tribe, Graphidece, remarkable for the resemblance whieh the fructifieation (apothecia, or shie? ${ }^{\text {le }}$) assumes to the forms of the letters of oriental aljhabets. Heuce, some of these little llants have received sueh names as Scripture-wort. A peculiar importance has recently been acquired by some of the ciraphictea, from their being found only on the bark of particular species of Cinchona, so that they guide to the ready identifieation of some of the most valuable commercial barks.

GRAPHOTVME-GliEASE

GRA'PHOTYPE is one among numerous motes invented within the last few yars of prolueing an engraved surface from which printing ean be effecten by the ordinary press. Line-engraving, mezzotinto engraving, aquatint, and etching present the design or pieture in intaglio on a metal plate, the lines being ent, and therefore below the surface of the plate; they camot be printed by ordinary typography, beeause the ink-roller inks the parts that ought to be left clean, and leaves the lines of the derice untonehed. Woot-engravings, and stereo. types ant electrotypes taken front them, can be printed side by side with type in the same page, and by the same operation; and hence the vast extension of this mode of illustrating books aml newspapers. The inventors of grophotype are trying to introlluce a cheap substitute for cugraved wool-blocks. Mr De Witt Clinton IFitelicoek, a drauchtsman and wood-engraver, having oceasion for a littlo enamel white powder, seraped solue from the surface of a risiting-card, and then observed that the ink-lines remained just as distinet and prominent as before, not having heen remored by the scraping. This slight incident suggested the new process-sketehing the design on a chalky surface, and hrushing away the chalk from between the lines. Mr llitehcoek's first experiments were partially successful, and he then received aid from others in establishing a modus operandi. In the latest form of the process, after many intermediate experiments, the block is superseded ly a zine plate covered with finely. prounded Freneli chalk, brought to a hard and very fine texture by enormons pressure, with a glossy surface produced by an interposed steel plate. On this white surface, sized and dried, the picture is drawn with eamel or sable hair pencils, elipped in an ink made of glue and lamplack. When dry, the white or minked portions are rubhed down ly means of a small fitch-hair brush, ame pads covered with silk velvet. The rubbing is continned matil the white is sumle sufficiently below the level of the inked pieture or design. Tho plate is then saturated with liquid glass or silicate of sorla, which eonverts the French chalk into a kiml of marble. The suecess with which all the white is rubbed down between the inked lines, depends on a variety of circumstances-the hamhness of the white, the evenness of the surface, the completeness of the petrifying action by the silicate, the protecting power of the ink or vasnish, the quality of the brushes and mblung-pads, and the eareful management of the rubbing itself. Whether the fine lines of the deviee ean lie preserved from breaking up into saw-like irregularities, and whether the numerous requirements aml qualities of a wool-engraving can he successfully realised, a long comse of trial can alone shew. The natter has been taken up by a company.
GRA'PPLE-PLANTT (Uncaria procumbens), a procumbent plant of the same genus with the Gamhir ($\mathrm{q} . \mathrm{w}_{\mathrm{I}}$), a mative of South Afriea. The seedvessel has many hooked thoms, and elings most tenacionsly to any animal-a provision for the distribution of the seal. When it lays hold of the month of an ox, Livingstone says, the animal stands and roars with pain and a sense of helplessness.

GRA'SS-MOTII (Cramlus), a genns of small moths, allied to the Cluthes-moths, of which the species are mumerous, inhahiting pastures, where they are often scen to rise in great numbers when disturbed, and soon to settle again on the blades of grass. Their form, when their wings are elosed, is long and narrow, pointed at the heal, abruptly cut off at the opposite enl. They are often brown and white, sometimes silvery and golden.

GliAy, Jons linwann, naturalist, bom at Wal. sall in the year 1800 , was educated for the medical mrofession. In 1821 , he published in the name of his father (who was author of Supplement to the Pharmacopeia, and other works) his Tateral Arrangement of Brilish l'lunts, in which, for the first time in the English laugrage, the new method was adopted. In 1824, he entered the British Musenm as assistant in the Natural Ilistory Jepartment, where he found scope for the employment of his exteusive knowlealge and aceuracy of observation, and was subsequently appointed Kepper of the Zonlogical Collections. I'his important post he still retains, to the manifest adrantage of zoulogical science, for the British Museum collections are the most complete in the workd: a momument of his persevering activity througl more than forty years. Ilis success is partly due to his quickness in scizing the peculiar characteristies of animal forms, which renders him a gond classifier. For this great work, the lioyal Bavarian Aeademy of Sciences at Munich conferred on him the title of Ph.D. Dr (i. has also written much on suhjeets connectel with his department. The mere titles of his lonoke ame prapers make a long list, numbering nearly 5y). Itis zoulogieal and matural history eatalogues are not mere lists, but are enriched with syonomis and ample notes, whereby study of particular suljeects is greatly promotecl. I) $(G$. has not confineal his activity to his special department: lie assisted in the formation, and was elected 1 resident, of some of the scientifie societies of London which are now in pros. perous condition ; and he is still a Vice-president of the Zoologieal socicty, and takes an active part in the management. He has, moreover, allyocated sanitary and house improvements, extension of ellucation, the opening of muscums, gardens, and galleries of art and scienec to the public; and he clams to have anticipated Sir Jowland llill in his propinsal for a low uniform rate of postage. He has at various times given valuable evidence before parliamentary committees, on the management of the British MLuseum and other subjects; and he served on the juries of the Great Exhibitions of 1S5I and ISG…

Dr G.'s prineipal works are: Ilhustrations of Indian Zoology, 2 vols. folio; The Knowsley Menagerie, 2 vols. folio; Spicilpgia Zonlogica-on Mammalia, Lircls, Reptiles, Fishes, Mollusca, Shells; a Synopsis of the Contents of the British 1/uscum; besitles Catalogres of the Specimens in the Zoologrieal Department, which have gratly ficilitated the study of those collections. Ife lias also written many scientific papers, which have heen published in the Philosophical Transactions, the T'ransactions of the Limacen Socicty, the Encycloperdie Metropolitana, Annals of Natural History, and the Roports of the British Association; the whole enmprising a mass of faets ame primeiples highly valuable to maturatists.
In 18:6, Dr G. inarried a latly who has remedered him important aid in his studies, ant is known as anthoress of Figures of Molluscous A nimals, fin the Use of Sludents, a work in five volumes. In 18:32, he was electerl a Fellow of the Jioyal society, and has since served on the Conneil. IIe is a niember of some of the principal socicties and acalemies in bagland and on the continent.-llis brother, Mar I . Mi. Grave, is known to students of natural history all over the world as author of The fienera of Bionds.
Glidisls. Varions kinds of tallow, fat, dripping, and kitchen-stuff receive the general name of grease, as applied to several manufacturiug processes; but the name is now more teclnically given to the lubrieating unguent employed for the rollingstoek of railway companies. While oil is the lubricator for the delicate I iarts of the locomotive, grease

GREASE-GREAT EASTERN.

is necessary for the axles of the wheels. So vast is-long. The cellular structure was contianed along the quantity used, that the annual demand amounts to thonsands of tons; and, as the quality is very important, most of the great compamies make their own-establishing a marked distinction between the two kiuds used for locomotives and for wagons.

Locomotive grease usually cousists of tallom, oil, earbonate of soda, and water. Much depends on the consistency. If the grease is too thick, the axle-boxes become hot; if too thin, it is used up too quickly. Again, if there is too much alkali, there is a residuc left in the boxes; if too little, the grease is too soft and wasteful. The grease is always yellow; but it is made of a thinner consistency for cold weather than for hot. The following are given as the constituents of two kinds that meet with approval, to produce ove ton of cach kind of grease, allowing a certain percentage for waste:

	WINTER.			stamer.		
	cris	$9: 10$	15.	Cris.	тre	,
Tallor,	2	3	0	$\stackrel{4}{4}$	2	0
Sperm-oil,	0	1	7	0	0	27
Alkali,	1	0	14	1	0	8
Water,	12	3	12	12	0	26

The manufacture is very simple. The tallow and oils are beated to $180^{\circ} \mathrm{F}$.; the water and alkali to 200°; both are run off iuto wooden tobs, where they are well stirred till cold, with special precautions against the admission of any grit or dirt.

Wagon grease is coarser and cheaper in quality. The ingredients are chiefly some kind of resinous oil and caustic lime. When resin was cheap, wagon grease cost about lialf the price of locomotive grease, aud was nseful not only for wagon and carriage asles, but also for low-speed goods and mineral locomotives; but during the American war, the price of resin rose, and then attempts were made to use residues from paraffir, coal-tar, candlemaking, cotton-seed oil, fish-oil, pitch-oil, and other substitutes.
It is said that 3000 tous of grease are made every year in the Tyne district, not cxactly as a primary product, but as using up a residue from the distillation of resin.
GREAT EASTERN. The mightiest ship in the world has had an eventful history, marked by a much larger share of disaster than of success. In 1852, an 'Eastern Steam Navigation Company' was formed, to maiotain an ocean steam-route to the East round the Cape of Good Hope. In 1S53, the directors came to a conclusion that, owing to the cost of maintaiuing coaling-stations on the may, such a route would not pay unless the ship could carry coal enough for the voyage ont and home, besides a large number of passengers and a great cargo. Mr Brmel was emplojed to plan, and Mr Scott Tussell to build, a vast steamer that would meet these requirements. The seheme was for a ship that would accommodate 1000 passengers, 5000 tons of merchadise, and 15,000 tons of coal for fuel. Its arrangements (setting aside later alterations) were briefly as follows: Length, GS0 feet between perpendiculars, or 692 feet upper dcek; breadth, S3 feet, or 11S over paddle-boxes; height of hull, 60 feet, or 70 to top of bulwarks. Botton flat for 40 feet in width, without keel. Framework of $3 \bar{y}$ rilss or webs of plate-iron, 3 feet deep, immensely strengthened, and extending from end to end of the ship, at 3 to 5 feet apart; and cross-wels, of similar strength, connectiog these at intervals. A double wall or skin of iron plate, outside and inside those ribs, thereby converting the whole bull into a cellular structure, like the top and bottom of the Menai Britaunia Tubular Bridge. The plates for this purpose were 10,000 in number, some of them $2 S$ feet
the bottom and about 5 feet up the side, and any one of the cells thus formed could be filled with water. Ten partitions of plate, crosswise of the ship, divided the interior into 11 watertight compartments, further subdivided loy longitudinal partitions. The propelling power comprised both paddle ame serew. The paddle-engines had 4 boilers, each with 400 brass flue-tubes; there were 4 engines (made by Scott Riussell at Millwall), with cylinders of 14 feet stroke, and it iaches diameter; the paddle-wheels were $\overline{0} 6$ feet diameter by 13 deep, with 30 spokes or radii. The screw-engines (made by Boulton and Watt at Soho) had 6 boilers; the 4 engines had cylinders, each 4 feet stroke by $S \pm$ iuches diameter, with piston-rods $7 \frac{1}{2}$ inches thick; the propellershaft was 160 feet long, and in some parts 24 inches diameter, with a screw propeller at ove end 24 feet in diameter. The coal-bunkers, to supply all the furnaces, would contain 14,000 tons; the smoke from the furnaces ascended 5 fumnels, 100 feet high by 6 in diameter; each of the 10 boilers, whes full of water, weighed 100 tons; the steam was conveyed from the boilers to the engines through a pipe $4 \overline{5}$ inches diameter. Setting aside the nominal jower, all the S engines, at full foree, were estimated to work up to 11,000 horse-power. There were 6 masts, 5 of them iron, carrying 7000 yards of sail as auxiliary to the steam-power; the masts, yards, gafis, and large spars were mostly of iron plate, strengthened inside in various ways; the shronds and standing-riggiog were of iron-wire ropes; the anchors, 10 in number, were some of them 10 tons each; the chain-cables were, collectively, a mile long, with liuks of 50 lbs . each. The vast wallsided compartments of the ship had facilities for conversion into cahins for $S 00$ saloon passengers, 2000 second-class, 1200 third-class, and 400 uffieers and crew ; or 5000 might have been accommodated in all, if emigrants of troops. The leight of the 'treen decks was 13 feet; and all, whether for first, second, or third elass passengers, were more lofty than known in ayy other ship. The full appointments were to comprise 20 small engines, to assist in proping and working the ship; electric telegraphs, to transmit signals adol orders; 20 large boats, decked and undecked ; and 2 small steamers (humg on darits abaft the paddle-boxes), each as large as a river-steamer.-Such were the complete plans for the mighty ship; but they were never fully earried out in all their details, owing to numerous alterations and retittings; wevertheless, the description faithfully conress an idea of the general characteristics of the shin as she now exists. The curvatures of the bull, in length, breadth, and height are shemn by diagranas in Smip-buildivg.
Thirteen years of the ship's history present a singular series of vicissitudes. During 1851 1S57, the operations proceeded at Millwall, under frequent and heary financial pressure, which taxed the resources of the Company severely; while the engineer and builder were frequently called unon to surmount difficulties of almost unparalleled kind. By November 185̄7, the ship had adranced to the launching condition. In order to aroid the rlanger of launching such a long ressel stern foremost, the ship was hilt with the broadside towards the river, on a timber foundation of immense streugth, with sloping ways, or rails, down to the water. Either the ship was too heavy (12,000 tous), or the slope was too gradual ; for it required various attempts, between Norember 3, 1557, and January 31, 155S, and an expenditure of $£ 60,000$, to effect the launching. During $15 \overline{5}$ and 1859, the works continued as fast as the Company could supply money. Uncertain how far the original intentiou of a trade to and

GREAT EASTERN-GRLENBACKN.

from Anstralin could be realised, the clirectors determincel on a trial trip across the dtlantic. It was a disaster. 'I'he ship' left the 'Thames, Septeruber $\mathrm{S}_{\text {. }}$ 1sin; an explosion of steam-bipes took place off llastings; scven persons were killed, and several woumled; amd the voyage abruptly eame to an end at Weymouth. Mr Branel died immediately after lis vast ship liad made this her first but futile attempt to hrave the ocean. After a winter and spring spent in enstly repairs, acrimonions recriminations, and suits in law and equity, the ship started again on Jume 17,1560 . Leaving Sonthampton on that day. she crossed the Atlantic in eleven days, and reached New York on the OSth. Buring the remainder of 1560 , and the greater part of 1561 , she make many voyages to anel fro, losing moncy hy the failme of the receipts to meet the current expenses, and constantly required repaiss. In December, when political relations with the United States looked ominous, the (i. E. served as a troop-ship, carrying the Guards over to Cauada with a degroe of comfort never before expericueed ly 2000 human beings in one ship.
'The years $186 ?$ to $186 t$ were nearly a blank as concerns the history of the Grect E'ustern. No attempt was made at a roynge to Australia and back; the trips across the Atlautic lial not been remunerative ; the govermment elid not often require the services of so viast a fabric as a troop-ship; and the Company were always embarrassed lyy overhanging clebts. 'Lo so desperate a condition did matters descend, that the ship was put up for unreserved sale lyy auction, in Febrnary 186t, and bronght only $x^{\circ}-5,000$. The purchasers formed themselres into a new Company. Later in the year, negotiations were entered into with the Atlantic 'l'elegraph ('ompany and the Telegraph Construction and Naintemance Company, for the employment of the G. L. as a cable-laying ship. 'Ihe passenger accommodation was wholly removed from the interior, to make room for the enormons iron tanks in which the cable was stowerl. The arraugement and services of the ship in 1865 and 1866 , will be foumd brially noticed under Athastuc 'Ielegrinpu in SUPPLEMEXY: In 1 Sb7, when the l'aris lnternational Exbibition was approaching completion, a distinet Company, or body of speculators, chartered the $\left(\frac{1}{r}\right.$. \mathcal{L}. for a certain number of months, to convey visitors from New Fork to Havre aud lack again-muler the expectation that the mumber of such visitors would be so vast as to defray the whole of the expenses, and yicld a large profit. A great ontlay wis incurred, to reeonvert the vessel from a cable-layiug to a passenger ship, and for extensise renewals of machinery: The ship stirted from Liverpool for N゙ew Jork in May; but the speculation proved an utter failure, there heing meither wages for the sumen and engineers, nor profit for the speculators. In December 1507 , the ship was quietly lying in the Mersey, waiting for any new carcer that might offer-the hull as somel as ever. 'lhe original name, Leviathan, was changed to Great Erastern, then to Great Ship, and then back again to Great Easterm.
 America from 1561 to 1565 , the immense expentiture of the United States government led to the printing of an unprecedented number of bank-notes, bonds, and curreacy papers of various kinds. Thesc doennents, from the colonr presented hy them, or some of them, obtaincd the name of greenbacks, a designation which became almost as famibarly used in Congress as amoner the general public. At first, the manufacture of these notes taxed the resources of the government in a rery cunbarrassing way; and there wias ample reason to suspect that forged notes
and honts were alundantly in circulation ; but, by degrecs, a fine and large establishment was organised at W islington, under the immeliate controsl of the Soeretary to the Treasury. In this estallislment, everything was conclucted from tirst to last; racs, tibres, plates of steel, aml colours were taken in, and finished notes were sent out. It was only under very rare circumstances that strangers were ahmitterl to view the operations; lut oue such oceasion, in 1 S6t, led to a general deseription of the place being given in most of the uewspapers, from which it wis copied into some of the linglish scientitic journals.
speaking of the establisbment as it was in 156.1 , and not tonching upon any of the monfilications which may since have heen introlucel, there wero distinet aml separate departments for mechanical repairs, prper-making, ink-making, paper-wetting, plate-engraving, printing, munhering and denominating, and cutting. In the paper-mill, all the paper for the greenbacks was made, with a dergree of serupulous attention and uniformity that eanont always be insured in a private establishment. It was meessary to lave a pioner that would wear well, would not sill easily, and would be sulficiently non-photographie to balle it forger. In Gwyun male mauy experiments, with a view to attian excellence on these points; and at length he produced a linel of paper hearly as stromet as parchment and as smooth as satin. 'Jlie nature of the material was known only to himself and the guvermment. 'There was a filme in the phper, quite mouldeat or felterl into its substance, which conld not be plotugraphed without discolouring the shect to which it wis transferm, giving it the appearance of a coarse, black, spider-web, which woulil instantly have hetrayed the forgery. In anuther departinent, the ink was made by means of grinding-machines, one for each of the several colours nsed in the varions kimus of notes and bonds. WVhile these operations of paper-making and ink-making were in progress, the engraving of the plates was conductel in another department. 'Ihe sted-plates were engraved with the most mimute and intricate clcires which the hand and the eye of the artist could execute: it mattered little what elevice was selected, provided it were diflienlt for a forger to imitate. One particular note was, in its main features, an engraved cony of a pieture in the rotmulir of the Capitul at WFashington; and the engraving is said to have occupied a whole jear to execute. All the alevices, of whatever kind, were mude to co-operate with delicate water-lines in the paper, to render forgery elifficult. As the plates were costly to engrave, and litted to yield only a certain (thongh large) mumber of impressions cach, a mode of multjplication was alopted which had for many years lieen largely used in England. The processes were thus connected: 1. The engraver executed the design on a smooth plate of soft stecl. 2. The plate was hardencl by well-known processes of heating and couling. 3. A roller of soft stee] was presscd with inmense force over the hardened plate, and took upon its surface the device in relief: as the roller was equal in length to the length of the plate, and equal in circumference to its loriadth, the curved surface exactly took in the whole of the deviec. 4. The roller was hardened. 5. The hardened roller was used as a matrix to produce any number of plates in soft steel, which had the devico in intaglio, like the original plate. 6. I'luese plates, when hardened, were used to print from.

The praper, the ink, and the plates heing thus prepared, all was ready for the printing. In the carlier period of the working of the establishment, yresses were used such as are generally employed by coplperplate printers; each press attended liy a woman to
place and remove the paper，anl n man to manage the inking and the pressure；but afterwards，a large room was filled with hydraulic printing－presses， which conducted the operations much more rapilly． The notes，as fast as printed，were interleared with sheets of thin brown prper，to prevent blurring．In numbering and denominating the notes，a yellow mordant was employed，of such kind that the note could not be photographed without producing a black impression from the yellow portion．The numbering－machinc was worked by a treadle；there were six discs with figures on their edges，and they so actel on each other by means of ratehets，that they could print any number from 1 to 999,999 ．For consecutive numbering，the machine adjusted its own figures after each printing．The notes were usually printed four on a sheet，and were afterwards severed and trimmed by a entting－machine，which made then all precisely equal in size and shape． So complete was the check estallished in all the operations，that＇not even a blank sheet，＇saill a narrator，＇much less a jrinted one，is passed from one hand to another without being comsted aud receipted for ；and unless there is collusion from one to another in every process throngh which the paper has to pass lefore it is finished，there cannot he an over－issue．The paper is issued from one room， and is re－issued from that room sixteen or eighteen times before it is put into circnlation；being counted，charged，and reecipted for each time，and recounted，reehargel，and re－receipted for through each process that it passes after leaving that room．＇ For the English system，see Bank－nores．

GREENSHANK（Totanus glottis），a birl of the same genus with the redshank and some of those known as sand］pers，but differing from then in the stronger and slightly recurved lill．It is about the size of a woodcoek，but has mnch longer legs．The bill is about two inches loug．The tail

Grcenslank（Tutanus glotias）．
is short．The lower part of the tibia is naked． The plumage is mostly dusky brown on the upper jarts，the feathers edged with jellowish white；the under parts are white．Small flocks of this bird are seen on the British coasts in the winter months， and sometimes near inland lakes and marshes．A few remain to hreed in the Hebricles and north of Scotland，lont the greater number repair to more northern regions．The geographic distrilution of the species is extremely wide eren for a lird of passage；from the arctic parts of Europe，Asia，and

America，it cxtends southward as far as Java and Jamaica．

GRE＇WIA，a genus of trees belouging to the natural order Tiliaceu，having simple and more or less ovate leares，and a dmpaceons fruit contain－ ing four 2 －celled and 2 －secded muts．They are African and Asiatic，mostly tropical and subtropi－ cal．Some species，as G．sapida and（\％．Asiatica， natives of the warmer parts of India，yich jleasant fruits，much used in the manufacture of sherbet． By the inhalitants of the Himalaya，the ioner bark or bast of G ．oppositifulia is used for the same pur－ poses as that of the lime tree in Europe；and the leaves of G ．dirlyma and other species are given as fudder to cattle，and dried and stacked for winter use．The wood of G ．did！ma is used for boats． That of G ．elastica is mach valued for purposes requiring strength and elasticity，as for making bows and the shafts of carriages．

GRIGORIO＇POL，a town of South Russia，in the government of Kherson，on the left bank of the 1）niester，is miles north－west from Ollessa．It is a fortified tom，and regularly built，is inhabited chiefly by Armenians，and has manufactures of silk and cotton stuffs．Its Armenian inhabitants have received large grants of land in the vicinity，but neglect its cultivation，and are chiefly occupied in commercial pursuits．Pop．（1863） 6545.

GRIVEGNEE，a town of Belgium，iu the pro－ vince of Liege，and about tro miles soutl－east from Liege，on the right bank of the Ourthe．Stean－ engines and other machinery are extensively manu－ factured；also nails，copper wire，and strings for musical instruments．（f．has brickworks，and worsted and fulling mills．There are coal－mines in the vicinits．Pop．（ISG．3）G124．

GRO＇DEK，or GRUDEK，a town of Austrian Galicia， 15 miles west－sonth－west of J emberg，with which it is connected by railway，is situated partly on a hill between two small lakes，and partly on three small islands．Pop．738I，consisting chiefly of German colonists，but inchnding also a number of Jews．

GROSSETO，a town of Central Italy，capital of the Maremma（ $\mathrm{q} . \mathrm{r}$. ），on the Omhrone，abont 10 miles from its mouth，and 70 miles south of Florence．The town is very unhealthy，but it is well built，and is regularly fortified，the walls forming a pentagon with hrick hastions and two gates．It is the seat of a bishop，has a fine cathedral，two convents，hospita］， \＆c．，and in the centre of the square a colossal statue of Leopold II．There are manufactures of silk anel woollen goods，glass，\＆ic．About 6 miles from G ． are the ruins of the very aucient Etruscan city of Ruseller，the Cyclopean walls of which may still be tracel．It was at one time so powerful as to be one of the twelve cities of the Etruscan league．Pop． （1861） 3917.

GRO＇TTE ，a town of Sicily，in the province，and 13 miles north－north－east，of Crirgeuti．It derives its name from the number of caves in the rocks aronud it，which prove it to bare been an ancient site．It is supposed by some to be that of Erbessus， a town where the Romans deposited their military stores during their siege of Agrigentum，in 262 B．C．， but which was seized by Hanno，the Carthaginian general．Sulphur is found largely in the neighbour－ hood．Pop．（1561）6465．

GUANONIEN．Tnder this name，Du Cliaillu， in his recent second volume of travels，A Visit tc Ashango Land，mentions a great bird of prey，inha－ bitiug the tropical parts of Western Africa，hither－ to unknown to naturalists，which he thinks may

GUEBWILLER-GU1SE.

probably rival in size the comeor of South America. If failed, however, in all endeavours to procure a specimen, the bird being aplarently very wary. IIe regards it as an cagle, and not as is vulture, and its habits shew this conjecture to be probable. The traveller says: "Several times I have been startled in the forest by the sudden cry of anguish of a monkey who had been seized by this "leopard of the air," as the natives often call it, and then saw the bird, with its prey; disappear out of sight.' On one occasion, he saw a nest of this bird at the top of a gigantic tree, but the young hat flown away. At the foot of the tree lay more than 100 skulls of monkeys, of different sizes, soure of which must have been formidable animals.

GUEBWILLERR, a town of France in the dep. of 1[ant-1hin, 15 miles south-south-west of Colmar, on the right bank of the Lanch, at the foot of the liallon de Guebwiller. The tomn is well built, has two bandsome churches, one built in the 11th, and the other in the middle of last century. There are mamfactures of tape, riblons, cottons, woollen clothe, gloves, nails, and refined sugar; there is also an extensive manufacture of spiming-machinery. In the vicinity are coal-mines and slate-quarries; good white wine is abundantly produced in the distriet. Pop. (ISG6) 12,21S.

GUEUX, or ' 'The Beggars,' the name assumed by the confederated nobles and other maleontents who opposed the tyrannical policy of Philip II. of Spain in the Low Countries. Philip having sent nine inquisitors to that comntry to put into exeention the decrees of the Council of Trent, provoked by this act the bitter resentment of the Protestants, as well as of the Catholics and nolility, who saw in it an attempt to curtail their ancient liberties. A party of opposition was thus formed, and, healed by Counts Louis of Nassan and Ilenry de Brederode, declared in an act called the 'Compromise,' which was remitted (5th April 1566) to the liegent Margaret, their fixed determination to ignore utterly the authority of the inquisitors. On the almission of a deputation from them to an audience, the regent seemed somewhat nunerved by their bold front, and inclined to gield to their demands; when one of her council approached her, and whispered that she 'nced not be afraid of these gatherings of begrars.' The remark having been over?heard by some of the deputation, the abusive epithet was assumed as the title of their association. As a sign of fraternity, each of the 'beggars' wore a medal called the ' Beggar's denier,' made of gold or silver, and stamped on the obverse with the image of Philip II., and the inscription, 'In cverything faithful to the king;' and on the reverse with a wallet, such as the mendicant monks earried, held in two liands, with the words, 'even to the carrying of the wallet.' The 'beggars' maintained a long aml vigorous contest against the despotic proceedings of Thilip and his advisers, Jut were ultimately compelled ts suceumb to superior forec. A branch of them, 'the Beggars of the Sea,' nuder the bold learlership, of the savage Count de la Marek, were almost miniformly suceessful in their enterprises: they several times defeated the Spanish fleet, eaptured tiansports with supplies for Alva's army, eaptured sereral fortresses, and succoured besieged ilaces along the coast.

GUICOWAR, or 'the Herdsman,' the designation of a jowerful Mahratta prince, whose dominions at the present time inelude most of Guzerat (q. v.), with baroda for capital. The G. originally, as the name denotes, was an offieer in the establishment of the rajahs of Satara, the supreme rulers of the Malirattas (0. v.), and after a time rose high in rank
53 t
from his military services, being ultimately apmointed hereditary secoml in command of the Maliratta armies, of which the command-in-chief was vested in the family of Sindia. Pelajee, who becane (f . in 15:21, by predatory excursions graclually acquired anthority over Guzerat; and his son lomajee, who suceceded in 1732 , still further extented the bounds of this ample dominion. The latter then threw off his allegiance to the Peishwa, hut heing taken prisoner lyy treachery; he was cumpelled to yield one lnalf of his dominions, and do homage for the other lialf. Annuml liao, who asecmeld the throne in 1800, was the first prince of the line who had intercourse with the British Imdian government; and it is worthy of remark that, down to the jresent time, the relations of the British with these Mahratta princes have been uninterruptedly frienclly. The two powers came into contact on the oceasion of a civil war between the reigning prince and an illegitimate brother who aspired to the throne; and in consideration of the aid afforled him liy the Bombay wovernment, the G. agreed ly treaty to disband his A rab soldiers, and receive a 13ritish subsidiary force, 15 th Mareh 1Stie. This was effected, not without somo disturbance on the part of the refractory soldiery; and various other agreements baving been made from time to time, the whole of them were inchited in a treaty of general defensive alliance, 21 st A pril 1505 , by which a permanent British sulbidiary force is maintained ly the Guicowar. This prince lecld himself aloof from the disputes between the British government and the other four great Maliratta chiefs, lut in 1516 he beeame involwed in a quarrel with the Peishwa with respect to some districts elaimed by each. The Peishwa eathsed the ambassador of the G., an able and upright minister, to be treacherously assassinated; and refusing the demand of the British lResilent (who was bound by the treaty of 1805 to aid the G.), that bis infamens agent should be given up, became involved in bostilities with the Colenttia government, which ultimately terminated in the destruction of his state and pawer. Syajee IRo, who ascented the throne in 1819, abolished suttec in February 1 S:10.

GUI'SBOLROUCHI, a market-town of the North Riding of Vorkshire, 5 miles from the mouth of the Tees, and 40 miles north of Xork, it is connected with the Stockton and Darlington branch of the North-castern Railway. The town lies at the foot of the Cleveland Hills, consists chiclly of one main strect of good houses, has several churehes, grammar and other schools, almshouses, and market-honse. The earliest alum-works in England were established here about the year 1600. There is a trade in wool. Fope-making, brick and tile making, and tauning are earried on. The recent development of the ironstone mining in the neighbourlood has lrought a large number of miners and others to reside in and about the town, so that, since 1861, the population has greatly increased. A rich monastery onee stood here, of which a small part still remains, built in 1119 by Hobert de brus, lord of the town. At the time of the lieformation, this was one of the Wealthicst and most magnificent monastic institutions in the kingdom. Liceent exeavations have lrought to light many interesting antiquitics. Among other objects, the workmen eame upron the remains of an oak coffin, containung a skeleton, which was found to measure 6 fect S inches in length. Pol. (1861) 3794.

- GUISTE, a town of the department of Aisne, Framee, situated on the left bank of the Oise, 37 miles north-morth-east from Soissous. It is walled, and otherwise fortified. It is an aneient town, and mas of much consequeuce in the early wars of

France. Within the town are the ruins of a castle, from which the famons Dukes of Guise (q. v.) derived their title. G. is now a place of considerable commercial and industrial activity; has linen and cotton manufactures, tanneries, \&c., weekly markets, and eight anntal fairs. Pop. (1 S66) 5090.

GULU'NClA (Cocculus complifolus), a plant of the same genus which siclds Calumba ($\mathrm{q} . \mathrm{v}_{\mathrm{o}}$), extensively used in the Last Indies as a tonic and febrifuge. It is largely cultivated in some parts. It is a climber, with heat-shaped leaves. It exhibits a wonderful tenacity of life. When it has acquired the diameter of half an inch, it is not uausual to cut from the main stem a portion of from 20 to 30 feet in leurth, when the part sustained by the branches of the tree sends down threads to the ground, which take root, and becone new stems. To plant it, a few yards of the stem are merely made into a coil, and lung on the branch of a tree (Tennent's Ceylon).

GUN-COTTON. Since the article on this material was written, great improvements have been efficted in its manufacture and application, and in cousequence, its use is rapidly extending, especially in Great Pritain, where it is found of great alvantage in mining operations, owing to its not producing smoke when exploded. For the improvements as well as the invention of grncotton, we are cliefly indeloted to the Austrians, the most important improvement being that of Paron Lenk, consisting chiefly in the following precautions in the mannfacture: 1. A perfect cleansing and drying of the cotton. 2. The use of the most concentrated and purest acids procurable commercially. 3. Steeping the cotton a second time in a mixture of the strong acids. 4. Contimuance of this steep for forty-eiglit hours. 5. A thorough purification of the gun-cotton from free acid by washing in a running stream for several weeks. This may be supplemented by wasling in a weak solution of potash, but is not absolutely necessary. The following are the important advantages insured by the new method of making gun-cotton:

For Purposes of Artillery.- 1 . The same initial velocity of the projectile can be obtained by a charge of gun-cotton one-fourth of the weight of grimpowder. 2. There is no smoke from the explosion of gru-cotton. 3. Gun-cotton does not foul the gun. 4. Gun-cotton cloes not heat the gun to the injurions degree of gunpowler. 5. Gun-cotton gives the same velocity to the projectile with much smaller recoil of the gua. 6. Gun-cotton will produce the same initial velocity of projectile with a shorter length of barrel. 7. In projectiles of the mature of explosive shells, gnn-cotton has the advantage of breaking the shell more equally into much more numerous pieces than grupowder: 8. When gun-cotton is used in shells instead of gunpowder, a cquantity equal in weight to one-third of the latter protuces donble the explosive force.

For Civil Engincering cund Mining.-9. In driving tmunels through larld rock, a charge of gua-cotton of given size exerts double the explosive force of sumpowder, so as to render a smaller mumber of holes necessary: 10. Gun-cotton also may be so used as, in its explosion, to reduce the roek to much smaller pieces than gunpowder, and so facilitate its remoral. 11. As gun-cotton produces no smoke, the work can proceed much more rapidly, and with less injury to the lealth of the miners. 12. In working coal-mines, the advantages of bringing down much larger quantities of material with a given charge, and the absence of smoke in the explosion, cnable a much greater quantity of work to be done in a given time at a given cost. 13. The weight of gran-
cotton required to produce a given effect in mining is only one-sixth part of the weiglit of gunpowder. 14. In blasting rock inder water, the wider range and greater foree of a given charge is a great element iu cheapering the cost of submarine work. 15. The peculiar local action of gun-cotton, to which the effects of gunpowder shew no analogy, cnables the engincer to destroy and remove sulb. marino stones and rocks without the preliminary delay and expense of boring clambers for the charge.

For Military Enginecring.-16. The smaller weight of ginn-cotton offers great advantages in facility of transport, the weight being one-sixth that of gunpowder. 17. The peculiar localised action of grocotton emables the enginecr to destroy lridges and palisades, and to remove every lind of obstacle with great facility. 18. For submariue explosion, cither in attack or defence, gun-cotton bas the advantage of a much wider range of destructive power than ginpowder. 19. For the same purnose, gun-cotton, from its lightness, has the adrantage of keeping alioat the mater-tight case in which it is contained, while gunpowder sinks it to the botton.
For Naval Harfarc.-20. Where gums are close together, as in the batteries of ships and casemated forts, the absence of smoke removes the great evil of the firing of one gun impeding the aim of the next, and thus gnn-cotton facilitates rapid firing. 21. Between-decks also, the absence of smoke allows continuons rapid firing to be maintained. The absence of fouling and of heating are equally advantageous for naval as for military artillers".

Gencral Advantages.-22. Time, damp, and cxposure do not alter the qualities of the piatent guncotton. It has already been preserved ten years withont injury or decay. 23. It can be transported through fire without danger, simply by being wetted, and when dried in the opeu air, it becomes as good as before. In the case of a slip, or a fortress, or a city being on fire, this quality may be of the greatest value. 24 . It is much safer than gunpowder, owing to its being manufactured in the shape of rope or yarn. Loose gunpowder escaping from its package, or spilled by accilent, is a frequent danger and cause of explosion, from which manufactured gun-cotton is free. 25 . The patent guncotton has the peculiarity of being entirely free from the danger of spontaneous combustion, and it is constant and unalterable in its nature; for these reasons it sceures that degree of safety and certainty which, at the time of the original invention, the gun-cotton of Schönbein did not possess.

GU'RKFJLD, a town of Carniola, Austrian Empire, on the right bauk of the Savo, 46 miles east-by-south from Laibach, at the base of a momntainrange. It is supposed to occupy the site of the lioman Noriodunum. The district produces much wine. There are thermal springs and baths in the town. It coutains a Capuchin monastery. Pol. (1857) 5065.

GURAIUKTESWA'R, a town of British India, in the district of Mecrut, on the route from the town of Meernt to Moradabad, and 31 miles sontl-east of the former. It is situateri on the right bank of the Ganges, about 4 miles below the reunion of the laula Ganga, or old course of the Ganges, with the present main channcl, which, a mile and a half above the town, is crossed by a much-frequented ferry, on which 15 boats constantly ply. C. may be regarded as the port of Ncernt and the adjoining distriet of the Doal. I'oj. S781.

GlaRMA"T-BALA'SSA, or BALASSA-GYAFMAT, a town of IFungary, in the county of Ncograd, 42 miles north-by-east from I'esth, on the left bank of the Eipel or Ipoly. The surrounding district is

GYOM.d-(iYlioscore.

very beautiful and fertile, producing much excellent wheat. Near the town are the rinins of a castle, once belonging to the balassa family, and famous as having heen oftener than once hernically slefended agninst the 'Turks. 1'op. (1557) 6093.
GYO'MA. a town of llungary, in the comnty of Bukes, 59 miles south-east-by east from Pesth, and on the railway hetween l'esth and 'Temeswar. It stands in a plain on the bank of the Körös, which is here crossed by a bridge. There is a l'rotestant church. 1'op. (195\%) $55 / 5$.
(iYPSY-WOLT (Ly/copus Europaus), a jerennial plant of the natural order Sabiate, with stem aloont two fect high; opposite, ovato-lanceolate, scarecly stalked, almost [imnatifid, wrinkled leaves; and dense whorls of small whitish flowers with purple duts, the limb of the corolla 4 -elcift and nearly equal; only two stamens perfect. It grows in diteles and wet places, in Britain and on the continent of Europe. It is a febnifuge. The juice stains cloth a permament black colour, and gypsies are said to use it to give a dark hate to their skin, whence the English mame gypsy-wort, and the French Herve des Bohemiens.
GI'IOSCOPE (Greck) is the name given to an instrument for the exbibition of varions properties of rotation aud the composition of rotations. It differs from a top in having both ends of its axis supported. The invention is probably French or German, and in some of its forms it dates from about the end of last century ; but no certain information can be obtaind on these pints. We will consiler only two of its many applications.

First, if a mass be set in rotation alout its principal axis of inertia of greatest or least moment, it will continue to revolve about it; and, unless extraneons force be applied, the direction of the axis will remain unchanred. Such, for instance, would be the ease with the earth, were it not for the distulbanees (sec Nutrmion and Precession) producet lyy the sum and moon: the direction of the axis would remain fixed in space (i. c., the pole-sta wond be alw:ays the same star), in spite of the earth's motion in its anmual orbit. It is for this very reason that modern artillery is riflen, so that the projectile revolves abont its axis. If, then, a mass of metal, as, for instance, a circular disc, loaded at the rim, and revolving in its own plane, bo made to rotate rapiclly abont its axis of greatest moment of inertia, and if it be frecly supported (in gimbals, like the box of a compass), the direction of its axis will be the same so Iong as the rotation lasts. It will therefore constantly point to the same star, and may, of course, be employed to show that the apparent rotation of the stars about the earth is che to a real rotation of the earth itself in the opponsite direction. This application was male by Foncault shorlly after his eclebrated Pendulum (II. v.) experiment, and he is generally looked unon as the inveutor. The Trausactions of the Royal Scottish socicty of Ahs, however, shew that this apllication of the gyroscope was made many ycars before (Narch 1836), by Mr E. Sang, C.E. It is, in mactice, by no means so perfect a wode of proving the earth's rotation as the Foncault pendulum; hut this arises solcly from unavoidable defects of workmanship and materials-the mass of the gimbals, and the friction on the pivots. Professor Smyth, the Scottish Astronomer-Royal, has recently applicel this property of the gyroseope to the improvement of our means of making astronomical obscrvations at sea. A telescope, mounted on the same support as the ents of the axis of the gyroscope, will, of course, lie almost unaltered in position by the rolling or pitching of a ressel; and a steady horizon, for

sextant olservations of altitude, is procured by attaching a mirror to the support of the gyroscope, and setting it once for all by means of spinit-levels. The medranical difficulties of construction have not yet been quite got over, but there scems to lee little iloulat that this application will some day be of very great $p^{\text {ractical value. }}$
lut the most singular phenomena shewn liy the gyroseope are those depending on the compasition of rotations. We have alrealy sen (loratios) that any motion whatever of a boily which has one point fixcl is of the mature of a rotation about an axis passing through that point. Hence, simmitamous rotations abont any two or more axes, leeng a motion of some kind, are equivalent to a rotation about a single axis. The effect, then, of impressing uron the frame in which the axis of the gyroscone is suspended a tendency to rotate abont some axis, is to give the whole instrument a rotation about an intermediate axis; and this will coincide more nearly with that of the gyroscone itsclf, as the rate of its rotation is greater: it is laarily possible to explain to the non-mathematical realler the exact nature of the compomel motion, which consisis in the rolling of an inatginary cone fixed in the gyroscope upon another fixed in space; but the rotation of tho axis of a top romm the vertical fwhen it is not 'slceping' in an umight position), and the precession of the earth's axis, are precisely similar phenomena. Thus, when the gyroscope is spinming, its axis being horizontal, a weight atticched to the framework it one end of the axis (fig. 6) makes the whole rotate abont the vertied ; attached to the other end, the rotation takes place in the opposite direction. Amd the framework may be lifted hy a string att:ached near

Gyroscope.
one end of the axis (fig. a) withont the gyroscope's falling. Its axis still projects horizontally from the string, lut it revolves as a whole rond the string. Various other singular experiments may be made with this apparatus; anel athers, even more curions, with the gyrostat of W. Thomson ($q . \because$), which is simply a gyroscope enclosed in a rigid case, hy which the ends of its axis are supported. When a gyrostat is made the bob of a pendulum muler certain conditions, the plane of vibration of the pendulum turns, as in Foncault's celebrated experimeat, but in general at a much greater rate.

H

AIDCCKS (i. e., Provers, from the Hungarian IIajctú, pluaal Majdeki), originally a designation of cattleherds in Hungary: Afterwards, the worl came to sinnify a elass of mocrenary fort-soldicis, ready to accopt pay ficm any who would anploy their services, but displaying great gallantry in the field of battle. The remalkible eoustancy with which they stood by Lecskai throughout the war of the revolution, was rewarded by that prince with a grant of a distriet as their own possession, and at the sane time with the privileges of nobility. This grant was marle by a public decree of 12 th December 1605 , and was coutirmed by the diet in 1613. Execpit the privilege of exemption from taxes, which Charles III. took away, the Haiducks enjoy all the rights of nobles to the present diry. Their residence, the Haiduck district, remains independent of the county authorities, and is under the direet administration of the national government. The llaiduck distriet lies within the comnty of North Dihar, between the Theiss and Transylrania, has an area of abont 594 sq. m., and six principal Haiduck towns: Büszürmény, with 17,500 inhabitants; Dorog, with 9100; Hadluaz, with 5100 ; Nánâs, with 10,440; Szoboszló, with 13,560; and Vamospires, with 3690 : in all, 61,390, chiefly Magyars, of whom $5.5,900$ belong to the Reformed Chureh, the rest being Iommat Catholies, Greek Catholics, and Jews. The eapital of the distriet is Böszörmény. In course of the 1 resent century, the name Haiducks has begun to be applied to the macers of Hungarian courts and the halberdiers of the Hangarian magnates; also to the lackeys and other atteadints in German courts.

HAI'NICHEN, a town of Saxouy, 28 miles west-south-west of Dresden, on a tributary of the Mulde. Wool-spiming, wearing, aml the manufacture of cloth are earried on. l'op. (1864) 7053.

IIAL, a town of Belgium, in the prosince of Soutl Prabant, on the Seune and the Charleroi Caual, 10 miles south-east of brussels. It is a station on the Mons lailway. The church of St Mary is a rich Gothie edifiee, containing a ehapel resorted to by pilgrims on account of a black mir-acle-working wooden image of the Virgin, two feet high, which has aequired enormous wealth from the offerings of pious devotees. The high altar has a marble reredos, unequalled in the Netherlands, earved by Mone, a native artist, 1533 . The town has breweries, tanneries, distilleries, several mills, and manufactures of wicker-work and articles of wood. Pop. (IS63) 7817.
malie, Saraif Joslifia, American authoress, was borw at Newport, New Hamphire, 1795; her maiden name was Buell. Married to Thavid Hale, an eminent lawyer, alont 1814 , sbe pursued with him a regthar course of study uatil his death in 1 San , when she devoted herself to authorship, and produced her earliest work, The Genius of Oltivion, and other l'oems (Concord, N. 11., 1823), fullowed by Northwoorl, a T'ale of New England (Boston, 15.こ). In 1828, she removed to Boston, and edited the Ludies' Magquine, monthly, until 1837, when it was united
with the Ludics' Book, Philadelplia, in which city she lias since resided. Besides her labours as editor, she has written Skelches of American Charucter: Traits of American Lije; Flora's Interprcter; Good Ilousckeeping; Grosernor, a Tragedy (fonnded on the story of Colonel Hayne, a martyr of the Revolution): The Judye, a Drama of American Life; thrce metrical romances (entitled Alice lioy; Three Hours, or The ligil of Love; aml Harry (Grey) ; and her most jmportant work, Iromen's Record, or sketches of all distinguislied women from the creation to 1 Săt (21 edition, New York, 1850). All her works are characterised by good taste, and her tales and poems by rivid descripition and strong $1^{1 a t h o s . ~}$
Hallé, Chafles, an eminent pianist, was born at Hagen, in Westplialia, in 1519 ; studied first at Darmstadt, and afterwards at Paris, where his reputation was established by his concerts of classieal music. He afterwards settled in England, where his time has been prineipally divided letween London and Manclester. In purity of style, he is considered almost without a rival, and the lest living interpreter of Becthoven. Ilis aim has crer been to raise the popular standard of musical taste, an ohject in which he is believed to have achiered no small success in London, Manchester, and clsewhere.
HALLECK, Fitz-Gineese, an American poet, born at Guilford, Conneeticnt, in 1795. By lis mother, Mary Eliot, he was descended from John Eliot, 'the apostle of the Indians.' He became a clerk in a bank in New York in 1813, in which employment he remained for many years. He was afterwards for a considerable time the confidential agent of Mr John Jacob Astor in his commercial atfairs, and was appointed ly lim one of the origimal tristees of the Astor Library in New York-a position which he held to the end of his life. In IS49, he retired from banking and mercantile prusuits, and took up bis residence in his native place, where he spent the remainder of his days. From his boyhood, H. wrote verses, some of which he sent to newspapers; but in his collected pocms, he has inchuled nothing published earlier than his lines on Tuilight, which appeared in a New York praper in 1818. In the following year, be becane associated with Juse] h Rorman Drake in contributing the humorons serics of The 'roak l'apers to the same journal. The illness of Drake soon put an ead to these papers, and 11. commemorated his friend's death in a very beantiful little poem. In 1849, 11. wrote his longest poenm, Famm, a satire on the literature, fashions, and politics of the time, in the neasure of Don Juch. It is said to have oecnpied less than three weeks in its composition, and derived its immediate and great popalarity rather from the pungeney of its allusious than from any hicher merit. In IS2--1823, H. risited Europe; and in 1s?7, pmblished an edition of his fooms, in which were included several pieces suggested liy the scenes and associations of the Ohd World, among which the lines on Alnwick Castle and on Burns particularly eommanded admiration. H.'s style is spirited, flowing: and graceful ; his versitication almost alrays very smooth and larmovions. His pooms display much geniality and tender feeling. Their humour is deli-
cate nal relined．Few pocts，and particularly few Anerican poets，who have written well and aeruirell P＂pmarity like ll．，have written so little．Ilis whote joums are included in a J．mo volume of very moderate size．II．thed in Novenber ISG7．

HALLUTI，a town of lrance，in the ter：of Surd， 10 miles north－north－east of Jithe．Wearing bleaching，cotton－spinnius，and brick－making are earricel on，and there are manufactures of linen and cahco．l＇op．（ISG6）S9UI．

HALONYLIN，the mame of a new lime of ＂xplosive material or hasting－powler，which has been invented in Styria by two brothers，and is described as incapable of spontancous ignition，and as quite free from sumple and noxious gases．It is composed of nen－resinous sawelust，chareoal，nitre， and ferrocyanile of potassium，and is twice the hulk of guppowler，but one－half more powerful． For blasting and miniog purposes，it is consitered as preferable to gunpowder．

IHAMAH（Gr．Lpiphania，and the Hamath of the lible），a city of Syria， 120 miles north of Damasens．The town is buitt on buth sides of the Orontes，which is here crossed by four bridges．A number of huge wheels，tarnel by the current，mise the water into aqueltuets，which convey it to the honses and mosques of the town．The town is enclosed by walls，and the honses are buitt in the Damasens style of sun－dried bricks and wood． ＇The principal structures are the governor＇s palace， many mosques，Jaths，bazaars，and the whecls and ardulucts already mentioned．There are manufac－ tures of silk，cotton，and wonllen fabries，gold and silver thren！．H．ranks amond the oldest eities in the worll．It was a notel place，and the eapital of a little kincilom，when the Israclites came out of Egypt ；and its name is mentioned in almost every passage in which reference is made to the northern border of the l＇romised Lancl．Pol． 30,000 ．

HANDICAPPING is the term used in varions games and sports to denote the placing of competi－ tors，good，had，and indiflerent，on such a footing that all shall have，as nearly as possible，an equal chance of wiuning．Thus，in horsc－racing，when the speed of one liorse has been ascertained to lie greatly superiur to that of another，the swifter of the two， in a handicap race，is made to carry extra weight to an amount that shall be deemed sufficient to relluce its speal to a level with that of its antago－ wist．Where the pulblic performances of a horse have been excepitionally good，and when both speed anat codurance are fomm to be of an musually high character，the penalty inilicted in all future handi－ caps is wery great，amounting sometimes to a weight several stones above that of very inferior competitors． The beun illial of a handicap would thus be one in which the merits of the animals shoult be so nieely discriminated，and the weigits so aecn－ rately ailjusted，that all the competitors shoukl jass the winning－post at the samo time，and thens ynan a＇dead－lent．＇This is，of course，impossible in juractice，but it is nevertlecless the ideal at which the handicapper must aim；and the nearer he approaches to it，the more perfect is his work． In racing，no jockey with his sallfle，de．，must weigh less than live stone seren pounds，but the maximum is left in the hants of the handicapper， who apportions to each horse a weight correspond－ ing to its mblic performancus，age，and sex．No aplueal is allowed from his decision，nor can he be called upon to give the reasons that may lave actu－ ated him in allocating weights．Vested with such arbitrary power，he should be a person of sonnil judgment，unguestionable integrity，and thorungh experience．His usual mode of constructing a
handicay is to select the best ame U．e worst horso entered for a race，placing such a weight upon the former as he supposes shall bring it down tu a level with the latter＇s minimum of dive stono seven pounds．lie then proceeds to adjust the weights of the intermediate horses according to their varied merits．

When tho hambicaps have been published，no alteration can take place in the relative weidhts of the horses entered，unless one of these shouk prove a wimer during the time intervening between the issue of the handicap and the period of its decision； in which case，extra weight，varying from threo pounds and upwards，may have to le carcicd by the wiming horse，as a penalty for his intermeliate rictory．Lach jockey，with his sadelle，\＆e．，is weighel prior tostarting，the exact extra weight to he carrical being made up ly lead strips let into the sadlle． flaps．We is also weighed after the race，to prevent the possibility of his havin：earried vither more or less than his proper weight；a preantion，moreover， that is rigoronsly observed after cvery kind of race， whether handicapy or otherwise．
Thoush mincipally pertaining to horse－racing， hamticapping is resorted to in many other sports． In jigeon－shooting from traps，the shooter stames， is a rule， 21 jarls from the traps，that being the distance nsuatly allowed to average performers． The more skilful the shooter，the further back has he to stand from the traps；the distance allowed by an acknowledged＇crack＇shot to lis inferiors ranging from I to 10 or even 15 yards．In games such as chess and draughts，certain＇men＇are allowed to the inferior player；in billiards，the better of two allows his antagonist a certain number of＇points，＇so as to equalise or＇hamelical their respective games ；at ericket，the eleven of All Jing－ land will sumetimes play arainst twenty－two others， the competition being at times very close．In swimming and in pedestrianism，the inferior cona－ petitors are allowed a certain＇law，＇or start；in yachting，the vessel of greater tonnage is handi－ capped with lesser ones，by allowing them extra time for the performance of the race．Fur instance， a fifty and a thirty ton yacht start for a race，the former allowing the latter，sily，five minntes．They start logether，and the heavier yacht reaches home， say，three mintes ahead of the highter；in that ease，the lighter yacht＇s handicap of live minutes gives her the race by two minutes，though she was last to reach home．The principle of handicapping is the same，whether applical to lield－sports or lome amnscments；it is the art of endeavouring to equalise，ly certain peualtics，the good，bad，and intiljerent．

IIANLEY，a town of Staffordshire，England，in the district known as The I＇otteries，and inchudel in the parliamentary barongh of Stoke－npon－thent （ 1 ．$\cdot \mathbf{r}$ ）．It is two miles and a half from Neweastle－ under Lyme，about one mile from Stoke，and one mile from the North Staffordshire Nailway station and canal oflices．The principal portion of the town has an elevated sitc．The streets are nut very regular，but they are wide and well gaved；and many of the houses are well built．There are several commodions market－places．There are mamerous jlaces of worship of the Church of Englant and other denominations．Among the pulific institutions is an infirmary－－Cuntiguous to M．is Shelios，which may be regarlcil as forming with it one town．The manufacture of earthenware and china is the prin－ cipal canployment of the inhabitants of both．Λ t Shilton is a villa called Etruria，erected by Josiah Weigwoorl，remarkable for the Etruscan vases with which it is ornamented，imitations of ancient vases found in Italy，and the study of which was of

H.ARAR-HAKYEST-FLY:

great use to him in his endeavours to improve the manufacture of earthenware. The pop. of H. and Shelton together in IS6I was 31,953 .

HA'PAR, a city of East Afriea, in the country of the Gallas, the ancient metropolis of the Hadyah Limpire, about 219 miles south-west of Berbera, which lies opposite to Aden, at the mouth of the Red Sea; lat. $9^{\prime} 20^{\prime}$, long. $42^{\circ} 17^{\prime}$. The city; which is alout 5500 feet above sea-level, lies upon the slope of a hill from west to east; in the latter direction are plantations of lananas, citrons, limes, the coffee-tree, the khat-a theine plant well known in Arabia-wars or 'bastard saffron' (safllower), and sugar-eave; westward are gardens and orchards on a terraced slope; northward is a hill covered with tombs ; and to the sonth, the city falls into a valley or ravine. It is about one mile long by half a mile broad. The strects and alleys are like mountainroads, strewed with rubbish and with heaps of rocks; and the abodes, built of sandstone and granite, cemented with a reddish clay, 1 resent a dingy appearance. II. is surrounded by an irregular wail, pierced with five large gates, and defended by nudely-built oval turrets. The men are very unprepossessing in appearance; but the women are much better looking, and appear to be of a different type. The men are engared in trade; while the women spin, weave, and cultirate the gardens. Morals are rery lax, aod the people are much addicted to intoxication with mead and Abyssinian beer. The language of the inhabitants is Arabian, mixed with some apparently indigenons African dialect, aud is spolien nowhere else. H. is celcbrated for sanctity, crudition, and fanaticism, none but the purely religious scieuces leing studied. The peopleare extreurely bigoted, and hold all foreigners, but particularly Cluristians, in hatred and contenipt. The city is governed by an emir, whose will is law, who demands the atmost obsequiousness from all under him, but who administers his will with a certain amount of rude but prompt justice. Murderers are given up to the nearest kin, and their throats publicly eut with a butcher's knife. H. is essentially a comwercial towz. It is the grand dépot for the coffee, the warsdye, the cotton, the gums, the tobacco, and the grain of the Galla comatry, the produce of which is conveycd to Berbera three times a year in immense caravans. There is also an enormons slave-trade carried on, H. being a rendezrous for slave-cararans from all the surrounding countries. The imports are American eottons, shawls, silks, brass, copper, cutlery, dates, riee, sugar, gunpowder, and paper. Prorisions are excecdingly cheap, 120 fowls, according to Burton, being purchased for a dollar, and the same sum sufficing to provide a man with bread for a jear. The nuiy coin is a bit of brass, coarsely stamped, equal to the G6th part of a dollar; and the cmir imprisons all subjects who possess any other money.
1I. was founded Ly Arab inralers, who, in the Th e., conquered and colonised the tract between the lied Sea and the Abyssinian mountains. Yop. I0,000, inclusive of a considerable number of Gallas ancl other hedouins. It was visited in ISご̃, at great risk, by the fearless and indefatigable Burton (f . v. in SUPPLEsient), to whose interesting account we are indehtel for most of our information.-See Burton's First Footsteps in Eastern 1 frica (Longmau, 1856).
HA'RELD (ITarelda), a genus or sub-genus of ducks of the oceanic section (see Dces), nearly allied to pochards, scaups, s.e.; having a short, thick bill, high at the base, the lamina projeeting at the edge of the mandibles, a high forchead, a thick neck, and two feathers of the middle of the
tail in the males gratly elongated; whilst the females have the tail short aud rounded.-'the lovg-Tailed Deck, or II. (II. glacialis), iwhabits the arctic regions both of the old and new worlds, remaining on the seas of the north as long as any

Lomgrailed Duck, Female and Malc (Harclda glacialis).
water remains unfrozen, and then betaking itself to more southern regions. It is plentiful, during winter, in the inlets of Orkney and Shetland, but is rather rare in the sonthern parts of the British lslauds. It is sometimes brought to the London market. Its winter migrations in America extend as far south as Texas. The male, particularly in its summer plumage, is a very beautiful bird. It is avont 17 inehes long, without the long tail-feathers; with them, 22 or $2 \pm$. It is a very lively and noisy hird; flies swiftly, and is a most expert diver. It lines its nest with down, which is said to le equal to that of the eider, but has not yet become an article of commerce.

HA'ROLD'S CROSS, a village-suburb of Dublin, situated on the Grand Canal, three miles south-bywest from the centre of the city. It is built nearly in the form of a square, within which lies a spacious green, anciently the scene of periodical village festivals. The pop. in IS61 was 3839 . It is the seat of a cotton-factory; and although the village is poor, there are many handsome rillas in the vieinity, which is also remarkable ior the handsome ecmetery of Mount Jerome. H. С. also contains two convents of nuns, to which are attached free schools for the female children of the rillage.

HARVEST-FLY, the popular name in the T. S. for species of Cicala (q. v.) which are common in tlat country, and make their appearance as winged inscets in the season of harvest. C. septendecim is ealled the Seventcen Fears' Locust, from a popular belief that

> Harrest-fy (Ciceda septemdecim).
it lises for that period in its larval state, a belicf which seems to have arisen from the appearance of these insects in unusual numbers at intervals of about seventcen jears. Its colour is llack, the 553

11.AUPUR-IIELHOTYPOG1A.A1JIV.

wings and wing-covers veined with orange rell. Xear the tips of the wing-covers there is a dusky zigras line in the form of the letter W, on accomnt of which the a]pearance of this ily in great mombers is superstitionsly regardal as indicative of apmonoching war.
HAUPU'R, a town of britisht India, in the Northwest l'rovineer, in the district of Meerut, $\because 0$ miles sonth of the town of that name. It is of considerable size, an! has a pop. of $13,95 \mathrm{~s}$. Guvermment has a brecdin-stud here, which has obtained celelirity for the elamater of the horses passed into the dillerent branches of the service.

Hawkis, Friveis Lister, D.D., LiL.D, American dergynian anil author, was born at Newbern, North Carulina, June 10, 1795 ; clucated at the miversity of North Carolima: admitted to the bar in 1817; in 1S19, elected to the state legislature; hut bning drawa to the church, he was ordaned, in 1S2J, a clergyman of the Fpisesplal Church, and was engaged at Kew Haven, Philadelphia, and st Thomas's Church in New lork, until 1813. During this period he wiss appointed historiograplece of the Lpiscojal Chureh in America, and visited Eag. land in sareln of documents. In 1837, he fommeci, with 13: Henry, the Jew Jork Revicu, and established st Thomas's Hall, a high school, at Flushing, Long lsland, which involved him in heary pecuniary liabilitics, charges based upon which were brought against bim on his election in 151.3 as lishop of Jlississipyi. Hle was acquitted of the clarges brought against him, but declined the bishopric. In ISil, he became rector of Christ's Church, in Sicw Orleans, and president of the maversity of Lonisiana. In 1S19, be declined the bishopric of Whole Fslancl, aml became rector of Cinlvary Church, New York, In this lusy carcer he published Reprorts of the Supreme Court of North Curolina (t vols., 1823-152S), Contributions to the Ecclesiastical Mistory of the U'nitcd States (' vols., 1536-1510), liympl and its Momuments (1549), Auriculur Confission in the Protestant Lipiscopal Church (1550), a translation of Rovero and Tschudi's Antiquitios of l'eru (155t), and ellited the papers of General Alexamer ILamilton, hiographical works, several jutraile hooks, Commodorc Perry's Expelition to the China Seas and Japan in 1S.j2-1554, and a portion of a IJistory of North Cerolima. Ile died in Ňw York, Suptember 27, 1866.

HAyES, Aterstes Alley, American chemist, was born at thindsor, Vermont, l'ebmary 25, 1506 ; cducated at the military acalemy in his native town; studied chemistry unter I'rofessor Dana of Dartnouth College ; aad in 1505, distinguished himself by his researelics into the proximate elcments of Aurerican meticimal plants, discovering the organic alkaluid Sanguinaria; and in 1827, investigated the componnds of chroninm. In $15 \times S$-having removed to Boston-in connection with the growing manufactories of New Englant, he elevoted himself to the chemistry of commerce, of dyeing, and the manufacture of copper and iron. His numerous papers were published in the Proccedings of the Boston Society of Matural History, American Journal of Science, Anmtal of Scientific Discorcry, \&c. In 1S37, his iuvestigations into the gencration of steam and econoniy of fuel, led to the construction of improved furnaces and boilers. He also diseovered the process of reducing pir to malleable iron without loss hy the use of the oxides of iron; new processes in copper-smelting, the decomposition of alcohol, and formation of chioroform; and the oxidation of alcohol in the human system. As state assayer of Massachusetts, and in the employ of the Feleral government, he made important investigations into the
properties of gitano; examined the constitution of sea-water at farions dephlis, and its effects on tho eopper-sheathing of vessels; ann! by a scrics of useful studies and expriments has arded to the national wealth and the domain of science.

HAYES, Is,uc TT, M.D., American explorer, was horn about 15:30, elncated to the medical professiou, and appointed surgeon to the Arctio expedition under Dr Kiane, with which he returnel to the United States in 15.55 , couvincel that there existed an open sea aronnd the morth pole, and anxions to heat an expedition for its "xploration. In this project he was aided by Mr llenry (irinuell, by the Anerican (Gengraphieal and Statistical Society, and ly Sir Ji. 1. Murehison anel the Geographical Socicty of London. In Jme 1800, he fittel ont a schooner of 133 tons, iml sailed from New Sork; July 6, 1860, penctrated to $88^{3} 4^{5} \mathrm{~N}$. lat., making extensive explorations and olscrvations of the coasts and their inhabitants, and returnel to loston October 1S61, when, linding the civil war in progress, he voluntecred as surfeom in the Federal army; and at the restoration of peace, puhlished The Open Polar Sea, a Furrative of a loyage of Discorery toward the North Pole, in the Schooner United States (Nicw York :mul Loncl. 18(i)) ; in recognition of which he was awarded a gold medal by the lioyal Geographieal Society.

HEDGEIIOG PLANT, a mame given to hoso species of medick (Iledicergo) which have the peds spirally twisted and rolled up into a lall, heset with spines. The peculiar ajpparance of the pools makes them oljects of interest, on which account they sometimes find a place in flower-horders; and like the other Medicks (q. v.). they are useful in the comatries in which they ahound, as afforting excellent food for slicep and cattle. They are partichlarly plentiful on sandy gromms near the sea in some parts of South Ameriea, and their pods are too plentiful in the Sonth Americau wool imported into Britain.
HELIOTYPO'GRAPIY (otherwise Photohelio. graphy; from Gr. hetius, the sun). Mr De la liue, in the Cbservatory at Kew, has yroluced, on sleets of paper, pictures in which the solar sputs are represented without the aid of draving or charaving of any kind. In one foma of operation (notiect in the Proccedings of the Royal Astronomical Society), the sun's spots were viewed through a Newtonian reflector of 15 -inch oljeect-glass and 10 feet focal length, prolucing an image that would have made the sum's dise three feet diameter. By a vice auljustment, the image of a portion of the dise was receivel on a glass-plate rendered sensitive ly colludion. The tirst part of the process was then completethe sum baintiog a pieture of his own spots on a piece of glass. Then came the transfer of this negative to a jositive, ly the usual $1^{\text {hotographie }}$ means of printing, bat with a varnish of very complex chemical nature on the positive plate This completed the second stage-photography produring a very faint pieture on the positive plate. Then came chemistry: by dissolving away certain constituents of the rarnish, which had been more affectell than the rest by the actinic force of the sun's light, the surface of the positive plate became a serics of ritges aod hollows, relieri and intaglic, extremely minute in their differences of level, but still sutficiently marked to convey the notion of a kiad of engraving. Next came electrotyle, or galvanography: The plate, in the state just deseribed, served as a matrix or fonmation on which an electrotype cast could be taken. By l'retsch's process, thas cast may le so varicd as to be available either for surface-printing or for priating on the

HELMET-SHELL-HERJIES.

copper-plate plau. Under Photographic Esgravivg, and those pararrablus of Photogridpey which relate to Celestial Photography aud Photo-galranographey, will he found details sutficient to render the subject of heliotypography intelligible without further description.

HELMET-SHELL (Cassis), a genus of gasteropotous molluses of the family Bucrinitee; the animal nuch resembling the common Whelk (q.v.), with which it also nearly agrees in habits; the shell swollen, rather thick and solid, with bolel ridges, a slort spire and a long aperture, the outer lip toothed, the canal recurved. 'I'he species, which are pretty numerous, are all natives of tropical seas. Most of them are leantiful; and they are used ly engravers for making cameos, the differently colowed layers produciag exquisite effects when skilfully cut.

HE'LAOND, a town in the Netherlands, province of Jorth Brabant, lics ?l miles south-east from Buis-le-Duc, on the $A_{\text {a }}$ and Sonth Willemsvaart. It las a good haven. The principal industries are the manufacture of cotton, woollen, andl linen fabrics, cutton-printing, dyeing, calendering, leer-brewing, \&e. In 1864, [op. 6576.

HE'LSINGBORG, an ancient fortified seaport town of South Swalen, 33 miles north-north-west of the town Malmö, on the Sonnd, oprosite Elsinore. Steamers lave H. almost daily for Copenhagen, Malmü, Elsinore, and other places. There is a good harbour. Earthenware and iron goods are manufactured. I'op. (186t) 6602.

HEMP PALM (Chamcerons cxcelsa; see Cilasllrops), a palm of Chima and Japan, the tibre of the leaves of which is much employed in these countries for making cordage. Hats are also made of its leaves, and even cloaks aad other garments for wet weather.

HENLEY-ON-THAMLES, a town of Oxfordshire, England, on the left lank of the Thames, 35 miles west from London. The Thames is here crossed by a handsome bridge. H. is on a branch of the Great Western Kailway. There are several charities, and a reading-room and valuable lihrary, open to all ratepayers, bequathed by Dean Aldrich of Henley, who died in 1757. Maltiog is a principal branch of indistry; there are also breweries; and there is a cousiderable trade in corn, flour, and timber. Pop. (IS61) 3419.

HÉRI, HERI-RUD, or IILRI, a river of Central Asia, which rises in the Hindu linsh Monntains, about 150 miles west from Cabul, pursues a western course through Afghanistan, for more than 300 miles through a fertile and beantiful valley, io which stands the city of Herat ($\mathrm{q} . \mathrm{v}$.) ; then bending suddenly to the northward aloug the boundary between Persia and Turkestan, and afterwards north-west throngh Turkestan, it has a further conrse of fully 400 miles, till it terminates in the swamp of Tejencl, 150 miles to the east of the C'aspian Sea. After entering Turkestan, the H. soon begins to lose its water in the sand of the desert, and the latter part of its conuse for hundreds of mides is lry, except at certain seasons of the year.

HERALEx, George, a Roman Catholic philosopher anl divine of Germany, whose system has been the occasion of a long and acrimonious controversy, was hom at Dreverwalde, in the diocese of Parlerborw, in Westphalia, April 22, 1775. Having received his early exlncation from his parish luriest, 11. entered the gymuasium of lheina, and thence was transferred, in 1792, as a theological candidate, to the university of Münster, where he speedily distinguished limself, as well by bis ability and

504
acnteness, as by his piety and exemplary life. In 1798 , he was appointed Professor in the gymmasiun of Minster; and after nime jears, he was named Professor of Theology in the university of the same place. His lectures being of a popilar character, and addressed maioly to the examination of the modern philosophical systems, and thus bearing on revelation, attracted many learers, and establisheed for II. a ligh reputation in Germany ; and when, in 1819, the new mixed university of Honn was estalulished, II. was appointed to a professorship of theology. His carly reputation attencled him here, and students flocked to his lectures from all parts of Germany; and even from the Low Comntries. In this otfice he contimued until his death, which occurred May $26,1 \$ 31$.

The great object which H. appears to hare proposed to himseli was to combteraet the influence of the philosophical systems, which, when be eatered on his career as a professor, were in the eajoyment of their full popularity, and especially that of Kant; and with this wiew, he sought to decluce the founda. tions of all Ihilosoplical inquiry from the same first principles from which the Kiantian plailosoplyy takes its departure. Mis system, therefore, presupposes in the mind, as the starting-point of all rational inquiry, a blank condition, which, as rariously described by friends and cnemies, is either simply the alosence of all previous conviction, or a state of positive doubt, analogons to the so-called Pyrrionism of the ancient schools. The Hermesian method of investigation, in like manmer discards, in the first stages, and so far as iuvestigation is permitted to extend, all principle of authority ; ancl in the details of metaphysical inquiry, in the selection of the arguments of the existence of God, and of the nature of divine attributes, be departed widely from the old text-books of the schools; although in the general sum of the doctrines of the Foman Catholic Church, his orthodoxy does not aplear to have been in any degrec called into question. The objections which arose lay rather against bis method than against its actual doctrioal results.

It is remarkable, too, that althongh his work, Einleitung in dre C'hrist-F́alholisclee Theologie (Introduetion to Christian-Catholic Theology, was published in 1519, and ackin in 15:\%1, it was not until after H.'s death that the controversy regarding his system took a iletinite form, and eventually, at the instance of Clement Augustus Droote-Vischering, Archbishop, of Cologne, was referred to Iiome. It would be ont of place bere to enter into the particulars of the controversy which ensued, the chief assailant of the system being a learned Italian professor of the Collegio Fomano, the Jesuit, Father Perrone; while its clefenders were almost exclusively Germans, most of them H.'s own frieads and pulils. The controversy was a very protracted one; and a very large, although, it must be confessed, excessively dull and misty literature, lias grown out of the stibject. It will be coongh to say, that after a protracted examination, the doctrine of $I I$. was condemmed loy a bricf, dated September 26, I 535. 'lhe German partisans of H., who had at their command a theological journal of considerable circulation, the Jounal of Bonn, protested from the first awainst this coulemnation, to which they applical, at least practically, the well-known distinction of 'fact' and 'right, which hael been long ago employed by the Jansenists ; contending, that although the doctrines contemplated by the brief were rightly condemned, as beines unsound and untenable, yet no such doctrines were tanglt by 1I, or containal in his hook. Two of the leaders of the party, Irofessors Brann and Elvenich, went to liome to urge a reconsideration of the condemnatory decree; lut their
mission was mavoiling，and the decision was ordered to lee enforeed withont reserve．The Archlishop of （＇olngne aceorlingly insisted on uncualitied！sulmis－ sion ；and the tronbles which arose from the opposi－ tion which he encomatered，temed mach to compli－ cate the dillienlties of a conllict which arose loctween him and the l＇russian govermment，as to the ques－ tion of＇mixed marriages，aml which led eventally to lis arrest aml leprivation liy the crown．＇lle controversy was cuntinnea，as well in lione as in Germany，for a considerable time；by degrees，how－ ever，the llermesian praty fell awily．The professors of virinus maversities，individually or in hodies， acepteal the papal combemnatiom；and although sume have still perseveral in their resistance down to a comparatively late preiod，they liave been almost exclasively of that extreme party，many of whom openly seceded from liome，under the name of the German Catholic Chureh，and whose prin－ eiples go even beyond orthodox lutheranism，and may le regarted as verging on the most advanced borkers of liationalism．

IIERIIOSILALO，a eity in the morth－west of Mexico，in the state of Somori，on it river of the same name，about to miles cast from the Californian Gulf，and 90 north of the port of Guaymas．I＇lie town lies in a valley， 10 miles long by 4 browl． The elimate is liry aml very lrot，but the place is mevertheless eonsinered healthy，leing free from the epidemies which often aceompany very high tem－ peratures．＇The valley is very fertile，abd prodnees grapes，meluns，figs，oranges，limes，lemons，citron， peaches，and pomegramates in great abumdance． ＂he vine，however，is the principal object of enl－ tivation，not less than 1500 barrels of brandy being ammally made．The town has a large trade with （inaymas，bing the pincipal entrepot for the trade with the interior．Pop．alont 15,000 ，incheling alout 3000 I＇apui Indians，who are the lalbomers of the town．

II Jilli I Cr，TAncouver Issand（．Mclella cocrulea），a fish of the same family with the liering， and much resembling it botla in appearance and otherwise．＇Ihe gemus Melethe differs from Cluyeet， to which the herriog loclonge，elicelly in having no teeth，except that name may be given to a rough lowd on the tongue．The Vincomer lsland herring abounds on the north－western coast of North Ameriea．It is generally about ten inches in lengtl． Its coluur is liright stecl blae，slanding awiay on the sicles to lyniliant silvery white，the lins yellowish white．lmmense shoals of these horrings appear on the const at different seasons from Fubruary to July；often pursucd by dogish，so that flecing from the enemy，thoy even rush unon the shome，where freat numbers lie among the jubbles．They afford a chief pait of the sea－haryest of the Indians，who take them loy varions means－by the rake，such as is used for the Candle－fish（ 4. v．），for the shoals often so fill the water that it may he exulloyed ；by lamel． nets；am！by long diams of lattice－worle，along the outsiole of great mul－Hats left lly log the detiring tile．The sjawn uf this fish is also a favonrite article of food of the lestians，and is obtained by placing great yuantities of fir branches in the mul over the flats，within the daus uscil for eatching the herring．＂lhe spawn gets entangled among the branclies，and is removed to be drimd in the sun． Great numbers of the lacring canclit by the Inclians are uscal only for the extraction of ofl．I＇he Van－ couver Island herring seems likely to acouire a great commercial importance．

111：RZ，11F：Nsis，in lianist and composer for the piamofnte．IIe was lorn，of Jewish jancuitage， at Vinma，in $1 S U G$ ，and celucated principally in

Paris，where his talent was early recogniserl；and his compositions becanc pophlar over linrole．lle was recoived with great aphlanse on visiting lingo land in 18：31，amd America in 1546．In 1si7，lic receised the decoration of the leyion of 1lonomr． 11．＇s music is characterised ly clegance and a cer－ tain originality，aul loolds an ionportant place among works written for the pianuforte．

H：エ゚WOOJ，a large and yopuluns town of lan－ cashire，lingland，eight miles north from Dlamelester， on the left bank of the Roach，is branch of the lrwell．It is not far from the livclulale Canal，with which it is comnectal by a brasch canal ；and it is ou the line of the lancashire amel Jorkshire Jiat． way．1I．has recently increased with great ripidity， both in population ami wealth，partly in conserpueneo of extensive coal－mines in the neighhourhourl，ant partly through manufactures of viuions kinls．It has become an inportant seat of the cotton mamm－ facture，there being more than fifty large factories in the town aul vicinity．Fustians，cillicos，man． keens，ticks，and otlacr cotton fabries are prodneed． Iron－founding，boiler－making，and the manufacturo of power－looms，are also exteusively carried on．II． is situated in the parish of Bury．1＇op．（1S6l） 12，S：4．

H I＇LDJiN，a town of Rhenish Prussia，mine miles cast－sontl－east from Diasseldorf，on the ltterbach． It is a rapidly－increasing place，with woollen and

IIL＇LVLISSUM，a beantifully situated village in North llollanl，dies 15 miles sonth－cast from Amster dan，in the nielst of undulating com－lichls，varie－ gaterl wilh woorlands．The chiel inclustries are agriculture，the manufachure of strong striped white cottons，carpets，and horse－cloths，spinning and dycing wool．＇There are two publje schorsls，with 600 pupils，an institute for young larlies，and another for joung gratlemen，a Jeformed Chureh，乞 lioman Catholie Church，and a Jewish syuagoguc．I＇op． （1861） 6196.

HINDINF，a town of Lancasline，Fingland，thrce miles sontl－east from Wigan，with which it is connected lyy rativay，on the Manchostur Tionl． lts growth has of late years been rapid．Thero are numerous conl－works in the vicinity；colton－ sjumming aml the mamifacture of cutton gools are also extensively prosecutel．There are places of worship belonging to the Church of England，and to a number of other denominations；a frea grammar－school，and muncrous other schools．I＇op． （1561）8177；（1567）aloont 10,000 ．

IIII＇I＇O＇I＇HAGY．The adoption of horse－flesh as food for man laas at various times oceupicel the attention of plysicians．That semi－civilised mations eat horse－llesh is well known．Witness Sir John Chardin＇s Accomnt of the Crim－＇Tartars，who，he tells us，when their horses were worn out，killed them，and cut ry！the loest parts of the flesh into stealss about am inch thick．＇l＇he＇Partar rode for hours with such a steak hetween his saddle aud his horse，then dismomited，turned the steak，moment again，rode several more hous，and then fomme the steak tender enongh for eating．A writer in Notes and（lueries draws altention to a book，written by a Spanish prelate in the time of the Limperor Charles V．，in which mention is made of a grame S！lanish binquet，eomprising roasted horse－flesh among the viands．Durton，in his Anatomy of Melunchuly， says：＂Young fuals are as commonly eaton in Suain as reuleleer；and to furnish their navics，abunt Malaga csjlecially，often used＇－probibly as slip salt－provisions．

In 1Saj and 1Süg，there was a good deal of dis－ cussion in Paris relative to the furmal introduction
of horse-flesh into the meat-markets. M. Geoffrey St IVilaire delivered a lecture declaratory of the wholesome character of this food; and some of the more enthusiastic advocates of the plan formed themselves into a so-called llippophagie, or Horseeating Society. The French are famous for their skill in so modifying the operations of cookery as to olitain as many varieties of flavour as possible with any and every lind of meat; anl this skill was exercised abundantly in disguising (if not removing) the somewhat coarse taste aud odour of horse-flesh. The jouruals of the time sloke of baupuets held Ly the Lippophagi, in which the pincipal dishes were horse-tlesh, varionsly cooked and diversified.

In 1866, there was otticial recoguition of the introduction of this lind of fool into the market, under such restrictions as were deemed suitable. According to a statement in the Journal of the Suciety of Aits, the Prefect of the Seine issned an ordonnance in Jume of that year, recognising horse-llesh as human food, establishing special slaughter-honses or abattoirs for it, and laying down detailed regulations. No ordinary horse-slanghterers, but only those specially appointed, are to engage in the trade. The animals are to be killed in presence of a veterinary inspector, who is also to stamp or seal every distinct joint of meat after inspection. Unhealthy horses are excluded from the suplly; they may be odd, and worn out for work, but still healthy (the supply mostly comes from Normandy). All restaurateurs who use horse-flesh in their potages, honillis, \&e., are to acruaint their customers distinetly with the fact. Within a few woeks after the issne of the orilonnance, there were establishments for horseHesh bouilli and soup, and others for horse-llesh sausages, in Paris, arowedly sanctioned by the authoritics. In November, there were said to be twenty tons of this meat sold weekly; the better purtions being used by the keepers of cheap restanants, and the remainder sole for varions purposes at about twopence per ponnd. The dectsion pronomeed nion the isetter portion of horse-flesh, by the medical men of Paris, is, that it bears some such relation to ox-beef as brown breal does to wheaten-quite as wholcsume, but not so pleasint in taste.

During the continuance of the Fremeh International Exhibition of 1867 , some of the humbler restaurants of l'aris were much visitel ly diners on horse-flesh, which was in many cases servel ul in three or fonr courses dressed in diflerent ways.

There has heen something aelievel also in France in feeding poultry with this kind of diet. One estalstishment was deseribed, in 1864 (in the Jummal above quoted), as covering 30 acres, furnishing accommorlation for 100,000 puilets at one time. The pullets were divideal into grouns, aceordin! to are, each gromp having its own yard anel dormitury. The proprietors had horse-abattairs of their own, where they killed horses bought for the purpase. The purchase-money was recovered by selling the hides to tamers, the heads and hoofs to P'russianbhe makers, the marrow to perfunacrs, the bones to button-makers, the hair to horsehair-workers, the intestines to the makers of musical strings and gohlbeaters' skin, the tendons to bowstring-makers, the bloor to certain manufacturers, and the horseshoes and nails to dealers in ole iron; anel then the flesh was elear Irofit. The flesh was boited and chopped small, and given as fool under certain regulations. It was found more profitable to rear poultry for the sake of the eggs than for the chickens, as the hens laid all the jear round. In the winter 18631504, there were 40,000 dozen eggs sent weekly to market, where they brought about sixpeuce per dozen. It was found that each ben yielded twelve
shillingsworth of eggs annmally for four years, at the end of which time she was fattened for three weeks on bruised grain, and sent alive to market. The refuse of this great establishment, owing to the peeuliar effects of horse-flesh upon the poultry, was found to be a very rich and valuable manure.
III'TClliN, a town of Hertfordshive, England, 14 miles north-west from Hertford, on the Hiz, a. branch of the Ivel, and feeder of the Ouse, 420 feet above the sea. It is a station on the Great Northern Railway, and from it important lines of railway lranch off to Bedford and other places on the north-west, and to Cambridge, \&c. on the northeast. The town is irregularly laid out, but generally Well built, with spacious streets. The principal trade is in corn, malt, and flomr. There arc several large breweries. Many females are employed in straw-plaiting. There are lavender farms in the neighbourhood. II. was a place of some consequace in the days of King Alfred. Pop. (1561) 6330.
HOA'ZIN, or TOUTACO (Opisthocomus cristctus), a bird nearty as large as a peacock, wbich it somewhat resembles in its gait and manners ; a native of Guiana and Brazil ; generally refortul by

Hoazin (Opisthocomus cristatus).
naturalists to the family Cracicle (with curassuws and guans) and the gallinaceous onder; but by some regarded as of the ordur Insessores, and as allied to the plantain-eaters. lts anatomy is remarkable: it las an chormons crop, whilst the gizzard is very small. It is gregarious, and frequents marsly situations.
hofflidyn, Ehest Theod. Amaneve, moperly Wiluelar, one of the must original Cerman story-tellers, was born 2tth Jannary 1776, at Königsberg in l'mssia. He studied luw tleere, anl then format cmployment in the government offices at Grussglogan and in Derlin. In 1su0, le became assessor to the govermucnt in L'osen; but in consequence of some able caricatures of his, which General Zastrow and others in high positions applied to themselves, he was removel in 1802, as councillor, to Plow, and 180:3, in the same capacity to Warsaw, where the entrance of the lirench ended his career. W'ithout prospects or fortune, lie made use of his knowledge of music as a means of livelifoorl, anct, thongh sometines rechecel to great straits, nanaged to support himself by giving minsic-lessons, and by contributing to the Musiall Gavele of Lejpzig. In 1813, he went to Dresten as music director to a company of players alternating between Dresiden and Leipzig, and continued to conduct the orehestra of the company till 1815. In 1816, he was again appointed by Prussia to be councillor in the Iivyal Supreme Court of Julicatnre at Berlin, where, before long, he was seized with a disease in his back,

HOFFMAN゙ーHOG－GL゙N．

the consegnene of his irre nular life，and after much sulfuring died oIth July 15a：3．From his yonth，he had devoted all his heisme homrs to the stuly of masie．In l＇us ha，he bronght Guethe＇s vanderille， Orhere，l i．es，und liceche，on the stage，and composed at Winsaw the music for muncrons piecos at wether theatres．The regnest for a collection of his com－ ［nsitions which had appeared in the $1 /$ usicul ciuselle， induced him to pmblish his Phuntexsirstucke in c＇ul．
 l．cip．150．5）．These were followed by dilixire des Teujels（Berl．1416），Vachtsicke（ 2 vols．lierl．1S17）， and Die Sermpiunstrioder（t vols．Lierl．1819－1s？1， aloug with at suphlement，1525，containiur．11．＇s last stories）；Lethenteins chtern des hitter Murn（Views of Life，by Kater Murr， 2 wols．Berl．15：2－15：2）， 1）er Doppelyingar（The Itonble－ger，13rün，is？－1） and a fuw shanter storics．11．was a man of thoromin originality，and gifted with the rarest talonts；will， ficentions，and yet an excellent man of business and liwjer，who performed the duties of his atioce well．He had a keen umerstanding，which spectily ditected the weaknesses and absurditios of ewery－ thing．At the same time he shewed himself full of fantastic ideas，aml a believer in demons．His char－ acter was mule up of incongraitics：he was bitterly sepptienl，and yet risionary to insanity；epicurean to effeminacy，and stoical to rigidity：lietween these contradietory extremes rauge his novels，which，like his whole character，betray something dialuolical．In his humorous Ilights，he reminds us of Jean laul， whom he perlapis surpasses in real intercst and in inventive power，but whom he falls far short of in depth of humomr，purity，and power of language． Il．＇s faney revelled in mysterions caricatures， 1 re－ senting a frightind contrast betwen jest and carnest． ＂ithe womlertul apparitions whicls he introduced into his sturies，as taking part in daily life，were part of his ordinary way of thinking．IIowever，althongh these fantastie creations are often amusing and interesting，it is neither on these nor on his jarger novels，so often wild and ohl，that his fime rests， but mure on his nurelettes，which are masturpicees in miniature，such as Meisfor．Mfortin und scime
 Dogaresue ；\＆e．，which are not mixed up wit！spee－ tral machinery：ll＇s talents were most womkerfnlly varions；he not only distiugnished himself as it poet and composs，bat as an alde slacteher of cari－ catures ；and nany of the most pepular earicatures of Sapuleon were from his pencil．the handled lamgatge in a masterly way，althongh not free from mamerism．A collection of his clonice works，Aus－ gevïhle Schrifen，appeared in liertin（10）vols．， 152% －182S）．Ilis widow，Micheline，bom lover，added live supplementary volumes（new cal．Stutts．1539）． There is an execllent hiography of II．hy his friend I．Fi．Iltais，in his work A us If＇s Liben und N＂ech－ luss（ \because vols．liont．Iseis）． 1 n forcign comntries， particularly in Prance，11．has been repentedly transhatel and imitated．
 Hofrmany vos Pabletslebers，a distinguished German $1^{\text {met and }}$ meriturions philologist，was born al April 1794，at Fallersleben，in the district of Luncburg，where lis father was a merchant and burgomeister．Having receivel his elementary education in Ifelmsted and Brunswick，he went， in 1816 ，to the miversity of（riottingta，which，in 1519，he left for liomu．IIe som gave up theolory， which his father load destinel him to，and ocenpied himedif exelusively with philological and literary stuties，which，from his first acguaintance with the Lhothers（ r imm（ 1 Sl ），turued more and more to lus natise harange and literature．After travelling throurh the lihine conntries and Ilolland in search
of popmlar petry，and living for some time in Berhu，he was mate keper of the miversity hbsary of lireslan in 18：33，Extraurdinary l＇rofesser of the maversity there in 1530 ，and Ordinary l＇rofessor of the（ierman Lamenace aml literature in 1505. The puldication of his C＇npolitische Liedur．（Lnpolitieal Lays）lal to his being deprived of his oflice，20th Hecember 181：．For some years afterwards， 11. ， thrown cutircly upon literary work fur his suppent， led a wanderinor life through the whole of（Germany； Switzerland，and Italy，the sulject of laulation on the one haud，or of vitaperation on the other，and at times kept under the surveillance of the police． In 18t．5，he was maturalised in Mecklenburg． liestored to his rights in l＇russia ISIS，he drew from that time his statutury salary as a pension． He maricel in is 19 ，and settled on the limme，first in lingerbrick，then，1851，in Neuwied，mutil，in 15 5t，he went to Weimar，and for some years（15．it -1557 ）edited the $\|^{\circ}$ imur Annual．In is6＇，lee le－ came librarian to the Juke of Ratilour at the castle of Korvei，on the Weser．JI＇s literary proluctions are partly of a seientilie，partly of a poetical liind． Through the first，he ranks among the mast distin－ guished iuvestigators in the department of German laguage aud literature．The following writings deserve special mention：Hore bidyime（ruls．1－s， 1，（i）and Berl．1830－1530）；Limeke bos（Benl． 1si3t，21 ed．1S．j2）；Mommentu Zilnonensia（tient． 153\％）；（ieschichte des Deutschon Lïrchentieds bis au！ Luther（Ilistory of（German II Jmanlogy，B＇resl．183：－， Qd cal．ISja）；Jluleulsche bluller（Uh German Fras－ ments， 2 vols．Leip． $1535-1540)$ ；Pulitische liccliche ous Deutscher l＇orzcil（l＇olitical I＇ucms from German Antiquity，Lecip．1813）；Denlsche Giescllschafistieder dos 16 und 17 Johrhanderts（German Social Songs of the 16 the．and 17 th c．，Leip．1stl）；Spenden zer Dealschere hiteraturgrachiche（Contributions to the History of German Literature， 2 vuls．Leip．1845）；
 Cirmulriss（（ienman I＇hilology in Ontline，Berl．15\％6）． HI＇s own poc：try has a close allianee to promar song，aud hits the tonc of geanine simplicity， temiernces，and fathos to a desree that scarcely any other poet of recent times has succected in doins．Many of these songs actually circulate among the people from mouth to month．It is also remarkable that 11．，although mut a enltivated musician，sets his somgs to the most delightiul tures himself，which only require artistic timishing．Ilis jureuile songs are especially charming；his love－ songs are nut less tender；and his prectical pictures of the life aml way of thinlines of the dicrman people，such as the drinking and rustic songs，are minque in their kind．＇The following collections may be prarticularly mentional：Allemomaische Liealer （Allemannic songs，5th cel，Manh．1S43）；Gediche （loems，－Mols．Leip．1831，Gth ed．Han．ISG1）； liheinteben（thine－dife，Manz，1851；Neuwied， 1565）；Soledetruliedro（Snluiers＇Songs，Hainz，1551）； l＇unfiy kinderlieder（Fifty Children＇s Sonss，Leip． 1513）；F゙mf゙ing neue Kinderlicder（Fifty New Chil－ dren＇s Songa，Manh．1St5）；Vieraig Kimedelieder （Fonty Chidren＇s songs，Leip．1Sti）：Dentselirs 1＇olksyesungbuch（tarman loprular Song－book，Leip． （545）．Of a different kind，but also popular hy their airs，ate the Comolitische Lieder（Unumitical Lays，：2 vols．llamb．1840－18．11），which excited great attention．With these are commected Deularhe Girder aus der Sthueiz（Swiss Licrman Songs，Ziir． 1513 ；Altona，1862）；Deutsches Liederbuch（fier－ man Song－bork，al cal．Leip．1850）．
HOG－GUM，the name given in the West Indies to a resinons substance，which is there extensively used as a substitute for pitch，to tar boats antl ropes，also for strengthenins－plasters，\＆e．，and

HÖIIESCHEID-HOP FROTH-FLY.

internally as a diuretic, laxative, and stinulant medicme. It is still disputed what tree procluces the true bogsum; some ascriling it to Moronober coccinca, of the natural order (iuttijerce; some to Thus metopium, a species of sumach, of the order Anacardiacees and sone to Mcheigia balscomijerce, of the order Amyrilacere. The probability seems to be that all these-and perhaps other-trees yichl resinous sulstances of very similar quality, and commonly designated by the same name.

HÖ'HESCHEID, a tomd of Rlenish Prussia, 17 miles east-by-south from Düsseldorf. It has extensive lead-works and iron-works. Pop. (1SGt) 9013.

HOLLOW-WARE. There are two classes of iroa goods so callect-viz., cast-iron hollow-ware, and wronght-iron hollow-ware. Both kinds include cooking and other ressels for domestic nse, and comprise also some other articles, such as cofteemills, which are moulded and tinished in a similar way. Vrought-iron hollow-ware is largely made by the process of stamping (q. v.), lout a great deal is also male by the older way of joining picces together. Vessels of this kind not intended for cooking are generally coated with zine, while those which are, bave usually a coating of tiu. Both metals are put on the iron ly iumersion. There is also a process in use for coating the surface with silicions enamel, which will be described presently. Since the introluction of these methods of protecting and beantifying the surface of iron, domestic vesscls of this metal have greatly taken the place of those made from copper and brass.

Cast-iron bollow-ware is finished in three wayssome of it is enamellecl, some tinned, and some of it is left blach; or untinned; hat there is comparatively little of the last now used. The process by which tinued hollow-ware is made was patented by Jonathan Taylor, a Birmingham workman, in 179. It is conducted as follows: A ressel, such as a sancepan or goblet, is cast in a monld prepared in the ordinary way from an iron or a brass pattero. Sce Focnding. The ressel is then Annealed (g. r.), so as to soften the cast-iron preparatory to turning, and such articles are then turned guite smooth on the inside, by means of a common lathe when they are circular, and by an oval lathe when they are oral like fish-pans, a worknian bolding and directing the toul in loth cases. Self-actiog lathes have been tricd, but litherto withont any saving in the cost. The operation of timning follows next, and is performel by the workman pouring small quantities of melted tin on the inside of the vessel, which he rubs on with a piece of cirk, gradually going over the whole surface. A little sal-ammoniae is thrown in^{2} during the process to make the tin athere. Handles of malleable iron are then put upous such vessels as refuire them, and a tinal finish is given to them ly coating the ontside with a black varuish which is dried in a stove. The covers of saneepans are made of tin-plate, those for tea-kettles of castiron.

With respect to the enamelling of east hollowware, a patent was taken out for this as far back as 1799; lut the process then introduced, in which the euamel contained lead and tin, was ultimately abandoned. The subsecpuent [ratent of Nessrs T. and C. Clark of Wolverhampton, taken ont in 1839, has been nore successful. Their enamel is applied to the cast-iron in two coatings, one of whick furms the body of the eamel, and the other the glaze, both leinf free from metallic oxides. It is cspecially desirable to aroid the oxide of lead, as it dues not resist the action of acid substances in culinary operations. As iron, in common with most metals, difiers from ady vitreons cuamel in the rate
of its expansibility by lheat, there is of course as difficulty in sccuring the permancot adhesion of the two substances, especially with such an article as a cooking-vessel. In the case of cast-iron vessels, however, the clifiiculty has been practically overcume.

In Enclant, cast hollow-ware is made chiefly in the Niellind Lardware listrict, of which Jirmingham and Wolverham,t n are the centres. Eight manufactorics make ti. ned, and two enamelled bollow-ware. A few tanc make the L, lack or untinned kind. Ahont 2500 havels are employed, and the quantity of materials anmally consumed is estimated at $1 \therefore 000$ tons of pig-iron, 1000 tons of wrought-iron, 175 tons of tin, and 23,000 tons of coke and coal. In Scotland, there are six manufacturies of tinned hollow-ware-that of the C'arron Company, whose goods have lodg heen famons; the Shotts Iron Company; the Falkirk Iron Company; and three in Glascow. Wrought-iron hollow-ware is made priacipally in Birmingham and the surrounding district, and the number of bands employed upon it is lrobably nearly the same as fur castiron goots of this kind.

Eoglish hollow-rrare is sent to most cirilised countries, but for export trade the hest markets are fond in the British colonies. Little or none is taken by France, and scarcely any by the Cnited States since the outbreak of the civil war, ou account of the bigh cluties.

With regard to tlic comparative merits of the different varietics of hollow-ware, there is no doult that the kind made of enamelled cast-iron is, on the whole, the best for cocking purposes, althongh it is abont one-fifth dearer than when merely tinner?, and is, moreover, not liked by cooks for any but small-sized ressels, on account of its being somewhat heary. Enamelled wrought-iron cookingvessels are much lighter to handle, but then upon them the enamel does not stand nearly so well, very rrobably because the comparatively rapid heating up of the thin iron of which they are manle, more rapidly destroys the adherence of the two substances. A great deal of castiron tinned hollowware is now male without beins turned, an omission easily detected by the uneren surface which the inside of such vessels presents. Articles so finished are, of course, cheaper thian when they are smoothed on the lathe; but for luok, clurability of the timned surface, and least trouble of cleaning, those which are turnal are clecidedly preferable.

HOLY FIRE, in the Church of Tome, a light kindled at Easter, by sparks struck from a Hint, in remembrance-according to the missal-of Christ as the great corner-stone, and hailed ly kneeling ecclesiastics with the words "Light of Christ" (Lumen Christi). The ceremony takes place on Holy Saturlay, of which day's service it forms a stciking part; and at liome, it takes place in the presence of the pope himself; all the lights in the chapel havins been previonsly extinguishen, to be rekindled at the new tire-- Che kindling of the lloly Fire in the Church of the holy Sepulchre at Jerusalem, at the Easter of the Oriental church, is represented as miracnlons. The Greek and Armenian clergy combine on this occasion, and amidst rrocessions, solemnities, an excited multitude, antl scenes disgraceful not only to the name of religion lut to human nature, the expected tire makes its appearance from within an apartment in which a Greek and an Armenian bishop have locked themselves.

HOP FROTH-FLY, or JIOP FROG-FLT (1 mblycephatus interruptus), a species of Froth-tly (q. x.) which sometimes alpears in great numbers in

HÖRDE-IIUFELAND.

hop-gromids, and does considerable mischief. The perfect insect is about a quarter of an inch longe, of a yellow colomr, variegatel\} with hlack. It frequents hedges and grassy places as well as hoplplantations.

11ÖRDE, a town of Prussian Westphalia, on the Emsche, 33 miles south fro i Milnster, with which it is commected by railway. Near it are productive coal-mines, and the town has recently increased with great rapidity. Na.l-makiug is carried on.

11OJN13OOK, the primer or apparatus for learning the elements of reading, nsed in England before the days of minting, and common down to the time of George 17. It eonsisted of a sincle leaf, containing on one side the alphabet large and small, in hack-litter or in Roman, with perhaps a small regiment of monosyllables. Then fullowed a form of exorcism and the Lord's Prayer, and as a linale, the Lioman numerals. The leaf was nsually set in a frame of wood, with a slice of transparent horn in front-hence the name of hom-hook. There was a handle to lohd it liy, and nsually this handle haud a hole for a string, wherely the apparatins was slung to the girdle of the seliolar. Sometimes the leaf was simply $]^{n s t e d}$ agninst a slice of horn. At first, the leaf was of vellum, with the eharacters in writing ; latterly, of paper, and printed. The horn-

Hornbook-17th century.
book was prefaced aud otherwise ornamented with figures of the cross, and hence came to be niten enlled Christ Cross Row, or Criss Cross Jiow. Common as hornbooks at one time were, ceplies
of them are now excectingly rare. The annexal representation is copied from uno given by Mr Halliwehl, as taken from a back-letter example which was found some years ago in pulling flown an ohe farmhonse at Blddeton, in Jerbyshire. A portrait of King Charles I. in amour on horseback was upon the reverse, affording us an approximation to the date. In Xolices of liupitive I'ructs, printed for the Percy Socicty (1849), Mr Halliwell ligures a more perfect specimen, which he assirns to the time of Elizabeth. Allusions to the hornbook abouml in the older writers; Shenstone, e.g., in The Seloolmistress, tells us of the children, how

Their hooks of stature small they take in hame,
Which wills pellucid hom secured are,
'I'o saye from fingers wot the letters fair.'
HORODENKA, a town of the Anstrian Empire, in the movince of liast Galicia, on an aflnent of the Dniester, 100 milh's sonth-cast from lemberg. 1'op. St5l.

IIOTCIIPOTCH, a Scottish dish, may be delined as a kind of mntton-broth in which green peas take the place of harley or rice. 'this is a dish only to be obtainal in jerfection in summer, when green peas are in season. l'ut on two guarts of water, and when it boils, put in three pounds of the back-ribs of mitton or hamb, paring of the fat if there be too much. l'ut in with the meat two or three carrots cut into squares, and two grated, also three or four sweet jonng turnips in squares, a canliflower aud a lettuce cut down, a few yomg oufons shret, a little parsley, and ahout a pint of sweet youmg peas. Boil this for an hour and a half, then take out the meat, and cut it in chops, laying it aside. Adn another pint of young pas, seasoning with pepper and salt; and when these peas are done, phit in the elopis. In a few minntes afterwards, serve up the whole in a tureen. Insteat of cutting the meit into chops, it is not unasual to keep it whole, and serve it seprately. Neck of mattom makes execllent hoteh-protch. The composition of the mess may be varied by the addition of heans, white cabbage slicel, or aspuragns ${ }^{\text {wints. Some }}$ boil the empty hulls of the peas in a little water apart, and add the strained lignor to the rest, which gives additional sweetness. Hoteh-poteh is considerel the chof.doure of Seotish coolecry:
$11 O U^{\prime}$ GHTON-LE-SPIRING, a town of the comnty of Durham, Eogland, nearly 7 miles northeast from Durham, on the Great Northern Lailway. 'lhe town of 11 . has recently much increased, and owes its prosperity mainly to the numerous coalmines of the neighbourhoort, the coal produced ly which is of the most exeellent quality. Pup. (ISGI) 352 \% The surrounding district is very populans, and contains numerous villages.

IIUIDERTUSBURG, a royal lumting-seat, not far from Leiprig, built in 1721 by Augastus 111 ., then prinec, afterwards linge and elector. It was much injured during the Seven lears' Wiar, and has a historic celcbrity on account of the treaty by which that war was entlex, called the I'eace of Hubertushurg. This treaty of peace was signed here on 15th Feloruary 1763,1 y the representatives of l'russia, Austria, and Saxuny; and by it the position of J'russia was estal hished amongst the great powers of Europe. Dlaria Theresa relinquislecd all claim to the provinees which had loen acquired ly l'russia; and l'rederick the Great restored lis electorate to the king of Poland, Vlector of Saxony.
ju UFeland, Cimistopier William, one of the most distinguished physicians of modern times, was born on I2th Augrist 1762, at Langensalza in

Thuringia. After having completed a general and medical education at the best schools in Germany, be was appointed physician in ordinary at the court of Weimar, where bis father and his grandfatber had previously filled the same office. Retaining this honorary title, he removed in 1793 to Jena, to be ordinary professor of medicine there; and after refusing a number of invitations to other places, he went from Jena to Berlin in 1798 with a number of very honourable professional appoiutments. On the foundation of the university of Berlin in 1809, he became one of its professors. IIe died 25th August 1836. He had a very high reputation for skill and teuderness as a physician, and he was equally esteemed for his intellectual abilities and his noble and benevolent elaracter. A umbler of benevolent societies and institutions owerl their existence to him, and many others found in him a zealous and liberal supporter. His published works are numerons, chiefly on medical and physiologieal subjects. His Makrobiotik, or the Art of Prolonging Life, originally published in 1790 , was translated into alnost all the languages of Europe. Translations exist in Servian, Hungarian, and Hebrew. Amongst his most important works are one on Serofula, Ueler die Ursachen, Lokemntniss, und Mcilung der Shrof flkranlheit (Berlin, 1795), which has gone through several editions, and has been translated into several languages; an advice to mothers on the Physical Treatment of Children, published in 1799; and his Enchiridion Medicum, or Introduction to the Practice of Medieine, published in 1836.

HUGHES, Thomas, Englisb author and politician, second son of John Hughes, Esq. of Donington Priory, Newhury, Berkshire, was born at Uffington, Perks, in 1823. He was educated at Rugby under the celehrated Dr Arnold; entered Oriel College, Oxford, in 1S41, and took his degree of B.A. in 1845; was called to the bar at Lincoln's Im in 1848, and became a member of the Chancery Bar. In ISüt, he gave to the world Tom Brown's school-days-a picture of life at a public school, evidently written from the anthor's own personal experience, and recording the vivid and enduring impressions be brought with him from Rugly. This work attained great popularity hoth in England and America, especially among the young. It was followed, in 1853, by The Scouring of the White Horse; and in 1861, by Tom Brown at O.cfort, in which the meatal history of his hero is continued, with slectelies of college life and incidents. H. pursned meanwhile the sturdy and practice of the law. He gaived the conficlence and good-will of the working-classes by endeavouring to promote a better understanding between masters and men, and by teaching the latter the value of co-operation as a means of social elevation. He has, however, never failed courageously to rebulse the narrow prejndices and mischievous views held by certain members of trades-unions. At the general election for Lambeth in 1865 , he was placed at the head of the poll, the working-men being especially enthusiastic in securing his return. IIe took his seat on the Libcral benches, and has since takeu a prominent part in debates relating to the combinations of tradesunions, aud the amendment of the law of master and servant. II. is the anthor of some pamphlets, and has written various artieles in reviews and magazines, together with prefaces to the works of J. R. Lowell and other American authors.

If UMMEL, Joilann Nepomuk, an eminent pianist aud composer, born at Presburg iu 177 s . His earliest musical instructions were derived from his father, the direetor of the Imperial School of military music; after which he went to Vienna,
where Mozart, forming a bigh opinion of his talents, took him under his tuition. He appeared in public in 1787, being then but nine years of age, at a concert given by Mozart in Dresden; after which he gave concerts in Germany, Denmark, England, and IIolland. In Londov, 11. had the adrantage of Clementi's instructions in 1791; and in Vienna, in 1793, he took lessons from Albreehtsberger in composition, and from Salieri in dramatic writing. From 1803 to 1811, he held the post of Kapellmeister to Prince Nicholas Esterhazy; and lie was at a later period Fapellmeister at Stuttgart and Weimar. 1Ie visited I'aris for the first time in 1822 ; and in 1833 became conductor of the German Opera at the King's Theatre in London. He died at Weimar in 1837. H.'s pianoforte works rank among the purest and most classical eompositions for that instrument -his concertos are full of artistic skill; lie has besides composed masses, which are in ligh esteem, and several now nearly forgotten operas and cantatas. II is playing was characterised by the same solid qualities as appear in his compositions.

HUSCH, a town of Moldavia, on a feeder of the Pruth, 40 miles sonth-east from Jassy. It is the eapital of a district. Here the treaty between the Russians and Turks was sigued in 1711. Pop. 1860) 12,764.

HUXLEY, Thonas Henry, naturalist and comparative anatomist, born at Ealing, Middlesex, in 1825, was edueated at the school in that town, and afterwards studied medicine in the Medical School of Charing Cross Hospital. In 1816, he entered the medical serviee of the royal nary, and did duty at Haslar, under the late Sir John Richardson, until the winter of the same year, when he was appointed assistant-surgeon on hoard the Ratlesnake. This vessel, commanded by Captain Owen Stanley, was commissioned to survey the intricate passage within the Barrier Reef skirting the eastern shores of Australia, and to explore the sea lying between the northern end of that reef and New Guinea and the Louisiade Archipelago. Imbned with a passion for natural history, Mlr II. devoted himself with zeal and intelligence to the study of the numerous marine animals collected from time to time during the survey, and made them the subjects of scientific papers, which he sent home, diffident as to their value. They were published, however, ky the Foyal Society and the Linnaan Society, and made their anthor linown, while yet a young man, to the naturalists of Enrope. Towards the end of 1850, the Ratllesnake returned to England, and Mr H. had the gratification to find that his paper On the Anatomy and Affinities of the Family of the Mcdusce had been published in the Philosophical Transuctions. Thus encouraged, he sct to work to artange his large aceumulation of facts and observations, with a hope (which was disappointed) that the Admiralty would contribute towards the cost of their publication. In 1851, papers on other branches of the same subject were printed in the Philosophical Transactions; and in the same jear Mr II. was elected a Fellow of the Royal Society. In 1852, one of the two Royal Medals amnally given by the Sneiety was awarded to him, in recognition of the seientific value of the papers above referred to. In those papers, much light was thrown on the structure of a number of animals before unknown, or but little knowu, to British naturalists. $\ln 1854$, Mr H. was appointed Professor of Natural History in the Royal School of Mines, in place of Professor Edward Forbes, and, among his lectures in that institution, has delivered courses to working-men with beneficial results. In 1857, jointly with Dr Tyardall, he wrote a paper, Olserrations on Glaciers, which was printed
in the Plilosmplical Tronsactions: and in the following year le deliverud the lioyial saciety's C'roonian licture, 1 , the Theory of the lerdelorate Skull, in which a highly important anatonzical question was diccussul. In 155!, his large work on Y/te Ucennic IIydiozore ; a luencription of the ('alycophoridee and Dhysophorike observed iluring hifs royage, was published loy the liay Society with illustrative plates. lle has since published papers on the Filyptodon, and the Osteology of that genus; and in plapers on the Mollusea, has shewn that those animals have a common type or plan, similarly to the Anmulosa and Vertebrata. The views therein embodied lave leen set forth in a propular form in the Linglish Cifcloperlia, to which work MI II, was a large contributor. He has also written articles in the Jumals and Magazine of Natural /Iistory, the Qutrierl! Jommal of the Microscopical Sociely, and the Jutual /Iistory Revicu. Some of his Iectures, and 2 work on Man's Place in Nature, liave appeared in a separate form. The title I.L. I. . has lieen conferred on Nr IF. by the maversity of lidinlurglo. IIe is Ih.D. of Lreslan ; is IIunterian 1rofessel of C'omparative Anatomy in the Joyal College of Surgeons, and Fullerian Professor of l'hysiology in the Jioyal Institution. He is a Vicepresident of the Zoological and the ficological Socioties, and is a member of the prineipal scientific academies of the continent and the Uuitcd States.

11IDNO'RA, a genus of plants of the matural nrider Phizantincere. II. Africana is a native of South Africa, where it is called Juckal's Kost. It is a parasite elictly on the roots of large suceulent

Hyelnora.
spurges, and is a plant of most extraordinary appearance and structure, resembling a fungus rather than a planerogamous jlant. Its flowers and fruit are ritirely conccalmed in its intcrior. It has a smell like that of 2 fingrus, or of decaying roast-beef. The South African savages roust anil cat it.

HJ1)LASTIS, or WATSLERIS, a genus of plants of the natural order Runumculacee, allied to Anemone, but laving flowers destitute ol petals, aud sueculent or baccite fruit, collected into a heal. The only linown species, $/ 7$. C'tutulensis, a perennial lrerbaccous plant, with tuberous roots, and head of fruit rescmbling in raspbery, is common in watery plaees in Canada, and among the Alleglinnies, as fir sonth as Carolina. Its root is used for lyeing yellow, and also in modicine as a tonic. Yellow lioot and Orasige lioot are its American names.

IlvIRAULJC CRANES have come into very cxtensive nse within the past few years. Wherever a larce number of eranes lave to be worlad near
each otlace, water-pressure is by far the nost mamageable, conmmical, and convornient moste of working then, Sia W. Armstrong \& C"o, of Neweastle, lase taken the leal in introducing this kind of machinery: They lave litteal up a great many railway goodsstations with complete systems of liydranlic cranes.

Fin. 1 represents one of the simplest forms of hyolratulic cranes, such as are in use for loanling goouls in a railway station. It is made entircly of iron, and consists of two unieght cheeks, A, leetween which there is dixed a liydranlic ram (similar to that uscal in the liyolraulic press), occulying the luwer

Jig. 1.
land of the upright irame A. The upper end of this ram carries a julley 10. A sinuilar pulley is fixed to the upright frame at (\because. A chain is secured to a bracket, I), on the upright frame. This chain passes up over the pulley l, down and mader the bulley (6 , and then whe the julley l , on the end of the jib of the eranc. It is chrions that the rising and falling of the ram will cause the chain, F, to

The ram is forced to ascend ly tlee arlmission of water under great pressure by the handle 11, which serves also to allow the water to llow ont after it las done its work, and the ram descends ly its own weight, allowing the ehain, l , to run down with or without a loud on it.

The pressure usually employed in working lyydranlic eranes is greatly in excess of the pressure armissible in the ease of stean. Six or seren hundred pounds to the square inch is usually employed as the working-pressure. It is gut up to this great pressme hy means of an arrangement ealled an accumulator, which consists of a large hyolranlic ram of 16 or 15 inclucs in diancter, i, fig. 2, carryiug a wrounht-iron cylinder, B. "Jhis cylinder is filled with stones or gravel to the weinht of 60 or 70 tons. A powerfu? horizontal steamengine forees water into the eylinder C , and slowly raises the cam, A, with its enormous loart. Pijes leal away from the eylinder to the eranes in the differerat parts of the station, and are thus supplied with water under the great pressure caused ly the laad B_{3}, fig. 2 , forcing the ram A, fig. 2 , into the cylinder.

The load B , fig. -. is constantly rising and falling a little as the cranes draw their supllies from the cylinder C, fig. 2. If the eranes were supplied direct from the foree-pumps of the steam-enginc, without the interrention of this accumulator, their action would be jerky and unsteady. The acenmulator acts as a reserroin of power, and when it happens that a great number of cranes are drawing off water at the same moment, and in excess of what the engine force-pumps cau supply, the ram descends, keeping up the while the full 700 lbs . pressure; and then, when the cranes are demanding less abundant supplies, the engiue overtakes its work, and sents the ram up again. When it arrives at the top, it touches a lever commamieating with the throttlevalve of the engine, and thas slows or stops the engine when the accumulator has mounted to its maximum height. The monent it begins to descend, the lever is reliered, the throttle-valre opens, and the engine goes on again with such speed as the work demands.
It is easily seen that when the pulles B, fig. 1 , rises any givell distance, the weight C will, at the same time, rise clowhle that distance, beeanse B raises a donble lencth of chain; and, in the same was, by passing the ebain trice, thrice, or auy greater number of times over pulleys at Γ and C , fig.], the weight G, fig. 1, can be made to travel any number of times further than the ram. It is, in fact, the reverse action of a block and tackle. If the hlock is male to move, the full will move further than the block in proportion to the number of times the rope passes over the sheaves. This kind of arrangement is adopted when it is desired to lift anything to a considerable height, such as grain to upper floors of a warehonse. There is, of eourse, a diminution in the weight the machine ean hoist, in proportion to the excess of travel of the load to that of the ram.

The hyalraulic lifts, or ascending rooms, now in use in many large hotels, are coustructed on the sance uhan as the accumulator, fig. 2. A cylinder, C, is sunk or or 70 feet into the ground, thus admitting a ram, A. of nearly equal length to rise out of it, on a sufficient pressure of water being forced into it by a stean-engine. The ascending room takes the place of the loaded eylindcr D . Balanee weights are altachel to the ascencling room, to stealy its movements, and to gruard against any failure in the mechanism. A rope passing from bottom to top of the channel, throngh which the ascending room rises, affords to the person in the room the means of regulating its morements.

HY゙DRAULIC ENCINES are snmetimes used where water under bigh pressure is obtainable. They do not differ in any essential particular from a steam-engine. As the pressure under which they work is from five to teu times greater than that of
a steam-engine, they are much smaller. One form
of hydranlic engine is deseribed moder the head of W ATER-POWER. Another common form is that of three small cylinders in which three plungers work. The water is adonitted into the cylinders by means of valves, and forces the plungers outwards. These plungers are comected with a three-tbrow crank; and when they have completed their outward travel, or working stroke, the water is allowed to escape from the eylinder; the phunger then slides inwards, to be again forced ontwarls by a fresh rush of water adhintted at the proper instant into the cyliuder liy the action of the ralve.

HIMPNUM, a genus of mosses, which contains many of the most enmmon British species, growing on moist ground, in wools, on old trees, \&c. Many species have steus of considerable length and mueh

Hypnum dendroides:
a, plant about Lalf natural size; b. leaf magnified; c and d, capsule maynified.
brareched. The froit-stalk springs from a lateral tubercle. The peristome (see Mosses) is double, the exterior of 16 tecth, the interior a membrane divided into 16 segments, with alternate eilia.
II YTIIN (A.-S. heven), a parliamentary and munieipal borongh and market-town of England. and one of the Cinque loorts (q.v.), in the county of Kent, 14 miles sonth of Canterbury, and about halt a mile from the coast of the English Channel, at the east end of Romuey Marsh. Lympne or Limne (the Portus Le manis of the Iomans), the ancient eastle and barbour, ahont $-\frac{3}{2}$ miles west of H ., is now about two miles from the coast, the sea having gradually retircd, furst, to West Hythe, and then to the present haren, which is still silting up. The town staods chiefly at tire foot of a cliff, and consists of one main street, rumning parallel to the sea, with smaller ones branching off. 1t has an interesting church, partly Norman and partly larly English. Under the chancel of the church is an extraorlinary erillection of buman skulls and bones -many of the sknlls baving deep cuts in them-the age and origin of which are altogether noeertain. H. is bow a place of great resort in the bathing season. The parliamentary loorough of H. includes Eolkstone, Sanduate, and some smafler places. Pop. of municipal borough, which inchudes West Hythe, 3001. H. is about a mile from the Follstone and Dover 1tailway.

5)CICA, a gemus of trees of the natural order Amyriducerr, having pinnate leaves with an old terminal leaflet, and white flowers in 1 ranicled racemes: the llowers having a small 5.tonthed calyx, 5 petals, 10 stamens, and a enpslaped dise with 10 crenatures on the marsin, the fruit a drupe.-I. icicariba (3). yiehls the Ameriean Elemi ((1. v.).-I. heterophylle, a tree of Cuiana, yields a yellow aromatic balsam, which long retains its lluidity, and is used as an application to wounds. The resinons seeds are very fragrant.-I. hephtaphejlla and I. Guianensis, also natives of Gniana, yied very fragrant balsams, which larden into a gray resin, used as incense in churehes and for other purposes, and esteemed useful as a medicine in dysentery.- 1 . altissima is a tree 100 feet ligh, a native of Guiana, of which the wood is known as While Cedar and Red Cedar, and as Acuyori, Sumaria, Mara, and Curana I'ood, is used for furniture and honsecarpentry; and for canoes.
I'CO, a town of Brazil, in the provinee of Ceara, in a plain on the Salgado, about les miles from its month, and 210 miles north-west of Paraliba. It is the most important town of the interior of the province. The greater part of the inhahitints are shopkecpers, who supply the interior with articles of European manufacture, receiving produce in return, which they send down to the coast. l'op. 6000.

1 LIIA 'VO, a town of l'ortugal, in the province of licira, five miles south from Areiro, near the Athantic, and mostly inhabited ly fishermen. l'op. (1563) 8215.

IMO'SCllI, a town of the Austrian Einpire, in the province of Dalmatia, 72 miles sonth-cast-hyeast from Scbenien, in N. lat. $43^{\circ} 30^{\prime}$, and L. long. 17° 15. Its situation is anong the mountains, about 1378 feet above the sea. There are markets twice a week, which are much frequented by Turks, who bring for sale horses, cattle, slicep, goats, pigs, grain, butter, cheese, \&e.., and buy wine, brandy, and mannfactured goods. 1. has of late rapidly inereased in size. Fop., which probalby inchudes a district as well as a town, $2.2,000$.

IMPOO'N (Antilope or Cephalopus mergens), a

Impoon (Ccphatopus mergens).
small species of antelope, very plentiful in South Africa, in wooded districts. it is abont 21 inehes
high at the shoulder, of a brownish-yellaw eolnur, with white belly: 'Ihe horns are short aut conical, set far back, aud inclined lackwarls. It lives solitary, or in pairs. Froms its hahit of phunging amongst lushes when ${ }^{\text {minsuld }}$, standing on its hind legs at intervals to olserve its pursucrs, and disappearing again, the I. is called Duyker-bol (Diverbuck) loy the Dutch colonists of South Afriea, among whom its ilesh is in great esteem.

INAJA' PALAI (Maximiliana regia), a South American palm, common in the comstries near the Amazon; having a lufty, massive stem; very long,

Inaja Palm (Maximiliana regia).
drooping, linmate leaves, with leallets in groups of three, four, or live at intervals along tho midrib, from which they stand out in different directions; numerons spadices; large woody spathes; and densely elustered clongate froit, with a hard stony secd, a layer of soft phlp, and a tongh skin. The leaves are sometimes more than jo feet long. The great woody spathics are used by hunters to conk meat in, and with water in them, they stand the tire well enough for the purpase. Plicy are also nsed as baskets and as cradles lyy the Indians. The fruit is eaten by the ladians, and is particularly attractive to monkeys and some kiuds of birds.

INCUALBERED ESTATES' COURTS are tribumals, established under recent statutes, for the purpose of disposing more realily than the ordinary judicial machinery will permit, of landed property subject to incumbrances, or legal claims at the instance of other persons than the proprietors. The want of such courts was first felt in Ircland. A quarter of a century aro, the rents of many Irish estates did not suffice to pay the interest
of the ilebts created over them, and the number of such incumbered properties was increased by the abolition of the corn-laws in 1S46, which lessened the demand for those products of tillare which had rendered the cultivation of the soil possible by cotticr tenants. It was necessary that Ireland should become a grazing eountry; bat it could only do so in the hands of capitalist farmers, or landlords farming themselves, and a complete revolntion in temure was necessary to put them in possession of the soil. The sluggish and expensive procedure of the Court of Chancery made it impossihle to effect this; and it became necessary to eall into existence some more simple machinery by which property conld be transferred from the old to a new elass of proprietors. An anction-mart rather than a legal tribunal was wanted, under the cantrol of officers able to scrutinise titles and adjust claims on landed property with eare, yet withont unduedelay, and authorised to sell incumbered estates in the open market, to hand over a good and simple title to the purchasers, and to divide the sum realised among the proprietors, mortgagecs, and others concerned, according to their interests. To accomplish this, an act (11 and 12 Vict. c. 48) was passed in 1S43; but, owing to defective construction, it was found inoperative. It was followed, in 1819, by a secoud aet (12 and 13 Vict. c. 77), the object of which was to enable any owner of land, or of a lease of land for not less than 60 years unexpired, suljeet to incumhranee, to apply to commissioners, to be appointed under it, to direct a sale. Under the provisions of this act, three 'commissioners for the sale of incumbered estates in Ireland 'were appointed, and constituted into a court of record, which, however, was unt to be permanent. It opened its proceedings at Dublin, appiropriately enongh, in the desertel house of an 'iucumbered nobleman;' and the first sale was made on Fehruary 21, 1850 . The total number of petitions presented in the eight years ending 1857, was 4413, of which 1303 were lodged by owners. The number of absolute orders for sale during the same period was 3547. The gross amount produced by sales from the fonnclation of the court up to Angust 1859 was $£ 25,190,839$, of which there was distributed to creditors $£ 24,229,027$, including $£ 3,692,611$, allowed to incumbrancers who became purchasers. A sum of ex901,S09 remained in hand to satisfy unadjusted claims. At this period, however, the business before the court had almost ceased. There were, in fact, no longer mortgagees exasperated ly long-suffering left to petition; all the incumbered land had been sold, and cererybody with claims on it had been prad. The 'judicial anctioneers' had reudered a great public service; and it eame to be a guestion if the new tribunal should not, with wider functions, be rendered permanent. Why shonld unineumbered not obtain the same privileges as incumbered estates? Why should the court not take comizance of leases under as well as above $£ G 0$? I r . Whiteside adrocated the establishment of a permanent tribunal with these powers-one which would enable all owners and tenants nervous as to thcir title, to come before the court, and have it made capable of resisting all attacks. Accordingly, the Landel Estates (Ireland) Act (21 and 22 Vict. c. 72), passed in 1858, abolished the lneumbered Estates' Court, and transferred the judges and officers to the Lauded Estates' Court, which was rendered permanent with the wider functions required, and with various other powers connected with the declaration of title, 1 intitions and exchanges of land, the redistribution of intermixed lands, or other duties imposed upon it by subsequent statutes. The liecord of Title Office,
the counterpart of the Land Registry Office in England, has been since placed under its direction. Between the 1st November 1858 and 31st January 1862, the amonnt realised by sales made by the Lauded Estates’ Court was $£ 5,940,990$; and the approximate eapital value of estates brought under its jurisdiction, but remaining unsolu, $£ 3,661,996$. The rental and value of the estates sold in 1563, 1864, and 1865 are indieated iu the following summary :

There can be no doubt that the statutos calling into existence these courts have facilitated a great revolution in the tenure of the land in lreland. They have surplied the means by which the greater 1 art of the soil has jaassed rapidly from cottier tenants (i. e., lahourers prying rents determined by competition) aud an embarrassed and non-resident gentry, to capitalist farmers and to landlords who cultivate the soil themselves, and under whom the country has rapidly increased in agricultural prosperity. The process has, however, inflicted great hardships on the peasantry, who could no Innger subsist in their former numbers on the soil. The displacel cottiers have emigrated, removed in search of work to towns, or remained as farmscrvants on their old holdings. It is assertel that all have rather benefited in their standarl of living hy the change, lut this is denied even by many anthorities who take little heed of the sentimental grievances neecssarily involved in so great a displacement of the population; and it would at present be premature to express any opinion as to the ultimate eflect of the legislative measures referred to on the political and social condition of the Irish people.-Sce 'The Story of the Incumbered Estates Court,' by leerey Fitzgerald, which appeared in All the Fear Rount, published separately in 1562; and 'Jhom's Irish Almanac, which gives annually a summary of the information contained in the Return made to the I Iouse of Commons.

In 1851, the West Indian Ineumbered Estates' Court was established under the statute 17 aud 18 Vict. c. 117, entitled 'An Act to facilitate the Sale and Transfer of lacumbered Estates iu the West Indies.' The purposes and regulations were similar to those of the Irish Incumbered Estates' Act, the court of the chief commission being held, however, in Westminster, where it still sits.

1NDIGO T1RD (Cyanospiza cyanca), a North American bird of the Fiuch family (Fringillidet), a native of the United States, as far north as the Missouri, which it visits in summer, and of Central America, where it spends the winter. It is abont $5 \frac{1}{2}$ inches in length, of a heantiful blue colour, varionsly tinged and shaded, the lores and angles of the chin velvet black. It frequents npen places on the edges of woorls, and delights to sit singing on the top of a high trec. Its song is yery sweet. It is casily dumesticated, and is much in request as a eage-bird.
riggres, Jean Domeniqte Aucouste, one of the most eminent painters of the Prench school, was born at Montauban, September 15, 1781. A casual view of a cony of one of Raphacl's pictures, inspired him (so it is sail), at the age of ten, with the ambition to become a painter: he forthwith began to study drawing; and after having been successively the pupil of a M. lioques and of MI. Jriant, a landscape - painter, he went to Paris in his 17 th year, aud entered the studio of the great painter David. He remained with David as a pupil for four years. 1le carried off the scconll prize for

NKGIES-INJECTOI:

minting at the Acalemy of the Fine Arts in 1s00; and in the following year, he low the tirst-an honour which has scarcely, in my other case, been awardend to s. youg an artist. The picture which gainell for lime this ligh distinetion was 'The Arrival of the Intercessors at the Tent of Achilles.' It is now at the Selool of Fine Arts, and unquestionahly it complares well with many of the works which have mate him fanous. In 1502, he whibited two portraits, which still raak anong his tinest works nf this class; in 1s0t, he exhibitenl a purtrait of the First Consul, and also a portrait of himself. He again painted Napoleon, now become F:mperor, in Is06, and the pieture was longght for the loopitial des Invalides. In 1506, he set ont for tiome, where he contimed to live for many years. He sems to have male a reputation in italy carly, and the commissions he received, inchuting several from the pope, prove that his repmetation stool yery high. From fis countrymen, however, the pictures which he sent to l'aris, for many years met only with neglect or ridicule. It was at Florence, where he resided from ISㅇo to IS24, that he paiutel a pieture which at length gained him a party of cutlusiastic antmirers among the Parisians. The picture was 'Le You de Lonis XIII.' It was exhibited at the Lourre in 1524, and though much decrich as well as much aumired, it still raised I., previously almost unnoticed, at a bound to the clicf place among French idealist painters of that time. JIe received from Louis NYII. the Cross of the Legion of Honour; and he was forthwith appointed to sueceent Paron Denon as l'rofessor at the Academy of the Fine Arts.
Now that he had lecome the acknowledged heal and representative of a school of art, it was natural that lis work should be suljecteli to a seareling criticism, more carger to detect faults than discover merits. He hrought upon himself a perfect tempest of eliscussion in $15: 7$ hy a work called ' $1 /$ 'Apotheose d'Homere,' which his admirers declarel to le a masterpiece; while the party of his detractors then mumerous and indluential-condemned it as bail in drawing, as yoor in colouring, and especiatly as being ungraceful, coarse, and even vulgar in conecption. The French critics seem now to be agreed not only that this was i.'s finest attempt at epic painting. Jut that it places him at the heal of the Prench school, aud on the level of the greatest painters the world has seen. Many foreign julges, however, are disposed to hotl that the strictures originally made upon it were to a large extent well founded. The discussion which it originated ranged over all the piainter's work; it was renewed year after year, and the bitter expressions of some of his crities malle such an impression upon I., that from 1532 to 1531, he exhilited nothing but two portraits, and in the latter year embraced an opmitunity which offered of asain estallishing himself in Jtaly: He became Director of the French Acalemy at Jiome, a poast which has been held by many distingnisheel artists, and in which his prectecessor was Iforace Yernct. This tine, he remained in Italy For about ten years. During these years, he sent many pictures to be exhibited at Paris: these gradually wrought upmon the public taste; and when he returnel, lee found his countrymen tumamons and cuthusiastic in admiration of him, and in raptures alhout lis latest composition-' (Chenul)ini [the comInser] luspired liy the Muse.' Since then, it has been treason in Paris to breathe a doult abont the greatuess of lugres. The state ratified the decision of the public hy the liberality with which it bestowed its honours upon lim. He was made an Ullicer of the Legion of Honour in 1841, a Commander in 15% and Gmad Officer in $15 \overline{\jmath 0}$; he was named a
senator on May appoxiateme a member of the linperial Council of l'uhlic lustruction. He lias heem a member of the Institute since 150.3. Many of his works are now in puhlic collections. At the J'aris Fxhibition of 1550, a room was sut apart fur his pictures, and one of two grand medals of hounour was awardel to him -Eugene 1)elacroix getting the ather. He continned to exereise his art almost to the close of his life: and whatever may be thought of the sucenss of his ligher aims, he shewed himself to the last what he had always been, the most manstakiug. conscientions, and learnel of painters. The Nidiad which he painted in 1561 ('la somres'), and which was his sulitary contriluntion to the Landon Exhibition of 1862 , is considered the linest of his later works ; it was enthusiastically adnired, even hy those who strongly dissentel from the praises lavished ly his conntrymen upon his more ambitions undertakings. He died in January of the present year (1867). During the sumner, an exhibition of his works took place in Paris, at which alnost all his pictures and the cattoons for lis works in stained ghass and mural jaiatings, were brought together.

L'Apothéose d'Homère,' 'Te Martyre de St Symphonea,' 'La Naissance de Teans Amadyomdue,' 'La source,' 'L'Odalisque,' anl the portrait of M. Bertin, alné, may be inentioned as anoug the most characteristic-they are certainly among the most almired-of the wyrks of Ingres. Jis admirerswho are at present the whole body of his country-men-recognise in him, among modern painters, thie most faithful and perserering, and the most suc. cessful student of the tralitions of the Iemaissance; they declare his paintings equal in power and lidelity to the best works of the great masters. On the other hand, it is maintained ly his censors or detraetors that I. was deficient in invention and in refinement; that all the gool things in his works have been borrowed from ancient pictures; and that, morenver, he copicel badly from his molels, and uften spoiled what he borrowed hy his setting of it. Such censures applear greatly exaggerated; but it may be contidently said that I . is at jresent worshippech ly his countrymen with a somewhat blind vuration : and that they wond do well to expend mon a few really great works the admiration which they lavish ipon everything that proceeded from him.

INJE'CTOL, Gmpards, is now in general use for fecding water into steam-boilers, lurticularly locomotive boilers. F'eed-pumpls are difficult to keep in orler when driven at high swed. The very rapid action of the valves severely tries their durability. Th the case of locomotives, inconvenience was often occasioned ly the fact, that their feed-pumpls acted only when they were running; and thus, if an cngine happencl to stand still for any length of tine, the water oceasionally got too loir in the boiler. The injector acts equally well whether the engine is running or at rest.

The diagram fig. 1 will give an islea of the essential parts of the injector. A is the steamboiler, B being the water-level, CDF a pipe into which stem is almitted : this pipe terminates in a cone DF, which is enclosed in a larger come IIIt. In the cone DF, the pointed phy E can be raisel or lowered so as to increase or diminish the area of the aperture at its lower end F. G is a pipe communicating with the water-cistern, and alluitting water into the external cone 1111. K is a pipie communicating with the boiler muler the waterlevel. On glening commonications between the boiler and this apparatus, it might be expected that stem would rusho out at F , and water at K , both curreats meeting with great force, and escaping into

INJECTOR-INNES.

the atmospbere between the two openings. Paradoxical as it may appear, the ontflowing stream of

Fig. I.
water at K, althongh it is actially flowing under a greater pressure than the current of steam escaping at F, due to the liead of water arising from the

Fig. 2.
difference of level leetween the aperture at k and the water-level at B , is overpowered, and driven back into the boilcr; and not only is the outlowing current of steam at F able to dhive lack the stream
of water trying to escape at K, bnt the torrent of steam drags with it a large quantity of water with whiel it comes into contact as it is passing thronah the cone HH . This water finds its way into the eone JH , throngh the pipe G , from the tender or eistern, and constitutes the feed-water. The steam rushing from the aperture at F will neeessanily be condensed by the cold water with which it comes into contact in the cone HH . The explanation offered of the action of this apparatus is as fullows. The opening at F, throtigh which the steam escalue, has nearly twice the area of the opening into which the water is to be foreed at K. The opuning in the cone HFF is also larger tlan the ajerture at If, and it appears that the mechanical power contained in the How of stean from F is, as it were, transformed from a large area to a small r, with a corresponding inerease in its intensity: 'I'lis diminution of its rolmme arises from its conlensation ly the cold water throngl which it has to rush in the cone HH. We get tlins the mechanical power due to a colnma of large area concentrated into a small area, with a corresponding increase in its velocity, and to this increase of velocity is due the fact, that a current issuing at FH will enter at K, in spite of the connter-pressure at K. The injector for feceling boilers is rather an expensive apparatus, in consequence of the number of adjustable parts required to be provided. Fariations in the pressure of steam require alterations in the area of the steam-passage, and in the distances between the namths of the conical openings for the outflow and inflow of steam and water.

Fig. 2 shews in section an injector such as is now in common use.

Fig. 3 shews in section io simple form of injector for raising water. Steam issuing from the pipe S, into the bessel WIR,

Fig. 3. will draw the water through the pipe T , and force it ul, throngl the narrow neck helow li, to a height of about one foot fur every ponud of pressure per square iuch. It is donbtfad if those injecturs can work so economically, as resarls expenditure of steam, as ordinary slowmoving pumps; but they possess many eonvenienees and advantages, which are bringing them into use.

INNES, THosus, the author of A Critical Essay on the Aucient Inthabilants of Scollanct, was the second son of James Inncs of Drumgask, in the parish of Abnyne, and eommty of Aljerdeen. Ile was born at Drumgask in the year 5662 , and at the age of $1 \bar{J}$, was sent by his father, a zealuns Koman C'atholie, to be edncated at the miversity of Paris. He was ordained priest in 1691, and took his degree as Master of Arts in 1604. He continmed in France for some years, discharging his ecclesiastical duties, and assisting his eleler hrother, Lewis, Principal of the Seots Collere at l'aris, in arranging the valnable recorls which had been deposited there by James Beaton, the Iast Roman Ciatlolic archbishop of Glascrow: In 169S, 1. returned to Scotland, and officiated as a missionary priest at Inveraven, in the old cliocese of Murray. He again went to Paris in FOH , and passed the rest of his life at the Scots College, with the exception of one or more visits whicl be made to Britain. The great oljeect of his life was to write the true history oi scotland, and to refute the fabulons narratives whiel had heen hitlicto generally received by his constrymen. The latter part of his task was fully accomplislaed
ly his Critical lissay, which was published at Jondon in 1729 , in 2 vols. He hat prepared himself for the work lyy a careful stmy of all the materials which he could lind in the libraries of France, and of the books, whether puinted or in manuseript, which he was able to consult duting his journcys to Jingland and Siotlanch. In the winter of 1704 , he was seen ly Woutrow, who hat one fecling at least in common with him, and who thas refers to him in his Ana. lecta: "There is one liather lmues, a priest, brother to Father Innes of the Scots College at l'aris, who has heen in lilinburerh all this winter, and mostly in the Adrocates' Library in the hours when open, luoking books and manuscripts. He is not engaged in polities, so far as ean be guessed; and is a monkish, lookish person, who meddes with nothing but literature.' In the Critical D'ssay, J. examined the authorities on which depended what was then generally received as the history of Scotland, and shewed how little reliance was to be ghaced upon them. lint not content with overthrowing fable, be printed out what the truc history was, and where it was to he fouml. The difliculties in the way of this inguiry were very great. Even at the present lay, when most of the materials for Scottish history have been priatel, it is no easy matter for the stivent to examine thern. In In's time, they were for the most pat in maunseripts, whose very existence was umknown except to a few antiquarics. Every subsecquent writer on this partion of Scottish history has almitted the high incrit and the practical usefulness of I.'s work. He gave his really assistance to all who were engaged in pursuits similar to his own, praticularly to Bishop Keith in his Jistory of Scollend sunt his Catalome of Scotish Dishop,s, and to Wr Wilkins in his Concilia Matne Britamine et Hibernice. To this last work he also eontributed a valuable Letter on the ancient form of holding symods in Scotland. I, died at I'aris on January "Sb, i74, in thu Sal year of his age. The ('riticul fissay has now beeome a comparatively scarce work, but has never heen deprintet. It was intended by its author to he an introdnction to a C'ivil and ficclesiastical Jistory of Scolland. One volmme of this Ilistory was prepared by its author for the press, extending from tho introlhetion of Christianity to the death of St Colnmba in 597 ; and another volume was also left in an incomplete state, bring ing down the narrative to the year $S=1$. The whole was printed in one volume ly the Spalding Clul, in 1553 , under the editorship of $M \mathrm{Mr}$ Grub. Imperfeet as it is, it forms a valuable addition to omr historical literature, being distinguished by the same learning, acuteness, and moderation for which the Critical E'scay is so remarkable. As has recently been olserved, its anthor loved truth better even than he lovel his church. A full hiographical notice of 1. . and an accombt of his varions works, will he foumt in the preface to his Civil and Ecclesiastical History.

11:ETON, 11 mbr , an English general of the period of the Commonwealth, was the cldest son of Cicmau Ircton, of Attenton, in Nottinghamshire, and was horn in 1610 . He studied law at Uxford, lut on the lreaking out of the Civil War, offered his scrvices to the Parliament. His conncetion with C'romwell, whose danditer, Bridget, be married in li-16, greatly advanced his interests. At Nasely, he was taken prisoner by linpert, but rescued some hours after. When Cromwell's Ironsides decided the fortune of the day. I. was one of the most implacable enconies of the king, and signed the warrant for his execntion. When Cromwell passed over to Ireland to sobilue that country, he was accompanied ly his son-in-law, on whose vigour, judgment, and tact he placed much reliance. Cromwells pres. ence, however, was soon required in Scotland, and
the complete suljugation of Ireland was intrusted to Ireton. Ilis carcer was brief, but suceessful. Ho was, however, masparing in his severity. On the 15th November l6īl, he died of the plagne luffere the walls of Linncick. Ilis remans were conveyed to Ex.gland, and interred in Westminster Ahbey; Lut after the liesteration, they were disiuterreil, aml burned at 'lyburn. I. left ouc son and fome daughters.
 Sphin, the elder daughter of Ferdinam Vill. by his funth wife, Maria Christina, of the Two Sicilies, was born at Madrid, October 10,1530 , and by a decree which set aside the salie baw in Spuin, and was contirmed ly the Cortes, March i9, 15:30, became the heiress-apparent to the throne, whiel she ascended on the death of her fatber in Septemher 1833, her mother loing appointel quernorgent. An insurrection in favonr of her uncle, Don Carlus (q. v.), who, according to the Salic law, would have succeded to the throne, immediately laroke out in the norti-castern provinces, and ragul with great viulence for seven years, but was nitimately suppressed hy the aid of Britain, France, and Portugal. During this tumultuons epoch, effective intermal auministration was impossille, and it was necessary to conciliate as far as pussible all parties, in orcher to prevent descrtions to the Carlists. Before the revolt liad been crushed, which was conclusively eflected in 1839, politicians had begun to divide into two classes, the Moderados, or 'conservatives,' and the Excaltadus, or 'liberals;' and though the rucen-regent sided with the former party, she found it necessary to cularge the liberal constitution of 1834 , and ultimately ($18: 37$) to re-establish the constitution of 151?. The attempts of the Anderados to imangurate a more narrow pulicy in 1839 failed, and Maria Christima was forcel to the to France, leaving the regency and the care of the young queen to Eispartero (1. . .) . On November 8,1843 , the queen was deckared l,y the Corles to have attaned her majority; and this was followed soon after by the return of the dueenmother, the military dictatorship of Narwace, and an anti-liberal prolicy; The question known as the 'Spanish Marriages, which at that time argitaterd the differont consts of Borope, was settled by French inlluence, the queen marrying lur cousin, Don Francisen l'Assisi, eldest son of Ferdinand VII.'s youngest brother (October 10, 1546); while her sister, Maria Ferdinand Luisa, esponsed the Duke of Montpensier, the tiftla son of houis Mhilippe. This narriage of the gueen, based wholly uron the political interests of the party in power, has been fruit ful of domestic amoyances, ustrangements and recomeiliations rapidly succeeling carla other. After cight years of anthority; during which he had repressed all liberalism with an iron hant, and foilcal the intrignes both of the Carlists and the ling-consont, Narvacz gave place to Murillo (January 1851), who hegan liy promising liberal reforms, and arreed to a concordat with the foreA change to almost purely absolate government in 18.53, was followal by the banishment of many chiefs of the constitutional party, and a formidahle rising of the army took place. The queen-mother fled to lirance, ant Espartero was once more put at the head of an andministration in which liberal minciples held sway: But the queen disapmoving of his poliey, he resigned in favour of O'Donnell, J uly If, Isüt, who was soon after supplanted ly Narvaez; and the latter, in turn, had (Octolocr 1857) to make way for a liberal government. In July $18 \bar{S} S$, O Donnell was restorel to jower, and with the execption of a brief interval in June 1865 , in which Narvacz was bresident of the conncil, maintainel himself in the premicrship till his death,

ISKELIB-ISLES.

November 1867. The character of the government has of late years been utterly despotic, and the popular discontent is ouly kept down by the severest repression. The chief fureign events of I's reign have been-repeated negotiations of the United States with Spaiu, with the fiew of purchasing the island of Cuba; the rectification of the Pyrenean frontier; the successlul war with Jorocco (q. v.) ; the auncxation and subsequent evacuation of st Domingo (see HaYti) ; the discreditable squabbles witl the republics of Chili and l'eru; and diffienlties with Britain, arising out of outrages perpetrated on some British shipis and their erews.
Py her marriage, 1. has tive children, oue of whom is a son-viz, the lnfant Alionso Francisco, Prince of Astmias, borm November 2S, 1857.

I'SKELIB, or ESKILUP, a town of Asiatic Turkey, in the pashalic of Anatolia, near the KizilIrmak, abont 260 miles east of Scutari. There are several mosques and a ruinous castle on the top of a hold and naked limestone rock. In the neighbourhood are sepuleliral caverns, some of which are sculptared. Pop. estimated at 9000 .

ISLES, Lopds of thes. The Lords of the Isles are famons in poctry and ronaance, lut no proner historical aceount of them has yet leen written, and it is difficult to discriminate between truth and fable in the various notices which have been preserved. The Western Islands of Scotland, or Helrides, as they were afterwards called, originally a portion of the dumains of the Seots and Picts, were afterwards subdued by the Norwegians. When Seotland beeame consolidated into one monarehy, its kings endeavoured to wrest the islands from the Norsemen; and dnring the contest which ensued, the various chiefs sometimes 1 rofessed allegiance to the king of Scotland, and sometimes to the king of Norway, or their own more iminediate superior, who ruled in Man. The Scottish supremacy was finally established loy the victory of Largs, in the reign of Alexander III., and the final cession of the islands by Magnus, son of Haco, king of Norway, made in the year 12G6. By that treaty, all the ishads of the Scottish seas, except those of Orkney and Zetland, were surrendered to Scotland. Man was conquered by the English during the wars of the succession, but the other islands remained subject to the Scottish sovereigus. The first name which generally appears in the lists of the Lords of the Isles, as distinct from the kings of M1an, is Somerled; and the great chiefs who afterwards hehl the islands and portions of the mainland near them, claimed descent from this powerfin lord. He appears prominently in Scottish history in the midulle of the 12th e., during the reigns of David I., and his grandson and successor, Malcolm IV. llow he acquired his great authority, is not precisely kuown. Eren the race to which he belonged is meectiain; probably, like most of his subjects, he was of mixed descent, Norwegian and Celtie. 1 Iis sister was married to Malcolm Mae-Heth, the head of the great Celtic family of Murray, who has been confounded ly most Scottish writers with the impostor Wimund. and whose true history has been explained by Mr E. W. Hobertson in his Scolland under her Liarly Rings. In the year 11G4, Somerled landed on the coast of Renfrew, at the head of his subjects of Argyle and the Isles, and was defeated and slain. Ilis dominions seem to have been diviled among three of his sons-Ingal, Angis, and lieginald or Ronald. The descendants of Dugal became Lords of Argyle and Lorn; and those of Reginald, Lords of the Isles. Rieginatd is said to have been sueceeded by Donald, and Donald by Angus Mor, who was the father of Angus Og.

We know from Barbour that Augus of the Isles, 'Lord and Leader of Kintyre,' gave his fealty to Bruce when doust hardly pressed at the begiuming of his reign, receiving him into his castle of Dunaverty, and that be afterwards fought under the great king at lannockburn. This chief is the hero of The Sord of the Jolcs, lut his name, as Srott tells us, 'has bech, exphonice gratiu, exchanged for that of Ronalil.' John of the Isles, son of Angus, married, first, his consin, Amy of the Isles, and secondly, Margaret, daughter of Fing liobert II.; and among his descendants ly these inarriages are said to be the M‘Donalds of Sleat, Keppoch, Glengarry, and Clanranahl. During the tronbled and disastrous reign of David II, John of the Isles was able to maintain himself in a state of practical independence of the Scottish crown. He was at last, however, obliged to submit. He met David at Inverness in 1360, and gave lostages for his fidelity: His successor was Donald, his ellest son by Nargaret of Scotland, and the most powerful of all the Island lords. Ile set the kings of Scotland at defiance, and made treaties as an independent sovereign with the kings of England. He married Margaret, danghter of Euphemia, Countess of Lioss. Margaret's brother, Alexander, Earl of Tiuss, ly his narriage with a daughter of the Iegent Albany, left an only chike, who became a nun. Donald clained the carldom in his wife's riyht; and when this claim was refused by the regent, he prepared to maintain it by force. 'I'aking possession of Ross, lie marched at the head of a large army from Inverness, through Murray and Strathhogie, entered the Garioch, and threatened to destroy the burgh of Aberdeen. At Harlaw (q. v.), near lnverury, he was encountered on St James's eve, 1411, by a Lowland army much inferior in number, commanded ly Alexander Stewart, Earl of Mar. The action was fiercely contested, and, though not decisive in itself, the Loril of the Isles retreated, and all the advantages of the combat remained with Mar. This engagement, famons in history and song, probably saved the Lowlands of Scotland from Celtic supremacy. Douald was soon afterwards obliged to surrender the earldom of lioss, and to submit to the Regent. He was succeuled by his son, Alexander. This lord, like other great Scottish nolles, was scized and imprisoned ly James I., who was determined to allow no rule in Scotland except his own. When resturel to liberty; he again broke out into insurrection, but his arny was routed; aurl in order to ubtain pardon, lie appeared at the altar of the church of Holyrood, and kneeling half clothed before the king, presented his sword, and implored forgiveness. After a short imprisomment, he was arain parloned. Upon his mother's death, he assumed the style of Larl of Ross, and seems to have been in pussession of the earlion. Ite was succeeted as liarl of liuss and Lord of the Isles by John, his elelest son. Jolin, like his predecessors, acted as if he were an independent sovereign rather than a vassal of the king oI Scots. He entered into a confederacy with the earls of Donglas and Crawforl, the one, the most powerful nobleman in the sonth, the other, in the centre of ScotlaniI; and had they acted together with 1 romptness and determiuation, the Ilouse of Stewart might have ceasel to reiga. In October 1461, at his castle of Artornish, on the coast of Arcyle, he granted a commission to his kinsman Rouali, and Duncan, Archdeacon of the Isles, to enter into a treaty with Edward IY. of England. By that treaty, which was concluded in the following year, be acreed to become liegeman to Elward, and to assist him in conquering Scotland. IIe was attainted more thau once, and tinally was obliged
to resign the earldom of lisss, which was annexed to the crown. "J'his took place on the loth day of July 1476 and John was at the same time created Lord of the Islos. Jle is said th liave died in 1 !!s. After his elecease, the title of lare of the lsles wats assumad liy lomalal the bastaral, son of Ansyis of the Isles, an illegitimate son of Juhn, Lorid of the Isles; and seweral chiefs were attanted in 1503 and 150 fur supurting his clanus. In Iuly 1515, anotlev lonali, styling himstlf Viml of liuss ant Lorl of the Isles, presiding in a sont of II ighland parliament, granted commission to the bishop Elect iff the Isles and another person to enter into a treaty with the Earl of Lennos, then acting for IIenry VIlI. of Jinglancl. 'lhis doenment is given by Mr Tytter, the historian of Scotland, who remarks that 'it is a diplomatic entiosity; not one of the IIghland chieftaius, cighteen in mumber, being able to write his name,' In a praper addressed by the ILichland Commissioners to the Irivy Conacil of Enerlam, they speak of their constitnents as 'the aukl enemies to the realn of Scotland,' the very name by which the sontish l'arliament was wont to spark of the English. Varions prersons, clamine to be descendants of lohn, liarl of lioss, assumed the style of Lord of the lsles; lut the title docs not appear to have been recuignised after lis lecease, except as anuexed to the crown. The elilest son of the sicottish sovervigu has gnacrally used the style of Lord of the Isles, along with his other titles.

ISMIMIIS is the mame of a very alvanced 'free. thinking' Mohammedan sect, of the Shiite branch of Islan (sec Suntes), which slung up in the Oth c. A.D., and spreal thronghont Mohanmedimism. Iieconnising Ali atone as the rightfal suceessor of the Prophet, theylich Abu liekr, Omar, Otlman, Moawia, to be usurpuers, and counted their Imans, or representative prophets, from Ali only. "he seventis Iman was one Ismanl, who lived about 150 Hedjrah (772 A.11), the son of Jafar Assalik, or rather of his son, Nohammed. Ife wis surpusma to he the riglateons l'ropliet, the only wrhodox, spiritual heal. The notion of the lmam, in general, is that of an ever-living, thouhh, at times, hiklen, supreme guide of the people, who, after a time, is restured to humanity, or at least to the lelieving part of it. A prayer, jreserved to us by Ibn Chaklun, will best shew the pectulir votion connected with this belief, to which uo small part of Islam confossed. livery evening, a certain number of Imamiehs prayed: " 0 Imam, appear unto us! I Imanity is awaiting thee; for righteousuess and truth have perished, and the world is gone down in darkness and violence. Appear unto us, that we may, thrond thee, return unto Gol's morey.' It was thonght, in fact, that Ali himself lial reapleared in every Imam, and that he would desccuil again, some day, "from the clonds,' to minte all lolievers, and to restore the pure faith. "lhe real importance of this secet, which lad existul uoobserverl for some time, dates from Aldallah Ibu Maimum, whase fatlier hite been executed for professing materialistic doctrines, and trying to tura peojle aw:y from the doctrincs of Islam. Abrallah seems to hawe practically earrical out his father's notions, but more cantionsly. He is described hy the Arabic writers as an utterly irreligions and unscrupulons materialist or ' 7 , entik.? The Messiah, whom he preached, stond highor than Mohammed himself, and thoneb he did not exactly reject the \mathcal{F} oran en blor, he yet contrived to allegorise and symbolise away nearly all its narratives and precepts. Jut the systematic way in which Abelallals went to work, in trying to undermine, anil eventually to abrogate, all Islam, and, as his biocraphers have it, to replace it hy materialism, atheisin, and immorality, is very remarkable indeed.

IIe established misionary schools; ant the instructions given to the yound missionaries wore artfully designcel to win over not merely all tho diflerent Molammedan sects, luth Simmites and shiites, but also Jows anl ('hristima. 'l'he missionary's (dai's) first task wats tu win for limself tho berfect confidence of the prusclyte to be, ly tho atlectation of great orthouloxy, and lyy a vast disulay of pious learnias, chictly Koranic. The disciple is by legrees to be cross-examined on dillicult passan'es, on their 'spiritual menning' and on sume joints tonthal upon belonging to the $1^{\text {hiysical senences. }}$ Only matters of acknowledgul nhsenrity and uncertainty are chosen as subjecis of discourse, mattera, the real nuderstanding of whiel beloners exclusively t, the 'aristocracy of learning.' Gencrally, the youth is so decply impressed with the erndition dis. played, the expectations rised, the mystery, anl the rest, that he will follow glally to the end. Jint, at times, the missionary mects with a less docile subject, a man who may be acenstomed to disenssions on these topies, who may have pondered over these things himself: the dai shall apuear to accommodate himscle to such in onc's views, apylaud all le says, and thus ingratiate himself with lim ; all the while taking eare to shew himself well informed on those points which may he in favour with his discijle, and that mode of faith which he professes. All this is to lue done very cuncfully, lest the vther might 'suspect and betray:' 'Tle oriluary individual, on the other hame, is, after the lirst preliminaries, to be told that religion is a secret science, that most penple kuow joothing of it, or utterly misumerstaml it, that if the Moslems knew what degree of science (fod has imprated to the Imans, by quite a special favour, there would no longer be any dissensions among them. The disciple, whose curiosity has hy that time been fully roused, is then to be instructud in a few allegorical interpretations of both the practice and theory of the Koran ; ald when le is convinced of the desirability to know mow, and everything that the master knows, the latter is merely to point ont to him that all this knowledge belonged of right to all Islam, bot that the wickedness and perverseness of those who followed the wrong successor, has cansed all dissension and infielelity in the community of the heljevers. It is the Imams who are the dispensers of the right interpretation, not peoples own reason and julgment.

For the religion of Nohammed, they were to tell the disciple at this stage, was not is thing easy to comprehend. It did not mean to flatter the senses, or to dazzle lyy outward signs. It was, on the contrary, a diflicult, the most difienalt matter. Only angels of the first rank, or a projhet specially cloosen, or a faithful servant whose lieart Gud had searched and foumd true, were worthy of bearing this most precious of all burdens. liy these and other speeches, the ordinary disciple is soon hrought to revere and to almire the daf beyond all other men around him, nyon whom lie henceforth only looks as iufcrior beiugs and infidels, and his desire of knowing more or all becomes passionate. But bitherto the procedure has been discrect. All that was desired in this first preliminary stage, was to unsettle the man's faith. The mreparatury fuestions pat to the noplayte were so contrived as eompletely to puzzle and bewilder him (e. g.-Why diel find take seren days to the ereation of the world? Why are there twelve wells and twelve months? W*hat is the fignre of your sonl?) ; and if the missionaries themselyes procecded to answer them, it was by allegorisiug interpretations of the Koran, the Sunnals, and the Laws. Bnt they used tho common artifice of stopping short just in the middlo of an explanation, for they said, when pressed to

ISMAILIS.

continue: 'These things are not lightly to be comnunicated; God always requires a pleige first. If you will swear into my hands, with the most solemn and inviolable oaths, never to divnge our secret, never to give any assistance to our adversaries, never to lay a trap for nis, and never to speak to us unless for the purpose of telling us the truth, then I will tell you more.' When, if the neophyte has taken the requisite oath-and it is only at the very eommencement of the initiation that oaths are of any moment to the Ismaili-he is further asked to contribute a certain sum of money, as a -pledge for his sincerity. Shonld the convert, however, exhibit the slightest degree of relnctance either in swearing or in laying, he is instantly given up, by the dai- 'a prey to the never-to-be-solved doults of his heart.'
Thus far the first preliminary degree. In the second, the missionary begins to initiate the neophyte's mind into the doctrines of the Imamat-i. e., to prove to him, ly arguments and proofs best adapited to his mind, how the understanding of God's religion can only he accomplished by following the revelations given to and communicated by certain special delegates; whose names are communicated to him in the thind degree. There are, he is told, seven such Imams, as there are (according to the Koran, Sur. 65, 12) seven planets, seven heavens, seven earths-riz., Ali, Hassan, Huseiu, Ali Zein Alabidin, Mohammed Albakir, Jafar Assadik, Ismail. In the fourth degree, the proselyte learns that the number of the prophets whose task it was to abrogate at different periods the ancient forms of faith, and to substitute new laws, is also seven, like that of the Imams; that cach of them had a'companion,' to whom he confiled his whole dispensation and its sacred meanings, and that the latter communieated the same in a secret manner, and by oral tradition, to anotber man after him, who again handed it down to a successor; until, after a string of seven such 'successors,' or samet (silent ones), in contradistinction to the prophet (natil) or speaking, teaching one, a new Imam is born. The traditional chain has thus never been broken. After seven times seven such successions of prophets and their 'silent' successors-during which seven religions were snccessively albrogated-there appeared the last and crowning prophet, who abrogated all the religions that were before him, and who is the 'chief of the last century'-the last natik. These seven are: (1) Adam, with his companion ('Soos") Seth; (2) Noah, with Sem ; (3) Abraham, with Ismael; (4) 11 oses, with Aaron. The last of the seven 'silent ones' that followed him was John, the son of Zachariah. The 5th is Jesus, the son of Mary, with Simon ' Kepha'-lyy them supposed to the Arahic $=$ purity. The 6th of the speaking prophets' is Mohammed, the son of Abdallah; with lim was Ali, the son of Abu Talib; and he was followed by six other 'silent ones,' who transmitted to each other the secret mysteries of his religion; the last of whom was Ismail, the son of Jafar Salik. The 7th of the prophete is the 'Chicf' or 'IIaster of the ceatury.' In him culminate and are completed all those sciences which are called 'the Sciences of the Primeval Ones.' It is he who has first fully opened up the inner and mystic meaning of the words of faith; from him, to the exclusion of every one else, their explanation is to be received. He, and he alone, is to be followed, obeyed, and trusted in all things. By utterly submitting to his words anl teachings alone, man is in the right path. All the prophets and all their teachings without exception before him are abrogated through him and hy him.

In the fifth degree, the Kioran and its precepts
are made the subjects of discussion. It is proved to the convert how utterly wrong and foolish it is to interpret the words in their nsual sense. Here, again, grent smbtlety is brought to bear upon the disciple. If he be a Persian, he is told that the Arabs are the oppressors of his country, upon which, with other humiliations, they have also imposed the slavish worship of this book. If he be an Arab, his mind is wronght up against the Persians, who, he is tokl, have appropriated to themselves the pontificate and the sovereignty, that by rights belonged to the Arabs. He is then instructed in a multitude of mystical relations of things depending upon mumers.
The practical religious instruction begins with the sixth degree, into which the ncophyte only enters when fully ${ }^{\text {rrepared }}$ in his mind to deny all positrve religion, and when he has given the most undoubted pledges of his discretion and silence. Every Koranic precept is now allegorised. Prayer, tithes, pilgrimage, legal purity, and other religious olservances, are cautionsly and systematically interpreted to mean certain spinitual things only. These precepts, the missionary explains, have only been established 'as enigmas by the philosophical prophets and Imanns, who saw in them the only means of keeping the common people in dependence, of exciting them to actions useful to society, of preventing them from hurting each other, and to commit gross crimes.' But by slow degrees, the philosophers, Plato, Aristotle, Pythagoras, and their systems are introduced to the neophyte. They and their systems are contrasted with the Prophet and the Imams, and their dicta. The result is represented as by no means flattering to the latter. He is distinctly shewn the absurdity of a blind belief in so-called historical traditions; it is made clear to him how hearsays and legends differ from reason and the full and free action of the logical faculties: in this way the open contempt with which the Imams themselves are then spoken of, no longer shocks the disciple to any very great extent.
The seventh degree paves the way for the negation of God's unity, which is fully carried out in the eighth. Here the Demiurgos, i. e., a second god, but little inferior to the supreme Being, is the real creator of all things. The first Canse, or the "Preexisting,' has neither hands nor attributes; no one is to talk of Him, or to render Mim any worship. Much as this part of the doctrine has given canse to discussions within the bosom of the \mathbf{I}. themselves, it is yet scarcely doubtful that it is the notion of the Demiurgos that has erept in here. Hamza himself speaks of this 'pre-existence' as the W'ord, or Logos (q. v.), although nothing can be more obscure than the manner in which this most ahstruse dogma is cither explained or denied by the different doctors. The Foran and the 'Word of God' are then taken in hand, and explained to the proselyte in a fashion very different from the one he had been accustomed to before. The resurrection, the end of the world, the supreme judgment, the distribution of rewards and punishments, are treated as allegorical or mystical symbols of the revolutions of the stars and the universe, which follow each other periodically, and of the destruction and reproduction of all things terrestrial, such as physical science and philosophy teach. The ninth and concluding degree of initiation frees the proselyte from all and every restraint with regard to his belief. He may, and some do, adopt the system of Manes (see Lares), of the Magi (q. v.), of Aristotle or Plato, or he may proceed eclectically with them all. As to the notions previously instilled into his mind with regard to the prophets or the Imams, he is now led to look upon all those 'inspired'people as without exception inferior to Mohammed ben Ismail,

ITAIY-IVANOTO.

the chicf and loctor of the last period. The disciple learns, at this stage, that no miracle lias ever been performed lyy any one of them; that the prophet is merely a man distinguislsed by his purity and the perfection of his intelligence, and that this purity if his intelligence is precisely what is called 'prophecy:' Gol throws into the prophet's mind what pleases Him, and that is what is understool by 'Word of Gol.' 'The prophet clothes this worll afterwards with flesh and bones, and communicates it to the creatures. He establishes by this means the systems of religions institutions which appear to him the most alvantageons for the ruling of men; hut these institutions and behests are but temporary, and intended for the preservation of orler ani worldly interests. Ais man who knows need practise any single one of them ; to him, his knowledye suffices.
As to Nohammed, the son of Ismail. of whom the proselyte is told at first that he will reappear in this world-he is afterwards represented to him as merely destined to reappear in his doctrine, by means of the propagation of his pure philosophy by the mouth of his disciples and alostles. As to the Arabs themselves, the missionaries teach that Goil abhors them, on account of their baving killed Husein. the son of Ali, and that he has therefure taken from the ealifs the Imamat, as he took from the Israelites the prophetical succession, when they had killed their prophicts.
Thus the crecd of the I. haul been gradually built up. Many changes were introduced into it at different times, and among them, this very important one: That the person of Mohammel, the son of Ismail, itself was changed for another, a descendant of Abdallab, the son of Maimnn Kaddal.
The two principal writers on this sulject are Makrizi and Nowairi ; to the latter of whom the greater part of the foregoing infurmation is luc. He has preserved fur us at length the very curions oath imposed upon the proselytes at the heginniug of the initiation; and also certain instructions reserved for the missionary himself, waich simply teach him to 'be all things to all men.' Thie following is a characteristic sample : 'Then, again, there will be those to whom you must preach the belicf in a living Iman. Say Molammed ben Ismail is alive at this moment. Be very gentle and very modest with them; pretead to despise gold and silver; make them recite fifty prayers a day; recommend them to alstain from lying and other vices, also from wine. These people are of the utmost use to us. Leave them in their special creed, only just telling them some of the mysterics of the numher Seveu; but break their spirit by the surcharge of prayer. These will be our best proofs atainst any assertions of an adranced disciple, if he should betray us. Furthermore, these people, when properly managed, are sure to leave you at their death all their money, as they would, during their lifetime, give you cverything they possessed withont a murnur. The more adranced, you may at once inform of the abrogation of Mohamincdanism by our Imam-of the worthlessuess of the Koran and its laws in their literal sense. To the still higher disciples, yout may confide the entircly spiritual nature of the lmam's "life" in such a mauner that their belief in the dogma of the resurrection is practically destroyed by it. From this stage you will conluct some to the renmeintion of the belief in the existence of those heavenly beings, the "angels," and the creation of Adam as the first man on carth, while there were many before him. Having arrivel at this point, you will find it marvellonsly easy to destroy the dogma of the cxistence of God and the mission of angels to 578
the proplacts, and to substitute for all this our own truth-i. e., the eternity of the universe. The last step is the aholition of hath Molanmed ben Ismail and limail, who are ouly the "世ates" to knowlellye.'
So far the doetrines of the 1., who, doubtless, aimel-apart from an original desire of purifying and allorrorising Mohammedanism, and ele vating it to a philoserhical system-at pulitical power. Ifow far one of their principal l,rancles, the Karmathinses, succeeded in this, will bre fomm under that healing. See Makrizi, Nowairi, Silvestre de Sacy, Religion dis Drus's, ite.

I'TALY. Since the article ftaly was written, the events which are recorded under fermasisy in the Sctplemest, have led to the angmentation of the kiugdom of t., by the actuisition of the province of Venetia, with an area of 9709 sy . mis, and a pmp. of $2,15,5,159$. By the annexation of the l'apal states (4. v.) in ()ct. 15-11, the kinglum of Italy receivel a further increase of $4 \overline{0} \mathrm{sq}$. m., with $\overline{\mathrm{F}}$.un,(00) inhahs.
1 TRI, a town of South Italy, in the prowince of Terra di Layoro, six miles north-west of Gaeta, picturesquely situated on a lofty isulatell hill, surmonutel hy a ruinel castle. I. is the hirthplace of the celebrated bandit, Fra Diavolo. L'oj\% (1861) $61 \% 6$.
$\mathbf{I}^{\prime \prime} \Gamma \mathrm{C}$, a town of Mrazil, in the province of San 1'aulo, and 40 miles north-north-west of the town of San liaulo, on the Tiete, in one of the must fertile districts of the province, and surroumbled by lofty hiils. Host of the houses are luilt of earth or mud in a framework of wood. Sumar-cane is extensively celtivated in the surrounding district. Pop. 10,000,
ITURHide, Dos Atgustis de, Emperor of Mexico, was the sun of a biscayan mobleman and a rich Creole, and was burn at lillatolid, in Mexico, in 1784, or, according to others, in 1790. On oceasion of the first iusurrections in Mexico, he was appointed ly the viccroy; A pordaca, to the command of the militia of his province, and was successful agninst the insurgents; lout he afterwards inclined mure to their cause, and heing intrusted hy the viceroy with the command of the army in $18 \div 1$, he went over to them, when he found it inpossible to obtain a separate constitution for Mexico. In May 1822, he ascended the throne of Mexico as eurneror, under the name of Au_ustin I., and the Congress declaral the crown hereditary iu his family. He secued to aim at ruliny well, but rather as a despotic than a constitutional sovereign. His reign was full of trouble, and came to an emel in less than a jear ly his aldication on 11 arch $20,18 \div 3$. He received a pension of 25,000 pinstres from the Congress on conulition of his residing in Italy, and went with his fanily to Leghoru; lout havine stdl many partisans in Mexico, he was inlucell to return thither in ISO4, in order to repossess limself of the throne, and was almost imme liately taken prisoner, and shot in Padilla, on July 19 of that year. The Iexican Congress male a urovision for his family. Itis son was adopted ly the late Emperor Maximilian of Mexico as his heir, Maximilian himself being chillless. The overthrow of the Mexican Empire, however, has cut off his prospect of a thronc.

IVANO'vo, a tomn of lussia, in the gnvernment of Yadinuir, 150 niles west-north-west of Mascow, on the river Ouvod. The name of 1 . is foumd in the annals of the 10th contury: Is 1741, it came into 10.ossession of the Counts Sheremetieff, to whom, at the present day, belonss the territory of I., the pop. of which amonnts to 24,000 . The pop. of the town proper is (1561) 5432. 1. is the centre of the Russian cotton manufacture, whicla gives employment to a great part of the inhalitants, not only of the town,

JACITARA PALM—JAVA.

but also of the surrounding district. There are also large cotton-printing establishmeuts in the town. The cotton-manufacture of I. has increased to a rery considerable extent since 1812, in which year, on account of the French invasion, the greater part
of the workmen left Moscow, and settled here. It is expected that the projected connection of I., by means of a branch, with the Moscow and NijniNovgorod Rallway, will give a fresh impulse to the industry and commerce of the place.

J

ACITA'RA PALIT (Desmoncus macroacanthus), a palm found in the forests of the low lands of the Amazon district in South America. It has a slender flexible stem (see Dessoncts), often 60 or 70 feet long. The outcr part of the stem, cut into long strips, is much used for making those very strong and elastic plaited cylinders in which the grated root of the mandioc (cassava or tapioca) is squeezed, to free it from its poisonous juice. It might probably be fonnd useful for many other purposes, and seems eminently suitable for many kinds of wicker-work.

JACO'VA, or YAKOVA, a town of European Turkey, Albania, in the pashalic of Scutari, on the White Drin, 20 miles north-mest of Prisrend. Pop. 18,000.

JA'NKOTATZ, a town of the Austrian Empire, in the Servian Woiwodena, 81 miles south-sonth-east from Pesth. The surrounding country is level and fertile. Pop. 10,076.

JAU'LNA, a town of India, in the Deccan, Nizam's dominions, situated on a gently sloping declivity, in a rugged country, 38 miles east of Arungabad. It has a fort and cantonment for Pritish troops. The climate is healthy, and farourable for the production of vegetables and fruits. On the opposite bank is the old town of J., now much decayed. but formerly large and fourishing, having enjoyed an extensive trade in grain and silks. It yet possesses to some extent a manufacture of silks for native use. Pop. 10,000, of whom about a tifth are Mussulmans.

Java, The Islavd of. In addition to the information given in the general and special articles on J., the following details seem desirable. In 1864, the pop. of the residencies or governmental divisions momed to :

Residencies,	Natives	Furopeazis.	Chir	Arabs, ac. ces	Total
Bagalen,	863,104,	369	1,836	151	865,470
Banjuemans,	685,710	440	2,T43	111	692,033
Banjoetrangi,	43,515	110	247	2.424	45,097
Bar.tara,	604,994	233	1,623	532	607,386
Bataria,	463,591	5,5:6	4,570	1.035	517,76 2
Bezorki,	315.305	$5{ }^{4} 4$	652	2,27	313,478
Buitenzorg,	351, 365	4.1	10,345	82	361,253
Cheribon,	$\bigcirc 14.161$. 05	13,534	1,0\%0	!20.790
Djokjukarta,	368,337,	1,085	1.748	145	371.318
J para,	589,338	507	8,8i0	871	3) 39.576
Kadne,	492,311]	205	3.752	4	925.332
Kediri,	: 26.953	329	3,886		431,178
Krawang,	189.834	246	2.411	78	191.619
Madioed,	494.256	365.	1,856	153	476.630
Pasnerueman,	483,780	955	3332	1,515	¢94.54?
Parjitan, .	102,989	32	193		103,215
Pekalongan,	332,50:	435	3,783	797	3 3),545
Preanger Regencics,	870,148	346	33.5	581	871,434
Proboling ${ }^{\text {coso, }}$	337,345	498	1.531	897	340.271
Rembans,	724.458	619	12,613	748	738,465
Samararız,	1,001,259	5,162	11,441	2,420	1.020.275
Surahaya,	1,261,271.	5.124	T,603	4,602	1,278,600
Surakirta,	719,924	1,953	4,503	497	726,883
Tagal,	517,173	460	3,566	1,93?	523,491
Total,	13,138,806	26,680	150,632	22,604	3,335,122
Madura, Island of,	565,729	425	5,560	6,932	573,616

Banjoerrangi, Buitenzorg, Krawang, and Patjitan are assistant-residencies; Djokjokarta and Sirrakarta are called the Vorstenlanden (Lands of the Princes), the former lowing a native sultan, the latter an emperor, who are vassals of the Dutch.
On the loth of June 1867, an earthquake caused the loss of ahont 300 lives and a vast anount of property in several of the residencies, especially in Djokjokarta. The mountains are chiefly volcanic. The highest are sméru or Mahaméru, in the residency Yasoeroewan, which is 12,250 feet high, and slamat in Tagal, 11,320. Sulphar, almost ptre, is abundant.
Bagalen is one of the most fertile rcsidencies, and produces coffee, incligo, tea, cinnamon, rice, tohacco, sugar, maize, cotton, cocoa-ruts, and a great variety of fruits. The forests contain much fine teak. Besides agriculture, the principal industries are wearing, dyeing blue, rope-spinning, making pottery, nets, paper, and mats. In 1855, there were 9,152, al 19 fruit-hearing coffec-trees, 120 indigo-factories, $4,658,000$ tea-plants, and 787,788 cinnamon trees belonging to the government.

Banjoemaas (oe pron. \bar{u}) is very mountainous towards the north and north-cast. Banjoemaas, the capital of the residency, situated in a valley on the left bank of the Serajo, in $109^{\circ} 19^{\prime} 20^{\prime \prime}$ E. long, and $7^{\circ} 33^{\prime} 45^{\prime \prime} \mathrm{S}$. lat., is a regularly built town.

Banjoewangi, an assistant-residency, in the castern part of the island, is mountainous, well wooded, and fertile. The forests abound in fine timber-trees. Banjoewangi, the capital, lies on the Strait of Bali, in $114^{\circ} 26^{\prime} \mathrm{E}$. long., and $5^{\circ} 12^{\prime} 40^{\prime \prime} \mathrm{S}$. lat., and is it beantiful little town of 5000 inhabitants.

Bantam, a residency in the west corner of J., is low and marshy on the north coast. Towards the interior, it cradually becomes mountainous, with the most beautiful ralleys between the heights. The south coast is wild and rocky, and on the west side are impassable mildernesses, strarming with wild beasts. The soil is generally fertile, producing the usual crops of the island. Bantam, the former capital of the once porerful kingdom of that name, is now little more than a village, in which the remains of former grandeur are to be seen. The resident has his seat at Serang, a large village, in $106^{\circ} 8^{\prime} 37^{\prime \prime}$ E. long., and $6^{\circ} 6^{\circ} 45^{\prime \prime}$ S. lat.

Bezoeki, on the east coast, is mountainous, and clothed with a luxmriant vegetation.

Buitenzorg, an assistant-residency, is very healthy, and often has a favourable influence on the sick from other districts of J., especially of Batasia, to which it is contiguous. Buitenzorg, the capital, is $88: 3$ feet abore the sea-level, and is one of the most pleasant places in the island.

Cheribon is a very exteusire and beautiful residency, and derives its name from that of the capital, which is a corruption of Tji-ribon, or river libon, on which it is built. Cheribon, the capital, in 105° 38^{\prime} E. long., and $6^{\circ} 45^{\prime} \mathrm{S}$. lat., was once a Hourishing place, but has been for some time retrograding.

Djokjokarta produces the usual crop's. The natives are much addicted to the use of opium. The productive power of the population is therefore less than in other districts of the island

JAWOROW゙ーJESI

Djokjokarta, the capital, is situated on the richt bank oi the Oeprak, in $110^{\circ} 21^{\prime}: 30^{\prime \prime}$ E. lungo, ant $7^{\circ} 46^{\prime}$ s. lat., at the south-sonth-west base of the mountain Merapi. The city is larye, and regularly inilt. It is the seat of the sultu, the resident, and assistant-resident. Pop. 5i,, 000 , of whom Gull are Europeans.
dapara, on the north coast, has a very warm climate in the interior, and thourd veretation is in gencral laxuriant, yet searcity of water is sumetimes felt. The resident has his seat at Pati, in $110^{2} 560^{\prime \prime}$ 1. long., and $6^{\circ} 45^{\prime} 30^{\prime \prime}$ \& hat., which is regularly built, atul has a pop. of 10,000 .
kaloc-i. c., hollow-is a large basin formed by lofty mountains, of which Soembinf is 10,911 feet high, :m] the simboro 10,312 . It is one of the stnallest residencies of J., but densely peopled. Its fertility is increasel by the abmalance of vater flowing from the surrombling mountains. The amomit of coffee producell is very great; in $1 S \bar{S} S$, the fruit-hearing trees numbering $30,937,695$. Beantiful marble is fonul in great quatities. The capital is Magelang, situated on the cast bank of
 Iop. 34,000.

Kediri consists of a plain bounded lyy mountains on the north, east, and west. The navigable river Brantas, which flows through a great part of the residency before falling into the sea at Surabaya, affurds great trading facilities. The people, however, are low in the scale of activity and morality, which may partly result from kediri having been, under the former Javan princes, a penal colouy. They are greater slaves to opium than any other people in the Inlian Archipelago. Kediri, the seat of the resident, is situated on the right bank of the river Kediri, G00 feet broad, which higher up is called the Brantas. The streets are broal and planted on both sides with tamarind trees.
lasocroewan, which is washed ly the Strait of Madura, has important disheries, aud is famel for its race of horses. Iasoeroewan, the eapital of the residency, is situated near the sea, on the river

The l'reanger liegencies are partly oceupied with mountains, forminy two chains. Between these are many extensive ralleys of the richest soil. The mountains are of basalt. There are many rivers, of which tive are mavigable. The numerons lakes give gool supplies of fish and water-fowls. 'The bays on the coast are also frequenten? by fishing-boats. The mountains are coverel with collce phantations to :300 feet above the sea-level, while the low and marshy grounds prodnce rice abundantly, and the villages are hill with cocoa-nut palms and other frnittrees. In no other resideney is the tea-culture so extensive. The forests produce goorl timber, the lamboo attaining a height of 80 feet. There are rhinneeroses, tigers, harts, wihl swine, icc., and birds of great varicty and beanty. The natives are hononrable, simple, and obethent, and sulsist from the growing of coffec, rice, fruits, \&e., the rearing of horses ami buffaloes, making spinning-wheels, mats, gold and silver work, \&e. The women weave very beautiful cutton-cloth. Coffee and tea, ancl later, also cinchona, are the only products raised for the grovernment.

Irobolingio is fertile, and produces gnod crops uf rice, coffee, and sugar. The south coast is covered with forests, which contain many teak trees. There are tigers, wild dogs, monkeys, squirrels, \&e. Proholing(g), the capital of the residency, lies on the coast, in $109^{\circ}-1^{\prime} 45^{\prime \prime} \mathrm{E}$. long., and $7^{\circ} 23^{\prime} 29^{\prime} \mathrm{S}$. lat., and is extensive and pophons. From this port, much of tlee protuce of the land is shipped for the Netherlands.
liembang proluces the usual erops. The northern barts are dry and samly ; and in the south are extensive forests, alonuming in teak and other valuable timber trees. The resideney is washed lyy the dara Sea, and the people on the coast find their living by trade, fishing, and ship-buillines. lembang, the capital, is regularly luilt, :und lesides the jublie wlices, has a small l'rotestant church, a govermment selool, and an inst tution for the chlucation of girls.

See Nomarang, S'liabaya, amd subakarta.
Tasal is very fertile. It is washed on the north loy the Java sea, and the fisheries are important. In the south of the resilency is the voleans lamat. $11,33^{0}$ fect hish, which is clutheal with forest to the height of Su0 feet, ami on the sonthern side duscembls ly regular terraces to the bed of the river scrajoe. Tasal, the cappitat, is a small but neatly built town, with a considerable coasting trade. The natives are industrious and good handieraftsmen.

JAWO'l:OW, a town of the Austrian Empire, in the province of East Galicia, 2s milus north-west from Lembers, on the Kirakowska, an aflument of the San, which itself is a branch of the V'istula. Cluse by the town is a lake, abounling in fish. J. is binit in the form of a square, and lias extensive suburbs. It has mineral springs. Near it are large paper-mills. Many of the inlabitants are Jews. Pop. 7200.

JAY, Willam, an English Independent or Congregational minister, of much celelority for his pulpit elorituence, and as a voluminons writer of devotional, practical, and other religious works. Ne was burn, May S, 1769, at Tisbury, in Wiltshire. Ilis father was a stone-cutter and mason, and young Jay's first (myloyment was that of a masm's boy ; but whilst still young he was sent to Narlborongh Aculemy, an institution of the Consregationalists for the training of young men for the ministry: Aecording to at custon prevalent amongst the Congregationalists, ho was sent out to preadi in comentry villages almost in his boyhoorl-in fact, before he was 16 years of age. lfis cilucation being completed, he nfficiated for a year in a chapel at Clifton ; and in 1791, was settled as pastor of a 'church' in liath, which position he occupied for 62 years. Ile retired from it in January 1533, and lied on December :7\% of the same year, at the age of S1. Mr Jay's publishell works, in general, attained to a rapid and very extensive popularity. Amone them are Scrmons, Family l'rayers, Morning and Evening Exercises, Worninys with Jesus, an Eissay on Marriage, Memoirs of the Rev. Cornelius Winter, Nlemoirs of the Rev. John Clark, Lectures on Female Scripture Characters, and an Autobiography. A collected edition of his works, in 13 vols, revised by himself, was published in 1841, lut is of course incomplete, some of his works being of more recent date.

JEISK, or EISk, a town of linssia, in the country of the Kiuban Cossacks, or Black Sea Cussacks, on the eastern shore of the Sea of Azov, 60 miles sonth-west from Azov. It stands on the shore of a snall land-locked lay, iuto which flows the river Jeisk. It was fonndel by imperial nkase in 1S 4 , with a view to its leing a trading seaport, and an entrepot for the agricultural produce of the surronnding conntry: Considerable privileges were suaranteed to its inhabitants, and it has rapidly sprung into importance. l'op. (ISG3) 16,74.

JE'SI, or IESI (anc. Naium, or ASsis), a prosperous manufacturing town of Ceutral Italy, in the prorince of Aucoua, and 15 miles sonthwest of the city of Anenna, on the left lank of the river Esina. It is surrounded by walls, has a cathedral, and several other churches and conrents. It has manufactures of paper, silk, and
woollen hosiery and linen, and a large trade in wine and olives. J. is the birthplace of the German emperor Frederick II. Pop. (1861) 11,469.

JEW'S EAL (Exidium duriculct Judu), a fung:as, one of the Hymenomycetes, which srows on deeaying parts of living trees, particularly elders. It is a native of Britain. In size and form it bears some resemblance to a hnman car. It is soft but cartilaginous, wrinklet, and generally brown. It is stemaless. The spore3 are produced on the upper surface. The under surface is fibrons and downy: J. E. was formerly in repute as a topical discutient and astringent. It may be kept long in a dried state. It is still sold in the shops, but Polyporus rersicolor is often substituted for it. The gemine J. E., after heing dried, swells when immersed in water; the Pulypores does not.

JIKA'DAZE, or SHIKATZE, a town of Tibet, eapital of the district Zang, on the right bank of the Zaugbo, 190 miles west of Lassa. Pop. estimated at 100,000 .

JIME'NA, or XIMENA, a town of Spain, in the province, and 50 miles east of Cadiz, on the east declivity of the Sierra de Gazules. The town is regularly built, the streets steep, but clean. There are several churches and schools, a prison, townlouse, \&c. There are manufactures of leather. linen, earthenware, sc., and a trade in fruit and wine. Pop. 5878.

J O'ACHIM, Joserfr, an entinent Hungarian violinist, was born in the neighbourbood of Presburg in 1S30, received bis early instruction at Pesth under Szervawinsky, lirector of the orchestra at the theatre there, and made his début in public at the age of seven. He afterwards became the pupil of Jülmn at Vienna, and at Leipzig studied counterpoint under Hauptmann, and made the friendship of Mentelssohn. His first appearance in London was in 1S4, when, though only in his 14 th year, he was at once allowed to be one of the most distiaguished of coutemporary violinists. Ilis perforunances at Vienna, Pesth, Paris, and London have since estalulished for him the position of the first violinist of the day. In power and brilliancy of execution, and all the mechanical qualities of playing, he is little if at all behiud Paganini; while in the intellectual qualities, he far surpasses that artiste, and possesses, in an almost nnequalled degree, the faculty of seizing instinctively the idea of the composer. His works, which inclucle overtures, Hebrew melodies and other songs, and compositions for the violin, are pervaded by the same tenderness and depth of musical feeling that characterise his playing.

JO'ACHIMSTHAL, a town of Bohemia, near the frontier of Sasony, 69 miles west-north-west from Prague. It is situated in a valley, on the Weseritz, in fceder of the Eger, which itself flows into the Elbe, near the eastern opening of a remarkable gorge or pass among the lofty Erzgelirge, and at an elevation of 2366 feet above the sea. The town bas a strange antique appearance, and the Iiathbaus is a very remarkable building. \mathbf{J}. was formerly of greater importance than now, owing to its mines of silver, which are still wrought, but are not so productive as they once werc. The produce of the silver-nines of J. in the l6th c. was, at an average, 21,597 marks. For about a century hefore 1852, the average produce was ouly 3181 marks; aud from 1552 to 186°, it was 3232 marks. Silvermines have been wrought at J. from a very remote period; one mine is 300 fatboms deep. The whole number of miners employed at J . in the 16 th c . was abont 12,000 , with 400 overseers and other
officials, and $\$ 00$ surveyors. Besides the silver obtained from the mines of this neighbourlood, it produces also lead, tin, and iron to a considerable amount. J. is the seat of offices and courts of mines. Dollars (thulers) were first coined here, and hence their name (see Dollar). Goitre and cretinism are lamentably prevalent at Joachimsthal. Nuch coarse lace is made in the surrounding mountainous district. Pop. 5641.

JOE MILLEP'S JESTS, or the WIT'S VADENIECUM1, a well-Enown collection of facetiæ, first jublished in 1739. A great proportion of the good things which this book contained appears to have been the product of the period immediately 1 receding its publication. They are more often humorons than witty, and they scem to have been all the more popular on account of a profusion of coarseness and indeceucy, such as the taste of the present age could not endure. A second cdition of the Jests was called for in the year of the first publication ; they came to a fourth edition in the following year; and the work, growing in size at every fresh appearance, had reached its 14 th edition by 1760 . Innnmerable issues of it, or of works founded upon it, bearing the same or similar titles, have since been published in England and America. It has, in many cases, been modified more or less, to suit the growing nicety of the public-with detriment, it must be said, to the quality of its humour; and, indeed, it would almost seem as if hmour thourished upon obscenity as flowers do upon manure. A lithographic fac-simile of the first edition, Which is now exceedingly rare-there is no copy in the British Museum-was published in 1S6i. The exact title was as follows: 'Jae Miller's Jests, or the Wit's I'ade-mecum; being a Collection of the most Brilliant Jests, the Politest Repartecs, the most Llegant Bons-mots, and most Pleasant Short Stories in the English Language. First carefully collected in the Compauy, and many of them transcribed from the Month, of the Facetions Gentleman whose name they bear; aad now set forth and published by his Lamentalle Friend and Former Companion, Elijah Jeukins, Esq.; most humbly inscribed to those Cboice Spirits of the Age, Captain Bodens, Mr Alexander Pupe, Mr Professor Lacy, Mr Orator Henley, and Jub Haker, the Kettledrummer. London, T. Read, Dogwell Conrt, Whitefriars, Fleet Street, 1739.'
The Joe Niller whose name has been handed down in connection with this compilation of jests was Joseph Aliller, an eminent comic actor, reputed among the tavern-haunters of his time as a fellowy of infinite humour. He was born, it is believed, in London, in 1654; he died in London in 1735, and was buried in the churchyard of St Clement Danes in the Strand, where there is a tombstone erected to his memory, bearing an epitaph by Stephen Duck. He was a great favourite with the public, and is said to have contributed by liss acting to the popularity of Conareve's plays. Ben in Love for Love, Sir Joseph Wittol in the Old Bachelar, and Teagne in the Committee, were the characters in which be was most successful; his portrait was painted in the last two of these. Tbe compiler of the Jests was John Mottley, an author of no great reputation, who is said to have amused bimself by writing down or dictatiug them at a tine when he was lail up rithe the gout. Mottley was the son of a Colonel Mottley, who, having been high in favour with James II., followed James into cxile, got a command in the service of Louis XIV., and was killed at the battle of Turiu in 170s. Colonel Mottley had married before the Revolution a Gloucestershire lady of considerable fortune. His wife-her family being zealous for the Revolution-
refused to accompany him to St Germain. Three or four years later, lie made a stay of considerable length in England upon a secret commission fronu Jimes ; and his son, the compiler of the Jests, was horn in London in 1692. Mottley was elucated at St Martin's Library: school in London ; and, throngh the influence of Viscount Howe, who was a counection of his mother, he got, at the age of sixtecu, a place in the Excise Office. This place he lost in 17:0, apparently throngh some involvement in the labble speculations of that year ; aud afterwards, thongh be had promises buth from Lord Halifax and from Sir liobert Walpole, he never succeeded in obtaining an office. He had to live ly his wits, and he produced five or six plays-the first of them named the Imperial Captive-which met with some success. Ile seems to hare owed not a little to the patronage he received from people of fashion and from the court. In $17: 0$, the year in which he proiluced Joe Miller's Jists, he also published a Life of the great Czar Peter, in 3 vols. Svo. This work was published by subscription, and had the support of the royal family, and of a great number of the nobility and gentry. He followed it up in 1744 with the Mistory of the Life and Reign of the Empress Catharine of Russia, 2 vols. Svo. These works were mere compilations from the journals and uther publications of the time; but with the lapse of cime they have acquired some value, through the scarcity or disappearance of the authorities upon which they were founded. Mottley died on the 3d of October 1750.

JOIINSON, ANDREW, screnteenth Iresident of the United States of America, was Lorn at lialeigh, North Carolina, December 29, 1808. At the age of four ycars, be lost his father, who was drowned in attempting to save the life of a friend; and when ten years ohd, he was apprenticed to a tailor, whom he served for scven years, receiving tho schouling. A visitor to the shop where he worked used to read aloud from a collection of speeches of British statesmen. This aronsed young J.'s interest and amlition; be learned the alphabet, lorrowed the book, and with the aid of a joumeyman, le:rued to read, workiug at it two or three hours every night. At the expiration of his apprenticeship, he worked for two years as a journeyman at Laurens Court House, South Carolipa ; but a love disappointment, cansed by his humble position, induced him in 18.6 to emigrate to Greenville, Tennessee, where he suom after married, and bis wife taught him writing and arithmetic. In 1828, be was elected to his first office-alderman of the village; in 1830, he was chosen mayor, and twice re-elected; in 1835, he was elected to the state legislature, and again in 1839 ; in 1540, he was a presidential elector, and canrassed the state for Mr Van Buren, the Democratic candidate; in 1841, he was elected to the state senate; and in 1843, to the Congress of the United States, where for ten years he supported the policy of the Democratic party. In 1853 , he was clected governor of Tennessee, and again in $18 . j 5$. In 1837. he was elected by the legislature a member of the United States Senate, in which he adrocated the union policy of the Republican party ; and mon the occupation of Nashville by the Federals, 1s6., was appointed by President Lincoln military governor of Tennessee. In this position he gave 80 much satisfaction to the North, that in 156.4 he was nominated by the Republican party for the office of vice-presilent, and was electel with President Lincoln, then re-elected for his second terin, and took the oath of office, March 4, 1565. On the 14th of A pril, by the assassination of l'resident Lincoln, he succeeded to the presidence, but soon disappointed his party by taking a
moterate, conservative course, scrmpulansly re pect. ing his oath to support the eonstitution, prardoning great numbers of rebels, and opposing his veto to many bills passed by Congress to limder the recunstruction of the South on the priaciples of its former constitutional representation. lu 1S66, his poticy appeared for a time likely to meet with pupmar favour; lut some indiserect and violent spheches, during a tour to Chicago and kit louis, turned the tide against him, and in the congressional elections his opponents triumphed by inereased majorities. Ilis vetoes were generally nullitied by the twothirds votes of hoth Houses, and the l'resident was threatened by the liadicals with impeachment and deposition. A majority of a committee of Congress, appointed to consider the matter, actually recono. mended lis impeachment; lut Comstess (December 156\%), by a large majority, decided nut to act on the recommendation.

JOONAGHE'IR, a town of India, province of Gujerat, on the peminsuh of lattywar, $23 ; 5$ niles north-west of Bumbay. It is arlvantageonsly situated on a ridge of sandstone, is surrounded by walls five milcs in circumference, and has a citald and a mosque. The town is ill built and dirty, ame unly about a half of the space within the wails is ocenpied. The trade is insignifie:nt. Pop. variously estimated at from 5000 to 30,000 .

JUAREZ, Besito, President of the Mexicin Republic, was born at Ixtlan, of Indian farents, abont the ycar 1807. Notwithstaning the disadrantages of birth, he succeeded in establishing is reputation as an advecate, became goveruor of his native state, Oaxaca ($\left.154 S-1 S 5^{5}\right)$, and an active member of the liberal party. Exiled during the dietatorship of Santa Anna, he returned when the republic was restored, was elected to the new cungress (IS56), and appointed President of the Supreme Court in 185\%, and consequently, in caso of vacancy by death or definlt, l'resident cul inferinn of the republic.
On the overthrow of the liberal President, Comnnfort, by Zuluaga and the clerical party (Jaunary 18.S), J. refused to recognise the nsurper, and finally established himself at Vera Cruz, by holdiug which he secured the receipt of the customs duesin other words, of the larger half of the entire state reveuue. Here he set up a provisional government, styling himself Constitutional Presilent, and issuing decrees for the confiscation of the property of the chureh, the institution of civil marriage, \&c., in accordance with the reforms carried by Comonfurt in 1557. Meanwhile, Miramon, who had superseded Zuloaga (Jamary 1859), prepared to take the lield against his rival. His movements were, however, delayed by a counter-rising of Juarists in Nexico; and before he axain :udyancel, J. hati sccured recognition from the United States by concelling the protectorate (refused to then ly Miramon) over the proposcl transit fontes in the north and in the isthmus of Tehuantepec. Larly in 1S60, Miramon besiesed Vera Cruz, but his army suffered from want of supplies, his transports were intercepted by the C'nited States ship-of-war Surctoga, and after a few weeks, he was compelled to retire with loss. J. now assumed the offe sive. At San Miruelitn, Miramon was tutally defentel by Ortera, and Hed to Europe. His rival cutcred Mexico (January 1861), caused himself in June to be formally elected president for four years, and proceeded to execute the decrees against the clergy with great severity. But the finances of Mexico were now in a state of disorder, which even the Wholesale confiscation of church lauds could not reniedy. In July 1861, the gorcrnment decreed

JUJUY-JUIPPNG HARE

suspension of payment for two years of the indemnities due to England and France, and formally secured by the hypothecation of the customs dues. This act, coming at the end of a long series of outrages (mainly the work of Miramon and his faction), led to the intersention of the allied porsers, and the occupation of Fera Cruz by Encland, France, and Spain. But it soon appeared that the French aimed at more than a simple redress of grierances. The appearance of the clerical chiefs Siramon aud Almonte in their camp, and the extraragant demands of M. de Soligny, rendered any arrangement impossible. The failure of the negotiations at Soledad (February 1862) was followed by the conference of Orizaba (April 9), in which England and Spain formally withdrew. France now threm off the mask, and J. appealecl to the country, proclaiming a guerrilla war, and concluding a loan of $25,000,000$ dollars with the American minister, Corwyn. The victory of Zaragoza at Puebla (May 5, 1502) raised the hopes of the Mexicans ; but fresh troops arrived from France. Puebla fell May 1S, 15631 , after a gallant resistance. Mexico and San Luis de Potosi followed, and in 1S64 the republican government was remored to Monterey. The arrival of Maximilian in May was succeeded by further losses from battle and desertion. In August. J. sent his family to New Orleans, but 'le petit Indien' himself still held on, although forced hack on Chihuahua, and thence a jcar ailter across the frontier. His four jears of office had also expired, and Maximilian availed himself of these events to issue the fatal decree of October 1565, in which he declared the republic extinct de jure ϵt de facto, and sentenced to death all Juarist leaders taken in arms. J. proclaimed in answer that he beld office until the expulsion of the invaders rendered a fresh election practicable. By this time the complete pacification of the Southern States enabled the Washington cabinet (which had persistently recognised J.) to interfere effectrally on his behalf. Under diplomatic pressure (1506), Napoleon withdrew his troops, and the positions evacuated by the French were immediately occupied by the republicans. The unhạppy Maximilian made a final stand in Queretaro, but was betrayed by Lopez, and shot (June 19, 1867) by order of court-martial-an ungenerous but not unjustifiable act of reprisal which J., it is said, would have beeu anable to prevent. Mexico and Vera Cruz were reoccupied shortly after, and the triumph of the liberals was consummated by the re-election of J. to the presidency (October $1 \leq 67$), after a ten years struggle, in which he had successfully maintained the constitution of $185 \overline{7}$, under which he took office, against domestic treason and foreign intervention. There is much reason to hope that $\mathbf{J}^{\text {., }}$, who, as governor of Oaxaca, was universally esteemed, and whose honesty as a reformer has been attested by the British chargé d'affaires (Mr Mathew's Report, 1861), and by all the leading men in the Cnited States, will inaugurate a new era in Mexico of progress and tranquillity.

JUJUY' a torm of the Argentine Confederation, South America, on a river of the same name, about 300 miles north-north-west of Santiago. It is said to be a place of some trade, being on the main route from Salta across the mountains into Boliria. Pop. (1560) 6900.

JULALPU'R, a town of India, capital of the pergunnah of the same name, 100 miles sonth-mest of Lucknow, on the river Betra. It is said to be a place of some importance, and to contain a pop. of 10,010 . The country to the south is wild and sterile, being much cut up by rarines.

JULIA, the only child of the Roman emperor Augustus, was his daughter by his second wife, Scribonia, and was born 39 b.c. She was only a few days old when ber mother was dirorced. She was educated with great strictness; was distinguished. for her beanty, talents, accomplishments, and agreeable manuers; and was married at a rery early age, 25 B.C., to her cousin, Marcus Claudius Marcellus, the sister's son of Augustus. After his death, she was again married, when little more than 17 years of age, to Marcus Tipsanius Agrippa, to whom she bore three sons and two daughters. He dying, 12 e.c., J. was given in marriage, 11 e.c., to Tiberius; his mother, Livia, the stepmother of J., persuading Augustus to this, in order to secure the succession of Tiberius to the tbrone. The marriage was an unhappy one, and the conduct of J. far from irreproachable; but Livin's hatred induced her to make exaggerated accusations to Augustus, and she so wrought upon his mind, that he astonished all Fome by suddenly declaring, 2 b.c., that his daughter had so far forgotten herself as to he guilty of the most shameless adulteries, making even the Forum the scene of her nizhtly rice. In this charge there seems to hare been too mnch truth; but it is doubtful if there was any truth in the allegation further made that J. and her paramours had entered into a conspiracy against the life of the emperor. J. тas banished to the isle of Pandataria (now Ventotiene), near Naples, and a number of persons of high rank Were puit to death or banished for their alleged participation in her guilt. From Pandataria, whither her mother. Scribonia, accompanied her, she was removed to Rhegium (now Reggio), where she was allowed by Tiberius to remain destitute even of common comforts, till her death, 14 A.D. Her son, Agrippa, was put to death by Tiberius in 14 A.D., shortly before the death of his mother. Her other sons died in early age. Her daughters survived her. The elder, Julia, died, 25 A.d., in the isle of Trimetus, on the coast of Apulia, whither she had been banished by Augustus twenty years before for adultery. The younger, the rirtuous Agrippina (q.r.) died in 33 A.D., in Pandataria, to which she had been banished by Tiberius.

JU'LICH, or, in the French form of the name, Jullers, a town of Rhenish Prussia, 16 miles northeast from Aix-la-Chapelle, on the Roer. J. is situated in a fertile plain, but surrounded by marshes, which make it rery unhealthy. It is said to be of Fonaan origin, and was strongly fortified till 1860, when the fortifications were demolished. The principal branch of industry is the manufacture of leather. Pop. (1564) 52.4.-J. was long the capital of an iudependent duchy; and J. and Berg ((1. v.) Were united as possessions of the same family. On the death of the Duke of J. in 1609, began a dispute as to the succession, which was not settled till 1666, When a decision was given in favour of the House of Pfalz-Neuburg-the Elector of Brandenburg obtaining Cleves and some of the other territories formerly united with J. and Berg. The Pfalz-Neuburg family becoming extinct in 1542, J. passed to the Pfalz-salzbach branch, afterwards electors of Bavaria By the peace of Lunerille, it was annexed to France, as part of the dep. of Noer; and in 1814, was assigned to Prussia by the Congress of Vienna.
JUMPING HARE (Pedetez or Helamys Capensis), a South African rodent, Spring Haas of the Dutch colonists, generally placed near the jerboas in systems of zoology, but very considerably differing from them. The head much resenbles that of

JUNGIE-JUTE MANUFACTUPES.

a hare, although the ears are sliorter ; the form of the body is also like that of a hare, lant the lincl. legs are very long and strong, like those of a kangaroo, and the toes loth of fore and lind fect are irmed with great claws. Its powers of leaping are

> Jumping Hare (IIclumys Cupeusis).
extraominary; it elears 20 or 30 feet at a bound, Night is its time of activity, and it makes misehierous inroads on fields anil gardens. Its flesh is eaten.

JUNGLE, a term now fully adopted into the English language, but of Bengalese origin, and employed to designate those thickets of trees, shrubs, and reeds, which abound in mauy parts of ludia, and particularly in the munealthy tract callal 'Terai or Tarayani, along the sonthern base of the Ilimalaya; and in the Sumderbunds (q. v.) at the mouth of the Ganges. The jungles are often impassable, from the thick rrowth of uuderwood, tall grasses, and climbing plants. The soil is generally swampy, and fever and other diseases abound. "Tigers. and other beasts of prey; elephants, hoars, deer, and other quadrupeds are found in great numbers in these thickets, with gigantic snakes, and multitudes of monkeys. The jungle flora and faum are very peculiar, and the moisture and licat carry a tropical vergetation beyond its usual limits morthward to the lower valleys of the Himalaya.
JUNiGLY GAU (Bos Sultetenus), a species of ox, inlabiting Sylhet and other monntainons parts of the north-east of Incia. It is nearly allied to the fayal ((q.v.) and to the common ox, and has more the appearanee of some of the buronean domestieated breeds of ox than any of the other wild oxen of Asin. The J. G., although in a wihe state it is only to be scen in places remote from the liabitations of man, and flees from the encroachments of enltivation, is easily domesticated. Its milk is very abundant, and of excellent quality:

JUTE MANUFACTURLS. The extensive and daily increasing nse of jute as a textile material, has incluced us to give a brief motice of its manufacture into falrics, by way of supplementing what has been already said noder the heal Jute. This now gigantic industry has sprung nip so rapidly, one might almost say so stealthily, that comparatively few persons are aware of its importance, and many have never even heard of the fibre at all. For some thirty years back, the Dundee mill-owners liave been gradually employing it more and more to mix with flax, until there is scarcely one of them who does not use it largely, and the majority now use it entirely. Jnte is more brittle than hax, and will
not spin so fine, nor wear so well ; but then it is only about ladf the price, and when woven, is attractive cnongh in appearance. In India, it laas bern manufactured by the matives into gunuy cheth for centuries.

The jute-plant is very largely cultivated in Bengal, and the fibre is prepared there for exportation by the process of water-rutting. Jate of a tine glossy appearance brings the highest price in the market. It is spmu ly processes similar to those employed for flax, but as it is from 10 to 15 feet long, it is necessary to cut it into 3 -feet lengetls before it ean le heckled. The fibre also requires to be saturated with whale-oil and water, so as to soften and render it more clastic, preparatory to spiming. Heckling is the first of the spimming operations, and its oljeect is to remove the coarser portions of the jute, and lay the tilires in paralled order. The heckle is a kind of coml, with sharppointed steel teeth, from one to two inches in length. Formerly, the process was done by land, but now heekling-machines are usal. The heekled stricks are next taken to the spreader, or first Irawing frame, where they are spreal upon an cnd. less creeping-sheet, so as to supply the jute continnously to another part of the machine, where, by is beculiar arrangement of rollors, it is drawn out, through combs of closely-ranged stecl pins, into a contimous rihbou, called a sliere. A number-say, 14-of these slivers are then taken to another alraw: ing-machine, with steel combs, and drawn out into one. In like manoer, some 20 of these slivers are again drawn into one. The first sliver from tho spreader has thus, so to speak, been drawn out 280

Jute (rorcicontus rapsulutris): a, cab sule; b, thower.
times its original length; and hy this means the fibres become thoronghly praralled anel equalised. The sliver from the last drawing-frame is still further drawn out, and at the same time receives a slight twist in the roving-frame. Finally, the hoblins of 'rove' are taken to the spimning-frame, and spun into yarn upon the 'throstle' principle.

Just as in the case of Hiax, the jute tow from tho beckliner process is also spun into yarn, in which case it is first carded by means of a 'breaker' and

KADOM-KANKARI.

'finisher' card, and then draun, rover, and spun,
as alove deseribed. Indeed, a great deal of jute, as imported, is treated in this way without heing heckled at all.
The larger portion of jute fabrics are woven from yarn of the natural colour; bat for some purposes it is bleached; and when used for earpets, it is dyed rarious colours. It bleaches with diffieulty, but it is easily dyed. Among the various kinds of jute-cloth made, hessian sheetings for packing all linds of merchandise are most largely produced; but sackings, baggings, osnaburgs, ducks, carpetings, mattings, and several other stuffs are likewise extensively manufactured. It is also intermixed with flax, cotton, and wool for various union fabrics, Jute carpets are produced at a wonderfully low price, viz., from $7 d$. to $1 s$. $3 d$. per yard. The better qualities of these are comfortable, and even beantiful, so long as they keep their colour; but herein lies their great defeet, since all dyes lave hitherto been found to be comparatively fugitive unon jute. It is affirmed that some eolours can now be rendered jermanent by a new process of dyeing them. If so, a wide field will be opened for the development of this branch of the trade.

For many years after the introduction of jute in 1S33, Dundee was the only place in Great Britain

I where it was manufactured ; but now, considerable quantities of jute goods are made in London, Manchester, and Glasgow. Of late, several large works have been erected in Caleutta for spinning and weaving jute by English machinery. Dundee is still, however, the great centre of the trade; and there the consumpt of the raw material, which, in 1836, was only 300 tons, will this year (1867) be about 65,000 tons, or 500,000 bales. The number of persons employed in its manufaeture in that town is upwards of 30,000 , and it will give an idea of the vast size of some of the larger jute-nills to state that, in the one belonging to Nessrs Cox Brothers, there are between 20 and 30 steam-engines, most of them of considerable size. In one of the weavingrooms of this mill there are 800 power-looms; and like several of the large Dundee factories, it contains within itself an iron foundry, a smithy, fitting-shons, and, in short, all the departments of au extensive engineering establishment.
The total quantity of jute and jute-bagging exported from India in 1866 was 80,908 tons, which was valned at $£ 1,499,533$. In IS64 and 1865, considerably larger quantities were exported. A little of this was sent to France and Holland, but about nine-tenths of it was innorted into the United Kingdom. miles north-north-east of the town of Tambor, on the river Moshka. The houses are built chiefly of wood, and the principal trade is in honey. Pop., mostly of Tartar descent, 7173 .
KAKA'PO, or OWL PARHOT (Strigons hubroptilus), a remarkable bird, a native of New Zealand, belonging to the Parrot family (Psitucille), but of very owl-like appearance,

Kakapo (Strigops halroptilus).
and, like the owls, nocturnal, or nearly so, concealwhere one exists, among stones or the roots of trees, but seems also to have the power of making ab burrow for itself. Dogs take it in its hole, althongla it makes some resistance; but, after a little experience, they learn how to deal with it. It is also pursued and taken by dogs when ruming on the ground. The tlesh of the K . is more pleasant and delicate than that of any other parrot. This interesting bird has almost disappeared from the northern island of New Zealand, and is much more rare in the middle island than it was not many ycars ago. It will probably soon be extinct, unless means are adopted for its protection. It is the only known hird having large wings which does not use them for flight.

KANGAROO APPLE, a species of Solanum (q. r.), (S. laciniatum), with a somewhat shrubly succulent stem, smooth pinnatifid or entire leaves, and lateral racemes of flowers; a native of Pern, New Zealand, Anstralin, and Tasmania, in which latter countries its fruit is called kangaroo apple, and is used as food. When unripe, it is acrid, and moduces a burning sensation in the throat; but when perfeetly rije, it is wholesome.
KANIZSA, the mame of two towns in Hungary. -K. Nagy, a market-town, and once an important fortress, in the county of salad, 190 miles south of Vienna, with which it is connected by malmay. It has several churches, in monastery, town-lionse, ic. There is a considerable trade in cattle. Fup. 11,720. -K. Nagyar, a market-town in the county of Bacs, in a fertile district on the Theiss, 15 miles south-sontl-east of Szegedin. It lias several churches, a symagogue, high school, \&c., and a trade in corm and cattle. Yop. SS55.

KANKARI, a town of Asia Minor, in the pashalic of Anatolia, 63 miles north-east of Angora, ing itself in holes during the day, except in very 585

KANKARIーKARMATHIANS.

barracks, anil a castle on a neighbouring height. l'op. alrout 18,000.
K.AIMA'THILNS (Carmathians), so called from Alri sail Al-Jenabi, surnamed Al-Karmata, a Dtolanmedan sect which sprang up in the 9 th c. A.D., under the califate of Al-Motamed, and which, by a combination of extraorlinary circumstances, succeeted in establishing itself for a time as a political power which threatened to overturn the califate itself. What we have said of the particular creed and tendencies of the Ismailis, under that lieading in the Supplement, began first to be fnlly realised and developel about the middle of the ad c. of the Hedjrab, through one Abdallah Ibn Alaimun, an oculist (kaddah) by profession, and a l'ersian by hirth. It was he first who, aided by favourable circumstances, matured a plan which, for the boldness and genius of conception, and for the energy and vigour with which it was carried out, has not many parallels in history. Nothing less was contemplatel than the union of the Arahic courduerors and the many races they had subjected since Dohammed's death, and the enthronement of what afterwards was called 'Thre Reason' as the sole eleity to be worshipped. The adraneed shoula be free of all so-called religions fetters, which, as symbels and allegorical actions, should be laid all the heavier on the neeks of the less adranced strata of society. The ' Believers' and 'Conquerors' were to the made missionaries for unbelief, and the implements for the destruction of their own empire. Whatever the ultimate plans of Abdallah may have heen, there can be no doubt about the astute way in which he set to work for the new faith. With an extraordinary knowledgre of the hmman heart and hmman weakness, he offered devotion to the buliever; tiberty, if not licence, to the 'free in spirit ;' philosophy to the 'strong-minded;' mystic lopes to the fanatics; miracles to the masses. To the Jows, he offered a Messiah; to the Claristians, a Parachete; to the Moslems, a Mahdi; and to the Persian and Syrian 'pagans,' a philosophical theolluy. His practical exertions, and their wonderful results, soon attracted the attention of the authorities. Obliged to Hee from place to place, he sought refure successively in Karaj, in Ispahan, in Ahraz, in Basra, timally, in Salannia, in Syria, where he died, leaving his son Almued his successor as chief of the sect of the Ismailis. This Ahmed, warned by the fate of his father, proceeded with greater caution, nore especially with regard to the name of the Imam or Great Prophet, whiel he left rather uncertain.
Among the missionaries be sent to Irak, there was one named Husein Ahwazi. In the province of Kufa, this missionary, according to some of the authorities, met a man named Hamdan Karmat, whom he converted to the new faith, and at his death laid his mission upon Karmat's sboulders, whom he bad previously initiated into the whole extent of the faith. According to others, however, it was Insein himself, who from some cause received the name of Karamita or Karmat, a vord the meaning of which is rather uncertain-indieating, aecording to some, a man who, having short feet, makes small steps; according to others, a man who has red wes, icc.

Whever Karmat was, he was the fittest man to earry out the nriginal intentions of the fonder. Ite very soon suceeeded in gaining the full coufidence of his tlock, which increased daily, and in making them blind instruments of his will. He introduced, accorting to some of the authorities, absolute communism, not only of property, but even of wives, among then, and fonnded one partieular colony, consisting of chosen converts, around

526
bis own house in liff. This residence of his, called the House of Refuge, became the centre of an immense conspiracy. From this place all the missionaries were sent out, and all the threads of the great morement were directed. Amongst the most noted of those missionaries was one Aha Said, who was sent tirst to Southern Persia, and afterwards to Bahrein, in the l'ersian Gulf.

The inhabitants of Bahrein, whieh had formerly been a province of l'ersia, were partly dews, partly Persians, who had capitulated with Mohammed, and liad been allowed to retain their own ereeds. Δ fter the Prophet's death, they had at ouce shaken off the unwelcome yoke, which, however, had again been put upon them by Omar. The interior of the country was inlalisted by certain Arabs, highly disafteeted against Islam, the innumerable precepits of which they disliked with an intense dislike. No wonder that Abu Siaid made the most marvellous strides in his conversions. In less than two years, be had hrought over a great part of the prople of lbahrein. In 257 (Hedjrah) the calif sent an army of 10,1000 men against Alua Sisd and his followers, but the latter remained victorious, and made the ealif's own general prisoner. He now gained undisputed possession of the whole country, part of which he liad only conquered as yet, and having destroyed the old capital Hajar, zade Lahsa, his own residence, the capital of the comntry. While the court of liagdad was threatener with destruction by this uewly established power on one side, two chiefs of another Karmathian branch appeared, the one in the neighhourhood of Kufa, the other in Syrin. The tirst was defeated, eaptured, and tortured to death; the other was more suecessful. The governor of Damascus, who marched against him, was heateu most ignominiously. This Karmathian trimmpl, however, though followed by a few others, was of but short duration. A decisive victory (294 IIedjrah), won by the calif's general, Wasif, for ever put an ead to this branch of the Karmathians.
Meanwhile, both Karmat and Abu Said had become-by what means, is mattor of great obscurity - faithless to their own creed. We have no certain dates about the death of Karmat. Abu said was killed, together with some of his principal olficers, in the bath in his own castle at Lahsa, in 301 Hedjrah, by one of his eunuchs; and four years later, his son, Aln Tahir, becane his suceessor, and be bas left his name inilelibly stamped upon the anaals of Islam. In 311, be seized the town of Basra. In the next fear, he pillaged the caravan which went to Mecea, and ransacked Kufa. In 315, be once more reappeared in Kufa and in Irak, and gained so decided a victory over the calif's troops that Bagdad began to tremble before him. In 317 (930 A. D.), the great and decisive blow against Mobammedanism was struck. When the great caravan of pilgrims for the annual pilgrimare had arrived at Mecea, the news suddenly spread that Abu Tahir, the terror of Islam, had appeared at the head of an ariny in the holy city itself. All attempts to buy him off failed, and a massacre of the most fearful deseription ensued. With barbarous irony, be asked the victims what had beeome of the saered protection of the place. Every one, they bad always been told, was safe and inviolable at Ireeea. Why was he allowed thus easily to kill tlieur-the race of donkeys? According to some, for 6 clays, to others, for 11 or 17, the massacre lasted. The numbers killed within the freeincts of the temple itself are variously given. The holy places were desecrated, irredeemably almost. But not satisfied with this, Abu Tahir laid hands on the supreme Palladium, the black stone itself.

KARMATHIANS—KARR.

Fet he was apparently mistaken in his calculations. So far from turning the hearts of the faithful from a worship which God did not seem to have defended, the remaining Moslems clung all the more ferrently to it. God's decree had certainly permitted all those indignities to be put upon His house, but it was not for them to murmur. The stone gone. they covered the place where it had lain with their kisses. As often as Abu Tahir did not distinctly hinder them by force, the cararans went on their usual annual pilgrimage. In the year 327 , the emir of the pilgrimage, Abu Tahir's own personal friend, first succeeded in persuading him to conclude a treaty by which the pilgrimage was allowed again, on payment of fire denars for every camel, and seven for every horse. Yet the black stone, notrrithstanding all efforts on the part of the court of Bagdad, was not returned. Abu Tahir seems altogether to have been a man of extraordinary abilities. Oi his valour, with which he also knew how to imbue his followers, the following is told. When he had taken away the black stone, and desecrated the holy places, he marched, with 500 horse, upon Bagdad. The Calif Moktader sent 30,000 men, under his best general, to meet him. Having ascertained how small were the rebel's resources, the calif sent a friendly message to him by the general bimself, adjuring him, by their previous friendship, to desist from his insane attempt, and to make good his escape in time. Whereupon he asked the messenger of how many the calif's forces consisted. 'Thirty thousand,' was the answer. 'Then go,' he said, 'and tell your master that he has just sent three men too little.' And calling for three of his own men, he commanded one of them to stab himself, the second to throw himself into the Tigris, and the third to jump over a precipice; all of which was instantly done. 'Ton see,' he continued, 'what my warriors are like, and what numbers mean against such as these.' The following night, he made a sudden attack upon the enemy, ronted them completels, and took the general himsoli prisoner.
Regarding the special form of belief of the K ., as far as it has been preserved to us, it seems in the beginning-before Ismailism becarne that mixture of ' naturalism,' 'materialism,' of whilom Sabæism, and of Indian incarnations and transmigrations of later days-to have only been a kind of 'reformed' Islam. The prophet Karmat, it was held, had brought a new Law into the world. By this, many of the Mohammedan tenets are altered, many ancient ceremonies are abrogated, new forms of prayer are introduced, and an entirely new kind of fast is inculcated. Wine is permitted, as well as a few other things prohibited by the Koran. Certain other of the precepts met in this book are turned into mere allegories. Instead of tithes, they gave the fifth part of their property to the Imam. Prayer is but the symbol of obedience to their Imam. Fasting is the symbol of silence, or rather of concealment of the religious doctrine from the stranger.

Abu Tabir died almost absolute master of Arabia, Syria, and Irak, in 332 Hedjral. It was not until seren years later (950 A.D.) , under the reign of two of his brothers who had succeeded him, that the 'black stone' was returned to 31 ecca for an enormous ransom, and fixed there, on the seventh pillar of the mosque called Rahmat (God's mercy), in the presence of the emir of the mosque and others, a Spaniard amongst them. Jet the K. were accused of not having returned the stone itself, or, at all events, of having broken it. Forty camels, it was also said, had been unable to carry it away; while a single one had brought it back, one, moreover,
that had been lean when it started, and lad become fat when it had reached Mecca.
From that time forth, however, the star of the K. began to wane. Little is heard of them of any import till 375 , when they were defeated before Kufa - an erent Which seems to hare put an end to their dominion in Irak and Syria. In 375 , they were further defeated in battle by Asfar, and their chief lost his liie. They retreated to Lahsa, where they fortified themselves; whereupon Asfar marched to Elkatif, took it, and carried away all the haggage, slaves, and animals of the K. of that town, and retired to Basra. This seems to have finally ruined the already weak band of that once formidable power, and nothing further is heard of them in history, although they retained Lahsa dosm to 430 , and Iater still. Even to this day there exist, according to Palgrave, some disaffected remnants of them at Hasa (the raodern name of their whilom centre and stronghold), and other tracts of the peninsula; and their antayonism against Mohammedanism, which they have utterly abrogated among themselses, so far from being abated, bids fair to break out anew into open rebellion at the first opportunity.-See Weil, Gesch. d. Chalifen; De Goeje, Mémoire sur les Carmathes, \&c.; Silvestre de Sacy, Religion des Druses; Sale, Koran; Palgrave, Arabia, \&c.
KARR, Jear Alphorse, a French literary man of considerable eminence, was born at Paris on the -4th of November 1SOS. After getting his preliminary educatiou at home from his father, who was a distinguished pianist, he phassed with much distinction through the curriculum of the College Bourbon, in which he afterwards, while very young, became a teacher. While employed in this institution, he fell in love, and began to cultivate the muses; and a copy of rerses which he sent to the satirical journal, the Figoro, formed his introduction to the literary career. His verses were not accepted by the Figaro, but its editor asked him to send something in prose, and the result was that he became a regular contributor to the journal. Disappointed in his attachment, he revealed to the Forld the story of his grief in a novel entitled Sous les Tilleuls (1832, 2 vols. Sro). A youthful desire to astonish, a determination to seem original, made many ignore the real originabity of this work; and the curious blending of irony and sentiment, of good sense and nonsense, which form the author's manner, was puzzling to simple people; but the critics declared the book charming; and the public, to whom youthful traits in a novel are never unpleasing, on the whole concurred in the verdict. Encourared by the success he had met with, K. soon produced a second novel, which dill not diminish his reputation (Une Heure trop Tard, 1S33); and thereafter, year after year, he produced new works, until he has become a prolific anthor, and a recosnised popular farourite Fa Diéze appeared in 1S31; Frendredi Soir in 1S35; Le Chemin plus Court in 1836, the last a work in which be again rehearsed the experiences of his youth-at least, it is popularly believed that in it he told the world his orn story. He has since published Einerley (183S); Generieve (1 S nS, 2 vols.) ; Clotilde (1S39); Hortense (I812) ; Am Rauchen (1812) ; Pour ne pas être Treize and De Midi a quatorze Heures (IS42); Fen Bressier (1845,2 rols.), originally published in the Rerue des Deux Mondes; Toyage autour de mon Jardin (1St5, 2 vols.) ; La Famille Alain (184S, 3 rols.) ; Hiwtoire de Rose et de Jean Duchemin (1849) ; Les Fées de la Mer (1S50); Clovis Gosselin (1S51) ; Contes et Nouvelles (1S5̃). Ayathe et Cecile; Fort en Theme, Soirées de Sainte-Adresse; Les Femmes; Raoul; Lettres écrite de mon Jardin; Au Bord de la Mer,

KARSIII-KERLE.

appeared between 155° and 1855 ; Iromenales hors de mon Jaredin was published in 1859; La l'enelope Normande in 185s; La l'éche en liau douce it en Fiud salie, and the Dictionnaire du léchewr, in 1860. The publication of a complete edition of his works eummenced in 1860. The letters aud sketches whieh he has from time to time written from Nice, his place of residence in later years-upon horticulture, and flowers, and fishes - the pleasures of the country amel the seaside-have been amony the most delightful and popular of his works.

In 1839 N. K. hecame ehief editor of the Figuro, and in the same year he founded a monthly satirical journal ealled Lies Cutpes, which he long conductel with the most lifiliant suceess, gaining for himself a very high reputation as a wit and satirist, but making, as was natural, many enemies, of whom oue, a lady, macle an attempt upon his life, which hapuily proved abortive. Several volumes of Les Guêpes have been reprinted; so also have been three volumes of sketches, which, under the title of Bourdomnments, he began to eontribute to the siccle in 1852. M. K. has eontributed very largely to periodicals, from which, iudced, many of lis works have been republished. At Nice, where he has lived for many years past, he has occupied himself-combining the man of business with the enthusiast-with the growth of flowers and fruits; and the most beautifnl bouquets soll in Paris are made up of the produce of his garden. Several new varieties of fluwers, espeeially a dahlia, bear his name.

KA'RSIII (anc. Jukhsheb), the seconll eity in size and commercial importance of the khanat of Bokhara, Central Asia, is situated on the Shehri Schz river, 90 miles sonth-east of Bokhara city. K. is surrounded by cultirated land and mumerous gardens. It consists of the city proper and a weakly fortified citadel, has ten earavanserais and a well-supplied bazaar, and is considered likely to be of great importance in the transit-trade organised hetween Bokhara, Cabul, and India K. is distingnished for the fabrication of knises of varions kinds, which are exported to all parts of Central Asia, as also to Persia, Arabia, and Turkey, where they realise tharee or four times the enst price. - Aceording to Vámbery: one kind, with Damascus blades, aud handles with goll and silver inlail, are worked with great taste, and might, both for durability anel temper, put to shame the most famous froluce of Sheffield and Birmingham. The inhabitants, estimated (1863) at 25,000 , are for the most part Usbegs, with a mixture of Tadjiks, Indians, A fghans, and Jews; they are distinguished by their cheerful. ness and light-heartedness. The Jews have the privilege of riding even in the interior of the city, which they are not allowed to do in any other part of Bokhara.-See Vimberry's Travels in Central Asia (1864).

KASANLI'K, or KEZANLIK, a tnwn of European Turkey, at the base of the Balkan Mountains, S5 miles north-west of Adrianople, on the Tundia. an affluent of the Maritza. It has an extensive inaulufacture of attar of roses. Pop. $10,000$.

KASHI'N, a town of Russia, in the government of Tyer, and SO miles east of Tver, on the Kashinka a trimitary of the Volga. Great part of the town is old and ill luilt, but it is a place of much activity, rapidly increasing in prosperity and population. 'launins is a prineipal branch of trade. A kind of paint for the toilet is also largely manufactured. K . is ectebrated for the extraordinary number of its churches and other ecclesiastical buildings Pop. (186:3) 7639.

KATU'A゙GA, or EVEO, a town of Gando, West

Africa, 25 miles from the month of a tributary of the Niger, and about 200 miles north-east of Abomey, It is surrounded by a mud wall and a diteh. There is a brisk trade in yams, enrn, goats, sleep, fowls, native eloth, \&e. l'op, supposed to loe abont 15,000 .
KEBLE, Johs, son of the Jev. John Relle of Colo St Alwynds, (ilnueestershire, and Saral Maule, a lady of scoteh descent, was horn at F'airford, three miles from lhis father's living, April $2.5,1592$. The elder Keble, a diviue of the school of ke , educated his son at lome, and with such success. that at the early age of $1 \overline{3}$, he was elceted scholar of Corjus Christi, Oxford, then a small college comlosed wholly of members on the foumdation, lut numbering amones its scholars such names as Coleridge (Sir J. 'I.) and Arnold of Rugby. In 1810, K. took a first class in Classies and Mathematics; and in the next year was elected to a fellowship at Oriel, one of the highest honours in the university. In 1812, he gained both the Latin and English prize essays, was ordained deacon in 1815 , and 1 rriest in 1816. Even then, he had chosen his eareer. Neither the prospect of emolument at Oxford, nor the intellectual attractions of the Oriel common-roam, of which Whately and Coplestou were then members, and to which Arnold, Pusey, and Newman were soon afterwards added, couli charm him from his first love, the life of an Euglish parish priest. For a while he remained at Oxford as tutor and examiner, lut soon took active elerical duty, prineipally assisting his father. In June 1827 , in deference to the wishes of his friends, he pulbished the Christian liear, or Thoughts in Jerse for the Sundays and Molydays throughout the Vear, portions of which had lieen written as early as 1819 . Tho success of the small volume, and its influcuce on religious thought in England. ean hardly be over-rated. The number of editions soll (somo of 3000 eopies) is marvellons. Although of m. equal merit, many of the pieces being evidently written to eomplete the original plan, it is a work of genuine inspiration, combining with rare denth and fulness of religions feeling, the tenderest sensibility, and a poet's appreciation of vature in ber more sympathectic and human aspeets. In $1831, \mathrm{~K}$. succeeded Milman as Professor of Poetry. Ihis official prelections are ingenions in theory, and composed in clegant Latin prose. But the time had come when he must quit the pleasant paths of poesy for the tumnlt of theological controversy. It was a period of peril for the Eoglish Church. Within, was apathy and want of spiritual life, save only in the extreme Evangelicals, from whose defeets of learning and taste Uxford naturally revoltecl. Without, a reformed parliament had already suppressed three Irish lishopries, and seemed not unreluctant to lay hands upon the church at home. In his sermon on National Apostasy (1833), K. gave the signal for the Tractarian movement-a morement remarkalje for the learning and ascetic saintliness of its 1 romoters, and whose prineiples were deep, submission to authority, implieit reverence for Catholie tradition, with firm belief in the divime prerogatives of the priesthond, the real nature of the Sacraments, and the danger of ind"pendent speculation. Larly in 1835, old Mr Keble died, and at the close of the same year the poet married Miss Charlotte Clark, the daughter of an old friend of his father, and quitted Fairford for Hursley, a living in the gift of Sir W. Ileathente, M.P. When Newman seceded to liome, K.. less logieal perhaps, but with a truer instinct of lidelity to the Anglican Chureh, remained firm, and amidst the general dismay, exerted himself to the utmost to confirm those who wavered. From this period till his death, his

KEITH-KENT'S CAYELN.

influence, thongh eomparatively miseen, was not less felt. When smarting under adverse decisions of courts, and hostile measures in parliament, his party always songht for K'.s opinion, and it was given with a conscientionsuess that spared no pains, and a singular elearness of judgment even in matters not strictly clerical. His seeond volume of poems, The Lyra Imocentium, was published in 1846^{6}, in aid of the fund for rebuilding Hursley Chureh. Its popnlarity has never equalled that of The Christicus Yeer, to which, indeed, it is inferior buth in poetieal merit and in eatholicity of tone. In the winter of 1865, the health both of husband and wife was seriously impairel. They were compelled to winter at Bournemonth, and there, in the ensuiny spring, they died ; K on the 29th of March, at the age of It; his wife a few weeks later. Besides his poems, I. was the author of a Life of Wilson, Bishop of Sodor and Man : an edition of Hooker, usually considered the standard; and several lesser contributions to periodieal literature, among others, a Revicu of the life of Scott, rather famous in its day, originally published in the British Critic.

Keith, James, best known as Marshal Keiti, second son of William, ninth Earl Marischal of Scotland, and Lady Mary Drummond, danghter of the Earl of Perth, was born at the eastle of Inverugie, in Aberdeenshire, on the 14th of June 1606. He and his elder brother, George, Earl Marischal, had for their preceptor their linsman, Robert Keith, afterwards a bishop in the Seottish Episcopal Chureh, and author of two valuable historical works. The brothers took part, on the side of the Hlouse of Stewart, in the insurrection of 1715, and after its suppression, were attainted (see Keith, The Fabily of). Having effeeted his eseape, I. remained in France for some years, improving his knowledge of the military profession, and waiting for an opportunity of obtaining service. In 1719 , along with his brother and other Seottish nohlemen, he sailed on boarl the flect whieh was fitted out by Cardinal Alberoni and the Spanish court for the invasion of Seotland. The Jacobites were defeated at Glenshiel by the royal army, under General Wightman, and obliged to retreat. The Spanish auxiliaries were realy to renew the battle, but the HighIanders dispersed, and K., after lurking for some time among the mountains, got across the country to Peterhead, and again escaped to the continent. He continued in the Spanish service, but all lis expectations of promotion were disappointed, in consequence of his firm attachment to the Protestant Episcopal Chureh. In $1 / 27$, he made an application for the coloneley of an Irish regiment, and received, as he himself tells us, the following answer from the king of Spain, 'that how soon he knew I was Romau Catholic, I should not only have what I askel, but that he wond take care of my fortune.' In consequence of this, he applied for a recommendation to the Inssian government, which was immediately given, and he received from the Czar Peter II. a commission as majorgeneral. He distingnished himself in the wars with the 'Turks and Swedes, particnlarly at the siege of Oczakoff, and the reduction of the islands of Aland; but finding the Tussian service in various respeets disagreeable, he entered that of Prussia in 1747. King Frederick knew his merits, and gare him the rank of field-marshal. From this time his name is associated with that of the king of Prussia, who relied as much on the military genius of K., as he did on the diplomatic ability of his brother the Earl Marischal. K.'s talents became still more eonspicuous upon the breaking out of the Seven Years' War. He shared the doubtful fortunes of the king before Pragne, and was present at the
great victory of Rossbach, and at the retreat from Olmiitz. His last Lattle was not far distant. The Austrians under Daun, aul the I'russians under their kiug, met at Hochkirchen on the $14 t \mathrm{th}$ of Octoler li5s, K. commanding the right wing. The Prussian army was beaten, and K., surrounded and overwhelned by numbers, while endeavouring to force his way at the bayonet-point, was shot through the heart. His body was recognised by Count Laey, formerly his own scholar in the art of war, and was buried at Hochkirchen. The rest may be given in the words of Frederiek's historian: 'Four months after, by royal order, lieith's body was couveyed to Berlin; reinterred in Berlin, in a still more solemn public manner, with all the honours, all the regrets; aud Keith sletps now in the Garni-son-Kirehe-far from boany Iuverugie; the hoarse sea-winds and caverns of Dunuottar singing vague requiem to his honourable line and him, in the imaginations of some few.

In Hoebkirch Chureh there is still, not in the ehurchyard, as formerly, a fine, modestly impressive monument to Keith; modest urn of black marble on a pedestal of gray-and, in gold letters, an inseription not easily surpassable in the lapidary way
"Dum in predio, non proctd hime, inclinatam suornm aciem, mente, mann, voce, et exemplo restitnebat, pugnans ut heroas decet oceubuit." K. wrote a briet but interesting fragment of a memoir of his own life, commencing with the year 1714, and ending in 1734, which was printed in 1843 by the Spalding Club. For his military career after entering the Prussian service, reference may be made to Mr Carlyle's History of Frederich the Gireat.

KE'MPEN, the name of two towns in Prussia. 1. A town in Prussian Poland, in the govermment of Posen, on the border of Silesia, 43 miles east-north-east of Breslan. It has two churches, a beautiful synagogne, and a hospital. Wax-retin ing, tanning, and brewing are carried on, and there is a trade in horses. F'ol. (1864) 5917, more than half of whom are Jews.-2. A town of l:benish Prussia, in the government of Düsseldorf, and 20 miles north-west of the town of Duisseldorf, near the Niers. There are manufactures of silk ancl woollen goods, of articles of wood, stockings, and eandles. It is said to be the birthplace of Thomas A'liempis (q.v.). Pop. (1.SG4) 4.14.

KENT'S CAVERN, or KENT'S HOLE, a celehrated bone-cave, situated in a small, wooded, limestone hill, at the junction of two valleys, abont a mile eastward from Torquay harbour, and half a mile from the northern shore of Torbay: It consists of two parallel series of chambers and galleries, having an approximately north and south direction. The aggregate length of the eastern series is unwards of 950 feet, and the western is probably longer. It has two narrow external openings or entrances, in the face of one and the same low watural cliff, on the eastern side of the hill, and both opening into the eastern suite of aprartments. They are nearly on the same level, about 50 feet apart, 70 ieet ahove the bottom of the valley immediately beneath, and from 180 to 190 feet above the level oi mean tide.
Nothing is known respecting the origin of its name, and tradition fails to reach back to the date of the discovery of the eavern. The earliest known. mention of it is by Polwhele, who, in his Mistory of ${ }^{\circ}$ Devon (1793), gives a minute description of it. At that time, it appears to have been mueh visited by the curions; but it did not attract the attention of seientifie inquirers until September 18:-4, when 11r Northmore visited it with the double object of discovering organie remains, and of ascertaining the cxistence of a temple of Mithras.' He declared
liniself "happy to say that lie was successful in both oloj cets.'
In 100.5, the liev. J. M'Enery commenced those researches, which extended at intervals ower fully four years, and bas for ever associated his name with the cavern. He male arrangements for the publication of an illustrated narrative of his labours; fint the intention was mofortumately abandoned. After his decease, it was feared that his MSS. Lad heen lost or destroyed; lut after a variety of fortune, they ultimately fell into the hands of Mr Vivian of Torquay, who, in 1859, edited and published them under the name of Cavern Researches.

Mr M'Encry's labours may be thus summed ur: (1) In the cave-earth, beneath a thick floor of stalacmite, the discovered remains of the following animals, of which tlose whose names are printed in italics are extinct: great horse-shoe bat, shrew, badger, polecat, stoat, wolf, fox, wild eat, watervole, field-role, bank-vole, Sorway hare, rabbit, red-deer, Urous priscus, U. speheus, II yena spelcea, Felis spelaca, Machairodus latidens, Lagomys spelea, Eleqhas primigenius, Rhinoceros tichorhimus, Équus fossilis, Ifippopotamus major, Megaceras hibernicus, and Stronghloceros speleus. (2) Mixed up with those remains, and nuder precisely the same conditions, be met with a considerable number of flint 'implements, which laad been formed by man.

Though the inosenlation of human industrial remains with the bones of extinct mammals was enntirmed by the subsequent researches of Mr Gulwin-Austen in the same cavern, and later still hy those of the Torquay Natural History Society, even scientific men were umpremared for it, and it was cither discredited or explained away. In 1858 , however, a virgin eavern was discovered at Brixham, on the opposite side of Torbay, and was systematically and carefully explored by a comnittee, under the auspices of the lioyal and Geological societies of London. The results obtained wre so perfectly trustworthy, and so strictly confirmatory of the statements which, from time to time, had been reported from Kent's Hole, that it began to be generally suspected that the latter were, after all, worthy of credenee.

As ar result of this feeling, the British Association, in 1564, appointed a committec-consisting of Sir C. Lyell, sir J. Lubbock. Mr Evans, Mr l'engelly, Professor Phillijs, and Jr Vivian-to make a complete and systematic exploration of so much of Kent's Cavern as still remained intact. The committee, to which Mr Busk was added in 1S66, have carricd on their researches without intermission, and presented full Fieports in 1865, 1866, and 1507. The work is placed under the superintendence of two of the members, who visit the cavern daily. The method of exploration is so simple as to be easily carried on by the workmen, and so acenrate as to render it easy to determine the exact position in which every olject was found.

The walls of the cavern, in some of its branclies, display traces of the long-continued action of water running in a sensibly borizontal direction. These however, may be regarded as indications of the agency by which the cave was formed, but not necessarily by which the deposits were introduced.

In descending order, thesc deposits were: (1) Huge blocks of limestone, which from time to time hat fallen from the roof. In some instavces, two or more blocks lay one on another. Sheets of sta. lagmite sometimes lay between them, or inrested the whole, so as to form a dome-shaped mass; whilst others were withont any trace of this material. (2) Black mould, from 3 to 12 inches

Weep. (3) Stalagmitic floor, from 3 inches to as many feet thick; lout commonly ranging from 10 to 20 inches. With very few exceptions, it \mathfrak{x}. temed from the walls quite $^{\text {neross }}$ every chamber and gallery. In some cases, it was crystalline, enmpact, and so very hard as almost to dofy the workmen's skill and best tools ; in others, it was earthy, gramular, and comparatively suft. It commonly consisted of thin lamine, alternately crystallin: and gramular. It contained mumerons fragments and lilocks of limestone, aml graduated downwards into an extremely Lard concrete or breceia. (4) A lalack band, of irregular outline, from : to 6 inches thick, containing Dumerous bits of charcoal, amp strongly resembling the black monld above the stalagnite. This band was exceptional, heing found only in one spot, from 30 to 40 feet from one of the cavern entrances, where it covered about 100 square feet only. Throughont abont half this area, it was in immediate contact with the nether surface of the stalagmitic floor, from which, elsewhere, it was scparated by a layer of red loam, which never exceeled 6 inches in thickness. (5) Red cave-earth, with angular fragments of limestone, from mere splinters to blocks alnost as large as those lying on the surface. Typically, this deposit consists of abont cgual parts of red carth and of stones; lut in some places, the former greatly preponderates; whilst in others, the latter is most prevalent. Comparatively small wellrounded fragments of rocks, not derirable from the cavern hill, occasionally present themselves. The materials of the cave-earth lave no approach to stratification or symmetrical arrangement, and the stones lie at all angles. Small thin films of stalagmite occur at all depeths, sometimes enerusting bones or stones, or cementing them into a tirm breceia. The depth of this deposit is unknown; for, at present, it has been found desirable to limit the exearation to a depth of 4 feet below the base of the stalagmitic floor.

The objects found in the black monll, ahove the stalagmite, form a large and tory miscellaneous collection, including objects extending from the present day back to medieval, and even pre-lioman times. The most important are stones of various kinels, well romnded, and occasionally perforated by marine organisms; potsherds, representing a large number of vessels; curvilincal plates of slate, probably covers for earthenware intensils; 'sjinille whorls;' amber beads; an awl, a spoon, a wedge, and a chisel, all formed of lone; bone combs, which may be likened to small shoe-lifters having teeth in the broarl end; a spear-head, a soclicted celt, a spoon, a fibula, and rings, all in bronze; lumps of smelted copper; marine shells, such as still exist in Torbay; and bones and teeth of various animals, of existing species, including man.

The comparatively few objects found in the stalagmitic floor include pebbles of varions kinds, flint implements, marine shells, pieces of charcoal, and remains of extinct and recent animals, including man, and the cave rhinoceros, hyæna, and bear.

The black band beneath the lloor was extremely rich in objects, of which the principal were remains of the ordinary extinct and recent care mammals ; tlint implements and chips; a bone awl; a bone fish-spear, or 'harpoon,' barbed on one side only; The flint specimens were keen-edged, brittle, and chalk-like in colour and texture. They averaged about ten in every cnbic foot of material.

Throughout the entire depitl yet cxcarated, the red cave-earth contained bones of recent and extinct mammals and birds-chiefly the former; frecal matter, alnoost exclusively finely comminuted bone ; ovate and lanceolate llint implements, and hint

KERKI-KERN.

chips; a bone 'harpoon;' a bone pin ; small pieces of burned bone ; 'whetstones,' and a stone-hammer, or crusher. The bones are very abundant: most of them are of an almost chalk-like whiteness, whilst a few are discoloured; many are merely small splinters; a considerable number have been fractured, and gnawed precisely after the manner of modern lyæenas ; sereral are split longitudinally, as if for the extraction of the marrom, and in such a way as to betoken human agency; most of those thus split have also been scored by hyæna's teeth; those immediately under heary blocks of limestoue are crushed; they are all characterised by a specific gravity greater than that of those found above the stalagrite: on the tongue being applied to them, they all athere to it; in no instance have the elements of an entire skeleton, or anything approachin:' to it, been found together; and remains of many different kinds of animals are often lying in contact. Certain branches of the carern appear to be richer than others in bones; but wherever the care-earth occurs, with its usual accompaniment of limestone fragments, they may be expected in average abundance, irrespective of depth below the stalag. mite. The fecal matter appears to be confined to certain branches of the cavern, where it occasionally occurs in heaps a foot high. The bone 'harpoon' and pin have the same chemical condition as the bones-they both adhere firmly to the tongue. The former was found 2 feet belons the stalagmite, and the latter 4 - the greatest depth yet excarated. The best orate flint tool was also met with at this depth. The 'whetstones' are long narrow pieces of greenish grit, not such as could be supplied by the immediate district, but which might have been obtained from the gravel of the neighbouring rivers - the Dart and Teign. Whetstones similar in form and material have been found in the Bruniquel cares in France. The 'stone hammer' is a small ellipsoidal pebble of coarse, hard, red sandstone. Such pebbles occur plentifully on the central shore of Torbay. Hammers of this kind are well kuorn to hare been used by the North American [ndians.
It may be doubted whether the investigation now in progress has made any additions to the list of cave manmals giveu by the early explorers ; indeed, inp to the present time, no traces have been found of Machairodus latidens, recorded by د'Enery, or of Hippopotamus major, placed by Professor Oren in the carern list. Though some degree of scepticism exists in certain minds respecting their occurrence in the cavern, the evidence is such as to justify the belief that machairodns, at least, may yet be exhumed. In fact, the researches now carried on are continually adding new confirmations of M-Enery's statements, and hitherto they hare failed to bring forth any conflicting evidence.
Though it would be premature to venture on a general interpretation of the facts disclosed before the exploration is completed, the meaning of a ferr of them canuot be misunderstood or qualitied.
From the crushed character of the bones immediately beneath blocks of limestone, it may be inferrel that the cave-earth, on which they lay, was firm, unyielding, and capable of offering a resistance to the huge blocks as they fell from the roof; and hence it may be concluded, also, that the flint-tools dicl not, as Mantell and others supposed, by sinking through the red earth, reach a depth greater than that which they primarily occupied.

Whilst it is possible that objects belonging to different eras may be commingled in the cave-earth, it is certain that the most modern thing it contains is more ancient than the oldest article in the
stalagnite formed on it; and as human tools have been found in the red earth, and bones of three extinct mammals in the stalaginite, the conteraporancity of man with these extinct forms may be regarded as certainly established.
It is no donbt true that a very large amount of lahour has been expended on Kent's Carern without the discovery of any portion of the human skeleton in the care-earth. The fact is one of considerable interest, but it does not warrant a doubt respecting man's existence, especially in the presence of such positive facts as boue-tools and burned bones, to say nothing of the flint implements. Moreover, the stalagmite floor, with its extinct mammals, has yielded a portion of man's osseous system-part of an upper jaw, containing four teeth. In their Reports, the exploring committee remark, that, amongst other results of their inrestigation, so many instances of the rahuelessness of merely negative evidence have presented themselres, as to encourage the hope that remains of man, though probably in but sparing numbers, may yet be found in the caveearth.

KE'RKI, a torn of Bokhara, Central Asia, about 120 miles south of Bokhara city, on the left bank of the Jihoon or Oxus. K. is a place of considerable importance, being a frontier fortress, and the key to Bokhara on the side of Herat. The town, which is spread around the fortress, consists of 150 houses, 3 mosques, a small bazaar, and a cararanserai ; it is also defended by a good Tall and deep ditch. The inhabitants are Uzbegs and Turkomans, employed a little in trade, but more in agriculture.-Vambéry's Travels in Central Asia.
KERN, J. Contad, a Swiss statesman, was born in 1SOS, in the neighbourhood of Arenenberg, in Thurgav. He received his elementary education at Zürich, and afterwards studied theology at Bâle; but he abandoned his intention of entering the church, and turned his attention to lam, which he studied successively at Berlin, Heidelberg, and Paris. On his return to his native canton, he was appointed to the presidency of the Supreme Court and of the Council of Public Instruction; and in these offices he nade himself remarkable by his talent for public speaking, and the excellent suggestions which his wide acquaintance with other legal and administrative systems enabled him to make for the amendment of the institutions of the canton. K . was member of the Swiss diet for Thurgau in 1S37, when Louis SVapoleon came to reside at Arenenberg. His mother had settled there, and he had acquired the rights of a citizen of the canton. The government of Louis Philippe demanded his extradition, but the Swiss refused to compel him to leare the territory of the republic. They were threatened with invasion; and a spirited discussion took place in the diet, in which K . took the most prominent part, and stirred up his countrymen against the demands of the French. The canton entirely supported what he had done; bnt, fortunately, any resort to hostilities wras rendered unnecessary by the voluntary retirement of Louis Napoleon. In 1848, K . took an active part in the 1 reparation of the federal constitution, and some of its best features are due ta his sagacity. He afterwards established the Polytechmic School of Zurich, one of the most admirable institutions of its kind in Europe. While director of this school, in 1S57, he was selected, in consequence of his early connection with Louis Napoleon, to complete the negotiations regarding the dispute with Prussia; and at the conferences of Paris between the great powers, K. represented Switzerland. It is understood that K .'s inHuence with the emperor induced
the latter to "quouse very warmly the canse of the republie, and tis secure the consent of the line of Prussia to the treaty by which he renounced his sovereign rights wer Neufchatel, aml the voluatary ahaudonment, on the part of l'russia, of the ind m nity of a million frames, which the Swiss had stipulated to pay.

KEX ISLAN゙DS lio to the sonth of New Cuinea, betwen $5^{\circ} 12^{\prime}-6^{\circ} 4^{\prime} \mathrm{S}$ lat., and $1: 3^{\circ} \mathbf{2}^{\circ} 40^{\circ}-$ 133° Is' E. long. They consist of Great kiv, little Key, Key Watela, anil a number of small islands. In 18.\%, two nesy islets appeared in monnectiom with earthquakes which oceurret on the e6th of soven-ber-- Great key is long and narrow, tapering to a point in the south. Northecast Cape is in $5^{\circ} 14^{\prime} \mathrm{S}$. hat., and $103 \%^{\circ} 19$ E. long. It is mountainous, and watered by scyeral rivers. The coast is covered with forests. Area, 294 sq, miles, Many of the inlablitants are Mohammedans, some cliristians, and the remainder heathen. l'op: 21,001 .-Little Key lies sonth-west from Great Key, in EJ 31 . s . lat., and $132^{\circ} 53^{\prime} \mathrm{E}$. long. Area, 283 sq . miles. The shore is low and sandy; the interior mure elevated and well wooded. The island is surrounded by reefs, which gield! much beche-de-mer and tortoiseshell. It is rich in birds of paralisc. Dulaha and Tuallah, on the north-west, have safe roadsteads for large ships at all seasons. Cood vessels are built at 1)ulalh. P'op. of Little Ker, 10,000. -The Key lslands are fertile, and prochee fine timberetrees. Goats and pigs are abundant. Oil, cocoa-muts, woodwork, heche-fle-mer, tortoise-shell, \&c., are exchanged, to traders from Maeassar, for rice, sacm, tobaceo, sugar, sambir, hatchets, knises, irouwork, clephants' tusks, beals, guns, anel articles of clothing. The inhabitants are imlustrious and enterprising peaceable, faithful, and honest; of a brownish complexion, moderate stature, well made, with high forehead and regular features. Their hanir is blacl and curly, but not woolly. Sagn and fruits are principial articles of fool. The villares are mostly built on heights, and surrounded with stone walls.

KITAFALOC'S, or KHAPALT, a town of Western or Little Tibet, in the territory of Gholab Singh, on the Slayouk, a short distance above its junction with the Indus, 110 miles north-east of Serinagur. Pop. 12,000.

KHANPU'T, a flomrishing commercial town of North-western Iindustan, on a canal which connects it with the Inlus, 400 miles west of Delli, in lat. $25^{\circ} 3 \overline{3}^{\prime} \mathrm{N}$., long. $70^{\circ} 41^{\prime} \mathrm{E}$. The surrounding comntry is populous, and where irrigated, fertile. The town is badly built, and most of the houses are of clay. There is, however, a good hazaar, anl a fine mosinue. It was formerly of mueh greater importance than it is now, although it still has considerable trade. l'op. $20,1000$.

KHO'I, a town of Northern Persia, province of Azerlijan, on the Kotourn, a feeder of the Araxes, 50 miles north-west of Tabriz, and about $\because 0$ miles north of Lake Crumeyah. The town is well fortifica, and its principal streets are wide and remblar, and shaded with avennes of trees. It has a handsome caravanserai, several mosques, and a good bazaar. It has a consideraile trade. In the uciqhbourhoot, Shah Ishmael totally defeated the Turks under Selim I., in 1514. Pop, $30,000$.

KHU'RJA, a town of Eritish India, in the dis. triet of Boolundshuhur, the principal place of the pergunuah of the same name, 54 miles south of Meerut, about two miles west of the Ganges Canal. Pop. 20,147 .

KIKIN゙DA, NAGY-KIKINDA, or GROSSKIKINDA, a town of the Austrian Empire, in the

Temesur Parat, 131 miles sonth-east from Pestly. It is situated in a level fertile country. The inlabitants are partly of the Greck and partly of the Ioman Catholic elnureh. There is some trade in eattle, and an important anmal fair. The railway from l'esth to 'remeswar passes cluse to the town. Гop. 17.462.

KIMPOLTCNG, a town of Wrahacha, 50 miles north-west from lincharest, on a feeder of the Ayjish, near a pass through the Carpathiau Alountains intu f'ransylvania. It covers a large surface, has several Roman Catholic ami Greck charches and comvents, and a consiferable trale. lop. 1SC0) S2S3.

KIACHOW', a city of China, in the province of Hon-pee, on the left bank of the lans-tre-kiang, in lat. $30^{\circ} 26^{\prime} 40^{\prime \prime}$ N., longo $112^{\circ} 8^{\circ}$ L., about 150 miles west of Hankow. K. is surrounded by a strons wall, and is corsidered one of the keys of the empire. Pop. estimated at 600,000.

KING-TE-CHING, a town of China, in the proviuce of hianc-si, 240 miles sonth-west of 11 angchow, on a small river which falls into Lake l'uyang, It is the priacipal seat of the manufacture of porcelain in China, for which, it is said, 500 furnaces are employed. l'op, estimated at $1,000,000$.

KING-WOOD, a very beantiful wood, in small pieces, usell for ornamental work. It is brought from Brazil, and is lelieved to be the wool of a species of Triptolomia (natural order Leguminose, sub-order Papilionacere).
KI'RCHHEIM, a townof Würtembers, and capital of a lailiwick of the same name, in the Circle of the banube, is situated in a delightfin and fertile dis. trict, at the junction of the Lauter and the Limback, 1.5 miles south-east from Stuttgart, and forms the eentral point of seceral public roads. On a height is seen the ohl castle of the Trek family, who formerly ownel the town. The chief bildings are the royal palace and the Church of St Martin. There are many orchavels and vineyards. The principal industries are the manufacture of cotton and linen fabries, Meaching, making musical instruncnts, \&e. I'op. (1864) 5J4S, nearly all Irotestants.

III:K-K1LI'SS1A (the 'forty churches'), a large but ruinous and miscrable town of European Turkey, in Liumili, 104 miles north-west of Coustantinople. The town is situated on a sloping gromnd near the base of the Palkan, is cnelosed Py walls, and has many mosques and baths. It is fanous for the manufacture of a swectmeat, composed of the inspissated juice of boilecl grapes, formed into rolls containing walnut kernels. There is a trade in wine and corn. The pop, is variously estimated at from 16,000 to 25,000 . and consists chicfly of a mixed race of Bulgarians, Grecks, and Turks.

KISHENA U^{\prime}, or INCIIEAET, a town of Tussia, capital of the gavernment of Bessarabia, picturesyuely situated on the Bnik, a tributary of the $\mathrm{D}_{\text {niester, }} 9 \mathrm{j}$ miles nurth-west of Olessa. Until 1S12, when it came into the possession of Russia, it was a small miserable place, of no consequence ; since then, however, it has rapidly increased in size and prosjecrity: It now covers three hills, has it churches, a synagogue, gymnasium, several schools, and a govermment library, It has extensive manufactures of woollen eloth, hrandy, leather, candles, \&e., and a considerable trate in corn, cattle, flax, hemp, tobacco, fruit, wine, \&e. Pop. (IS3S) $13,000,(1549) 42,636,(1 S 55) S \overline{5}, 547,(1 S 63) 94,124$, composel of Tussians, Jews, Cossacks, Poles, Germans, Arusenjans, Rulgarians, Grecks, gipsics, aod many other nationalities.

KLEE'NE LOC (Dutch, little goat), or CAPE

KLIPSPRINGERーK゙OBRIN.

GUEVEI (Antilope verpusilla or pygmax, or Cephalopus pygmaxa, a very small species of antelope, very plentiful in South Africa. It is only about a foot high at the shoulder; the limbs are slender,

Fleene Boc (Antilope perpusilla).
the head long and pointed, the horns very short; the colour slaty brown. It lives singly or in pairs, in bushy districts, and is very nimble and active. Similar species are found in Western Africa.

KLIPSPRINGEP (Dutch, cliff-springer), or KALNS (Antilope oreatragus, or Oreotragus saltatrix), a species of antelone, about equal in size to the chamois, and resembling it in habits, found in the highest mountainous districts of South Africa. It is of a yellowish-gray colour, and the hair is long, and stands out from the skin so as to make a rough

Klipspringer (Antilope orcotragus).

fur. The legs and the general form are more robust than in most species of antelope. The tlesh of the K . is particularly estecmed ; the bair is also valued for stuffing saddles; and it has therefore become rare in localities where it was once common. The pinnacles and precipices in which it delights, make hunting it with dogs impossible, but to get within rifle-shot of it is not difficult.

KNEADING Ey MACHINERY. Lvery persou who has witnessed the making of bread by the ordinary process, must have felt the necessity of some means for aroiding the contact of hands, often not too clean, with the dough, aud the very laborious exertions requisite for kneading it thoroughly. On the continent, where bread-making is treated in a much more scientific way thau in Britain, every operation is now conducted on a large scale by the aid of admirable machinery; and the forms of kneading-machines are very various-the general 506
principle being, however, the same in all. In France, where they are called Petrisseurs, that shewn in the engraving is preferred. It consists of an iron cylinder, in which an axle works, and around which are set a number of curved, llunt metal blades. The ugner half of the cylinder opens (as seen in the

Kneading-machine.
figure), for the supply and removal of the dough. In the large bakeries, they are worked by steampower ; in the smaller ones, by hand.

KNOT (Tringa canutus), a bird of the family Scolopucida, and of the same geuns with the dunlin, stints, \&c. It is sometimes called the Red SandPIPER. Its whole length is about ten inches. The general colour, in summer, is reddish brown, finely mingled with black, gray, and white; in winter, the plumage becomes mostly ash-gray, and on the under parts white. The K. frequents high northern latitudes in summer, end breeds there; but migrates southwards in winter, and is then found, sometimes in large flocks, in Europe, Asia, and America, as far south as the West Indies, chiefly on flat sandy shores. It runs about with

Knot (1 ringa canutus).
great activity as the mare retires, seeking its food on the sands. Its food cousists in great part of small bivalve molluscs, which it swallows shell and all. It is in high esteem for the table.

KO'BRIN, or KOBRYN, a town of Russian Poland, in the government of Grodno, 139 miles east from Warsaw, on the right bank of the 533

Machaziea, a tributary of the Northern Buy. It is favourably situatel for commerce, the Miachaziea, and along with it the ling and Vistula, being here cumected by a canal with the l'ripet, and thus with the Duieper. There is a Greek abbey here. Pop. (IS6:3) 82 27.
liO'NGSWART1I, a town of Bohemin, on a feeder of the Berauo, a branch of the Elbe, 79 miles west-south-west from Praguc. It is situated in a romantic valley, has a tine castle, belongiog to I'rinee Metternich, mineral spriogs, amd a bathing establishment. The old fortress was destroyed by the Swedes in the Thirty Years' War, and the site having been purchasel by the imperial general, Count Metternich, in 161s, he built a castle in the Italian style, surromuled it with a fine park, am! collected in it a fine library, with great treasures of paintinss, antiquities, and olbjects of natural history. The altar of the richly-adomed chapel of the castle possesses many bones and other relics of saints to which pilgrimages are made. Pop. 7401.

KOROTCHA, or KAIOTCHA, a town of Russia, on a small river of the same name, in the government of Kirsk, 75 miles south-east of the town of Kursk. The town is well built, and has several churches. Saltpetre is manufactured, and a trade in apples carried on. Гop. 6:392.

KliApl'Na, a town of the Anstrian Empire, in the province of Croatia, on a river of the same name, a branch of the Save, at the southern base of the Ivanica Monutains, 140 miles south-south-east from Vienoa. The surrounding country is very fertile, abounding in com and wine; and the town has of late rapidly increasel in size. l'op. 12,SS8.

KIilyMSIf, one of the prettiest towns of Moravia, SS miles north-east of Olmittz, on the Marel. It is the summer residence of the Archbishop of Olmuitz, who has here a fine palace, containing a picture-gallery and a library of 30,000 volumes. During the revolutionary disturbauces at Vienna in 1849, K. was the seat of the Austrian government aud imperial councils. l'op. 9110.
lillS, a dagger or poniard, the universal weapou of the inhabitants of the Malayan Archipeligo. It is made of many different forms, short or long,

Ikris, or Malay Dagerer.

straight or crooked. The hilt and seablarel are often much ornamenterl. Men of all ranks wrear this weapon; and those of high rank, when in full-dress, sometimes earry threc or four. In Java, women sometimes wear it.

Kl:O'SlENBERG, a town of Rhenish Prussia, three miles sonth-cast from Elherfeld, in the industrial activity and prosperity of which it has partaken. Manufactures of linen and eotton are carried on, also of articles of iron and stecl. 1'op. (1S61) 787 .

KRUPP'S STEEL. The widespreal reputation of the steel producel in the great works of Herr Krupp, at Essen, in lrussin, has iuduced us to give it a brief notice. His manufactory has been increasing annually from one-sixth to one-third in size for the last 40 years, until it now covers about 450 acres, and gives cmployment to some 10,000 persons. For larte metallurgical works, Essen is favohrably situated, being in the centre of a coal-bearing area, where coal of the purest kind can be procured at
bal
from 7s. to 9s. per ton. There is also at hame the mansaniferous irom ores of l'russia, which have leen fomal so excellently adanted for the inamuacture of steel ; lout it is believed that the admirable organisa. tion of every part of his mannfactory has conduced, as much as anything, to the great success of Krupp. With habourers and mechanics who have passed the regukation-time in the Jrussian army, overseces trained in the German technical schools, and a small staff of experiencel analytical chenists, ho has ubviously a great advantage in conlucting operations where order, system, and skill are of paramonnt importance. But aven with these benctits, Iruph's productions would not have gained their celelnity, were it not for the scrupulous care with which he performs every manipulation.

In the article lros, we have described the manufacture of steel by tho C'ementation and Bessemer processes, but there are several other methods of making it, and one of these is by the deearburisation of cast-iron in the puddling furnace. 'This is the process by which krupp makes his steel, in the tirst instance; and the material he employs is Spiegeleisen, or specular cast-iron, a highly crystalline variety, usinally containiog about 4 per cent. of manranese. 'This iron is admirably suited for conversion inta steal. The puddling process for steel is similar to that employel for lron (q. v.), except that the former is conducted at a lower temperature, and requires nicer management ; but in the case of stecl, the cast-iron to be onerated upon is never previonsly refined. Cast-iron to the extent of abont 4 ewts. is melted in the puddling furnace, mixed with a quantity of slag or ciniler (chiedly silicate of iron), and stirred with a rabble. During this operation, the carbon in the east-iron (usmally about 5 per cent.) is gradually oxidisel by the oxygen present in the cinder; carbonice exide is produced, and as it eseapes, what is technically termed 'hoiling' takes place. When the elullition becomes active, the temperature is raised until the appearance of incipient soliclitication oceurs; the heat is then lowered, and the ordinary process of balling proceeded with. Steel thus produced usually contaius from 0.5 to I per cent. of carbon; but if the temperature is not skilfully regulated, the earbon becomes wholly burned away, and malleable iron instead of steel is produced.

Puddled steel, althongh useful for most purposes in the arts (except cutlery), nevertheless wants homogencity, on account of a certain intermixture of cinder, which is diflicult to get rid of without fusion-a defect which is apt to prevent it from welding perfectly. In Krupp's works, the puddled steel is remelted into erucibles, in order to convert it iuto east-steel; and it is the wonderful uniformity of guality with which he mamfactures this in very large masses, that constitutes the superiority of, and gives so great an interest to his productions. The crucibles employed are made with extreme care, mainly from fire-clay, to which a little 1hambaro is adrled ; their capacity varies from 50 to 100 Clbs, and it is reported that as many as 100,000 are kept drying at the same time. After being once nsed, the crucibles are broken up, whether clamaged or not, and mixed with other material, to make new ones.

In the casting-house where the large ingots are rum, the furnaces, which contain about 1200 crucibles, are arranged along the sides of the building; and in the central portion, the stecl monlds, varying in capacity from 100 lbs . to 40 tons, are disposed in line between two pair of rails, upon which runs a movable crane. It is in the casting of suel an cnormous ingot as 40 tons of steel (the largest yot produced) irom crucibles of small capracity,
that the perfect organisation of Krupp's establishment becomes most strikingly apparent. At a given signal, one gaug of workmen remove the crucibles from the furuaces, while another seize them with tongs for the purpose, and pour their contents into narrow canals of wrought-iron, lined with fire-clay, which converge into the opening by which the mould is filled. This is the critical stage of the operation, the difficulty being to deposit in tie mould a continuous stream of melted steel of about the same degree of heat, so as to cool uniformly, and to solidify into a perfectly homogeneous mass. Of such uniform soundness are some of Krupp's large steel ingots, that one-shewn in the last Exhibition in London, 9 feet high, 41 inches in diameter, and weighing 21 tons-when broken across, did not shew the slightest flaw, even when examined with a lens; and another, weighing 15 tons, although broken at eight different places, shewed an equally perfect structure.
In order to manipulate these extraordinary masses of steel, there is a steam hammer, weighing 50 tonsthe mechanical marvel of the works at Essenwhich has a cylinder nearly 6 feet in diameter. It has a 50 -ton crane at each of its four corners, and behind each of these again, there are four heating furnaces. A movable bench on low massive wheels serves to remove a large ingot from any of the furnaces, which is then, by means of the powerful eranes, and a system of pulleys and crabs, placed on the anvil, and worked into any desired shape. The anvil-face wcighs 185 tons.
The quantity of steel manufactured by Herr Krupp in the year 1866 amonnted to 61,000 tons, representing a value of about $£ 1,500,000$. It consisted chietly of rails, tires, crank-axles, shafts, mining pump-rods, and guns-the proportion of ordnance being about two-fifths of the whole. Guns have been made at Essen for the Prussians, Austrians, Belgians, Duteh, Italians, Turks, Japanese, and also for the English, although not directly ordered by the government. A brief inventory of the machinery, \&c., cmployed in these works has been published this year, which had it not been issued by the owner himself, would hardly be believed. It states that there are 195 steamengines, ranging from 2 to 1000 horse-power, 412 furnaces of varions kinds, 49 steam-hammers, 110 smith's forges, 318 lathes, 111 planing-machines, 61 eutting and boring machines, 84 boring-machines, 75 grinding-machines, and 26 special tools; 1000 tons of coal are burned daily, and there are about 11,000 gas burners, consuming in the 24 hours of the shortest day $400,000 \mathrm{cmbic}$ feet of gas. In the Paris Exhibition of last year (1867), Krupp shewed a huge gun intended for a coast luattery to defend the attacks of plated ships. It is made entirely of cast-steel, weighs 50 tons, and ean propel a shot weighing 10 SO ibs. It took 16 months, working day and night withont interruption, to manufacture. The price of the gin alone is $£ 15,750$, and of its carriage and tarn-table, which weigh respectively 15 and 25 tons, 26000 more. He also exhibits a superb crank-axle for a marine eugine, about a foot in diameter, which is a remarkable example of what can now be done in steel, and augurs well for future achievements with this invaluable material.

KlUUSENSTERN, Adam Joun, Cuevaliere von, a distinguished Russian voyager, was bora Sth November 1770, at Haggud in Esthonia. He served for some time in the British navy. The Emperor Alexander, when he ascended the Russian thronc, took up a plan proposed by k . for the promotion of the American fur-trade, and consequently intrusted him with the command of an expedition at onee for
scientific and mercantile ohjects. K. sailed from Cronstadt with two ships, 7th Augnst 1803, and returned 19th August 1806, and was the first to conduct a Russian expedition round the world. He failed in one of the objects for which he was sent out-the reopening of the liussian trade with Japan, but made some interesting geographical discoveries; and his careful explorations of coasts made his voyage very inportant for the progress of geographical science. He published an account of this voyage (3 vols., Petersb. $1810-1812$, with a volume of maps and plates), which was soon translated into all the principal languages of Europe. The contributions to natural history resnlting from the expedition were the subject of a separate work by Tilesius (Petersb. and Leip. 1813) ; and K. himself subsequently published a work called Contributions to the Hydrography of the Pacific Occan (Leip. I819), and several other works on the same subject. K. died 12th August 1846 at Asz, in Esthonia, where he had an estate.

Krylov, ivan Andrejevitch, a celebrated Russian fabulist, born 13th February 176S, at Moscow, was the son of a poor officer in the army, reccived the elements of his education at Tver from his mother, and learned French from a French tutor who was resident in the house of the governor of Trer. K. read indiscriminately all books which fell into his hands. Dramatical works made the greatest impression on him, and in his 15th year he wrote an opera called the Kofeinitza (The Coffee Fortune-teller), which was never represented, but attracted considerable notice in Trer, and procured patrons for him, who got him an appoiutment, in 1785, in a public office in St Pctersburg. A bookseller gare him 60 roubles for the manuscript of his opera, which he spent in buying the works of Iiacine, Molière, and Boileau. In 1756, he wrote another tragedy, Philomelu, which, although never represented, was printed in the collection called The Russian Theatre. After the death of his mother, 178 S , to whom he was much attached, K . reccived a post in the imperial cabinet, which he resigned two years afterwards, in order to devote himself to literary work. For two or three years, beginning in 1789 , he occupied himself partly with journalism, but soon gare it up. He now produced a succession of prose couredies, among which were The Crazed Family (1793), The Mocking-bird, and The Poct in the Anteroom (1794), which brought him under the Empress Catharine's notice. In 1801, he was appointed secretary to Galitzin, the governor of Riga, who, aiter a time, invited him to his country-house at Saratov, where he spent some years in entire leisure. IIe then returned to St Petersburg in 1806 , where he bronght several very snccessfud plays on the stage, The Milliner's Shop, The Lesson to Ladies, \&c. It was at this time, when about 40 years of age, that he turnen his attention to that lind of writing which was to immortalise him. K. having translated some of Lafontaine's fables, the pout 1 mitriev was so struck with their felicity, that he encouraged him to persevere in that line. In 1SOS, the tirst collection of his Fables (23 in number) appeared, which met with great success. Others followed in 1811 and in 1816. In 1S11, he was made member of the Petersburg Acaderny; in 1812, an official in the lnperial Library; in 1830, conucillor of state; and in conrse of time he was so overwhelmed with honours and pensions, that, in 1St1, when he resigned his public office, he drew from the state and the imperial treasury the sum of 11,700 roubles. On the occasion of his 70th birthday, homage flowed in on him from all guarters. K. died on the 21st Novemher 1 S14. Soon afterwards, is national

KUN゙NOJ－LACHOIX．

subscription，to which children eagerly contributed their share，was set on foot to raise a monument to his memory；and towards the end of the reign of the Enperor Nicholas，his statue in hronze， by Kolnth，was placed in the Summer Garden at St Petersburg．Many storics are current of his eccentricities．Owing to the genuine natioual spirit， the joyousuess，simplicity，wit，and goon humour that pervade them，his Falles are the most jopular of Kussian books，and many single sentences of them have become proverhs．They are generally the first reading－book put in the hands of childreu， and thus many thousind copies，both in dear and cheap clitions，are in circulation amone all classes． He proluced in all nearly 200 fables，of which more than threc－fourths are original，and the rest are imitations．＇There is a German translation of Ǩ．＇s l＇ables ly Torney（Mittan，18t2），and there are mumerons imitations of them in latian and in Frencl2，the latest by Charles Parfait（l＇aris，1S67）．
KU＇NNOJ，or KUN工OUJ，a decayed town of British India，capital of the pergunah of the same name，in the district of Furruckahad，G5 miles north－ west of Lucknow，on the Kiali Nuddi liver，about three miles from its junction with the Gauges．At present，the place is little mere than an expanse of ruins，whole mountains of which nuect the eye in every direction，upon a space of ground much larger， it is said，than the site of London．The greatest part of the standing buiddings are uniuhabited，and tottering to decay．The few poor peeple now in
the place live in mud hats built ul agaiust tho old walls．The present town is about a mile lons， and balf a mile broat，with a rumous fort of 10 great antiquity：＇The most remarkable buildings are two handsome Dlohamuchan mausulemms．K．was formerly one of the greatest of ludian cities；and according to some，rauks scond in respect of ankiquity．One authority consilders the town to have existed before the tirst introduction of dirals． manism from the West．Until about the $12 h^{\prime}$ c．A．D．，it continued to be the chief city of India； but in 1194，it was attacked hy shahabuddin Mohammed，sovereign of Ghoor，who defeated the king of K．，and overtherew that monarchy．After this，the history of the place consists only of a suc－ cession of disasters．At juresent，this once celebrated place contains ouly 16,000 inhabitants，living in great indigeace．

KUPPERWU＇ざJ，a fortificel town oi Britisla India，in the presiduey of Bombay， 32 miles cast of Ahmedabad，on a tributary of the river Salourmatte． It has some trade，aud manufactures of soap and prottery．Pols $13,000$.

KUliNA＇L，a town of British India，ia the diso trict of Janipht，in the North－west I＇rovinces，on the right bank of the Delli Canal，is miles north－cast of Delhi city．The town is surrounded by a ruinous wall，and is excessively filthy．It has，however，a handsome mosque．Adjoining the town is a military eantonment．＇＇op＇20，1\％s．

L

Abedoyère，Charies Angelique山echet，Cousit me，a victin of the reaction of 1515 is France，was descended from an ancicnt family in lietagne，and was born in Paris on 17th April 17sc．Ile early cutered the army ；was adjntant to Marshal Lannes in Spain，in 1sus，and received a severe wound at Tullela；joined the army in Cermany after his recovery； distinguished himself at the capture of liatishon， and was Mhrat＇s adjutant at the battle of Esslin－ gen．On the evening before the battle of Lutzen， Situoleon premoted him tu the commanel of a regiment of infantry．Returning to France again scperely wouled，in the autumn of 1813，lie married a lady of a family very much attached to the Bourbons；and receiving the command of a regiment，was posted near Vizelle when Napulcon returnel from Elba．He immediately joinal him， and was mate a lieutenant－general and peer of lrance．He fought with great gallantry at Watcr－ loo；and after the battle bastened to Paris，when lie spoke with great violence against the Pourlons in the stormy sittiog of the Chamber of lecers，on 22d June 1815 ．After the eapitulation，he thought to have escaped to America，but was taken prisoner， conderned to death，and notwithstanding every cffort that could be made on his behalf，shot on 19 th August 1515．He was a man of a chivalrous char－ acter，and devetedly attached to the emperor．

Lasiblache，Leigi，a celebrated operatic singer， was Lorn in Naples in 1795 ，whither his father and mother，who were French，had fled from L＇aris 536
during the horrors of the Revolution．II is first engagement as a singer was at the Sar Carlino Theatreat Nayles，in 1812，he afterwards sang，with much suceess，in La scala，Milan，and in Vienua； singing also at the San Carlo，at Naples，during the intervals of the Viemma season．On his tirst appear－ ance in London in 1530，he created a great prblic sensation；and for a mumber of years，be resided alternately in the Freuch and Enolish capitals， singing looth in the laris and London seasons．He dicd at Naples in 185s．His roice，a deep bass，has hardly ever been equalled cither in volume or quality；and his aetivg，particularly in the charac－ ters of＇Figaro＇and •Leporello，was alnost as remarkable as his singing．He was the author of a treatise on singing，puhlished in 1843；and lie long gave iastructions in singing to Queen Victoria．

Lacroix，Syivestre－Frasgofe，a French mathematician，was horn in Paris in 176.5 ；aud thongl of poor parentage，succceded through in－ domitalbe zeal in acquiring so gruat a knowledge of elementary mathematics，that，at the age of 17 ，he witained，by the recommendation of Monge（ $q . v$ ．）， the jrofessorship of mathematics in the Naval school at lochefort．He was successively promoted to a corresponding position in the Eicole Normale，Ecale Polytechrique，the Sorbonne，and the College of France；was chosen member of the Academy of Sciences in roon of Lorda in 1799 ；and throughout his long life zealously pursucd his duties as a teacher， widely disseminating a taste for the matlematical sciences by the numerous elementary works which were the fruit of his leisure hours．L．is not remark－ able for original discovery in mathematical seience；

LA CROSSE-LALLY-TOLENDAL.

but he deserves to be cratefully remembered for his Traité du C'alcul Differentiel et Intégral (Paris, 1797), at work on which he spent immense labour, in order to make it a complete and harmonious compilation of the results of all previous research. The value of such a work may be estimated by Laplace's statement, that it cost him ten years' labour to supply for himself the want of such a work. L.'s other writings are treatises on Arithmetic, Algebra, Geometry, Trigonometry, Probabilities, Land-surveying; Geography, Mathematical and Physical, \&c.

LA CROSSE is the name of a field game played with a ball. The Iroquois Indians have been long accustomed to play it in Canada; and some of them exhibited their skill in the game in presence of the Prince of Wales, when he was in that colony in 1560. Eighteen of those Indians, Anglicised in many of their habits and customs, came to Encland in July 1867, to play the game in a country where it was not before knorn.
In what way La Crosse differs from golf, hockey, foot-ball, and other games, may be briefly explained. Every player is prorided with a kind of large lattledore. This consists of a long stick of light hickory, bent at the top like a bishop's crozier; strings of deer-skin are stretched diagonally across the hooked portion in different directions, forming a network-not so tightly as in a regular battledore or racquet-bat, nor so loosely as to form a bag. As the battledore, called the crosse, is five or

The Crosse and Eall.
six feet long, there is great leverage power in handling it. Only one ball is employed, made of india-rubber, and eight or nine inches in circumference. Posts or poles about six feet high, with a small flar at the top of each, complete the equipment. The players divide themselves into two parties, the reds and the blnes; their number, as well as the size of the play-field, are nearly optional, more players being needed as the area is larger. Tied pretominates in the dress of one party, and blue in that of the other, for facility in distinguishing colleagnes from opponents. 'To prepare for the gaine, a red goal is set up at one end of the fiell, consisting of two small red flags on posts, about six feet high and six feet apart; a similar goal, but lhene in colour, is set up at the opposite end of the field. Now, the olject of the game is, for the blues to drive the ball throngl the red goal, and the reds to drive it throngh the blue goal; and each party; of course, strives to frustrate the plan of the other. The ball is not thrown by the hand, but is hooked up from the grass by the bent end of the crosse or battledore; it is borne on the netting horizontally, while the player runs, and is dexterously thrown off the crosse when the exigencies of the game require such a mancurre. No player is allowed to wear spiked shoes; but a good hold of the ground is ohtained by wearing mocassins, which the Indians prefer, for the pupose, to regular shoes.
In the arrangement of the men on each side, the goal-keeper defends the goal; point is the first man out from the goal ; corer-point is a little in advance of point; centre is in the centre of the field; home is the player nearest to the opponents' goal ; while the fielders comprise the rest of the players. Beginning near the centre of the field, the players struggle to
obtain a mastery over the ball, and convey it to the opponents' goal. When scooped up from the ground, it is carried horizontally on the crosse, the player running oue of the goals, trying to elude the vigilance of his antagonists. If it seems prudent, he pitches the ball off his crosse towards a colleagne, who may be in a better position to convey it towards the goal. The ball is not touched hy the hand, except under special and clearly-defined circumstances. If the ball be accidentally driren throngh the red goal by one of the reds, the blues win the game; and vice versi. The players must not strike, trip up, or grasp one another; nor must any one lay hold of the crosse of another. One player strikes the loall off ad opponent's crosse with his own crosse, and not by any other means. Two players ou the same side may fling or carry the ball consecutively:

It will thus be seen that there is a little of cricket, of football, of hockey, and of racquet in La Crosse. The goals present some analogy to wickets in cricket; the occasional struggle for the ball is like the 'scrimmage' of football, though not so rough and dangerous; the general mode of play may be compared to hockey; while the battledore claims some resemhlance to the racquet-bat. There is nevertheless sufficient originality in the game to render it wholly a distinct one. La Crosse Cluls have already been established at Blackheath aud lichmond.
L. ADY FERN (Athyrium filix foemina, or Asplenium filix fomina), a beautiful fern, common in moist moods in Britain, with bipinnate fronds sometimes two feet long. The whale plant las ad extremely graceful appearance. It is said to possess the same anthelmintic properties as the male fern.

LA'GOS, a town of Africa, on the coast of Upper Guinea, 150 miles west of Benin, at the west end of a long low island, which lies at the entrance to a lagoon of the Bight of Benin, near the mouth of the river Ognn. A number of English and uther traders reside here, and the town contains many good houses built in the English style. L. was formerly a notorious seat of the slavetraffic. It was captured and destroyed by the British iu December 1851. and a treaty was concluded by which the ruler gramanteed freedom of conmerce, the protection of Christianity, and the abolition of the slave-trade asd of homan sacrifices. Pop.

Frond of the Lady Fern (Athyrium filix fomina). 6000 . L. since 1561 has heen a British possession. Va'ue of imports (1S62), $£ 7 T, 933$; exports, $£ 61,932$.
LALI'TA-PATA'N, or PATAN゙, a town of Nepal, four miles sonth from khatmandu, from which it is separated by the Bogmutty. L. Was formerly the capital of a small independent state. It is a neat town, and has sone goou public buildings. It has manufactures of cotton, copper, and brass. Pop. supposed about 24,000 .

Lally-Tolendal, Thomas Arther, Coutst DE, a Fronch general, of historic note as the rictim

LAMDAYEQUE-LAPÉROUSE.
of a julicial murder, was loon iu Dauphine in 169S. His father, Sir Geraril Lally, was an Irish Jacobite refugee, and commander of an lrish regiment. L. distinguislect himself much as a soldier in Flanders; accompanied P'rince Charles Edward to Scotland in 1745 ; and in 17.50 , was made a lieutenant-general and appointed commander-in-chief in the lirench East Intian settlements. Ite commenced hostilities ngainst the British in India, took many places, and besieged Madras itself: hut sustained a severe defeat under the walls of Vandarachi, and was conpellel to retreat to Pondicherry, which was attacked in March 1760 by land and sea by a greatly superior British force. Lally, bowever, held out for ten months; and hefore Iondicherry fell, on l Gth January 1561, the sufferings of its defenders were terrible. 1. was conveyel as a prisoner of war to lingland ; but hearing that he had been accused in France of betraying his trust in India, he obtainel leave to proceed to France for the vindication of his character, An iuvestigation was promised, but no step was taken for a year, aud then Lally was only thrown into the Bastile, where he remained 19 months before his trial took place. The parliament of Paris at last, on 6th May 1766, condemned him to death for betraying the interests of the king and the Indian Company, ami the sentence was executed three days aiter. But his son, supported by the powerful assistance of Voltaire, procured a royal decree on 2lst May 17%, declaring the eondematiou unjust, and restoring all the forfeited honours.-Tbe son, Tropmimes Gerard, Marquis de lally-Tolemdal, was born in Paris, 5th Mareh 1751. He was one of those nobles who, in the States General, in 17S9, united with the Third Iistate; but alarmed at the democratic tendencies of the National Assembly, he afterwards allied himself more with the court. Ho labourel to proenre for France a constitution with two chambers atul a privileged aristocracy. He earnestly sought to profect the ling, lont was himself obliged to tlee to England. Aiter the Revolntion of 1sth Frmmaire, he returned to France and lived at Pordeaux. Louis XVIII. made him a peer; but he remained true to his political prineiples, and defended coustitutional liberty. Me died on 11th Nareh Is:30. He was the author of a Defence of the French Emigrants, which made a great sensation in France at the time of its appearanec, and of many other pamphlets.

IAMBAYE'QUÉ, a town of Pern, in the dep. of Libertad, near the mouth of the river Iambayeque, $4: 5$ miles north-west Irom lima, It is about tive miles from the sen; but las some trade, although its roadstead is very bal, and fully a mile from the shore. L. has a chureh and several chapels. It has manufactures of cotton fabrics. P'op. 8000 .

LAMO'V, or LONOV, the name of two towns of European Russia, in the government of Penza, and on the river Lamov, a branch of the Mukscha, which itself is, throught the Oka, a feeter of the Volga. Verkuii L. (o)ld, or Upper I_{1}.) is about 64 miles west-north-west from I'enza. It has scven churches. I'op. (1503) 794. Nijni L. (New, or Lower L.) is nine miles sonth-west from Verknii L., further down the river. It has three churehes, and an ammal fair, which attracts traders from all parts of liussia. Iop. (1S63) 9630.

LAMPRDUSS (anc. Pelegia), a small nninhalnted island in the IIcditerranean Sea, abont milway between Malta aud the coast of Tunis. It belongs to the kinglom of Italy, having been formerly a dependency of Sicily. It is about seven miles in length, and in most places not quite one mile in lreadth, its eirenit being about 13 miles. The western part of the island is covered
with dwarf olives : and theso and other shrubs supply great quantities of direwood, loth to Tripoli and Nillta. Great numbers of wild goats inlabit the island. L. was at one time inhabited. Near it are the two islets of Limpione and Linosa.

IANDED ESTATES' COURT. See Iscumbehed Distates Courts.

LANDERNEAU, a small seaport town of the dep. of Finistire, France, 13 miles north-east from Brest. Only a few small vessels belong to the town, although about 700 enter and clear the port annually. The harbour admits vessels of 400 tous. 1'ор. (1866) 6390.

LA'NDSKILONA, a fortificd scaport town of Sweden, on a tongue of land which projects into the Sound, is miles north-north-east from Copenhagen. The harbour is very good. Ship-building is earried on. Corn, lish, tar, pitch, timber, and alum are the principal exports. 1'op. (1SG4) 6ā9s.

IANGlNNLDCK, Berwhard von, Professor of Surgery in the University of Berlin, director of the Foyal Clinieal Mlospital, and general staff physieian of the army, is nephew of the famous surgeon, Max Langenbeck, in liütingen. Having been appointed (1S47) suecessor to the great operator, Dieflenbach, in Berlin, he was not long in aecpuiring an equally high eclebrity, especially through his great skill and suceess in the operation for harelip, as well as in the replacement of noses, eyelids, ani lips. He likewise carned a great reputation through his execution of the operation of liescetion (q.v.), in which the diseased or injured part only of a boue is removed, instead of the whole limb jerhaps being amputated. During the late wars in Germany, a great field opened itself for this lind of operition, and hundreds of the womded who came under the knife of L. have to thank him for the preservation of their limbs. On account of his eminent services, he was emmobled, and received the highest medical rank in the Prussian army.

1. is a man of prepossessing appearance ; and instead of that bluff harshness which, whether natural or assumed, has characterised so many great surgeons, he is eminently tender and sympathetie with his patients. As a teacher, he is lighly snecessinl; and the Clinical Hospital in Rerlin, under lis personal direction, is the resort of patients from all countries of the world.

IA'NGNAU, a town of the canton of Bern, Switzerland, 15 miles east from Bern, in the Emmenthal. It is sitnated on the Ilfis, a branch of the Emmen. Weaving is carried on to some extent, and $1_{\text {s }}$. is the prineipal mart for the elieese and linen thread of the Emmenthal. Pop. (1860) 5SG0.

IAP-DOG, a name common to all those diminutive rarictics of dog which are licpt as drawingroom pets, and which ladies take with them in their earriages. Most of them are Spaniels (q.v.), as tho King Charles's spanicl, the Maltese Dog isc. Gentleuess of disposition, large cars, and lons hair, are among the approved characteristies of lap-dugs. The very smallest of the race is the Mexican LapDog.

Lapérouste, Jean Fravȩots df Galaup, Count de, a famous French voyager, born near Albi, in Languedoc, now in the dep. of Tarn, in 1741; attained the rank of captain in the I'rench navy; and was sent, in 1782 , to destroy the British forts or settlements in Hudson's Bay. In this expedition he shewed a remarkable power of contendiag with difficulties, and accomplished his object notwithstanding the storminess of the se:2 and the ice in which it aboundert. He signalised himself also by his humanity towards the occupants

LAPNICA-LA VILLEMARQUE.

of the forts which he destroyed. He was now chosen to command an expedition of discovery sent out by the French govermment. He sailed, in Augnst 1785, with two ships, visited the north-west coast of America, explored the north-eastern coasts of Asia, and made important discoveries in that region, although he failed to discover that object of so many expeditions, the North-west Passage. In February 1758 , he anchored in Botany Bay, aiter which no trace of him was obtained, although the French government offered a reward of 10,000 francs for information, and sent ont an expedition unier D'Entrecasteanx, in 1791, to search for him, until, in 1826, the captain of an English vessel, Captain Dillon, found on the island of Tucopia-a very small island to the north of the New Hebrides -a number of things which had belonged to L.'s ships, and which had been obtained from the inhabitants of the island of Mallicollo, one of the New Hebrides. Investigation being made by the East India Company, Which sent Captain Dillon for this purpose, aucl, subsequently, by the French government, which sent out an expedition commanded by Dumont d'Urville, eye-witnesses were fonnd of the destruction of two French ships on the coast of Mallicollo, and five French cannons and other remains of the experition were found there. It was fully ascertained that both of L.'s ships had been wrecked in a storm on a coral reef, and that all on board had perished. Dumont d'Urville erected a simple monument with a brief inscription in memory of his ill-fated countrymen. The account of L.'s voyage, published under the title of Voyage autour che Monde (4 vols. Par. 1797, with atlas), was prepared by order of the French government, from the journals which were sent home by him from Kantchatka. But the collections and note-books of the naturalists who accompanied the expedition, perished along with themselves.
LA'RNICA (anc. Cithium), a town of the island of Cyprus, in N. lat. $34^{\circ} 5 \bar{a}^{\prime}$ and E. long. $33^{\circ} 37^{\prime}$, sitnated in a marshy plain, abont a mile from a lay on the south coast of the island. Owing to its filthy condition and the ncighbouring marshes, L. is a very unluealthy town. Water is very scarce, and is supplied by an aqueduct. L. is, however, a place of considerable trade, the chief seat of the eommerce of the island, and the residence of European merchants and cousuls. There is recular steam-boat communication with Constantinople, Smyrua, Alexandria, and Marseille, and occasionally with Liverpool. There is no proper harbour : but the bay affords good anchorage. The principal exports are wheat, cotton, silk, wine, and drugs. There are many remains of antiquity in aud around the town. Pop. I0,000.

Latheilile, Pierre-Andre, an eminent naturalist, particularly distinguished as an entomolugist, born 29th November 1762, at Brive, in the province of Limonsin, now in the dep. of Correze, Frauce. He was descended of a noble family, but was left an orphan at an early age, and with very slender means of subsistence. In $17 i \mathrm{~S}$, he was placed in the college of Cardinal Lemoine, at Paris, to be educated for the church. Whilst here, he acquired the friendsinp of Haity (q. $\%$). Ile now began to derote himself almost exclusively to the study of insects. He completed his education for the church, and received ordiua-tion-a circumstance which afterwards, in the clays of the Revolution, exposed him to much hardship aud danger. He gave himself, however, chiefly to entomological studics. His first publication was on the Mutillas of France, insccts of the order Hymenoptera (1792) ; which was follow od by very
many other works of the same lind, articles in encyclopredias, magazines, \&e. In 1796, he published, at Brive, his first great work, Pricis des Caractères Génériques des Insectes, disposís dans un Ondre Noturel. It was an important step towards a truly natural system of entomology, although really a mere sketch of a system. An interesting incident falls here to be mentioned. During the fury of the French Revolntion, L. was condemned to deportation, and sent to prison at Bordenux, awaiting the execution of his sentence. The surgeon who visited the prison observing the prisoner attentively looking at a small insect (Necrobict ruficollis), was informed by him that it was very rare, and that he wished to transmit it to two young naturalists in Bordeanx. His wish was gratified, and the young maturalists -MM. Dargelas and Bory de Saint-Vincentexerted themselres to obtain his release, in which they ultimately succeeded. L. always remembered this with great gratitude, and has commemorated the incident in some of his works. A figure of the insect is engraved on his tomb. L. was again in danger in 1797, when he was proscribed as an emigre ; but again he escaped through the influence of friends. Having, after the Revolution, relinquished all thoughts of the church, he entirely devoted himself to natural history ; was received as a corresponding member of the lnstitute; and was employed in the arranging of insects in the Museum of Natural History. IIe died at Paris, 6th February 1S33, at the age of 70 . His works on uatural history are very numerous. The most important, besides thnse already noticed, are: Histoire des Salamandres (Par. 1500); IIistoire Naturelle des Singles (2 tom.. Par. 1801) ; Essai sur l'Histoire des Fourmis (Par. 1802) ; Histoive Naturelle des Reptiles (4 tom., Par. I802) ; Genera Crustaceorrm et Insectorum (4 tom., Par. 1806-1509) ; Considerations sur COrdre Naturel des Animurx, \&c. (Par. 1S10); Familles Naturelles du liègne Animal (Par. 18:5̄); Cours d'Entomologie (2 tom., Par. 1831-1833). L. contributed greatly to the present natural system of entomology; ant lis labours in other clepartments of natural history were not inconsiderable.

LAU'ENBURG, a town of Prnssia, in the province of Pomerania, $3 S$ miles west-north-west from Danzig. Manufactures of woollen and linen cloth, and of white and common leather, are carried on. Pop. (186:) 5797.

LAU'RIA, a town of Ytaly, in the province of Potenza (formerly Lasilicata), 98 miles south-east-by-east from Naples, and about tive miles from the shore of the Gulf of Policastro. Opposite to it is the imposing mass of Monte Sirino. L. is an ancient town, but still of considerable prosperity. Woollen manufactures are carriced on. Pop. (18G1) of L. Superiore, 4791, and of L. Inferiore, 4255 ; totil, 9049.

IJAU'RVIG, a seaport town of Norway, situated at the head of a small fiord, which branches off from Christiania Fiord. The town of L. has of late rapidly iucreased in population and prosperity. It carries on a consideralile trade with foreign countries, and particularly with Britain. Very extensive iron-works- the Fritzo iron-works-are situated near the town. A cannon-foundry gives cmployment to many operatives. There are also snuff-manufactories and distillerics. The harbour is excellent, and suitable for the largest vessels. Pop. 4914.
la villeatarqué, Théodore-ClaudeHevri Mersaft, Vicomte de, a Breton antiquary and Celtic scholar, was born at Quimperlé, in Bretagne, on the 6th July 1S15. Represcuting an old

LAWRENCE-JEATIIMR-CLOTUT.

family of his mative province, lis attention was early turned to its antiquities and its peculiar language and literature. Ilis first important work was a colluctinn of pounlar lircton songs and melndies, published in 1539, with a Freneh translation and notes, under the title of Buraz-lieiz. Three years afterwarls appeared his I'opuler Tales of Bretagne, to which was prufixed a dissertation on the story of the liound Table. His next work was a collection of the poems of the Cultic bards of the Gtle c., with a lrench translation, and explanatory and critical notes (1850). This publication made the labours of La Y. widely known. He was apipointed a correspondent of the Academy of Berlin, and a member of the French Institute (idcademy of Inscriptions and Belles-Iettres). La V. has since published a work entitled the Celtic Legends (La Legende Celtique) of I reland, C'ambria, and Bretagne, which contain such of the original texts-Irish, Welslr, or Breton-as are rare or unpmblished, Lat V . is the author or editor of several other works comnected with the Celtic literature and languages, among which are a Breton Grammar, a Breton and French Dictionary, Bretagne Ancient and Modern, and The crreat Mystery of Jesus, with a clissertation on the dramatic literature of the Celts. In all these works, La V. gives evidence of laborious and bainstaking scholarship. At times, he does betray an enthusiasm which seems exargerated; but this will be readily pardoned in a loeal antiquary and successful jionecr in a new field of research. Some of his works have been translated into Eaglish by T. Taylor.

LAWRENCJ:, Sir Willidy, \& distinguished surgeon, was born at Cireucester, in Gloncestershire, in July l783. Jhe received a classical education at a schoul in his native county ; anl, in 1790, went to London, where he heame an inmate in the honse of Mr Abernetlyy, to whom lie was apprenticel. Abernethy was so impressed with the zeal anl capacity of his pupil, that in the third year of his npprenticeship he appointed hion demonstrator in anatomy to the hospital (St Bar-tholnuncw's)-a situation which he held with great credit for twelve years.- In 1805, he reccived his diploma from the lioyal College of Surceons; in 1Sli, he was appointed surgeon to St bartholomew's; and hecame full surgeon in 1824 . In 1S13, he was elected a Fellow of the lioyal Society ; and, within the two following years, filled the posts successively of surgeon to the Eye Iufirmary in Moorfiells, and surgeon to the Jioyal Ilospitals of JrideWell aml Betilehem. In lslis, he became one of the professors of anatomy to the Jioyal College of Surgenns, where he delivered leetures for four years. In $18: 8-15: 2$, he succeeled his temeher. Mr Abernethy, as lecturer on surgery to St Burtholomew's. From this prerind, L. took an aetive slare in the great questions of reform, which divicled the medical world as much as the prolitical, and played the piart alternately of an alvocate and an opponent of innovation. He made many enemies, among whom eame to be numbered his old master, Abernethy, whom he offended by his adrocacy of philosophical materialism. Nevertheless, he continued to enhance his reputation as a surgeon and his position as a practitioner, and contributed many valuable works to the literature of his profession. He succeded Sir Benjamin Brodie as serjeant-surgeon to the Qneen, on which oecasion he received his baronctey. Jle was oue of the best, as he was also one of the last representatives of that great school of surceons, of which Cline, Abernethy, Brodie, Astley Cooper. Ker, and Liston were the leaders. lle clied of poralysis, at the are of S, in Whiteliall on the Eth July 186%. Jis writiugs, which
aro very mumerous, are chiefly the followinn: A Description of the Arecrirs of the IInman Buity, reduced into the form of Tabies, translatenl from the Tatin of Adolphus Nurray, Jrofessor of Anatomy at Epsal; The Treatment of Mernia; An Introluction to Comparative Anatomy and I'hysiohumy bing the Introductory Secture delivered at the hional rollege of Surgeons in 1SI9; ATreatise on the linereal Diseases of the liyc; and A Trealise on the Discases of the Syp, in gemeral, \&c. Of these works, the most important for his reputation and for the profession are those on the venereal diseases of the eye, and on herniib.

IAYAMON, also LAWVDIAN, antlior of the Brut, a metrical elironicle of Lritain from the arrival of the fabulous Brutus to the death of King Cadwallader, 689 A.r., was, he himself tells us, a priest at Ernely, on the Suvern, in Worestershire, and appears to have tourished about the begioning of the 13 th century, Nothiug more is known concerning lim. The value of the Brut is not so much literary as lingnistic. It has no high pretensions to originality, being confessedly a compilation from Bede, St Augustine (of Luglaml), st Nlbin, and more particularly Wace, the Anglo-Nomman poet, of whose brut d'Angletero it is in fact mainly an amplified translation. But Wace's performance is itself only a translation, with additions, from (icoifrey of Monmonth's latin $/ /$ isforice Briltonum: and that again at least cleclares itself to be in turn a transla. tion from a Welsh or Bretou original (see (ivorffey of Monmoutir). It will thus be seen that In's work is ouly a third reproduction of a Celtic story; lint in justice to the author, it must be stated that his version is more poctical and dramatic than those of his predecessors. 'Jhe great value of the poem, how (2ver, is, as we have said, linguistic rather than literary, It shews us the Anglo-Saxon changing or changel into liarly linglish, and a study of its peculiarities of grammar and plarasenlogy cualles us to trace the process hy which the Saxime of Alfred and the Chronicle became transformed into the English of Chancer and Wicliffe One curious and important fact is determined ly it-viz., that 900 years after the Norman Conquest, the use of words of French origin-so marked a feature of (lhaucer's diction-had scarcely begun. In the 32,050 lines which the poen contains, there are not more than 50 such words. 'The versification is very arbitrary, exhibiting sometimes the alliteration of AngloSaxon, and sometimes the rhyme of French jocery. The worle was edited (with a literal translation, motes, and a grammatical glossary) for the Sucicty of Antiquaries of London by Sir Fred. Madden (Lond. 3 vols. 1 St\%).

LEAPING-FISH (Salarias tridactylus), a curious little fish of the Blenny family, aljounting on the coast of Ceylou, and remarkable for leaving the water to visit every Ilace washed by the surf. By the aid of the pectoral and rentral fins, and the gill-covers, it moves across the damp saml, ascends the roots of mangroves, and runs Hy wet rocks in quest of flics. "These little creatures are so nimble," says Sir J. I. 'Temment, 'that it is almost impossiblo to lay hold of them, as they scramble to the edge, and jlunge into the sca on the slingtest attempt to molest them.' 'They are three or four inches long, and of a dark brown colour.

LHATIIER-CLOTII is one among many nanes given to manufactured iahries intendel to possess most of the good qualities of leather, withont being so costly, As far back as 1849, a material unier this name was invented in America; and many specimens of it were placed in the Great lixhibition of 1851 . In 1855 , a factory for making it was

LEBRIJA-LEITMERITZ

established at Wcst Ham, in Essex, and the operations are still comulucted there on a scale equal to the production of 10,000 or 20,000 square yatds per day. Linseet oil is heated in large coppers to a certain high temperature, then removed to cool ; then mixed with other ingredients, two of which are turpentine and lamplack. This composition is used as a kind of varuish to be applied to the surface of unbleacherl cotton. The cotton, woven to various wilths and lengthe, is calendered to make it smoath, and then passed over a roller; the composition is applied to it, aod a peculiar kind of knife scrapes the layer to an equable thickness and a smooth surface. After being dried in a heated oven, the cloth is passed between rollers covered with ${ }^{\text {rumice-dust, to rub }}$ the comprosition smooth. These processes are repeated four or five times. The cloth is next painted three or four times with a kind of enamel paint. Some kinds are grained like morocco leather, by being passed between rollers peculiarly grooved on the surface; others receive a pattern in relief by passing between embossing rollers; while the specimens intended for furniture-hangings and table-covers are printer in gold and colours. The uses of this leather-cloth are numerous. The United States army, in 1862, had capes, leggings, and knapsacks made of it.

The leather-cloth made on Seager's patent is in fact leather, not cloth. It consists of leather parings and shavings, reluced to a pulpy mass, and monlded to any useful or ornamental forms, such as machinery-bands, buckets, architectural ormaments, picture-frames, \&c. It may be made either hard or pliant, according to the mode or degree of pulping. Messrs Spill's vegetable leather is made chiefly of caoutchouc and naphtha; the smell of the latter is removed by chemical treatment; and the sheets made are thickened to any degree by successive backings of canvas. The material is tough, resists damp, and takes a polish, and is available for booklinding, library table covers, carriage aprons, soldiers' belts, harness, and other purposes. Szerelmy's leather-cloth is, like some other kinds, an application of oily pigments to cloth; according to the mature of the textile used as a hacking (cotton, linen, woollen, silk, or alpaca), and to the mode of applying the surface composition, the material becomes an imitation of morocen, of calfskin, of enamel leather, or of waterproof cloth. Le Jenne's leather substitute consists of a cement or mastic of cautchouc or of gutta piercha an clath, felt, or leather, pressed by rollers, and then pressed uron a layer of leather. Ey a peculiar splitting machine, a thin sheet is produced with an extremely thin layer of leather upon it. Another cloth is then cemented to the remaining leather, followed loy another splittiag; and so on till the leatber is exhansted. The cloth enables the leather to be split thinuer than would be otherwise practicable. The resulting substance, therefore, is really leather on one side, and may be dyed and embossed in various ways; the intervening caontchouc or gutta percha renders it waterproof. Deard and Downigg's Artificial Leather consists of an open linen fabric, upon which a fleece of cotton or wool fibres is cemented by a composition of oil and resin, pressed down lyy rollers; two or more successive layers of fleece and cement thicken the substance. Ground leather is sumetimes mixed with the fleece, and the surface will receive any of the usual oil colours.

These various substances, it will be seen, are intended in most cases as substitutes for leather, but in others as a kind of Hoor-cloth. 'There are certain points of difference between all of them and Linoleum (q. v. in Supflemext).

LEBRI'JA (anc. Nelrissa-l'eneria), a town of Spain, in the province of Seville, 34 miles sonth by west from Seville, on an affluent of the Guadalquivir, and on the railway between Seville and Cadiz. It is pleasantly situated on a slight emsnence, which overlooks a plain liable to be overflowed ly the Guadalquivir and its hranches. A large church, originally a mosque, exhibits a strange conbination of the Arabic, Roman, and Gothic styles. J. is famous for its cil. There are manufactures of woollen clotb, hempen fabrics, glass, pottery, bricks, tiles, and soap. Top. 7741.

LE'CTIONARY (Lat. Lectionarium), one of the service-books of the medieval church, so callel because it contained the lessons (lectiones) of the church-service. Of these there are two which deserve special notice. The first is the so-calleal ' Roman Lectionary,' which contained the epistles and gospels of the lioman missal, and sometimes all the lessons of all the various services in use in the Roman Church, in which case it was named the Plenarium. The most ancient form of the Roman Lectionary was called 'Comes' or 'Liber Comitis.' Its compilation was attributed to St Jerome, and it appears certain that it belongs in substance, although not in form or in details, to that age. The collection was revised and remodelled in the Sth century. The second of the ancient lectionaries is that kanwn as the Gallican Lectionary, which was published by Mabillon from a MS. of the monastery of Luxeuil, and which is believed to represent the rite of the ancient Gallican Church, chiefly hecause one of the few saints' offices which it contains is that of the peculiarly French saint, Genevieve. It is interesting as shewing that the Gallican liturgy had three lessons, and not two, as in the Tioman missal. Unfortunately, Mabillon's MS. of this bighly interesting relic of ancient Gaulish Christianity is imperfect, and no other has since been discovered.
LEER, a town of Prussia, Hanover, in East Fries. land, 32 miles west-north-west from Oldenburg, on the right bank of the Leda, near its junction with the Ems. There are manufactures of linen, hosiery, \&c. ; breweries and distilleries; and ship-building yards. A railway, opened in 1850 , runs northwards to Emden, and southwards to lopeuburg, Osnabrick, and Münster. Pop. (1864) SSo5.

LEGNAGO, a fortified town of Northern Italy, in the province of Verona, on the left bank of the Adige, 22 miles south-south-east from Terona. It has mauufactures of hats and leather, and a considerable trade in wheat and rice. The cultivation of rice is extensively prosecuted in the neighbourhood, and temls to increase its natural unhealthiness. The conntry is swampy, and intermittent fevers prevail. Fop, 10,31S.

LEl'PA, or LEIPPA, a town of Bobemia, 42 miles north-north-east from Prague, situated not far from the right bank of the Polzen, a branch of the Elbe. L. has an Augustine monastery. It is a place of considerable industrial activity, having manufactures of woollens, cotton, glass, and earthenware. Top. S44.

LEI'TMERITZ, or LITOMIERCZICZE, an ohd walled town of Bohcmia, on the right bank of the Elbe, 34 miles north-north-west from Prague. The situation of the town is beantiful, on the slope of a hill which rises from the river. One of the churches has a tower shaped like a cup, a curious memorial of the fierce religions contests which raged in Bohemia in the 15 th c., and in which the question of the use of the cup ly the laity in the sacrament of the Lord's Supper hal so great prominence. Much of the Bohenian glass is polished in L., and

LEITOMISCHL-LESSON.

it has an active trarle in corn, wine, fruit, and fish. Straw lats ankl chicory are also among its articles of produce. It is celebrated for a kind of apple called the Borsdorf, which is sent in large quantities botli to Berlin and St I'etersburg. Top. 7498.

LJI'TOMISCHL, or LEUTOMISCITEL, a town of liohemia, 84 miles east-south-cast from Praguc. It stands on the left bank of the Launcha, an afluent of tho lilbe. A castle, erected in the 16 th $c_{\text {., }}$ is estecmed one of the finest buildings of its kind in Bohemia. L. has mamfactures of linen, and an active trade in corm, fisl, and wine. J'ol'. 7057.

LIN'NNEP, a town of Nhenish Prussia, 22 miles cast-south-cast from Düsselkorf, in a beautiful vallcy, on the Lennep, an affuent of the Rhinc. It is a principal scat of the woollen mannfacture, and the cotton manufacture is also carricd ob. Pop. (IS61) 7253.

LIFNS (anc. Elen α or Lenense), a town of France, in the dep. of Pas-de-Calais, on the Souchez, a feeder of the Scheldt, 17 miles south-sonth-west from Lillc. It is a place of great antiquity, and was once strongly fortified. It is famous for the great victory gained by the I'rince of Conde over the Germans and Spaniards, under its walls, in 164S. In the neighbourhood of L. are coal-mines, lime-works, and brick-works. I'ol. (IS66) 5738.

LEPI'SMA, a genus of wingless insects, of the order Thysanura. The best known species is L. saccharina, sometimes called the Sugar Louse, because it is often found about old sugar barrels. It is said to hare heen introduced into Britain from America. All the species of L. and of the family Lepismidoe inhabit moist places, and feed on decaying vegctable substances. They have a flattencd, spindle-shanel body, terminating in three long bristles. 'luey rum swiftly. They are mostly covered with silvery scales, which are mucli used as test objects for the microseapc.
T.RRCA'RA DE' FREDDI, a town of Sicily, in the province of Palermo, 30 miles south-south-west from Palermo, in an inland mountainous district. Nost of the inhabitants are employed in the sulphur mines of the ricinity; and the roul to Palermo is mucl occupicd by carts carrying sulphur for exportation. I'op. (IS61) 9007.

LESSON (Lat. lectio, Ir. lecon, a reading, called by the Grecks anagmosma), in Liturgical Literature, means a portion of the claurch service appointed to be read, chiefly with a view to instruction and exhortation, not conched in the form of a prayer, nor, even when found in the mass or the communion service, directly bearing upon the consecration of the lucharistic elements. The lessons of the Lucharistic service in the Ioman Catholic Church are always taken from the books of the Old or Sew Testament (including the A pocrypla); but in some of the other services of the lioman, Greek, and Oriental churches, portions of the writings of the Fathers, lives of saints, and occasionally short narratives from church history, are employed. The very carliest notices which we lave of the liturgical services of the first Christians, allucle to the usage of reading portions of sacred Scripture publicly in the church. The practice existed among the Jews in their synagogues (Luke iv. 16), and St P'aul frequently allodes to its use also in Christian assemblies, in his epistles to the infant churches of Colosste, Landicen, and Thessalonica. It is even more circumstantially referred to by Tertullian (Apolog. c. 39; and arrain, Prescript, c. 36), and by Justin the Martyr in his Apology (1 Apol, n. 67). Our information reqarding the liturgy of this carly period is too
scanty to enable us to say what order was followed, and what principles were arlopted in selecting the portions of Scripture for these solemn readings ; lut from the Fathers of the 4 th and later centuries, it is plain that the selection was in some degree regulaterl ly the seasons ; and, at all events, that it was not left to the determination of each individual minister or even ehnreh. It would seew that in general the extracts were so disposel as to present the several books of Scripture in suceession ; but at particular times, portions were chosen which seemed alpropurate to these times. Thus, the lessons at and after Laster were the Gospel narratives of tho Resurrection; between Eiaster and l'entecost, the Acts of the Apostles; in Lent, they were taken from Genesis and the other books of the l'entatcuch; in Passion-tide, from the Bools of Job. In the modern Greck Church, so strictly is this oreler observed, that the Sundays of certain periods are known hy the numes of the Evangelists read at that time-as the first, seconl, or thirel ' Natthew-Sunday,' 'Marli-Sunday,' \&c. In the Fonan missal, the distribution of the Gospel lessons is regulated more by the sulijects than by the antlors; and in addition to the distribution according to time, there is another which is regulated by the nature of the festivals, or the special characteristics of the saints to whose offices they are appropriated. The time and the origin of this distribution are uncertain; but it is conmonly ascribed, at least in part, to St lerome, and distinct traces of it are found in several writers of the 5 th and following centuries.

In the service-books of the IRoman Catholic Church, the lessons of the missal are always from Holy Scripture; and they are, unless in a few exceptional cases, two in number, the first ealled (as beingorlinarily taken from one of the Eyistles of St Paul, or the canonical epistles) the 'lipistle;' the other, the 'Gospel.' A second Gospel is commonly read, which is taken from the lst cliapter of St John. The Epistle is taken cither from the canouical epistles of the New 'l'estament, or, less frequently, from one of the books of the Old Testament, including the Apocrypha (generally from Wrisdom, Leclesiastes, Ecclesiasticus, or Proverlss), but occasionally from the books of the l'entatench and other historical books. On a few exceptional oceasions, chiefly in Adrent and Lent, or at the Quarter Tenses (as the Ember-days are named in the language of the Loman Church calendar), more than one Lipistle ocenrs. The distinction uf tho ' Epistle Lesson ' and the 'Gospel Lesson ' is at least as ancient as the time of St Augustine (see Aurg. Serm. 176). In the solemn or ligh mass, cach of these lessons is claated or recited by a separate minister-the Enistle lyy the sul)-tleacon, the Gospel by the deacon; the former being chanted at the right side, the latter at the left side of the altar. In the low mass, both are read by the priest; lut the same difference of position in reciting them is obscrved by the single priest. Auciently; oue or botl were chanted from an elevateal platform or pulpit called cembo, and in Gothic churches, from a gallery attached to the rood-screen. The recitation from the ambo is retained in the Ambrosian rite as still practised in the Milan Cathedral. In the several Eastern rites, the lessons are more numerois tlian those corresponding to the Poman Eipistle, being chosen from the Old'Testament, from the Acts of the A postles, from St Paul's Enistles, and from the Catholic epistles. The Cinspel-lessons are, of course, taken from the several Evangelists. In the Greck Church, the former is real by the anaynowtes or lector; the Iatter by the deacon. In the other Eastern churches, botli are read by the deacon, with the exception of the Syrian Church, in which the

Gospel is read, not by the deacon, but by the priest.

The 'lessons' of the Roman breviary are more varied. They occur only in matins, with the exception of a 'shor't lesson' which is fonnd in Prime and also in Compline. The lessons of matins are sometimes three, sometimes nine in number, according as the matins consist of one or of three 'nocturns.' See Breviary. When there are three nocturns, the lessons of the first are commonly from the Holy Scriptures, the books of which are so distributed throughout the seasons, that portions of every book shall be read during the year. The lessons of the second nocturn consist either of a narrative of the life of a saint, or of the circumstances of a festival, or of a sermon or other discourse from a holy Father; and those of the third are generally from a homily of oue of the Fathers upon the Gospel appropriate to the festival. The 'short lessons' of Prime and Compline consist of sentences from Holy Scripture.
In the public and solemn offices, the lessons are chanted, the tones being reputed of ancient origin; and the chanting of the Gospel especially being accompanied with special marks of reverence for the word of God, as the incensation of the book of the Gospel, signing it with the sign of the cross, and the bearing of lights during the singing-a practice which was already ancient as early as the days of St Jerome's controversy with Vigilantus. When the pope officiates solemnly, the Epistle and Gospel are chanted in Greek as well as in Latin, in order to denote the union of both the rites in one Catholic Church; and at the coronation of at least one of the popes (Alexander V.), the Gospel was sung in Latin, Greek, and Hehrew.

In the Church of England the term is used only of the portions of Scripture appointed to be read at morning and evening prayer, and at the service for the burial of the dead. The enlargement of this part of the service formed a great feature of the Reformed liturgy, and was a return to the more ancient use, entire chapters being substituted for short selected passages. Four lessons are appointed for every day, two at morning and two at evening mrayer. The first lesson, at each service, is taken from the Old Testament-which is read through, in course, once a year (the order of the books heing only departer from in the reservation of Isaiah for the season of Advent)-and from certain books of the Apocrypha, viz., Tobit, Judith, Wisdom, Eeclesiasticus, Baruch, and the histories of Susanna and of Bel and the Dragon, which are read for the reasons quoted from St Jerome, in the Sixth Article of Religion, viz., 'for example of life and instruction of manners,' but not 'to establish any doctrine.' The second lessons are from the New Testament, which is read throngh three times in the year-that in the morning from the Gospels and Acts of the Apostles, that in the evening from the Epistles. ' Proper,' i. e., special tirst lessons, are appointed for all Sundays aud holidays; those for Sundays were fixed at the restoration of the Teformed liturgy under Elizabeth, and consist of chapters selected from the various books, so arranged as to follow the scasons of the Church-c. g., those during Advent are taken from Isaiah, those from Septuagesima to Easter from Genesis and Exodus, so that the account of the institution of the Passover, and the going out from Egypt, falls on Easter Day: The general purpose of the Sunday proper lessons, seems to be that of representing the divine dealings with the Chureh of the Old 'Jestament. The first lessons, on the minor holy-days, are taken, in course, from the didactic books of the Old 'Testament and Apocrypha. Except on the chief festivals, there are no proper second lessons, the New Testament
being ordinarily read through, in course, on Sundays and week-days, so causing the fixed first lesson to combine with the varying second lesson, in a manner which sometimes throws much light on hoth. Parts of Leviticus and Joshua, and the two books of Chronicles, are omitted; and the Apocalypse is resorted to, only to stupply the second lessons for the feast of St John the Evangelist, and at evening service on All Saints' Day. The lessons for each service are ascertained by reference to a calendar, prefixcd to the Book of Common Prayer-the proper lessons, which always supersede the others, being given in separate tables. When a lesson is directed to be read to any verse, it is alwnys exclusive of that verse. The lessons are allowed to be read by persons not in holy orders, but are directed to be so read ' as may best lee beard of all present.' Each lesson is followed by a canticle or psalm, after the manner of the old responsory, and on the principle that every revelation of the divine character and dealings affords fresh material for His praise.
LEUCORRHCE'A (Gr. leukos, white, and rheo, I flow) is a female disease, in which the most prominent symptom is the disclarge of a glairy tluid, often in a considerable quantity. For the special character of this complaint, we must refer to medical treatises; it is sufficient here to say that its general treatment consists in fomentations, the application of emolients, and in the administration of tonics and astringents.

LEU'TSCHAU (Hung. Löcze), a town of Hungary, in the county of Zips, 126 miles north-east from Pesth. L. has the oldest Lutheran college in Hungary. The inhabitants, three-eighths of whom are Protestants, are mostly occupied in agricultural pursuits. A peculiar kind of mead made here has a large sale not only in Hungary, but in Poland and Silesia. Pop. 5:29.

LEUZE, a town of Delgium, in the province of Hainault, 17 miles north-west from Mous, on the right bank of the Dender, and not many miles from its source. Dyeing, bleaching, brewing, and distilling are actively carried ou; also salt-refining and the expressing of oil. Woollen and cotton hosiery and lace are manufactured. Pop. (1863) 6069.

LE VAILLANT, Fraveois, a distinguished traveller and naturalist, particularly eminent as an ornithologist, was born in 1753 at Paramaribo, in Dutch Guiana, where his father, a rich French mer. chant, was then French consul. When he was ten years of age, his father returned to Europe, and settled at Metz, his native place. Young Le V. received a good education. Beginning ns a mere sportsman, he soon became an ornithologist. In 1777, he visited Paris, and inspected the rich collections of natural history there. He was now seized with a strong desire to risit unexplored countries, and embarked, at Amsterdam, in a Dutch vessel for the Cape of Good IIope. Owing to the accidents of war, which had broken ont letween Britain and Holland, Le V. found himself at the Cape with nothing hut his fowling-piece, ten ducats, and the clothes he had on. Ile found friends, however, in some of the Dutch officials, who assisted hint, and provided him with the means of carrying out his intention of South African explorations. He made two principal exeursions: the first from December ${ }^{17}$ S1 to April 17S2, eastward, at no great distance from the coast, to the Great Fish River, whence he returned by a more northern route through mountainons regions; the second, in 1783 and 1784, northwards from Cape Town as far as the Tropic of Capricorn. In both journeys, his love of adventure was sufficiently. gratificd, and in the second he endured hardships not inconsiderable.

LEV゙ICO—LHBRI-CARRUCCI.

Finding that his health sufferel from fatigne and from the elimate, he wisely relinquished further projects of travel, and returned to Europe, taking up his abole in l'aris, where he devoted himself to the stufling of his collection of skins of birls and other animals, an art in which he execlled, and to the preparation of works giving an account of his travels and of his discoveries in natural history. In 1793, during the Reign of Terror, he wis thrown into prison, aml only escaped the guillotine through the fall of liobespierre. He now retired to a small property at Lan Noné, near Sezanne, where he chietly residel during the remainder of his life. ITe died add November 18:4, at the age of 71.

Le V's chicf works are his Trarels (Toyage dans l'Interieur de l'Afrique, l'aris, I vol. 4tn, or "2 vols. Svo, 1790 ; and Sccond Vonnge dans l'Anterieur de tAjrigue, 2 vols. 4 to, Paris, 1790), which were specdily translated into English and other Iangunges, and are remarkable for their spirited narmtion of incident, and the interest with which every subject is invested: and his Natural History of the Dirds of A frica (6 vols. 4tn, Paris, 1796-181\%). Ife published also several works on partienlar departments of ornithology, as a Vatural Ilistory of P'arroquels, a Natural Ilistory of Birds of l'tralise, \&c. He made many discoveries in various departments of natural history, but chiefly in ornithology.

LE'YlCO, a town of the Tyrol, Austrian Empire, nine miles south-east-by-cast from Trient (Trent), in the upper part of the valley of the Brenta, and mear a small lake, the Lake of Levico, from which that river takes its rise. Muberry trees are cultivated, and the care of the silkwom and spimming of silk give occupation to many of the people. I'op. 5684.

IJEYDEN, Jonn, a poet and oricutalist of some celebrity, was loma at Denholm, a village of Iinx burghshire, Scotlanl, Sth September 177\%. 11 is parents were in humble cireumstances; lut seeing Lis desire for learning, they made an effort for his education; and after passing throngh the ordinary eourse of study in the nniversity of Elinhurgh, he was licensed as a preacher or 'yrobationer' of the Church of Ecotland. During the years of his university course, he had, however, learned much that formed no necessary part of it, and in partienlar, several of the langnages of molern Europe, ant some of the orientat langnages. Ife was a most ardent and enthusiastic stulent. Ilis varied gifts amel attaimments soon recommenderl him to the attention of some of the most eminent men of the time in Elinburgh. In 1799, his first work issued from the 1ress, A IIstorical Account of the Discoreries and Sitlements of Luropeans in Northern and liestern Ajrica. About this time also lie contributed many translations from the northorn and oriental lauguages, and original poems to the Eitinburgh Magazine. He contributed to Lewis's Tales of Honder, and ailded Sentt in amassing materials for his Minstrelsy of the scottish Borider. He was editor for one year of the scots Magazine. In order to obtain opportunity of gratifying the strong desire which he felt to visit oriental comntries, he studied medicine, and in 1803, sailed for India, having receivel the appointment of assistant-surgeon on the Madias establishment. Lefore leaving his native country, he completed his Scenes of Injuncy, a poem containing frnch that is leantifil; lont on which, bowever, his reputation does not rest so much as on his minor pieces, and partienlarly his ballads. After his arriral at Madras, his health soon gave way, and he was compelled to remove to Penang, where he ardently prosecuted the study of the langnae, literature, history, \&c. of the lndoChinese tribes. Ilaving resided for a time in

Pemang, he left it for Calentta, on beimy appointed a Professor in the Bengal conlege ; null he som afterwards exchangel this office for that of a julge at Caleutta. When the expeclition against Java was modertaken, I. altained leave to accompany the governor-general thither; and at Batavia, in the exphoration of a hlrary which eontained many ladian manuscripts in its musty recesses, he contracted a fever, of which le died, after a few days' i:Iness, "Oth Angnst 1511, L.'s versilication is suft and musical: but 'he is an elegant rather than a forcible poet.' 1 is attainments as an orientalist were extraordinary. The chinf evidence extint of ther, however, is an lissay on the Langmuges and Literuture of the Indo-Chinese Nutions, publisked in tho luth rolume of the Asiatic Resererches. His Poetical Remains were pmblished in 1819; and a new edition of his Pocms anel Ballueds, with Memoir by Sir Walter scott, in 1S5S.

Ihl, the name of a Chinese measure of length. The $\mathrm{li}=\cdot 57 \mathrm{Fr}$. kilometre $=\cdot 35 \mathrm{~S}$ (rather mure than onc-third) English mile.

JIIBRI-CARRUCCI, Gummume Bnemes Ichius Trmoleon, Count, lrench mathematician aud bibliographer, son of an Italian refugee, who was condemned at Lyon in $1 S 16$ for forgery, was born at Fhorence id Jonuary 1803. IIaving early devoted himself to the study of mathematies, he became professor in the university of H 'isa, where le contributed to the Transactions of seientific socicties a mumber of remarkable papers on The Theory of Numbers (1SO()) ; Nome Points of Analysis (1823); The General hesolution of Indeterminate E'quetions of the First Degree (ISO6); Some Physical Questions (1849) ; \& c.

After 18:30, having been compromised in the political movements, he was obliged to leave 'Tuscany, and went to France as refagec. Ite there foum in patron in Arage (whom he afterwards attacked in the most spiteful manner) ; was natnralised, aud in a short time elected Momber of the Academy of Sciences, I'rofessor of Amalyties at the Sorbonne, Chief Inspector of linhlie instraction, and Superintendent of the Sitate Libraries. He was decorated with the Legion of 1 Ionomr, and appointed editor of the Joumal des Sarants, \&C. I.,'s works at this perind are varied and mamerous. In partienlar may be mentioned his //istory nf Mathrmatical science in Italy from the Renaissance to the Eind of the 1-th ('entury (IS:3S-IS 41,4 vols. Svo), in which he displayed much acuteness and erndition. He was, lesides, a most determined bihliomaniac, and foumd means of collecting a library for himself, which contained such a rich stock of imeunabula of all kinds, and of the greatest typograpilical curiosities, that several public sales, which he got up for his own benefit, and of which each realised from $£ 4000$ to $£ 5000$, did not in the least degree diministh his collection. In ennsequenee of the remarkable phenomenon of a library remaining complete in spite of repeated sales, 1. began to be suspected of making use of his speeial position to abstract looks and valuable MSS. from the public librarics. A report had even leen secretly prepared on the subject by the public procurator, and communicated to 11 . Guizot to await his decision. The ohjects abstracted between is12 and 1547 were approximately valued at $£ 20,000$. This dncument was datel 4 th Fehruary is.4s, and was fomd in the Forcign Office when the lievolution broke out in that month. The case was immediately taken 11 , by the courta, and after a lone and carcful cxamination, the aceusel, who, in the meantime, had Hecl to England, was condemned, June 1850 , to ten years' imprisomment, to ilegradation, and the luss of his employments. This process
created a great sensation, and gave rise to au immense deal of writing for and against the condemned. The most important is an article ly P. Merimée, Le Procès Libri, in the Revue des Deux Mondes (1852), for which the writer was imprisonel, as laving, in defence of a 'book-stealer,' slandered and insulted the French judieature.
L. continued for two or three years to address letters and pamplulets to persons in France exclaiming against his condemnation in the highest tones of injured innocence. The efforts of 11 . Nerimée in behalf of L., and a petition in his favomr, addressed to the senate in 1861, ouly had the effect of bringing out still more damnatory facts regarding both hin and his family. (He died 28th September 1 S69.)

LIFE MORTARS axd ROCKETS. When a lifeboat is not at haud, or a raging sea and a shoal coast render its use impracticable, a distressed ship may often receive help from shore, provided the distance be not tou great for the throwing of a rope. A small rope may draw a thicker, and that a hawser, and the hawser may sustain a slinging apparatus for bringing the crew on shore. For short distances, Captain Ward's heaving-stick (fig. 1)

Fig. 1.-Captain Ward's Heaving-stick.
has been found usefnl: it is a piece of stont cane two feet long, loaded at one end with 2 llos. of lead, and at the other attached to a thin line. It is whirled round vertically two or three times, and then let go ; but it camot be relied on for more than fifty yards. Kites of various kinds have been employed, but are not found to be certain enough in action. The firing by gunpowder of some kind of missile, with a line or rope attached to it, is the method which has been attended with most suecess. In 1791, Sergeant Bell, of the Royal Artillery, devised a mode of firing a shot and line from a distressed ship to the shore. It was afterwards found to be more practically useful to tire from the shore to the ship. In 1807, Captain Manby invented his life-mortar (see Manby, in Supplement). His mortar was an ordinary $5 \frac{1}{2}$-ineh 24 -ponader cohorn, fixed at a certain angle in a thick lloek of wool. The missile discharged from it was a shot with eurved barbs (tig. 2), something like the flukes of an

Fig. 2.-Captain Manby's Life-shot.
anchor, to eatch hold of the rigging or bulwarks of a ship. How to fasten the shot to the rope was at first a diffieulty: chains were unt found to answer ; but at length strips of raw hide were fonul suitable. To assist in descrying the exact position of a distressed slip on a dark night, in order to ain the mortar-rope correctly, Manby used a chemical composition as a firework, which would shine ont in brilliant stars when it had risen to a certain height. A third contrivance of his, for replacing the shot by a shell filled with emmbustibles, in order to produce a light which would render the rope visible to the erew, was not so successful.

Many variations have been made in the linethrowing apparatus. Colonel Boxer has reecutly substituted a bolt (fig. 3), for the shot, with fon holes at the end; fuses thrust into these holes shed a
light which marks the passage of the bolt throngli the air. Trengrove's rocket-apparatns, invented in

Fig. 3.-Colonal Boxer's Life-bolt.
1821, cousisted of an ordinary 8-oz. sky-rocket (seo Focket). Certain practical dificulties, however, affected it, and it did not come much into use. In 183_{2}, Demuett's alparatus was invented. It nearly rescmbled the old sky-rocket, hut with an iron case instead of a praper one, and a pole cight feet long instead of a mere stick: it weighed 23 lbs., was propelled by 9 lbs. of composition, and had a range of 250 yards. A ship's erew having been saved by the aid of this rocket at Bembridge in the Isle of Wight, the Eoard of Customs caused many of the coastguard stations to be supplied with the apparatus in 1834. Carte's apparatus, bronght forward in 1812, depended on the use of a Congreve rocket (see Rocket) instead of an orlinary sky-rocket. It does not appear that this apparatus was ever adopted by the authorities. Mr Dennett next songht to improve the power of his apparatus, by placing two rockets side hy side, attached to the same stick; and it certainly did increase the range to 400 yards; but as the simultaneons and equal action of the rockets conld not be always insured, the scheme was abandoned. Culonel Delvigne, of the French army, invented a life-arrow (fig. 4), to be fired

Fig. 4.-Colonel Delvigne's Life-arrow.
from an ordinary musket. It is a stick of mahogany, shaped something like a billiard ene; the thicker end presses on the powder; while the thinner end, loaded with lead, is fitted with lomp of string ; a line or thin rope is attached to the lomps, and the thin end of the stick projects beyond the barrel. The jerk, when the arrow or stick is fired, canses the lomps to run down the stick to the thick end : this action has an effect like that of a spring, preventing the stick from darting forward so suldenly as to smap the line. The apparatus will send an arrow of 18 oz . to a distauce of 80 yards, with a nadeerel line attached. Another Freach contrivance, Tremblay's roeket with a barbed head, has been adopted for the Emperor's yacht; but as it is to be fired from the ship to the shore, it partalies of the same defects as Sergeant Bell's original invention.
The most effective apparatus yet invented is Colonel Boxer's. Finding that Denuett's parallel rockets on one stick do not work well, he succeeded after many trials in a mode of placing two rockets in one tube, onc behind the other(fig. 5). The head is

Fis. 5.-Colonel Boxer's Double Focket (section).
of liard wood; there is a wrought-iron case, with a partition between the two rockets. When fired, the formost rocket carries the ease and the attacheal line to its maximum distance, and the rearmost rocket then gives these a further impetus. The

LIFE MORTARS AND IOCKETS-LIFE-ROCKET DEPARTMENTT.

effeet is found to be greater than if the two roekets wero placed sido by side, and also greater than if the quantity of composition for the two rockets were made up into one of larger size. The roclict is tired from a triangular stand, and is lighted by fuse, port-fire, or pereussion-tube; the elevation is determined hy a guadrant or some similar instrument.

The lines used with these several projectiles have varied greatly; but the best is found to be Italian hemp, spma loosely. It is very elastic, and when thick anough for the purpose, 500 yards weigh to llos. In Boxer's rocket, the line passes through the tail of the stick, then through the head, where it is tied in a knot, with india-rubber washers or buffers to lessen the jerk. The line is carcfully wound on a reel, or coiled in a tul, or faked in a box provided with pins ranged round the interior-to enable the line to run out quiekly without kinking or entangling. Deunett's faking. hox for this purpose is the one now generally adopted.

Life belts, jackets, and bnoys of numerous kinds are used, made of cork, inflated india-rubber, \&e.; lut the apparatus now employed in conjunction with the life-rockets is known ly the eurious name of pelticout-lrceches, or moro simply, sling life-bwoy.
written by Mr Gray, of the Marine Department of the Boarl of 'Trade.

LIFE-NOCKET OEPARTMJNT, or rather, that hranch of the Narine \mathbf{D} epartment of the Joard of Trade which lias the wamarement of life-rockets, mortars, lines, buoys, and belts, divides with the National Life-loat lustitution the labours connected with the prevention of shipwreck, and the rescue of shipwrecked persons. This has been the arrangewent since 180°. . Until that jear, the life-mortars in uso were partly under the control of the Admiralty, partly under the Board of Customs, partly under tho institution just maned, and partly belonging to private individuds. The Merchant Shipping Aet, passed in 1554, and put in force in tho following year, placed the whole under a different organisation. Leaving the life-boats (sec Lire-boat) under tho able manarement of the admirable institution to which most of them belongerl, the other matters were intrusted to the Boari of Trade, under rules laid down in a general way in the act.
To work out properly the meket and life-saving system, a toporraphical organisation is in the first instance adopited. The coasts of the United Kinglom are classitied into 50 coastguard divisious or wreck. registrars' distriets; and the coastguard inspector of each division or district has control over all tho rockets, mortars, buoys,

Fig. 6.-Lientenant Kishee’s $\$ 1$ ling Life-buoy, or Petticoat-brecehes. belts, and lines kept at the various seaside statious in his district. There were at the beginning of 1567 about 205 of these stations; of which 40 were provided with mortars only, 175 with rockets only, and the rest with both mortars and rockets. Nost of the mortars are Boxer's innprovement on Mlanby's; and most of the rockets are lioxer's improvement on Dennett's. 'There aro to be no more mortars introduced, as lioxer's rockets are found inora effective. The rockets aro made nt the loyal Laborratory at Woolwich, and are supplied by the War Department to the stations, on requisition from tho

It is not strictly either a belt or a buoy, but a garment in which a man may le slung elear ont of the water. When a rocket loas been fired, and a line has reached the distressed ship, sigmals are exchanged between the ship and the shore; a thicker rope is pullell over to the ship by means of the line, and a hawser by means of the rope. When all is stretched taut, by fastening to the masts, ice., articles can be slung and drawn to and fro. The petticoat-breeches, ivrented by Licutenaut Kisbee, eonsists of a circular corl life-buoy forming the top ring of a pair of eauvas breeches; one of these is hauled over from the shore to the ship; a max gets into it, his legs protruding below the brecehes, and his arm-pits resting on the buoy; and he is hamled ashore by block-tackle. The crew of a wreeked ship can thus one by one be relieted. I's prevent losing the hawser and other apparatus, when the last man has left the ship, an apparatus called a hawser-cutter is used, working in the ship, Lut worked from the shore.

Fuller details, with numerons illustrations, will be found in the Engineer for 1S66, in two papers 606

Eoard of Trade; as aro likewise mortar-shot and shells, fuses, portfires, signal-lights, guppowler, \&e. It each station iskept a cart, expressly made to contain all the requisites for the rocket-apparatus. The cart is always kept ready paeked, to he drawn to any part of the coast most wanted. Eighteen rockets are supplicd with each apparatus; and a new supply is oltained before these are exhausted. The main store of apparatus is kept at Woolwich, whence it is sent to 12 denuots on the coast, and from theso defints to the stations, by the coastguard cruiscrs. The roekets saved $300^{2} 2$ lives Letween 1555 and 1565 ituclusive. Simpler apparatus, eonsisting of life-belts and life-lines, is kept at a much greater number of stations: at the Legioning of 156%, these stations were nearly 600 in number, provided with more than 2000 belts, and nearly 2000 lines.

The system is worked by the coastcuard, the men being paid so much for periodical drilling, and so much for regular sersice. There are also Volnnteer liocket Corps established on certain parts of the coast. Special services are rewarded by the Board of Trade with gifts of money, gold and silver and

LIFE-ROCRET DEPARTMENT-LIGHTING OF BEACONS AND BUOYS AT SEA

bronze medals, gold watches and ehronometers, telescopes, binocular glasses, sextants and quadrants: these are paid for partly by annual parliamentary grants, and partly out of the Mercantile Marine Fund.

LIGHTING OF BEACONS AND BUOYS AT SEA. Some interesting experiments have reeently been made under the direction of Messrs Stevenson of Elinburgh, the engineers to the Comnissioners of Northern Light-houses, 'in order to test the practicability of illuminating beacons and buoys by electricity,' the suceess of which warrants a practical trial, and it is understood this is about to be proceeded with. At various times since the discovery of the electric light by $\operatorname{Sir} \mathrm{H}$. Davy in 1813, suggestions have been made pointing out the advantages which might be derived from its use upon light-bouses. It has long been plain, indeed, that for a purpose of this kind it had properties which placed it far in advance of all other lightssuch as its near approach to sunlight in brightness, its great power of penctrating foss, and its total independence of atmospheric air, which enables it to be produced in a vacuum or under water. Unfortunately, its production is attended with great trouble; it also requires rare skill to keep it in perfect order, and cren where this is at hand, we cannot yet place ahsolute reliance upouits steadiness. It has nevertheless been in use at Dungeness, in the soutl of Englanil, since 1562, and at La Here in France since 1863, and at both places the light inay be said to be practically successful. But there are differences of opinion respecting it among lighthouse authorities, as the reader will find by consulting an interesting parliamentary paper on the subject, dated May 30, 1866. Whether or not the electric light is to be ultimately adopted for properly constructed light-houses, there ean be little doubt that for the illumination of heacons, where no ligbl-keeper is to be constantly on the spot, electricity must in some way be employed as the agent to produce the light. As far as ean be at present seen, the ordinary Electric Light (q. v.) may be dismissed as unsuitable for beacons. It will at least require to be greatly simplified before it can be used for such a purpose. In the article Induction of Electric Currexts will be found a description of the method of producing sparks by means of an induction coil. These sparks can be made to follow each other so quickly as to appear like a flash surrounded by a luminous haze. This, then, is the kind of light with whieh, when placed inside some eonvenient form of optical apparatus (see Lightmorse), it is now intended to illuminate beacons.

It is probable that several different arrangements of electrical apparatus-all, however, producing the same liad of light-will be tried; but it will suttice to give an idea of their general plan if we explain one of the methods proposed by Mr Thomas Stevenson, by which, with the aid of instruments construeted loy Mr Hart of Edinburgh, this flashing light was suceessiully 1 rodneed at Newhaven pier in 1866. In this particular experiment, the electric current passed through a wire S00 feet long. Suppose a beacon to be situatel at some distance from the shore, as shown upon the annexed diagram (firg 1). A galranic battery, eonsisting of, say, six Eunsen cells, is placed at B in a house upon the shore. From this, the electrical eurrent is conveyed along a submarine cable to the beacon, and returns by earth-plates at E, E, in the usual manner, to complete the circuit; its course being indieated on the diagram ly arrows. The induction coil is placed upon the beacon at C, and properly eonneeted with the conducting wire of the eable, so as to make the current generated by the battery traverse
its primary coil. A wire from each end of its secondary coil is then conveyed to the focus of the optical apparatus, the ends of the tro wires being here brought within half-an-ineh of each other, and furnished with indestructible points of platinum.

Fig. 1.
The induced or seeondary eurrent, in crossing this narrow space, produces the suceession of sparks which constitute the light, but as explained under the head Induction of Electric Curfens, it only does so at the moment the current is interrupted or broken. It is consequently necessary to have some means of completing and breaking the galvanic eireuit in rapid alteruations, so as to produce the flashes in quick suceession. The break for this purpose is placed at I, near the battery.

In the experiments already tried, a great deal was found to depend upon the peculiar way the current was broken. None of the breaks in use giving a suceessful result, Mr Hart devised a new one of an ingenious construetion, which produeed a more constant and powerful light. Fig. 2 shews

Fig. 2.
tlus instrument. The difference between it and other mercury or spring breaks lies in the fact, that with them the current is off and on for nearly equal spaces of time; but this one is so contrired that the wire at a is three times longer in the mercury, b, than it is out of it : consequently, the current is three times longer on thau it is off, and so allows the soft iron core of the induction eoil to be more fully magnetised. The result of this is a seeondary eurrent of comparatively bigh intensity, and of course the production of more brilliant sparks between its two terminals. We may explain, that the moment the wire at a touches the mercury, the corrent passes, and the moment it is removed the eurrent stops-the direction it takes being indicated in the figure by the arrows. The wire at a alternately dips and rises by the aetion of an ordinary electro-magnet, EE, turning the crauk c; the second bottle of mercury is not used to break contact, but only to eontinue the current, for which a spring would answer as well.

By the use of more than one induction coil, the light can be materially increased, so that there is
now a certainty of being able to produce it jowerful enough to le seen at the distance of a few milesa result whieh, when actually in operation, cannot fail to be of inealeulable alvantage to the mariner. Strong bopes are untertained that some means will lee fonms of succeeling with the induction eoil upon the shore insteal of on the beacon. in which case there will probably be little ditliculty in illuminating luoys as well as beacons. 'The use of vacuun tules, as suggested by Nlr ' C . Stevenson, may facilitate this most desirable application of the electric spark. This gentleman has also suggesterl the employment of electricity to ring bells, so as to give warning to sailors in foggy weather.

LIGIITNINC, Accidenss FRom. Accorling to the Twenty-eighth Anuual Ieport of Births, Deaths, and Marrianes, which is just published (August 186\%), and hias reference to the jear $186 \overline{5}$, it appears that during that year 19 persons were killed in Englinul by lightning: none in Loncton or in the divisions south of the Thanes; \because in the South Midland Division, 3 in the Jastern, 2 in the West Nidland, 7 in the North Midamel, 1 in Lancashire, and 4 in lookshire. All execpt 3 were men, aud eliefly labomers in the open air. In a mevious lieport, ot deaths were referred to this canse, and occurred in the folluwing scasons: summer Il, spring 10 , autumn 2 , and winter 1. Ont of 103 deaths from lightuing in tive years (15J\%-1856), there were BS in July, and in in August.

A person struck by lightning is more or loss stumned aml deprived of conscionsness for a time, often, no dunlet, by ancre fright, in which ease the eflect is transient; but sumutimes in consequence of a shock given to the brain, in which latter case there is a certain amount of paralysis of motion and sensation. In a case recorded by Boudin in his G"́ographic Mélicale, 185゙̄, a gentleman, who had been struck by lightning, remained for an hour and a quarter apparently devoid of any indication of life; and the praralysis, which nsually afiects the lower limbs, may last for many montlis. Mr 1 lolmes, in lis artiele on Aecidents from Lightning, in his Sistom of Surgery, gives the following list of other aflections caused by lishtning: "Sumse more or less extensive ; eruptions of erythema or of urticaria, which are said by one author to have reappeared with eael succeeding thunder-storn ; luss of hair over parts or the whole of the borly; wounds : hamorrhace from the month, nose, or cars; loss of sicht, smell, specel, hearing, and taste; or, in rare cases, exaltation of these speeial senses; cataraet ; imbecility; abortion.' Another curions effect of lightning is that deseribed under the head of Ligirs-Ning-prints. In reference to the occasional loss of bair, M. Boudlin (op. cit.) relates that the eaptain of a French frigate, who was struck by lightuing on hoard his ship, could not shave himself on the following day, the razor not cutting lut tearing ont his hair. From that day, the bearel alisappeared, and the hair of the scalp, cyobrows, \&e. gradually fell off, leaving him entirely bald. The mails of the fingers also scaled away. Sir D. Jirorlie tells a curious story of two bulloeks, pied white and red, which were struck in different storms: in both cases the white bairs were eonsumed, while the red ones eseaped. As a general rule, it seems that persons not killed on the spot usually recover. The burns present every elegree of intensity; in some (probably exagrerated) eases, we hear of men and animals being redueed to aslies, while in orlinary cases they vary from deep burns, diflicult in healing, to mere vesieations: they must be treatell in the ordinary method. It was beliered until reecutly that the burus are caused by the ignition of the clothes; it appears, however, from
various eases collected by Dr Thyler (1/acl. Jurisp., 1SG5, 1.737), that burns, at all events in some eases, are the diroct rusult of the electricity: Une case is 50 singular that we shall give a few letails regarding it. Mr Fisher of Judley was calleal in to sce a man who sixtern bours previously had been struck by lightning while milking a cow: The cow was killed on the spot, and the man was much injured, there lreing a severe burn extending from his right hip to his shoulder, and covering a lane portion of the front and side of the body. Ilis mind was wandering; there were symptoms of inflammatory fever, and le was contined to bed for 17 ditys, at the end of which time the healing process was not complete. On examininc his dress, it was found that the rirght sleere of his shirt was burned to shreds, hut there was no material burning of any other part of his dress. llence it is obrious that the dress may be lnened withont the surface of the borly being simultaneonsly injured; and further, that a serious bun may le produced on the body althourh the elothes coveriag the part may lave escaped eoulustion.
"he appearances after deatl vary extremely, The body sometimes retains the position which it ocenpied when struck: while in otlier cases it may be clashed to a considerable distance. The clothes are often lonrned or torn, and linve a peculiar singed smell; and metallic substanees about the person present simis of fusion, while such as aro comprosed of steel beeome macnetic. There aro generally marls of contusion or laecration ; or if they are ausent, extreme bechymosis (1.0 . r) at the spot where the current entered or cmerged. In aldition to wounds and burns, fractures liave also been noticed.

The treatment must be directed to the special symptoms, which are liable to great variations. Sir 1. Brodie's advice is as follow's: 'Expose the body to a moderate warmuth, so as to prevent the loss ot animal heat, to whiel it is always liable when the functions of the brain are suspended or impaired, and inflate the lungs, so as to imitate natural respiration as nearly as possible.' These means shonld be fully tried, as respiratory action lias been restored after more than an lour's suspension. Mr Holmes additionally recommenuls cold affusion, stimulating enemata, and stimulants loy the montl; and recovery (he states) is apparently hastened by the adurinistration of tonies, especially quinine, and gentle action on the skin by means of batlis.

LIMOUX (anc. Limosum), a town of France, in the lep. of Aude, in the centre of a fertile valley, on the left bank of the Aude, 52 miles soutlocast from Toulouse. There are mamnanctures of tine broadeloths, yarn factories, tameries, lye-works, \&e. The neighbourhood produces a mueliestecmed white sparkling wine, known as Dlonqucte de Limoux, which rivals Champasue in excellence. Dilimenees ply rermlarly to Tunlunse, Carcassonue, and Fuix. Pop, (ISGC) 5913.

LINN'TES, a town of Spain, in the province of Jann, it miles morth-north-east from Jaen. 'lhe neighbourhood was celebrated in ancient tines for its mines of eopluer and leal, which are still very productive. A fine fonntain whicla adorns the town is supposed to be Ioman. I'oj, abont 6500.

IIINCOLN COLLEGE, OxFond, was fomdel in $1 \frac{12}{2}^{\circ}$ by Richard Fleming, Pishop of Liucoln, for a licetor and 7 F"cllows, and afterwards greatly angmented by Thomas Fotherham, Bislop of Lincoln, Archlishop, of lurk, and Lord High Chancallor of Encland, who adeled \bar{j} fellowships, and gave a new loily of statutes in $2 \frac{5}{7} 9$, in whicln the clection of Fellows was limited to the dioceses of Lincoln,

LINCOLN COLLEGE-LINDSAY.

York, and Wells. These limitations were abolished, however, by an act of parliament, 17 and 15 Vict.; and the foundation at present consists of a Rector, 12 Fellows, and 18 Scholars. Of the scholarships, 3 belong to the old, and 1 to the new foundation, 12 were founded by Dr Hutchins, Lord Crewe, Bishop of Durham, and Dr Fadford, rectors. The patronage consists of 11 benetices, in the counties of Oxford, Lincoln, Essex, Dorset, aud Bucks, of the annual value of $£ 309$ ․ . In 1866, this college harl 137 members of convocation and 215 members on the books.
lindsay, The Famiy of. This Scottish historical House is of Norman extraction. One of the race obtained lands in England from the Conqueror ; another, Sir Walter de Lindsay, settling in Scotland under Darid 1., acquired Ercildoun, and Luffness in East Lothian. The descendant of the latter, William Lindsay of Ercildonn, High Justiciary of Lothian in the latter half of the l2th c., acquired the lands of Crawford in Clydesdale, which the family continued to hold till about the close of the loth century. He married Princess Marjory, sister of King William the Lion, and had three sons. The eldest inberited Crawford; and the descendants of the second were the IIonse of Lamberton, who for a time eclipsed their elder brethren; but the line of both ended in beiresses; and Crawford eventually came to the descendants of William of Luffness, third son of the Justiciary, who, in the lith c., added largely to their estates by marriage with a coheiress of Lord Abernethy. Sir James Lindsay of Crawford was one of the most notable of the Scotch harons engaged in the battle of Otterburn.

Earls of Crahtord and Dute of Montrose. - Sir Alexander Lindsay, younger brother of Sir James of Cravford, the liero of Otterburn, acquired large estates in the counties of Angus and Inverness by marriage with the heiress of Stirling of Glenesk and Edzell; and his son Darid, who, on failure of the line of his uncle, became chief of the family, married the sister of Robert III., and was raised by that king, in 139S, to the dignity of Earl of Crawford. In the 15th c., the earls of Crawford were among the wost powerful of the Scotch nolility: they assumed a regal state, had their heralds, and were atteuded by pages of noble birth. Their domains were widely extended orer Scotland, lnit their chief seat was Finhaven, in Angus. David, third earl, entered into an alliance, offensive and defensive, with the eighth Earl of Donglas and Macdonald of the Isles, Earl of Ross, and wielded for a time, during James II.'s minority, an authority far exceeding that of royalty. He was slain at Arbroath in a private fend with the Ogilvies. His son, nicknamed 'Beardie,' or the 'Tiger Earl,' renewed the league with Douglas. On James laving treacheronsly stabhed Douglas at an interview at Stirling, he rose in rebellion ; and the Earl of Huntly, lieutenant-general of the kingdom, who had aided the Ogilvies at Arbroath, took up arms against him. Earl Beardie was defeated at Brechin, and forfeited; but he was afterwards restored to bis lauds and dignities, and to royal favour, and entertained James at Finhaven, who flung down a loose stone from the castle battlement in fulfilment of a vow which he had taken to make the highest stone of the castle the lowest. The family attained their climax of power and wealth under David, tifth earl, a faithful friend of James IlI., and employed hy him in his most important foreign embassies, who was made Duke of Montrose in 14SS, a title which had never before been bestowed in Scotland but on princes of the blood-royal. On the accession of James IV., an act rescissory was passed of all grants and titles conferred by his predecessor during the
last eight months of his reign ; but soon afterwards, a new charter of the dubedom of Montrose was granted on a recital of the duke's good services to the king and his predecessor. David, eighth earl of Crawford, nephew of the Duke of Montrose, had the misfortune to liave a son known for his crimes and enormities as 'The Wicked Master;' his conduct led his aged father to consent to a transfer of the earldom to David Lindsay of Edzell, the next heir. The ninth earl, who succeeded under this conveyance, moved with pity for the rightful heir, son of the "Wicked Master,' oltained a re-conveyance of the earldom to him after his own decease. From that time, the fortunes of the family began to decline. The 12th earl was imprisoned by his relatives as a spendthrift. The $\mathbf{1 6 t h}$ earl, a companion in arms of the great Montrose, having no issue, through the influence of a powerful cadet of the family, Lord Lindsay of the Byres, a new latent of the earldom was obtained from Charles 1., bringing in his branch of the House before the descendants of the uncle of the 16th earl, who had been created Lord Spynie, or the intermediate cadets of Edzell and Balcarres.

Lord Llinsay of the Byres, Tiscocit Gar-xock.-Sir William Lindsay, yonnger brother of the first Earl of Crawford, acquired extensire estates with his wife, a daughter of Sir William Mure of Abercorn. He was hereditary bailie and seneschal of the regality of the archbishopric of St Andrews, an office which remained in his family till the middle of last century. His grandson was made Lord Lindsay of the Byres, county Haddington, in 1445. The Lords Lindsay of the Byres were sturdy champions of popular rights and of the Presbyterian faith; their principal residence was Struthers Castle in Fife. The fourth lord endeavoured in rain to dissuade James IV. from his fatal expedition to England in l513; in consequence of which, James rowed that, on his return, he would hang him on his own gate, a threat, of course, rendered futile by the fatal result of Flodden. The fifth lord was one of the four noblemen to whom the charge of the infant Queen Mary was committed on the death of her father. The sixth lord, the fiercest and most bigoted of the Lords of the Congregation, was deputed by the rest to obtain Mary's compulsory resignation at Lochleven, an office which he is said to hare discharged in a severe and repulsive manner ; and the seventh lord bearded James VI. in the presence-chamber regarding the changes he was effecting in ecclesiastical polity. The tenth Lorl Lindsay of the Liyres was in 164 created Earl of Lindsay ; and in virtue of Charles I.'s above-mentioned patent, he became 17th Earl of Crawford, a dignity enjoyed hy his descendants till their extinction. He held the offices of High Treasurer of Scotland, and an Extraordiaary Lord of Session; and thongh a warm partisan of the Covenant, be was a loyal and consistent adherent of the Stuarts. In 1645, he entered with zeal into the proposal to raise an army to effect the king's rescue; and in 1697, while forwarding Charles I1.'s plan of marching into England, he was arrested, carried to Loudon, and detained a prisoner in the Tower and Windsor Castle. He was released by the Long Parliament in 1660, on the recall of the secluded members, and was reinstated in his ottices and dignities at the Restoration. We find him afterwards making a strong effort to dissmade Charles from introducing Episcopacy in Scotland. The Treasurer's grandson by a younger sou was created Viscount Garnock in 1703. The fourth Visconnt Garnock succeeded as 21st Earl of Crawford; his son, the $22 d$ earl, was the last of the direct line of the Byrcs; and at his decease in 1808 ,

LINGUAGROSSA-LITTRE.

the Crawford earldom returned, in terms of the patent of Charles I., to the line of Balcarres, while the Crawford Lindsay estates went to heirsfemalc. A claim by an alleged descendant of this loranch of the House to both peerage and estates, was long a matter of public ioterest and notoriety: it eventually collapsed from the discovery that the principal documents founded on were ingenionsly contrived forgeries.

Sir David Lindsay of the Mount, Lyon King of Arus, the courtly knight, poet, and philosopher, and friend of the Reformation in its carlier staces, was descended from a natural son of the first Sir William Lindsay of the Byres.

Eiml of Balcaires and Cratwfond.-Tle Lindsays of Balcarres, in Fife, were a branch, and eventually the representatives of the Lindsays of Edzell, who, as already seen, had temporarily possessed the earldon of Crawford ou the attainder of the "Wicked Master." The first of them was Lord Menmuir, a Lord of Session and Secretary of State to James VI., possessed of accomplishments and cultivation rare in his age. His som David was created Iord Lindsay of Balcarres in 1633, and his grandson, Alexander, Earl of Balcarres, in 1651, in reward of their steady support of the royal cause. The sixth Earl of Balcarres became de jure Jarl of Crawford on the death of the ond earl, the last of the byres line; and that title has been recognised hy the House of Lords to belong to his son, James, seventh Liarl of Balcarres, and 23d Earl of Crawford, the present representatire of the family. The Earl of Crawford has further preferred without success a claim to the dukedom of Montrose, conferred by James III. Alexander William Crawford, Lord Liodsay, eldest son of the Earl of Crawford and Balcarres, holds a high position in literature, and is author of Sketches of the II istory of Clristian Art, in 3 vols., a work of considerable value, but uncompleted; and Lives of the Jindsays, in family memoir, combining to a rare extent genealogical research with biograpluical interest, to which reference is made for further particnlars regarding the Liudsays.-See also Jervise, Land of the Lindsays.

LIIGUAGLO'SSA, a town of Sicily, in the province of Catanio, on the north-eastern slope of Mount Etna, 1725 feet above the sea, 37 miles sonth-west from Messina. It is said to derive its name from the rustic dialect of its inhabitants. Iop. (1561) 754.

LI'NGULA, a genus of brachiopodous molluses, exhibiting the remarkable peculiarity of a long fleshy pedicle supporting a bivalve shell, and passing between the beaks of the valves. They live attached to rocks in the seas of warm climates, particularly of the Indian Archipelago and Polynesia. The genus is interesting, because, although few recent species are known, fossil species are numerous, and are found in the fossiliferous beds of Pritain and other countries, the seas of which now produce noac of their congeners.

LINO'LEUM is, as its name is inteaded to denote, a peculiar preparation of linsced oil. In 1S49, Niclés and Rochelder independently discovered that chloride of sulphur will solidify oil, and render it usable in many new ways. In 1859, II. Perra communicated to the Académie des Sciences the details of a mode of effecting this by mixing and melting the ingredients, and pouring the mixture out in a thin layer. By varying the proportions, the resulting substance assumes varying degrees of consistency. Thns, 100 linseed oil +25 chloride of sulphur, produces a hard and tough substance; 100 oil +15 chloride, a supple substance like indiarubber; and 100 oil +5 chloride, a thick pasty
mass. This third kiad dissolves well in eil of tur. pentine. Mr Walton afterwards found that, by the application of leat, linseed oil will become hard without the addition of chloride of sulphur. Ho conceives that it is not a mere drying, hut a real oxidising. Linseed oil, first boiled, is applicel as a layer to a surfaco of wood or glass, then dried; then another layer; aod so on till the required thickness is producel. the sheet is then removed, and is found to be very much like indiarubber in elasticity; in fact, the production of a layer by this means is aualogous to the smearing of clay-moulds with canutchone juice to produce india-rubher, as practised in Sontl America Sco Cioutchouc. The drying is a little expedited by anding a small portiun of oxido of learl. The solic oil is crushed, and worked thoroughly between heated rollers; and, when treated either with shellac or with naphtha, it becomes applicable in various manufacturing forms. The term Linoleum properly applies to the hardened or oxidised nil itself, but it is chicfly used as a designation for one of the substances made from or with it, a lind of Hoor-clotl. When the oxidised oil is rolled into sheets, it becomes a substitute for india-rubber or gutta-percha. When dissolved as a varnish or inastic, and applied to cloth, it is useful for waterproof textiles, felt carpets, carriage-aprons, wagou and cart sheets, unrsing-aprons, water-beds, tanklinings, table-corers, \&e, accordiug to the modo of treatment. When used as a paint, it is useful for iron, for wood, and for ships bottoms. When used as a cement, it possesscs some of the useful propertics of marine glue. When vulcanised or rendered quite bard by heat, it may be filed, planed, turned, carved, and polished like wood, and used for knife and fork landles, mouldings, \&c. When brought by certain treatment to the consistency of dough or putty, it may be pressed into embossed monlds for ornamental articles. When used as a grinding-wheel, tonched witl emery, it becomes a good cutter. Lastly, when mixed with ground cork, pressed on canvas by rollers, the canvas coated at the back with a layer of the same oil in the state of paint, and the upper or principal surface painted and printed, it becomes the linoleum floor-cloth, for the prodnction of which a factory has been established at Staines. Dunn's patented fabric for similar purposes has no oil in it : it is a mixture of cork-slaviugs, cotton or wool fibres, and caoutchouc, spread upon a cotton or eanvas back, and embossed with patterns; it is a kind of Kanirtulicon (q. v.).

LI'PPSTADT, a town of Prussian Westphalia, on the left bank of the Lippe, 78 miles north-east from Colognc. It is walled and fortitied, and has five gates. L. has mannfactures of woollens, leather, vinegar, and starch, brandy distilleries, \&c. Pop. (186-1) 6910.

LI'RIA, a town of Spain, in the province of Valencia, and 12 miles north-west from Valencia. The rilain in which it stands is luxuriant with vines and olives. On the summit of a hill in the vicinity is the Collegio de San Miguel, in ancient and vener. able monastic pile. Pop. 8500.

LITTRE, Maximilen Patl Emile, a French journalist and philologist, member of the Institute, was horn in Paris, lst Fehruary 1801. He distinguished himself in his stndies, and obtaiocd various honours at the grand competition. He began the study of medicine, and pursued it so far with distinction ; owing, however, to jersonal circumstanees, he did not take the degree of Doctor, nor enter on practice, but gave himself up to rescarclies in pliilology and in the history of medicine. He prepared

LITTRÉ-LIVINGSTON.

for this by the thorough study of languages and literature, and mastered Greek, Sanscrit, and the principal ancient and modern lancuages. There were few subjects of human knowledge to which he remained a stranger.

At the same time that L. took an active part in editing various jonraals and literary collections, he prepared an edition and translation of the Works of 1「ippocrates (Fuzres d'Hippocrate, 1839-1861, 10 vols. Svo), a publication which, from its first appearance, was judged sufficient to open for him the doors of the Academy of Inscriptions, 22d February 1 S39.
L., who held democratic opinions, and had distinguished himself among the combatants of July, became afterwards connected with the National, and was one of the principal editors of it till 1851 . When 11. Auguste Comte's new philosophical and social doctrine appeared under the name of Positive Philosophy, L., attracted hy the scientific character of the doctrine, took it up with great ardour, and in 1845, wrote a lucid and clever summary of it (De la Philosophie Positive), and aiterwards defended it in pamphlets and in journal articles. He looked upou the revolution of 1818 as the advent of his opinions; but soon undeceired, he retired from active politics in October IS4S, resigning even his duties of municipal councillor of the city of Paris, duties without salary, and the only ones he ever accepted. He had even refused the decoration of the Legion of Honour.
Peturning to a life of study, L. continued his researches in medicine, at the same time working ardently at the history of the French language. Already master of the old forms of the French language, he published in the Revue des Deux Mondes-to which he has contributed at different times several papers equally ingemous and learned -an article called, The Homeric Poetry and the Ancient French Poetry (La Poésie Homerique et AAncienne Poesie Française, 1st July 1817), which attracted great attention. In it he attempted the translation of the first book of the Miad in the style of the Trouvères.
The Academy of Inscriptions chose him in place of Fauriel (IS44), to be one of the commission charged with continuing L'Histoire Littéraire de France (The Literary History of France), and he is one of the authors of vols. xxi., xxii., sxiii. In 1S54, he was appointed editor of the Journal des Savants, and he has since contributed many articles to that collection. L.'s principal work, although the last in date, is his Dictionnaire de le Langue Franraise, containing, in addition to the usnal information in French dictionaries, examples of the scyeral meanings of the words, with exact reference to the classical works from which they are taken, besides the history of the usage of each word in documents anterior to the 17th century. Not only are all questions of grammar and lexicography (including etymology-a subject in which French dictionaries have hitherto been singularly deficient) fully discussed, but historical allusions are explained, and nnmerous details given regarding the arts and sciences, rendering the mork a kind of cyclopædia. Iu preparation for many years, it began to appear in 1S63, and the fifteenth lirraison or number has already (1SG7) appeared, coming down to letter K. This splendid work, which promises to be the real thesaumus of the French language, so long a desideratum, did not prevent the French Academy in IS63 from rejecting the author, whom MI. Dupanloup denounced publicly as holding immoral and impious doctrines. I. has also published an excellent French translatiou of Strauss's Life of Jesus ($1830-1810,2 \mathrm{~d}$ ed. IS55) ; a translation of Pliny's

Natural IIstory in the collection of Latin classics by M. Nisard ; Auguste Comte Stuart Mill (IS66); \&c. Previous to the appearance of cholera in Paris, he published a paper on that malady (1832) ; he was one of the principal collaborateurs in the new edition of the Dictionnaire de Médecine; long contributed to the Gazelte Médicale de Paris; and in 1S37, he and M. Dezeimeris began the medical and surgical journal called L'Expérience. We may also untice from his pen-Histoire de la Langue Francaise (1562,2 vols. Sro), which is simply a collection of articles on the ancient French language; then, in another series, Paroles de Philosophie Positive (1S5ั9), and Auguste Comte et la Philosophie Positire (1S63). He published in 1857 the Euwres Complètes d Aro mand Carrel. His last publication is a volume on Aledieral Literature (IS67), being a collection of articles contributed to periodicals. In July 1S67, he began a magazine, with the title of Philosophie Positive, which appears once in two months.-M. Sainte-Beure has published an interesting Notice sur M. Iittré, sa I'ie et ses Traraux (1863).

LIVINGSTON, Edward, an American jurist and statesman, was born on 26th May 1764 at Livingston (afterwards Claremont), in the state of New York. He belonged to a family which, for nearly a century, had been of the greatest weight and distinction in the colony. L. was the son of Robert Livingston, judge of the Supreme Court-of Nerr York, and the youngest of a very numerous family. After learing the college of Princetown, he studied law under his brother Robert, eighteen years his semior (see below), and deroted special attention to Roman jurisprudence. On being called to the bar, he soon obtained an extensive practice. He had spent his youth among the founders of American independence, all of whom he had known as visitors of his father, and he at once attained a prominent position. He was elected a member of Congress in 1794; federal attorney and mayor of New York in 1801 ; and he would probably have been known only as a prosperous lawyer, had not a great misfortune at this period befallen him. L., as federal attorney, was intrusted with the collection of debts to the state recorered by legal proceedings. He had the greatest aversion to accounts, and intrusted this part of his duty to a clerk, a Frenchman, who appropriated the funds to his own purposes. When L. discovered what had happened, he at once ascertained the balance due to the state, handed over his whole property to his creditors, threw up his appointment, and resolved to quit New York. No entreaty on the part of his fellow-citizens could induce him to remain. Louisiana had just been annexed to the United States, thanks to negotiations conducted by his brother at Paris, and he resolved to settle in the new state. He joined the New Orleans bar in 1804, and at once obtained lucrative practice. He had great difficulties to encounter. The bosiness had to be conducted partly in French and Spanish. The law administered was a strange compound of municipal regulations, Spanish and French lam, and the Roman law of the civilians. A proposal was made to introduco the common law of England, and this would hare been much to the pecuniary advautage of L., but he opposed the scheme in an eloquent and convincing speech to the Louisiana Chambers, and it was decided that the law of the state should remain based upon the civil rather than the common lam. In the dispute with England in 1SI4 and 1S15, I. became aide-de-camp and secretary to General Jackson, and attracted much notice by the admirable bulletins he wrote during the campaign. In 1520 , he was appointed to draw up a code of civil procedure for Louisiana. It was the simplest
known up to that time, was found to work almirably, and receivel the warmest approval from Lertham and other jurists. L. Was then empleyed in reducing to system the civil laws of Louisiana. He laal to aut him in the task the French and other modern coles, the nomenclature of seoteh law, and a familiar acquantance with all that is ronst valuable in Finglish jurisprodence, and the work produced, the 'Civil Code of Louisiana,' is undoubtedly the most successful adaptation of the civil law to the conditions of modern socicty. It was adopted in Lonisinu: in 1523, and has since become the law of many other states. L. was then employed to prepare a nenf crimimal code, and in a preliminary treatisp he laid down the principles on which he was to proceed. IIe proposed the aholition of the punishment of death, and a penitentiary system, which at once drew general attention to his labours. His book was reprinted in London, translated into lireach, and made a sensation all over liurope, and the author received the congratulations of the most emincat pululicists and politicians of Lagland, France, and Germany. Ilis code of crimes and punishments was completel, but not adopted without morlifications. J. was elected in 15×9 member for Louisiana of the American Senate, and in 1531 appointed Secretary of state for Forcign Affars. 'lwo vears later, he went to France as Dlinister l'lenipotentiary to support a demand of a million sterling made by the United States government for indemnity on account of French spoliations, and he succeeded in securing payment. He had married a lady of Nicw Orleans, of Freach family and education, harl been lnng consersant with the French language, in which he had been accustomed to plead before the courts of Xew Orleans, and he hecame intimately acquainted with the leading jurists and politicians of France. He was admitted an associate of the Academy of Moral and Political Sciences, and received the warmest tribute of respect as one of the greatest philosophical lawyers of his time, althongh his distinction at home had been chictly won as a carefnl and painstaking man of business. L. died on 23.31 IIay LS36, at his own estate on the Fludson, in consequence of drinking cold water when very hot.-See notices of his life iu French by M. Taillandier and by M. Mignet, and a long biography by Mr II. Inunt, with introduction by S. Bancraft.

LIVINGSTON, Robiert In, lsother of the preceding, an eminent lawjer and politician, was born in Jew York in 1746 . He was one of the five members of the committee charged with drawing up the declaration of independence. When the constitution of the state of New York was settled, he was appointed chief judge, a digoity he retained till 1S01. He was then sent to Paris as Mlinister Plenipotentiary to negntiate the cession of Louisiana to the T nited States. a dnty he discharged with rare ability. He cmabled Fulton to construet his first steamer, and introduced in Anacrica the use of sulphate of lime as a manure, and the merino sheep, ancl in many nther ways distinguished himself as a natinnal bencfactor. He died wa 26 th March IS13.

The Livingstons whose lives have just heen recorded, belong to an American family remarkable for hereditary talent and the large number of its members who have distinguished themselves in the United states as eminent men of letters, manistrates, lawyers, and divines. They descend lineally from the tifth Lord Livingston, who was intrusted with the guardianship of Mary, Queen of Scots, and from the Rev. John livingston, minister of Ancrum, in Teviotdale, the grandson of the nohleman, one of the mnst listinguished of the Presbyterian divines. Juhn Livingston was horn at Filsyth on the ?lst

61:

June 1603 , preached with great suceess in Ireland, and was one of two commissioners sent ly the Scotch kirk to Breda, in ILolland, to treat with Charles H. Jiefusing to take the oath of allegianee, he was banished, and, in 166:3, went to llolland, where, as pastor of the scotcli kirk at lootereriam, he spent the last years of his life. Ile was the author of several works, the best known of which is his autobingraphy, fregueatly publishent-sio Chambers's Biographical Didionary of Eiminent icotamen. Hlis son Fobert was horn at Anerum in 16.54 , went to IInlland when young, and while still a lad, emigrated to America, and settled in the 1)ntch village of Allany, in the region of the uppr lludson. He married Alida Scluyler, the widow of a Dutch clergyman, and bought from the Indians a vast tract of lum on the banks of the river, embracing upwards of 160,000 acres. Tobert livingston, proud of his ancient lineage, had this property erected into the lordship and manor of Livingston, and from it have proceded the numerous and wide-spreading race who have perpetuated his name, and the lives of many of whon will be found in the American and French biographieal dictionaries.

LIXU'RI, a town of the island of Cephalonia, on the west shore of the Gulf of Argostoli, a long narrow arm of the sea, and 4 mites west-north-west from Argostoli. It is a Greek bishop's sce. The surrounting country is very productive of wine and currants, which are brought to L . for exportation, so that it has a considerable trade. Pop 6000 .

LLFRRF'NA, a town of Spain, in the province of Badajoz, aud 63 miles south-east from Badajoz, near the ridge of the Sierra de Constantina. It is well huilt, and has some good churches and nther pulslic buildings ; it is surrounded hy walls, which are flanked with towers, and have mumerons gates. The inhabitants are mostly employed in agriculture; lut there are some manufactures of linen and woollen fabrics, leather, \&c. Pop. 6000. Near L., Hord Combermere with his eavalry routed, on April 11, 151\%, a French force of 2500 cavalry and 10,1000 infantry, the rear-guarl of Soult, under Drouet, retiring after the capture of Badajoz.
LLOYD'S BONDS, the name given to a species of securities introrluced ly Mr John Horatio Lloyd, the eminent barrister, and much employed by railway and other companies, whose power of borrowing money on mortgage or loond is derived from and limited by acts of parliament. A Dloyd's Bond is an admission nuder scal of a debt lueing due by the company issuing the hond to the person in whose farour it is executed, with a covenant to pay the sum due at a time fixed, and to pay interest at a certain rate from the time of issue until payment. The covenant is made by the company, their successors and assigns, with the obligee, lis executors and administrators; so that a Lloyd's Bond on the face of it is not assignable, and is not, properly speaking, a negotiable instrument. The value of it consists in its converting a simple contract or ordinary deht into a specialty delt, by which the holder gains a preference over ordinary creditors; and in its enabliag the holder, armed with this preference, to raise money mon the faith of the debt, either by assigning his interest in it, or hy depositing the bond as a security for advances. A ralid Lloyd's Bond, as a security, appears to be inferior to a debenture issued under statutory authority in no respect except that its validity can be put in question.

As railway and other companies which have come into existence under parliamentary anthority, have no powers except those which parliament has conferred upon them, their power of borrowing is
limited to the amounts, and must be exercised in the manner which parliament has prescribed. By the Act 7 and S Tict. c. 85 , s. 19, it is declared illegal for them to grant any loan-notes, or other negotiable or assignable instrument, in security of money advanced, except so far as they are authorised by statute. In general, they hare statutory authority to borrow only when a certain portion (usnally the whole) of their capital has been subscribed, and a certain portion of it has been paid up. And the statute S and 9 V'ict. c. 16 (The Companies' Clauses Consolidation Act) provides that their power of borrowing must be exercised under the authority of a general meeting. Previous to the introduction of Lloyd's Bonds, these restrictions upon borrowing really limited the liabilities of companies. They were severely felt by companies whose works were being made or being extended; which often were in need of money, which it was impossible or impolitic to raise by means of calls, and whose borrowing powers had not come into operation, or could not conveniently be resorted to. Mr Lloyd reliered such companies from their difficulties, and to a certain extent defeated the intentions of parliament by taking adrantage of the fact that companies, if they were prevented from borrowing, were not prohibited from getting into debt in any other way, and granting acknowledgments of their indebtedness in any form except perhaps that of a negotiable instrument. For work done, for goods delivered, for ansthing except money advanced, the directors of a company might grant admissions of indebtedness; and Mr Lloyd supplied a form in which such almissions would become almost as binding on a company as a statutory debenture, in which they could be sufficiently marketable, in which they could be conveniently granted by directors on account of all the important abjects for the sake of which they could desire to borrow to any extent, without the sanction of a general meeting of the sharebolders. The only drawback upon the usefulness (for their purpose) of Lloyd's Bonds has been, that they hare only been negotiable at high rates of discount; but this has not prevented companics from using them, in many cases to a dangerous extent. There are instances in which lines have been, for the most part, made by meaus of Lloyd's Eouds; and they have constantly been used simply as a colourable means of eluding the statutory restrictions upon borrowing. On the other hand, they lave been of considerable service to companies in the first period of their existence: and that, on the whole, they are thought to have lieen useful may perhaps be inferred from the legislature, in framing the Railway Securities Act of 1566 (29 and 30 Vict. c. 10S), not adopting the recommendation made in 1564 by a committee of the House of Lords, that mothing should be recovered upon these securities ont of the proceels of the traffic of an embarrassed company until the claims of debenture-holders had been satisfied.

It results, from what has been stated, that a Lloyd's Boad cannot be granted for money lent, but can be granted for auy other antecedent debt. It cannot be granted for money lent, though the money has actually been used in paying off debts fur which bonds might have been granted. The bond should state the origin of the debt on account of which it is granted, but this is not esseutial. The courts will in no case assume that a Lloyd's Dond has been issued in breach of statutory provisions; but evidence of an intention to defeat such provisions will invalidate a bond. If there have been no actual debt (as may happen when a company's accounts with a contractor are unsettled), the instrument will not create one; and in that case, the obligee or holder will not be able to recover, even
though the obligee bond fule believed that a debt existed; but it is for the company to prove that the debt did not exist. A Lloyd's Bond must be duly sealed with the seal of the company issuing it, by order of the directors, given at a meeting of the directors attended by a quornm. Directors are not personally responsible upon a Lloyd's Bond improperly issued. The leading case upou this subject is that of Chambers 2 . The Manchester and MilfordHaveu Railway Company (5 Rest and Smith's Rep., 5SS), decided by the Court of Queen's Bench in June 1S64. The form of this instrument (which must be duly stamped) is as follows: 'The A. and B. Railway Company do hereby acknowledge that they stand indebted to C. D. in the sum of $£ 1000$ for money due and owing from the said Company to the said C. D. in respect of work and labour done for the said Company by the said C. D. And the said Company for themselves, their successors and assigns, hereby corenant with the said C. D., his executors and administrators, to pay to him, his executors, administrators, and assigns, the said sum of $£ 1000$ upon the 1st day of May 1SG9. and also interest thereon at the rate of 5 per cent. per annum from the date hereof until payment; such interest to be payable half-yearly, on the Ist day of January and the lst day of July in each year.-Given under the common scal of the said Company, the lst day of May IS66.- $\overline{\text { I. }}$., Secretary.'
LLUMAYO'R, or LLUC'H-MAYOR, a towa of the island of Majorca, in an inland situation, among mountains, 15 miles south-east from Palma. It has manufactures of linen and woollen fabrics. Wine and braudy are also produced. Pop. 7000.
LÖ'LAU a town of Saxony, 40 miles east of Dresden. Near it are mineral springs and bathing establishments. It has tanneries, mills, and bleachfields. In the ancient Rathhaus, the deputies of the six towns of Lusatia met from 1310 to 1814. Pop. (IS64) 50르․

LO'BOS ISLANDS, two small gronps of rocky islands on the coast of Peru, famons for the great quantity of guano which they produce. The southern point of the northern group, Lobos de Tierra, is in S. lat. $6^{\circ} 29$; the sonthern group, Lobos de Afjuera, is 25 miles further south. The northern group is about 12 miles from the mainland. The principal island of this group is about 5 miles long, and two miles broad. The southern group consists chiefly of tro islaads, separated by a narrow channel, the largest being about two miles long.

LODZ (Fiuss. Lodsi), a town of Foland, in the goverament of Warsars, and 75 milcs south-west from Warsaw. It is situated in a level fertile country, on a small feeder of the Ner, a hranch of the Vistula. After Warsaw itself, L. is the largest town in Poland, and is remarkable for the activity with which different hranches of industry are prosecuted, particnlarly the manufacture of cloth and other woollen stuffs. There is also a considerable trade, which is likely to be much promoted by a branch railway, opened in 1565, connecting L. with the great Warsaw and Vienna line. The inhabitants of L. are mostly Germans, or of German origin. Its pop. has of late increased with great rapidity. At the beginning of the 19th c. the town had ouly a few hundred inhabitants; in 1854, the pop. haid iucreased to 23,302 ; in 1860 , to 31,564 ; and in 1866 , it was estimated as near 35,000 .

LOLL BAZAAF, an inconsiderable town of Northern India, in the district of Cush Behas: between the rivers Murlah and Tista, in N. lat. $26^{\circ} 4^{\prime}$ and L. loug. 59° 15'. It partly occupies the site of the ruined city of Komotapur, a most stupeadous monument of rude labour,' the walls of

LONGTON-LOWE.

which were 19 miles in circumference in the inside of the inner ditch. Massive ruins are still to be seen.
lo'ngton, a town of Staffordshire, England, in the district of the Potteries, and included in the 1:arliamentary borough of Stoke-upon-Trent. It is :hont two miles south-east from Stoke, on a small stream, which falls into the Trent, and is on the line of tho North Stafforlshire Railway. F'art of the town is known as Lane.end. The growth of the town has been rapid, and is entirely due to the manufacturo of chima and earthenware, in which the inhabitants are chiefly employed. l'op. (1861) 16,690.
LOU'LE, a town of Portugal, iu the province of Algarye, six miles north-ly-west from Faro, and 130 miles sonth-east from Lishon. It is pleasnutly situated ou a hill amidst groves of cork trees and pomegranates. The remains of a Moorisll castle form a conspicuous feature in the scenc. La is one of the most thriving places in Portugal, and has more than doubled its population within the last forty years. Baskets of aloc-thread are a rrincipal article of manuiacture. P'op. (1863) 12,156.
LOYER, SAmole, artist, novelist, song-witer, and composer, was the sou of a stockbroker in Dublin, and was born in that city in 1797. At an early age, he shewed a great desire to become an artist, and with genius and perseverance, succeeded so far that, in 1828, he was elected a member of the lioyal llibernian Society of Arts. In 1833, he exhibited at the Foyal Academy a portrait of l'aganini, which is said to have brought him some reputation as a portrait-painter. As a miniaturepainter, in Dublin, he took likenesses of the 1 rincipal aristocracy and leaders of Irish socicty. But while thus cngaged, he discovered that he prossessed a genius for authorship as well as for art, and was encouraged to make some attempts in that direction ly the favourable opinion of Thomas Moorc. In 1832, le published a collection of short piicces, entitled Legends and Stories of Ireland, by Samuel Lover, Ri:IF.A., with six Etchings by the Author (19mo, Dinlin), which was favourably received, and followed by a Second Series, published in London in 1834. In 1837, Mr L. settled in London, and having faade autlorship his proiession, contrihuted largely to the periodical literature of the clay. 1le also wrote Rory O'Mrore, a romauce of Irish life, which immediately became popular. Its production on the stage, with the excellent aeting of Power in the principal claracter, made the anthor still more known. His next publication was Ilandy Anety, commencel, butanot completed, in Bentley's Miscelleny; the entire work, with illustrations hy the :author, appearing in 1842. In 1844, Mr L. pullished T'rectsure Trove, the furst of a series of Accounts of Irish Ileirs, dec.; with twenty-six Illustrations on Steel by the Author. This was originally published in numbers, under the title of I. S. D., or Λ ccounts of Jrish Heirs, \&c. As a writer of songs, Mr L. holds a well-earned reputation : his Rory O'NFore, Molly Bawn, Low-backed Car, Molly Carew, and others, have long been established favourites with the public. In 1839 , Mr L. published a collection of his Sonys and Ballads, with the words only; but considerally more than 100 of his songs have been separately published with music, composed or adapted by the author himself. In $15 \mathrm{St}, \mathrm{Mr} \mathrm{L}$, projected an entertainment called 'Irish Eveningss' which was very popular both in London and the prorinecs. Its success encouraged him to visit the United States, where lis entertainment was also well received. He returned from America in 184S, when be made his experiences there the
material for a new entertainment, which he gave in Lomlon. Mr L. was for some years in the receip, of a pension from the crown, in recognition of his literary merits. Besides the works alrendy mentioned, and his munerous songs, Mr L. was author of Metrical Tales, and other l'orms, - publishell in 18tio. He was also the editor of a well-selected compiation of songs and lanllads, hy various anthors, entitled The Lyyrics of Ircland, published in 185s. He died 6th July 1868.
how ArCHipelago, or PAUMOTA ISLANDS, a very extensive group of small coral islands, lying to the castward of the Society Islands, and sonthwarl from the Marquesas Islanils. This grony, or archipelago extends from $15^{\circ}-95^{\circ} \mathrm{S}$. lat., and from $134^{\circ}-148^{\circ} \mathrm{W}$. long. The mavigation of this part of the ocean is, as may readily lo sup. posed, dangerous. Some of the istands are in minor yroulp, others are quite solitary. The whole pop. is estimated at about 10,000 .
Lowe, Right IIon. Rorert, Enghish politician, born ISI1, at the rectory of Dinghan, Notts, of which Marish his father, the Rev. Rolert Lowe, was rector. Ife was edncated at Winchester, and University College, Oxforl, where ho was first-class in Classies, and second-class in Mathematics, in 1533. He remained at Oxford, was elected Fellow of Magdalen in 1835, devoted himself to tuition, and obtained the reputation of being one of the best. private tutors in the university. In 1536, he married, and gave up his fellowship. He was called to the bar, hy the Honourable Society of Lincoln's lnn, in 1812, and went to Australia to 1 mish his fortunc. Mo soon attained a lucrative practice at the Sydney bar, and at the same time threw himiself into the party and political struggles of the colony, iuveighing loudly against the alministrative abuses of the colonial government. In 1843, he was nominatecl one of the Legislative Council; and in 1818, was elected member for Sylney. He devoted much time and thought to the land question, and also to the question of education. He obtained in committee, and carried a rejort in fiavour of the Trish National System, which eventually formed the basis of the educational plan adopted in Australia. Ife also obtained some crodit as a law-reforncr. Some snccessfirl land speculations put lim in possession of a moderate competency; and he returncd to England, in 1550, with the design of ontering upon a parliamentary career. In İša, he contested the borough of Kidderminster as an independent member with Conservative tendencies. In 1853, he took office umler Lord Aherdeen, as Sccretary to the Board of Control, but went out with that government. Ifo opposed the goverument of Lord l'almerston upoon the Turkish Loan Bill, but soon afterwards (Angust 1855) accepted from that nobleman the post of Vice-president of the Board of 'Trade. Next session, he lrought in, on the part of the government, biils for amending the law of partnership, amd regulating the local dues upon shipping; but the Conservative benches opposell his legislative measures with so much pertinacity and success, that the l'rime Ninister, to save the government from defent, threw his colleague over, and insistel upon the withdrawal of his measures. At the gencral election in March 1S57, he was invited to offer himself for Manchester. A requisition was signed in a day or two by 4000 electors, and he would have leeen brought in withont the expense of a perny. Fecling himself disqualified, by his tastes and by the style of his oratory, from representing a large constitinency, he refused the invitation, and went to kid. derminster. Ilere he became unpopular with

Clit
the working-classes, a riot occurred, and personal violence was inflicted upon him. He gained his seat; but in May 1859, he gladly exchanged his turbulent constituency for the borough of Calne, where the influence of the Marquis of Lansdowne precured his return, and which borough he still represents. In June 1859, he became virtual Minister for Educntion in Lord Palmerston's second administration. In this office he excited the same amount of personal antagonism. His Education minutes were almost unanimously reprohated by the schoolmasters, clergy, and trustees of schools, and obtained no countervailing support from any other quarter. He retained this office, however, until April 1864 , when the House of Commons, on the motien of Lord Cranborne, then Lord R. Cecil, having condemned an alleged practice of the Privy Council Office in tampering with the reports of the Education inspectors, L. resigned office. The Premier offered a Select Committee, and in vain endeavoured to persuade L. to recall his resignation, and await the inquiry. He regarded the question as one of personal honour, and somewhat unnecessarily, as it was thought, left the ministry. His emancipation from the restraints of office exhibited Mr L. in a new phase. No speaker, during the session of 1865, was so logical, so original, and so daring. Challenging Mr Gladstone's implied doctrine of an inherent right on the part of the working-classes to a share in the goverument, he delivered an able and powerful apology for the existing constitution. One passage in his speech, which was interpreted as imputing venality, ignorance, and drunkenness to the lower classes of the constituencies generally, and protesting against the further reduction of the franchise, led to much denunciation and recrimination. During the recess, L. was appointed, by the government of Earl Russell, a member of the Royal Commission for discovering the nature of the Cattle Plague, and its remedy. On the introduction of the Whig Reform Bill in 1866, L. delivered the first of a series of powerful speeches, which largely contributed to incure its rejection. He was, with other members of what was called the party of 'Adullamites,' offered a post in the Derby government, but declined to leave the Liberal party, from which be feelingly described himself as a political outcast. When the Derly government, in 1867, attempted to deal with the reform question, L., in a series of speeches, vindicated his consistency as an opponent of all reduction of the suffrage. Circumstances had, however, changed, and the successful oppoucnt of the Whig measure fonnd himself almost alone in protesting against a far more democratic measure of household suffrage. His proposal for the protection of minorities, by permitting, in certain cases, the accumulation of votes on a single caudidate, was rejected in the Honse of Commons ; but it was engrafted on the Reform Bill in the House of Lords, and their amendment was afterwards accepted by the Lower House. L.'s oratory is deficient in passionate cloquence and depth of humour ; but in acuteness, in felicity of illustration, spontaneously flowing from redundant knowledge, and in cogency of argument, he is almost unequalled among the public speakers of his day. His elocution is rapid, and his manner nervous and embarrassed, owing to the want of early oratorical training; but his great intellectual power always commands the attention and admiration of the House of Commons. He still (186S) sits and votes with the Liberal party upon ordinary occasions.

LU'DENSCHELD, a town of Prussian Westphatia, 33 miles north-east from Cologne, in a mountainous district, not far from the right bank of the Volne, a brauch of the Pihine. It has cotton-
mills, and manufactures of cutlery, buttons, files, and other articles of hardware. There are calamine mines in the neighbourhood. It has of late increased rapidly in population and prosperity. Pop. (1864) 6216.
$\mathrm{LU}^{\prime} \mathbf{G O}$, a town of Central Italy, in the province of Ravenna, 32 miles south-east from Ferrara. It is supposed to be the site of the ancient Lucus Diance. L. is an important provincial town. There is an annual fair which lasts from the 1st to the 19th of September, and is the occasion of a great concourse. L. has a very considerable trade in hemp, flax, rice, wine, brandy, \&c. Pop. (1861) \$232.

LU'GOS, a market-town of the Austrian Empire, in the Banat, on the Temes, a branch of the Danube, 32 miles east-south-east from Temeswar. It consists, strictly speaking, of two contiguous towns, the inhabitants of the one, DEUTSCH-L., being mostly of German race, and those of the other, RoomaniscriL., or Wallachisch-L., being Roumanian. The pop. of the former is 2435 , and of the latter 7950 .
LUNAWAU'RA, a small state of India, under British protection, in the Rewa Caunta division of Guzerat. It is situated on the confines of Guzerat, and is a continuation of the mountain tract which forms the extreme north-east of that province. The capital, from which the state derives its name, is 160 miles north-west from Indore, on the left bank of the Mahi, or Myhee, a river which flows into the Gulf of Cambay, and is in N. lat. 23° S^{\prime}, E. long. $73^{\circ} 37^{\prime}$. It is a fortified town, the fortifications and town together being ahont three miles in circumfereuce; and is a place of considerable trade and activity. The state is ahont $900 \mathrm{sq} . \mathrm{m}$. in area.
LU'NDY ISLE, an island of Devonshire, England, in the month of the Bristol Channel. It is about three miles in length from north to sonth, and one mile in breadth, having an area of 1800 acres. Its south point is about 12 miles from Hart land Point, on the coast of Devonshire, and its north end about 29 miles from St Gowan's Head, in Wales. Its shores are rocky and precipitous, and approach to them is rendered dangerous by numerons detached or insular rocks. There is ouly one landing-place, which is on the south side, and near it are dangerous reefs and insulated rocks. The pop. in 1861 was 48. Near the southern end of the island is a light-house, on a height 567 feet above the sea. At an early date, this island is said to have belonged to a family named Morisco, one of whom having conspired against the life of Henry III., fled hither, and became a pirate. L. I. was the scene of a remarkable occurrence in the reign of William and Mary. A party of Frenchmen landed from a ship of war under Dutch colours, on pretence of desiring to bury one of the crew in consecrated ground, the coffin being really filled with arms, with which the party armed themselves in the church, having requested the islanders to leave them alone to their own funeral rites, and issuing forth, they desolated the island, hamstringing the horses and bullocks, flinging the sheep and goats over the cliffs, and stripping the inhabitants even of their clothes. The cliffs of L. I. are the resort of nultitudes of gannets, or sclan geese. Granite is the rock chielly prevailing in the island, but slate appears at its south end.

LUTE (Ger. Laut, sound), an obsolcte stringed musical instrument, which lias been superseded by the harp and guitar. It consisted of a table of fir ; a hody or belly, composed of 9 (sometimes 10) convex ribs of fir or cedar; a neck, or finger-board, of hard wood, on which were 9 (or 10) frets, stops, or divisions, marked with catgut strings ; a head, or cross, on which were placed the pegs or screws that tightened or relaxed the strings in tuning; and a

LÜTTILNGIIAUSEN-MACFAREEN.

bridge, to whieh the atrings were attached at one end, the other end being fastened to a piece of ivory, between the heal and neck. The number of strings, originally 6 , of which 5 were doubleal, so as to make 11, was gralually increased till they numbered 21. The performer used his left hand to press the stops, and struck the strings with his right. A peculiar lescription of notation, called tablature, was employed in music written for the lute. The strings were represented by parallel lines, on which were placed letters of the alphalect, referring to the frets: thens, A marked that the string was to be struck open (or without pressing any of the stops) ; ll, that the first stop was to be pressed; C, the second, and so on: while over the letters were placed hooked marks, corresponding to the minim, erotehet, quaver, \&e., to indicate time. So carelessly and imaconrately was lute-music generally written, that it is no easy matter to render it into the ordinary notation. The late was formerly in high favour all over binope as a chamber-instrument; and it was used in iranatie music to aecompany the recitative. In the time of Hanclel, there was a lute in the Italian Opera in Lomdon ; and there was a hitanist in the King's Chapel down to the middle of last ecntury:- For a minute account of the lute, and how to flay it, see Mace's Musick's Mronument (Loud. 1676).

LU'TTRINGHAUSEN, a prosperons manufacturing town of Rhenish Prussia, 15 miles south-east from Duisseldorf. Woollen, linen, and cotton manufactures are carricd on; also manufactures of hardware and cutlery. Pop. (1S64) S920.

LU'ZULA, a genus of 1 lants of the matural order Juncer, differing from rushes in having a 3-secherl instead of a many-sceded capsule, and in having solt hlane leaves, which are generally coverel with thinly-scattered longish hairs. They do not grow in wet filaces, like rushes, but in woods, pastures, and elewated monntainous sitnations. The English name, Wrood-lusm, has sometimes been given to the whole genus, but is only appropriate to some, of which it is the popular uame, as L. syluaticu and L. pilose, common British species. Perhaps there is
no more conmon Sritish plant than the Fieldsesir (1. compestris), a jlant of very lumble growth; the ilowering spikes of which, eongregated into a close head, their daris colour relieved by tho

> Wood-rnsh (Luzula sylvaticu) : a, a flower.
whitish yellow of the antherg, profuscly adom dry pastures in spring. It is of tittle acericultural ralue. The species which grow muler the shath of trees are valuable, as preserving their verlure in winter, addling to the laanty of the secne, and improving the eover for game.

ACATRSCA, or MARKASKA, a town of the Austrian Eapire, in Dahnatia, on a small liay of the Adriatic, near the month of the Narenti, and 34 milos south-east from Sipalatro. The plague carried off half the inhabitants in 1815 and 18I6, and the place has not yet completely recovered its prosperity: It carries on some trade, but the greater number of the inlabitants are employed in agriculture and fishing. Pop. 7386.

MACCA1, U'BE, an interesting mud-volcano or air-voleano of Sicily, situated not far from the roal between (iirgenti and Aragona. It is known to have been in a state of frequent activity for the last 15 centuries. It consists of a large truncated cone of barren argillaceous carth, elevated about 200 feet above the surrounding Itain, with wide cracks in aII dircetions, and numerous little hillocks with eraters, which at times emit a hollow rumbling noise, and throw up a dine cold mud mixed with water, a little Clo
petrolem and sulphurcous gas. Reports like the riseharge of artillery are occasionally heard; slight local earthquakes are felt, and mad and stones are thrown ap to a height of thirty feet or more.

MACFARREN, (icorge Abpannme, an Finglish musionl composer ame essayist of high reputation, son of Ceorge Macfarren, a clramatie: anthor ani musician. lle was born in London, Marth \because, 1813, and his eclueation was conducted at the lioyal Arademy of Musie, at which institution he became a l'rofessor in IS34. As an operatic composer, Mr M. is the most characteristic representative of the national English school-his aim boing to revive the okd English nusie in modern opera. His earliest Iramatic work, The Deril's Operce, was prodncell in 1535; Don Quixote followed in 1846; and Kiug Charles II. in 1819, which tirst brought ont Miss Lonisa Pyne in English opera. A cantata, The Sleoper Awukenel, was bronght out at the National Concerts in 1550, Lenore in 1852, May-duy in 1856, and Christmas in 1860. The opera of liouir Hood followed iu the same year, which attained a

MACFARREN-MACLURE.

popularity far beyoul its predecessors, and was performed during a whole season to overtlowing houses. The opera di camera of Jessy Lea followed in 1863; She Stoops to Conquer and Helvellyn in 186t. Mr M.'s works comprise numerous other small dramatie pieces, as well as chamber music, rocal and instrumental, and several symphonies and overtures. He has also contributed largely to the literature of musie as a critic and essayist. His Ruliments of Harmony, published in 1840, now stands in high repute. In consequence of the divergence of that work from some of the urevailing views on the suthject, he was obliged to resign his professorship in the Academy of Mlusic, in which office, however, be was uneonditionally reinstated in 1851 .

Maclulee, Sir Robert Johis le Mestrier, the diseoverer of the North-west Passage, was born at Wexforl in Jamary 1807, and was sentefor his education first to Eton, and afterwards to Sandhurst. Intended for the military profession, that having no great love for it, he secretly left Sandhurst, and throngh the goorl oftices of a friend, was eutered as a midshipman on board the lictory. He volunteered for the Arctie Expedition in H.M.S. Terror, Captain Baek, in 1830. In this expedition, which returned to England, after great hardships, in the autumn of 1837, Mr M. was rated as second-mate. In November 1837 , he reeeived his commission as a lientenant; and in February 1S3S, was inpointed to the Mastings, $7 t$ guns, fitting at Plymonth; on the 16th June of the same year, to the Niagara, 0^{0} gums, on the lakes of Canada: on the 17th Augrast, as first-lientenant to the Pilot, 16 gums, on the North American and West Indian station; and on the 1Sth Jnne 1812, to the command of the Romney receiving-ship at the Havana, where he remained until the early part of 1846. After this, he was employell for some time in the coastguard service. In 1S 48 , he joined Sir James Ross's expedition in search of Franklin; and upon its return in 1549, he was promoted to the rank of Commander. This expedition had barely returned to England when it was resolved by the Admiralty to desprateh the vessels eomposing it, viz., the Enterprise and the Investigator, on a fresh search for the Franklin party by way of Bebring's Strait. Aeeordingly, Captain Riehard Collinson, C.B., was appointed as senior officer to the Entermise, and Commander Ml. to the Investigator: On the 20 th of January 1850, the vessels set sail, with instructions to make the best of their way to Cape Virgins, in order to arrive at Behring's Strait in July. The Inrestigator could not keep up with the Enterprise, which was towed through the Strait of Magellan by a steaner, some time before the Investisfator got there. After rounding Cape Horn, the Investigator met with ber consort lying at anchor in Forteseue Bay ; but soon again they separated, and met no more during the voyage. Captain MI. now proceeded alone, in the Investigator, to wards the iceregions. On the $2 d$ of Angust, after passing through Behring's Strait, he spied, in lat. 72° N., iee right ahead. On the Sth, bis men first net with Esquilmaux, elose to Point Pitt, where a party was sent ashore to erect a eairn, and place a notice of the Investigator having passed. These Esqumaux encomraged them in the belief that, as they proeceded eastward, they would lind an open channel. As they proceeded, however, along the coast of America, the iee beeame troublesome, and even threatening. There were also numerons shoals, which made the navigation intrieate and dangerous. On the 1 th August, the Investigutor, after one or two narrow escapes, found herself quite beset with these shoals, and at last gronnded; but after ahont tive hours, again got free, not without the loss of a boatful of provisions. Un the 31st of Angust, the Investigator
reached Cape Bathurst, from whieh she continned to advance for several days in a morth-easterly direction. On the 11 th September, numistakable signs of winter presented themselves. On the 16th, the Investigator was still advancing towards Barrow Strait, and on the following day, she reached her most advanced position in lat. $73^{\circ} 10^{\prime} \mathrm{N}$., ancl long. 117° $10^{\prime} \mathrm{W}$., about 30 miles from the waters of that series of straits called Melville, Barror, and Laneaster, communieating with Batlin's Bay. The ice now almost bemmed the vessel in on every side; and it was delated by Captain M. and his officers whether to return, or winter, at all hazards, in their present position. The latter was the course adopted. During the next fortnight, the Investigator driftel slowly first backwards, and then forwards, until eventually she beeame fixed in the ice, in lat. $70^{\circ} 50^{\prime} \mathrm{N}$., aud? long. $117^{\circ} 55^{\prime} \mathrm{W}$. The woellen housing was now spread over the vessel, and the curtains nailed down to the gunwale upon the northern side of the vessel, to shield the men from the cutting blasts of that quarter. Captain MI. and his officers also set themselves to devise means for the amnsement and $\epsilon \mathrm{m}$ ployment of the crew. All were in good bealth and spirits, notwithstanding the gloomy prospect of a long winter in such a region. Rambles on the ice became frequent ; and on the 20d October, Captain M. determined to reach the sea, if possible, ly a sledge-journey. He aecordingly set ont with a party of men and offieers; and after sustaining much fatigue and privation, was at last rewarled, on the $\because 6$ th, by a sight of the North-west Passage. - The position of Mount Onservation, from which the important diseovery had been made, was ascertainen to be in lat. (observed) $73^{\circ} 30^{\prime} 39^{\prime \prime} \mathrm{N}$., long. $114^{\circ} 39^{\prime}$ W., and by lunar $114^{\prime} 14^{\prime}$ W.' After this diseovery, the party returned to the Investigator; but that vessel was not destined herself to sail homewards through the passage diseovered by her commander. All that winter and spring, she remained frozen "1l in the iee. In July, she began to move again, but the nearest she conld get to the passage was 73° $43^{\prime} 43^{\prime \prime} \mathrm{N}$. lat., and long. $115^{\circ} 32^{\prime} 30^{\prime \prime}, 25^{\circ}$ miles from the waters of Barrow Strait. This was on August 15,1851 . On the following day, Commander MI. resolved to abandon this course, go round the sonth end of Banks' Land, and endeavour, by passing to the westward of it, to reach Melville Island by that ronte. For 300 miles and more, the Investigator saited in this direetion, without being onee checked by ice. On Augnst 19, however, a sudden change came; the ice pressed against both sides of the vessel, and immense masses threatenel to toplle over, and sink her with their weight. By September 1, the Imrestigator beeame completely ice-beuml about 50 yards from the shore. On the 10th, bowever, there was another change; the iee broke from the coast, earrying the Investigator with it. and she slowly sailed along for several days, until eventually she settled in a bay, where Commander M. resolved to winter. To this bay he gave the name of Bay of Mercy, in gratitude for the eseape of the ship and erew from numerons dangers, as also because the neighbouring land abounded in reindeer, hares, and other aumals, which gare them good supply of food. In this bay, they passed their seeond Christmas, and the time wore on until April 1552, when Commander 11. Fisited Melville Island with a sledgeparty, in the hope of finding some of Captain Austin's ships, or at least a dépût of provisions; lut was disappointed. He returned to the vessel, where all were still mell; but in May, the scurvy broke out among lis erew, and inereased during the summer. August eame, and still there was no open ehamel, and in the following month, it became elear that they must pass a third winter in the ice.

617

MACROOM-MAESHOWE

 come from Melville Isladd, inenosequence of one of Captain Kellett's partics having discovered an inscription left by Commander 11. on Parry's famous sandstonc rock in Winter Harbour. Commander M. now resolved, although reluctantly, to abandon his ship altogether, and return with Captain Kellett to England. He renched Lngland on Septemler 2S, IS5-4. His first reward was to receive his commission of Postcaptain. dated back to the day of his discovery of the North-west l'assage. Shortly aiterwards, he received from her Majesty the honnur of knighthood. A reward of $£ 10.000$ was also granted to the officers and erew of the Ineestigator, as a token of dational approbation of the men who had discovercd a North-west Passage
from the Pacific to the Atlantic Ocean. In March 1856, Sir liobert M. was appointed to the eommand of 1..3. steam-corvette ERk, serving in the liast Indies and China, but which returned to England in 1861.

MACROO'M, a post and marliet town of the county of Cork, Ircland, situated on the river Sullane, 21 miles wost from Cork, with which it is conneeted by railway. The pop. in 1861 was 3259. The town consists merely of a single street, nearly a mile long, and contains some good houses and shops, lut the great majority of the dwellings

Fig. 2.-Maeshowe: Ground-plan.
heathy spot; outwardly, there is little to be seen -only a circular grassy tumulus, or harrow, as it is called by antiquaries, measuring 36 feet high, and about 92 feet in diameter at the base, at which a low door presents itself. Made awaro of

Fig. 3.-Itunes, interior of Maeshowe.
 are mean and porerty-stricken.
MAD-APPLE, a name sometimes given to the Alple of Sodom (Solanem Sodomcum), sometimes to the fruit of the ligg-plant ($\mathrm{q} . \mathrm{r}$.), and sometimes to the large Galls (q. v.) known as Mecca or Bussorah Galls, and which are also called Λ_{p} ples of Sodom.

It now became necessary to decide what they should do for the future, as provisions were failing; and accordingly, Commander M. announced to his men that, in the following April, he wonld send away 30 of the crew to make their way homewards in 30 of the crew to make wheir w
two parties-one by way of North America up the Mackenzie liver; the other by way of Cape Spencer, Beechey Isladil ; while he himself, with the remainder of the officers and crew, would stay by the ship, spend a fourth winter, and then, if not relieved, endeavour to retreat upon Ladcaster Sound. The men checrfully acquicsced; and when April came, the sledges were got ready for the retreating parties. On the Gth of that month, Commander M. and his first-lientenant wero walking near the ship conversing, when they perceired a ligure rapidly approaching them from the rough ice at the entrance of the hay. When within a hundred yards of them, he shouted and gesticulated, but without cnabling them to guess who it could be. At length, he came up to them, and to their jny and astonishnent, announced himself thus: 'I am Lientenant Pim, late of the Hlerald, and now in the Resolute. Captain Kellett is in her at Dealy Island.' Pim had

Fig. 1.-Macshowe: Extcrior View.
MAESHOWE', an artificial mound with an intcrior chamber, of unknown antiquity, situated on the mainland of Orkney, about nine miles in a westerly direction from Kirkwall, and little more than a mile from the famed Standing Stones of

Stennis. M. is deseribed as follows by a reecnt visitor (N. Chambers) in My Molidays, a privately circulated work (1567): "It is situated in an open

MAGDALA-MAGNESIUM AND THE MAGNESIUM LIGHT.

a passage varying from a width of 2 feet 4 inches at the entrance, to 3 feet 4 inches at the opening inte the interior chamber. The height, low at first, expands to 4 feet 8 inches. The passage is formed by slabs of stone, above, below, and along the sides. On issuing into the central chamber, our candles at first feebly enable us to comprehend its dimensions. These we at length discover. We are in a vault built of slabs of stone, measuring 15 feet square, except at the corners where there are buttresses. The height is 13 feet. On each of the sides, except that with the entrance, at a height of 3 feet from the floor, there is a square opening to a cell or recess, the largest of which is 7 feet in length by 4 feet 6 inches in breadth. The roof of the vault had originally been constrncted with slahs advancing successively layer above layer to the centre; but as a result of recent repairs, when the structure was cleared out and restored to something like its former ceadition, the reef is now partly compesed of arched masonry, with an aperture for ventilation. As can be easily supposed, this strange subterranean chamber is cold and clammy. The slabs of stone are wet with damp, and nothing induces a protracted stay but the wish to examine certain Runic inscriptions and emblematic or fanciful figures carved ou a few of the stones. These carvings were discovered only at the opening and repairing the chamber, an operation undertaken at the instance of Mr James Farrer, M.P., a learued and enthusiastic antiquary. In a privately cireulated work on Maeshowe, by Mr Farrer, and alse in a work by Mr J. M. Mitchell, the carvings have been explained partly through the assistance of Nerwegian schelars. All refer to Vikings and other Scandinarian herees, or to trans: actions in the middle agcs. Fig. 3 represents one of these inscriptions. According to Mr Farrer's interpretation, it signifies: "Molf Kolbainson carved these Runes to Ghaut "-Ghaut being possibly a comrade who fell iu battle. Mr Mitchell's translatien runs thus: "Thelfe Kobainsson cut these Runes (en) this cave." Such is a pretty fair specimen of the interpretations of the different inscriptions; scarcely two persons agreeing in the signification. [We have reason to beliere that the diversity here referred to arises from the fact that imperfect transcriptions of the Runes had been submitted to the fereign schelars who acted as interpreters. We are sorry to learn that damp is likely soon to deface these interesting inscriptions.] Seseral purport to refer to hidden treasure, a circumstance which threws a degree of ridicule over the whole, for no oue carves inscriptions on stones telling the world where money is secretly deposited. Of the emblematic or fanciful figures, nothing cau be made. One is a figure of a herse with an asimal like an otter in its meuth, a second is a ringed dragen, and a third is a worm knet. These figures may represent the names of ships, or may be whimsicalities signifying nothing.
'There is nuthiug in these Runes to explain the origin or use of the structure. We are left to conjecture that it was erected as a sepulchral vault in extremely remote times; and being opencd by Scandinarian rovers, iu the hope of discorering hidden treasure, they used it as a resort or hidingplace, and carved the inscriptious which still remain to attest their visits. Obriously, the building and the passage communicating with it were erected on the open plain, and then covered with the earth which forms the tumulus. Tirere is at some distance an environing mound aud ditch, still pretty entire. The whole structure bears a resemblance to the vaulted tumuli in other parts of the British Islands. In one at Newgrange, on the banks of the Deyne, near Drogheda, the walls are composed of
tall blecks set on end; whereas, at Maeshowe, the slabs are built one ahove another (withont mortar), as in an ordinary wall. This general resemblance points to a common origin. We have yet to learn, however, why this part of Orkney should be so rich in memorials of an extreme antiquity.'-For a very minute account of M., we refer to a paper by Mr John Stuart, Secretary of the Society of Scottish Antiquaries, circulated as a pamphlet, 1867.

MA'GDALA, a town of Abyssioia, abeut 100 miles south-east from Gondar, on the left bank of the Bachilo, a feeder of the Blue Nile, at an elevation of about 9000 feet above the level of the sea, and within a few miles of the mountains of the Falla country, the peaks of which are covered with snow for nine months of the year. M. is a small town, having a pop. of only 3000 or 4000 , but has recently acquired note as the place of residence of the Negus or king of Abyssinia, and as the place of captivity of the British prisoners, for whose rescne an expedition was at last sent ont, in 1867, by the British goveroment. As a fortress, it is regarded by the Abyssinians as impregnable. Its castle, or amba, is a rock-fortress, completely surreunded by a wall of celnmnar basalt, which varies in height from 30 to 700 feet. Art has beeu employed to add to its strength. The length of the ainha is about three-fourths of a mile, and its breadth from 500 to 800 yards. It contains the king's houses, a church, the treasury, the jail, several large open spaces, and a number of greups of soldiers' huts. The garrison is said, in a letter from one of the captives, dated 3Ist August 1867, to amount to about 1200 men.
MAGNE'SIUME AND THE MAGNESIUM LIGHT. Although the discovery of the metal magnesium was made by Sir H. Dary in 1808, it was looked upon as little more than a chemical curiesity for about half a century. In 1830, a French chemist, Bussy, obtained globules of the metal by fusing glebules of potassium, in a glass tube, with anhydreus chloride of magnesium. Bussy's labours were followed by somewhat inproved methods, adopted by Busen, and subsequently by Matthiessen, who succeeded in pressing some grains of the metal into wire. The first great adrance on Bussy's labeurs was in 1S5̃G, when Deville and Caren effected the reduction of the pure chloride of magnesium by mixing it with fused chloride of sodium in clay crucibles, using flnoride of calcium as a flux, and throwing in fragnents of sodium; they thus ohtained magnesium on a larger scale than any of their predecessors. The most important part of their investigations was the discovery of the volatility of the metal. All these were, however, mere laboratory experiments. In 15j9, Bunsen of Heidelberg, and Lioscoe (uow of Manchester), published a Nemoir on the great importance of magnesium for photographic purposes, owing to the high refrangibility and the great actinic power of the light emitted by burning magnesium-wire. The study of this Mcmeir led Mr Sonstadt to consider whether, the magnesian salts bcing so abundant, the metal might not be obtained, on a comparatively large scale, at a moderate price. After a prolonged series of expensive experiments, he succeeded, in 1862, in 1 roduciag specimens of the wetal, varying from the size of a pin's head to that of a ben's egg. Although it burned freely enough, it was still wanting in ductility and malleability, in cousequence of the presence of certain impurities; but by May 1863, these difficulties were overcome by a process of puritication by distillation ; and by the close of that year, he considered it safe to begin manufacturing. The Magnesium. Metal Company was
consequently orgamised, and operations commenced at Mauchester. Une great advantage of his method is its simplicity: it can be accomplished by the hands of ordinary workmen ignorant of all chemical knowfedge. The process of mannfacture may be thus lescribed: 1. An anhydrous chloride of magnesium is lrepared by satnrating lmup)s of ruck-magnesia (carbonate of magnesia) with hydrochluric aciif, and then cwaporating the solution tu dryness. -. Une part of metallic sodimm cut in small pieces is placed in an iron crucible, and covered with five parts of the chlorile. The crucible is covered, and heated to rediness, when the chlorine leaves the magnesinm, and unites with the sodinm, for which it has a stronger alluity. When the crucible has cooled, and its contents are removed on masse, and broken, the magne-simm-in that state known as crude magnesimm-is seen in nuggets of various sizes, varying from granules to masses as large as a hen's egg. 3. The distillation of the crude metal is ellected in a crucible through which a tube ascends to within an inch of the lid. The tube opens at the bottom into an iron box, placed heneath the bars of the furnace, where, on the completion of the operation, magnesium is found in the form of a lieap of driphings, which may be melted and cast into ingots or any desired form. The difficulty of obtaining a metal with so little ductility in the form of wire-the ouly form that was originally useli for yielding light-had still to be orcrome ; and after varions partially successful attempts to press small quantities into wire ly Matthicssen and others, Mr Mather of Salford devisel a piece of machinery by which the metal is pressed into wire of varions thickness. Mr Mather ifso was the first who obtained the metal in ribbons, in which form, from the larger exposed surface, combustion talies place more completely. To the same gentioman is also due the credit of having constructed the tirst magnesium lamp, in which the end of the wire or ribbun is presented to the fiame of a spirit-lamp. As the wire or ribbon consmmed, it was paid ofl by hand from a reel, and propeiled between rolfers through a tube which canducted it to the flame. A coucave reffector difused the light forwards, and protected the eyes of the operator.
"Ihe first time that a photograph was ever taisen by this liglit was at Nlanchester in the spring of S64t by Jr Irothers and Dr Roscoc. That the magnesium light, in a more or less modified form, must prove of extreme value to photograply, cannot be called in question. Besides overcoming the obstacle of unsuitable weather for the employment of sunlight, it may be applied both for the exploration and the photography of various dim structures, underground regions, icc., such as the interior of the Jyramids, of catacombs, natural caverns, \&c., which conld not otherwise be examined or photographed. Jrofessor Piazzi Smyth, the Scottish Astronomer-royal, dating from the East Tomi), (rreat lyramil, February:2, 1865 , writes as follows: "With any mmber of wax-candfes which we have yet taken into cither the King's Chamber or the Grand Gallery, the impression left on the mind is merely seeing the condles, and whatever is rery close to them, so that yon have small idea whether you are in a paiace or is cottage; lat burn a triple strand of magnesium wire, and in a moment you sec the whole apartment, and appreciate the grandenr of its size and the leanty of its pronortions.' Aceording to the writer of an excellent article in the Techologist for 150., "M. Natar is said to be engaged on a serices of photographs of the C'atacomles of J'aris; various artists are busy practising on monuments in obscure recesses of continental churches ; and Nr Jirothers, we believe, contemplates nndertaking the 620
caves of Derbyshire. Fur fortraiture, it is fomand to be less successful than Wis at tirst expected, owing to the intense light within in few ferit of the sitter's eyes causing is contraction of the facial muscles.

One of the peculiarities of the magnesinm light is, that it displays colums as they are seen in sunshine. This may be tested, and a very interesting effect protheed, by burning some wire in it garden or conservatory at uight. I'his peenfiarity is being turned to prictical accome. The mannesimm lamp, says a writer in the linilish Journal ay Photographey, promises quickly to become a regular article of furaiture in every silk-mereer's show-roon. "The strength of the marguesium light, coupled with its easy prodnction, qualilies it for extensive cminforment in commerce innl war. Unfike the clectric and oxyhydrogen lights, it involvies no cumbrous and troublesome apparatus. Witlo a coil of the wire in fis waisteont pracket, and a fow matelıes, an Alpine explorer has instiant means for making his whercabonts known at nicht. 'The fight has been secn at a distance of twenty-cight miles at sea; how much further, remains to be determined. Commissions under several governments are investigating its capabilities, and thore is rason to lrelieve that it wifl very soon be adopted for sinip-signals and light-houses. - Technoloyist, op. cil. In surgery, the light has been successfully employed in cone nection with the laryngoscope; and hy this means not only can the sfightest sore in the upper pare of the respiratory organs lie discurerul, but the same may be rendered visible to a numerons amlience. How fiur the marnesimm light can be applied to the orilinary purposes of illuminatins streets, public buildings, \&e., is not yet determined. The objectors to such apulications of the light maintain that, while light in which carbon constitutes the ignitibie solid possesses a power of diffusibifity which renders objects not directly opposed to the course of the rays more or less distinctly visible, the efectric, lime, and magnesimm fiehts possess none of this diffosiveness; their rays heing afparently projected with a furce and velocity which dejrive them of the power of ditlusion. An olject placed in the direct course of the rays is spfendidfy iffuminated, and the rays are projected to an immense distance; but the shiuluws cast by intervening objects are intensely black, and the rays sucom to pass throngh the atmosphere without producing mach effect, except nopon that part whith is in the enurse of the stream of light. 'And ficeren,' observes Mr Wiffmitt, who does not alopt these objections, ' would nppear to reside the supposed canse of failure of the application of this light to ordinary iflnmination.' - l'harm. Journ. for Λ prif $1 S 6.5$.

It is foum by experiment that $2 \frac{1}{2}$ oz, of magnesium wire will give out as much lioht as 20 lhs. of the hest stearine candiles, and at this rate, the mag. nesinm light is not much dearer than that of the hest candles. Mr Grant, the well-known pliotograjlecr, has ascertained that certain alloys into which magnesium cuters largely, afford nearly as brillinnt a light as pure magnesium, with varions tinges of colour; thas, one part of zine and two of marnesium produce an afloy which burus with a elighty bine tinge; one part of copper and three of magnesimm give a green light; whale one part of strontimn and two of maguesiun give a red fight. Such modifications of the light may prove highly serviceahie in signalling, besides being mneh less expensive in most casces than the pure light.

Various forms of the maguesium lamp have been devised, the best of winich is Larkins's Magnesium l'owder-lamp, is which arrangenent a mixture of fincly divided sand and powdered magraesinum is
projected in a graduated stream, and is submitted to combustion, in place of a wire or ribbon of the pmre metal. It is simple in construction, small in size, and very portable ; and the light is continuous, and quite under control. It is easily ignited, and as casily cxtinguished; and as the magnesium is bmmed in powder, all clock-work, \&c. is dispensed with. Amongst the advantages of the light, in addition to its intensity, may be mentioned-(1) that it gives off no compounds uppleasant or injurious to man or his surroundings, such as plate, fur, paper-hangings, books, \&c.; (2) that' it is altogether unattended with dancer from explosion, the whole chemical process involved being a union of the metal with the oxygen of the air, and the only result heing oxide of magnesium or magnesia; and (3) the portability of the materials.

The great drawback to the more general application of this light is its price, but this difficulty will doubtless be soon overcome. In the Fear-book of Facts in Science and Art, IS67, r. 173, it is stated that 'one year ago its price was III gnineas pier lb.; now (1866) magnesium wire is sold at 3d. per foot.' The expense of the working of Larkins's Lamp is one pound per hour. When the metal can be obtained more cheaply (the sodium necessary for its reduction being the great expense), it and its alloys will probably be found serviceable in the constmetion of household vessels, eases, light and simple machinery, \&c.; and it has even heen suggested in the American Gas-light Journal that when it becomes cheap enongh, it should be employer in the construction of vessels of war, for, whilst little heavier than oak, it is as strong and tenacious as steel.

From information directly obtained from the London agents of the Magnesium Metal Company (Messrs Johuson, Matthey, \& Co., Hatton Garden), we learn that the present wholesale price of the pure metal, in the form of wire or ribbon, of the ordinary sizes for burning, is 10 s per nz .; and in the form of plates, ingots, or powder, is $78.6 d$. per oz., while the crude metal sells at 5 s. per oz. The respective retail prices are 12s., 9 s ., and 6 s . per oz. It may also be mentioned that the present wholesale price of pure sodium, on which the expense of the magucsiun solely depends, is 6 s. per Ib. Any quantity of wire or metal less than one ounce is sold at the rate of 16 s . per oz.; and as the ordinary series of wire run frons 80 to 200 feet ner oz., and those of ribbon from 80 to 150 feet pier oz, a very simple catculation gives the present price of the wire per fout.
MAGNE'TO-ELECTRIC MACHINE (Wilde's). See Electric Light; Magnetisis. Mr H. Wilde of Manchester has lately (1866) patented a magnetoclectric machine, which, with a sufficient expenditure of mechanical energy, can be made to furnish any amount of current electricity. It accomplishes this with a simplicity and economy bitherto unequalled, and it promises therely to extend immensely the practical importance of electric sсіедс.

The machine is founded on a new and somewhat paradoxical principle-viz., that a current or a magnet indefinitely weak con be made to induce a current or a magnet of indefinite strength. A general description will best shew how this is proved and applicd.

Fig. 1 shews a front clevation of a 7 -inch machine, constructed for the Commissioncrs of Northem Light-houses. It consists of two separate machines -a purely magueto-electric machine, and a machine which is both electro-magnetic and magneto-electric. Both machines are in the main very similar, and in many respects identical, the only difference being in
size and power. The smaller machine, MMI', which is purely magneto-electric, is secn sumomnting the other. The horse-shoe fermanent magnet, MM', is the foremost of a serics of sixteen similar magnets, placed the one behind the other in a horizontal row. Each weighs 3 lbs., and sustains a weight of 20 lbs . The sixtecu maguets are fixed below to the

Fig. 1.
magnet-cylinder, c, shewn on a larger seale in fig. 2. This is partly made up of cast-irou, partly of brass. The two iron components, i, i (fig. ${ }^{2}$), form the sides of it, and the brass bars, b, b, lic between them. They are bolted firmly together by the brass bolts, r, r. The magnet-cylinder is about 12 inches in length; in the centre of it is accurately hored a circular hole, extending the whole way, $-\frac{1}{2}$ inches in diameter. The inner side surfaces of the raagnets below are accurately fitted to the upright plane sides of the magnet-cylinder, and are firmly secured to it. By this means the cast-iron portions of the magnet-eylinder, i, i, form the polar terminations of the magnetic battery, the brass bars, b, b, between them, breaking the magnetic continuity.

A cylindrical armature, $a a$, of cast-iron is made to revolve within the magnet-cylinder. Its diameter is ${ }^{-1}$ th of an inch less than the diameter of the cyliader, which enables it to revolve without 631

MAGNETO-ELECTLIC MACHINE

friction in very close proximity to the polar surfaces. The manner in which it is centered is, for the sike of simplicity, not shewn in the ujper

Fig. 2.
machine, but it is shewn in the lower machine, where, as is afterwards mentioned, the construction, though larger, is perfectly similar. The framework for sustaiming the axis of the armature is firmly bolted at gg. Fig. 2 gives, as just mentioned, an cularged cross section; fig. 3 shews an enlarged side-view. 'Two rectangular

Fig. 3. grooves, v, , are made on opposite sides, giving to it somewhat the appearance of a rail. About 50 feet of insulated copper-wire, wo, is wound lengthwise into these grooves in three coils (shewn in scetion, lig. 2). The coil thus formed is shat in by wooden packing, $l l$. In fig. 3, this packing is removed from the two ends, to shew the longitudinal winding of the coil. To prevent the wires from being driven out ly the centrifugal force generatcd in the rapid rotation of the armature, straps of sheet-brass encircle the armature at regular intervals, and are sunk in grooves prepared for them in the ciast-iron. Two caps of brass, k, k, are litted to the ends of the armature, and to these are attached the stcel joumnals or axes of rotation, f, f. On the further axis (the back axis of fig. 1), the pulley, m, is fixed, round which passes the strap from the steam-engine which works the machine. On the other axis (the front axis of the figure), two rings are put, one, n, insulated from it, and the other, n^{\prime}, connected with it. One end of the armature coil is in connection with the armature, and thereby with the axis and n^{\prime}; the other end is insudated and fixed by a hiorling-serew with $n-n$ and n^{\prime} are thus the terminals of the coil. They are mule of hardened steel, and the springs, s and s^{\prime}, which press agaiust them are of the same material.

Starting from the position shewn in fig. 2, the armature in one revolution induces two njpesito currents in the coil, one in the first, the other in the second It will be seen (fig. 3) that the
half revolution. 6.2
separation between n and n^{\prime} lies obliquely: In this way, each spring, s or δ^{\prime}, lresses against a different ring at eacli half-revolution. As u and x^{\prime} chance their electric sign it is so arranged that they clange the spring, s or s, against which they press. Thus, \& and s^{t} receive their currents always in the sano direction; consequently, the wires, 0 and 0^{\prime}, cunvey the curreut away from the machine in a uniform direction. The ammature is mallo to revolve "कtu) times per miunte, and 5000 waves or currents of electricity are transmitted to the wires, $0,0^{\prime}$.

Thus far we have nothing essentially peculiar in Wilde's machinc. The construction of the marneteylinder is quite novel, thourh the position of the armature, which is decidedly the most alvantageous, is not new, as it was adopted several years aro in Siemens and Halske's magneto-elcetric machine. One advantage of this position lies in the motion of the armature not being resisted by the air. In the ordinary losition of the armature, much of the work applied to the rotation is expended in the armature beating the air. There is no such loss in Siemens and Halske's or Wilde's machiac. Another advantage is derived from the inductive action of the magnet being exerted directly on the coil, as well as through the intervention of the armature. If the coil were made to rotate without the armature, currents would be induced in it of the same kind as that induced by the armature, though of fechler intensity, the maximum points of which would occur when the coil was moving through the line joining the poles, and the minimum joints when it was at right angles to that position. Now these are the converse of the maximum and minimum induction points of the armature. In tho pasition in which the armature is placed in this machine, both armature aud coil contribute to the current, the one most when the other gives least, amd vice verst. The same advantage is not secured by the ordinary construction.

We cone now to deseribe the singular peculiarity and merit of Wilde's machine. 'The current got from the magneto-electric machine is wot directly made use of, but is employed to gremerate an elcetromaguet some hundreds of times moro powerful than the magnetic battery originally employeck, by means of which a corresponding increase of clectricity may be obtained. 'This electro-magnet, EE' (lig. 1) forms the lower part of the figure, and by far the most bulky prortion of the entire machinc. It is of the horse-shoe form, E and E^{\prime} forming the two limbs of it. The core of each of these, shewn by the dotted lines, is formed by a plate of rolled iron, $: 6$ inches in height, 26 inches in length, and 1 inch in thickness. Wach is surrounded by a coil of insulated copper-wire (No. 10), 1650 feet long, wound round lengthwise in seven layers. The current las thus, in passing from the insulated binding-serew, r, to the similar screw r^{\prime}, to make a circuit of 3300 feet. Each limb of the electro-magnet is thus a flat reel of covered wire wrapped round a shect of iron, the rounded cads alone of which are seen in the tigure. The upright iron plates are joined abovo by a bridge, P, built up also of iron-1 late, and are fixed below the whole way along with the irou bars v, v to the sides of a magnet-cylinder of precisely the same construction as the one already deseribed. The iron framework of the electro-magnet is shewn by the dotted lines. The depth of the bridge is the same as the breadth of the bars, v^{\prime}, v^{\prime}, which are of the same size as the bars, τ, τ. The various surfaces of juncture in the framework are planed, so as tu insure perfect metallic contact. The uyper ann] lower machine are in action preciscly alike, only the upper magnet is a permanent magnet, and the lower one an electro-magnet. Wo have the same magnet-

MAGNETO-ELECTRIC MACHINE-MAHIM.

cylinder, I, I, the same armature, A, and springs, $\mathrm{S}, \mathrm{S}^{\prime}$, and the same poles, $\mathrm{Z}, \mathrm{Z}^{\prime}$; the size is, however, different: the calibre of the masnet-cylinder is 7 inches. The diameter of the lower armature gives the name to the machine-viz., a 7 -inch machine. Figs. 2 and 3 are on the scale of the lower machine (tig. 1). The length of wire on the lower armature is 350 feet. It is 35 inches in leanth, and is made to rotate 1800 times a minute. The cross framework attached at $g g$ to the magnet-cylinder, in which the front journal, f, of the armature rotates (at Q), is shewn in the lower machine (fig. I). Wheu the machine is in action, both armatures are driven simultaneously by belts from the same countershaft. For the electric light, the currents conveyed to the springs, S and S^{\prime}, need not be sent in the same direction. In that case, the separation between n and n^{\prime} is vertical; and each spring presses against only one ring during the whole revolution, receiving and transmitting each revolution two opposite currents. Oil fur the journal and commutator is supplied from the cup C.

The machine here described is intended for a three-horse power steam-eugine, but more power might be expended on it. A larger engine could drive the smaller armature faster, and thereby cause much more energy to be expended, and more electricity to be induced in turning the lower armature tlan with the power of three borses. The machine, when worked with a power of three horses, will consume carbon-sticks three-eighths of an inch square, and evolve a light of surpassing brilliancy. With a machine that consumes carbons lalf an inch square, a light of such intensity is got, that when put on a lofty building it casts shadows from the flames of street-lamps a quarter of a mile distant upon the neighbouring walls. The same light at two feet from the reflector darkened ordinary sensitised photographic paper as much in twenty seconds as the direct rays of the sun at noon on a clear day in March in one minute.

Mr Wilde furnishes for the electro-magnet cylinder of many of his machines two armatures : one an 'intensity armature,' similar to that just described; the other a 'quantity armature'-one of which may be easily substituted for the other. The quantity armature, instead of insulated copper-wire, is enveloped in folds of insulated copper-plate, or ribbon, which offering little resistance, a current of much greater quantity, though of less tension, is given off. It is with the quantity armature that experiments in the heating-power of the machine are best performed. With a 10 -inch quantity armature, Mr Wilde succecded in melting an iron rod 15 inches long and $\frac{1}{4}$ inch thick.

Wilde's machine enables us to convert any amount of mechanical energy into electricity. By increasing the size of the electro-magnet, or by using a second electro-magnet, induced by the first, an unlimited amount of energy can be expended, and so converted. The size and weight of the apparatus is also small. The entire machine just described is under 5 feet in length and height, is 20 inches wide, and weighs a ton and a half. Mr Wilde also contemplates making a smaller ruachine, useful for lectures and institutions, to be worked with the hand, which will form a ready and convenient substitute for the galvanic battery in electric experiments.
Ir Wilde attributes the porrer of his machine to the power that an electro-magnet has of 'accumulating aud retaining a charge of electricity in a manner analogous to, but not identical with, that in which it is retained by the Leyden jar.' The polar terminals, for iustance, of a very large electro-magnet can be made to give a bright spark 25 seconds
after all convection with the exciting magnetoelectric machine has been broken.

Wilde's machine forms quite an era in the history of electro-magnetic machines. It is not only marvellous in itself, but it is also equally so in the investigations to which it has given rise. Wheatstone and Siemens have found that the magnetic battery (M1', fig. I) may be dispensed with, and they charge the electro-magnet, EE', by the current coming from the lower revolving-armature, A. If the electro-magnet, EE', be once charged, as much residual magnetism is left as will serve for all time coming. The amount of this is insignificant, hut it is utilised in the following way. When the armature begins to revolve, it does so very easily, almost as if there were no magnetism to impede it. The feeble current, however, thus generated goes to strengthen the magnetism of the electro-magnet. The increment of magnetism thus produced acts in its turn on the armature, causing it to revolve with greater difficulty, and to give off, in consequence, a stronger current. This mutual reaction betreen the electro-magnet and the armature goes on increasing; and if sufficient mechanical force be exerted to turn the armature, a current of such strength would be induced as would melt the wircs of the coils, and destroy the instrument. Wilde's principle, that a small amount of magnetism can produce a current of any strength, however great, thus receives a new and startling verification, and one which he did not anticipate. It may be asked, however, what practical result are we to expect of a machine that generates and consumes its own current, seeing that, in the machines of Wheatstone and Siemens, the current of the armature is taken up by the electro-magnet? The armaturecurrent may have, however, a divided circuit between its poles; one of these being formed by the electro-magnet coils, and the other by any external passage offered to it-the current being apportioned to each inversely as the resistance each route offers. Or, the external circuit may be periodically closed, in which case an instantaneous current of great strength passes through it, made up of the proportional part of the armature-current and of the accumulated electricity of the electromasnet, the latter being the larger constituent.

The reaction principle of Wheatstone and Siemens is also employed in Ladd's beautiful electro-magnetic machine, at present the greatest novelty of its kind. In this instrument, the revolving-armature is furnished with two coils, one at each end, each provided with its own commutator. One of these coils furuishes the current that charges the electro-magnet, and the other gives a current available for external use. The former of these coils supphies the place of the upper armature of Wilde's machine. Ladd's machine has therefore the advantage in point of simplicity. Su far as it has been tried, it gives excellent results. Wilde's machine is the only one as yet that lias been tried on a large seale, and its performances for the present stand unrivalled.

MAHI'M, a town of the island of Bombay, and seven miles north of the city of Bombay, to which it is joined by railway. It is situated on the south side of the channel separating the island from Salsette, and at the point where they are connected by a road running partly on arches of masonry, partly on a causeway: The passage is commanded by a fort. The town is ill built, and inhabited chiefly by Christians of Portuguese descent, who have here a church and some other relics of their former prosperity. The inhabitants are chiefly employed in fishing, the place being famous for its oysters. Pop. 9000.

MA'TlAN1, a tnwn of New South Wales, in the county of Northumberland, on the Hunter river, 93 miles north of Sydney, and 20 miles northwest of Neweastle, to which it is joined loy railway. it is divided ly the river into Last amd West Maitland. P'op of the former (1861), 1834 ; of the latter, ant!4. The former has one or two churehes, a courthonse, aurl jail; the latter, which is the most thriving place, has several churches and selinols, numerous large stores and hotels, and an extensive mannfacture of tobacco. Goonl coal abrounds in the neighbourhood. Along with Neweastle, IL. returns a member to the legislative assembly:

MA'liDAT, a town of British India, in the presidency of Lengal, the chief town of a district of the same name, is situated on the left hank of the Mahununda, ahout 190 miles north of Calcuttia. In the rainy season, it is nearly insulated. It is a wretched place, consisting of ruined honses, forming narrow irregular streets, full of tilth. The surrounding district has become a melameloly ilesert from want of cultiration. Pop. estimated at about $15,000$.

Mallet, Clatde Francois ne, horn esth June 1754, at Dôle in liranche-Comté, became an eager supporter of the Revolution, rose to the rank of a brigadier-general in 1799, was intrusted with the government of Pavia in 1805, but was removel from his office hecause of his extreme repmblicanism. He returned to l'aris, and was engaged in a number of republiean plots. Being, in June 1812 , thrown into confinement along with some royalists, he formed with them a scheme for overthrowing the empire during Napoleon's eampaign in liussia. IIe mate his escape from prison on the nimat of 9.3 - -4 th Oetober, along with the Abbe Lafon, and entering the barracks, informed the soldiers that the tyrant had perished in liussia. He procceded to liberate Gencrals Guidal and Lahorie fron prison: and having previously gained the support of a laattalion of the Parisian Guards, he ealled them to arms, and went to the residence of llullin, the commandant of the eity, whilst Lafon went with a platoon to the profecture. He told Hullin of the death of the Emperor, and the establishment of a provisional govermment, and on his manifesting doult, drew a pistol and fired it in his face, wound. ing lint not killing lrim; whereupon the adjutant, Laborde, rushing in, Hullin and he togetber overpowered M., and toak him prisoner. When interrogated, he declared that be would have made all France and all Europe his delstors, if his enterprise had been suecessful, and maintained the same resolute coolness to the last. FIc was slot, along with his principal fellow-conspirators, 29th October 1812.

MANAGUA, a town of Central America, in the state of Nicaragua, in a healthy and fertile district, on the south shore of Lake Nanagua or Leon, 50 miles south-east of Leon. The town is the scat of the government of Niearagua, and has a pojl. of 10,000 , chietly Indians. Owing chiefly to the rival. ries of the cities of Granada and Leon, but partly also to its central position, M. has been selected as the place of mecting of the legislative chambers.

MaNby, George William, favourably known for his exertious in saving the lives of persons in danger of shijwreck, was born in 176.5, at Hilgay, near Downham 3larket in Suffolk. After studying for the army, he served seven years in the militia. Receiving the appointment of barrack-master at larmouth in 1803 , he had frequent opportunitics of witucssing the ravages produced by storms on the const of Norfolk and Suffolk. A dreadful series of shipwreeks on a particular day in 1807, when H.M. gun-brig Snipe was wreeked within 60 yards of the
shore, and 67 lives Inst, and when 147 deal loolies were found on about 30 miles of const, drew his attention forcilly to the sulject; and led him to experiments which resulted in the invention of the apratus known ly his name (see Lafe Mortars ASb Rockens in S(blemest). On Fibruary 12, 1sus, he succeeded in saving the lives of the erew of the lrig blizabeth, which was stramed at 150 yards from the shore; he sent a rope over to them by menns of a shot, and this rope was the means of pulling a hoat from the shore to the luig. A career of necfulness was thus commeneed, which he followed for the remaining 46 years of his life. In 1810, a committec of the llouse of Commons voted feoto to. M1., as a token of reengnition of his services. Being appointed to report on the dangers of the Norfolk and suffolk coasts, he recommendel the establishment of mortar-stations at certain intervals. This recommemlation was alopted by the House of Commons and the government; anil by the year 1815, there were nearly 60 sneh stations. Captain N. reeeivel a further grant from parlia-
 honorary distinctions from many foreign governinents. Ie was ustimated that, lyy the time of his death, nearly 1000 jersons had heen rescued from straded ships ly means of his apparatus. He wrote two works on his fivourite suljeet, Au E:sa!! on the Preserration of shimurseked l'ersons, with a descriptive account of the - Spparatus, sec. (1812) ; and Practical Ouservations on the I'reservation of Marincrs from Stranded 1' essels, and the Prevention of Shipureck ($1 \mathrm{SO}_{7}^{7}$), In what manner his system has since been superserled lyy one of a more effective kinel, is described under Life Montafs and liockets. Captain M1, died November 18, 1851, at l'edestal Honse, Southtown, near Great Iarmouth. - 1 mnual Register:

MANDU ${ }^{\prime}$, an extensive deserted city of India, in the state of Dhar, in Malwa, 15 miles morth of the right bank of the Nerbudela, in lat. $22^{\circ} 20^{\circ} \mathrm{N}$., long. $75^{\circ} 27^{\prime} \mathrm{F}$. The circumference of the ramparts is said to lee 37 miles, although it is not probable that the whole of the space was occupicel. The greatest and least injured of the ruined louidings is the Jama Masjit, or Great Mosque, the area of which is raised several yards above the ground, and is reached by a large and handsome flight of stairs. It has a very striking appearance. Next in importance is the mausoleum of Hoshung Ghori, ling of Malwa, who raised this city to great splendour. It is a massive butiling of white marble. According to Malcolm, 11. was founded 31:3 A.D. The buildings are principally of Afghan arehitecture.
MANRE'SA, a trwn of Slain, in the province of Barcelona, and 30 miles north-west of the eity of Parcelona. It is situater in a fertile and well irrigated district, on the left bank of the Cardonet. M. has manufactures of cotton and silk fabrics, 1,roadcloths, \&ic. In 1811, it suffered severely at the hand of Marshal Mactonald, who set it on fire, when more than 800 bouses, with churches and manufactories, were burned down. Pop. 13,339.

Mansel, The Iev. I Ienir Longueville, B.D., Waynflete l'rofossor of Moral and Metrphysical Thilosophy in Oxford, was born at Cosgrove, Northamptonshire, in 1820, his father being rector of the jarish. He was edueated at Merchant 'Taylors' School, and at St John's College, Oxford; and graduated in 1843. In 1855, he was appointed Reader in Moral and Metaphysical l'hilosophy, in Magdalen Collecge; and in 1859, became Wayntlete I'rofessor. In 1867, he received the appointments of Regius Professor of Eeclesiastical History, and Canon of Christ Clmureh, Uxford. Mis published

MANTES-MASSOWAH.

works are: Aldrich's Logic, with Notes (1S49); Prolegomena Logica (1551); article Metaphysics, in 8th edition of the Éncydopaelia Britannica (1957), afterwards published separately ; Bampton Lectures -The Limits of Religious Thought (185s); The Philosoplyy of the Conditioned (1866), in reply to Mill's Review of Hamilton's Plitosophy. He was co-editor, with Professor Veitch, of Sir William Hamilton's Lectures.-Mr M. is considered as belonging to the school of Sir W. Hamilton. Hfe is well versed in the erudition of Metaphysical Philosophy, and writes in a clear and elegant style. His Bampton Lectures oceasioned much controversy, both theological and philosophical. See Conditrosed. (He died 30th July 1s:1.)

MANTES (anc. Mcelunted, a town of France, in the dep. of Seine-et-Oise, beautifully situated on the left bank of the Seine, 29 miles west-north-west from Paris, on the railway between Paris and Rouen. M. is a place of great antiquity, and of mnch historic interest. It was a town of the Celts, from which the Druids were expelled by Julius Cæsar. William the Conqueror took it by assault in 10S7, put the inhabitants to the sword, razed the fortifications, and burned three-fourths of the houses; but here he received the injury, through the starting of lus horse, which cansed his death in a few days. MI. has a considerable trade in wheat, large tanneries, and saltpetre manufactories. Pop. (1566) 5186 . On the opposite side of the river, connected with M. by lridges and an island, is the village of Limay, with a pol. of nearly 2000 .

MARCH, a market-tomn of Cambridgeshire, England, 29 miles north from Cambridge, on hoth sides of the Old Nen, which is here navigable for boats, and on the East Anglian Railway. There is a junetion of five railways at March. There is a large square market-place in the centre of the town, and a splendid court-house, in which the meetings of the Middle Level Drainage Commissioners are held. Pop. (1S61) 3600. In the neighbourhood is March Wet Fen, a drained fen with an area of 3600 acres, from which the water is pumped off by steam-engines.

MA'RGAY (Felis tigrina), a species of cat or tiger-cat; a native of the forests of Brazil and Guiana; about the sance size with the wild cat of Europe; of a pale fawn colour, with black bands on the fore-parts, and leoparil-like spots on the hindparts, and on the rather long thick bnslyy tail. It bas been erronenusly represented as untamable, leing, in fact, capable of a complete domestication, and of being made very nsefnl in rat-killing.

MARIA'ŇA, or MARLANA, an episcopal city of Brazil, in the province of Minas-Geraes, abont 12 miles east of Ouro Preto. In the neighbourhood are gold, silver, and lead mines. Pop. S000.

MA'RIENBERG, a town of Saxony, in the circle of Zwickau, 3 S miles south-west of Dresden. It has manufictures of linen, lace, aud steam-engines, and the neighbouring mines give employment to a great number of the inlablitants. MI. has mineral baths, and an establishment for the cold-water cure. Pol. (1S64) 5114 .

MARINE'O, a town of Sicily, in the province of Palermo, and 11 miles south of the town of Palermo, near a small river which flows into the Gulf of Palermo. Pop. (1861) 8360.

MARI'NO (anc. Bovillep), a market-town of Central ltaly, in the Comarca, and 12 miles southeast of the city of Tome, near Lake Alibano. M. is situated on a high hill above a plain, and is surrounded by strong walls and towers, which were erected by the Colonna in 1480 , and add mnch to

508
its picturesque beauty. According to the mriter of Murray's Handbook, the long street called the Corso, the piazza of the Duomo, and the fonntain, would do credit to many towns of more importance. At the foot of the hill of Marino, lying between it and the ridge of Alba Longa, is a deep glen beantifully wooded, ealled the Parco di Coloma. This valley is highly interesting as the site of the Aqua Ferentina, memorable as the spot on which the Latin tribes beld their general assemblies, from the destruction of Allaa to the consulship of P. Decins Mlus, 33 S B.c. M. is also interesting in the history of the middle ages as the stronghold of the Orsini family, who first appear in the l3th c. in connection with their castle of Marmo. In the l5th c., it became the property of the Colonna family, who have retained it almost without interruption to the present time. Top. 6000.

MARKING-NUT, the fruit of Semecarpus anacardium, a tree of the natural order Anacardiacere, a native of the monntains of India. It is a large tree, with oblong leaves, and terminal panicles of Howers. The fruit is a heart-shaped nut, seated on a large swollen receptacle. The receptacle, when ripe, is roasted and eaten, and resembles a roasted apple; although, when raw, it is astringent and acrid. The nut is black, and between the two coats of its shell there is a black acrid juice, much in use for marking cotton-cloths, a mixtnre of quick-lime and water being applied, to prevent it from running, and to brighten the colour. It is also used as an external application in rheumatism.

MARSIVA'N, or MARSOVAN, a village of Asia Minor, in the pashalic of Sivas, and 120 miles northwest of the town of that name, in a wide nodulating plain. It is said to contain 6000 houses, of which 1000 are inhabited by Armenians, and it has many mosques and fountains, and some manufactures of catton stuffs.

MASAT'A, one of the oldest towns of Nicaragna, Central America, close to a lake of the same name, 40 miles north-porth-west of Nicaragua city, and eight miles from the north shore of the lake of Nicaragua, near the voleano of Masaya-a broad, low mountain, about 3500 feet bigh, with one large and several minor craters. The last great eruption of this mountain was in 1670, when the lara spread in a northern direction to a distance of more than 20 miles. This great lava-field is said to resemble an ocean of ink suddenly congealed in a storm. In 1860, the mountain shewred signs of renewed activity. The town is the centre of a very fertile district, and has a pol, of $1 \overline{5}, 000$, chiefly indians, who are sail to be thrifty and industrious.

MlASCARA', a very old town of Algeria, in the province of Oran, and 50 miles south-east of the town of that name, on a slope of the Atlas Mountains. M. was built by the Turks upon the site of a Roman colony. During the first years of the French occupation, it was a farourite residence of Abd-el-Kader, but was taken by the Freuch in 1835 . Pop. (1S61) S6 29 , of whom 5009 were natives.

MASHE NA, a town of Bormn, Central Africa, in lat. $13^{\circ} 3^{\prime}$ N., long. $10^{\circ} 2^{\prime}$ E., about 240 miles west of Lake Tchad. It lies on the gentle southern slope of an emineace, the top of which is crowned with a rocky erest, and is surrounded with a clay wall. According to Barth, it is a considerable place for this country, baving a pop. of certainly not less than 10,000 , but withont the least sign of industry.

MASSOWAH, or MASOUA, an islet and town on the west coast of the Red Sea, in lat. $15^{\circ} 36^{\prime}$ N., and long. $39^{\circ} \simeq 1^{\prime}$ E., close to the boundary betreen

Nubia ad Abyssinia At present, it is politically connected with Ninhia rather than with Abyssinia, being in the possession of the Vicuroy of Egypt, and ruled by a governor appointeal by him. The island is of eural, the soil partly formed from tho rock, partly from sand and broken shells. It is only about a milo and a quarter in circumference, and is distant from the mainland unly about 200 yards. It is almost wholly occupied by the town, and contains a pop. of about S000, mostly Arabs. The Abyssinian coast is very destitute of harbours, and 11 . is of great importance as a seat of commerce. It carrics on a large trade by sea with Bombay and with the Arabian coast, partieularly with Jiddah and Yembo; and a large trade also by caravans with Cairo on the one hand, and with Gondar and the whole interior of Alyssinia on the other. Caravans start at ald seasons for Cairo anil for Gondar; but most numeronsly in January, at the end of the rains, and in June, hefore the swelling of the waters. Wheat, rice, maize, lurra, salt, tobacco, gunpowder, sugar, cotton and silk goods, scarlet eloth, glass wares, arms, and hardwares are among the principal imports from the more distant parts of the worlh. From Abyssinia and the coasts of the Ted Sea, 11. receives and exports ivory, rhinoceros' horns, wax, ostrich-feathers, tortoise-shell, myrrh, senna, jearls, \&c. M. has all the worst characteristics of an oricntal town. Its strects are mere lanes, and excessively dirty. MI. was originally chosen as the place of debarkation of the British expedition to Abyssinia (1567), and the starting-point of its operations; lout it was soon found unsnitable, and Annesley Bay, abont 15 miles further to the south-the deepest inlet on the Abyssinian coast-was chosen for that purpose instead.

MASTER Avd SEIV VANT. There having been reason to complain that the Act 4 Gen. IN. c. 34, under which disputes between masters anl servants were generally determioed, was a nucsided measnre, a parliamentary committee investigated the matter in 1865 and 1866 . The result was a bill, introduced by Lord Eleho into the House of Commons, which passed, and forms the Act 30 and 31 Vict. e. 141, called The Master and Servant Aet, 1S67. This noteworthy statute for the first time ilaces employer and employed un terms of equality-there leing no longer room under it for the reproach that a servant could be dealt with eriminally for a breach of contract, for which the master was only civilly responsible. Henceforth, both parties have the same remedies. The statute provides that the party aggrieved may lay his information before a justice, or (except in certain districts) a stipendiary magistrate, of (in Sco(lane) before a sheriff; and thereupon a summons is issued, ealting on the alleged offender to appear and answer the charge. Under ordinary circumstances, the case will be heard not less than two, and not more than eight days after the issue of the summons; but it is provided, that if at any time after laying the information, it shall appear that the person complained of is about to abscond, he may be reqnired by a sceond summons to give security forthwith for his due appearance; and failing his finding such secnrity, may he detained in custody till the hearing. If the complaint is investigatel before justices, two at least must be present. After trial. the conrt may, according to cireumstances, either declare the whole or a part of the servant's wages to be forfeited; or else, may order the master or the servant, as the case may be, to fulfil the coutraet, and (if thought right) to find security for doing so; or else, it may annul the contract, and apportion the wages due under it; or it may fine the offender in a sum not exceeding $£ 20$; or fix a 625
sum due to the offended party for compensation for the injury eaused hy the conduct of the other party. When a fine is imposed, or danages awarded, the inoney is to be recoverel lyy execution against the oflender's goods ; but, in defanlt of paymeot being had in that way, the offender may le imbrisoned (without hard labour) for not more than three montlis. The possibility of these provisions being insufficient, in the case of the occurrence of any of those aggravated offenees which formed the uxeuse for the more rigorous law which has been supersedel, is recomnised, and wheaever it appears that any injury infictel on the person or property of the party complaining has been of an aggmated character, and has not arisen in the exercise of a legal right existing, or reasonably and bona firle supposed to exist, the court may commit tho offender to prison, with or without hard labumr, for a term not exceeding thrce months. In all proceedings under the aet, the parties themselous aro almissible as witnesses. Altogether, the act may be said to remorlel entirely the statute law of master and servint.

MASTS, Inox and Steel. As far back as 1839, the City of Dublio Steam-packet Connpany harl a steamer with hollow iron masts, the masts acting alsu as ventilating funmels for the cabins. From that time, iron has been frequently enployed for lower masts, in sailing-ships as well as in steamers. Tho I lan has usually been to make them of plates bent to the proper curvature, jointed by internal strips, and strengthened by an internal cross flange of plates secured by augle-irons; but sometimes the plates are lapped. The plates vary from $\frac{3}{8}$ to $\frac{5}{8}$ inch in thickness. Mr Grantham (Iron-shipbuilding) states that iron masts are "lighter and stronger than timber masts; aud when compared with the huiltup masts of large vessels, are rather less expensive. For vessels of the same tomage, the difference of weight is marly two to thre in favour of mron.'

Iron is used for yards as well as masts. An iron yard was made in 15.77 for the Anstralian clippership Schomberg, 112 fect long, and varying in diameter from 14 to $2 S$ inches; it weighed $7 \frac{1}{2}$ tons. It was calculated that a timber yard of the same size woull weigh $12 \frac{1}{2}$ tons. Iron masts lave since that time been employed in many ships in the royal navy, made of three vertical ranges of plates bent to the required curvature, with butt joints, and riveted to thre 'r-irons which cover the joints on the insicle.

Captain Cowper Coles, the inventor of the turret system for ship!s of war, has introduced tripod iron masts of peculiar constrmetion. The real mast is strengthened and upheld by two others, the three forming a triporl. The central tube, or real mast, is earried up to form the topmast; while the side tulses are carried up only to the height of the lower yard. The main tule rests upon the kedson; while the side tubes, which are on either side of it and lehind it, rest ujon parts of the bottom-framing; but all three are fastened to the deck as they pass through. The lower mast only forms the tripod, and is self-supportiog, without shrouds, \&c.; the topmast is securcl with stays, baelistays, and outriggers. Captain Coles enumerates many advantages which he belicves this construction to possess.

Since the use of steel in shipbuilding has become recognised, the employment of the same metal for masts has engaged attention; stecl plates, we know, ean now be made almust as easily as plates of iron; and it becomes a question of increased efficiency against increased cost as to which metal shall be allopted. In some experimeats made at the beginning of 1867, at an engineering establishment in Southwark, it was found that Bessemer

MATLN DOG-MAURICE OF SAXONY.

steel has more teusile strength than Millwall iron for masts; aud that Deane's steel is better than Bessemer's. Steel being more tough than iron, weight for weight, a ship's set of masts would be less ponderous in the former metal than the latter.

Masts of Iron.
Actual use in war and in stomy weather would he necessary, however, to determine all the relative advantages of iron and steel for masts.
The subject of the stability of iron masts is treated with much fulness by Mr Lamport, in a Paper read before the Institute of Saval Architects in 1863.

MATIN DOG, a large kind of dog, now almost peculiarly French; but supposed to have been introduced iuto France from the north of Eirope. It is allied to the Danish dog. It has rotgh hair; a rather flat forehead; a rather pointed muzzle; the cars erect, but bent down at the tips. It is generally of a whitish colowr, clouded with brown. It is fierce, but not very comrageous. Buffon, without reason, imagined it to be the original of many kinds of \log.

MA'TSUMIAT, a town and port of Japan, and the larcest centre of commerce and population in the island of Yesso. It is on the south coast, about 60 miles west of Hakodadi, and contains, it is said, 60,000 inhabitants. It extends along the margin of an open bay, facing which is an island mith a beacou, sheltering a harbour capable of receiving the largest ships.

MAURICE (DUKe and afterwards Elector) OF SAXONY, eldest son of Duke Henry of the Albertine line (see Saxosy), and nephew of Duke George (q. v.) the Bearded, the most bitter opponent of the Reformation, was born at Freiberg, 2lst March 1521; espoused, in 15!1, Agnes, daughter of the Landgraf Philip of Hesse; and later in the same year, succeeded his father in the duchy of Saxony and its dependencies. He was hardly well established in his domiuions, till a dispute arose between him and his cousin, the Elector John Frederic, regarding their respective rights over the bishopric of Meissen, which was the common property of the Eraestine and Albertine lincs; but by the influence of Luther
and of the Landgraf Philip, a temporary reconciliation was effected. $\lambda[$ took part in the campaign of 1542 against the Turks in Hungary, and gave such sigual proof of military talent, that the Emperor on his return eagerly pressed hirn to accept a command in the armies on the western frontier of Germany. M. was nothing loath to continue his military career, but insisted ou ohtaining the protectorate of the bishoprics of Magdeburg and Halberstadt, in recompense of his services; a stipulation to which Charles would not consent. M. accordingly returned to his duchy, and though still on the most friendly terms with the Emperor, took part in the deliberations of the Protestant League of Schinalkald (q. r.), being himself a professed Protestant, and the son-in-law of one of the chiefs of the League He refused, however, though agreeing with the objects of the Leagre, to become a member ; and the judicious gift to him by the Emperor of the muchcoveted protectorate above mentioned, and subsequently (12 th June 1546), a solemn deed of the Emperor at Ratisbon, by which the Ernestine portion of Saxony and the electoral title were transferred from John F'rederic to MI., secured the latter's energetic support. When Charles, at the commencement of the war, was cooped up in Southern Germany by the army of the Leagac, M., by invading the Saxon electorate, compelled the Protestants to retire northwards, thus relieving the emperor, and enabling him to subulue Swabia and the Upper Rhine districts. But by this manceurre be drew an overwhelming attack upon himself, and was driven by the incensed John Frederic from the electorate, deprived of his own dominions, and reduced to extremity. At this critical moment, the Emperor came to his aid; and II. and the Duke of Alva (see Alba), at the battle of IIuhlberg, annihilated the elector's army, and took himself prisoner. M. was now, in accordance with the previous agreement, ruler of the whole of Saxony, with the electoral dignity; and having obtained from the Emperor all the gratification of his ambitious desires which could be hoped for from that quarter, their friendly relations became more dependent upon the course of events. The retention in confinement of Philip of Hesse, whom M. had prevailed upon to submit to the Emperor, was the first canse of estrangement; the incessant attempts of the Emperor to increase, by moclifications of the imperial system, his own preponderance in Germany, sup. plied another; and thongh the new elector zealonsly supported the Iuterim (q. ∇.) of Augsburg in 1547 , he gradually came to see that his close alliance with the Emperor was alienating from him the affections of his Protestant subjects. He accordingly at once abandoned the cause of the Emperor with as little scruple as be had formerly sacrificed the interests of his relatives and co-religionists ; and, in common with the princes of Kulmbach and Hesse, secretly sent (1 lay 155l) agents to Paris and London to negotiate an alliance against Charles V., while he leisurely carried on the siege of the rebellious city of Magdeburg, in order to hare a pretext for keeping an army afoot. Meanwhile, Charles, at Innsbruck, was employing himself in building up vast schemes of ambition, little dreaming of the mine which the mau whom he most of all confided in was preparing to spring under his feet; till the manifesto, or rather ultimatum of the Protestant princes, in which they demanded the release of Philip of Hesse, and the total abolition of the arbitrary authority of the imperial government ; and the capture by them of Augshurg, while their allies, the French, took Metz; rudely drew away the reil from his eyes. Without money, without troops, without allies, nothing lut a secret flight from Innsbruck appeared open to him; but he had only got as

627
far as Fissen (a town on the Lech, on the borders of Bayaria and the Tyrol), when the news that M . was marching in this direction, forced him to hasteu again to Innsbruck. On April 1S, by the mediation of Ferclinand, king of the lomans, a treaty was concluded at Liuz granting the demands of the l'rotestants; but as it was not to take effect till May 26, M. eruployed himself in attacking (May 1s) the camp of lieitti, in which soldiers were being assembled for the Emperor, defeated and wholly dispersed the inperialists, and advanced on Innsbruck with the view of taking Charles captive, when his progress was stopped by a mutiny in his army; and the Lmperor escaped. His advance on Iunsbruck so alarmed the members of the Council of Trent, that they lled from the torn, and the sittings were thenceforth suspended for some years. Finally, at a convocation of the electors and princes of the cmpire at Passau, the terms of a treaty of beace were discussed, M. directing the cause of the Protestants, and Ferdinand atteuding to the imperial intcrests; and it was ultimately agreed that I'rotestants were free to exercise their mode of worship; that the imperial chamber, from which Lutherans were not to be excluded, should render justice irrespective of religion; and that the Aulic Council should be composed exclusively of German ministers. These conditions, which in political matters secured 'Germany for the Germans,' and in religious affairs permanently established the principles of toleration, were embodicd in the agreement called the Peace of Passun (22d August 1552). The bitter dislike conceived by the Emperor towards M. on account of these transactions, prompted him to entertain the idca of deposing him from the electorate, and reponing John Frederic; of which scherue, M. being apprised, he, with his usual subtlety and address, patched up a reconciliation with the Emperor, and went to take part in the campaign of 1553 against the Turks, who were gradnally gaining groumd in IIungary: Returning soon, he found that one of his former allies, Albert, Markgraf of Kulmbach, had refused to accede to the treaty of lassau, and continued the war on his own account, making raids on the ecclesiastical princes of the Ritine and Francouia. .1. speedily discovered that the markgraf's apparent obstinacy was the fruit of a secret understanding with the Emperor, who was anxious to secure the services of a general and army capable of wreaking his vengeance on the perfidious Saxon prince. So, about midsummer of 1553, II., putting himself at the hemi of 20,000 men, marched to protect his bishopric of Magdeburg arainst the ecelesiastical spoliator, and falling in with him at Sievershausen, completely defeated him (9 th July), but received in the conflict a bulletwound which proved \{atal, July I1, 1553. Thus fell, at the early age of 32 , a prince who had already established his reputation as one of the ablest generals and diplomatists of his time. So thoughtful and reticent, so enterprising and energetic, so correct in judgment and unfailing in action, and at the same time so wholly devoil of moral sentiment, he is one of the most prominent instances of power without principle which the world's history has ever presented. His calculating, plotting mind was concealed under a jovial exterior, and a genuine fombess for the favourite pastmons of the are. Yet this unprincipled dissimulator's states were the best governed of the empire; the great vassal was equal with the ineanest peasant in the courts of justice; great advances were made in education; and though the least religious man of the time (in fact, honest ooly in this point, that he did not jretend to a picty which he did not feel), the rights of the varions religions sects were strictly maintained. He died at an epoch

623
which was big with the fate of Germany; for his settled progranme of action was, after defeating the markgraf, to march upon the Low Countries, unito with the l'rench, with whom he had formed a firm alliance against the Emperor, and then attack the latter. Charles V. would lave had apmarently little chance of offering a successful resistance to such an overwhelming attack.-See the linganphies of this remarkable man ly Reutter, Camerarius, Arnokl, Schkukert, and Langenn.

His surviving daughter, Anne, became the wife of Williann of Orange, the liberatur of the Netherlands.

MaNIMiliAN, Fmpfror of Mexico, otherwise Ferdisand Maximilian Josepit, Archeluke of Austria, was born on July 6, 1S32. He was tho son of the Archoluke Frameis Charles, and the younger brother of Francis Joseph l., who became Emperor of Austria in 1845, ly virtue of acts of abxication and remunciation by his uncle and father. M., who received a careful education, and shewed himself an apt pupil, entered the Austrian navy, and while in that service, visited Italy, Spain, Algeria, Albania, and Madeira, all of which are admirably described by him in a work mentioned below. Ife married on July 27, 1857, Charlotte Marie Amélic. born June 7, 1840, a daughter of Leopold 1., king of the Belgians. After holding for a time the rank of vice-admiral, he abandoned the nary, and became governor of the Lombard Venetian Kiughom. In this post, he became a popular idol-thanks to his fine person, affable and graceful manners, and tho conscientions manner in which he discharged his arluous duties. Io 1S6I, he was named l'resident of the Upper IIonse; but he resigned the office in the same year, and shortly afterwards visited England. At this period, events were taking place in America destined to bring him intu more prominent notice. In 1860, the office of I'resident of Mexico hail devolved apon Benito Juarez, as chief judge in the supreme court. He bad just trimplined over the clerical prarty, after a struggle of three years' duration. The confiscation of church property, and the suspension of the payment of European debts -measures now admitted to have been unavoid-able-served as a pretext for an appeal on behali of the Mexican clergy for European assistance. The French were induced to interfere, perhaps in the belief that the whole population was opposed to the liberal government. The French general, with the heads of the Mexican church and army, when the city of Mexico hal been taken, called together what they lescribed as an Assembly of Notables; and this body, in July 1S63, decided that a monarchy, not a repullic, was the form of government best suited to the interests and character of the people of Mexico. M. was pointed out as the European prince who by his birth and character would most worthily wear the crown, and a deputation was appointed to offer it to him. Jew expected that he would entertaio the proposal, but he did so on consideration of duty. He issisted, however, no having eridence that the population were in his invour. This was easily oltained, the political and mnnicipal offices having hecu filled by Conservatives appointed by the French; and the scruples of M. were overcome. On April 9, 1S64, he signed a faraily pact, by which he renounced, under certain conditions, his rights as an Austrian prince; and on the following day, he solemoly aceepted the crown of Mexico. On the lith, he set sail for his domidinns. On June 12, he entered Hexico. He was of course warmly welcorned by the clergy and the army; but he soon found that they and he could not agree. They expected him to sanction abuses which be felt bound,

MAYMEME-MAYOTTA.

as an honest man and enlightened prince, to condemu openly as gross scandals. The Liberals, on the other hand, found him an ardent supporter of all the principles they had for a generation been contending for, and he gained their support. He formed a Liberal cabinet, including eren some of those who had been ministers under Juarez. His laborious habits, practical acquaintance with administration, and exemplary life, secured the esteem and support of many persons who had stood aloof from party disputes; and his position was still further improved by the influence of the empress with the educated classes of the capital. For a time, all vent well, and MI. devoted his whole energy to inquiries into grievances, the promotion of baoking and railway projects, and a scientific commission in which he tools a decp and special interest. The great mistake he made was to hear and attempt to reconcile Mexicau parties, who had no other object in view than power and place. He could not restore to the clergy their confiscated estates, but he sought to appease them, aud was pronounced a traitor. Then all reform of the finaoces was prevented by the French demands for compensation, and this difficulty brought him into collision with the Liberals. Their opposition was unfortunately confirmed by a proclamation he was induced to make on October 2, 1S65, threatening to pumish with death under the laws of war all who offered resistance to the government, the republic having ceased not only by the will of the nation, but by the expiration of the administration of Jnarez, and his flight to the United States. 'This decree he was told was asked for merely to suppress brigandage, but it was employed both by the Imperialist and French commanders as a sanguinary edict, under which many estimable Liberal officers were cruelly shot as robbers. The northern states of Mexico had alrays retained a sort of independence before the foreign occupation of the southern prorinces, and the French had not rednced them to subjection. There Juarez and his followers again raised the standard of independence, and harassed the French army. At the same time, the success of the Forth in the American war, and the dissatisfaction of the French people with the cost of the Dexican expedition, compellel Louis Napoleon to contemplate the withdrawal of his troops. In rain the empress went to Europe to enlist support for her husbaud, who had lost all his private fortime. She found that he had proved too honest for some of his, old friends, and her reason gave way under the continued grief and excitement brought on by disappointment. The Belgians and Austrians wonld have replaced the French legions, but the theats of America compelled them to abaadon the eaterprise. The French, too, were complled to retire, and they were undoubtedly most anxious that M. should leave with their troops; but he felt bound as a inan of honour to remain, and share the fate of his followers. In doing so, he placed himself at the head of a Mexican faction without the excuse of subjection to the French. At the head of 10,000 men, he made a brare defeace of Queretaro açainst a Liberal army under Escobedo. On the night of May 14, 1S67, General Lopez betraged him. This mau whom he believed to be his dearest friend, gave up to Escohedo one night the strongest position in the imperial encampinent-that where the emperor slept. The Mexican officer who took possession tried to induce M. to escape as a civilian; but he declined to do so, at the risk of compromising eren an enemy. The Liberal Minister of War ordered M. and Generals Miramon and Mejia to be tried by court-martial; and it was in rain the Euroyean ministers protested against this breach of the
laws of civilised wariare. How far Juarez interfered on behalf of M. is not well ascertained, but certain it is that he at length acquiesced in the decision of his cabinet. The court-martial consisted of a president, aged 23, aod six other members, between the ages of 1 S and 20. The trial was of course a mere farce, and the charges chiefly rested on the proclamation above referred to and the executions which followed it. At seven in the moraing of July 19, the three prisoners were removed in carriages to the place of execution. Four soldiers were detailed for each prisoner, and it was arranged that all should be shot at the same tine. M. said to those present that he forgave all, as he hoped to be forgiveu, and that he trusted his blool would be for the good of Mexico. He then placed his hand on his breast, to shew the soldiers where to fire, and opened his arms. The soldiers fired at once. Dliramon died immediately. The emperor was wounded by the four balls; but he did not die till three unarailing atteropts had been made to terminate his sufferings. The poor Indians who were present at the executiou mept aloud, and rushing forsard, wiped up every drop of blood which fell. The accomt ricen of the execution by the emperor's servant Tuidos, and contirmed by other eje-witnesses, filled Europe with indignatiou, and exposed the Mexican Liberals to abuse not altogether merited. Since the death of M., his writings have been collected, and several volumes are already published under the title of Aus Meinem Lelen: Reiseskizzen: Aphorismen Gedichte. This work is remarkable for its elegance of style, and it gives ample evidence of the ability aud saried attainments of the author, of his gool sense, eulightenment, candour, generosity, and scorn for every kiud of meanness. After some delay, the body of M. was given up to his relatives, aud was conveyed to Europe in an Austrian frigate.

MAYNEME, a city of Bokhara, capital of a lhanat of the same name, about 200 miles north of Herat, on a river flowing north towards the Jium, but only part of which has as yet been traced. It consists of about 1500 mud huts, a frail bazaar built of brick, three mosques of mud, aud two nedresse, or colleges, of brick. It is cousidered by the uatives to be a powerful stronghold, but its only defences are a simple wall of earth around the city, 12 feet high, and 5 feet broad; and a citadel surrounded by a fosse, and situaterl upon a conspicuous hill of steep? ascent. The people of the town, as well as those or the khanat, are bold and fearless riders, and of resolute, warlike character. According to Vämbéry, he who would wish to take Bokhara must destroy M., or be sure of its friendly feeling.-Vámberry's Travels in Central Asia.

BAYOTTA, one of the Comoro Isles (q.v.), ceded to France in 1543 , hies in lat. $12^{\circ} 34^{\prime}-13^{\circ} 4^{\prime}$ S., and long. $44^{\circ} 59^{\prime} 15^{\prime \prime}-45^{\circ}-23^{\prime} \mathrm{E}$. It is of irregular form, and measures 21 miles from north to sonth, with an arerage breadth of six or seven miles: if, however, the dangerous coral reefs which surround the island be included, the whole occupies a space of 30 miles north and south, and 24 miles east and west. The suriace of M . is very uneven, abl is studded with rolcanic-looking peaks, some of which exceed 2000 feet in height. The shores of the island are in some places lined with mangrove swamps, which are uncovered at low water, and are productive of malaria and fever. The island is in most partss capable of cultiration, and contains eleven sugar-plaatations, said to yield a total of 3000 tons, although there is reason to beliere that this estimate is exaggerated. Nothing but sugar is exported; and the supply of food grown on the
isladed is insufficient for the use of the inhabit. ants. The total yearly produce of the island may be estimated at $£ 40,000$. As a colony, 11 . hias certainly not fultilled the expectations entertaiaed by the French at the time of its oceupation, notwithstanding the unusually liberal terms held out to the colonists. The French establishment is on the island of Zaondzi, inside the chain of reefs on the east side of M., and consists of a goveroor, colonial officer, some artificers and scamen, and about 100 soldiers, besides a few uative ones. There are several substantial government buildings and storehouses, and numerous huts. There is a good roadstead, and the fort has been recently fortitied. M. is the only refuge for French ships in the Indian Ocean. It is the principal market for the neighbouring islands. Por. (18G4) abont Su00.
MAZAMET, a town of France, dep. of Tara, 43 miles east-sonth-east of Toulonse, on the Arnette, a feeder of the Tarn. It has extensive woollen manu. factures and eloth-fairs. Pop. (1866) 9757.
MAZA'RIRON, or ALMLAZARRON, a seaport town of Spain, in the province of Murcia, 27 miles west-sonth-west of Cartagena, on the coast of the Mediterranean. The inhabitants are employed in fishing aud mining-silver ores and alurn being found in the neighbouring hills. Mueh barilla is made here. From the number of ruins found in the vicinity, this is supposed to have been the site of an important Cartliaginian settlement. Pop. about 7000.

MAZUFURABA'D, a town of Iudia, in the Punjab, abont 200 miles uorth-north-west of Labore, at the confluence of the Jhelum and its great tributary, the Kishengnnga, over both which rivers there are ferries. It is of importance chiefly on account of its commanding position at the entrance of the Baramnla Pass into Cashmerc. The Emperor Aurungzebe built a fort here, which was sulsequently renlaced by one of greater strength, erected hy the Afghan governor, Ata Nahomed.
MEDE'AII, a town of Algeria, 43 miles south-south-west of the town of Algiers, consists of a walled town and suburbs. It is cousidered as, on the whole, noe of the fioest towns in Algeria. There is an Arab market held every Friday. Under the Romans, M. was a military station. Pop. (1S61) within the walls, 2100; without the walls, 5700 : total, 7500 .

MEDI'NA DE RIO SECO (anc. Forum Egur. rorum), a town of Spain, iu the province of Valladolid, 22 miles north-west of the city of Valladolid, on the Sequillo, an afluent of the Douro. This place was a famous emporium in the lith c ., when its cloth and linen fairs were amongst the greatest in the kingdom; it is now a place of little or no importance whatever. There still exist some remains of its former greatness, in its arcades, arches, ruins of a palace, \&c. In ISOS, the town was given up to pillage by Bessières. Pop, 5100 .

MEE'RANE, a prosperous manufacturing town of Saxony, in the circle of Zwickau, ten miles north of the town of Zwickau. Until within the last few years, it nas an unimportant, small country town; but it has recently increased rapidly in size and importance, through the development of its industrial resources. Its pop., in 1849 , was $7345 ; 1555$, 11,147 ; 1861, 13,$626 ; 1864,15,714$. The manufactories produce, almost exclusivels, moollen and mixed falries; and in 1863 , employed 15,000 looms, of which about 3000 were in the town itself, and the rest elsewhere. In 1866, there were upwards of 100 mannfactories, the yearly products of which were estimated at upwards of $£^{2}, 000,000$. A large $\underset{\text { c }}{ }$ exp trado is carried on with England, France,
and America, three of the priacipal firms having set up establishments in New lork. There are some large tanneries in Meerane. The town itself has within the last few years been very much inproved.

MEIAPO'NTE, a town of Brazil, in the province of Goyaz, about 50 miles east-morth-east of the town of Croyaz, on the river Almas. In the neighburhood are some gold mines: and the district produecs millet, barley, cotton, tolaceo, and sugar. Pop. 8000.
MERLO'NG, a town of Siam, at the eonfluence of the Meklong river with the west mouth of the Mcnam, 30 muiles south-west of Bangkok. Pop. estimated at 10,000 . The province furnishes salt for all the kingtom.
MELA-1ROSA, a fruit of the genus Citrus, and prolably a variety of the Lime ($q . v \cdot$), cultivated in Italy. It receives its name from its fragrance being thought to rescmble that of the rose. It is a small flattened fruit, with a protuherance at the tip, from which many raised ribs proceed in a star-like form to the eircumference. The skin is yellow, thin, and adheres closely to the pulp.
MELLFI, an ancient episcopal town of Southern Italy, in the province of Basilicata, 32 miles south of Foggia, on a feeler of the Ofanto (anc. Alufidus). It is situated on a bed of lava to the north-east of the lofty (3000 fect) voleanic Monte Volture, now extinct, from which it is separated by a decp ravine. The once magnificent cathedral, crected in 1155 , was almost entirely destroyed by an earthquake in 1S5̄1, which at the same time levelled many line build. ings, public and private, and destroyed about 1000 persons. The only evidences of volcanic action are the severity of the earthquakes which oceasionally desolate the district, and the emission at times of carbonic acid and other gases from the lakes in the old erater of the volcano, throwing un enlumns of water, accompanied by internal rumblings. 'Ihis phenomenon generally takes place when Viesuvius is in a state of activity. The district around the eity is celebrated for its wine. Pop. (18G1) 9803.
MELICO'CCA, a genus of trees or shrubs of the natural order Sapinducese, one of which, M. bijuga, a native of the West Indies, is there universally eultivated for its fruit. It is called the Howey Berry, and the Jamaica Bullace Plum; by the Spaniards, Monos, and by the Dutch, Kinipnce. It is from 16 to 20 fect ligh. The fruit is jet black, about the size of a bullace. The seeds are roasted, and eaten like chestnuts. Other species of Ml. yield eatable fruits.

ME'SFI, or MENFRICI, a town of Sicily, in the province of Girgenti, 43 miles sonth-south-west of Palermo, crowns a long bare height, ahout three miles from the coast. Pop. (1861) 9938.

MENHA'DEN (Alosa menhaden), a fish of the same genus with the Shad (q.v.), which is caught in great quantities on the coasts of New York and Nev England during the summer nonths, when it visits them for the purpose of spawning. Its lenoth is from S to 14 inches; the colour of the upper parts is greenish brown, the belly silvery, a black spot on the shoulder, the whole surface iridescent. "The 11 . is not a very palatable fish, but is rich in oil, which is used by painters, and is considered superior to linseed oil. Great quantities of this fish are taken in some seasons, and are sold for manure, one fish being considered equal to a shovelful of barn-yard manure, and 2500 sufficient for an acre of laud.

MERCHANT SHIPPING ACT of 1854 (stat. 17 and 18 Tict. c. 104), a measure which in many important respects amended, and at the
same time consolidated, the law of this country relative to merchant shipping. It was framed and carried throngh parliament ly Lord Aberdeen's corernment, uuder the special charge of Mr Lowe, Tice-president of the Board of Trade. By the Merchant Shipping Repeal Act of the same year (stat. 17 and 18 Vict. c. 120), the statutes relative to merchant shipping preriously in force were, with one or two unimportant exceptions, repealed; the new act, which formed an almost complete code of the laws affecting merchant-ships, coming in their place. Three acts have since been passed, in some respects amending, but to a greater extent supplementing, the act of 1854 the Merchaut Shipping Act Amendment Acts, 1855 and 1862 (stat. 15 and 19 Vict. c. 91, and stat. 25 and 26 Vict. c. 93), and the Merchant Shipping Act, 1867 (stat. 30 and 31 Vict. c. 124). The act of 1854 is divided into 11 parts; and the prorisions of the two amendment acts are in general referred to the part of the principal act to which they severally belong, so as to facilitate the reading of the three acts conjointly. The act of 1867, with the exception of two unimportant clauses, is occupied with a single subjectthe enforcement of proper sanitary conditions on board ships.

The general superintendence of matters relating to merchant-ships and seamen is, by the act of 1554 , Part I., intrusted to the Board of Trade. This department is empowered to issue forms of the rarious books, iustrumeuts, and papers required by the Shipping Acts, and to alter the forms when necessary: Returns are, on its requisition, to be made to it by local bodies and officials; and it is invested with powers for compelling local bodies, and shipowners or shipmasters, to perform the duties which the Shipping Acts impose upon them.

British ships, their ownership, measurement, and registry, is the subject of Part II. of the act of 1854 . And it is provided that no ship shall be deemed a British ship unless she belong wholly to owners who are of one of the following descriptions: 1. Satural-born subjects; 2. Persons made denizens, or persons naturalised in terms of an act of parliament, or an act of the legislative authority of some British possession ; 3. Bodies corporate established under, subject to the laws of, and having their principal place of business in the United Kingdom, or some British possession. But no natural-born subject who has taken the oath of allegiance to any foreign state can be owner of a British ship, unless he has subsequently taken the oath of allegiance to her Majesty; and he must also-so likewise must every denizen or naturalised person-continue, during his ownership, resident within her Majesty's dominions, or else be a member of a British factory, or partner in a house actually carrying on business within her Majesty's dominions. Erery British ship, with a few unimportant exceptions, must be registered; and a ship, unless registered, though subject to all the ordinary liabilities, is not to be recognised as a British ship. The registration is to be made by the principal officer of Cnstoms for the time being at any port or place in the United Kingdom approred by the Commissioners of Customs for the registry of ships; and by certain specified officers in the colories and possessions abroad. The registration is to comprise the name of the ship, which cannot afterwards be changed, and the names and descriptions of the owners; also the tonnage, as ascertained by specified rules, the build, and description of the ressel, the particulars of her origin, and the name of the master. A certificate of registry, containing all the particulars registered, is given by the registrar to the master. On this certificate, changes in the ownership and chancges of the master
are endorsed as they occur ; and a new certificate may be granted, after certain formalities, in exchange for a former one, or in the event of a former certificate being lost. The master is the person entitled to the custody of this document, and it is a penal offence to detain it from him, upon whatever pretence of right or title. The certificate is given up to the registrar on the ship being lost, or ceasing to be British.

The property in every ship is, for purposes of registration, divided into sixty-four shares. No person is entitled to be registered as omner of any fractional part of a share; but any number of persons not exceeding five may be registered as joint-owners of a share. Coluting joint-owners, Who are not entitled to dispose in severalty of their respective interests, as constituting one person only, not more than thirty-two persons can be registered at the same time as owners of a ship. The power of disposing of the ship or its shares is vested exclusirely in registered owners. Jotwithstanding this, persons beneficially or equitably interested are to hare their interests protected upon application to the proper court. When a registered ship, or any share therein, is disposed of to persons qualified to be owners of British ships, the transfer must be made by a bill of sale under seal, according to a form prescribed, and the names of the transferees are to be entered on the register as orners of the ship or share. Mortgages also must be in a form prescribed, and are to be recorded by the registrar upon production to him in each case of the mortgage deed.
In Part II., under the heading "Masters and Seamen,' it is provided that local marine boards shall be established at certain ports of the United Kingdom; and that each of these shall consist of two ex officio members - the mayor or provost, and the stipendiary magistrate of the place-four members appointed by the Board of Trade, and six elected annually by the owners of foreign-going ships and of home-trade passenger-ships. The local marine board is required to establish an office (called the Shipping Office in the act of 1854 , but now, under the act of 1862 , called the Mercantile Narine Office) or offices, under the management of a superintendent (originally called shipping-master), whose duty it is to afford facilities for engaging seamen, by keeping registries of their names and character; to superintend and facilitate their engagement and discharge; to provide means for securing the presence on board at the proper time of men who are so engaged; to facilitate the making of apprenticeships to the sea-service; and to perform such other duties relating to merchant-seamen and merchantships as shall be committed to them by the Board of Trade. The local marine boards are also required to hold examinations for persons who intend to become masters or mates of foreign-going ships or home-trade passenger-ships. And no person can be employed in a foreign-going ship as master, or first, or second, or only mate, or in a home-trade passen-ger-ship as master, or first or only mate, unless he holds a certificate of coinpetency obtained at such an examination; or else a certificate of service obtained in virtue of his having held a certain rank in the royal navy, or certain employment in the merchant serrice previous to the passing of the act of 1854 , as specitied in the act. The act of 1862 extended the requirement of a certificate from the Board of Trade to engineers employed in steamships. There are first and second class engineers' certificates, and an engineer cannot be employed unless he holds the one or the other-according to his employment and the engine-power of the shipobtained at an examination, or else in consideration 631
of his service previous to 1862 , or of the rauk he has held in the royal navy.

The master of every slip, exeepting ships of less than eighty tons burden, excluswely employed in the coastin trade, is required to cater into an agrecroent-in a form preserihed by the Board of Trade-with every seaman whom he takes to sea from any fart of the United Kinglom. This dncument, whieh must be signed by the master and by the seamen, gets forth the nature and duration of the voyage; the number and deseription of the crew; the time at which each scaman is to be on hoarl, or to legin work; the eapacity in which be is to serve; the amount of his wages; a scale of provisions; regulations as to conduct; and such punishments for miseonduct as tho Board of Trade shall have sanctioned, and as the parties shall have agreed to adopt. In the case of foreign-going ships, the agreement must be made before, and be attested lyy the superintendeut of the Mereantile Marine Office ; and scamen engaged abroad must be engaged, if at a colonial port, in the presence of a shippingmaster or Customs officer ; if at a foreign port, in the presence of the consul. The cliselarge of the crews of foreign-going ships must be made at the Mereantile Narine Otfice before the superintendent, to whom the ship-master mast deliver a full account of the wages due to each seaman, and of all deeluctions made from them. It is enacted that no right to wares shall be dependent on the earning of freight; and that every stipulation on the part of the seaman for alandoning his right to wages in the event of the loss of the ship, shall be inoperative. Seamen are enabled to sue in a summary manner for their wages (if not exceeding $£ 50$) before two justiees, or, in Scotland, before the sheritf; and if diseharged alroad, in consequence of the sale or wreek of the ship, or of other similar causes, they must be dis(llarged before some functionary, receiving from the master a certificate of discharge, and be sent home at the expense of the owner. Some provision was made in the act of 1854 as to the amount of space to be set apart for the accommodation of every seaman, as to the maintenance of the sleeping-places in a proper state of order and ventilation, and as to the supuly of medicines for the voyage; lint the clanses of that aet relating to these subjects have been repealel, and fuller provision for them has been made ly the act of 1567 . In this act, speeial precautions have heen taken to insure that ships take to sea with them a sufficient supply of lime-juice and wher anti-seorbuties; and the loeal marine hoards are empowered to appoint medical inspectors to examine seamen applying for employment, if the ship-master desires it.

The act of $185 \cdot \frac{1}{2}$ proviled for the establishment in the port of Loudon of a general register and record office for seamen, uuder the management of a regis-trar-general of seamen; and required returns to be male to this official by the oflicers of Customs, and through superintendents of mercantile marine oflices, by masters of ships both in the home and in the forcign trade, from which a general wiew might be bad as to the state of our mereantile marine. Official log-books, in forms preseribed, are required to be kept in every ship, other than those exclusively employed in the coastingtrade, either in connection with or distinet from the ordinary \log-book; and in these, eutries must be made of numerous specified occurrences. Provision is made for the punishment of offenees against discipline and good-conduct committed either by seamen or by ship-masters, and for the trial in this enuntry of persons charged with any crime committed npon the high seas. The Board of Trade may suspend or cancel the certificate (whether of competency or
of service) of any master or mate (1) if, after investigation, he is reported to be incompctent, or to have been guilty of any gross act of misconduct, drnukemness, or tyramy; (2) if, after investigation, it is reported that the loss or abandomment of, or serious damage to any ship, or loss of life, has been caused by his wrongful act or default; (3) if he is superseded by the order of any Admiralty court, or naval court held abroad under the provisions of the act ; or (4) if he is shewn to have beeu convieted of any offence.

In Part IV', under the head of 'Safety and Prevention of Aceidents,' rules are laid down as to the boats and life-hnoys which are to be carried by seagoing ships; and it is 1 rovided that the offiecrs of Customs shall not grant a clearance to any vessel by whiel those rules have not been complied with. As to the use of lights and fog-signals on board shipis at sea, the regulations now in foree are contained in the schedules of the act of 1862 ; where is also laid down the rule of the road for preventing collisions between ships meeting each other at sea. Certain stringent provisions are made as to the build and equipment, and also as to the surveying and certifieating of sterm-ships.

For the provisions as to pilotage, contained in Part V., we must refer to the acts themselves. Seo also Pilot.

Part VI. deals with the subject of light.houses. See Light-house; Trisity House; and Sohtinens Light-hocses in SupplzMext.

F'art VII. relates to the Mercantile Marine Fund. To this fund are to be carried all fees and other suns (other than fines and forfeitures) received by the Loard of Trade under the provisions of the $3 d$ and 4 th parts of the act; all lightdnes or other sums received by the general lighthonse anthorities, wader the Gth part; the lastage and ballastage dues received by the Trinity House; and the fees reeeived by the receivers of wreck, under the sth part of the aet. Out of it are to be paid the expenses of the local marine boards; the expeuses ineurred lyy the general lighthouse authorities; any sums approp,riated by tho Board of Trade for maintaining life-boats, de.

Part VIII. makes provision for eases of wreek, easualties, and salvage. An inquiry is to be mado whenever any ship is lost, ahandoned, or materially damaged on or near the coasts of the United Kingdom ; or causes loss or material damage to any other ship on or near such coasts; whenever, hy reason of any casualty on board of any ship, on or near such coasts, loss of life ensues ; and whenever any such loss, abandonment, damage, or easualty happens elsewhere, and any competent wituesses thereof arive at any place in the United Kinglom. This inquiry is to he made by the inspecting officere of the Coastguard, or the prineipal officer of Customs of the place at which the oceurrence in question happened, or of the phace at which competent wituesses of it arrive, if it has happened abroad, or can be conreniently examined; or by some other person appointed for the pmrpuse by the Board of Trade. Such officer or person, it he thinks tit, or if the Board of Trade so directs, may have the matter formally investigated before two justiees or a stipendiary mamistrate; and the Board of Irade may appoint some person of nautical skill and knowledge to act as assessor to such justices or masistrate. If the conduct of any master or mate is in question, the magistrates may require hiw to deliver up his eertificate pending the inquiry; and the certificate may be cancelled or suspended hy the Board of Trade upon their refrort. The Board of Trade has the general superintendence of all matters relating to wreek, and has power to

632

MERIDA-MERIMÉE.

appoint a receiver of wreck in any district. Sal. rage out of property sared is payable whenever within the United Kingdom any ship or boat is in distress, and services are readered in assisting such ship or boat; in saving the lives of the crew, or in saving the cargo or apparel of such ship or boat; and whenever any wreck is saved by any person other than a receiver; so also all the expenses properly incurred in rendering such services or saving such wreck. Salvage in respect of the preservation of life, has priority over all other claims for salmage; and when the vessel aided has been lost, or the value of what is saved is insufficient to pay salvage after 1 raying the actual expenses incurred, sums may he paid in respect of it by the Board of Trade out of the Mercantile Marine Fund. Disputes with respect to the amount of salrage are to be referred to the decision of any twe justices resident at or near the place where the services were rendered, or at or near the place into which the ship or boat has been brought after the services were rendered, when the amount claimed does not exceed $£ 1000$; greater amounts may, by consent, be similarly referred; or they may lue sued for in the Admiralty courts in Englaad and Ireland, and in the Court of Session in Scotland. The justices may, if they think fit, call in a jerson conversant with nautical affairs to adrise them as assessor, or as an umpire to decide any difference that may arise between them; and the justices, and also the umpire, are in general required to give a decision within 48 hours of the matter having been referred to them. Where the sum in dispute exceeds $£ 50$, an appeal may be taken from the decision of the justices to the supreme conrts already mentioned. When there is any dispute hetween the parties entitled as to the apportionment of salvage, the sum due is to be paid to the receiver of wreck, who is empowered to make au apportioument. The Amendment Act of 1862 enables the Lord-lieutenant of lreland to appoint in any borongh or comenty a rota of justices, by whom jurisdiction in salvage cases shall be exercised, and makes it competent for any stipendiary magistrate, in England for any county court judge, in Scotlauci for the sheriff or sheriff-substitute, in Ireland for the recorder of any borough, or for the chairman of the quarter-sessions in any county, to exercise the same juriscliction in salvage cases as is given to two justices.
Part IX. relates to the liability of shipowners; and the provisions of the principal act have here been materially altered by the act of 1562 . Under the act of 186 , the owners of any ship, whether British or foreign, are not answerable in damages fur any loss of life or personal injury to jersons carried in the ship; for any damage or loss caused to any goods on board the ship; for any loss of life or persomal injury by reason of the improper navigation of the ship caused to any person carried in any other ship; or for any loss or damage similarly caused to any other ship, or the goods ou board of it, when such loss, or injury, or damage happens without their actual fault or privity, except as follows : Where loss of life or personal injury has occurred either alone or together with loss or damage to ships and merchandise, they are liable to the extent of $£ 15$ for each ton of the ship's tonnage ; where there is loss or damage only of ships or merchandise, they are liahle to the extent of $£ 8$ per ton. The tonnage, on account of which the liability in these cases is to be calculated, is, in the case of sailing-ships, the registered tonnage, and, in the case of steamships, the gross tonnage, without deduction on account of the engine-room ; and the tonnage of foreign ships is to be estimated according to the rules of measurement ladd down for British ships.

The act of 1854, however, provided that the owners of sea-going ships should be biable in respect of every loss of life, personal injury, Ioss of or damage to goods which may arise on distinct occasions, to the same extent as if no other loss, injury, or damage liad arisen ; and this provision is still in force. In cases of loss of life or personal injury, the act of 1851 empowers the Board of Trade to institute an inquiry, and provides in detail for the recovery of damages before the sheriff and a jury. The damages are to be assessed at $£ 30$ for each case of death or personal iojury. These are to be a first charge upou the sum for which the owner is Iiable; they are to be raid to her Majesty's Paymaster-general, and to be distributed by him as the Board of Trade directs; the Board having power to direct payment to each person injured-or, in case of a death, to the hushand, wife, parent, or child of the deceased-of such compensation, not exceeding the statntory amoumt, as may be thought fit. Until this inquiry has been instituted, or until the Board has refused to institute it, no person is to be entitled to sue in respect of any loss of life or personal injury. After its completion, any person injured, or the executor or administrator of any deceased person, who is dissatisfied with the statutory amount of damages, nay. upon repayment to the owner of the sum he has already paid, bring his action for damages. But unless he recovers a sum exceeding double the statutory amonnt, he is liable in all the defendant's costs in the action; and the sum he recorers is payable only out of the residne (if any) of the aggregate amount for which the defeudant is Iiable. Where several actions for compensation have been hrought against the shipowner, whether for loss of life or personal injury, or for loss or damage of ships, boats, or goods, the Chancery Courts (or the Court of Session in Scotland) may, at his suit, determine the amount of his liability, distributing it rateably among the several claimants, and stopping all actions pending in other courts in relation to the same subject-matter.

Part X. of the act of 1554 lays domu the Iegal procedure to be taken in cases arising under the act; and Part XI. deals with several miscellaneons matters of no general importance. The act of 1862 further provides that foreign ships within British jurisdiction shall be subject to the rules for preventing collisions applicable to British ships; and that upon agreement with any foreign country, these rules may, by order in Council, he made applicable to the ships of the said country, whether within British jurisdiction or not. Similarly, the provisions concerning salvage of life, applicable to British ships, may, by order of Council, he made applicable, in all Britisl courts, to services rendered in saving life from the ships of a foreiga country, whether within British jurisdiction or not. The act of 1862 also contains the law on the subject of delivery of goods and lien for freight (for which see Liev).

ME'RIDA, a town of Venezuela, South America, capital of a province of the same name, ahont 60 miles south of the lake of Maracayho. It was formerly the largest and one of the most important cities of Tenezuela; but in 1812 it was almost wholly destroyed by an earthquake, from which misfortune it has somewhat recovered, and is again in a flourishing condition. Pop. 6000 .

MERIMÉE, Prosper, novelist, historian, and archreologist, was boru at l'aris, September $2 s$, 1803. His father, Jean François Leonore, was a printer of distinction, and sceretary to the Ecole dcs Beaux Arts. The son entered the College of Charlemagne, kept terms as a law-studeut, and

MESTRE-METEORS.

hecame early acquainted with English and Spanish literature. The influence of Slakspeare, Cakleron, and Goethe was then making itself felt in France, and the Lomantic School, headed by Victor Hugo, was contending for the possession of the stage acainst the classic traditions of lacine. M., a devotee of the new seet, published under a double disguise his first work, Le Thedre de Clara Gazul, a collection of studies for the stage, professing to be translated from the Spanish by a certain Joseph L'Estrange. This work raised great expectations, Which were never realised. 11. thid not become a dramatist, and one of these pieces failed when represented in 1850 . His next publication, also Isseulonymous, La Giula, by II yacinithe Maglanovitch, was an effort to embody the spirit of the popular lays of Illyria and Montenegro. It was written to mect the then prevailing rage for Slasonic poetry, and the materials were taken at second-hand. It was, however, admired in Germany, and received the approval of Goethe. M. now became a regular contributor to the Revue de P'aris and the Revue des Deux Mondes; and after one or two more avonymous efforts, zigned his name to Tumango. After the revolution of July, he entered public life, and before long was made Inspector of Historical Monuments, and in that capacity visited many larts of France, publishing the results of his researches in a scries of lieports. During all this time, he continued to write for his farourite Reviews a series of romantic tales, in which terrible, almost repulsive subjects are handled with wonderful realistic power, and in a style singularly clear, condensed, and vigorous. This series, in which the Etruscan Fase and the Capture of the Redoubt are esprecially noteworthy, culminated in Colomba (1541), written ly him when fresh from Corsica, and its tales of vengeance. Aftcr this, his greatest and (with the exception of Arsene Guillot, and Carmen) his last romance, M. applied himself to historical researches. The Conspiracy of Catiline and the Sorial War, studies of Romau history, proliminary to a Life of Cresar, on which he is said to have been ocenpied many years, appeared in 184%. In this year, he was elected to the chair in the Academy racated by the death of C. Nodier. His History of Dom Pedro the Cruel (184S), dedicated to the Countess of Montijo, the mother of the Empress Eugenie, has been translated into English (1850), aud reviewed in the Edinburgh. After the fall of the Orleans dynasty, he was placed on the Commission to draw up an inventory of the art treasures lett by them in France. In 1854, he published his F'alse Demetrii, an episode of early Russian history, the preface to which was writteu in prison, where he was sent for criticising, in the Revue des Deux Mondes (1855°), the sentence passed on his old aecpuaintance, M. Libri (q. v.), a sentence which he tried to get reversed in the senate, June 11, 1861. 11. has also translated from Pushkin and Nicolas Gogol. Among his latest writings may be mentioned an introduction to Marino Vretro's Poetry of Ifolern Greece (1855), and two brief notices in the Revue des Deux Mondes of Edward Ellice, M.P., and of Herbert's fresco-paintings for the House of Lords (1864). MI. was made a senator in 1853 president of the commission for reorganising the Billiotheque lmpériale in 185 S ; Commander of the Legion of Honour, April 12, 1860. He is also one of the ten membres libres of the Acadénic des Inseriptions. (He died Octoler 1870.)
M1F'STRE, a town of Northern Italy, in the province of Venice, and 5 miles morth-west of the city of Venice, on the margin of a lagoon. It is connected with Veniee, Padua, and other places by railway. There are many villas around the town
and along the roal to Padua, reaching almost to that city. M. lias a considerable transit-trade. Top. S4S9.
METLORS. The whole subject of meteors was treated in the body of the work under the head of Al:rolites. The subject, however, has since ocenpied a great deal of attention, and there is at present a tendency on the part of astronomers and physicists to separate that class of meteors known as 'slooting-stars' from the group of meteorulies (which inchules acro-siderites, or masses of meteoric iron; sillerolites, which are conglomerates of iron and stone; and aürolites, which are wholly of stone), on the grounds, that the most prominent appearances of the former are geriodic, while the latter seem to occur at irregular intervals, and that the former have hitherto not leen proved to leave any traces of their risit on the earth's surface. We are, however, hardly as yet in a position to decide as to the similarity or dissimilarity of the two classes of bodies.
Popular interest has been largely aroused respecting 'shooting-stars,' by reason of the hrilliant display of them which took place on the night of November 13, 1866. 'This'star-shower,' the grandest that has ever been observed in [ritain, was confidently predicted, from the occurrence of a similar shower at the corresponding date in 1799,1833 , and 1834; and the extremely farourable state of the atmosphere rewarded those who were on the watch with a complete view of one of nature's most mazvificent displays. The shower commenced about $11 \frac{1}{2}$ P. M., with the appearance at bricf intervals of single meteors; then they came in twos and threes, steadily and rapidly increasing in number till 1 h . 13 m . A. 3r. on November 14, when no fewer than 57 appeared in one mimate. From this time, the intensity of the shower diminished gradually, wholly ceasiag about $4 \mathrm{~A} . \mathrm{m}$. The total number of meteors which at that time came within the limits of the carth's atmosphere was estimated at about 240,000 , aud the number seen at each of the several observatories in Britain averaged nearly 6000. This star-shower, like those of 1833 and 1834 , scemed to proceed from the region of the heavens marked ly the stars ? and γ in the constellation Leo; and it las been shewn by astronomers that this was the point towards which the earth in her orlit was moving at the time; consequently, she had either orertaken the meteoric shower, or had 'met' it proceeding in a contrary direction. The metcors on that oceasion presental the usual varicty of colour, size, and duration; the great majority were white, with a bluish or yellowish tinge; a considerable number were red and orange; and a few were hlue; many surpassed the fixed stars in lustre, and some were even brighter than Yenus (the most brilliant planct as seen from the earth) at her maximum. Most of the meteors left trains of vivid green light $5^{\circ}-15^{\circ}$ in length, which marked their course through the heavens, and endured for $3^{\prime \prime}$ on an average, then becoming dissipated; though some of the trains were alnost 40° in length, and remained in sight for several minutes. Professor Airy observed that the direction of the meteors' flight was little influenced by the earth's attraction.

On the morning of November 14,1867, a starshower equal in magnitude to that of 1800 was observed in France and America, but was almost wholly invisible in Britain, on account of the cloudy state of the atmosphere.
The brilliant display of 1866 gave a vigorons impulse to the astronomical inrestigation of shooting stars, and it is now generally agreed that the November metcors move in an orbit round the sun, iuclined at about 7° to that of the earth,
and that, in all probability, this orbit forms a ring or belt of innumerable small fragments of matter, distributed with very rariable density of grouning along it, thus corresponding so far to the Planetoid (q. v.) group between Mars and Jupiter. It is also agreed that the motion of this metear ring round the sun is retrograde; that the earth's orbit at that point where she is situated on Novemler 13-14. intersects this ring ; and that, probahly, ia 1799. 1833-1834, and 1866-1867, it is the same group of meteors which has been observed; and the last-mentioned hypothesis has been made the foundation of a calculation of the probable orbit and l^{\prime} eriodic time of this meteor-ring. The fact that a November star-shower gencrally occurs for tro years in succession, and then recurs at an interval of 32 or 33 years, seems to indicate that though the earth may pass through the meteor-orbit every year, the meteors are so grouped at intervals along the ring, and their periodic time differs so much from that of the earth, that it requires 32-33 years hefore this accumulating difference amounts to a complete revalution of either the earth or the ring, and a repetition of the star-shower becomes possible.

Professor Newton of Yale College, America, who entered into an elaborate investigation of the suhject, concluded that the 5 possible periodic times (the earth's being taken as unity) of the meteor-ring were $2 \pm \frac{1}{33 \cdot 25}, 1 \pm \frac{1}{33-25}$, and $\frac{1}{33 \cdot 25}$, and that of these, the fourth, $1-\frac{1}{3 \cdot 25}$, or $354 \cdot 62$ days, is the actual period of its revolution round the sun, and that, consequently, it has described $3 \pm$ revolutions while the earth has described 33 , the cycle of 34 meteor revolutions differing from 33 years by only $3 \cdot 17$ days; and in accordance with this estimate, he calculated its orbit and the approximate extent (seeing the meteor shower generally accurs in two successive years) of the meteor-gronp which produces the November shawers. His conclusions have, however, been vigorously opposed by other eminent astronomers, such as Professor Adams (q. v.) and Mr Alexander Herschel, both of whom hold that the first four of the possible periods given by Professor Newton are impossible, and that the last, $\frac{1}{35-25}$ (i. e., that the meteor-ring makes $\frac{1}{5.5-25}$ of a solar revolution in a year, and one complete revolution round the sun in 3325 years), is the correct estimate. If this vier be correct, the meteorgronp must be so much extended along its ring or orbit as to take more than a jear to cross the earth's orbit, and a long time must necessarily clapse before a fair estimate of this extent can be obtained. A periodic time of $33 \geq$ years, and an orbit which at the same time approaches so near the sun as to intersect that of the earth, indicate a path of great ellipticity, akin to those of the comets; and the idea of the cometary nature of these meteors derives support from tro remarkable facts, the one discovered by Schiaparelli of Milan, that this assumed orbit coincides very nearly with that of the great comet of 1562 (Professor Adams connects this comet with the August meteors), and the other by C. F. W. Peters of Altona, that it coincides with that of Tempel's comet.

Mr Alexander Herschel also maintains that the meteors are of recent origin, probably fragments from some of the great luminous bodies, and that though at present assembled in a comparatively dense group, the difference of their relative velocities will have the effect of gradually distributing them all over the meteoric ring, when a November shower will occur every year. Mr Herschel also carefully observed 20 meteors with the riew of calculating their weight. from the rate of their motion and the amount of heat (as shewn by their brightness) evolred in the destruction of their velocity; by the
resistance of the atmosphere, and found their weight to vary from 30 grains to $7 \frac{1}{3} \mathrm{lbs}$.

The cause of the luminosity of meteors was long a point in dispute, the two chief suppositions being, that the resistance of the atmosphere to a body dashing throngh it at ahout 30 miles per second, generated so much heat as to produce ignition; while the other was the action of terrestrial mag. netism. The point most strongly urged against the first supposition, by the supporters of the second, was, that the height at which meteors were occasionally seen rendered any action of the atmosphere impossible; but as this oljection was founded on the purely bypothetical opinion that the atmosphere did not extend more than about 50 miles from the earth's surface, it was not very cogent. This problem was handled by Sir John Herschel in an able paper published in the Edinburgh Review (January 1S48), in which he clearly shewed that the very high latent heat of the air in the bigher and rarer parts of the atmosphere, would he sufficient to cause an enormous development of heat in the event of the air being compressed before a body advancing into it with a 'planetary' velocity. This opimion is now held by almost all eminent men of science. The enormous heat to which the meteor is thus subject produces incandescence, after which, with more or less faeility, according to the nature of the materials of which the meteor is composed, the outer portion becomes liquid, and, by the powerful resistance of the air to the meteor's rapid course, is thrown off in a long stream, forming the tail, which, after rapidly losing its velocity, is precipitated to the earth as a fine dust like volcanic ash; while the meteor thus rapidly and constantly diminishing as it flies along in its headlong course, either becomes wholly dissipated into 'tail,' falls to the earth, or makes its way out beyond the limits of the earth's atmosphere, and continues its course. This supposition of exclusive atmospheric agency also gives a plausible explanation of the phenomenon of meteors 'bursting,' this being cansed by the sudden heating aud consequent expansion of the outer part, while the interior was still in the state of intense cold acquired while in interplanetary space.

While astronomers and physicists in general have been thus trying to reduce the phenomena of meteors to a system, their chemical brethren have not been idle. Public collections of meteoric bodies havo been made at Vieuna, the British Museum, Paris, Berlin ; and private ones by Mr Greg of Manchester, Baron Reichenbach in Austria, and Professor Shepard in America; and opportunities have thus been afforded of determining the nature of their composition.

METHYLENE, BICHLORIDE OF ($\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{Cl}_{2}$), is an orginic compound which has recently attracted much attention from its value as an anæsthetic agent. Dr Richardson, who has long been studying the physiological properties of the metlyl-compounds, with the view of finding amongst them a safer compound than chloroform, believes, from his experiments on animals, that in the subject of this article he has found such a compound. As the deaths from chloroform may be computed. according to him, at one in 1500 administrations, it is obrious that there is reason for searching for a still safer anæsthetic agent. Dr Snow, as is well known, thought that he had discovered analmost positively safe agent in amylene ($\mathrm{C}_{10} \mathrm{H}_{10}$); but the value of more than 200 safe administrations was at once destroyed by two rapidly succeeding deaths; aud hence a large number of successful cases of the new agent nust be reported before it will displace claloroform from its present well-deserved position.

METHYLENE

In the article on Meturl (q. \cdot.), we have shewn that the composition of hydride of methyl (ne marsh gas) is expressed by $\mathrm{C}_{2} \mathrm{H}_{3}, \mathrm{H}$, which may be writteu C_{2} H111111. Vow, according to the theory of substitutions, one, two, three, or even all four of the atoms of hydrogen may be replaced by a corresponding number of atoms of chlorive. 'Thus, (a) if one atom of H be replaced by one atom of Cl , we have chloride of methyl, $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$; (b) if two atoms of II are replaced by tro atoms of Cl , the resulting compound is bichloride of methylene, $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$, the $\mathrm{C}_{2} \mathrm{H}_{2}$ here representing a new radical termed methylene, of which very little is known ; (c) if three atoms of I are replacel by three atoms of Cl , the resulting compound is terchitoride of formyle, $\mathrm{C}_{2} \mathrm{HICl}_{3}$, or common chloroform, another radical, viz, formyle, $\mathrm{C}_{2} \mathrm{H}$, now appearing; (d) if the whole of the II is replaced by Cl , the resulting compound is tetrachloride of carbon, CCl_{4}. Wc thus have four new bodies which may he constructed step by step out of hydride of methyl or marsh gas, and similarly, ly starting with tctrachloride of earbon, the chemist may retrace the individual stayes till be gets back to marsh gas. All these derivatives of marsh gas possess the power of producing anesthesia when they are inhaled as vapour by men and animals. That the latter two-viz, chloroform and tetrachluride of carbon-possess this power, has been long known, Dr P. Smith having espeeially directed attention to the propertics of the lastnamed compound ; lout that the first two alse exert the same influence is a fact new to science, for which we are indelsted to Dr Richardson. '1 discovered,' he observes, 'that chloride of methy? was a certain and gentle amesthetic in July [1867] last, and this led me to hope that something more stable and manageable could be obtained-something that should stand between the chloride of methyl and chloroform. That substance is now foum in the bichloride of metbylene. That this eempound would produce rapid, safe, and casy general anesthesia, I diseovered by experiment on Angust 30 th of the present year.'-Med. Times, October 19, 1867.

It is a coleurless fluid, having an edour like that of chloroform ; and is pleasant to inhale, as it causes little irritation to the mucous membrane. It looils at 88°, and has a spee. gr. of $1 \cdot 344$, while that of its Fapour is 2.037 (or nearly three times that of air). Hence, it boils at a lower temperature than other aurstheties; while its specific gravity, both as a liguid and a rapour, is lower than that of chloroform, but much higher than that of cther; hence, from its easier cvaporation, it reqnires more free adnainistration than chloroform, and, from its greater vapour-lensity, it should be given less freely than ether. It mixes readily with absolute ether, and this combination yields a vapour containing eorresponding proportions of each, their boiling-points only differing at most by 4°. It also combines with chloroform in all proportions. It should bave a neutral reaction to test-paper. If a trace of acid be present-which is possible, but not probable-its inhalation might prove dangerous. To prevent decomposition, it should, like ehloroform, be well suarded from the action of light:

Pigeons are the animals which Dr Richardson most employs for experiments on anmsthetic agents gencrally. They present various advantages over most other animals; one of the most important being that they die with singular readiness under the influence of these agents. On exposing three pigeons to the action of the rapour of a drachm of chlornform, bichloride of methylene, and tetrachloride of carbon, the peeuliarity in the aetion of the bichloride is the absence, in the sleep it
produces, of the so-called sceond degree of narcotism. The bird glides from the tirst degree directly into the thirl, or that of absolute insensibility. The bichloride enters the circulation frecty, and sustains the insensibility so well, that intervals of many minutes may be allowed to pass without readministration; while, from its leing transformed altogether into vapour at a temperature lower than that of the bocly, it can he more realily climinated from the system than chloroform, or tetrachloride of carbon, when its adninistration is withheld. On animals, it acts more evenly ou the respiration and eirculation than any other of the varions substances which Dr Richardson has tricel; and the ouly draw. back, yet observel, is, that it sometimes proluces romiting; lut this misadventuro, so far as we know, has not yet heen observed when it has been aulministered to the human subject, and pigeons are known to vomit on slight provocation. 'The numbers of the respirations and of the pulse rise and fall together, which 'is a good point, lecause there is no condition more jecrilous than ilisturbel balanee of the circulating and respiratory systems.'

All anæsthetics given by iuhalation after a certain dose destroy life; but that the destructive jower of this new agent is less than that of either chloreform or tetrachloride of earlon, secmes proved.

On trying the vapour upon himself, aiter ascertaining that it could be safely given to the lower animals, Dr Richardson inhaled it until it preduced insensibility. 'I found the vapeur wery pleasant to breathe and little irritating, while drowsiness came on and unconsciousness withont any noise in the heal or oppression. I recovered also, as the animals seemed to recover, at once and completely. I felt as though I had merely shat my cyes, and hid opened them again. In the meantime, I had, however, periormed ecrtain acts of a motor kind unconsciously; for I inhaled the vapour in the laboratory, and there went to sleep, but I nwoke in the yard arljoining. This was on September 2 Sth last, when I inhaled from a cup-shaped slonge. Sinee then, \mathcal{L} have inhaled the sapour in smaller quantitics from several instruments, with the effect of proving that there is little difference requirel for its administration and that of chloroform. A little more bichloride is required in the earlier stages than woulel lee required if chloroform were being used, the fluid being more vaporisable. One drachen of bichloride to forty minims ($\frac{3}{3}$ ds of a drachm) of chloroform, represents the difference requirel; but when the narcotism is well set up, less of the lichloride is required to sustain the effect.'

The materials on which this article is hasel are taken from a lecture delivered by Dr Richardson on the Sth of October 1867. Since that clate, he has tested the action of this enmpound on the human subject in tive long and severe operations, four of which were cases of ovariotomy ; and on the whole, the results have fully realised his expectations. One of the ladies operated on had once been under chloroform administered to her by the late Dr Snow; she was therefore able to enmpare the effects of the two, and she decided strongly in favour of tho new agent, on the grounds, that 'it eaused no sense of suffocation, no ringing sounds in the head, no nausea, and no after-depressing effect whatever, as chloroform in her ease did; but it allowed her to drop into sleep precisely as in natural sleep, and to wake with all her senses aronsed, as after natural slecp!?' The quantity used averaged a little more than a fluid drachm every five minutes; two drachnss being first used. The anæsthesia was, on an arerage, complete in five minutes, and was prolonged for six or seven minutes without readministration. In the Medical Times and Gazette for November 2, 1867,
it is reported that Mr Marshall, of Bedford Square, has administered this Hluid in another case of ovariotomy, hesides using it in several smaller operations; and Mr Gamgee, of Birmingham, has administered it trice, one of his patients being an infant ten weeks old.* As yet, no bad symptoms have been recorded. Mr Spencer Wells has suggested for this new agent the name of 'Chloromethyl,' which will probably meet with general approval.

Chloride of Methyl, the first of the compounds derived by substitution from hydride of methyl, although not so likely to come into general medical use as bichloride of metbylene, is likely, accorling to Dr Richardson, to olstain 'a most useful and important place in our remedial treasury.' Half an ounce of it, diluted with water, and with the addition of a little sugar, acts as a pleasant but potent intoxicator. In smaller doses, it might be useful as a soothing and refrigerating agent.

MEUDON, a town of France, in the dely, of Seine-et-Oise, 5 miles west of Jaris, on the Tersailles and Paris Fiailway. The châtecu, approached by a fine avenue of four rows of lime-trees, was huilt by the side of:an older chatean, the work of Philihert Delorme, by the Grand Dauphin, son of Louis XIV., in J699. During the levolution, it was converted into a factory for warlike engines, and surrounded with a permanent camp, to keep ont sipies. The chiteau, as it exists at present, was fitted up for Marie Louise by Napoleon, in $1 S I \mathscr{}$. It has a fine terrace, gardens beautifuily laid out, and commands a rery fiue prospect. The Foret de Meudon is a favourite holiday resort of the Parisians. Near it has beeu erected an expiatory cliapl, dedicated to Notre Dame des Flammes, marking the spot where a terrible railway accident occurred in May 1842, in which more than 100 gersons were burnel alive. Whiting is manufactured to a considerable cxtent, and there are numerous bleach-fields. Rabelais was curé of M. for a long time. The chatean has lately become a summer residence of Prince Napoleon. Pop. (IS66) 537.

MEU'LEBEKĖ, a torn of Belgium, in the province of West Flanders, 20 miles south-west of Ghent, on the Mandel, a tributary of the Lys. Weaving is carried on, and there are several breweries. It is near a railway, which connects it with Bruges and other places. Pop. (1563) S32..

MEAICO. After the declaration of war argainst Juarez by the French, they issued a proclamation to the Mexican people, April $J 6,1862$, setting forth that one of the objects of the contest was to rescne them from the tyranny of the President, and put the government of the country on a stable footing. Little faith, however, seems to have been put in these professions; and the invaders, though joined by Marquez, the military leader of the clerical party, met with little success till the arrival of General Forey with a reinforcement from France in September: Forey then took the command in chief, addressed a proclamation to the Mexicans, promising them perfect liberty in the choice of a new government in room of that of Juarez; and

* Since this article was written, additional cases have been described in the Medicul Times and Gazette, of November 9, 186it. In one of these-in which a large fatty tumour, weighing 20 lbs ., was removed from the abdomen-the patient was kept insensible for an hour and a quarter, and from 10 to 12 drachms were administered. In the Lancet for November 23, Mr Barnes of Liverpoal records the ease of its application to a bor, aged eight years, whose hip-joint was to be excised. The operation lasted 30 minutes, during the whole of which time the hay was in the deepest sleep.
in the spring of 1563, concentrated the French troops, and marched on Mexico. On his way, he took the strongly fortitied city of Puebla after a two months siege, capturing its defender, Ortega, and his whole force (May IS) ; and, Juarez having fled from the capital, and transferred the seat of his government to San Lnis Potosi at their approach, the French entered Mexico on June 10. A fortnight afterwards, a provisional government, headed by General Almonte, was established, and an 'Assembly of N"otables,' which was called (June 24) to deliberate upon the best form of government, decided in July, by a rote of 231 to 19 , in favour of a 'Limited Hereditary Monarchy,' with a Catholic prince for sovereign, under the title of 'Emperor of Mexico,' and resolved in the first place to offer the crown to the Archduke Ferdinand Inuximilian (q. v.) of Austria, failing whom, to request the good offices of the Enpueror Napolean in obtaining another monarch. That this resolution was the fruit of a general earnest wish on the part of the Mexican notables, the feeble and almost unwilling support most of them accorded to their chosen emperor after his desertion by the French, will not allow us to suppose; lut, on the other hand, we have not the slightest reason for believing that anything approaching intimidation or undue infuence was exercised by the French. Most of them doubtless argued that a government supported by France would be sufficiently powerful to maintain the country in a state of tranquillity, and in the hope of this long-wished-for result, cast in their lot for empire. These changes were, of course, vigorously protested against by the republican assembly at San Luis, and the two parties prepared with eaceruess to try the fortune of war. On October 1, Forey departed from Mexico, and General Bazaine took the command of the French forces, and commenced the campaign with vigour. The result of the winter's striggle was that in spring the imperialists were in possession of the whole comtry, with the exception of the four northern provinces. On October 3, I 863 , the Archduke Maximilian had given andience at his chateau of Miramar, near Trieste, to a deputation which was sent to offer him the crown, and had accepted it. On May 29, the emperor and empress landed at Vera Cruz, and on June 12, made their public entry into the capital; and soon after the middle of the year, the imperialists had gained possession of every state in the kingdom, Juarez Heeing in August to the United States. As small parties of the repulblicans still maintained a speeies of guerrilla warfare in varions districts, Maximilian, on October 2,1865 , published a proclamation, menacing with death, aecording to the laws of war, all who were found in armed opposition to his government; the republic having ceased, not only by the express wish of the nation, but also by the expiry (November 22, 1864) of Juarez's term of office, and his flight beyoud the frontiers; au amnesty, however, being accorded to such as submitted before November 15. In accortance with this edict, Generals Arteaga and Salazar, who were defeated and capturecl, October 13, were shot on the 21 st ; and many humireds of captured republicans were dealt with under the terms of the same order.

This contest in M. hal from the commencement excited the liveliest interest in the United States, though the civil war, raging there also, prevented any active interference in the affiurs of its neighbour. A general impression existed that France had taken adrantage of the troubles of the Urited States to establish its anthority firmly on the American continent; and this helief, along with the violation of the 'Monroe dactrine' by the establishment of

MÉZIERES-MIDDLE LEVEL.

imperialism in M., induced the United States to give all their sympathy and diplomatic airl to Juarez and his supporters. In November 6,1865 , Secretary Seward forwarded a dispateh to l'aris, in which it was stated that the presence of the lirench army in M. was a souree of 'grave retlection' to the government of the United States, and that the latter could on no account allow tho establishment of an imperial govermment, hascl on foreign aid, in M., or recognise in that country other than republican institutions. This dispatch led to an interchange of diplomatic notes during the following six months; the A mericans holding firmly to their lirst statements, and even insinuating the probability of an armed interference on belalf of Juarez; till the French emperor, who was wearied with a contest so expensive and, though successful, so barren of lasting fruits, ultimately agreed, in the summer of 1866 , to withdraw his troups from Mexico. The Belyian legion and some Austrian levies, howerer, were not included in this arrangement. Accordingly, from the autumn of 1866 till February 1867, the French troops by degrees evacuated M., and their departure was the signal for a fresh rising on the part of the Juarists. Sec Maximmitan and Juarez in Sutilement.

MĖZIERRES, a fortified town of France, capital of the dep. of Ardennes, on the right bank of the Mense, on the isthmus of a promontory formed by the river, which washes its walls on two sides, and separates it from Charleville (q. v.). It was strongly fortified by Vauban, and is defended by a eitadel. It communieates with Charleville by a suspensionlridge. In ISI5, the town held out for two months against the Allies, who besieged it after the battle of Waterloo. Over the north aisle of the church is a bomb-shell, which has been stickiog there ever since the town capitulated. In J520, the Chevalier Bayard, with 2000 men , suecessfully defonded it against 40,000 Spaniards under Charles V. The banner of Bayard is said to be still preserved in the 110 tel de Ville. Pop. (1866) 4651.

MEZQUITES, the name of two Mexican trees or shrulss, of the natural order Lecmuminose, suborder Pupilionaceer, bearing pods fillel with a mutritions pulp. The Common M. (Alyarobia glamdulosa) is a small slrub, with stems often decumbent, and armed with strong straight spines. It is found in great profusion throughout vast regions, chiefly consisting of dry and clevated plains. In dry seasons, it exudes a great quantity of gum (Cum Meaquite), similar in (fnality to gum-arabic, which seems likely to become a consiclerable article of commerce, and which has begun to be exported to San Franciseo from the Mexican ports on the Pacific.-The Curly M., or Screw M. (Strombocarpa pubescens), also called Screw Bean and Tournir, althouglo only a shirub or small tree, is of great value in the wild and desert regions of the western part of North America, where it occurs along with willow-bushes near springs of water. Its wood is used as fuel, and the pulp of its pods for food. The pods are spirally twisted into compact rigid cylinders, from an inch to an ineh and a balf in length.

MEZZOJU'sO (Aral). Menzil-Jussuf, village of Joscph), a town of Sicily; in the provinee of Palermo, IS miles south-sonth-cast of Palermo city. It is one of the four colonies of Albanians, who, on the death of Seanderbeg, in the 15 th c., fled to Sicily, to avoid the oppression of the Turks. They preserve their language to a great extent, and follow the Greck ritual, their priests ljeing allowed to marry; but, except on fete-days, they are not to be distinguished in feature or dress from the peasantry of the rest of Sicily. Pop. (1861) 5656.

MGLIN, a town of Russia, in the goverument of Tcleernigov, 125 miles north-north-east of the town of Tchernigov. There is a large cloth-factory, and a considerable number of German families. Pop. 3045.

MHIQNDIGU'NJ, a town of British India, in the territory of Oude, 90 miles south-east of Lucknow, 3 miles south of the right bank of the river Sace, It is a busy, thriving place, with a pop, estimated at 20,000 .
MHOW, a town of British India, in the territory of Indore, 13 miles sonth-west of the town of Indore, near the Vindhyan Monntains, on an eminence on the Gumber river. Near it are the cantonments, which have altogether the appearance of a European town, laving a clurch with stecple on an eminence, a spacions lecture-roon, a well-furuished library, and a theatre. They are sitmated at an elevation of 2019 feet above the sea, and are ocenpied by a considerable force. On the Ist July 1857, the sepoys mutinied here, during the great rebellion of that year.

MLA'VA, a market-town of North-west Hungary, on the Miava, an allluent of tho Morava, if miles east-north-east of Presburg eity. There are manufactures of woollen cloth and loagging, and hemp and flax are enltivated. Pop. 9269.

MICROZA'MI A, a genus of plants of the natural order Cycarlacece. They are widely diffused over Australia. The fronds resemble those of palins, and are used in the Fioman Catholic Church on Palm Sonday. The underground stem is large and turniplike, but covered with scales or leaf-scars, and contains a substance resembling tragacanth. The muts of M. spiralis are edible, but are only used in times of searcity.
MIDDLE LEVIEL. Under the heading Brdford Level, a remarkable district, covering 400,000 acres, is deseribed, bounding the Wash on all sides except seaward, extending landward nearly to Brandon, Cambridge, Peterborough, and Bolinglsoke, and embracing portions of the six comntios of Northampton, Inutingdon, Cambridge, Lincoln, Norfolk, and Suffolk. It nearly coincides in area with what is popularly known as the Fens. The whole region was, centuries ago, converted into an unprofitable marsh by repeated incursions of the sea, conpled with obstructions to the outward flow of the rivers Nene, Cam, Ouse, Welland, \&c. Vast oprerations have been carried on ever since the time of Charles I., by digging new channels and outfalls, and employing windmills and steam-engines to pump the water from the marshes and ponds into these artificial channels. The Bedford Level is divided into the North, the Middle, and the South Levels, managed by commissioners, whose powers are derived from special acts of parliament. The improved value of the land is tho fund out of which the expense of the engineering works is defrayed. It was in one of these districts (the Middle Level, betweon the Nene and the Old Bedford River) that an irruption took place in 186:2, which strikingly illustrates the dependenee of the safety of the whole region on well-formed and well-maintained embankments. There was a sluice, called St Germain's Sluice, situated at the contluence of the Middle Level main outfall drain with the river Ouse, near the upper end of another artificial channel, known as the Ean Brink Cut. The drain was made in 1547, and was cnlarged ten years afterwards to a bottom-width of 48 feet, a side-slope of 2 to 1 , and a level of 7 feet below low-water spring-tide in the river; the rise of high-water spring-tide at that point was 19 feet, and the

MIKANIA-MISHMEE BITTER.

sill of the sluice was 6 feet below low-water spring-tide.

On the 4 th of May 1862, this sluice gave way withont the slightest warning; the tidal waters undermined the brickwork, and formed a hole in the bed of the river, into which the works of the sluice sank. The tidal waters rushod up the opening, and ebbed and flowed throughout a distance of 20 miles. The commissioners of the Middle Level applied to Mr Hawkshaw, the engineer, to devise means for repauing the disaster. An earth and cradle-dam was attempted to be thrown across the drain, at about 500 yards from the fallen sluice; but this was relinquished in favour of a permanent cofferdam of pile-work, at a distance of half a mile from the sluice ; and after incessant exertions from May I6 to Jnne 19, the tidal waters were at length effectually shut out by a strong dam. The failure of the St Germain's Sluice was not the only irruption that had to be lattled with; eight days after that failure, under the pressure of a high spring-tide, the west bank of the drain gave way, on Hay 12, at a point abont 4 miles from the slnice; the bank harl been built only to resist upland waters, and not a rush and a pressure of the sea. The rupture carried away 70 yards of the bauk, scouring out a bole 10 feet deep at the spot, and admitting a rush of water which covered 6000 acres of fertile land to a depth of 2 or 3 feet, increased at successive high-tides to 10,000 acres.

When the finishing of the dam bad enabled Mr Hawkshaw to shut out the tidal waters, means had to be devised for getting rid of the flooding waters, and providing an outlet for the usual rivers and land-drainage of the Middle Level. It was resolved to utilise some of the old outlets at other spots, and to supplement their action by enormous syphons, placed over the coffer-dam. Sixteen syphons were provided. They were made of cast iron, 3 feet 6 inches internal diameter, and somewhat over l inch thick; they rested on the top of the dam, and on inclined framework supported by piles at the sides. The valves were so arranged, that the syphons could be put in operation, either by exhansting the air or by filling them with water. When only six of the syphons were in position, they carried 50,000 gallons of water per minute over the dam.-For more minute details of the dam and the syphons, see Mr Hawkshaw's paper read before the Institute of Civil Engineers in 1863.

There are large items both of cost and of compensation in works of this kind. Nearly the whole of the Middle Levcl is 15 feet below bigh-water springtides; it is difficult to keep out the sea-water, and at the same time to preserve an eutlet for the landwater, especially Whittlesea Mere; there are 130,000 acres to be drained somehow or other; but as the land is rich for farming, the commissioners, in past years, did not besitate to spend $£ 400,000$ on 11 miles of drain, and $£ 30,000$ on the sluice. The drain runs through a district called Marshland, between Lynn and Wisbeach; and as the bursting of the bank caused this district to be deluged with water, the commissioners have had to compensate the Marshland farmers and others; the amount of this compensation has been frequently litigated between 1862 and 1867. As concerns the land itself, it is found to be more fertile after such inundations than before, owing to the amount of silt deposited on the fields. After repairing the breach in the bank, the 10,000 inundated acres were drained without much difficulty, through the Marshland, Smeeth, and Fen drain, and the Marshland sewer; the syphons are permanent channels, to carry off the usual land-waters regularly. The syphons were subjected to a severe trial in January 1867, by the
ice which accumulated aronnd their lower ends ; but iron gratings effectually resisted the entrance of the ice into the syphons.

MIKANIA, a genus of plants of the natural order Compositce, uearly allied to Eupatorium (q. v.). The heads of flowers are 4 -flowered, and have four involucral leaves. M. officinalis is a Brazilian species, with erect stem, and heart-shaped leaves, abounding in a bitter principle and an aromatic oil, and valuable as a tonic and febrifuge. M. Guaco and 1. opifera, also natives of the warm larts of South America, are among the plants which have acquired a high reputation-deserved or unde-served-for the cure of snake-bites. They are twining herbaceons plants. M. Gutuco is remarkable for the large indigo-blue spots on the under side of its ovate leaves. The mode of using this plant, which is one of those called Guaco, or Huact, by the Indians, is by dropping the juice of the fresh leaves into the wound made by a serpent; or little cakes are formed of the bruised plants, which are said to retain their power for a long time. The whole subject requires investigation.

MI'KLOS (ST) TOROK, a town of Hungary, in the county of Henes, near the Theiss, about 70 miles south-east of Pesth, with which it is connected by railway. Pop. 10,437 , chiefly employed in rearing horses and cattle, and in fishing.

MI'NDSZENT, a town of Hungary, in the county of Csongrad, near the left bank of the Theiss, and just below the mouth of the Saros, 19 miles north from Szegediu. Pop. 9163.
MINE'O, a town of the island of Sicily, in the proyince of Catania, 82 miles south-west of Messina. It is supposed to occupy the site of the ancient Mence, founded by Ducetius, 459 b. c. Pop. (1861) 8547.

MINK (Mustela lutreola), a species of weasel, inhabiting the northern parts of Europe and Asia; very similar to which in characters and habits is another species, by some regarded as only a variety of the same, the M. or Vison (M. vison) of Nerth America, abundant in almost cvery part of that continent. Both inhabit the neighbourhood of streams, lakes, and marshes; bave semi-palmated fect, are expert swimmers and divers, and prey on fishes, frogs, and other aquatic animals, as well as on birds, rats, mice, \&c. They are coverel with a downy fur, intersnersed with longer and stronger hairs: the colour is brown, with more or less of white on the under parts. The American M. is generally larger than that of the Old World, being often more than eighteen inches from the nose to the roat of the tail, whilst the latter is seldom more than twelve. It has also a more bushy tail. lt is very active and bold, and often commits great depredations in poultry-yards, carrying off a fowl with great ease. Unlike most of its congeners, it is easily tamed, and becomes much attached to those who caress it. In domestication, it ceases to regard the inmates of the poultry-yard as prey. It emits an unpleasant odour only when irritated or alarmed. The fur of the M. is valuable.
MI'RTA, a town of India, in the Rajpoot state of Jodhpur, stands on high ground near the source of a tributary of the Luni, 230 miles south-west of Delhi. M. is supplied with good water from threo large tanks. Pop. estimated at 25,950 .

MI'SHMEE BITTER, the root of Coptis Teeta (see Coptis), a plant found in the mountainons regions on the borders of lndia and Caina; of the same genus with the Golden Threal of the northern parts of the world, and not unlike it. The roat is in much nse and esteem in some parts of the East

MISILMELIL-MOLLADMIEDAN SECTS

as a stomachic and tonic, and has begun to be known in Eiurope.-The root of C. Crijoliata is also used as a bitter.

M1SIL.JE'RI (corruptal from Menzil-al-Amir, Village of the Emirs), a town of the istand of sicily, in the province of Palermo, 7 miles sontli-east of I'ilermo city. It is a strageling, poverty-stricken town. It was at M. that ciaribaldi, in \$1ay ISco, joined the Sieilian insurgents; and it was by a short cut from \$1. to P'alermn, through the P'ass of Mezzagna, that he advancel on the latter eity and took it ly a coup de main. M. is a notorious harbour of banditti. Pop. (1S61) 72:31.

MI'T"WWEIDA, a town of Saxony, in the circle of Zwichau, 3.5 miles south-east of leipzig. For centuries, M. has been noted for its industry. The principal branches of industry are spinninge cottonweaving, manufacture of Eustian, se., together with dyeworks and bleach-fields. ['op. (1561) 8:55.

MOFF AT, liobert, a distincuished missiunary, was born at Inverkeithing, Fifeshire, Scothand, towards the close of last century. Having resolved to become a missionary to the heathen, he offered his services to the London Missionary Society, was accepted, and sent by them to Soutlu ifrica. Arriving at Cape Town in 181\%, he immediately proceeded beyond the boundaries of Cape Colony to Namaqualand, where he entered upon his labours at the kraal of Aricaner, a ehicf whose name had long been a terror to the people of the neighbouring alistricts of the colony, on aecount of the aulacions raids which he made among their settlements, and his ferocions character, but who had lately become a convert to Cliristianity, and now shewed a warm rlesire for its promotion. IIere M. laboured for three or four years with great success, Christianity and eivilisation advancing together. But the situa. tion, on account of the drought and sterility of the comutry, and its very thinly scattered population, being unsuitable for a prineipal mission-station, he set out in search of a lietter locality, aud laboured at several stations in succession in the countries to the north and north-east of Cape Colony. Wherever he went, the gospel was gladly received by some of those who heard it, and in some places by many. In every place he also gguided the people in the arts of civilised life. Ile made several inissionary tonrs, and his allventures were very remarkable, and are graphically described in his work, Missionary Labours and Scenes in Southern Africa (Lond. 1Sfi), which Le wrote and published during a visit of several years to Britain, rendered necessary by the state of his health. This publication, and his many specehes and sermons during his stay in his native country, did much to animate missionary zeal, and to clirect it towards Africa. In IS42, M. returned to his labours in that country. His daughter is the wife of the still more celebrated missionary and triveller, Ir Livingstone (q. v.)

MOGUE'R (Arab. 'caves,' of whiels there are many in the nuichbonrhood), a town of spain, in the province of Huelva, $4: 3$ miles west-south-west of Seville, rises gently ahore the Fio Tinto, near the mouth of which is its port, Palos. The streets are gencrally broad and straight, but both the town and eastle are much difapidated. The olil Franeiscan convent was orilererl in 1816 to be presuryed as a national memorial, but it is now fast going to ruin, aud the woorl of the cells stripped off. It was here, in 14S4, that Columbus, craviug charity, was reccivel by the prior, Juan Perez de Marehena, by whose influeace he was enabled to prosecute his discoveries, setting ont from the port of Palos on Aligust 3, 1492. It was to this port also that he returned, Narch $1 \overline{5}_{2} 1493$, after having accomplished 640
the great end of his expmation. Hure likewise dil "ortes land in May löss, after the conentest of Mexico, and lodged in the sante convent which gave shelter to Colmulnas. J'alos is now a por dieayed tishing-port. JI. has some trade in wine and fruit. Iop. G.ve?.

MOILAMIMEDAN SECTS. 'Ny community,' Mohanmed is reported to have sail, "will separate itself int, seventy-three scets; one unly will lic saved, all the others shall perish.' This prophery has been larctoly fultilled. Fivon during the ill. ness, and immediately after the death of the founcler, many Jifluretices of opinion arose amoner his earliest adherents. We lave unleavoured to shew, botli muler Kuman and Jomamma:bAsiss, how the fundamental loosk of Islam left certain points undecided by the very fact of its poetical wording, and low, further, the jeenliarity of the Arabic jlion at times allowed many interpretations to be put upon me eardinal and dogratic sentence. To add to this uncertainty, a vast number of oral traditions sprang up and circulated as an expansive eorullary to the Kioran. Political causes sonn eame to assist the confusion aml eontest, and relirion was made the pretext for faction-fights, which in reality had their origin in the ambition of certain men of inlluence. 'Thus 'suets' inereased in far larger numbers even than the I'rophet had foretold, and thongh their existence was but sluort-lived in most iustances, they yet deserve attention, were it only as signs and tokens of the ever-fresh life of the human spirit, whieh, though fettered a thonsand times liy narrow and hard formulas, will break these fetters as often, and prove its everlasting right to freedom of thonght and action.
The bewillering mass of these currents of contro. versy, has hy the Arabie historians beetl brourght under four ehief heals or fondlamental bases. Phe first of these relates to the divine attributes and unity, Which of these attributes are essential ur eternal? ls the omnipotence of Gud absolate? If not, what are its limits? F'urther, as to the cluctrine of Gorl's predestimation and man's liberty-a question of no small porport, and one which has been controserted in nearly all 'revealed 'religionsIlow far is God's alecere inlfuenced ly man's own will? How far can God comntenamec evil? and qucstions of a similar kind letonging to this province. The third is perhaps the most enniprehensive "hasis," and the one that bears most direetly upon practical doctrines-viz, the promises and threats, and the names of God, together with various other questions chiefly relating to faith, repentance, inficlelity, and error. The fourth is the one that eoneerns itself with the influence of reason and history upon the transcendental realm of faith. To this chap. ter belong the mission of prophets, the office of Imam, or Head of the Chureh, and suels intricate subtleties as to whint constitutes gorxluess and luadness; how far actions are to be condemned on the ground of reason or the 'Law ; 'icc.

Une broad line, however, rame to be lrawn, in the course of time, among these innumerable religious divisions, a line that separated them all into orthodox sects and heterodox seets; orthodox being those only who adopted the oral tralitions, or sumat (sec Susimtes).

Wuch more numerous than the ortholox divisions are the heterolox ones. Immediately after Mohammed's death, and during the early conquests, the contest was eliefly eonfinerl to the question of the luamat. But no sooner were the first days of warfare orer, than thinking minds began to direct themselves to a closer examination of the faith itself, for which and through which the world
was to be conquered, and to the book which preached it, the Foran. The earliest germs of a religious dissension are found in the revolt of the Kharejites against Ali, in the 37th year of the Hedjrah; and several doctors shortly afterwards broached heterodox opinious about predestination and the good and evil to be ascribed to God. These new doctrimes were boldly, and in a very advanced form, openly preached by Wâsil Ibn Atầ, who, for uttering a moderate opinion in the matter of the 'sinner, had been expelled from the rigorons school of Basra. He then formed a scbool of his owzthat of the Separatists or Motazilites (q.v. in SupPLEMENT), who, together with a number of other 'heretical' groups, are variously counted as oue, four, or seven sects.

Wre now come to the second great heretic group, the Sefatians. The Sefatians (attributionists) held a precisely contrary view to that of the Motazilites. With them, God's attributes, whether essential or operative, or wbat they afterwards called declarative or historical, i. e., used in historical narration (eyes, face, hand), antbropomorphisms, in fact, were considered eternal. But here, again, lay the germs for more dissensions and more sects in their own midst. Some taking this notion of God's attributes in a strictly literal sense, assumed a likeness betweeu God and created tbings; others giving it a more allegorical interpretation, withont, bowever, entering into any particulars beyond the reiterated doctrine, that God had no companion or similitude. The different sects into which they split were, first, the Asharians, so called from Abul Hasan al Ashari, who, at first a Motazilite, disagreed with his masters on the point of God's being bound to do always that which is best. He became the founder of a new school, which held (1) that God's attributes are to be held distimet from his essence, and that any literal understanding of the Fords that stand for God's limbs in the Koran is reprehensible. (2) That predestination must be taken in its most literal meaning, i. e., that God preordains everything. The opinions on this point of man's free will are, however, much divided, as indeed to combine a, predestination which ordaius every act with man's free choice is not easy; and the older authors hold it is well not to inquire too minutely into these things, lest all precepts, both positive and negative, be argued away. The middle path, adopted by the greater number of the doctors, is expressed in this formula: There is weither coupulsion nor free liberty, but the way lies between the two; the power and will being both created by God, though the merit or guilt be imputed to man. Regardivg mortal sin, it was held by this sect, that if a believer die guilty of it without repentance, be will not, for all that, always remain a denizen of bell. God will either pardon him, or the Prophet will intercede on his behalf, as be says in the Koran: 'My iutercession shall be employed for those among my people who shall have been guilty of grievous crimes;' and further, that be in whose beart there is faith hut of the weight of an ant, shall be delivered from hell-fire. From this more philosophical opinion, howerer, departed a number of other Sefatian sects, wbo, taking the Koranic words more literally, transformed Gou's attributes into grossly corporeal things, like the Mosshabehites, or Assimilators, who conceived God to be a figure composed of limbs like those of created beings, either of a bodily or spiritual nature, capable of local motion, ascent, or descent, \&c. The notions of some actually went so far as to declare God to be 'hollow from the crown of the head to the breast, and solid from the breast downward; he also had black curled liair.' Another sub-

509
division of this sect were the Jabarians, who deny to man all free agency, and make all his deeds dependent on God. Their name indicates their religious tendency sufficiently, meaning 'Necessitarians.'

The third principal division of "heretical sects" is formed by the Kharejites, or 'Rebels' from the lawful Prince-i. e., Ali-the first of whom were the 12,000 men who fell away from him after baving fought under bitu at the battle of Seffein, taking offence at his submitting the decision of his right to the califate (against Moawiyyah) to arbitration. Their 'heresy' consisted, first, in their holding that any man might be called to the Imamat thongh be did not belong to the Koreish, nor was even a freeman, provided be was a just and pious man, and fit in every other respect. It also followed that an unrighteous Imam might be deposed, or even put to death; and further, that there was no absolute necessity for any Imam in the world.

Of the fourth principal sect, the Shiites, or 'Sectaries,' the followers of Ali lbn Abi Tâleb, we have spoken under that special heading.

It remains only to mention a few of the many pseudo-prophets who arose from time to time in the bosom of Islam, drawing a certain number of adherents around them, and threatening to undermine the church founded by Nohammed, by either declaring themselves his legal successors, or completely renouncing his doctrines. The first, and most prominent among these, was Dosaylima (q. v. in SUPPlemest). Next to him stands Al-Aswad, originally called Aihala, of the tribe of Ans, of which, as well as of that of a number of other tribes, he was governor. He preteuded to receive certain revelations from two angels, Sohaik and Shoraik. Certain feats of legerdemain, and a natural eloquence, procured him a number of followers, by whose aid be made himself master of several provinces. A counter-revolution, however, broke out the night before Nohammed's death, and AlAswad's head was cut off; whereby an end was put to a rebellion of exactly four montlus' duration, bit already assuning large proportions. In the same year (11 Hedjrah), but after Mohammed's death, a man named Toleiha set up as prophet, but with very little success. He, his tribe, and followers were met in open battle by Khalid, at the liead of the troops of the Faithful, and being beaten, had all finally to submit to Islam.

A ferr words ought also to be said regarding the ' Teiled Prophet,' Al-Mokanna, or Borkai, whose real name was Hakem Ibn Hashem, at the time of Al-Mohdi, the third Abbaside calif. He used to hide the deformity of his face (he lad also but one eye) by a gilded mask, a circumstance which his followers explained by the splendour of his countenance being too brilliant (like that of Moses) to be borne by ordinary mortals. Being a proficient in jugglery besides, which went for the power of working miracles, he soon drew many disciples and followers around him. At last be arrogated the office of the Deity itself, which by continual transmigrations from Adam domnwards, had at last residel in the body of Abu Moslem, the governor of Khorassan, whose secretary this new prophet had been. The calif, finding him growing more and more formidable every day, sent a force against him, which finally drove him back into one of his strongest fortresses, where he first poisoned and then burned all his fanily; after which he threw himsclf in to the Hames, which consumed him completely, except his hair. He had left a message, however, to the effect that he would reappear in the shape of a gray man riding on a gray beast, and many of his

641
followers for many years after expeeted his reappearance. They wore, as a distinguisling mark, nothing but white garments. He died about the midule of the ${ }^{2} \mathrm{l}$ c. Hedjrah.

Of the Karmathians and the Ismailis, we have spoken under these special headings. We ean searcely enumerate among the prophets Abul Teyeb Ahned Al-Notanebbi, one of the most celebrated Arabic poets, who mistook, or pretended to mistake, his pretical inspirations for the divine afllatus, and caused several tribes to style him prophet, as his surname indicates, and to acknowletge his mission. The governor of his province, Lalū, took the promptest steps to stifle auy such pretensions in the bud, by imprisoning him, and making him formally renouve all alsurd pretensions to a prophetical office. The poet did so with all speed. He was richly rewarded by the court and many princes for his minstretsy; to which henceforth he clung exclusively; but the riches he thus accumulated became the canse of his death. Robbers attacked him while he was returning to his home in Kufa, there to live upon the treasure bestowed ujon him by Adadoddawla, Sultan of Persia - The last of these new prophets to be mentioned is Baba, who appeared in Amasia, in Natolia, in 635 Hedjrah, and who had immense suceess, chictly with the Turkmans, his own nation, so that at last he found himself at the head of nearly a million men, horse and foot. Their war-ery was, God is God, and Baha-not Mohammed-is his prophet. It was not until both Christians and Mohammedans conbined for the purpose of self-defence, that this new and most formidable jower was annihilated, its armics being routed and put to the sword, while the two chiefs were decapitated by the executioner.

MOLLESKIN AND CO'RDUHOY are varieties of Fustian (q. v.), a term which is used in a generic sense to inelide also velveteen, velveret, thick-set, thick-set cord, beaverteen, and other stont cotton cloths for men's apparel- a class of goods largely manufactured in Lancashire. The general strueture of these fabrics is deseribed under Fustian and Vhlvet. They are, in point of fact, all of the nature of velvet, with a nap or pile on the surface, and nost of them are twilled.

When eloth of this kind leaves the loom, its surface is covered with loops like Brussels carpet, and these are then cut open with a ripping-knife of a peculiar shape, which the operatives learn to use with great dexterity. The hairy and uneven appearance which the eloth acquires in this operation is subseguently improved by the shearing process. The eloth is aext steeped in hot water, to get rid of the paste used in dressing the yarn, and is then ready to be passed through the brushing or teaseling machine, which consists of blocks of wood with concave surfaces covered with card-lwushes, working backwaris and forwards in a lateral direction against wooden rollers, encased in tin-phate, over which the cloth passes. The tiu-plate is made rough with the burs of punched holes. In the next operation, the fustian is singed by passing the nap side quickly over a red-bot metal cylinder. The brushing and singeing are repeated threc and occasionally four times, to give the cloth a smooth appearance. It is then washed, bleached with chloride of lime, and dyed-usually of some shade of olive, slate, or other guiet colour.

The ditlerent names given to fustian cioths depend upon their degree of tineness, and the manner in which they are woven and finished. Thus, smooth linds, of a strong twilled texture, are called molekiins when shorn before dycing, and beaverteens when eropped after dyeing. Corduroy, or kiag's cord, is produced by a peculiar clisposition of the pile-
threads. In all fustinns, there is a warp and weft threal, independent of the additional weft-threal forming the pile ; but in corduroys, the pile-thread is only 'thrown in' where the corded portions are, and is absent in the narrow spaces between them.

Until a comparatively recent period, the quantity of fustian cloths annually consumed in the British Islands must have been very laree, but the increased price of cotton, and the introluetion of cheap woollen fabries, have now very much curtailed the use of them. They are still, however, largely woru by certain classes of meelanies and labourers.

MO'LOCH, a genus of samrian reptiles, of the family Agamide (sec Acasa). M. horridus, an Australian species, is perhaps the most ugly aml repulsive in appearance of all the saurian tribes, The whole surface of the body is covered with

Moloch horridus.
irremular plates and strong sharp spines; the upper surface of the head is crownel with two very large spines; and on the lack of the neck are large rounded protuberances, covered with gramuar seales and spines. The 11 . is, however, a perfectly inoffeasive ereature.

Molthe, Helmutit, Fremmre vos, Tieuten-ant-general and chief of the general staff in I'russia, who planned the Prussian campaign of IS6G against Austria. Me belongs to an old family, who had their seat for centuries in Mecklenlurg, where M. was born, DGth October 1800. Soon after his birth, his father, a military officer, left Meckienlourg, and aequired an estate in Holstein, where M. Spent the first twelve years of his life, whence some liog. raphers name Holstein as his vative land. He and his brother were sent to the military academy in Copenhagen, where iron discipline and military frugality laid the foundation of his later claracter. In 182, , he entered the Prussian army as cornet. H is marents having by this time lost all their fortune, he was left without any means whatever, and had to uadergo many hardships to maintain himself in his position, from the very modest pay the l'russian officers receive; yet he managed to save enough to take lessons in modern langnages, which afterwards jroved of great adrantage to him. His eminent abilities soon procured him a place in the general staff. The time between 1835 and $18: 39$, he spent in Turkey and Asia Minor, whither be was sent ly the Prussian governmeat to report on the war between that country and Mehemet Ali. Several anonymous publications of his, descriptive of the country and the war, are worthy of notice. After his return, he rapidly advaneed through the different stages to the rank of gearral, continuing, Lowever, on the general staff.

As Germany is indebted to Count Bismark for the political and diplomatic part of the work of the
recent reorganisation, so she is to M. for the strategical. His plan, and how rell it attained the end in view, may be seen in the article Germany, in the Supplement. (M's strategy in the war of 1S\%0-n) between France and Germany brought the contest to a like triumphant issue.)
M. is a man of great modesty and simplicity; be is reserved, and so little given to talk, that he has acquired the surname of 'the Silent.' The same composure and equanimity that he possesses in cunncil, he also preserves in the heat of the Lattle.

MOMBA'SSA, or MOMBAZ, a seaport town of East Africa, in the territory of the Sultan of Zanzibar, on a small coralline island off the coast, in the middle of an estuary formed by two small rivers, in lat. $4^{\circ} 4^{\prime} \mathrm{S}$., and long. $39^{\circ} 43^{\circ}$ E., abont 150 miles north of Zanzibar island. The shores of the island are rocky and abrupt; and althongh the channel may be forded at low water, the attempt is attended with danger. The town has the usual Arab characteristics of ruin, neglect, and filth in a striking degree. The only olject of interest is an extensive fort, built on a rock, cut perpendicularly, in 1590, lyy the Portuguese, and restored by them in 1635, as an inscription over the principal gateway indicates. It is a work of considerable pretension, with upwards of one hundred guos in position, but in a ruinous condition. The inhabitants, the majority of whom are sunk in abject porerts, mostly live in wretched hovels, scattered among what remains of the once magnificent buildings. The town and island of M., as well as the surrounding district, is inhabited by the Wanika tribe. The harbour is still good, and is commodious and safe. 11. was visited by Vasco da Gama in 1497, when he found it to be a larye and very prosperons town. It was held by the Portuguese during the greater part of the period from 1529 to $1 \% 20$, when it ippears to have become independent. The English held it from 1824 to $18 \div 6$, when they resigned it. Since then, it appears to hare been possessed by the Sultan of Zanzibar, and apparently is considered a place of some importance. Burton says that the inhabitants of M. 'are justly taxed with pride, bigotry, evil-speaking, insolence, turbulence, and treachery by other Arals. ${ }^{\text {. }}$

MONASTI'R, a seaport town of North Africa, in the dominion of Tunis, 80 miles south-south-east of the city of that name, on the Gulf of Sidra. Woollen and camlet fabrics are manufactured, and there is some maritime trade. Pop. 12,000.

MONSELICE, a walled town of Nouth Italy, 13 miles south-east of Padua, on the canal of Monselice, which extends from Padua to Este. M. was a 1lace of importance in the middle ages. It has several silk-mills. Pop. S160.

MONTBRISON, a town of France. capital of the Ielp. of Loire, 37 miles south-west of Lyon, on the Vizezy, a feeder of the Loire, stands at the base of a lofty and precipitous rock. In the vicinity are mineral springs. Pop. (1566) ES54.

MONT-DE-MARSAN, a town of France, capital of the dep. of Landes, at the junction of two streams -the Midou and עonze-which, when united, take the name of Midonze, and joim the Adour. It is 65 miles south of Bordeaux, with which and with other places it is connected by railway. The town has of late years made great progress. It has a communal college, and mineral warm baths. There are manufactures of common woollen cloths, blankets, sail-cloth, and leather. Pop. (1SG6) T00S.

MOQUEGUA, a town of Peru, capital of a province of the same name, 6 S miles north-west of Tacna, on the great route west of the Cordilleras.

In the province are many large vineyards, which produce great quantities of wine and brandy. Pop. 9000.

MORADABAD, a town of British India, capital of a district of the same name, is situated on a slightly elevated ridge between the Ramgunga and the Ganges, 90 miles east-porth-east of Delhi. There is a large jail, capable of holding I800, for native convicts. West of the town, and separated from it by the jail, are the cantonments for the troops, agreeably situated amid luxuriant trees; the chief duty of the troops is to guard the great assemblage of convicts. Pop. said to be 57,414 .

MORE'LIA, or TALLADOLID, a town of Mexico, capital of the state of Michoacan, in a fine ralley, surrounded loy high mountains, 125 miles west-north-rest of Mexica. There is a magnificent aqueduct for the supply of water. It was the birthplace of Iturbide, the short-lived emperor of Mexico. Pop. 25,000.
MORE'LLA (anc. C'astra EElia, the winterquarters of Sertorius), a town and important fortress of Spain, in the province of Castellon, about SU miles north of Valencia. M. was the chief stronghold of Cabrera, who scaled the castle by ropes furnished lyy a partisan within, on the night of the 25 th January lis3s. It was retaken in 1840 by Espartero, after a brave defence. There are some interesting Roman and Moorish antiquities. Pop. 6211.

MOSA'LC WOOL, or WOOL MOSAIC, is a remarkable application of the principle of mosaicwork to the production of woollen or worsted rugs and carpets, having a definite design or patterm, independent of the ordinary processes of printing and weaving. Many attempts in this direction have been made, chietty on the continent; but the most successful is that of Messrs Crossley, in whose extensive carpet factory at Halifax the mosaic wool is produced as a regular department of manufacture.

In the first place, well-spun worsted threads are dyed to every colour and almost every shade or tint, amonnting to a hundred varieties in all. An artist prepares a full-sized drawing of the pattern or design, ruled all over with cross-lines; this is conied on lined paper by girls, each of whom takes as much of the pattern as will fill a square foot. A workman (or womau) haring a good eye for colour, examines each square piece of drawint in detail, and selects the proper colour of thread suitable to every portion of it; the threads are a little over 200 inches long each, or abont 17 feet. and are numerous enough to pack closely together into a mass of one square foot in width aud depth. A strons iron framework, 17 feet long, is so arranged that all these threads can be stretched on it horizontally, tied at one end, and weichted with 4 lbs . to each thread at the other. Girls, under the direction of the workwoman who selects the colours, arrange these threads oue by one, tying them at one end, weighting them at the other, and supporting them on a steel har in the middle. This being done, the mass of 17 feet in length is cut up into blocks of 20 inches long each, for couvenience in afteroperations. All these processes are for one square foot only of the pattern, and they have to be repeated as many times as there are square feet in it. Supposing a rug 6 feet by 2 , with a lion, tiger, or other device occupying the greater part of the surface: there wust be twelve masses prepared, and as each mass contains 50,000 threads, there will be 600,000 altogether. Blocks are cut from each mass, and are placed in an iron box or frame, side by side; thus forming a quadrangular solid 6 feet by 2 , and 20 inches deep, with the threads arranged reertically.

Now, to convert this into a great number of separate rugs, the pattern of which is seen represented on the nipper surface, formed by the emls of the eoloured threals, india-rubber is dissolved in camphine to the consistence of carpenters' glue, and hrushed well over the top, so that every individnal thiread shall receive its portion; this being dried, a secomd coating is applied; and afterwards a third. A backing of canvas, or of some kind of strong eloth, is cemented down upon the mass of threails by a glue of the same kind, and is seraped and rubbed until it adheres to every individnal fibre. When dry, the mass of threats is raised up three-sixteenths of an inch, by a serew acting upon a movable hottom to the brox. A very keen cirenlar cutter, 12 feet in diancter, and rotating 170 times per mivute, quickly severs a horizontal sliee three-sisteenths of an inch thick, the box of threads being eaused by an endless screw to travel onwards to mect the cutter. This slice, when turned up, presents the picture complete, in a beantifully soft nap or pile of wool]en threads, supported by a canvas or woollen backing. It is a mere question of hand-work to convert this into a rug, earpet, eoverlet, or wrapper of any kind. A sceond repetition of the same processes converts another slice into a second rug; and so on, until the mass of 20 inches in depth has been eut up into abont a hundred slices, each forming one rng. As the bloeks of 20 inches were originally eut from a mass of 200 inches, the whole mass produces about a thonsand rugs, all exactly the same pattern. It is this power of repetition whieh makes the process pay; for the great preparatory labour of selecting and arranging (say) 600,000 distinct threads could not otherwise be compensated for.

MOSAYLIMA (Little Moslem), one of the most important rivals of Alohammed, belonged to the clan Dûl, a division of the tribe of the Bani Ilanifah, of Tam?ma in Neljed. The traditions ahout his life and age are extromely contradictory and legendary. It appears, however, tolerably eertain that he had risen to a certain eminence in his tribe, prohably as a religions teacher only at tirst, hefore Mohammed assumed his prophetieal office. The name he was known by among his friends was fahman, the lienignant or Merciful; a term which Mohammed adopited as is designation of God himself. This word, which is Aramaic, was a common divine epithet among the Jews, from whom Mohammed took it, together with a vast bulk of dogmas, and ceremonies, and legends. If, however, M., as is sapposed by some, assumed that name in the meaning of Messiah, Saviour, it would prove that he had antieipnted Nohammeel in the apostleship, which is eommonly denied. It was in the uinth y car of the Hedjrah that M., at the head of an embassy sent by his tribe, appeared before Nohammed, io order to settle certain points of dispute. The traditions are very contradietory on the cireumstance whether or not M. was then already the recognised spiritual leader of his tribe. When they were intrombed to Mohammed in the mosque, they greeted him with the ortholox salutation of Moslems-viz., 'Salim alayk' (Peace upon thee), and after a brief parley, recited the conlession of faith. Shortly after this event. M. openly professed himself to be a prophet, as well as llohammed. The latter sent a messenger to him, as soon as he hearil of this, to request him to reiterate publicly his profession of Islam. M.'s answer was a request that Mohanmel should share his power with him. 'From Alosaylima, the Apostle of Gosl,' he wrote, aceording to Abufeda, 'to M10hammed, the Apostle of Got. Now let the earth be half mive, and half thime.' Mohanmed speedily replied: 'From Mohammed, the Apostle of (iod, to Mosaylima, the liar. The earth is God's: Me giveth
the same for inheritance unto such of his servants as 1 te pleases, and the happy issue shall attend those who fear Him.' let notwithstanding these testimonies, of probably late dates, it secms, on the other hand, perfectly eertain that Mohammed made very great concessions to his rival-concessions that point to his having secretly nominated M. his successor, and that he hy this means hought M.'s open allegiance during his lifetime. It was not a question of dogmas, though they each had special revelations, but a question of supremacy, which was thus settled amicably. 'Mohammed,' Ml. said, 'is appointed by God to settle the priaeipal points of faith, and 1 to supplement them.' He further had a revelation, in aecordance with Mohammed's: 'We have sent to every uation its own prophet,' to the effect: 'Wo have given into thee [M.] a number of preople; keep them to thyself, and advanee. But be eantious, and desire not too mueh; and do not enter into rival fights.'
When Mohammed was at the point of death, he desired to write his will. Whatever he may have wishel to ordain, is uneertain; it is well known, at all events, that his friends did not oley his order, and refused to furnish him with writing-materials, rery probably beeause they did not like to be hound by his last injunctions. Surenger supposes that he wished formally to appoint M. his suecessor, and that it was just this which his surromding relations [eared. M. then openly deelared against Islam, and many parodies of the Koran sprang ap in the Nelljed, aseribed to him. In the I th year of the Medjrah, it at last came to an open breach between the two rival powers. Alu Bekr, the calif, sent Khalit, 'the Sword of the Faith,' with a number of choice troops, to eompel M. to subroission. M. awaited the enemy at Fowdah, a village in the Wadi Itavifal. So formidable indeed was M.'s fore, that Walid is said to have hesitated for a whole day and night lefore he undertook an assault unanimously disaproved of by his conncil. On the second moming, however, he alvanced, and in a battle which lasted until the evening, eontrived, with fearful losses of his own, to gain the victory. M. Fell ly the hands of a negro slave, and his head was cut off by the contueror, and placed at the head of a spear, to convince both fricuds and foes of his death. Khalid then alvaneed to the shin mrophet's birtloplace, in order to slay all its inhalitinots. They, however, by a elever stratagen contrived to conclude an honouralle peace, lut han to embrace Islam. The Nosleymian 'heresy' was thus stamped out, and only a [ew seattered remonts of the new faith contrived to escape to Hasa and Basrah, where they may have laid the foundation of the later Karmathan creed.

It is extremely diflicult to come to any elear notion of M.'s real doctrines, as all the aceoments that have survived of then come from victorions adversaries-adversaries who have not hesitated to invent the most scandalons stories about him. Thus, a love-adventure between M. and the prophetess Sajah, the wife of a soothsayer of Yamâma, who is supposed to have stayed three days in his tent, is told with great minuteness, ewen to the ohseence conversation that is supposed to have taken place between them during that time; the fact heing that this story, which is still told with much relish by the matives, is without the slightest fommdation. From the same source, we learn that M. tried to deccive his followers by conjuring-tricks. It secms, on the contrary, that M. was of much higher moral stanting than Nohammed himself. Thus, he is said to have enjoived the highest chastity even among married people: unless there was hope of begetting children, there should he restriction of

MOSKWA-MOTAZILITES.

coojugal duty. Even the nickname, 'Little Moslem,' given to him seems to indicate that he, too, preached the unity of God, or Islam, as the fundamental doc. trine of faith. How far his religion had a socialist tendency, and offered less show of dignity and outward morality to its followers, or whether it rejected fatalism, contained an idea of incarnation, and invested its preachers and teachers with a semimediatorial character, as the latest explorer of the Nerljed, Mr Palgrave, tells us, we have no means of judging. But we must receive these conclusions, probably drawn from the information of the natives, with all the greater caution, as that story of the prophetess Sajâh, whom he reports, after his informants, not only to have been properly married to M., but to hare, after his death, become a devont partisan of Islam, and to have entered an 'orthodox alliance,' does not, as we said before, deserve the slightest eredence.

MO'SKWA, a river of European Russia, a branch of the Oka, which is itself a braneh of the Volga. It is celebrated in history for the great battle, called the battle of Boredino (q. v.), fought on its banks, 7 th September 1812, from which Ney (q.v.) obtained his title Priuee of Noskwa. The M. rises in a marsh in the government of Smelensk, passes close by the towns of Moshaisk and Svenigrod, passes throngh the city of Moscow, and joins the Oka near Kolomna, in the government of Moscow. The whole length of its course is about 290 miles. A considerable commerce is carried on liy boats on the M. and it is directly connected with the Volga by the M. Canal.

MOTA'ZILITES, or MUTAZALITES, a 'heretical' Mohammedan sect, dating a few geoerations after Mohammed, of which brief mention has been made under the heading Mohammedan Seets. Their name is derived from an Arabic word, denoting 'to separate one's self,' and originally applied to any special sect or union of men; but the M. beeoming the most important and dangerous in Islam, they received this denomination by way of eminence. They were also called Meattalites-i. e., those who divest God of His attributes-and Kadarija, i. e., 'those who hold that man has a free will, and deny the striet doctrine of predestination.' The first beginnings of this sect are traced to Maboad, who, in the time of Mohammed himself, already began to question predestination, by pointing out how kings carry on tunjust wars, kill men, and steal their goods, and all the while pretend to be merely execnting God's decrees. The real founder of the sect, as such, however, is Wasil b. Ata. Ile denied God's 'qualities,' such as knowledge, nower, will, life, as leading to, if not directly implying, polytheism. As to predestinatiou itself, this he only allowed to exist with regard to the outward good or evil that befalls man, such as illness or recovery, death or life, but man's actions he held to be entirely in his own hands. God, he said, had given commandments to mankind, and it was not to be supposed that He had, at the same time, preordained that some should disobey these commandments, and that, further, they should be punished for it. Man alone was the agent in his good or evil actions, io his belief or unbelief, obedience or disobedience, and he is rewarded according to his deeds. These doctrines were further developed by his disciple, Abu-l-Hudail, who did not deny so absolutely God's 'qualities,' but modified their meaning in the manner of the Greek philosophers, viz., that every quality was also God's essence. The attribntes are thus not without but within Him, and so far from being a multiplicity, they merely designate the various ways of the manifestations of the Godhead. God's will he declared to be a
peculiar kind of knowledge, throigh which God did what He foresaw to be salutary in the end. Man's freedom of action is only possible in this world. In the next, all will be according to necessary laws immutably preordained. The righteons will enjoy everlasting bliss; and for the wieked, everlasting puuishment will be decreed. Another very dangerous dectrine of his system was the assumption that, before the Koran had been revealet, man had already come to the conclusion of right and wrong. By his imner iatellect, he held, everyboly must and does konw-even without the aid of the divinely given commandments-whether the thing he is doiog be right or wrong, just or unjust, true or false. He is further sipposed to have held, that unless a man be killed by violent means, his life would neither be prolonged nor shortened lyy 'supernatural' agencies. His belief in the traditions was also by no means an absolute one. There was no special security, he said, in a long, unbroken chain of witnesses, considering that one fallible mao among them could corrupt the whole truth.

Nany were the hranches of these Motazilites. There were, apart from the disciples of Abu-l Hudail, of whom we have just spoken, the Jobbaians, who adopted Aln Ali Al-Walhab's (Al-Jobbâi's) opinion, to the effect, that the knowlerge ascribed to God was not an 'attribute;' nor was his knowing ' necessary ;' nor did sin prove anything as to the belief or unbelief of hin who committed it, who would anyhow be subjected to eternal punishment if he died in it, \&c.-Besides these, there were the disciples of Abu Hashem-the Hashemites, who held that an infidel was not the creation of God, who could not produce evil.-Another loranch of the M. were the disciples of Almed Ibn Hayet, who held that Christ was the eternal word incarnate, and assumed a real body; that there were two gods, or creators, one eteroal, viz., the Most High God, and the other not eternal, viz., Christ -not unlike the Socinian and Arian theeries on this subject; that there is a successive transmigration of the soul from one bolly into another, and that the last body will enjoy the reward or suffer the punishments due to each sonl; and that God will be seen at the resurrection with the eyes of understanding, not of the body.

Four more divisions of this sect are mentioned, viz., the Jahhedhians, whose master's notion about the Koran was, that it was 'a body that might grow into a man, and sometimes into a least, or to have, as others put it, two faces-one luman, the other that of an animal, according to the different interpretations.' He further taught them, that the damned would become fire, and thus be attracted by hell; also, that the mere belief in God and the Prophet coustituted a 'faithful.'-Of rather different tendencies was Al-Mozdar, the founder of the hraneh of the Mozdarians. He not only held the Koran to be uncreated and eternal, but so far from denying God the power of doing evil, he declared it to be possible for God to be a liar and unjust. - Another branch was formed by the Pasharians, who, while they carried man's free agency rather to excess, yet held that God might doom even an iafant to eternal punishment-all the while granting that He would be unjust in so doing. - The last of these Motazilite sectarians we shall mention are the Thamamians, who held, after their master, Thamâma, that sinners would undergo eternal damnation and punishment; that free aetions have no producing author; and that, at the resurrection, all infidels, atheists, Jews, Christians, Mlagians, and bereties should be returned to dust. We cannot, in this place, enlarge upon the diferent schools

MOUNTMELLICK-MUCKERS.

feunded by the M., nor upon their subsequent fate. The vast scientific development, however, which their doctrines begot, and which resulted in the eneyclopardie labours called 'The Treatises of the Siucere Brethren and 'True Friends,' are towehed upod uader Sincere Bremmren (q.v. in Surple-mesty--Sec Weil, Geschichte der Khalifen; Sale's Foran; Steiner, Mutaziliten; Dieterici, I'ransactions of the German Oriental Society, \&c.

MOUNTMELLICK, a market-town and seat of poor-law union, in Queen's County,]revince of Leinster, Ireland. It is situated on the river Owesass, a branch of the Barrow, 47 miles directly west-south-west from Dublin. The 10p. in 1871 was 3315 . The town has long been a chief seat of the Society of Friends, who established a manufactory of coarse wonllen friezes and tweeds, by which many poor ehildren are employed. MI. was alse the seat of other manufactures, espeecially a fonodry, a machine-factery, and a beet-root sugar factory, the results of which, however, were disappointing.

MOU'SA, an island of Shetland, remarkable for an olject of antiquity styled Burgh-MIousa, which consists of a round tower of the class known in the north of Scotiand as Pictish towers. Burgh-Mousn occupies a knoll close upon the reeky sea-beach, from which materials for its construetion had been taken. The whole fabric is composed of tlat slabs of elay-slate, which have been easily piled together in a enmpact mass without the aid of mortar. In exterier figure, the tower is round, incliving inwards about
lighted by apertures to the interier; such dismal holes loing all that we find in the way of apartments. It is customary to speak of an outer and inner wall; but the two walis, if we so distinguish them, are so firmly bound together by the stair and otherwise, as to afford a united resistance to assault. Obviously, the structure was used as a retreat in case of attack from forcign eacmies, against whom missiles could be showered down from the species of battiement formed by the top of the well-knit walls. . According to tradition, the tower of Mousa was nccupied by Erland, a Norwegian Jarl, about 1154, when it successfully endured a siege that was undertaken to reeover a runaway lady; but how any lady could have found aceommodation io such miserable quarters, it is difficult to conjecture. The Society of Scottish Antiquaries deserves thanks for having repaired this tine memorial of a former state of society in Shetland. From its cemparatively complete state, Burgh-Mousa is considered a good specimen of tho Pictish towers, so called.

MOZDO'K, a town and fertress of South Russia, in the government of Caucasus, on the Terek, abeut 142 miles north of Tiflis, on the ronte into Geargia. Pep. 10,895, of very mixed descent, but chiefly Armenians.

MUCH WOOLTON (i. e., Great Woolton), a town of Laneashire, England, six miles east-seutheast from Liverpoel. It has a handseme chureh, with a tower and small dowe, and several other places of worship. The tewn is rapidly increasing in size on account of the proximity of a bradeh of the North-Western Railway, which runs within two miles. M. W. has long been noted for a stone obtained from a neighbouring quarry, which gives employment to a considerabice number of men. Pop. (1871) 4643. A small distance from M. W. is the village of Little Woolten with a pop, of about 1000 .

MU'CKERS, the popular name of an extraordinary sect, which sprung up at Königsberg, in Germany, in 1835. The movement seems to have originated in the dualistic and Goostic views of John Henry Schönherr (who was born at Memel in 1771, and died at Königsberg in 1S26) cencerning the origination of the universe by the combination of two spiritual and sensual prisciples. His followers earried out his system much mere completely
half-way up, and then bulging out near the tojk Near the foundation, its cireumference is 15 S fect, and it measures about 40 feet in height. On the side next the sea, there is a doorway, and that is the only exterior aperture. If there were ever any door-posts, they have disappeared; it is feasibly conjectured, however, that iustead of employiog a door, the iumates bad, on enuergencies, built up the opening, for which there is an abundance of loose materials at hand. Eatering the doorway, we find the wall sixteen feet thick, and looking upwards, feel as if we were at the bottem of a well, for the eirenlar interior has no flooring, and the top is open to the sliy. Oppesite the doorway, there is an entrance to a passage and stair, which wind upwards, within the thickness of the wall, to the summit of the building. At different places, there are reecsscs, or galieries, leading off from the stair,
than himself. The most notable of them were two elergymen, Ebel and Diestel, the fermer an arehdeacon. liy them, sexunl connection would seem to have been elevated into an act of worship, and the chief means of the sanctification of the flesh, hy which the paradisiac state was to be restored. Ebel and Diestel fonnded a society, to which women-some of noble birth-attached themselves. Three ladies lived in Ebel's bouse, who were popularly regarded as his three wives ; and Mr Hepworth Dixon, in his werk entitled Spiritual Wives (1868), tells us that one of them, a young widowed countess, whose beloved husband had fallen on the field of Liutzen, and whem he enticed from the seclusion and deep melanchely in which she lived, was described by him as representing to bim the principle of Light (Licht-natur) ; another of the ladies represented the prineiple of Darkness (Finstemiss-natur);

MUD-FISH-MUSCULAR FORCE.

and the third represented the principle of Union (Umfassung). The last was his legal wife, but leld the most subordinate place in his extraordinary household. Ere long, public feeling was excited against the M., who were said to be guilty, under forms of piety, of the most odious lieentiousuess in their meetings. The scandal heeane great in Königsberg, and a garden there aequired the name of the Seraphs' Grove. The subject was brought before the courts (1839-1842), and the result was that Ebel and Diestel were degraded from their offices, and the latter was further punished by imprisonment. It is alleged, however, by some who have examined the whole evidence produced, that the decisions did not proeeed upon a calm judicial inquiry, but were dietated by strong prejndice against the aeensed, on aecount of their religious views and peculiar eeeentricities; and, in particular, that the evidence gives no support whatever to the charge of licentiousness. Mr Hepworth Dixon has direeted attention to the similarity of the Mueker movement with that of the Prineeites (see Agapemone) in England, and that of the Bible Communists or Perfectionists (q.v.) in Ameriea; all of which took place about the same time, and in connection with revival exeitement, although it may almost be regarded as certain that the originators of these movements had not eren heard of each other.
MUD-FISH (Amia), a very elurious gemus of fisles, forming the family Amiidce of the order Ganoidei of Niuller, although its position among the Ganoidei is determined only by anatomical charaeters, in which it agrees with sturgeons and the rest of that order, for the seales are not ganoid, and are not osseous plates, but are flexible and rounded, and destitute of euamel. Similar scales, however, are found in fossil genera regarded by Agassiz as ganoid. In habit, the M. resembles osseons fishes rather than ganoids. Except in the absence of teeth on the tongue, the mouth resembles that of a trout. The body is long and flexible, with a bony vertebral column; there are two nasal cirri; the head is flat, covered with a very thin mueous skin, immediately under which the bones appear as sculptured plates. More than ten speeies are known, natives of the fresh waters of America. The Westers M. (A. calva) is from a foot and a half to three feet long, bluish-black above, white below. It inhabits the great northern lakes of North America, and is found as far south as Carolina. It feeds chiefly on crawfish and other crustaceans. It is not esteemed as an article of food, although sometimes used by the Indians.
MUHESU'R, a town of India, in the territory of Indore (q.v.), on the right bank of the Nerbudda, 250 miles north-east of Bombay. The fort contains many houses within its enclosure, but is in bad repair. There is a new palace, built of gray basalt, and overeharged with sculptures of buman beings, aud of elephants, tigers, and other animals. There are also numerous and costly Hindu temples, erected lyy Abalya Bai, relict of Kunda Rao, son of Mabarajall Mulhar liao. The river, which is here about 2000 feet wide, has a rapid stream of blue water, rushing over a rocky hottom; the banks are 60 or 80 feet high in the dry season. Aecess to the water is gained ly a ghat, or rast flight of stone stairs, whieh extends below the water at its lowest level. Pop. about 17,000.

MÜLLER, Julus, a German theologian, was horn at Brieg, on April 10, 1S01, and is a brother of Charles Otfried Muller (q.v.), the antiquary. He studied at Breslau and Göttingen, at first devoting limself to law, but afterwards to theology. After
much mental struggle, he adopted religious views opposed to those of the Rationalists. In 1825, he was appointed pastor at Sehönbrunn and Liosen, near Strehlen, where he remained seven years. Having acquired a high reputation for theological learning, he was appointed in 1831 second university preacher in Guittingen, and there lectured on practical theology and pedagogies. The spirit in which he laboured there may be seen from his sermons, entitled Das Christliche Leben, seine Kämpfe und seine Vollendung (The Christian Life, its Struggles and its Perfection; BresL. 1834; 3d ed. 1847). In 1834, he became Extraordinary Professor of Theology in Göttingen, and soon after Ordinary Professor in Marburg, from whieh he weat in 1839 to oceupy a similar chair in Halle. The work on which his reputation as a theologian chietly rests is that on Sin, Die Christliche Lefire von der Sünde (Bresl 15:39; 3d ed., revised and enlarged, 2 vols., 1S49), which bas been translated into English (2 vols., Edin. 1852-1853). He has sinee published pamphlets on subjects of temporary interest, particularly in rindication of the cause of Evangelical nnion against the attacks of the rigid Lutherans; and in 1550, he began, in conjunction with Neander and Nitzsch, a periodical, entitled Deutsche Zeitschrift für Christliche Wissenschaft und Christliche Leben (Journal of Christian Science and Christian Life), to which he has since been a rery frequent contributor.
MUNKA'CS, a market-town of Hungary, situated on an aftuent of the Theiss, 17 S miles northeast of Pesth. The inhabitants are mostly artisans, and the chief prodnction is hosiery. There are also alum manufactories, saltpetre-works, and in the vicinity, iron-works and nines of roek-crystal, ealled Hungarian diamonds. A short distance east from the town is the fortress (founded in 1359) of M., built upon an isolated height, which, although small and insignificant-looking, yet, from its strong walls and advantageous position, has, for the last few centuries, withstood many a siege. Since the beginuing of the present eentury, it has been used as a state-prison. Pop. 7355.
MU'RGAB, a river of Central Asia, whieh rises on the uorthern border of Afghanistan, in the Hindu Kush, immediately to the north of the sources of the Heri (q. v. in SUPPLEMENT). The M. Hows westward, then north-westward, and finally northward, passing from amongst the mountains in which it has its source into the desert plains of Turkestan, where the volume of its water gradually diminishes, until it finally loses itself in a swamp in the sandy plain of Merv, after a course of about 400 miles. In the upper part of its course it receives many tributaries, but noge in the lower. The most noteworthy place on its banks is Mert, or Meru (anc. Antiocheia Margiana), a town of Independent Turkestan, about 300 miles south-east from Khiva. Merv was an important town in the days of the Seljuk dynasty, of which it was the capital, but is now very ruinous.
MU'RO, an episcopal town of South Italy, in the province of Poteaza, 17 miles north-west of the town of Potenza. Its castle, built on a height overlooking the ravine, was the scene of the murder of Joanna I., queen of Naples. Pop. (1861) S260.

MU'SCULAR FORCE, ORIGIN of. During the last two years, the investigations of Professor Fiek aud Wislicenus* of Zürich, of Professor Frankland and of Professor Parles, hare completely

* A translation of their Memoir may be found in the Philosophical Magazine for June 1866 (supplenentary number).

MUSIC IRECORDER-MUTTRA.

overthrown the physiological views on this subject held jrevious to the year 1866 . While the inference from previous experiments was, that the effect of exercise was to cause a very large increase in the elimination of carbon, and a much smaller, but very perceptible increase in the climination of nitrogen, lick and Wislicemus (from observations made on the excretion of nitrogen daring the ascent of the Faulhorn) deny altogether the increase of the nitrogen, and come to the conchasion, that the force generated in the muscles is the result of the burning (oxidation) of non-nitrogenous substances (fats or carbo-hydrates), aod not of the harning of the albuminous constitnents of muscular tissue ; and they conclude, that the nitrogenous constituents of muscles are rather to be regarded as forming the machine in which these fats or carbo-hydrates are burned, than as the subjects which are burned. Dr Frankland (Philosophical Magazine, September 1866) arrives at the conclusion that the now-aitrogenous constituents of the food, such as starch, fat, \&c., are the chief sources of the actual energy which becomes partially transformed into muscular work. He does not, however, deny to the allonmioous matters a co-operation in the production of muscular power, but he regards their chici use as being to renew the muscular tissue. The muscles are thus the source both of animal heat and of muscular force. The latest investigator of this important subject is Professor I'arkes, who communicated the result of his inquiries to the Royal Socicty (see Proceedings of the Royal Society, Nos. 59 and 94 , 1867). Two series of experiments were made on soldiers at Netley. Two men were kept on ordioary diet and on usual work for four days; were then kept in perfect rest for two days, on a diet free from nitrogen: then finally returned for four days more to their usual food and work. In the second series, the same course was adopted, execpt that throughout the whole period the men took a constant quantity (302 grains) of nitregen daidy.

The conclusions deduced by Dr larkes from these experiments were, that Professors Fick aod Wislicenus are quite correct in stating that there is no inerease of nitrogen eliminated duriog the period of exereise. There is, on the contrary, a slight decrease. They are not correct in stating that there is no increase after exercise, for there is a perceptible, though not a very large increase. 'Without going into an aoalysis of the experiments, which woukd oceupy too much space, 1 believe,' says Dr Parkes in his Sanitary lieport, eontained in the last volume of the Army Statistical, Sanitary, and Medical lieports, 1867, p. 346, 'my results indicate that our ideas of the origin of muscular force and of nutrition generally, must be modificd; that during action, muscles appropriate nitrogen, and grow; and that they do not give it off and waste, as was formerly supposed, or undergo no change, as Fick and Wislicemus helieve. In other words, formation of nitrogenons tissues goes on during action, and remoral of nitrugen goes on during rest. The mechanical force manifested during muscular action is, however, probally derived from changes in the carbo-hydrates, especially the fats, which changes are connected with the appropriation of aitrogen by the muscles.'
The theory of muscular action which he proposes for consideration is this. During action, the muscles appropriate nitrngen; this act is accompanied by changes in the carbo-hydrates, which lead to the manifestation of mechanical force; these changes leal to effecte products (lactic acid, \&e.) in the mnseles, which, as appears from Ranke's experiments, stop their contraction. Then eusues an action of oxygen upon the nitrogenous framework
of the muscle, and a removal of the effete products of the carbo-hydrates, so that the muscle becomes again capable of appropriating nitrogen, and of acting. The amount of truth in this theary must be deeided by the investigations of others; it seems the only one which can explain the facts, if these have been correctly made out.

Although it is mainly to the above-named physiologists that we owe our recently acquired knowledge, it deserves mention that previons investigations undertaken on diflerent lut allied suljects by other physiological chemists, as, for example, Dr Elward Smith, Lawes and Gilhert, Playfair, and 1 laughton, are entirely in accordance with our new views.
MUSIC RECORDER. Many forms of apparatus have been invented for writing down music in a legible form by the very act of playing it on a keyed instrument, such as the pianoferte or organ. beginning with 1747, various attempts had leen naade to effect this object, when, in $\mathbf{1 8 6 3}$, Mr Fenhy invented and patented his Phonograph, in which lie brought in the aid of electro-magnetism. His chief aim, as an improvement on previons apparatus, was to devise a method of denoting the length of the notes, as well as their pitch and the interval between them. On pressing down any key of the instrument, a stud on the under side tonches a spriag; the spring sets in action a small electro-magnetic apparatus, which causes a tracer to pass against a strip of paper moving onward at a nuiform rate by means of a cylinder and clockwork. The paper is chemically prepared, so as to receive a brown stain whenever the tracer passcs along its surface. The length of each note is expressed by horizontal dashes of greater or less leugth, made by the tracer; and the arrangement is shich as to denote the lincs of the stave as well as the character of the note. liy subsidiary adjustments, the apparatus is male to express accidental sharps and flats, changes of time, \&c.
The Abbe Moigno's Phonautograph, introdnced to the British Association in 1800, is a contrivancenot for noting down sounds in any kind of musical notation-lut for cansing a vibrating surface to tell its number and character of vibrations. A kind of spheroidal drum is covered at one end with a diaphragm or stretched membrane; a sheet of paper is earried along this drum-head by means of clockwork; and a system of small levers moves a pen. A tuning-lork, an organ-pipe, or the voice is somnded in proximity to the drum, the body of air within which acts as a reinforcement of the sonod; the membrane vibrates in a manner which ean be felt by the pen, althongh not seen by the eye; and the ped makes zigzag markings on the pajer. When the sound is produced lyy a tnning-fork or an organpipe, the zigzag lines are so regular that they serve to count the number of vibrations belonging to each particular note. When the sound is that of a singiog voice, the markings become very peculiar, especially in such words as contain the gutturals r, g, \& c.

MU'ITRA, a town of British India, capital of the district of the same name, 97 miles south-sontheast of Delhi, is situated on the right bank of the Jurma. The fort was built by the celebrated astronomer, Jey Singh (who became Priace of Amber in 1693) ; and ou the roof of one of the apartments is a ruinons observatory, containing a great number of astronomical instrmments. Access is had to the river-which, along with the town, is considered sacred by the Hindus-by numerons glatts, ornamented with little temples; aud its banks are, every moraing and evening, crowded ly devotees of all ages and both sexes, to perform their religious exercises. In IIindu Mythology, it is regarded

MYNPURI-NANA SAHIB.

as the birthplace of the dirinity Krishna. In honour of the monkey-god Hanuman, monkeys are here protected and fed, being allowed to swarm everywhere. There are also great numbers of parroquets, peacocks, and sacred bulls at large, without owners. There is a very extensive military cantonment about a mile south of the town. M. appears at an early period to have been of much more importance than it is at present; and its enormous wealth and splendour made it an object of attack to the first Afghan invaders. Mahmud of Ghuzaee, in 1017, gave it up to plunder, breaking down and burning all the idols, and amassing a vast quantity
of gold and silver, of which the idols were made. After this calamity, it sank into comparative obscurity. In October 1803, it was, without resistance, occupied by the British troops. Pop. 65,749.

MYNPURI, a town of British India, capital of a district of the same name, is situated on the banks of the small river Esun, an affluent of the Ganges, 160 miles south-east of Delhi. It lies at an elevation of 620 feet above the sea, and is a favourite station for troops, as provisions and water are abundant and good. M. possesses a Jain temple. The rebels were driven from this place in 1857. Pop. 20,921.

N

 A'FTIA, Lago, a curious small lake in Sicily, about two miles from Nineo, in Catania. It is situated in a plain, amidst craggy bills, and is of a circular form, commonly 60 or 70 yards in diameter, and about 15 feet deep, but in dry weather shrinking to a much swaller size, and being occasionally altogether dried up. In the midst of it are three small craters, two of which perpetually send up water in jets to the height of two or three feet; the third is more intermittent. The water is greeuish, or turbicl, and has an odour of bitumen. The whole lake resembles a boiling caldron, from the escape of carbonic acid gas, rushing upwards with great force. The atmosphere is consequently fatal to birds attempting to fly across the surface of the lake, and to small animals which approach it to satisfy their thirst; and an approach to it is attended with headache and other painful circumstances to man himself. The ancients regarded these phenomena with great dread. They supposed that Pluto, when carrying off Proserpine, druve his fiery steeds through this lake, ere his descent to the lower regions. A temple was erected here to the gods of the two craters, the Dii Palici, who were supposed to be twin sons of Jupiter by the nymph Thaha. Pilgrims Hocked to this shrine; and it afforded an inviolable asylum to slaves who had tled from their masters. An oath by the Dii Palici was never broken by the master, who found himself compelled here to come to terms with his runaway slave. No remains of the temple of the Dï Palici are left, although it is described as having been magnificent.

NA'GY KARO'LY (i. e., Great Karúly), a town of Hungary, capital of the county Szathmar, 37 miles east-north-east from Debreczin, on a small feeder of the Theiss. It has several important annual fairs, and a trade in corn and cattle. Pop, 10,670.

NAMAYCUSH (Salmo namaycush), a fish nearly allied to the salmon and trout, a native of the great lakes and interior rivers of North America. It is often taken of a size varying from 20 to 40 lbs ., and is said sometimes to reach 60 lbs . It is much esteemed for the table. It is canght at the same fisheries with the still more prized Whitetish (q. v.).

NA'NAS, a town of Hungary, in the midst of extensive morasses, about 110 miles east-nortl-east from Pesth. The population, partly l'rotestant and
partly Roman Catholic, is employed in cattlehusbandry and agricultural pursuits. Pop. 11,337.

NANA SAHIB, a Hindu, one of the leaders of the senoy revolt of 1857 . He was said to be the son of a Brahman from the Deccan, and his real name was Dhundu Punt. He was born about 1820, and was adopted as a son in 1827 by Bajee Rao, the childless ex-peishwa of Poona, thereby, according to Hindu law and custom, acquiring most of the rights of a legitimate son. He was educated as a Hindu nobleman-taught English, and brought much in contact with the European officers, in whose amusements he seemed fond of participating. A decision was, however, come to by the government of Calcutta, that they should not recognise rights to pensions or indemnities acquired by adoption; and in consequence, N. S. was refused the continuance of a pension of eight lacs of rupees, paid to his adopted father under a treaty made iu 1818. This is believed to hare rankled in his mind, along with slights he received from the supercilious English youth with whom be came in contact. He was allowed to retain some of the state of a native prince-a retinue of 200 soldiers, with 3 field-pieces, and a fortified residence at Bithoor, 10 miles west of Cawnpore. When the mutiny broke out in May 1857, he offered to assist the English, but instead, he treacheronsly placed himself at the head of the mutineers. The European troops were induced, on the $2 \bar{t}$ th of June, to capitulate to N. S., who promised they should be sent down the Ganges in safety. They got on board boats provided for them, but had no sooner done so, than two guns were unmasked, and a murderous fire was opened upon them. The sepoys were ordered to shoot the men, but to spare the women and children, who, when their husbands and parents had been shot, were removed to a bouse in Cawnpore. On the 15th July, Sir H. Havelock, who had advanced to their assistance from Allahahad, defeated the sepoys in two engagements, one within 8 miles of Cawnpore; and N. S. next day directed that the women and children should be put to death, an order carried out with nnparalleled atrocity. A lons series of engagements against N. S. followed, in which he was always the loser, and he was ultimately driveu beyond the Engkish frontier into Nepaul. In 1860, his death was anuounced, but two years later, new movements were discovered, which were attributed to him, and it is not certainly known whether he is dead or alive. Several persous have been arrested on suspicion of being N. S., but in all cases a mistake

NAPOLEON-VENDÉE-NATIONAL FDUCATION.

has been made. A column has been erected at Cawnpore in memory of those who perished in the massacre.

NAPOLEON.VENDEE, or BOURBON. VENDEE, a town of France, the eapital of the dep. of Veadec, pleasantly situated on a hill on the "right bank of the Yon, 37 miles south from Nantes. The town has no manufactures, and little trade, but derives its importance chiefly from its being the seat of departmental administration. The town contained only 800 inhabitants when Nippolcon I. selected it for the capital of the department, granted great sums for its improvement, and gave it its present name, which was changed to Bourbon- I'endee at the restoration of the Bourhon family, the name Napolcon- ${ }^{\text {Fendée coming again }}$ into use on the accession of Napoleon III. Pop. (in 1866) 6791.

NA'RDO (anc. Nereturm), a town of South Italy, in the province of Lecee, 8 miles north-nertheast from Gallipoli. N. has manufactures of cotton goods and snuff, from cotton abd tobaceo grown in the neighbourhood. The surrounding country abounds in olive plantations. Popr. (1861) 7513.

NASSI'CK, or NASHIK, a town of British India, in the presidency of Bombay, and district of Ahmednuggur, 95 miles north-east of Bombay, on the river Godavery, not far from its source. It is a town of great sacredness in the estimation of the Ilindusmore revered than even Benares-is a great place of pilgrimage, the chief seat of Brahmanism in the Deccan, and the residence of many families of Brahmans, some of them living in great allusence. It contains many temples, which are built along loth banks of the Godavery, and on rocks in the river. They are all of black basalt, and dedicated to Siva. Of far greater interest, however, are the Buddhist eaves, about 5 miles from the town, which are situated in a conical hill, at a height of about 100 yards from its base. They are rudely executed. The figures which they contain are in a state of good preservation, and the leading figures are those of Buddha; but the whole character of the remains is thought to indicate Buddhism in a state of transition or compromise with Brahmanism. One cave is 45 feet square, and its flat roof is wholly unsupported. Notwithstanding the Buddhist origin and character of these caves, the Brahmans of \mathbf{N}., for the sake of gain, encourage the popular reverence for them. N. contains a resident pop. of about 25,000 .

NATIONAL EDUCATION, SYSTEMS of, the provision made by various states for the education of their citizens. In England, the term national education is commonly used as implying ouly a provision made for the instruction of children of the poorer classes. But it is eapable of a much more extensive application, and in most of the countries in which the state provides for the education of the people, the state regulates, more or less, all instruction, from that of the primary school to that of the university. In England national education has no existence. The Parish Scloools (q. v.) of Scotland at one time made a near aphroach to being national, but the altered religious circumstances of the country have made them cease to be so. The imperfect means adopted to supply the deficiency in both parts of the kingdom, are described under the head of Privy Council, Commitree of, on Education. See also Schools, Public and Grammar; Industrial Schools; Iieformatory Schools, sec. In Ireland the foundation of a really national system was laid in 1833 in the 'National Schools' (supplemented since by the Queen's Colleges and University), the principle of which is brietly stated under lreland. These
selools have exhibited a steady and ceren sumprising progress, when we consider the determined oly tion they have net with from powerful ecclesiastical parties, both Catholic and Protestant. In several of the British colonies the local legislatures have bohlly dealt with the question on the national principle, in opposition to the denomimational. Seo Vietoria. As this is likely to bo one of the first important subjects to come hefors the reformed parliament, it may be opportune to give our realers a sketch of what some neighbouring nations have done in regard to it. Before entering upon the description which we propose to givo of the priacipal systems of national education, it will be proper to give some account of the obstacles which have hitherto prevented the estallishment of a national system among ourselves, and to indicate some of the matters is to which we lave to look for instruction from foreign experieace.

And, first, in Great Britain the estahlishment of a national system of education, and of all interference with education on the part of the state, has until lately been opposed upon principle ly a numerous and respectable body of politicians. They for the most part consisted of Dissenters of the middle class, who, beginning with Voluntaryism in ecclesiastical matters, had passed on-at least the leaders had-to the doctrine of laisses fuire in politics. The others were ehiefly speculative persons, deeply imbued with the same doctrine, who, profondly dishelieving in the wistom of statesmen, and the eapacity of officials, and apparently in the possibility of foresight in large affairs, held that the state should madertake as little as possible, and leave things to what they called their natural conrse. The arguments used by these two classes were not always alike. Individuals of the formere class were apt to go back to the religious ground from which they started, maintaining that education ought to be religious, that the state ought not to teach religion, that therefore education was out of the province of the state. liut what the spokesmen of both classes most insisted on was this, that education should be left to the law of supply and demand, or rather, to the voluntary action of individuals, single or combined. It was in that way, they declared, that the education of the people could be most beneficially carried on ; for so carried on, it would always be, both in kind and in extent, what, on the whole, the circumstances of the people required. In the lands of government, they said, an elucational system must be, more or less, an instrument of state. And at the best, the extent and the quality of the instruction provided must depend upon the will of persons who might be very ignorant of the wants of the people. They used declamation about the had way in which governments did everything they attempted; about the danger of creating a host of new officials; and abont the impropriety of interfering with natural laws, and of discouraging voluntary ageney. Then they enlarged upou the great progress which education had made in England since the beginniug of this century, independently, as they said, of the state-maintaining not only that it had been as great as the circurastances of the country permitted, but that it was almost as much as the state had accomplished in any country; and that it proved that in England, supply and demand, or the voluntary principle, would soon provide for the edueation of the whole people. The greater part of the increase in the supply of education, so far as it was not due to the action of the state, had come from the benevolent exertions of individuals. But their chicf reliance was upon the agency of individuals or societies iuspired by benevolence or

NATIONAL EDUCATION.

religious zeal. They held that the same objections did not apply to voluntary organisations which lay against the state; they declared that it was the great glory of England to accomplish by such means things which elsewhere were attempted only by the state. Combined voluatary action, they said, was consonant with the national habits and institutions; it was a part of the system which had made the English a free, self-reliant, and enterprising race; it shonld be fostered, not discouraged; and it was worth our while to pay a price if necessary, rather than let it be superseded by the action of the state.
It was answered, first, that the commercial principle of supply and demand, unless supplemented by the benevolence of individuals, could not be expected to cducate the people except by very slow clegrees; that education must create the demand for education; that children of the lower classes in large towns, unless assistance or stimulation came to them from without, had at present no more chance of receiving instruction than if they were living in Africa. And the nation would lose incalculably by delay in educating the masses; for nothing would so greatly increase its power and prosperity, so materially improve the condition of the humbler classes, as the education of the whole people. The importance of voluntary agencies was admitted; but why was the state to be precluded from at least co-operating with theru? The state, it was said, had a greater interest in educating the people thau any of her citizens could have; and, moreover-this was the real question-could undertake it more successfully. Voluntary agency, it was maintained, was too slow, too uncertain, too spasmodic in operation, to be permanently and solely relied upon in a matter of such great national concern. The friends of state action confidently appealed to the experience of foreign countries as shewing the superior efficiency of state education, and pointed to the effects which government stimulation, on a limited scale, had had at home. It is now several years since this controversy was at its height. The Yoluntaries have since that been acquiescing in the interference of the state with education; and recently, several of their foremost men lave frankly admitted that they had been mistaken, and that the state, by what it has done for education, has made goorl its claim to the regulation of it. The course of political cvents has recently added greatly to the importance of popular education; and at present it may be said that there is practically no opposition upon principle to the control of education by the state.

There have always, however, heen obstacles to the establishment of a national system more formidable than the opposition of the Voluntaries, and these appear to remain tuabated.

The most important of them are those which are concerned with the place, if any, to be assigned to religion in the school instruction. Upon this matter, there is a conflict of opinions which seems almost irreconcilable. A party, which is growing in numbers, and which is respectable from its activity and intelligence, holds that the state should give nothing but secular instructiou; that religion is beyond its province, and should not be taught within its schools; that, indeed, with a population divided into numerous sects, a practicable scheme of state education embracing religion cannot be devised. To this party, a portion of the English Voluntaries now seems disposed to ally itself. There are others who believe it possible to teach an undenomioational Christianity in schools; who desire that the state schoolmaster should coufine himself to this; and that dogmatic teaching should be left to the religious bodics. A third party hold that dogmatic
teaching should be given in state schools; that religions teachiag, to hare any valne, must be dogmatic ; but that arrangements might be made for the religions instruction of children by persons of their own persuasions; and, at anyrate, that children shordd be exempted from the religious instriction given in a school, if their parents should so desire. The most numerons body of all are satisfied with the system of aidiog denominational schools which now exists; because they approve of schools being, as for the most part they now are, under clerical supervision, and fear that by any change the influence of the clergy upon education would be weakened. Among the managers of Church of Englaod schools, fault is scarcely found with more than one point in the present system; there is an incessant agitation against the 'Conscience Clause,' which the state has placed among the couditions of its aid, by which is stipulated that religions instruction shall not be given contrary to the wish of the parent. Between the Denominationalist and the Secularist there is a difference which scarcely admits of compromise; and until they agree, a national system is hardly possible. The former would most probably oppose any scheme for supplementing the Denominational system-for the purpose of educating the classes which this system does not educate -unless it were to include religious teaching.

The question of religious instruction has been found a troublesome one in nearly every country where the state regulates education, and there is nothing more instructive, in foreign experience, than the ways in which, in different systems, this difficulty has been disposed of. Next to this, the most important thing to be observed is, the parts which, in different systems, are assigned to the state and to the locality respectively; for it is unquestionable that there are some dangers attaching to state education, when the influence of the state is predominat, and that the function of the state in education must be carefully defined. By the mere selection of school-books, the state could powerfully influence the rising generation; and in Anstria, and, it is said, in France also, the school has been made use of as an instrument of state policy. With a popular government, however, there is not much risk of it being used for sinister purposes; aod in this country, we are in more danger of having recourse too little to the powers of the state than of trusting it too much. The possibility of making education compulsory, is another matter upon which foreign systems of education throw much light: we are perhans more interested in noting how far indirect methods can be resorted to for compelling attendance at the schorls. Upon the limits of the instruction which should be attempted in schools for the poorer classes-a subject which has been much discussed in connection with the Revised Code of 1861-and upon the results of government regulation of the middle and upper schools also, there is much to be learned from the foreign educational systems. We begin with

State-cducation in Holland.

There are several countries in which-if school statistics could be taken as a test-popular instruction is more widely diffused than it is in Holland; but in no European conntry is it so uncommon to meet a man who cannot easily read aod write. The primary schools of Holland have a high repntation for the soliclity of the instruction they impart, and have, by competent observers, been declared to be the best in Eurore. A small and wealthy state-rich, too, in the public spirit of its citizens-with a populatiou singularly docile and orderly, the task of educating the people has been

NATIONAL EDUCATION

for llolland exceptionally free from difficulty. It had the start of most other European nations in the work of popular education. So far back as 1S11, its primary schools had been celehrated in a leport ly the fannous Cuvier. It has had an celucation law since 1S06; and of this law, thonghl it underwent modification in 1557, it is necessary to give some account. Its anthor was M. Van Deu Einde, who, from 1806 till 153.3 , had the superiutendence of popular education in the country.

Ou the face of it, this law seemed far from making a complete provision for the cducation of the people; it left much-in any other country, it would have been a great deal toa much - to the publie. spirit of local authorities. It did not make cducation compulsory; it did not even enforce the establishment of public schools; but it provided for two things being done thoroughly-the inspection of the schools and the examination of the teachers-and to this seems to have been chiefly due its eminent success. Each province of Holland was formed into a certain number of school-districts, and over each schooldistrict was placed an inspector. The inspector was made supreme over primary instruction in his district. He was a member of every school-committee, and school-committees could be named only with his concurrence; no teacher, public or private, could exercise his calling without his permission; and he inspected every school in his distriet twice a year. The united inspecters of the province formed the provincial commission for primary cducation. This commission met thrce times a year, and received from each of its members a report upon his district ; once a year, it sent a deputy to the llague, to form, with the deputies from other provinees, a commission to discuss and regulate school-matters, under the dircction of the Minister for the Home Department and his inspector -gencral. The inspectors in the various provinces were appointed by the Ilome Office, on the presentation of the provincial commission. It has been said that iu Ilolland public spirit is very strong. State-employments are thus deemed very honourable; and the inspectors gave their services gratuitously-receiving only in allowance for expenses. It was one of the duties of the provincial commission to examine teachers for certificates. First, the teacher had to get a general admission-a certificate of competency, admitting him into the teaching profession; he had to get a special admis. sion also, before he could exercise his profession. There were four gradcs of certificates-the first or second grade had to be obtained by a schoolmaster, public or private, in the towns; the third grade qualificd for a village-school; the fourth grade was for under-masters and assistants. To the highest grade were admitted those candidates only who gaye signs of a distinguished culture. For puhlic masterships, when they fell vacant, a competitive cxamination was held ; the successful candidate reccived his special admission-his appointment to exercise his profession in the school. For special admission as a private teacher, there was no second examination; it was in the power of the municipality, with the cencurrence of the inspector, to grant it upon application. Although there were no obligatory provisions in the law, the provincial and communal administrations were charged by the goverument to provide the means of instruction in their localities, to insure a comfortable subsistence for teachers, and to olbtain a regular attendance of the children in the schools; and they did all this to the best of their ability. Free schools for the poor were provided in the towns; in the villages, schools to which the poor were admitted gratuitonsly. Every effort was used, both by the lay
authorities and the elergy, to draw poor chidren into the schools; and the schoolmasters were provided with incomes much superior to what is usually paid to scloolhnasters in any other European country. To this M. Cuvier attributed much of the success of the Dutch schools. Some of the best scholars were liept in the school to assist in the teaching; they became under-masters, and cventually masters; and thus, eyen before the institution of normal scliools, an efficient boly of teachers was provided. In the normal schools which were afterwards established, school-methods and the practice of teaching formed a more prominent part of the instruction than in those of other ceuntries. It soon appeared, that the free schools for the poor in towns were giving better instruction than could he obtained by the lower middling classes; and intermediate schools had to be established in the towns (tusschen-schoolen), in which, for a small fee, an excellent education was prorided. Above the intermediate school was the French school, in which, besides a sound commercial education, modern languages were tauglit; alove that was the latin school, giving a classical education, and preparing for the universities. The chassical schools and the universitics of Holland do not receive from furcign observers the commendation so freely bestowed npon the other parts of the educational system of the country.
Under this law, the public schools were nondenominatienal; no dogratic instruction was to be given by the teacher or in the school; lont the instruction was to le such as to 'train its recipients for the exercise of all social and Christian virtucs.' The religious education of the children, however, was not overlooked. The government exhorted the clergy of the differeut communions to take uron them the religious instruction of children of their own persuasions; and this the clergy willingly did -siving up a portion of every Sunday to this dnty. The schoolmaster instructed the children in the traths common to all religions, and on Saturdays, when the Jews were absent, in the New Testament and the Life of Clirist. N. Cuvier, in 1811, stated that he found the education religious, thongh not dogmatic ; and in 1S36, high satisfaction with it was expressed by M. Cousin, an earnest advocate of religious education. It was thought that the Dutch schools had proved the possibility of teaching in schools an unsectarian Christianity. But it was chiefly upon this point that the controversy arose which led to the enactment of 1857 ; and as regards it, it cannot be said that the controversy is yet ended.
There were other matters which excited a demand for the alterations then made in the law. The constitution of 1845 lad granted the liberty of instraction, and was therefore in conflict with the law of 1806. The school-attendance had been falling off. Some of the municipalities had been cvaling their duty to the schoolmasters and the schools. It was thought desirable that the duties of the communc in regard to education should be carefully detined by law. The changes made, however, were not of much practical importance.
The law of 1857 granted ' liberty of instruction; ' still requiring from the private teacher the certificatc of competency, it rid him of the veto of the municipality and the inspector. It expressly prescribes that primary schools, in each commune, shall be at the commnne's charge; they are to be in sufficient number; and the states' deputies and the supreme government arc to judge whether, in any commone, they are in sulficient number or not. If the charge of its schools is too heary for a

NATIONAL EDUCATION.

commune, it receives a grant in aid, of which the state and the prorince each contributes half; but there is no fixed point at which the communc can demand this aid. The law fixes the minimum salary for a schoolmaster at 400 tloring (about $£^{2} 34$); fot an under-master at 200 florins. (The schoolmaster's salary, however, is usually much higher ; in towns, uot unfrequently four times as much.) It provides that when the number of scholars exceeds 70 , the master is to have the aid of a pupil-teacher; when it exceeds 100 , of an under-master; when it excceds I50, of an under-master and pupil-teacher; for every 50 scholars ahove this last number, he is allowed another pupil-teacher; for every 100 scholars, another under-master. School-fees are to be exacted only of those who can afford to pay thens ; and the municipalities are enjoined to 'provide as far as possible for the attendance at school of all children whose parents are in the receipt of public relief.' The law defines the subjects of primary instruction as follows: Reading, writing, arithmetic, the elements of geometry, of Dutch graimmar, of geography, of history, of the natural sciences, and singing. There is still a competitive examination for the office of public schoolmaster; a list of those who have acquitted themselves best is made up by the inspector and a committee of the communal council, and from this list the selection is made by the whole body of the council. For the provincial commission, cousisting of the inspectors of the province, there has been substitnted a salaried provincial inspector ; and the provincial inspectors are assembled once a year to deliherate upon the state of primary instruction. The Minister of the Home Department, assisted by a referendary, is the supreme authority in matters connected with education.

Upon the sulaject of religious instruction, the law was left unaltered. The enactment of IS57 provides as follows : 'Primary instruction, while it imparts the information necessary, is to tend to develop the reason of the young, aud to train then to the exercise of all Christian and social virtues. The teacher shall abstain from teaching, doing, or permitting anything contrary to the respect due to the couvictions of Dissenters. Religious instruction is left to the different religions communions. The schoolroom may be put at their disposal for that purpose, for the benetit of children attending school, out of school-hours.' This was the conclusion arrived at, after much excited discussion.

In 1848, all religions were, in Holland, placed by the law on a perfect equality: and immediately thereafter, an attack was begin by the Romau Catholics on the religious instruction of the schools. Professedly ueutral, they maintained that it was really Protestant, and probably they were right. The schoolmasters, on the demand of the Foman Catholics, were enjoined to comply inore strictly with the law; and thereupon there lregan among the orthodox Protestant bodies a violent agitation against the law-a moremeut for connecting every public school with some religions communion. The Iioman Catholics, believing that in Ilolland neutral schools must be Protestant, desired that the instruction should be purely secular; and a considerable party among the Protestants contended for the same object. The only party in farour of the existing law were the Rationalist or New-school Protestants, who attach more importance to the moral and civilising side of Cbristianity than to its dog. matic aspects. Between the Denominationalists on one hand and the Secularists on the other, the victory fell to this last party. Of course, the decision was a compromise; and neither the High Protestant party nor the Roman Catholics regard it with
satisfaction. The consequence has been that, advantage being taken of the newly-conceded freedom of instruction, there bas been a great increase in the number of private elementary schools conlucted on the denominational basis. The nondenominational school in Holland cannot be considered entirely successful, since the opposition to it seems to Le leading to primary education being to a considerable cxtent taken out of the control of the state.

State-education in Switzerland

In no part of Europe bas the education of the people been more successfully prosecuted than in Switzerland. In all the cantons, French and German, it has been carefully attended to by the governing bodies; and for small communities, provided the rulers have intelligence and public spirit, it is comparatively a simple aud easy task. To those who are interested in school-methods and school-management, nothing can be more instructive than the education of the German cantons. Their primary schools are unsurpassed; those of the canton Aargau have the reputatiou of being the best in Europe. The experience of the French cantons throws light upon more than one of the questions which occur in the construction of a national system. It is with the latter class of questions that we are concerned; and to the French cantons-Geneva, Yaud, Freiburg, Keufchatel, and the Valais-the following statement is confined.

In these five cantons, the school-system was, nutil recently, the same in its main outlines; it was a system designed to put public education in harmony with the democratic constitutions established after the war of the Sonderbund. In Yaud, it was founded in IS46; in Geneva and Freiburg, in 1845 ; in the Valais, in 1849 ; and in Neufchatel, in 1850. In Freiburg, it underwent modification in IS56. Its main featnres were as follows: The communes were required to provide and maintain public schools, the state assisting them when the charge became too heavy. In general, every place with more than 20 children of school-age was required to have its school; every place with more than 50 or 60, a second school; and so on. Infant-schools were recommended and aided by the state, but their establishment was not made obligatory. The council of state-the supreme executive-of the canton appointed a Board of Public Instruction to exercise the government of education; hut in important matters, an appeal lay from this body to the council; and by the council only conld a master be dismissed. The municipality appointed a communal school-committee, which had the local superintendence of the schools. Ninisters of religion were eligible for this body, but were not members of it by virtue of office. It was the duty of the school-committee to visit the schools of its commme not less than once a fortuight, besides holding a public general examination of them once a year. The teacher required to get a certificate of capacity; the examinations for the cortificate being under the management of the Board of Public Instruction. In 「and, however, five years' service in a public school exempted a teacher from the obligation of a certiticate; and in other cantons, it docs not seem to have been rigidly insisted on. For vacant masterships, there was a competitive examination, to which persons qualified by certiticate or service only were properly admitted; in Taud, however, failing qualified persons, other candiclates might be admitted to examination, and provisionally appointed. In Geneva, Freiburg, and the Tralais, there were school inspectors who periodically reported to the Board of Public Instruction;

NATIONAL EDUCATION.

Yand and Neufchatel had no inspectors; the duty of inspection in these eantons devolved upon the school-committee. The subjects taught were religion, reading, writing, grammar, arithmetic and book-keering, gegraply, Swiss history, and singing. The instruction given had twe or mere degrees (in Geneva, six degrees), according as these subjects were taught with more or less extension; instruction in both degrees being usually given in the same sehool, and by the same master. Elucation was to be based upon the 'principles of Christianity and demoeracy,' ILours were to be set apart for rebigious instruction ; from the ordinary seluol-lessons, dogma was to be strictly exeluded; and it was regarded as the province of the minister of religion, not of the sclhoolmaster, to give religious instruction, though the latter was not prevented from giving it in the room of, and under the responsibility of a minister. In all the cantons, except Geneva, edneation was made compulsory; attendance at school was required from the seventh to the fifteenth, or from the cighth to the sixteenth year. If children were privately celueated, the state must be satisfied that their education was sulfieient; such children could be called up for examination with the scholars of the public selools, and if found inferior, might be transferred to a publie scbool. A ecrtificate of emancipation was granted when the olligatory course had been fulfilled. The law contemplated that the instruction should be gratuitous, and in Geneva and the Valais it was gratuitous.
In Freiburg, the school-system was framed in no small degree for the purpese of strengthening the democratic party against the elerical party: It provided that no religions society should be allowed to teach; that persons edncated by the Jesnits should be ineapable of holding any office in ehurch or state; it imposed a pobtical oath upon the schoolmaster; it prohibited clildren from being sent to a private school, except with the sanction of the inspector and the schoul-committee; and if sent, required that they should come up for examination every half-year. At the same time, it ustablished an excellent programme of primary instruction. At the elections of 1550 , the clerical party recrained the aseendeney in Freiburg; and in January 2855, the comncil of state made a considerable alteration in the school-law. It reduced the programme of primary iustruction; it made the elergyman a neeessary member of the loeal sehool-committee. freed the teacher from the necessity of taking an oath, and relaxed the ebligation of attendance at the pmblic schools, giving pareuts liberty to edueate their children at home or at private scheols. In other resprects, the system, as above described, has been maintained in Freiburg. There has been no change in the other cantons.
The law as regards religions instruction seems to work with tolerable smoothness. In Vand, it appears that the laxity which prevails as to the requirement of a certifieate sometimes leads to the admission of noqualified persous as tenchers; and in Vaud and Nentehatel, complaint is made of tho incapacity of the sebool-committee to makc up for the want of professional insyrection.
In the four cantons in which education is by law compulsory, the school-attendance is found to he no better than in Geneva, where it is not compulsory. In these cantons, the law rrovides that parents not sending their children to school are to be warned; if the warning be neglected, that they are to be summoned before the tribunals. which ean punish them by tine or imprisonment. But it appears that, in point of fact, the tribunals are never resorted to ; and that the authorities are careful not to insist upon more than the people are easily able and williig
to comply with. ln the Valais, the school-year need nut last for more than five months. In Freiburg, the vacation may last for three months; and the inspector may exempt from attendance at school children who are sutticiently advanced, and children whose labour their parents cannot do without. In Vaud, the loeal sehool-cominittee may grant to children above twelve years of adge, whose labour is necessary to their parents, dispensations which in a great mieasure exempt them from attendance at school ; the master may grant the scholar leave of absence for two days in the week ; the president of the school-committee may grant him leave fur a week at a time; the scliool-committee itself for a month at a time. It appears that in Vand, the attendance at the sehools had been steadily falling off from 1846, the date of the law, up to 1858; aud the attendance of the ebildren whose names were on the books was then reported to be by no means regular. New branches of industry which gave employment to children Lad been introduced into the eanton ; and the Comecil of I'ublie Instruction scems to bave been compelled to saerifiec the law to the interests of fanilies. The experiment of compulsory edneation canuot be said to bave sue. ceeded, becanse it has not really been made, in French Switzerland.

State-clucation in France.

At the head of the education of France is the Minister of l'ublic I Instruction ; he is alvised and assisted by the Inmerial Council of I'ublic Instruction, a body the metnbers of which are appoointed by the crown for the period of a year. The minister, if he thinks fit, brings before the council for discussion projected laws and decrees on public education; he is bound to consult it respecting the programmes of study, methods, and books to be adoptited in all classes of publie schools. The minister has succeeded to the functions in respect of education which, under the first kimpire, were conferred upon the University of France ; he is head of the university, the officials of which still perform a considerable part in the management of education, but do so under his control. As respleets the higher and the professional edueation, the university is both a teaching and an examining body, granting degreers under conditions prescribed by the minister and council. The administration of the secondary instruction is committed to it, and it shares in the sulpervision of the primary instruction. $1 t$ is composed of 18 Academies, each of whiel2 comprehends several departments. These academies are so many local centres of the Department of Pubbic Instruction. At the bead of each is a rector; the chief otfieials under him are called Academy inspectors. Tho Minister of Publie Instruction is also rector of the Acadeny of Paris.
The Academy officials, under the control of the minister, have the superintendence of secondary instruction in the departments within the Academy's jurisdiction ; there is an inspector for each departmient. The instruction is minutely regulated, as to the quantity to be provided, as to the subjects to be comprelended in it, and as to its cost; it is the chief duty of the Academy inspectors to see that the requirements with respect to it are complied with. The insprection is said to be highly efficient. The lyceum is the principal seminary of secondary instruction ; in general, the chief tewn of every French department has its lyeeum. There is, besides, the communal college Every town of considerable population has its cemmunal college. The lyceum is founded and maintained by the state, with aid from the department and the commrnes; the communal college is founded and
maintained by the commune, with occasional aid from the state. The instruction given in the communal college and in the lyceum is substantially the same in character; in the lyceum it is the more extensive. To the lyceum there is usually attached a preparatory school for the younger boys. In both lyceums and communal colleges, there are boarders and day-scholars. French, Latin, Greek, and mathematics are the principal subjects of instruction; arithmetic, history, geography, modern languages, and the natural sciences are also taught. The course at the lyceun lasts for six years, and qualifies for the degree of Bachelor of Letters. Religious instruction is given-to the Roman Cathobic boys, hy chaplains attached to the school; to the Protestants, by a Protestant minister specially appointed to this duty; and the New Testament in Greek or Latin is read daily by every class. In the lyceums, the average charge for day-scholars is from 110 francs $(\varepsilon 4,7 \delta .4 d$.$) to 150$ francs ($£ \bar{i}, 8 s .4 d$.) a year; the charge for boarders from 800 francs ($£ 32$) to 900 francs ($£ 36$), according to their age and advancement. In Paris, the charges are higher-from $£ 3 S$ to $£ 60$ a year for boarders, and from $£ 6$ to $£ 12$ a year for day-scholars ; on the other hand, there are lyceums where the highest charge for boarders is $£ 22$ a year. There are pullic scholarships (bourses) founded by the state, to be obtained by competition, the holders of which are relieved from all cost. The education given is in no respect much inferior - and in some respects it is superior - to that which is to be had at an enormous cost at the best English public schools; it is far superior to that which, at a far higher cost, is ordinarily given to children of the middle classes iu England. A private secondary school cannot be opened without notice to the public authorities: they must be satisfied that the premises are suitable; and the director nust have a certificate of probation-shewing that be has served five years in a secondary school-and a certificate of competency obtained at the pullic examination for secondary teachers. The Academy inspector inspects private secondary schools, but only to see that the pupils are properly lodged and fed, and that the teaching contains nothing contrary to morality and the laws. The minister may, however, dispense with the certificate of probation, and holy orders are acceprted in bieu of the certificate of competency.
A law, dated the 21 st June 186テ, founded a new course of study in secondary schools-a special secondary instruction. The object of the special secondary instruction is declared to be to 'found the sub-ofticers of industry;' instruction in living languages is substituted for the classical instruction of the secondary schools; the elements of science and its applications receire great attention-particular regard leing had to the teaching of agriculture and the sciences which bear upon it. The teaching, moreover, is intended to impart what may be called a sound French education. A normal school bas been founded at Cluny for the preparation of masters for this special secondary instruction.
For primary instruction in France, an excellent basis was laid by M. Guizot's law of 1833, of which, indeed, the more important provisions have been retained. The body of legislation actually in force consists of the law of March 15, 1850, the organic decree of March 9, 1852, the law of June 14, 1854, and the law passed during the year 1807. The law reqnires that cyery commune shall maintain an elementary school, either by itself, or in combination with other communes; in fonnding and maiutaining its schools, it is to be aided, if necessary, by the department and by the state. It must have taxed itself specially for the schools three centimes
per franc of rental hefore it can claim aid; the department must have taxed itself specially two centimes for the communal schools before the state is resorted to. Up to the present year, a certain number of poor children-the number determined for each school by the prefect of the departmentwere admitted to the school gratuitously; for others, a fee was charged, which was collected every month by the tax-gatherer. The state contributed whatever was necessary in addition to the communal and departmental taxation and the school-fees. The law of the present year, howerer, provides that all children are to be admitted gratuitously whose parents would have difficulty in paying the school-fee; and that a commune whose taxation amounts to four centimes additional may dispense with the school-fee altogether, the deficiency, if any, so arising being made up by the state. In the large towns, the schools have long been gratuitous-the communes often taxing themselves, for school-purposes, beyond the amount required by law. Up to the year 1567, the law did not oblige the communes to maintain separate schools for girls, though a large proportion of them contributed towards the maintenance of such schools. The law of 1567 provides for the establishment of girls' schools; the cost of themthe communal and departmental taxation being in most places previously exhausted-will fall in a great measure upon the state.

Religious instruction is given in every school. In France, the Roman Catholic, the Protestant, and the Jewish forms of worship are subsidised ly the state; and it is provided that, in communes where more than one of these is publicly professed, each form is to have its scparate school Tbe departmental council, however, has power to anthorise the union, in a common school, of children belonging to different coramunions. For such cases, it is provided that ministers of each communion shall have free and equal access to the school, at separate times, to attend to the religious instruction of memhers of their own flock. To a school appropriated to one denomination, no child lelonging to another is admitted, except at the express demand of his parent or guardian, signified in writing to the teacher. Denominational schools are now the rule, common schools the exception. Preriously to 1500 , under M. Guizot's law, common schools were the rule, but it was found that in them the religious instruction presehted grave practical difficulties. All the religious bodies appear to he satisfied with the present system. The schools, though denominational, are communal schools; the denominations have not the management of them; and they are all subject to the same inspection.
The mayor and the minister of religion in each commune have the supervision and moral direction of the primary school; in practice, they are strictly confined to matters connected with its morality: Cautonal delegates are appointed by the departmental council (the canton is a division larger than the commune), who inspect the primary schools of their canton; but they have no real authority over the schools; they are only allowed to make representations as to the state of the schools to the departmental council, or to the inspector. The departmental council has the chief part in the regulation of the primary schools; moreorer, no private 1 rimary school can be opened without its permission; and if it refuse permission, there is no appeal. It is the prefect, however, who has the lower of nominating, suspending, and dismissing public primary teachers. His authority is usually exercised upon the report of the Academy inspector -the uwivcrsity official whose important functions, in respect of secondary instruction, have already

NATIONAL EDUCATION.

been described. 'The academies have the charge of the normal schools of primary instruction, and the supervision of the primary schools as regards the methods of teaching and conrse of study. Under them are the primaly inspectors, who report to the Acildemy inspectors; above the latter, as regards primary instruction, there are four inspectorgenerals, attached to the office of edueation at Paris. It is the primary inspector who really superintends the instruction of the schools; his lahours are unceasing, lis inspection is a reality, for he is not required to give notice of his visits. The private primary schools are subject to his inspection, hut ooly as regards the provision made for the bodily health and comfort of the pupils and the maintenanee of morality.

The suljects wbich must be tanght in every primary school, in addition to moral and religious teaching, are reading, writing, arithmetic, the elements of French grammar, and the Frencl system of weights and measures; there are other subjects which are facultative - which, in whole or in part, maty be tanght, that is, if the counerl of the comunue slould so desire, and the departmental council give its consent. These facultative matters are the applications of arithmetie; the elements of history and of geography; the elements of physics and of natural history ; elementary instruction in agriculture, the arts, and hygiene; surveying, levelliug, drawing, singing, and gymmastics. For girls, there are superior primary schools which teach the facultative matters only; and in girls' schools, instruc. tion is usnally given in needle-work for about three hours a day.

For the preparation of male teachers, the law requires every department to maintaio a bormal school; in some cases, however, two departments are allowed to maintain one jointly: there are now 70 of these sehools. There are separate normal schools for female teachers; of these, the number was reecntly 34 ; now that the law is about to add largely to the number of girls' schools, it will probably be increased. The members of the religious orders devoted to teaching, which perform a great part in primary education, are trained for their duties in the establishments of their respective orders. (Of these orders, the most important is that of the Brethren of the Cluristian Schools.) The instruction of the normal sehools is meagre; it scarcely exceeds the subjects of primary instruction; a considerable proportion of the students, indeed, aequire only an imperfect knowledge of the facultative subjects. School-method is what, in the normal sehools, it is deemed most important to teach. The examination for primary schoolmasters -which is conducted by a conmission appointed by the departmental council-is limited to the subjects taluht in the schools. There are two classes of certificates, according as the teaeber passes in the obligatory subjects only, or in the whole or part of the faeultative subjects also. Every male teacher, lublic or private, is required to have the certificate of capacity granted after an examination; also, excepting in the case of religious persons, a certifieate of morality. The law recognises a certificate of stage, to be granted to assistants who have served as such for three years, as a substitute for the certificate of capacity; but this provision has been unpopular, and the qualification of stage is practically unknown. Female lay teachers require the certifieate of capacity; female teachers of the religious orders are exempted from it. No person can be appointed a regular communal teacher unless he be twenty-four years old, and have served for three years since his twenty-first year as an assistant, or as a supplying teacher. The supplying teacher gets
a lower salary, and may be employed in the poorer communes. The salaries are low even in the towns: io many of the country communes, the legal minima are not exceeded: these are-for an ordinary communal teacher, $£ 2 t$ a year ; for a female teacher, or a supplying teacher, £20 a year. The commune pays $£\left(\begin{array}{l}\text { a } \\ \text { year, besides the school-fees; whatever is }\end{array}\right.$ required to make up the legal minimum, the government supplies ; and, since 1562 , the government lias, upon certain conditions, made slight allowavees in addition to the minimum.

It is in secondary instruction that the education of France lias a decided superiority over that of England. The primary instruction is seareely equal to that given in Eoglish sehools of the same grade. Mr Matthew Arnold has reported thit, in 1859 , he found in French primary schools the writing fair, hut scarcely so good as in English schools; the reading better, the arithmetic much better, than in English schools. Of history and geograplyy, the pupils were far more ignorant than English sehoolclildren of the same age. The ministry of M. Duruy, however, has been an era of inuprovement; much more attention is given to the facultative matters now; especial attention to acriculture and the subjects connceted with the daily life of the peasant. Mr Arnold came to the conclusion, that even in the great towns there were no masses of children left altogether uneducated, that almost all passed at some time through the schools. Adult elasses, tanght in the evenings, have greatly increased in numbers of late years, and are now aided by the state.

In 1834 -just after the passing of M. Guizot's law-the number of primary schools, publie and private, was 10,316 ; in 1857 , it was 65,100 ; in 1565 , it was 71,699 , of which 42,139 were boys' or mixed schools, 29,560 girls' schools. In addition to this, there were, in 1865 , infant schools to tho number of 3572 , which were more or less aided by the state. In the primary and infant schools, there were, in $1865,4,850,000$ seholars- $3,5(0), 000$ more than the number of scholars in 1829. Upwards of $2,000,000$ children were admitted to the schools gratuitously. It is estimated that the law of the present year will lead to the establishment of 11,000 new schools, of which 8000 will be for girls ; and it was stated in the debate in the Corps Législatif, in Mareh 1867, that it would probably increase the cost of education to the state by seven or eight million franes. In the budget of 1866 the cost to the state of the ordinary service of public instruction was put at $19,918,121$ franes $(⿺ 796,725)$; the secondary instruetion costing $3,1+1,000$ francs (£1:25,640) ; and the primary instruetion $6,563,100$ francs $\left(x^{\circ}-7,504\right)$. There was also, on account of primary instruction, an extraordinary expense of $1,100,000$ franes ($£ 41,000$).

State-education in Prussia.

In all the Protestant states of Germany, the school-system in its main features is the same. The I'russian system-more celcbrated, more extensive, more practical and thorough than the system of the minor states-always powerfully influencing these, and now likely to influence them more than ever, is that which must be selected for description. Abont this system, M. Cousin, by a strange confusion hetween it and a project of law-a mere scheme drawn up by the education minister, Von Altenstein, never even proposed for legislationspread misconceptions throughont Euroje, which have scarcely yet been dispelled. It has been greatly changed, greatly improved since Cousin wrote in 1831; but it does not yet in symmetry and completeness approach to what he deseribed.

In Prussia, there is a Minister of Public Worship and Instraction; but the officials who under him carry on the government of echucation are the officials of the Department of the lnterior. At the head of the government in each province is a president ; over each of the departments into which the province is divided there is a prefect (bezirk); each of these officers is assisted by a council, of which one section, called Schulcollegium, forms a separate council for deliberating npon the local school-affairs. One member of the school-council, called provincial school-councillor, is associated with the president for administrative purposes: the prefect has attached to him two departmental school-councillors, one Protestant, one Catholic, to advise with him, and to admimister the school-affairs of their respective communions. There is practically a division made of educational atfairs between the officials of the province and those of the department. The provincial school-councillor takes the charge of secondary education within the province ; the departmental school-councillors the charge of the primary schools of the department.
Over each of the circles into which the department is divided is an officer, termed a Landrath, who reports to the prefect of the leparment. With the landrath, in the management of primary schools, is associated the superintendent, the church dignitary of the circle. The snperintendent is ex-officio inspector of the primary schools within the district. The parish clergyman is ex-officin local inspector of primary schools within his parish. There is also for the school or schools of each parish a board of managers, the composition of which varies in different provinces. The clergyman is always a member of it: he is nsnally chairman. In country places, the whole powers of the board are often left in his hands.
In the 'exterior' affairs of the school-l passing school-accounts, visitation of school-premises, control of the school-estates, adjustment of the school-rate, \&c.-the landrath is associated with the superintendent. Its 'interior' affairs, all that concerns its teaching and discipline, are, subject to the establisher regulations, under the superintendent's contral ; lout, in practice, they are more under the influence of the departmental school-councillor. The superintendent, however, is required to visit the schools, and to watch over the conduct of the local inspector, and he reports annually to the government of the department. The local inspector's province is the interior affairs of the school. He is expected to risit the schools diligently, and to he active in the supervision of them. The religions teaching of the children is almost entirely done by him, it being his duty to prepare them for confirmation, which comes at the end of the school-period. To qualify them for the duty of school-inspection, the candidates of theology are required to attend for six weeks as auditors at a normal school, and to have attended a course of Pädajogik at the uaiversity. Nevertheless, it appears that many clergymen are very ill fitted for this work, and that their powers of interference are often exercised in ways annoying to the master, and detrimental to the school. The exterior affairs of the schools of a parish beloug to the board of managers.
This board is usually composed of representatives (1) of the patrons, if any, of the school; (2) of the parochial clergy; (3) of the municipal body; (4) of the householders. It has a stated meeting once a quarter; it meets whenever it is summoned by the chairman. It manages the revenue and expenditure of the school, in respect of which it is responsible to the landrath; it is the trustee of the school510
luildings and property. It is its duty to see that the regnlar school-hours are kept; that no unauthorised holidays are given ; to it application must be made for dispensations for periods exceeding a week. Its nembers should be present at all examinations and other public solemnities of the school. In the large towns, there are school-delcgacies appointed by the Magistrat, whose powers are more extensive, and are in practice the greater, hecause in the large towns the pastors pay little attention to the schools. The school-delegacies have control over the higher as well as the primary schools which their constituents maintain; two paid members - school-delegates - who must be members of the Magistrat, exercise the greater part of their authority. Under the delegacy, for every school there is a school-board, consisting of the clergyman and two lay members, whom the delegacy appoints. The delegacy itself is accountable to the magistrat, and both are subordinate to the provincial council.
Every commune is bound to find school-room and teachers for all the children of school-age belonging to it. The amount of the teacher's stipend is in every case fixed by the departmental government ; there is no legal minimum; the salaries are usually very low. Some parishes possess endowments ; but, in general, the cost of maintaining the schools is defrayed by means of (1) school-fees, (2) a local rate, (3) a grant from the national treasury. As children are only expected to pay what they can, and as the state grants aid only after the strictest proof of the incapacity of the commune, the weight of the burden falls upon the local rate. The maintenance of the schools ranks with the first charges upon the local purse. The teacher is appointed by the departmental conacillor ; in a few towns, however, a certain nower of choice is allowed to the municipal authorities-they may select one from a number of candidates presented to them by the goverument.

School-attendance is by law compulsory for eight years; the school-age beginning at the completion of the fifth year. But in most parts of Prussia, children, thongh allowed, are not compelled to attend till the completion of their sixth year. The schonl-period closes with confirmation. A register of all children of school-age is made up-usually at the police-office; every child is registered for a narticular school; there, whatever his rank, he must attead, unless a dispensation be got for him from the landrath. When a dispensation is applied for, the parents must state the motives of the application, and the provision to be male for the child's education. All persons officially connected with schools are explected to use their intluence to secure regular attendance; but failing moral suasion, there are other means of enforcing it. The schoolmaster keens a list of absences, excused and inexcused. When a child's attendance is irregular, the board of managers admonishes its parent. If ardmonitionwhich in general is repeatedly resorted to-has no effect, a statement is sent to the police-office; the parent is fined a small sum for each day of the child's absence since the last admonition; and the fine can be levied by execntion, enforced by imprisonment, or taken out in parish labour. It seems that very few children escape registration ; but the regularity of the attendance-in general it is very regnlar-varies considerably in different districts; the execution of the law being strict or otherwise according to the temper of the people, their circumstances, and the rigilance of the school-authorities. There are no statistics hy which the success of the law can be exactly tested. In some of the larger towns, the demand for child-labour and the growth

NATIONAL EDUCATION

of pauperism are adding to the difficulty of enforcing it. l'russia has a factory-law requiring that every child employed in a factory shall attend school for three hours a day, and this law is strictly enforcel.
Tcachers of every class, public and private, have to pass two examinations. Certificates are of three degrees of merit-they may be marked 'very well qualified,' 'well qualificd,' or 'sufficiently qualified.' 'The heads of examination are 'religion, the German language, the art of school-kecping, geography of Prussia, arithmetic and geometry, knowledge of natural objects, writing, drawing, singing and the theory of music, organ.' After the first examination, the candilate is eligible as an assistant or provisional master; he must serve in this capacity for three years before taking the second; he must pass the second within five years. The secoud examination is in the same suljects; but now most weight is given to the art of school-kecping. Of the subjects taught in primary schools, the principal is religion ; the others are reading, writing, arithmetic, singing, and the elements of drawing. Incidentally, the teacher may communicate information about natural phenomena; about gengraphy, beginning with that of the locality and the history of Prussia. The teaching wras much more amlitions before 1854; before is5t, also, the normal schools, now limited to a meagre programme, were noiversities on a small scale, aiming at the mental training of their students, rather than at fitting them to teach clementary schools. The change is often ascribed, both in Prussia and out of it, to political motives, having been made by a party unfriendly to popular education; but eminent cducationists defenci and approve it. The schools, they say, are now attempting as much as can be theronghly done in the time allotted for primary education, and are doing it thoroughly; while the showy teaching of former times, with its endeavour to develop the faculties, and to communicate knowledge, neylected the indispensable elcmentary instruction, and, as regarded the greater number of the scholars, was in no respect successful. The normal scheol training, it is said, nuw fits the teacher for his dutics and his position in life ; formerly, it rather unfittal him for them, while fittiag him porhaps for something better. It is, however, admittedly a defect in the Prussian system that it offers to the humbler classes no opportunity of carrying their education beyond the point at which the elementary schools leave it. In some of the towns, there are improvement institutes, where young persons are tanght in the evenings or on Sundays; but they attempt little, are badly organised, and are neglected by the school administrations. It should be stated that the town schools often teach somewhat more than is taught in country places-more geography, history, and natural knowledge-but this, though permitted, is not encouraged by the authorities. Grammar is entirely excluded from primary instruction. The only part of the teaching which is less than excellent is the writing: it has been stated that upwards of 50 per cent. of the recrnits are unable to write-the art, never perfectly mastered, heing lost, it must be supposed, through want of practice.

As regards religions instruction, the rule is, that the primary school is denominational-public schools are set alart, that is, for children of each of the religious bodies; the clergyman who has the charge of the school is the clergyman of the body to which it is appropriatel. Besides the 'Evangelical Establishment,' in which Lutherans and Calvinists are combined, there are the Roman Catholics and the Jews to be provided for; of other sectaries, there are not 10,000 in all Prussia. The Lutherans and Calvinists are combined in the school as in the
clurch. Disscuters are allowed to withdraw their children from the religions instruction, and lave it given by their own pastor. Any comnune may estahlish a mixed school, if it so desire, and if the authorities pernit; but, iu practice, mixed schools are only to be found where it would be very inconvenient to establish a school for each body. In mixed schools, the teachers are chosen proportionately from each of the two great religions bodies; if there be only one teacher, it is, in some districts at least, enstomary that he should be alternately a l'rotestant and a Catholic. The experiment of mixed schools had a long trial in Prussia, and was found to be unsatisfactory, leading to attcmpts, or suspected attempts, at proselytism, and to parish squabbling. It has been abaadoned, not so much from the wish of the government, is in deference to the feelings of the joople, and to the demands of the Roman Catholic hierarcliy. But the denominational system is more in accord with the part which the state assigns to religion in the school. The school, it is said, should be the organ of the church for trainiag children to church-membership; school aod church are expected between them to form the child into a man contented with his position in life. Religions teaching must be given by the master for an hour every day. In the Protestaot schools, the master teaches the lutheran catechism to Lutheran children; the Heidelherg catechism to the Teformed children. Scripture history is also taught; and hymns, from a prescribed collection, have to be committed to memery. The master is not allowed to cxpound the catechism; his duty is to see that the children learn it, and unlerstand the words in which it is cxpressed. It is the clergyman who explains its doctrines to the elder children in preparing them for confirmation.

Any one may open a private school of any class in Prussia who can obtain a licence for the purpose from the government; but in a city, it must be shewn that the district in which the school is to be placed is insnfficiently supplied with schools; and every lrivate tcacher must have passed the two examinations. Private schools are subject at all times to the inspection of the seliod-conncillor, and are bouad strictly to follow the regulations established for private schools. The larger towas in Prussia are not yet adequately supplied with public primary schools; 1 rivate primary schools are therefore common in such places: in Berlin, they educate nearly balf the children who are in primary schools.

Of the secondary and higher edncation in Prussia, a brief and gencral notice must suffice. It has already heen stated that the superintendence of the sccoudary schools is undertaken by the schoolcouncillor of the province; it is independent of ecclesiastical control. The larger communes and the towns are requircd to maintain middle schools, giving instruction of a higher order than is given in the elementary schools, a sound German education, and preparing boys for the gymnasia. These must be provided to the satisfaction of the authorities, according to the wants of the population. They are maintained, like the primary schools, by schoolfees, local taxation, and these failing, the state treasnry. Some of the larger towns maintain also secoulary schools of a higher class; these are of two kinds-the real-school, and the gymnasium or grammar-school. In such towns, as stated already, the local management rests with the school-delegacy. There is, besides, a considerable number of realschools and gymnasia which are entirely in the hauds of the government. None of the real-schools take boarders; very few of the gymnasia do so. The gymnasium is a classical school preparing for

NATIONAL EDECATION.

the universities. In the real-school, mathematics, scientitic studies, and modern languiges are substitnted for the classics, and the iustruction is clesigned to prepare the pupils, as far as pinssible, for the pursuits of life. The real-schools grant certificates to their pupils. The royal real-schools and the gymnasia (other than those maintained by the large towns) are under the management of the proviocial school-councillor. Some of the older of those gymnasia have endowments, but the money necessary for their support is contributed by the state. Appointments to the schools are made by the school-councillor; he ajppoints the teachers, or nominates the leet out of which local authorities have to choose, in all the seconclary schools. Teachers for all the schools have to pass two examinations. There are boards of examiners, appointed by the provincial government, which conduct the examinations; these boards also examine the students of the gymoasia, to test their fitness for the university. The niniversity in Prussia is a teaching (or rather a lecturing), as well as an examining body, and grants degrees in four facul-ties-Theology, Jurisprtdence, Medicine, and Philosonhy. There are seven universities within the territory held by Prussia before the war of 1566; in two of these-Breslan and Bonn-there is a Coman Catholic as well as a Protestant institute of theology. The university affairs are administered by a commissioner appointed by the crown; all their regulations are prescribed, and all the appointments in them made by the state.

State-education in the United States.

In the Cnited States, the education of the people is out of the spivere of the central government; it ranks among the domestic affairs of the several states, and it is chietly in the Northern Statesthose from which, before the late war, slavery was excluded-that systematic attempts have been made to promote it. The central government has, however, in more than one iastance endearoured to assist education in the states, by providing for it endorments. In the states which contain waste lands, it puts aside, in every newly-surveyed township of sir miles square, one square mile, for the support of schools within the township. The state becomes trustee of this land, or of the price obtained for it, which is usually called the Township Fund, and pays over the yearly income to the township wher it has been settled. The central government, about 1836, had accumulated in its treasury a considerable balance, the surplus of its income over its expenditure during several years: this it apportiuned pro rati $\hat{\imath}$ among the states, reserving the right to reclaim it. This right has not been, and is not likely to be exercised; and in most of the Northern States, the income of the "United States Deposit Fund' is applied to the sapport of education. Since 1564, by what is called the 'Agricultural College Act,' the central government has made a liberal offer of allotments of land to the states upon certain conditions, for the endowment of one or more institutions in every state, in which -whatever the other instruction may be-special attention shall be given to those branches of learning related to agriculture and the mechanic arts. Several states are preparing to avail themselves of this offer.
Every one of the Northern States has its common schools. Before the war, Kentucky, Missouri, and Louisiava had each some kind of school-system: at various points throughout the Sonth, Iarticular towns had established schools, always after the model set in the Sorthern States. The new state of Western Virginia has passed a
sclonl-law since the conclusion of the war. In the Northern states, besides the enilowments above described-both of which are possessed by most,i the states-every state possesses a school-fund arising from various sources-sale of lands, taxation, penalties, and forfeitures-which is usually rested either in the state legislature or in a Board of Education. In one or two of the states, the income of this fund is cousiderable, but in general it is small. It is usually, but not in all the states, appliel solely to the support of public schools, or of the normal schools which help to 1 rovide them with teachers. Apart from the influence exercised by means of this fund, the state usually promotes public instruction only by its legislation, by which it requires or enables local bodies to make certain provision for the education of children within their jurisdiction. Eserywhere, the law leaves much, and usually the practice leaves everything, to the local bodies; and these come short of, or exceed the legal requirements according to the local interest in education and ability to pay for it. It is through the interest of the municipalities in education that very ample prosision is made in the towns; it is through the force of example, and in deference to educational experience, that a certain uniformity of system prevails. There is a close approach to uniformity both in the law and in the practice of the several states; and a description of the system of one state will be approximately true of that of other states. The Massachusetts system is fittest to be selected for description, as being the oldest, the most celebrated, that which on our side of the Atlantic is most identified with the common schools, and perhaps on the whole the most successful. Some of the principal rariations from it will be noted.

In 1642-twenty years after the landing of the Mayfower-the Massachusetts colonists passed a law requiring every citizen, under a penalty of $20 s$., to teach his children and apprentices, or have them taught, to read perfectly the English larguage. Five years later, they passed another law, requiring, under penalty, every township containing 50 householders to support a teacher to teach their children to read and write ; requiring every township containing 100 householders to maintain a grammar-school capable of fitting youths for the university. The present law is different, if not less liberally conceivel. The change was made by aumerous steps, and was probably forced on by the circumstances of the community. The law, as it now stands in the revised statutes of the state, proviles that in every township the inhabitants shall maintain for at least six months in the year a sufficient number of schools for all the children of the township. The teachers are to be of competent ability and of good morals, and they are to teach orthography, reading, writing, Eaglish grammar, geography, arithmetic, the history of the United States, and good behaviour. Other subjects-algebra, vocal music, drawing, physiology, and hygiene-are to be taught or not at the discretion of the local committee. Every township may, and every township containing 500 householders mast, also maintain for ten months in the year a school which shall give instruction in general history, book-keeping, surveying, geometry, natural philosophy, chemistry, botany, the civil polity of Massachusetts and of the United States, and the Latin language. And in every township containing 4000 inhabitants, the teacher must be competent to instruct in the Greek and French languages, in astronomy, geology, rhetoric, logic, intellectual and moral sciences, and political econoray. Moreorer, any township may establish schools for children over 15 years of age, determining the instruction

NATIONAL EDUCATION.

to lee given, and apprepriate money for their support. The conpulsory part of the law is surpurted by jenalties, but it is said that there wonld be alifieulty in enforeing them; at anyrate, they are not enforced. It is also provided that every child loetween S and 14 must lie sent to schoul for at least 1" weeks in a year: the penalty for lireach of this provision is 20 clollars, lut the idea of cuforcing it seems never to have luen entertained; its existence eren is not generally known. The law loes nut permit school-fees, or, as they are called in Ameriea, rate bills. There seems to be no fund arising froms waste lands in Massachusetts; and the township raises the necessary funds by a tax upon property - the personal property of the inlabitants and the capitalised value of their real property situated within the township. The amount of the rate is by the law left wholly undetermined: it is cletermined by the householders at their annual meeting. The state endeavours to inflnence the townships to make a liberal provision hy means of the school-fund, a share of which is given to every township which has made its returns to the Board of Edueation, and lias spent not less than at the rate of a dollar and a half per head for all the children of the township. The school-fund contribution is very small-less than a quarter-dollar for every child; but it is said to have an excellent influence upon the raral townships. No cloubt, the fublieation of the returns made to the Poard of Elucation tends to spur on the baekward distriets.

The management and control of all the Iublic sehools of a township are placed in the bands of a school-committee, consisting of any number divisible by three; the members of this committee hold othee for three years, and one-third of them are elected annurlly at the annual mecting of the township. The committee have the supervision of the schools; and it is among their duties to see that no book calenlated to favour the tenets of any particular sect of Christians shall be used in the schools, and to require the daily reading of some portion of the Bilule in the common English version. Any township, by jts public meeting, or a city, by its city-council, may require the committee to appoint a paid superintendent of schools: when this is not clone, the members of the committee receive a small allowance for the time during which they are engaged upon the school-affairs. But, moreover, any township may, at a meeting called for the purpose, resolve to divide itself into distriets for the support of its schools. If this be done, the township names for each district a "prudential eommittce, cunsisting either of one or of three persons, resident within the distriet, whieh is charged with providing and keeping in repair the school-house, at the expense of the district, and, if the township so determines, with the duty of seleeting and eontracting with the teachers. The district determines the amount to be raised by it for the buidling, or repair or furnshing of its sehool ; this is collected by the township colleetor, and handed over to the district-committee. The sehool-committee rutains its functions of management, except so far as they have been made over to the distriets; and bence, there is a double management of the schools, which is formd to be attended with ineouveniences. The division into districts, too, is said to have led to an unnecessary multiplieation of schools in country jlaces: people seheme to hare the township so divided that there may be a school in their neigh-bourlood-there are therefore more schools than are needed, and more than can be maiutained in elliciency. The school-committee-in cities, the school-superintendeut-cxamines the teacher before bis appointment, and grants him a certifieate, whieh
remains in force for a certain time. There are three classes of certilicate-one valid for six months, anotleer for twelve, a third for two years. The common schools of a township are open to all children resident therein between five and fifteen years of age: none are to be exeluded on aceount of yace, colour, or religious opinions; and it has becu held that a child nulawfully exclurled may reeover damacres therefor in an action of tort.

In New Fork, in l'ennsylyania, and in most of the Westera States, large municipal powers are possessed by the comnty, ami the county shares with the township the nanagement of sehool-affairs. New York has a state shperintenclent, whose power over the schools is consilerable. In that state, it is the sehool-commissioner of the 'Assembly District' in which the township lics who divides the townslip into school-rlistricts ; and it is the rlistrict which determines the school-tax : the township is almost completely ignored. In New Tork, Ohio, and Illinois, it is by county ofheials that teachers are examined and eertificated. In New York, lihode Island, and Connecticut, 'rate-bills'-that is, sehool-feesare allowed, and are usually levied. Several states besilles Masswehusetts make school-attendanee compulsory: in most of the status, there appears to be some provision against 'truaney;' but it appears that attempts are not mate to enforce the law except oceasionally, in the ease of honneless, wandering children, who are liable, in lieu of a fine, to be sent to reformatory sehools. It has been calculated that in the city of New Iorlk (pop. 800,000) there are nearly 100,000 ehildren who to not go to school -though in no city is there a better or ampler provision of common schouls.

As might be expected, the sehool-laws work badly in country listricts. The householders are disposed to be satisfied with any kind of schoul, provided it be cheap, and within easy reach of them ; and the multiplieation of schools by the district-system, makes it almost mavoidable that an insullicient sum shoukd be spent upon eaeh school. The teachers-a vast majority of whom are womenbeing wretchedly paid, are badly qualified; they are constantly changing; scarcely any intend to make teaching their nccupation for life. Few of them have been traiued for their work-the normal schools which exist being utterly inadequate to supply the demand for teachers; and the examination by a rural school-committee affords but a slender guarantee of competency. The teacher is usmally 'boarded round' among the farmers of the district, and is said to be treated by them with mneh observance ; but his income-pntting a money-value upon the board-has been estimated at an average of about 50 s . a month, and that only during the time that the sebool is open. In IS64, in St townships of Massachusetts-more than a fourth of all the townships in the state-the sehools were kept open for less thin the statutory periorl of six months. The teaching is said to be wonderfnlly good, consid ering the seanty pay given; but where the vacations last for more than six months, and the teacher is changed almost every term, thorough and systematic instruction is searecly possible. It is in the towns that the working of the sehool-law has been ereditahle and successful. Through the high public spirit of the municipal bodies, and the great importance attached to education, the support of the common schools is in general most liberally provided for.

In the towns, there is usually a superintendent of sehools, by whon, under and in eo-operation with the general and district school-committees, the schools are inspected, and the character of the instruction determined; by him the examination of

NATIONAL EDUCATION.

the teachers also is conducted. Of the schools, there are fow classes-primary, intermediate, grammar, and high-schools or acalemies.

Children usually enter the primary school about 5 or 6 ; the grammar-school between S and 9 ; the high-schonl between 12 and 13 years of age. They are not promoted from one class of school to another without undergoing an examination ; the intermediate schools, where they exist, are intended for those who are too old to be at the primary school, and too backward to enter the grammar-school. To be admitted to a grammar-school, a child must be able to read at first sight easy prose, to spell common words of not more than three syllables, and to have acquired a slight knowledge of arithmetic. For admission to the high-school, the usual requirements are ability to read correctly and fluently, an acquaintance with the simple rules of arithmetic, and some knowledge of geography and grammar. From these tests may be inferred the average proficiency expected to be attained by children leaving the primary and the grammar school respectively. In the grammar-schools of Boston, the programme of studies consists of spelling, reading, writing, arithmetic with bonk-keeping, geography, English grammar, the history of the United States, natural philosophy, drawing, and rocal music: this is nearly the usual programme; hot in New York and one or two otlier states a little more is attempted. Between the high-schools or academies in the various states, there are considerable differences. In the eity of New York, for example, the Free Academy has pretensions to the rank of a university, and grants degrees in arts and science (Bachelor of Arts, Bachelor of Science, Master of Arts) to students who have completed with credit the curriculum of five years. But, in general, the highschools are schools of secondary instruction, intended to prepare youths for the universityinstruction being given in the classical languages, mathematics, the sciences, history, and the English language and English literature. The usual curriculum is one of four years; and the students are not required to study all the subjects trught in the school. At Boston, where boys are admissible to the Latin high-school at 10 years of age, the curriculum lasts for six years. There arc high-schools for girls as well as for boys, the programme of instruction being the same in both. At Boston, the curriculum at the girls' high-school lasts for three years; and pupils at admission must be between 15 and 19 years of age. Boston possesses, besides its Latin high-school and its girls bigh-school, an English high-school, said to be admirably planned and conducted. The instruction in it closcly resembles that given in the real-schools of Germany, including French and German, and various sciences, with their application; being intended to enable boys to complete a somad English education, and to prepare themselves for commercial lifc. Great complaints are almost everywhere made-Boston seems to lee exceptional in this respect-of the irregularity of the attendance at the primary schools. It is estimated that in most states not much more than half of the children pass from these to the grammarschaols; but a trifling propartion of the grammarschool pupils enter the high-schools, and of these, only a small fraction persist to the end of the curriculum. All high-schools grant certificates of graduation to pupils who have creditably gone through the course of study. The study of the classies does not, even iu the most pretentious institutions of this class, seem to be carried very far, much more attention being given to mathematies and natural science. In Boston-in many respects the most favourable example that could be taken-there werc, in 1864,

32,814 children of school-age-between 5 and 15 ; of these, 20,960 were in school, the average attendance being $-4,61 \%$. The number enrolled at the three high-schools was only $7: 25$, and the average attendance 691. The muber of students who complete the fivc years' curriculum of the New York Free Academy sellom exceeds fifty. Among the wealthy, there is said to be a growing disinclination to make use of the common-schools : their children are usually sent to private academies. The only serions opposition to the non-religious character of the com-mon-schools comes from the Roman Catholie clergy ; but it is stated that there is a growing feeling upon this subject among some of the other religious bodies. In many of the New Jork schools, in which the majority of the children are Roman Catholic, clerical influence, insufficient to impress upon the education the religions character which it would approve, has obtained, with the tacit assent of the school-authorities, the disuse of the daily Bible reading which the law prescribes.

The 1 rimary and grammar schools are most frequently mixed schools-that is, they admit boys and girls; in the teaching, however, the sexes are kelt ajnart. The teachers in primary and grammar schools, even in the towns, are usually women; hut in lioston the principal of a grammar-school is always of the other sex. The schools are in towns always graded-divided, that is, into classes composed of those who are at the same stage; each grade forms a separate department of the school, and is tanght by a separate master. The usual number of pupils allotted to a teacher is in the primary schools about 50 ; in the grammar-schools about 35. This system of grading is a cheap system, because it enables a teacher to take charge of a large number of pupils; but it is said to lead to a want of thoroughness in the instruction, the teaching being uldressed to the class rather than to the individual members of it. Want of thoronghness seems, indeed, the besetting sin of American teaching, which aims too much at communicating linowledge, not sutticiently at developing capacities. In the primary and grammar schools, the edncation costs from 25s. to 30 s. per heal; in the high-schools, from $£ 6$ to $£ 10$ per head.

Statistics of National Ellucation.

The proportion of children attending school-i. e., earolled in school-registers- to the whole population of the countries under mentioned may be approximately stated as follows: England, 1 in 7.7 ; Scotland, 1 in 6.5 ; Prussia, 1 in $6 \cdot 27$; France 1 in 9 ; Holland, 1 in 8.11 ; Belgium, 1 in 11 ; Northern States of the American Union, 1 in 4.5 ; Switzerland, 1 in 7 ; the minor Protestant states of Germany, l in 67 . These figures, however, must not be taken as indicating the comparative diffusion of education in the comntries named: nor are they to be relied on as indicating, with anything like exactness, the comparative proportions of children actually attending school; for the proportion of the chidren emrolled which on the average is in actual attendance, varies in different countries. It should also be bonne in mind that averages conceal the condition of the worst parts of a conntry: in Scotland, for instance, where the school attendance varies from 1 in 4 of the population in the best districts, to 1 in 15,1 in 20 , and even to 1 in 30 in the worst.
See the licports of the assistant-commissioners appointed to inquire into the State of Popnlar Education in England, vol. iv., being vol. xxi. part iv. sess. 1861 ; the second Report of the Suotish Elucational Commissioners, 1867; the Statistical Society's Quarterly Journal for March 1867; Horace Mann on Education in European Cunntries; 'Fraser's

NATIONAL EDUCATION-NAUTILUS PROPELLER.

Report on American (U. S. and Canada) Schools; Cousin on Gerruan and Dutch Education; M. Plock's Abstract of Public Documents relating to Whucation in F'rance; L'Instruction clu Peuple, par l'ierre Tempels (Bruxelles, 1563) ; Statistiche Nuchvichten über das Elementar Schulwesen, an official returu, which gives a complete survey of elementary elucation in Prussia to the end of 1564; Congrès International de Bienfaisance de Londres, Session de 1862 ; and Repport ct Discussion sur- CInstruction Obligatoire.
[Since the preceding account was written, the claims of national clueation have leen more fully recognised, and, with less opposition than might bave beeu expected, a national system las been established in England and Scotland. The Eilementary Lducation Act for England, IS70, enacts that every district in which the existing schools are found deficient shall have a popularly elected school-board, to manage its rate-sulp1orted schools, levy school-rates, appoint teachers, \&c. Elementary schools are to be supported, and the expenses of school-boards paid, ont of funds called school-funds. The lacal rate forms the nucleus of each schoolfuml; but every school under the act is likewise entitled to an annual grant from parliament not exceeding the income of the schaol from other sources, and varying in amount according to the number of pupils and their proficiency as tested by different stantards of examination. Sehonls are to be open at all times to government inspection. lecligous instruction, if given at all-and this is left to each board to decide-is to be given at fixed times other than the ordinary school-hours, when no child is compelled to attend. It is further left to the discretion of school-boards to make education compulsory.-The Scutch Etheation Act, 1872, differs materially from the English act on three points only: first, by providing that a schoul-board, mader the Scotch Education Department, is to be elected in erery parish and burgh ; seconlly, by making it illegal for parents to omit educatisg their chaldren between 5 anm 13 in reading, writing, and arithmetic; and thirdly, by comprebending higherclass schools. Otherwise, the acts are much alike. Every school is to be open to chiletren of all denominations, and religions instruction is only to be given before or after ordinary sehool-homs. l'iovided they conform to the 'conscience clanse,' school-boards may make any provision they please for religions instruction. School-boards are enjoined to rclieve the teachers of bigher-class schools, so far as may be, from elementary work.]

NAU'TILUS PROPELLER is the best known among many names given to a mode of propeling steam-vessels by means of a horizontal wheel within board, instead of a paddle or a screw on the outside. Hydrunlic or Turtine propeller wonld either of them be a better designation. Engineers thought of this mode of propulsion generations ago, ame pateuts have becn taken out for inventions relating to it by Tongool, Hayes, Rumsey, Linaker, Mall, and others; but the most suceessful attempts to realise it have been those of Mr Ruthen. Me constructed a small boat, 9 feet long, in 1839 (tried on the Union Canal), and a vessel, 40 feet long, in IS 44 (tried on the lorth), to test the principle; each was worked by a small steam-engine, and provided with the hytrantic apparatus. In IS49, Mr Rutheen mate improvements in the apparatus, and introduced them in a vessel, 30 feet long, tried upon the Thames. In IS5I, he placed a boat in the Creat Exhibition. In 1853, a vessel on this principle, called the Albert, was built in Prussia hy M. Sydel, the machinery being supplied by Mr Rotluen. She plied on the Oder as a passenger-steamer for many
years, and illustrated farourably some of the characteristic featurcs of the nautilus system. The term of Mr linthven's matent expired, however, before the invention had worked its way into use in England; and the Privy Council, in IS63, gave a further term of ten years. IIe afterwards began builling a vessel to be called the Nautilus; while the Admiralty authorised the commencement of the gun-vessel llaterwitch, both to be worked ou the Rathen principle.

The Nrautilus was first tried on the Thames in April 1866. It is fittel with two steam-engines, of 10 (nominal) horse-power each, with cylimers of 17 inches diameter, and 2 feet stroke Water is admitted through apertures in the bottorn of the vessel into a watertight iron case or compartment. In this case is placed a horizontal turbine-wheel, 7 feet in diameter, actel on from a vertical slaft comnected with the steamcylinders. The wheel is divided into conipartments by plates or radii of peculiar curvature, and is placed below the water-line of the vessel, so as to be always immersed. Two pipes extend from the wheel-case, one to cither side of the vessel, where they emerge nearly at midship. Each pipe terminates with nozzles, 10 juches in diameter, placed ontside the vessel at right angles to the pipes ; insomuch that each side of the vessel has a nozzle pointing ahead aud another pointing astern. A valve is fitted to each pipe, at its junction with the nozzles, to open the passage to one nozzle and close it against the other; and the movement hoth of the starboard and the larboard valves ean be governed from a raised deck built over the enginehouse. The wheel-case is always full, or nearly" full, of water, which enters through the apertures in the bottom of the vessel. When the wheel is made to rotate horizontally by the steam-cngines, water is drawn in through the hollow axis, and expelleal at the periphery by centrifugal force; it can only find an outlet through the two pipes, and then throngh the nozzles which terminate them. Supposing the nozales pointing astern to be open, and those pointing ahead to be elosed, the water of the river or sea, resisting the outrush of the water from the noziles, propels the vessel foward; when the forward nozzles are open, and the hinder ones closed, the vessel is propelled backwards, or driven astern. The captain, standing on the raised deck, and commanding both valves, can close the fore-nozales, and open the aft, which makes the vessel go ahearl; he can open the fore, and close the aft, which makes her go astern; he can open one fore-nozzle, and close the other, which makes her turn. By this remarkable action, the officer can steer the vessel without any rudder whatever, althongh a rudder is, for other reasons, useful ; and the vessel can turn completely round in a smalier space and a shorter time than an ordinary steamer. The exit of the water from the nozzles is a little above sea-level, a plan found to be better than actually immersing them. In one of the trial trips of the Vautilus, with strong wind and tide urging her on, and going at full speed, she was stopped teal in less than ton scoonds, and in about a quarter of her length, by simply reversing the valves.
The performance of the Nurtilus was so satisfartory as to lead the Ailmiralty to expedite the finishing of the Hraterwitch, an iron-clad gun-vessel of 775 tons and 160 horse-power. In this vessel, the wheel is 14 feet dianneter, the curved radii 12 in number; it rotates (at full engine-1ower) 39 times per minute, in a wheel-ease 19 feet diameter; the pipes from the case measure 27 inches by 25 ; the brass nozzles, 24 inches by 18 , are continued along the outside of the vessel, 8 feet on each side of the
centre ; the lower lips of the discharge-nozzles are 8 inches below water-line, the remainder of the aperture leing above water. The trial-trip, in October 1866, was successful in regard to speed, as compared with the Viper screw gun-vessel, of similar tonnage and horse-power.
During 1867, the Nautilus and Waterwitch were subjected to other tests besides speed, in relation to the following adrantages claimed for the turbine principle. 1. With this wheel there cannot be any 'slip,' which occasions a certain loss of power in the paddle and the screm. 2. The power being uniform and continnous, the motion of the ressel is likely to be smooth, little affected by trembling or vibrating. 3. The propelling power being unaffected by a storm, there will be no reaction on the engines from the motion of the vessel in a heary sea. 4. The vessel is rendered independent of her rudder, as she can be turned on her centre by the propeller alone, withont the helm and withont steerage-way. 5. The propeller, being placed within the vessel, is less exposed than the screm or the paddle to injury from shot, fouling, or accidents of war. 6. The propeller, on account of its action being indenendent of the dranght of water, will work effectually so long as there is the barest depth of water for the vessel to float in. 7. Should the vessel spring a leak, or be pierced with shot, the regular supply of water can be cut off from the wheel, and the leakage-water used instead, thereby pumping the hold by the very act of propelling the vessel. S. From the peculiarities of action, the hydranlic propeller is likely to [resent great facilities for mancurring a ship-ofwar under steam.

NEEMU'CH, or NLMACH, a town of Iudia, in the territory of Gwalior (!. v.), near the northwestern horder of Malwa, 300 miles south-west from Delhi, on a slightly elevater ridge rising from a rell-cultivated plain. It is 1476 feet above the sea. The native population of the town is only about 4000 ; but N. has acquired importance on account of a British cantonment established here in 1517 . Prior to the sepoy mutiny of 1557 -1859, the officers' quarters comprised about 50 bungalows, beautifully situated among gardens; but all, except a single burgalow, were destroyed in 1857 by the mutineers, who massacred the Europeans, and kept possession of the fort for some time, till it was capitured by Brigadier Stuart after a siege of fourteen days. The situation of N. is regarded as one of the most healthy in India; the chmate is agrceable, the nights cool even in the hot scason, the winter seldom so cold as to make fires requisite, and frost very rare.

NEGAPATA'M, a town of British Iudia, in the presidency of Madras, and district of Tanjore, 124 miles south-south-west from Madras, on a small estuary of one of the many small southern mouths of the Cauvery. The manufacture of cotton and silk fabrics was, in former times, extensively carried on here, but has greatly declined in consequence of the cheapness of British goods. A chief branch of industry is the expression of oil from the cocoa-nut and from oil-seeds. There is a considerable trade with Ceylon. The harbour is suited ouly for small coasting-vessels ; but measures are in progress for its improvement. It is proposed to connect I. by railway with Trichinopoly, so miles distant. N. was the canital of the Dutch jossessions in India, but was taken by the British in $1 \% \mathrm{Sl}$. Pop. 10,000 .

NELLO'RE, a tomn of British Iudia, capital of a district of the same name, in the presidency of Madras, situated on an elevation on the right bank of the Northern Pennar, 20 miles from its mouth, and 95 miles north-north-west from Madras. It is
irregularly built, and the population in some places much crowded; but there are some good streets. The abundant supply of water contributes to the health of the tomn. N. was formerly an important fortress. It is a curious circumstance that, in the end of last century, a pot filled with Roman gold coins and medals-chiefly of Trajan, Adrian, and Faustina-was found under the ruins of a small Hindu temple at Nellore. Pop. 20,000.

NE'LSON, the capital of a province of the same name, in New Zealand, is situated at the north end of the Middle Island, at the month of the Maitai, a small river, and at the head of a large bay called Blind Bay. The sitnation is very beantiful, on a flat, hemmed in by rugged hills and amidst almost tronical luxuriance. The barbour, however, only admits vessels of 500 tons at high water, and this circumstance has much retarded the progress both of the town and the settlement. The centre of the town is a hill rising 40 feet above the surrounding streets, and laid out as a square with an Episconal church in its centre. N. was founded in $18 \$ 1$. The population in $15 \% 1$ was 5531 , being a decrease of 118 as compared with that of 1867 . The manufactures of the town comprise cloth and leather. Steamers sail to the neighbouring ports.

NERIA ${ }^{\prime} \mathrm{D}$, a town of British India, in the presidency of Bombay and district of Kaira, on the route from Baroda to Ahmedahad, 35 miles north-west from Baroda, on a feeder of the Sabarmati. It is the chief town of an extensive and well-cultivated tract, which produces much tobacco, and contains many prosperous towns and villages. Pop. 40,000.

NERYOUS DISEASES OF AN OBSCURE NATURE AND NERYOUSNESS. Although the most important affections of the nervous system, as chorea, convulsions, epilensy, hydrophobia, hypochondriasis, hysteria, neuralgia, paralysis, spasms, and tetanus, have been considered in special articles, there is an infinite variety of (often evanescent) forms which the diseases of the nervous system assume, some of which we propose now to consider.

These nerrons affections are almost solely confined to women, and most of them may be regarded as modified forms of hysteria. Simulated Pregnancy, or. as the French physicians term it, Nervous Pregnancy, is an affection of not very rare occurrence. The abdumen gradually enlarges, the catamenia are suppressed, and sickness, enlargement of the breasts, with the other synutoms of pregnancy, supervene (as far as they can he recognised by the nonprofessional ohserver), and it is only the non-appearance of the infant at the expected period that leads to a suspicion of the true nature of the case. The diagnosis of such a case is extremely difficult, and the most celchrated acconcheurs have been deceived. We commence with this extreme instance, as being singularly illustrative of the power which a perverted action of the nervous system may impress upon certain persons. The somewhat allied cases in which patients persist in fancying themselves pregnant in opposition to the opinion of their medical adriser (as the mell-known case of Queen Mary, so admirably drawn by Fronde), are far more numerous. The intestines are often implicated in cases of a deranged condition of the nervons system. The excretion of gas from the intestiual mucous membrane is often much increased in the class of patients commonly called nervous. The rattling sonnds prodnced by the morement of the gasscientifically known as bomborygmi-are sometimes so loud as to prevent the patient from entering into society with comfort; and sometimes the mere fear of the occurrence of these sounds is

NERVOUS DISEASES OF AN゙ OBSCURE NATURE—NEST-BUILDING APES.

suficient to induce them. A lipraved sppetite, scieutitically kuwn as jica, is a common symp)tom of deranged nervons system both in chlorotic young women, in whom the catamenial ilischarge is neit well established, anel in pregnant women. Nee Nomin 1 D APPFTITES. The not very rare cases of fasting women and girls belong to the same cate gory: dll these cases, bowever, nltinately undergo detection.
Dr Parry and other yinysicians have described cases of morloid sunsibility of the mucous membrane of the pharyux, in which the muscles of the larynx are called iuto violent action if the patient takes a sip of water or other dluid. Such cases so strongly simulate hydrophobia, that they are deseribed as hysteric hydropilobia.

Passing on tu the special modifications which an abnormal state of the nervous system impresses on the organs of circulation, we have nervous palpitation of the heart, which may readily be distmguished from palpitation dependent on change of structure by due attention to symptoms. There is a peculiar form of abdominal pulsation, due solely to nervons influence, which may not very unfrequently be felt on pressing the hand on the patient's abdomen. It has in many cases been mistaken for aneurism.
The nervous symptoms inmplicating the respir atory organs are not only the most common of any, but are alarming and urgent, and may be readily mistaken for indications of serious inflammatory or organic distase. Nervous astbma, which is suplered to depend upon a spasmodic constriction of the bronchial tubes, is too well known to require comment. Women suffering from a deranged condition of the nerrous system sometimes present symptoms of what may be termed nervous catarrh -such as a copious flow of tears, free discharge from the nostrils, and constant sneezing. Such cases are often periodic. They may be treated with preparations of iron, and are sumetimes at once checked by a pinch of snuff. There are varions forms of cough due mainly to nervous irritation, the difference in the character of the eough prob. ably depending on the spot which is the seat of irritation. Thus, we hear of spasmodic cough, which is often accompranid by much straining and convulsive agitation, and somewhat resembles hooping-congh ; ringing eongh, accompanied by dyspnoa and hoarseness, or loss of roice; barking congb, often arising from irritation of the ovaries, \&c. such congls as these are aggravated by depleting measures, orlinary congh medicines, \&e., and usually disappear under the use of tonics.

The nervous affections of the motor system arc conveniently grouped by Dr Layoock uncler three beads-(1) the first including those cases in which there is paralysis or spasm witbout distortion; (2) those in which distortion follows cessation of muscular equilibrim, as in the various forms of clob-foot; and (3) paroxysmal affections. The best example of the first class is hysterical paralysis of the lower extremities, of which Sir Benjamin Brodic long ago wrote as follows: 'T have known not a few, but very numerous instances of young ladies being condemned to the horizontal postire, and even to the torture of caustie issues and setons, for several successive years, in whom air, and exercise, and checrful occupations would probably have procured a cure in the course of a few months.' A notice of snch cases as these may be found in the article Hrsteria. Paralysis of a lateral half of the body, or of one limb only, may also be merely a manifestation of bysteria. The second class is well illustrated by the following case, which is reported by Mr Shaw. A 664
young lady who had suffered from a train of symp. toms indieative of a disturbed nurvous system, Irad the ankle suturned rund that she walked on one side of the foot. The knee was als bent nutwards, and the spiue was hecoming distorted. Sir Charles Bell, who saw her in consultation, regarled the case as one of wilful deception, and in a year's time his diagnosis was completely established, scarcely any trace of lameness being aprarent. Many of the joints as the kinee, bip, dic.-may be the seats of purely neuralcic symptoms, which so closely simulate organic disease of the eartilares, as to lead to the renoval of the limb. Carmichad, Brodie, and others have recordet cases in which this terrible mistake has heen made hy expernenced surgeons. spinal irritation. or spinal tembrmess, is a mysterious affection, whose cliamustic value is nut very definite, as it may arise from a large number of distinct conelitions, as, for example, disease of some part of the spinal corl, uterine disuase, chronic clisease of the intestinal riscera, \&.

One of the most anomalous affections of the nerwos system "wer recorded is lescribed by Mr Holden in the St Bartholumew's Mospital lieports, 1567 , vol. iii., pp. 299-305. 'The patient is a brightlooking boy about 12.2, who, as he lies reading in lued, presents every appearance of perfect health: all that be complains of is what he calls his 'bump,' which is about the size of a hen's egg, and lies on the right side of the neek, just above the shoulder. If the 'Lump' be touched, even most gently, the boy instantly loses all consciousness, and becomes deaf, dumb, and blind, while his body becomes arched like a bow, and is supported only by the back of the heal ind the beels, wlile his arms are rigilly extended. Tfe may be pinched or pricked, but shew's no siru uf sensation. After remaining in this state fur somewliat less than a minute, le draws a deep long breath, which is folluwed by a deep sigh. Instantly the spasm ceases, aut the lodly falls, seemingly lifeless, on the led. After two other similar sighs, which occur in a few seconds, the hoy arakes as if from profound slecp, and in a few minutes is none the worse for what he has gone throngb. Whenever the bump is tonched-eren when the boy is fast asleep-the same phenomens occur. (lt has been found that, on toucbing the backbone in the dorsal region, the same surics of events happen.) by continuous gentle manipulatiou of the bnmp, the boy has been kept unconscions for twenty minutes. Another and even more remarkable phase of the boy's affection is his crowing and barking fit, which takes place every day at the same time, almost to a minute. See the Feports above cited.

With this illustmation, we close our remarks on what may be terned 1 nomalous I lervous Affections. With regard to Jervousness, which also stands at the bead of this article, we may observe, that it is a word fertaining rather to the vocabulary of the patient (and pre-minently of the female patient) than of the physician. It is nsually understood to inclicate a condition of which a restless mobility, with or without an undue excitability of the nerves of sensation, is the chicf characteristic. For further information on this subject, the reader is referred to Dr Laycock's various works, and to Romberg On Diseases of the Fervous System, a vols, transtated by Dr Sieveking.

NEST-BUILDIXC APES. Jeference Tras made, but with some hesitation, in the article Gorilla, to certain now species of apes of the same genus with the chimpanzee and gorilla, said to have been discorered by M. du Chaillu in Western Africa. The complete vindication which has since taken place of that traveller's reputation as a truthful
and trustworthy obserrer, makes it uecessary to give some further notice of these now unquestioned discoveries, exceedingly remarkable on account of the habits of some of the animals. To protect themselves from the rain, they construct nests, or rather umbrellas, among the branches of the trees, of long branches and leaves laid one over the other very carefully and thickly, so as to be 'eapable of shedding water.' The branches are fastened to the tree in the middle of the structure by portions of the stems of trining shrubs, abundant in these forests. When the leaves dry; so that the structure no longer keeps out the rain, the owner builds another shelter; and Du Chaillu says this happens

Nest-building Ape (Troglodytes calrus).
onee in ten or fifteen dass. The nest-huilding ape (Troglodytes calvus, called Nshiego Mboure by the natives) is nearly four feet in length. Du Chaillu surposes this ape to rest all night on a projecting branch under its nest or umbrella, with an arm round the stem of the tree for security. The nests are generally constructed about 15 or 20 feet from the ground, and in cariably on a tree which stands a little aliart from others, and which has no limbs helow the one in which the nest is placed, probably in order to safety from serpents and other animals. These apes inhabit the most lonely parts of the forests. The nests are never congregated together, so that this ape does not seem to be gregarious. It feeds on fruits-Dn Chaillu discovered a second species of nest-building ape, on his second visit to the Ogobai, rery similar to the Troglodytes calvus, but which constructs its nest in a somewhat different fashion. It is called Nishiego Nkengo by the natives. It makes its dest or shelter at the height of about 20 or 30 feet from the ground, by bending orer and intertwining a number of the weaker houghs, the foliage of which forms its protection from rain.

NEU-CHWAN゙G, or FDIG-TSZE, a town of the Chinese Empire, in Manchuria It stands on the left bank of the river Liaon, about 25 miles from its mouth, and in lat. $41^{\circ} \mathrm{N}$., and long. $122^{\circ} 30^{\prime} \mathrm{E}$. The Liaou, which falls into the Gulf of Liaou-tong, at the head of the Fellow Sea, is narigable for seagoing vessels to $\mathrm{N}_{.}$; and $\overline{\mathrm{N}}$. is therefore regarded as a seaport, and is one of those opened to foreign trade by the treaty of Tientsin. A British consul resides here; but the trade is as yet inconsiderable, and only to Chinese ports.

NEUILLY (sometimes called Netiliy-surSEINE, to distinguish it from several much less
inportant places of the satae anme), a town of France, in the dep, of seine, on the right bank of the river Seine, immediately to the north of the Bois de Boulogae. N. may now be regarded as a suburb of Paris, with which it is connected by several streets, or roads, lined with numerous villas. Here, mear the Seive, and in a large and beautiful park, formerly stood the Chiteau de Neuilly, built by Louis XV., and the favourite residence of Louis Philippe, which was burned at the revolution in 1S4S. The park was also then divided into lots for sale, the consequence being a rapid increase of the number of houses in Neuilly. N. has manufactures of porcelain aud starch, chemical works and distilleries. Pop. (1866) 16,475. When Louis Philippe abdieated, and took refuge in England, he assumed the title of Count de Nevilly.

NEU'MÜISTER, a prosperous manufacturing and market town of Holstein, on the Schwale, one of the head-waters of the stoer, and on the railmas betweeu Altona and Kiel, 19 miles south-by-west from Kiel. There are large woollen and linen factories, tanneries, dye-works, and breweries. Pop. (1864) 7797 .

NEUSTETTIN, a town of Prussia, io the prorince of Pomerania, 92 miles south-west from Danzig, on the southern shore of the Vilm See. It is the capital of a circle, and a place of some importance. Pop. 7000.

NEU'TRA, a town of Hungary, the capital of a county of the same name, on a river of the same uame, i= miles north-north-west from Pesth. N. is a very old town, having been the residence of a Moravian prince in the 9 th c., before the Magyar invasion. Weaving is carried on to some extent, and N . being not far from the Morarian froutier, has a considerable transit-trade. Pop. 9267 .

XEVIA'NSK, a town of Russia, in the government of Perm, 50 miles uorth from Ekaterinhurg. It is on the eastern or Siberian side of the Ural Mountains, and stands on the Neira, the waters of which flow by the Tobol and the Irtish to the Obi. The district around 5 . is famous for its mineral wealth, particularly for its productiveness of gold, corper, and platinum. N. has a mint, the tower of which is remarkable as leaning eren more than the celebrated tower of Pisa. Pop. $1 \mathrm{~S}, 000$.
NEW CHURCH, a very thriving town of Lanea. shire, England, 19 miles north from Manchester, in Rossendale, not far from the source of the Irwell. It has recently and rapidly risen to its present importance. There are numerous cotton and woollen manufactories, employing many operatives. Coal is also wrought in the neighbourhood, and there are numerous large quarries of excellent freestone. Pop. about 4000. The aeighhourhood is very populons, abounding in manufactories aud other publie works. -Not much more than a mile to the west of N., is Rawtenstall, a large village, now almost a town, and rapidly increasing.
yGAN-KING, a large and wealthy city of China, the capital of the province of Sgan-whi. It stands on the left bank of the great river Yang-tze-Kiang, 190 miles south-west from Nankin. The surrounding country is highly cultivated, and very densely peopled. The mineral riches of the neighbourhood are also considerable. N. is a place of husy trade, great part of the goods intended for Nankin passing through the hands of its merehants. The trade is carried on by means of vessels on the river. Porcelain and cloth are among the principal articles of trade.

NIARE (Bos brachicheros), the wild ox or buffalo of tropical Westerm Africa, is in size and weight

NICARAGUA-NICHOLSON.

about equal to the smaller breeds of British oxen, but of greater strength. The head is rather small, the muzze black, the ears long and pointed, and fringed with heantiful silky hair, several inches long. The horns are 10 or 12 inches long, curved backwards, and sharply pointed. The animal is gracefully proportioned, having nothing of the clumsiness of the common buffalo. The borly is covered with a coat of thin red hair. The tail is tufted at the extremity with black hair

> Niare (Bos brachichcros).
several inches long. Herds of these oxen were seen by Du Cbailu in the open or prairie lands to the sunth of the month of the Ogobai. They are shy and fierce; if wounded, they turn upon the hunter with terrible fury. No attempt scems yet to have been made to domesticate this animal, which is probably very capable of it, and might he found more suitable than other oxen for warm chimates.
NICARA'GUA, or IIIVAS, a town of the republic of Nicaragua ($(1 \cdot v)$, Central America, on the western shore of the Lake Nicaragua (q. v.), 35 miles south-south-east from Granada. It is not a place of much commerce, the commerce of the lake being chiefly carried on by Granada. Pop. 8500.

NICHOLSON, Jons, British general, one of the most distinguished of the later schuol of Indian soldiers, was lorn in Dublin, 11 th December 1821. His father, a 1 hysician of cousiderable reputation in that eity, died when the boy had just completed his Sth year. ISy his mother, a woman of strong sense and much practical piety, he was carefully educated; and from her he secms to have inherited or imbibed a certain religions gravity and carncstness of character which was early noted in bim, and continued to distinguish him throngh life. Through the influence of her brother, Sir James Weir Hoges, an Indian cadetship was olstained for him; at the age of 10, he arrived in Calcutta, and was soon after posted to the 2lst Native Bengal Infantry, then stationed at Ferozepore. In 1S40, his regiment was ordered to Ghizai in Afghanistan, where two years after, in the disastrous insurrection which avenged our ocenpation of the country, it was compelled to surrender to the enemy. After a time of miserable captivity, he regained his liberty, and joined the relieving army under General Pollock, to be sadrened immediately after by the death, in action, of his brother Alexander. A period of inactivity ensued, during which be was stationed at Meerut, doing duty as adjutant of his regiment. On the breaking out of the Sikh war in 1845, he served in the eampaign on the Sutlej, and was present at the battle of Ferozeshah, though, as attached to the commissariat department, withont special opportunity of distingnishing himself. After the cessation of the war, through the recommendation of Colonel (afterwards Sir Henry) Lawrence, N., now a
lientenant, was appointed assistant to the resident at the conquered capital, Lahore, and thus fairly transferred to the political branch of the service, in which most of his future time was passed. But shortly, with the onthreak of the Sikli rebellion in 1848, there came an interlude of military activity, in which he greatly distinguished himself. To N.'s daring and promptitude was due the preservation to us of the important fortress of Attock; and soon after, his success at the Margulla Pass, in intercepiting and defeating a large body of the insurgents, hrought his name prominently before tho world. Throughout the struggle which followed, he rendered important service; and at the great battles of Chillianwalla and Gujerat successively, he earued the special approval of Lord Gough, to whom he was immediately attached.

The l'unjab having finally become a British province, Captain N. was appointed a deputy-commissioner under the Lahore Board, of which Sir Henry Lawrence was president. He had now been nearly ten years in lndia; his strength was somewhat shaken by arduous service, and various illnesses Which from time to time had assailed him; and above all, he was anxious to visit and console his widowed mother, then prostrated by the death in India, by an accident, of William, his younger brother. In 1850, accordingly, he took his furlough, and returned home, taking Constantinople en route, and visiting, with an eye to professional instruction, the capitals of all the great military powers of the continent. On his return to India, he was again appointed by Lawrence a deputy-commissioner in the Punjah, and for five years subsequently his work lay among the savage tribes of the frontier. His success in bringing them under thorough suljection to law and order, was something marvellous; and such were the impressions of fear and reverence wrought by the force and massive personality of the man, that he became among these rucle populations, under the title of 'Nikkul Seyn,' the object of a curious kind of hero-worship. So far was this carried, that a sect actually aruse, of NikkulSeynces, who consecrated him as their Gurn (or spiritual guile), and persisted-despite of severe Hoggings regularly inflicted by the worthy man, indisposed to accept of divine honours-in falling at his feet, and making him an object of express adoration.
With the outbreak of the great mutiny in 1857 came N.'s supreme opportunity, and the brief career of glorious achievements in which he developed is the eye of the world the full power and splendour of his military genins. In the saving of the l'unjab, virtually India was saved to us; and under Sir John Lawrence, who had succeeded his brother, Sir Henry, N.- though not without noble coadjutors to divide with him the honour-perhaps did more than any other single man to hohl firm our grasp of the Punjab. He it was who suggested the formation of the famous movable column, by which mainly the work was done, and presided over its organisation. Shortly, he was appointed to command it ; and in his dealings with the suspecterl regiments of sepoys, he exhibited a particular combination of bolduess with subtlety, diseretion, and astuteness, scarcely too much to be admired. At Trimmu Ghaut, on the 12th and 14th of July, he bronght to bayr, and nearly utterly amnihilated, a large force of the declared rebels. Things thus made safe behind him, he marched to reinforce the army of General Wilson, cngaged in the siege of Delhi, arriving in camp on August 7. His presence and counsels gave new impulse to the operations; and in every way he strove, with fiery and impatient energy, to expedite the delayed

NICOLAI-NITRO-BENZOL

assault. A strong body of the enemy having tried to make their way into the British rear, to N. was assigned the task of intercepting and bringing them to battle. This he achieved on Angust 24, near Nujuffghur-under circumstances of extreme difficulty, in the most masterly manner surmounterlobtaining a most brilliant result in the complete ruin and dispersion of the mutincers. When the assanlt on the city was at last ordered, General N. (for to this rank he had now attained) was selected for the post of honour; and on the morning of September 14, he led the first column of attack. After the troops had forced their way into the city, an unforeseen check occurred, and N., ever in front, exposed hinself in the most fearless manner to animate his men to advance. Conspricnous by his toweriog stature, be became the mark of the enemy's bullets, and fell, shot through the borly. He lingered for some time in great suffering, and died on the morning of the 23d. Over the whole of India, the victory was saddened by his death; for it was felt that in John N., to use Lord Canning's expression, 'a tower of strength' had fallen. During the whole war of the mutiny, though it claimed many noble victims, there fell no man more regretted in his death than N., or in his death more worthy of regret. Throughout his career, he shone-as opportunity offered-a veritable 'king of men;' one of those born to command, who naturally and inevitably rise to it, and bowever great in achievement, seem to need only the hap of ampler opportunity in the future, to outsoar their great achievements in the past. No one ever seems to have come fairly in contact with him without being strangely impressed with this sense of a magnificent reserve of power in him. It remains only to add, that his nature was on the one side as gentle, tender, and affectionate, as on the other it was strong and brave; and that, by all who had intimate relations with him, he was not less beloved for his mild virtucs, than for his sterner gifts honoured and arlmired. To his memory all houour was paid. The Queen commanded it to be officially announced that, had be lived, he would have been created a Knight Commander of the Bath; and by the East India Company, a special grant of £500 a year was voted to the mother who survived to mourn for him.-For further details of the life of this mau of right noble and heroic mould, the reader is referred to the account of him-from which this little sketch is redacted-given in Mr Kaye's most interesting work entitled Lives of Indian Officers (2 vols., Lond. A. Strahan \& Co., IS6T).

NICOLAI, Otro, a German musical composer of note, boru at liünigsberg in IS09. His early life was a struggle with poverty and difficulties. He studied for three years in Berlin under Klein; and in 1835 weut to Fome, where he went through three more ycars of study under Baini. After travelling for teu or twelve years over Europe, be lrecame, in 1847, Kapellmcister at Berlin, a post which he soon resigned. He appeared as a composer of dramatic music as early as 1831 ; but his first work of importance was Il Templario, founded on Scott's romance of Ivanhoe, which, produced at Turin in 1S41, attained a high and prrmanent reputation. In 1S4S, he wrote at Berlin Die Lustigen Wreiber von Hindsor, on which his renown as a musician is founded, a work charming for its clear design and lively vigorous tone, whose overture is almost worthy of Weber. Two months after the production of this his chef. d'ourre, its composer died at Berlin.

NICOSI'A, a city of Sicily, in the province of Catania, 70 miles south-west from Messina It is situated on the crest of a steep conical hill betwreen
two head-branches of the Salso. It has scarcely any manufactures, but carries on some trade in corn, wine, oil, and cattle. Near it are beds of alum schist, a rich mine of rock-salt, and springs of petroleum. Pop. 14,251.

NIEU'WER AMSTEL, a town of the Netherlauds, in the province of North Holland, five miles south-by-west from Amsterdam. Гop. (IS64) 7306. A few miles to the east of it is the village of Ouder Amstel, with alont 3000 inlaahitants, on the Amstel, one of the smaller mouths of the Rhine, which passes through the city of Amsterdam, and falls into the Zuider Zee.

NISCE'MI, a town of Sicily, in the province of Caltanisetta, 10 miles north-east from Terranova, and on the right bank of the river Terranora. In 1790, this town was visited by an earthquake, and during seven shocks, the ground gradually sauk, in one place to the depth of 30 feet. Fissures opened, which sent forth sulphur, petroleum, hot water, and mud. Pop. 9323
NISCH, or NISSA, a town of Toumelia, European Turkey, 122 miles south-cast from Belgrade. It stands ou the left bank of the river Nissawa, a branch of the Morawa. The town is ill built; but many new houses, and a well-supplied bazaar, attest its present prosperity. N. has loug been noted as the point of meeting of many roads, both of military and commercial importance. It seems likely to acquire fresh importance by the construction of a railway from Eelgrade to Constantinople and Thessalonica. In ancient times, N. bore the name of Naissos, and was a flourishing town of Upper Mossia. About a mile from it is a tower composed of human skulls, erected to commemorate a victory of the Turks over the Servians; and not far off is the hill of Woinik, or Kriegsberg, where, in I6S9, the Markgraf Louis of Baden, with 17,000 men, destroyed a Turkish army of 40,000 . Pop. 13,000.
NI'TI-GHAUT, a pass of the Himalaya, between the British district of Kumaon and Tibet. It takes its name from the village of Niti, in Kumaon, 13 miles sonth of the pass, in lat. $30^{\circ} 47^{\prime} \mathrm{N}$., and long. $79^{\circ} 56^{\prime} \mathrm{E}$. The pass is 16,514 feet above the level of the sea. This is regarded as the easiest pass between Kumaon and Tibet, and is consequently one of the principal channels of trade between Hindustan and Chinese Tartary. The Bhotias of Niti subsist chiefly by the carrying of goods in this trade. The articles of merchandise are conveyed on yaks, goats, and even sheep. Travellers often suffer much from difficulty of respiration on the pass of Niti-Ghaut, on account of the rarefaction of the air.

NI'TRO-BE'N ZOL. This sulustance has recently taken a prominent place amongst the narcotic poisons. Under the name of Essence of Mirbane, it is largely employed, as a substitute, in perfumery and confectionery, for oil of bitter almouds, which it closely resembles in swell, and to confectionery it gives the smell, but not the agreeable taste of that oil. It is a pale, lemon-coloured liquid, with a pungent, disagreeable taste, and distinguishable by its odour from all other liquids, except oil of bitter almonds, from which it differs in the following reaction: Pour a few drops of each on a plate, and add a drop of strong sulphuric aciu. The oil of almonds acquires a rich crimson colour with a yellow border, while the nitro-benzol produces no such colour. In 1859, Professor Casper of Berlin published an account of this liquid under the name of 'A New Poison,' and described its effects on days and rabbits. In 1862, and since that date, various cases of human poisoning have been published, both
in this cunntry and alorond. We shall Indefly notice three cases, in two of which the patient ciicl, after swallowing a portion of the tuicl: while in the other, the inlalation of the rapous proved fatal. A boy, aged 17, whilo drawing off some nitro-henzol by a siphon, swallowed a portion of the liguil. There were no inmediate symptoms; but he soon felt sleepy, amd when at dinner, ate but little, aud said he felt as if he was drunk. This was between two and three hours after he had swallowed the liquid. He fell into a stupor, which becane deeper and deeper, until death took place, without yomiting or convulsions, twelve lours after the iugestion of the poison. In the case of a man, aged 43 , who spilled a quantity of nitro-benzol uver his clothes, and went about for several hours breathing the vapour, the effects were nearly the same. The progress of each of these cases, both of which are lescribed lyy Dr Letheby in the Proceadings of the Royal Society for 1863 , was much the same as that of slow intoxication, excepting that the minul was perfectly clear until the coming on of the fatal stupor, which was sudden, as in a tit of npoplexy. From that moment, there was no return of consciousness or bodily power; the sufferer lay as in a deep sleep, and dici without a struggle. The duration of each case was nearly the same, about four hours intervening between the swallowing or inhaling of the poison and the beginning of stupor or coma, which lasted tive hours. Nitro-benzol, as well as andine, into which it seems to have been partly convorted in the bolly, was detected in the brain and stomach. It is unnecessary to describe the steps to be taken for the detection of the poison in all these cases: no one but a professed toxicologist should be intrusted with an investigation on the result of which the life ancl character of a human being may depend. It is satisfactory to read Dr Taylor's opinion, that there is uo probability that this liquid will be successfully employed for the purposes of murder without the certainty of detection.'-Principles and Practice of Mecical Jurisprudence, p .311 . It is morthy of notice that the vapour of this substance, as it is evolved from almond glycerine soap, has scrionsly affected females; and Dr Taylor mentions the case of a gentleman who, from using a cake of the soap in taking a warm bath, fainted from the effects of the vapour, and was ill for some months afterwards. The mode of treatment that should be adopited in poisoning by this substance, is essentially the same as that which should be aclonted in poisoning by opinm.

NITRO-GISCERINE $\left[\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{13}\right.$ or $\mathrm{C}_{6} \mathrm{H}_{3}$ ($\left.\left.\mathrm{NO}_{4}\right)_{3} \mathrm{O}_{6}\right]$, known also as Glonoin or Glonoin Oil, is a compound which is produced by the action of a mixture of strong nitric and sulphuric acids on gljcerine at low temperatures. Two methods of preparing it are given in Whatts's Dictionary of ('hemistry, vol. ii. DP. $890, \mathrm{~S} 91$, to which we must refer the reader who seeks for details on this subject. According to whatever metlod it is prepared, it is obtained as a light yellow oily liquid, of specific gravity varying from $1 \cdot 525$ to $1 \cdot 6$, inodorous, but having a sweet pungent aromatic taste; a single drop, however, if placed on the back of the tongne, prodnces headache and pain in the back, which last for many hours. It is only slightly soluble in water, but dissolves readily in ether, alcohol, and methylated spirits ; according to Adriani (the Chemical Tews for January 3, 1S6S), it does not inflame or explode when touched by a light; but regarding its intlammability there seems a difference of opinion, for Fichter of Freiberg, in a recent Nemoir, entitled Experiments with Jitro-glycerine, observes that it does not take fire easily, aud when
lighted, Murns, hut does not explorle, and goes out as soon as the flame with which it has been brought in contact is taken away. On this very important point, further experiments are required. But although contact with flame loes uot cause it to explocle, this result follows if it is exposed to a morlerately strong blow or concussion, to the concussion due to the explosion of gunpoweler, to contact witl jed-lot iron, and especially to the actiou of detonating mixtures and fnlminates; it likewise explorles on exposure to a high temperature (see below") ; the explosion, however it is produced, being in all cases excessively rapid, and unaccompanied lyy smoke. It is this ixplosive power that renders this compound a usefnl agent in blasting. According to Dr Rudolf Wragner, the distinguished Bayarian technolngist, it may be cooled clown to 4° without becoming solid; lnit this statement probably refers to the chenically pure compound; for the nitroglycerine of commerce, which has been patented by a Cierman, unclor the name of Nohel's Patent Blasting Oil, beeomes solid if exposed for a considerablo time to a temperature of $4 G^{\circ}$, crystallising in long needles, which are most dingerous to handle, since they explude, even on being gently broken, with appalling violence. At 320°, nitro-glycerine begins (according to Dr Arlriani) to decompose, giving off red rapours ; and if the heat be suddenly applied, or slightly raised above this point, the sulbstance explodes with great viulence; while, according to other observers, it is liable to explode at 240°, or a little higher; and if exposed for a length of time to half that temperature, explosion may take place at 180° or less. It is obvions from the formula for nitro-glycerine that it may he assumed to consist of glycerine, $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{6}$, in which three atoms of hydromen are replaced by three of peroxicle of nitrogen, NO_{4} * The proulucts of the complete combustion of 100 parts of pure nitro-grycurine are-water, 20 parts; carbonic acid, 55 ; oxygen, 3.5 ; and nitrogen, 15%; and hence, it has been calculated that one volume (say, a culbic inch) of this compound, at a specitic gravity of $1 \cdot 6$, yields, on combustion or explosion :

According to Nobel, these gases expand, on explosion, to S times their bulk; in which case, 1 cubic measure (sny, 1 cnbic inch) of nitro-glycerine will yicld 10,384 cubic measures (say, culic inches) of gases ; while l cubic measure of gnnpowder will only yield 800 cubie measurus of gases. IIence, it follows that, for equal bulks, nitro-glycerine is 13 times as strong as gunprowder, while for equal weights it is S times as strong.

The danger of using this compound in mining, \&c. is greatly inereased by its instability. Even when pure, it is liable, at a heat of 70° or less, to undergo siow, spontancous decomposition into glycerine, oxalic and hydrocyanic acids, ammonia, \&c., with a continnous escape of gascous products, which, exerting pressure on the liquiul, renders it so prone to explo. sion that even a slight concussion is attended with danger; and the impure commercial compound decomposes far more rapidly than the pure nitroglycerine : indeed, inpure nitro-glycerine may, from this cause, be regarded as 'dangerously self-explosive even while standing quictly' (Adriani, op. cit.).

Many of our readers donbtless recollect the history of a terrific explosion that took place on board the ship European, when lyiog in harbour at Colon, Panama, on the 3d of April 1866. Amongst the cargo put on board at Liverpool were 70 cases of nitro-glycerine, and one case containing 70,000

NITRO-GLYCERLEE.

percussiou-caps. At i A.3n. on the 3d, a most tremendous explosion occurred in the after-part of the ship. It was described as most rapid, without smoke, but with a great flame, and the ship was immediately after seen to be on fire. The whole of the deck and cabin aft were carried away, and the side of the ship was also much damaged, the plates above the water-line being llown away, and the parts below it being much injured. For fear of iurther explosions, the ship was towed into the bay, where she shortly sunk. Nor was the injury confined to the European; the jetty was nearly blown away, and a ressel lying on the other side of it was rouch damaged. Honses in the town were also partially destroyed, the floors in many cases being torn up; and altogether about 50 lives were lost. When the badies were recovered, they presented no sign of smoke nor any symptoms of scalding; and hence it was inferred that the explosion could not have beep produced eitler by the per-cussion-caps or by steam. On these and other grounds, the conclusion was irresistible that the explosion was due to the nitro-glycerine. An action was (August 1S67) brought at Liverpool by the owners of the European against the shijpers of the nitro-glycerine, on the ground that no due notice of the dangerous properties of that compound had been given ; and at this trial, several of the important points regarding the explosive properties of nitroglycerine, which we bave noticed, were elicited from Professor Abel, chemist to the laboratory at Woolwich; Colonel Boxer, superintendent of the Woolwich Laboratory ; and Professor Roscoe, who appeared as scientific witnesses. To give some definite idea of the explosire force of this substance, Professor Roscoe stated that onc case of it would have sufficed for the destruction of the European. It is used to a considerable extent in the slatequarries in Wales, and in mining operations. A workman at one of those quarries described how he had been set to clean a magon which had held some of it, which he did by scraping it with a piece of slate; and inadvertentily throwing the piece of slate into the wagon when he had finished, the percussion exploded the remants of the oil, and the ragon was blowu to pieces. He states that it is regarded as ten times as powerful an explosive agent as gunpowder.

We learn from a recont number of the Fevada Gazette (quoted in the Chemical Ficurs, August 16, 1867), that this substance is being adrantageously employed in the blasting necessary for the constructiou of the summit tunnel on the Central Pacific Railway. The operation is said to be going on 25 per cent. faster than if porder had been used. The small holes required for the oil can probably be drilled in less than one-thirl the time required for the larger ones necessary in using lowder. The oil does much more execution than powder, as it always breaks the rock from two to sixteen inches berond the hole, aud also throws out a much larger body. The oil is here cstimated as having, in hard rock, a strength five times greater than powder. It is made unon the spot, and is considered much stronger as well as safer than the imported conpouml. It has been now used for sereral months, and there has never been any accident, nor bas a single blast missed fire since the Chinamen commenced filling the cartridges. Colonel Schaffner of the Uaited States army bas pmblished an ofticial Report on this componad, to which he gives the name of 'nitroleum,' which contirms the fact that its explosive properties are far greater than those of gunpowder. From a Report on the same subject by Captain Grant, F.N., it appears that it is exploded by percussion, and apparently, under ordinary circum.
stances, by nothing clse-neither ly friction nor fire. Generally, a tritling blow is sufficient to explode it. Its explosire force is about ten times that of gunpowder. It has all the appearance of common oil, and is usually carried in tin cases, each of which holds $₫ 5 \mathrm{lbs}$. Each can is packed in a wooden case for carriage. In a paper on this subject by M. Korp, that chemist holds the riew already noticed, that accidents are mainly due to the presence of impuritics. He states that, by means of charges of 1500 or 2000 grammes of oil, from 40 to $S 0$ cubic mètres of a hard rock may be detached.
We hare already noticed Richter's obserrations on the slight inflammalility of this compound ; and as the employment of this explosive agent seems to be increasing, we shall give his other chief results, so as to bring np our knowledge to the latest possille date. The shaft in which the experiments were made ras being sumk 30 feet long bs $\$$ feet ride, in hard gray gneiss with occasional joints, whiche facilitated the working. From these experiments, it appeared not only that its power was four or five times greater than that of the nitrate-of-soda sunpowder commonly used for mining gurposes in Germany, but that other advantages acerued from its use, which way be summed up as follows: (1.) Fewer men are manted for morking out a certainsized piece of ground, and fewer holes hare to be bored than at present. (2.) Nitro-glycerine does not take fire easily (see abore). (3.) The amount of smoke after a blast is small, as compared with that of powder; and workmen can return at once to the spot when the blast has taken place. (土.) Holes that have missed, or only partly torn, can be retamped and shot off, which, with the present arrangements, is impossible, or rery dangerons. Against these adrantages must be set off the following disadrantages: (1.) The gases forined during the explosion of nitro-glycerine hare an injurious effect on the organs of sight and respiration. (م.) Titroglycerine explodes on being struck smartly, and easily freezes. (3.) The masses of rock which it removes are mostly very large, and considerable time has to be spent in breaking them up.

In another set of experiments, the relative cost of blasting by nitro-glycerine and gunpowder was compared, and it was found that a cubic fathom of ground could be remored by the former for $£ 4,08.4 d$. ; the cost amonnted to $£_{5}^{5}, 0 s .9^{3} d$. when the latter was used. In sinking a shaft in clay-slate by means of nitro-glycerine. the cost was under £3 per cubic fathom. For further details regarding these experiments, the reader is referred to the Chemical Neues, Norember 15, 18G7, which coutains a translation of Richter's valuable Memoir.

In the Times for December 10,1867 , there was a notice of a serious explosion from the employment of this agent within a few miles of the city of Ners York. The accident happened in the Berger quarries. Nine persons were blomn to pieces, and ten or tifteen wounded, whule the ground was shaken fur fully a mile round, and several houses were destroyed.
A very serious accident took place on Tuesday, December 17, 1867, at N゙ewcastle, and accasioned the loss of seren lives. The editor of the Chemical Vews, December 20, 15G7, remarks, that 'unless means are taken by the manufacturers to prevent explosions causing such lamentable results as these, a valuable blasting agent will be lost to miners and quarriers. If this be the case, however, the mamufacturers of it will have themselves to blame, for explosions of nitroglycerine during transport or storace ought to be unknown. It bas recently been discovered that

NOCTULE-NOVELDA.

nitro-glycerine dissolvel in two or three times its bulk of methylated spirit is quite inexplosive, and that, when required for use, the addition of water will precipitate the oil, the layer of water and spirit merely requiring decanting off. The nitro glyeerine separated in this way possesses explosive properties quite as active as the original oil, whicb, indeel, is frequently rather improved than otherwise by the treatment. Slipping agents and railway companies should refuse to receive nitroglycerine unless protected in the mauner indicated.'
it will be observed that all these terrible accidents are of recent date. Although nitro-glycerine was discovered about 20 years ago by Dr Sobrero (now professor at Turin), it remained simply an object of scientific interest, till glycerine was manmfactured on a large scale-that is to say, till eight or ten years ago. We believe that it was at the close of 1 S 64 that it first became an article of commerce.
[More recently, a compound of nitro-glycerine with gun-cotton, the constituents of gnupewder, infuserial earth, and one or two other substances, forming a paste, has been invented by Professer Engels of Cologne, and is coming into extensive use for mining and other purposes. It has received the name of litho-fractour (stoue-breaker), and is described as possessing immense power. Its great recommendation, however, is its safety; it can be exploded only by a percussion-cap. It may be let fall, or expesed to the most violent concussion, without being affected; when ignited by ordinary fire, as a cigar-finse, it merely burns away with a slight hissing noise.]

NO'CTULE (fespertilio noctula), the largest British species of Bat (q. v.), being nearly three inches long without the tail, which is fully an inch and a half. The ears are oval-triangular, sherter than the head; the muzzle is short and blunt. The N . is only seen on the wing during a short part of the year, retiring carly in autumn to hellow trees, caves, or under the eaves of buildings, where many are sometimes found together.

NO MBRÉ DE DI'OS, a town of Mexico, 35 miles south-east from Durango, in a meuntainous district. Near it are rich silver mines. Pop. 7000.

NORDEN, a town of Prussia, formerly of Hanover, in East Friesland, 72 miles north-West from Oldenburg, and a few miles from the North Sea, with which it is connected by a canal. Pop. (1SG4) 6119.

NORTHERNLIGHT-HOUSES, COMmTS sloners of, the body corperate which has under its management the whole of the light-houses of Scotland and Isle of Man. The body was first constituted by act of parliament 26 Geo. III., but has been frequently since the subject of legislation. The lighthouses of the Isle of Man were assigned to it in 1815. By the Merchant Shipping Act, 1851, the Commissioners are so far limited in their powers, that any propesal for a new light-house must receive the approral of the Trinity Heuse, London, and the outlay must be sanctioned by the Beard of Trade; the cost, however, is borne by the imperial lighthouse fund. The Commissioners act whelly in virtue of office, and give their services gratuitously. The bedy consists of the Lerd Advoeate, Solicitor-general, Lerd Provost and senior Bailie of Edinburgh; Lord Prevost and senior Bailie of Glasgor ; Lord Provost of Aberdeen; provosts of Inverness, Campbelton, Dundee, and Grecnoek; the sheriffs of the following counties-A berdeen, Argyle, Ayr, Berwick, Bute, Caithness and Sutherland, Edinburgh, Elgin, Fife, Forfar, Haddington, Inverness, Kincardine, Lanark, Orkney and Shetland, Renfrem, Ross, Wigtown, and Kirkcudbright. The
business of the Commissioners is comlucterl at an office in Edinburgh, with the assistance of a secretary and consulting engineers. In 1867, the number of light-houses under charge of the commission was 56 , besides buoys and beacons The Commissioners own a steam-vessel, the Pharos, for supplying stores to the several light-bouses, and performing annual visits of inspection. The whole system of northern lights is remarkably well organised, the merit of which is in a great measure due to the late Fobert Stevensen (q. v.). A Rayal Commission appointed some jears ago to inquire inte the management of the English, lrish, and Scettish light-houses, has acknowledged that the 'Scatch light-heuses are in the best state of general efficiency, the English next, and the Irish third.'

NOSSI-BE, NOSSI-BARIN, TARIOU-BE, or HELLEVILLE, an island on the north-west coast of Madagascar, at the month of the Bay of Pasoan. dara, and separated from the mainland by a narrow channel. It is about $7 \frac{1}{5}$ sq. m . in extent; its coast-line is very much indented; and its surface much diversified. The highest hill is 1700 feet in height, and is clothed to the summit with magnificent trees; but much of the island has a bare aspect, the forests having been cut derm in order to the cultivation of rice. The soil is very fertile, and rice, maize, manioc, bananas, \&c., are 1 roduced far beyond the wants of the inhabitants. The soil is veleanie, and there are several old craters filled with water. Nossi-Bé has been in the hands of the French since 1840, and is regarded by tbem as an important possession, on account of an old elaim which they suppose themselves to have to Madagascar. There is on this island a small town called Helleville, with a harbour well sheltered from tho north and east winds. There is good ancherage also at several ether parts of the coast. The pop. of the island is abont 6000 .
NOSSI-IBRAHIM, or SAMNTE MARIE, an island on the east coast of Madagascar, and separated from it ly a strait of about 5 miles in width. It is about 40 miles in length from north-north-east to south-south-west, but only a few miles in breadth. It is one of the much-prized pessessions of the French on the ceast of Madagasear, has been in their hands since 1750, and is their chief place of commerce on that coast. The soil is gencrally arid, and the climate moist and unhealthy. Kain is of extreme frequency. The pop, of the island is about 5000 . It centains a small town called Saint Louis-a seaport, and fortified. All the French possessions on the coast of Madagascar were placed by an imperial decree of 1551 under one gevernment, that of the Comore Isles (q. ז.).
NOTO'RNIS, a genus of birds of the family Rallider, nearly allied to the coots, although in some of its characters it resembles the Ostrich family. One speeies only is known, N. Mantellii, a native of New Zealand. It is particularly interesting, because the genus was originally established and the species characterised by Owen, frem remains found along with those of Dinornis and other large birds of the Ostrich family, called Meas by the New Zealanders. The bird was, however, ascertained in 1850 still to exist. It inhabits some of the most unfrequented parts of the Middle Island. It is larger than the other coots, but small in comparison with the true moas. The flesh is said to be delicious. It seems to be a bird likely soon to become extinct unless preserved by human care, and of which the domestication would be easy and desirable.

FOVE'LDA, a town of Spain, in the prevince of Alicante, and 18 miles west from Alicante, on the railway between Madrid and Alicante. There are
corn and oil mills, brandy distilleries, and manufactures of lace. Pop. S095.
novello, Clara, a distinguished rocalist, danghter of the following, was born in 1SIS. Her talent shewed itself very early. At the age of teu, she hecame a pupil of the French Academy of Sincring for Church-music, and studied in Paris for several years, following up her studies in afteryears in Italy and Germany. Both in England and in Italy, she created quite a furore from the year 1540 to 184S: her singing has indeed hardly ever been equalled in equality, flexibility, and executive skill. In 1S4S, she married Count Gigliucci, and quitted the stage, returning to it, however, for a time from 1850 to 1854.

Novello, Vncent, an eminent musical performer and composer, was born iu Lonilon, of an Italian father and English mother, in 1781. At the age of 16 , he was organist in the chapel of the Portuguese embassy; and even then had attained a large measure of that proficiency on the organ for which he was celebrated in later life. He was oue of the founders of the Philharmonic Society. His musical compositions, which are very numerous, and chicfly sacred, are considered to bave contributed much to the improvement of cathedral music. As a painstaking editor of unpublished works of eminent musicians, he has also done great service to musical literature. He died at Nice in 1861.

NOVGOROD-SSJEWE'RSK, or NOVGORODSEVERSKO'TE, a town of Pussia, in the prowince of Tchernigor, $\$ 9$ miles north-east from Tchernigav, on the right bank of the Desna, a branch of the Dnieper. It is the capital of a district, and is a place of considerable trade and activity. Pop. (18U3) 7142.

NOYGRA'D-VOLY'NSKI, a town of European Russia, in the government of Volhynia, 52 miles west-north-west from Jitomir. It is the capital of a circle, and is situated on the banks of the Slutch, a feeder of the Pripet, and so of the Dnieper. Pop. (1863) 7970.

NOWANAGA'R, or NOWANUGGUR, a seaport of India, in the peninsula of Kattywar, Gizerat, at the month of the Nagna, a small river on the south shore of the Gulf of Cutch, 160 miles west-southwest from thmedabad, and in N. lat. $22^{\circ} 2 S^{\prime}, \mathrm{E}$. long. $70^{\circ} 11^{\prime}$. It is the principal place of the district of Hallar, the greater part of which is held as a jaghire by the chief of N ., who bears the title of the Jam of Nowanagar. His territory comprises 540 villages, and a pop. of abont 210,000 . The town of N . is large and populous, nearly four miles in circuit. It is a place of very active trade, famous for the fine quality of the cloth which it
produces, and for the brilliant colours of which its iabrics are dyed. In the adjacent sea are beds of pearl-oysters. Copper ore has been discovered in a range of hills behind the town.

NU'CHA, or NUKHA, a town of Russia; after Tittis and Shemacha, the most important town of Transcaucasia, and the only town of the former khanat of N . Or Sheki, in the north-west of Shirwan. It is 120 miles east-south-east from Tillis, and stands at the southern base of Caucasus in the ralley of the Kish-Tshai, an aftuent of the Alasan, which itsclf is a branch of the Kur. The town is surrounded by mulberry-groves and fruit-gardens, extending to a distance of several miles. It has Iong been famous for the rearing of silk-worms, silk-spinning, and the manufacture of silken goods.

NUGGI'NA, a town of British India, in the district of Eijuur, division of Ruhilcuad, North-Tएest Irovinces. It is 48 miles north-north-west from Moradabad, on the route from Moradabad to HurdWar. N. is the Birmingham of Upper India, and is famons in modern times for the manufacture not only of gun-harrels but of percussion-locks. Pop. variously estimated from 14,000 to 30,000 .

NULLIFICATION, in American politics, the doctrine of the extreme states' rights party, of the right of a state to declare a law of Congress unconstitutional and roid, and if the Federal grovernment attempted to enforce it, to withlraw from the Umion. In 1832, during the presidency of General Jackson (q. r.), the free tracle and states' riclets party in South Carolina (q. v.), under the leadership of John C. Calhoun (q. v.), her senator in Congress, asserted the doctrine of Nullification in a state convention which declared the tariff acts of that year unconstitutional, aud therefore null and roid; that the cluties should not be paid; and that any attempt on the part of the general government to enforce their payment, would cause the withdrawal of South Carolina from the Union, and the establishment of an independent government. President Jackson met this declaration with a vigorous proclamation, in which he declared that the laws must be executed, and that 'the Union mnst and shall be preserved.' South Carolina, standing alone, receled from her position under protest, and a 'Compromise Bill,' introduced by Henry Clay (q. r.) in 1833, providing for a gradnal reduction of dluties, for the time settled the controversy.

NYIREGYHA'ZA, a town of Hungary, in the county of Szabolcs, on the railway letween Debreczin and Tokay. The trade in agricultural produce is considerable. N. has salt, soda, and saltretre works. There are mineral springs in the neighbourhood. Pop. 17,4S7.

'DENKIRCHEN, a tomn of Rhenish Prussia, 15 miles west-south-west from Düsseldorf, near the right bank of the Niers. It has manufactures of velvets, paper, leather, \&c., and ike many of the other mannfacturing towns in the same district, has rccently much increased in size and population. 7 Pop. (1564) 7354.

OE'DENBURG (Hung. Sorrony; anc. Sempronium), a town of Hungary, the capital of a county of the same name, is situated in an extensive
plain, ahout two miles west from the Neusiedler See, on the Ilkra, a branch of the Raab. It is connected by railway with Vienna. 0 . is one of the most beautiful towns in Hungary. It has manufactures of cotton and woollen goods, potash, nitre, tobacco, sugar, earthenware, glass, cutlery, \&c.; and a considerable trade in wine, corn, tobacco, wax, honey, and cattle, the proclucts of the neighbourhood, which is rich and well cultivated. The wine of Rust, a small town eight viles north of O., ou hills sloping to the Neusiedler See, is one of the best wines of Hungary, and inferior only to

Tokay. The Roman station of Semproniun was one of considerable importance; and mumerons Roman remains are fomml near Oedenburg. The inhabitants of U. are mostly of German race. Pop, 20,000.

OESELL an island of Iiussia, in the Baltic, belonging to the government of Livonia, and lying aeross the mouth of the Gulf of Riga. It is about So miles in length from north-east to sontli-west, and about 40 miles in greatest breadth, but the south-western end consists of a comparatively narrow peninsula. A narrow strait scparates the north-eastern end from the island of Dago. The surface is undulating, broken by low hills, marsly, watered by numerous small streams, and well wooded. The coast is generally formed by hight eliffs. The climate is milier than that of the neighbouring continental districts. The rocks are generally calcareous, and the soil is in many jlaces cravelly; the chief crops are wheat, oats, rye, Tarley, and peas. The rearing of eattle, horses, and sheep, and fishing, arc, bowever, the principal ocerpations of the inhabitants. The seal-hisheries are of some importance. Pop. 46,000, mostly Lutheran. The only town is Arensburg, on the soutli-east coast, with a pop. (1863) of 3373 . Many of the inhalitants of Arensburg are of German descent, as are the nobles and elergy of the island; but the peasantry are Esthonian. The islanders of O. were in early times noted as pirates. The Danish king Waldemar conquered the island in the berrinning of the 13 th century: Albert von Buxhüvden, Bishop of Leal in Livonia, obtained it from Den. mark in 1227, in order that he might realuce its inhabitants to subjection, and convert them to Cluristianity. Being partly sublued by the Tentonic Knights, it remained for more than 300 years under its bishops, the seat of the bishopric being transferred to the island. The last bishop sold it to Denmark in 1559. It remained a Danish province till 1645 , when it was given up, to Sweden, and in 17이, fell into the hands of liussia.

O'FFA'S DYKE, a remarkable relic of antiquity, an entrenchment extending along the whole border of England and Wales, from the north coast of Flintshire, on the estuary of the Dee, through the connties of Denbigh, Montgomery, Salop, Iiadnor, and Hereford, into Gloncestershire, where its southern termination is near the mouth of the Wye, in the grounds of Sedbury Park, which overlook the estuary of the Severn. In some places, it is nearly obliterated by enltivation; in otleers, it is of consilerable height, although its appearance nowhere indicates that it can ever hare been of much value as a rampart. It is therefore generally sup)posed to have been chiefly intenced as a line of demarcation. Nearly parallel with it, but at a distance varying from a few hundred yards to three miles, on the eastern or English side of it, is Wratt's Dyke, a similar relic of antiquity, which, however, seems never to have been so great a work, and is now in many places much obliterated. It has been conjectured that the space between them was neutral ground where the Anglo-Saxons and Welsh met for trading or other purposes. The principal dylse is ascribed by trafition to Offa, king of Dercia, who reigned in the Sth e.; but this is matter of tradition, and not of bistory.

OFFENBACH, JACQUES, a composer of dramatic musie, who enjoys high popularity over the continent, of German birth, lint a naturalised Frenchman. He was born in 1819, became chef d'orclesatre in the Théatre Français in Paris in 1S47, and afterwards manager of the Thêtre des 1 jouffesl'arisiens. He has composed a vast number of light Lively operettas, Le Sariage uux Lanternes, La

Fille «C Elezondo, \&ce, perfect as musieal trilles; but the productions by which he is best lnown are a series of bouffonneries musicales, or burlesque operas, including Orphée aux Enfere, La belle IfClene, La Burbe Bleu, Roi Curotle, composed with the rather questionable aisn of paroulying music of a more serions deseription. The high public favour accorded to his works lias of late jears been extending to England.
$\mathrm{O}^{\prime} \mathrm{GOBAI}$, a large river of Western Afriea, which falls into the sea lyy many mouths, between S. lat. $0^{\circ} 40^{\prime}$ and $1^{\circ} 20^{\prime}$. Its delta is very large, and forms it most complieated network of rivers, flowing amilst a dense forest. The most northern month of the O. lias long been known as the river Nazareth, and falls into a bay of the Atlantic, on the north of Cape Lopez. Another principal mouth, to tho south of that far-projecting cape, is known as the Mexian; and the southernmost, which secms to be the largest of all, is the river Fernand Vas. These were regarded as distinet and large rivers, till the explorations of Du Chaillu revealed their relation to each other, and to the main river Ogohai. The extent of the basin of the 0. ., its sourees, aml the length of its comrse, are yet unknown, but it may be deemed certain that it is by far the largest river of Western Africa between the Niger and the Congo. For almost all our knowledge of the O., and the country throngh which it flows, we are indehted to Du Chailln, althongh, in the interval between his first and sceond visits, the lower part of its course was partially explored by two French experlitions. Not far from its mouth, the Fernand Vas is joined by the Rembo, also a large river, although much inferior in size to the 0 ., which, after flowing in a south-westerly course from the interior, bends northward, and pursues a course nearly parallel to the coast for about fifty miles, the uarrow peninsula between the river and the sea being a sandy and grassy prairie, with scattered groups of fine trees, frequented by herds of the Niare (q. v. in SUPPLEMENT) or wild ox of Western Africa, and of antelopes. The dense forests of the O. are the main launts of the Gorilla (q. \because.), and of several other authropoid apes, discovered by 10 Chaillu, among which are the Nest-building Apes (q. v. in Supplement). Prodigious floeks of marabouts also come to lay their egres on these prairies, and in the wet season, numerons pools are formed, which teem with fish. The forestregions produce "few of the mammalia, herbivorous and earnivorous, so abundant in other parts of Africa; and even birds are few. About 150 miles from the month of the O., the main stream is formed by the junction of two rivers, the Okanda and the Ngonyai-the former, which is sairl to be the larger of the two, coming from the north-east; the latter, which alone was explored by Du Chaillu, from the south-east. This river, after a long eourse through the table-lands of the interior, bursts throngh the monntain-range which separates them from the level country of the coast; the possibility of narigation being here cut off by a magmificent fall, and still more magnificent rapid, in which the river rushes down ia steep dechivity through a rocky ehasm. Both above and below the fall, however, it is quite suitable for navigation by steamers; but a great impediment to commerce, when commerce shall spring up in that region, will be found in the diffienit bar at the month of the Fernand Vas. The rainfall on the wuer parts of the O. is supposed to be very great. The observations of Sucke and Burton on the eastern side of tropical Africa, and of Du Chaillu on the western, concur in shewing that this must be the ease. Rainy anrl dry seasons alternate on both eoasts, but as the traveller proceeds inlind, rain becomes more
frequent, falling almost every day, and it would scem at all seasons alike.

O'HLAU, OLAU, or OLAWA, a town of Prussiau Silesia, 17 miles south-cast from Breslau, on the right bank of the Ohlan, a braach of the Oder. O. is a station on the railway which connects Preslan and the north with Vienna. it is an ancient town, with a royal palace and ao old castle. At the present day, it is a place of considerable industrial activity. Being the capital of a circle, it has numerous district courts and ofices. Pop. (1871) 74S4.

OI'DIUM, an important gemus of minute fuagi of the section Hyphomycetes, growing on diseased animal and veretable substances. They consist of minute tubular threads, forming flocks, white in some species, brightly coloured in others, simple or irregularly branched, assuming in their upper part the form of strings of beads, which finally break up into elliptic spores. The species actually existing are prohably much more mumerons than those which have been fully ascertained. Among the most important of the vegetable parasites of man is 0 . albicans, which is found on the epithclium in the

Fig. 1.-Tlurush Fungus (Oidium allicans) : general
month and throat in the disease called aphuce, or thrush, and on that of the throat in dipltheria, also sometimes in the nostrils, stomach, and intestines,
 on the nails, the mipples, and other places. It is more common in children and in aged persons, than in those who are in the prime of life. It occurs frequently in the last stages of many diseases, when the mucous membrane is covered with nitrogenous decomposable matter. Ladeed, it would seem that whatever may be the case as to other regetable parasites, no species of O. legins its attack upon a perfectly bealthy surface, either animal or regetable; a diseased state of the
Fig. 2.-Perfectly devel- tissue being to these fungi oped thallus threads, a necessary condition of shewing constrictions, vegetation, 'just as the partition-walls, and yeast-plat will not regeramifications. yeast-plaat will not rege-
tate sare in a fermentable tuid, that is, in a solution which, in addition to sugar, contains some decomposable albuminous matter.' O. allicens appears to the naked eye as a white pasty
substance, slightly elevated above the mucous membrane to which it adheres; but under the microscope, its filamentous structure is easily perceived. Its seat is at first on the upper surface of the epithelial cells, but its filaments soon penetrate deeply between them, and the upper epithelial layers Fig. 3.-Ends of perfectly are soon worn out, and thrown off by the rapid growth from below.
 developed thallus threads,
more highly magnified (460 diameters).

However incapable the O. albicans may be of attacking a healthy surface, there can be no doubt that it greatly contrihutes to the extension of disease, and that it is very readily communicated from one patient to another when there is catarrh or ather inflammatory affection of the mucous membrane.

Another species of O . which has recently attracted great attention, is O. Tuckeri, regarded by many as producing the grane disease, of late so injurious in the vineyards of many parts of the world, but in accordance with the vicws already expressed, perhaps rather to be regarded as merely accompanying and extending the disease. It may probably be the case that over-cultivation of particular varicties of grape, and too long continued cultivation on the same ground, have so impaired the vigonr and healthfulness of the plants, as to make them liahle to the attacks of this parasite. O. Tuckeri makes its aplearance at first in the form of a mycelium of webby, creeping, branching filaments (fig. 4, b), which send out upright or decumbent jointed stems (fig. 4, a). The bead-like joints of the stems become successively filled with spores, which are finally discharged in little clonds for the maltiplication of the species. The grape disease was first observed in Kent, England, in the spring of 1845 , on vines in the vinery of Mr Tucker. The ends of the younct shoats assumed a crispy appearance, began to wither, and then dried n1p. The unripe grapes were next attacked, becoming covered with a grayish-white bloom, the skin of the grapes being destroyed, and they rotted and dried up. The disease rapidly spread over other English vineries;

Fig. 4.-Grape Fungus (Ö̈dium Tuckeri) : carly stage. was ohserved about the same time in the vineries of Paris, and soon in the vineyards of almost all parts of France, Italy, Greece, Tyrol, and Huagary ; finally, and in a slighter degree, affecting the vineyards of the Rhine. Its ravages extended to Algeria, Syria, A sia-Minor, and many other countries, among which is particularly to be noticed the island of Madeira, where it proved almost completely destructive to the grapes, and nearly put an end to the production of the celebrated Nadeira wine. The importation of Madeira wine to Britain in 1531 amounted to 209,127 gallons; and in 1861, only to $\because 5,749$ gallons. $1 t$ is probable that the complete 511
isolation of the Madeira vincyards made the progress of the disease more rapid, and its results mure complete than elsewhere, by cansing a prevalence of the conditions favourable for it. No kind of vine escaped. The grape disease is first perecived in the leaves, which become whitish, in consequence of in mycelium spreading over the upuer surface of the leaf. The leaves sometimes curl up, or they become black at the centre, the blackness extending towards the circumference, and finally they drop off. The plant, through loss of its leaves, now becomes more unhealthy; the shoots are attacked by the disease, the stalks of the bunches of grapes, and the grapes themselves. The parasite penetrates into the young wood, the shoots are covered with spots and blotehes of a reddish brown, or even black colour, and look as if a red-hot iron had been applied to them. Sometimes they secrete a clammy inodorous fluid all over their surface; and in many cases they wither from the top down half their length. The affected grapes very often lirst exhibit the disease in a single whitish spot on a single grape of a bunch, which enlarges by rauliating irregularly. Fig. 5 represents a fragment of a grape with mycelium and erect fertile filaments. If in a buuch

Fis. 5.-Fragment of surface of Grape, with oidium fully developed.
there is one abortive grape, it often shews signs of the discase, whilst the rest remain free. The crecping branches of the mycelium are fixed upon the skin of the grape by rootlets, which do not penetrate into the juicy pulp. The mycelinn sends up vertical fertile branches of nearly equal height, densely aggregated, and forming a velvet-like mass. The extremitics of these become beaded; and at last the uppermost cell or bead increases in volume, becomes detached, and is carried off by some slight breath of air, to multiply the species by the dispersion of its spores. The other bead-like cells follow in succession.

Various means have been resorted to for the prevention and cure of the grape disease. The application of pulverised sulphur has been found useful, the fungus withering and drying up when brought into contact with a minute particle of sulphur. The application of sulphur must be frequent, as portions of the mycelinm and some of the spores always escape. The nse of suldur has been the chief means of checking the spread of O. in French and other European vineyards; it is now general in the south of France and in Italy; and in consequence of its national importance, the duty on sulphur has been redluced by the French government. Hydrosulphide of lime has also been applied to vines with very beneficial effect. It is prepared by thoroughly mixing 68 ounces of flowers of sulphur with the same quantity of slaked lime,
adding three or four quarts of water, boiling for about ten minutes, allowing it to settle, and decanting the clear liquor. When it is to be used, one quart is mixed with 100 quarts of water, and it is poured over the vines.

OIL-FULLL. A great incentive has been given by the discovery of copious wells of petroleum (see Oil-wells and Oh-Trade) to the invention of some mode of using oil as a fuel for furnaces and stoves. Such attempts had often been made before ; but they assume a new aspect now that oil has become so much cheapened. Tearly half the earrying eapacity of European steam-ships, and more than half in those which make long voyages, is taken up with the stowage of coal. I'ctroleum (q. v.), if wholly burned, and all the heat utilised, gives out much more beat than an equal weight of anthracite or steam coal.

Mr Richardson made some experiments for the government at Woolwich in 1866 . His grate consisted of two iron boxes, one within the other ; the inner contained oil, and the space between the two boxes contained water. When the mater boiled ly the application of beat, and the oil began to arise in vapour, a jet of stean was admitted to mix with the vapour. The steam was found to assist the perfect combnstion, so as to avoid the production of smoke. One object was, to ascertain whether the refuse of the stills, resulting from the distillation of shale oil, conld be made available as furnacefuel. The gorernment published a Report of the Experiments, with diagrams, in 1866 . It was considered that petroleum, used instead of coal as fuel, (1) raises steam more rapidly; (2) requires a smaller furnace and boiler; (3) maintains a more continuous fire and heat; (4) affords means of varying the intensity of the fire more quickly; (5) is extinguished instantly by turuing off the oil and keeping on the steam; (6) produces no smoke, ash, or dust; (7) dispenses with some of the staff of cozlers and stokers; (S) ceonomises space for coal-bunkers; (9) reduces the dead-weight carried by the ship; (10) occasions no loss of beat by opening furnace-doors; (11) keeps the engine-room clean and comparatively cool ; and (12) admits of the furnace-fires being lighted much more quickly. A modified form of oil-furnace was tried at Woolwich by Mr Richardsan in 1567, not only with refined petroleum, but with the same oil in its crude form, shale-oil, naphthaline, creosote, grease, and residuum tar.

Experiments have been conducted with the same object in America. Mr Isherwood, chief of the burean of steam-engineering in the United States navy, conducted a series of experiments, in 1567, on Colonel Foote's furnace for lurning petroleum, and fitted up the iron gunboat Palos for this purpose, under the direction of a board of engineering officers. Most of the advantages claimed for Richardson's apparatus seem to be equally applicable to this of Foote.

There is a petroleum furnace by Messrs Wise and Field, patented in 1567 , in which the oil is injected into the furnace by the pressure of superheated steam. There are many other forms of oil-furnace by Hill, Stevens, Sim, Bartf, the American Petroleum Light Company, \&c.

Many of the advantages of oil-fuel already mentioned are pretty generally conceded; but the questions of sajety and cheapness are not yet settled.

OIL-WELLS AND OIL-TRADE. One of the most remarkable trades, suddenly sprung up into importance in rodern times, is that in oil obtained from subterranean sources. See Naphtie.

It is now known that oil-bearing mineral beds exist in various parts of America, as well as in the
older continent; hut the riehest deposit hitherto discovered is in the United States, in Venango connty, at a spot in Pennsylvania not far frem the point of junction of that state and New York state with Lake Erie. Oil had for many years been seen flating on the surface of the water of a well near Titusville; it was taken up by absorption by means of flannel, and applied to medicinal purposes. Dr Brewer, in 185., surgested that it might pessibly be usel for lubricating and for illumination; and in the following year was formed the Pennsylvania Rock-oil Company. This Company languisled until 15JS, when Colonel Drake, manager of the Company, and Mlr Bowditch, resolved to sink a well purposely for oil. They were amply rewarded, for oil was pumped up at a rate varying from 400 to 1000 gallons daily. The news being spread abroad, adventurers quickly earne to the district, which obtained the names of Oil Creek and Petrolia; and they experienced every degree of fortune from utter failure to splendid success, according to the spot at which they happened to sink their wells. So rapidly did the works proceed, that by 1860 , it was known that oil existed beneath 100 square miles of country, at a depth varying from 70 to 500 feet. In 1861, the first large flowing well was struck-that is, a well up which the oil rose so profusely as to flow over the surface, yielding 1000 barrels (of 40 gallons each) per day; and another that yielded 2500 barrels. This new good fortune increased the excitement and the welldiaccing.

The uncertainty in this trade is something extraordinary. On one occasion, a well was bored with the usnal centrebit to a considerable depth without any oil being found. On withdrawing the bit, and putting in the rimer or rimmer to widen the hole, a vein was struck at the side. The bit had just missed the vein, and the well would have been a failure had not the orifice been enlarged. This incident gives meaning to a phrase much used in America-that of 'striking oil.' On ancther aceasion, a well was bored which promised to be very productive, a large ameunt of oil flowing; the owner of the well net being ready to collect it, a ${ }^{1} \operatorname{lng}$ was driven into the pipe; but uon the removal of this plug, when tanks had been built, the oil had altogether disappeared. The deepest well sunk in the district, more than 1000 feet, yielded no oil whatever ; and altogether only 15 per cent. of the borings were successful. Very often, there was trice as much water as oil in the liquid pumped up; and in some instances, the mixed oil and water was suddenly succeeder by water alone, thereby putting a stop to any further profitable operations.
When the oil began to be sent in large quautity to New York and other towns, the cheapmess of price led to its application as lamp-oil, as fuel to be converted into gas, and in many other ways: this led to a constantly increasing demand; the demand lrought the price up again to a reasonable figure at Petrolia; and the price induced the sinkiug of new wells. Considering that the prodnce of the district reached $20,000,000$ gallons iu 1861 , it can be easily understood that commercial arrangements multiplied rapidly. Small villages rose into large towns, with banks, hotels, and wealthy people, all. however, hegrimed with oil. Titusville, which had 243 inhabitints in 1855, rose to nearly 10,000 in 1866. Another place, called Oil City, had its two uewspapers devoted mainly to oil-news, and transacted business to the amount of $£ 3,000,000$ per annun. By the end of 1860, it was estimated that there bad been $90,000,000$ dollars invested altogether in this and other parts of the United States; and that the average price at the well's mouth had
settled down at abont 10 dollars per barrel, or a shilling a gallon.

In July 1860, nil was discovered in the state of Ohio, and within six mouths, 50 wells were sunk there. At Sandy Valley in Kentucky, Perry Comnty in Indiana, Gardiner in Illinois, Yates County in Yew York, and Chattanooga in Tennessee, the oil-wells have attracted some attention. The Canarlian deposit is a remarkable one. Jear a village, now a large town, called Oil Sprivgs, in Inniskillen County, at the southern end of Lake Huron, a busy commnnity has sprong up. In 1857, while siuking a well at this spet, in a forest where mueh sewi-solid tar-like matter had often been found, the men were surprised by a suddea upburst of oil. This discovery set enterprising adventurers to work; and by the year 1863 there had been more than 200 wells sunk, within an area of only two miles by one. At first, the oil flowed from most of these wells; but the level gradually sank, and the oil could only be obtained by pumping. At the ead of the six years, one half of the wells had ceased altogether to flow; and the wells since dug have been still more uncertain in their yield. The oil appears to lie in fissures in the limestone; but the well-borers have not yet succeeded in finding symptoms whether a particular spot will yield profitably or not at all. One particular well gave 35,000 barrels in ten months, and by that time had exhausted itself. The recognised reatal beearne, 700 dollars down per aere, and one-third of the oil. The oil requires refining, to remove the tar, the volatile constituents, and the offensive odour. The Canada oil appears to be more disagreeable than that of the United States, and to be less in farour in consequence.
The arerage produce per well in Pennsylvania and Canada cannot be stated, on account of the extreme fluctuations. In 1861, there was an estimate that 100 wells in Petrolia yielded 15 barrels per day each. The total Anerican-that is, Canada and the L. States-product in 1 S6S was $3,695,000$; in $1569,4.717,000$; and in $18.0,6,535,000$ bbls.; and in 12 years, from 1559 to $1870,34,388,100 \mathrm{bbls}$. of crude petroleun. The price at New York has ranged between the very wide limits of 9 to 55 cents per gallon for crude oil, and 19 to 120 cents for refined. The oil was first imported ioto Liverponl in 1861 , since which year the import has steadily and greatly increased.

In 1S65, a shale was discovered in New South Wales, similar to the Boghead eoal or Torbanehill mineral of Seotland, but rieher in oil, and more free from sulphur. When distilled at Sydney, from 100 to 160 gallons of oil were obtained from one ton of shale. The seam in Hartley district is $5 \frac{1}{2}$ feet thick. Efficient distilling apparatus has been sent out from England ; and the shalc is either distilled for oil or for gas, according to circumstances. See ХАрнтна.

OLHAO' a town of Portugal, on the sea-coast, near Cape de St Maria, and tive miles east from Faro. Pop. 7025.

OLI'NDA, a city of Erazil, in the provinee of Pernambueo, and four miles north-east from Pernambneo. It was formerly the capital of the province, and there were blooly contests between Spain and Holland for the possession of it. It is still a bishop's seat, Pernambuco being included in the diocese. The whole aspect of the town is that of a place half deserted. Fop. $\$ 000$.

OLIVE'SZA, a town of Spain, near the Portuguese frontier, 19 miles south-by-west from Badajoz, on a small river which Hows into the Guadiana. The chief brancles of industry are the expressing

OLOT-OSTRICH-FARMISVG.

of oil, weaving, and the making of earthenware. From the treaty for the cession of O. by Portugal to Spain in 1S01, Godoy acquired his title of Prince of the Peace. I'oj. 10,000.

0 LOT, a town of spain, in the province of Gerona, and 22 miles north-west from Gerona, near the base of the Pyrenees, on the Fluvia. There are 14 volcanic cones closs to the town; the crater of the largest is a mile in circumference and 445 feet in depth. The whole district is roleanic. In many haces, and even in the town itself, currents of air flow continually from the porous lava. These are called Bufadores and Soplatores, and some of them are conducted beneath houses, and used as refrigeratories in hot weather. They maintain the temperature of about $53^{\circ} \mathrm{F}$. both in hot and cold weather, but the gust of air is strongest in hot weather. 0 . was almost destroyed by an earthquake in 1421, but was soon rebuilt. Pop. 12,070.

ONEGL1A, a town of North Italy, in the prosince of Porto Maturizio, on the Gulf of Genoa, 40 miles east-north-cast from Nice, at the mouth of the Impero, a small river which rushes down from the Apponines. The harbour is not good. The principal article of export is oil. Andrea Doria, the great Genoese admiral, was born here. Pop, about S000.

ONTENIE/NTE, a town of Spain, in the province of Valencia, 45 miles south-lyy-west from Valencia, on the right Lauk of the Clariano, and near the railway which connects Valencia with Madricl. Linen and woullen fabries are manufactured here; there are also mumerons oil-mills. Toj. 950 S .

OOMRAWU'TTI, or AMLAWATI, an important commercial town of Lritish India, in the distriet of Hyderabad, 86 miles west-by-south from Nagpore, on one of the head-waters of the Purna, a branch of the 'Tayti. The district which contains it was cedel by the Nizam to the Eritish government; and transit-duties, which formerly much interfered with the commerce of the town, have been abolished. Several cousiderable busiuess firms are established here; aud the chief merchants of Upper India and of lombay have agents, who often make advances to the cottoncultivators of the surrounding country, on security of their crop. There are large cotton warchouses at Oomrawutti.

OO TliUM, an Indian fibre, derived from the stem of Damia extensa, a plant of the natural order Asclopiadiacece, abundant in many parts of IIindustan. The fibre is soft, white, silky, and strong, and is regarded as a promising substitute for flax.

OPPENHEIM, a town of the grand duchy of ITesse-Darmstalt, in the province of lhenish Hesse, on the left bank of the $\mathbb{C l h i n e}, 10$ miles south-byeast from Mayence, and on the railway leetween Mayence and Spires. It stanls on the steep slope of a hill abounding in vineyards, and carries on a pretty active trade in wine. O. occupies the site of the Roman castle of Bauconia, aml was made a royal palatinate unler the Carlovingians, It afterwards becane one of the most important free towns of the empire. It was taken in $1 \underline{2} 15$ by Archbishop Arlalbert of Mayence, in $16: 0$ by the Spaniards, in 1631 by the Swedes mader Gustavus Adolphus, and in $16: 34$ by the imperialists, suffering much unou all these occasions. In 1659, the Freneh mader Melac almost entirely destroyed it. The church of St Cathrine, a tine splecimen of the German architecture of $1262-1317$, a kind of miniature of the Cologne cathedral, lics yet in a ruinous condition, except the castern part, which was restored in 1S3S-1813. Pop. 3010.

ORE'NSE (anc. Aque calide Ciliorum, or Aquce Originis), a city of Spain, the capital of the province of Orense, in Galicia, near the frontier of Portugal, on the left hank of the Minho. O. contains a number of interesting eeclesiastical editices. It is higlly reputed for its hot sulphurous springs, called Las Burgos, which issue -three in number-almost boiling from a granite rock in the western part of the town. The bathis of O. were known to the liomans, and were in much repute among the Cinths. O. earries on mannfactures of linen, leather, and chocolate. It lias a large trade in hams, which are in great repute throughout Spaiu. Pop. 10, ПтЈ.

OLOSZHAZA (pronouncal Oroshïst), a thriving town of Hungary, in the county of Békés Csanad, 31 miles north-cast from Szegedin. Pop. 12,663.

Oll ${ }^{\prime}$ IIO, or, in the complete form of the name, San Felipe de Asturite de Oruro, a town of Bolivia, the capital of the del. of Oruro. It is situated about wine miles east from Desaguadero, and 32 miles north from the northern extremity of the salt lake of Desaguadero, on an afluent of the river of the same name which falls into that lake. It is 12,015 feet above the level of the sea, at the hase of a very ligh mountain; but on the other side of the towu is a large plain, often covered with saline eftlorescences. The soil of the whole department is saline, and far from being fertile, but its mineral wealth is great. Goll, silver, eopper, tin, iron, lead, and antimony are among its products. O. was founded in 1590 , in consequence of the discovery of silver mines, which proved more productive than any in Bolivia, except those of l'otosi. It soon became a wealthy and flourishine eity with 90,000 inhabitants; but in consequence of the climinished productiveness of its mines, and of the amarchy prevailing in the country after the Revolution, its population eleclined, amd is now ouly 7980 . It has recently been made the seat of the Bolivian government, and the place of meeting of congress.

O'SCIEEISLEBEN, or GHOSS-OSCHERSLEBEN, a town of Prussian Saxony, on the left bank of the Bode, a branch of the Saale, 20 miles west-south-west from Magleburg. Poj. above 7000.

OSTRICH-FANMINGG. Attempts are being made to increase the supply of ostrich feathers, or to facilitate the procuring of them, by establishing farms-cnelosnres where the birds can grow and breed in tameness. In 1859, the Bulletin of the Société d'Acclimatation contained a note from Dr V Vavasseur, discussing the question whether the ostrich of South America, the Sandu (q. v.) or Rhea, cau be aeclimatised in France. When caught, they are easily tamed; and this is the circiunstauce which has suggested the idea of maturalisation. They must not he placed in cages, but must have free range to walk about, sccured simply by a leg. gnarl. Dr Vavasseur expressed an oppinion that the Sonth American ostrich colld live without difficulty in the north of France; that there is no difficulty in domesticating it ; and that it will feed on almost anything that is given to it, however coarse.

At a mecting of the Cape Agricultural Society of Cape Town, in 1864, Mr L. von Maltitz gave an account of his experience in ostrich-farming at Colesberg. Towards the end of 156:3, he purchased seventeen young astriches of three or four months old, and jlaced then in an enclosure of 300 aeres, over which they had free run. They subsisted wholly on the herhage of the enclosure, save a little grain given to them now and then. The

OSTCNI-OUGREE

opinion he formed from many months' obserration was, that 35 ostriches might find sufficient sustenance npon 300 acres of good grazing-ground. In April 1864, he had the wings of the lirds cut at the point where the well-known ostrich feathers grow: and they were fit again to cut six months later. The birds were so tame that they allowed themselves to be handled, and their plunage minutely examined. Having caused the birds and the feathers to be examined loy experienoed dealers, he found that the largest feathers, of which there are twenty-four on the wing of each male bird, were worth $£ 25$ per 1 b . ; and that one plucking of his seventeen birds would yield $£ 10$ each on an average. The probability was that the value would rise to $£ 12$ when the birds were older. The birds cost him about £5 each. The price at Cape Town, at the end of 1864 , for ostrich feathers brought to market in the usual way, was $£ 25$ to $£ 30$ per lb . Mr Von Maltitz anticipated a high rate of profit from his ostrich-farming.
$\ln 1$ Sio, a sheep-farmer in the plains of La Plata wrote an account of his experience in ustrichrearing. He was too far distant from the great commercial towns to make it a paying concern.
The suggestions in relation to the South American ostrich, and the actual proceedings in reference to the Sonth African, are receiving attention in Frauce, aud also in Algeria.

The egg of the ostrich, though coarse, is reasonably good food; but the naturalisation of the bird derives most of its prospective importance from the feathers, for which there is at all times a large demaud in the chief European countries.
$\operatorname{OSTU}^{\prime} \mathcal{I}$, a eity of South Italy, in the province of Lecce 22 miles west-north-west from Brindisi, on the railway between Ancona and Brindisi. It stands on a steep hill. A considerable trade is carried on, chiefly in the produce of the neighbourhood, and the city is a flourishing one. Pop. about 7000.

OTO'LITHESS, a genus of fishes of the family Scioenide (q.v.), having a perch-like form, a convex head, with cellular bones, feeble anal spines, no barbels, long curved teeth or canines among the other teeth. A valuable species of this genus is the Weak-fisif, or Squeteague (O. regalis), which is common ou the eastern coasts of North America, from the Gulf of Mexico to the Gulf of St Lawrence, and attains a length of two feet. It appears on the coasts only in the warmer part of the year. It swims in shoals near the surface, takes bait greedily, and may be readily taken by any soft bait. It enters the mouths of rivers where the water is brackish. The tlesh is pleasant, luat soon gets soft. Excellent isinglass is made of the air-bladder.-A number of species of O. are found in the East Indian seas, some of which are valuable for the isinglass which is made from their air-bladder, and some are much used as food, both fresh and dried.

OTTO (or ATTAR) OF ROSES is the volatile oil or otto (see Perfumery) of the petals of some species of rose, obtained by distillation, and highly prized as a perfume. It is a nearly colourless or light yellow crystalline solich, at temperatures below Si $0^{\circ} \mathrm{F}$., liquefying a little above that temperature. It is imported from the East, where in Syria, Persia, India, and Turkey, roses are cultivated to a considerable extent for its sake. It is 1 rolnable that the oriental otto is the produce of more than one species of rose; and it is uncertain what species is cultiyated in some of the localities most celebrated for it; but Rosa Damascena is known to be so employed in the north of India, and a kind of otto is sometimes obtained by the makers of rose-water
from Rosa centifolia in England. See Piose Ghazipore, near Beuares, is celebrated for its rosegardens, which surround the town, and are in reality fiells occupied by rows of low rose-bushes, which in the flowering season are red with blossoms in the morning, but the blossoms are all gathered before midday. Cashmere is noted for its extensive manufacture of otto, as are also the neighbourhoods of Shiraz and Damascus. To procure the otto, the rose-petals are usually distilled with about twice their weight of water, and the produce exposed to the cool night-air in opeu vessels, from which the thin film of otto is skimmerl with a feather in the moruing. Twenty thousand Howers are required to yield otto equal to the weight of one rupee, which even in India is worth about 100 rupees, or £10 sterling. Otto is said to have been first procured by what may be called an accidental distil lation of rose-petals exposed with water to the heat of the sun, and to have been found floating on the surface of the water; and it is still sometimes obtained in India by such a process. It is said to be also obtained by dry distillation of rose-petals at a low temperature. During the distillation of rose-petals, a small quantity of a solid volatile oil comes over (Solid Oil of Rioses, see below), which crystalliscs and fioats on the water in the receiver, and which is sometimes called English Oil of Roses. Otto of roses is not unfrequently adulterated with sandalrood oil, oil of rhodium, \&c. It is much used for making hair-ail, a drop of it being enough to impart a pleasant odour to a considerable quan. titg. It is also used in making lavender-water and other perfumes. The odour of otto itself is too powerful to be altogether pleasant. Another method of obtaining the scent of roses is describel in the article Perfumery. Otto of roses is a mixture of two volatile or essential oils; the one solid at ordinary temperatures, and the other liquid. The solicl oil of rases (rose camphor, stéaroptène of oil of roses) exists separately in crystalline plates, melts or fuses at $203^{\circ} \mathrm{F}$., and boils at about 502°. It possesses of itself very little odour, is insoluble in alcohol, but soluble in ether. It is composed of carbon and hydrogen. The liquid oil of roses (eléoptène of oil of roses) is a very fragrant liquid, to which the otto of roses is indebted for its delicious perfume, and appears to consist of carbon, liydrogen, and oxygen; though its composition and lroperties have not been atteutively studied. The otto of roses may be regarded as a solution of one part of the solid oil in two parts of the liquid. To separate these oils, the otto is frozen at a temperature below $\mathrm{SO}^{-} \mathrm{F}$, and the congealed mass pressed between folds of blotting-naper, which absorbs the liquid oil of roses, aud leaves the solid. Another process which may be resorted to is to treat the frozen otto with alcobol, which dissolves the liquid oil, aud leaves behiud the solid. The otto oi roses has a specific gravity of 832 , water being 1000 ; it is combustible; and when its vapour is diffused through oxygen, and set fire to, a violent explosion takes place: 1000 parts of alcohol dissolve 7 parts of the otto in the cold, and 33 parts when slightly beated. The principal use to which otto of roses is put is as a perfume. Milk of roses and lavender-water owe their fragrance to the presence of the otto. A gool receint for oil for the hair is olive oil, coloured by alkanet, and scented by a few drops of otto, and this is very generally sold under the name of otto of roses. Dedicines are occasionally perfumed by otto of roses, and it is sometimes added to unguents and spirit-washes.

OUGREE, a town of Belgium, in the province of Liége, three miles south-south-west from Liége, on the right bank of the Mleuse. It has iron-works,
a cannon-foundry, and oil and four mills. The neighbourhood produces coal. Pop. 60 sti.

OYAR, a town of Portugal, is the province of Beira, 17 miles worth from A yciro, at the mouth of the small river Ovar, and at the head of one of the branches of the curious lagoon or bay called lia d'Aveiro. Sec Aveiro. It is a prosperons and rapidly inereasing town, and carries on an extensive fishery and a considerable trade. Pop. (1864) 10,374.

OVEN-BIRD (Furnarius), a genus of birds of the family Certhiadoe (q.v.), natives of the southern parts of South America, interesting on aceount of the remarkable nests which they construct. They are small birds, with short wings and feeble power of flight. One species, F. albogularis, or F. rufus, is fonul near Buenos Ayres; another, F. fuliginosus, inhabits the Malouine Islands. It is a fearless little bird, recarding the presence of man so little that it may be easily struck down with a switeh. Both sexes take part in the constraction of the nest, which is generally in an exposed situation, remarkably large, and of the shape of a dome, with a small entrance on one side, so as to have much resemblance to a rude oven. It is made of clay, grass, \&e., well plastered together, and beeomes quite firm as the clay dries in the snn. Internally, it is divided into two chambers by a partition
reachiug nearly to the roof, the eggs being placel in the imer chamber ou a bed of soft grass and

Oven-bird (Furnarius fuliginosus).
feathers. The outer chamber seems to be intended for the male.

OZIE'RI, a town of the island of Sardinia, in the province of Sassari, 66 miles east-sonth-east from Sassari, amongst the mountains which occupy the centre of the island. It stands in a deep valley, open ouly to the north, and is therefore peeuliarly exposed to cold winds. Pop. 7143.

ADRO'N, a very ancient town of Spain, in the province of Coruบ̃a, I5 miles sonth-west of Santiago, on the Sar, a few miles from the coast. P. being the place at which the hody of Santiago is said to have landed itself, formerly an impertant place of pilgrimage. Pop. 6090.
PADU'LAA, a town of Sonth Italy, in the province of Salerno, 52 miles south-east of the town of Salerno, in a mountainous district. Below P. are the ruins of the once famous and magnificent monastery, La Certosa di S. Lorcnzo, despoiled by the French dnring their oeeupation of Calabria. Pop. 6758.

PAGA'NI, an uninteresting town of South Italy, province of Salerno. In the chnrch of St Michele is the tomb of Alfonso de' Lignori, founder of the order of the Redemptionists, who died here, 1757. The body is preserved in a glass case. Pop. at the latest census, $11,175$.

PAKS, a market-town of Hungary, in the county of Tolna, 60 miles south-south-east of I'esth, on the Danube. Tlie river is here very winding, and the eastern hank a desert and useless morass. The town is frequently subject to inundations. Pop. 9070.

PALAY (Cryptostegia grandiflora), a climbing plant of the natural order Asclepiadacece (q. v.), common in many parts of India, particularly on the eastern coast of Hindustan. It yields a very fine strong white fibre, resembling flax, and which can be spun into the finest yarn. The fibre is obtained
from the stalk; the milky juice contains caoutchouc. P. is one of the most interesting plants which have reeently been recommended to notice in Iudia.

PALA'ZZOLO ACREI'DE, a town of Sicily, in the Irovince of Noto, 29 miles sonth-south-west of Catania, is situated on the brow of a hill, just where it overbangs a deep valley. Near P. are the remains of the ancient Acra, founded by a colony from Syracuse, on the site of a Phœnician settlement, 664 n.c. The most curious remains are to be found in some low cliffs beneath the town to the south, where is a series of arched niches, containing figures carved in high relief in the rock. The style of art appears to be archaic Greck, with somewhat of an Egyptian character. Pop. S654.

PA'LMA, or PALMA DI MONTECHIARO, a town of Sicily, in the province of Girgenti, 14 milos south-east of the town of Girgenti, ncar the sonth-west coast. It is entirely a modern town, its foundatiou dating only from 1637. There is a trade in almonds, dried fruits, soda, wine, and sulphur. Pop, about 11,000.

PA'LME, or PALMIT, a royal city of South Italy, in the province of Reggio-Calabria, 20 miles north-north-east of Tieggio, on the coast of the liay of Gioja. The town, by means of its port, carries on an active trade. Pop. 9140.

PARASI'TA, or ANOPLU'RA, an order of insects, to all of which the name Louse is popularly given. All live as parasites on quadrupeds and birds. The characters of the order are noticed in the article Lousc. It remains, however, to be added that the order is divided into tro sections; in the
first of which, Pediculidea, the month is small and quite suctorial; whilst in the second, Nirmider, it is furnished with mandibles and hooked maxilix. The species of the first section are found only on man and mammals; those of the second section, almost exclusively on birds, although one infests the dog. The Nirmidea shew much greater activity than the Podiculidea. When a bird dies the birdlice congregate near the beak, and scem disquieted, apparently auxious to change their abole.

PARATY', a seaport town of Brazil, in the prorince of Rio de Janeiro, on the west coast of the Liay of Augra, 90 miles sonth-west of Tio de Janciro city. It has extensive commerce, and unmerons distilleries. ['op. said to be 10,000 .

PA'RKESINE, the name given to a substance introduced for manufacturing purposes by Nl Parkes of Birmingham. It is a combination of varinus vegetable ingredients, the number and proportions of which differ according to the qualities required to be given to the substance. Parkesine was first shewn in quantity at the lnternational Exhibition of 1562 . The basis is almost any vegetable fibre-such as cotton or flax waste, old rags, \&c. The inflammable nature of these fibres is sublued by the addition of certain mineral nentral salts-sulphates, tuugstates, \&c. Naphtha is used as a solvent. Another component is oil, animal or resetahle, which may or may not be hardened by chloride of sulphur. The inventor has not made public the exact mode in which the various ingredients are combined; but it appears that the elasticity mainly depends on the oil, and the noninflammability on the kind of neutral salt employerl.
In a paper read before the Society of Arts on the subject of Parkesine, and in a discussion which followed the reading, it was stated that this substance is not affected by sea-water; it does not soften, like gutta-percha, by heat; it is a good insulator of electricity, even at a temperature of $212^{\circ} \mathrm{F}$. ; it may be made either opaque or transparent, plain or coloured; it will make a very strong joint after fracture; it will resist most of the common acids; its tensile strength is greater than that of india-rnbher or gutta-percha. In its hard form, the surface can be so troated as to imitate marble, tortoiseshell, amber, or malachite. It may be moulded, pressed, turned, sawn, planed, carved, rolled, engravel, inlaid, or polished, according to the consistency given to it in the course of manufacture ; or it may be made thin enougl to nse, when melted, as a varnish or protective coating or waterproofing. Among the many articles into which it may be fashioned, are included spinners' rolls and bosses, knife-handles, combs, brush-hacks, shoe-soles, umbrella and parasol handles, buttons, bookbinding, tubes, galvanic-battery cells, waterproof fabrics, surgical implements, and telegraphic insulators.-It is probable that the eventnal success of compositions such as this will mainly depend on the price at which the material can be supplied per pound, compared with the prices of gutta-percha and india-rubber, the two substances which it is mainly intended to imitate or supersede. The supply of these two is wholly dependeut on the sap of certain forest-trees in torrid climates; the mode of obtaining the sap is recklessly wastefnl; and it is not yet known how far a continnance of the supply can be relied on.

PA'RRAS, a well-built town of Nexico, in the state of Coahuila, 470 miles north-west of Mexico, uear the east shore of Lake Parras. It derives its name from a species of indigenous vine much cultivatcd, and has always been cellbrated for its wines
and brandies. There are many old Spanish families here. l'op. 5000.

PARRISH'S CHEMICAL FOOD is the popular name for a non-oflicinal preparation medicinally known as Compound Sypur of Phosphate of Iron, every drachno of which contains 1 grain of phosphate of iron, $2 \frac{1}{2}$ of phosphate of lime, hesides soda and potash. Mr Parrish of Philadelphia was the first to publish a formuda for this very useful componnd.

PARTA'NNA, a market-town of the island of Sicily, in the province of Trapani, 36 miles sonthwest of Palermio, on a slope. Pup. $11,97 \pm$.

PA'SNA is the name given to a non-officinal healing-powder, which is regarded as very serviceable in burns, ulcers, excoriations, \&c. It is composed of 30 parts of silica, 12 of magnesia, 6 of alumina, 2 of protoxide of iron, and 50 of starch from the olgra root.

PATENT LAWIS. Since the iutroduction of the amended Patent Law in 1850 (see Patents), many manufacturers have boldly advocated the abolition of the patent system altogether; on the plea, that the good results, whatever they may be, are overbalauced by the bad. The great majority of advisers, however, call for further reform, not abolition. The Economic Section of the British Association bas discussed this matter during a long series of years. The Society of Arts, also, have had many discussions on the subject; and the argnments pro and con. will be found at length in the Transactions of these bodies. The various Chambers of Commerce thronghout the kingdom bave likewise debated the subject at length. The actual operation of the system may be briefly illnstrated. Mr Bennett Wooderoft, in 1564, examined 100 patents out of those which bad been applied for in 1855. Of the 100 , he fonnd 96 frivolous in character, of little or no value as to the merit of the inventions; 4 of moderate value; and not one of striking promise. Out of the 100 applications, 70 patents were granted, of which 1 became void at the end of six months, 51 more at the end of three years, and 15 more at the end of seven years-becanse the patentees declined to pay the successive instalments of fees. There were therefore, in 1S63, only 3 patents left out of the 100 which had been applied for in 1S55. Mr Wooderoft finds that about the same ratio is exhibited in the whole of the 3000 or so applied for every year. In 100 of the average applications in 1S5s, he pronounced that there was not one invention of mach value, 3 of some, and 97 of little or no value. In 1862, he found 1 of much, 1 of some, and 98 of little or no value. As to statistics of actual numbers, see Patent Office, Llbrary, and Museum.

In 1S62, a royal commission was appointed to consider the whole subject of the patent laws, and to suggest alterations which might be useful. The commission collected evidence in that and the two following years, and made its lieport in 1864. Other commissions and committees liave made later inquiries, and offered suggestions founded on the evidence collected; but the opinions expressed, on almost every point, are most conflicting. The divided opinion of practical men has hitherto discouraged any attempt to legislate on their recommendations; and the act of 1852 remains still in force.

PATENT OFFICE, LIBRARY, AND MUSEUM. The present organisation of these establishments arose mainly out of the act relating to Patents (q. v.) 1assel in 1852. Rooms were rented in Southampton Buildings, London, for the office as reorganised; a superintendent of specitications was appointed ; and a plan was adopted for

PATERNO-l'ATTT

making the system as useful to the public as possible.

The Office-All the specifications of patents from the earliest date were examined, and minutely classitied aceording to their contents. The patents from 1711 to 1852 were found to amount to the large number of 12,977 ; and the specifica. tions of the whole of these were printed lyetween 1853 and 1Sis. There were a few of earlier date, between 1617 and 1711, but none in so complete a form as to render them worth printing. The whole fill many huudred quarto volumes, with the lithographed illustrations bound in selarate folio volumes. The expense of the whole undertaking-for paper, printing, and lithographing-was 50 the number of eopies printed was small; lut any single specifieation can be reprinted if a demand for it should arise. The next work was to utilise this immense collection by a thorough system of indexing. Three indexes were prepared-Chronological, Alphabetical (according to the names of the iuventors), and Sutject-matter. Arrangements were at the same time made for printing and imexing the specifications of all patents obtained under the new law (1802) ; and this has been done year hy year. (The total mumber of patents, from 1617 to 1571 , exceeded 70,000 .) These specitications are solld to the public at the price of paper and print, varying from $1 \frac{1}{2}$. to about 45 , averaging about Sil. each. 'I'he priating and publishing are completed within three weeks of the time when each final specification reaches the hands of the superintendent. Any copy of any of these, if stamped and certified, is reeeived in any court of law or equity in the kinglom, in evidence of the patent to which it relates, withont the neecssity of producing the original document itself. There are generally over 31000 petitions for new patents every year; about 800 of the petitioners usually fail to give notice of their intention to proceed, and 200 more fall away before the aetual sealing of the patent; so that, roingly speaking, about 2000 speeitications of pateuts are added to the list every year. Of this number, not more than 500 to 600 over-live three years, the patentees being unvilliug to pay the second instalment of duty which becomes pryable at the end of the third year; and very little more than 100 are willing to pay the third instalment, due at the end of the seventh year. \{In 1S7], the new patents applied for were 3592 ; the number fell to 2,33 by the time of filing the surecitications.) To render the new specifications equally available with those of older date, three indexes are prepared for each year's collection. of the kinds already described. There has also been prepared a reference index to the whole series. In 1s71, a new plan was adopted, of publishing weekly abridgments of the specifications of new patents: dispensing with any further alphabetieal and subject-matter indexes. Besides this, abridgments lave been drawn up of most of the specifieations, and will be eventually of all: setting forth, in a few worls, the general nature of the invention. These abridgments are collected into limo volumes, one or more to each elass of subjects ; and the volumes are sold at Gel. to 10s. each, according to their bulk. At the end of 1571 , there were 77 sush rolumes, relating to 50 grnups or elasses of subjects. By ruference to one of these handy volumes, or to the Subject-matter intex, an inventor can see whether any person has preceled him in the particular subject for whieh be desires a patent.

The Library ant Reading-room.-.Special arrangements are made to render the speeifications, and all that relates to them, as available as possible to the publie. Complete sets of the printed syecifications,
indexes, sc., have heen presented to universities, government offices, provincial towns, colonies, and foreign goveraments; and partial sets to 300 mechanics' institutes and scientifie and literary societies. A complete set comprises esso volunnes, from folio to 12 mo , and costs no less than £2700 for paper, printing, and litlographing ; about 160 of these complets sets have becn presentel. At the head ollice in Southampton Luildings, a Readiug-room has been providel, open to such of the public as may wish to consult the specifications at their leisure. But besides this, the commissioners have gradually become possessed of a large and valuable collection of scientific and technical books and periorlieals, to which additions are every year made by purchase. A new Lihrary and heading-room, oeeupying the upper part of the old lunilding, has been constructed at a cost of £15,000, and was linished and opened in 1867 . All the seientific and technical works of the Library, as well as the specitications of the patents, may here be consulted nuder due regulations.

The Museum.-The commissioners laving come into possession, by gift and otherwise, of several molels illustrating patented inventions, had uo place of their own to deposit them for preservation and exhibition. But an arrangement was made with the authorities at Sonth Kensingtoo for the reception of these mudels : aml, greatly angmented by specimens, drawings, diagrams, and portraits, the liatent Museum now occupies a site aljacent to the South Ǩensington Museum.

The commissioners have for many years songht permission to ereet a large and handsome buildiag to aceommodate the whole of their departmentsoffices, Library, Reading-room, and Mnsemm. They possess the pecmiary means, but lack the authority. Their receipts exceed $\pm 100,000$ a year, in the form of fees from patentees; and after a very liberal expenditure for salaries, superamuation allowances, editing, compiliag, printing, purehase of books and periodicals, de., there is a considerable surplus. A clause in the act of 1852 prevents them from buying land and erecting buildings without the consent of the Treasury. The latest suggestion mule by the commissioners is for permission to buikl in a new street to be formed from the Horse Guards to the Thames Embankment; hut this new street, involving the demolition of Fife House, has not yet received legislative sanction.

PATE'TiNO (anc. Hybla Major), a town of Sieily, in the province of Catania, and 11 miles north-west-by-West from Catania, at the southern base of Mount Etna. Near P. are salt-springs and a salt-mine. Pop. 13,961.

PATTI, Adelins, a popular operatic singer of Italian extraction, born at Madrid in 1843. After a course of professional study under her brother-inlaw, Manrice Strakosch, she sang at an early age at New York. Her début in London took place in 1861 as Amina in La Somambula; and she has ever since been looked upon as one of the first singers of the day. Her vonce is an umsually hing soprano, of rich bell-like quality, and remarkaljle evenness of tone; to these qualities she adds purity of style and high artistie fivish. Equally at honse in the tenderness of deep passion and the sprightly vivacity of light eomedy, she has also sung with success in oratorio. She has also won golden opinions on the continent wherever she has appeared. Her greatest success is generally considered to be in the part of Marguerite in Cromod's Fuust, in which she first appeared at Covent Garden in 156t. In May 1S6S, she married Henri de Loger de Cahuzae, Marguis de Cinux.

P.ITTI-PERFECTIONISTS.

PATTI, CAplotta, sister of the above, is also one of the leiding singers of the day, though a slight degree of lameness has prevented her from appearing much in opera. Her voice is a soprano of unusual compass, and of a clear silvery quality, and much power in the upper register. Her peculiarly high notes, and a graceful abandon of manner, have brought her into favour with the public, though, in equality of tone, she does not come up to her sister. She made ber début in Londou in 1862, but had for some time before been in the enjoyment of a high reputation in the Uuited States.

PACCHO'N'TI TREE (Isonandra polyandra), a large forest-tree, of the same genns with the guttapercha tree, and producing a substance similar to gutta-percha, abundant in some of the forests at the base of the Western Chauts in India. It is now supposed that there are several species of Isonandra in Western India, the produce of all which has begun to be sent to the market as gutta-percha, although it is said that none of the kinds is equal in quality to the true gntta-percha, olstainel from Isonandra guttu. The wood of the 1 '. tree is very heary, and its tenacity is cqual to that of teak. A P. tree having heen tapped in 40 places, from the base to 60 feet high, has yielded in twelve hours about eight pints of sap, each piut being equal to about a pound of gutta-prercha.

PAZ (LA) DE AYACU'CHO, a town of Bolivia, South America, capital of a dep. of the same name, about 20 miles from the south shore of Lake Titicaca, is situated on the east declivity of the Andes, at an elevation of 12,000 feet above the sea, on both sides of a deep ravine, here crossed by nine bridges. The whole city is sublivided into sections by numerous ravines. The streets are generally irregular and steep; there are some good public buildings, several educational institutions, a noble cathedral, and many other churches. It is the seat of a bishop and a university. La P. is the largest city, and the principal commercial emporium of Bolivia-the exports consisting of gold, bark, and other products of the country; and the imports of mannfactured goods, the bulk of which comes through Peru. This city, whose original narue was Nuestra Senora de la Paz, was fonnded in 154 S . The name was changed in 15.5 to its present form, in honour of the national victory of Ayacucho (q. v.). Pop. at latest published census, 76,372 , the greater part of which is Indian. Pop. of dep., $45,322$.

PEGANCM, a genus of plants of the natural order Zygophyllaceie, of which the only known species, P. harmala, a half-shrubby plant with linear, smooth, almost bipinnatifid leaves, and solitary, white, axillary flowers, a native of the Levant and the north of India, is sometimes cultivated in garlens under the name of Syriny Rute. The seeds are narcotic, and the Eniperor Solyman is said to bave kept himself intoxicated lyy eating them. They were formerly used in medicine in Europe, and still are in the East. The Turks use them as a spice, and also for dyeing red. The plant is believed to be the Ifarmala of the Greeks, mentioned by Dioscorides as one of the kinds of Peyanon.

PEI'SHWA (Minister) was the title of the personage third in rank and authority at the court of the Mahratta Maharajals of Satara, there being ouly the Priti-nidlli (Delegate of the Rajah) between bin and his sovereign. However, during the weak reigns of Sevajee's descendants, the minister increased in importance, till, at the commencement of the 18 th c., Balajee Biswanath, the then Peisbwa, and a man of distinguished administrative ability and diplomatic talents, made himself virtually the ruler of the Mahrattas (q.v.).

PELLESTRI NA, a town of Venetia, near the centre of an island of the same name, 12 miles south from Venice. The island is about $7 \frac{1}{2}$ miles in length, and one mile in breadth. It is one of the low narrow islands which separate the Lagoon of Venice from the Adriatic. The island is in great part occupied by a row of small towns, of which P. is the largest. P'op. 7195.
PE'MBA, called the Green Isle by the Arabs, an island off the east coast of Africa, in the dominions of the Sultan of Zanzihar, the nearest point being about 20 miles from the coast, and the sonthmost point 40 miles north of the island of Zanzibar. It lics across the 5 th degree of S. lat., and in long. $39^{\circ} 53^{\prime} \mathbf{E}$. Length about 33 miles from north to south. Next to Zanzibar, P. is the most remarkable island in the dominions of the sultan. It is an irregular coralline island, cut up in every direction by ereeks, which are much frequented ly country craft engaged in the slave-trade; while, owing to the numerous reefs and shoals, and to the inperfect survey of the island, they are quite impracticable for vessels of war. The vegetation is most luxuriant. Although the main island is less cultivated than Zanzibar, it appears, if possible, more productive, and its fruits, especially the mango, are more highly esteemed. P. is more unhealthy than Zauzibar, and the mortality from fever is so great, that it is a question whether it could he kept nuder cultivation were the supply of slave-labour cut off. Chak-Chak, the chief fort, port, and town, is situated in a cleep inlet on the western side, and the narrowest part of the island. Its approach is winding and difficult. The Portuguese long made P. one of their principal slave dérôts. A few merchauts reside on the island.

PENE'DO, a blourishing town of Brazil, in the province of Alagoas, 50 miles south-west of Macayo, on the San Francisco, near its mouth. In the district, cotton, rice, and other crops are grown. Pop. of town 9000 , of district, $17,5 \overline{4}$, mostly Indians.

PEREJASSLA'VL, an ancient town of Russia, in the gov. of Poltava, 100 miles sonth of Tchernigov, at the conHluence of the J'rubesh and Alta, near the Dnieper. A battle was fought bere in 1149. Pop. (1867) $10,047$.

PERFECTIONISTS, or BIBLECOLNLUNISTS. popularly known as Free-Loveps, or preachers of Free Love, a small American sect of recent origin, equally remarkable for the doctrines which they hold, and for the unfaltering way in which they carry them out in practice. The founder of the sect, John Hnmphrey Noyes, is still alive, and is described in a recent work (Teun A mericu, by W. Hepworth Dixou) as "a tall, pale man, with sandy hair and beard, gray dreany eyes, good mouth, white temples, and a nohle forehead. ${ }^{\circ}$ In appearance, he is a little like Mr Carlyle, and he is said to be not a little proud of the resemhlance. Noges was born at the town of Brattleborough, in Vermont; he studied at Dartmouth College, New Hampshire, where he took a degree; and afterwards became a clerk in a liwyer's oftice at Chesterfich, New Hampshire. In 1S31, during the great revival of religion which swept over that section of the country (under the preaching of Charles G. Finney), Noyes was one of those who were aroused to a consciousness of sin and anxiety about the way of salvation. After a speedy conversion, he gave up the law to study theology at Andover, in Massaebusetts, where he spent a year in unremitting study of the Pible, under the instructions of Moses Stewart and Edward Robinson. Erom Audover he passed to lale College, New

651

PERFECTIONISTS.

Haven, where he was first a student, afterwards a preacher in connection with the Congregational body, and where he became a great seeker after truth-not as it stands between God and man only, but as hetween man and man. Here it was that he arrived at the principal of the idens which constitute his social and religious system-deriving them, after much study and speculation, from the writings of st Paul. IIe eame to the conelusion that the opinions of St Paul had been completely miseonceived by all tho Christian churches ; that all our ecelesiastical organisations have consequently been buaders; and that from the apostolic age to his own there hat been no visible church of Christ upon earth. He conceived that in the age of Taul and I'eter there had been a true Christian ehurch-a communion of saints, in which all were brethren, and all equals; hut that it passed away at an early date, on our Lorl having returned in the Spirit, as he had promised, to dwell among his people for ever. This second advent of Christ he placel in the year 50 ; aud he came to the conclusion, that since then the true church has consisted, not of any of the religions organisations which have sttecessively sprung ul, but of saintly persons seattered here and there, sinless in body and soul, confessing Christ as their Lord, professing holiness, rejecting law and usage, and submitting their passions to the Divine will. He believed that Christ, on his secoud advent, abolished the old Law, and elosed the reign of sin which began with Adam; and that he has thenceforth set up His kingdom in the hearts of all willing to accept His reign. For such persons, there was no longer any law or rule of duty; neither the Mosaic code, nor the Sermon on the Mount, nor the ordinanees or institutions of civil society, were binding upon them; they were a law unto themselves; they were free to do as they pleased, but-with exceptions which, however, could not invalidate an eternal truth-under the influence of the Divine Spirit which dwelt in them, they could only do that which was right. It was owing to the power of the devil that the churches hal gone so far astray; but he conceived that the time had come when, among the new communities of Anerica, there should be set up a perfect model of a Christian church-in which all should he brethren; in which men and women should be equals; in which individuals should be untrammelled by any restraints save those imposed by the Divine Spirit working within themselves. 円oyes took upon himself the tisk of laying the fomndations of the true Cluristian church ; but his early efforts at estallishing a church at New Haven were very discouraging; he made converts to his riews, and they became only tno dceply imbued with bis theory-making mnch of his doctrine of the abolition of law, but little of his doctrine of salvation from sin. Each being a law moto himself, they hat conflicting desires, and this led to quarrelling, and eventually to schism. Among the men, there were some who contested with Noyes the leadership of the fraternity; and among the women, one or two who quarrelled with him because they surmised that he was leading towards the abolition of marriage. At the end of three years, he formed that, though he had co-believers, he had no followers; and he retired to Putney, disappointed, but resolved to make a new experiment. ITe began with the circle of his family friends. His mother, two sisters and a brother thoronghly believed in him and his doctrines, and these, with himself, formed the germ of the new enterprise. In time the circle beman to enlarge. He and his brother took wives, and the sisters took husbands, and other families joined the gathering. They lmilt a chapel, and devoted mueh of their means to printing periodicals and books. At C82
first there was no illea of forming a commmity. They were called 'The Corporation,' but lived in separate houses, and are said to have walked in all the ardinances of marriage blameless. This contimed for mine or ten years, when it was letermined to make trial of the principle of associationof association under conditions which Noyes deduced from the New 'Testament; to estahlish a 'l'ible Family'-a socicty disawowing all Jaw and all councetion with the workl, in which all shonld le brethren, lerfectly equal; in which, therefore, worldly goods should be held in common; in which there should be no appropriation of men and women to one another. I'his novel thenry of the social relatious seems to have been the principal hasis of Noyes's experiment; and at length in IS46, twelve years after his experience at New Haven, and just when the Fourier Phalanxes were passing away, the l'utney Association began cautionsly to experiment in Communism. The connection of the sexes was, upon Noyes's view, as free from law, as completely subject to the clesires of individuals, as every other human relation ; and besides, he seems to lave thought a community of women a logical serpuence from a community of goods. lle saw that the members of such a society must be selected and educated for it; and he set un a Bible elass, by means of which he gained a sutfieient number of proselytes, and educated them for Bible association. Their property was thrown into a common stock; they gave up the use of prayer, all religions service, and the observance of the Salbath; those who were married renounced their marriage ties, and a complex marriage' was established between all the males and all the females of the 'Family.' To get rid of the inconveniences which had been fonnd atteudant unon the exercise of Christian liberty, Noyes had set up a new prineiple, viz, sympathy, by which the individual will was to be corrected, which practically imposed upon individuals the duty of deferring to the feelings and opinions of the brethren. Me now tanght that the Family was wiser than the individual, who might stray from the path of grace; that the individual was erring when he differed from the Family; and that the inclinations of individuals must be submitted to the opinion of the Family. Haring dispensed with law, he set up public opinion as a controlling nower in its stead; and free criticism of one another by the members of the society became an important feature of his system. Quarrelling, however, broke out among the members; their differences were brought before the law-courts; and when the details of the Family system became known, the people of Putney made the place too hat for the Perfectionists. Their establishment was broken up; but a portion of the Putney Family about filty men, as many women, and about the same number of children-soon established themselves in a new home, in the sequestered district of Oneida, in the state of New York. Among the things which first drew attention to the Putney Family was a coutroversy which Noyes maintained with the leaders of another society of P. established at Oberlia. The P. were divided non the question, whether of the tro Jeading features of their system, the 1 rofession of holiness and the right of Christian liberty, the one or the other was the more important-some were ' Liberty-men,' others 'Holiness-men.' Noyes took up the controversy on behalf of the latter.

At Oneida Creek, the new 'Family' purchasel about 600 acres of forest-land, and proceeded to bring it under cultivation. They have made it one of the most productive estates in the Union; they have also established manufactures of varions kinds; and in the course of 20 years, they have become a

PERLEBERG-PETOFI.

prosperous, and even a wealthy community. Their wealth they owe in a great measure to the inventire talent of noe of the 'Family,' an old Canadian trapper, named Sewell Newhonse, who inventerl an improved form of trap-the 'Oneida Trap'-which is now almost universally used by trappers throughout America. In other respects, the 'Family' has been very prosperous: it now consists of nearly 300 persons, who live together harmonions and contented; and being already sufficiently numerous, it has to reject frequent applications which are made for admission to membership. Two similar societies have been established-one at Wallingford, the other near Oneida-and both are said to be doing well. Their neighbours have become accustomed to the \mathbf{P}. and their ways, and let them live in peace; Yoyes is even beconve popular. On settling at Oneida. guided by his experience, he modified many of the details of his arrangements. Detrreen study and labour, the life of the 'Family'. at P'utney had been rather a hard one-he told his followers that in future they should enjoy life, as became men to whom all things were pure and permitted. The society chose no chiefs, believing that, without chiefship, the management of their affairs must fall to the fittest persons ; and their affairs have been ahly managed. The controlling function of criticism was strengthened by being made more systematic ; and a regard for the common good, grown strong through habit, has made persons who disavow all laws perfectly submissive to the unwritten laws of public opinion. In the smallest, as well as in important affairs, the Perfectionist practises submission to the opinion of his brethren : in small matters, he usually gathers it by consultation with some of the older merabers of the borly; important ones are submitted to the 'Family' at their evening meetings. All are busy; and they work as hard for the general interest as men do in the hope of enriching themselves. The men wear no particular garb, but usually dress like the coun-try-people around them; the women have their hair cut short, and parted down the centre; abjure stays and crinoline ; wear a tunic, falling to the knee, and trousers of the same material ; a vest, buttoning high towards the throat; and a straw hat. In this costume, according to Mr Mepworth Dixon, plain women escape notice, and pretty girls look winsome; but, as may be inferred from the treatment of their hair, it has been no part of the Perfectionist system, to make the women look bewitching. The 'Family' has breakfast at six o'clock, dinuer at twelve, and the evening-meal at six in the afternoon; the more alvanced of its members abstain from animal food; they drink no beer, and only a weal home-made wine; and like most of the new Auericau sects, they have but little to do with doctors. The women are allowed a good deal of influence.

While all the males and iemales of the 'Family" are united by a 'complex marriage, their inter-course-which, in theory, is unfettered by any law -is, in practice, subject to a good deal of regnlation. Like everything else, it is subject to the opinion of the snciety, and certain priuciples have been so steadily applied to it, that they have gained the foree of laws. First, there is the principle of the asconcling fellowship. There should be contrast, the l'. say, hetween those who become united in love. That there should be difference of temperament and of complexion has, they say, heen well ascertained by physiologists. They hold that there should be a difference in age also, so that the young ancl passionate may be unitcd to those who have, hy experience, gained self-control. In virtue of this lrinciple, the younger women fall to the older men, and the jounger men to the older women. A second

Principle is, that there should be no exclusive attachment between indiviluals; a third, that persons should not be obliged to receive the attentions of those whom they do not like; and lastly, it is held indispensable that connections should be formed throngh the agency of a third partyhecanse. withoint this, the rqucstion of their propriety might be withdrawn from criticism, and also, because this affords a lady an easy opportunity of declining. The luman heart, the 1'. say, is capable of loving any number of times, and any number of persous at the same time, and the more it loves the more it can love. The system of the complex marriage' is therefore suitable to, while monogamy imposes a restriction upon, human nature; and they believe that marriage will be spurned by the churches as soon as they get rid of the false notion of the essential sinfnlness of love. They are contident that, when they have worked out a few details, still incomplete, their system will be perfect, and that it will, before long, be imitated throughout the length and breadth of America. The former failures of communism they ascribe to the previous experiments not having heen founded upon Bible truth; to their being made by persons unprepared for the system; and to the attempt to combine the monogamous family with the community of goods. There are four things, according to Noyes, necessary to the organisation of a true family: (1) the recon. ciliation of its members to God; (2) their salvation from sin; (3) recognition of the brotherhood and equality of man and woman; (4) community of labour and its fruits; and communism can only prosper when the previous conditions exist. The P. hold that reconciliation to God and salvation from sin begin in the heart when a man truly belieses and confesses Christ as a Sariour from sin; but that he still requires to be perfected in external things; and hence the necessity of criticism. A man who is reconcilerl to God by living faith, aud to his brother by the huminty that loves criticism, is fit to be a member of a true family having everything in common.

PERLEBERG, a town of Prussia, in the province of Brandenburg, gov. of Potsdam, on the Stepnitz, 74 miles north-west of Berlin, and a few miles from the Magrleburg and Hamburg Railway. There are some woolleu mimuiactures. Pop. (15:1) 7330.

PE'RUWELS, a town of Belginm, in the province of Hainant, near the French frontier, 44 miles southwest of Brussels. It has breweries, limekilns, and some linen manufactures. Pop. 7551.

PF'TERHOF, a palace of the emperor ni Russio. on the southern shore of the Gulf of Finland, 15 miles west of St Petersburg, with which it is connected by railway. The palace was built by Peter the Great in 1711, is still often resorted to by the imperial family, and is the scene of great occasional festivitics. It contains a very tine collection of paintings, aud is surrounded by line gardens and a beantiful park. Around the palace, a village soon grew u1, which has vecome a town of (1871) 7145 inhabitants.

PETOFI, SAYDOR (ALEXLNDES), who may fairly be described as the natioual poct of Hungary, was born at Little Körüs, in the county of Pesth. in $182 ?$ His father was a butcher, and a small landomner in Little Kumania, and hore the name of Petrorich (son of Peter) - a name indicating a Slavonic origin, whish the pet, when he came to manhood, exchanged for the Alagyar equivalent, Petöti. In 183S, his father was reducerl to poverty by an overflowing of the Dannbe, which destroyed his little estate; and it was by the help of relatives that he was able to carry out his desigu of educating his soll for a

「ゼ1ROVSK゙ーPEUTLNGERIAN＇L＇ABLE＇

profession．P．was sent to the lyeemm of the town of Nehemnitz．It was while there that be began to write verses，and first displayed the extravagant fondness for theatricals which characterised him throughout life．From the first，he negleeted his studies；nltimately，he ran away with a band of German strollers． 11 is father after some time foumd him out，and brouglt him home，and he remained for a period in quasi－eustorly among his relatives． When at length be was again sent to school at Oclenlurg，be almost immediately ran away，aud enlisted as a common soldier．After he had been alnout two years in the army，a physician，who had taken pity upon lim，procured his discharge，and he went back to his relations．Ile afterwards went to I＇ápá，to complete his cducation．II is passion for the stage，however，drew lim away from I＇apa，as it had formerly done from schem－ nitz；in 1842，be left it to join a troon of comedians．His stage－attempts were utter failures， and he soon parted from the comelians，if，indeed， he was not dismissed by them．He made his way to Presburg，and afterwards to Pesth，where he got some cmployment as a tianslator from the English and the French．Among other works， he translatel a novel by Mr G．I．R．James．As soon as his literary labour supplicd him with the means of travelling，his passion for the stage returned upon him；he went to Debreezin，and made another venture as an actor－playing the part of Othello－but failed even more completely than before．At last he had the good fortume to be invited to contribute to a newspaper at I＇esth －the Derallup－and he immediately clnsed with the proposal．He male his wiy on foot from Debreezin to Pesth－a rlistance of nearly 200 mike－ wearing shoes padiled with straw，and carrying in his bosom a MS．volume of verses，his whole provision for the journey consisting of two florins，which he got from an old school－fellow．It was on his arrival at Pesth that he exchanged tbe name of letrovich for letüf．Within a few weeks of his arrival，he had troops of friends and a reputation．

He introduced himself to Vörösmarti，then the most popular poet of Hungary，who received the shabbily－dressed stranger coldly，and did not readily cousent to listen to his verses．But when he had listened，he expressed his admiration warmly． ＇Hungary，＇he exclamed，＇never had such lyries： you must be earel for．＇And from that time，he treated P．as a son，and never rested until his merits were fully aeknowledged by his countrymen． P．was almost at onee received into the literary National Cirele，at the expense of which was pub－ lished his Versek，which appeared in 1sf4．This was soon followed hy other volumes，which sue－ ceedel each other with amazing rapility；all of them，though regarded as vulgar lyy some of the crities，ol，taining an unbounded popularity；so that it was saill of P＇that＇he never went to bed at night，he never arose in the morning，without har－ ing his songs from the multitudinons passengers in the public streets．＇He sprang almost at a bouod into a proition in IInngary similar to that which Burns holds in Scotland－that at once of the greatest poet and the representative man of his country．In 1818，when the revolutionary move－ ment，which spread over Europe，began to affect the lomgarians，his energies and enthusiasm found a more useful direction；he becane，by speech and pen，the advoeate of the independence of IIungary．He was for some time a member of the Diet，but in Oetober 1S4S，he became a cap－ tain in the Hungarian army；and in the begimning of 1840 ，he was appointed adjntant and seere－ tary to General Bem．He was present at the
battle of Seryessár，fought on July，31，1849，in which lem＇s army was defeated with great slanchter：and he was never heard of after that battle．It is helieved that he was trampled to death in the Hlight，and that his body；so defaced as to escaple recognition，was haried with the multi－ tude of Magyar deal left upon the field．His comintrymen long believed that he was not dead， but a prisoner in an Austrian dengeon；and it is said that among the peasantry this belief is cherished still．Keveral false P＇ctütis have made their appearance since his death，and math spur－ ious poetry has loeen published under his name． Lately，bowever，his comatrymen have subscribed for the erection of a monument to his memory，and have purehased，with a view to its preservation， the honse in which he was born at Little Körös． He left a widow－who has married again－and one son．His brother，Stepines，has gained some repre tation as a puet．

Ilis pouns， 1775 in mumber，were published in ten volumes．Most of them are lyries，of which he published several collections，under the titles， C＇Ipress Leaves on Litclke＇s Grave；Pearls of Love； Starless Nights；Clouds．The most celehrated of his narrative poems－also the longest－are，Junos， the Mero；and Istol，the l＇ool．Il is earliest work was The Tillage Mammer，published in 1843 ；his latest， The Assessor of the Julgment－seat，which appreared in 1849．A volume，containing a poem entitled The Apostle，was snupressed by the Anstrian govermment after the paitication of Inongary． 1．published in novel，The I／angman＇s Rope，which was by no means successful，and several volumes of tales，criticisms，and sketehes of travel；and he translated largely from English and Freuch into the Magyar．

A selection from lis earlicr picces，translated into German，was published in IS45；and several volumes of translations from his writings have since appeared in Germany．They have also been translated into Freneh，Memish，Polish，Danish， and ltalian ；and lately，an English version，com－ prising his finest poems，has heen published by Sir Jolan Bowring．The quality of bis poetry has been as fully recognised anong foreigners as among his countrymen：thus，Grimm declared that＇Petöf will rank among the very greatest poets of all times and tongnes；＇Henry Heyne spoke rapturously of his＇rustic song，sweeter than that of the nightin－ gale ；＇and Uhlamd avowed that only oll age could prevent his learning Magyar，that he might emjoy 1 ．in his native dress．

PETRO＇VSF，a town of Rassia，in the province of Saratov， 55 miles north－west of Saratov，situated on the Medvieditza，a tributary of the Don．P＇op． （1871） $19,749$.

PEUTINGERIAN TABLE，the name given to a most interesting ancient duemment，which exhibits the military roals of the Lioman Empire，and indeed of the world known to the Romans．It is not，properly speaking，a map；no regard being paisl to genariphac position，or the extent of countries．The great lines of road are laid down in a narrow strip，as if nearly parallel，all proceed－ ing from Rome as a centre；and as to rivers，it only appears whether they cross the road from left to right or from right to left of the traveller pro－ eeeding from Rome．The Mediterranean and other seas are represented hy mere narrow channels．A small house is the mark for a town；important towns and military stations are distinguished by walls and towers．Jiome，Constantinople，and Antioch are each represented by a circle，within which is a human figure seated；in the case of

PHARMACOPOIA-PHULOWDI.

Rome, the figure is crowned. Until very recently, a portion of the only copry of this valuable relie of antiquity known to exist was evilently wanting, as it terminated abruptly on the west at the confines of Spain, and included only the eastern parts of Britain. In the east, it traces ruads through India to a number of places of trade as far as the mouths of the Ganges. It is ou parchment, and as deseribed in all the mblications devoted to it, twenty-one feet in length, and about one fout wide. It was fonnd in the library of the Denedictine monastery at Tegernsee, in Upper Bavaria, in the 15 th c., hy Coural Celtes, who berueathed it to Conrad leutinger of Augsburg, a zealous antiquary, and one of the earliest authors on the Lioman and other antiquities of Gemany. Pentinger began to prepare a copy of it for publication, but died before he could aceomplish his purnose, which, however, was partially executed by Mark Welser, in his Fragmenta Tabule Antique cx Peutinquroriun Bibliotheca (Venice, 1591). The ancient docmuent itself remained in the hands of the Pentinger family, and attracted no further notice, till it was offered for sale in 1714, and purchased by Prince Eagene, who presented it to the Imperial Library of Viema, in which it still remains. An exact copy of it was published at Vienna in 1753, with an introluction and index by F . C. von scheyb, it was again published as an appendix to Katancsich's Orbis Autiques (Ofen. 1825) ; and at the recpuest of the Academy of Dlunich, a revised edition, with an introduction, was published by Coural Mannert (Leip. 18:4). Since that time, a leaf detached from the rest has been fouml in the Imperial Library at Vienna, but we are not aware that any particular account of it or its contents has yet been given to the mblic.
The l'eutingerian Table does not always agree with the Antonine Itinerary (see Itiverany); some stations and towns being marked in the one which are not in the other, the distances marked being also sometimes different. But the two together throw great light on ancient gcography. It appears almost certain from internal evidence that the Peutingerian 'Table belongs to the third century of the Christian cia, or the beginning of the fourth, althongh the existing copy seems to belong to a later date. The general character of the work seems to shew that its authorship is to be referred to times of prevalent paganism; whilst a few things appear, probably alterations or insertions of a copyist, which refer to Christianity.

PHARMACOPCE'IA (supplement to the article). The British Pharmacopaia, published in 1864, had the merit of amalgamating the London, Edinburgh, and Dublin Pharmacopecias; but it unfortunately containel so many defects, that, in accordance with the universal wishes both of the medical profession and of the chemists, the Medical Conneil ordered a new edition to he as speedily as possible prepared. This new edition has met with general favour from the profession; and it is to be hoperl that as we have now succeeded in incorporating three distinct works into one, we may, in the course of a few years, hope to have a miversal Pharmacopeia, or, at all events, one of so general a uature that the most important medicines of the American, British, and chief contiaental Pharmacopœias* shall all be of the same streugth. The most important alditions to the new edition are benzoated lard (used for making suppositories and ointments), bromide of

* The chief continental Pharmacopoeias are the French, which is also nsed in Switzerland; the Jrussian, which is mostly used in Germany and Russia; and that of Orosi, which is used in Italy.
ammonium (useful for sleeplessness, and in hysteria and epilepss'), carlonate of bismuth and solution of citrate of bismuth and ammonia (useful in the same cases as white bismuth), iodide of caulmiun (which may be used in the form of ointment when the yellow colour of the skin that follows the application of iodide of lead ointment is objected to), oxalate of cerimm (which, in doses of one or two grains three times claily, acts as a sedative and tonic, and is of great value in chronic intestinal irritation, dyspepsia, pyrosis, in chronic romiting, aud especially in the vomiting during pregnancy), Hexile collodion (consisting of a mixture of 45 parts of collodion, 2 of Canada balsam, and 1 of castor. oil, and useful as a protecting coating for burns, ulcers, and in erysipelas) ; glycerines of borax, carbolic acid, gallic acid, tannic acid, aud starch (which are used as local ajplications) ; various mercurial preparations, is compound ointment of mercury (which is an imitation of Scott's celebrated ointment for diseased joints), mercury suppositories (for thread-worms in the rectum), and the llack and yellow washes which are now for the first time mate oflicinal, lozenges of chlorate of potash, tincture of pellitory or pyrethrum (used locally for relieving taothach(c), quinine pills and wine, tincture of sumbul (valuable in 20 minim doses as a nervons stimmant in typhoid ferer, delirimm tremens, \&c.), and tincture of green hellebore, or Veratrum viride (which, in doses of from 5 to 20 minims, is useful in gout, thenmatism, and neuralgic affections).

PIILIPPO'POLIS, a town of Fumili, European Turkey, in the eyalet of Adrianople, 91 miles west-north-west from Adrianople. It stands on a small island formed ly the Maritza, which here leeomes navigable. This island rises as a hill in the midst of a vast plain, which extents beyond Adrianople on the east, and from the base of the Rhodope Momatains on the south, to the Balkan chain on the north. The plain is extremely fertile, and is celebrated for the excellence of the rice which it prodaces. I. carries on a very extensive commerce both with Austria and with the East. P. is an ancient town, and in the time of the liomans bore the name of Trimontium. Three-fifths of the inhabitants are Christians, one-fifth. Jews and gipsies, the remainder Mohammedans. 1', is the seat of a Greek archbishop. The North American Board of Dissions has a station at Philippopolis. Pop. about 60,000.

IILILIPPSBURG, a town of the grand duchy of Baden, 16 miles north from Carlsruhe, on the right bank of the Rhine, at the month of the Salzbach. In former times, it was one of thie most important fortresses on the Rhime, and belonged to the Bishop of Spires. During the Thirty Years ${ }^{\text {B }}$ War, F. fell successively into the hands of the Swedes, the French, the Imperialists, and again of the French, who were contirmed in possession of it by the Peace of Westphalia. In the war between Lonis XIV. and Germany, it was taken by the Germans under Duke Charles of Lorraine, and assigned to Germany by the peace of Nimemien in 16\%9; but was again taken in 1688 by the French under Vauban, and once more restored to Germany by the peace of Ciyswick in 1697 . The French cappturad it agam in 1734 , and this time with little difficulty, the strength of the fortress being now much diminished, although the capture cost the life of the Duke of Berwick, their commander; and they again relinquished it in 1735. During the wars of the French Revolution, P. was bombarded in 1799, taken, and its fortifieations completely destroyed in 1800. Pop. 2317.

PHULOW'DT, a town of India, in the Rajpoot

It is built on a rising ground, near the bank of a stream, which, after a course of no great length, loses itself amidst the sands of the desert. Pop. about 15,000 .
PIA'NA DE' GRE'CI, a town of Sicily, in the province of l'alermo, 10 miles sonth-west from Palermo, on one of the head-waters of the Belici. It was the chief colony of the Albanians who settled in Sicily in the 15th c., taking refuge from Turkish tyranny. Twenty-three such colonies were established in Calabria, but only four in Sicily, where King John 1I. granted them land, and guaranteed to them the free exercise of their religion. The culony at P. was fombied in 148 s . The descendants of the colonists still follow the Greek ritual, and adhere to all the enstoms of the Eastern Church, although acknowledging the supremacy of the pope. The Albanian dress is partially retained anong the poorer classes, and particularly anong the women. The inlahitants of P . are mostly husbandmen and shepherds. The houses are generally mean lmildings of a single story: Pop. 7270.
PIATRA, a town of Moldavia, 62 miles wost-south-west from Jassy, on the left bank of the listritza, a laranch of the Sereth. The church of 1 ' is one of the oldest in Moldavia. The only paper-mills in the province are here. Much wood is tloated down the Bistritza and the Sereth to the Danube, to he exported from Galatz. Pop. about 11,900).

PIA'ZZA, or, more fully, PIAZZA AIMMERINA, a town of Sicily, in the province of Caltanisetta, 17 miles east-south-east from Caltanisetta. It stands on the crests and slopes of an isolated hill on the left bank of the Terranovia. It is the residence of many nobles and landowners. The chief trade is in corn, oil, frnits, and other agricultural produce. I'ор. 20,310 .

PICTURES, iestoration of, Some important observations on the action of light on oil-paintings have led to a series of experiments by Ibr David Price of the Crystal Palace, and be has succeeded in demonstrating that the diseoloration of pictures in galleries and dwelling-houscs arises in a great measure from the presence of sulp hide of hydrogen gas, which reduces the metal in the white lead, and thereby gives the dark dingy appearance which so frequently defaces even modern pictures in some places where the pictures are hung on walls not exposed to the direct light of thic sun. Dr Price shews that pictures which have been thus injured can be completcly restorel by beine fully exposed to light in a pure atmosplisere, the light exerting a rapid and powerful influence over the lead compounds, even though well protected with varnish. The same holds good even in a stronger degree in water-colour paintings in which lead-whites have been used.

PIEDIMONTEE D'ALI'FB, a town of South Italy, in the province of Caserta, and 20 miles north-by-east from Caserta, at the base of the Apennines, on a branch of the Volturuo. It is about 3 miles north-enst from Alife, the ancient Alijec, a city of the Samnites, now a small town of only 2689 inhabitants. In a grand and gloomy ravine, called the Val d'Inferno, near P., a torrent issues from a cavern, which is supposed to derive its waters through subterrancan channels from a lake, about five miles distant, amongst the momutains. This and other mountain torrents afford water-power for a number of cotton, paper, flour, fulling, and copper mills in and around the town. I. is one of the most active mannfacturing towns in Italy. The extensive cotton-mills estalblished by Mr Egg give employment to about 1500 hands. There are copper-mines
636
in the vicinity. Pop. about 8000 . Picdinmonte is the mame of several smaller towns and villages in Italy and Sicily.

PIF'DRA RLANCA, a town of the Argentino Republic, South America, in the province of Catamarea, and 20 miles south-west from Catamarca. Pop. 10,000.

PIETRAPE'RZIA, a town of Sicily, in the province of Caltanisetta, and six miles south-east from Caltanisetta, on a lofty leight rising from the left bank of the Nalso. There are sulphur-mines in the vicinity. Pop. $10,296$.
PILLIBHI'T, or PIIILLIBIT, a town of India, in the British district of Barcilly, North-west Provinces, 28 miles north-east-by-east from Lareilly, on the left bauk of the Gurrah, and on the road from Bareilly to Petagorah. P. is a place of considerable trade. The P. rice, celebrated throughont India for its excellence, is the produce of the sonth of Kumaon, brought to I'. to market. Pop. $\because 6,760$.

PIP, CHIP, or IOUI', a disease of poultry, often very fatal, particularly to chickens and turkey poults. It is very frequent also in young pheasants. Adult birds are, however, liable to it; and when it appears in a poultry-yard, it often attacks many in rapid succession, so that it is regarded as highly contagious. It most frequently oceurs in wet or very cold weather, and is generally lescribed as a kind of eatarrh, althongh perhaps it might more accurately he ealied a kind of influenza. It begins with a slight hoarseness and catcling in the breath, which is followed hy an offensive discharge from the nostrils and eyes, rattling in the throat, and an aceumulation of mucus in the mouth, forming a 'scale' on the tongue. The communication of the disease from one hird to another is supposed to take place through the contamination of the water in their common drinking-vessel ; and therefore a bird affected with it should at once be remored from the rest. Castor-oil is freely administered hy some poultry-kecpers. Mrs Blair, in The IIenuife, recommends a table-spoonful, but without saying whether this dose is for a full-grown fowl or a young chicken. She recommends also a medicine composed of half a drachm of dried sulphate of iron, and one drachm of eapsicum, made into 30 pills with extract of liquorice, one pill to be given three times a day. This after a certain time is to he followed by another compound of sulphate of iron, cayenne pepper, and butter. The eyes, nostrils, and mouth are to be washed with vinegar. In one of the most recent works on poultry (The Practical Poultry-keeper, by L. Wright, Lond. 1867), it is specially reconmended that the diseased birds should be kept warm; they are to be fed on oatmeal mixed with ale, and to get plenty of green food. In other respects, except as to the castor-oil, the treatment recommended nearly agrees with Mrs Blair's; but the removal of the 'scale' from the tongue is not regariled as necessary, because it will clisappear of itself on the cure of the disease.-It is proper to mention that there is considerable confusion of nomenclature as to the diseases of fowls, and that, by some writers, the mere symptomatic affection of the tongue is called Pip, and the liscase itsclf Roup. The terms, however, are generally used in the same sense.

PI'ZZO, a seaport of South Italy, in the province of Catanzaro, 24 miles west-sonth-west from Catanzaro, on the Gulf of Santa Eufemia. It was at I. that Murat (q. v.), the ex-king of Naples, was taken, tried, and shot. He was buried in one of the common vaults of a church to the erection of which he had largely contributed. Pop, 6402.

PLANETOIDS. The indefatigable zeal of
astronomical observers coutinues to add to the number of these minnte members of the solar system that are now known. Eighty-one of them are mentioned under Plavetoms (q. v.), four more (one of which, the S5th, has since been named Io) under Solar Ststemi (q, v.); the 86th (Semele) was discovered by Dr Tietjen at Berlin, Jannary 4, 1866; the 87th (Sylvia) by Mr Norman R. Pogson, government astronomer at Madras, May 17, 1866; the SSth (Thisbe) by Mr C. H. F. Peters, Hamilton College Observatory, Clinton N. Y., Junc 15, 1S66; the S9th by Mr Stephan, Director of the Observatory at Marseille, August 6, 1566; the 90th (Antiope) by Luther at Filk, near Düsseldorf, October I, 1866, being no less than the I5th which that inclefatigable explorer has discovered; the 91st by Stephan at Marseille, November 4, 1866 ; and the 92d (Undina) by Dr Tietjen at Perlin, and by N1r Peters at Clinton, U. S. [The number now (1872) is about 115 .]

PLA'SSEX, a small town of British India, in the presidency and province of Beugal, and in the district of Nuddea, 84 miles north from Calcutta, on the left bank of the Bhaghrutti, a river which derives its waters from the Ganges, and pours them into the Hooghly, or rather may be said to become the Hooghly. P. is celebratel in the history of India for the great victory gained by Clive (q. v.) over Suraja Dowlah, subahdar of Bengal, 23d June 1757, a victory, the immediate effect of which was to transfer the subahdarship to Meer Jaffier, but which really laid the foundation of British supremacy in India. The British force at the battle of P. consisted of not much more than 3000 men ; and the only British troops were abont 650 foot and I50 artillerynen, the remainder being sepoys. The subahdar's force consisted of 18,000 cavalry and 50,000 infantry, with 40 or 50 French artillerymen, 50 large cannon, and 4 pieces of light artillery. On the evening before the battle, Clive held a conncil of war, at which it was resolved to decline battle, on account of inferiority of force; but Clive himself afterwards adopting a different resolution, crossed the river, and won a most brilliant victory.

PLINLI'MMON, or PLYNLIMMON, a mountain of Wales, on the boundary between the counties of Nontgomery and Cardigau, 11 miles north-west from Llanidloes. It is 21 SI feet in height. The name P. is said to be a corruption of the Celtic Pumlumon, signifying Five Rivers, and to be due to the fact, that five rivers have their source in this monntain : one of them is the Serera, and another the $W_{\text {y.c. P. is a hage mountain mass, with three chief }}$ summits. Although not above I2 miles from the coast, it is iu the midst of a wide waste of muir and bog. Spurs, or subordinate mountain-ranges, spread out from it in all directions. The riew from the summit is very exteusive. It was in the fastuesses of P. that Owen Glendower took his stand, in I40I, at the outset of his career, issuiug thence with a few determined followers to make inroads on the English borders.

PLOJE'SHTI, or PLOYESTI, a town of Walachia, 35 miles north-by-east from Bucharest, on the Limbor, a feeder of the Jalomnitza. It is a place of considerable trade, and bas a great aunual wool-fair. Pop. (1870) 26,46S.
PLUMLE-BIRD (Epimachus), a genus of lirds of the family Upupilee (see HoopoE), but exhibiting points of resemblance both to honey-suckers and to birds of paradise. The bill is slender and arched. The plumage is magnificent and gorgeous, scarcely excelled eren by that of birds of paradise. The plume-birds are natives of New Guinea and New Holland. They are variously adorned with
enormonsly long tail-feathers, great shoulder-tnfts of broad feathers, loose downy plumes, \&c. One

Plume-bird (Epimuchus allus).
species, E. allurs, has remarkable thread-like prolongations of the shaft of some of its plumes.

POINT-A-PITRE, a town of the French West India island Guadelonpe, eapital of the division of Grande-Terre, on the Little Cul-de-Sac, $\Omega 0$ miles worth-cast of Basse-Terre. The town is well built, and has a safe and spacious harbour. It is the centre of the commerce of the colony. Pop. I 4,000 .
POISSON, Sminon-Devis, a celebrated French geometer, was Lorn at Pithiviers, in the dep. of Loiret, IIst June I7SI ; and displaying an aptitucle for mathematics, he was reccived into the Ecole Polytechnique in 179S. The striking talent he thus early exhibited, attracted the notice of Lagrange and Laplace, both of whom anticipated for him a brilliant future. In 1502 , be became a professor in the Polytechnique; in 180S, a member of the Bureau des Longitudes; in 1809, Professor of Mechanics to the Faculty of Sciences, zuember of the Iustitute in 1812, \&c. ; and this list of distinctions was crowned in IS37 by his eleration to the dignity of a peer of France. P.'s whole life was devoted to the prosecution of scientific research, and the fruits of his pen number about 300 Nemoirs, insertel in the Jonrnals of Ferussac, Gergonne, Crelle, and Liouville, in the publications of the Ecole Polytechnique, of the Academy of Sciences, of the Burean des Longitudes. \&c. A complete summary of these labours by P. himself is published by Arago (Notices Biographiques, vol. ii.). Of the separate treatises published by P., the following are the chief: Traite de Micanique (2 vols. 1833); Nouvelle Thérie de l'Action C'apillare; Theorie Mathénatique de la Chaleur (1535); Mémorre sur le Mourement des Projcctiles dans l'Air, en ayant éfurd à la liotation de la Terre (1839) ; and lastly, the celebrated work, Sur l'Invariabilité des Moyens Mourements des grands Axes Planćtaires. P. is fairly considered one of the chicf founders of the science of mathematical physics, which was brought by him to great perfection, especially in what concerns statical electricity and magnetism. Many other ingenions discoveries and specnlations are dispersed throughont his writings.

POKHU'RN, a town of India, in the Rajpoot state of Jodhpoor, 340 miles sonth-west of Delhi. It is situated close to a desertel town of the same name, the site of which is marked by a very conspicuous temple in an elevated situation. P. has a pop. of about 15,000 . P. being on one of the great
commercial tracks between Eastern Fajpootana and Sinde, much gain is made by the transit-trade.
JOLI"THICHUM (Gr. many-haired), 2 genus of mosses, having the capsule supported on a stalk (seta) which is torminal, and thus appears as an clongation of the stem; the peristome single, of 32 or 64 short equidistant teeth, which are eurvel inwarls, and their summits united lys a Lorizontal membrame elosing the mouth of the capsule. A number of species are fomd in Britain, of which the most abumdant is P. commmur, sometimes called Hair-moss, Golden Maidenhair, and provincially Goldilocks; growing in heatlas and woods, particularly where the soil is samly; the stems not at all branched, or only at the base, sercral inches long; the narrow slender leaves sometimes nearly half an inch long. This beautiful moss is very common in the most northern jarts of Europe and Asia.

PONA'NI, or PANIANI, a seaport town of British India, in the district of Malabar, on the soutl side of an estuary of a river of the same name, about 600 miles south-east from Bombay. The river is uavigable only for canoes to the distance of 63 miles from the sea. The population is employed in fishing and in trade, having ummer. ous patemars, or sea-going boats. P. was formerly a much more considerable place, until nearly ruined by the oppression of Tippoo Sultan. Under the system of railways by which the Madras territories are traversed, the eastern and western coasts of this part of the peninsula have been united by a line from P. to Madras. Pop. about s000.

POPER1NGHE, an old commercial town of Belgium, in the province of West Flanders, four miles from the French frontier. The town is walled, and has manufactures of lace, linens, and woollen cloths. Hops are grown in the surrounding district. Pop. 10,769.

PORDENO'SE, a town of Venetin, Italy, in the province of U'dine, 40 miles north-north-enst of Fenice, on the Noncello, a branch of the Livenza. The town is situated in a pleasant P lain, near the base of the Alps. It is a station on the railway between Venice and Trieste. The site is supposed to le that of the Portus \boldsymbol{V} coonis of the Iiomans. There are several larce paper-mills, also cotton and linen mannfactures, oil-mills, manufactures of copper goods, and glass-works. Pop. 7383.

PONTER, D.uvid D., Rear-admiral of the American navy, son of Commodore David Porter, who commanded the Essex frigate in the war of 1S12, was born in Philadel thia about 1S05, eutered the navy as milshipman in ISO9, serving under Commodores Hiddle and Pattison, passed his examination in IS35, was employed from 1536 to $1 S 41$ in the survey of the coast of the United States; in IS41, appointed as lieutenant to the frigate Congreess, and employed four years on the Mediterranean and Brazil stations; in ist5, transferred to the National Observatory at Washington, and during the Mexican war, to the naval rendezvous at New Orleans; again to the coast-survey, and from 1549 to IS53, engaged in command of the California mail-steamers. At the commencement of the war of IS6I, be was appointed, with the rank of commander, to the steam sloop-of-war Pouhatan, and ordered to Pensacola; distinguished himself in the capture of New Orleans, and commanded the gun-boat anci mortar flotilla which co-operated with the squadron of Admiral Farragut in the first attack upon Vicksburg. In 1S63, he aided in the second and successful bombardment, and subseruently commanded the naval forces in James's River, and in the attacks yon Fort Fisher, captired at the second attack,

688

January 15, 1 S6in ; followed on February $19-20$, by the capiture of Fort Anderson aud Wilmington. At the termination of the war, witl the rank of rearadmiral, he was appointed Superintendent and President ex officin of the United States Nixial Academy, Annapolis, Maryland.

PORTO-MAURI'ZIO, a seaport town of North lialy, capital of a new province of the same name, on the Ginlf of Genoa, 5 S miles directly south-west of Cenon city. Area of province, 467 sq . miles. Pop. (157 I) I26,953. The town stands on in high promontory, [rojecting boldly iuto the sea, and has a lofty chureh, rainted in brilliant colours. The barbour, lefended by a mole, is generally crowded with the picturesque consting-vessels of the Hediterrancan. There is an extensive trade in olive-oil and agricultural produce. Pop. 625b.

POST•OFFLCH INSURANCE is a valmable addition to the many useful services which our postal establishment lias been enabled to render within the last faw years. Book-post, sample-post, money-orlers, aml postal savings-banks, all additions to the original letter-post and newspaper-post, have been fombl to work so satisfactorily, that the legislatme has been enconragel to intrist to the same organisation a new system of insuring lives and grantiog aomuities-specially intended to foster provident labits among persons whose savings can be but small.
In 1S53, an act of parliament made an improvement in the then existing state of insurance law, by facilitating the purchase of government annuities through the medium of the savings-banks; and in 1564, another statute gave a great extension to those portions of the system which had been found to work well, effecting at the same time alterations in those which had exhibited certain refects during cleven years' working. Great facilities are introduced by this act for securing annuities by small payments. Not only may the National Debt Commissioners omploy the trustees of savings-banks to receive and pay the moneys, at a certain rate of remuneration; but the Postmaster-gencral joins in the arrangement, acting as a medinm between the public on the one hand and the Commissioners on the other. Ample tables and regulations have been printed, for the gnidance of the Commissioners, the lostmastergeneral, and the local postmasters throughout the kingdom. On the completion of these tables and regulations in JS65, the practical worling of the system began. The tables of the premiums to be clarged for life-insurances, for inmediate annuities, for deferred ammities, and for deferred monthly allowances, are sold by Messrs Eyre and Spottiswoode, the goverument printers, for $5!d$. (the cost of the paper and printing) ; but similar tables are kept for inspection at the local post-offices without cliarge.

In regard to insmrance, distinct from annuities, persons of either sex may insure throngh the medimm of the post-office. The limited ages are from 16 to 60 , and the limited sums from $£ 00$ to £100. In order to afford every possible facility in the payment of the preminm, minute calculations lave heen made of the exact sum to be paid at each instalment, by yearly, quarterly, monthly, or fortnightly payments, and terminable or not at a particular age. In order that there may be some limit to the labour thus placed on the postal authorities, no periodical instalment is male smaller than two shillings. No one life can be insured for less than $£^{2} 0$ in the whole; but when a life has heen insured for $£ 20$, further insurances may be effecterl on the same life from time to time, until the whole sum for which it is insured amounts to $£ 100$. The

POT-TTALLERS—PPESEPVES

following is a tabulated example of nine different modes of paying the premium on one particular insurance, to suit the convemience of the insurer. A man in his 30 th year may insure $£ 100$ to his survirors at his death :

If an insurer who has duly paid all instalments for five years, should desire, or be compelled by circumstances to withdraw from the engagement, a portion of the past premiums will be repaid to him-nerer less than one-third of the total amount.

In regard to immediate annuities, persons of either sex may purchase annuities of not more than $£ 50$, and for lives from 10 years old and upwards. The premiums necessarily vary with sex, age, and amount. Thus, a man aged 65 can purchase an immediate annuity of $£ 10$, paid half-yearly, for £SS, 1Ss. 4 d.; whereas, a woman of the same age would hare to lay $£ 103,16 s$. $8 d$. Two or more swall annuities may be purchased for the same life, prorided the total amount does not exceed £50. Any two persons may purchase an annuity on their joint lires, with or without continuance of the annuity to the survivor.

Deferred annuities form another element in the scheme. These annuities are very varied in kind, and the amount of premium depends on a great number of conditions-amount of annuity; age and sex of the person; length of term for which the annuity is deferred (that is, the number of years which are to pass before the commencement of the annuity); mode in which the premium is to be paid; and the condition whether or not there is to be any return of purchase-money under certain contingencies. As examples, take the following: A man aged 30 mas purchase a deferred annuity of £10, to commence on his reaching the age of 60, and due half-yearly, for one immediate payment of $£ 24$, $3 s .4 d .$. or an annual payment of ${ }^{2} 1, S \varepsilon .4 d$. ; in the case of a woman, the immediate or total payment would he $£ 32,83.4 d$., and the annual payment $£ 1,17 s .6 d$. If the person on whose life the annuity is to depend should die before the annuity itself commences, all the premiums paid up to that date may be returned to his or her representatives, provided a contract to this effect is made in the first instance. The premiums are necessarily higher for such a contract. The four sums just mentioned, where past premiums are not returnable, would be raised respectively to $£ \ddagger 0,9 s . \quad 2 d ., £ 2,0 s .10 d$. , $£ \pm 7,0 s .10 \%$., and $£ 2,7 s .6 d$. , with the returnable clause included.

Many persons in humble life would prefer that the annuities due to them should come more frequently than half-yearly. To suit this class. a systent of deferred monthly allowances is established. A man aged 30 may purchase a deferred allowance of £2, 7s. 3 d . per month, to commence when he reaches the age of 60 , by a payment of $S \varepsilon$. per month, nntil he reaches that age: the same monthly payment by a roman would realise a monthly allowance of $£ 1,16 s .7 d$. If the returnable clause (above noticed) is included in the contract. the man's monthly allowance would be £I, $14 s .2 d$., and the woman's $£ 1,9 s .4 d$., for the like 512
payment of δs. per month. In regard to married couples, a husband and wife may each be insured to the full amount of $£ 100$, and may each purchase an annuity of £50, or a monthly allowance of $£ 4.3 s .4 d$.
Persons whose lives are insured, or to whom annuities are granted, through the post-office, have direct government security for the payment of the money at the proper time; and this is one of the many raluable features of the system. It is not necessary here to describe the exact routine of proceedings for making an insurance or purchasing an annuity; the postmasters whose post-offices have been raised to the rank of insurance offices, are fully instructed in the matter, and will give all requisite information to applicants. We may add, that the British Postal Guide, an authorised publication, issued quarterly at $6 d$., gires a considerable list of tables of premiums payable at various ages for various kinds of insurance and annuity.
POT-WALLERS, or POT-WALLOPERS (from pot, and Old English wall, to boil or bubble), the popular designation of a class of electors forming the constituency of various English boroughs-as Ilchester, Honiton, Tregoney, Old Sarum-before the Reform Act of 1532 , whose qualification as housekeepers was considered to be established by their boiling a pot within the limits of the borough orer a fireplace erected in the open air. The doing so was regarded as evidence that the elector was in circumstances to provide for his orn subsistence, and not necessitated to apply for parochial relief.

PRAIRIE-DU-CHIES, a town of the state of Wisconsin, U.S., on the right bank of the Mississippi, three miles above the mouth of the Wisconsin, and 165 miles west from Milwaukie. It is a prosperous and rapidly increasing town, and in its neighbourhood are rich copper-mines. Pop. (IS60) 6000.

PRA'TO-often, for distinction, called Prato in Toscava- a town of Italy, in the province of Florence (Firenze), 10 miles north-west of Florence, in a fertile plain, on the right bank of the Bisenzio, a feeder of the Arno, and on the railway between Florence and Pistoja. There are manufactures of straw-plait, woollen cloth, cotton goods, silk thread, \&c.; also soap-works, tanneries, and copper-works. Copper-mines of considerable productiveness exist in the neighbourhood. Pop. (IS:2) 39,594.

PRESERVES, PRESERVED PROVISIONS,

\&c. In addition to the methods already described under this head, we have to notice here some recent efforts to preserve animal food. As yet the most successful method is by placing it when boiled in tins of convenient size for household consumption, hermetically sealed from the air. The waste of animal food in Australia and South America had long been a source of deep regret, and the plan of sending it to Europe in the dried state had only partially come into use. when the attempt to preserve it in a boiled condition was first tried, on any scale, in 1866 or 1867. Since then, the quantity of Anstralian mutton and beef consumed in Great Britain lias increased very rapidly. In 18:2, the total ralue of the imports of unsalted meat was not far short of a million sterling, nearly the whole of which came from Australia. Tinned meat is not much inferior to newly cooked beef or mutton in flavour, and is more economical ; its chief defect to most tastes is that it has the effect of being overdone.

The eminent chemist Lielig suggested the manufacture of a concentrated extract of meat; and this is now carried on very extensively both at home and abroad. It is chietly used by invalids, and for quickly making soups. Only the lean or minscular CS3

PREVEZA-PROVISIONAL ORDER

part is userl, and this is boiled until all but the fibria is dissolved out; the liquid is then concentrated until it is brought to the state of a thick paste, in which state it is easily preserved. Much controversy has of late taken place concerning the nourishing properties, not only of Liebig's, but of all meat extracts. Still those physiologists who have least to say in their favour, do not deny that they have some nseful properties as food, and their use is decidedly on the increase. The Liebig Extract of Neat Company is said to have slaugletered, last season (1872), 150,000 head of cattle.
A few years ago, Professor Redwood patented a method of preserving fresh meat by a coating of paraffin; but this substance, from its brittleness, is apt to crack, and we are not aware that it is now in use. Quite recently, Signor Mariotti has patented a rather peeuliar plan, which is more likely to succeel. It consists in carbonising the whole surface of the meat by taking advantage of the high temperature of boiling fat into which it is dipped. No way of preserving fresh nnimal food, however, can possibly excel the simple one of storing it in chambers or cabins at a temperature as little as possible above the freezing-point. There are, no doubt, difficulties in the way of doing this on a remuncrative plan, but some recent experiments tend to show that they are not insuperable.
Two large companies, an English and a Swiss, have been lately formed for the supply of condensed milk, and also coffee and cocoa mixed with it and sugar, in such a way as to be ready for use with the addition of boiling water. Coffee so prepared is at present very muel in demand.

PREVE'ZA, or PREVISA, a town of European Turkey, in Albania, 20 miles south-west from Arta, and on the north shore of the strait which forms the mouth of the Gulf of Arta. Pop. about 8000 .

PRIE'GO, a town of Andalusia, Spain, in the province of Cordova, 45 miles south-east from the city of Cordova. The inhabitants of P. are chiefly occupied in husbandry. There are oil-mills, flour mills, tanneries, and potteries. There were formerly very important silk manufactures, but these have become inconsiderable. Pop. (1860) 13,464.

PRILU'KI, a town of European Russia, in the government of Poltava, 138 miles north-west from Poltava. It has a considerable trade in corn, cattle, brandy, and saltpetre. Pop. (1867) 10,670.

PRINTING. In Printing, a remarkable American invention was brought into 11 se in 1867. It is called the Matrix Compositor, and is only adapted for stereotyping, by making impressions on thick, soft paper of the letters in the order required, and then taking casts of the same in metal as usual. The peculiarity of this machine is, that it brings up any letter the compositor wishes to its right place in the line by simply tonching the key which answers to that letter, in an arrangement like the front of a piano, each key being marked with its corresponding letter. At the moment the letter is brought to its place, it is made to press into the paper; and in this way the composition proceeds with only one alphabet of fixed types, which are made of steel to bear the pressurc. With practice a good compositor will work this machine, and thus form the matrix for the stereotype plates, as fast as he could set up the ordinary movable types. The saving in time and the wear of type is therefore very considerable.
PRIZZI, a town of Sicily, in the province of Palermo, and 30 miles south-hy-east from Palermo. It is of considerable commercial importance. Pop. (1861) 11,138.

PROVI'SIONAL ORDER is an order granted under the powers conferred by an act of parliament, by a department of the goveroment, by the secretary of State, or by some other authority, whereby certain things are authorised to bo done, which could be accomplished otherwise only by an act of parliament. The order does not receive effect, however, until it has been confirmed by the legislature. Till that time, it is purely provisional ; and even after it has been so contirmed, and is in reality an independent aet, it retains the titlo of a provisional order.
lrovisional orders have been in operation in England for many years, and liave been found most uscful in facilitating the modification or extension of the provisions of general acts, so as to adapt them to the speeial necessities of particular districts. A general statute, dealing with an extensive subject like police or sanitary improvement, could only embrace provisions suited to the requirements of the country generally, and could not be so framed as to mect exceptional circumstances. When these had to be provided for, private legislation was neeessary; but the cost and delay attendant upon tho promotion of local acts in the usual way wero so great as in many cases to be practically prohibitory. What was needed, therefore, was a ready and inexpensive mode of obtaining local legislation, and the system of provisional orders was devised to meet that want. The general act embodied legislation generally applicable, and gave power to some board or officer to issue provisional orders, whereby the general act might be better applicd to special districts or under peculiar circumstances. Such powers were by the Public Health Act, 1848 (11 and 12 Vict. c. 63), conferred on the General Board of Health thereby constituted, but were by the Loeal Government Act, 1858 (21 and 22 Vict. c.98), transferred to the Secretary of State. The Turnpike Trusts Act, 1851 (14 and 15 Vict. c. 38), empowered the same functionary to grant orders in reference to the objects of that act ; while the Piers and Harbours Act, 1861 (24 and 25 Vict. c. 45), anthorised the Board of Trade, with the sanction, in certain eases, of the Admiralty and Commissioncrs of Woods and Forests, to issue provisional orders dealing with a variety of important matters connected with the construction of piers and harbours, and the levying of dues and rates. The Lands Drainage Act, 1861 (24 and 25 Viet. c. 133), gave power to the Euelosure Commissioners to issue orders for the purposes specified in that act; and the Merchant Shipping Amendment Act, 1862, gave, relatively to its objects, corresponding powers to the Board of Trade.

All these acts were in full and beneficial operation in England when the General Police and lmprovement (Scotland) Act, 1862 (25 and 26 Viet. c. 101), was passed, and it conferred extensive powers on the Secretary of State in relation to the granting of provisional orders for police and sanitary purposes. Subsequently, the Irish Drainage and Improvemeot of Lands Acts of 1863 and 1864 (26 and 27 Vict. c. 88, and 27 and 28 Vict. c. 72) enabled the Commissioners of Public Works, and the Oyster and Mussel Fisheries Act, 1860 (29 and 30 Vict. e. 85), enabled the Loard of Trade, to issue orders in relation to the subjects of these aets respectively.

Nothing can be more diversified than the objects to be attained by provisional orders under the several acts above aliuded to, and yet the course of procedure in relation to them all is substantially the same. A petition to the proper authority, specifying what is wanted, and supported by such evidence as can aecompany the application, is mado

PRZEMYSL-PUERTO.CABELLO.

the subject of inquiry by a qualified person commissioned for the purpose. After due inquiry has been made, and the result has been reported to the authority to which the application is addressed, the petition is disposed of, either by giviug or refusing what is asked, or by giving it in a modified form. When a provisioual order is granted, steps are takeu on behalf of the government to have it confirmed by partiament. In the case of orders issued under the General Police aud Improvement (Scotland) Act, for example, the requisite Contirmation Bill is framed, under iustructions from the Secretary of State, by the Lord Advocate, who talses charge of the measure through its varions stages. When unopposed in parliameut, ten days or a fortnight usually suffice for the passing of the requisite Confirmatory Act, which has all the facilities of a government measure. Of course, the whole cxpense connected with the preparation and passing of the order, and the relative Confirmation Act, is defrayed by the applicants; but the advantages of provisional orders, compared with ordinary private bills, are nevertheless considerable. A provisional order may be got with greater expedition and at much less cost than a private bill. It is exempted from the tedious and castly formalities of complying with standing orders and making deposits, with all the formidable fees of the House, and other incidental charges. When opposition is offered, the opponents are fully heard by the commissioner appointed to make the requisite inquiries; and the grounds of opposition are debiberately weighed, first by him, and afterwards by the superior authority to whom he makes his report. The opponents have thus the satisfaction of knowing that their case has been considered, with probably the same result as if it had been submitted at much cost to a parliamentary committee. There is, therefore, hittle inducement in ordinary circumstances to appeal directly to the legislature; and, as a consequence probably, an opposition to a provisional order in parliament is exceedingly rare. No doubt, if an opposition on feasible grounds were offered to a provisional order in parliament, the whole subject would be referred to a select committee, who would probably proceed as in the case of an opposed private bill; but that, as has been observed, is of so rare occurrence, that it does not detract from what has been said in regard to the advantages of the system as a rule.

PRZE'MYSL, a town of the Austrian Empire, in the province of Easter Galicia, on the right bank of the San, an affluent of the Vistula, 53 miles west from Lemberg. It is connected by railway with Cracow, and so with the west and north of Germany on the one hand, and with Lemberg on the other. P . is a flourishing town, carries on a considerable trade, aud has manufactures of linens and leather. Pop. 9506.

PRZI'BRANI, a town of the Austrian Empire, in Bohemia, 33 miles south-south-west from Prague, on the Litawka, a feeder of the Moldau. It derives its importance chiefly from extensive lead and silver mines in the neighbourhood, aod is the seat of a superior court of mines. Pop. 7665.
PSEU'DOSCOPE ($p s e u d o s$, false, and skopein, to see), an optical instrument invented by Professor Wheatstone, and so called from the fact of its exhibiting objects, viewed through it, under aspects the exact converse of their natural appearance. Its coustruction is shewn by the annexed figure: abc, two rectangular prisms of flint-glass, the hypothenuses of which measure $1 \frac{3}{8}$ inch in length, and $1 \frac{1}{8}$ inch in depth. The prisms are hinged at c, so that they may be inclined towards each other in any desired degree, and are fixed each iu a wooden
framework, fastened together by the binge or pivot d. By means of the pirot d, the distance between c and c may be made to accommodate itself to the differeut interval between the eyes in various observers. In using the instrument, the eyes are placed at E and E respectively. The thumb-pieces attached to the prisms at a and a, are used in adjusting the instrument for distinct vision of any

particular object. The optical effect of each prism is twofold: it displaces the object, and it procures the lateral inversion of the image. From the latter circumstance, it follows that the right-hand side of a cube, for example, is seen on the left, and vice versa; this inversion being occasioned by the reflection of the rays upon the side of the hypothemuse within each prism. By the two refractions undergone by the rays as they enter and leave the prisms, the axis of the emergent pencil is no longer directed towards the real place of the object, but is diverted in such sort that the convergence of the optic axes diminishes as the distance of the object diminishes; and increases as its distance increases-a complete reversal of the ordinary conditions of sight, and one which, in conjunction with the lateral inversion before mentioned, gives rise to very curious visual phenomena. See Vision. It is essential to the efficient use of this instrument that the object be seen by both eyes; and therefore the observer, having placed the object at the usual distance for distinct vision, should, by closing the eyes alternately, ascertain that it is within the field of each prism. He should then adjust the prisms until the two images coincide in point of space, when they will coalesce, and, at first, the object will probably retain its natural aspect; but on a sudden, it undergoes a change, and the converse appearance stands out to view with the utmost distinctness and reality. A hat will appear to be turned completely inside ont ; the interior of a basin will appear convex and protruding; and 'a bust regarded in front becomes a deep hollow mask.' To facilitate the illusion, the object should be equally illuminated on either side, so as to prevent shadows.-For a full account, see the original paper by Wheatstone, Phil. Trans., I852, p. 11, et seq.

PUCCI'NIA, a genus of fungi, of the divisiou Coniomycetes, all very small and parasitic, on the leaves or stems of plants, within the tissue of which the mycelium creeps. One of the most common species, and the most important, is the Corn Mrldew. (P. graminis), which is almost always present in corn-fields, and in some years is very injurious to wbeat and other cereal crops. It is pitchy brown or black, and grows in irregular lines, somewhat following the venation of the leaf, the lines sometimes contluent. The spores are supposed to find their way from the root upwards, with the juices of the plant on which they vegetate, but this has not yet been proved by observation.
PUF'RTO-CABE'LLIO, or PORTO-CABELLO, a town of Venezuela, iu the proviuce of Caracas, 78 miles west from Caracas. It stauds on an island in the Golfo Triste, separated from the mainland by a channel so narrow as to be crossed

PULICAT－QUEENS＇COJLEGE．

ly a bridge．The situation is vory unhealthy，but the harbuur is safe and commodious，ant a consid－ erable trade is carried on．P^{2} ．is the port of Valcneia，which is rather more than 20 miles inland．Pop． 7500.
PULICA＇T，PALIKAT，or PALVELAKA＇TU， a town of British India，in the presidency of Madras， and district of Chingleput， 20 miles north from Madras．It stands on an island in a large inlet of the sea or salt－water lake ealled the Lake of Pulicat． This lake is ahout 37 miles in length froum north to south，and 11 miles in breadth at the widest．It contains a number of islands．The communication between the lake and the sea is by very marrow openings．The lake is much used as aftording facilities of traftic by boats between Madras and more northern places．P．was occupied by the Dutch in 1609，and became afterwards the eapital of their settlements on the Coromandel coast，but fell into the hands of the British in 1795.

PULWU＇L，a town of British India，in the dis－ trict of Gurgaon，North－west Provinces， 36 miles south－hy－east from Delhi，on the route to Mnttra． l＇op．12，000．

PUNDERPU＇R，or PANDHARPUR，a town of British India，in the district of Satara，and presidency of Bombay， 90 miles east from Satara， on the right bank of the Bima，a large branch of tho Kistaa．It is highly revered by the Hindus， on account of a celebrated temple dedicated to an incarnation of Vishnu．Pop．estimated at 20,000 ，

PUTEAUX，a town of France，in the rep． of Scine，at a distance of about tro miles from the westeru boundary of Paris．It is situatel on the left bank of the Seinc，opposite to the Bois de Doulogne，The situation of P＇．is a very pleasant one，aud many Parisians have fine villas here．The population aud industrial activity of the place have of late greatly increased．Pop．（1866） 9375.
PUTTU＇N，PATTAN，or ANHULWAR PAT． TAN，a town of India，in the territory of the Guico－ war，Guzerat， $6 \pm$ miles north－west from Allahabad． It stands ou the Saraswati，a sinall river，which is
a tributary of the llanas；and is a town of consid－ erable importance，having manufactures of swords， spears，pottery of a light fine kind，and suk and cotton gools．P．occupics part of the site of the ancient city of Anlulwara，the traces of the walls of which may still be seen，extending to about five miles in circuit．Pop，estimated at 30,000 ．

PYGMIES OF WESTERN AFRICA．The existence of pygmy races of human beings in Africa has been often asserted，and many circumstances less easily credible than their diminutive size lave been reported．See Prgmes．Du Chaillu lias recently discovered the actual existence of a pyguy race，but of whom the diminutive size is the only remarkable characteristic．He found them in the monntainons country on the east of the southern great lranch of the Ogobai．They are called Obongos，and live in the midst of negro tribes of ordinary stature．They shewed extreme timidity on bcing visitcd by a white man．In stature，they are only abont four feet and a half．They subsist chiefly on animal food，but partly also on the roots，berries，and nuts which they find in the forests．

PYNE，Loctsa，a popular English siuger，daughter of a well－known singer，Mr James Pyne，was born in 1824，received instruction from Sir Gcorge Smart， and first appeared in public in Loudon in 1842．She appeared in Paris in IS47，made her cebut in opera in 1849，and has since risited America．She is chiefly known from her being elicf soprano of an English opera company，in which she was associated with Ir Harrison at the Lyccum，Drury Lane，and Covent Garden．
PY＇IIITZ，a very ancient town of Prussian Pome－ rania，in the government of Stettin， 25 miles south－ east of the town of Stettin．There are standing five ligh towers on the town－walls，built by the Wends，under whom it was a place of great strength． There is a scminary named after Otto，lishop of Bamberg，near the spring where it is said he，in 1124 baptised the first Pomeranian converts． \mathbf{P} ．has manufactures of woollen cloth and leather．Pop． （IS71） 7065.

UANG－NAIJ，KUANG－NAM，or TURON゙，a town of Anam，about 75 miles south－east－by－east from Hué （q．v．），or Phu－thuan－thien，the capi－ tal of Anam．It is situated near the head of a beautiful gulf，and is a place of considerable trade．
QUE＇DAH，KEDAH，KEDDAH， KEEDAH，or KlDAH，a half－inde－ pendent state，on the west coast of the Malay Feniusula，on the Strait of Malacca． It extends from about lat． $5^{\circ} \mathrm{N}$ ．to lat． $7^{\circ} \mathrm{N}$ ．， and its average breadth is about 50 miles．The British province Wellesley，which lies hetween it and the sea－coast opposite to Penang，was separated from it and ceded to the British in 1500，by a treaty in which the British agreed to pay the rajah 10,000 dollars a year．Q．nominally owes a kind of feudal subjection to Sian，but is in reality much more subject to the sway of Britain．－The capital，from which the state takes its name，stands at the mouth 633
of a river also of the same name，in lat． $6^{\circ} 6^{\prime} \mathrm{N}$ ．，and long． $100^{\circ} 20^{\prime} \mathrm{E}$ ．Its pop．is estimated at about 21，000．

QUEENS＇COLLEGE，Cambridge，was founded in 1446 by Mlargaret of Anjon，consort of Henry VI．，and refonnded in 1465 by Elizabeth Woodville， consort of Edward IV．The college consists of a President and I4 foundation Fellows；the fellowships being tenable for ten years from M．A．without being subject to any restriction whatsoever；while any Fellow who takes holy orders，and has not a benefice of the net annual value of $£ 300$ ，may hold his fellowship for life．The vew statutes provide that there shall be at least I4 scholar－ ships，tenable till B．A．，ranging hetween $£ 30$ and $£ ⿹ 勹 巳$ ；the number and ralue of the scholar－ ships to he augmented at the discration of the President and Fellows．Besides these，there are 5 exhibitions，ranging from $£ 12$ to $£ 20$ ；and there are funds to the amount of $\mathfrak{£ 1 3 0}$ per annum at the disposal of the President，for the behoof of deserving

QUEENS TOBACCO-PIPE-RAG-TRADE.

students of limited means. There are likewise al number of prizes, ranging from $£ 5$ to $£ 30$. The College holds the patronage of tell benefices in the counties of Bucks, Cambridge, Essex, Leicester, Norfolk, Notts, and Wilts.

QUEEN'S TOBACCO-PIPE, the facetious designation of a peculiarly shaped kiln, which is situated in the north-east corner of the Tobacco Warehouses helonging to the London Docks. These warehonses are rented by government at $£ 14,000$ annually. The kiln consists of a circular brick stalk, bulging out at the bottom to a width of tive feet inside. A sidedoor of massive iron, lettered 'V. F., the Kiln,' gives access to the interior, in which are piled up damaged tobacco and cigars, and contraband goods, such as tobacco, cigars, tea, \&c., which have been smuggled, books which are attempted evasions of the Copyright Act, \&c., till a sufficient quantity has accumulated, when the whole is set fire to and consumed. The total value of the goods thus destroyed is enormous; and though this wanton destruction has often been censured, government still persists in the practice of periodically filling and lighting 'the Queen's Pipe.'

QUESALTENA'A゙GO, a town of Gnatemala, Central America, the capital of a dep. of the same name. It is 66 miles west-by-north from Guatemala,
and stands in an elevated tableland, on a river which flows into the Pacific Ocean. After Guatemala itself, Q . is the most important town in the state. It manufactures cotton and woollen fabrics, and carries on a considerable trade. Pop. 25,000, mostly Indians.

QUILLO'TA, a town of Chile, in the province of Valparaiso, and 22 miles north-east from Valparaiso, on the Aconcagua, about 20 miles from its mouth. Q. is a station on the railway from Valparaiso to Santiago, and is a place of some importance and some trade, the richest copper-mines of Chile being in its vicinity. To almost every house is attached a vineyard, but no wine is made. Pop. estimated at 10,000 .

QU1LO'N (Kayan Kulan), a town of British India, in Trarancore, 35 miles north-west from Trivanderam. It is situated on the sea-coast, in a bight where ships may anchor and have shelter. Q. has a barrack for European troops, a hospital, a jail, \&c. There is a considerable export trade in timber, cocoa-nuts, ginger, pepper, \&c. The communication with Trivanderam is almost entirely by canals, connecting the lagoons of the back-water. There is similar water-communication with towns further northward on the coast. Pop. estimated about 20,000 .

R

acalmuto, or ragaliuto, a town of Sicily, in the province of Girgenti, in an inland situation, on the crest of a hill 12 miles north-east from Girgenti. It is said to be of Saracenic origin. It has a castle, built by Frederick Chiaramonte in the l4th century. Pop. (1861) $10,397$.
RACE, a term employed in some cases, particularly in the English Channel, to designate the powerful current formed by a rushing tide. Thus, between the island of Alderney and Cape La Hogue, ou the coast of France, is the Race of Alderney; and off the Isle of Portland, on the coast of Dorsetshire, Eagland, is the Race of Portland.

RAG TRADE. This trade, even within the limits of a reneration, has undergone extraordinary changes. Whoollen rags, which sume thirty years ago were all allowed to rot on the dunghill, save the very small quantity required for flock papers and stutfing saddlery, are now consumed, under the name of 'shoddy,' to a rast extent in the manufacture of the cheaper woollen cloths, more than 30,000 tons having been imported in $150 \cdot$; and in the same year, probably a like quantity was obtained in Great Britaiu itself.

Linen and cotton rags are, as is well knomu, nearly all consumed in the manufacture of paper ; but of late years the demand for paper has increased at so great a rate, especially for the American and colonial markets, that rags can no longer be looked upon as the priucipal raw material from which it is made. It was stated by Mr Tontledge, to whom the country is mainly indehted for the successful introduction of esparto fibre, at a meeting of the London Society of Arts, in December 18.1 , that rass were now used alone
only for the paper of bank-notes, ledgers, and suchlike special purposes, esparto fibre being even preferred as a material for printing-paper. Wood pulp is also largely used on the continent, as well as in America, to mix with rags for all kinds of papers, often forming as much as 70 per cent. of their weight. For some time past, the amount of cotton and linen rags annually imported into Great Britain has but little exceeded 20,000 tons; while the imports of esparto fibre reached, in 1s\%l, the enormous amount of 144,400 tons. Moreover, no less a quantity than 33,060 tons of rags and other paper material, but chiefly rags, were exported in the same year from British ports, nearly the whole of which went to the United States.

Unfortunately, there seems but too much reason to fear that the regular supply of esparto, as the staple material for paper, cannot be depended upon; and even thongh it could, rags will always be of great value for the better kinds. According to an estimate published about ten years ago, and which scems to have been accepted as tolcrably accurate, 'the continent consumes only 4 lbs. of paper per head of its population, requiring G lbs. of paper material for its production; England consumes 8 lbs. of paper per head, requiring 12 lhs. of paper material ; and America consumes 10 lbs. of paper per head, requiring 15 lbs . of paper material for its production. At that time, then, the continent had more rags than it required; while both England and America had to import rags to keep their mills going. The state of matters is still the same as regards the contiuent; but, in the meantime, the increased use of esparto appears to admit of Eugland sending away as many rags as she imports. Most of the imported lineu rags come from Germany and France. Cotton, flas, aud jute waste from spinuing-mills are all used for paper-making.

RAMNAD-REFORM.

It is believed that the home supply of linen and cotton rags might be largely increased by greater care in housekeeping economy. Mr llerring, partuer in a firm of paper-merchants, and author of several articles on this branch of industry, published, in 1860, a 'Letter,' addressed to clergymen and others, suggesting an organised plan for the attainment of this object. 'There are,' he remarks, 'more rags wasted, burned, or left to rot, than would make our paper-manufacturers independent of all assistance from abroad.' Whatever may have been the case in 1860 , it is plain that, however carefully collected, all the rags produced in Great Britain would now be far short of meeting the demands of our paper-mills if no other material were used.

The managers of ragged schools in London organised is Rag-collecting Brigade in 1862, which still exists, though diminished of late years.

RAMNAD, a town of British India, in the district of Madura, presidency of Madras, 125 miles north-east from Cape Comorin, and about five or six miles from the shore of Palk's Bay. In the centre of the fort is the palace or residence of the zemin. dar, one of the greatest of his class in the south of India, his extensive possessions containing more than 2000 villages, and nearly 300,000 inhabitants. P'op. about 13,000 , of whom 6000 dwell within the fort.

RANDA'ZZO, a town of Sicily, in the province of Catania, at the base of Mount Etna, aud eight miles north-by-west from its summit, on the Cantara. It crowns the summit of a low cliff of lava, and ascends the slope above, with brown battlemented walls and Norman towers, so medieval in its whole appearance, that it has been likened to 'a town of the middle ages preserved as a curiosity.' R. is believed to hare been founded by the Lombard adventurers whe assisted Count Roger in his conquest of Sicily. Pop. (1861) 6727.

RA'NELAGH, a village forming part of the suburb of Dublin, is situated two miles south from the centre of the city. It consists of one principal street with a square, but is surrounded by villas. The pop. in 1861 was 3866.

RA'VENSBURG, a town in Würtemberg, and capital of a bailiwick of the same name, in the Circle of the Danube, is pleasantly situated in a fertile and romantic valley, the Schussenthal, at the foot of a hill planted with vines. The principal industries are spinniag wool and flax, weaving woollen fabrics, linen, and stockings, bleaching, making paper, playing-cards, furniture, wood-work, sawing wood, \&c. Pop. (1871) S433.

RECANA'TI, a town of Central Italy, in the province of Macerata, on the Musone, 14 miles south from Ancona. It is a station on the railway between Ancona and Rome. R. was a powerful military position in the 11th century : great privileges were bestowed on it by the Emperor Frederick II. in 1229, when the whole line of coast from the Potenza to the Musone was grauted to it for the crection of a port. Pop. (1861) 6150.

RELEVES, Sms, an eminent tenor singer, horn at Woolwich in 1821 . Before attaining his fourteenth year, he was a clever performer ou various instruments, and tolerably well versed in composition; and at that early age he was appointed organist and director of the choir in the church of North Cray in Kent. His musical education was conducted under J. B. Cramer, T. Cooke, and other artistes of note. He first appeared in public as a baritone at Newcastle in 1839. His début was a complete success; and be acquired fresh fame in Scotland and Ireland. In order to perfect his voice and style, he went to Paris, and after studying there for some time, appeared at Milan in the tenor part 694
of Edgardo iu Lucia di Lammermoor, when his singing electrified the audience. Ile returned to England in 1847, and coming out at Drury Lane as Edgardo, was immediately recognised as the first living English tenor, and was engaged in 1848 at Her Majesty's Theatre. In 185l, he was equally successful as first tenor at the Italian Opera in Paris. One of bis best original parts was in Macfarren's opera of Robin Mood, ${ }^{\text {rroduced }}$ in 1860.
REFORM. The article Reform in tho Lineyelopadia, closes with the withdrawal of Lord John Russell's bill in 1S60. No oue, remembering amidst what apathy that took place, would have expected, within so few years, to see the subject revive, and assume such large dimensions. Mr Gladstone's speceh of 1864 first gave new life, and his declara. tion, that it lay with those whe refused the clective franchise to justify the refusal, sounded the commencement of the new agitation. At the general election of 1865 , reform was necessarily much discussed. The death of Lord Palmerston gave the country a ministry in which Lord Russell led the House of Lords, and Mr Gladstone led the House of Commons. This ministry was not long in attwoking the subject, and the reform discussions of 1566, so valuable as preparing for the final settlement of the question, commenced. The ministry adopted a suggestion which Mr Bright had made, and tabled first a bill dealing with the franchise alone. Its proposals were of a moderate enough description, its leading provisions heing to give the franchise to occupiers of premises of the annual value of $£ 7$ in boroughs, and of $£ 14$ in counties. At the desire of the opposition, led by Mr Disraeli aud Lord Stanley, government introduced its Redistribution of Seats Bill, and the two bills were combined and sent to committeo together. In committee, parliament proved unmanageable. Several clauses were carried by tho uarrowest majorities, till at length, on the comparatively small question, whether 'clear' or 'rateable' annual value should be taken as the basis of the franehise, government was left in a minority of seven. The leaders, true to the traditions of party, resigned, and left the question of reform to the Conservatives.
The resignation was beneficial to progress. In the autumn following it, numerous mass mectings, conducted in general with perfect order, were held; and some unlucky speeches of the opponents of any reduction of the franchise were employed more or less unfairly in order to get a startiug point for the kind of eloqueace that such meetings require. It now became plain that the main drawback to reform, the alleged indifference of the working classes, had ceased to exist. Reform therefore became inevitable; and it was equally clear that if reform was to be carried by the Conservatives, the country would not accept from them a measure of the moderate character which it would have gladly taken from the Liberals shortly before.
The meeting of parliament in 1867, it is said, found the ministry of Lord Derby and Mr Disracli still uudecided. But it was necessary to do something. The Queen's Speech accordingly broached the matter; and in the beginning of the session, Mr Disraeli proposed to deal with the subject hy way of resolution. His resolutions, however, were vague, and harl to be withdrawn. Mr Disraeli then (25 th February 18G7) made a speech, in which he proposed to bring in a bill, with a $£ 6$ rating 'franchise in boroughs, a £20 rating in connties, and with some of what were called 'fancy' frauchises. With the redistribution question, he proposed to deal much as his actual bill afterwards dealt. This proposed bill was understood to be a compromise with a section of tho cabinct not

REFORM

favourably disposed to reform. However, as it did not succeed in making matters smooth, the leaders of the government are said to bave reverted to what was their original policy. The dissentients, Lord Carnarvon, Lord Cranborne, and General Peel, then resigned, and (on 18th March) the Reform Bill of 1867 was introduced.

The bill surprised the country. Mr Disraeli has since said that, so far back as 1859 , be and Lord Derby came to the conclusion, that if the $£ 10$ line, at which the Reform Act of 1832 had fixed the borough franchise, were disturbed, there was no other fixed line tenable; and he has made the further revelation, that he spent the interval between 1859 and 1867 in educating his party to the belief, that if the borough franchise was to be dealt with at all, it must be dealt with in the boldest manner. His bill, therefore, carrying out this policy, proposed that all householders within borough who were rated for the payment of poor-rates, should be entitled to vote. There were certain 'securities' attached to this proposal. The householder must have resided two years in the borough, and must have personally paid his rates. Further, the 'fancy franchises,' which again made their appearance, bad coupled with them what was called the 'dual vote,' the object of which was to give to every householder who possessed one of them a second vote in addition to the first, which his house would give bim. In counties, the bill proposed a $£ 15$ rating franchise, and all existing franchises were permitted to remain. Iu redistribution of seats, the bill proposed to take the second member from each borough of less than 7000 inhabitants, and to divide these seats, together with the seats taken from the corrupt horoughs, in nearly equal proportions between the larger counties and boroughs, giving one also to London University.

The bill was not permitted to pass without many alterations. Government, either influenced by a sincere desire for reform, or convinced that, as reform was at anyrate unavoidable, it was better that it should pass under their management than under the management of their oppouents, were quite resolved that a bill should pass. They yielded to the House whenever they well conld, and when they could not, the threat of dissolution at once brought the House to reason. The result of the labours of the session admits of being shortly stated.

The borough franchise remained substantially as at first proposed. Much of the session was lost in devising clauses by which the rating principle could be applied to those tenants whose landlords compounded for their rates. The principle was, however, maintained; and an amendment introduced by Mr Gladstone, with a view of fizing the hard and fast line of £5, was rejected. But by a new clanse, the system of compounding was put an end to, so that the franchise was really given to all householders except those excused from rating on the score of poverty. The period of residence, on the motion of Mr Ayrton, was reduced from two years to one. On the motion of Mr M'Cullagh Torrens, an important addition was made in the shape of the lodger franchise. Mr Disraeli's bill of 1859 had contained a provision of the kind, and something like it was again added. It gives votes to all lodgers who have occupied for a year lodgings which would let unfurnished for $£ 10$, and who apply to be put on the roll.

The county frauchise was reduced from $£ 15$ to £12 rating; and there was added (on Mr Colville's motion) a reduction of the copyhold and leasehold franchise, giving votes to all owners or liferenters of the free annual value of $£ 5$ in property other than freehold, which continues to yield a 40 s . franchise.

The dual vote was early abandoned, and its abandonment involved that of the 'fancy' franchises. These have now only interest as matters of history; but as the name appears often in the discussions, it should be mentioned that, in their last form, they proposed to give votes to all who paid £I annually in direct taxes (not including licenses), who belonged to certain of the better educated professions, or who had $£ 50$ in a savings-bauk or in the funds. Mr Mill's proposal to extend the franchise to women found 73 supporters. The vote by ballot was rejected, equally with the government proposal to take the vote by means of voting-papers.

The comparatively restricted proposals of the government with regard to redistribution of seats were considerably extended. On Mr Laing's amendment, the limit at which boroughs then returning two members should hereafter return only one, was raised from 7000 inhabitants to 10,000 . This gave 38 seats to be distributed," making, with the 7 seats forfeited for bribery by the boroughs of Lancaster, Yarmouth, Reigate, and Totness, 45 in all. Of these, 25 were given to the larger counties, which were severally divided into two or more districts for the purpose. \dagger To boroughs, 19 new members were given- 8 by way of additional members to boroughs already possessing members, and 11 to new boroughs. \ddagger To the University of London, one member was given. Mr Laing's proposal to make the scheme of redistribution still more extensive, by applying to all boroughs having fewer than 5000 inhalntants the system of grouping which prevails in Wales and Scotland, was rejected.
The ouly amendment of importance which the House of Lords succeeded in making, was the addition of the system of representation of minorities. By this system, persons voting in London, where four members are returned, cannot vote for more than three; and in the comnties and boroughs which return three members, cannot vote for more than two. The object is to prevent a majority which may possibly exceed the minority by only one man, from monopolising the whole representation. The plan appeared first in Lord Joln Russell's bill of 1854, and having then been unpopular with both sides, does not appear to have been proposed since. Mr Disraeli took occasion, in introducing his bill, to declare himself against it. Nr Lowe proposed to

* The boroughs from which one member each was taken were Andover, Bodmin, Bridgenorth, Bridport, Buckingham, Chichester, Chippenham, Chipping.Wycombe, Cirencester, Cockermonth, Devizes, Dorchester, Evesham, Great Marlow, Guildford, Harwich, Hertford, Honiton, Huntingdon, Knaresborough, Leominster, Lewes, Lichfield, Ludiow, Lymington, Maldon, Marlborough, New Matton, Newport (Isle of Wight), Poole, Richmond, Ripon, Stamford, Tavistock, Tewkesbury, Thetford, Wells, and Windsor.
+West Kent, North Lancashire, East Surrey (already having two members each), and South Lancashire (already with three members), were subdivided, and two members given to each division, which absorbed 7 seats; and the comities of Chester, Derby, Devon, Essex, Lincoln, Norfolk, Somerset, and Staford, together with the West Riding (all already in two divisions, with two members each), were divided into three parts, each represented by two mombers, which absorbed the other 18 seats.
\ddagger Birmingham, Leeds, Liverpool, Manchester, Mer-thyr-Tydvil, and Salford got each an additional member. The Tower Hamlets were subdivided, and got two additional members. Chelsea was made a borough, returning two members; and the following boroughs were appointed to return one each : Burnley, Darkington, Dewsbury, Gravesend, the Hartlepools, Middles borough, Staleybridge, Stockton, and Wednesbury.

REFORM-REFRIGEIATING MACHINES.

auld it in the Commons; and his proposal was supported by such men as Lord Crauborne among the Conservatives, and Mr Mill and Mr Faweett among the Liberals. Mr Bright joined the government in opposing it, and it was lost by a majority of 141. I_{11} the Honse of Lords, its insertion was again proposed by Lord Cairns, and earried by a very large majority, most of the Conservatives voting for it, against the government. When the Lords' Amendments were considered in the Commons, it was the only one of them which was agreed to. It is hardly neecssary to say that a scheme such as that of Mr Hare, for carrying out the prineiple in a rigorous and complete manner, was found to be far in advauce of the day:

The opportunity of passing the Reform Bill was taken to provide for some minor improvements. The ineonvenience of having parliament dissolved by the demise of the erown was obviated, and it was provided that ministers of the crown and their subordinates changing from one office to another should not have to submit to re-election. A boundary commission was appointed to re-adjust the bonndaries of the boroughs and counties. Mr Faweett's proposal to throw the necessary expenses of elections, such as the expenses of polling-places, sheriffs, \&c., on the borough or county rates, was, however, rejected.
Such is the Reform Act (for England) of 186%. Its passing, in some shape or other, from the temper of the government and its prwer of controlling the Honse, was at no time in scrions risk. The most critieal period was when Mr Coleridge's amendment was bronght forwarl, with the view of making way for Mr Gladstone's amendment of the fis rating limit; and here the government were served by the defection from the Liberals of 'the tea-room' party-a large number of 'extreme' and 'independent' Liberals, some of whom really preferred the quasi household suffrage scheme of the government, and others of whom were only resolved that a bill of some kind should pass. Mr Gladstone's amendment was thus defeated.

Acts similar to the English one were passed for Scotland and Ireland in the session of 1868 . The borough franchise for Scotlaud is substantially the same as for Eogland, being conferred on every man who has for twelve months ocenpied, as owner or tenant, any dwelling within the borough, exeept he has been exempted from poor-rates on the gromed of inability to pay, or has failef to pay. Seutland hass also the $£ 10$ lodger franchise. In Scottish comnties, proprietorship, to the extent of £5 of clear yearly ralne confers a vote; the limit of the tenant franchise is £14. The Scottish act disfranchised seven Eoglish boroughs, and gave seren additional representatives to Scotland two of these leing assigued to the universities, and the rest to the larger towns and counties. The miversities of Edinburgh and of St Andrews return one member jointly ; as do those of Glasgow and Aberdecn. The lrish act made no alteration in the connty franchise, but reduced that of boroughs to a £4 rating occupation.

As thus chosen, the Honse of Commons was composed, in 1569, of the following representatives

	of Counties.	Citics and Boroughs.	Unirersities.	Total.
Fincland and Wales,	187	297	5	489
Scotland,	32	26	2	60
Ireland, - .	64	37	2	103
Ünitad Kingaom	m, 283	$\overline{360}$	9	652

REFRI'GERATING MACHINES. Under the

 head ICE, some notice is given of machines by which it ean be prepared artificially; but as the practical importance of refrigeratiog apparatis is daily increasing, we propose to give here a fullersketch of one or two kinds. The ice-maling machine of Carré \& Co. of Paris, being one of the simplest and best of those which prodnce cold by the evaporation of some volatile liquid, we shall describo it first. It is shewn in figures 1 and 2 , and consists of two strong cast-iron cylinders A and B, connected torether lyy a metal tube T, all perfectly gas-tight. The whole apparatus is made strong enough to stand seven or eight atmospheres of internal pressure.

The eylinder A is elarged with a concentrated aqueous solution of ammoniacal gas. Ammonia is a powerful absorber of heat, and is, moreover, so extremely soluble in water that the latter takes up nearly 700 times its volume of the gas. Air is completely expelled from the apparatus by opening a screw valve and heating the cylinder. It is then ready for use. On applying heat to the cylinder A (fig. 1), which fits into a small stove for the purpose,

Fig. 1.
the solution of ammonia is volatilised, and carried over and condensed in the cylinder D, whieh is placed in a vessel containing cold water. The heat reaches to about $220^{\circ} \mathrm{F}$, and while it is being applied, the volatilised ammonia coudenses into a liquid under very high pressure, produced by its own atmosphere, in the cold cylinder B. When the heating has gone on long enongh-about half-an-hour for a small machine-the hot eylinder, A, is removed from the fire, and placed in a vessel of colel water, as shewn in fig. 2. The cooling of this

Fig. 2.
eylinder immediately eauses the reabsorption, by the remoral of the pressure, of the condensel ammonia from the other cyliuter B ; and as it

REFRIGERATLNG MACHINES.

passes again from the liquid to the gaseous state, intense cold is produced (see Heat), and, in consequence, heat abstracted from everything in contact with this portion of the apparatus.
The cold cylinder \mathbf{B} is shewn in section in fig. Ω. It is so constructed that the ammonia is contained in an outer jacket, learing a hollow space in the centre. When ice is to be made, the latter is filled with salt water or other liquid which does not freeze at $32^{\circ} \mathrm{F}$., and into this is placed a loasely fitting metal cylinder D , containing the water to be frozen. In this way, with a small machine for domestic purposes, a few pounds of ice can be made in an hour or two; but large machines, on the same principle, are made which produce 440 lbs . of ice per hour.
An Italian, named Toselli, has recently brought out a modification of Carrés machine, in which the ammonia is volatilised by hot water instead of by a store. This is considered to be a practically safer and more convenient plan.

There is another excellent refrigerating machine constructed by Mr D. Siebe of London, where ether is used as the volatile fluid instead of ammonia. It operates on essentially the same principle; but a powerful pump, worked by a steamengine, is used to facilitate the evaporation of the ether. Some machines are also in use which produce

Fig. 3.
ice by means of freezing mixtures; but they are of minor importance.

Mr A. C. Firk, late of the Bathgate Chemical

Works, undertook, a few years ago, a series of experiments with a riew to the construction of such an apparatus which would produce cold by the simple expansion and compression of air. He ultimately succeeded in producing a most efficient machine, which he patented on the 25th April 1862, the number of the specification being 1218 .

Although it is not strictly true that the mere rarefaction of air produces cold, yet it will simplify the explanation of this machine to assume in the meantime that it does so. Its simplest form is shewn in fig. 3 , and consists of a cylinder with a piston to compress air, communicating with another cylinder containing a hind of piston or plunger where the compressed air is cooled and expanded. The machine is driven by a steam-engine, and it may be as well to remark, that the actual relative position of the cylinders is different from that shewn in the diagram, which is given rather to shew the principle of the apparatus than as an accurate representation of it.

The compressed air is forced by the compressing cylinder A, into the refrigerating cylinder BB , just at the moment when the position of the plunger, $P P$, is close upon the upper cone D. This air, which fills the space aa, between the plunger, PP , and the lower cone E , is of course heated hy the compression; and in order to cool it again, cold water is made to circulate in the cone E , by an entrance-pipe F, and an exit-pipe at G. The next movement of the machine draws the piston in the cylinder A to the opposite end, and consequently allows the compressed air to expand again ; but at the same moment the plunger, PP, descends close upon the cone E, thus allowing the space between the plunger and the upper cone D, to be at its fullest when the expansion of the enclosed air is at its greatest.

By this arrangement, the patentee securcs that the air while being compressed will always be at the lower, or what he calls the hot end, of the refrigerating cylinder B ; and while being expanded, it will almays be at the upper or cold end. There is a regenerator constructed as in the Caloric Engine (q. r.) of wire-gauze, placed in the middle of the plunger at C. This, while it allows the air to move freely through it, prevents the conveyance of heat or cold from one end of the cylinder to the other. The plunger, PP, is filled internally with samdust or some non-conducting material.

We may now explain that the low temperature of the air which surrounds the cone \mathbf{D} during expansion, is not produced by simple rarefaction. That alove would not produce cold. It is necessary as well to abstract heat from the air by giving it some work to do, and here it nnavoidably does work, in assisting to force back the 1 iston of the compressing cylinder, while in the act of expanding. The air loses an equivalent of heat exactly in proportion to the amount of force which it expends in moving, or in assisting to move, the piston. See Force.

Before air is admitted into the cylinders, it is necessary to dry it thoroughly, by first passing it through a box containing chloride of calcinm, because, if any moisture were present, it wonld freeze in the regenerator, and stop the actiou of the machine. In the particular form of the apparatus shewn in the figure, the substance to be cooled is placed inside the cone D, which is furnished witli a lid L. Here not only water, but eren mercury, can be frozen with facility.

Most of the machines of this kind which have as yet been made were required for working on a more extensive scale than the one shewn iu fig. 3 could easily do. In the larger-sized machines, accordingly, instead of one hollow cone like D

IEENI-REVIVALS OF RELTGION.

(fig. 3), a serics of circular V-shaped corrugations are fixed to the top cover of the refrigerating cylinder, as shewn in fig. 4. These form annular passages, through which a continuous current of

Fig. 4.
some fluid not easily frozen, such as brine, flows. This is of course cooled by the expanded air (in the manner already explained), at the cold end of the cylinder, and can be conveyed away in pipes to cool any substance at a greater or less distance from the machine.

The first machine which Mr Kirk made was designed for the purpose of freezing out the solid paraffin from paraffin oil, and the work actually done by it was found to be equivalent to the production of two tons of ice in 24 hours, one indicated horse-power being consumed for every 212 lbs . of ice made. It was not, however, constructed to work at a greater maximum pressure than 70 lbs . per square inch. One made to work with double this pressure would produce four tons of ice per clay, while the cost of it would not be materially increased.

It is only within the last few years that much attention has been given to the construction of machines for the production of artificial cold on the large scale, but there can be little doubt that they will now receive many important applications. There is no difficulty in working with one on Kirk's principle anywbere, because it can be so constructed that even a pair of bellows will compress the air enough. In this country, besides being available for the production of ice; the extraction of certain salts from mixed solutions, such as sulphate of soda from common salt-the former separating at a temperature above that which keeps the latter in solution; the separation of paraffin from mineral oils; and in other chemical operations, as well as for cooling worts in breweries and distilleries, they can also be turned to good account in the salting and preservation of meat. In warmer countries, they will be still more useful, and perhaps most of all in cooling large hospitals and public buildings, by sending a current of some cold liquid through pipes, just as we in Great Britain beat
such buildings with pipes through which hot water is made to flow.
RENI, a town of Moldavia, at the confluence of the Pruth and the Danube, on the left bank of both rivers. It carries on a considerable trade, exporting large quantities of grain. Pop. about S000.

RETI'MO, a scaport town of the island of Crete, on its north coast, 35 miles west from Candia. The neighbourbood is productive both of oil and wine. Pop. (1863) 7S00, of whom 5S00 are Turks, and 2000 Greeks.

REVI'VALS OF RELIGION. The term Revival of Religion, or, more briefly, Revival, is employed to denote an increase of faith and piety in individual Christians, particularly after a period of religious declension, and also an increase of rcligion in a community or neighbourhood, both through the revival of those who are already religious, and through the conversion of the previously irreligious. In these applications, its use is countenanced by several passages of Scripture; the idea which it is intended to convey is, however, far more frequently suggested by passages in which the term does not occur. The idea of revival is more particularly connected with the system of 'evangelical' doctrine, and particularly with that part of it which relates to the work of the Holy Spirit in the conversion of sinners.

What are commonly called revivals of religion may be described as rcligious movements or excitcments extending, more or less generally, over a neighbourhood, or sometimes over a country. By those who regard them as genuine, it is urged in their favour, that they are in accordance with what the Scriptures teach us to expect, and that we have instances of a similar kind recorded in the Scriptures themselves-both in the history of the Jews, and in the early history of the Christian Church, particularly in the effusion of the Holy Spirit on the day of Pentecost, and afterwards in conncetion with the ministry of the apostles, when many were converted through a single discourse, or, in other cases, evidently within a short time. It is further urged that the promise of the effusion of the Spirit in 'the latter days' was not completely fnlfilled on the day of Pentecost, but relates to the whole period of the Cbristian dispensation, and that, according to many prophecies, we have reason to expect even more of it in future times than there has ever hitherto been, so that 'a nation shall be born in a day, and the kingdoms shall be the Lord's.' The Reformation of the I6th c., and the more partial movements of the same kind which preceded it, are also regarded as essentially revivals of religion-the Reformation itself the greatest which has taken place since the apostolic age. The great development of religoous fervour in England in the 17th c., is, according to this viers, to be considered as a revival, and the extravagances which attended it as mere cxercscences, like those of the Anabantists in the time of the Reformation. The next great movement of the same kind was that in the first balf of the 1Sth c., from which the Methodist churches originated (see Methodists). It was accompanied with many circumstances similar to those which bave attended later revivals of religion. The term revival did not begin to be commonly employed till after this period; and the reviral which took place in New England and other parts of North America about the same time, was then and still is generally designated the Great Awakening. The beginning of this revival seems to have had no connection with the Methodist movement in England, although snbsequently
they became connected through Mr_{r} Whitefield's visits to North America. The revival in New England, which began about 1734, under the ministry of the celebrated Jonathan Edwards at Northampton, and rapidly extended over great part of New England and New York, was speedily followed by similar religious movements in Scotland, not altogether independent of it. Such religious movements had not, however, been unknown in Scotland before, although very much confined to particular times and localities. In 1625 and some following years, there was a revival at Irvine, under the ministry of Mr David Dickson-a minister of more than ordinary abilities and attainments, some of whose works have recently been republished-so considerable as to be noticed in many histories of the church of Scotland, and which, because it extended very much to the neighbouring parish of Stewarton, and along the banks of the Stewarton Water-the people of that district frequenting Irvine on market-days, and hearing Mr Dickson's lectures -was contemptuously styled by its adversaries the Stewarton sickness. In 1630, several hundreds are said to have been converted at once, through a sermon preached at Kirk-of-Shotts by Mr John Livingstone, then a young preacher, but afterwards an eminent minister of the church of Scotland, and a sufferer for the cause of Presbyterianism. About the same time ($1623-16.11$), similar movements took place in Ireland under the ministry of Scottish Presbyterian ministers settled in Ulster, and to which the origin of the Irish Presbyterian Church must in great part be ascribed. The Presbyterians of Scotland were thus in some measure prepared to acknowledge the revivals of the earbier part of the 1Sth c. as genuine, which began at CambuslangMr M'Culloch being minister of that parish-in 1742, and speedily extended to Kilsyth and other parishes in the neighbourbood, as well as to Dundee and other places more remote. No similar movement, however, took place over the country generally; nor was there anything of the same kind again till the very end of the century, when a revival took place (1798-1500) at Moulin in Perthshire, of which Mr Alexander Stewart was then minister. This was followed in a few years by a revival in Arran (150t-1813), under the ministry of Mr M‘Bride. Other similar local revivals followed, not unfrequently, and in parts of Scotland widely remote from each other, both in the Highlands and Lowlands; and also in other parts of Britain, particularly a very extensive one in Wales, resulting in the formation of the Welsh Calvinistic Methodist Church, but not confined in ita effects to those who became connected with that church. Local revivals also in some instances attended the ministry of evangelical ministers of the Church of England.

In 1839 , the attention of all Scotland was drawn to a religious movement at Kilsyth, which was followed by similar occurrences in a number of other places, more or less evidently connected with it. The first appearance of an unusual degree of religious feeling at Kilsyth was in the parish church, during a sermon by Mr William C. Burns, a son of the minister of the parish, and now a missionary in China. The emotion of many of the congregation broke out in sobs and cries, so that for a time the preacher's voice could scarcely be heard. For months, religion was the almost exclusive subject of interest to a great part of the inhabitants of the parish, and many meetings for public v'orship were held besides the ordinary Sabbath services, at which great emotion was often displayed. Among the other places to which this movement notably extended was Dundee, where Mr W. C. Burns was then statedly employed in the ministry of the
gospel. After 1839 , there were revivals from time to time in various places in Scotland; but none of great extent or interest there or elsewhere in the British Islands for nearly twenty years. There had, meanwhile, been many revivals in America, generally, indeed, confined to particular congregations, seminaries, or localities, but sometimes extending over considerable districts; and throughout at least the northern and middle parts of the United States, the idea had become familiar to the popular mind, that revivals of religion ought to be expected from time to time; from which naturally followed the belief that means ought to be employed to produce them. From this resulted, in some cases, increased earnestness in preaching and prayer, with greater assiduity in the use of all the ordinary means for the promotion of religion; in other cases, direct endeavours to produce excitement, as by camp-meetings-assemblies of great numbers of people held in the open air, and at which exciting addresses were delivered by preacher after preacher, to work upon the nervous sensibilities of the audience.
Nothing of this kind, bowerer, attended the commencement of the great religious movement which took place in 1857 and in the two following years. Its origin is ascribed in part to the thonghts and feelings awakened during a period of great commercial distress. It began in New England. particularly in Connecticut and Massachusetts, and rapidly extended to New York and over the middle and western states. It was not generally attended with scenes of great excitement. Strong, but calm religious feeling was its general characteristic. In the city of New York, almost every congregation received a great accession of members, and prayermeetings were held for about an hour in the middle of the day, which were attended by great numbers of persons actively engaged in business. More than 2000 places in the state of New York were reported as partaking of this revival. Not long after it began in America, a similar morement took place in the north of Ireland, not apparently connected in its origin with that in America, although certainly connected with it soon afterwards, and promoted by the news brought across the Atlantic. It is said to have begun in a prayer-meeting at Connor, in the end of is57, and rapidly extended over the whole north of Ireland, and subsequently to many parts of Scotland, Wales, and some parts of England. In some places, it was attended with much excitement and various forms of extravagance; more generally, it was characterised by little else than the intensity of religious feeling displayed.
Revivals of religion have occurred also in other parts of the world. About fifty years ago, a widespread movement of this kind took place in Switzerland, although not affecting more than a small part of the population anywhere. Under the ministry of Felix Neff, it subsequently extended to the Protestant districts of Dauphiné, and to the neighbouring Vaudois or Waldenses, on the Italian side of the Alps. More recently, but throughout many years, similar religious morements have occurred in Sweden, in many different parts of the kingdom.
Revivals have been accounted for in very different wass; but in general, too evidently in mere accordance with the different religious views of those by whom the theories have been proposed. Some have attempted to explain the phenomena of religious excitement extending over wide districts, and rapidly spreading from one place to another, by the supposition of a kind of epidemic disease affecting the mind. Another opinion very prevalently entertained by those who do not see in revirals anything really good, is, that they are

REVIVALS OF RELIGION.

the result of endeavours to work upon the feelings. It is replied, that although this theory might be plausiluly enough adranced, if only such things were considered as the camp-mectings of the American Methedists, it is far from being in accordance with the best ascertained facts as to many of the revivals which have taken place both in America and in other countries. It is certain that many of these have taken place without any apparent attempt to work upon the feelings, more than is ordinary and proper in the preaching of the gospel, and that the greatest display of emotion lias often been connected with preaching of the most simple and sober kind.-By those who believe in the reality of revivals, as productive of a true increase of religion, they are generally ascribed to the operation of the Holy Spirit, to which, according to the evangelical' scheme, the 'conversion' of every inclividual sonl is ascribed, and also all increase of faith and piety in the converted. Revivals have, however, often been regarded with doubt by many who believe in the whole doctrine of the work of the Spirit as generally held in the Protcstant churches, but who look upon the excitement frequently attending them as inconsistent with the proper sobriety and solemnity of religion, and think the progress of religion ought rather to he expected to be gradual, and without very much to call particular attention to it at one time more than another. It is replied, that whilst a blessing on the regular use of ordinances may confidently be expected, if duly sought by prayer, there is yet much in Scripture to fuvour the notion that particular seasous may be unusually marked by the evidence of it; and further, that revivals, when they take place, generally slew the usefulness of the ordinary means emploged for the promotion of religion, as they scldom occur arnong persons very ignorant of religion, but rather among those who have previously enjoyed the benctit of the most faithful ministrations. With regard to the excitement attending many revivals, it is argued that this cxcitement is not wonderful, if persons are suddenly impressed with a deep sense of their sins, of the danger of divine wrath, and of the importance of religion; and that it is in some measure also to be expected in those who are brought by a quick transition from deep distress to a full sense of forgiveness and the favour of God. Are we to be surprised, it is asked, if persons in such circumstances, after much effort of self-restraint, cry aloud in the congregation, or fall clown, overpowered by their emotions? It is sometimes alleged by the opponents of revivals, as an abjection to them, that much of the excitement manifested in them is merely hysterical; and some of their adrocates have rashly denied that this is the case; others, admitting it, deny that it affords any just cause of objection, and maintain that liystcrical excitement is natural and unavoidable in such circumstances, and however undesirable in itself, is a manifestation of the rcality and streagth of the fcelings awakened. They acknowledge, however, alse, that like similar excitement produced by eauses which have nothing to do with religion, it may extend from one to another, even where the canse in whicl it originated does not operate; and they therefore refuse to see in it, considered by itself, any evidence of the religions or sjuritual condition of the persons affected by it.

That much folly and extraragance hare often been exhibited in cennection with revivals of religion, is freely admitted by many who are fully convineed of their reality ; but this, they say, is also only what might be expected, as the occasion always seems a favourable and inviting one to persons whose zeal excecds their discretion, and too often affords
npluortunity for ignorant and self-conceited persons to thrust themselves forward as teachers and conductors of religious exercises.

It may be proper to advert ta some of the practices Which sometimes take place on oceasions of revival, but which are disappraved hy all except those who are filled with the desire of sceing excitement produced and increased. Among these is the bringing forward of persons in the character of new converts, to conduct prayer in public, and to address incet. ings, which they are often among the least capalle of doing well. Another practice liable to much objection is the permitting of mere youths, under profession of Christian zeal, to converse in private witl persons in distress of mind, especially when these are young persons of the other sex. A third objectionable practice is the calling upon those who are anxious about their salvation to come forwarl and occupy a place lyy themselves-or what are called in America anxious seats-that they may be individually conversed with, and that special prayer may be made for them, they being thus brought into a publicity which is undesirable. It is hardly necessary to refer to the absurdity of clemanding-as bas sometimes been done-a show of hands from those who are now resolved to give theroselves to the Lord! With such uncommendable practices may be classed that of encouraging persons who have been of very profligate life to recount their own history, which has sometimes been carried so far, that they have seemed even to glory in the enormity of their past wickedness.

Certain peculiar modes of expression, which might not unaptly be desicrnated a kind of slang, have often come into use in conncetion witl revivals of religion, with the unhappy effect of exciting disgust in many minds, and particularly amoncr the most educated classes of society. Thus, in the revival of last century in New England, the subjects of the revival-in a certain state of their experience-were spoken of as being filled. In the receut revival in Ireland, it was coummon to speak of those who fell down suddenly in congregations or in their own houses as stricken, and as the stricken ones. It was very common during the same revival to speak of individuals as having found peace; and this finding of peace was by some regarded as proof of conver. sion, or eren as indicating the moment of conversion -all which was considered by many who fully believed in the reality of the revival, as unscriptural and delusive.

Among the erils acknowledged to attend revivals by those who believe them to be real, but who also believe that there is often much conneeted with them which is not the work of Gad, is the dispositiou to judge of the spiritual state of individuals, as converted or unconverted. New converts, especially when brought into undue prominence, are apt to become elatcd and self-satisfied, and cven to regarel themselves as the only true Christians, or as siperior to those whose piety is of much longer standingt than their own. This, however, is not always the ease, and much depends on the judicious or injudicious conduct of the ministers chielly concerned when a revival takes place.

We have endeavoured to present this subject fairly to our readers; but it is evident that as to the opinion to beformed by any one, much must depend upon the general religious views which he entertains. As to mere religious cxcitement, however, and hodily affections resulting from it, many facts may be adduced to shew, what might be supposed beforchand, that these may be connected with religious views extremely at variance. Excitement may be produced by religious views that are utterly false, as well as by those which are truc. Heatlieuism
has always aboundel in it; Mohammedanism has much of it: and it has appeared in the church of Pome as well as in the Protestant churches. It is not necessary to do more than allude to the extravagances of the Flagellants, and to the strange scenes of the Dancing Mania. Some of the small sects, also, which evangelical Protestants regard as most heterodox, seem to maintain their existence by a systematic working up of excitement.

The subject of this article has been treated in a multitule of publications, almost every reviral which takes place calling forth new pamphlets, narrative and controversial. The works of Jonathan Elwards deserve the first attention of those who wish to stuly the subject; and much information as to the history of revivals will be found in Gillies's IIistorical Collections relating to Remarkable Periods of the Success of the Gospel. Reference may also ie made to Mrs Lundie's work on Revivals on the British Isles; and for the revivals in Scotland in the middle of the 18th c., to Robe's Narrative of the Revival of Religion at Kilsyth, Cambuslang, and other Places in 1742 (new ed., Glasgow, 1St0). Edwards maintains the genuineness of revivals with perhaps more force of argument than any writer has since done; and most of those extravagances which have sometimes attended revivals down to the present time, might have been avoided if those whose rcligious views accord with his had more carefully studied his discriminating remarks and sober counsels. No work has jet been produced such as Edwards in one of his letters expresses a strong desire to see-' a history of true, vital, and experimental religion, and enthusiasm, bringing down the history from age to age, judiciously and clearly making the distinction between the one and the other.'
IEWAH, a state of India, called also BaghelCUND, enclosed ly the territories of the Bengal presidency, to which it is subsidiary, and having for its capital a town of the same name, which is 70 miles south-west from Allahabad, and stands on the right bank of the Tons. The town has a pop. of about 7000. It exhibits remains of former magnificence, but even the walls and the rajah's palace are much decayed. The state has an area of almost $10,000 \mathrm{sq} . \mathrm{m}$., and great part of it is well cultivated. The pop. is about $1,200,000$.

RHEYDT, a town of Ihenish Prussia, on the left bank of the Niers, and on the railmay between Diisseldorf and Aix-la-Chapelle, 14 miles west-bysonth from Düsseldorf. It has manufactures of silks and velvets, soap, glue, vinegar, and leather, dyeworks, and some trade in linen. Pop. (1871) 13,762 .
RICORD, Philip, a distincuished French physician, was the son of a wealthy ship-owner, and was born on the 10 th of December 1500, at Baltimore, whither his father had gone in 1790, to repair his fortunes, which he had lost under the India Company. He came in 1820 to Paris, where he was attached in succession to the Hôtel-Dien under Dupuytren, and to the Pitié under Lisfranc. He graduated as Doctor in Medicine in 1826; but was unable, from the scantiness of his private means, to begin practice in Paris. His professional career, therefore, commenced at Olivet, near Orleans, and was thence transferred to Croily-sur-Oureq, where lie rapidly rose to distinction as a practitioner. In 1 S 2 s , he returned to Paris, where he delivered two annual courses of lectures at the Pitie on surgical operations; and was appointed surgeon-in-chief to the hospital for renereal diseases. This post he held with brilliant success till his retirement in October IS60. It was here that he won his world-wide
reputation in the splecialty which he had chosena reputation which he owed to his combination of accurate physiological and pathological knowledge, with great manual dexterity as a surgeon, and felicitous inventireness and resource as a physician. He did much to improve the classification of enthetic diseases; and, at the Venereal Hospital delivered annually, from 1834, a course of lectures on Syphilology, for which a special amphitheatre was granted to him. For his suggestions on the cure of varicocele and on the operation of urethroplasty, he received in 181% one of the Montyon prizes. M. I.'s practice is the most extensive and the most lucrative in Paris, insomuch that while an iumate of the debtors' prison at Clichy; he was literally besieged by crowds of patients. He has been since 1550 Member of the Imperial Academy (section of Surgical Pathology); Dlember of the Surgical Society; and consulting-surgeon to the Dispensary of Public Health. In 1862, he was appointed Plysician in Ordinary to Prince Napoleon; and in 1869, consulting surgeon to the Emperor; having already on the 12th of August 1860 been raised to the distinction of Commander of the Legion of Honour. His works are numerons, the more important of them being these: On the Employment of the Speculum Biviale (IS33), invented hy himself; On the Btemorrhagia of the Femalc (IS34) ; On the Employment of Mercurial Ointment in the Treatment of Erysipelas (1836): The Monography of Chancre (in which he gives a detailed exposition of his own system); Theory of the Nature and Treatment of Epididymitis (153S); Treatise on Venereal Maladies (183s); On Blennorrhagic Oplthalmia (1812); Iconogrophical Clinic of the Venercal Hospital (1542-1S51) ; and On Syphilisation and the Contagion from Secondary Accidents (1853). He has also contributed to the medical journals a multitude of Memoirs, Observations, Researches, and Communications on his specialty. His latest worls is that entitled Letters on Syphilis (3d ed. 1S57), which, from their finency and grace of style, have earned for him the name of the Marivaux of medicine.

RIE'SI, a town of Sicily, in the province of Caltanisetta, and 15 miles south from Caltanisetti. It is situated at the base of a mountain of the same name, not far from the left bank of the Salso. There are sulphur-mines in the mountain. Yop. (1861) 9289.

RIOBA'MBA, a town of Ecuador, 100 miles sonth from Quito, sitnated among the Andes, on an affluent of the Pastasa, a large branch of the Amazon. It is sometimes called New F., having been built instead of a former town of the same name, which was destroyed by an earthquake in 1797 , and the ruins of which are 9 miles distant, at the foot of Chimborazo. Pop. (1863) 16,000, in great part consisting of Indians.

FISTORI, Adelaide, a celebrated Italian tragic actress, was born in 1521 at Cividale in Frioul. Her parents were strolling players, and she almost began life in the theatre. At the age of 14, she played in Francesca cla Rimini, and in a few years became the leading Italian actress. Her talents, her beauty, and her grace made her a umiversal favourite. In 1547, her marriage with the Marquis Capranica del Grillo temporarily intermpted her dramatic career; but after an interval of two years, slie returned to the stage, and appeared at Rome in 1849 in Alfieri's tragedy of Myrrla. But the French attack on the city caused her to desert the theatre for the hospital, where she employed herself assiduously in mursing the wounded. After , having acted in 1850 and succeeding years at liomo

RISTORI-RITUALISM.

and Turin in various characters of Alficri with immense applause, she presented herself before a French audience in 1855, when Rachel was in the height of her fame, a proceeding considered in the light of a challenge by the first Italiau actress to the first French actress. Even at Paris she obtained a triumph, her genius creating an enthusiasm which conld not be repressed. Without all the sympathetic sensibility of Madame Rachel, she surpassed her in vivacity and expansion. The Marchesa Capranica del Grillo was left a widow in 1861.
RI'TUALISM, the name popularly but inaccurately given to the remarkable increase of ceremonial in the Church of England since the year 1863 . It may be considered as a development of Tractarian. ism, thongh it is one not contemplated by the anthors of that movement, whose aim was rather to disseminate doctrines than to introduce ritual changes. Its collateral causes may be said to be: (1) The great advance of resthetic taste, and the increased cultivation of the fine arts in the service of relicion. (2) The extended study by the clergy of ancient liturgies, and the connection discovered to exist between them and the offices of the English Church. With the spread of High Church principles, certain changes in the mode of conducting divine service had been introduced by the clergy, which, though unpopular at first, were widely adopted, and up to a certain point, had received the sanction of the law. But the restored church with low and open benches-the separated chancel-the altar-table with coverings of different colour according to the ecclesiastical seasons, and candlesticks, and a cross upon or over it-choral services, and weekly celebration of the communion, were all that had litherto been attempted. To these comparatively small alterations, important additions have recently been madc-viz. (1) Special vestments at the celebration of the holy communion, and at certain other times, viz., for the celebrant, an alb and stoles, of different colour, and chasuble; for the assisting ministers, albs with tunicles, accorling to the seasons. At other times, a cope is worn instead of a chasuble. (2) Lighted candles on the altar at holy communion. (3) Incense burned either in a 'thurible' or in a standing vessel. (4) The mixing of water with wine for the communion. (5) The use of wafer-bread. (G) Elevation of the elements either during or after consecration. (7) The attendance of non-communicants at the holy communion. (S) Processions with crosses, banners, and vested attendants.

These innovations are defended by their promoters on the following grounds of (a) Law, (b) Doctrine, and (c) Expediency.
(a) The rubric at the end of the calendar in the Book of Common Prayer enacts 'that such ornaments of the church and of the ministers thereof at all times of their ministration shall be retained and be in use as were in this: Church of England by the authority of parliament in the second year of the reign of King Edward YI.' The Judicial Committee of the Privy Conncil in the case of Westerton v. Liddell (1857), ruled that 'ornaments' here means, 'all articles used in divine service;' that the words 'by authority of parliament,' \&c., refer to the first Prayer-book put forth in that reign (1549); and that the meaning of the rubric, as of the previous statute of Elizabeth, the language of which it adepts, is, that the same dresses, utensils, and articles which were used under the first Prayer-book of Edward VI. may still be used.' Now, the first Prayer-book of Edward VI. prescribes that at the time of the communion 'the priest that shall execute the holy ministry shall put on him a white alb plain with a
vestment, i.e., a chasuble, or cope;' and the assistants 'likewise the vestures appeinted for their ministry, that is to say, albs with tunicles.' It is therefore inferred that the above are the only lecral vestments in which the holy communion should be celebrated. To this it is objected (1) That the word 'retained' can only refer to such vestures as were in use up to the time of the last publication of the rubric-viz., the surplice in parish churches, and copes in cathedrals. (2) That the rubric, when first inserted under Elizabeth, was limited by the Injunctions and Advertisements of that reign, which aimed only at the restoration of the surplice. (3) That whatever be the intention of the rubric, it has been so long obsolete that it is absurd to revive it. It is answered (1) That the word 'retained' must have the same meaning that it had in the rubric of Elizabeth, in which it first occurs. (2) That the Injunctions and Advertisements were not of sup)reme authority, and were only intended to help towards restoring a decent uniformity in divine worship. (3) That the fact that a law has become obsolcte does not invalidate its force. The same reference of the ornaments rubric to the second year of Edward VI. is held to authorise other accessories known to have been in use at that time, though not specified in the first Prayer-book-such as lighted candles, incense, \&c. And on the principle, that tho Reformed Church was legally identical with that before the Reformation-which the 30th canon of 1603 is cited as maintaining-it is further contended that all ancient laws and usages are still in force, excent where directly or implicitly abrogated by subsequent enactment. And as the chicf ritual authority before the Reformation was the liturgy of Sarum (the Sarum 'use' referred to in the preface to the present Prayer-book), it is to that standard, as far as possible, that the more adranced Ritualists desire to conform.
(b) The doctrinal grounds of defence are expressed in the following statements: (1). The Encharist (as the Lord's Supper was anciently called) is the special institution of Christ, the singlo rite of continual observance which Me enjoined on His disciples, and the chief act of Christian worship. It is therefore right to exalt and dignify it above all other services, and mark it as standing on different and higher ground than any other institution. (2) The Eucharist, according to the universal belief of the ancient church, is to be regarded as a sacrifice, commemorative, as the Jewish sacrifices were anticipatory, of the death of Christ-not as iterating or repeating it (which idea alone the 31st article is held to condemn), but as a solemn pleading and offering of it before God, as Christ himself offers it in heaven. Hence the position of the celebrant in front of the altar, and the use of a sacrificial vestment, as the chasuble is held to be. (3) In the Eucharist, there is a real presence of Cbrist, which, though spiritual, is objective, i. e., not dependent on the receiver, but as a result of consecration, and to a certain extent local. (The growth of this belief is marked by the change made in a recent edition of Keble's Christian Year of the words, 'not in the hands,' in a poem on the Encharist, to, 'as in the hands.') Hence distinct acts of adoration, addressed, not, as is explained, to the elements, but to the Divine Presence, of which they are the vehicles and signs.
(c) On the ground of expediency also, it is contended: (1) That experieuce proves that the only way of attracting and gaining a hold on the vast unellucated masses of our towns and cities is by a worship addressed not merely to the car, but to the eye. '1titnalism,' says one of its defenders, 'is the objectlesson of religion.' Services conducted in grand and
beautiful buildings-brilliantly lighted-with splendid vestmeuts, tonching music, costly decorations, and every outward token of reverence and solemnity, will impress the young and the poor as nothing else can do. Those churches in London where adranced ritual prevails are said to be thronged with worshippers-mainly of the lower classes, and in great proportion of men-when others are almost empty. (2) A further argument, under this head, is connected with the desire, which has grown up of late years among the High Church party, for the restoration of the visible unity of Christendom, and specially the renewal of communiou between the Church of England and both the Eastern and the rest of the Western Church; and with this view, it has become an avowed object to assimilate the Anglican service as much as possible to that of other Catholic churches.

It remains to notice briefly the effect of these innovations. It is a remarkable index of the change of popular feeling within the last ten years, that such bold and startling changes, altering the whole character of the Anglican service, should, by a large number of people be not only tolerated, but approved. In 1859 , the attempt of the rector of St George's-in-the-East to introduce Eucharistic vestments, led to riots which convulsed the whole of East London. In the year 1867, in about twelve churches of the metropolis-and in several country towns and villages-a far more advanced ritual, with vestments, altar-lights, and other ceremomies, appears to attract an eager throug, not of spectators only, but of worshippers. And the spread of the movement may be judged by the statement, which appears authorised by facts, that since the publication of the first Report of the Royal Commissioners on hitual, the vestments have been introduced in more than thirty churches. On the other hand, among the 'Protestant' members of the church, and those of other denominations, the movement has provoked the loudest opposition. Most of the bishops have, directly or indirectly, expressed their disapprobation; the press, except two or three journals, which are its strenuous advocates, is almost unanimous in denouncing it; the more moderate members of the High Church party discourage it; and active efforts have been made to arrest it by legislative interference. In the Lower House of Convocation, on the motion of the Dean of Ely, a committee was appointed to consider the subject, which, after careful examination, reported, in June 1866, that vestments and altarlights, whether legal or not, should not be introduced without sanction of the bishop; that the censing of persons and things, elevation after consecration, wafer-bread, and presence of non-communicants (except in special cases), were to be discouraged. In deference to this opinion, the censing of persons and things has been in some churches given up. Suits have been instituted in two cases-one against the Rev. A. H. Mackonochie, incumbent of St Albans, London; and the other against the Rev. T. B. Simpsou, in the diocese of Exeter. The points complained of in these are chiefly elevation and the mixed chalice. In the beginning of the year 1866, an opinion was obtained, at the instance of some of the bishops, from five eminent counsel, among whom were Sir R. Palmer and Sir Hugh (now Lord) Cairns, against the legality of all ritualistic innovations (the main grounds of which opinion are given in the objections above stated). In reply to this another opinion was obtained, by the Council of the English Church Union, from nine leading counsel -three of whom have since been raised to the bench-all of whom advise in favour of the
legality of vestments, all but two in favour of altarlights, and all against incense; on the mixed chalice and wafer-bread, they are nearly equally divided.

In the session of 1867, the Earl of Shaftesbury introduced a bill-founded on the 5Sth canon of 1603--to limit ecelesiastical vestments to the ordinary surplice and hood, in favour of which more than 600 petitions were presented; while one against it, presented hy Lord Redesdale, was sigued by more than 9000 clergy and lay communicants. (An earlier memorial, to the Archbishop of Canterbwy, against any change in the existing law, was signed by more than 40,000 communicant members of the church.) This bill was withdrawn on the appointment by the government of a Commission 'to inquire into the Rinbrics, Orders, and Directions for regulating the course and conduct of Public Worship, \&c., according to the use of the United Church of England and Ireland.' The commissioners were : the Archbishops of Canterbury (Longley) aud Armagh (Beresford) ; the Bishops of London (Tait), St Davids (Thirlwall), Oxford (Wilberforce), and Gloncester and Bristol (Ellicott); Earls Stanhope, Harrowhy, and Beauchamp; Lords Portman and Ebury ; Sirs Joseph Napier, W. Page Wood, Robert Phillimore; Deans Stanley of Westminster, Goodwin of Ely, and Jeremie of Lincoln; Drs Travers Twiss, D.C.L., and Payne Smith, Reg. Professor of Divinity at Oxford; Messrs Walpole, Cardwell, J. D. Coleridge, Beresford Hope, Abel Smith, J. G. Hnbbard ; Revs. H. Venn, J. G. Humphry, R. Gregory, Thomas W. Perry. They met 19 times, examined 17 witnesses-chiefly lead. ing clergy of different parties-and on August 19 published their first Report, to the effect, that 'it is expedient to restrain, in the public services of the church, all variations in respect of vesture from that which has long been the established usage of the said church; and that this may be best secured by providing aggricved parishioners with an easy and effectual process for complaint and redress.' They do not, however, recommend any way of carrying this into effect. Three of the commissioners sign with reservation; two (Sir R. Phillimore and Mr Beresford Hope) excepting cases where the authority of the bishop, and the rights of parishioners and congregations, are carefully guarded; and one (Rev. T. W. Perry) limiting the meaning to those cases where grave offence is likely to arise, and the term 'aggrieved parishioners' to communicants having reasonable ground of complaint. The evidence appended to the Report supplies valuable information as to the various practices prevailing, and the widely different views entertained. The general result would appear to be that vestments, and probably altar-lights, and the mixed chalice are legal; that an ornate ritual is useful among some classes, and might, with certain safeguards, be allowed; that absolute uniformity is impossible, but that the law might be obeyed a good deal more generally than it is ; that the maintenance of the present law, with a wide and liberal interpretation, allowing for differences of education and temperament, but limited as a maximum to the ritual of the $2 d$ year of Edward VI., with an honest compliance on the part of the clergy, and some recognised ecclesiastical authority to restrain unauthorised variations, whether of excess or defect-would be most for the welfare of the church.

RI'ZAH, a town of Asiatic Turkey, in the pashalic of Trebizond, on the coast of the Black Sea, 40 miles east from Trebizond. It is a place of considerable trade, and has manufactures of fine hempen fabrics. Pop. 30,000 .
ROBERTS, DAvid, R.A., a painter of great
eminence, was born at Edinburgh on 24th October 506 , and began life there as apprentice to a housepainter. Ilis talent for art becoming obvions, he was set to study at the Trustees' Acalemy; and in lSo: he went to London, where he found employment as a scene-painter at Drury lane Theatre. Clarkson Stanficld, since fauous as is marine- Jointer; was then also working at Drury Lane, and between him and li. an affectionate intimacy ensued, which ceased only with life. In 15:6, it picture of "lioucu C'atheclral,' exlibited by K. at the lioyal Aeademy, drew attention by its marked ability. 'Ihe year after, appeared his painting of 'St Germains at Amiens." Shortly after, be left England, and for seven years was engaged in sketching ia Spain, Africa, and the East. As result of his labours, there was giveu to the work in IS39 the splendid work, in 4 vols., entitled Sketches in the IIoly Laml, Syria, Idurnce, Arabia, Egyppt, and Nubia. The book contains 246 subjects, lithographed by Louis Hague, and illustrated by a listorical commentary furnished by Dr Croly. It is the finest and most elaborate thing of the kind perhaps ever produced, and of itself it would have sufficed for a great reputation to the artist. Pending its appearance, he had resumed his contrihutions to the Academy, of which in 1839 he was clected an Associate; the full dignity of Academician being conferred on him two years after. From this time forward, he grew steadily in fame, and in 1854 he was selected by the Queen to paint for her the 'Inauguration of the Great Exhibition in IS5l;' a task which he achieved with arlmirable success. In his chosen field of architecture, during all his later life, he was almittedly without a rival. In addition to his unremitting work for the Academy, he illustrated many books, and issued the admirable series of lithograplas, "Spanish Sketches," which attained a great popularity. He died November 25, 1864.

IOPERTSON, JosEPR, the most accomplished Scottish antiquary of the present century, was born at Aberdecn on the 1 th day of May IS10. He was educated at Udny, in his native county, at the grammar-school of Aberdeen, and afterwards at the Nlarischal College there. The law was chosen fur lim as his profession, but his heart was not in the task, and from an early age he devoted himself to literature. His chief attention then, as in his after life, was directed to researclies connected with the history and antiquities of Scotland; and in 1833 he went to Edinburgh, the place of all others best adapted for the cultivation of his favourite studies. While there, he wrote, for Oliver and Boydl's Cabinct Cyclopadia, a volume on the Circumnarigation of the Globe, which was puhlished in 1836 . The work by which he became first generally known, The Book of Bon-accord, or a Guide to the City of Aberdeen, was published in 1839 . It is justly styled by Mr Charles Knight, in his Life of Shakspere, 'a most lively, instructive, and learned volume-a model of guide-books.' A continuation of this work was promised, but was never completed. In the following year, his Delicice Literuria, a new volume of T'able-talk, was published. In 1839 , he returned to the north to undertake the editorship of the Aberdeen Constitutional newspaper; and in the eud of that ycar, in conjunction with Mr John Stuart, he founded the Spalding Clul, a society instituted for printing the historical, coclesiastical, genealogical, topographical, and literary remains of the north-eastern counties of Scotland. 'Ilhis society, formed on the model of the Bannatyne and Naitland Clubs, has printed many valuable works on Scottish arclacology, which otherwise would have been all but inaceessible. Its carliest publication was a IIistory of Scots Affairs fiom 1637 to 1611,
written by James Gorlon, garson of Rothiemay, which was issued in three vols. in $1 S \pm 1$, under the joint editorship of Mr R. ind Mr Grul. Is. cdited for the same Club a volume of Collections for a IVistory of the Shires of Aberdeen and Lanff (1843); threo vols. of Illustrations of the Topograpley and Antiquities of the Shires of Aberdeen and Banff (1S47, 1557, and 1S62); nud Passages from the Diary of General Patrick Gordon of Auchlenchries (1859). He also contributed to the difth volume of the Miscellany of the Club, in 1S52, a learned paper On Scholastic Offees in the Scottish Church in the 12th and 13th Centures. In 1814, I. went to Glasgow to become eclitor of the Glasgow Constiutional newspaper. While in that eity, he edited for the Maitland Club, in 1S16, a volume containing the Book of the Collegiate Church of St Mary and St Ame, Glasgov, and tho Chartulary of the Black Friars of Cilasgow; and in 1S-17, the fourth volume of the Miscellany of the Club. In June 1S40, he contributed to the Quarterly liewiew an article on Scottish Abbeys and Cathedrals, which has lecome a text-book for all who write on that subject. In the same year he once more took up his residence in the Scottish metropolis, on being appointed editor of the Elinburgh Evening Courant. He discharged lis editorial duties at Aberdeen, Glasgow, and Jidinlurgh with faithfulness aud ability; but le found a more congenial oceupation, when, in 1553 , he was a]pointed, through the Earl of Aberileen, who knew aud appreciated lis merits, to the office which is now known as that of Curator of the IIistorical Department of the Jiegister-house at Edinburgh. In 1863, he edited for the Bannatyne Cluls the Cutalogues of the Jewels, Dresses, Fiurniture, Looks, and Paintings of Mary Queen of Scots. This volumo contains a Preface which forms a most valuable contribution to the history of Mary's reign, and supplies information on almost all the coutroversies connceted with her life. With the sanction and zealous encouragement of Sir Willian Gibson-Craig, Lord Clerk-register of Scotland, he projected the publication of a series of works connected with the history of Scotland, similar to those which have appeared in England under the direction of tho Naster of the Rolls. The first volume of that series, containing the Chronicles of the Picts and Scots, has recently been published under the cditorslip of Mr Skene. I. assisted in other literary undertakings, and was a valuable contributor to this Encyclopodia. His articles are generally connected with his favourite studies; among them aro those on Archafologr, Burgh, St Columba, Cranyoges, the Culdees, David I., the lianily of Douglas, Iona, Mary Stewaht, and Osshan. The last and most important of R.'s works was lis Concilia Scotic, priuted in two vols., in 1866, for the Bannatyne Club. This work has clone for the Scottish Church that which Arcladeacon Wilkins did for the Churel of England in his Concilia Magnce Britannice et Ifibernice. It contains the statutes of all the Scottish conneils, whether provincial or diocesan, from the earliest period to the Reformation, printed carefully from the best authorities; and the Preface, which occupies the greater part of the first volume, is a learned and anthentic bistory of the councils, and of everything bearing on the subject of them. The anthorities are quoted with an accuracy and copiousness for which R. was remarkable, and which contrasts strongly with the carclessness in that respect which marks some popular historians of the present day. In April 1S64, I. received the degree of LL.D. from the Unjversity of Edinburgh. IIe died on Vecember 13,1866 , alnost immediately after the publication of his Concilia Scotiae. R.'s labours are
not to be estimated merely by the works which appeared under his name, or which he is known to have written. There is hardly a work of any merit published during the last twenty years, in connection with Scottish history and antiquities, to which he did not in some way or other give his assistance; and his assistance was given with a thorough heartiness which only those who have benefited by it can alpreciate. No literary man of his time was more beloved by his friends and intimate associates. In the relations of private life, be was most exemplary.

RO'BIN, besides being a familiar name of the Felbreast (q.v.) in Britain, and frequently given to the Bluebird (q.v.) in America, is also in America the usual name of a species of Thrush (q. v.) widely distriluted from Hexico to lat. $60^{\circ} \mathrm{N}$. It is nearly twice the size of the redbreast, olive gray, the top and sides of the head black, the chin and throat white with black streaks, the under parts chestnut brown. It remains during winter in sheltered 1laces, even as far north as New England, but is generally a bird of passage. Many arrive in New Eugland before the snow has disappeared. Large flocks are to be seen in the Southern States in winter, where great numbers are killed for the table, the markets being often glutted with them. In Massachusetts, the law forbids the killing of this bird at any season of the year. Its nest is oiten luilt near houses. Two broods are produced in the year. The robin is a lively bird, and a general favourite in the northern parts of the United States. It is often liept as a cage-bird, is very gentle and easily" tamed, and has a pleasing song.

ROHTU'K, a town of British India, the capital of a district of the same name, in the great territorial division of Delhi, North-west Provinces, 42 miles north-west from Delhi. A canal or watercourse, 45 miles long, constructed by order of the Pritish government in 1525, supplies IR. and the neighbouring country with water from the great Feroze-shah Canal. Pop. abont 13,000 .

RONDELET, William, a French naturalist, born at Montpellier in 1507; died 1566. He became a medical practitioner in Montpellier, and professor in the medical school there. He was a zealous student of natural history, and particularly distimguished himself in iuhthyology. His Histoire entiere des Poissons (Lyon, 1558) was one of the first worts which contribnted much to the progress of that branch of science.

IROSA'RIO, a town of the Argentine Pepublic, on the right bank of the Parana, 170 miles northwest from Bnenos Ayres, 210 miles by river. It is the most important town on the Jarana, and is rapidly increasing in population and commerce. The customs duties amount to considerably over $£ 140,000$ a year. There is reason to think that the increase riroceeds at a stall more rapid rate. The exports are much the same as those of Buenos Ayres. Pop. above 40,000 .
hossie'sy, a town of European Fussia, in the government of Kovno, 66 miles north-west from Kovno, on the Dubitza, a branch of the Niemen. Under the Polish government, it was the capital of Samogitia. Pop. (1867) 10,73?

RO'TA, a town of Spain, in the province of Cadiz, and six miles north-north-west from Cadiz, on the opposite side of the entrauce of Cadiz Bay. Rota wine has acquired some celebrity, and is brought to the British market. Pop. S000.

ROTA'TION OF CRODS. The plants like the animals of the farm differ much in their habits, and 513
in the different sorts of food on which they subsist. The broad-leafed clovers, turnips, and mangold abstract from the air a large proportion of the materials of their growth; whilst the narrower-leafed grains and grasses, especially if their seeds are ripened, partake more largely of mineral food withdrawn from the soil. The cereals reguire for their healthy nutrition large supplies of phosphoric acid and silica; leguminous plants devour a large share of lime; turnips, carrots, and clower take $11 p$ a great amount of potash. Corn-cropis, occulying the ground during the greater part of the year, favour the growth of weeds; well-tended root-crops, on the other hand, afforl better opportunity for deep culture, for the extirpation of weeds, for the convenient arplication of manures; whilst, being in great part consmmed on the land, they raise its fertility. Mainly from such considerations, the farmer of arable land is led to grow a succession of dissimilar plants, or, in other words, to ailopt a rotation of crops. The cereals exhausting the farm, on account of their ripened seeds being sold off, are generally alternated with fallow, root, or cleansing crops, or with beans and peas, which occupy a kind of intermediate position between the cereals and the roots; whilst clovers or grasses are taken at intervals of six or eight years. The rotation most suitable for a particular farm is, however, greatly modified by various circnmstances, and especially by the nature of the soil, climate, markets, available supplies of extra manures, amount of live-stock kept, \&c. That course of cropping is evidently the most desirable which will economically secure, with thorough cleanness of the soil, a high and increasing state of fertility:

Many rotations are based upon the Norfolk or four-course system, which consists of (1) Clover or mixed grass seeds ; (2) Wheat, or in many parts of Scotland, oats; (3) Turnips, Swedes, mangold, potatoes, or bare fallow; (4) Barley. The details of this system are generally as follows. The clovers or grasses are mown or grazed; when cut, they are either used green or are dried for hay; the secomel crop is carted home for the cattle or horses; near towns, it is sold off ; or it is consumed on the groumel in racks by sheep, which on most highly cultivated farms receive besides a daily allowance of cake or corn. In districts where town-manure can be obtained, a top dressing is applied as soon as the first crop of grass is cut. On the poor and worse cultivated soils, the grass-crop occasionally remains down for two, or even three years, thus extending a four into a five or six years' rotation. The clovers or mixed seeds are ploughed up in autumn, and followed generally in England by wheat, and in Scotland by oats. These crops are now usually drilled, to admit of horse and hand hocing. After harvest, the stubble is, if possible, cleaned by the scarifier, grubber, or 1 lough and harrows ; or, where the management for several years has been good, any patches of conch-grass or other weeds are best forked out by hand. The land, especially if heary, or inteuded for mangold drilled on the flat, as practised in the drier parts of England, may then be manured and deeply plonghed: the grubber and harrows, in April or May, suffice to prepare for the drilling of mangold or swedes. Heavy land, intended either for roots or barley, should, in spring he plonglaed or disturbed as little as possible. In Scotland, and the cooler moist climates of the north and west of England, turnips and potatocs are grown on raised drills or balks, in which the manure lies immediately underneath the plant. Frequent horse and hand hoeings should insure the thorough cleaning of the crop. Unless in the neighbourhood of towns, where it is greatly more 705

ROTATION OF CROPS-ROTTLERA.

profitable to sell off the whole of the root-erop, part of the siwedes or mangold is taken home for the eattle, but the largest portion is consumed hy sheep in the fick. After the fallow or cleauing crop, another cereal crop is grown : under the Norfolk system, this is generally barley, with which the clovers or seeds are sown out. Where sewage or tank water is available, Italian rye-grass is often used, and on land in bigh condition, early large and repeated cuttings. are obtained; but rye-grass has the disadvantage of being a worse preparation than clover for the wheatcrop, which usually follows. The chicf failing of the four-course system consists in the frequent recurrence of clover, which caunot be successfully grown oftener than once in six or eight years. To obviate this difficulty, one-balf of the clover quarter is now often put under beans, peas, or vetches, thus keeping the grass or clover sceds eight years apart.

The Norfolk four-course system is unsuitable for heary land, where a large breadth of roots cannot be profitably grown, and where their place, as a cleaning crop, is taken by bare fallow, vetches, or pulse. Bare fallows are, however, less frequent than formerly, being now eonfined to the most refractory of clays, or to subjects that are so hopelessly full of weeds as to require for their extirpation several reeks of summer weather, and the repeated use of the steam or horse ploughs, the scarifier, grubber, and harrows. In such cireumstances, winter vetches are often put in during September or Octoher, are caten off by sheep and horses in June or July, and the land afterwards cleaned : this practice is extensively pursued on the hearier lands in the midland and southern counties of England. In such loealities, the following systerm is approved of-(I) The elover leas are seeded with (2) wheat; then come (3) beans, pulse, or vetches, manured, horse or hand hoel ; (4) On good land, wheat succeeds; (5) Oats or barley often follow, but, to prevent undue exbanstion of plant-food, this system requires considerable outlay in artificial manures, cake, and corn; (6) A fallow, or fallow crop, deeply and thoroughly cultivated, and well manured, comes to restore cleanness and fertility; (7) Barley or wheat is drilled, and amongst this, the clover-seeds are sown. On the heavier carse-lands in Scotland, the following plau of cropping is generally practised(1) Clover: (2) Oats; (3) Beans; (4) Wheat; (5) Bare fallow or fallow crop, usually including a considerable breadth of potatoes; (6) Wheat; (7) Barley, with which the clovers or mixed grasses are sown. Under this system, it is difficult, with so few cleaning crops, to keep the land clean; roots, hesides, are not produced in quantities sufficient properly to supply either cattle or sheep during the winter. To remedy these defects, roots may be introduced after the oats, and would be followed either by wheat or barley. This extends the rotation from seven to nine years.

In all well-cultirated districts, whether of heavy or light land, stock-farming is extending, and a more vigorous effort is being made to raise the fertility of the land. Root-crops are accordingly more largely grown; indeed, it is sometimes found profitahle to grow two root-crops consecutively; thus, after turnips, Swedes, cabbage, or mangold, well manured from the town or farmyard, and eaten off by sheep, potatoes of superior quality are produced With one ploughing, and a dose of portable manure. Specialities of management occur in almost every locality. In Essex, winter-beans follow wheat, are got of in August, and are succeeded by common turnips. Near London, and in other southern districts, early potatoes or peas are grown for market, and are immediately followed by turnips. In many parts of England, where the soil and 706
chmate are good, rye or vetches sown in autumu are consumed in early summer, and a root-crop then put in.

Good rotations do nut necessarily insure good farming; they are nierely means to an end. By carefully removing weeds, by decply stirring the soil, and by applying appropriate manures, wheat may be grown on the same soil for an indefinite number of years. At Lois. Weedon, in Northamptonshire, the Rev. S. Smith has for twenty years cultivated alternate three-foot strips of wheat and well-forked bare fallow; the laud tlat is wheat this year being fallowed next. Although no manure whatever is applied, and only onc-half of the experimental plot is each year under erop, the yickl continues to stand at four quarters per acre, which is about four bushels per acre in excess of the average aereable produce of Great Britain. The Lois-Weedou system, owing to the outlay which it entails for manual labour, probably could not be carried out with profit on a large scale. It demonstrates, however, the inherent resources lying dormant, espeeially in clay-soils, and indicates how they may be rendered available by thorough cultivation. It is mainly by such eultivation that steam-porver proves so serviceable in our fiells. The soil is turned up deeply to the disiategrating solvent influences of wind and weather; the neeessary operations are rapidly overtaken in good season; mueh work is accomplished in autumn; treading and poaching of the surface is avoided; whilst a larger breadth of roots is attainable for the bealthy and economical support of the sheep and cattle stock, which not only directly enhance the returns of the farm, but also raise rapidy its manurial condition.

As agricultural cducation and enterprise extend, fixed rotations will be less regarded. The marketgardener, who extracts a great deal more from his land than the farmer Las hitherto been able to do, does not adhere to any definite system of cropping. If the farm is kept clean and in improving condition, there can be no harm in growing whatever crops it is adapted to produce. Cropping elauses are only requisite during the three or four last years of a tenaney. The restrictions found io some agreements, preventing the growth of clover for seed, flax, and eren potatoes, are inadmissible. Equally objectionable are clauses against the sale of particular sorts of produce, such as hay or roots. The farmer, if he is fit to be intrusted with the use of the land, ought to be permitted to grow or sell off any crop he pleases, provided an equivalent in manure be brought back. On well-cultivated land, in good condition, it is now the practice of the best farmers to take oats or barley after wheat; indeed, some of the best malting barley in Essex, on the Seottish carse-lands, and elsewhere, is now grown after wheat. The frequent growth of cereals, and the heaviest of hay and root erops, even when removed from the farm, may be fairly compensated for by large doses of town-dung or of sewage. The plant-food disposed of in the more ordinary sales of the farm is economically restored by the use of bones or superphosphate, guano or nitrate of soda, or hy keeping plenty of sheep, penoing them over the land, and supplying them liberally with cake and corn.

RO'TTLERA, a genus of trees of the natural order Euphorbiaceor, with a $3-5$ parted ealyx, no corolla, 30-40 stamens springing from the convex receptacle, and a $2-4$ coccous capsule, each portion having one seed. The species are rather small trees, found in India and other tropical parts of Asia. R. tetracocca grows in Sylhet, and yields a hard and valuable timber. R. tinctoria is a native of India,
from the Coromandel coasts to the northern forests. Its capsules are covered with short stiff hairs, which, when rubbed off, have the appearance of a fine red powder, are used in India for dyeing silks scarlet and orange, and form an article of commerce in that country. Professor Anderson of Glasgow has examined this dye-stuff, and in the Edinburgh Plilosophical Journal for A pril 1855, has stated his opinion that it merits the attention of silk-dyers. The colour which it yields is of great beauty and great stability.
loUHER, Eugève, a very eminent French statesman, was born at Riom, on November 30, 1814. He first distinguished bimself as an advocate at the bar of his native town, at which he practised up to 1848. The attention of the country was first drawn to him by the ability he shewed in a press prosecution, in which he was engaged for the defence. In 1848, he mas returned by the depart. ment of Puy-de-Dôme to the Constituent Assembly, which was summoned after the revolution of that year, and in the following year he was returned to the Corps Législatif by the same department. On the break-rip of Odillion Barrot's cabinet, the first ministry of Louis Napoleon, towards the end of 1549, R. was appointed Minister of Justice; and with slight interruptions, he has been since then a member of the French government. In the Corps Législatif, he shewed himself a moderate politician; and he never affected to consider the Republic an improvement on the constitutional system which had preceded it. In 1852, he ras appointed Vicepresident of the Council of State, with the oversight of the departments of Legislation, Justice, and Foreign Affairs. In 1855, he was appointed Minister of Agriculture, Commerce, and Public Works, and in this office he found extraordinary opportunities for the exercise of his administrative ability. In the negotiation of the Treaty of Commerce with England, which-much decried both in France and in England at first-is now admitted to have conferred immense advantages upon both countries, the negotiations were conducted by M. R. and M. Laroche on the part of France, by Lord Cowley and Mr Cobden on the part of England; the treaty was signed on January 2n, 1860. The arrangements consequent upon the treaty involved immense labour and manipulation of details, and the chief part in adjusting them devolved upon M. P. and Mr Cobden. In 1563, he negotiated a Treaty of Commerce between France and Italy, receiving from the king of Italy, in acknowledgment of his merits, the Orders of St Maurice and St Lazaire. He has thus been the chief instrument in the introduction, or in preparing the way for the introduction, of free trade as the commercial policy of France and the neighbouring continental countries.

In June 1863, M. R. retired from the ministry of Agriculture and Commerce, and was appointed President of the Council of State in succession to 11. Baroche. Soon after, he took the office of Minister of the Interior; and in October 1863, on the death of M. Billault, he was appointed Minister of State. In this office, be had to represent the government as 'talking-minister' in the Corps Législitif; and it is adnitted that be had no superiur as a debater among the great orators trained under the constitutional system, and these were able rivals. His reputation as a debater stands as high as his reputation as au administrator ; and it may safely be said that he has no superior, if any equal, for ability among the French politicians of the time. In Jantary 1867, when the late emperor, hy a decree, introduced certain modifications of the privileges of the Corps Legislatif, and of the relations betwreen that bolly and the ministers, M. I.,
with the other members of the cabinet, resigned office, but he was immediately reinstated in it. He was appointed a member of the French Senate on the 18th of June 1856. He became Grand Officer of the Legion of Honour in 1Să6, and gained the Grand Cross in January 1860. He was returned to the National Assembly for Corsica in 1872.
ROUND-FISH (Coregonus quadrilateralis; see Coregonus), a fish found in the western parts of North America, from Vancouver's Island northwards, in the rivers on the western side of the Pocky Mountains, and in the Mackenzie and Coppermine rivers. It ascends the rivers in summer to spawn, spending part of its life, like the salmon, in the sea. It is a beautiful fish; seldom more than two pounds in weight, of a yellowish-brown colour, paler on the sides and belly than on the back, with bright and glittering scales. each of which is edged with a narrow band of dark gray; the mouth yery small, no teeth perceptible. Before spawning, it is loaded with fat, which, on the shoulders, almost amounts to a hump; but after spawning, it becomes thio, and its Hesh watery and insipid. In a good state, it is a rery delicious fish, rivalling in excellence its congener, the Whitefish (q. v.). This fish is an important article of food to the Indians of North-western America, and vast numbers are caught in the rivers as they ascend from the sea. They ascend in such numbers that no ordinary contrivances of fishing are necessary, but the fish are baled out by baskets, little nets, wooden bowls, or even by the hand. They are cured by splitting and drying, like salmon. The R. readily takes a rough gaudy ty.

ROYU'MA, a river of South-east Africa, which enters the Indiau Ocean by a spacious bay north of Cape Delgado. Only a small portion near its mouth Was known to Europeans till 1861, when Drs Livingstone and Kirk attempted its ascent in the small steamer Pioneer, drawing five feet water. The river was then in flood, and had a strong current. After an ascent of 30 miles, the difticulties of the passage induced the explorers to return. Another ascent was made by the same party during the dry season of 1862 . With two ships' boats, they reached the rapids which limit the navigation, above 100 miles from the coast, and half-way to the Nyassa Lake.

Passing through gloomy, unhealthy forests of mangroves, they entered a healthy plain, covered with heavy timber and brilliantly flaming tropical plants; but the country was infested by the 'tsetse fly,' a serions olstacle to its development. The river abounded with hippopotami. The travellers came within two days of the town of N'gomano, where all the cararans cross the R., but could not leave the hoats in order to reach it. Here the F. is joined by the Niende, a large aflluent from the hills on the south-west; while the main stream comes from the west and north-west. As the Γ_{1}. is navigable for only a few months of the jear, it offers little adrantage for commerce; hut it affords an excellent entrance by which to explore the regions betrucen the Jyassa and Tanganyika lakes. During his last African journey, Dr Livingstone and his party left Zanzibar in March 1866. Owing to the swampy state of the country, the party landed $2 \overline{5}$ miles north of the T., and striking south-southwest across the country to that river, followed it to the point where it is joined by the Leonde from the mountains on the south-west, near the eastern shore of Lake Nyassa. On their arrival at N'gomano, the travellers found the country destitute of provisions, a tribe of Mazité having swept away all the food found above ground. Dr Livingstone
proposed to establish the base of his ojerations at Ngomann, till he could find his way round the Nyassa; and the last authentic news of him received for a long time was from a letter dated thence on the isth May 1866. Reports of his death reached Eugland carly in 1567, but were happily disproved ly a letter from the traveller himself in ISGS.
royter-Collard, Pierre-Pall, a Freneh statesnnan, lorn 21 st June 1763, at Sompuis (Marne). 'The elildhood of Ii. was spent at his father's house, under the severe surveillance of his mother, who belonged to a family ardently devoted to Jansenism. He was sent to college at Chaumont, and afterwards at Saint-Oner, which was superintended by one of his uncles, the Abbé Collard. Having nassed as advocate at an early age, he pleaded several times before the old parliament; but from the tirst days of the lievolution lie was involved in the events of that time, laving been elected one of the representatives of the commume of Faris. From 1790 to 1792, he acted as joint-secretary of the monicipality. It was then that he was connectel with Pétion and Danton. The events of the 31st May obliged hin to remove from Paris. He then returned to Sompuis, and lival in obscurity during the whole time of the Reign of Terror, stulying and following the plough himself, to evade the suspicions of the Jacobins. Three years afterwards, in 1797, the electors of this department chose him to represent then in the Council of the Five 1lundred. If. took an active part in the work of that assembly. He was one of those honest men who, preferring monarchy, but fearing a violent counter-revolution, cousented to try the republic with a moderate government, cherishing the hope, in the meantime, of an ultinnate restoration. The 18tha Fruetidor completely opened his eyes and dispelled his illusions. It was then that he turued his thoughts to what he believed to be the only hope of France, and that he legan a correspondence with Louis XVIIL., which, howerer, ceased towards the epoch of the estallishment of the Empire. For some years afterwards, he ceased to have anything to do with polities, and entered on another carcer. He was offered the chair of Philosophy (1509) by Napoleon, in the recently created University of France, which he aecepted after great hesitation. Applying himself rigoronsly to study for it, he was soon highly qualified to fulfil his duties. In the few years lie occupied this chair, he exercised an immense influence on the philosophy of France. Rejecting the purely sensnous system of Condillac, he proceeded eclectically, giving speeial prominence to the principles of the Scottish schonl of Reid and Stewart. He originated the 'Doctrimare' sehool, of which Jouffroy and Consin were the elief representatives.

The Restoration deprived the cause of education of the services of Royer-Collard. The Bourbons did not overlools the man who had not eeased, since 1798, to maintain their eause; but R., who had all along dreamed of the union of hereditary monarchy with an enlightened liberty, was ill fitted to act with the royalist fanaties now dominant in France.

1i. was appointed President of the Commission of Public Iustruction (35th August 1515), which office he hold, with the title of Councillor of State, till July 1820. He gave in his resignation at that time, not wishing to associate himself with the polities of the ministry. In 1815, the electors of Marne chose lim to represent them in the famons 'Chambre Introuvahle' ($\mathrm{g} . \mathrm{V}$. in SUTPLEMENT). He took part in all the business of the Chamher, remaining steadfastly attached to the king, but energetieally opposing the ultra party. In the next parliament, he rejected, with great energy, the illea of confiding pubhe instruction to the clergy. 'The university;'
he exclaimed, 'las the monopoly of education, nearly as much as the courts lave that of justice, and the army that of the public force?

At the end of the session 1817, iL, for the first time, withdrew from the government, at least from the course pursued ly the ministry. He onee more supported it in a new disenssion agaiust the predominanee of the Catholic Chureli; Lut dating from 1819, the rupture was complete. He presented then the singular spectacle of a devoted royalist seconding the elforts of the Liberals. The Prench Academy npenel its doors to him in 1827; and in 1s2s, he was named President of the Chamber of liepresentatives. As President, h. hail to present the famnus address of the 21 deputies (March 1830), refusing their support to the government, which the king refused to hear read. Next day, the Chamber was prorogucd. Fi, departed for Chateanvieux, his country-seat, where he went to conceal fears and regrets which the revolution of .July was to justify. He was re-elected in June 1S30, and he aceepted this mandate. In 1842, lie withlrew from parliamentary life, and aiter that lived in great retirement.
Although R. had a considerable fortune, he never departed from the greatest simplicity, excepting for tbree things - the purchase of bouks, clarity, and the receptions whieh his oflicial position imposed on him. He received with politeness, lunt with a certain coldness which he could never lay asile. His salon was very much frequented by the political world. Every Sunday, the prineipal lealers of the moderate opposition assembled there: it was a large room, serving as a study, the walls of which were hidden from top to bottom by shelves londed with hooks; not a single ornament-no fine furniture-what was strictly necessary, and no more. There assembled Cousin, the most eminent of his pupils; Guizot, the Duke de Lroglie, Casinuir Périer, De Barante, Villemain, Ampère, Andral, De Iïumusat, De Barthélemy, Gabriel, and many others. There was little conversation, properly so called; the slow and sonorons voice of F. was dominant in the room. The subjects were almost always the political events and the debates in parlianent; the acts of the government were not spared. This salon was the echo of the Liberal world.
From 1842, R. had completely withdrawu from pithic life, lis health, in fact, mot allowing lim to oceupy himself with public matters. He spent only the winter in l'aris, returning in summer to his estate of Châteauvienx, where he died, 4th Scitember 1545.
f. was undoubtedly one of the most noted men of the 19th century. He excreised on his contemporaries a powerful influenee, owing more, perhaps, to the uprightness, firmness, and extreme earnestness of his charaeter, than to intellectual power or genius. Exeepting his politieal speeches, published in the Moniteur, R. left few published works. A lecture on External Pereeption appeared in 181:; and his smaller contributions to philosophy are t." be found in Jouffroy's translation of Reid's works (Par. 1836).

RSHEW, or RJEV, a town of European Rinssin, in the government of Tver, amil 80 miles south-west from Tver, on the Volga, which passes throngh it. It is a place of much commerce, has salt and corn magazines, and two great annual fairs. Pon. (1S67) 17,528.

RUE'LLIA, a genus of plants of the natural order Acanthacea, natives of tropical and subtropieal parts of Asia and Anstralia. Some of them are very beautifnl, and are common oramments of our hothonses. In some parts of China, especially in the province of Che-kiang, and on the mountains

RUMANIA-SAHARANPUR.

to the west of Ning-po, a species of this genus, R. indigofera, is much cultivated for the excellent indigo which it yields. It is also a native of Assam, and is cultivated there.-Sec Fortune's Residence among the Chinese.

RUMA'NIA (often written Rommania). See the article Moldavia and Walachia. Since that article was pmblished, important political changes have occurred in Rumania. A military revolt took place in February 1866, which resulted in the deposition of Prince Conza-Alexander John I. His palace at Bucharest was invaded by the soldiery; he was made prisoner, and forced to sign his abdication. In both houses of legislature, the Count of Flanders, younger brother of Leopold II. of liclgium, then in his 19 th year, was unanimously chosen Hospodar, and he was proclaimed by the style of Philip I.; but he at once declined the perilons honour. Upon this, the choice of the Rumanians fell upon Prince Charles of HohenzollernNigmaringen, who was proclaimed Prince of I. on April 20,1866 , and continues (1873) to occupy the Rumanian throne.

IU'SSIAS, All the, the official designation of the Russian Empire in Europe, was assumed in 1654, when the Czar Alexei Mikailowitch styled himself for the first time 'Tzar of All the Russias,' after his conquest of Little Fussia and acquisition of Smolensk from Polaud. This lhrase at first iucluded Great Russia, White Russia, and Little Inssia, though in later times it acquired a more comprehensive signification. Great Russia, formerly called Muscovy, which is by far the largest of these three divisions, includes the territory now comprehended in the 19 governments of Archangel, Olonetz, Vologda, Novgorod, Tver, Jaroslay, Kostroma, Pskov, Smolensk (partly), Moscow, Vladimir, Nijni-Novgorod, Kalonga, Tonla, Riazan, Tanbov, Orel, Koursk, and Voronetz; and is bounded by Finland, the Baltic Provinces, and White Russia on the W., and by the governments now formed ont of the old Tartar khanates of Kazan and Astrakhan
on the E-IVhite Russia included the provinces of Vitelosk, Mohilev, and the rest of Smolensk, and though long held by the Poles, was finally re-united to Iiussia at the first and second partitions of Poland (1772 and 1793). At the latter period, it also received the accession of the Polish provinces of Black Russia, or Mlinsk, Samogilia, the rest of Lithuania (q. v.), Podlesia, I'ollynia, Podolir, and Polish Uhraine (now Vilna, Miusk, kovno, Volhynia, Podolsk), and White Russia with these accessions was then denominated IVest Russia.-Little Russia contains the ancient Russian possessions in the south-west, which, in the middle ages, became independent under the Cossacks of the Ukraine, and were finally reunited to liussia in 1654; and is divided into the four provinces of Kiev, Tehernigov, Poltava, and Kharkor. Druing the 1Sth c., the countries wrested from the 'Turks, lying between Great Russia and the Black Sea, were formed into a fourth great division, under the name of Southern Russia. This last includes the districts occupied by the Don Cossacks, sometimes called New Russia. - Red Russia was a portion of the Iinssian principality of Galich (Galicia), and with the rest of it, was sulbdued by Casimir 11I. of Poland; it included what is now the province of Lublin, in the kingdom of Poland, and the eastern portion of Austrian Galicia, between Lublin and the Carpathian Mountains, and is inhabited lyy Poles, and another and antagonistic people, who are called indifferently Iied Inssians, Russniaks, and Ruthenes.

RU'TE, a town of Spain, in the province of Cordova, and 43 miles sonth-cast from Cordora, on an afluent of the Jenil. Pop. S000.

RUVIGADO, a town of the Granadian Confederation, Sonth America, in the department of Cundinamarca, in a mountainous district, on one of the head-waters of the Magdalena, iu N. lat. $6^{\circ} 10^{\prime}$, and W. long. $75^{\circ} 42^{\prime}$. It is 5901 feet above the sea. The chief importance of the town is as a centre of trade for a large neighbourhood. Pop. 10,000.

SAGUENAY, a large river of Canada, falling into the estuary of the St Lawrence, on the north side, about 115 miles below Qucbec. It drains the Lake of St John, which is nearly circular, and almost 30 miles in diameter. Its course from that lake to the Gulf of St Lawrence is about 100 miles, and is almost a straight line. It flows between precipitons cliffs, has numerous cataracts in its upper part, and is in many places two or threc miles hroad. In the lower part of its course, it is less wide, hut very deep, and large ships ascend it more than 60 miles to load with timber from the settlements on its banks. The name S . is sometimes also given to the principal river which falls into Lake st John, and which is known to the Indians as the Chomonchonan and as the Assonapmonssoin. It rises about 200 miles to the west of Lake St John, in a region of lakes aud marshes.

SAHARANPU'R, or SUHURUSPUR, a town of British India, North-west Provinces, the chice place of a district of the same name. It is situated
in a plain in N. lat. $29^{\circ} 58^{\prime}$, and E. long $77^{\circ} 36^{\prime}$, about onc mile east of the Doab Canal. It has a large fort, a military cantonment, and a government depot. S. is about 1000 fect above the sea, and the climate is temperate during great part of the year. S. was therefore chosen as a suitable situation for a botanic garden, for plants requiring a milder climate than that of Calcntta, and one was formed in 1817. S. is described as one of the most handsome Dritish stations in India. Pop. about 38,000 .

ST A'LBAN HALL, OxFORD, takes its name from Robert de St Alban, a citizen of Oxford, whe conveyed the building to the uuns of Littlemore, near Oxford, in 1230. On the dissolution of the nunnery, it was given by King Henry VIII. to his physician, George Owen, D.M., who conveyed it to Lord Willians of Thame, and Sir John Gresham. By their assignees, it was finally transferred to the Warden and Fellows of Merton College, and was some time after established as an academical Hall. The principal of this, as well as of the other four halls, is assisted in his duties by a vice-principal and other officers appointed by himself.

ST DONI'NGO. In 1865, Spain relinquished this possession, which is again an iudependent republic.
SAINTE-BEUVE, Charles-Augustin; a French poet and critic of great eminence, was born at Boulogne-sur-Mer, on 23 d December 1504 . His father, who died two months before his birth, was principal des droits réunis at that port. His nother, a woman of sunerior character and intelligence, was by family originally English, and through her the boy early acquired a familiarity with the English language and literature. He was educated at an institution of his native place, and afterwards at the College Charlemagne in Paris. On leaving college, though his bent towards literature was already prononnced, he was shy of committing limself to it as a profession, and betook himself to the study of medicine and anatomy. Shortly, he obtained a situation at the Hospital St Louis. Here for some time he worked steadily; but his spare time was occupied with literature; and his articles contributed to the Globe on topics of history, philosophy, and criticism, attracted attention, and in particular procured him the acquaintance of the celebrated M. Jonffroy. While he was thus wavering between literature and the claims of a profession distasteful to him, Victor Hugo's Odes et Ballades were published, and the impression made upon him by this work, of which be wrote an enthusiastic critique, seems to have determined him fioally to a life exclusively literary. He gave up his sitnation at the hospital, and attached himself to Le Cenacle, along with Alfred de Mnsset, the two Deschamps, and others of the so-called Romantic School. Shortly, he gave to the world his Tableau ITistorique et Critique de la Poésie Frangaise, au XVI.e Siecle (1828-afterwards enlarged in ed. 1S43), which at once established his reputation as one of the first critics of the time. His next work, Les Poésies de Joseph Delorme, though somewhat coolly received by the public, brought him what perhaps pleased him better than any applause of the multitude, the emphatic approval of Béranger and others of the literary guild. Les Consolations, published in 1830, was considerably more successful in hitting the taste of the public. On the cessation of Le Cenacle, after the revolution of 1830, S. attached himself to the Globe; and subsequently, he wrote much in the Revue des Deux Mondes, tbe National, and the Constitutionnel. In 1834, appeared his Volupté, a work curious as a study of moral
pathology, but more curious than pleasing; and in ISto, he published the first yolune of his fistoire de Port Royal, a work which, in 1860, he completed in five volumes. On 27 th February 1845, he received the most distinguished mark of honour which can fall to a Frenchman of letters, by his election to be a member of the Academy. In 1850, he began to issue, in the pages of the Constitutionnel, the famous series entitled Causeries de Lundi, the moat delight. ful of all his works, and that by which he is nost widely known. After the coup d'etat of 2 d December 1851, he became connected with the Moniteur, and was appointed Professor of Latin l'oetry at the Collége de Francc. Of this appointmedt some fruits are before the world in his L'Etude sur l'irgile, published in 1857. In 1865, he was called to be a member of the Senate.
As a poet, S ., despite the fine talent lie displayed, never succected in becoming. popular, nor can very high rank bo accorded Kiin. But as critic, he was 'himself alone,' and his place is by common consent in the very fore-frout of French literature. His sympathies were wide and catlolic; in delicacy of perception, and subtlety of refined analysis, he was almost without a rival; his style is piguant, lively, fascinating, instinct with individual expressiveness; and nothing can exceed the felicity with which the interest of criticism proper is combined in his sketches with that of anecdotic biography.

Of his works not already glanced at, the followiog only need be mentioned: Poŕsies Completes ($\mathbf{1 8 4 0}, 12 \mathrm{mo}$) ; Critiques et Portraits Littéraires (183:2 $-1 \mathrm{S39}, 5$ vols. Sro) ; Portraits Littéraires (IS41, 2 vels. 12 mo) : Portraits Contemporains (2 vols. 12mo) ; Causcries de Lundi (1851-1857, vols. 113, 12mo); Nouveaux Inendis (1863 , vols. 1-11, 18mo) ; not to mention an immense mass of miscellaneons work. He died Norember 1869.
SAINTE-CLAIRE DEVILLE, If enti Etimane, French chemist, was born in March 1818, at St Thomas, West lndies, and was educated in Frauce. On quitting college, he constructed at his own cost a chemical laboratory, and for nine ycars, without master and without pmpils, devoted himself to patient studies and skilful researches. In 1844, he was commissioned to organise the Faculty of Sciences of Besançon, of which, in the following year, he was appointed Dean and Professor. In 1851, he succceded M. Balard in the chair of Chemistry in the Ecole Normale. Since 1553, he has supplied the place of M. Dumas in the Faculty of Sciences of Paris. In 1S61, he was chosen a member of the Academy of Sciences of the Institute, in place of M. Berthier in the section of Mineralogy.
S. D.'s earhest investigations relate to different csscnces and resins, and the most important are in the department of mineral chemistry. In 1849 , he made known the mode of preparation and the properties of anhydrons nitric acid, a compound whose cxistence had been up to that date ignored. In 1852, he pmblished an important paper on Metallic Carbonates and their Combinations; and in the following year, a new method of mineral analysis, known as the middle way, in which he proposes the exclusive employment of gases and volatile re-agents, against the errors arising from the use of the filter:

About the same time, he began his researches into aluminjum, a metal discovered in 1827 by Wöbler of Göttingen, but still very imperfectly known, and set forth its special properties. lieing conmissioned by Louis Napoleon to seek the best method of obtaining aluminium at a low price, he made numerous experiments, jointly with M. Dcbray, in the factory at Javel; and after some

SAINTE MARIE-AUX-MINES-SALMON OF N゙ORTH.WESTERN AMERICA.

months, succeeded in producing ingots of the metal, which were shewn in the Exposition Universelle of 1855. These experiments, and the properties of aluminium, have been described by S. D. in scientific periodicals; and among his later papers are-on the Three Molecular States of Silicium; on the Metallnrgy of Platina; on the Density of Vapours at very High Temperatures; on the Measurement of High Temperatures; on the Permeability of Irou to Gases at a High Temperature; on the Phenomena of Dissociation in Homogeneous Flames; and on the Industrial Preparation of Alnminium and its Compounds. These papers are published in the Mémoires and Comptes Rendus of the Académie des Sciences de l'Institut, and in the Annales de Chimie et de Physique.

SAINTE MARIE-AUX-MINES (Ger. Mariakirch), a town of Germany, in Alsace, on the Lieprrette, 12 mdes north-west of Colmar, at the foot of the Vosges Monatains. It formerly owed its prosperity to its sdrer mines, but these are no longer worked. 1ts chief manufactures are cotton fabrics of various kinds, paper, and cherry-brandy. Pop. (1572) 12,319.

SAINT LOUIS, the capital of the French possessions in Senegambia, is situated on a small low island of the same name, at the mouth of the Seoegal river. The town covers almost the whole island. With its fortifications, it presents an imposing appearance from the sea, but the interior is mean and dirty. The harbour is good. The principal building is the government bouse. There are 600 stores for goods. Saint L_{2} possesses a botanic garden, founded in 1522. Pop. about 18,000.

SAINT PIERRE, a town of the island of Bourbon (q. v.). or Réunion, on the sonth-west coast, 34 miles south-west from Saint Deris. Pop. 14, 13j̄.

SAINT-PIERRE-LESS-CALAIS, a town of France, in the dep. of Pas-de-Calais. It may almost be regarded as a south-eastern suburb of Calais, to which it nearly adjoins, but has grown to a size exceeding that of Calais itself. It is famous for its manufactures of Tulle (q. v.). Other branches of industry are also actively prosecuted, as the manufactures of leather and beetroot sugar. Pop. (IS71) 18,092.

SALEMI, a town of Sicily, in the province of Trapani, 39 miles sonth-west from Palermo. Pop. about 12,000.

SALINS (anc. Salinex), a town of the dep. of Jura, France, 52 miles north-hy-west from Geneva, on the Furiense, a fecder of the Doubs. It is sitnated in a parrow rocky gorge between two lofty hills, looking upon a fertile and beautiful valley. It derives its importance from its salt-works, from Which also it has its name. The salt is ohtained from brine-springs, and the evaporation of the brine is mostly cirried on in a great building, in the valley below the town, which has long borne the name of the Salines Royales; but that of the weaker springs is conveyed in pipes to the forest of Chanx, 15 miles off, where it is first slowly evaporated in maisons de graduation, and afterwards by boiling. There are iron-works, soda-factories, tanneries, and quarries of gypsum in S. ankl its immediate neighbourhood. Yop. (1871) 11,350.

SA'LLEE, or SLA, a seaport town of Morocco, in the territory and former kingdom of $\mathrm{Fez}, 106$ miles west from Fez. It stands on a low sandy point of the shore of the Atlantic, at the mouth of the Buliegreb, on the northern side of the river, whilst oplosite to it, on the southern side, is the town of Labat. Both S. and Rabat were bombarded and
nearly destroyed by the French in 1551. S. was in former centuries noted as a haunt of pirates, and a Sallee liover was the dread of peaceful mariners in the Atlantic and Mediterranean. It is particularly noted for the carpets which it produces, of fine texture and bright colours. They are mostly used in Morocco itself. The chicf export from S. is wool. Pop. estimated at about 12,000 , of whom 3000 are Jews.

SALMON OF NORTH-TVESTERN ANERICA. The rivers of North-western America abound in salmon and trout to a degree not exceeded, and perbaps not equalled, in any other part of the world. Since the article Salmon was written, a very interesting account of the most important species has been given by Mr J. K. Lord, in his work entitled The Naturalist in Vancouver Island ond Britis/s Columbia (2 vols., Lond. 1866), to which we are indebted also for accounts of the Candle-fish, Vancouver Island Herring, and Viviparous Fish, noticed in this Supplement. The first place must be given to Salmo Quinnat, of which Quinnat is one of the Indian names, a fish similar in quabity to our Enropean salmon, and sometimes 70 lbs . in weight. It is very thick in proportion to its length, the dorsal onthine slightly arched, almost forming a notch with the tail. The back is light steel blue, shading to a lighter tint on the sides, and imperceptibly changing to gray or silvery white, blusked over with pink, on the belly. The upper parts, and often also the lower, are thickly spotted with black stars. Salmon of this species ascend the Columbia, the Fraser, and other rivers in prodigious numbers, at the spawning season, and proceed hundreds of miles, and eren in the Columbia 1000 miles, from the sea into every rivulet, 'filling even pools left on the prairies and flats by the receding floods.' In what multitudes they crowd up the rivers will be even better understood from the following statements of Mr Lord, relating to a tributary of the Fraser. 'About a mile from my camp was a large patch of pebbly grownd, through which a shallow stream found its way into the larger river. Though barely of sufficient depth to cover an ordinary-sized salmon, yet I have seen that stream so filled, that fish pushed one anctleer out of the water high and dry upon the pebbles.
With one's hands only, or, more easily, by employing a gaff or crook-stick, tons of salmon could have been procured by the simple process of hooking them ont.' Mr Lord goes on to express his opinion tbat thousands of the salmon ascending the small mountain-streams never can spawn from sheer want of room. He describes them as dying lay scores at the base of a waterfall which they could not leap, where, however, they persisted in remaining till they died from inanition, fresh fish coming up as the dead ones floated down. A prodigious stench arises from the multitudes of dead salmon tloated down the rivers. The lndians say that all the salmon of this species that come up to spawn die in the rivers; and Mr Lord believes that few, if any; ever reach the sea again. They seem not to eat when in the fresh water, and cannot be tempted either by fly or bait, nor is any food to be found in their stomachs, although, in the stomachs of those taken in the tideway or salt water, the remains of small fish and marine animals are to be found. This kind of salmon asceads the rivers in June and July, for, unlike the salmon of Britain, it spawns in summer.-At the same time with Salno Quimnat, a smaller species, called by the Indians, at the Kettle Falls, the Cha-la-lool (Salmo Gairlneri), ascends the rivers. Its arerage weight is ooly from cight to eleven pounds, but when it first arrives in the fresh water, its flesh is fat, pink, firm, and most

SAMBOR-SANTTARI SCTHNCE

decicious. - A little later in the season, comes the Weak-toothed Salmon (Salmo paucilens).-The autumn, also, has its supply of salmon, quite equal to that of spring in point of numbers, lout inferior in quality. They ascend the rivers in September and October. The antumnal salmon (Salmo lyctorton of Pallas), a species known also in Northern Asia, is a dlingy hook-nosed fish, called Hooked Snout by the fur-traders. The looked shont, however, is peculiar to the males. Salmon of this species are to be found 'in every strean and rill where they cau by any possibility work a passage,' and they often remain in fresh water, far from the sca, for four or six months, all of them becoming emaciated, and many of them dying, whilst the snont of the male becomes prodigionsly clongated, and the teetl also increase into tusks. As to the multitudes of the full-grown fish of this species to be found at the proper season in the rivers of Northwestern America, the following extract from Mr Lord's hook is conclusive. 'At Fort Hnope, on the Fraser liver, in the mouth of September, I was going trout-fishing in a beautiful stream, the Qua-gue-alla, that comes thandering and dancing down the Ciascade Mountains, cold and clear as crystal these salmon were then toiling up in thousands, and were so thick in the ford that I liad great trouble to ride my horse through: the salmon were in such numbers about his legs as to impede his progress, and frightencd him so that he plunged vicionsly, and very nearly had me off.'-The Red-spottred Salmor Trout (Salmo spectabilis) is another valnable fish of the same regions. It seldon exceeds three pounds in weight. It ascends the rivers in October, when a great Indian tish-barvest takes place. 'Tlis fish is readily taken by hooks baited with dried salmon-roe, or by a small shining strip from the belly of a tront.-The Oregon Brook Thout (Salmo or Fario stellatus) abounds in the rivers anl streams of North-western Americn, even to a leight of 7000 feet in the Rocky Mountains. It attains a weight of three pounds, and is a delicious lish. This tront is readily taken with tly or bait.

The Inclians of these regions take the salmon, as they ascend the rivers, by various eontrivances. They construct weirs reaching from one side of a stream to the other, with openings, throngh which the lish pass into large lateral prisons of closely woven wicker. Tbey use nets in the bays anl harbours, when the salmon, pursuing anchovies and herrings, run into the net, and are caught, and thus immense numbers are taken. 'Ihey construct rude scaffolds or stages of wood among the boulders on the sides of large rivers, on each of which many Indian fishers await the salmon, with small nets fastened to handles, forty or fifty fect in leugth. Thirty salmon an hom is not an unusual take for two lndians to land on a stage. Another and more curious methorl, practised at falls, is by means of great wicker hampers, abont 30 fect in circumference, and 12 feet in depth. To make these availahle, huge trees are cut down, lopped clear of their branches, and brought to the edge of the river, where they are fastened so that the smaller ends overlang the foaming water. To these the wicker laskets are suspended, where the salmon generally leap in their attempt to clear the falls; and in each lasket two naked Indians are stationed all day, frequent relays being necessary, as they are under a heavy fall of water. As the salmon fall into the basket, the Inclians catch them under the gills, kill them with a clab, and fling them on the rocks. Mr Lord says: 'I have known 300 salmon landed from one basket between sunrise and sunset, varying in weight from 20 to 75 lbs .' The salmon and tront of these regions will probably soon be
brought in some form or other to the marliets of the more densely peopled parts of the world.

SA'MBOI, New, a town of the Austrian Empire. in the province of East Cialicia, the capital of a circle, on the left bank of the Dniester, 44 miles south-west from Lemberg. It is a thriving and well-built town, with manufactures of linens and extensive salt-works. l'op. 10,500 .

SA'NDHURST, a town of Victoria, 52 miles north-north-west from Melbourne, on the railway between Nelbourne and Ebuca. It is the centre of an important mining district of the Bendigo goldfielus. Pop. (1871), along with its suburbs, 27,612. In the district of S . there are many Chinese.

SAN FE'LE, a town of South Italy, in the prorince of Potenza, 17 miles north-west from I'otenza, among the Apennines, on one of the head-waters of the Ofanto. It has an ancient castle. l'op. 90 sif.
SAN FRATEALLO, a town of Sicily, in the province of Messina, 58 miles west-south-west from Messina. It stands on a height, about five miles from the sea. At the base of the hill on which the town stands is a remarkable cave, discovered in 1859 , and containing prodigions quantities of bones of mammals, with which flint implements are mixed. I'ol' 7200.

SA'NITARY SCIENCE, known also mader the names of Preventive Medicine, Srate Methetink, Hygiene, and lublic Headith, lias been variously defined hy different writers. Dr Mapother's is perhaps as good a definition as any. In the first of his Lectures on Public Health, he describes this science as 'an application of the laws of physiolory and general pathology to the maintenance of the health and life of communities, by means of those agencies which are in common and constant use.' This department of science received so strong in impulse, about a quarter of a century ago, from the labours of Southwood Smith, Llwin Chadwiek, Lyon Playfair, and others, that many persons remari it as of modern origin; and doubtless to a great extent they are right; but on turning lack to the records of carly history, we almost invariably fime evidence that the health of the general popruation was a subject of legislation. The Mosaic code of laws-the most ancient on record-contains minate directions for the eleanliness of the person, the purification of the dwelling and the camp, the selection of healthy and the avoidance of unwholesome food (pork, for example, which in hot countries is more commonly found to harbour parasites than ia temperate climates, and hood, which is the most putrescible part of the animal), the seclusion of persons with contagions disorders, the regulation of sexnal intercourse at certain periods, and various other points bearing on the physical well-heing of the Jewish nation. The Grecks and liowans, although not, like the Jews, making lyggiene a part of their religious duties, were far from neglecting it. 'The Laws of Lycurgus,' says Dr Gairdner, 'are not wanting in tery pointed enactments on sanitary matters; and the importance attached by all the Greck republics, and in the l'latonic ideal prolity, to physical culture, is too well known to require remark. The lioman poople, joor and apparently rude as it was in its origin, yet found time, amidst its military occupations, to construct the Cloaca Maxima, as an indestructible and stupendons memorial of its attention to the drainage aud sewerage of the city at a very early period of its history. At a later period, aqnedncts were made to cover miles upon miles of the surrounding plain; and their splendid ruins, still [artly used for their original purpose, attest the munificence and the abundance with which the first of sanitary requisites was supplied
to the imperial city: "-Public Mealth in Relation to Air and IVater, 1862, 1. 6. Moreover, we know enough of the construction of the private houses and public Luildings of the Liomans to see that tliey recognised the necessity for free ventilation and good drainage. When the Archiatri populares, or state-physicians, were first appointed in the Ioman Empire, is not certainly known. Their mode of election is described in the Theodosian and Justinian codes. There were ten of them in the largest towns; one to each district or subdivision; seven in towns of the second order; and five in the smaller ones. They collectively formed a collere, whose ruty it was to attend to the public health; and they may be regarded as the earliest type of our 'General Medical Comncil,' Gradually, however, as Christianity spread, an utter misconception of doctrine led to the neglect of all care of the human body. While the monks and friars devoted themselves to good works, feeding the hungry, clotling the naked, and instituting hospitals, they entertained no idea of the possible prevention of disease. They never attempted to impress upon their followers the inn* portance of drainage, ventilation, pure and abindant water, \&c. ; but when an epidemic arose, it was supposed to be a manifestation of God's special anger ; and it would have been impossible to make them understand that it was the natural result of a prolonged disregard of the laws of nature. Those who have read Dean Stanley's graphic Memorials of Thomas A'Becket will be inclined to wonder whether those who adopted such pemances as his could ever be free from cutaneous disorders. The state of the towns in England in the 13th c. is so clearly described by Mr Brewer in his Introduction to the Monumenti Franciscana, that we sliould have been glad to have extracted it, if our space had permitted. Those who have not access to the valuable series in which Mr Brewer's work is included, will find a sufficient quotation from it in Dr Gaiudner's interesting volume on Air and Jater, 1p. 41-47. In another work in the same series-the Liber Allus, edited by Nr Riley-much important information regarding the general sanitary state of London in the medieval times may also be found. In addition to the causes of disease indicated by these writers, such as the absence of drainage, the accumnlation of filth, bad rentilation, insufficient and often nnwholesome water, inattention to personal cleanli. ness, \&c., must also be noticed the ordinary food in those times. The common vegetables of our own day, excepting the cabbage, were only slowly intro. duced from the time of Henry VII. As turnips were not then used as a winter-food for oxen and sheep, these animals were with dificulty kept alive during the scason when grass was scanty, and were therefore killed and salted in the lueginning of the cold weather; and during several months, game and river-fish were the only kinds of fresh animal food. Macaulay, in his celebrated third chapter on 'The State of England in 16S5.' observes that, at that time, meat, although cheaper than in former times, was still so dear that hundreds of thousands of families scarcely knew the taste of it ; that bread such as is now given to the inmates of workhouses was then seldom seen even on the trencher of a yeoman or of a shopkeeper ; and that the great majority of the natives lived almost entirely on rye, barley, and oats. Many important facts of a similar nature are also recorded in Fronde's IIistory of Eingland.

During the 3 Sth e., many important steps were taken for the improrement of the public health. Under a proper system of drainage, ague became eradicated from extensive fenny districts; and with a knowledge of the therapentic properties of
cinchona barl and arsenic, we can cut short the disease when it appears. Scurvy* was all lut blatted out of the list of diseases that proved most fatal to our sailors; and vaccination, incomparably the greatest discovery yet made in this department of scieuce, was the crowning achievement of the century. 't The tirst outhreak of cholera in this country in 1832 , lamentable as it was in itsclf, was productive of much benetit in directing the public mind to the all-important subject of the prevention or repression of disease. It was impossible to ignore the ract that, while the poor, dwelling in unrentilated and undrained hovels, fell victims to this new and ill-understood disease in thousands, the middle and higher classes were comparatively safe. All investigations into the dwellings and domestic habits of the lowest class of the population revealed a condition of things of which the general public had no conception. A new poor-law was consequently passed in 1834, and a commission was appointed to investigate and report upon its working. The Report on the Sanitary Condition of the Labouring Population of Great Britain, published in IS42, and mainly treating of the sanitary state of the poor and of the character of their dwellings, may Le regarded, as Irofessor Gairdner \ddagger well observes, as 'the true starting-point of modern sanitary, legislation.' A 'Health of 'Towns' Commission, which was soon after appointed, gave in two valuable Peports in 1544 and 1845 ; and subsequently, a Metropolitan Sanitary Commis. sion published Feports in the years 1817 and 1848. These Fieports will form a lasting memorial of the labours of Mr Chadwick and his able co-operators. Nor, in this rapid glance at the history of sanitary science, can the name of Dr William Farr be omitted, who-again to quote Dr Gairdner's words-'found the facts of this science in a state of almost hopeless and aimless confusion, and has not only added immensely to their number and value, but has brought into them light, harmony, order, and, for the first time in the history of the science, a determinate method, and an approach to scientific exactness.' By his system of calculating deathrates, he has placed an easy and useful method at the service of his professional brethren, while, by the formation of life-tables, he has greatly facilitated the operations of life-assurance.

We now pass on to the consideration of the most important sanitary agents, beginning with Ars. Under this head, we hare to consider (1) the amonnt of air vecessary for the full performance of the respiratory process ; (2) the means of ascertaining when air is impure, or, if impure, what substances are mixed with it; (3) the means of purifying contaminated air ; and (4) the diseases due to deficiency in the quantity, and alterations in the quality of the air.
(1) The first question can be answered botll lyg calculation and experiment. By calculation, Dr Parkes finds that $\because 082$ cubic feet of air wust be supplied per head per liour, so to dilnte the products

* We regret to state that during the last few rears scurvy is again becoming prevalent in the mercantile scrvice, and occasionally amongst navvies engaged at places where good food was not easily attainable. In hoth eases, it may always be traced to neglect of dine dietetic precantions.
\dagger And yet, in consequence of raccination beine either neglected or imperfectly performed, no less than $51,03 \frac{1}{2}$ persons died in Great Britain from small-pox in the ten years, $1856-1865$. In the rear 1004 alone, the deaths were 9425. On this subject, see Sir James Y. Simpson's 'Proposal to stamp out Small-poz, \&c.,' in the Mediral Times and Gazettc for January 4, 1868.
\pm Public Health in Relation to Air and Water. n. 17.
713

SANITARY SCLENCE

of respiration and transpiration from the sound Lody, as to keep the air always pure and fresh (see his Manual of Practical Hyyiene, 1864, 1. 65). From numerous experiments in which the outtlow of air was measured, and the carbonic acid simul. taneously determined, he found that at least $\because 000$ cubic feet per hour must be given to keep the carhonic acid at its normal level of 5 or 6 in 1000 volumes, and to remove the odor hamanus or fetid smell of animal matter. General Morin, in his Rapport de la Commission sur le Chaufiage et la F'entilation des Batimens du Palais de Justice, 1S60, gives results in close accordance with those of Tarkes, assigniag the following as the relative hourly amounts of fresh air (expressed in cubic feet) per head in temperate climates: in barracks, at 1059 by day, and 2115 by night; in workshops, prisons, and theatres, 2118 ; in schools, 1059 ; and in hospitals, 2825 , increased to 4236 during the hours of dressing the surgical cases, and 5650 during epidemics.* In mines, if it is wished to keep ulp the greatest energies of the men, 6000 fect of air per hour nust be allowed. It may be incidentally mentioned that a horse requires 2460 feet per bour at the least. It is difficult to lay down any rules regarding the amount of fresh air required in sickness. The vitiation of the air by the products of combustion of gas, candles, lamps, \&c., must not be overlooked. For every cubic foot of gas that is hurned, JS00 cubic fect of air are required to keep the air pure, unless the gaseous products are carried oll in a special channel, such as is now frequently attached to gas-fittings. A pound of oil burned in a lamp, may be regarded as equivalent to 10 cubic feet of gas, so far as the deterioration of the air is concerned. (For these facts, we are iodebted to Dr Parkes.)
(2) The composition of pure air is sufficiently described in Atmospmere. The impurities in air may le divided into: (a) suspended matters, (b) gaseous substances, and (c) special impurities. Amongst suspended matters are, according to Pasteur and uthers, numerous and miversal germs of organic heings, both animal and regetable, as of vibriones, bacteria, and monads ; pollen, spores of fnngi, mycoderms, mucedones, \&c. Minute particles of tinely comminuted inorganic matter are also often taken up by currents of air, and remain in suspension. These are probably altogether harmless. The works of man more seriously affect the air in a hygienic point of view. Particles of coal and of half-hurned carhon (smits), starch-cells (from bakeries and lread), and, when certain trades are carried on, cotton fibres, hairy particles of wool, of stoue, of iron, \&c., may, when constantly inhaled, give rise to the production of special diseases of the lungs and stomach. In the air of badly-kept hospital wards, pus-cells and epithelial cells are often to be detected. Most physicians now believe that the specific poisons of small-pox, searlet fever, and measles, which are derived from the skin and mucons membrane, consist of molecular organic matter, which, although as yet undetected, must pass into the air; and the same remark applies to the socalled germs of typhoid fever (see the article on Typhus and Typioid Feyers) and cholera, which are thrown off by the intestinal mucous wuembrane, and subsequently become dried and capable of aerial suspension. Amongst gaseous matters, which merely pass into the atmosphere either from matural canses or manufactories, are various compounds of carbon, sulyhur, chlorine,

[^3]nitrogen, and phosphorus, with oxygen and hydrogen, which it is umecessary liere to emmmerate. Pesides the gases formed by the union of the abovenamned clements, we mnst notice organic vapour from decomposing animal matters and sewers, which last has been found by Odling to be carbo-ammoniacal. Amongst special impurities, those caused by respiration are the most important. An adult man, under ordinary conditions, gives off, in 24 hours, from 12 to 16 cnhic feet of carbonic acid by the lnngs, and a certain additional quantity, not determined, hy the skin. Watery vapour, ranging from 25 to 40 ounces, also passes off daily from the skin and lungs, together with an undeterwined quantity of organic matter, which is partly suspended (as particles of epithelium, \&c.), and partly made up of organic vaponr. This vapour, when collected and condensed from a large volume of respirel air, is found to be nitrogenous, and has a very fetid smell. Here there is a most powerful source of vitiation, regarding which numerous chemical analyses have been made; for details regarding which we may refer to Parkes, op. cit. pp. 70-77; Gairdner, op. cit. p. 69; and Mapather's Lectures on Public Mealth, 2d ed., 1p. 40-61. There is a condition of the atmosphere to which various observers, and especially Pasteur, bave directed attention, which requires a passing remark. It is what may be termed the fermentative condition, and depends upon the nniversal presence in the air of conntless germs of vegetables aud infusoria. It is possible that this atmospheric condition may be concerned in some of the zymotic diseases. Dr Salisbury, an American physician, endeavours to shew that the poison of measles is due to a fungus which grows on rotten straw ; another American physician, Dr Flint, 'has almost fully demonstrated that the spores of palmella cause ague.'-Napother, op. cit.,]. 431, \&c. The preseace of a cholera-fungus, which has heen recently proved to exist in the evacuations of all cholera patients, gives, as will be seen from Mry Simon's Report of the Weimar Conference," a lint as to the probable cause of that disease. Piearing on the same subject is the fact, lately noticed by Davaine, that the splenic apoplexy of sheep is owing to the presence of bacteria in the blood, and that sheep, rabbits, and horses can be inoculated by transferring into their circulation the bacteria, which are extremely thin rod-like
 of an inch. The same observer has just fornd (as we learn from the 'Parisian Medical Intelljgence,' in the Lancet for January 4, 1868) that bacteria are to be found in all carbuncular diseases of any form whatever; that the sulpervention of these little beings in the spleen, the lungs, and the blood, precedes the occurrence of morbid phenomena; and that the carbuncular blood ceases to be contagious as soon as the bacteria have disalpeared; and lence he feels justified in regarding them as the cause of carbuncle. Another French observer, M. Ponlet, has just detected myriads of infusoria (monas termo and others) in the breath exhaled in whooping-cough. If one contagious disease can be proved to be connected with the germs occurring in the air, it is almost a certainty that similar diseases must arise from corresponding canses.
(3) The natural means of purifying the atmosphere are diffusion, oxidation, the action of winds, and the fall of rain. In cases where the air is specially impure, as in sick-rooms where there are contagious cases, the agents commonly known as Disinfeetants (q. v.), or deodorants, are employed. Amongst tic

* Ninth Report of the Medical Officer of the Prity Council (1866), pages 29 and 515.

SANITARY SCIENCE.

solids of this class are charcoal (see Wood-charCOAL), dried earth, and the carbolates of lime and magnesia. Amongst the liquids, those in highest reputation are Condy's Fluid* (consisting of an alkaline permanganate, which at once decomposes ammoniacal compounds, and destroys organic matter rapidly) and carbolic acid: whilst amongst the gases or vapours-which are the most powerful means of purifying the atmosphere, next to ventila-tion-may be especially mentioned chlorine, nitrous acid, and sulphurous acid; of these, says Dr Parkes, the nitrous acid is probably the most powerful, but it is nsefil to employ all three alternately, or even together. It must be recollected that all these agents are mere auxiliaries to ventilation, the primary importance of which must never be forgotten.
(4) Abundant exnerience confirms the view which might have been a priori inferred from the study of the physiology of Respiration (q.v.), that the breathing of impure air must be incompatible with perfect health. The special impurities which are worthy of notice as being canses of disease, or of an impaired state of health, are arranged by Dr Parkes as follows: (a) Suspended matters; (b) Gaseous matters; (c) Impurities from several substances always co-existing.
(a) The suspended matters which are known to occasion disease in various trades, are very numerons. Thackrah, in his well-known work on The Effects of Arts, Trades, and Professions on Mealth, published in 1832, gives the following list of workmen who were injuriously affected by the dust of their trades: Corn-millers, maltsters, tea-men, coffee-roasters, snuff-makers, paper-makers, flockdressers, feather-dressers, shoddy-grinders, weavers of coverlcts, weavers of harding, dressers of hair, hatters employed in the bowing department, dressers of coloured leather, workers in flax, dressers of hemp, some workers in wood, waresrinders, masons, colliers, iron-miners, lead-miners, grinders of metals, file-cutters, machine-makers, makers of firearms, and button-makers. To this list must be added colliers, who suffer from lung-disease in ill-ventilated mimes ; potters, especially the class called flat-pressers, in whom emphysema is so common that it is known as 'the potters' asthma;' the china-scourers, who all, sooner or later, become asthmatical from inhaling the light flint-dust in suspension; pearl button-makers and pin-pointers, who suffer from bronchitis and hrmoptysis; the makers of grinding-stones; the makers of Portland cement, \&c. In some trades, irritant vapours are more or less associated with suspended 1 rarticles in causing discase. Brass. founders suffer not only bronchitis and asthma from the inhaled dust, but also a special disease, described by Dr Greenhow (in the Proceedings of the Medico-Chirurg. Soc. vol. 4) as Brassfounders' Ague, which is apparently produced by the inhalation of the fumes of oxide of zine; the symptoms being oppression of the chest, with indefinite nervous sensations, followed by shivering, a hot stage, and profuse sweating. Coppersmiths aud tin-plate workers are liable to somewhat sunilar attacks. Plumbers, house-painters, manufacturers of white-lead, \&c., are, as is well known, liable to lead-poisoning. The peculiar affection to which workers in mercury and its amalgams, as silverers and water-gilders, are exposed, is described in the article Pafalysis, nuder the name of Mercurial

* It may interest some of our readers to know that by washing the cavity of the month with a very weals solution of Condy's Fluid, the odour of tobacco is instantiy removed.

Tremor, or The Trembles. In the various trades in which arsenical compounds are employed, as in making artificial flowers, grcen paper for walls, \&c., preparing arsenical pigments, \&c., the well-known symptoms of chronic arsenical poisoning are likely to ensue. On the subject, Dr Gny has, at the request of government, drawn up an elaborate Report.

Passing from inorganic or unorganised matter to organic substances floating iu the atmosphere, and giving rise to a large class of important diseases, we may remark, that it still remains to be decided in what exact condition this organic matter existswhether it is in the form of impalpable particles, or moist or dry epithelial or pus cells; ' and whether it is always contained iu the substances discharged or tbrown off from the body (as is certainly the case in small-pox), or is produced by putrefactive changes in these discharges, as is supposed to he the case in cholera and dysentery, is also a matter of doubt. But, from the way in which, in many cases, the organic substance is absorbed by hygroscopic substances, it appears that it is often combined, or at anyrate condensed, with the water of the atmosphere.' -Parkes, op. cit., p. S6. This much is known with certainty regarding the specific poisons-viz., that they differ extremely in the readiness with which they are oxidised and rendéred harmless. While typhus and oriental plague throw off a poison, which, if there is due ventilation, is readily destroyed, the poisons of small-pox and scarlatina spread in defiance of free ventilation, and rctain their virulence for weeks or months.
(b) The most important gaseous matters in the air likely to produce disease are carbonic acid and carbonic oxide. The normal quantity of carbonic acid in the air being regarded as 5 in 1000 volumes, "it produces fatal results when the amount reaches 50 per 1000 volumes; and at an amount much below this, 15 or 20 per 1000, it produces in some persons, at anyrate, severe headache.' Dr de Chaumont, assistant Professor of Hygiene at Netley, has published a valuable paper in the Lancet for September 1866, in which be shews how the amount of air necessary to reduce the carbonic acid of respiration to a given standard could be calculated; and in the Edinburgh Medical Journal for May 1567, he has given extended formulæ for calculating most of the problems connected with ventilation. Amongst the most important of his conclusions are the following: (1) We cannot safely accept a lower standard of purity' than $\cdot 06$ per cent. of carbonic acid. (2) Uniform diffusion being supposed, we cannot preserve this standard with a less delivery of fresh air than 3000 cubic feet per bead per hour. (3) We must provide an air space which will admit of the delivery of 3000 cubic feet per head, and at the same time preclude the necessity of changing the whole air so often as six times per hour, for which condition a minimum of 1000 cubic feet is absolutely necessary.* Carbonic Oxide (q. v.), which is often developed in association with carbonic acid, is far more actively poisonous than carbonic acid. An atmosphere containing $\frac{1}{2}$ per cent. killed small birds in three minutes; and when 1 per cent. was present, they died in half this time (Letheby). For the effect of other gaseous matters, as sulphuretted bydrogen, carburetted hydrogen, sulphurous acid gas, bydrochloric acid

* A committee, of which Sir T. Watson was president, recently appointed by the Poor-law Board to consider the question of the amount of cubie space necessary for the sick in workhouse infirmaries, report that for ordinary patients 850 , for offensive cases 1200 , and for fever patients 2000 cubic feet should be allowed. Although these spaces are greater than we find in most workhouses, it is obvious from the statements in the text that they are not sufficient.

SANITARI SCIENCE

gas, ic. We must refer to any of the more claliorate worlis on this subject.
(c) The impurilies jrom seterul co-pxisting agents next claim attention. In point of fact, these are the impurities with which we have practically almost always to deal, and it is very probable that a knowledge of the actions of two or more isolated noxious agents might lead $11 s$ to very incurrect conclusions regarding the enmposite effect that is actually produced. When air is vitiated by respirathon, it is popularly believed that the carbonic acid geas is the chief poisonous agent; and that the fatality in such well-known cases as the Llack Hole ($1 . v$. .) of Caleutta, the prison in which the Austrians were placed after the battle of Austerlitz, the steamer Condonderry, \&c., is simply due to the action of this gas. The true proisonons agencies in these instances are the organic matter, which is always found in air rendered fetid by the prolonged respiration and cutancous exhalation of a crowd of human ireings, and the deticieney of the oxidation, and the consequent inerease of jutrescent matter in the body (sce Carpenter's JIuman Physiolory, 1564, 1. 80.4). Putting aside these cxtreme cases, which are of rare occurence, we have abundant evidence in the lieports of the lealth of Towns Commission, and elsewhere, that the continuous inlalation of an atmosphere moderately vitiated from respiration las an injurions effect on the health. The aëration of the blood is imperfectly effected, and the nutrition generally is more or less interfered with. Although impure air las long been vaguely regarded 25 a cause of phthisis, it is only during the present century that the fact bas been placed on unquestionable anthority: It may now be regarded as established, that not only phthisis but other lungdiseases may have their origin in loreathing in atmosphere contaminated by respiration. The sub. ject is one of such vital inportance that we slall adduce the very strong evidence of Dr l'arkes, who most distinctly proves that the prevalence of lhthisis amongst our tronps is in a direct ratio to the impurity of the air in the barracks. 'A great moment of phthisis used to prevail,' he observes, 'in the most varied stations of the army, and in the most heantiful climates: in Gibraltar, Malta, Ionia, Jamaica, Trinidad, Bermula, \&co, in all which places the only common condition was the vitiated atmosbhere which our barrack-system everywhere proluced. And, as if to clench the argament, there has been of late years a most decided decline in phthisical cases in these stations, while the only circumstance which lias notally changed in the time has leen the condition of the air. So also the extraordinary amount of consumption which prevails in the men of the rogal and merchant mavies, and which, in some men-of-war, has amounted to a veritable "pidemic, is it all probability attributable to the faulty rentilation.' -Op, cit., 11, 91, 22. A considerable amount of evidence in support of this view is afforded by comparative jathology. The extraorlinary mortality of phthisis amonest the inhal. itants of the old monkey-fonse in the Zoological fardens, was fonnd to be due to uvererowding and load ventilation; and now, in their present airy residence, the inhabitants are no longer prematurely cut ofl. The overcrowding to which cows in large towns are suljected leads to the great amount of pulmonary lisease amongst these animals; while horses, which in the worst stables have more free air than cows, rarely suffer. N゙ot ouly are pulmonary affections indncel by the prolonged respiration of air partially vitiated by organic exbalations, but such an atmosphere seems to farour the spreal of several well-known specitic discases, as tyblus, plane, small-ןox, scarlatina, and measles.

Ifitherto, we bave simply considered the eflect of breathing an atmosphere vitiated loy the exhalations given ofl ly persons in ordinary health; if we now pass to the consideration of the air of a erow ded hospital-ward, we shall find the organic matter not only more abundant, but at the same time far mone noxions. The convalescence of patients is much retarded by their being lepet in such an atmospluare (see Convalescent Iosiratas). When the air has absorbed a certain amount of organic impurity, its respiration is very liable to give rise to erysipelas and hospital gangrenc. Sever's and old cesspuals. when opened, give off semorferms containing carbonic acil, sulpharetted hydrogen, sulphide of ammonimm, and putrid organie vapour. A ease is given in the lirst volume of the II Pallh of Torms Report, which forcibly illustrates this fact. When a jrivy connected with a school at (lapham was eleaned out, 23 of the children were scized with violeut vomiting and jurging, headache, great prosiration, and comvulsive muscular twitchuns ; and 2 of them died within 24 hours. Sewer-men are more liable to typhoid and typlus fever than other persons; lat night-men and scavengers do not seem liable to any sjecial disease. The effect of dilisted sewer-gas, from bad drainage, on the health of the population at large, is a distinet question, into which we have not spaci to enter, further than to remark that typhoid and diarrlirea are commonly induced by the escape of this gas througl our drains and water-closets into our houses. 'The effects of the inpurities arising from mannfactories of various kinds, are of course extremely varied; and the suljeet is so extensive a one that it must be touched upon very lniefly. Sulphurons and sul]phric acid are given ofl from vitriol and copper-smelting works; hydrochJoric acid from alkali-works; arseuical fumes and sulphurous aeid from copper and lead smelting furnaces; earbonic acid and carbonic oxile from cement-works. \&c. Soay and candle manufactories, if not well superintended, yichl varions gases of a rancid sumell, and even that powerful irritant, acroleine. Gasworks in which the wet-lime process of purification is adopiterl, often evolve sulphuretted hydrogen to such a degree as to become a nuisance iujurious to liealth. Jlanure-works usually evolve more or less discusting smells according to the basis operated on, and the mode of preparation. No bad effect on the health has, so far as we know, leen observed in this country, from the gases given off by such works, and the exhalations from the manufactories of poutrette, which is dry feeal matter, are positively declared, by several of the highest French authorities, to exercise no injurious action either on man or vegetation; but the eminent French liygienist, Parent Ducliutelet, relates two cases in which poudrette underwent fementation on boarl shij"; and in one of these eases, the vessel lost half her crew (nmmber not stated); while in the other, all on board (hre) suffered from intense lieadache, pain in the limbs, vomiting, prostration, and (in two cases) diarrhma. The air of oln graveyards, when they are disturbed, often gives rise to cyidemies of fever; but the effect of the effluvia of comparatively recent putrefying luman bodies is much more decilled. Numerous eases are recorded of asphysia and various forms of fever arising fron the exhumation and disturbance of bodies. How fir the eflluvia arising from slauyhter-houses and kuthcrics are injurious to health, is an open question. There is very strong general widence that the unem employed at Dlontfancon (where, lowever, the ventilation is excellent, and no jutrid matters are allowed to remain) enjoy good health; and 'Tardicu, from i late re-examination of the point, contirma the old conclusion, excent so far as glanders and
malignant pustule are concerned. The danger of breathiog the air of marshes also requires notice. Malaria seems not only to occasion intermittent and renittent fevers, but diarrhea and pure dysentery. Organic matter to the amount of eight grains has been obtained from 1000 cubic feet of air collected over marshes; and it is worthy of uotice that it has just the same chemical characters as the organic matter exhaled from the lungs, turning red with nitrate of silver, yielding ammonia when treated with lime, and blackening sulphuric acid when drawn throngh it. Sce Mapother, op. cit., 14. 87.

The next point to be considered is the means to be adopted for continually changing the air, so as to keep it in its natural purity. We have already shewn that this change must amount to at least 2000 cubic feet per head per hour for persons in health; and sometimes double that aruount, or more, for sick persons. The general principles of ventilation having been treated in the article on Warming asip Vestilation, we shall contine ourselves here to a few supplementary observations. In whatever way the fresh air is supplied, there are several essential conditions to be observed, of which the following, as stated by Dr Parkes, deserve sjecial notice: (1) 'The entering air must itself be pure. It must be warmed if too cold, and cooled if too warm. (2) Its movement should be imperceptible, otherwise it will cause the sensation of draught, and will chill. The rate at which the movement becomes imperceptible is $1 \frac{1}{2}$ feet per second, or $1: 36$ miles per hour ; and $2 \frac{1}{2}$ feet per second, or $1 \cdot 4$ and 1.7 miles per hour, are imperceptible to some persons; 3 feet per second, or 2 miles per hour, is perceptible to most; $3 \frac{1}{\frac{1}{2}}$ feet is perceived by all persons. Any greater speed than this will give the sensation of draught, especially if the entering air le of a differeut temperature, or moist. (3) It must be well diffused all through the room, so that in every part a movernent shall be going on-in other words, the distribution must be perfect. (4) The outgoing air must be removed so inmediately that there shall be no risk of a person breathing again either his own expired air or that of any other lerson.'- Op. cit. P. 103. The action of the vind is a powertul ventilating agent. If it can pass freely through a room with open doors and windows, it changes the air to au extent that can be effected in no other way. The most serious objection to winds as ventilating agents by perflation is the uncertainty of their movement, and the difficulty of its regulation. When the velocity reaches 4 miles, it is found unpleasant by most jeople, and is therefore either excluded, or only admitted through small openings, when it fails to become properly distributed. For the various ways in which tbe perflative power of the wind has been employed in systeras of ventilation, we must refer to Ritehie's Treatise on J'entilation, 18i2; Tomlinson's Treatise on Warming and J'entilation; and to the chapter on that subject by Dr Parkes, who gives a diagram illustrating the mode in which Dr Arnott has most successfully ventilated the Field Lane Ragged Schools. In the ventilation of ships, the wind is always used, the air being directed between decks aud into the holld ly means of wind-sails or tubes with cowls turning towards the wind. A description of Dr Edmond's plan of ventilation, which is now commonly used in emigrant-ships, aud is being alopted in the royal navy, is given in a recent article in The Lancet, on 'The Medical Aspects of the Abyssiuian Expedi. tion.' ' In all cases,' says Dr Parkes, 'in which the air of a room-as in a basement story or in the hold of a slip, perrajas-is likely to be colder. than the cxternal air, and where artificial neans of
ventilation cannot lue employed, the wind shonld be taken advantage of as motive agent.' In artificial ventilation by a fan or screw, it is a question which of the two methods should be employed-the method of extraction, in whiclr the air is drawn ont of a building or room ; or the method of propulsion, in which air is driven in, so as to force out the air already in the rom. Doth plans have advocates of authority. The advantages of the method of propulsion are its certainty and the ease with which the amount may be altered. The stream of air can lee taken from any direction, and can be washed, cooled, or warmed at pleasure. The fan or wheel commonly used in propulsion is essentially that proposed by Desaguliers in 1734 ; it is figured in article Blowtiv-machixes (figs. 7, 8) in Supplement. The following is the way in which it is applied to one of the largest rooms in this country-St George's Hall, at Liverpool. The air is taken from the lasement; is washed, by beiog drawn through a thin film of water, thrown up by a fonntain ; is passed (in cold weather) into vessels for the purpose of warming it, in which it can be ruoistened by a steam-jet, if the difference of the dry and wet bulb be more than five degrees, and is then propelled along the channels which distribute it to the hall. ln summer, it is cooled in the conduits by the evaporation of water. This system is employed with suecess in various hospitals, asylums, \&c. in France and America; and during the Crimean war, Mr Brunel introduced into the hospital of Renkioi a wheel of Desaguliers' at the entrance of each ward of 50 beds, which was worked ly hand, and conld throw 1000 cubic feet of air into the ward every minute.

For information regarding the best means of keeping the air of rooms at the most fitting temperature, we must refer to the article Warming. The degree of artificial warmth that should be given to the air varies according to circumstances. Healthy adults, who are well fed and clothed, usually find any temperature from 50° to 60° comfortable ; while children and aged persons require a temperature of 65° to 70°. In hospitals, the proper temperature is usually supposed to be about 60°; but in those diseases in which there is preternatural heat, except possibly in scarlatina, a lower tempera-ture-as from 50° to 45°, or even 40° - is more expedient. In most febrile cases, in the acute stage, cold air moving over the body is very efficacious as a cooling ageut.
The next sanitary element to be considered is Water. The daily quantity of water for healthy and sick persons is the first point for consideration. Water is required by healthy persons (1) For drinking. A man weighing 10 stone will take on an averase from 70 to 90 ounces of water in 24 hours, of which 30 or 40 ounces are taken imperceptibly in the solid food, while the remaining 50 or 60) ounces are taken in a liquid form. But the amount varies extremely. The usual allowance ou loard ship for both drinking and conking is S pints per adult daily. (2) For cleansing the person, clothes, and habitutions. Dr Parkes estimates 4 galoons per head daily as the smallest anoont; and if perfect cleanliness is to be secured, and baths* are taken, at least 16 gallons per heal are required. (3) For sewage, an additional 9 gallons must be adled. The amonnt for a water-closet varies with its construction. At Netley Hospital, to which Dr Parkes is physician, Jenning's's closets are used, which require 10 gallons per head daily.
It may be of importance to many of our readers

* I gencral batl requires about 50 gallons; a showerbath at least G gallons; and a hip-bath from $1: 2$ to 18 gallons.

SANITARY SCIENCE.

to know that a horse drinks from 8 to 12 gallons daily, and ought to have 3 or 4 more for grooming purposes; a cow or small ox drinks from 6 to 8 gallons; and a sheep or pig, from 2 quarts to 1 gallon.

The different sources of water-rain-water, rivers, and springs; the chief impurities in these waters; the methouls of detecting them; and the modes of murifying bad water, are so fully describer in the article Water-SUPPLY, that we have scarcely anything to add on these points. The organic matters in different waters used for drinking purposes require, however, a few additional remarks, on account of their extreme importance in a hyricuic point of view. To the remarks on this subject in Pp. 100-101 of vol. ix., we may add that their amount varies from 0.3 per gallon to as muell as 12 or even :30 grains per gallon, the purest waters in this respeet heing those from granitic, or clay-slate, or chalk distriets. The most common organic matter is derived from the vegetable kingdom, and consists of humin and ulmin, and of acids derived from humus; all which substances are non-nitrogenous, although the acids combine readily with ammonia. This form of orgaoic matter is far less daggerons than that whieh has an animal origin, and contains nitrogen. 'This organic matter is usually derived from the contents of cesspools or sewers percolating into springs. Its exact composition is not known. Frecal aud biliary matters doubtless contribute to the composition of this matter ; and in addition, decomposed llesh, as the refuse of butchers' shops and slanghter-houses-substances from tripe-manufiactories and gut-spinners, from size, horn, and isinglass manufactories, \&e., often contribute to the organic matter of well and spring water. Sce Parkes, op. cit., p. 12. Nost of these substances, in decomposing, produce both nitrous and nitric acid and ammonia; and the nitrites and nitrates thus formed infortunately uot only do not communieate any bad taste or smell to the water, but actually tend in many cases to render it especially palatable. Tho use of water of this kind is liable to produce diarrhœa and choleraic symptoms.
'l'he characters of good drinking-water-as laid down after much discussion by various sanitary congresses - are summed up by Dr Parkes as follows ' It must be transparent, colourless, without odour, and tasteless; it should be well aëraterl (as it then i!pears to be more easily absorbed), cool, aul pleasant to drink ; it must have no deposit ; vege. tahles should be readily cooked in it; the totil dissulved constituents must be within a certain amount, which, with some limitation, may be represented by the following mumbers: organic matter should not exeeed 1.5 grains per gallon; carbonate of lime, 16 grains; sulphate of lime, 3 grains ; car Lonate and sulphate of magoesia, 3 grains ; chloride ui sodium, 10 grains ; carbonate of soda, 20 grains; sulphate of soda, 6 grains ; and iron, 0.5 of a grain.'

For details regarding the mode of examining water with the view of ascertaining its value for drinking purposes, we must refer to any of the leading works on I'ractical and Analytical Chemistry, and an especial reference may be made to I'rofessor Miller's recent Memoir on Potable Water, and to Dr I'arkes's section on tha examination of water. To the substances named in the artiele on WATERSUPPLY, as purifying water from organic matter, we may adil the following: (1) Permanganate of potash, commonly knowa as Condy's Fluid, which decomposes organic matter and ammoniacal eompounds by rapid oxidation. A physician who has had long experience on board Australiao emigrant-ships in forms us that be has often added a small quantity to the water which, when drawn from the casks,
was almost nadrinkable, with the effect of at onco rendering it totally inorrensive. (On this subject, Condy's Air and Water, their Impurities and l'uri. ficalion, may be read with advantage.) (2) S(rychnos potatorum, which is nsed in India to purify water; the nut heing rubbed on the inside of the casks. (3) Certain vegetables containing tamin, as ten, kino, the Laurier rose (in Barbary), abd bitter almonds (in Egypt).

The consequences of an insufficient and impure supply of water are descring of the most serions consideration. The Reports of the Health of 'Jowns Commission (18414 ad 1845) contain much information on the first of the suhjects; while the lieports of the Medical Officer of the Privy Council abound in facts relating to the second subject. We find that an insuflicient supply leads to the person and clothes not leing washed at all, or being repeatedly washed in the same water; to water for cooking being repentedly used; to imperfeet cleansing of bonses and streets; to the sewers becoming clogged, and the air thus rendered impure. The natural result is-as in the case of a deficiency of pure air -a depressed condition of the general health, with a tendency to slin-diseases, ophthalmia, \&c.; while the imperfect cleansing of the severs favours the spread of typhoid fever and of eholeraic diarrhea. We are indebterl more perlaths to Mr Simon's valuable lieports than to any other source for the linowledge that it continually increasing elass of eases is found to be connected witl the use of impure water, the principal noxious ingredients being animal organie matter, especially when of facal origin; vegetable orgasic matters, when derived from marshes; and some salts, except when in very sinall quantities, as sulphates of lime iund magnesia, chlorides of calcium and magnesium, nitrates and nitrites of ammonia, icc. The alimentary mucous membrane is esprecially liable, be supposes, to be affected by impure water. Thus, dyspepia, with such symptoms as partial loss of appetite, uneasiness or pain in the pit of the stomach, nauser and constipation, with oceasional diarrhaa, may be caused by water containing eertain quantities (probably about cight grains each per gallon) of sulplate of lime, chloride of calcium, and the magnesian salts. Diarrhoca may be caused by the use of many of the great North American rivers, the Ganges, \&e., where much clay is held in suspension. Water contaminated with sewage, and containing suspended animal and especially facal matter, is a common cause of an outhreak of this affection, and even of choleraic symutoms. Dissolved animal organic matters doulstless liave a similar effect, but it is difficult to dis. tinguish between the actions of these and of suspended organic matters. Amongst other impurities known to oecasion diarrhea are fetid gises (sulphuretted bydrogen), an exeess of dissolved mineral matters and nitrate of lime; and on most persons, brackish water acts similarly. The effects whicli the selenitic well-waters of Paris exert on strangers are well known. There is abundant evidence to shew that impure water is one of the principal causes of Dysentery. The records of our army surgeons abound in illustrative cascs. The deleterions effect of the impure water of Calcutta in inducing dysentery has been forcibly pointed out by Dr Chevers in the Indian Annals for 1564.

* The water of the Peilo and other rivers in the north of China is so impure, and has so offensive a smell during winter, that the Chinese never drink it execpt as tea, when it seems to lase all its bad effects. It is only by using their 'brick-tea' to purify the water of the steppes, that the Tartars render the water drinkable.

SANITARY SCIENCE

In addition to the diseases affectiag the alimentary mucous memhrane of the intestiaes, there are certain specific diseases which result from the use of impure water, as Malarious Fevers of various forms, from the use of the water of marshes; Typhoid Fever, from water contaminated with sewage matters, or the special typhoil poison; Cholera, from water into which cholera-evaeuations have made their way; and possibly Yellow Fever. (The relation of impure water to typhoid fever and eholera will he more fully uoticed in a later part of this article.) To the use of water untit for drinking purposes are also ascribed epidemic boils from the presence of sulphuretted bydrogen ; disease of the bones, as exostosis, from an excess of carbonate and sulphate of lime; calculi (on, we think, insufficient evidence); goitre, from water derived from limestone and magnesian rocks; and entozon of various kinds. Dr Parkes sums up the department of his Manual which treats of water in a hygienic point of view with the following practical conclusions: '(1) An endemic of diarrhœa in a community is almost always owing either to impure air, impure water, or bad food. If it affects a number of persons suddenly, it is probably owing to one of the two last causes; and if it extends over many families, almost eertainly to water. (2) Diarrhœea or dysentery constantly affecting a community, or returning periodically at eertain times of the year, is far more likely to be produced by bad water than by any other eause. (3) A very sudden and localised outbreak of either typhoid fever or cholera is almost certainly owing to the introduction of the poison by water; and the same fact holds good in cases of malarious fever. (4) The presence of lumbrici, guinea-worm, or Bothriocephalus latus, should always excite suspicion of the drinking and bathing water.'-Op.cit., p. 63.

After the two most important factors in relation to health, viz., air and water, Soil and Clminte occupy a secondary, althongh by no means unimportant place. As their practical bearing is less direct and universal, we will dismiss them brietly: Soil may affect health (1) by its conformation and elevation. Thus, amongst hills, the unhealthy spots are enclosed valleys, where the air must stagnate, and ravines. On plains, the most dangerous spots are at the foot of hills which store up water, unless a ravine cuts off the drainage. (2) Vegetation exerts an important influence. If we regard vegetation as divisible into herbage, brushwood, and trees, it may be laid down as a general rule, that herbage is always healthy, and in the tropies, is of great importance in cooling the ground, both by obstructing the sum's rays and by aiding evaporation; that brushwood is almost always bad, but that its removal may eause a temporary increase of malarious disease, on account of the disturbance of the soil ; and that trees should seldom be removed, unless they decidedly interfere with the movement of the air, for in eold countries they shelter from cold winds-in hot, they cool the ground-and in both they may afford protection from malarions currents. The present condition of St Thomas in the West Indies, which is now one of the most pestilent sites we are acquainted with, is mainly due to the insane destruction of its trees. The island of Mauritius, which has lately been visited by one of the most universal and destructive forms of fever ever recorded, has similarly suffered from the same cause. (3) The mechauical structure of the soil is of hygienic importance in various points of view. Thus, heat is very differently absorbed by diferent soils under the same conditions of exposure. Assuming that sand with a little lime has the maximum power of retaining
heat, and that its capacity be represented by 100 , then the capacity of clay will range from 76.9 to 66.7 ; while that of chaik will be $61 \cdot 8$, and that of humus as low as 49. Hence, we see the eomparative coldness of the latter soils as compared with sand. The capacities of these soils for absorbing and retaining moisture are in the reverse order.
As a general rule, there seems to be the following connection between the geological characters of a site and its probable healthiness. Granitic, Metamorphic, and Trap Rocks are usually healthy : thereis generally a slope, so that water runs off readily, the air is dry, vegetation moderate, and drinking-water generally good. They are, however, supposed to he unhealthy when they have become disintegrated, as at Hongkong, into a dark-coloured soil. Cloy-slate Rocks are regarded as healthy, for very similar reasons ; water, however, is often scarce. Of the varieties of Limestone Rocks, the hard oolite is the best, and the magnesian (which, if possible, should always be rejected as a site) the worst. Chalk, when unmixed with clay, forms a very healthy soil; but if it be mixed with elay, it loses its permeability, and is often damp and cold. The air is pure, and the water, though hard, is clear, sparkling, and pleasant. The Sandstones, if permeable, are healthy; but if, from an admixture or underlying of clay, they lose this property, they are often damp. The water must be carefully examined. The hard millstone grits are very healthy. Gravels of any depth are healthy, except water rises through them. Dr Parkes considers gravel-hillocks as the healthiest of all sites, and the water as being very pure. Clay, Dense Marls, and Allurial Soils must be regarded with suspicion. Such soils, and especially the deltas of rivers, should, if possible, be avoided as sites, and if they must be chosen, thorough subsoil draining, careful purification of the water, and elevation of the houses far above the soil, are the measures to be adopted. Aecording to Dr Forbes Watson, nearly one-third of the whole surface of India is covered by alluvial soil.

Climate.-The most important elimatic conditions connected with the air are temperature, humidity, aud movement, weight, and composition of the air. Under the head of temperature we might enter into the general subject of acclimation; we must, however, confine ourselves to the remark, that Europeans from temperate climates seem to flourish in countries not much hotter than their own, as in some parts of Australia and New Zealand, although it is yet too soon to decide whether the general vigour of the raee will improve or diminish. In countries with a yearly mean of $20^{\circ} \mathrm{F}$. higher than their home climate, as in many parts of India, the race seems to dwiudle, and gives indications of dying out. The endemie diseases of Europeans in the tropics are liver-disease and dyseutery, but it is uncertain how far other influences may be at work besides heat in the production of these diseases. Rapid changes of ternperature are always dangerous. The sudden check to the free action of the skin caused by a cold wind, is sure to give rise to catarrh, intlammatious, and neuralgia. The Registrar-general's returns shew that when the temperature in London falls from 45° to 27°, the weekly mortality is increased by 400 , bronchitis being the disease which mainly canses this increase-an affectiou which usually does not prove fatal in more than about 40 eases weekly. The fatal influence of extreme cold in depressing the nervous system, aud giving rise to a sleep from which there is no arakening, is noticed in the article Colv. According to their humidity, climates are also divided into moist and dry. The most agreeable
amount of moisture to most persons is when the relative humidity is between 70 and 80 per ecut. In chronic lungoliseases, a still moister air is most pleasant, aud serves to allay cough. The morbid eflects of undue moisture are always associated with rise of temperature. As a gencral rule, warmth and great humidity are less oppressive than cold and great hmmidity. There scems to be clase relation between the spreading and the cliceking of eertain cpidemic diseases and the relative moisture of the atmosphere. The malarions cliseases are uost intense when the moisture is excessive; while plague and small-pox are checked by a very dry atmospliere. Vellow fever seems unaffeeted by this atmospheric condition. That the lumidity of a climate, irrespee. tive of other elimatic relations, is mot jujurious to life, may be inferred from it comparison betwren the climates of Eisgland and Ireland. The number of persons over 100 years of age is, in proportion to the popmation, five times as great in Iruland as in England, and the greatest longevity has been observed in Comnanght, the wettest of the provinecs. \dagger Sec Mapother, op. cit., 1. 131.

The morement of the air is another climatic condition of importance, but it must be considered in conncetion with heat and moisture. A cold wind abstracts the bodily leat in jroprortion to its velocity; while a hot wind, if dry, increases evalporation, and may thus lartly neutralise its own lating power. Variations in atmospheric pressure are of great importance in relation to health. 'In ascending mountains,' says Dr Parkes, 'there is rarefaction, i. e., lessencd pressure of air, lowered temperature, and lessened moisture above 1000 feet; greater movement of the air ; increased anoment of Jight; greater sun-radiation, if clouds are absent; and the air is freer from germs of infusoria. Owing to the rarefaction of the air and watery vapour, there is greater diathermancy of the air; the soil is rayidly heated, lnt radiates also fast, bence very great coolness of the ground and of the air close to it at night.' Op. cit., 1.41S. The physiological effects of lessened pressure hegin to be perceptible at somewhat less than 3000 fect, at which altitude the morcury falls 3 inches. The pulse is quickened by 15 or 20 beats, and the breathing by 10 or 15 inspirations per minute; there is increasel evaporation from the skin and lungs, while the urinary secretion is prolahly diminished. At an elevation of bouo or 7000 feet, as in the Swiss Alps, the effect of the monntain air shews itself in a marked improvement it digestion, sanguifieation, and in nervous and muscular vigour. At great heights, there is swelling of the superficial vessels, and oecasional beeding of the uose aud lungs; and a sensation of weight is felt in the limbs from the lessened pressure on the joints. A residence for some time in a monntainair is of great value in all anæmic affections, from whatever canse they may arise. Neuralgia, gout, and rhenmatism are all henefited by high alpine positions (see Weber On the Climate of the Siviss Alps, 1S64) ; and scrofula and consumption are almost absent in the true alpine regions, while patients affected with these diseases, if brought to such is climate, rapidly improve. On the other band, pnenmonia, pleurisy, and acute bronchitis are mure common in ligh regions than lower down. The

* By relative humidity we express eomparative moisture, complete saturation being assumed to be 100 . It is determined by dividing the weight of vapour netually existing in the air (or the absolute hmmidity), by the weight of vapour which would have been present if the air had been saturated.
+ The average anmual relative humidity of Ireland is 88, but on many days it attains as high a point as 94 .
.20
disease formerly known as 'mountain asthma' seems, frum Weber's observations, to le common pulmonary emphysema combined with or followed by chronic brunchitis.

Joon is a sulyject which bas been aln arly considered in the articles Diet and Foon and Dasivk. There are, hovever, certain points connected with it which obviously fall within the domain of hygiene; as, for example, (l) the quastity of the differunt kinds of food required for jersons of different sexes and ages, and under varyinc conditions of life and climate ; (2) the letermination of the hest articles of food in each class, and whether they are in a proper state for use. The first of these sulijects is to a considerable degree discussed in the article DiET. $^{\text {Dhe }}$ latest and probably the most acourate statements on this subject are those of l'ettenkofer and Voit (quoted in Parkes's Sanitary lieport of the Army for 1865); a strousg average man requares, according to these plysiologists, 5.22 oz of dry nitrogenous matters, 3.63 oz of fat, and 13.3 nz of earlohydrates. 'Jhey also find that when the fuod is sullicient, the daily excretion of carbon from the lungs is 8.92 oz. or 3902 grains. We may uld that an average man, at moderate work, takes, in 2.4 hours, from x^{2} th to π_{0}^{1} th of his own weight in solicl and liquid food-vi\%, from 34 to 46 ounces of so. called solids, as bread, meat, \&e.; and from j0 to SO onnces of water. The ratio of the solid to the lijuid food is generally 1 to 2 , but may be I to 6 . lircat bodily exercise requires a greater increase of the solid than of the ligaid fool.

It may be interesting to many raders to know the amount and vature of the daily dict of an English soldier* on home service and the railway navvy:

Deputy-inspector-gencrals O'Flaberty and Tayior, and Assistant-surgeon Spurway, lublished, in 1867, important articles on the diet of soldiers in the 7th volume of the Statistical, Sanitary, anel Medicil Reports for the yecer 1S65, from which it wonld appear that, inter alia, an addition to the fatty food would be expedient. For information on the Dielary of Workhouses and Prisons, we must refer to Dr E. Smith's admirable report on the former subject, and to Dr Lankester's liajer, '()n l'rison and Workhouse Dictaries,' read before the lIcalth Department of the Social Science Congress at lielfast-an abstract of which may be foum in the British Medical Journal for November 2, 1567. 'lise whole subject of prison dietaries requires revision. While in some favoured institutions the risoners live in comparative luxury, in others the dietary seale is far too scanty. The Irish prisons are especially faulty in this respect: the daily expense of the food jer head seldom reaching fourpence, and in some jails being only twopence! At Waterford jail no food is allowed from 3 p.M. to 8 A.M., and in the lrish jails generally a pint of skim milk constitutes the whole anmal diet. It is muler. stood that a commission has been issued to report

* We learn from Froude's History of Enpland, that in the reign of Edward VI. the English soldier's rations during war were, meat, 2 lbs.; bread, 1 lb ; light French wine, 1 pint.

SANITARY SCIENCE.

upon this subject. The proper arrangement of diet for the sick is a matter of great difficulty. In hospitals, fixed scales must, as a matter of convenience, be adopted; but almost cerry special case requires a modification. For further information on sprecial diets, the reader is referred to Moleschott's P'lysiologie der X'allurumsmittel (IS60); to Dr Dobell's nseful Manual of Diet and Regimen; and to Dr Smith's Practical Dietary for Families, Sehools, and the Labouring Classes.

The diseases connected with food are so various that we can only notice the most important. Passing over those which arise from excess of food generally, or of one of its classes, with the remark, that a prolonged excess of alhuminates gives rise to congestion and cnlargement of the liver, and a general state of $1^{\text {llethora, while excess of starchy matters may }}$ possibly affect the muscular fibres of the heart and voluntary muscles, and certainly often renders the urine saccharine, we proceed to notice the diseases produced by the deficiency of food. The history of epidemic fevers in all ages and countries shews the close relation hetween famine and fever. The Irish famine of 1847-1849 is now a matter of history. In those three years, no less than 579,7,21 cases were treated in the hospitals alone. Fleeing in despair, emigrants carried the germs of disease with them; and the so-called ship-fever which followed destroyed its thousands. Its malignity was most appalling. In oue vessel, 329 out of 349 prassengers canght the fever, and 117 died; and the mortality in Liverpool, induced by the contagion of the fever-stricken Irish who landed there, suddenly became the highest ever recorded in any modern town-the death-rate being raised to 70 per 1000. During the last three years, $1865-1867$, the death-rate of this town was 36,42 , and 30 . Dr Mapother is of opinion that the introduction of the potato as an almost sole article of diet has been productive of much harm, in consequence of the deficiency of that root in nitrogenous matters and in salts of lime and magnesia.* To this source he traces indigestion, consumption, scrofula, rickets, ophthalmia, and chronic rheumatism. The deprivation of starchy food, on the other hand, can be borne for a long time if fat he given; but the simultaneous deprivation of fat and starch soon induces illness, though albuminates the supplied.

With regard to salt meat, it must be recollected that the brine, if it has been used several times, occasionally becomes poisonons. The evidence as to the power of diseased meat when eaten to excite disease, is-if we except the cases in which entozoa are present-very unsatisfactory. We have the evidence of Sir Sanuel Baker and others that certain African tribes eat withont injury meat swarming with maggots. In this country, the flesh of healthy animals, when decomposing, is sometimes eaten with impunity, and sometimes occasions severe gastric

* Potatoes contain 74 per cent. of water, 15 of albuminates, $0 \cdot 1$ of fat, $23 \cdot 4$ of starch, cellulose, \&c. (the carbo-hydrates), and 1 of salts. The chief ingredients of the salts are potash, about 50 per cent.; and phosphoric acid, about 13 per cent. The juice of the potato abounds in salts of organic aeids (citric, tartaric, \&c.), whiell on incineration are converted into carbonates-the carbonic acid thus formed amounting to $13: 3$ per cent. The relative proportion of fat to albuminates in the food which is most easily digested, and at the same time produces the greatest mechanical foree, is as 1 to 2 ; in the potato, it is as 0.1 to 15 , or as 1 to 15 . Again, the starchy matters slould be to the nitrogenous as 3 to 1 in the best diet: in the potato, they are as 23.4 to 1.3 , or as 14 to 1 nearly. On this subject see the article Muscelar Force, Origin of, in Suprlement.

514
intestinal disorders. There is reason, bowever, to believe that if slightly tainted meat, poultry, or river fish be washed in a very dilute solution of Condy's fluid, previous to being cooked, all danger is removed. The occasional occurrence of a poisen in sansages and even in pork pies is well known, although its nature is not clearly understood. The fresh flesh of diseased animals assuredly causes injurious effeets in many cases, but not in ail. In the early stage of acute inflammatory disease, the meat is not altered, and may be eaten with impunity. Whether the epidemic plenropneumonia of cattle renders their flesh unfit for use, is an open question. (See Mapother, op. cit, 11. 217-224, who decidedly condenns its use, and Parkes, op. cit, pp. 161-166, who quotes conficting evidence.) The discrepancy of evidence is equally great regarding authrax and malignant pustule. The death of sheep from splenic apoplexy or braxy, and from small-pox, renders their flesi unfit for food; while the Hiesh of cattle destroyed by foot-and-mouth disease and by typhoid fever bas been largely used in France without injury. The detection of the adulterations of the ordibary articles of food is a very important duty in relation to hygiene; on this subject, we must refer to Hassall's great work, and to our article Food.
The object of Clothing is to preserve the proper heat of the body by protecting it both from cold and heat, and thus to prevent the injurious action of sudden changes of temperature upon the skin. The most important materials of clothing are cotton, linen, wool, silk, leather, and india-rubber. Cotion, as a material of dress, wears well, does not readily absorb water, and conducts heat much less rapidly than linen, but much more rapidly than wool. From the hardness of its fibres, its surface is slightly rongh, and occasionally irritates a very delicate skin. Its main advantages are cheapness and durability. In merino it is mixed with wool in varions proportions, and this admixture is far preferable to unmixed cotton. Linen is finer in its fibres than cotton, and bence is smoother. It possesses high conducting and bad radiating powers, so that it feels cold to the skin; moreover, it attracts moisture much more than cotton. For these reasons, cottons and thin woollens are much preferred to linen garments in warm climates. Sill forms an excellent underclothing, but from its expense, it cau never come into general use. Wool is superior both to cotton and linen in being a bad conductor of heat, and a great absorber of water, which penetrates into the fibres and distends them (hydroscopic water), and also lies between them (water of interposition). 'This property of hydroscopically absorling water is,' as Dr Parkes observes, 'a most important one. During perspiration, the evajoration from the surface of the body is necessary to reduce the heat which is generated hy exercise. When the cxercise is finished, the evaporation still goes on, and to such an extent as to chill the frame. When dry woollen clothing is put on after exertion, the rapour from the surface of the body is condensed on the wool, and gives out again the large amount of heat which had become latent when the water was raporised. Therefore, a woollen covering, from this cause alone, at once feels warm when nsed during sweating. In the case of cotton and linen, the perspiration passes through them, and evarorates from the external surface without condensation ; the loss of heat then continues. These facts make it plain why dry woollen clothes are so useful after exertion. In addition to this, the texture of wool is warmer, from its lad conducting power, and it is less easily penetrated by cold winds.' ${ }^{\circ}$ Op. cit., $1^{1.353 . ~ L e a t h e r ~}$

SANITARY SCULNCE

is used not only for slioes, boots, and leggings, but, in cold windy countries, for coats. Leather and sheepskin coats are in common use in 'lurkes, 'lartary, l'orsia, the Danubian Provinces, and in Canada, where buffalo-sking are ofted used. For persons specially susceptible to cold, and of delicato organisation, a chamois leather jacket worn over a flannel waisteoat may be recommended with adrantage during the winter months. India-rubber clothing must be used with extreme eaution. From its being impenetrable to winel, and from its condensing and retaining the perspiration, it is deededly ohjeetionable; while, on the otler hand, its protection against rain is a very valuable property. The Conncil of Health of the French amy liave refused to admit waterproof garments amongst their soldicrs; and in this country it has heen prohilited anougst the London postmen.

In relation to protection against heat, we bave to consider the colour and not the texture of clothing. White is the lest colour, then gray, yellow, pink, blue, and black. Hence, in hot countries, white or light gray clothing should be preferred.

The shane and weight of all articles of clothing should be such as to allow of the freest action of the limbs, and in no way to interfere by pressure with the processes of respiration, circulation, or digestion. In a complete treatise on liygiene, a discussion on the relative advantages and disadyantages of the various articles of elothing used by both sexes wonld find it proper place, but our limited space tatally preeludes us from entering into this subject.

Attention to the STATE of TIE SKIN is of great importance in a hygienic point of view. The perspiration and sebaceous matters which are naturally poured ont upon the surface of the body, with au intermingling of particles of detached epidermis, fragments of fibres from the dress, lirt, de., if not removed, gradually form a erust which soon materially interferes with the due excreting action of the skin. There is little cloulst that the daily use of the matutinal tub, which less than lialf a century ago wias unheard of, and is now a matter uf veces. sity with most lealthy persons who lare the means of using it, has contributed materially to harden the system against attacks of collls, rhenmatism, \&e. When a tub aul sponge bappen to be unattainable, a wet towel rubber orer the body, followed of course by a dry one, is a good substitute.

Exercise is the subject that next claims our consideration, and we shall briefly notice its effects on the different systems of organs. (1) The most in portant effect of muscular exercise is produeed on the lungs, the quantities of inspired air and of exhaled earbonic aeid leing very much increased. I'aking the air inspired in a given time in the horizontal position as unity, a man walking 3 miles per hour inspires 322 ; and if carrying $3!1 \mathrm{bs}$, 35 ; a man walking 4 miles per hour inspires 5 ; and when walking 6 miles per hour, no less than 7. Amost twice as much carbonic acial is cxbaled during exercise as during rost. Hence, muscudar exercise is necessary for the due removal of the carbon; and it is obvious that in a state of prolonged rest, the earbonaceous food must be diminished, or the carbon will be liable to aceumulate in the system ; and further, it is clear that, for strong cxereise, carhonaceous food should be freely given. (2) The action of the heart rapidly jncreases in fore and frequency during exereise. The increnso in the number of beats may range from 20 to 30 , and is sometimes much more. After exercise, the heart's action is diminished. Excessive exertion
may do harm by inducing juimonary congestion, aul even hremoptysis, jnḷ̣itation, hypertrophy, valvular clisease, and oceasionally rupture; while deficient exercise probably temels to induce tuberenlous disense of the lung, weakness of the heart's action, and probably dilatation and fatty dereneration. From these facts we learn, that when a prron commences any new form of exercise or gymnastics, the beart's action shoukd be watehed, and if tho pulse rise to 120 or more, the exercise should for the time cense. (3) 'The skin becomes red from inerease of blood in the capillaries, and the yerspiration is increased, being at least doubled. The bodily heat is lepit down by cutancous evaporation, which reduces the temperature. During excrtion, there is very little danger of chill, but the danger beeomes great when the exertion is orer, hecunse there is then a rapid fall in the heat of the body, while the evaporation of the slin contiuues. Hence, while the skin may be freely exposel during cxercise, it must be covered immediately afterwards, in order to prevent any feeling of coolucss on the surface. (4) The muscles grow to a certain limit, but over-exercise of any special group may jroduce wasting. Care must be taken that the exercise is of such a nature that all the muscles, and not single groups, should be brought into jlay; and that in early training, long intervals of rest should intervene between the priods of exercise. (5) 'The eflect of exercise on the mind is not elearly determined; great bodily activity is often observed in assuciation with full mental activity; but there is a fear that, in our great public schools and universities, boating and cricket are supplanting more useful suljects, and leaving too little time for the due performance of intellectual work. (6) Digestion is improved by exercise. I'he apletite increases, and nitrogenous substanees, fats, and salts. especially phosphates and chlorides, are required in greater quantity than in a state of rest. (7) The change of lissucs is inereased by excreise, or, in other words, the exerctions give off inereasal quantities of earbon, nitrogen, water, and salts, 'The museles require much rest for their reparation after exercise, and they then absorl, and retain water, which seems to enter iuto their composition. So completely is the water retained in the muscles, that the urine is not increased for some hours. Hence, observes Dr l'arkes, there is au absolute necessity of water for the acting museles, and tho wld rule, leld hy trainers, of only allowing the smallest possible quantity of fluid, must be wrong.

The anount of exercise which should be taken by an adult healthy man is a subject of great imprortance. Professor Haughton, in his Newo Theory of Muscular Action, caleulates that a Iabouring man daily exerts a museular foree to a degree which may be expressed by saying, that he wonld raise to the beight of 1 foot from 250 to 350 tons. For persous not abliged to labour, the force expended, inchuding that required for the orelinary arucetions of life, should average 150 tons, which is equivalent to walking abont 9 miles daily. It is unfortunately impossible to arrange scales of excreise for invalids, women, and children. Professor Hanchton has shewn that walking on a level surface is cquivalent to raising the $\frac{1}{2}^{\frac{1}{0}}$ th part of the weight of the body through the distance walkerl. Whon aseending a height, a man of course raises his whole weight throngh the height ascended. Using his formula, $W+W^{\prime} \mathrm{I}$
(where \mathbb{W} is the weight of the jerson, 20×2240
mht carried, D the distance walked, 20 the cocflicient of traction (see lifiction), and 2040 the number pounds in a ton), we obtain as is
result the number of tons raised 1 foot; and on applying it, we get the following table:

Thus, a march of 10 miles, with a weight of 60 lbs . (which is about the weight a soldier carries when in marching-order, but without blankets and rations), is a moderate day's work. A 20 miles' march with this weight is a very hard day's work. As a continuous effort, Professor Haughton believes that walking 20 miles a day withont a load (Sundays excepted) is good work--For a discussion on the various forms of exercise, as horse-exercise , hoating, dancing, and gymnastics, we may refer the reader to Mapother, op. cit., pp. 263-268. In connection with the subject of exercise. the reader is referred to the article Muscular Force, Origin of, in Supplement.
The Constritction of Houses, especially of dwell-ing-places for the poor, and public lodging-houses, next claims our notice. There can be no doubt that the frequency and fatality of the epidemics of the middle ages were in a great measure due to unhealthy habitations. The houses were nsually closely packed in crowded streets, and were often built for the purpose of defence, at a sacrifice of ventilation, lighting, draining, \&c. At the present day, with all our boasted civilisation, the dwellings of the poor, both in our large towns and in our country villages, are too ofteu a disgrace to humanity. Any one may readily satisfy himself on this point by reading the various government Reports referred to in an early part of this article, the Annual Reports of the Medical Officer of the Privy Council, and the Reports which are anmually published by many of our Otticers of Health.

An article on the Sanitary State of Manchester, which appeared in the Quarterly Journal of Science for April 1867, reveals a condition of the dwellings of the poor which seems almost iveredible to those who have not previously studied this important but uninviting subject. In many parts of lreland, as we learn from Dr Mapother, the dwelling-places of even the small farmers are bardly fit for a healthy existence. Dr Tucker of Sligo draws the following picture of the homely hovel of a small farmer, which may be taken as the prototype of many. It was about 12 feet wide and 24 feet long. The domestic circle that dwelt therein consisted of a sick man, his wife, four danghters, one son, thrce cows, one horse, two calves, two pigs, and poultry-all in one common undivided house, without a partition. Generally, the pigs dwelt beneath the beds, the people in them, and the poultry orerhead.' On the evils, physical and moral, arising out of such a system it is unuecessary to dwell.

Much has of late years been done in London (by the benevolence of Baroness Contts, Mr Peabody, Alderman Waterlow, and others) and in many other large towns to improve the dwellings of the poor, and to give them, on moderate terms, a far more healthy and commodious honse-accommodation than they coull otherwise obtain. Nany of these improved dwellings seem fever-proof, and the deathrate has been found much lower than in adjacent places. Even without the aid of private benevolence, the erection of blocks of improved dwellings for the working-classes has proved remunerative. Five conditions are requisite in order to insure healthy babitations, on whatever scale they
may be constructed: (1) A site dry and not malarious, and an aspect which gives light and cheerfulness; (2) a ventilation sutficient to carry off all respiratory contaminations of the air ; (3) a system of immediate and perfect sewage removal ; (4) a due supily and proper removal of water ; and (5) a construction of the house such that perfect dryness of its foundation, walls, and roof is insured. For further information on this important topic, the reader is referred, inter alia, to the varions works of Mr Crodwin, especially his Another Blow for Life; to Mr Hole's interesting book entitled The Homes of the Working-classes; and to Dr Mapother's Lectures on Public Health (2d ed. Ip. 297-326).

Sewage is sufficiently considered in the special article devoted to that subject fsee also SEwage Earth-Closet in Supplement) ; and we pass on to another subject closely connected with hygiene-viz., the Disposal of the Dfad. To see the importance of this subject, the reader must know something of the changes which the body undergoes after death. A body that has been buried gradually hreaks up into a large number of comparatively simple componeds, such as carbonic acid, ammonia, sulphuretted aod carburetted bydrogen, nitrous and nitric acid, and certain more complicated gaseous matters with a very fetid odour, which finally undergo oxidation; while the non-volatile substauces usually enter into the soil, and either pass into plants, or are carried away by the water percolating the soil. These changes are accelerated by the worms and other low forms of life that usually swarm in decomposing bodies; and the character of the soil materially influences the degree of rapidity of destruction. The bones remain almost unchanged for ages. If a body is burned, decomposition is incomprably more rapid, and different volatile combinations may arise; the mineral salts and a little carbon alone remaining. The question for our consideration is, What is the best method of disposing of our dead, so that the living may suffer the least? Putting aside the visionary schemes for turning the dead to commercial account, there are three methods for consideration-viz., burial in land or in water, or incremation. At present, as Dr Parkes observes, the question is not an urgent one; but it may become so in a century or two, if the popnilation goes on increasing at the present rate. Eren in our own time, a great change has taken place, and the objectionable habit of interments in and round churches in towns bas been given up, cemeteries in the country being now commonly employed, except in the case of country villages. The air over cemeteries is, however, always contaminated, and water percolating throngh them is unfit for drinking purposes: and there is a general and very decided opinion that the vicinity of graveyards is unhealthy. The evils are lessened by making the grave as deep, as possible, and by placing not more than one body in one grave. Plants should be freely introduced into every cometery, for the absorption of organic matters and of carbonic acid; and the most rapidly-growing trees and shrubs should be selected, in preference to the slowlygrowing cypress and yew. We may add that the superficial space which should be allotted to each grave varies in different conntries from 30 to 90 feet, and that the depth should be at least 6 feet. It is required by law that the grave spaces for persons above 12 years of age shall he at least 9 feet by 4, and those for children muder 12 years, 6 feet by 3. It is likerrise required that not less than 4 feet of earth should be placed over the coffin of an adult, and 3 feet above that of a child. The .time which should elapse before a grave is disturbed
for a new tenant varies with the soil and the distance of the berly from the surface. Under favourable circumstances, a coffin containing an adult will disappear With its contents in about lo years; while in a clayey or peaty soil, it will remain a century. It is generally assumed that a periol of 14 years is sufficient for the decay of an adult, but long hefore this time, all will have disaypeared but the skeleton. If the question should in course of time arnse between burying in the sea and lurning, it will he decided, Dr l'arkes believes, in favour of the former, on the following grounds: 'It is true that the imspurities in hurning can be well diffused into the atmosphere at large, and would not aud to it any perceptible impurity. But if the lurning is not complete, fetill organic matters are given off, which hang cloud-like in the air, and may be perepphible and even hurtful. As a matter of expense, too, the system of incremation would be greater than the burial at sea. In the burial at sea, the hody would go at once to support other forms of life more rapidly than in the case of land-burial, and without the danger of evolution of burtful products.' On this suljject, the reader may further consult the Jieport drawn up by Mr Chadirick on the State of Cemetcries; the Fieport of the General Board of 1 Lealth, IS 5 S (of which Mr Chadwick aud Dr Southwood simith were members), on the same subject; Dr Mapother's 14th Lecture 'On the Burial of the Dead:' and a work just published by 11. Favrot, entitled IIstoire des Inhumations, 1567.
The Reports to which we have just referred contain abundant evidence of the necessity for the nmiversal establishment of mortuaries, or houses for the reception of the dead until the prioul of the lurial. In some Iarts of Germany, the deposit of the dead in such houses is compulsory; and in many parts of the continent, there are laws rigidly enforcing the lurial within a certain number of hours after death.

Before proceceding to consider how far nur sanitary recgulations have effected a saving of human life, it is expedient to give a brief notice of the chief acts of parlinment which have passed, and government Reports that have been officially, pulbFished, bearing on important sanitary suljects. Beginning with 1833, in which the lactory Children's Act was prassed; in 1834, the practice of entploying climbing boys for sweeping chimneys was abolished; in 1840 and 1841, the Act to lextend the Practice of Vaecination was passed; and in 15.12, the enployment of women and children in mines and collieries was abolished. Then appeared the General Local lieports on the Sanitary Conditiou of the Labouring Classes, 1842, which constitute, as Dr A. P. Stewart well observes, a 'remarkable scrics of volumes, for which we were indebted chiety to Mr Chadwick, and which, revealing as they did an alnost incredible state of matters in our crowded centres of population, were read by multitudes with a strange and eager interest.'-The Medical and Legal Aspects of Sanitary lieform (1867), P. 5. These Rejorts of the Health of Towns Comnission led to the passing, in rapid succession, of 'the Acts for l'romoting the Establishment of Baths and Wash-houses in Great Britain and Ireland, in 1846 ; the Towns Improvement $A c t$, in 1547 ; the Public 1 Fealth, the Nuisances limoral, and the City of London Sewers Acts, in 1848; the Metropolitan Interments Act, in 1850, followed in 1S53 hy a similar act for the whole of England; the Aet to Encourage the Establishment of Jodginghouses for the Labouring-classes, and the Common Lodging-lonses Act, in 1851 ; the Metropolitan Water Act, in 1852; the Smoke Nuisance Abatement (Metropolis) Act, and the Act to Extend and 72t

Make Compulsory the Practice of Vaccination, in IS53; the Merchant Shipping Act, with its stringent provisions for the preservation of the health of our merchant seamen, in 1854; the Diseases l'revention, the Metropolis Local Management, the Metropolitan Buildings, and the Nisances liemoval Amendment Acts, in 1855 ; and the l'nblic Jlealth Act of 1858, which aholished the General Board of Jealth, and rested its powers in the l'riyg Council. Since then, there have been added to the statute-book the Acts for the Puritication of the Thames, in 1858 and 1866 ; the Act for Preventing the Adulteration of Articles of Jood and Drink, in the same year; the Acts (passed in 1860, 1861, and 1864) which included, under the provisions of the lactory Acts, women and children employed in heaching and dyeing works, in lace factories, and in the manufacture of carthenware, of lucifer-matches, of jecr. enssion caps and cartridges, of paper-staining ancl of fustian-cutting; the Vaccination Amendment Act in 1801; the Act for the Seizure of Diseased and Unwholesome Meat, and the Alkali Works Act, in 1563; the Sewage Utilisation Act, in 186.5; the Labouring-classes' Dwelling-honses Act, and the Sanitary Act, in 1866.'-Stewart, op. cit., r. 6. The last-named of these acts-the sanitary or l'ublic Ilealth Act of 1866 -contains certain clauses with which every one sloould be acquainted. Its first part is an amendment of the Sewage Ctilisation Act, 1865, and provides, inter alin, that any owner or occupier of premises within the district of a sewer authority shall be entitled, under certain conditions, to cause his drains to empty into the sewer; but if a dwelling house is without ctlicient drainage, the sewer authorities may require the owner to make a sufficient drain, empitying into a scwer, lrovided the latter he not more than 100 feet distant; and that the sewer anthority may provide a supply of water for the use of the inhabitants of the district. The second luart is an amendment of the Nuisances Removal Acts-the word 'muisance' being made to include (1) any house or jart of honse so overcrowled as to be dangurous or prejudicial to the health of its inmates: (2) any factory or workshop not kept clean aul properly ventilated; (3) any fireplace or furnace not, as far as possible, consuming its own smoke: and any chimney (not belonging to a private house) sending forth black smoke. The rules for the removal of such nuisauces are laid down. The misance anthority, moreover, has power to enforce the cleansing aud disinfecting of houses or articles therein likely to retain infection, and to fine those who disregard the iujunction; to provide a proper place for disinfecting clothing, bedding, \&ec, anis to effect the disinfection of such articles; to provide carriages for the conveyance of infected persons to hospitals, \&cc. The g^{2} th clanse is so important, and its nature so very little known, that we extract it verbatim: 'If any person, suffering from any dangerous infections disorder, shall enter any public comveyance without notifying to the owner or driver thereof that he is so sutlering, he shall, on conviction thercof before any justice, be liable to a penalty not exceeding $f^{5} 5$, and shall also be ordered ly such justice to pay to such owner or driver all the losses and expenses they may sutler in earrying into effect the provisions of the act; and no owner or driver of any public conveyance shall be required to convey any person so suffering until they shall have beeu first paid a sum sufficient to cover all such losses and expenses.' 'The act furthor lays it down that places for the reception of the deal may be provided at the public expense, and that any justice may, on the certificate of a legally qualified medical practitioner, order the removal thither of the bodics

SANLTARY SCIENCE.

of those who die of infectious disease ; * and gives permission that special places for the performance of post-mortem examination may be provided. The third part of the act is headed 'Miscellaneous.' It treats of various points for the better management of lorging-houses, lays a penalty not exceeding $£ 5$ on any lersou with infectious disorder exposing himself, or on any person in charge of such a sufferer causing such exposure; and a penalty not exceeding $£ 20$ on persons letting houses, rooms, or part of a house in which infeeted persons have been lodging, without having such houses, or rooms, and articles therein, disinfected to the satisfaction of a qualified medical $]$ ractitioner (the keeper of an inn is deemed to let part of a house to any person admitted as a guest into such inn). It is very much to be regretted that most of the provisions of this and other acts bearing on public health are permissive, and not peremptory.
We may note that since 18JS a Public Health Department has been established in the Privy Council, and that the Medical Officer of the Privy Council, Mr Simou, has, since that date, published an annual Iieport of the Proceedings taken under the Public Health Act, 1858. These Reports, of which nine have now appeared, are of the highest importance; and we should not omit to mention that the progress of sanitary science has been considerably advanced by the publication of an annual volume (of which seven have now appeared) of statistical, sanitary, and medical army reports, by the estahlishment of the Epidemiological Society and the Social Science Congress, and by the fublication of their Transactions.

It is much to be regretted that the Privy Conncil does not more energetically carry out the powers conferred on them by the Diseases Prevention Act, 1855, and the Puhlic Health Act, 1858. Uniortunately, however, it requires some comparatively rare and startling disease, as yellow fever, plague, cholera, or cattle-disease, to stir that august body into activity ; while typhus, typhoid, and small-pox may ravage our crowded towns and undrained villages, and carry off their thousands of vietims, unless in very extreme cases, to which the public press may have called attentiou. (Of the half million deaths that occur annually in England, more than 20,000 are due to typhus and typhoid ; \dagger while in England and Scotland, more than 5000 persons annually fall victims to small-pox. \ddagger) By the Sanitary Act, 1866, the Home Secretary is empowered to interfere, if he see fit, on complaint made to him of the default of any local authority. It is sincerely to be hoped that he will unsparingly put forth the power intrusted to him.
Passing from what has, and what lias not, been done by government, let us consider what are the duties of local anthorities, and how they discharge them. On this subject, Dr Stewart gives us moch information in his pramphlet already referred to. To such an extent has non-interierence prevailed that, except in London, the appointment of Medical Officers of Health, and even of inspectors of muisances, is ontional. He ascertained, that of 570 llaces under the Local Govermment Act, 1855. and the l'ublic Health Act, IS48, with populations varying from 214 to $200,000,50$ have no inspeetors

* Liverpool alone, so far as we know, has as yet taken advantage of this clause. The Council have ordered the erection of two mortuaries; and a Protestant gentleman, Mr Hutcheson, is about to ereet, at his own cost, a mortuary chapel for the Roman Catholies. (Stewart, on. cit., p. 74.)
+ According to Dr W. Budd, typhoid alone is the cause of from 15,000 to 20,000 deaths in England.
\ddagger For data on this subject, see the foot-note to p. 713 .
of nuisances, 153 have each one; while in 347 , one man holds the doulle or treble offices of surveyor, inspeetor, and collector. In the metropolitan districts, with a population of above $3,000,000$, the sanitary foree is most unegually divided, for, while 2 subdistricts, with a population of 4000 and 10,000 respectively, have the services of one inspector, St Naryleboue and St l'ancras, with respective populations of 163,000 and 211,000 , have each of them only two.
A few words on the duties, qualifications, and position of the Medical Officer of Health, will find a fitting place here.* His duties and qualifications are thus latid down in an Instructional Minute of the Geueral Board of Health, dated December 20, 1555: - He will make himself familiar with the general features oI the place, with its previous sanitary state, and with its existing provisions for bealth-viz., the levels, inclinations, soil, wells, and water-springs; with its meteorological peculiarities; with its burialgronnds, slaughter-houses, lodging-houses, \&e.; he will see to the general healthiuess of his district, inquire into the cleanly and raterproof condition of houses, examine the drinking-water, and observe whether diseased meat or adulterated articles of lood are exposed for sale; and will report weekly and annually to the Local Board.' These are but a few of his duties, for the proper performance of which (as the Minute goes on to add), special qualifieations in seience are required. 'These lie in pathology, including vital statistics, in chemistry, and in natural philosophy.' For these accomplishments, the town of Aberdare offers $S_{12}^{1} d$. a day, or 12 guineas a year, for looking after the health of its 35,000 inhabitants; while Paisley gives $£ 20$ for the sanitary superintendence of a population of 48,000 . Fifty pounds is a common salary, except in the metropolis; the most liberal salaries are $£ 350$ at Birkenhead and Hackney, £400 at St Marylebone, $£ 500$ at Edinhurgh and Leeds, $£ 600$ London (Proper), while Liverpool has nobly raised the salary to $£ 1000$. Surely $£ 500, £ 600$, and $£ 1000$ are not too much for Edinbnrgh, London, and Liverpool to pay, in order to secure the services of such men as Littlejohn, Letheby, and Trench. Dr Russell, the medical sanitary officer for Glasgow, has $£ 600$ a year; and Dr crairdner, one of the first of our living hygeists, is retaiued as consulting officer at $£ 100$ a year. Not ouly is the medical officer's salary dependent on the caprices of the local hoard, who may dismiss him at pleasure, hat, as Dr Stewart truly observes, 'the very efficiency with which he performs lis duties may be an unpardonable sin in the eyes of a majority of his masters. His statements of facts may touch the interests of some, his suggestions of remedies may excite the displeasure of others; and if the soumdness of his position cannot be assailed hy reasoning, passiou may suggest-as it has before now suggested - a reduction of salary or a threat of dismissal, as likely to bring the offender to his senses.' Not ouly is this disgraceful form of pressure brought to bear directly on the Medieal Officer of Health, but indirectly ou those who have the power of electing or dismissing him. An amining incident of this uature is mentioned in Dr Stewart's pamphlet. When Dr liobinson was appointed Officer of Health for Leeds, he fonud that he had to grapple with unparalleled 1 rivy abominations,

[^4]
SANHTARY SCIENCE

higgerics ly hundreds, mumerons slaughter-houses, the gigantic smoke-unisance, and an averaye teathrate of 30 in 1000. The battle between science and filth was prolonged and terrtic, and the piggeries were made the battle-field. The pig-owners, taking alarm at Dr lobinson's energy, formed themselves into a ' P'ig Protection Society,' summoned wardmectings, and commenced an active canvas, for the purpose of turning out of the council all who wouh not pledge themselves to vote for Dr Robinson's dismissal. The case, after being twice beard before the magistrates, who declared that the pigs were a muisance, and must be remover, was finally settled on appeal by the recorder, who gave an order, not for the eviction of the pigs, hut for the daily removal of the manure, for the due enforeement of which a separate insprector would be reguired for every pig-sty! Under these conditions, is a Mcdical Officer of Health fairly cocouraged to discharge his proper duties?

The next points to which we shall direct attention are the Nusber of Deatus occurring anuually in England and Wales, and the Cacses of these DFiAtIs; and we shall then proceed to inquire how far the deaths from some of our most fatal diseases might have been prevented by due attention to sanitary measures. We learn from the Twentyeighth Annual lieport of the Registrar-general of Births, Deaths, anil Marriages in England, which was published in 1567 , and gives the results for the year 1865, the followngy statistical facts, which bear more or less closely on our subject. The pmpulation of Bugland, the hirths, deaths, and excess of Lirths over ileaths, are tabulated from the year 1839, when the system of registration came in force; and from this table we extract the mumbers for 1535,1545 , 1858, and for 1561-1865 inclusive:

Yeart ending Due. 31.	Entimated Fopalations in madule of yens.	Bitshe (exclusive of s (til-bora).	Deaths.	Exeesa of BLrths,
1878,	15,312,256	46,3,747	342.76	121.027
184\%.	17.311.49\%	503, 0.59	349.433:3	1433,206
185K,	19171.291	$65 \% 481$	$44.1,8.54$	205.82.5
1861 ,	$20,119,314$	COHi, 4106	4.35 .114	261,29?
14tie.	$20,1381,417$	712.684	4:36,54,6	\%71. 118
14 ki 3 ,	$20.554,133^{4}$	$72 \% .417$	473.837	25:3, 580
1814.		7414275	$4!5.5331$	244.744
1865,	$20.900,946$	748.069	4410909	255.140

From these figures, we learn, inter alia, that in a quarter of a century the pumbation las added $5,100,000$ to its strength, and that there is a steady increase (with occasional exceptions) in the annual number of birtlis and deaths, aml in the excess of the former ; the number of births having increased duriog that period 46 per cent., aud that of deaths 43 per cent. The following is an itbstract of Dr Farr's letter to the liegistrar-general on the causes of death in England in 1565: In every 1000 deaths, 351 of the population felf before local diseases, 235 were struck down ly zymotic diseases, 182 ly constitutional diseases, 160 by developmental diseases, and 36 died violent deaths; the remaioing 6 were deaths from causes not ascertained. Local liseases -the inflammations and functional diseases of orgaus-carried off 1St.s77 persons in Eugland, causing 9 of the 23 deaths per 1000 of the piving. It is the deaths from diseases of the vital organ that swell this number so high-20.20 deaths from heart diseases, nuarly as many (21,74) from diseases of the digestive organs, more than thrice as many (69,952) from diseases of the respiratory organs so essential to life, and a number uenrly as large as this last (60,264) from diseases of the nervons system. The number of deaths in England ascribed to lronchitis has rapidly increased; it was but 21,528 in

1856, had alvanced to 32,346 in 1860 , and in 1865 reached $36,42 \mathrm{~s}$. Softening of the brain is another disease that has increased rapidly of late yoars, and in 1 s 65 was fatal to 1051 males and 627 fumales: these deaths would formerly have heen classed nuder paralysis and other heads. The deaths from diseases of the nervous system inclute $26,22 \mathrm{drom}$ convulsions, occurring chindy in chiklrea. Among the rarer leaths from local diseases, 5 are referred to fright, 3 to grief, and 43 to metancholy. The second most fatal chass of diseases-the zymotic (epidemic and contagions)-is swelled chiefly by fevers and by diarrhceal disease. It swept from life in England 113,945 persons in 1865 , the majority of them young clildren under 5 years of age. The deaths by cholera io England in is65 were 1291; ly diarrhea, 23,531. The deaths ly fever-typhus, typhia, and typhinia"-which were 13,012 in the year 1860 , rose to 23,034 in 156 a , ad five-tenthe of them were registered among four-tenths of the population. The deaths from scarlatina were 17,700, and from diphtheria, 4145. The deaths attributed to syphilis rose to 1647 ; 437 persons died from intemperance, and 612 from delirium tremens; 74 from privation; 19 from hydrophobia; 4 from glanders, for horses as well as dogs communicate some of their diseases to men. Worms are put down as the cause of death in $15: 3$ cases, one of which is ascribed to Trichince spiralis. The third class of deaths is from constiutional diseases, diathetic or tulercular, which were fatal to SS,501 jersons in 186\%. These discases have this in common with the zymotic, that they are diffusive; and human tubercle is, even when introduced by inoculation, capable of inducing tubercular deposits in the organs of animals. The prevalence of phthisis in the armies of Europe is cousidered to be probably due in part to the iuhalation of expectorated tubercular matter, dried, broken up into dust, and floating in the air of close baracks. Dr F'arr remarks that to test this may he difficult, but the origin and propagation of the most fatal of all human diseases desurves full investigation. The iuquiry should also extend to cancer and the other constitutional diseases, among which should perhapis be included diabetes. Among the deaths from constitutional discases may be noted gout, as increasiog every year. Gout is five times as common in men as in women, and is very rarely fatal uuder 35 years of age. To it, 361 deaths were attribated in 1865. Uulike gont, dropsy is most fatal to women; and the substitution of dropsy in women for gout in men after the age of 45 is worthy the atteution of 1,athologists. Cancer is more thau twice as fatal to women as it is to men. The mortality by all constitutional discases is rather less than it was iu the

* In the National Returns, all eases of fever are set down as Typhus, which is thus made to include pure Typhus, with blood-spots (petechice) on the skin, which is execedingly fatal (more than 20 per cent. of the eases in the London Fever Hospital proving fatal), is geverated in erowded populations, and is very infections; Typhia or Typhoid Fever, which is condemic, is claracterised by an cruption of rose-red spots on the skin, and by ulceration of Yeyer's glands, and is osually generated by the intestinal evacuations of typhoid 1atients, whieh should therefore always be submitted to the action of disinfectant agents (its mortality in the London Fever llospital is rather less than 20 per cent.); and, lastly, Typhinia, which is commonly known as rclapsing or famine ferce (it is epidemic and infectious in times of seareity and famine, and is comparatively liarmess, the deatlis amounting to only $2 \frac{3}{2}$ per cent.). For the introduction of the terms Typhich and Typhinia, we are indebted to Mr Farr (sec his 24 th Annual Report of Births, Deaths, and Marriages in England, 186i, p. 214.

SANITARY SCIENCE.

decade 1850-1859; and this is partly due to the decrease of the number of deaths referred to phthisis; still these deaths reached 53,734 iu 1865 , the greater part of them occurring in adnlts; and more than half the deaths of young women between 20 and 25 were caused by phthisis. The fourth class of diseases-the developmental-were fatal to 77,806 persons in Englayd in 1865: 8791 infants born alive died from being premature; and other 22,436 died of debility before they were a year old. Besides 1333 deaths by puerperal fever, and 2490 ascribed to childbirth, 490 women died of splecific diseases complicated by parturition. The deaths by ordinary diseases of the 560,000 enceinte women, constantly existiag in the population of England, could not be entirely distin guished from the deaths of other women of the same age; of course they were subject to the same diseascs as others, but probably the class of mothers belongs to what, in a certain sense, the insurance offices call sclect lives. The list of developmental diseases closes with the deaths of 28,709 persons from old age, 154 of the men and 402 of the women being of the age of 95 and upwards. Thus we reach the last class of deaths-tbe 17,374 persons whe were destroyed by violent deaths; 15,232 by accident or negligence, 443 under circumstances bring. ing the case under the legal denomination of homicide, 1392 . by suicide, 6 on the scaffold, and the remaining 301 not classed. These are the several ways in which 490,909 persons died in Eagland in 1865.

Now let us see how many of the ahore diseases are more or less preventable, and how far we have already been successful in diminishing them. There are parts of Eugland in which, for each 1000 persons living, there die annually only 15 ;" while there are other parts that, of each 1000 persons, 30 or moret die aunually. The 15 and the 30 are said to he the respective death-rates of these places. The average Lenden death-rate is 25 ; and the most common death-rate in comntry districts and small tewns through all England and Wales is 20. The Registrar-general's Return, just published (January 1SCB), shewing the annual rate of mortality in the large towns of the United Kingdom for the year 1867, euables a comparison to be made of the deathrates in the last three years- 1865 leing the first year of the publication of these results. Thus, the average amaual rate of mortality per 1000 persons hing in the great cities in each of the years 1865 , 1S66, and 1567 respectively, was as follows: Birmingham, which is on one of the healthiest sites in the kingdom, 25,24 , and 24 ; the density of population (persons to an acre) in 1867, was 44. Hull, 27, 24, and 25 ; density, 30. Bristel, 24, 25, and 23; deusity, 35. Edinburgh, 28, 27, and 27; deusity, 40. Dubliu, 26, 28, and 27; density, 33. Salford. 29,29 , and 29 ; density, 22. Glasgow, 33, 30, aud 29 ; density, 87. Mlanchester, 3.3, 32, and 31; deasity, 81. Leeds, 31, 33, and 27; dcusity, 11.

* In an article on 'Public Health,' in the Quartery Journal of Science for January 1868, it is stated that at Sandown, in the lsle of Wight, which is thoroughly drained and well supplied with rure water, the deathrate for the last five years lias been only 11 in 1000 . As a centrast, we may take the village of Child's Hill, in the parish of Hendon, in which there is no efficient drainage, and where the open cesspoals connected with the privics often overflow into the ditches and discharge their contents inte the river Brent. Here, out of an entire population of 1000 , there were 70 deaths in 18:7, mainly from epidemic typhoid.
+ We have already mentiened that the death-rate at Liverpeol not very leng age reached 70; sec alse the preceding note.

Liverpool, 36, 42, and 30 ; density, 96 . The annual mortality in Sheffield, in each of the years 1866 and 1867, was 28 and 25 ; density; 10. In Newcastle-on-Tyne the annual mortality, in 1866 and 1867 respectively, was 32 and 31 . The results for Lendon, in each of the three years 1865-1867 respectively, were, anaual mortality per 1000 of pepulation, 25, 26, and 23; density, 40. In comparing the rate of mortality in one town with that of another, it should be berne in mind that of the English towns, Bristel, Leeds, and Liverpool have each a medical health officer. Birmingham, Hull, Salford, Manchester, Sheffield, and Newcastle-onTyne have no medical health officer, but most of these towns, however, have benefited from the efficacy of hygienic measures. It is obvious that if, by sanitary precautions, we could reduce all the death-rates to 15 , or evell to 20, an cnormous saving of human bife would result.* In the year $1865, \mathrm{Mr}$ Simen suggested that the time was come for attempting to ascertain the amount of benefit to the public health that had been derived from the works of sanitary improvement-especially of draiuage and water-supply-that had been already completed, and he was anthorised to institute the inquiry, with the assistance of Dr Buchanan as an inspector. The result of the inquiry, which relates to 24 towns, \dagger with au aggregate population of more than 600,000 persons, is now published, and we shall give a brief abstract of the results which have been obtained. The numerical results are given in the accompanying table (page 728), where A shews at each place in the list what differcuce there has been, siace sanitary works were estahlished, in the general death-rate in 10,000 of the population, this number being taken instead of 1000 to obtain more accurate numerical results. B gives the general death-rates of A, minus the incoustant influence which has been exerted by the chief infantile epidemics; and similarly \mathbf{E} gives the means of eliminating from A the influence of the cholera epidemics of 1848-1849, 1854, and 1866. The columas C to G imclusive are for comparing the quantities of particular kiads of deaths caused in each of the places in the two compared periods. Such 'special death-rates,' used with cantion, yield the most useful of all couclusions as to changes wrought in the public health.

From the tible, which is fraught with the most valuable information, in the most condensed form, we learn that, omitting the ioflueace of cholera, there has been a diminution in the death-rate in all but five cases, where the rate has been stationary. In four of the towns-viz., Cardiff, Newport (Mon.), Macelesfield, and Croydon-the reduction amounted to $24,23,20$, and $18 \frac{1}{2}$ per ceut. With regard to the contagious diseases, small-pox, which is capable of being rooted out by an efficient system of vaccination, is not noticed bere, and typhus fever has scarcely occurred in the towns selected for inquiry. The time bas hardly come for estimating the effect of works of sewerage and water-supply upon measles, scarlatina, and hooping-cough, inasmuch as epidemics of these diseases may revolve in long periods. Measles and hooping-cough seem, however, to have slightly declined. Typhoid has very much diminished with the ample supply of good water, aud the

* As in the year 1865 (the latest for whieh returns are published), the population of England was $20,990,946$ while the deaths were 490,903 ; the general death-rate for that year is 23.4 . If this rate could have bech reduced to 15 , the number of lives thus saved in that year would have amounted to 176,324 !
t Twenty-five towns wero visited, but we lave omitted Ottery St Mary, because it seems to have yiclded no information.

SANLTARI SCIENCE

purification of the atmosphere from decomposing organic matter, by the aholition of cess-pools, lyy draining, \&e. In Salisbury, Stratford, Croydon, and Merthyr, the ammal death-rate from typhoid has diminished $75,67,63$, and 60 per cent. respectively;
and in all the towns except three there was more or less dimimition. In these execptional cases, it was found that sewage gases were, by a defect of the untfall arrangement, foreed into the houses.* Diarkhan ajpears to have been reduced hy puri-

Table hlidstratisg t日e Improvements of I'ublic Healit whych besult fros Proper Works of Draniage and Water Supity

fication of air and water. liemoval of subsoil water lass not affected it. While in three towns the deathrate from this disease has been diminished 50 per cent. or more, in Ashby it has inereased 100, and in lugby, 200 per cent. These anomalous results are aseribed to the prevalenee of the disease in the respective workhouses. Cholera epidemics appear, says Dr Buchanan, to have been rendered practieally harmless in the towns cxamined, as may bo seen by the comparison of the death-rates per 10,000 in the three last enidemies :

Pulmonary phthisis has diminished in certain of the towns, and the diminution seems due to the drying of the soil, which has in most eases 728
accompanied the laying of main sewers; and the greater the influence of the sewerage in Jrying the subsoil is, so much the greater is the diminmtion of the death-rate from this disease. At Salis. lury, it is 49 jer eent. of its former rate; at Ely. 47 ; at Rugby, 43 ; at Banbury, 41; and at Worthing, 36. Failure to reduce consumption is

* Worthing is the town in whicl the increase of fever is greatest. and this need not excite surprise when we learn that on the side of the water-tower of the town is a shed containing the engine which performs the donble duty of distributing the water to the houses and the sewage to the land. To enable this to be effected, there are two wells within to feet of one another, sunk in a porous soil, one for the reception of the sewage, and the other for the drinking-water Moreover, the water-well is in bad condition, and the water-supply is neither constant nor sufficiently abundant. See the articlo 'Scaside Drainage-Worthing.' in The Medical Press and Circular, Lecember 4, 1867. No arrangement for the propagation of typhoid could have been more ingeniously devised!

SANITARY SCIENCE

most observable either where the soil already contained little water, or where-the town water passing by the surface or in superficial drains-the deep drainage consisted of impervious pipes, laid down in compact channels, so that no extensive Arainage of water could occur either through or alongside of them. It does not seem that the sewerage of towns, by the removal of excreta and house-slops, has acted to reduce the amount of their death-rate by consumption. Diseases of the lungs other than consumption have undergone no regular reduction. Dr Buchanan concludes this most valuable Report with the observation, that the progress made by the inhabitants of most of the towns in decency, cleanliness, self-respect, and morality, was at the least as striking as the improvement in their health, measured by the mortality returns.

In various articles on special disorders, as Scurvy, Small-pox, and Typhoid Fever, we have pointed out how completely they are under the control of sanitary or dietetic measures. In his excellent chapter ' On the Prerention of Diseases in the Army,' Dr Parkes gives the following list of diseases, with the methods to be adopted for their preven-tion-viz. : (1) Specific Discases-paroxysmal fevers, yellow fever, cholera, typhus exanthematus, bubo plague, typhoid ferer, relapsing fever, bilious remittent fever, eruptive fevers, erysipelas, hospital gangrene ; and (2) Hon-specific Diseases-dysentery and diarrhea, liver disease, insolation, phthisis, scurry, military ophthalmia (gray granulations on the palpebral conjunctiva), and venereal diseases. *

It is the miasmatic diseases which form the first order of the elass of zymotic diseases, which seem most under our control. We have shewn in a previons page that recent researches tend to shew that various of these diseases owe their origin to fungi. We shall conclude this imperfect sketcl of the history, progress, and results of samitary science with a history of the recently-discovered cholerafungus, and with a notice of the other recent scieutific investigations regarding the nature and prevention of this disease (which may be regarded as a supplement to the article CHOLERA). At the international cungress held at Weimar, in 1567, the cholera-fungus was the great centre of interest. The subject had been investigated by Professors Hallier and De Bary, two of the leading Crerman mycologists, and the latter drew up a Peport, the following abstract of which is given by Mr Simont: ' Both observers find in cholera evacuations, and in the intestinal muens of the dead body, definite organic structures, zoorloea, consisting of excessively fine granules, clustered more or less densely in the interspaces of a jelly, which more or less abundantly surrounds them. The granules divide and subdivide themselves, to form beaded threads, which interlace, in inmense numbers, into felted masses in the mucus. The further develop-

* In connection with diseases or affections which may be totally, or in a very great measure prevented, is short-sightedness. Dr Colin, of Breslau, has examined the eyes of 10,060 school-children, out of which number 1730, or 171 per cent., were found to be short-sighted. No village-children were affected until they had been at least half a year at school. Dr Cohn attributes the evil, in a great measure, to the bad construction of the school-benches, which force the children to read with their books close to their eyes, and with their heads inclining downwards.
+ A much fuller abstract (by Dr Buchanan) of Professor Hallier's recent rescarches into the natural history of the cholera contagion, as contained in his pamphlet, entitled Der Cholcra-Contagion: Botanische Untersuchungen, Aerticn und Naturforschen mitgetheilt,
ment of these organisms has yet to be determined. Dr Thomé, by sowing them, has got, after some time, larger, round, cell-like bodies, which rapidly multiplied, and also ahundant filamentous fungi (cylindro-tcnium), on which grew cylindrical spores, capable of developing again to filaments. Views as to the mutual relations of these cells, filaments, and spores, are for various reasons to be expressed only with reserve; and the study of them is so immensely difficult, that definite results cannot at once be expected. The significance of these fungi would be greatly increased if they should be shewn to exist in the blood as well as in the bowels of the sick; but this, though from same inquiries it seems probable, must at present be deemed questionable.' It has been since ascertained that this fungus requires a high temperature ($S 6^{\circ}$ to $112^{\circ} \mathrm{F}^{\prime}$) for its fructification, and therefore camnot be of European origin. 'The doctrine of the cholera-fungus,' says Mr Simon-6 the alleged discovery that the specific zymosis of cholera, the bowel-fermentation in respect of which it is contagious, has essentially associated with it, and perhaps as its immediate canse, a definite multiplying organic form-is not only of the utmost philosophical interest, but, should it be substantiated, may also, hereafter, be found capable of very important practical application. For, as one reflects on the doctrine in all its bearings, specially, as one considers Professor Hallier's conjecture (based on botanical considerations), that perhaps the cylindro-tænium is originally a blight of rice, something like a clue is for the first time suggested for investigations, which may hereafter conduce to the prevention of cholera in its eastern centres of origination. But for us in Europe, meanwhile, the doctrine may be absolutely sterile of results. In its broad signification, indeed, the discovery would not be a surprise to pathologists. The possibility has fur some years past been recognised, that perhaps every fermentatory or putrefactive change of organic material has with it, and possibly as its cause, a claracteristic molecular living thing; and however sure it may have become, that the choleraic zymosis answers to that possibility, it remains yet untried whether disinfection (which, after all, is but a doubtful resource) can deal better with the process on that basis, than on the purely chemical basis which has hitherto been the ground of our proceedings.'
'It cannot,' adds the same high authority, 'be too clistinctly understood that the person who contracts cholera in this country is ipso jacto demonstrated, with almost absolute certainty, to have lueen exposed to excremeutal polintion; that what gave him cholera was (mediately or immediately) choleracoutagium, discharged from another's bowels ; that, in sbort, the diffusion of cholera among us depends entirely upon the umberless filthy facilities which are let exist, and specially in our larger towns, for the fouling of earth, and air, and water, and thus,

1867 , is riven in pp. 512-515 of the Appendix to Mr Simon's Ninth Peport, to which that able pathologist has added a most instructive note on the earlier microscopic observations that had been instituted, espccially by our own countryman, on the clolera evacuations. On the subject of cholera the reader should also consult Dr Parkes's Sanitary lieport (Army Madical Department) for 1865 (published in 180 ${ }^{-}$), in which he discusses the recent additions to our knowledge of (1) The specific cause of cholera-the cholerafungus; (2) The spread of cholera by intercourse ; (3) Its communication by the so-called premonitory diarrhca; (4) 1ts spread by the agency of water; (戶) and its prevention by disinfecting the discharges by means of carbolic acid, sulphate of iron, and salts of zinc.
seenudarily, for the infection of man, witl whatever contagion may le contained in the miscellancous outtowings of the population.
'Cholern, ravaging laere at long intervals, is not Nature's only retribution for our neglect in such matters as are in question. Typhoid fever and much endemic dinrlioa are, as I have often reported, incessant witnesses to the same deleterious inlluence; typhoid fever, which annmally kills some 15,000 to $\because(0,000$ of our ferulation, and diarrhoa, which kills many thousands besides. Tho mere quantity of this wasted life is horrible to contemplate, and the mode in which the waste is cansed, is surely nothing less than shameful. It is to be loped that, as the edncation of the country adrances, this sort of thing will come to an end; that so much preventable death will not always he accepted as a fate; that, for a population to be thus poisoned by its own excrement, will some day be deencel ignominious and intolerable.'

In conclusion, we may remark, that Mr Simon's Ninth Report for 1866 (published in 186%) is one of the most valuable contributions to the literature of cholera that has ever been jresented to the profession. The history of this disease in England in 1866 is first given. 'This is followed by a series of scientific investimations on the following points: (1.) lixamination of the degrees of success attained hy different methods of treatment of cholera at Cuy's, St J3ar. tholomew's, the Iondon, and St 'Thomas's Hospitals; (9.) Study of the successive chemical changes undergone by the hody in cholera; (3.) Similar study; chiefly microscopical, of the successive anatomical changes of the affected body; (4.) Collection of facts as to the non-coincidence of local epidenics of cholera with such conditions of the local ground-water as are indicated by a foul state of the surface-wells. The results of these studies are given in the alpendix. Linfortunately, the practical result of these inguiries is, that in cases of developed cholera 'our utmost power is but perhaps some very little ability of palliation, and in the treatment of incipuent eholera competent jhysiciaus are not agreed that even here their art has much efficiency.' In contrast with the powerlessuess of curative medicine, the power of lreventing it is about the happiest possession of science. The evidence of Dr huchanan and others clearly shews that cholera may be prevented hy due attention to sanitary works, which provide for the prompt and complete removal of fecal impurities, and the jlentiful supply of water which cannot have been exposed to this form of contamination. In addition to the works quoted in this article, we may refer those of our readers who wish to study this suliject more fully, to the Freach treatises on hygienc by Beequerel, Levy, Tardieu, Vernois, and others. There is, however, no work on the subject in any language equal to that of Dr l'arkes, from which we should not have ventured to horrow so frecly if we lad not had the author's kind permission to do so.

SAN JCAN DH: LA FIRONTE'RA, a tuwn of the Argentine Republic, the eapital of a province of the same name in the extreme west of the liepmblic. The town, 660 miles north-west from Buenos Ayres, stands on the right bauk nf a river, also called San Juan de la Frontera, which rises in the Andes, and falls into the large salt lake of Guanacache. The province is as yet only very partially settled, but exports considerable quan. tities of fruits and wine. The chief seat of trade is this town, which has a pop, of 20,000 , almost onethird of that of the whole province.

SASV LUIS DE I,A PU'NTA, the chief town of the frovince of Sin Luis in the Argentine licpublic, 730
is situated 445 miles west-north-west from Buenos Ayres, on a river, which falls into the large salt lake of levodero. S. has some trade in horses, hides, and furs. l'op. above 5000.

SAN MLA'TCO IN LA'MIS, a town of Soutl Italy, in the prorince of Foggia, 15 miles north-nortli-east of Foggia. It has some trade in corn, wine, oil, and silk. Pop. above 15,000 .

SAN MATE'O, a town of Venczuela, South America, in the department of Cumana, and en miles south-south-west of the town of that name. 1'op. 7000.
S.AN SALJADO'R, or BA'NZA- the former being the Porturuese, and the latter the native name-a towu of Africa, the capital of Congo (q.v.). It is 120 miles south-east-by-east from the month of the estuary of the river Congo, in a mountainous district near the source of the river Lelunda. 'op. 20,000.
SA'NTA A'N゙NA, or ANA, a town of Central America, in the state of San Salvador, and 32 miles north-west-by-west from the town of San Salrador. I'op. about 10,000.
SANTA Fit, a town of the Argentine licpublic, on the right hank of the Salado, a large branch of the l'arana, 350 miles north-west-by-aorth from Buedos Ayres. Pop. 15,000.

SANTA MA'RTA, a town of the Granadian Confederation, the capital of a province, on a bay of the Caribbean Sea, 400 miles east-nortl-east from Panama. There is a good harbour, defendel] by a castle and sereral batteries. Sop. 8000 .

SARAGO'SSA, or ZARAGOZA, a city of Spain. tlee capital of a province of the same name, and formerly of the kingdom of Aragon. It atands un the Ehro, here a muddy stream, which divides the: city into two parts, and is crossed by a noble stone bridge, built in 1437. The city bas an inposing appearance from a distance, lyeing adorned with numerous sleader towers and spires: but the traveller, on entering it, finds it full of narrow winding lanes, instead of streets, althongh the houses-which are built of brick-are of most soljel structure, and many of them are the palaces of a nobility who have now ceased to reside here. These buildings, rich in finely carverl decorations and magniticent cornices, are now mostly inlubited by agriculturists of a rude class; their spacious courts converted into farm-yards, and filled with dung-heaps. Everything about the city indicates decay and poverty. S. was the Celtiberian Salduba, but received the new name of Cosarea Augusta in $25 \mathrm{~B} . \mathrm{C}$., of which the present name is a corruption. It was a place of importance uader the liomans, but there are fow remains of the lioman city: S. was one of the tirst cities of Spain in which Pacanism was generally renonnced and Christianity adopted; it afterwards became rich in relics, to which miraculous powers were ascribed. S. was taken by the Noors in the Sth c., ant recovered from them in 1118 , after a siege of five years, during whicl great part of the inbabitants died of lunger. It was taken by the French in 1809, after a siege of eight months, and one of the most heroic defences recorded in the history of modern warfare. See I'alafox. S. has a university, founded in 14-4. It has two cathedrals, both interesting as slecimens of architecture; but the older is in a simple and severe style; the modern one-that of Nuestra Senora del Pilar-is very ornate. The latter cathedral boasts of a pillar on which the Viririn descended from heaven, 40 A.D.-an event so strongly attested, that Diego do Astorga, primate

SARANSK-SEWAGE EARTH-CLOSET.

of Spain, on 17th August 1720, excommunicated all who even questioned it. Pilgrims flock from all neighbouring parts of Spain to this dillar and the image of the Virgin, whieh came down from heaven. S. suffered grievously at the hands of the French in 1809, and lost most of its treasures of art. It has a considerable trade in arricultural produce, mostly carried on by the Ebro; and manufactures of silks, woolleus, and leather. Pop. about $63,500$.

SAIA'NSK, a town of European Russia, in the province of Penza, and 80 miles north from Penza, at the eonfluence of the Saranga and Insara, feeders of the Sura. Pop. (1867) 14,284.

SATA'LIAH, another name of Alalia (q. v.).

SAU'GOR, a town of India, the chief town of the British distriet of the same name, is situated in a hilly tract, ou the Bees or Bes, a feeder of the Jumna, in lat. $23^{\circ} 50^{\prime} \mathrm{N}$., and long. $78^{\circ} 49^{\prime} \mathrm{E} \quad \mathrm{S}$. is the seat of a military eantonment and of a collegiate school. The elevation is so considerable, that the climate is moderately cool; but the eantonment is mahappily in a swampy aud unhealthy situation. Pop. about 50,000, mostly Mahrattas.

SCI'CLI, a town of Sicily, in the provinee of Noto, on the small river Scicli, 21 miles west-southwest from Noto. The roollen manufacture is earried on. S. is supposed to be the ancient Casmence. Pop. 10,029.

SCOT AND LOT TOTERS. The old legal phrase Scot (Aug.-Sax. sceat, pay) and Lot embraced all parochial assessments for the poor, the church, lighting, cleansing, and watching. Previously to the Reform Act, the right of roting for members of parliament and for municipal officers was, in rarious English boroughs, exclusively vested in payers of Scot and Lot.

SCRIBE, Augusin Efgene, a French dramatic writer, son of a wealthy silkmercer of Paris, was born in 1791. Educated for the legal profession, he soon deserted it for drausatic anthorship. His first piece, Les Dervis, written by him in conjunction with Germain Delavigne (brother of Casimir Delavigne), was played in 1811 , but till 1816 he cannot be said to have achieved a decided success. Since that time, pieces, chiefly vaudevilles, from his pen hare followed each other with the most astonishing rapidity; and in such demand were they at the hand of theatrical managers, that S. established a sort of dramatic manufactory, in which numerous collaborateurs were constantly at work under his supervision. His plots are interesting, and his dialogue light and sparkling; and not a few of his pieces have been adapted for the English stage. S. also wrote rarions novels, and composed the libretli for a considerable number of well-known operas, including Masaniello, Fra Diavolo, Robert le Diable, and Les IIuguenots. He was admitted a member of tive French Aeademy in 1834, and died February 20, 1861.

SEMIMES. RAPBAEL, American naral officer, was born in Maryland about 1810, in 1828 entered as midshipman in the sloop-of-war Lexington, and was employed in the service as passed midshipman and lieutenant until 1855 , when he attained the rank of commander. In 185 S , he was appointed Secretary to the Light-house Board; but resigned March 26, 1861 , joined the naval service of the Confederate States, and was appointed to the command of the war-steamer Sumter. The eareer of Captain S. until the sinking of his famous slip, the Alabama, by the American war-steamer Kearsane, is described at length in the article Alabaisa in the

Sepplement. Captain S., with 13 offieers and most of his men, was rescued from drowning by the yacht Deerhound, and bronght to England, where be expected to take command of one of two rams built at Liverpool for the Confederates, but which were seized by the British government. He returned to America, was included in the surrender, and was elected Judge of Probate at Mobile, Alabama; but, being prohibited by the Federal authorities, he was, in 1566 , appointed Professor of Moral Philosopliy in a southern university. He published the Cruise of the Alabama and the Sumier, in 1864; and By Adventures Afloat in 1869.

SERAI'YG, a town of Belgium, in the province of Liege, and between three and four miles sonthwest from Liege, on the right bank of the Meuse. It is a station on the railway between Namur and Liege, and is connected by a handsome suspension bridge with the village of Jemeppe, on the left bank of the Neuse. S. is a place of great activity, and contains a manufactory of steam-maehinery, locomotives, \&c., which is probably the largest in the world. This manufactory was established by an Englishman, John Cockerill, in 1816; the king of Holland, to whose dominions Belgium then belonged, joining him in the enterprise. After the recolition of 1830 , Cockerill bought up the shares belonging to the king of Holland, and the works became eutirely his own. On his death in 1840, a company was formed, called La Johu Cockerill Sociéte, to which they mow belong. They occupy the former palace of the Prince-bishops of Liege, which still forms their front, the extensive gardens behind it having been covered with buildings, where all the processes of machine-making are carried on. Forty or fifty tall chimneys are clustered on this spot. The town depends on these works for its prosperity: Pop. 21,853.

SEWAGE EARTH-CLOSET. In addition to the various arrangements noticed under SEWAGE for getting rid of the excreta unavoidably present in every dwelling-house, there is now coming into use an earth-closet, depending on a peculiar principle. In the cess-pool system, night-soil accumulates in a way and to a degree that render remoral very noisome and repulsive: if this removal be delayed too long, the atmosphere of the house becomes tainted in an unwholesome degree. In the water-closet system, the refuse, when flushed with water, is carried off through a costly system of lorick sewers, too often into a rirer, the water of which becomes sadly polluted thereby. In the former case, the soil may possibly be made arailable as agricultural manure; and in the latter case, a similar useful application may be possible, if the sewage in a liquetied state be so diverted as to be conveyed by pipes to fields or farms. But in the earth-closet system, the refuse is made innorious almost from the first. Experience has shern that dry powdered carth, whether field-mould or tireash, has a remarkable deodorising effect on nightsoil, doing that which no dilution by water is able to effect. The fact bas been known more or less, for a long time, to chemists engaged in sanitary inquiries; but the Rev. Henry Moule, vicar of Fordingtou, in Dorsetshire, has pursued the subject to a successful issue, first for the benefit of rillages, and then of towns, hospitals, barracks, and other places in which large bodies of persons congregate. Having found that $1 \frac{1}{2}$ lbs. by weight, or lat pints by measure, of dry earth is sufficient for each time of using the earth-closet, he has devised various modes of applying it.

The conimode form is the smallest, for use in bedrooms, sick-rooms, \&c. Under the seat is a metal

SEWHAGE EARTH-CLOSET.

pail, removable throngh a front door: while at the hack, and above the level of the seat, is an earthhox, filled from the top. Fither by a handle which julla upwards, or by a lever hinge which makes the seat itself move slighty, a valve at the bottom of the earth-box is opencel, and a definite quantity of earth falls into the pau. If the quautity is about as above statecl, and if the carth be perfuetly dry, the prevention of oflensive odonr is surprisingly complete. The earth-hox will hold from 20 to 30 of these portions. The contents of the pail may be emptied at heisure, for they rematin nearly inotorous from first to last. They may be either applied at oner as a manure to garien or field, or may be kept in a heap under cover till wanted. One remarkable fact in this system is, that the same carth may be userl two, three, or even seven times over, if it be well dried after each using; it becomes then exceedingly rich as a manure, and yet less offensive to the senses than what results frum the use of cess-pools or water-closets.
The single fixed closet is adapted for use in the places usually occupied by a privy or a watercloset; indeed, the earth-measuring and delivering apparatus may be applied to most existing elosets, as a substitute for the water-tank aud pipes. Unlike the commode, there is a cell or vault instead of a pail leneath the seat; this cell may be four feet by three, and of a depth depending on the frequency with which it is intentled to be emptied ; the sides should be lined with cement, and the bottom paved with stone or asphalt. An existing cess-pool, emptied, cleansed, and perhaps made shallower, would in many eases be available. The mixture of refuse and earth might go on accumulating for a whole year, with very little appreciahle odour. In places where a pit or cell cannot conveniently be made, a movable iron trough may be substituted, emptied more frequently.
Compound closets, for use in schools, harracks, and other places, may consist of as few as two or as many as twenty, placed side by side. There may be a great saving of material and construction; but the earth-apparatus must be applied to each separately.
Two important conditious apply to the success of this system-the ohtaining of the earth, and the disposal of the deposit. Dr Monat, Inspector-general of Jails in India, has caused experiments to be male which shew that dry earth is really better than any chemical disinfectants for removing all odour from night-soil. If earth is not realily obtainable, it may le supplemented lyy sifted ashes. Iron drawers or trays under i kitchen-range, portable dryers of varions kinds, and fixed dryers, have been devised for drying the earth; this is a matter that can soon be brought into working order, if the system were adopted in other ways. Dry earth might be procured in the summer, and stored in a ecllar or vault for winter use, just as we are wont to lay in a store of coals. No sand should be used with the earth and ashes; it is nut suitable. No housc-slopis of miscellaneous kimels should be thrown down into the pail or pit ; the deposit should not artiticially be liquetied. The dry-earth system is applicable to urinals at railway statious and other places where the present existing system produces most offensive aud mhealthy odours; hut a peculiar adjustment of apparatus would be necessary.

The disposid of the deposit, like the ohtaining of the earth, is more practicable in the country than iu towns; for the simple reason, that fields are near at band ; and it is probable that country districts and large establishments will test the efficacy of the system before it is much tried in ordinary dwelling.
houses in towns. From twenty to thirty shillings per ton may lie obtained for the refuse.

Many evidences have recently been afforled of the sucecessful auloption of this system. Captain Armytame, governor of the West Liding Prison at Wakefiell, statel, in 1867 , that carth-closets have. been phaced in the cells of that building, with a manifest diminntion of the mpleasant odour which used ty pervade many seetions of the prison cluring the existence of the water-closet system. A spall kiln las been buitt for trying the earth, and is sture for earth provided; the nsed earth is turned over and pulverised a few times during a month, and is then titted to act as manure; and it is expected that this manure will gradually defray all the expenses incurred by the adoption of the system. In the Dorset Connty School at Dorchester, where a severe sickness was attributed by the modical men to the noisome efluvia from the school-privies, the earthcloset has produced a marked improvement. The same result has followed in a large private school in Sussex. la the villages of IValton, Bucklam, Weston Turville, aud Aston C'linton, on laaron Rothschild's estate in linckinchamshire, the earthelosets have heon adopted, with a complete removal of the offensive results of the former cess-pool system; the earth is used six or eight times over, becoming in the end a very rich manme: and one man and a boy, with a horse and cart, sullice for all the earrying and removal at the four villages. The liegristrar-general of Buths, Harriages, and Deaths, in his Quarterly Return for July 1s67, speaks of the earth-closets as promising 'to be as uscful in the departments of public health and uational agriculture as the Rev. Edward Cartwright's iovention is iu the cotton manufacture.'

Arraugements have been made by the government for the aloption of the earth-closet syatem on a very large seale in Inclia. In the hospitals, jails, aud lunatic asylums of Bengal; in the jaits of the North-west l'rovinces; in the dispensaries and prisons of the Punjab; in the jails of Oude, the Mahratta I'rovinces, Mysore, Coorg, and Myderahad; in the latrines of some of the harracks and military statious-in all of these, the system is now adopted. The medical officers with one voice speak of the favourahle result. The Secretary of State for India, in September 1567, made public a conmunication from Major Malleson, Sanitary Commissioner for Bengal, enclosing Reports which he had received from the various provinces conceraing the cartlscloset aystem. In one of these Jeports, Dr Mouat, already mentioned as Inspector-general of Jails in India, went so far as to claracterise the introduction of this system as the ereatest public benctit conferred by a private individual, in a matter so essential to public health, with whichs 1 an actuainted.' 'The Council of India have very properly made a recognition of the services renderect, without any intention of profit, by the elergyman who hats jursued this sulnject to a successful result.

The Metropolitan Association of the Aledical Officers of Health, in December 1867, devoted is special evening to the discussion of the comparative merits of the water-closet and dry-earth systems. Opinions were mostly in favour of the dry-earth system in consequence of the readiness with which water-elosets get out of order (especially in the dwellings of the poor), and thas become sources of grave danger. On this subject, Jr Parkes, in his latest annual report on hygiene (Army Medical Reports, 1867), olserves: 'That the earth plan, whieh has been proved most useful in India, can be applied in England advantageously on a small scale, is certain; bit it is still a question whether it is

SHAHJEHANPORE-SHAKERS.

applicable to our large towns on account of the large quantity of earth which has to be brought in and taken away.' It has been introduced into Lancaster with apparent success. On this subject, see The Sevage of Touns, papers ly various authors, edited by John Hutchman (London, 1S60).

SHAHJEHANPO'RE, a town of British India, the principal place of a district of the same name, North-west Provinces. It stands on the Gurrah, a feeller of the Famgunga, 94 miles north-west from Lucknow. Pop, about 63,000.

SHAKERS, the name commonly given to a small religious sect existing in the United States of America. The proper or official description of this sect is the United Society of Believers in Christ's Second Appearing; but its members seem to have accepted the designation of Shakers, though it was originally applied to them in ridicule, on account of certain rhythmical morements of the hands and arms which form part of the ceremonial of their worship. Though the Shaker Societies are found only in the United States, their creed had an English origin. The founder of the sect, in whose person they beliere that Christ has appeared a second time, was an Englishwoman, named Ann Lee, a native of Manchester, who emigrated to New York with a small band of disciples, shortly before the outhreak of the revolutionary war.

Ann Lee was the duughter of a blacksmith, who lived in Toad Lane in Manchester; a very poor man, who gave her no education, and sent her while a mere child to work in a cotton-mill. She seems to have been a violent, hysterical girl, ambitious of notice, and fond of power, and to have always possessed, in virtne of her strong will and vehement temper, a great deal of intuence over the people around her. She married, while very young, a blacksmith named Stanley. She had four children, all of whom died in infancy-to this, perhaps, may be ascribed the preference of the celibate to the married life, which she ultimately raised into a part of her religious system. She became one of the carliest behevers in a prophetess, who appeared about a hundred years ago, in the town of Eolton-on-the-Moors, in Lancashire-a 1 por woman, named Jane Wardlaw, the wife of a tailor, who believed she had 'received a call' to go forth and testify for the truth. The burden of Jane Wardlaw's message was, that the end of all things was at haud, that Christ was coming to reign upon the earth, and that his second appearance would be in the form of a woman, as pretigured in the I'salms. In subordination to this, she took up several of the tenets of the Society of Friends, to which she and her husband originally belonged; especially, she raised her voice against war and against profane swearing. Her followers believed that she was filled with the Holy Spirit; they received her utterances as the voice of God: and she acted as if all the powers of earth and heaven lad been given into her hands. Ann Lee, on her conversiod, began to preach the same message in Toad Lane and the adjacent streets of Manchester; but she soon went beyond her teacher, and gained the leadership of her co-believers for herself. It happened that she was brought before a magistrate, charged with an obstruction of the streets, caused by the crowd collected to hear her preach, and she was sent to the Old Bailey I'rison in Manchester. When she came out of prisou, she gave forth, that one night, a light had shone upon her in her cell; that the Lord Jesus stoud before her ; and that He became one with her in form and spirit. Her pretension was, that Christ was come to reign in her person. It was farourably entertained by the followers of Jane Wardlaw; and they
acknowledged her as their Mead, or Mother, in place of Jane, whose pretensions had never gone so far. She found, however, that among her neighbours and fellow-workers, her claim to he the Bride of the Lamb, the Queen described by David in the Psalms, excited only jeering and ridicule; and she received a revelation that she should seek in America a home for herself and her few disciplesthat it was in America that the foundations of Christ's kingdom were to be laid. So she went to New York, accompanied by seven disciples-five males and two females. Her hnsband also went with her; hut he seems to have had no faith in her, and he left her soon after their arrival, in consequence of one of the features then introduced into her system. This was the practice of celibacy, which she had not previonsly enforced upon her followers, though she had enjoined it as a duty. Her teaching was, that men called into grace must live as the angels do, among whom there is no marrying or giving in marriage; that no form of earthly love could be allowed in the Ledeemer's kingdom. Finding a populons city unfavourable to her designs, she removed, with her followers, first to Albany, then far into the wilderness to Niskenna, and there founded the settlement which still exists, of Wrater Tliet. It was in the spring of 1780 -when she had been three years and a half at Niskenna, looking for new behevers to come in, but making no attempt to win them-that the first American converts joined her Society. A revival hal taken place at Albany, and had spread through the surrounding districts; and from Haneock amil New Lebanon a deputation was sent to Niskenna, to see what light its inhabitants enjoyed as to the way of salvation. The deputation consisted of Joseph Meacham and Lucy Wright-subsequently the heads of the Shaker Society. These persons became believers in Ann Lee; and through their agency, other converts were mon, and a Shaker Saciety established at New Lebanon. Towards the close of 1750 , the revolutionary war being then in progress, notoriety was given to Ann Lee's pretensions, through an incident seemingly unfavourable. Owing to her Eritish origin, her denunciations against war, and her refusal to take the colonial oaths, Anu was im. prisoned for some time at Poughkeepsie, on suspicion of being a British spy. Before she was let out of 1 rison, in December 1780, all the colonies had heard of 'the female Christ.' In the following year, she started upon a missionary tour through New England and adjacent colonies; she found the people everywhere curions to see her, and she made not a few couverts. She did not return to Water Viet till September 1783; and about a year after, she died. Her death was a surprise to many of her followers, who believed that she was to live among them for ever; hut her successors-the Joseph Meacham aud Lucy Wright already mentioned-to whom, on her death-bed, she had made over the headship of the society, were ready with a theory accounting for it. 'Hother Amn,' they said, could not die, and was not dead, and had not ceased to live among her people. She had only withdrawn from the common sight; she was still visible to eyes exaltel by the gift of grace; she had cast the dress of flesh, and was now clothed with a glory which concealed her from the world. So it would be with every one of the saints in turn; but the spirits of those who 'passed out of sight' would remain near and be in union with the visible body of believers. This explanation was generally accepted, and has become a vital part of the Shaker creed.

By Joseph Meacham and Lucy Wright, the successors of ' Mother Ann,' the S. were gathered into

SHAKEIS

settlements, ten in number: and a cevenant was drawn up embracing the chief points of their creed, aad of the social system since associnted with it. Their head wias, of course, 'Nuther Ann'-that is, Christ-of whom Joseph and Lucy were temporarily the representatives; clders and deacons, male and female, were aprointed; the institution of celibacy was confirmed; and a community of goods was introlucerl. On the death of Josepll Neacham in 1796. 'Jother Licy' became the sole heal of the Socicty, and she geverned it with ample powers for 25 years. She named a female successor with the title of Elderess; and the name of 'Mother' has not, since that time, been applied to the female heal of the community. The fresent female heal is Elderess Betsy (Betsy Bates); the chief elder is lherer Daniel (Daniel Boler); and the ruling spirit uf the Seciety, the official preacher and expositor of Shaker doctrine, is Elder Frederick of New Lebanon (Frederick IV. Evans), who is by birth an Englishman. The S. were, at the ceusus of 1S60, more than 6000 in number, included in 18 societies; of which three are in the state of New York, four in Massachusetts, two in New Hampshire, two in Maine, one in Connecticut, four in Ohio, and two in Kentucky. Their numbers have increased considerably since 1860; the infln. ence of their opinions has greatly increased; and the IS separate settlements continue to form a united and peaceful Society.
'Their doctrine has been to some extent developed as well as systematised since the death of "Mother Ana.' They believe that the kingrden of heaven has come; that Christ has come upon earth a second time, in the form of 'Mother Aun,' and that the personal rule of God has been restored. Then they hold that the nid law has been abolished, and a wew dispensation begru; that Adan's sin has becu atened ; that man lias heen made free of all errors except his own; that the curse has been taken away from labour' that the earth and all that is on it will be redcemed. Believers, on going into union,' die to the world, and enter upon a new life, which is not a mere change of life, butt a new orrler of being. lur them, there is neither death nor marriage; what seems death is only a change of furm, a transfigiration which dnes not lide them from the purified eyes of the saints; and in union, as in heaven, there is no marrying or giving in marriage-the believer owes love to all the saints, but his love must be celibate in spirit and in fact. The believer, living in union, is in leaven. The S. lelieve that the earth, new freed from the curse of Adam, is heaven; they look for no resurrection besides that involved in living with them in 'resurrection order.' The believer, upon entering into baion, leaves behind all his earthly relationships and interests, just as if he had been severed from them by death. And since to be in mion is heaven, the S. held that no attempts should he made by them to draw men into union: God, they say, will draw to them those whom he has chosen at his own time. Those who have 'passed out of sight' are still in union ; and the S. live in daily communion with the spirits of the departed believers. The belief in a commanion with angels and spirits, is no mere theory; it has a most important influence upnn their lives; they profess to be more familiar with the dead than with the living. It being the work of the saints to redeem the earth from the effects of the curse, labour is a saered and priestly fumctinn, especially when luestowed in making the earth yiehl her inerease, and in developing her beanty. It should he done in a spirit of love ; the carth, they say, yields most to those who love it; aud love and labour will in time restore it to its primitive state.

Aceording to Mr Dixon, they hestow upon their gardens and ficlds the affections which other men bestow upon family or worldly guods. Their country they regard only as it is a part of the earth. which they love, and as the favoured laud in which God's lingtom is tirst to be establishesl. la its pelitics and its fortuncs, they take no interest; and, indecl, their whole system is a protest against the existing constitution of society, as well as ayainst the orlinary hives of men. Consistontly with their lielicf in the second apnearance of Clirist in the form of a woman, the s. seem to believe that there is a female as well as a male easence in the Godhear-in the metherhoad as well as the fatherhood of God.

A Shaker settlement is, for convenience, divided into families, consisting of the brothers and sisters, who live in the same houses, each governed by an elder and an elderess. There are two orders of members, Prolatinners and Covenanters - that is, novices and full members. It is on bcoming a covenanter that the Shaker puts his property into the common stock. On enteriag upon residence, he hecames subject to all the rules of the Society; but he is free-whether a covenanter or a probationer-tis leave the body whenever he pleases. Both men and women wear a prescribed dress. The men wear a sert of Arab sack, with a linen collar and no tie ; an under-vest buttoned to the throat, and falling below the thighs; loose trousers, rather short; and a broad. brimmed hat, usually of straw. The women wear a small muslin cap, a white kerchief round the eliest aud shoulders, a shirt dropping in a straight line irom the waist to the ankle, white socks, and shors Some latitude is allowed as to the materials of tle dress. Alen and wemen, it is said, lave the lonis of persons at peace with earth and Heaven. 'Ajnart from a costume,' says Nr Hepworth Dixon, 'neither rich in colour nor comely in make, the sisters have an air of swectness and re]nse, which falls upon the spinit like music shaken ont from our village hella. [New America, by W. Hepworth Dixon (Lond. 1867). from which the materials of this sketch have in a great measure been derived.] All labour with their bands, loth men and women; but the latter do only indour work. Every man, whatever his rank in the church, follows some mannal necupation, and most of them have inore than one. Working not for gain, Lut with loving care, and with the sense that they are exercising a priestly function, the S. are unrivalled among their neighbours in the arts to which they apply themselves, especially the culture of their land, and the production of fruits and flowers. 'They pay great attention to ventilation and to all sanitary ennditiens; they lire almost entirely upon the pro. duce of the soil, and drink only water ; they employ no doctors, and take no drugs, and are, nevertheless, among the healthiest of communitics. Their Society is reeruited mostly ly young men and girls; but oceasionally, married persons witl their children come 'into nnion,' and make, it is said, 'very pretty Shakers.' Husbands and wives, when they lave come 'into nniun,' become as brothers and sisters : it would be thonght a wealiness, says Mr Dixon, anl almost a sin, for them to feel any personal happiness in each other's company-they live for forl alone, and their love ought to be shed on all the saints alike. The education of the chuldren attached to the Society is the work of the sisters, and they do it exceedingly well. The brothers and sisters take their meals in a common room, eating at six in the morning, at noon, and at six in the afternoen. Their meals are taken in silence, any direction that has to be given being given by a gesture or in a whisper. In their church-service, music bears a prominent lart; the hymns and chants which are used hoing
all of Shaker origin, communicated to belicvers in dreams and reveries by the spirits with whom they have communion. A deputation of Shakers visited England in 1571 , and made many couverts.

SHINGLIS (probably derived from Lat. cingulum, a belt) is the popular name for the variety of Herpes (q. v.) which is known as H. soster.

SHIP-BROKEL, INSURANCE BROKER. A ship-broker is a person employed in the buying and selling and freighting of ships. His duties include adjusting the terms of charter-parties and bills of lading, settling with the master for his salary, collecting freights on goods brought into port, arranging with passengers for the terms of their passage, and generally manarging all business transactions occurring between shipowners and the shippers or consignces of goods. The charges made by ship-brokers are generally about two per cent. on their gross receipts. Ship-brokers have been ruled not to be within the acts for the regulation and admission of brokers.

The business of an insurance broker is usually combined with that of a ship-broker. Marine insurance is in Great Britain to a large extent transacted by brokers. Those who insure are in most cases capitalists, who are known to the broker as persons prenared to undergo any risks which he recommends to them. The broker, who has a list of persons ready at a moment's motice to underwrite a policy, is the mutual agent for both parties. He procures the subscriptions of the underwriters, arranging with them the rate of premium and conditions of the risk, receiving from them the amount of their respective subscriptions, in the event of loss; and, when such loss is partial, arranging the proportion to be recovered from the different underwriters. An insurance broker clarges as profit five per cent. on the premium, and one-half per cent. deducted from all claims recovered from the underwriters. An insurance broker is personally liable to the nnderwriters for the amount of the premium, but incurs no liability to make good the amount insured to the owner of the sluip and goods, who, in case of loss, must look to the underwriter alone for indemsification.

SHI'SDRA, or JISDRA, a town of European Itussia, in the government of Jialuga, and 80 miles south-west from Kaluga, on the Shisdra, a branch of the Oka. It has manufactures of woollen cloth, class-works, iron-works, tanneries, oil-factories. Pop. (1S67) 10,57:.

SI'LLOTH, a town and wateriug-place of Eng. land, of quite recent origin, in the county of Cumberland, at the terminus of a branch of the North British Fiailway, 20 miles west-north-west of Carlisle, is picturesutely situated on the Solw"ay. The port is of growing importance, and prossesses a good stone dock, with an area of five acres, having a fine jetty, 1000 feet long, projecting into the sea. S. is minch resorted to for sea-bathing, the climate being mild and salubrions, and considered higbly favourable for those affected with pulmonary complaints. The mean annual temperature is 49°, being the same as that of Worthing (q.r.) on the south coast of England, and only $1{ }^{\circ}$ below tliat of Torquay. According to the Registrargencral's returus, the mean average death-rate in S. for ten years is only 10.2 per 1000 . S. is of easy access from all parts of England by rail. way, and steamers ply at stated intervals to and from Livcruoul, Dublin, Belfast, and the Isle of Mau.

SIMIMS, Willeam Gilmore, American author, was born at Charleston, South Carolina, April 17,

1806, of Irish extraction. He made verses at the age of seven; and during the war of 1812, celebrated in rayme the exploits of the American army and navy. Left in charge of his grandmother at Charleston, he was placed with a druggist; but at is began the study of law; was admitted to the bar at 22; published Early Lays and Lyrical and other Poems (1827); and became (1528) editor of The City Cazette, and Published The Vision of Cortes, Cain, and other Poems (1829), and The Tri-Colour, a poetical gloritication of the French revolution (1830). In 1532, his paper, opposing nullification, failed; and he lost bis wife, father, aud grandmother, and took refuge in New Encland, where, at Hingham, Massachnsetts, he wrote his best poem, Atoluntis, a Story of the Sea (1833); and the same year, Martin Faber, the story of a criminal. From this time, he poured out rather than wrote poems, novels, histories, and biographies in rapid succession, which may best be classed in groups. Of poems, he published Southern Passages and Pictures (1839); Donna Anna (1843); Grouped Thoughts and Scattered Fancies (1845); Lays of the Palmetto-ballads of Southern heroism in the war with Mexico (1848); Poems Descriptive, Dramatic, and Legendary (1851); Areytos, or Songs and Ballads of the South (1860). Of dramas-Norman Maurin, or the Man of the People; Micheel Bonham, or the Fall of the Alamo; and a stage adaptation of Timon of Athens. Of prose romances of the imggination-The Book of My Lady (1833): Carl Werner (1838); Confession, or the Blind Heart (1842); Custle Dismal (1845); The Wigwam and the Cabin, two series (1845, 1846); Marie de Berniere (1853). Of bistorical romances-The Yemassee (1835); Pelayo (1838); Count Julien (1845); The Damsel of Darien (1845); The Lily and the Totem, or the Huynenots in Florida (1845); The Maroon, and other Tales (1855); Vasconcelos (1857); Cassique of Kiawah (1860). Of revolutionary stories -The Partisan (1835); Mellichamp (1551); Katherine Wralton (1851); The Scout (1841); The Kinsman, or the Black Riders of the Congaree (1841); Wooderajt (1855); The Foragers (1555); Eutaw (1556); these five being stories of the war in the Carolinas. Of local tales-Guy livers (1834); Richard Hurdis (1838) ; Border Beagles (1840); Beauchamps (1842); Helen IFalsey (1855); The Golden Christmas (185ㄹ); Charlemont (1856). His other works comprise a History of South Carolina; South Carolina in the Revolution ; Lives of General Marion, Captain Joha Smith, Chevalier Bayard, General Greene; Civil War in the South; American Loyalists of the Revolution; Views and Reviews of Anerican Literature; The Morals of Slavery, \&c. Residing in South Carolina during the War of Secession, be sustained the Southera cause in a weekly newspaper, and had his lionse and library wrecked by Federal soldiers. Of his various and voluninous works, some are of higl excellence.
SIMPSON, Str Janyes Young, was born at Batlgate, Linlithgowshire, in 1811. He early shewed a peculiar talent for medical observation and research; and in the prosecution of his professional studies at the University of Edinburgh, so attracted the notice of his teachers as to inspire all of them with an aetive interest in his future career. He gradnated as doctor in medicine in 183.. on whiclo occasion his inaugural thesis won the bighest admiration. l'rofessor Thomson chose him as his professional assistant, and employed him in the preparation of his course of lectures on General Pathology. During the illness of the professor, Mr S. supplied his place in the lecture-room with unusual skill and address. He now began professional practice on his own account; and in 18 40 , succeeded Professor Hamilton as Professor of Midwifery in the University of

Painburgb. This position he has held with yearly onhaned distinction, and hy the rigidly scientific, while popularly attractive, eharacter of his prelectons, has contributel greatly to the renown of the Edinlurgh school, both at home and abroal. He was indefatigable, amid the distracting cares of an extensive practice, in promoting the seientific perfection of his art; and his two volumes of Ohstetric Memoirs, edited by Drs l'riestly and Storrer, contain the fruits of much patient and ingenions research. The discovery ly which he will he more particularly remembered, however, is that of the anasthetic rirtnes of chloroform. The so-called sulphurie ether had been employed in America ly Aorton to produce anasthesia during labour: but to S . belongs the credit of having, in 1847, first introduced to the seientific work the far safer, more certain, and now universally adopted agent of chloroform. Aunther imovation which surgical practice owes to Professor $\mathbb{S}_{\text {. }}$ is the stoppage of hemorrhage by Acupressure (q.v. in SUPres. MFNT). In his own jeculiar tield of ohstetries, his improvements on the old methods of practice are numerous and valuable; while his contributions to anticquarian research would of themsclves create an independent reputation io that held. Besides the Oistetric Memoirs already mentioned, he mublished a volume on Acupressure : and many papers and notices read before the lioyal and Antiquarian Societies of Edinburgh. Aprong these may be ennmerated: Antiquarian Notices of Leprosy; On the Contagionsness of Cholera; Ancient Roman Medicine Stamp; Was the Lioman Arioy provided with Merlical Otticers? Notes on some Ancieut Greck Vases for containing Lykion, dee; On Syphilis in Scotlanl: \&ec. 11 is scientifie scrices were recognised ly nearly every medieal association in either hemisphure: while his professional distinetion secured for him (1866) a baronetcy from the Queen. He died on the 6th of May 1870.

SINCERE BRETIRREN, or TRUE FRIENDS, is the mame of a semi-religious, semi-scientitic Mohammelian order, the beginnings of which are shronlenl iu obseurity, but which, about 970 A. D., manifested its existence by one of the boldest and most comprehensive literary undertakings-viz., an encyclopredic treatment of philosophy, theology, science. ethies, and metaphysics, in a series of no less than fifty-one treatises. Under the head of Monammedas Sbcts, and more especially under MotaziLites, mention has been made of that immense religious struggle that arose but a few generations after Hohammed, in the bosom of Islam, bringing forth seet after seet; and which, under whatever name and war-cry, simply denoted the reaction of the thinking minds against the dead-weight of dogmas and formulas, such as the suceessors of the l'rophet tried in his name, and often enough in direct contradiction to his explicit dieta, to impose upon the Faithful. What the Motazilites had attempted was the reconeiliation of scientifie speculation, as it had irresistibly grown up, at the first contact of the Arabs with Greek literature, with the religious dogma of Islam. This new ferind of development of Arabic eulture, which chielly characterises the epoch of the first Abbaside rulers, however, was of no logg duration. The rerresentatives of the 'orthodox' sehools, who would not hear of reconciliation, but insisted all the more uncompromisingly upon the most literal interpretation, dexterously used against them those same weapons of dialectics which their alversaries themselves bad first taught them how to wield. Setting to work with proper systems and methods, they soon built up a scholastic edifice of theology; not casy to be attacked without the most direct
outspokenmess; and from this the new sehools, the terror of the califate strong upon them, shrank. It was thus that the Mntazilites sonn disappeared from the arena. But their labours had not been in vain. Silently and by small degrees this new and mysterions union of the Sinecre Brethren arose. Though widely spread, their sehools, their houses of assembly, their rules, their doctrines-crerything remained, ior we do not know how long, a profound mystery ; and apart from that which they themselves have thonght fit to reveal of it, neither ancient nor modern investigation has been able to discover many traces of their inner organisation and activity: Not even many of their names have come down to us, though the 'treatises' they have left point to a multitude of authors, and to many stages of development. The tone of these treatises is much more free, and their entire tendency more radical than that of any of the books of their predecessors. Yet, the desire mot to offem the less advanced in religions matters, and above all, to remite rather than to make the breach wider, is perceptible in their endeavour to use what koranic guotations and traditions can be fressed into the serviee of free thought, by often very umatural processes of allegory and mysticism.

Before speakiog of the treatises themselves, we shall brietly summarise what can he gathered as to the mutual relations of the brethren of this secret lolge, and the aims of their association. There is special mention made of the 'secret doctrine' which the Brethren should communicate to each other in their houses of assembly at those 'stated periods,' at whiel1 no stranger was to be admitted on any condition. The principal subjects towards which their conversation was to be directed were to be the knowledge of the sonl or psychology, the knowledge of the aetion of the senses and the things pereeptible through them, the contemplation and investigation of the mysteries of the sacred books, of the prophetical revelatious, and the ideas contained in the divine laws. Their attention was further to be directed towards the four 'mathematical' sciences-arithmetic, genmetry, astronomy, and (musical) composition. But the chief sulject of their investigations shonld be the knowledge of divine things, which are the end and aim of all study. The most catholic spirit was to prevail among them with regard to the various sciences, systems, or books; since 'our own system comprises all, without exception, and includes all science.' 'The speculations of our sehool extend simply to all things-the sensual and the intellec. tual-from the moment of their beginning to their end, according to their outer and immer life-that whieh is palpable and clear about them, and that which is hidden and secret-the Truth, in fact. For the true essence in everything is derived from one primeval origin and general canse since there is hut one world and one supreme mind, to which all the most manifold phenonsena, species and kinds, and divisions, are to be traeed back.' With these words, the encyclopredic tendeney of the lodge and their essays is best characterised.

All their knowledge they traced back to four sources-as indeed this number seems to have played a very considerable part in all their divisions -as follows: 1. 'The books that are known by the vames of the sages and philosophers, in as far as they belong to mathematics and matural history.' They do not indicate them further; but it is casy to sce from the treatises themsel ves that they allude to the translations of Greek works leariny the names of Pythagoras, Aristotle. Euclid, I'tolemy, Porphyry, \&c. 2. 'The revealed writings derived from the prophets,' such as the five Looks of

IIoses, the Gospel, the Psalms, the Koran, and other writings of prophets who had received their contents through inspiration by the angels and the 'deep mysteries hidden in these books. 3. 'Books treating of nature'-i. e., that describe and represent the things now in existence-the celestial circles, the motions of the stars, the transformation of matter, the individual species and kinds of animals, plants, \&ic. All these things point to abstract ideas and suhtle mysteries of which men in general saw but the outside, ignoring the mysterions art and meaning of the Creator hidden within. But if, in this thind division of the saurces, the power of the mysterious and of spiritualism must needs have become rery strong, it seems to hare ruled absolute in that most mysterious and obscure of all sources, the fourth-viz., 'the divine books, or the books on the diviue things, written by the angels from the tablet of Fate, upon which all the divine decrees regarding the world and man are inscribed. These contain all that refers to substances, species, kinds, and orders of the differ ent souls; their actions, destinies, metamorphoses, phase after phase, the hearenly conjunctures and periods, \&c.' For this the Koran was quated: 'And upan the Arap' [the division between heaven and hell] 'there will stand men, who will recornise every one by their distinguishing mark.' These men, howerer, are souls who take a higher degree thau ather men, like the prophets and martyrs, or the elect among the believers and learned, or the angels who appear in human shape.' And that there might be no mistake as to the members of the secret brotherhood being alluded to in this passage, another passage from the same sacred volume is adduced, which reads: These are the men who live in houses which God has permitted to be erected, that His name might be praised therein, in which men proclaim His praise both morning and evening, wham even neither commerce nor trade intercourse keeps from the remembrance of Gorl and the solemn fulfilment of the duty of prayer. 'This is the state of our brothers, the highly meritorious, the highly honoured.'
The supreme (outward) duty of the brethren was to support one another in case of need. Men are clivided into four classes-those who have wealth without knowledge; those who have knowledge without wealth; those who bare both; and those who have neither. Aud this at once points to the necessity of mutual support. Envy and ill-will are seriously reprobated, and here the ethical portions of the Koran and the Sunnah are appealed to. But these fundamental principles are further explained and detailed in the rules almost step by step; and it is shewn how each of the four classes named is to make its support of the Brethren more effective. Everything should be directed for the benefit of the soul, not of the body; everything for the future, nothing for this world. Moral qualities are the highest gift of hearen, and the characteristic sign of the angels and the blessed in paradise-a wise and happy way of comforting the poor of the community, who, by moral purity, may lift themselves to the same purity as the best and richest among the Brethren. In order further to prove how the soul is capable of the highest perfection by degrees, the various ages aul stages of man are enumerated, and the gradual progression of all faculties is dwelt upon according to the 'strength of the soul.' The fourth degree is characterised as the angelic quality of the soul, which is obtained at tiity, and which prepares the way to everlasting life, and to the full separation from natter. To this succeeds the - power of ascension,' wherehy the member mounts
up into the world of the spiritual heavenly beincs, so that he foresees clearly the 'things of the end,' such as the resurrection, the last judgmeut, the dispersion, the meting out of rewards and punishments; how, further, 'the path is to be crossed, how he escapes the fire, enters Paradise, and becomes a denizen of the lighest realms with the Father of all mercies. ${ }^{2}$ And for this consummation, many passages in the Koran and the Gospel are adduced-no less than the words of Socrates on the day of his taking the hemlock; of Pythagoras at the end of his Golden Epistle, \&c.

The cncyclopredia of treatises which this secret association has left as the monument of its existence, was first compiled at Basrah about 1000 A.D. but has (save one often reproduced chapter, called 'The Contest between Man and Animal') never been printed. The 51 treatises are divided into four classes: 1, the 'Nathematical,' in 13 dissertations or treatises; 2, the 'Physical,' in 17; 3, the 'Origins' of mental activity, or the thinking soul, in 10 ; and 4 th and last, "The Divine Law, in 11 treatises, the last of which contains a general outline of the whole work.
The interest attaching to this production, as the earliest Encyclopedia deserving the name, reflecting, as it Idaes, the state of science both of the East and West at the end of the first thousand years after the introduction of Christianity, is so great, that we append a sketch of the contents and method.
The first 13 treatises, helonging to what nay be called the mathematico-philosophical division, treat of Arithmetic, Geometry, Astronomy, Geography, Music, followed by psycholagical and ethical reflections. This part concludes with introductions to Philosophy and Logic. Throughout, the authors only treat of the theoretical part of their subject without entering into further details as to their practical side, or teaching them systematically one by ane.

From these preliminaries, the work proceeds to its second part, the physical division, which comprises the whole cosmos in its special phenomena and the laws that govern them: heaven and earth, the three natural kingdoms, the mysterious union of body and soul, how the latter perrades the former, and communicates itself to all its parts; the changes of life and death, joy and mourning, the senses, and all that is perceptible through themall the great questions, in fact, which most vitally engage man's attention in this world of growth and decay. An attempt is made to ascertain how far human understanding can penetrate these dim regions of speculation and metaphysics, and eren the languages and their original elements are drawn into the circle of these investigations, and subjected to philosophical scrutiny.
The third division treats of the origins of mental activity. Heterogeneous though some of its elements be, it jet keeps its subject sufficiently in riew throughout. The elements of mental activity are investigated first according to Pythagoras, then according to the Brcthren themselres. Next comes man both as microcosm and macrocosm. The revolutions of the heavenly bodies, love, resurrection, the world to come, motion, cause and effect, dogmas and customs are then treated of; each and all contributing their share to the aimed-at outward union between reason and faith.

The fourth division borders very clasely on the supranaturalistic and purely speculatire. At the same time, it touches vital doctrines of Islam, and treats them in au abstract and very free manner. How the kuowledge of God is gained; the life of the soul after death; the relation of the Brethren
towards each other; the essence of the true iaith; the divine law; propheey; and the relation of religion generally to the peculiar phase of it as adopted by the lodge; and a number of similar points are taken up.
So far, in the most general outlines, those fiftyone treatises, whieh, though they be neither strietly systematically arrauged nor methodised, nor free from repectitions, and by no means so instruc. tive iu detail as the enumeration of the contents would lead to belicere, yet belong to the most com1 rehensive and creditable efforts of the human mind.

A small specimen of the manner and method of these treatises, taken from the chapter (20) on l'lants may not be unacceptable :
' Know that the plauts are only perceptible as the visible, palyable phenomena, but that their artistie working within is secret, invisilile, and hidden before the eyc. It is what we eall the part-souls, what the philosophers call the natural powers, what relicion calls angels, or divine hosts commissioncd with the calling into being and derelopment of the plants and creatures, with the creation of the stones, \&c. The terms differ, but the sense and meaning is identical. Philosophers trace these things to thic Powers of Nature; the religious Law to the Angels, but uot directly to the Blessed and Exalted Goch For the Blessed God is too exalted to form a natural body Himself-to move and to act bodily, just as kings, generals, and ligh dignitaries are too high to execute any work themselves, though they are considered their authors, through laving ordered and willed them. If, e. g., you hear it said that Alexander built Alexandria, you must not, of course, fancy that he himself bodily did build the city-he ordered it to be built. Thus, the works of God's servants aro traced back to the lexalted God, even as the Koran says:, " lt is not you who have killed them, but God."

One of the most attractive portions of the work, and the one which alone has been repeatedly edited aud translated into many languages (not into English), is the so-called "Contest between Man and Animal,' which forms a part of the twentyfirst treatise. In this one place alone, man and animals are introdnced speaking; in all other portions, rbetoric, ornanrented ly allegorics and metaphors, mostly well chosen and artistically wrought, forms the ordinary style. These dissertations may not have fulfilled their purpose any more than did the whole lodge; but they will bo all the better appreciated when that darkest period of Mohammedan listory, the loth c., is taken into eonsideration. Hypocrisy stood for picty at the courts of the many emirs, low eunning for wisdom, the vilest adulation for fidelity, and oppression for justice. No wonder this manly and scientific protest was not reeeived very favourably by so corrupt a generation. Besides which, the want of strict logical arrangement-a cireumstance owing probably to the voluntary suppression of the intermediate portion-and the vagueness in which many of the most important points are treated, made even the fow independent and faithful minds fail to appreciate it. The ehicf cause of the discontent which they exeited among the contemporaries lay in their coneiliatory tendencics. Theology pure and simple would not hear of philosophy. Religion, the orthodox champion said, was a revelation-divinely given, not to be understood eren by human intelligence; jhilosophy, on the other hand, was a vain thing, treating of humau things and other futile subjects. The philosophers, though they dared not be quite so outspokeu on thicology, felt no less keenly that there
was no compromise possible under these circum. stances, even if they had not repudiated any notion of being 'reconeiled.'
We lave treated this subject somewhat more fully than usual, both on aceount of its deep intrinsic interest, as forming the most striking refutation of the commonplace uotion that tho religion of Molhammed was a stationary, hard, fanatieal, anel dotard ereed, never questioned or reasoned upon by the Faithful; and further, becanse little or no information on the subject is generally accessible. The work itself has, as we have said, witl the exception of the one fairy-tale fragment, never been edited; and thero are, cven among the authorities on Nohammedan matters, but three or four who have 1aid special attention to this important subject, and what fragmentary information we possess lies seattered in Oriental 'Transactions,', mo notes, and iu prefaecs.--See Sprenger, in Asiatic Journal of Bengal ; Fliigel, in Dentsche Morgenl. Zeilschrift; Do Sacy, Notices et Lxtraits; Dieterici, Mensch und Thier; Nauwerck ; \&c.
SIlk-I-PUL, a town of Bokhara, Turkestan, 45 miles south-west irom Balkh, in lat. $36^{\circ} 21^{\prime}$ N., and long. $66^{\circ} 2 S^{\prime}$ E, on a river which loses itself with. out reaching the Jihoon. It is the capital of au Uzbek chief. I'Op. 18,000.
SLEA'FORD, a town of Lincolnshire, Eingland, on the right bank of the Slea, a branch of the Witham, 17 miles south-south-east from lincoln, and 52 feet above the level of the sea. It is a wellbuilt and well-paved town, and has a fine church, built in the 13tio century. Pop. (1871) 3592.
SSHTTH, GoLDw1N, LLLD, son of a Berkshiro physieian, was born at heading in 1823. He received bis education at Eton, from whenee he proceeded to Oxford, and matriculated at Christ's Chureh, but was soon afterwards elceted to a Demyship at Magdalen. His undergraduate carcer was one of unusual brilliancy, only equalled, indeed, by Sir Roundell Palmer and Professor Conington. IIe gained both University Scholarships, the Latin Verse, and the two Prize Essays, and was placed in the first class in 1545. In 1847, he was eleeted Fellow of University College, where ho officiated for a time as tutor. In the same year he was ealled to the bar at Limeoln's Inn. The ministry of the day availed themselves of Mr S.'s services in earrying out their plans of university reform. IIe was nominated Assistant-secretary to the first, and Seeretary to the second Oxford Commission, by which the somewhat antiquated statutes of the university were reconstructed, and the rich endowments of the colleges opened to public competition. Mr S. was also a member of the Popular Education Commission appointed in. June 1858. The chair of Modern History having been vacated about this time ly the resignation of Professor Vaughan, was offered by Lord Derby to Mr S. He aceepted tho offer, and diseharged his professional duties with zeal and efficiency until his resignation in 1866 . In 186S, he was elected to the chair of Linglish and Constitutional History in the university at Ithaen, New York, where he has since resided. Goldwin S' has long been known as a reviewer and publicist of thic highest elass, and has completely identificd himself with the more advanced school of reformers. During the American war, he was an earnest defender of Federal interests, and combated with suecess, in the Daily News and elsewhere, tho singular theories of the rights of slavery and the duties of neutrals, which were then somewhat fashionable. He was also aetive in denouncing the Jamaiea nassacres, and in advocating an extended measure of reform. His lectures on "Three English

Statesmen,' delivered at some of the chief towns in the north, called forth the rernark from Mr Disraeli, that he was a 'wild man of the cloister, going about the country maligning meu and things.' Mr S.'s writings are characterised by great extent and accuracy of information, by a style singularly vigorous and condensed, and by great powers of sarcasm. Among his principal publications may be enumerated: Irish Mistory and Character; Two Lectures on the Study of History, with a Supplementary Lecture on the Doctrine of Mistorical Progress; The Empire, a repint from the Daily News of $1862-$ 1563; England and America, a lecture delivered before the Boston Fraternity, and reprinted from the Allantic Monthly; A Plea for the Abolition of Tests at Oxford; Rational Religion and the Objections of the Bampton Lecture in 1858 ; several pamphlets on the American question; contributions to Oxford Essays ; A Short Mistory of England; \&c. He is also the author of some of the most admired compositions in the Anthologia Oxoniensis.

SNOW-BIRD (Junco or Fringilla hyemalis), a North American bird of the Finch family (Fringillid (e), common from Louisiana to the Fur Countries, in all the eastern parts of North America. The wings are rather short, the tail slightly notched. The whole length is rather more thau six inches; the upper parts are lead-colour, the lower parts white, the two outer tail-feathers white, the next white margined with black. This bird migrates northwards early in spring, and southwards late in autumn. It is often to be seen in small flocks, visiting barn-yards, and hopping about with the domestic poultry. In cold weather, it retires to holes in haystacks. Its soug is sweet. From its frequent familiar approach to human habitations, the S . is regarded with favour throughout great part of North America, as the Redbreast is in Britain. In the south, lowever, it is often brought to market, its flesh being very pleasant. In the western parts of North America, another but very similar species, the Oregon Snow-finch (k. Oregona), takes the place of this.

SOMBRERE'TE, a town of Mexico, in the state of Zacatecas, and 90 miles north-west from Zacatecas, in a mountainous district celebrated for its rich silver mines, from which S . derives all its importance. Pop. 14,000.

SOO-CHOW, or SU-TCHOU, or SOO-CHOWFOU (fou merely signifying city), a large city of China, in the province of Kiang-su, 60 miles west-north-west from Shanghai. It stands near the Graud Canal which connects Hang-chow with Nanking and Pekin, but its port is Shanghai, with which also it has water-communication. It is about ten miles in circumference, and is enclosed by fortifications, outside of which are four very large suburbs. The country around S. is level, and remarkable for its fertility, so that the Chinese speak of it as a terrestrial paradise. The city has silk manufactures, printing estahlishmeats, and a large trade in books. In 1S57, S. was captured and sacked by the Taepings. In 1863, it was invested by the Imperialists, under a British officer, and the rebel chiefs having surrendered, were treacherously beheaded by the governor of the province.

SPANISH MAIN (i. e., main-land), a name generally given during the 16 th c . and the carlier part of the 1 Sth to the north-east coast of South America, from the Orinoco to the Isthmus of Darien. The name occurs very frequently in connection with the history and exploits of Bucaneers (q. v.).

SPELEE, John Hanning, an African traveller, was born near Bideford, Devonshire, in May 1827,
and was the son of Mr W. Speke, the reprosenta tive of an old Somersetshire family. He was educated at the Barnstaple grammar-school, and at the age of 17 went to India. He entered the native Bengal infantry as a cadet, and sawv much service during the war in the Iunjab. A keen sportsmau, with a taste for natural history, he employed his rifle with success in collecting for the museums specimens of the rarer mammals and birds of Tndia, and with this view he undertook several exploratory trips into the Himalaya. It was while so employed that he first conceived the idea of becoming an African traveller. The English government had resolved, in 1854, to despatch an expedition from A den into the neighhouring region of Africa, under the command of Captain Burton (q. v. in Supplenent). S., then a lientenant in the Indian army, reached Aden at this time, on leave of absence, and resolved to join Burton and his companions, Lieutenants Herne and Stroyan. Burton went to Harar; and S. was detached to visit the Dalbahantas, the most warlike of the Somauli tribes. On the return of the travellers to their starting-point on the coast, they were attacked by 150 men. Stroyan was killed, and S. made a narrow escape with 11 wounds. The attention of the Geographical Society of London had now been called to the subject of the great lakes of tropical Africa; and in June 1857, they despatched Burton and Speke. These travellers entered the country from Zanguebar, as the German missionaries Krapf and Kelmaun liad done in 1847, and discovered the great lake Tanganyila. The details of their discoveries till they reached Gondokoro, in March 1S63, are given in the article Nile. S. and Grant had passed through the very heart of what remained of the terra incognita of Eastern Africa. On their return to England, they met with an enthusiastic reception, to which they were well entitled, as two of the most daring and successful of modern explorers; although, perhaps, some of S.'s most enthusiastic friends have gone too far in claiming for him a place above other travellers as 'the discoverer' of the sources of the Nile. On the 15th September 1S64, S. was killed by a gun-accident while out shooting in the neighbourhood of Bath, to which he had come to he present at a meeting of the British Association.-S. is the author of a Journal of the Discovery of the Source of the Nile, and What led to the Discovery of the Source of the Nile.

SPENCER, Herbert, an English author, horn in Derly in 1820. He was educated by his father, W. G. Spencer, a teacher, chiefly of mathematics, and his uncle, the Fev. Thomas Spencer, a clergyman of the established church, well known for his liberal opinions on political and ecclesiastical questions. At the age of seventeen, he became a civil engineer; but after about eight years, abandoned the profession, in consequence of the large influx of young men brought into it during the railway mania, and the consequent undue competition. During the eight years of his engineering life, he contributed various papers to the Civil Engineer's and Architect's Journal. His first productions in general literature were in the shape of a series of letters on the 'Proper Sphere of Government,' pulslished in the Nonconformist newspaper in 1S42, which were some time after reprinted as a pamphlet. From the close of 1845 to the middle of $185 \tilde{3}$, he was engaged on the Economist, then edited by the late James Wilson, N.P.; and during this time he published his first considerable work, Social Statics. Shortly afterwards, he begau to write for the quarterly reviews, most of his articles appearing in the Westminster, and others in the North British, British Quarterly, Edinburgh, Medico-chirurgical,
ic. In 1555, appeared his Prineiples of Peycholog!. In isin, he commenced the undertaking on which he is at present engaged -a connected series of philosophical works, designed to unfold in their natural order the prineiples of liology, psychology, sociology and morality. Five volumes of the scries are completed: First I'rinciples, Principles of Biolom (2 vols.), and Principles of Peycholony (: vols. is7l-1872). Mr S. displays great knowledge and philosophieal originality. He has applied universally, and carried out into systematic detail, the theory of Evolntion or Development.

SPERMATOZO'A (derived from Gr. sperma, seed, and zoa, living ereatures) is the term given to the true fertilising agents oceurring in the male generative organs. They appear to be formed from the epithelial lining of the tortnous seminal tubes, of which the organ known as the fistis is essentially compresed. At the period of puberty in man, and at certain periods anumally in other animals, the seminal tubes are seen to be filled with cells, from which the spermatozoz are developed. Withont describing the various changes that ensue, we may observe, that the spermatozon are finally set free by the bursting of the cell-walls, and arrange themselwes in parcels, symmetrically placed, with tho so-called heads in one direction, and the tails in the opposite direction. In the human subjeet, the spermatozoa may be described as elear, hyaloid bodies, each of which consists of a dilated prortion, the head or body, from which a long tail, or filament, issues. The head is flattened from side to side, and of a conical form, the pointed extremity being anterior. Tho length of the spermatozoa is about $\frac{1}{0}$ th of an inch. The spermatozoa of different animals vary extremely in size and form; and for a detailed aeconut of these bodies, in different classes of auimals, we must refer to the article 'Semen,' in the Cyclopedice of Anatomy and Physiology. It was formerly supposed that spermatozoa were independent organisms (like the infusoria, for example), but it is now known that they mnst be regarded as epithelial cells (or perhaps nuelei), modified in structure, and endowed with speeial properties. That the integrity of the spermatozoa is essential for the process of impregnation, is a fact that cannot be calleal in question; but of the nature of the force which they communicate to the ova, we know nothing.

SPHYGMOGRAPH, an instrument by whieh we aseertain, and permanently record, the form, force, and frequency of the pulse-beat, and the changes which that heat undergoes in certain morbid states. This instrument consists of two essential parts : (1) Of two levers, one of which is so delicately adjusted on the vessel the pulsation of which it is desired to examiue, that on each expansion of the vessel the levor undergoes a corresponding slight elevation : this lever communicates by a perpendicular arm with a sceond, to which it transmits the impulse received from the vessel; the extremity of this sccond lever is armed with a pen-point, which records the movements thus indicated on a movable plate, controlled ly the second part of the instruwent. (2) The second portion consists of a plate, moved by wateh-work, and hearing a strip of paper on which the sphymographic tracery is formed.

Mode in which the Tracery is formed.-As the pulse transmits through the levers a vertical movement to the pen-point, and the plate, on which the tracery is formed, is moved steadily across the penpoint, an undulating line (fig. I) is the result: the hright of the elevations indicating the strength of the pulse; and the number of the elevations dclincated in the time the jen takes to travel, its frequency:

Figs. 1, 2, and 3 are fae-similes of sphygmographic tracings : of these, fig. I is the traeing presented by a matural pulse; figs 2 and 3 are morbid. The latter are excellent cxamples of the tracings produced by

Fig. 1.
the pulse at the wrist in two common forms of eardiac disease, and exhibit the mamer in which the tracing is modified in diseased states of the circulatory system. Fig. - represents the pulse of a patient suffering from an incompetent state of the valves guarding the orifico of the aorta, the great ressel couveying blond from the heart. The blood, in such a ease, when propelled into the ant:i. distends it, and eommunicates a pulse thronghout

Fig. 』.
the arterial system. When the vessel again contracts, regurgitation takes place iuto the cavity of the heart, as the valves, which shouk prevent this regurgitation, and maintain the arterial tension, are unable to perform their function. The pulsebeat is accordingly abmpt, and of slort duration, and the sphygmographic tracing presents a series of abrupt elevations and depressions. Fir. 3 represents the pulse met with in a different form of

Fig. 3.
cardiac disease, in which the valves are so affected as to obstruet the passage of the blood into the circulation: the effect of this on lthe pulse is to remder its beats weakly marked and irregnlar; and in the sphygmographic tracing, the elevations are diminished in beight and regularity. The pulse, in extreme forms of this lesion, is represented in sphygmographic tracing by a slightly waving line.

SPI'THEAD FORTS. The troubled state nf European politics whieh gave rise in 1859 to the Volnateer movement, led also to the recoumendation of an extensive plan of defences for the arscnals and const. A Board of Commissioners drew np a scheme for these defences, to cost about $£ 5,000,000$, of which a sum of $£ 2,000,000$ was for l'ortsmonth, Spithead, and the neighbouring coast. At present, the entrance to the important arsenal and dockyard at Portsmonth is defended by Fort Monckton nin the Gosport side, Sonthsea Castle on the opposite side, Cumberland Fort at the entrance to Langston llarbour, Lumps and Eastney Forts between the two last named, and some defensive lines between the island of l'ortsea and the mainland. $£ 550,000$ was voted in 1560 as a beginning, to increase the number and stregth of these forts, to build detached forts on shoals in the sea between the mainland and the Isle of Wight, and to raise fortified lines on Portsdown Hill (the principal work beine Fort Sonthwick), wholly nortliward of Portsmouth Harbour. The works were commenced; but
the often-conflicting lessons furnished by the American war led to much delay and endless rariations of plan.

The National Defence Commissioners had proposed fire advanced forts on the shoals known as Horse Sand, Noman or No Man's Land Shoal, Sturbridge Shoal, Spit Point, and a point intervening between Horse Sand and l'ortsea 1sland. But after much discussion and numerous alterations of plan, it was only in 1864 that it was determined to proceed with the foundations at least of twothe Horse and the Noman forts. The foundation of each fort consists of rings of stone-work, laid on the levelled bed of the shoal, tapering a little upwards from a width of 54 feet to oue of 43 feet; the outer diameter of the ring gradually lessening from 231 to 213 feet. From 20 to 15 feet of submarine masonry is required. Outside the rings of stone are layers of rubble, to protect the stone-work from the action of tidal rush. In the same year, 1861, which placed in abeyance all the Spithead forts except the Horse and the Noman, the construction of a small fort was begun beyond Spithead itself, but near the entrance to Brading Harhour in the Isle of Wight ; an oval fort of 120 feet by 109 , built of granite within a ring of caissons sunk in the sand.

All this time the government had not determined which of three modes to adopt for constructing the forts, the foundations of which had thus been com-inenced-whether to form them entirely of iron; or of granite faced with iron, like the forts constructed by the Russians at Cronstadt; or simply of granite, leaving the facing for after-consideration. The plan most in favour with the government in 1S66 was to erect on each of the foundations at Spithead a revolving iron fort or tower of enormous magnitude and strength.

Circumstances in 1567 inducel the government again to pause. Experiments on the Rodman 1 -inch and $\simeq 0$-inch guns led some engineers to beheve that no iron casing for forts could resist shot of 500 lbs . to 1100 lbs. from such ordnance; while the rolling of an armour-plate 15 inches thick (see Armourplates in SUPP.) revisel the hopes of those who believe that armour will eventually vanquish guus. Finally, the forts are (1873) nearly finished, of a granite core, surrounded by a great thickness of iron plates, which offer a smooth cylindrical face to the enemy. Abore each fort are revolving turrets of great strength, carrying 35 -ton guns, which throw shells of 700 lbs .

STANFIELD, Clabison, a distinguished painter, was born of Irish prarents, in the town of Sunderland, about the year 1793. At an early period of his life, he went to sea, and made frequent long royages, among which was that to China. In the China seas, he passed some years of his life, and serred for a time in the same ship with Donglas Jerrold; S. in the capacity of a common sailor, and Jerrold as a midshipman. While thus engaged, S. exhibited considerable talent both in pranting and drawing. The first person of public note, however, to observe S.'s genius as a painter was the celebrated Captain Marryat, who met with him in the Mediterranean, serving in a king's ship as captain's clerk. S. and Marryat afterwards became intimate; and in 1540 the norelist employed the painter, then hecome famous, to illustrate his Poor Jack. S. left the nary, in consequence of an injury to his feet, through a fall from the fore-topgallant mast-bead of his ship. He then took to scene-painting as a means of earning his bread. His tirst efforts in this direction were made in the Old Royalty Theatre, Wells Street, Wellclose Square, in the east end of London, about the year 1\$1s. He was afterwards
employed at Drury Lane Theatre, and here it is said that he produced some of his most extraordinary effects. He carried on this occupation until the year 1827, when he tinally ahandoned it, except on rare occasions. S., while painting for the theatres, thad by no means neglected easelpainting. The first picture by him that attracted any considerable notice was ' Market-hoats on the Scheldt, ${ }^{\text {a }}$ exhibited at the British lastitution in 1826. The picturesque grouping, variety of figures, and gay costumes were much admired. His 'Wreckers off Fort Fionge, Calais,' exhibited in the following year, also at the British Institution, was even more successful. In 1S2S, he obtained from the British Institution a prize of fifty guineas for another of his pictures. In 1S30, S. made his first excursion on the continent, and in the same year exhibited at the Academy his ' Nlount St Hichael, Cornwall,' which placed him at once in the foremost rank as a marine painter. In 1823. S., in conjunction with David Roberts and others, founded the Society of British Artists. His election to the Academy as Associate took place in 1832; and in 1835 he was chosen I..A., in conjunction with Sir William Allan. In 1S33, S. exhibited at the Academy the first of a series of pictures of Italian scenery, painted for the Marquis of Lansdowne for the banqueting-room at Bowater. In 1834, he commenced a similar series for the Duke of Sutherland. In 1536, he exhibited 'The Battle of Trafalgar,' painted for the Senior Cnited Service Club; and in 1S41, his celehrated 'Castello d'Ischia,' engraved by the Art-union in 1S44. In 1S43, he sent to the Academy " Nlazerbo and Lucello, Gulf of Venice,' said to be one of the finest landscapes he ever painted. 'A Skirmish off Heligoland' (1867) was S.s last contribution to the exhibitions of the Academy, of which he was so distinguished a member. His great merit lies in the skilful combination of land and sea in the same view. Man and the works of man are not disdained by him in his portraiture of nature, and there is frequently a poetic feeling of the, highest order in some of his conceptions, as in his pictures of 'The Abandoned,' and 'The Wreck of a Dutch East Indiaman.' S. died on the l8th of May 1867.

STA'TEN ISLAND, an island off the south-east point of Tierra del Fuego, from which it is separated by the Strait of Le Maire. It is ahout 45 miles in length from east to west, and about 10 miles at its greatest breadth, its shores much indented. Its eastern extremity is Cape St John, in lat. $5 t^{\circ} 42^{\prime} \mathrm{S}$., and long. $63^{\circ} 43^{\prime} \mathrm{W}$. The surface is mountainots, descending to the sea in steep slopes and precipices; its general character similar to that of Tierra del Fuego.

STAVA'NGER, a seaport town of the west coast of Norway, in the stift of Cbristiansand, 35 miles north-west from the Naze, and 100 miles south from Bergen, on the west side of a wide and sheltered bay of the Bukke-fiord. It is a very ancient town, with a rery fine old Gothic cathedral, called St Swithin's. S. has cloth-manufactorics and distilleries. Ship-building is carried on. There is a considerable export trade in timber, oak-bark, lobsters, herring, and stock-fish. Pop. 12,000.

STA'TESACRE (Delphinium staphisagria), a species of Larkspur (q. г.), a native of the south of Europe. The seeds hare been used in medicine from ancient times. They are too riolently emetic and cathartic to be safely employed; but in powder they are applied to cutaneous eruptions, and are used for killing lice. Their properties depend upon an alkaloid, Delphinia ($\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{NO}_{7}$), which is now used in medicine insterd of the seeds, chiely in rheumatism and neuralgia.

STEAM-CARRLAGF-STEELL

STLAM-CARRTAGE. It has been a favourite idea for many years with amateur and professional meclanicians (especially the former) to make a light earriage which could be used upon ordinary roads, and which should contain a steam-engine and wiler to propel itself. In spite of imnumerable attempts, no permanent success has yet been olstained in this direction, notwithstanding that sreat progress has been made in constructing steam traction engines for common roads. The faet seems to be, that while a self. propelling stean-carriage to carry only the weight of a passenger or two can be made without mnch ditficulty, its cost will be proportionately so heary, and the trouble of keeping it in order as well as of working it, so great, that it will not succeed commercially.
The true application of steam upon common roads is in the drawing of heavy loads which would otherwise require an inconveniently large number of horses. Engines for this purpose are called traction-engines, and their use, notwithstanding determined, and too often irgorant, opposition, seems to be yearly on the increase. Traction-engines may le divided into two classes-those with rigid tires on their wheels, and those with flexible tires. The former class is the older, and includes many ingenious but mistaken contrivances for laying down what was equivalent to an endless railway for the engine to run upon, which was at one time thought ly many essential to its success. The hest engines at present made with rigid tires are those of Messrs Aveling and Porter of Rochester, which are simple and substantial in construction, and are used largely both in this country, and abroad. Of the second class of traction-engines, those fitted with Thomson's patent india.rnbber tires, and by the inventor called road-steamers, are the only ones that have come into anything like extended use. These tires are siraply rings of india-rubler, four or five inches thick, stretched over the rim of the wheel, and protceted by a flexible circle of steel shoes from being damaged by stones, \&e. The advantage of flexible tires is the greater adhesion (in proportion to weight) which they give to the engine, and the saving the machinery from shocks and jars. They will doubtless he still more largely used when more lengthened experience has periected their construction, hut the great cost of the india-rubber has hitherto much hindered their extended adoption.

STEAM-CRANE. The application of steam to the working of cranes was an obvious one, and is now universal where much boisting work lass to be loue; it not only effects a great saving in labour, but eauses the work to be much more guiekly done, a consideration quite as important. Steam-cranes and winches are now almost invariably used on board all large steam-boats, both for loading and unloading, heaving the anchor, warping the ship along by means of a calle, and other purposes. When working on a wharf, and in many other situations, it is often very convenient that the crane should he morable, so that it may go to its work in the multitude of cases where that arrangement is more convenient than the converse. For this purpose it is mounted on a plain railway truck, either of wood or iron, the truek being generally provided with clamps at the ends, by which it aan be firmly sceured to the rails when lifting Weights. The balance construction, now universally adopted for portable cranes, was invented or suggested by the late Mr M. W. Thomson, C.E., in 15iG-its essential feature being the use of the boiler as a connterpoise to the weight to be lifted,
as shewn in the figure. The principal parts of a steam-crane are: 1. The looier, which mast be of some very simple construction, as it has so frequently to be worked with excessively dirty water : \because The framing, which is generally made of eastiron, and supports the boiler, the engine and gear;

and the jik; 3. The engine (which has almost always two small cylinders, and is fitted with reversing gear), and the pinions, wheels, drums, de., for the hoisting and other motions; 4. The 'jib' (cithor of wood or iron), over a pulley in the top of which the chain passes, and the purpose of which is to enahle the different objcets to be lifted quite elear of the ground, and deposited, when neeessary; on trucks, \&c.; 5. The pillar, which is firmly attached to the truck, and which, passing upwards through the centre of the frame, forms the pivot on which it turns round; 6. The truck itself, which supports the whole machine. If the erane is stationary, the trmek, of course, is not required, the bottom of the pillar being imbedded in masonry; and for large cranes the boiler is generally male separate from the machine itself, and sometimes the engines also. A portalle halanee steam-crane, like that in the engrav. ing, is, when complete, fitted with the following motions:]. Gear for hoisting, generally with two or more speeds, to le used according to the weight to be lifted; -. Gear for raising or lowering the outer enel of the jib; 3. Gear for slewing the jib (with boiler and frame attached to it) : 4. Gear for propelling the truck along the rails. Our illnstration shews a complete and well-designed crane of this kind, made by Messrs Alexander Chaplin aut Co., of the Cranstonhill Works, Glasgow: It will lift from 5 to 7 tons, accorling to the prosition of the jib.

STEELL, Joms, R.S.A., an eminent Senttish seulptor, the son of a carver and gilder in Jilinburgh, was born at Aberdeen in 1804. He receivect his education as an artist at the Edinlurgh Aeademy, and afterwards at liome. On returning thence in 1S:30, he exceuted a colossal group of 'Alexander and Bucephalus,' which was instantly recognised as a work of great merit. The promise of this early work be has since amply fultitled; and is now admitted to stand in the front rank of his profession. His chief works are in Elinburgh: the colossal figure of the Queen erowning the front of the Lioyal Institution, which procurei him the honorary appointment of Sculptor to Her Mlajesty in Scotland; the statue of Scott in the Scott monument,
a commission which was won in competition; the equestrian statue of the Duke of Wellington (1852), and statues of Professor Wilson and Allan Ramsay (1S65). In 1573, a dluplicate of the statne of Scott was erected in the Central Park, New York.
STOCK-BROKER, or SHARE-BROKER, a person employed in buying and selling stock in the public home and foreign funds, also in stock or shares of joint-stock companies. In most of the principal towns stock exchanges are established, and the stock or share brokers are members of such exchanges, and are bound to transact business in terms of the rules and regulations of the exchange to which they belong. In London, in addition to ordinary brokers, there are what are called sworn brokers, who require a license from the city corporation, for which certain fees are exacted, before being entitled to transact business in the public funds. In the provincial exchanges, the brokers require no license, nor do they pay any fee to government or other authorities. The charge for brokerage or commissions raries from $\frac{1}{3}$ in consols to $\frac{1}{2}$ ner cent. in railway stocks; the rates for shares being charged according to the amount of the share, and in accordance with a scale adopted by the stock exchanges.

SUEZ CANAI. In the former article on this subject, the nature of the scheme was briefly described, and illustrated by a small map; and the progress of the works noticed down to the year 1865. In this place, some of the features will receive a little further explanation, now that the canal is finished and in operation.

The Port Said Entrance.-Port Said or Said, a town now containing 10,000 inhabitants, had no existence in 1862. It became the dépốt of the Company, the metrojolis of vast bodies of lahourers and other persons employed on the works of the canal. As the Mediterranean Sea is very shallow near this point, au artificial deep channel had to be made, bounded east and west by piers stretching far out into the sea. Stone for these piers was, in the first instance, brought from a long distance; but afterwards artificial stone was made on the spot, consisting of two parts of sand and one part of hydraulic lime ground into a paste, and poured into wooden boxes or moulds. When the misture solidified, the mould-boards were removed, and the solid blocks of artificial stone were left from three to six months in the open air to dry and harden. The blocks contain 10 cubic mètres each, weigh 20 tons, and were made at a contract price of 42 francs per metre culde. The western pier has a length of 7000 feet, and the eastern of 6000 feet: they are 4600 feet apart at the shore, but gradually approach towards each other, so that their outer ends are only 2300 feet apart. The western pier is continned in au are of 1100 yards extent, so'as, with the eastern pier, to shelter the harbour from all winds. Within this outer harlour is an inner port, s70 yards by 500 , which is kept at a uniform denth of 30 feet, by means of steam-dredging. The lighthouse, with its electric light, is 180 feet high.

From Port Said to Temsal Lake.--From Port Said, the canal crosses about 20 miles of Menzaleh Lake, a salt-water shallow, closely resembling the lagoons of Venice, haring from 1 to 10 feet depth of water. The canal through this lagoon is 112 yards wide at the surface, 66 yards at the bottom, and 26 feet deep. An artificial bank rises 15 feet on each side of this channel. Beyoud Menzaleh Lake, hearier works begin. The distance thence to Abu Ballah Lake is 11 miles, with a height of ground above the level of the sea varying from 15 to 30 feet. Crossing the last-named lake, there is
another land distarice of II miles to Temsah Lake, cutting throngh ground to a depth varying from 30 to 70 or S 0 feet; and then 3 miles further across this little lake itself. Ismailia, on Temsah Lake, is regarded as the central point of the canal. While the canal was being made, it grew up rapidly from an Arab village to a Freuch town, with the houses of engineers and managers, hotels, shops, cafés, a theatre, and a central railway-station-the tents of the Arab labourers forming a distinct town at a little distance.

The Fresh-water Canal.-This extends from the Nile to Temsah Lake, and was constructed purposely to supply with water the population accumulating at various points on the line of the canal; but is also nsed by small, sailing-vessels. This fresh-water or 'sweet-water' canal comprises three portions or sections: (1) from the Nile east or north-east to Ismailia, on Temsah Lake ; (2) from Ismailia, nearly south to Suez, on the western side of the great ship or maritime canal ; (3) from Ismailia nearly north to Port Said, also on the west side of the ship canal. The first and second of these sections are really canals, large enough to accommodate small steamer and barge traffic ; but the third section consists simply of a large iron pipe, through which the water is conreyed to the several stations. Plugs are inserted in the pipe wherever needed, to allow water to be drawn off for everyday wants.

From Temsah Lake to Suez-The route crosses Temsah Lake to Toussoum and the Serapeum cutting, throngh a plateau 46 feet abore the sea, where the waters were let in by the Prince and Princess of Wales, February 28, 1869 . There is a space of 8 miles from Temsah Lake to the commencement of the Bitter Lakes, which hacl to lee dug to a depth varying from 30 to 62 feet, according to the undulations of the surface. In these deep cuttings, owing to the great width of the canal, the quantity of sand to be dug out (for it is mearly all sand, though sometimes agglomerated with clay) was enormous, requiring the constant labour of a large number of powerful dredging machines and elevators. At El Guisr, or Girsch, occurs the deepest cutting in the whole line, no less than S5 feet below the surface; at the water-level it is 112 yards wide, at the summit-level 173 yards, from which the vastness of the gap may be estimated. In passing through the Bitter Lakes, there was more embanking than excavating to be done, seeing that the bottom of this region is only two or three yards alove the intended bottom of the great canal. From the southern end of the Bitter Lakes to Suez, a distance of about 15 miles, there is another series of heavy cuttings through the stony plateau of Chalouf, varying from 30 to 56 feet in depth. Where cutting is thus difficult, the surface width is reduced cousiderably from the regular width of 327 feet. The canal is intended throughout to be 72 feet wide at the bottom, and 26 feet deep.

On Nowember 16, 1860, the S. C. was opened in form, with a procession of English and foreign steamers, in presence of the Khedive, the Empress of the French, the Emperor of Austria, the CromnPrince of Prussia, and others. On Noresuber 27, the Brazilian went through; a ship of 1509 tons, 350 feet loug, 30 feet broad, and draming from $17^{\frac{1}{2}}$ to $20 \frac{1}{2}$ feet of water. Since then, the canal has continued in successful operation, and passages hare beeu made almost daily, chiefly by British ressels. The plated turret-ship, Mragdala, passed through in January 1871, on her way to Bombay. In IS70, 491 ships, of 436,6 IS tons, passed through ; and in 1871, $76 \overline{3}$ ships of about a million tons. The great actrantage of the canal is, of course, the shortening of the distance between Europe and India. From

SUEZ CAN゙AL-SULPIIUROUS ACID.

London or llamburg to Combay is ly the Cape about $11,2 \pm$) miles, but by suez only $63: 32$-that is, the voyage is shortened by $2 t$ days. From Mlarseille or Genoa there is a saving of 30 days; from 'Triest, of 37. The rate at which stchmers are allowed to pass through, is from 5 to 6 knots an liour. The canal charges are, or were recently, 10 franes per ton register, and 10 franes per hoad for passemgers; yet so many ressels make use of the canal that the average receipts are about $£ 1000$ per day. For $15 \% 1$, they are stated at about 10 million franes,

SU'LPHULiOUS ACII) some years ago became one of the most popular articles in our Pharmacopaia. This sudden popularity was mainly due to the researches of a Scottish provincial physician, Dr Dewar of Kirkealdy, who, from beginning his experiments on eattle during the period of the late pestilence, extended them to other animals and to man, and finally obtained a series of results, which, if they stam the test of experience, will insure for him a place in any future listory of medicine. There is, of course, nothing new in applying sulphur-fnmes-which in reality are composed of snlphurous acid gas-as a disinfectant. The classical scholar will recollect that Ulysses employed them to remove the unpleasant smell arising from the dead bodies of I'enclope's murdered lovers. 'Bring brimstone, the relief of evils,' he exclaims, 'and bring me fire that I may sulphurise the house.'-Hom. O7. xx. 481, 482. It is also recorded by Ovid (Fusti, iv. 735) and other writers that the shepherds of Italy yearly purified their tlocks and herds with 'the lhe swoke of burning sulphur.' I'rofessor Graham's remark, that of gaseous disinfectants, sulphurous acid (obtained by burning sulphur) is preferable, on theorctical grounds, to chlorine, and that no agent eliecks so effectually tho first development of animal and vegetable life, may be said to contain all that was known with regard to the medicinal walue of this gas, till Dr Dewar began his investigations. In his experiments in connection with the cattle-plague, he found that the most safe and convenient apparatus consists of a chafer twothirds full of rel cinders, a crucible inscrted in the cinders, and a piece of sulphur-stick. A piece of sulphur as large as a man's thmol will burn for nearly twenty minutes, and will suffice for a cowhouse containing six animals; and it appears undoubted that if there be due ventilation, this process may be performed four times a day for at least four months with positive advantage to the animals. When this system had been efficiently carried out -and it has been largely tried by his friends-no case of illuess, not to say of death, oceurred. In Mr Crookes's Report On the Application of Disinfectants in arresting the Sprend of the Cattle-plague, that able chemist observed that the value of sulphurons acid in arresting the progress of the eattle-plagne has been praved beyond a doubt by the experiments of Dr Dewar, and my own results cutirely confirm his.' llis experiments in relation to the eattle-plague led Dr Dewar to the further discovery of the ralue of sulphur fumigation in other departments of veterinary medicine. l'eripneumonia, ringworm, mange, are amongst the diseases which rapidly disarpear under its influence; and in the sudden undetived illnesses known in Scotland as 'drows' and 'towts,' to which most of our domestic animals are liable, sudphurnus funigation, if applici at the outset, rarely fails to cut short the attack.

In medical practice, there are three different forms, independently of the sulphites, in which sulphurous acid may be employed-riz. (1) As the sulphurous acid of the British Pharmacopocia, which contains 9.2 per cent. by weight, or about twenty times the volume of sulphurous acid gas
dissolved in water; (2) in the form of spray, which escapes from the preceding enmpound mider the action of an apparatus called a Spray-producer ; and (:3) as a gas evolved lyy sprinkling at iuterrals small quantities of ' llowers of sulphur' on red-hot cinders placed on a commou shovel, resting on a stool in the middle of the room. A mixture of eqnal parts of sulphurous acid and water is highly recommended lyy Ur Uewar as a healing agent in all cases of 'breaches of the skin,' as primary wounds, whether resulting from injuries or from surgical operations, in ulders, burns, bell-sores, chapped hands, chilblains, sadmle-sores (whether of man or beast), sore nipples, and in cases of lruises, snch as black-eye, \&e. Moreover, in erysipelas, its soothing properties, if diluted with two or three parts of watcr, are very striking. According to Dr Dewar, the feverish irritalility uf young children is speedily relieved by dropping from time to time a few minims (5 to 30 , according to age) of the acil on a few fulds of muslin fastened on the breast: here, lowerer, the action is not local. but is due to the evolution of the gas which is inhaled. Amongst the cases in which the acid is serviceable, when applicd in the form of spray or inhaled as gas, are astlma, bronchitis, eatarrh, croup, diphtheria, facial neuralgia, laryngeal affections, llithisis (at all crents as a palliative), scarlatina, and typhoid. Dr Dewar ascribes the healing action of sulphurons acid to its power of destroying fungi. I'hat the acid has this power, we freely admit, but we cannot so readily admit the correctness of his view that all the diseases in which he las found it serviceable (including piles and chilblains) are dependent on fungous growths. Dr Dewar reports a ease of severe sciatioa, iu which immediate and perfect relief was afforded ly the injection of an ounce of sulphurous acid in a breali-fast-cupful of grnel into the rectum. There is one affection of this class, to which Dr Dewar does not refer, in which it has been preseribed with adran-tage-viz., the form of gastric disorder in which Sarcina lentriculi (g.v.) occurs in the vomited matter, the dose being laalf a drachm, largely diluted with water.

None of the sulphites or hyposulphites lave as yet been introduced into the P'harmacopacia. Wre notice them here because their action is supposed to depend upon the liberation of sulphurous or hyposulphurous acid when the salt comes in contact with the acid jnices of the stomach. It is mainly to 1)r Polli that we are indebted for the introduction of the sulphites and hyposulphites of the alkalies and alkaline earths (soda, potash, and magnesia) into medicine. From the year 1557 to the jresent time, he has deroted almost all his time to the study of these agents. Ilis lahours are bricily summed up as follows by Dr Sanson in an cxcellent Memoir on 'The (yerms of Cholera, and the Mleans of their Destruction,' ${ }^{\text {mblished Jamary } 2.2,156 S \text {, }}$ in the Medical Press and C'irculur: 'It was found that animals could, without any apparent ill effects, swallow and absorb large doses of the sulphites. It was then observed that when the animals were killed, they long resisted the putrefactive process. Another series of experimentsand in this series 300 togs were the basis of the deductions-shewed that the sulphites exerted a prophylactic and curative power when septic poisons were introduced into the economy. Then, as regards the human subject, it was found that the stomach would tolerate large doses of the sulphites of sola or magnesia. They were tried in the various frup tive fevers, juternittent, dinhtheria, tyThus, typhoil. cholera and choleraic diarrhoen, nyæmia, puerjeral fever, dissection wounds, malarial infection, \&e. The records of cases treated in this way shew an

SUMNER-SWATOW.

extraordinary amount of success.' In a paper published by Dr Polli himself in The British Medical Journal for November 16, 1867, he states that since the promulgation, in 1861, of his views regarding the therapeutic value of the sulphites, no less than 158 papers on the subject have appeared ; and with the exception of fire or six containing certain criticisms on his labours, 'all the remainder confirm, in the strongest terms, by many hundreds of detailed observations, the value of these remedies.' A scruple of the salt dissolred in a wine-glassful of water flavoured with tincture of orange-peel, is the average dose, and it should be taken every four hours ; and iu some cases, as in typhoid, a grain of quinine may be advantageously added to each dose. M. de Ricei (Dublin Ouarterly Journal, November 1S66) prefers the sulphite of magnesia on the grounds, that it is less unpalatable, and contains a larger proportional quantity of acid than the soda salt. He predicts (and Dr Sanson and other physicians of repute agree with lim) that eventually the treatment of zymotic discases by the administration of the sulphites will be as fally recognised as that of ague by cinchona.

In consequence of the powerful antiseptic properties of sulphurous acid, either in the form of gas or gaseous solution in water, and of the sulphites, these substances have been employed for the purpose of preserving meat from putrefaction. A joint of meat or a fowl submitted to a daily sulphur fumigation, may be kept fit for use for many weeks. The bisulphite of lime has been found to be the most applicable of the various compounds of this class as a preservative; and Messrs Medlock and Bailey hare patented a method of preserving meat by means of a preparation of this salt. In hot weather, a few drops of a strong solution of this salt will serve to keep fresh a pint of somp, jelly, milk, \&c. Dr Dewar patented a method of presersing uncats by sulphurous acid, or some of its conpounds; but as yet the process has not come iuto extensive use.

SUMINER, Charles, American statesman, was horn at Boston, Massachusetts, Jannary 6, $1 \$ 11$. His father was a lawyer, and for many years sheriff of the county. He was educated at Harvard College, where he gradnated in 1530 ; studied law at the Cambridge Law School; was admitted to the bar in 1834 , and entered upon a large practice; edited the American Jurist ; published three volumes of Sumner's Reports of the Circuit Court of the United States; gave lectures at the Law School, but declined a proffered professorship; and from 1837 to 1840, visited England and the continent of Europe. On his return, he edited Vesey's Reports, in 20 vols., and in 1S15, made his debut in politics in a 4 th of July oration, on the True Grandeu of Nations-an oration against war and the wilr with Mexico, pronounced by Mr Cobden the noblest contribution by any modern writer to the canse of peace. Identifying himself with the Free-soil party, he was, in 1550 , chosen U.S. senator from Ilassachusetts, in place of Daniel Webster, where he opposed the Fingitive Slave Law, and declared 'freedom national -slavery sectional.' In 1S56, he made a two days' speech on 'the Crime against liansas,' some of which was of a violestly personal character, in conseqnence of which he wis attacked in the Seoate Chamber, May 2.3 , and severely beaten ly Preston C. Brooks, and so sererely injured that his labours were suspended for three or four years; during which he visited Europe for repose and health. lieturning to the Senate, he sulported the election of Mr Lincoln, urged upon him the proclamation of emancipation, and became the leader of the Scnate, as chairman of the Committee on Foreign Pelations.

Of late he has in great measure lost the sympatily of his political friends, and has been removed from the chairnanship, lont without abandoning his republican opinions. He has published White Slavery in the Barbavy States (1853); Orations and Speeches (1S50) ; Recent Specches and Addresves (1S50), \&c.

SUPPLE JACK, a name giren in the sonthern parts of the United States of America to the Berchemia rolubilis, a twining shrub of the natiural order Rhamnacea, which is found as far north as Virginis. It has oval leaves, small flowers, and riolet-coloured berries. It abounds in the Dismal Swamp and in similar situations, and ascends to the tops of the highest trees. 'The genus Berchemia contains a number of species of twining shrubs, natives of warm climates in lifferent parts of the world.-The aame S. J. is also given in the West Indies and tropical America to Serjania (or Seriana) triternata, a shrub of the natmal order Sapindacea, with a long, flexile, woody stem, which climbs to the tops of the highest trees, and is nsed for walkingsticks. It has poisonous properties, and is employed for stupefying fislu.

SVENIGORO'DKA, a town of Pussia, in the government of Kiev, 150 miles south from Kiev, ou in afiluent of the Sonthern Bug. Гop. (1867) 11,201 .

SWAMMERDAM, JAN, a distingnished naturahist, was born at Amsterdam, 12th February 1637. S., almost from his boyhood, shewed the greatest eagerness in the study of natural history. Haring entered upon the stndy of medicine, he particularly occupied himself with anatomy, and continued unremittingly to collect insects, to inrestigate their metamorphoses and habits, and, by the aid of the microscope, to examine their anatomic structure. He took his degree of Doctor of Pbysic at Leyden, in 1667, and entered upon the practice of his profession, which his bad health, however, soon compelled him to relinquish. He continued to be chiefly engrossed with anatomy and entomology. His treatise on Bees appeared in 1673; a treatise on Ephemera in 1675. It is impossible, however, for us to enumerate his many fublications, all of which were first published in Dutch, and afterwards translated into Latin, and many of them into English, French, and German. S.'s discoveries were very numerous, both in human and comparative anatomy. His skill in using the microscope was very great, and his manipulation of the most minute subjects extremely dexterous. He succeeded in giving dis. tinctness to the forms of very minute viscera, by inflating them with air; a method of his own inrention. It is melancholy to acld, that S., whe had always displayed strong religious feelings, and expressed them in his writings, was at last carried away ly the fanatical extravagances of Antoinette Bourignon (q.v.), begin to think all his former pursuits sinful, and relinquished them for a visionary religious life of mere meditation and derotion. His health rapidly declincd, and he died at Amsterdam, 17th Febrmary 1650 . No man of his time contributed more than S. to the progress of natural history and physiologs. He was the inventor of the method of making anatomical preparations by injecting the blood-ressels with wax, and also of the methot of making dry preparations of the hollow organs, now generally employed.

SW' ATOW, or CHAU-CHOU, a seaport towa on the coast of China, in the province of Quang-tung. 212 miles east-north-east from Canton. It is one of the ports which were opened to forcign trade by the treaty of Tien-tsin, and has a resident British consul. The trade is rapidly increasing. In 1S60,

SYME-TECHNTCAI EDUCATION.

the value of exports and imports together was $6,176,293$ ilollars ; and in 1564, it was 13,309,499 dollars. Opium is the chief article of importation, next to which rank cotton and woollen goods, metals, and cotton-yarn. The chief exports are sugar, rice, tobacco, and paper. S. is pleasantly situated on a sheltered bay.

SYME, JAMFS, was born in 1799 , in the county of Fife, and received a thorough education in art and medicine, in the University of Edinburgh. In his 19th year he began his anatomical studies under Liston, who appointed him his demonstrator. From 1825 to 1832, he lectared on Surgery in the Ediuburgh school, and, while generously refusing to lecture in opposition to his old master in the Edinburgh Infirmary, he established a hospital at his nwn expense, where he delivered a clinical course for four years. In 1831, appeared his well-known treatise on The Excision of Discased Joints: and in 1S32, his Principles of Surgery, which has since gone through many editions, and which has estallished his reputation as a teacher of the first rank. In 1833, he was elected to the chair of Surgery in the
university of Elinhurgh, which ho filled with the highest distinction. In 1847, he gave 11] his lialinburgh chair to fill that vacated in Lonlon ly the death of Liston; but collegiate misunderstandings induced him, after six months, to return to Bilinburgh. As an operator, Mr S. hall no sulperior ; as a teacher, he had no equal. Il is innovations in the practice of his art were characterised by so much ingenuity, controlled by scientific caution, that they were adopted by all really great surgeons. The best of his pulils, who are mumerons, anl seattered over every quarter of the globe, have been heard to declare that their soundest ideas in surgery are derived from Symc. Besides the works alrealy named, he was the anthor of valuable treatises on Discases of the liectum; on the Patholory imh 1'ractice of Surgery; on the Structure of the Urethra and Fistula in Perineo; on Incised Wounds; \&c. He died at Edinlurgh, June $20,1870$.
SZA'RVAS, a town of Hungary, in the county of Dekes, in a plain on the Kïrüs, 2: miles morth-east from Usongrad. It has a consiclerable trale in corn and cattlc. Pop. (1869) 22,4.16.

AI- IUA'N, a city of China, in the province of Shan-si, on the Fuen-ho, an affluent of the Hoang-ho, 250 miles south-west of Pekin. It is said to be about ten miles in circumference, fortificd and populous. Porcelain, iron wares, and carpets are manufactured.
TAVI'RA, a seaport town of P'ortugal, in the province of Algarre, 20 miles north east of laros, pleasantly situated at the mouth of the Sequa. T. has decaycd considerably since 1654, in which year, it is said, 40,000 people in the town and environs fell rictims to the plague. Pop. (1S63) $10,203$.

TCHERKA'SI, a tomn of Pussia, in the gov. of Kier, 100 miles south-east of the town of Fiev, on the Dnieper. Pop. (1567) 14,433.
TE'CHNICAI EDUCATION (Gr. teclne, art) means special instruction and training for the industrial arts. This subject has of late attained considerable importance, in conserquence of comparisons drawn in the Paris Exbibition between the manufactures of several continental nations and those of Great Britain. Some persons maintain, that owing to the establishment of schools for special instruction in industrial arts and manufactures, our neighbours are making much more rapid progress than we are. Hence, it is assumed that the government should at once establish schools for the especial training of pupils intended for manufacturing pursuits.

The subject of technical training is not, however, a new one in Britain; it was seriously started by the Council of the Society of Arts in Lendon in 1853 , when a committee of that body was appointed to take into consideration, and to report how far and in what manner the Society of Arts could aid in the promotion of a more gencral and systematic eultivation of arts, manufactures, and comincree. This committee did their work very thoroughly, and collected an immense number of opinions and reports from influential merchants, manufacturers, and teachers-all of whom insisted upon the want 746

of this clement in the education of the country. In June 1859, a minute was passed by the Committee of Council on Education, establishing a system of scientific instruction in the schools receiving government aid; and in consequence thercof, grants in aid of the salaries of competent teachers, and prizes to successful pupils, were guarantced. The following were the subjects determined upon as necessary : 1. Iractical and Descriptive Geometry, with Mechanical and Machine Drawing, and Building Construction. 2. Physics. 3. Chemistry. 4. Geology and Mineralogy (applied to Mining). 5. Natural History. Thus the goverument offerel the means for scientific instruction to all classes, and also furnished the stimulus of prizes to persevering students; and already some very important results have been produced by this system, which has developed a large number of evening-classes, and has attracted very numerous pupils, bath adult and juvenile, nearly all of whom belong to the artisan classes. The following table will at once shew this:

In the 212 schools, there are 560 classes for different subjects; and of the 10,230 students, 4520 came up for examination. This proves that we have a system already in good working-order, which only requires to be added to as necessity demands, in order to diffuse generally, amongst the classes most interested, a sound knowledge of elementary science. Besides the government plan of scienceclasses, there are many private establishments for a higher class of students, where technical subjects are well taught: foremost amongst these is the Training College at Chester, under the able superintendence of the Messrs Rigg, where every branch of mechanies is thoroughly taught in workshops on an extensive scale, in which the pupils can even
produce a steam-engine, and where also they learn carpentry and other useful arts. At this school, rery many young men have been educated during the last twenty ycars. Very little has been done for technical education by the Mechanies' Institutions, which ought naturally to hare striven more in this direction than any ether. But there is one institution of this class which deserres especial mention, from its great and mell-merited success, and for the benefits it has conferred upon a very large number of students, who rould otherwise hare had no opportunities of obtaining the sound instruction which has heen given to its wellattended evening classes: we mean the Watt Institution and Edinburgh School of Arts, which was established in 1521, with the intention of affording instruction to mechanics in the sciences bearing on their occupations. The subjects taught in the various classes are, Mathematics, Natural Philosophy, Chemistry, Modelling, Arithmetic and Algebra, Drawing, English, French,'and German ; and for many jears, the number of students has been between 700 and 800 annually. In this school, a small fee is required, admitting the student to the classes of Mathematics, Natural Philosophy, Chemistry, and English. It seems strange, and a matter also for regret, that so very useful a plan has not been adopted in other towns.
The technical schools of the continent have been called into existence by many circumstances which do not exist amongst ourselves, and which it is not desirable to enter into in this article; but much as they have beeu spoken of, they do not seem to have so large an attendance as might be supposed, and they are chiefly used by the upper classes. From a return, made in 1864, of the technical schools of Germany, Belgium, and France, the entire number of pupils in the polytechnic schools of all those countries was only 7151, of which 3000 were in Bavaria alone, where the want of gymnasia and the real-schools, so common in other parts of Germany, seems to drive students to the other class of schools.
From opinions lately collected, it is clear that on all sides it is felt desirahle to increase our means of science-teaching in public and proprietary schools, aud to endow chairs in our universities for teaching the higher branches of mechanics, mining, physics, practical chemistry, and the economic applications of raw prodncts of the animal, regetable, and mineral kingdoms.

Much information on this interesting subject may be obtained from the Reports of the Department of Science and Art; the Journal of the Society of Arts; and especially from the varions papers of D_{T} Lson Playfair, C.B., who has persistently kept the matter before the public ever since 1S51, and the lieport published by MIr Sanuelson.

TEJLCIGA'LPA, a town of Honduras, Central America, is situated on a table-land 3426 feet abore the sea, 25 miles south-east of Comayagua. T. is the largest and finest city in the state. In the vicinity are gold, silver, and copper mines; and in the north-west of the dep. of which T. is the capital, is the mountain of Agalteca, a rast mass of pure magnetic ore. Pop. 12,000.

TELLICHERRY. a seaport town and military station of British India, in the district of Malabar, 90) miles south-west of Seringapatam. The site of the town is very beautiful, and the neighbouring country highly productive, the low lands producing two, and in some cases three, crops of rice in the year. The cocoa-nut tree also grows in great abundance, and is put to many uses by the inhabitants. On account of its salubrity, Γ. has been called the Montpellier of India. There is a natural
breakwater abreast of the fort, formed by a reef of rocks running parallel to the shore, having a depth within suitable for ships of 500 or 600 tons. Pop. about 20,000 .

TEPI'C, a town of Mexico, in the state of Jalisco, on a height 400 miles north-west of the city of Mexico. T. is the residence, during the rainy season, of most of the wealthy inhabitants of the port of San Blas, about 25 miles distant. Pop. 10,000.
THEODOIE, king of Abyssinia, otherwise described as Negus, Emperor or King of Kings of Ethiopia, a prince whose extraordinary career has excited much interest since war was declared against him by the English government. At the time when the article Abyssinta appeared in this worl, the subject was not of much importance to English readers, and a few additional remarks are therefore necessary to explain the leading ercnts in the life of Theodore. Abyssinia forms, it will be recollected, a table-land, which, although lying within the tropics, has, owing to its great eleration, a cool and equable climate. Its inhabitants, who hare a Caucasian or European physiognomy, profess Christianity, acknowledge a bishop or abuna selected and consecrated by the Coptic patriarch of Alexandria, make use of a system of law based on the code of Justinian, and have otherwise preserred some share of the civilisation of ancient Rome. The Abyssinian Empire was at the height of its power in the 6th c., when it extended to the shores of the Red Sea, and even included a part of Southern Arabia. The Mohammedan conquests drore back the frontier to the limits of the table-land; and since the 7 th c., the inhabitants hare been engaged in a ceaseless warfare with negro tribes, and with the great Mohammedan powers. They have been surrounded on all sides by hostile races. The tradition of the great power of the Negus lingered in Europe throughout the middle ages; and although separated from the West, the Abyssinians continued to consider themselves one of the Christian and civilised communities. In the 15th c., when on the point of yielding to the invaders, they appealed to the Portuguese for assistance, and it was granted, on condition that they should abandon the rites of the Coptic Church, and yield unqualified submission to the pope. The promise was giren, and the invaders were driven back. The rojal family received the Roman Catholic priests, and professed the tenets of the Latio Church. They could not, however, induce the native clergy and the people to follow them; and their adoption of a foreign creed was the first step to the weakening of the royal power, which had been absolute for ages, and which rested on a firm basis of tradition and custom, particnlarly strong among a people in the stage of progress attained by the Abyssinians. The royal family still represented are of great antiquity, and are devontly beliered by their subjects to have sprang from Menelek, a son of Solomon and the queen of Sheba. The Absssinian Church certainly dates from the 4th c., when the first bishop, or abuna, settled at Axum. The abuna is appointed and consecrated by the Coptic patriarch of Alexandria, whose supremacy he recognises. The dissensions introduced by Catholicism in the 16 th c . were fol. lowed by incasions of the Gallas on the seuth, and the Turks on the north. The bitterness of the struggle with thelatter has been increased by the large contribution exacted hy the Egyptian government on the consecration of an abuna, and represented to be a tribute or acknowledgment of suzerainty. A frantic jealousy of the Turks among all ranks of Abyssinians is now one of the most prominent facts
in Aloyssinian politics. The decay of the royal pawer in the iGth e. led to a phenomenon Srequently repeated buth in India and Europe. Just as the Merovingian kings of France became mere titular monarels, the emperors of Ethiopia became 'jups plet kings.' 'They were chosen from the royal stock by the great fendatories, but retained the mere insignia of royalty. When the great chiefs coukl not agree in the selection of a monarch, any one who found himself strong enough would marel upon the capital, and place upon the throne one of the royal stock, and in his name retain supreme power, under the name of Ras (heal or chief), until in turn unseated ly a rival adopting the same course. In this way, there have been as many as twelve puppet emperors at one time, represcuting the same number of rival chiefs. The country has in consequence been kept in a perpetual state of revolution. From its great natural features, it must, however, he always divided into three leading parts: (1) Tigré, forming the northern promontory of the table-land, where the Geez, a Semitic dialeet, is spoken, and through which passes the chicf route to the Red Sea; (2) Amhara, the middle province, where the language is the non-Semitic Anharic, and in which is Gondar, the capital and seat of supreme power ; and (3) Shoa, a southern prolongation of the table-land, where the language is also Ambaric, but which is isolated from the rest of the country by intruding tribes of Gallas, an alien race. Among the miner provinces, the ehief are Lasta and Waag, Scmen, Gedjam, and Kuara. In the last century, Goeska, a Galla adventurer, entered Ambara, the central province, and securing possession of the puppet emperor, assumed the title of Ras, and fixed his family in power at Debra T'ahor. He was sueceeded by his son, and his grandson, Ras Ali, who, within the last quarter of a century, contirmed the power of his family by successful military enterprises against the frontier tribes and the great chiefs, and by the marriage of his mother, Waizero Menin, a beantiful and elever woman, to Johannes, the nominal emperer. Such was the success of Ias Ali, that his supremacy was aeknowledged by all the great ehiefs except Dejaj Herro of Godjam, and that amarchy scemed about to cease for a time in Abyssinia. It was then for the lirst time that relations were opened between the central province and England. So early as 1S10, while Great 13 ritain was engaged in her struggle with Napoleon, Mr Salt was sent as her envay to Abyssinia; but he went no further than Tigré, the lias of which was treated as an independent sovereign. When the power of the French was destroyed in the eastern seas by the capture of the Mauritius, and the ilestruction of the French settlements in Madagasear, the English gavernment ceased to take any interest in Abyssinia, and Mr Salt was recalled. One member of the English mission, however, a Mr Pearce, remained behind, and acquired the confidence of Dejaj Sahagadis, who, in IS16, on the death of Wralda Selasics, acquired the government of Tigré. The favour manifested by the prince last named to Einglishmen iadued the Church Missionary Society to establish a mission within his territories, with which was connected Dr Gebat, since Anglican Bishop of Jerusalem. Tigré was conquered, however, by Dejaj Oubié of Semen; and the missionaries, whe remained Caithful to the Lamily of the displaced chiefs, were compelled to leave the comntry. An opening was thus made for the Lioman Catholics. They seized the opportunity, and under Padre de' Jacebis, a very able Neapolitan, established themselves in Tigré, and sueceeded in making a strong impression on the population, among whom their leader became known as the

Abuna Iacob, and was invested with some slare of the veneration bestowed on the native almua. In consequence of the large sum exacted by the Egyptian government on the consecration of an abuna, the office had remained vacant for many years. To secure the inlluence of the mative churcli, however, Dejaj Oubié sent ia mission ta Eirypt to oltain the appointment of a new abuna, and the Padre de' Jacohis aecompauied it, to secure, if possible, the selection of a priest favourable to Jome. IIe was, however, thwarted ly the Coptie patriarel, who appointed Abba Salaua, a young man, partly educated in the English Church Mission at Cairo, and whe was afterwards to be mixed uI' with the fortmes of King Theodore. Shoa had also been brought into contact with Europe by is Pretestant missiou in 1838. Two years afterwards, the same country was visited by Major Ilarris; hit owing to deplorable jealousy, no permanent result followed. The first direct intereourse with Ambara, the central province, was brought about by Mr John Bell, an officer of the Indian navy, who had married an Abyssinian, the daughter of a chicf, and settled in the country. He had taken service in the army, in which he commanded the matchloekmen, and he had become the most trusted friend and adviser of Thas Ali. Me liked the country, and thought it conld be opened to English commerce and colonisation with incalcodable adrantage to both countries. In J842, he was visited by Mr Walter Plowden, a Calentta merchant, on his way to Earape frem India, to whom be communieated his schemes, and imparted his own enthusiasm. The two Vnglishmen beame bosom friends, and remained together live years in Abyssinia. In IS47, Mr Ilowden proceeded to England to lay his views before the English geverno ment. He was less snccessful than he expected; but he convinced Lord Palmerston that under lias Ali a ecntral and permanent government had been established in Abyssinia, and that it was desirable to open commercial relations with the country. Ile was appointed consul, but unfortunately his healquarters were fixed at Massowah, a seaport within the Egyptian frontier, a choice which at once excited the suspicion, and wounded the vanity of the Alyyssimians. On the $2 d$ of November IS49, a treaty was enterel into between Ras Ali and Mr Mlowden, and there seemed every prospect of a close conucction being establisked with this coumtry, when all that had been done was rendered useless by the rise of T., and the entire destruction of the power of lias Ali.
In the early part of the century, Fruara, a district of Amhara, south-west of Lake Tzana, was ruled by Dejaj Comfu. The brother of this frontier chief died young, leaving a widew in great poverty, and a son born in 1820, named Kassai, afterwards 'theodore. She was compelled to seek refuge with her boy in Gondar. There she lived in great obseurity, carning her bread lyy selling kosso, a speeifie against tapeworm. What her rank was, is cloul,tful ; and it is not known how far her son was justilied in elaiming for her descent from the family of the titular kings. Kassai was admitted to a monastery, where he spent many years; but his asylum was aiterwards attacked by an insurgent claicf, and le escaped with difficulty to Kuara. Ife joined the army of his uncle, then fighting the Turks; and he distinguished himself so much by courage, intelligence, activity, and tact, that lie oltained a wonderful influence over his fellow-soldiers. Dejaj Comfu died suddenly, and his three sons quarrelled. T'o settle their dispute, Birru Cioshu, ehief of Godjam, was called in. He entered Kiuara, and conquered the best part of it. Kassai, however, resisted him,

THEODORE.

and at the head of a numerous band of soldiers took refuge amoug the mountains. He was there attacked by Waizero Menin, the mother of Tas Ali, who, as we have seen, had married the titular emperor, Johannes, aud who at that time ruled Dembea, the district uear Goudar, the capital. Kassai encomntered her troops, defeated them several times, and recovered possession of Kuara. Ras Ali thought it prudent to come to terms, recognised him as governor of Kuara, and gave him his danghter in marriage. This alliance did not, however, reconcile Kassai and Waizero Menin. They again quarrelled, and again Kassai was victorious. He captured Waizero Menin, and compelled his father-in-law to acknowledge him as Ras of Kuara and Dembea. Ras Ali had, however, hecome alarmed at the power of Kassai, and determined to crush him. As representing the Ras, Birru (ioshu attacked him with a powerful army, and compelled him again to seek refuge in the monntains of Kuara. In the following year, Kassai entered the field against Birru Goshu, conquered him, and slew him with his own hand. IIe then marched against Ias Ali, and drove him to Debra Tabor, the old stronghold of his family. There he maintained for a time a determined resistance, hut he was compelled at last to yield, and he then sought refuge in the country of the Gallas, where he died. Kassai then attacked the Dejaj of Godjam, son of the chicf he had killed, and defeated him. The whole of Amhara thus fell into his possession. Having secured the person of the titular emperor, he called upon Dejaj Oubié of Tigre aud Semen to pay tribute to him. This demand was refused with insult. Such, however, was the power of this chief, that Kassai dreaded to attack him. The rivals met in February 1S54, and to avert bloodshed, agreed to allow the magnates of the empire to decide which had the best right to the throne. The abuna was more nuder the control of Oubić than Kassai, and the latter felt that the weight of the church would be against him. Padre de' Jacobis, as already mentioned, had acquired considerable influence in 'Tigré. T. made advances to him, and offered that, if he, as head of the Latin Church, would support his cause, and crown him king, he would compel the people to adopt the Romish rites. Dr Beke asserts that the Padre de' Jacobis accepted the offer. Kassai marched against Oubié, and in February 1555, a battle was fought at Debireskie, in which the latter was captured, as well as the Abuna Salama. Kassai, unscrupulonsly disregarding his promise to the Roman Catholic prelate, now made advances to the Abuna Abba Salama, and obtained his consent to acknowledge his descent from Solomon and the queen of Sheba, and to crown lim emperor. The conditions exacted were, that Kassai should support the Coptic Church, and banish the Roman Catholics. A few days after the battle, Kassai was accordingly crowned by the abuna as Theodare of Abyssinia. It was not with. out reason that this name was chosen. According to an old tradition, a King Theodore was to reign in Abyssinia, conquer the kingdom of Solomon, and restore the ancient glory of Ethiopia. Kassai believed, or affected to believe, himself the man thus announced. He proclaimed himself a descendaut of Solomon, but it does not appear that he ventured to ignore the titular king; on the contrary, since his coronation, he is represented as standing in the presence of the latter, naked to the waist, as is the custom of an Abyssinian servant in presence of his master. On the annexation of 'Tigre, T. resolved to attack Shoa, the third great province of the old enipire. He invaded the country of the Wollo Gallas, defeated them, and reached Ankobar, the
southern capital. The people were frightened by the sudden death of the king, and submitted without a struggle. T. now resolved to extend his conquests to the Red Sea, and enter on a crisade against the Turks for the recovery of the sea-board. He had treated up till this time the conquered provinces with great leniency, generally leaving one of the ruling family in power, and to Mr Bell and Mr Plowden he extended the same protection they had from Ras Ali. He heartily adopted many of their schemes, and was anxious to open up intercourse with England. It was difficult, however, to negotiate with him. He believed himaself to possess the same claim to respect as a European monarch, ant was kept in perpetual torture by imaginary slights, and more especially by the respect shewn to the Turks, whom he regards as barbarians. His vanity and touchiness were aggravated by reverses. The conquest of Shoa had not long been completed, when the Dejaj of Godjam and the prince of Tigré rebelled, the latter being supported by the French. At the time when the Foman Catholic missionaries were banished by T., Dr Krapf and the Fiev. Martin Flad entered Central Abyssinia to found a Protestant mission under the auspices of Eishop Cobat of Jerusalem. They proposed to introduce handicraftsmen, not priests, who were to follow their usual avocations, and, in addition, merely to read the Scriptures, and distribute copies in the native languages. The scheme met with T.'s approval. In April 1856, the first member of the mission arrived, and others followed. Fncouraged by their success, the Rev. H. A. Stern afterwards went to Abyssinia as agent of the Society for Promoting Christianity among the native Jerrs or Falashas, and obtained the consent of the ling and abuna to found another mission. He went back to Europe, but returned early in 1863, accompanied by Mr and Mrs Rosenthal. A third, known as the Scotch mission, was founded, and all were well received. The first quarrels of T. were with the diplomatists. He was indignant at the proposal made by the Enghish Foreign Office to exercise jurisdiction over criminals iu Abyssinia, without granting him reciprocal rights. In November 1555, he was still further irritated by our refusal to receive any embassy from him without an assurance that he was to renounce all idea of reconquering from Egypt the Abyssinian territory of which it had taken possession. At this period, our government are accused of having systematically ignored complaints against the Turks. They certainly, without justification, expressed great dissatisfaction with the failure of Mr Plowden to realise the advantages of intercourse with Abyssinia, although he, in a series of admirable papers, unfortunately not published at the time, proved that it had arisen from causes he could not have anticipated. Personally, Mr Plowden remained on the best terms with T., and if he had lived, all might have gone well. The consul, however, exposed himself to great risks. He was returning to Dlassowah from Gondar, when he and a company of fellow-travellers were attacked by Garod, a rebel chief. He was wounded, and died of the injury he received. The king and Mr Bell marched against Garod, and killed him. Garod's brother then killed Bell, and a horrible slaughter of the insurgents ensued. After the death of Mr Plowden, Captain C. D. Cameron was appointed consul. T. was not consulted, and the now consul was coldly received in October 1562 . The Egyptians were at the time advancing within the northern frontier of Tigré, and Abyssiuian Christians had been subjected to indignities at Jerusalem. T. resolved to appeal to the English and French governments, and wrote letters claiming their protection. That to the Queen
was forwarded to Aden, but mafortunately did not reach London until February 1563 , when it wats thrust intu a pigeon-hole, and ignored or forgotten. In the meanwLile, Consid Cancron was directed to visit Senmazr, on the frontier of lgypt and Abyssinia, to jucige of its litness to become a cotton-producing country. The object of this journey was not exphancl to 'l', and ho maturally believed it to be a visit by a spy to his enemies the Turiss. Il is suspieions were not allayed when the cousul, on his return t.: Gondar, condl produce no answer to the letter. He had received a dispatcl, but it simply ordered lim to go back to Massowah, and not to juterfere with Alyssinian politics. 'So your queen,' said T., 'can give you orders to return to Massowah, but she cannot seml a civil answer to my letter to her. You shall not leave till tiat answer comes ;' and the consul was detainedi ou parvele at Goudur. In reply to the Freneh letter, M. Lejean was seat to Abyssinia. A written answer to T . was read, in which, as if it hal been intended to irritate him, something was said of the protection accorded by the Emperor of the French to all lieman Catholics in the East. 'This aggravated the offence already committed by the French-that of aiding the prince of Tierê. The Ietter was torn and trampled upon, and M. Lejean, imprisoned for a few days, was ordered off to Massowah. T. declared he would no longer bo 'humbugged by missionaries and consuls like a rajah of Tindinstan,' and the European residents all felt that a crisis lial come. In October 1863 , Consul Caneron sent letters to Massowab. His messengers were stopled, deprived of their dispatches, aud beatel. On the same day, Mr Stern, who happened to pay a visit of ceremony to the enperor, inadvertently gave him offence; and he and his two scrvants were ordered to be beateu. The servants died the same night. Mr Stern himself was so serionsly hurt that his life was despaired of. 1 Iis papers were then examined, and found to contain reunarks derogatory to the enperor. 1 Ie and Mr liosenthal were arrested, and on the 20 th of November, they were publicly tried with all the formalities of A byssinizn Law-on a charge of having committed the crimen lasse majestatis. Mr Stern was aceused of having circulated the report in Europe of T. being the son of a beggar-woman who sold kosso, aud of his not being the descendant of Solomon and the queen of Sheba; while Mr liosenthal was aceused of laving said that the country would fare better under the Turks than Theodore. The prisoners were condemned to death, lut the sentence was not carried out. Two dlays after the trial, clispatches arrived for Captain Cameron, but there was no reply to T.'s letter. Under these circumstances, the consul was injudicious emough to apply for permission to leave. He was arrested aud thrown into the prison at Gondar with the missionaries, where they remained till the following summer, when they were removed to Magdala. The Euglish government did not seem to interest themselves about the consul; but the case of the missionaries was warmly taken up by Lorl ShaftesLury and the religions public. A letter of Captain Cameron's was published, in which he said: 'No release until an answer is sent to the letter to the Queen.' Tho subject was bronght before parliament, aud the government were compelled to search for this document. It was found in the pigeonhole where it had leen put, endorsed by Lord John Russell. It had heen written in 1562; it was answered in June 186ı. The reply was intrusted to Mr Hormuzal lassam, a uative of Mosul, who had been employed in diplomatic service at Aden. The ehoico of this envoy was most unfortunate -
he being, in the eyes of Theodore, a were Turk, and therefore a spy and an eneny. Ito was not rceeived till January 1866 , and then a second error was committed. Mr liassam accepted a large present from 'T., and did not, or was not enabled to repay it, as was expeeted, by a gift equal iu value, although the necessity of doing so had been fully explainal to the government. T. then sent the linglish enyoy, who was treated as a mere heggar, to prison with tho other captives. This was his first distinct breach of the law of nations. After this feriod, he conducted himself like is madman: he caused women and children to be tortured, dishonoured, and starved in au nuheard-of manuer. 'Ont of $3,000,000$ inhabitauts,' says Dr Blane in June 1S67, ‘he has destroyed more than a thiri by war, famine, and nurder.' After some unsuccessfiul attempts to neyotiate with T., through Mr Mlall, in the early part of 1867, Lord Stanley, in April, ordered him within three months to deliver up the prisuners. He took no notice of the communication, and accordingly an expedition was fittel out at Bombay for the invasion of the talle-land. The foree consisted of upwards of 10,000 soldiers. Karly in November the advaneed brigade landed at \%ulla, on the IRed Sea. From this point, the expedition advanced successfully in spite of many difficulties, and, in the heginning of April 1568, came witlin sight of Magdala. On the 10th of April, near Magdaha, T. gave battle to the British forces, and sustained a defeat so decided that he forthwith made submission to the extent of surrendering all the European captives in his power; and ou the 13th, Magdala, into which he had retired, was stormed, and with little diffierdly was taken possession of by our forees. Neither in the battle nor the ass:und was there any loss of life on the British side, ouly a few being wounded; the Alyysinians sustained a loss of 500 killed and 1500 wounded, the most uotable among the former being ' T . himself, who was found dead, shot in the head. - Sce The Lיritish Captives in Abyssinia, and other works, hy C. T. Beks, Mh.D.; the government Lhe-books; an article in No. 63 of the Westminster Review, New Serics; the works of Harris, Rudolph, Lejean, and Dufton.
THE'RMO-DYNA'MICS, or the DYNAMICAL THEORY OF HEAT, though literally merely the science of the relations of Heat and Work, is now very generally employed to denote the whole seience of Exergy. See Force We propose in this place to give a general sketch of this grand modern generalisation, supplementary to what will be found in the artiele just referred to ; but, for the sake of continuity, we must repeat a little of what was there given, though in a somewhat differeut form.
Energy is strictly defined as the powtor of doing Work (q. v.), and is of one or other of two kimelsPotential or Kinetic. A raised weight, a wound-ul , spring, gunpowder, and the food of auimals, are instances of stores of potential eaergy. A missile in motion, wind, heat, and electric currents are instances of kinetic energy. Sound, Light, and other forms of Wave-motion (see WavE), are all instances of mixed potential aud kinetic energy.
The modern theory of Energy contemplates its

Conservation,
 Transformation, and
 Disiffation.

The Conservation of Energy is the statement of the experimental fact, that Eucrey is, like Matter (q. v.), indestructihle and uncreatable ly any process at the command of man.
The Transformation of Energy is the statement of the experimental fact, that any one form of energy may in general be transformed wholly or
partially into any other form. This used to be known as the Correlation of Forces. But it is subject to the condition derived from the first fact, that the portion transformed retains its amount unchanged. It is also subject to the law of Dissifatron, or Degradation, which is a statement of the experimental fact, that Energy generally tends at every transformation to at least a partial transformation into heat; and that, once in that form, it tends to a state of uniform distribution, in which no further transformation is possible.
The original energy of the universe, thercfore, though still of the same amount as at creation, boing in a state of ceaseless trausformation, has been in great part frittered down into heat, and will at length take wholly that final form.
The history of the grand discoveries which are bricfly summarised in these few lines, has been much discussed of late-especially in the Philosophical Magazine-and is now pretty clearly ascertained.

Newton took the first great stop. In a Scholium to bis Third Law of Motion (q. r.), he lays down in a few clear words the Conservation of Energy as the embodiment of the experimental results kyown in his day with reference to forces and visible motions. Part of this statement of Newton's was afterwards reinvented under the name of Conservation of Vis-viva; but all that Newton really wanted to enable him to complete the Conservation of Energy was an experimental knowledge of the nature of Heat, Electricity, \&c. That heat is motion of some kind, not matter, and that the laws of its communication are the same as those of the communication of risible motion, was experimentally proved at the very end of last century by Davy. Rumford had almost completed a proof a year or two before; but he bad also made a very fair attempt to determine the 'Mechanical Equivalent' of heat-i. e., the quantity of heat which is equivalent to a given amount of mechanical work. That there is such an equivalent is at once evident by looking at Davy's discovery in the light of Newton's Scholium already referred to. But though the Dynamical Theory of Heat was thus really founded in 1799, it was not generally, received. The first to recall attention to it was Séguin, nephew of the celebrated Montgolfier (from whom he states that he derived his views), who, in 1539 , distinctly enunciated the equivalence of heat and mechanical work, and sought to prove by experiment that heat disappears, or is put out of existence, in the production of work from a steam-engine.

In 1842, Mayer published a short note, in which he enunciated the Conservation of Energy as a metaphysical deduction from the maxim, Causa wruat effectum. He made no experiments to prove this general statement, but he made a calculation of the mechanical equivalent of heat from the specific heats of air-assuming that when heat is produced by compression, its amount is the equivalent of the work spent in compressing. His result was erroneous, because his data were imperfect. But it appears that his assumption, quite unwarranted as it was, is really very nearly true for air.

In 1843 , Colding, led also by some metaphysical speculations, propounded the doctrine, but eudeavoured to base it upon actual experiments.

Finally, Joule (q. v.), also in 1843 , published an experimental determination of the mechanical equivalent of heat (770 foot pounds as the work required to heat a pound of water one degree F.), which is within half per cent. of the most trustwortby results since obtained. Joule had been, since 1840 at least, making quantitative determinations of equivalence between various forms of energy; aud was led to propound the general law of Conservation of Energy
by the only legitimate process-viz., experiment, as contrasted with metaphysical assertions of what ought to be. The complete foundation of the science on a proper basis is thus due to him ; though, as we have seen, portions of it were established thoroughly by Newton and by Davy.

Before we consider what are the principal features of the theory as now developed, it is necessary to refer to the admirable investigations of Fourier and Carnot, which, though in some respects defective, must be considered as real advances. Fourier's great work, Théorie de la Chaleur, is devoted to the laws of conduction and radiation, i. e., to the dissipation, of heat, and is one of the most remarkable mathematical works ever written. Carnot's work, Sur la Puissance Motrice du Feu, is the first in which any attempt is made to explain the production of work from heat. It is unfortunately marred by his assumption, that heat is a material substance, though it is only fair to say that he expresses grave doubts as to the truth of this hypothesis.
(We borrow our notice of Carnot from a paper by Sir W. Thomson (q. v.) in the Transactions of the Royal Society of Edinturgh, 1849.)

He begins his investigation by premising the following correct principle, sadly neglected by many subsequent writers: 'If a body, after having experienced a certain number of transformations, be brought identically to its primitive physical state as to density, temperature, and molecular constitution, it must contain the same quantity of heat as that which it initially possessed.' Hence he concludes, that when heat produces work, it is in consequence of its being let down from a hot body to a cold one, as from the boiler to the condenser of a steam-engine. His investigation, though based on an erroneous hypothesis, is extremely ingenious, and forms the foundation of the modern theory: We give a sketch of it, preparatory to our account of the present state of the theory, and for this purpose we choose a somewhat hypothetical case, as simpler than the most common practical one. This is the case of a piston working air-tight in a cylinder closed at the bottom.

Suppose we have two bodies, A and B, whose temperatures, S and T , are maintained uniform, A being the warmer body, and suppose we have a stand, C, which is a non-conductor of heat. Let the sides of the cylinder and the piston be also nonconductors, but let the bottom of the cylinder be a perfect conductor; and let the cylinder contain a little water, nearly touching the piston when pushed down. Set the cylinder on A; then the water will at once acquire the temperature S , and steam at the same temperature will be formed, so that a certain pressure must be exerted to prevent the piston from rising. Let us take this condition as our starting-point for the cycle of operations. 1. Allow the piston to rise gradually; work is done by the pressure of the steam, which goes on increasing in quantity as the piston rises, so as always to be at the same temperature and pressure. And heat is abstracted from A, namely, the latent heat of the steam formed during the operation. \&. Place the cylinder on C, and allow the steam to raise the piston further. More work is done, more steam is formed, but the temperature sinks on account of the latent heat required for the formation of the new steam. Allow this process to go on till the temperature falls to T, the temperature of the body B. 3. Now, place the cylinder on B; there is of course no transfer of heat; because two bodies are said to have the same temperature when, if they be put in contact, neither parts with heat to the other. But if we now press down the piston, we do work upon the contents of the cylinder, steam is liquefied, aud

THERMO.DYスAMICS.

the latent heat reveloped is at once absorbed by Ib. Carry on this process till the remount of heat given to 7 is exactly equal to that taken from 1 in the first operation, and place the cylinder on the non-conluetor C. The temperatime of the contents is now ' T ', and the amomet of caloric in them is preciscly the same as before the first operation. 4. Press down the piston further, till it occupies the same position as before the first operation; allitional work is done on the contents of tlie eylinder, a further amount of steam is liquefied, and the temperature rises.

Moreover, it rises to S cectetly, by the fundanental axiom, beanuse the volume occupied by the water and steam is the same as before the first operation, and the quantity of ealoric they contain is also the same-as mueh having been alstracted in the third operation as was communicated in the tirst-while in the second aud fourtlo operations, the contents of the eylinder neither gain nor lose caloric, as they are surrounded by non-conductors.
Now, during the first two operations, work was done by the steam on the piston; during the last two, work was done against the steam; an the whole, the work done by the steam exceeds that done upon it, since evidently the temperature of the contents, for any position of the piston in its ascent, was greater than for tho same position in the clescent, except at the iuitial and final positions, where it is the same. Hence the pressure also was greater at each stage in the ascent than at the eorresponding stage in the descent; from which the theorem is evident.

Hence, on the whole, a certain amount of work lias heen communicated by the motion of the piston to external bodics; and the contents of the cylinder having been exactly restored to their primitive condition, we are entitled to regard this work as due to the calorie employed in the procuss. This, wo see, was taken from A, and wholly transferred to IS. It thus appears that caloric docs uror\% by being let down from a higher to a lower temper. ature. And the reader may easily see that if we knew the laws which connect the pressmre of saturaterl steam, and the amount of caloric it contains, with its rolume and temperature, it would bo possible to apply a rigorous calculation to the varions processes of the cycle above explained, and to express by formula the amount of work gained on the whole in the series of operations, in terms of the temperatures (S and T) of the boiler and conclensur of a stean-engine, and the whole amount of caloric which passes from one to the other.
'Though the above process is exceedingly ingenions and important, it is to a considerable extent vitiated by the assumption of the materiality of heat which is made throughout. To shew this, it is only necessary to consider the second operation, where $w 0 \%$ is supposed to be done by the contents of the cylinder expanding without loss or gain of caloric, a supposition which our present knowledge of the nature of heat shews to be incorrect. Jint it is quite easy, as seems to have been first remarked by J. 'J'homson in 1549, to put Carnot's statement in a form which is rigorously correct, whatever be the nature of lieat. J. Thoiuson says: 'We should not say, in the third operation, "compress till the same anount of heat is given out as was taken in during the first." But we should say, "compress till we have let out so much heat that the further compression (during the fourth stage) to the original volume may give back the original temperature." It is but hare justice, however, to acknowledge that Carnot himself was by no means satisfied with the calorie hypothesis, aud that be insinuates, as we have alrealy scen, more than a mere suspicion of its correctness.

752
52

If wi earefully examine the alowe cycle of operstions, we easily see that they are roversilue, i, e., that the transference of the given amount of caloric back again from B to A, by performing the same operations in the opposite order, requires that we experel on the piston, on the whole. as much work as was gained during the direct operations. 'l'his most important iden is due to (amot, and from it lie dednees his test of a profect engine, or one which yields from the transference of a given quantity of ealoric from one body to another (eacle being at in given temperature) the greatest possible amoint of work. And the test is simply that the cycle of operations must be reversible.

To prove it, we need only consiler that, if a leat. engine, M, could be made to give more work by transferring a given amoment of caloric from A to B, than a reversible engine, λ, does, we may set Bl and N to work in combination, M driven lyy the transfer of heat, and in turn driving N, which is (imployed to restore the lieat to the source. Tho conpound system would thas in each eycle produce an amonnt of work eymal to the excess of that done by MI over that expencled on N , withont on the whole any transference of heat; which is of course absurd.

The application of the true theory of leat tos these propositions wis mule in 1549,1550 , and 1 Sjl respectively, by liankine, Clousius, muk W. Thomson. Rankine omployed it hypothesis as to the nature of the motion of which heat consists, from which he deduced a great many valuable results. Clansins supplied the defects of Carnot's beatiful reasoning; accommodating it to the dynamical theory by a very simple change, and evolving a great number of important eonsequences. Jhit by far the simplest, though at tho sume time the most profound, writings on this subject, are those of W. 'Jhomson, to be found in the I'ransactions of the lioyal Society of Edindurgh ; and these must be consulted by any reader who desires to liave a clear statement and proof of thermo-dymamical laws, not complicated by unnecessary hypotheses or formulie, and yet perfectly general in its applicir. tion.

In its new form, thermo-llynamies is based on the two following laws:

Law I. (Davy and Joule.) $11 \% e n$ equal quentitirs of mechanical offect are produced by any means whatever from purcly thermal sources, or lost in purcly thermal effects, cqual quantities of heat are put out of existence, or are generated.

Law II. (Carnot and Clausius.) If an chaine Jof such that, when it is worked buckueurds, the physicul and mechanical agencies in every prart of its motions are all reversed, it produces as much mechanical effect as can be produced by an!! thermo-lynamic cngine, with the sume temperatures of sourcc and refrigerator, from a given tuantity of heat.

The proof of this second law differs from that of Carnot (already given as regards reversible encrines) by being no longer liased on the supposition of the materiality of heat, but on the following axiom, in some of its nany jrossible forms- It is impossible, by means of inanimate material agency, to derive mechanical effect from any portion of matter ly cooling it below the temperature of the coldest of the surrounding objects. It will be easily seen that the pair of engines (one reversible) before mentioned would, if worked in combination, form a perpetial motion; and, besilles, would constantly transfer heat from a colder to a warmer body.

Onc of the immediate and most important dednetions from these principles is-that only a fraction of the heat employed in any engine is converted into useful work (the remainder being irrecoverably
lost). This fraetion was shewn by Thomson to be capable of expression as

$$
\frac{S-T}{S}
$$

where S and T are the temperatures of the source and condenser, measured from the absolute sero of temperature. See Hest. Thus, an air-engine, in which a far greater range of temperature can be safely used than in asteam-engine, employs effectively a mueh larger portion of the heat supplied to it ; and there is no doubt that air-engines would supersede steam-engines, if we coukl get a material capable of enduring the great heat required.

THE'RMO-ELECTRI'CITY AND THERMO-

 MAGNETISM. If the ends of an iron wire be attached by twisting or soldering to the extremities of the copper wire of a galvanometer, and one of these junctions be heated, the galvanometer indieates the passage of a eurrent in the circnit in a direction from copper to iron throngh the heaterl junction. 'The first application of the theory of energy to this phenomenon is of eourse as follows: Since lieating the junction produces the energy of the current, part of the beat must be expended in this process; thongh it is of course entirely recovered as heat in the circuit, if the current be not employed to do external mork. The existence of the current from copper to iron is thus associated with the cooling of the junction; and it had been experimentally shewn by Peltier, that if an electric eurrent be passed through a eirenit of iron and copper, originally at the same temperature throughout, it produeed cold when passing from copper to iron, and heat when passing from iron to copper. If the two junctions be maintained each at a constant temperature, a eonstant eurrent passes from the warmer to the eolder junction through the iron wire; and by the conservation of energy, the heat developed in the circnit (together with the equiv. alent of the external work done if the current be employed to drive an electro-magnetic engine) is equal to the excess of the heat absorhed at the warmer junction over that given out at the colder, precisely as in the case of a heat-engine. So far the process presents no difficulties. But it was diseovered by Cumming in 1523, that not only is the strength of the eurrent not generally proportional to the difference of temperatures of the junctions, but that if the difference be sufficiently great, the current may, in many eases, pass in the opposite direction. Thus, in the eopper-iron cireuit, at the temperature $300^{\circ} \mathrm{C}$. of the bot junetion, the current passes through it from iron to copper. Thomson (Bakerian LeeturePhil. Trams. 1555-' On the Electrodynamic Properties of Metals') applied the principle of energy to this case, and derived from it the conclusion, that one of three things must happen, the most mexpected of which was found by experiment to be the actual one-viz., the startling result, that a current passing in an iron bar or wive from a hot to a cold part produces a cooling, but in copper a heating, effect. This very remarkable discovery, whieh, taken in eonncetion with that of Peltier, gives the key to the whole subject of thermo-electricity, has been recently made the subjeet of a valuable experimental investigation by Le Roux (Amales de Chimic, 1867).The theory of such phenomena (and of others far more complex, involving, for instance, crystalline arrangement), in complete accordance with the conservatiou of euergy, has been given by Thomson (Trans. Royal Soc. E'din. 1S54); but it would be ineonsistent with the character of this work to enter into any details on so abstruse a subject. A similar remark must be made regarding his application of
516
the principle to the subject of thermo-magnetism, or the relation of the magnetisability of various substanees to their temperature; one or two of his results may, however, be mentioned. Thns, iron at a moderate or low red-heat experiences a heating effect when allowed to approach a magnet, and a cooling effect when slowly drawn away from it; while in cobalt, at ordinary temperatures, exactly the opposite effects are produced. Similar effects are in general produced when a doubly-refracting crystal is turned in the neighbourhood of a magnet.

THOUROUT, a town of Belgium, in the province of West Flanders, 11 miles west-south-west of Bruges. There are manufactures of stareh, mustarl, hats, and wooden shoes. T. was a place of great commereial importance in the middle ages. Pop. above 8000 .

TILLICOU'LTRY, a mannfacturing town of Scotland, beantifully situated in the county of Clackmannan, on the Devon, nine miles east-northeast of Stirling, with which it is connected by railway. There are large manufactures of shawls and plaidings. Pop. (1S71) 3745.

TINNEVE'LLY (Tiru-nel-véli), chief town of the British district of the same name, is situated near the left bank of the river Chindinthoora, 350 miles south-west of Madras. The town of T. is conneeted with the town and military station of Pallamcottah, on the opposite bank of the river. Pop. ahout 20,000 .

TOBA'CCO-PIPE FISH (Fistulariz tabaccaria), a fish of the family Fistularidee (q. v.), found in the tropieal parts of the Atlantic Ocean, and remarkable for its form, which is very elongated; the head also is prolonged into a very long snout, and from between the lobes of the short, widely-forked tail, proceeds a long whip-like ray. It is greenish olive, with blue stripes and spots.

TODMO'RDEN, a market-town of England, in the county of Laneaster, on the border of Yorkshire, S miles morth-north-east from Fioelidale, on the Manchester Railway. The town is well built, has several churches and schools, and manufactures of cotton. Coal abounds in the vieinity. The town proper of T. is composed of houses belonging to three townships, the pop. (1S71) being $11,99 \mathrm{~S}$.

TO'RTOISE BEETLE, a genus of coleopterous inseets of the section Tetramera, family Cyclica, and tribe Cassidarice. The popular name is derived from the resemblance of general form to that of the tortoise. There is also often a considerable similarity in colouring. The body is generally somewhat oval or cireular, sometimes Dearly square. Cassida viridis, an insect about a quarter of an inch in length, is not uncommon in Britain. It lives on thistles.

TO'TEM. The maler races of men are found divided into tribes, each of which is usually named after some animal, vegetable, or thing which is an object of veneration or worship to the tribe. This animal, vegetahle, or thing is the totem or god of the tribe. From the tribe being commonly named after its totem, the word is also frequently employed to signify merely the tribal name. Numerons tribes with totems exist in America, in Australia, the South Pacific Islands, and in Central Asia; and there are some reasons for thinking that sneh tribes were onee numerous even in Europee among races belonging to what is ealled the Indo-European division of the human family.

Among the Fied Indians of America, the following are totems of tribes existing or known to have existed: the Wolf, Bear, Beaver, Turtle, Deer, Snipe, Heron, Hawk, Crane, Duck, Loon, Turkey, Musk-rat, Sable, Pike, Cat-fish, Sturgeon, Carp,

Buffalo, Filk, Teindeer, Fagle, Hare, Jabbit, and Suake ; the Tieel-grass, sand, Water, Tock, and Tobaeco-plant. Among the tribes of native Australians, the totems are similarly, for the most part, selected from the fauna of the country. The totems of the Kirghiz tribes of Central Asia are all of them animals to which (in explamation of their reverence for them) tho tribes trace back their descent.

It has been suggested that the explanation of the crests aud emblems of the now disrupted tribes andl clans of our own conntry, and of Europe gencrally, is to be found in the supposition, that the ereature or thing on tho crest was originally the totem of the clan or tribe. On this supposition, the widespread clan Clattan or Cattan, for instance, which is represented in the Scotch IIighlaods, and can bo traced in France, Germany, and Egypt, would fall to be recognised as the Cat tribe, the cat having once bcen its totem, as it is still its crest or emblem. It has also been thrown out, that many of the mythical traditions of ancient Greece admit of a reasomable meaning, if we suppose that there were anciently in Grcece tribes with totems-bull, boar, and lion tribes; snake, ant, and dragon tribes. These suggestions have not yet been put to the test of a thorough iovestigation; but so far as inquiry has gone, the results are in favour of the conclusions to which they point as to the early condition of human tribes all over the world. A single instance may be given of success in tracing back a totem to old times and in widely separated countries. There are numerous existing Snake tribes both in America and the Sonth Sca Islands, and there is sonething like proof that the snake was the totem of very many and powerful ancient races. Its worship can be traced among Semitic races; there are traces of it in the traditions of the Pelasgi; there are proofs of it among the Celts; and the znost magoificent ecclesiastical architecture in the world is that of the Nagas-the serpent-worshippers of Cambodia-still existing, and only recently brought to light. We may believe that, in the period of primitive animal-worship, when the serpent was a creature of so much importance, other animals also had their worshippers, and tbat soake-tribes were not the only tribes with animal totems in those times, any more than they are among existing primitive peoples.-See Cambrian Journal, vol. iii., 2d series, 1. 149; Grey's Journals, vol. ii. chap. xi.; Mitchell's Russians in Central Asia; Latham's Descriptive Ethnology; Sydenham's Baal Durstrigensis; and foot-note to Kinship in Ancient Greece, by J. F. M•Lennan; Fortnightly Review, 15th April and Ist May 1866.
TRADES' UNIONS, in their character of benctit and sick societies, do not fall within the range of this article. We have principally to consider them as associations of workmen against employers, for the purpose of gaining, either in time or money, a larger share of the profits of their trade. A brief historical sketch of the growth of the principle of combination may fitly introduce the subject.

In one form or other, combination has always existed, ever since the employed and employing classes became distinguishable from each other. For a long time after the Conquest, the inhabitants of England were of two classes, freemen and slaves. These relations not permitting work for wages, there could be then no combination in the modern sense. About the middle of the 13th c., we find that wages had begun to he paid, so that for 600 years there have been labourers receiving a money price for their services, competing for employment, and arranging terms with cmployers. The power of legislation was, however, with men who believed
their interests antagonistic to those of the workmen, and its complexion was always favourable to masters. When, after tho great pestilence of 1349, the reduced number of labonrers demanded leeters pay, it was cuacted that carters, plonglmen, and agricultural servants generally should be content with their previous rate of liveries and wages; they were to continue to be paid in kind where payment in kind had been customary; they were forbidden to hire themselves for the day, but must take service for a year or other fixed period; a rate of wages was fixed for weeders, laymakers, mowers, and reapers; and their hiring for the future was to be in public. A little later, in 1363, the diet and elothing of artilicers and servants were fixed by act of parliament, and clothiers were required to make, and tradesmen to sell, cloth of a regulated quality at a regulated price. The rate at which labour should be purchased was fixed after this fashion for almost two centuries, and the practice declined solely because of the inluossibibity of preserving it. But even within the last 150 years, a relic of the old superstition revived, so elaracteristic as to ho worth notice. A tariff of wages, drawn up in 1725 by the Manchester justices, declares that any workman conspiring to obtain more than the rato therehy fixed, should for the third offence stand in the pillory, and lose an car. Liconomical crror, it will be seen, is by no means the monopoly of the poor:

One of the earliest forms assumed by combiuation is shewn by the statutes, passed about 1400 A. D., which excluded from city labour all who had been trained to the plough up to the age of 12 years. The evasion of these acts was the subject of bitter complaints from the city inhabitants, whose practical union against agriculturists was defeated by the sending of country children into towns as apprentices before they reached that age. For generations, this jealonsy of corporation against corporation continued with more or less intensity. Manufactures were mainly in the hands of monopolists, and merchants were successful or not, aceording as they happened to be the fortunate possessors of privilege, or the victims of unjust restriction. Town manufacturers did all tbey could to prevent the growtll in rural districts of industries similar to their own. Edward VI.'s parliament was induced to legislate against machioery, and to prescribe limits beyond which the woollen trade should not be carried on. Guilds and corporations multiplied all manner of vexatious and impolitic laws, devised for the maintenance of their own arts and trades, and they watched with the utmost jealousy the atterapts of outsiders to gain admission. In some respects, this still remains true of the action of incorporated trades; but, with a few sad and shameful exceptions, the conduct of associations, whether of masters or workmen, has partaken in the general improvement of modern days.

In the more ancient forms of associated labour, such as guilds and chartered companies, combinations such as those which now prevail could not exist. There were no masters and workmen as separate and opposed classes. Producers were united as against the community, and they had no reason, so long as the guild was prosperous, for internal dissension. When, by the abuse of their power in prosperity, they incurred hostile legislation, they became disintegrated; workmen were employed who had never heen apprentices; and ultimately the owners of capital and the owners of labour became distinct and often opposing camps. Instead of a guild or trade being any longer a compact monopolist body, acting for itself against the community, the tendency was thenceforward for combination of one section against the other.

Trades' unions, organised for purposes such as those whicl contemporary unions contend for, have existed for more than three centuries. So early as 1548, a statute of Edward VI. is directed, amongst other culprits, against certain 'artificers, handicraitsmen, and labourers', who had 'sworn mutual oaths' to do only certain kinds of work, to regulate how much work should be done in a day, and what hours and times they should work. The usual penalties of fines, pillory, and loss of ears were to follow a breach of its enactnients. Add the regulation of wages to the objects enumerated in this statute, and we have in effect the trades' unions of the present day. Many fruitless acts were afterwards passed to prevent combinations for raising wages. So long as a tacit bond existed, and unquestionably one did and does exist, amongst employers, reprisals ou the part of worknen were certain, and the only question was, whether the right of combination should be recognised by the law, or whether the parties who had recourse to it should be driven into secrecy and illegality. But it was not till IS24 that the legislature had suff. cient wisdom to repeal the numerous and vexations acts of parliament by which it had been sought to prevent the union either of masters or workmen. By the celebratel act of that year, the combinatiou of either workmen or capitalists was legalised, so long as the unions refrained from violent interference with persons who might refuse to join thew. This act was supplemented by another, passed in 15.5 , which in effect declared legal all combinations to settle rates of wages or hours of work, and illegal all such as aimed at other methods of controlling employers in the use of capital, or in processes of mannfacture.

A modern trades' union is a rather complex organisation. The best definition of them is perhaps the one given by the Social Science 'Committee on Trade Societies,' appointed at Bradford in IS59, and which pulblished its Report in 1S60. The committee included Mr Charles Buxton, Dr Farr, Professor Fawcett, Mr W. E. Forster, Mr J. M. Ludlow, Rev. F. D. Maurice, Mr Horace Mann, Mr Thomas Hughes, and many others almost equally well known, and its investigations were very searching and valuable. Indeed, its Report is by far the best repertory of facts on the subject up to the present time. A trade society is therein defined as 'a combination of workmen to enable each to secure the conditions most favourable for labour.' The capitalist's accumulations afford him an advantage which the labourer, without association, does not possess. The funds of the union are intended to supply this deficiency. As accessories, the unions collect funds for other purposes, such as benefit societies, iusurance of tools, libraries, and reading-rooms; but their trade objects are those with which we are especially concerned. The following means of assisting and defending the trades associated are enumerated by the committee as now in general use-1. Publishing periodically the state of the trade in different parts of the country; 2. Keeping registers of men uemployed and of masters wanting men; 3. Assisting men from town to town in search of employment, and occasionally to emigrate; 4. Regnlating the number of apprentices in the trade; 5. Maintaining men in resistance to employers ; 6. Regulating number of workiug-hours, and preparing trade-rules; 7. Organising strikes.

The advocates of the unions insist that they are the ouly means by which workmen can defend themselves against the aggression of employers. It is argued that the individnal labourer has no chance of resisting the capitalist on equal terms; that starvation treads too closely on his heels to permit
bis successfully opposing a reduction of his wages, however arbitrary or unjust. It is urged that associations of employers are practically universal, and that their object is mainly to secure for themselves the largest possible share of the profits which are the product of capital and labour united. It is further said, that in the event of any depression of trade, the masters invariably attempt to relluce wages; and that when trade improves, they defer as long as possible the restoration of the former rate. Thus, workmen are the first to feel commercial disaster, and the last to benefit by better times. Any attempt to remedy this state of things by individual action would, it is conceived, be abortive. The capitalist might easily do withont the services of any single labourer, while to the latter the loss of employment might be ruin. Association on the part of the employed class becomes, therefore, a necessity, and their organisation puts them at once much more nearly on an equality with employers when negotiating either as to rates of wages or terms of labour. That in both these matters there is a constant gravitation against the workman seems to be adniitted by most who have considered the subject, and there is difficulty in suggesting any effective resistance to the downward tendeucy, except that of comlination. Unionists point to many regulations in the interests of workmen which combination bas enabled them to introduce, and while they freely admit that in mumerous instances the contest between lahour and capital has resulted in the apparent defeat of the former, yet they assert that, in the long rum, most of the points contended for have been gained. They maintain that, in very many trades, they hare succeeded in preventing such abuses as overtime being developed into a system of extortion; of continuous fluctuation of wages, which they conceive to be in all ways disastrous and demoralising; of numberless other forms of oppression and injustice, which any one man would be powerless to resist; and that, iu short, the unions have contributed, more than any other agency, to make 'the workman's life regular, even, and safe.' Further, it is contended that the necessity for strikes will become continually less as organisatiou becomes more perfect and uniform ; the just limits of their action will be more fully comprehended; the sufferings and losses of past strikes will act as a warning against too precipitate action in the future, either on the part of masters or men ; and that, in the end, the main results of combination will be secured, without the necessity of having recourse to the arbitrament of force, either in the shape of strikes or lock-outs-the latter of which, indeed, is only a strike of the employers against the employed.

Yet it cannot be concealed that against this catalogue of uses may be set many and serious evils. Some umions dislike the exertion of special or superior ability by any of their members, deeming it an injustice to the rest that one should gain higher pay or win a loftier position. In many cases, as a natter of deliberate policy, they set themselves against and discountenance any elevation of the standard of labour, aud so act as an effectual bar to the industrial progress of their class. In other instances, strikes are determined upon by unions at times when the position of the market renders success impossible, resulting in severe and prolonged suffering; while in some 'highly skilled and limited trades,' a far higher rate of wages has been enforced for a time than the value of the labour performed would justify, in the end materially checking production, or trausferring the industry itself to other countries. The same effect has heen produced by the arbitrary cnforcement, in some branches of
manufacture, of nonoxious restrictions upon the hours and mode of working. Thus, lirmingham lost much of that pertion of its havdware manufacture which is now carried on by machincry, in consequence of the resistance offered by the Birmingham artisans to the introluction of machine-labour; and the stecl manufacture threatence at one time to migrate from Shetheh, on accomnt of trades' union dictation. It is of course obvious that some lranches of labour, if interference were pushed too far, might in this way be transferred, not to other towns only, but to other countries. There is, mereneer, another and scrious class of objections. There ean be no doubt that unions foster an unfortunate spirit of antagenism. Being constantly and censciensly on the defensive, they come at last to suspect evil in every movement, and to pat a sinister interpretation on every action of employers. The special interests of the trade affected are too often the ouly objects cared for ; and narrow, selfish, and unjust regulations are enacted for its supposed benefit. One trade is isolated from another; one class of labenrers fences itself off against incursions upon its peculiar territory, and tries, by the limitation of the number of apprentices, the enforeement of objectienable terms of service, and other coercive methods, to remain a clese monopelist corporation. It is needless to point ont how injuriously such a policy affects the working-classes generally, and what a complete subordination it implies of the general well-being to the desired prosperity of a small and selfish number. In some trades, the practice of coercion has grown into systematic terrorism and crime. The Sheffield griuders and the Lancashire brickmakers began with merely refusing to work with non-unionists; but their methods of procedure have ended in frequent brutal and murderous outrage. The revelations of the special commissions of 1567 are among the saddest contributions to English listory:

One of these special commissions-that of Mr Overend and his colleagues at Shefliedd-is of suflicient importance and interest to warrant rather special reference. Ont of about sixty trades' unions in that town, thirteen are proved to have promoted ar eneouraged outrages of yarious degrees of criminality, from theft and intimidation up to personal violence and murder. The most ordinary method of coercion in use bears the name of 'rattening,' and it is employed to enforce payment of contribntions to the nnions, and to compel obedience to their rules. If any workman fall into arrear with his payments, or infringe the rules of the trade to which he belongs, his wheelbands, tools, or other materials of work are secretly removed, and held in pledge, until he submits to the recquirements of the union. This is done most frequently under the direct orders of the mion officers; luit sometimes a private member 'rattens' annther, who is known to be in some way at issue with his society, and takes the risk of his action being adopted by the remainder. In the majority of cases, on due sulmission and a moderate payment, the property rattencel is restored to its owner. The practice is defended on the gronnd that it is the readiest and most effectual means of complling the regular payment of contributions to the union funds, and of enforcing obedience to union orders. So thoronghly is it understood that rattening is the work of a trade socicty, that a man whose tools are taken never thinks of applying to the police for restitution ; he communicates with the secretary of the union which governs his trade. In eases of contumacy on the part of a member, it is sometimes attempted to saddle his employer with the cost of the rattening, even when be is no party to the dispute, on the
ground, that he ought to compel his workmen to cemply with the rules of the union. liattening is generally successful in securing its ends; lut if it fail, an anenymons letter is sent to the refractory person, threatening vengeance in the event of turther resistance; and in only too many instauces, the threats have been earried out to the last extremity. Thus, in 185t, a man named 1Sisha Parker had his house hlown up by gunpowder, his horse was hamstrung, and he himself disabled by a pistol-shet, because he worked with non-union men, after being warned to leave his employment. In 1557, James Linley was shot at and wonnded for changing his business of grinding seissors for that of grinding saws, and kecping a greater number of apprentices than the rules of the trade preseribed. As he still persisted, he was shot to death with an air-gun in 1859. At other times, powder has loen mixed with the filings or other materials near the working apparatus of olnoxious persons, who have often suffered serious injuries from its explosion. The list of outrages, fatal and other, might he largely extended; but those we have given are not nnfair representatives of the whele.

The bellows-cutting by tho chainmakers of the midland districts, during their strike of 1550 , is somewhat analogons to the rattening at Shetfickl; and disclosures of similar practices were made at the inquiry before Mr l'ickering and others in Manchester, also in 1867. We have not space to go into detail; but the examples of Shetlield, Dudley, and Wolverhampton were faithfully repeated. l'owder explosions, personal injurics, the wholesale destruction of bricks by trampling upon them while saft, a shed destroyed by maphtha, the insertion of needles into the clay, so as to disable the workmen: such were among the characteristic confessions made by the witnesses. Among other reasons given for a strike was one that an employer hat himself 'set a brick,' a task expressly rescrvel for brick-setters; and among the restrictions on trade was one forlidding the nse in Manchester of bricks not made within the Manchester district, a circlo about cight miles across.

Although in very many instances strikes have been legun and concluded without the intervention of trades' unions, yet, as a matter of fact, all the more notable strikes have either been organised by them, or had their direct support; and of late, the tendency has been to associate the mions of different trades into one body, so far as this partienlar policy is conecrned. This article would therefore be incomplete without a brief reference to some of the more remarkable contests between masters and workmen.
Among the leading strikes, few, if any, have accupicd the attention of the public more than the struggle between the Amalgamated Society of Engineers and their employers, which took place in 1851-1852. It originated in the determination of the workmen to abolish piecework and overtime. The dispute was further complicated through a demand made by the mechanics at Messrs Hibbert \& l'latt's works, in Oldham, insisting that certain self-acting machines in use there should be attended to by skitled labourers only. Thirty-four Lancashire firms entered into a written agreement to mect any action on the part of the men by tho immediate closing of their establishments, which furnished employment to 10,000 people. A similar resolution was adopted by the master engineers of the london district. The men left work on the 1st of Jannary 1S52, and the works were formally closed on the 10th. The strike virtually ended on the 30th Marel, when the men conceded the points in dispute, with the exception of an obnoxious
declaration insisted upon by the masters, that none of the men employed should, for the futuro either directly or indirectly support trades' nnions. The cost of the strike is understood, hesides the enormous loss of wages, to have exceeded $£ 40,000$, including moneys contributed to non-society men. Great numbers of the men emigrated, and fearful suttering was endured by thonsands of families. The Amalgamated Society still exists, and is one of the most extensive and powerful organisations in the interest of labour in the world. In 1850, after its failure in the great struggle, it started with 7000 members. In 1860 , its members exceeded 17,000 , and in 1572 they numbered 41,075 . The tatal income of the sucicty for 1572 was above $£ 105,000$. It has branches in every part of the world where English engineers are employed.

The strike of 1553 in the cotton trade at Preston was also met by a lock-out. About 18,000 people were thrown out of work. The striggle lasted seven months, and during its progress, public feeling was keenly roused. The 10 per cent. advance in wages contended for was successfully resisted by the masters, the last chances of the workpeople being destroyed by the depression of trade consequent upon the outbreak of the Russian war. The cost of the strike to the workmen and their friends, in actual money paid, was $£ 105,000$.

In 1559, there occurred a strike and lock-out in the building trades of London. The object of the strike was to reduce the working day from ten to nine hours, the existing rate of wages being retained. It was met by the simultaneous closing of 225 building establishments, at which 24,000 men were employed. The contest lasted for nearly seven months, and ended in the surrender of the men, after an enormons loss in wages and trade funds. No less than $£ 23,000$ was contributed by other trade societies, in aid of the men concerned in this dispute.
The mining trades-coal and iron-have within the last few years shewn marked triumphs of labour over capital. The great Forest of Dean and South Wales strikes in the coal-trade terminated at the beginning of 1573 , substantially in favour of the employed.

The nine-hours movement created great excitement for a time, but is now practically settled in favour of the labour-classes. The first strike for it was by the Edinburgh masons in 1861 . After an exhaustive struggle, the masters yielded the men's demand for a limit of 51 hours a week. Every year after that, agitation was kept up by different trades in snccession; and now, in 1573 , the hours of labour for a working-man all but universally in England, and pretty generally in Scotland, are so fixed. The exceptions in both countries are a few in-door trades, and in Scotland the mills of Galashiels, Hawick, and other Border towns. A determined strike of the Edinburgh book-printers, 1S721573 , for the 51 -hours limit-which lasted 13 weels -terminated in favour of the employers.
The lowering of the franchise to houscholl suffrage has lent a new significancy to trades' mions. They have now become a great power in politics. There is the Trades' Congress, which holds an annual conference in the different leading towns, and discusses questions affecting the interests of labour. They have not yet begın to publish transactions; but, no doubt, they soon will, for this congress is undoubtedly to be one of the coutrolling social powers of Great Britain. It appoints a cominittee every year, which sits in London, to look after the acts of parliament and other public movements affecting trade. Another object they contemplate is to get working-men returned as members of
parliament; but as yet they have not succeeded in returning one.-Fawcett's Manual of Political Economy; Mill's Political Economy ; Wade's Middle and Working Classes; Report of the Social Science Committee on Trades' Societies, 1860.

TRING, a town of Hertfordshire, England, 32 miles north-west from London, near the right bank of the Ouzel, a branch of the Ouse. It is a neatly built town; has manufactures of silk, canvas, and straw-plait, and is a station on the London and North-western Railway. The Grand Junction Canal passes not far from it. Pop. (1571) 4045.

TUBE-WELL is an American contrivance, introduced into England in 1867, having for its object the obtaining of a small supply of water in a very short space of time by the application of a limited amount of manual power.

The apparatus comprises three parts-a tube or well, a rammer or monkey, and a pump. Fig. I shews the several parts, and fig. $\boldsymbol{2}$ the state when driven into the ground. The tuhe, AA, consists of an iron pipe about $l_{4}^{\frac{1}{4}}$ inch diameter, made in pieces of convenient leagth, which can be screwed together end to end. The pipe terminates at the lower end with a solid tempered steel point, and is perforated for about 16 inches from the end with small lateral apertures. The pipe is driven a short way into the

Fig. 1.

Fig. ${ }^{2}$.
ground, just sufficient to keep it upright without falling, and is temporarily kept in that position by hand. A strong iron clamp, DD, is fixed to the tube by clamping-screws at a short distance above the ground; and another clamp, BB, is similarly fixed higher up. Two pulleys are supported by the upper

TUNKERS-TINDALI

clamp. The rammer or monkey, CC , consists of a 56.1 b . iron weight, which slides up and down the tube, encirching it like a ring or belt. Tho ramaner, being raised by two men, is allowed to fall with its full weight on the lower clamp; thus giving a series of blows which drive the tube into the ground. When the lower clamp becomes level with the surface of the ground, it is raised up the tube; as is likewise the other clamp, which supports the two pulleys. Successive lengths of tube and successive shiftings of the clamps afford the means of enabling the perforated end of the tube to reach soil whence water can be obtained. When the symptoms appear of water having been reached, at CC, a small suction-pump, shewn at the top of fig. I, is applied, and the water pumped. It is only when water is expected to be reached at a moderate distance below the surface that this apparatus is available, as -it is not powerful enough for great depths, nor is the bore of the tube sufficient for a large influx of water; but the required conditions being found to exist, the apparatus saves a large amount of ordinary boring. As the water is pumped up, the loose saod and gravel disappear from the point of the tube, allowing the formation of a small pool or well (BB, fig. 9) ; while small pebbles which eollect around the perforations act as a sort of filter. The tube can be extracted from the ground by forcing the rammer upwards against the upper clamp.

During a trial of this apparatus in the cricketground at Old Irafford, Manchester, the tube was suak to a depth uf 10 feet in 22 minutes, and water had been reached in even less than that time. Such a form of well, it is considered, will be free from the liability of receiving dirty surface-water; and no accident is possible from foul air er from the falling in of the sides. A well 15 feet deep was sunk in one hour in the Botanical Gardens at Mauchester, and excellent water reached. Anather was sunk in the grounds of St Cloud in half an hour, and pumped up water at the rate of 20 litres (18 quarts) per minute. The inventor accompanied the American Federal army, add enabled the troops frequently to obtain water ly the aid of these pumps. On one accasion, to try the capabilities of the tube, he sauk one to a depth of 150 feet, at Ithaca, in New York state. Tube-wells were sent out with the British military force to Abyssinia.

TUNKERS, a religious sect, occupying settlements in Now England, New York, Pennsylvania, Ohio, Indiana, \&c., and thus pretty widely scattered threughent the northern and middle parts of the United States. They are nowhere numerous, and are chiefly occupied in the cultivation of the soil. The name which they take for themselves is simply that of Irrcthren, and they profess that their asseciation is founded on the principle of brotherly love. The name T. is of German origin, signifying Dippers, and is due to their dipping in baptism. It is yery commonly, by corruption, pronounced and written Dunkers. In the vicinity of their settlements, they are generally known as the IIarmless People. They derive their origin from a small village on the Eder in Germany, but have been an exclusively American sect since the beginning of last century, when they all emigrated to America. They had 52 communities or churches in 1859, and their number is estimated as about 8000 . They reject infant baptism, and have no ministers specially devoted to the ministry as a profession. Every brother is allowed to stand uy in the cengregation and exhort ; and when one is found particularly apt to teach, he is ordained by laying on of hands with fasting and prayer, and is expected to devote himself in some measure to the ministry, although without any stipend or peenniary
reward, even if his own craps should suffer by his neglect of them. There are deaconcsses as well as deacens among the Tunkers, Like the Quakers, they use great plainness of dress and language; they refuse to take oaths or to light; they will not go to law, and until very recently, the receiving of interest for money was prohibited among them. They celebrate the Lorl's supper, and accompany it with love-feasts, washing of feet, the giving of the right land of fellowship, and the kiss of charity. They anoint the sick with oil in order to their recovery, depending upon this unction and prayer, and rejecting the use of medicine. They generally believe in the doctrine of universal salvation; but it is not a tenet of the sect. They do not insist upon celibacy as an absolute rule; but they commend it as a virtue, and discourage marriage to the utmost degree possible. They are industrions and honest, and universally held in good repute among their neighhours.
Sole dependence upon prayer for the cure of the sick is the characteristic also of a small religions sect, of which a few members are to be fonnd io Eagland calling themselves the Peculiar Prople. A case was lately tried at one of the criminal conrts in dondon, of parents belonging to this sect, accused of the manalaughter of their child, through neglecting to secure proper medical alvice; and they were accuitted. In switzerland, the name of Durothen Trudel (il. 1802) was long fameus for the cure of ailments by prayer. She did not, however, in all cases, refuse to call in medical advice. In Germany, a Protestant pastor, llumliardt, pursues a similar system on a large scale, and it is said with great success. Cheerfulness, temperate halits, proper regulation of diet and exercise, various aud interesting occupation of the mind, and frequent but not excessive introduction of religious reading, exhortation, and prayer, are the characteristics of his establishmeat, and there is much in them evidently favourable to the cure of many and especially incipient maladies both of mind and of body.

TU'NSTALL, a prosperons market-town of England, in the county of Stafford, 5 miles northwest from Stoke-upen-Trent, with which it is connected by railway. T. has a good market-place and town-ball, several churches and schools; and in the vicinity, numerous collieries, potteries, chemical works, and veins of clay and iron ore. T. is inchuded in the marliamentary borough of Stoke. upon-Trent, and the township has a pop. (1871) of 13,540.

TY'IJDESLEY, a well-built and increasing town of Lancashire, England, 10 miles west-north-west from Nanchester, on a feeder of the Mersey. Cotton-spinning is extensively carried on, and there are numerons collieries in the neighhourhood. T. is a station on the railway from Manchester to Wigan. Pop. (1871) 6408.
TYNDALL, Jornc, physicist, was barn in 1S20, or thereabouts. His parentage was humble; but to the few educational advantages of his position, he brought an acute and active mind, whose early promise has been conlirmed by the achievements of his riper years. On returning from the continent, where he received part of his education, he found employment in one of the subordinate grades of the Ordnance Survey. He was afterwards appointed Teacher of Natural Philosephy at Queenwoad College, Stockbridge, and there commenced those original investigations which have distinguished him among the explorers of science.
In January 1853, T. communicated his first paper to the Royal Seciety On Molecular InfluencesTransmission of Heat through Organic Structures.

It exhibits much of that skill in experimenting and fertility of resource which characterise his subsequent researches, and illustrates certain important questions in natural philosopby. The demonstration that wood is a bad conductor of heat across the fibre, and that the bark is a worse conductor than the wood, explains why trees are not killed by winter-frosts. And in the fact, that rock-crystal (pure silica) is a better conductor than some of the metals, we have a reason for the mtense heat in the day, and rapid cooling at night, of the African deserts.

Year by year from the date above mentioned, T. has extended our knowledge of science. His field of research is wide and varied, as exemplified by the subjects of his papers published in the Philosophical Transactions-On the Vibrations and Tones produced by the Contact of Bodies having Different Temperatures (1554); On the Physical Phenomena of Glaciers (I857); On some Physical Properties of Ice (1S58-1S59) ; On Transmission of ITeat through Gaseous Bodies (I859); a series on Radiation, six pupers (1861-1865); On Calorescence (IS65); On the Invisible Radiation of the Electric Light (1S65). During the year ISG7, be lectured on Sounding and Sensitive Flames.

In 1855, and again in 1861, T. was appointed to deliver the Bakerian Lecture to the Royal Society: the subjects were: On the Nature of the Force by which Boties are repelled from the Poles of a Magnet ; and On the Absorption and Radiation of Heat by Gases and Vapours, and on the Physical Connection of Radiation, Absorption, and Conduction, the latter being one of the series on Radiation above mentioned. The publication of this series of papers marks a period in the history of scientific research, for the facts therein set forth, and the conclusions drawn from them, demonstrate the relation of aqueous vapour to radiant heat, and elucidate certain meteorological phenomena which connect themselves with some of the profoundest and most interesting questions of cosmical science.

In 156t, the Council of the Royal Society awarded to T. their Rumford medal, in recognition of his scientific researches, particularly as bearing on Light and Heat.

As a lecturer on scientific subjects, T. enjoys a high reputation. His lectures at the Royal Institution and the School of Mines have been marked by fuluess of knowledge and clearness of illustration. He has distinguished himself also as a traveller, particularly in the Alps.

In 1552, T. was elected a Fellow of the Royal Society, since when he has served twice on the Council. In 1853, he was appointed Professor of Natural Philosophy in the Royal Institution, where, as successor to Davy and Faraday, he sustains the reputation of the place for original scientific research. His lectures at the School of Mines have been attended by crowds of workingmen. He is IL.D. of Cambridge, and is a member of a number of the scientific societies of the contivent.

Besides his papers for the Royal Society, Professor T. has written articles in the Philosophical Mayazinc and The Fortnightly Review. His separate works comprise The Gluciers of the Alps, being a Narratire of Excursions and Events (1560); Mountaineering in is61 (IS62); Heat considered as a Moole of Motion (2d ed, 1865); Radiation, being the Rede Lecture, delivered at Cambridge in 1865°; Lectures mo Sound (1567); and a biographical memoir of Professor Faraday (186S). Two recent works by him are Frayments of Science, and Hours of Exercise in the Alps (1871). His latest work is Six Lectures on Light (1873).

TYPE-SETTING MACHINES. The first type composing machine on the records of the Euglish Yatent Office appears to be that of Mr W. Church, and the specification of his patent is dated March 1822. In 1840 another machine of this kind was patented by Young and Delcambre, and then follow a number of others, scarcely a year passing withont one or more being made the subject of a patent. Moreover, some of them, among others Young and Delcambre's, were for a long time before the public. For at least half a century, therefore, the construction of a useful type-setting machine has been a problem which a number of ingenious men have tried to solve, but it is only within the last year or two that there has been anything more than the mere appearance of success; and even now it is donbtful whether a siagle one of the few in use is of real utility. If the reader will look carefully at a page of primted matter, he will notice that the spaces between the words are not equal, and he will easily understand that to reduce this inequality to a minimum, requires skill and experience if the work is to go on swiftly. It is in the doing of this, which is called 'justifying,' where a machine fails, so that at the best, so to speak, it can only do half its work; because a compositor must afterward space the machine-setting into lines of equal length. It is comparatively easy to coustruct a machine which will, by some mechanical arrangement, drop any required letter from a series of files or reservoirs of types, throngh a channel which conveys it to a com-posing-stick-that is, which will set up type, in any required order, but with exactly equal specees between the words. Plainly this will not be a step in advance if it takes a skilled workman as much time to divide the machine-composed type into properly spaced lines for a page, as would, when added to the time taken ly the machine to set up the type for 'jnstifying,' equal, or uearly equal, that in which the workman would do the whole thing himself from the first. The look-ont for a serviceable machine is not, however, hopeless.
In the early composing-machine by Church, 'the types are arranged in tiles in a case at the top, each file being directly over a slit in a horizontal frame. One of a number of jacks protrudes through each of these shits, each jack being connected with a key in a manner somewhat similar to the jacks and keys of a harpsichord.' On the depressing of any particular key, the undermost type of the file is pushed into a race, from which it passes to a composing-stick. It is surprising how closely this description conveys to us the leading idea in most of the type-composing machines invented since 18 2 . Hattersley's machine, for example, which was patented in IS.57, and which is still one of the simplest, cheapest, and best, has somewhat analogous movements, but the keys are arranged more like those of a concertina, and the details are different. This machine, which occupies a space of about 2 fcet by 3 , has a horizontal top stage on which is placed a partitioned tray, containing the rows of types running from back to front, each row being of course all the same letter. Descending vertically along the front of this tray is a series of as many wires with pistons as there are rows of types, and these pistons are depressed by the keys acting by bell-cranks, aud then return to their first position by means of india-rubber bands or springs. A propeller kept in a state of teusion by an india-rubber string is placed in the rear of cach row of types, and draws them forward to the piston. When the girl working the machine presses down, say an e key, it depresses the e piston, which pulls down with it an ctype, and drops it into a tube or chamel which conveys it to what represents the composing-stick, and so ou with every other letter,

TYHCONNEL-UCAYALI.

figure, comma, or 'space.' The series of chammels lave a alass front, and converge to a focus nr eommon outlet, through which every type in succession passes to its proper place. Nachines on Jattersley's prinejple, lut with some of the aletails much immoved by Nr liraser, are at present (18:3) in use by a large printiug firm in Ellinlourgh, who aflim that for some kinds of plain setting they are more profitable than doing it by land. W'ith we of these machines a girl can comprose from 'copy' at the rate of from 5000 to 6000 tyjes per hour, but this afterwards reguires to be 'justificl,' or divided into properly spaced lines, as alrealy explained.

Type-sctting machiues resembling the above in their plan of workinct have been in operation for two years past in the Times office, one of which was exlibited at South kensington in 1572. ln that oflice there is also a type-distributing machine at work, which in principle is just their composingmachine inverted. The former being a necessary complement to the latter, the want of an eflicient mechanical distrilmoter has operated in some measure as a check to the sticcess of some composingmachines.
tyrconnel, Richard Talbot, Dekr and EAFL of, born early in the 7 th century. In his youth, accorling to Lord Macanlay, he was 'one of the most noted sharpers and buljes of London.' Soon after the Fiestoration, he endeavoured to obtain the fasour of the royal family by backening the reputation of Anne IIjde, so as to furnish the Duke of York with a pretext for breaking his promise of marriage to ber. Though unsuccessful iu this, be succeeded in gaining the favour of the duke, and contrived to make himself welcome at the palace both as a votary of its pleasures and as a counsellor in aflairs of state. Immediately on the accession of James II., he was made Carl of 'T., and put in command of the troops in 1 reland ; and in 1657 , by fawning, bully ing, and bribing, he got possession of the oflice which had long been the object of his ambitionhe was appointed Lord-deputy of Ireland. Ilis arrival in that conutry spread terror and dismay through the Jinglish Protestant population, who hail alrealy suffered somewhat under bis military rule. Events quickly justified their terrors. Nearly every ollice of dignity in the country was soon transferred to the Jands of the Jioman Catholies. The 1'rotestant party, so long dominant, complained bitterly that they had become a laughing-stock even to their
own servants, and tlat to appeal to law was vain ; julgment in evory ease being given for the native against the Linglishman. But this state of matters did not last long. The revolution of liss had a sudden and sobering effect uron the rule of the Lord-deputy; and there can be little doubt that lie woukl have submitted to Willian 111.; lut the Irish people threatened that if he dared to sell them for wealth or honour, they would burn the castle and hin in it, and put themselves under the protection of France. On the arrival of James in Ireland in J6S9, le created the earl, Dulic of Tyrcomel. After the fatal lattle of the lioyne, at which he held high command, le retired to France. In 1691, he returned to Ireland, with a view to furthering the efforts in favour of James, which were still leing made by his adherents. Notwithstanding the defeat of Aghrim (12th July 1691), and the capitulation of Galway, be made preparations for the defence of Limerick, binding Jimself and his comentrmen ly, an oath not to surrenler until they received permission from James, then at Saint Germain. IIe at the same time despatched a letter in which he stated his conviction that all was lust. On the llth Augnst, before an answer could arrive, be was struck with apoplexy. IIe died on the l4th of the same month. He has becu characterised by Macaulay as 'the fiercest and most uncompromising of all those who bated the religion and liberties of England.' ITe was survived until 1730 by his wife- 'La belle Jennings' of the court of Charles II. This lady, so fimed for her beauty and fascinating manner, cntered life as maid of houour to the Duchess of York; in which position she conducted lierself with a propricty which, time and place considered, may almost be pronounced unique. As wife of the Duke of T., during his rule in Dublin, lier conduct seems to have been characterised both by dignity and purity. It is narrated tliat when James ind her lusband, flecing from the defeat of the Boyne, reached her residence so hespattered with mud as to be scarcely recognisalble, she dressed herself richly, and received the furgitive king and his attendants with all the splendour of court etiquette. She died in a small private numbery in Dublin in circumstances of great ploverty.-Nec Macaulay's History of England, rols. ii., iii., and iv.; Chambers's Book of Days, vol. i. ed. 1863, 1. 310; Mirs Jameson's Memoirs of Beauties of the Court of Clearles II., vol. ii. p. 223. America, one of the chief headwaters of the Amazon. It joins the Amazon from the south, in s. lat. 4° 400^{\prime}, and W. long. $73^{\circ} 30^{\prime}$, opposite the town of Yauta in Ecnador; luat the whole course of the river is in It is the largest river that joins he Amazon above the Drazilian territory, and on account of its length, has been regarded by some as the main streanı of the Amanzon, but at its mouth it is not above half the width of the Amazon. The Maranon and 11 unllaga from the sonth, with many smaller ${ }_{760}$ but still large rivers from the north, have united to
form the Amazon. The sources of the \mathbf{U}. are in the Andes, Cuzco being sitnated on one of its feeders, which rises considerahly further south: whilst another has its rise on the western side of the Audes, to the nortl-west of Lima, and after flowing southward for about 150 miles, makes its way through a cross valley, and takes a nortliward course. Attention has of late been very strongly directed to the U . as affording means of conmmuication between the western parts of Ieru and the Atlantic Ocean. It was partially explored ly the Conat de Castelnan and others in 1846, by Lieutenant Jerndon and Mr Gilloon of the United States nary in 1851, and more recently by an expedition sent out by the Peruvian
government. It has been found to be navigable by steamers from its mouth to towns not far distant from Lima, 3700 miles from the mouth of the Amazon. On the branch which comes from Cuzco, there are falls and rapids, which form an impediment to narigation more than 100 miles below that city. The course of the U . is winding, but generally northward. Without regard to any but its priucipal windings, the length of its course is not less than 1100 miles. It receives many large branches. The name U. is not given to any of its head-waters, the chief of which is the Tambo, formed by the junction of Mantaro, the river which has its sources to the north-west of Lima, and the Apurimac, which comes from a more southern region. The greater part of the country through which the U. flows is covered with forest; but it seems rery suitable for colonisation, if easy communication with the rest of the world were established, the soil heing fertile, whilst the mountains abound iu valuable minerals.

UM1A'N, a town of Fussia, in the government of Kiev, 120 miles south of the town of Kier, on the Umanka. It is enclosed by earthen ramparts. Pop. (1863) 13,981.

UMBA'LLA, a large walled town of British India, Sirhind, 120 miles north-north-west of Delhi, on the Guggur. Under the walls of the fort is the encamping-ground of the British troops Pop. -1,96

UMRO'HAH, a town of British India, in the district of Moradabad, 80 miles east-north-east of Delhi. It is said to have a pop. of 72,677 .

UNITED STATES OF AMERICA. During the year 1867, the United States made several important acquisitions of territory. In the beginuing of that jear, all the Pitssian possessions in America were handed over to the United States, upon payment of seven millious of dollars. The United States afterwards acquired Samana, on the north-east coast of San Dormingo, with an excellent harbour, suitable for a naval station, from the Dominican Republic, for five millions of dollars. And in the latter part of the year, another transaction of the same kind was entered into (but not ratified), namely, to purchase from Denmark the islands of St Thomas and Santa Cruz. St Thomas (q. v.) is of great importance as containing the port first visited by steamers from England when they reach the West Indies, and from which other steamers start for different parts of that region. The town, however, is very unhealthy; several steamers have recently arrived in Englaud with cellow fever on board; and on grounds entirely unconnected with the transference of the island to the United States, the question has legun to be entertained whether another West Indian station should not be songht instead of it, as the chief centre of commerce.-The country formerly Pussian America is of great extent, comprising the whole uorth-western angle of the continent of North Aruerica, from the meridian of 141° W. long., with the peninsula of Alaska and its islands, and also extending southwards along the coast of the Pacific Ocean, from about lat. $60^{\circ} \mathrm{N}$., where the meridian just mentioned meets the Pacific Ocean, for nearly 400 miles, to the northern border of British Columbia. This southern portion of the country is of various breadth, but nowhere extends much more than fifty miles from the coast, near which, however, are several large islands, one of them, Sitka, containing the principal town and port of the whole territory. See Sitka. The whole area of the territory is about 400,000 sq. ni.; the pop. is estimated at
about 66,000 . Since its transference to the United States, many Americans have settled at Sitka. The whole country enjoys a much milder climate than regions in the same latitude on the eastern coast of America. Magnificent forests cover great part of it. Eren in the peninsula of Alaska, rain is more common in winter than suow. With its good soil, its pleasant climate, and its excellent harbours, this uorth-western portion of America seems likely soon to attract settlers, and to acquire great importance.

URICO'NIUM, an ancient Roman city of Britain, the site of which is abont four miles to the east of Shrewsbury, and is partly occupied by the village of Wroxeter. The original name seems to have heen IVroconium, which was changed in the later Roman-British period to Uriconium. It is mentioned by Ptolemy as existing in the beginning of the second century A.D. The remains of the city shew it to have beeu a place of much import ance. The wall can still be traced near the banks of the Severn, forming an irregular oval rather more than three miles in circumference. It appears that one of the principal streets of the city occupied the line of the Watling Street Road. The remains of U . have recently been explored by an association formed for the purpose at Shrewsbury, and many curious relics of antiquity have been discovered, throwing great light on Roman civilisation in Britain. The human remains found in the excavations which have been made, affording proof of death by violence or by suffocation, shew that the city did not slowly decay, but was sacked and burned by enemies, which probably took place about the 5th century. Of this, however, there is no certain historic record. The ruins seem to have remained with little change, except the gradual process of decay, till about the 12 th c ., when they were used as materials for other buildings. Some of the churches of the neighbourhood were built of the old Roman bricks. The walls of buildings are now found, perfect as far as the previous accumnlatiou of earth rendered it difficult to remove the bricks of which they were constructed. The most remarkable relic of antiquity in U. is the Old Wrall, a great mass of Roman masonry, which appears to have beea the side of a great edifice, remains of mosaic parements having been found near it, and apparently connected with it. The edifice to which the Old Wall belonged is supposed to have occupied a corner at the junction of tro principal streets. The excarations which have been made, homever, leave it very difficult to explain the character and purpose of the remains discovered. Several inscriptious have been found at U., but none of great interest. A museum has been formed at Shrewsbury, in which most of the antiquities from this spot are collected. Hair-pins, combs, and rings are particularly numerous amongst them.

U'RINE, Incontinence of, or ENEURESIS, is a troublesome affection, far more commou in childhood than in more adranced life. The child may have no bad symptom of any kind that can be detected, but it is in the constaut habit of lischarging its urine in bed during sleep. It sometimes wakes with a consciousness that it is performing the act, but most commonly it is not disturbed. The act may take place once, or several times, during the night, and sometimes there is an interval of a night, but seldom more. The child may often be broken of this unpleasant habit by proper domestic management, as withholding any excess of fluids before going to bed, and by waking it, and making it discharge the contents of the bladder at the time when the elder members of the family retire to bed. When such means as these fail, recourse must be

VALENCLA-VIRCHOW.

had to medical advice. Blisters to the sacrum, which prevent the patient from lying that on the back, and consequently prevent the urine from gravitating towards the most irritable part of the filadiler, are often useful ; and cold douches to the spine, combined with the internal use of ehalybeates, are frequently serviceable. Tho most certain remedy, bowever, is extract of belladonna,
given at first, aecording to the age of the patient, in doses varying from its th to $\frac{1}{6}$ b of a grain, twice daily, and increasing it, if requred, till it gives rise to marked constitutional disturbance.

The various forms of mecbanical pressure that have leen suggested, with the view of preventing tho passage of the urine, cannot be too strongly reprobated.
 great numbers. Pop. said to be 16,000 .

VALGUARNE'RA, a town of Sieily, in the province of Caltanisetta, 48 miles north-east of Girgenti, in a mountainous district. Pop. abont 9500 .

VALLS, an old-fashioned town of Spain, in the provinee of Tarragona, in a plain watered by the Francoli, 55 miles west of Marcelona. V. is surrounded by aneient walls, has manufaetures of cotton, woollen, silk, leather, and sonl. The French, under St Cyr, defeated the Spanish here in 1500 ; hint were in their turn defeated in 1811. Pop. 12,655.

VTLLLO'RE, a town and fort of British India, presidency of Madras, in the distriet of Arcot, 79 miles west of Madras, on the right bank of the Palar. The fort is extensive, is surrounded by a ditch cut in the solid roek, and contains barracks, hospitals, \&c. The town is large, clean, and airy, and has an extensive and well-supplied bazanr. The town contains a most remarkable and splentid pagoda, dedicated to Krishna, whose adventures with the gopis, or milkmaids, are represented in a series of elahorate sculptures. Although the heat of V . is great, it is considered one of the liealthiest stations in the Carnatic. V. was the resilence of Tippos Saib's family from 1799 to 1806 , wheu they were removed on aceoust of a sepoy mutiny, which resulted in a terrible massaere of Europenns. I'op. 51,500.

VERDEN, a walled tomn of Prussia, capital of a duchy, in Hanover, on the right bank of the Aller, here crossed by a bridge, and on the railway to Hanover, from which it is distaut north-north-west 42 miles. Pop. (1871) 6si7.

VERVICK, or WERFICQ, a town of Belgiam, in the provinee of West Flanders, near the Freneh frontier, on the Lys, 8 miles south-east of Ypres. Yop. ahout 7500 .

VIE'RSEN, a prosperous and beautiful manufacturing town of Khenish Prussia, 18 miles west of Dilsseldorf. V. has extensire manufactures of woollen and flax, as also of woollen, damask, silk and velvet stuffs, and ribbons; there are also dyeworks and many other industries, which give
enployment to thousands of workmen. The population of V. has more than doubled itself within the last few years, being in 1571, 18,474.

VIERZON-VILLE, an aneient and handsome town of Fravec, in the del. of Cher, 45 miles south of Orleans. V. has blast-furnaces, forges, and steelrefineries, manufactures of porcelain and earthenware, aud a trade in cercals and wine. Pop. (1872) 8276.

VINARO'Z, a town of Spain, in the province of Castellon de la Plana, on the coast of the Mediterranean, 83 miles vorth-Horth-east of Valencia. Ship-building is carried on, and there are active fisheries. The bay is open and unsafe. l'op. 9793.

VIRCIIOW, livootr, pathologist and publicist, was horn in 1521 at Cüslin, in Pomerania. He was a pupil of the great Ihysiologist, Johann Muller ; gradluated in medicine in 1843; and became, in 1817, proscetor to the university of Berkin. The same year, be was commissioned by the government to investigate the cause and cure of typhus in Silesia; and also, in conjunction witls Reinhardt, founded the Annals of lathologieal Anatony and of Clinieal Merdicine. The politieal commotions of 1848 draggel him, in common with many other votaries of scieuce, into the revolutionary vortex. He established a journal catitled the Medical Reformer, and also a demoeratic club, where lie soon distinguished himself as an orator. He was, in consequence, elected a member of the National Assembly, but was not admitted because he was, io a parliauentary sense, a minor. With the conservative reaction, V. had his jouroal suppressed, and lost his post, but was elected to the chair of Pathological Anatomy in Wur\%burg. Hlis lectures at that university were widely popular for the novel views whieh he struek out, particularly in cellular pathology. Ilis reputation grew so great that he was recalled by Slaatenffel, in 1550, to Berlin, where he re-oceupied the chair of Pathological Anatomy, aod rendered it the most famous of its kind in Europe. In 1S59, when the liberal cause revived, be became member of the municipal couneil of Berlia, where he distinguished hinself as a reformer of the arbitrary pelice system then rampant; and soon after, was chosen deputy by the electoral college of Saarbrleck, and by two of the Berlin eolleges. He soon roso to the leaderslaip of the Opprosition, and proved a most effective antagonist of the encroaehments made in the name of the royal prerogative. He tonk the lead, in January 1863 , in carrying the address in which the ministry were aecused of having violated the constitution. Such was the enercy of his opposition, that in June 1865 he was challeoged to a duel by

Count Bismarck. It must, however, be always nuderstood that V. declines to be numbered with the radical party, but accepts the constitution, and only reserves the right of objecting to those measures which seem opposed to its spirit. His physiological and pathological rritings are-his idaugural thesis, De Rhermate Cornece (1843); Pluebitis, Thrombosis, Embolism, and Leuccemia (1845-1847) ; Typhoid Fever in Silesia (1848); The Colloid Tumours of the Ovaries, and on Cancer (1847); Cholera (1848-1849); Flexions of the Uterus, Scrofula, Tuberculosis, Typhoid Fever (1S50); Cellular Pathology (1850); The Conjunctiva, \&c. (1851); Amyloid Degeneration (1853); Collected Papers (1S56) ; Cellular Pathology (enlarged, 1S5S) ; Morbus spedalska (a disease peculiar to the Norwegian coasts, 1859); Trichiniasis (1860); Tumours (1862). He was elected Honorary llember of the Pioyal Medical Society of London in 1856, and in 1859, Corresponding Member of the Medical Society of Paris.

VIVI'PAROUS FLSH. It has been mentioned in the articles Fishes and Reproductioy that a few species of fishes are viviparous, or rather oroviviparous, the eggs being batched within the ovary. An example of this occurs in the Viviparous Blenny of the British coasts. See Blenny. But it is the common characteristic of a whole family of the order Pharyngognathi, therefore designated by the popular name of Viviparous Fish, and by the scientific name of Embiotocidce-a name formed from the Greek, and signifying viviparous. The general aspect of fishes of this family is somewhat perch-like; the scales are cycloid, the gillcovers are eutire; the lips are thick. On the north-west coast of America from San Francisco to Sitka, species of this family are very abundant. They come into shallow water near the coasts, when the time approaches for producing their young, which is about the middle of summer. They swim in vast shoals close to the surface, and
have a peculiar habit of leaping high out of the water when alarmed, of which the Iodians take advantage to capture them, by striking the water violently with their paddles, and uttering yells. The terrified fish leaping out of the water, many of them fall into the canoes. The Indians also capture these fishes by thrusting a spear with four barbed points into the midst of a dense shoal. They can be easily taken by nets, but are not of great value for the table. Our figure represents a

Viviparous Fish (Ditrema argenteum).
(From Lord's Naturalist in Tancouver Island and British Columbia.)
female, cut open to shew the manner in which the young are arranged within the mother.

VOU-CHANG, or WOO-CHANG, a city of China, in the province of Hoo-pe, on the Yang-tsekiang, at the influx of the Han-kiang, about 350 miles south-west of Nanking. This is said to be one of the finest cities of China, famous for its learning and for its manufactures in metals. The pop. is stated at nearly $2,000,000$.

W

ALLSEND, a parish of the county of Northumberland, England, four miles east-north-east from Nerrcastle, celebrated for its collieries, Thich produce a very large quantity of coal of very superior quality. About $\Omega, 000,000$ tons of W. coal are annually imported into London.
WARREN, Herry, president of the Institute of Painters in Water-colours, was born in London, Sentember 24, 179S. W.'s father inherited considerable wealth, which, howerer, he contrived to dissipate, and his children were left to shift for themselves. The subject of this memoir at first got a situation in a count-ing-house; but afterwards, having an intense lore for art, Was placed in the studio of Nollekens, the celebrated sculptor of the day: At Nollekens's, he was associated with Bonomi and Gibson. Through Benjamin West, W. obtained an introduction to the sculpture-room of the British Museum, where he practised both drawing and modelling, and where he nsed to meet Haydon's pupils, Bewick,

Christmas, and the Landseers. In 1818, lie became a student of the Royal Academy, where be attended regularly for many years in the company of Etty, the Landseers, F. R. Lee, Webster, and others less distinguished. W.'s first paintings were in oil. He exhibited several of these from time to time at the Academy. Ode was a subject from Collins's Ode to the Passions. Etty thought very highly of this picture, and W. repeated it in water-colour, and sent it for exhibition to the 'New Society of Painters in Water-colours,' of which he became a member at its foundation in 1835 . Of this society, now known as the 'Institute of Painters in Watercolours,' W. has been president for the last thirty years, during which time, both by his teaching and example, he has done much towards raising the English school of water-colour drawing to the proud eminence that it now occupies in comparison with the same branch of art in foreign countriesnamely, the highest place of all. W.'s first great picture in water-colours was 'The Happy Valley,' from Rasselas-a piece embodying both landscape and figures, and displaying great power both in its
compesition and colouring. A great many of his subsequent linctures are on Eastern subjects, leading $^{\text {and }}$ some persons to suppose that he has lived a long time, or at least travelled much, in Egypt, the Holy Land, Arabia, se. But this is not the case. Among these liastern subjeets, many are Scriptural, as-' Rebecea at the Well,' 'IJagar and Ishmael cast out into the Wilderness,' 'Christ and the Woman of Samaria,' 'Joseph's Coat brought to Jacob,' 'Christ with his Diseiples in the Cornfield,' - The Death of the First-born,' "Ilse Flight into Egypt." Of eastern subjects not scripturn may be named-'The Dying Camel in the Desert,' well known by the engraving so deservedly popular ; 'A Malt in the Nubian Desert;' Moslem Charity;' 'The Crusaders' First Sight of Jerusalem;' and 'The First Sunset witnessed by our F'irst Parents.' This picture, with its beantiful landseape and admirably drawn figures, is said by a good authority to be 'Worthy of being elassed with the best works of Jolin Martin and Danby.' Of subjects not Eastern there may be mentioned- Alfred in the Swineherd's Cottage,' 'The Warrant exhibited to the Lady Abhess of a Benedictine Nunnery for the Suppression of her Convent,' 'Incipient Courtship,' 'Happy Mutting Diys,' \&e., besides numerous English landseapes done from nature with much feeling and truthfulness. W. is an honorary member of the 'Société Belgique des Aquarcllistes', and of the 'Pennsylvanian Academy of Arts;' he is also Prefessor of the Fine Arts at Queen's College, London. Ile was one of the Committee of Selection in the Fine Arts Department for the Great International Exbibition at Paris in 1555; again for that of Loulon in 1562; and for that of laris again in 1567. W. has written a little book on Artistic Anatomy, which has gone tlurough many editions; also a lrook on W"ater-colour Puinting; twe funny books, Jotes upon Notes, and Hints upon Hints; and an antiquarian work, On the litece Revensbourne. In 1529, W. was inarried to Isabella, nece of John Martin the painter, aml lias a son, Edmund George, also a water-colour artist, wlose drawings of landscape-especially when he deals with woodland scenery-have, by their originality and truthfulness, placed their auther in the forcmost rank of landscape painters.

WAR-SERVICES. The science of destruction had made such rapid progress during the years in which this Encyclopadia was in course of publication, and so many changes had taken place in the persomnel and matiriel of the armies of all the great powers, that to render the more important deseriptive articles complete, it was necessary to add a few words in the Suppremest to bring the information down to the standard of lSis. The articles most requiring supplement were the following, in their alphabetical order.

Administration, Military. -This is the comprehensive title for all that complicated machinery by which the nilitary foree and energy of a nation are endowed with cohesion and vitality. The expression Staff (q. r.) applies in a somewhat similar sense to the governing and ministering centre of a specific army, but is as much inferior to the general Nilitary Administration as a single army is less than the country's aggregate military strength. In every nation the head of the whele administration is the minister of war, whateser exact title he may bear. Under him are the great officers charged with superintending the discipline, payment, and supplies of the army or its parts wherever situated; the military manufactures, and the national reserves. It is not necessary here to specify the various subdepartments under these chief officers; but there is at head-quarters a section representing each civil
department serving with the army, and elimered with the duty of directing and supplying that department with all things required to maintain its ellicieney.

Ammral.-The distinction of flar-red, white, or blue-has been abohished, and the Hag-oflierrs now constitute three classes only-viz., admirals, vice-admirals, and rear-admirals, all carrying the white ensign and pendant, and the St George's cross on a white ground as their distinguishing flag, hoisted aceerding to rank at the main, fore, or mizzen mast-head respectirely.

Ambulance Corfs. - The functions of this borly of men are at present undertaken by the Army Ifospital Corps in the Britisharmy- In the Frencla army, the duty is conlided to a section, specially trained, of the Train des Équipages Militairce.

Antillery, Royal Ibehment of.-The terms Pattalion, Company, and Troop have been abolished, in favour of l3rigade and Battery, which apply looth to horse and foet artillery. The regiment now consists of 33,500 men, thus distributed:

> coast artillery, not in batteries.
dépôt arthlery,
33
This force represents from 1200 to 1300 guns fully equipped for action. Of the foat artillery, the garrison batteries are readily converted to fieldbatteries by the addition of a few drivers.

Ballistic Pexdelens.-Tbe use of this apparatus as a test of the initial velocity of projectiles has nearly ceased, its place laving been taken by the Electro-ballistic Apparatus of Major Navez, a distinguished Belgian officer. 'Ihis apparatus consists of a pendulum moving on a graduated are of it circle, at a known velocity, at the top of which it is held by an electro-magnet. The projectile is fired through two screens at a known distance apart. In passing threugh the first serecn, it loreaks the electrie cirele, and demagnetises the magnet. causing the pendulum to fall. As the ball passes the next screen, it resteres the circuit and the magnetic power, instantly arresting the pendulum in its downward course. The pertion of the cirele passed over by the pendulum shews the time oecupied by the ball in passing from sereen to screen; and that distance being kiown, the initial velocity becomes a question of very simple calculation. Of course, the magnet and the two sereens are connected by wires with a voltaie battery.

Bamacks.-The office of Barrack-master-general had been abolished in 1822, and the duties transferred to the Board of Ordnance. On the extinetion of that Board in 1S55, harracks came under the control of the Secretary of State for War, who confides the executive to two departments of his office-the Director of Works in regard to buildings and lands, and the Superintendent of the Barrack Department in regard to the personnel. The system of government has been so far altered since the article Barracks was written, that all the barrack-masters in any military distriet are supervised by one of their number, who ranks as district barrack-master. The correspendence of the whole district with the War Office is conducted through this officer. Barrack-masters have been granted relative rank and increased pay, with some other miner advantages.

Bootr.-A very important decision was given ly Dr Lushington, judge of the Court of Admiralty; in 1S66, on the subject of the degree of ca-operation

WAR-SERVICES.

which entitled combatants to share in booty. The case arose on the question of the Banda and Kirwee prize-money, captured in 1857-1858 by the Central India Field-force ; and, speaking broadly, the decision was that only those divisions of an army could share the booty which were either directly concerned in its capture, or contributing to that operation by co-ordinate fighting within a reasonable distance of the principals. This cxcludes those portions of the army which inferentially contribnte by keeping the enemy employed in other theatres of war. The commander-iu-chief of the whole army, with his general and personal staff, take a share as well as the staff immediately in command of the capturing division. In the case in point, the capture was made in Central India, and the divisions at Delhi, the Punjab, and Oude were held to be excluded.

Brevet.-General promotion by brevet has for many years been abolished in the navy, and in 1551 was abolished for the army. Brevet rank can at present be obtained in three mays only, and never extends above the grade of colonel. Captains or majors may receive brevet promotion for distinguished service before the enemy. Lieutenantcolonels have brevet promotion to colonel, after commanding hattalions or holding certain staff appointments for five years. When a general officer dies, the senior major and captain in the army receire each a step of brevet rank. Surgeans of twenty years' total service (or of less service for distinguished conduct) receive brevet rank as surgeons-major. These are the only modes in which brevet rank can be obtained. In the United States army, however, brevet rank is given in any grade ; and we fiad officers with the puzzling title of ' Brevet-major-general.'

British Navy.-In 1859, the navy was made a steam-navy, and sailing-vessels of war ceased, practically, to exist. No sooner was this accomplished, at great expense, than, at a still more enormons outlay, it was found necessary again to reconstruct the navy by building vessels more or less encased in iron plates, varyiug in thickness from $4 \frac{1}{2}$ to 7 inches. There were in 1867 thirty-four iron-cased ships in the British navy, of which the Minotaur and N orthumberland were the largest war-ships in the world. Monitors or turret-vessels are being added, but to this time, rather as experiments than effectives.

Canvos.-The following table now shews the qualities of ordnance in use in the British army and navy:
bresch-Loadisg mifled gets.

Name.	Calibre.	Length.	Weight.	
	Jacto	Ters. Jacher.	Tons.	cmes.
7 -inch,	7			2
7 \% .	7	911	3	12
6t-pounder, .	$6 \cdot 4$	$9 \quad 3$	3	1
40 "	4.75	8 2		
20 "	$3 \cdot 75$	56		15
12 "		60		8
9 "		52		6
6 "	$2 \cdot 5$	50		3
mczzl	OAding m	led guns.		
13-inch,	13	$14 \quad 2$	23	0
9 I'	9	$12 \quad 3$	12	0
8 "	8	114	9	0
$7 \mathrm{\prime} \mathrm{\prime}$. . .	7	11.10	7	
64-pounder, -	6.3	93	3	4

SMOOTLI-DORE WROCGIT-IRON MERZLE-LOADRRS,

In addition to the above, there are in all fortresses and in many ships numbers of the old cast-
iron ordnance, for which the new guns are in course of substitution.

Cannon-founding.-Guns, whether of iron or brass, have ceased to be cast at Woolwich. All new guns are now formed of iron or steel bars, wound while red-hot into a coil round a mandril, and welded together into a solid barrel. Such a coil never bursts explosively.

Clothing, Army.-All uniforms are now issued to the soldier without charge against him. It is merely for the renewal of 'necessaries' that the price is debited against him, the price being precisely the wholesale cost to government, and far less than that at which the soldier could purchase it.

Coast-guard has been organised under the chief direction of a comptroller, who has the rank of commodore, and is at the head of a department at the Admiralty.

Colosel. The colonelcy of a regiment is always held, as a sinecure, by a general officer, who receives £1000 a year in line regiments, and somewlat higher pay in the Guards, the best appointment being to the Grenadier Guards at £2:00 a year. The rank of colonel, when held by an officer who is not a general officer, is always, excent in the artillery and engineers, brevet or army rank, carrying no regimental function or precedence with it.

Colonlal Corps.- Of those mentioned in the original article, the following hare been disbanded : Newfoundland Veterans, Ceylon Invalids, St Helena Regiment, Gold Coast Artillery, Falkland Islands Company. On the other hand, a fourth West India Regiment has been added; and a second battalion of the Ceylon Rifles is in course of formation for service in the Straits Settlements and in Hong-kong. The Malta Fencibles have been converted into a corps of artillery, and are highly efficient. The total strength of the colonial corns is about 8000 men of all ranks.

Commissions, Army.-The prices of caralry commissions have been assimilated to those of the infantry. In the Foot Guards, commissions are not saleable above the rank of 'captain and lientenantcolonel.'

Control Department-sometimes called the Compirol Department-a presiding civil depart. ment of the army, the creation of which has furnished ground for much public controversy throughout 1867 , and for much misapprehension since the appointment of a controller-in-chief to the War-office in January 1868. The common idea seems to be, that this officer, who holds high rank in the military hierarchy, is to control the whole War-office, and consequently the Minister of War himself. His title is not a very felicitous one; but his functions are merely to control the departments charged with army supplies, that is, the Commissariat, Store, Purveyors, Transport, and Barrack departments. The appointment is the result of an inquiry in 1866 and 1867 by a committee of officers, of whom Lord Strathnairn was chairman. The recommendation was, that the departments specified should not only be concentrated at head-quarters; but that in every command there should be a controller, or deputy or assistant controller, according to the importance of the charge, whose duty it should he to harmonise the same departments within the command. It is the corporation formed by the controller-in-chief and these local controllers which will constitute the Control Department. The actual department has not as yet been formed, but it is understood that the year 1868 will not expire without its completion.

Cross, Victoria. - This distinction is also applicable to the navy.

WAR-SERVICES

Derots-There are as many depots as there are regiments abroad, the depots being, for the sake of battalion training, formed ioto depot battalions, which aro virtually regiments. The head-quarters are not at the rlepot, but with the service companies; and when a regiment returns from foreign service, the depot joius the service companies.

Donkyard batralons no longer exist, with the exeeption of a small corps at Nalta.

Escistarext, Army- By an act of 1567, the first period is fixed at 12 years, and the second at 9 years, for all arms of the service. Men are also empowered and encouraged to enlist for general service, as distinguished from enlisting for particular regiments.

Exsign.-The use of the white ensign is now peculiar to the British navy; the red ensign beins assigned to yacht-clubs and non-combatant government vessels; and the blue ensign to vessels of the merchant service.

Irrer.-A fifer now receives pay at $1 s$, $a d$ a a day; and a fife-major, os. $4 d$.

Fleeetwoon. - The School of Musketry at this port has been discontinued.

Gun-caliriages.-In consequence of the great weight of modern artillery, and the enormous strain produced by its discharge, it has been found cheaper and more efficient to construct carriages of wrought iron for all naval and garrison guns of or exceeding $6 \frac{1}{2}$ tons in weight.

Gey liactories, Royal.-The establishment of Sir William Armstrong is Co. at Elswick, has ceased to be conneeted with government. When, in 1503, the government work was withdrawn, a sum of £Sa, 000 was paid to the Company as compensation for the plant, \&c. they had set up for the purposes of the manufacture.

Lausen (bout). - The lannches of the largest ships of war are now usually deeked vessels, litted with steam-engines, and capable of crusing and fighting on their own aecount. They are hoisted inboard when the slip is on her course.

Muskitry, Schools of.-The school at Fleetwooll has been discontinned, duplicate establishments being fond an unnecessary expense.

Palliser Gusis and Projectiles-Since the issue of that portion of the Encyclopardia devoted to great guns, a considerable step in adrance has heen taken under the auspices of Major Palliser, a cavalry officer on lalf-pay. His guos have resisted charges that woukd have instantly shattered any others yet brought forward; and by the aid of his hardened projectiles, shields have been pierect which had defied the heaviest bolts of all other ordnance. Although only prominently before the public during the last three or four years, this indefatigable oflicer has been experimenting from time to time since 1854, always in the one direction, which has resulted in forming the gun which will in all probability le that adopted by all governmeats. Cavalry service in the Crimea and in India interrupted the investigations, but they were always resumed the moment opportunity offered. The principle of Major Palliser's gin is readily understood.

With the large charges used in this conntry, castiron guns were nnequal to projecting modern shot and shell, and wrought-iron ordnance were introduced. These answered their purpose to a certain extent, as in the Armstrong and other guns; but there was an element of nacertainty in their texture, and some of them had lurst with bad effeets. To this might be adiled their enormons expense; and the fact that thousands of large cast-iron guns were in store, to all appearance useless. Nany attempts have therefore been made to utilise these east-iron guns, the means adopted being generally
to sbrink rings of wrought iron over them. This has not proved effectual, and the guns have become preposterously cumbrons Next, the cast-iron guns were bored up to a greater calibre, and then a thinmer cannon (ealled a tube) was inserted, this tube being a cylinder of wrought iron or stecl bored to the proper calibre. The strengtla thus added to the gun has been but hittle. Major Palliser's sys. tem for converting guns is to insert a tubo of wrought iron; but that tube is coiled, as in an Armstrong gun, ly winding a bar of iron round a mandril, aud then welding it into a coutinnons harrel. These guns have witlistood the utmost strain brought to bear upon them. For the preferable and chenper process of making new guns, the iron would bo cast in the ordinary way around tho wrought-iron tule. For the purposes of this tube, Major Palliser finds the softest aud most ductile wrought iron the best, having a certain streteh in it. The anthorities had already fonod out that thick iron plates conld not be penctrated except by steel projectiles; but their nse was greatly limited by their great cost. Major Palliser came, by experiment, to the conelusion, that toughness was not a neeessary feature in the shot, and that hardnessno matter how brittle the material might be-was the real thing necessary for extreme penetration. With this view, he selected white iron, and cast it in chill, which secures the requisite amome of brittle lardness. To cast in chill, an iron mould of the exact shape is employed, with raised stuls of sand inside it. The liquid metal is poured in (the siad studs forming boles for the studs of the future shot or shell to be fixed in); and the rapid conduetion of heat by the iron mould canses so sudden a cooling from the outsile of the mass, that the particles of iron are driven eloser together than in their normal state. This produces intense lardness. the same inventor has ascertained the proper shape for the head of a shot or shell, as opprosed to the flat head, the pointed couical head, and tho hemisplerieal head already in nse. He determined that the form of greatest power is the conoidal, which lies between the conical and the hemispherical, the conoid consisting of the intersection of two circles, each with a radnus equal to twice the diameter of the projectile.
liecruting.-The competition of the labourmarket at bome and abroad telling very disalvantageously against the recruiting.sergeaot, a lioyal Commission was appointed in 1566 to consider by what means the evil might he lessened. Although all the recommendations of the commission havo not heen adopted, several bave taken effect. Among others, an Inspector-general has leeen appointed to superintend and harmonise all the recrniting operations; to render the conditions of service more attractive, the pay of every soldier has been increased twopence a day, with an additional penny in prospect, if he continue to serve after the expiration of his first period of service. It is, however, to he observed that this result caused general disappointment, there being no hroad views propounded by which to render recmiting for the army less difficult.

Reserve Forces of the United Kingdom.-By two acts of 1567 -one for an 'Army lieserve' of 50,000 men, and the other for a 'Nilitia Reserve' not exceeding one-fourth the number of militia-power las been given to organise a more effective body of trained men of previous good service in the army or militia, who shall be immediately available in case of invasion or imminent danger, for being drafted for the period of danger into the regular army:. It is maderstood to be in contemplation to allow soldiers to commute their last live years of army

WATLING STREET-WATTS.

service into a double period in the Army Reserve, which would leave them at liberty, under restrictions, for civil employment, without dcpriving the country in any exigency of their services as soldiers. With a view to harmonise the several constituents of the Reserve, and to give them that corporate organisation which is still wanting, a high officer the Inspector-General of Reserve Forces, has (April 1868) beeu appointed at the War-office.

There is a growing feeling throughout the country, as well expressed in 1567 by Lord Elcho in the House of Commons, that every citizen should be ready to bear arms in defensive war; and that, with this vier, every young man should serve for two years or some other short period with the army on home service. That such a measure would raise the character of the army, while it diminished the cost of recruiting, it is impossible to doubt: how far this system and the purchase of conmissions would be compatible, may be more doubtful.
Rifled Arms.-Adverting here simply to the system adopted for rifling-whether by grooves or otherwise-the bore of the gun or ritle, and irrespective of the construction of the arm in other particulars, the scientific inquiries of the government may be said to have been brought to a close.
In small-arms, the competition has lain between the Enfield, Laucaster, and Whitworth systems. Of these, taking all considerations into accouut, it is held that the Enfield system is incomparably the worst; and the Lancaster system of oval bore the best. If a new rifle be adopted for the army, when the converted Sniders shall be worn out, it is probable that the Lancaster bore will be employed.
In great guns, after protracted experiments with the systems which gave the most favourable pros-pects-viz, those of Armstrong, Whitworth, Lancaster, Scott, and the French rifling-it has been decided to give the preference to the Freuch plan, with the exception that the grooves are wider and shallower. All rifled cannon now made in the Royal Arsenal are constructed on this system, which is called the 'Woolwich' system, with a variable number of grooves according to the calibre of the piece.

Rodman Gux.-This has been extensively used for large ordnance (smooth bore) in America, and is said to stand heavy charges. The guns are of east iron, cast hollow, and then cooled from within, the process producing great hardvess round the bore. A 15 -inch gum was tried in 1567 at Shoeburyness; but the results, though on the whole not unfavourable, were scarcely such as would lead to its introduction in the British service. It has been suggested that a Rodman gun lined with wrought iroo on Palliser's system, would prove a highly effective weapon.
WA'TLING STREET, one of the great Roman highways of Britain, commencing at Dover, passing through Canterbury and Rochester to Londou, and thence through Uriconium and Chester to CaerSeiont, the ancient Segontium, in Caernarvonshire. From Uriconium, a branch proceeded north by Manchester, Lancaster, and Keadal, into Scotland. Traces of the ancient road are still to be fornd in many parts of its course, and in some it is still an important highway. A street in Loddon retains its name. The origin of this name is very uncertain; the most probable supposition is that the original name was Stratum Vitellianum.

Watts, Thomas, a distinguished philologist and librarian, was born in London early in the present
century. At school he studied Latim and French, and in due time Greek as well; but he principally distinguished himself by his attainments in English. He read every book that came in his way, and he wrote, apparently with the utmost ease, tales, essays, and poetry, very much above the average, not alone of school-boy composition, but of the magazine-writing of the day. To a knowledge of the classics and French, W. soon added an acquaintance with the other languages of the Latin family-as Italian, Spanish, and Portugnese; likewise with the German, Dutch, Swedish, Danish, and Icelandic. The facility with which he acquired these several languages, encouraged him to undertake, from time to time, the study of some of the oriental tongues, viz., Hebrew, Arabic, Persian, Turkish, and even Chinese. In each of these he made considerable progress, but caunot be said to have mastered any of them as he did those languages before named, and as he subsequently mastered the Russian, Polish, aud Hungarian. There are few Englislimen who know anything of the three languages last named, which W. could read and translate with the utmost ease-being as familiar, in fact, with their great writers as he was with those of Germany or France. It remains only to mention that W. was also well acquainted with the Wclsh language aud literature, besides having some knowledge of the Gaelic and Irish as well. Upwards of 20 langlages have thus been named with which he was well acquainted. No other Eoglishuan has approached him as a linguist, cousidering the rariety as well as the number. of languages which he acquired; while of foreigners, it is not too much to say that Mezzo. fanti aloue appears to have surpassed him.
In 1832, W. first became a 'reader' in the Reading-room of the British Museum, where, in studying some of the languages mentioned, he became acquainted with the deficiencies in the literature of other countries under which our national library then laboured. In 1837, the Rev. Mr Baher, then keeper of the Printed Bonks, purchased, at his recommendation, a small collection of Russian books, which W. offered to catalogue as a voluateer. This brought him the acquaintance of Mr Panizzi, who, becoming aware of his attainments, recommended him for employment in the library. Accordingly, he was engaged as an assistant in the department of Printed Books, January 1838. At that time, the books were being transferred from the old rooms in Montague House to the new library. It was W.'s duty to assist in the rearrangement of the books, and when this was finished, he was intrusted with the responsible duty of arranging and placing on their shelves, according to subjects, all the new works purchased or otherwise acquiued for the library. For this his vast acquirements as a linguist eminently qualified him. In other respects also his knowledge of languages was brought to bear in the service of the Museum. He drew up lists of desiderata in all the languages of Europe. It was at his suggestion also that the first large orders were given for American books. 'The object' (says W. in a letter to the principal librarian in 1861, printed by order of the House of Commons in 1866) 'which has been kept in view during the last three-and-twenty years has been to bring together from all quarters the useful, the elegant, and the curious literature of every language; to unite with the best English library in England or the world the best Russian library out of Russia, the hest German out of Germany, the best Spanish out of Spain, and so ior every language from Italian to Icelaudic, from Polish to Portuguese. In tive of the languages in which it now claims this species of supremacy, in

WEAVING-WEIR.

liussian, l'olish, Hungarian, Danish, and Swedish, I believe I may say that, with the exception of perhaps fifty volumes, every book that has been purehased by the Mnseum within the last threc-andtwenty years has been purchased at my suggestion. 1 have the pleasure of reflecting that every future student of the less known literatures of Europe will tind riches where I found poverty.' 'The number of books elassitied and arranged by W., while only an assistant in the library, is reckoned at abont 400,000 volumes, and of these as many as 100,000 were arranged upon a plan of his own invention, now known as 'the elastic system.' 'One of the advantages,' he says, in the letter before mentioned, 'obtained by this system is, that when the new library, which surrounds the new leading-room, was ready for the reception of hooks, these 100,000 volumes were removed to their new locality without the necessity of altering a single press-mark: had the operation of altering the press-marks been still required, as under the former system, the amount of labour necessary to effeet it wonld have heen enormous, and the expense not less than some thonsands of pounds.' Here it may be mentioned that it was W. who tirst suggested the erection of a library and large reading-room in the vaeant quadrangle, where now rises the splendid dome erected under the auspices of Panizzi. The suggestion was originally made in a scries of articles contributed anonymously to the Mechanies' Magazine for 1836 and 1S37, since that time acknowledged by W. as his own. In one of these, speaking of the quadrangle, he says: 'The space thas unfortunately wasted would have provided accommodation for the whole library. A reading-room of ample dimensions might have stood in the enntre, and been surrounded on all four sides by galleries for the books, eommunieating with each other, aud lighted from the tor." In $1850, W$. was promoted to be assistant-keeper of the Printel Books; and on the opening of the splendil new Reading room in 1857, he was most fitly appointed its superintendent. In August 1866, W. was appointed lieeper of the department of Printed Books. . Me died 9 th September 1869. W. was a member of the Philological Society of London; he was also an honorary member of the Hungarian Academy, to whieb he was clected at the sime time as the late Lord Naeaulay. Among the literary productions of W. may be mentioned: 'Notes of a Reader,' contributed to a weekly periodical entitled The Spirit of Literature, 1830 ; numerous poetical pieces contributed to Linnington's Rhetorical Speaker and Poetical Cluss-Book, 1S33; A Letter to Antonio Panizzi, Es $\%$, on the reputed Earliest Printed Neuspaper, 'The English Mercurie, 15S8,' 1S39; A Shetch of the Mistory of the ITelsh Language and Literature (reprinted from Knight's English Cyclopecdia), 1839; mnore than a hundred biographies of eminent men, Russian, Hungarian, Eohemian, \&c., contributed to the same Civclopcedia; numerous artieles in the Biographical Dictionary of the Society for the Diffusion of Useful Knowledge; papers in the Transactions of the Philological Society, among which are an 'Essay on the Ifungarian Language, and a biographical notice of Cardinal Mezzofanti ; also contributions to the Quarterly Review, the Athenoum, and other literary periodicals.
WEAVING. There is no branch of manufacture in which inventions and improvements are more rapidly sneceeding each other than in weaving; but, as a rule, they are of minor importance, and rarely affeet the general principles of the process. In 1567, however, the novelty of Coneex weaving by machinery was introdnced, and although only at $\underset{768}{\text { present applied to ladies' stays, seems to promise a }}$
wide aplidication to elothing gencrally, and many other purposes.

Out of the numerons attempts that have been made during the last ten years to weave by machinery a convex surface, such as is required in several artieles of elothing, hardly one, up to the present time, has suceceded. This failure has heen owing partly to deficiencies in the various inventions of this kind, and partly to the costliness of carrying them out. At last, after long and patient trials, a patent conrex weaving-loom has been invented that not only answers all the purposes of the band-loom, hitherto exclusively used, lint also possesses the advantage, which is absolutely necessary in a country where labour is searce, of doing ten times the amount of work in the same space of time. With the hand-loom, one man ean make, at the very utmost, only four lair of stays in a day, whereas the new-invented conver wearing-machine turns out 40 pair daily. The superior lightness and flexibility of woven stajs, and their perfeet freedom from hard seams, have inereased to a very large extent the demand for this class of goods. Up to the present moment, hand-labour alone has been employed in France and Wirtemberg, two countries where they have been most extensively manufactured. In the United States, however, where the high wages for hand-labour have necessitated the most extensive use of machinery, this system conld not be adopted with any possibility of pecumiary suceess; and, in consequence of this fact, a loom fur weaving of stays and other convex goods had to be invented. This loom, which was eonstrueted under the superintendence of MI. Opper, for the Convex Weaving Company in New Jork, docs the work automatically and to perfection.

The principle of a constant length of travel for the shuttle was adopted for the sake of simplicity; but, as it is necessary, in weaving the gores, that the weft-thread should pass through only a part of the lireadth of the warp, the Jacquard has been employed for the purpose of taking up the portion of the warp required to be woven in that part. It is impossible by mere verbal deseription to give any adequate notion of this ingenious machine withont seeing it in operation.

WEIL, or WEAR-called also a dam, and in the north of England and south of Seotland, a eaulda structure placed across a river or stream, for the purpose either of diverting the water into a milllade, of raising the level of the surface of the river, and thereby increasing its depth for the purpose of navigation, or of providing the means of eatching salmon and other fish. There is also the wasteweir, for the purpose of preventing a reservoir embankment being overtopped by lloods; and the gauge-weir, for the purpose of computing the quantity of water tlowing over it, from a measurement of the difference of level between the crest of the weir and the surface of the still water above it. The word is also sometimes used, though perhaps not quite correctly, to denote a training-wall or other structure parallel with the general line of a river, for the purpose of remedying or preventing loops or sinmosities. A weir may-according to the purpose for which it is intended, to the nature of the materials at command, or to other circum-stances-be formed cither of stone, timber, or brnshwood, or a combination of any two. It is generally placed obliquely across the stream, in order to make the length of its crest considerally greater than the width of the channel (fig. 1), and thereby prevent the water in floods from rising to so great a height as it would do with a shorter crest, to the risk of damaging the adjoining low lands, and probably putting the mills above in backwater. In

WEIR.

such cases, the mill intake, or the navigation lock, as the case may be, is generally placed at the downstream end of the weir. Much obliquity, however,

Fig. 1.
A, intake.
makes the current to impinge against and to cut into the side of the river opposite the lower face of the weir, and to prevent that effect, weirs are sometimes made of the shape of two sides of a triangle, or rather of that of a hyperbola, with its apex pointing up stream, which arrangement is peculiarly applicable to the case of there being an intake for a mill on each side of the river (fig. 2), and the apex is a

Fig. 2.
A, A, intakes; B, fish-pass.
very snitable place for a fish-pass or ladder. Not unfrequently, when at a wide part of the river, the weir is placed at right angles across, and with a slight curve upwards (fig. 3); and a natural shelf of

Fig. 3.
A, intake.
rock is often very advantageously maule use of for either a mill or fishing weir, the low parts being made $\mathrm{n} p$ where necessary with stone or timher.
The down-stream face of a weir is generally a pretty Hat slope of stone 'pitehed' or set on edse, and with its toe, or lower edge, either sunk into rock, or protected from being minderwashed by a row of timber-sheeting $p^{\text {iles, }}$ and frequently also by an apron of timber-planking. This slope is either straight, or made with a hollow eurve (tig. 4), so as to check the tendency of the water to acquire increasing velocity as it descents; and it is frequently divided into panels by timber-framing, so as, in the cvent of a portion of the pitching leing
washed out, to lessen the risk of the whole of it being earried away. The up-stream face is generally a slope dipping into the water, and protected by

Fig. 4.
A, masonry ; B, pitehing; C, clay puddle.
stonc pitching, but it is sometimes a perpendicular wall. In order to render an ordiaary sloping weir water-tight, sometimes there is under the crest or coling a row of well-jointed and elose-driven timber sheeting-piles; but those being liable to decay, without their decay being visible, a better, though a more difficult and expensive arrangement, is to build a perpendicular wall of water-tight masonry under the crest. In either case, generally there is the additional precaution taken of having a wall of pounded clay on the up-stream side of the wooden or stone barrier; and sometimes a mere wall of pounded clay alone, in the centre of the weir, is trusted to, as the sole means of making it watertight; but the latter is not a satisfactory arrangement, unless the stone-work next to the clay he so closely compacted by an admixture of gravel and sand as to prevent any current of water from reaching the clay, and cutting into it. The down-stream face is sometimes made a nearly perpendicular wall, which, unless for the obstacle which it presents to the ascent of the salmon, is a very good arrangement, where the bottom of the channel is solid rock, so as not to be liable to he scooped ont by the fall. ing water; else it must have at its foot a level apron of heavy masonry for the water to fall on (fig. 5).

Fig. 5.
A, masonry; B, pitching; C, clay puddle.
The down-stream face is also sometimes made of a series of steps, so forming a succession of levels and light falls (tig. 6), which is a very good plan for

Fig. 6.
A, masonry; B, pitching; C, clay puddle.
breaking the foree of the falling water; but it, like the perpendicular face, presents obstacles to the ascent of the salmon, unless a fish-pass or laduler be provided.

The weir for the purpose of navigation need not be in any way different from the mill-werr, otherwise than that, instead of an intake sluice, there

769

WELLINGTON-WHITTINGTON.

must be a Loek (q. v.) witl upper and lower gates, and a chamber between them as long and as wide as the largest vessels navigating the river. Fishingo weirs are generally provised with i sort of carre, called in Scotland a cruive, a word which has been made Finglish by having been used in English fishing - acts. The muive consists of a chamber (fig. 7), generally about four or tive feet in width, and $n s$ wueb or a little more in lengtlu, laving at the upper end a portcullis gratiner, callex the heck, with the bars vertical, and three incles apart, so as to let small fish get through, and at the lower end two folding horizontally sparred doors called the inscales, pointing upwards, but set so as to leavo a small opening between the points, throngh which the ascending salmon cater. Partly from the inward pointing of the inscales, and partly from the instinct of the fish to ascend the river, they seldom get out again, and are easily cauglat. F'requently, weirs serve the purpose both of mill-dams aud of fishing. weirs.

A weir sometimes made use of for catching salinon and other fish in tidal rivers, consists of a sort of horse-shoe shaped structuro of loose stonc-work, through which the water can percolate frecly, with its beel or open end pointing up-stream. The fish ascend the river with the flood-ticle, and falling back with the ebb, part get embayed withia the walls at low water, and are either left dry, or are siut in so as to be easily caught.

Weirs, either of stone or of wicker work, are also sometimes made use of as an accessory to what in English fishing-rivers are called putts and putchers, being a sort of combination of wooden gratings aeting something like those of the cruive and network; and in many cases, weirs, either natural, as formed by rocks or islands, ol strictly artilicial, are used for catching fish by means of an attached pokenet extended by the enrrent.

By the English common law, no fishing mill-dam or fisling weir is legal cxcept it be ancient, and even an ancient fishing-weir must have a free gap, and every fisbing mill-dam must have a proper fishpass.

The following are provisions as to wcirs in the English Salmon Fishery Act, 1SG1: For the purpose of clearly indicating the rights of mill-owners, \&e., in the first place, the expression 'dam' is defined to mean all weirs and other fixed olostructions used for damming up water; 'fishing weir, a dam used for the exclusive purpose of facilitating the catching of fish; and 'fishing mill-dam,' a dam used partly for facilitating the catching of fish, and partly for supplying water for milling, \&c. (24 and 25 Vict. e. 109, s. 4).

The following regnlations are to he observed with respect to dams: No dam, except such fishing weirs and fishing mill-danas as were lawfully in use on the 6th August 1861, by grant, charter, or immemorial usage, must be used for facilitating the catching of salmon. Any proprietor of a fishery, with the consent of the Home Office, may attach to every dam which existed on the Gth of August 1861, such a fish-pass as the Home Offiee may approve, so that no injury be done to the milling power, or to the supply of water to or of any navigable river, canal, or other inland navigation. Every person who, in waters where salmon are
found, constructs a new dam, or raises or alters, so as to create inereased obstruction to fish, a dam already constructed, must attach and maintain in an etlicient state such a fish-pass as may be determined by the llome Ollice. 13y the Tweed Act, mill-dams, weirs, caukds, and other promanent olustructions are to be so constructed as to permit the free run of salaion in the ordinary state of the river. In Ircland, as in England, weirs are legal, if they ean be traced back to statute 25 Edward III. Special pishery Commissioners have power to inquire into legality of all fishing weirs, and every fishing weir must have a free gaj.
liy the old Scotch law, a provision as to milldams is given in the Act 1696 , as follows: "In respect that the salmon-fishing within the kingdom is much prejudiced by the bejght of mill-dams that are carried through the rivers where salmon are taken, His Majesty, with consent of the Listates of parliament, orders a constant slope in the midstream of cach mill-dam dyke; and if the lyke be settled in several grains of the river, that thero be a slope iu each grain (except in such rivers whero cruives are settled), and that the said slope be as lig as conreniently ean be allowed, providing always the said slope prejudge not the going of the mills situate upon any such rivers., Cruives are by various old acts cleclared to lue illegal in tidal waters, cxcept the cruives and yairs of tho Solway, which is exempted as being a Border river.

By the Scoteh Fishery Act of 186°, the commissioners are empowered 'to make general regulations with respect to the coustruction and alterations of mill-dams, or lales, or water-wheels, so as to allow a reasomable means for the jassage of salmon ; aud they made a by-law, which luas been sanctioned by the Home Sceretary, moviding that every dam should have a salmon pass or ladder, and also making provision for hecks at the intakes and lower ends of mill-lades, and immediately above the wheels, and regulations whereby the water, when not used for the mills, should be scut down the natural channcl of the river. 'J he commissioners aro also reguired to make, and have made, general regulations as to the construction and use of cruives, which implies their legrality, but only where there is a prescriptive right.

WE'LLINGTON, a town of New Zealand, the eapital of a province of the same name, and now also the capital of the wholo colony, the residenee of the governor, and place of meeting of the 'Ceneral Assembly, or colonial parliament. W. is beantifully situated on it bay of Port Nicholson, itself an inlet of Cook's Strait, on the southern const of the North Island. The surrounding country is richly wooded, but the dense forests have begun to yield to tho axe of the settler. W. is rapidly rising in importance, and has many good public buildings. In June 1866, a regular line of steam-packets was established between Sydney, W., and l'innana. W. is also connected by steamers with all the principal ports of New Zealand. Pop. in 1S71, 7596.

WHITTINGTON, Rrcmard. As the existence of this, for his time, remarkable man, is by many supposed to be as mythical as that of Blue Bearil and Jack the Giant-killer, it has been thought not out of place here to state briefly the few authentic facts of his life. W. was descenderl from a goorl Gloucestershire family, and was born probably about 1360 , the jouncrer son of Sir William Whittington, who possessed the estate of l'auntley in that county. His father died not long after W. was born, and as his mother in a short time married again, lichard, who had no fortune, set out for London, to endeavour to make one by means of trade. That he left London
on account of ill-usage, but was induced to return by his interpretation of the friendly sound of Bow Bells, and that he afterwards made his living through the instrumentality of a cat, are stories not improbable, but which cannot be well authenticated. He appears, however, to hare apprenticed himself to a mercer, and to have rapidly risen in the world. It is not known at what date he set up for himself, but we find him a member of the Mercers' Company in 1392, in which year he was elected an alderman of the city, and in the following year was appointed sheriff. In 1398, W. was elected Lord Mayor of London; was again chosen to fill that office in 1406; was elected nuember of parliament for the city in 1416 ; and in 1419 , for the third time, filled the office of Mayor. These statements accord with the popular story of W.'s having been 'thrice Lord Mayor of London,' although some antiquaries doubt if be filled that office ofteuer than twice. W., on account of various services rendered to Henry V., received from that sovereign the honour of knighthood. We are not informed of the date of W.'s marriage; but from rarious authentic sources we learn that his wife's name was Alice, daughter of Sir Hugh Fitzwarren. She appears to have died several years before her husband, and to have left no issue. W. died in the spring of 1423 , aged about 63 years. There can be no doubt that W. was diligent and exceedingly prosperous in business, upright and liberal in claracter-- a vertnous and godly man, full of good works (and those famous) '-and in many respects considerably in adrance of his time. His liberality appears to have been unbounded. He lent large sums to his sovereign, which, according to some authorities, he did not ask back again. He took great interest in, and spent much money on the general improvement of London; was so far ahead of his age as to erect a public drinking-fountain; rebuilt, on a much better plan, the prison of Newgate; founded the library of the Greyfriars' Monastery in Newgate Street; restored the Hospital of St Bartholomew in Smitlfield; rebuilt the Church of St Michael, in which he founded a college; 'beside many other good workes.' In short, TV. appears to hare made it the chief aim of his life to discover and supply all the legitimate wants of his less fortunate fellow-men. At his death, he left the bulk of his property to be laid out in purposes of charity, and in completing those works which had been commenced under his own superintendence.-For proofs of all the above statements, which have been well authenticated, and for further details concerning the life of this remarkable man, we refer the reader to the Rev. Samuel Lysons's Moded Merchant of the Middle Ages (Lond. 1860), an admirable and judicious biography of W.; also to various volumes of N otes and Queries.
wilkinson, Sir Johin Gardner, a distiuguished traveller and archæologist, is the son of the Iate Rev. John Wilkinson, of Hardendale, in Westmoreland, and was born on the 5 th of October 1797. Having lost both his parents at an early age, he was Ieft under the guardianship of the Fev. Dr Yates, by whom he was sent to Harrow School in 1813, anif to Exeter College, Oxford, three years later. While a boy, young W . hail a strong desire to enter the navy, principally with a view to seeing foreign countries. He also in early life shewed a great fondness for architecture aut sculpture. While at Harrow, he made sketches of all the churches within a radius of some miles from the school; and while at Oxford, often emplosed himself in drawing from the objects contained in the Arundel Collection. He still further cultivated his taste for architectural antiquities by trips on the continent made during
his college vacations. On taking his B.A. degrce, he resolved upon making a wider tour on the inntinent. While in Italy, he became acquainted with Sir W. Gell, who, perceiving his taste for archroological research, strongly urged him to make an extensive survey of the remains of Egyptian civilisation; and in Uctober 1821, he set ont for Alexandria, as a starting-point for his explorations. He took up his abode at Cairo, where he learned Arabic, both to read and speak; he also studied Coptic. Making Cairo his head-quarters, he now travelled throngh and investigated almost every part of Egypt and Lower Nubia. Twice be ascended the Nile as far as the Second Cataract, and several times as far as Thebes. At the latter famous site, be spent more than 12 months in making explorations; he also visited the deserts on either side of the river, and the Egyptian oases. During subsequent visits, he completed the exploration of those deserts, and, in fact, made a complete survey of Egypt, on a scale of about ten inches to a degree, which unfortunately, for the interests of science, has not jet been published. The same might have been the case with his Surrey of Thebes, had not the author engraved and pubfished it at his orn expense. As a result of his first visit to Egypt, W. transmitted to the British Museum more than 300 antiquarian objects, besides numerous specimens of natural history. W.'s first residence in Egypt extended over a period of twelve years, during which time he composed and published Lis first two works on Egyptian subjects-viz., Materia Hieroglyphica; containing the Egyptian Pantheon and the Succession of the Pharaohs, from the Earliest Times to the Conquest by Alexander, and other Hie. roglyphical Subjects: with Plates and Notes explanatory of the same. The preface to this work is dated 'Pyramids of Geezeh, Jnly 1828 ; ' but it was printed and revised for the author at Malta in the same year. This work was followed hy Extracts from several Hieroglyphical Subjects, found at Thebes and other parts of Egypt, with Remarks on the same -also printed at Malta in 1530 , but with a dedication to Sir W. Gell, dated 'Thebes, 15:-.' In the same year (1530), he mblished his Topographical Survey of Thebes, T'Tapé, Thaba, or Diospolis Magna, in six sheets. In IS33, W., in consequence of ill health, was obliged to return to England. In 1835, he published Topograply of Thebes, and General View of E!fypt (Lond. Jolin Murray). This was followed in 1537 by, Manners and Customs of the Ancient Egyptians, including their Private Life, Government, Laws, Arts, Mamufactures, Religion, and Early History; derived frona a Comparison of the Paintings, Sculptures, and Monuments still existing with the Accounts of Ancien: Authors: illustrated by Drawings of those Subjects. (3 vols. Lond. John Mlurray). This work at ouce obtained great popularity, both from the extent ancl soundness of its information, and the agreeable style in which it was written. It was highly spoken of by the critics; and obtained for him also the honour of knighthood, with which he was invested in 1839. Many things of importance were, however, omitted in it, which he afterwards published in A Second Series of the Mamers and Customs of the Ancient Egyptians, including their Religion, -1 miculture, de. (2 vols. and a volume of plates, Lond. Murray, 1841). W. again visited Egylt in 1841 and in 1843 . He also visited Syria, Constantinople, Tunis, and Sicily, returning to England after an absence of two years, by the Illyrian coast of the Adriatic. During his two years' absence, he also visited Dalmatia and Montenegro, which gave occasion to the publication of his Damatia and Montenegro, with a Journey to Mostar, in Herzegovina, and

WILKINSON゙ーWOMEN＇S RIGHTS．

Jemurks on the Nharonic Nations；the IIistory of Dalmatin and liagusa；the Liscues，de．（2 vols．， Loml．Mnrray）．W＇，s other works are－Modern Einypt and Thebes；being a Description of Egnpt， incluling the Information required for I＇ravellers in that Country；with 11^{r} oorl－cuts and a Map（ 2 vols．， Lond．Murray，1S43）：Hand－book for Travellors in Einnpt：new cdition condensed of Motern Eignt and Thebes（1mnd．154\％，and again in 185S）：The Architccture of Ancient Eit！nt，with a Larye Volume of I＇lates Illustrative of the subjed（Lomal．1S50）： The Fragments of the IIicralic Paprus at Turin， containing the Nomes of Eyyptian Kings，with the Hieratic Inscription at the Jiteck（Lond．1S5l）：A Popular Accomet of the Ancient Enyptians，revised and abridged from his larger 1Fork（Lond．1854）： The Eyyyptians in the Time of the Pharaohs；to Which is added an Introduction to the Study of Egyptian IIieroglyphs，by S．Bireh（Jond．1S57）， published as a companion to the Crystal I＇alaee guides：On Colour，and on the Vecessity for a Gieneral Diffusion of Taste among all Classes：with Remarks on laying out Geomelrical Gardens：illus－ trated by Coloured Plates（Lond．1S5S）．W．also contributed notes to The History of IIerodulus－a N゙ew English Jerision，edited，with Copions Jotes， by George hawlinson，M．A．，assisted by C＇ul．Sir II． Rawlinson and Sir J．G．Hilkinson（Lond．1S5S，and again in 1862）．In 1S4S，he paid a fourth visit to Fogypt，and a fifth in 1555，when，as lie was drawing at Thebes under exeessive heat，he received in coup de solcil，whieh compelled him to return bome． During late years，W．has occupied bimself in examining ancient British remains in England and Wrales．The results of his investimations he lias occasionally made known in the Transactions of learned societics．

WOMEN＇S RIGITSS．In 1S51，an article in The Westminster Reriew attraeted attention to the novel subject of the enfranchisement of women． Since that time，the agitation for women＇s rights has in this country，and to a still greater extent in America，attained the dimensions of a prolitieal movement．The subject has therefore become one of general interest．The following is an aceount of the claims included in women＇s rights，and a brief statement of the chief arguments by which those claims are supported．

1．The Potitical Rights of 11 omen．－The discussion has hitherto turned upon the right to the suffiage． The right to vote is claimed in accordance with the priveiples of political reasoning that are held con－ clusive in the ease of men．The argument applies with peculiar force to a democratic constitution． Demoeracy involves two ideas．It is a protest against privilege and against despotism；it main． tains that every individual is born with on equal right to the protection and consideration of the law ；and it affirms that every one must have a vote in order to sicure this fundamental riglit． The practice of the United States shews a gradnal approach to those principles．Till lately，the negraes were refnsed the beaefit of them；lut the privilege founded on cclour has perished，and there remains now only the privilege founded on sex．

In England，the right to vote las been made to rest on the principles of English law．A petition of women to the Honse of Cummons，presentel on Fth June 1566，sets forth，that the possession of property in this country carries with it the right to vote in the election of representatives in parliament． From the earliest times，the principle of the Eng－ lish constitution，and the spirit of the English people，have required that no man＇s property should be taken for the purposes of government without his consent．Sinee，therefore，the English law
permits women to lold aml manage property，it seems anomalous and inconsistent that it shmulel refuse them a vote to protect their property from inordinate taxation．Other persons allowed by the law to hokl property，but excluded from the suff． rage，are minors，illints，lunaties，and criminals． bit the principle of disqualifieation in those cases dues not apply to women．Moreover，there is alleged to he historical evidence that women lave voted both in counties and borouglos．The disuse of the privilege is traced to historical causes．Sinch was the violence of the time，that women were often mable to administer their property，and it was therefore natural that they should take little part in elections．Pesiles，the right to vote was at first regarded，not as a privilege，but as a burden； for the power of the Commons was low，and the expense of paying members of parliament was consideralile．lhe disfranchisement of women is therefore helal to be an anomaly in the constitution， as it was an aecident in history．

The objections to female suffrage are varions．In an argmment in the Times，it is said：＂There exists， as it were，a taeit coneordat gnarantecing to the weaker sex the protection and deference of the stronger，upon one eondition only：that condition is the political dependence of women．＇This asserts a clam on the part of men to make laws for women，in return for protection and deferenec．Now， protection to person and projerty every one has a right to who wheys the laves and contributes to the support of the government．The reason for refusing votes to women must lie deeper．It may be saill that，imasmuch as women are weak and at the mercy of men，men abstain from abusing their supe－ riority only on one condition ；that coudition is， that women shall hare no legal rights execpt those that men are pleased to give them．In the last resort，the rights and privileges of any class of men depend on their might．The nobility established their privileges when they had power．The working－ class has been admitted to the franchise beeause its power has increased．But women have no physieal power to enforce their rights．If rights are to be measured by might，women will oceujy the bottom of the scale．This is their position among savages．But，as cirilisation has advanced， men have learned to renounce the advantage of their physical superiority，and freely to give women priviluges that could not have been extorted．It would therefore seem that the rights women actu－ ally enjoy do not depend upon，and are not to be measured ly，their physieal strength．＂lhe rights of women llow from the prevailing sense of justice， and justice now means that the interests of women be consulted with as mueh imprartiality as the inte－ rests of men．An unjust preference of either would be mischievous to both．Since，then，the interests of women should be fairly considered，what reason can there be to prevent them voting，and therely intimating what views they take of their own interests？

Another objection to the enfranchisement of women is，that women have no lusiness with polities，and that politics would withdraw them from their proper dutics．Is this apprehension well founded？ Granting that domestic life is the proper sphere of women，is it really impossible to unite an interest in politios with attention to a family？Upon this sulhect，we are not altogether without experience． In the great dissentingr ehurehes in Scotlaud，women， thongh excluded from office，rote equally with men in the appointment of ruling－elders，ministers，and in everything that is decided by a popular vote． But this privilege has not＇hardened＇them，or made them＇rufeminine，＇or interfered with their

WOMEN'S RIGHTS.

household work. On the other hand, it has largely contributed to the success of the voluutary systen), and to the strength of the church. The chimerical nature of the alarm felt on this subject has been illustrated by the objections that might he made against allowing clergymen to vote. 'We should be told that clergymen bave no lusiness with politics; that it was their province to attend to spiritual matters, and that they ought to confine themselves to their proper sphere; that if they were permitted to participate in political affairs, it would deteriorate from the sanctity of their character; that the passions roused by political contests were inconsistent with that spirit of meekness and holiness which we look for in preacbers of the gospel.' Women are not wholly excluded from politics. In some countries, a woman may be sovereign; and history affords many examples of women that have had the highest capacity for government. Women in this country, if they have the same qualification as men, have parochial rotes. And few would go so far as to propose that women should not only be shut out from public affairs, but also be kept ignorant of politics. Eren if family-life be made their sole occupation, it surely is not to bound the horizon of their knorrledge and sympathies.
The remaining objections may be taken together. They are of the same kind as those recently employed against the enfranchisement of the workingclass. They are briefly: That the interests of Tomen are not neglected, for they are represented by their male connections; that women are ignorant of politics ; that they would be exposed to intimidation at home, and to violence at the pollingbooths; and lastly, that women do not want votes. It is not allowed that women are sufficiently represented by their male connections. Such indirect influence is not considered, in other cases, to be a renson for withholding the suffrage. Fich men have a great indirect influence, but they have also votes. It is an old argument, that operatives were represented by their employers; but that argument never convinced the operatives, and it has now ceased to affect the legislature. Why, then, should a vicarious representation, which is repudiated by every class of men, be considered sufficient for women? On the contrary, if women had votes, their interests would be better attended to, because no member can disregard with impunity any important section of his constituents. It mould be the policy of statesmen to devise and carry out measures for their benefit.

But, it is said, women are ignorant of politics. This objection has lost much of its weight, now that household suffrage has been established. Educated women are surely not behind many of the new roters in 1 political knowledge. Still, women, in general, know less of politics than men. They, are constantly told that politics form no part of their business, and their opinions, like those of nonelectors, have littlc direct and palpable influence on affairs. Political knowledge generally follows political power. Women lave not the stimulus that acts. on men; they have not the knowledge that their opinions form part of the legislative power.
There is little reason to fear that the possession of a vote would expose women to coercion and improper influence. The law has already defied a more serious danger. It permits women, and by special arrangement, even married women, to holi property, and it trnsts its ability to protect them frow the importunities of relations. If wonen can defend their property from greedy relatives, they will be no less able to give independeut rotes. The objection that women would be exposed to violence at
the polling-booths, is not formidable. If such were the fact, it would be no argument against female suffrage ; it would be an argument against pollingbooths. Should the policc, however, be unable to protect female voters, there is the easy resource of voting-papers, already in use in the elections in the English universities.

The last objection is, that momen do not want votes. A large number petitioned the Commons in favour of extending the franclise to women that prossessed a household qualification; those petitioners represent a very much larger number, who are kept back by the various social checks that prevent women taking part in political agitation. Nor can there be any doubt that a proposal that makes way with men simply on the ground of justice, will find still more favour with women, since their interest is ranged on the same side.
The claim of women to the suffirage is not without support from practical considerations. History teaches that women must have votes in order to protect their interests; men, through all the vicissitudes of history, have shewn a constant preference of their own interests. In the words of Lord Macaulay : 'If there be a word of truth in history, women have heen always, and still are, over the sreater part of the globe, humble companions, playthings, captives, menials, beasts of burden. Except in a few happy and highly civilised communities, they are strictly in a state of personal slavery. Eren in those countries where they are best treated. the laws are generally unfavourable to them, with respect to almost all the points in which they are the most deeply interested.'

In this country, women suffer from serious grievances. They are excluded from the unitersities, and no provision is made to give them the high education that men value. In consequence of thas, men enjoy almost a monopoly of educated labour. Most of the charitable endowments for education in England were destined by the founders for ginls as well as boys; bnt they have been generally alppropriated to boys. Christchurch Hospital was intended for boys and girls; it edncates 1100 boys and 26 girls. Women also are excluded from the professions and the higher branches of industry. The situation of a governess is almost the only one open to educated women; from other occupations they are shut out, partly by rules, partly by neglected education.
The law is unfair to women, especially the law of marriage. Marriage is coustitutel by free consent, and is supposed to imply the approval of both parties. Now, it would be a hard bargain, where one of the parties was offered all the terms of it in the lump, and was therefore obliged to take everything or reject the whole; yet all the incidents of marriage, all the terms of the contract, are fixed by the lavi, and the law is made by men. In constituting the relation of marriage-a relation of even grenter importance to woancn than to men - women have no roice, they have only a harren and impracticable veto. The result is faniliar to every lawyer. By the law of Eugland, the custody of a woman's children, after seven years of age, belongs exclusively to her husband; after they reanh that age, she has no right evell to see them. The common law strips a woman of her property, and leaves her fortune at the mercy of her hisband; the husband also can seize his wife's earniugg, unless she is protected by a judicial separatiou, or by an order from a magistrate. A marricd woman cannot enter into contracts. In practice, this bad law is aroided by settlements made before marriage;
but great is 1 rotection involves expense, and is in a great measure confined to the rich. More recent

WOMEN'S IIGHTS.

legislation is as unfair as the older law. In 1857, the Divorce Court was estallisleed, and it was enacted that, for adultery on the part of a wife, the lushand could obtain a divoree; lut for the adultery of a hushand, a wife was not allowed a divorec. In addition to adultery, the husband must be guilty of cruelty or desertion. This inequality goes to the root of the marriage-contract: it means that, in consideration of maintenanee, a woman gives her person to her husband, and therefore, unless she is ill-used or abandoned, she gets in substance what she bargainel for. The law is severe on offences against property; it is comparatively lenient in punishing brutal assaults by hushauds on wives; garrotters are flogged, but not wife-beaters. Finally, in the words of Lord Brougham: "There must be a total reconstruction of the law, before women ean have justice.'
2. The Industrial Rights of 1 romen.-These embrace admissibility to all oftices, occupations, and professions; also admission to the miversities, or some adequate provision for the education of women so as to tit them for himh posts. This raises the question of the proper sphere of women. The prevailing ideas point to marriage as the true, if not the sole end of a woman's existence; but this theory is inadequate to meet our social difficulties. Nlany women are unmarried. What is to be doue with them? To hinder them from doing the best they ean for themselves, would be a manifest injus. tiec ; therefore, in the interests of single women, all occupations should be open. But the claims on behalf of women do not stop there. It is denied that men have any right to exclude women from active life, and so drive them into marriage as their only livelihood. On grounds of justice, the right of women to enter into mdustry is conceived as almost too clear for argument.

The objections to the Industrial Rights of Women must be noticed briefly. It is said that the propere sphere of woman is domestic life, and that she is by nature unfit for the struggles of industry: It alpears from the eensus that just one half of women above twenty years of age are confined to domestic life. About is third of the adult female population are either of independent means, or support themselves by non-domestic industry; the rest oceupy a secondary position in the industrial workd, by assisting their hushands in business. But though the number of women engaged in iudustry is great, they are confined to poorly paid occupratinns, and their labour is for the most part unskilled. Generally speaking, the women of the middle class take no part in industry. The real issue is therefore narrow. It is not, shall women be admitted to industry? for that is settled ; but, shall skilled and educated female labour he allowed? There is no evidence that women have no eapreity lunt for the meanest employments. What they are fit for, can be finally determined only hy actual trial. All that the advocates of women's rights ask is, do not anticipate the result, or forcelose the experiment. Some think that while it is desirable women should not be left unoccupied, they should not be admitted to industrial occupations, lut society should scek a field for unmarried women in some works of charity or religion, or in some smidomestic pursuit. This proposal is an attempt to establish, in this country, that provision for unmarried women that is supplied lyy the monastic system in lioman Catholic countries. The objection to it is clear. If this semi-domestic pursuit is the most agreeable and lucrative to women, they will, of course, hail the discovery of it with gladness; lut if it is not, they may decidedly object to make martyrs of thenselves.

774

A common oljection is, that to take women from domestic work would harden them, and destroy the peendiar traits of their character. Now, a great part of what used to be the work of tho houschold has passed to another province, spinning, weaviug, brewing, and baking were at one time domestic work. If women are to elo their ancient cnstomary work, they must follow it aliroad. Those who believe that the peculiar attributes of women are an artificial product of eivilisation, may feel alarmed at any disturbance of the present condition. liut the genuine distinctions between the sexes flow from organisation, and will not be obliterated by similarity of ellucation and employment; on the contrary, no feminine charm would be lost, but women would be more spinited, more intelligent, and fitter companions for men.

It is an argument sometimes relied upon, that an admission of women to industry would be 1 rejudicial to men, wecause it wonld increase the supply of labour, and therely lower the rate of wages. This objection is founded on the principle, that, when the wage-fund is constant, the rate of wages falls as the labourers are more numerous, and rises as they hecome less numerous. But the competition of women is, to some extent, an exception, for if they do not work for themselves, they must be supportel out of the wages of men. If, however, wages were to fall below the ordinary standarl of comfort, the tendeney would be, by fewer lirths or emigration, to reduce the excess of labourers, till the surply of labour should be adjusted to the required standard of wages; and experience shews that wages are not permanently lowered by the almission of women to industry. In the working-class, wages adjust themselves to a scale enabling a working-man to maintain a wife and family.

In the last place, it is said that active life is inconsistent with the eares of maternity. This, of coursc, has no application to the large class of childless momen; and there can be no necessity for prohibiting women from entering into industrial life, if their situation renders it impracticalle. The ineompatihility between active life and maternity may safely be left to look after itself. From the returns in the census, it appears that one out of eight married women are employed in nondomestic labour; but, since many of their oceuprations are not incompatille with honschold duties, and since many have mo clildren to attend to, it seems probable that only among a small number of the working-class, the duties of maternity are sacrificed to out-door employment. It is, however, a moot-point how far maternity interposes a harrier to the industrial education and erployment of women. In the working-class, the mother usually murses her children, for she could selelom make a profit by engaging iu another cmployment, and hiring a servant; but if women were cmployed in skilled and well-paid occupations, they would probalily leave mursing, which at present is unskilled labour, to servants. The solution of the problem must, however, be left to trial and expericuce. One principle, at anyrate, is clear ; except in so far as women are occupied as mothers, they should be employed in the most remunerative work. That would be leeneficial to men, for it would relieve them of a pecuniary burden; it wonld be bencficial ta women, for it would make them independent.

The women of the middle elass, led astray by a mistaken aspiration to aristocratic leisure, have held al hof from the struggles and rewards of industry. This operates injuriously in varions ways. it creates an unnatural competition with workingwomen, as in needle-work. Middle-class women
often discharge duties that might well he left to upper servants. If they entered into commeree and trade, they would fit themselves for, and require, a higher kind of ocenpation than those thankfully accepted by poor and untaught women. At present, the higher walks of business, and even subordinate ottices of trust and skill, are monopolised by men; hence women engaged in the lower employments derive little peenniary benefit from trustworthiness, experience, or judgment, and have no hope of rising. If they should attempt to better their condition, they are left without encouragement or support. The exelusion of women of the middle elass from industry is hurtful to themselves. It ofteu leads to poverty of the bitterest kind-the poverty of gentlewomen. It leaves them withont occupation, a prey to ennui and bad health. It also forbids perfect companionship and sympathy betreen the sexes. The whole seope of a man's education is towards industry. In it he lives, and moves, and has his being. But of this world, women lave no direct knowlerlge. Hence a want of intellectual sympathy between men and women, and an absence of any common standard of reasoning and evidence. Nor is this all. The virtues upon whieh industrial and public life renose, do not derive due support from women. They are ignorant of the difficulties that beset moral problems under circumstanees of which they have no experience, and their moral wisdom can hardly go beyond traditionary saws. Indeed, their influence is sometimes on the wrong side. A man will be reluctant to imjure his family in their peenmiary interests, for some point of conscience that his wife does not sympathise with, or for objects that she does not understand.

No account of women's rights would be compllete without some notice of the claim to equality in marriage. This is the goal to which history points. 'Among tribes which are still in a primitive condition, women were and are the slaves of men for purposes of toil. All the hard bodily labour devolves on them. In a state somewhat more advanced, as in Asia, women were and are the slaves of men for purposes of sensuality. In Europe, there carly succeeded a third and milder dominion, secured, not by blows, nor by locks and bars, lut by sedulous ineuleation on the mind; fcelings also of kindness, and ideas of duty, such as a superior owes to inferiors uuder his protection, beeame more and more involved in the relation. But it did not for many ages become a relation of companionship, even between mequals.' That stage las now been attained, and, 'for the first time in the world, men and women are really companions.' Women cannot be good companions for men unless they are equals. If they are kept inferior in education and knowledge, their influence will tend to drag men down to their own level. Nor is it enough that women should be taught merely to talk about the subjects that interest men, for the intercourse that is of value is not intercourse between an active and a passive mind, but between two active minds. The theory of the subordination of women-that woman was made for man, and man was made for himself-involves several bad consequences; for women being unable to attain their ends directly, have recourse to management and artifiec. It is a theory that almost forbids the existence of public spirit in women. Hence their influence is not so great as might he supposed in counteracting selfishness. The effect is to substitute for the selfishness of the bachelor the selishness of the family man.

The general morement of society is from subordimation to cquality. Uuder the foudal system, society was constituted on the principle of subordination. The land was tilled by serfs, and there
were few but said that serfdom was the natural position of a creature so low as an agricultural lahourer. But scrfdom did not endure, and we hare learued that it is happier for all parties that the land should be tilled by freemen. Aud now, too, negro slavery, the most plausible form of slavery, has been abolished. The tendency of social changes is towards equality, as the most satisfactory relation between man and man; it also seems to point to equality as the highest relation between man and woman. - The subjeet of women's rights is discussed in the following: Dissertations and Discussions, by J. S. Mill, vol. ii., 'Enfranchisement of Women;' The Political and Social Dependence of Women, 1867; The Industrial and Social Position of Women, 1557 ; Speech by J. S. Mill in House of Commons, May 21, 1867 ; The IV'cstminster Reviex, Jauuary 1567, article 'I'he Petition of the Ladies.'

WORKSHOP REGULATION ACT, 1867 (30 and 31 Vict. e. 146) is an important act for regulating the education of children, and the hours of labour for children, young persons, and women who are employed in places not subject to the Factory Acts. It extends to all such persons employed upon any handieraft, in any workshop. Its application is wide, as the definition of a 'handieraft' includes every species of manual labour exercised for gain, and that of a 'workshop' includes every place, whether open or under cover, where any such handieraft is carried on, 'and to which, and over which, the person by whom such child, young person, or woman is employed, has the right of access and control.' The principal provisions of the act as to the hours of labour are: (1) That no child under the are of eight shall be employed in any handieraft in any workshop; (2) that no child under thirteen shall be cmployed for more than six hours and a half each day, or before 6 A.M., or after 8 P.M. ; (3) that no young person under eighteen, and no woman shall be employed more than 12 hours out of any period of 24 hours, or shall be employed between 9 p.м. and 5 A.m., and that the intervals for meals and rest shall not be less than an hour and a half in all ; (1) that, except in retail establishments employing not more than five persons, no such child, young person, or woman shall be employed after two o'clock on Saturday, and that in no case shall they be employed on Sundays; and (5) that no child under eleven shall be employed in grinding in the metal trades or in fustian-entting. From these general rules, the act itself makes a few exceptions, and a limited power is given to the Home Secretary to make others. The regulations as to education are: (1) That every child under thirteen, who is employed in a workshop, shall attend school for at least 10 hours in every week cluring the whole of which he is so employed; and (2) that in computing the time at school, no time sball be included in exeess of three hours at once, or of five hours in one day; or on Sundays; or before S A.M. or after 6 P.m. Non-attendance at school may be excused by sickness, or during holidays, or if there be no certified school within a mile of the workshop or of the child's residence. The inspector of factories certifies whether the school is sufficient. The obligation to carry out the regulations as to education, is laid (under penalties) both on the parent and on the em ployer; and the latter is anthorised, on the applcation of the teacher, to pay him for the schooling a weekly sum out of the child's wages, not exceeding a twelfth part of them, and not exceeding twopence per week.

WO'RKSOP (anciently Wirkensop), a town of Nottinghamshire, England, it miles north from Nottingham, on the right bank of the Iiyton, a

WUDWAN-YO-SBMITE.

branch of the ldle, and near the Chesterfich Canal, which communicates with the 'Irent. It is situated near the northern extremity of sherwond Forest. Tho town is generally well built, and great sauitary inprovenents of drainage and sewerage have recently been effected. 'lhere is a fine old chnreh in the Norman style, with two lofty towers. W. was formerly noted for its Augustine monastery, of which, howner, there are few remains. Malting is carried on here to a very great extent. Much barley is grown in the neighbourhood. There is
some trade in flour, timber, \&e. W. is also a station on the Janchester, Shoflield, and Lincolnshire liailw:ay. l'op. (ISTI) $10,409$.

WUSWW $\mathbf{A}^{\prime} \mathbf{N}$, a town of ludia, in the peninsula of Kiattywar, province of Guzerat, I05 miles west-by. north from Barolic. It is situated on a small river, which falls into the great salt marsh known as the liune of Cutch. 1'op. $32,2 \%$ (I). The surrounding district is in a high state of cultivation, and is celelurated for the excellenco of the cutton which it rroduces.

E'RES-DE-LA-FRONTERA, or JEREZ-DE-LA-FRONTERA, an important town of Spain, in the province of Cadiz, and 14 miles directly north-east-by-north from Cadiz, near the right bank of the Guadalete, and on the railway letween Cadiz and Seville. The honses are generally well built, and the strects and squares clean, spacious, well paved, and well lighted. The wealthy wine-merchants mostly reside in the sul)urbs. \bar{X}. is an ancient town, supposed by many to be the Asta Regia Casariana of the Romans. \mathbb{N}. has mauufactures of woollen cloth and leather, and a considerable trade in coru; lut all these are of little consequence in comparison with its wine-trade. Sherry derives its name from Neres-de-la-Frontera.

Some of its bodegas, or wine-stores, are of vast dimensions. They are not wine-vaults, but stores erected above ground. The greater part of the wine of \mathcal{X}. is exported to England; and some of the principal wine-merchants are of lirench and Scottish extraction. Pop, about 50,000 .

NEIRES-DE-LOS-CABALLEROS, or JEREZ DE-LOS-CABALLEIOS (ane. Esuris), a town of Spain, in the province of Budajoz, and 40 milus south from Badajoz. X . is a jicturesque old town, partly surrounded by a Moorish wall. The ecclesiastical edifices are remarkably numerous. There are manufactures of woollen and linen cloth. Amongst the chief articles of trade, besides the prolluce of the manufactures, are pigs and fruit. Pop. about 6000.

Y

) 7EA'DON, a town of the West Riding of Yorkshire, England, six miles north-north-east from Bradford. It stands on a hill, on the left side of the valley of the Aire. It has considerable woollen manufactures. Pop. (IS71) 5246.
YORUBA, or YAliliba, a country of Guinen, West Africa, lying to the east and north-east of Dahomey, in N. Lat. $6^{\circ}-9^{\circ}$, and E. loug. $2^{\circ}-6^{\circ}$. Its area is about $70,000 \mathrm{sq} . \mathrm{m}$. ; and the pop. is estimated at $2,500,000$. Palm-oil, eatton, and ivory are the principal articles of export. Lagos (q.v. in Supplement) is the port throughs which tride with foreign countries is chiefly earried on. There are numernus large towns in Y., but the people are little if at all less barbarous in their customs than their neighbours of Dahomey.

YO-SEMITE, YO-MAMITÉ, or AlIWAILEE, a valley and waterfall of Califorua, in the east of the state, about 57 miles from Coulterville, on a large feeder of the San Joaquin, and on the western side of the Sierra Nevada. The scenery of California is remarkable for its combination of loveliness

776
with sublimity; and in no part of the country yet explored are thesc characters so strikingly displayed as in the V . valley-a valley of from S to 10 miles long, and a little mere than a mile wide; in some plaees filled with noble oaks, in others opening out into broad grassy fiehds; with a river rushing through it about 40 yards in brealth; pine-covered mountains towering with very stecp slopes to the height of 3500 fcet ; a precipice or 'bluff' in one place rising perpendicularly 3059 feet above the valley; in another, a rock almost perpendicular, 3270 feet high; waterfalls pouring over its sides from heights of 700 to almost 1000 feet; and one great waterfall, broken into three leaps, but of which the whole height is 2550 fect. Of the other waterfalls on the sides of the valley, the Pohono, or Bridal Veil Waterfall, is particulaty to be remarked for its beanty, as well as for its leight, which is 940 feet, and quite unbroken. The Y. valley has begun to attract visitors since Califernia has liceome peopled, and will probably soon have its hotels and guides, like the valleys of Switzerland and the Ealls of Niagara.

A'RSKOE-SELO, or SALNT SOPHIA, a town of Russia, in the government of St Petersburg, and 17 miles south from St Petersburg, with which it is connected by a railway. It has a college and a military school. The palace of Z. is a summer residence of the emperor, founded by Peter the Great in 1710, and the favourite abode of Catharine II. The church of St Sophia is a miniature copy of the mosque of that name at Constantinople. Pop. 10,637.

ZNAIM, or ZNAXM, a town of the Austrian Empire, in Moravia, on a rising ground close to the left bank of the Taja, is miles north-by-west from Vienna. It is celebrated for the conflict which took place here between the French and Austrians, on June 14, 1809, in which the French were victorious (see Wagram). A castle on a height, the ancient residence of the princes of Moravia, is now a military hospital. Near it is a circular church, supposed to he as old as the 12th century. Pop. 5676 .

ZO'ETROPE, or WHEEL OF LIFE, an optical instrument, so named from its exhibiting pictures of objects as if endowed with life and activity. Although only recently introduced to the public from America, under this name, the instrument itself, which is simply a cylindrical thanmatrone, was invented and made the subject of a patent so long ago as the year 1S60. Mr Peter Hubert Desvignes, the inventor, in his published specification, has very fully described various modifications of the cylindrical thaumatrope; and the instruments which, under the name of Simoscope, he contrihuted to the London Exhibition of 1862, being furnished with pictures of exquisite artistic finish and beauty, were deservedly rewarded with 'honourable mention.' Mr Desvignes also proposed a stereoscopic form of the instrument, in anticipation of the one already described under Stereoscope (q. v.), and has employed models, insects, and other ohjects, instead of pictures, with perfect success. The truly marvellous results shewn in this instrument depend, primarily; on the wellknown fact, that vision 'persists' for a certain short interval of time after the occlusion of the visual ray. It follows from this principle, that, if a series of pictures, representing the different attitudes successively assumed by an ohject in completing a given movement, be presented to the eye so quickly that the visual impression of each picture shall continue until the incidence of the one next following, the object will remain constantly in view, and its various parts mill appear to execute the movement delineated by the pictures. The mechanical means for effecting this result will be understood from fig. 1, which represents the zoetrope in its most popular, but by no
means most excellent, form. C, a cylinder of strong card-hoard, 12 inches in diameter, and $7 \frac{3}{4}$ inches in depth, with a metal rim at the top, and fastened to a circular piece of wood, B. The latter is screwed at its centre to a pivot, P, which moves freely within the upright of the stand, S , and forms a vertical axis, round which the cylinder may be made to revolve with any desired rapidity ; a, thirteen equidistant apertures, each $\frac{s}{I}$ inch in width, and 3 inches long. Eacb, series of pictures is printed on a strip of thick paper, $3 \frac{1}{2}$ inches in breadth, and 36 inches in length. In using the instrument, illuminate it well from above, aud, having placed the picture-strip within the cylinder, immediately beneath the apertures, a, rotate the cylinder with the requisite velocity (which will vary according to the nature of the suhject), and look through the apertures at the pictures upon the opnosite side of the cylinder. To aroid the grotesqueness of a number of groups all seen periorming the same movement at the same time, Mr Desvignes devised the thaumatrope, shewn in a somewhat modified form by fig. 2 , in which the cylinder, C , turns upon a horizoutal axis, P; and by means of an aperture at the bottom of the hood, H, the sight is limited to the space occupied by a single group on

Fig. 2. the cylinder, and, both eyes being brought into consentaneons activity, the clearness and pleasantness of the illusion are greatly enhanced. In this arrangement, the groups are arranged, on the strips, one above another, and not side by side, as in the former; and they are perforated with apertures to correspond with those on the cylinder. As has been pointed out by Mr Desvignes, the width of the apertures should never exceed one-sixteenth of an inch; and the exterior of the instrument should be painted mat black.

We will now speak of the principles which determine the character and distiactness of the illusion, and first of all, will endeavour to explain why it is that the pictures, looked at through the apertures, are plainly visible; whereas, viewed over the top of the revolving cylinder, they run into au indistinguishable mass.

The effect of the apertures, in this regard, is twofold; they limit the time during which each group is pictured upon the retina; and they limit, or should be made to limit, the quantity of each group at any oue instant so depicted. Obviously, if the view be instantaneous only, the group in that minute interval of time will not have moved to a perceptible degree, and will therefore appear stationary. It is for this reason that the apertures should be made very narrow (notexceeding one-sixteenth of an incl, as above stated), and then, the eye being placel close to them, the retinal images will not be slurred -as with wider apertures, and consequent increased motion of the pictures while under view, they would

ZOETROPE.

in-and the maximum of defintion is thus attained. liut, in this ease, both the quantity of hight reaching the eye, and the time of its operation, are insulficient, which defects can only be compensated by setting the instrument in violent motion, thus oceasioning im inconveniently rapid recurreuce of the retinal impressions. Instead, therefore, of letting the whole pieture be seen for a single instant, let us increase the total time of visibility ly arranging that successive small portions of the pictures shall be seen in successive instants. This is effected by withdrawing the cye a few inches from the aperture; for the eye being at the apex of the visual angle, the further it is removed from the aperture, the greater is the distance within the risual angle through Which the ajerture must travel ; and prolonged in a like degree will be the total time of visibitity for each pieture. But here another difficulty is evoked, manifesting itself in one of the most puzzhing phenomena of this curions instrumeut. The pictures are seen as sensibly diminished in breadth, the explanation of which is as follows: The longer the time of visibility, the greater will be the ouward move. ment of the picture while under view; therefore, if the left-hand side of the picture come first into view, by the time the advance of the aperture permits of the right-hand side being scen, the latter will have progressed fowards the left, and it will accordingly be seen relatively nearer to the left sile than is its natural position. And this com775
pression, of course, takes effect over the whole of the picture. In the exquisitely elahorato drawings prejared by Mr Desvigues, this compression was allowed for, to the great cuhancement of the effect.

Lastly, of the effects due to the pietures themsclves. If the pictures on the strip, be the same in number as the apertures, the pictures will either coincide with the apertures, in point of position, or will be equidistant, each from its adjacent aperture ; in which case there will lee no apparent shifting of the pictures either to right or left. But if there be 12 pictures and 13 apertures, the picture-iuterval will he greater thau the aperture-interval, and only one picture on the strip can be coincileut with an aperture; the rest will be situated in advance of the apertures, each succeeding one slightly more than its predecessor; and, as a consequence, seen through the apertures of the revolving cylinder, they will appear continuonsly to advance. The coutrary will be the case, if the number of the pictures exceed that of the apertures. These enrions properties, whielt make it possible to exhibit figures moving either backwards or forwards, as well as with movements proper to themselves, were fully investigated by the late lrofessor Faraday ; aud we would recommend those interested in the subjeet to refer to his Memoir on Optical Decentions, contained in his Experimental Researehes in Chemistry and Physes, 1m 291, et seq.

I N D EX

OF MLATTERS NOT HAVING SPECIAL ARTICLES.

It has been thought unnecessary to repeat in the Iadex the titles of the 27,000 articles composing the body of the work. Any persoo coasulting the Eacyclopædia is supposed, in the first instance, to look for the subject he is in quest of in its proper alphabetical place. If it is oot to be found there, by turning to the Iodex he is likely to get a refereoce to it under another name, or as coming in for notice in conoection with some other subject. It frequenly happens that subjects, having articles of their own, are further noticed under otber heads; and where it secmed of importance, a refereace is givea in the Iodex to this additional information. The subjects treated in the Supplement, both principal and secoadary, bave also been incorporated in the Iodex, so as to prevent the aecessity of furtber search. -The title of the article referred to is printed in Italics; aod wheo the article is of considerable leagth, the page is givea in which the information is to be found.

Abrrevlations : r., river; l., lake; Supp., Supplement; mit., mountain; \dot{z}, island; c., cape.

Aa, Ems.
Aabenrade Fiord, Skesvig. Aach, $A a$.
Aaches, Aix-la-Chatelle.
Aahmes, Egypt, 789 .
Aar, Nassais.
Aarau, Aargatt.
Aath, Ats.
Aatholm, Laaland.
Ababde, Nubír.
Abaca, Plantain
Abaco, Bahamas.
Abai, Abyssimia, Nile.
Aballo, Avallon' (Supp.)
Abana, Barrada, Syria.
Abang, Gwianta, British.
Abatembu, Tembrs.
Abbasides, Abbas, Calif.
Abbate, Abbé.
Abba Yared (mt.:, Africa, 66
Abbeville, (Susp.)
Abbey Craig, Clackmmannnsin.
Abbiaté-Grasso, (Su^p.)
Abbot of Unreasoo, Fools, Feast of:
Abbossford Club, Roxb. Club.
Abdallah, Wrinabis, 40.
Abd-el-aziz, Spair, 16.
Abdelmoumen, A innohades.
Abdera, Adra (Supp.)
Abderrabman, Ommiades.
Abd-ul-azzz, Ot. Emp. 150
Abd-nl-Aziz, Wahabis, 39 .
Abd-ul-Hamid, Ot.Emi. 149.
Abd-ul-Medjid, Ot. Emp. 150.
Abdulmelek, Ommiades, 71.
Abecedarian Hymns, Acrostic.
Abel, Algebraz.
Abella, A
Abeokuta, (Supp.)
Aberavon, (Supp.)
Aberbrothwick, Arbroath.
Aberche (r.), Tagus.
Aberconway, Conzay
Abercorn, Lords of, Hamitton Fannily, 213.
Aberdare, Cardiff, MerthyorTydvil.
Aberdeen, Earls of, Gordons Family, 9.
Aberffraw, Anglesey.
Abergavenny, (Supp.)
Abergele, Denbighishire.
Aberhoaddu, Brecorr.
Abertawy, Swanseis.
Abingdoo (i.), Galapagos Is.
Abington. (Supp.)
Abjuration of the realm, Sanctrary.
Abolitionists, Republicar.

Abomasus, Ruminartia.
Abomey, Dahomey.
Aboo Arish, Jemer.
Abortion, 'Szsp.)
About, E. F. V. (Susb.)
Aboyne, Dee.
Aboyne, Earls of, Gordors Family, 9.
Abroma, Byitneriaces.
Absalon, Axe.
Absinthe, Ligueur
Abstraction, Generalisation.
Abu, Elephiantiné.
Abu (mt.), Indiuz, $537,($ Suppp. $)$
Abubekr-ibo-Tofail, Arabiast
Lang. © Lit. 3ts.
Abu-Haunes, Ibis.
Abu-Jafar, Catif:
Abul-Abbas, Calif.
Abul-Ala, Arab.Lang. \& Lit. 348.

Abul-Aswad-al-Duli, Arab́.
Lang. E0 Lit. 349.
Abu'l-Faraj, Arif/tology, 289.
Abul-Hassan-Ali, Arab, Lang.
0 Lit. 348.
Abul-Kasem, Airab. Lang.
© Lit. 347, Distiliation.
Abuaa, Abyssiria.
Abuquerque, U.S., (Susp.)
Abury, Avehury.
Abu Said, Famathians.
Abu Tahir, Kirmathians,
Persian Lan!. É Lit. 42S.
Abyla, Ceutc.
Abyssinia, Theorore 'Supp.) Acacia, false or thorn, Robinia. Acacia formosa, Sabicu. Acacia, German, Sioe.
Academy, Royal, Paintings, 195. Acadia, Annapolis.
Acanthopis, Adder, I Fiperizia. Acanthosoma, Bug.
Acarus folliculorum, (Susp.) Acayucan, (Sufp.) Acceut (in verse, Rhyt?m. Acceptor, Bill of Ex. 93 Accipenser, Sturgeor. Accipenser, Sorrgeon. Accipiter, Sparroceliawde, Exchange, 95. Accringtoo, (Supp.) Acepbalocyst, Hydutid.
Acerioa, Ruffe.
Acerra, (Supp.)
Aceta!, (Susp.)
Acetification, (Susp.)
Acetooe, Simithesis.
Acetumeantharidis, I'esicants.
Acetyl, (Susp.)

Ach, Aa.
Achzan League, Achuzia.
Achalganj, (Supp.)
Acbeen, Atcheett, Sumatra. Acheron, Alōariz.
Acherusia (3. Cocytus.
Acherusia Palus, Fusara
(Supp.)
Acheus, Sloth.
Achievement, Hatcinuers..
Achinduin Castle, Lismore.
Achlamydeous, Apelaloris,
Flower.
Acblya, Algar.
Achmet I., II., III. Ot. Emp. I48, 149 .
Achmet (vizier), OK. Em: 143. Achores, (Supp.)
Achorion, Parasitic Diserwes. Achradina, Syracuse.
Achradina, Syrachse. (Z).
Achray (2, Chemistry (Sispp. 462).
Acid, Chemistry (Stupp. 462).
Acidtartrate, Tartaric Acid.
Acidulated drops, Tartaric Acid, 304.
Acidulous waters, Carbonated
Haters.
Acne, Whulk, \{Supp.)
Acne rosacea, Rosacea.
Acne rosacea, Ardes, 230
Acoocagua, Alides, 23?
Acoocagua, Sirn Felite de
Acoocagua, Aconcagua.
Acooso Cooso, Calabar.
Acquariva, (Susp.)
Acquia, Potomac.
Acra, Ferisalem.
Acre, Palazzolo (Supp.)
Acri, (Supp.)
Acrita, Zoologi; 359.
Acritochromacy; (Susp.
Acroceraunian protwootory,
Albania.
Acrolein, (Suspb.)
Acromioo, Scappsla.
Actinix, Anenone, Sen-
Actinocrinites, Silurian Rocks.
Actinophrys, Rhizopoda.
Actitis, Sandtifer.
Acupressure, (Suph.)
Acupressure,
Acuyori wood, Icica (Susp.)
Ada, (Supp.)
Adafudia, (Supp.)
Adamantioe spar, Corrnducm.
Adarn de la Hale, Operiz.
Adamman, St, (Suph-)
Adampore, Allahabad.
Adams(mit.), Washiegton(ter.)
Adams (ment.), IIThite Mis.
Adaoara (i.), Solor Is., Timor.
Adassi, Burck Sea

Addax, Antelope.
Adder, Fitier.
Adder (r_{0}), Tiverd.
Adder's tongue, Ophioglossec.
Addison's disease, Supra
renal Capsules.
Addorsed, Intiorset.
Address, forms of, Forms of
Address.
Adelaide ini, S. Australiz.
Adenanthera, Red HFod,
Sardal-wood.
Adenitis, (Srsp.)
Adeaocele, (Supp.)
Aderbaijan, Aシerbijanz.
Aderno, (Suf
Adhesivcness, Pirenolog\%, 514. Adi, Navarre.
Adiabené, Assyria.
Adighé, Circassiarrs.
Adipic acid, (Supp.)
Adipose fin, Salmoriaia.
Adityas, Varmia.
Adjudications, Register of,
Registration of Decd's and u'rits.
Adjutage, H ydrodyuamics,484. Adjygurh, (Siupp.)
Admiral, Witr Sere, (Supp.)
Admiralty, Board of Admiral.
Admiralty, Abaisé.
Adosse, Abuisse.
Adoxa, Aralia.
Adpar, Cardiganstive.
Adra, (Susp.
Adranum, Aderno 'Susg.)
Adranum, battle of, Tinnolion.
Adrogation, Adoptior.
Adullamites, (SuAh.)
Adulteration of food, Foot and Drink, 408.
Adur (r) , Sisssex.
Adventure, F̛oint Trade.
Adesius, $A x$ xtm.
AEtes Argomants.
Egida, Crpa clils:ria.
Egilops, WTreat, 156, 157 .
Elia Capitolina, Y̌ous, 7 It.
Emilian Provinces, Emilian Prosinces.
Evaria, Ischeic.
Encermland, Angermazrlavd.
Enone, A Esina.
Folipile, Stermengine, 93. Eolus (io) Ulysses.
Fqui. Volsci.
Aērolites, Aēro-siderites, MH^{2}.
teors (Susp.)
Erugo nobilis, Aacamite.

INDEX，

Eschynitc．Titanious
Fischynomene aspera，Sholia Esculus，Jorse－chesultof．
Fsernia，$\overline{\text { sermiz．}}$
Etheling，Anglo－Sa－rons， 26 r．
Aētius，Attilds，Kome，32t，
tralentinianus．
Affective facultics，Phren－ ology， 573.
Aflinity，Conssamgrainity＇Supp．
Affrique， St ，（Supt．）
Affanté，Abraissé．
Afum－Karn－Hissar，（Supp．）
African hair，Chanarops
African Society，the，Africa，66
After－birth，Flacenta．
After－glow，Trevilight．
Agalaction，（Suph．）
Agallochum，Aboes IIcol．
Aga Mohammed，l＇ersia，423
Agaric，Fly，Armaniks．
Agaricon，Amadors．
Agasias，Sculfiurc， 577.
Agata de Goto，Sta．（Suffo）
Agave vivipara，Razor－strop．
Agbarana，Esbatana．
Age，Golden，Silver，\＆e．Ages．
Ageladas，Scuipisure， 577.
Age of Bronze．Iron，\＆ic
Bronse（Age on）．
Age of Reason．Pasine．
Aggerhuus，Christirniar．
Agglutinate lanzuages，\quad／hi\％
ology． $48:-484$.
Aghmet，$\left\{\begin{array}{c}\text { utht }\end{array}\right.$
Agila wood，Aloes IFood
Agincourt，Azincourt．
Aglabites，Earbary．
Aglar，Agtrileja．
Agnew，Sir And．Sabbat\％， 403 ． Agnomen，Nazme．
Agnone，（Supp．）
Agosta，（SuNp．）
Agows，Abyssinis，Afries，69． Agri，Basilicain．
Agricultural gan＂os， （Sues．）
Agriculture，Board of，Agri－
cultural Socicties．
Agridagh，Anatolis， 226.
Agri Decumates，Alemuzuni．
Agrostis，Bent Grass．
Aguan，Honduras．
Aguara dogs，Dusicyoss．
Aguara fox．Cervocyon
Aguare，Carlos．Sav（Supt．）
Ague－cake．Spleen．
Aguilarde la Frontera，（Sropp．）
Agur，（SuAp）
Aharun，Arakian Lang．\＆ Lit． 348.
Ahmednuggur．（S：â今．）
Ahmedpur，（Suht．）
Ahuramazda，Zoroasicr， 360 ， 36 z ．
Ahwahne， 10 －Scmite（Supt ．） Ai，Sloth．
Aichstidt，Eichstadt．
Aidan，Scotlant，5550
Aidan，St．（Supp．）
Aidone，Sups．）
Aiguebellette（6．），Saren
Aigullon，Eay of，Vendec，La Aiguissé，－1baisse
Aigun，Sakkalin．
tilé，Abrisse．
Ailurus fulgens．Fandia．
Aime，Dartmoor．
Ain－esh－Shems，Bethshemesh．
Ain－Tab．Sriff．）
Aiou，Cook／s，
Air，Sasitary Science（Supp．
Air－cells，Respiration，zos．
Aird，flrd．
Aire（r．），Forkshire
Aire－sur－1＇Adour．（Sirif．）
Aire－sur－le－Lys（Supp．）
Air martyrs，Pillar Saints．
Airoa，Casuarisus．
Aix．Aa．
Aixanes，Axturr．
Alixanes，fxwhr．
Aizoon，Bu，Busle．
Ajuroca，（Supp．）
Alsabah，Gulf of，Eldom，Red ser．
Akals，Sikits．
780

Akaroa，Nece Zeahard． Alibarpur，（Sufp．）
Akcniume，Achenisum． Akephaloi，Monopliysites．
Akhalzikh，isufp．
Ak－Hissar，（Supp．
Akhlar，（SuNA．
Akhmim，Ekhmim（Suff．）
Akhrida，Albania．
Akhtyrka．（Sufp．）
Akinesia，f＇aralysis．
Akiska，Akhatzikis（Sufg．）
Akkad，Assyrsa．
Aktistetoi，Monothysites．
Akragas，Agrigentrum．
Akron，（Suph．）
Ak－Shehr，（Supp．）
Akshidide，Egypf， 79 z．
Aksu，Turkestion， $5^{8} 5$ ，（Supp． Akyab，（Stufs）
Alabama，the，（Steff．）
Alx，Fapilionacere．
Alagon（\％．），Tagus．
Alais，（Suff．）
Al Ajb，Mohammedanism．
Alajuela，（Supp．）
$\mathrm{Ala}^{\mathrm{K}} \mathrm{Kul}$（ $($（ ），Sennigahatinst：
Alalia，A Alhasia（Smph．
Alamandine ruby，Sfrine？
Alamo，massacre of the，Sin
Antonio．
Alamos，Los，（Supp．）
Alan，Speatart Family， 122. Ala－nor，δi wantroho．
Alanus ab Insulis，Scholastics．
Alas（mit．），Timor
Alasan（ $\left(r_{0}\right)$ ，Nuchia（Supp．）
Ala－Shehr，（SuAp）
Al－Aswad，ilohammedan
Sects（Susp．）
Alausa，Shiad．
Alausi，（Suff．）
Alb（rnes．），Als
Alb r．），Rhine
Alba，（SuAp．）
Alba，Aシez＝ano（Supp．）
Albacetc，ifurcia，（Supp．）
Albacnre，or Albicore，T：＂nny
Alba Julia，Akjermaner．
Albania，Aubagre Suph．
Albania Pylx，Derbend．
Alban Lake，Albano．
Albanus lant．＇，Albane
Albany，dikes of，Sfeuar
Farmily， 123.0 Bassau＇Supt
Albassan，Ancabstan Lang．E Albaten，
Lit． 348.
Albay，（Ssutp．）
Albemarle 12．），Galaghagos
Islands，Roancte．
Albert（r．），Australian E．x－
plorations（Supp．）： 47 I ．
Albert and Albertine Line，
Saxpny， 515
Alherri．Engravirg， 69 ．
Albert Nyanza，（Suph．
Abertville，Satoy．
Albiola，battle of，I＇errice，75e． Albion and Albiones，Albany． Albiruni，Arabiar Lang．E
Llbis． 347.
Albostan，（Sup β ．）
Albox，（SuAp）
Albucasis，ifedicine，Hist．of． Albugo，（Such．）
Albuiol，（Stspp．）
Albuquerquè，（ $S u f$ fo．
Albury，New Sonth H゙ales．
Alcahest，Alchemy，ti4．
Alcala de Guadira，SuA
Alcala la Real．（Supp．）
Alcamenes，Sculfture， 5 ：7．
Alcamo，（Supto．）
Alcaūiz，（Supp．）
Alcantara（r．），E／ma．
Alcantara，Brazil．（Susp．）
Aleamz，（SuAp．）
Alcaudete，（Smp．）
Alcazar de San Juan，（Sugh．）
Alcazarquebir，battle of，Se
bastionaistas．
Alcira，（Supp．）
Alckmer，Hinreck van，Reyn－
ard the Fox．
Alemeon，Anatons； 228.

Alcoholism，Deliriuns Tre－
ntens（Supp．）． 494.
Alcoholometer，A reometer， 384 Alcohol，physiological and pus sonous action of，（Supp．）
Alcohols，（Sufp．
Alcora，$\left(S_{u} \mathrm{~A} A\right.$ ．）
Alcorno Bark，Malsighincea
Alcorrunz（ms．）Nazame．
Alcyonc，Flisiades．
Alcyonclla，Alcyonisen．
Alcyonidinm，Alcyonsian
Aldan－r．），Lema．
Aldan mits．．Altar．
Aldchyde，（Supp－）
Aldchydes，Suppl．
Al－Dhikr，foran．
Aldrovandi，U．，（Sufp．）
Aldstone，（Susfe）
Alc－cost，Costmary．
Alector，America， 205.
Alectromancy，Cock．
Aleksandri，Alexizudri，

（Su今p．）

Aleman，Sfanis／s Lang．E Lit． 20.
Aleppi，Aulafolay（SuAf．）
Ales，Colophors
Alessandria della Rocea （Suhtp．）
Alewife．（Suph．）
Alexander，paris
Alexander，Prince，Russiau
lang．\＆Lif．
Alexandria，Alestions／slarths．
Alexandria，Scotland，Suff．）
Alexandrina（6．），V＇ictoria L．
Alexandri，Vac，ISuct
Alexius 1 1．， 11 I．，IV．，V．， ，y
zantiue Emfire， 477.
Alfarabi，Arabian Lang．\＆

Lit． 34^{8} ．

Alfocr：Pafua， $25 z$.
Alfonsinc，（Supp．）
Alfonsine tables，Alforso \AA°
Alfreton，（Susph．）
Alfric，Arlfric．
Algaroba，Carod．
Algarobia，Mreqwite＇（Sufp．）
Algau Alps．Zjrot．
Algazel，Oryx．
Algesirah，Buggad．
Algesiras，Gitraltar．
Alghazali，Arabian Lans．
E－Li：． 348 ．
Algum tree，Alhutse Tree．
Alhayi，Camel＇s Thern．
Al－Iłakem．Ommiades， 72.
Alhanıa，（Sucr．）
Alhaurin El Grande，（Susp．）
Alia，（Supt．）
Aliaska，Alashar．
Ni－ben－Abbas，Irab．Laus．
5 Lit． 348 ．
Alicata．（Suph．）
Alice Holt．Rampshire．
Alicudi，Lipari．
Alife，Piedimonte（Supp．）
Aimeneveness，Fherenol．574
Alise，Alésis．
Al－Jauhari，Arabian Lang． É Lat．349．
csopotamiz．
Alkali，fossil，\＆c．，Soliumr， 801
Alkali，volatilc，Ammonia．
Alkali，white，Sodia，8oo．
Alkaline waters，Mincrat
Waters．
Alkanna red，Alkancí．
Alkarsine，Carciflle．
Alkendi，A Mabuz＂Lans．\＆
Lit． 348 ．
Alla capella，Alla Firece．
Allaed－din Kaikobad，OUR－ man．
Allan f．），Comrenz／l．
Allan Water，bugan．
Allay，Alloy（Law）．
Alle，Pregel．
Allegresto，Tennpo．
Allenheads，Northimberlard．
Allen Hill，Kilidare．
Allen（！．），Shanton
Allen r．），Truro
Aller ry，Celle．
All－Hallows，All Saints Day．
Allizator tortoise，Emys．

Allobrogum，Aix．
Alloxan，Murexide，Z＂ric
Acid．
Alloxantin，sfurexide
All Saints＂Wood，Erazil
Souls＇Coll．，Oxford＇Suph．）
Allstidt，Saxe－H esmar－Eisen－ ach．
Allyl，（Sufp）
Almada，（Supp．）
Alma Dagh ，mt．＇，Syria．
Al－Madain，Ctesiphor．
Almagro，（Supp．
Almahera，Gilolo．
Al－Mamun，Arabian Lang．
ÉLit．347，Calif
Almansa，Jfurcia，（Suph．）
Almanzora，Granada，Spain．
Almas，（Sugp．）
Almazarron，Miazarron＇Suff．
Almazora，（Suff．）
Almelo，Overyssel．
Ameria（r．，Granadz，Sfain．
Almery，Ambry．
Almodovar del Campo，（Suff．
Almozaver，Juan Boscan，
Spantsh Latts．है Lit． 20.
Al－M okanna．Molkambsedar
Sects Suph．
Almond，Forth，Linlithgow．
Almora，（Supf．）
Almonn．Kithtaort
Almoravides，（Sropp．）
Al－Mloshaf，Korar．
Almuñecar．（Sropp．）
Alne（r．），Northamberland．
Aloe，American，Agaze．
Aloctin，Dye－stuffs．
Alocxylon，Alocs Hood
Alopecia circumscripta，Tine．r．
Alora，（Supp．）
Alori，Slori．
Alosa tyrannus，Alecuife＇Sups．）
Alpes Maritimes，（Supp．）
Alpetragius，Arabian Lans．
\Leftrightarrow Lit． $34^{8 .}$
Alpha，A．
Alphorn，Kisht－hor7r．
Alpine crow，Chocara．
Alpine warbler，Hedge－spar
Alsace－Zabern，Zaberns．
Al Sirat，Wohamancdunism．
Alsoder，V＇iotacere
Alsophila gigantea，${ }^{\text {Tr }}$ ree Ferm．
Als Sund，Düppel（Suph．）
Alsted，J．H．，Encyclopedia， 48 ．
Alston，（Suptp．）
Altai（ssts．），（Supp．）
Altamaha，Ocknengece
Alt．amura，（Supp．）
Altea，（Supp．）
Aliena，（Susp．）
Althaen frutex，Fibiscus．
Althing，iceland，sos．
Althorp，Lord．Spencer．
Altkirch，Rhin，Maus．
Altmeyer，Belgium， 3.
Altmühl，Liaテtariz， 760
Alto－Douro，Tras－as－1／fontes
Alt－ofon，（Supt．）
Alt－ofon，（Sulf．）
Alon，U．S．Ahimois，（Surf $)$
Altoona，（Suff．）
Altütting，Alten－öttrug
Altoviscar，Navarre．
Alerincham，（ 5 mfp ．
All（T．），7 ransylzania．
Aluknunda r．），Gantes，6if．
Aluta（r．），Danabe．
Alva，Stirlingshire，（Susp．）
Alvarado，（Supp．）
Alvenlar abscess，Teci／k， $33^{\text {z }}$ ．
Alwen，Dee．
Alwur，（Supps．）
Alym，Dee，Fintshire．
Alz ril，Chicm－Sce．
Alzahan，Arabian Lang．： Lit．， 34^{8}
Amabaxa，Anaffraria．
Amafengu，Kafir．
A mak，Conenhagen．
Amalaswintha，Theodoric．
Amalgams，Gold（Supp．）
Amalthaxa，Sibyl．
Amanitine，Fungs．
Amara（mt．），Apenines．

INDEX.

Amarante, (Susp.)
Amaranth bark, Mahogany.
Amasia, or A masiayah. (Supp.)
Amatebele tribe, Zambesi, Zu/u.
Amativeness, Phrenology',514.
Amatrice, (Suph.)
Amazon stone, Felsfar.
Amazulu, Zuits.
Ambaree hemp, Hibiscus.
Ambato, (Supp.)
Amber $\boldsymbol{\prime}$.), (Susp.)
Amberbackin (mts.), Papua,
Ambernon, Papua, 250 .
Ambernon, Papua, 250.
Ambiguous middle, Fallacy:
Amblycephalus, Hop FrothFly (Supp.)
Ambo, Palpit.
Amboyna wood, K̈̈uboucca.
Ambracia, Arta.
Ambrein, Aubergris.
Ambrette, Hibiscus.
Ambulance corps, Hiar Scr vices (Susp.)
Ameland, Zuider Zee.
Amelin, (Suph.)
Amenemha I., Egypt, 789.
Amenophis, Egypt, 790.
Amen Ra, Egypt, $7^{3} 7$.
Ament, Amenthes.
Amental Alliance, Amentizcer.
Ameria, Anelia (Supp.)
American aloe, Agaze.
American blight, Aphis.
Ameshaspentas, Zoroaster, 36 r
Anhara, Abyssinia.
Amherst (i.), Magdalen is.
Amherst province, Tertasserion
Amia, $\boldsymbol{N i z d}-\mathrm{fis} / \mathrm{L}\left(S_{u} p \mathrm{p}.\right)$
Amice, Vestments.
Amida, Diarbekr.
Amides, (Supp.)
Amiens cathedral, Gothic Architecture, 26.
Amines, Organic Bases.
Amiot, Anyot.
Amiternum, Aquila.
Amlwch, (Stepp.)
Ammania vesicatoria, $L y / t /$ racea.
Ammer, Bañaria.
Ammonis, Cornua, Ammonitcs.
Ammonium, Anmonia.
Ammonnoosuck (r.), White Mountains.
Amoeba, $R / k i z o p o d a$.
Amol, (Supp.)
Amorgos, Grecce, 85 .
Ampanam, Lombok.
Ampelidea, Vitacee.
Amphiaraus, Onale.
Amphipneusta, Respiration, 207, note.
Amphisbæaidæ, Scrpents, 625.
Amphiuma, (Susp.)
Amplexicaul, Leaves
Amrawati, Oonurawutte'(Supp.)
Amrita, Ambrosia.
Amru, Oirtar.
Amstelland, Amsterdan,
Amu, Amu-Daria (r.), Ozzs.
Amun-Ra, Anmon.
Amur, Amoor, Mantchuria.
Amurath I., 11., 111., 15., Ottomare Emp. 148.
Amurnath, (Supp.)
Amygdalin, (Supp.)
Amyl, (Supp.)
Anabrace, Arabgir (Supp.)
Anacanth5, Malacopterygii. Anacharsis Cloots, Cloots.
Anacletus, Pope, Roger II.
Anaconda, Boa, Pythors.
Anacostia (r.), Vrashington City.
Anadir, Gulf of, Siberia, 702.
Anadoli, Anatolia.
Anæsthetics, Methyicue(Subp.)
Anagni, (Supp.)
Anaima, Zoology, 357.
Anakatt, Coleroon.
Analache, Artes, 239.
Analytical Chemistry, Aua'y-
sis (int Chern.).
Analytical machine, Calow. lating Machave.

Anam, Cochin China.
Anambas Islands, Riontu. Ananas, Pinte-asoble.
Anasarca, Dropsy.
Anastase, Titanium.
Anatidx, Anas.
Ancaste, (Supp.)
Ancenis, Loire-inferieure. Anchises, Eneas.
Ancholme ($r_{\text {) }}$, Lincolnshire.
Anclam, Antlan (Swpp.)
Ancylus, Limener
Andalgala, Futerte de Autalgala $\{$ Supp. $\}$
Andegavim, Ansers.
Andenne, (Supp.)
Anderab, (Supp.)
Andersonian University, A\% dersors, Fohrs.
Andes (mis.), Qucensiauct.
Audkhuy, (Supp.)
Andöe, Lefodent.
Andran, Engravirts, 6g.
Andre, Loire.
Andrea Pisano, 577.

Andreitnowsty Tslat tian IsLutuds
Andrews, St. America, igs. Andria, (Susp.)
Androcides, Painting. 191. Andromachus, Med., Hist. of. Andromeda arborea, Sorre? Tree.
Andros, (Supp.)
Andros, Bahantas.
Androscoggin $\left(r_{i}\right)$, Maine.
Androsphinx, Sphikr.
Andujar: $S u p p$.
Anesorhiza Capensis, Cintbcllifera.
Aneurin, Welsh Lats. \& Lit. ${ }^{135} 5$
Anezo, Navarre.
Anfora, A mpleora.
Angara (r), Yeniset, Brikal Angaziya, Comoro Isles.
Angeiolencitis, Aderitis Supp.)
Angeiology, Anatomy, 227 .
Angelica Salutatio, Ave Maria
Angelim, Partridge-wood.
Angeln, Augles.
Angels, Bishop, II7
Anghiari, (Suesp.)
Angina pectoris, Heart
Diseases of.
Angle, Trisection of, Quadrature of the Circle.
Anglican. Church, ArgloCatholic Church.
Anglin, Indire.
Angornow, (Snpto.)
Angoumois, France, 469.
Angra Pequena, Nahragua. lived.
Angri. (S up ϕ.)
Angrivarii, Sarrons.
Angus, earls of, Stewart Family, 124 .
Angustura bark, Angostura Bart:
Anhulvarra, Reijpoots.
Anhulwar, Putiun (Susp.)
Anhydrides, (Supp.)
Ani, Crotofhaga.
Aniene r.), Tiber.
Anil, Indigo.
Aniline, Phenyl, (Supp.)
Aniline green, Dye-stuffs.
Aniline purple, Dye-stuffs.
Animal Kingdom, Animsal.
Animé, freersed.
Anio (r.), Tiber.
Anion, Arode.
Anis (mit), $P_{n y}, L_{C}$.
Aniseed cordial, Ligreur.
Aniva Bay, Sakfalvi.
Anjana, Marrt.
Anjouan, Comoro Istes.
Anklam, ($S u \notin p$.)
Annaberg, (Svopp.)
Annalee (r.), Caziar
Annandale and Man, lords of,
Stewart Family, 123.
Annat, Ares.
Annatom, New Hebricécs.
Annatto, A
Armecy, Siavoy, (Supp.)

Annesley
(Suph)
(b.), Massowale Ammonay, (Susp.)
Annoneum or Annoniacum, Annonay (Supt.)
Anno5, Egypt, 789.
Annotta, Amotto
Annuities, Post-affice Iustro ance (Supp.)
Annulata, Worms, 279 .
Annuloida, Radiata.
Annulosa, Womes, 278.
Anomaly, Aralogy.
Anona palustris, Razor-strap.
Anoplura, Parasita ;Supp.)
Ansari, Persian Lang. EO
Lit. 427.
Ansbach, Anspach (Srepp.)
Anscharins, Anssgar.
Anspach, (Suph.)
Anstruther, Fifishire.
Anta, Egypt, 787.
Antacids, (Supp.)
Antakieh, Antioch.
Antalo, Abyssinia.
Antanaranga Pass, Ancies, 238. Anthea Cereus, Anemome; Sea, 250,251 .
Anthelmintics, Fermifuges.
Antheræa, Silk and Silkseorm, 724.
Antherozoids, Phytozoa.
Anthochara, II attlc-Bint.
Anchocyan, Bluc.
Antholites, Trigenecarpon.
Anthomyia, Cabbase Fly, Turnip Fly.
Anthonomus, Wecrid.
Anthriscus, Chervil.
Anthropopathism, Anthropomorphism.
Antiburghers, U.P. Church, 645.

Anticara, Antegueriz.
Antidorcas, Springbok.
Anti-federalists. Kepublican, U.S. $655^{\text {. }}$

Antilia, Tortona.
Antiochia ad Sarum, Adana. Antiochia ad Taurum, AinTab (Supp.)
Antipater, Stoics, 137.
Antipolis, Antibe's.
Anti-renters, Republicar.
Antisana, Audes, 239. 240 Antiscorbutic beer, Sprace, Essence of.
Antispasmodics, Spasm.
Antjar, Upas.
Antlers, Ruminantia.
Auton (r.), Hampshive.
Antongil Bay, Bembatooka.
Antonia, Fernsalem.
Antony (met.), Nez Jork.
Antony of Padua, Antonius, St.
Antony of Thebes, Antony, St.
Antrostomus, Whip-poor-H'ill. Ant-thrush, Ant-catcher. Antua, Arueiro (Supp.)
Antuco, Andes, 239, 240
Antunnacum, Andernach.
tnuka, Egypt, 787.
Anunghoy, Bocca Tigris.
Anupshuhur, (Supp.)
Anus, and its diseases, (SuAp.)
Anus, Rectum?.
Anvers, Antwerb.
Anwoth, Vitrified Forts. Aonlaganj, (Supp.)
Aoudad, Sheep, 66z.
Aounlah, forlaganj (Sups.) Apa, Paragmay River.
Apateon pedestris, Archesgosaturis.
Apathin, (Supp.)
Apeiba, Tiliacca.
Apeldorn, (Sugh.)
Aperispermic, Albemen
Apes, Nest-building Apes (Supp.)
Aphanite, Trok.
Aphasia, (Supp.)
Aphelandra, Acanthers.
Iphemia, Apharsiza (Suph.)
Aphis-lions, Golden-eye Fly.
Aphonia, (Supp.)
Aphrodisia, Aplyrodite.
Aphrodite, Sal Mouse.

Apin, Upols.
Apiine, Parsley.
Aplacental, Mammalia.
Aplysia, Tectibranchiata.
Apolda, (Suho.)
Apolinápolis EÍagna, Edfurt.
Apollaspolis Magna,
Apollonia, Cyreraica.
A poneuroticmembranes, Stele-
ton, 750.
A-posteriori, A-priori.
Apostoolists, Anabaptists, 2 I9.
Apparent distance, place,
psiont, 82 I . Unirenitus, Butl,
Appendix vermiformis, Ali-
mentary Canal.
Appin, Argyleshire.
Apple 'Mts., Jrluztsk.
Applecross Sound, Raasay.
Apples, oil of, Valerianic
Appomattox (r.), Fames River, Virginia.
Appreciation, Afdrazisers.
Apries, Egy,pt,79r.
Apt, Varcluse.
Aptenodytes, Pergsint.
Apulcius, Appulecius.
Apulum, Carisburg.
Apurimac, Perw, 437.
AquæGratianax, Aix.
AquæPаппопiæ, Baten-Baden.
Aquæ Sextiz, Air.
Aqua Ferentina, Marino
($S \pi p$ p.)
Aqua-Sextiz, battle of, Rome, 318.
Aqued

Aqueduct, right of, Seribitude.
Aquilina, Brake.
Aquilonia, Agrone (Supk.)
Aquis Grannm, Aix-la-Chapelle.
Arabah, Syria, Red Sea.
Arabgir, or Arabkir, (Supp.) Arabian tea, Catha (Supp.) Aractbus, Arta.
Aracyntbus, Etolia.
Aradus, Pharticia, 49 r
Aragona, (Supp.)
Aragua, Cruntra.
Araguay-Guaso, Pilcomayo.
Araguay-Mino, Pilcomayo.
Aramaic lang. Aramara.
Araneiformes, Pyluogonida.
Arapey (r), Urmisuay.
Arara, Macazu.
Aras, Arnenia, Azerbijan.
Arausio, battle of, Rome, 318.
Aravulli (m is.). (Supp.)
Araxes, Aras, Azerbijan.
Arba, Dominis, MI. A. dé.
Arber (mt.) Bavaria, 759.
Arbigny, Chizerots.
Arbil, Arbela.
Arbogastes, V̈alentiniantas.
Arbor Dianx, Amalrant.
Arborfelix, Eichstadt.
Arce, (Srifp.)
Archaology. Biblical, Biblical Archaology.
Archæopteryx,
Sulenhofen
Archagathus. Agathocles,
rchagathus.
Medicine, Hist. of.
Archambauld 1. Borrizas.
Archbishop (is.), Borirr.
Archedemus, Stoics.
Archegonia, Vegetudle Physiology, 737.
Archer, Pholography, 509.
Archil, Dye-sterfs.
Archilochian Verse
Archilochian terse, Arche-
lochas.
Archimandrite, Greck Church, 87.

Arcidosso, (Supp.)
Arctostaphylos, Arbutus.
Arcubalest, Arbalest.
Arculfus, Adizmman (Supp.)
Arcus Senilis, (Supp.) Ardakillin l.), Cramnoges.
Ardebil, Azerbijas.
Ardebu, Azerbijas.
Ardila, Gmatata.
Ardishir, Sassantiac.
Ardmeanach, Ross ant Crom.
art.

INDEX

Ardoyc, (Srisp.)
Ard-Kigh, Ireland.
Arecibo, (Supp.)
Areng, Gouruts.
Arcnicoli, Scarabatilue.
Arenig beds, Silariau Rooks,
Arensburg, Oese' (SupA.)
Argalus, Fish-douse, 356.
Argas, Acarrus.
Argeles, Pymindes, fiautes.
Argens r.l, ${ }^{\circ}$ ar
Argensola, 'Spazish L.nus. © Lif. 20.
Argenta, (Susp.)
Argentaro (mi's.), Alitukita.
Argentau, Orue.
Argentite, Glance.
Arghel, Argel.
Atgo, Argonazis.
Argos, Argolis.
Argos, Argohis.
(Srust.)
Argoun, Amoor.
Argovic, Aargath.
Arguenon, Cotes-dis-Nord.
Arguin, Blanco.
Argumentum, Wibilforl.
Argumentum ad hominem, Firllacy.
Argun (r.), Silerin, 702.
Arsjro Castro, Albauk.
Arhatas, fuiuds.
Aria, Py\%us.
Ariana, Afglemmistin.
Ariano, (Suph).
Aricari, Aracari.
Arichat, Cafe Breions
Aricia, Rome, 309.
Aricinc, Quinin.
Aridzens, Alexanter the Cbl.
Ariminum, Rimtini.
Arisaig, Inverness-shirc.
Arithmometer, Calcolatins Machise.
Arizona, U.S., 647, (Sust.)
Arjal, Trausylvania.
Ark-shell, Are.
Arktos and Arktus, Uirsa iliajor.
Arles, Earucs?
Arlon, (Supp.)
Armagh, book of, /rish Lates.
Armed bullhead, Pogse.
Armentières, (SupA.)
Armidale, Nea Soulth Wides. Armiger, Risquire.
Arming-press, Book-bindiug.
Arnoric Hills, Cotesaltr- iord Armour-plates, (Supp.)
Arms, Ereech-londing Arus (Suph.)
Army Hospital Corps, Staff corps.
Army of Reserve, Reserve.
Arma. Arnee.
Arnald, of Lrescia, Aruotut.
Arnatto, Arnotho.
Amauts, Albaniz.
Arncttc (r), Mazantel' Suspo.
Arncy, Permernaye.
Arnold, Abbot of Litcaux and Milo, Albigenses.
Arnold, General, Aluiré, 7., I. $S_{\text {-, }} 654$.

Arnulph, Carloringians.
Arnut, Earthase.
Aroc, Slesvis.
Arokszallas, (Supp.
Aromatics, (SuAp.)
Aromatites, Cerms, 664.
Aronia, Cratagus. Pyrus.
Aroostook (r.), White Mown-

rains.

Arosa (b.), Spain, 13
Arpa (r.), Aras.
Arra (r.), Tisperary.
Arracan!. Aracar.
Arran Mowddy, Merioneth.
Arrate, Gers.
Arrhes, Dilizence.
Arricse, Aricgr.
Arroo, Papuа, 251.
Arroux cote aiU Ur .
Arrow (r.), Sikso.
Arrow (r.), Increfo

Arrow-headed, Cisnciforme.

Arrowsmith, Moreton Ray. Arrowsmith (sut.), V'ancost ver's Islaud.
Arru, Moluceas.
Arsinoè, Cyrenaica.
Artabanus, Parthit.
Artamus, ivoort-sturlloze
Art and part, Accessary.
Arte Maggiorc, Jlefebriz
Artemisimm, battle of, Themistocles, derxes.
Artemon, Ilumbanifryians.
Artcmus Ward, Brotur, C. F. (Sufp.)
Artereotomy, (Swip.)
Arterics, discases of, (Sutip.)
Artcritis, Arteries, Dis. of (Stepp.) 402.
Arthropoda, IVForms, 278.
Articles de Reins, Kheimes.
Artificial Limbs, (Supp.)
Artificial Stone, S:out, Arti-
ficial. (1.), Great Shaz'e
Artillery (t.), Great Slaz'e
Iake.
Artillery Company, IIonour-
Artillery Company, IlonourArtillery, Royal Reg. of, Wist Services (Swat.)
Arvin, (Susp.)
Aruba, Curragor is.
Arun (r.), Susser.
Arundel, Earls of, Sicaurt Frauily: 121.
Aruns, Targuinins.
Arva, dua.
Arve (r.). Alps, Rhorse, Savoy.
Arx, dece (Supp.)
Arzen, Algerin, 14 .
Arzignano, (Suss)
Asagraca, Sabradilla.
Asben, Air.
Ascaris srichiura, Trichocephalus.
Ascella, Rhizopoda.
Asch, (Supp.)
Asciano, (Suth.)
Asclepiades, race of, Tes culapizs.
Ascleplas acida, Soma.
Ascomycetes, Fungi.
Ascough. Askerv.
Asdrubal, ITasdirubal.
Asfi, Saffis.
Asgard, Scrawd. N1gth. 525. Asha, Ambian Lang. is 2:18. 347
Asharians,
Sects (SuAf.)
Ashbornc or Ashburn (SuAA)
Ashdorl, Azotres, P/idistires.
Ashdown Forest, Susscir.
Ashera, Phorticia, 494.
Ashkelon, Aiscalor.
Ashkoko, Cory, Dantar.
Ash-leaved maple, Neguredo.
Ashlcy (r.), Charliston.
Ashtabula, Ohio (Su/th)
Ashtaroth, Philistincs.
Asiago, (Supt.)
Asiento d'Ambato, Ambato (Sufp.)
Asinalunga, (Supp.)
Asinara (i.), Sartinia /s.
Askalon, Phernicia, 402.
Asmannshäuscr, Khine-vvine.
Asoca, (Supp.)
Asokn, Puldhism, 404, P/tdia, 548.
Asola, (Stesp.)
Asopus, Grecte, 79.
Asow, Azo\%.
Asparagin, Solomon's Sin? (Supp.)
Asparagus Stone, Aprtitc.
Aspe, (Supp.)
Aspersed, Seme.
Aspheron, Caspian Sera.
Asphyxiated shell, Stinkionot.
Asplenium, Lady Fern (Suph.)
Aspro, Zingel.
Aspropotamo, Achelous.
Ass, Indian, Unicorn.
Ass, Wild, Üricorn.
Assafoctida, Asafotidif.
Assamar, Glucose.
Asse, Durauce.
Asser, Alfred.

Assessment, Rufe.
Asslur, Assyriz.
Assignees, Assigns.
Assinic, Ashavit.
Assis, Sejumt.
Associate Synod, UV.S.Ch. 645.
Assonance, Klime.
Assumption, Tobrago.
Asteria, Delos.
Asteria Sapphires, Cornuduun,
Astharata, Fisupt, 787.
Asthenia, Deatht.
Asthma, IHearf, Diseases of.
Astigis, Ecija.
Astley's New Pit. Duthingedu.
Astoria, Oregon.
Astragal, Gun.
Astragalus, Foot, 400.
Astrape, Torfedo.
Astric, Auashasius, St.
Astromyctes, Star-Hose.
Astroni (l.), Agnano.
Asua (r.), Nilc, Albert Ayarta, (Suspp).
Aswins, Sarya, Yama.
Atahyris, Rhodes.
Alacama Desert. Bolivia.
Atairo (mt.), Rhodics.
Atak, Tuducs.
Ataman, Hetmars.
Alax, Arule.
Aibara (r.1, Nile, Aclozua
(Supp.), Baker, Sir S. (Supp.) Atbo, Edfore.
Atchison, A゙aresas.
Aressa, (Supp.)
Athalia spinarum. Sartyly.
Atharvaveda, Vcifi, 728.
Athaulf, Spain, 16.
Athelncy, Ai/fred.
Athelncy, Al/red.
Athene, Mineran.
Athenodorus, Stoics.
Atheroma, Arteries, Dis. of (Sufp.) 40 I.
Atherstonc, (Supp.)
Atherure, Porczpine,
Athole, Earls of, Stevart
Family, 126.
Athothis, Egyth, 788.
Athyrium, T.ady fern (Susp.)
Atina, Trebizome.
Atlantic Telcgraph, (Supp.)
Atlantide, Africr, 60.
Atmeidan, Constantanople.
Atolls, Cornd $/$ slands.
Atom, Chersistry (Supp.), 46r.
Atonic Weight, Chumestry (5 wpp.) 46 t .
Alonement Contraversy, U. P. Church, 646.
Alri, (Swsp.)
Atropia or Miropine, (Suff.)
Atrowli, (Supp.)
Atta, Aut, 283, 284.
Attalus III. Philomeser, Rome, 318.
Attaran (r_{0}), Tcuesserim.
Altar of Roses, O\%to (Suß今)
Atihawmeg, JWhitefish.
Atrock, Inders.
Au, Ilunicha.
Aubagne, (Srofp.)
Aubenas, Ardeche.
Auberjine, Egg-Alant.
Auberlin, Jyrenees, Basses.
Aubigné, Lords of, Stewner
Family, 124.
Aubusson, Creuse
Aucklandia, Prsciewt.
Aufklärung, Pietists.
Aughnacloy: Tyroue.
Augicr, G. V. E. (Siens.)
Augst, Basel.
Augusta, London.
Augnsta, Agostio (Supp.)
Augusta Vindelicorum, ilugsburg.
Augustenburg, Olzenburg.
Augustenburg, Prince Frede-
rick of, Siesvig.
Augustin I. (Mexico), Iturbial (Stest.)
Augustodunum, Astur.
Augustowo, (Supp.)
Auldearn, Nairnshire.
Aullagas (f.), Desagwadcro.
Aulne, Finistere.

Aulostomidse, Fistularitue.
Aumale, (Sufp.)
Aumery, doubry.
Aunc, Dartmoor.
Aupa (r.), Bohernia, 889.
Alrangzib, surnaguebe.
Aurcole, the, Nimbus.
Auricle, Ear.
Auricles, Circulation.
Aurifamme, Oriflanerse.
Auripolis, /ugolstati.
Aurochs, Bisorl.
Aurora, Netu /hebrides.
Auspices, Augzries.
Ausserrhoden, Afpensell.
Austin Friars, Alugustines.
Austin, John, (Suph.)
Austin, Moses, Texas.
Austin, Mrs S., (Süps.)
Australian copal, Kauri.
Australian dammer, N"awri.
Australian explarations, (Supp.)
Austria, Germitney (Supp.)
Authie, Pasode-Calais.
Authography, Lilhogramily.
Autobiography, Biography.
Autochthones, Abongiues.
Autoclave, Digester.
Autumn, Sensoms.
Aux Cerfs (i.), Sejchellis /s.
Auxcrre, (Suppo)
Auzon, Carpentras.
Ava, empire of, Burnah.
Avail of marriage, W'antholit-
ing.
Aval (is.), Brareint Isiatud.
Avallon, (Supp.)
Avandale, Lords, Stemart
Family, 123.
Aveiro, (Supp.)
Avella, (Supp.)
Aven, Dartmoor.
Avens, common, Geum.
Aventinc Hill, Roure, 322.
Avenza, Carrara,
Avenzoar, Merticine, Jist. of.
Averdupois, dvoirdufois.
Avercest, Ozteryssel.
Averic, Indigo.
Avesnes, Nord
Avezzano, (Supp.)
Avia, Galicia.
Avigliano, (Susp.)
Avignon berries, Buctithorne
Aviles, Asturias, (Suchp.)
Avlona, Albania, Berat.
Avon (r.), Dartmoar.
Avon (r_{1}), Limlithgozu.
Avon (r.), Aozia Scosia
Avosct, Avocs?
Avranches, (Supp:)
Award, Alrbitration, 357
Awe, Argyeshire.
Awkward squad, Squad.
Ay, Moluccas.
Ayamonte, (Suft.)
Ayapana, Eispalorium
Ayasaluk, Ephesws.
Aycota, Cransanore.
Aylmer ((.), Great Slave 1..
Ayora, (SuAp.)
Ayscough, Sir G. Ruyter.
Ayton, Berwichshire.
Ayrubite dymasty, Saludir.
Azarole, Cratagzes.
Azazil, Moharnmedinsisur.
Azimabad, (SuAp.)
Azinabad, (SuAp.)
Azim's Fort, Aziughtur.
Azim's Fort, Azinghitzr
Azimuthal condensing light,
Light-horse.
Azio, Activm.
Azogue, Andes, $24 x$.
Azote. Chemistry (Suhth.).462.
Azrac̈, Moknmmediuisut.
Aztecs, Mexico.
Azıa, (Smit.)
Azuaga, (Susp.)
Azuline, Dye-strafs.
Azurc Stone, Lałis Lazwii.
Azyms, Unlenvenced Bread.
Azzeddin, Arab. Larg. \&
Lit. 348.
Baalzcbub, Philistines.
Baasher (r.), Alsorr Bay.
Baastaards, Griguas.
Baba, Mohnmmedars Sect's
(Supp.)

INDEX.

Babahan, Fars
Babahoyo, Guayaguil.
Babee, Batuber.
Babegan, Persia, 422.
Babi, Sumiatraz
Eabine (6), Columbia, Eritis/2.
Babul, Acacia
Dabur, Baber.
Babwyan (i.), Philippince Is.
Bacchantes, Bacchus, 602.
Bacchiglione (r.), Austria, Vicenza.
Bacchus-wine, Nazos.
Bachelors' buttous, Ravme culus.
Bachilo! r.), Margatala (Sutpp.)
' Backing the field,' Horse' racing, 428.
Backplate, Breastplate.
Backstays, Rigging.
Back-water, Water-power, 94.
' Backwaters,' Glarts.
Bacolor, (Supp.)
Bacon beetle, Clavicornés.
Baconiana, Aza.
Bacs Canal, Zombor
Bactra, Bactria.
Bacup, (Supp.)
Badarka, (Supp.)
Baden, Germany (Sups.), 535
Badenoch, Lords of, Gordon
Family, 8.
Bael, Aurantincere.
Bael, Bhel.
Bxtica, Andalusia, Spain, 15 .
Baffa, Bassa.
Bagaria, (Susp.)
Bagenalstown, Carlow,
Baggit, Salmor, 446.
Bagheria, Bagariaz (Supp.)
Baghistan, Bchistur.
Bagirmi, Begharmi.
Bagna-Cavallo, (Supp.)
Bagni di Lucca, (Supp.)
Bagno a Ripoli, (Supp.)
Bagnol, Muscatel.
Bagnolo, (Supp.)
Bagradas (r.), Tznzis.
Bahar, (Supp.)
Bahia, Cotton, 268.
Bahour, Pondichery.
Bahr-el-Abiad, vile.
Bahr-el-Asirad, Abyssirtiz, Nile.
Bahr-el-Azrek, Vïle.
Bahr-el-Gazal, Nile.
Bahr-el-Merj (2.), Damasczs.
Bahr-Jusuf, Meris (l.).
Bahr Loot, Dead Serz.
Baiern, Bavaria.
Bailey, Sam. (Supp.)
Bailie, Bailiff.
Hailment, (Suph.)
Bailments, Contract.
Pails, Cricket.
Bain, Telegraph, 340.
Bain, A. (Supp.)
Bainbridge, Dozerg.
Baiocco, Bajocco.
Bairam, Bciram.
Baise $(r$.$) , Garonme, Cers$
Bait-fishing, Argling, 257
Baitool, (Suph.)
Bajada de Santa Fe E Eutre Rios.
Bajan, Bejatr.
Bajazet I., II., Ottornan Empire, $14^{8 .}$
Bajjerkeit, Fangolizt.
Bajmak, (Supp.)
Bajra, A pmeer.
Bakar, Buccari (Supp.)
Baker (mit.), Washington(ter.)
Baker, Sir S. W. (Supp.)
Bakhtegan (l.), Fars, Persia,
420.

Turk. Latzg. \& Lit.
Eakwains, Betyuans.
Bal, Bally,
Eala beds, Caradoc Sandstone.
Balachiam, Cockin-China.
Balaghat districts, ($5 u \not p$.)
Balais, Balay.
Balan, Trarssylzonia
Balance-sheet, Book-kecpires.
Balaninus, Wrewi?
Balanites Egyptiaca,
Balanites
riatacea.

Balanophora and Balanophoraceæ, Rhizanthece.
Balasinore, (Supp.)
Ealas ruby, Spinel.
Balasore, Cuttack.
Balassa-Gyarmat, GyarmatBalassa (Sutp.)
Balbriggan, Dublin.
Balcarres and Crawford, Earl of, Lindsay Family (Supp.) Balcony of Puglia, Minervizo.
Bald Buzzard. Osprey.
Baldjik, Ealtschik.
Baldur, Balder.
Baldwin I., 11., Byzantive
Emepire, 47 I.
Raleen, Whale, 150.
Balgay Hill, Dundee.
Balira (r.), Andorra.
Balkash (l.), Semipalatinst.
Ballamgarh, Bulubgurh(Supp.)
Ballater, Dec.
Ballinderry (r.), Cookstows, Tyrore.
Ballista Balista
Ballon d'Alsace, Vosges MIts.
Ballon de Guebwiller, Vosges AIts.
Ballata nigra, Horckound.
Bally, Bali.
Ballymahon, Loug for.t.
Ballymote, Book of, Irisit Lang.
Balotra, ($5 u$ 体.)
Baloum tree, Festacta.
Balquidder, Perthshire.
Balsam apple, Monordice.
Ealsamo, Giuseppe, Casfiastro.
Baltic cod, Dorse.
Baltinglass, IVickilow.
Balveny, Bunffshire.
Balverda, Balsward' (Sutb.)
Bamboroughshire, Shire.
Bammia, Hibiscus.
Bampura, (Supp.)
Banana (is.), Sierra Leonc.
Вапаs, (Supp.
Banawaram, (Supp.)
Banca, S:cmatra.
Banchory-Ternan, Dce.
Banda, Bundelcund.
Bandajan, (Supp.)
Bandaleer, Bautoleer
Eanded sea-snake, Hydrida.
Ban de la Roche, Oberlitr.
Banderillas, Bull-fight.
Bandiat. Charente.
Bandikai, Hibiscoss.
Bandon, (Supp.)
Bangor, U.S. Pemobscot.
Banian, Batyanz
Banjer (r.), Eenjermassizz.
Banjoemas, (Supht.)
Eanjoewangi, Javia (Supp.),
Banjouvangy, Banyuzuangy:
Bank-notes, Greenbacks
(Subt.)
Bank's Strait, Mfelville.
Bann (r.), Antrin, Coleraine, Neagh (l.).
Bann, Upper ($r_{.}$), Dorum.
Bannatyne Club, Roxb. Clu\%.
Bannocks, Bread.
Banquette, Cuzert IF ay.
Banshee, Bershie
Banswarra, (Supp.)
Banting, Obesity.
Banza, Congo, San Salvador (Suph.)
Taphia, Camsuood.
Bara, Kordofar.
Barabras, Nubia.
Barada (r.), Syria.
Bara-lsa, Niger.
Baramula, Cashnere.
Baramula Pass, Thelume.
Barante, French Larg.
Baratry, Barratry.
Baratynski, Russizn Lang. \&o Lit.
Darb, Horse, 424.
Barbadoes leg, (Supp.)
Barbadoes nuts, Physic A-nt. Barlarea, Rocket.
Barbarette, Ruatar.
Barberry root, Dye-stuffs.

Barbet, Poodle
Barberieux, Chaverte.
Barcellona and Pozzo di Gotto, (Supp.)
Barcelona, Cimuana.
Barcelona nuts, Huzel.
Barclay, Dr John, (Supp.)
Bardi, (Supp.)
Eardits, Bare
Bardon Hill, Leicesterskire.
Dardsey Isle, Cardigan Bay.
Earebones Parliament, Rumtp Parliantent.
Barga, (Supp.)
Barga Pass, (Supp.)
Bargander, Barnracle Goose.
Dar-gemel, Barr.
Bargusin, Baikal.
Bariatinsky, Shanty?
Earisan (mis.) Sumalra.
Barium, Bart.
Bark, Barque.
Earkhusen, Hermann, Reynard the Fox.
Barking, (Sugb.)
Barking marmot, Prairie Dos.
Barking squirrel, Prairie Dos.
Bark-speeler, Creeper.
Barlaam, Hesychasts.
Barle, Exe.
Bar-le-duc, Mcuse.
Barley midge, Cecidomyia.
Barmouth Bay, Merionet/s.
Barnaul, Altai Mfts. (Supp.)
Barnburner, Respoblican
Barnes, Rev. W. (Supp.)
Barnes, Thomas, Times, The-
Barnet, battle of, Richard III.
Barnum, P. T. (Supp.)
Baroach, (Supp.)
Barquesimeto, (Supp.)
Barr, Bar.
Barracks, Wtzr Sernices
(Supp.)
Barraconda, Gambia.
Barraconda, Sphyranidaz.
Barrada, Damasets.
Barra Mansa, (Supp.)
Barrancas, Mexico.
Barras, Directory.
Earrasters, Barristers.
Darretry, Barratry.
Barrington Isle, Galapagos Is.
Barrow, Nilazre, Qucen's Comnty:
Earrow (i.),
Barrow-in-Furness, (Supp.)
Earrulet. Barr.
Bars, Barsch.
Ears Kbotan, Baras K/hotern.
Bar-sur-Omain, Bar-le-Duc.
Bart. Jean, Earth.
Barthelemy, A. M. (Supp.)
Barton beds, Bagshot Berds.
Barwon (r.), Victoria, 785.
Barygaza, Baroach (Supp.)
Dasantganj, (Sutpp.)
Basento (r), Basicuto.
Bashee (is.), Philispiule Is.
Bashee (r.), Tembri.
Bashkirs, Turks.
Basic water, Salts.
Basilia, Base?.
Easilius I., 11., Byzank. Emp.
Pasle, Basel.
Dasoche, Bazockc.
Dasrah, Bassora.
lasrah, Base.
lass, Ease.
Jass, Dor.
Passadore, Basizioh.
T.assein, Pegz.

Passelin, Olivier, I'andeville.
Bassenthwaite Water, Cum-
brian Mits.
Basses-Alpes, Alpes, Basses. Basseterre, Chiristopher's, St. Bassic acid, Sterric Actid.
Bassorin, Mucilage.
Pastan, Navarre.
liastard, Parent and Child.
Tastard cedar, Chittagong Wood (Susp.)
Bastard croup, Thymus Gland.
Bastard guava, Eusenia.

Bastei (mt.), Saxony, 513.
Easto, Qumulrille.
Patabano, Cuba.
Bataf, MoLidavia.
Gatanaz, Brashart.
Batanen (i.), Philippinse Is.
Eatanta, Papwa, 25 x.
Batham, Exe.
Bathang, Tibet.
Bath-metal, Alloy.
Bathy, Samos.
Batjan, Moluceas.
Batley, Denesbryy.
Batoom, or Batoum, Datum. Battery, Bunsen's, \&c., Gal-
vanism, 599, 600.
Battiferri, Laura, Ammanate.
Battle of the Spurs, Guizagate.
Battock (nt.), Kincardine shive:
Bati (i.), Smmatra.
Datua root, Cissampelos.
Datû Khan, Russia, 3^{84}.
Datz ${ }_{1}$ Bas.
Bancis, Philemon.
Baud, (Supp.)
Dandrick, Baldrick.
Baugé, Maine-et-Loire.
Havge, subterranean lakes of, Savos.
Bauld Cape, Nexufomaland.
Bank, Billiards.
Baume-les-Damcs, Dowbs.
Baupettah, (Supp.)
Bautzen, Lusałれa.
Bautzen, Lzsaza.
Bay.
Bay; Floors.
Bayad, Esjont, 786.
Bayamo, (Swpp.)
Hayard of India, Ontran.
Layard of the French army, Ondinot.
Bayberry, Cawaleberry.
Bayern, Bazarin.
Bayezeed, Bayazid.
Bay-laurel, Cherry-laure?
Bay of All Saints, Brhia.
Bay of Islands: N. Zealaut.
Bayonet exercise, Fenting. 285.

Bay rum, Spirit.
Bay-stall, Bay-zuindozv.
Bazaar, Buzar.
Beachy Head, battle of, Tour rille.
Beacons, Lighting of Bertcons, Esc. (Supp.)
Bead tree, Meliacera.
Beaked whale, Bottichead.
Pealtainn, Belteyts.
Bear (i.), Bantry Bay, Cort: Bearberry, Arbrtus.
Beard, use of, Hair, 189.
Bearded griffin, or vulture,
Lammergiter.
Beardie, Lonck.
Bear's paw, Clann.
Beas, Cherrab.
Beatification, Saints.
Beaufins, Apple.
Deaulieu, Betudley.
Beauly, Invermess-shive.
Leaumaris Shark, Porbecz gie.
Beaune, Cote $z^{1} \mathrm{Or}$.
Reauprêan, Alazine-ct-Loire.
Reauregard, P. G. T. (Supp.)
Beauvoir, Visor.
Beaver rats, Hydromys.
Becard, Salmon, 449.
Dec d'Oie, Dolphin.
Bechena, Dellys (Sups.)
Bechuanas, Betjucrzs.
Becqué, Beakera.
Bcese, New and Old, (Sust.)
Becuna, Sphyrarida.
Dedan-ambran, Arsyleshiri:
Bede, Bead.
Rede. Beda.
Redehollse, Boar.
Bedesman. Bead.
Bedford, Dukes of, \AA ussell,
House of.
Bednore, (Supt.)
Bed-sores, (Supp.)
Beebeern, Bebecri, Grech-
heart.
Bec-bread, Bec, 800.

INDEX．

Ticech－drops，Cancer Ruot． licechmast，fieci／．
licef－wood，insminina．
Jeckancer，Sikikanir（SuAA．）
licemah，Calturgir．
Beer．Ald，Birrleg＂．
Biceroo，dibu．
Hect coffec，Beel－soot Sugar （Supp．）
Bect－ront sugar，（Supp．）
Bect－spirit，firet－root Sugar
Befort，Selfort．
＂Beggars，＇The，＇Cweux（Sußp．） Reggars of the Sca，Hillitm， reince of Orange．
Beggine Hermits．Augrestines．
lieghards，Begurnes．
licglerbeg，Sig．
Bego（r．），Thiciss．
1legutax，Dicgaines．
Rehar．Bahar（Supp．）
1ichbehan，Fars．
Lehring＇s Island，Echring＇s Striti．
Meigerland，Beycrlamd．
lieikos，fiegkos．
Bei．kul，Eraikal．
Beiltine，Beltrin．
licirut，Beywurt．
licit－al－Harim，Biil．
licit－el－Maa，Dıf／тие．
Beith，Ayrshire
Beit－laham．Bethlehem．
Meitool，Baitool（SuAp．）
socit Ullals，Mecca．
licja，Alimicjo．
13cl，Baal．
1 Belecru，Greenheart．
lielem，fiara．
lielfast，U．S．Penolscot．
Melfase（（1．），Dasur．
felfist（．）Dalize．
Belize，
licljuric．（Supt．）
Pell，Melville，Shorthand， 693
licllac，Vienne，Hawte．
Bellagio，Como（l．）．
Bell animalcules，or Pell－flower animalcules，l＇orticellidie．
Dellano（l．），Como（2．）．
Rellary，Balaghat（SuAp．）
Bellay，I．du，Nonsard．
lell－bird，Honey－eater．
liellena，bellinzona．
Belleville，（Supp．）
Pellevue，lowa．
Bellino，Eandit．
Pellotto，Bernardo，Camaleth，
Bellows，Blowing－ruachines （Swht．）
Belluno，Duke of，Victor．
Bellur，（Sups．）．
Rel－lush，Alssyria．
liclly $(r$.$) ，Sashafchownen．$
Bellyache，Colic．
Rel－merodach，Assyria．
Reloit，（Susp．）
Belpasso，（Susfo）
Melper，Derbyshive，（Susp．）
Belper，Derbyshrive，（Susp．）
Belsazar，Belshazaar．
Ticltanc，
Belicin．
1，eltane，Eelscin．
13cltidum，Rosary．
Belturbet，Cazrn．
Belturbet，Cazan
Belu，A mherst．
Includ－el－Jerid，
Barbary，
Tumis．
Beluga，Dothing．
Deluka（md．）Altai BIts． （SuAt．）
Piclus，liara？，Dide．
lien－a－Main．Eanfishire．
licnarty，Кineoss－shire．
licn－avenna，faze＂tey＇。
lienavente，（Suj今．）
Fenclach，or Bencleugh，Clack－ mannanshive．
lien Creach，Avegleshire．
Den Cruachan，Grampians．
liender，Gombroon．
Lienedetto Odescalchi，Thno－ rent X IT．
Penedict，Jules，（SuAp．）
lienedict biscop．（Supp．）
Dencdict Xilli．，Pope，Schism，
Hesiers．
Pienet College，Cortus Christi：
Eengal Fire；Red，Strontium．

Bengal 1 lemp ，Swn
Bengal Light．Pyrobechay． Benghazi，Tripoli．
Bengies，India， 539.
lieni，Bolizis．
IBeni，Madeira．
Beni－Hassan，Necmpolis．
Ben Imal，Argyleshive．
Benjamin tree，Benzoin．
Iicn－jemma，Malta．
lien klibers，Sueherdand．
Ben Lomond，Tasmarit， 306.
lBen 1．ui，Tay：
lien More，Grampians．
Hen More in Assynt，Suther－ land．
Penmore 11ead，Fiair llead
Ben－na－buird，Aberdeenshive．
lienne，Niger．
lismear，Cantire
Demangton，Viermonf．
lien Rinnes，Banffhire．
Bensart（？），Tunis．
Ben Starvic，Eifiere
Mentange Eriollerdran．
Men Voirlich，Dumbartonshire．
Ben Wyvis，Ross \＆o Crom－ arty．
Ben－y－Gloe，Glentild．
Benzerta，Bizerta．
Benzinc，Benzole．
Benzoin odoriferum，Allspice．
pienzoyle，bicnzile．
Bepur，（Sups．）
lierat，Allanita．
licraun，Molidan．
Rerhera，Somali Lamd．
Berberin，Dyc－stulfs．
Berbers，Barbary：
Rerceto，（Sufp．）
Derchemia，Siwple Jack，
（Susp．）
licre，Barley，fear．
Berengaria，Richard 1 ．

Bereydah，Wahabis， 41.
Berczina（r．）Beresima．
Rerczov，Beresaff．
Berga，（Supか）
Rergamah，fergamus．
Bergedorf，（Supp．）
Bergcronctte．Wrastail．
licrghen，Dous．
licrg－mehl，Arimalewle， 270.
Berg－Zabern，Zabern．
Reri，（Suph．）
Biserkeley＇s thenry of wision，
Vision， $820-825$
Ferkhamstead，Great．（Supp．）
Jerlin Decrec，Continental
Sustem，Orders in Council．
BerJin－work，Combroidery．
Bermudez，Geronimo，Sfanish
Lang．© Lif． 20.
Rerna，Bcruri．
Bernalda，（SuAN．）
liernard，Claude，（Supp．）
liernard，Richard，Sabbath，
402.

Rernardin Pass，Alps．
Rernay，（Sus易）
Hernc，ficrn．
Pernese Olierland，Berno．
Bernesga，Leol．
Bernhard，St．Abclard．
Bernia，Bermz
Bernicle，Liarmacle
Ilernstorff，Chrisfikum I＇月．
Reroo，Biru．
Ferothai，Beyror：－
lieron（ σ ．），Borneo．
lierre，l＇liang de，Nhone．
Perri，Berry．
Berry－bcaring alder，Buck－
frerne．
Bertaclot，Satire
Bertinoro，（Suff．）
Pertrand de Born，Troudradour： lierubium．Duncanshy Rlead． liervie，K̈marameshire． Bervics，Hadifock．
lierytus，dicyrout，fhanicia． Bes，Sargor（Supp．）
liesanty Cross，Besimuts．
Ressèges，（Srifp．）
Ressenova，（SupA．）
liessi，Scriar 630 ．
liessus，Alexander the Great．

Bestushev，Nus．Lang．© Lit． lictanzus，CoruM̆．
Betein，Bethel．
lictel－nut paln，Areca
Bethesda，Caemananshire．
Bethichemitc Order，Crass，
oriter of．
Bethlem（iabor，（Supp．）
liethune，Cardinal，fieatou．
l Bethune．I＇as－de－Calais．
lictik，fiefics：
Hesle，Betel．
lietony，Sifachys．
Betula，Birch， 103.
Retulinere，Botrucea
Ветwa（r．），Jamua．
Bukble，Fienkelzoon
Beust，Fi．Fr．F゙．von，（Supp．）
Beuthen，（Suft．）
Rey，Beg．
Bey－Kume（r．）Jonisei．
liespore，Bepro（Supp．）
Bezant，Roundle．
Rezant argent，f＇hrte．
Bezantce，Bezauts．
Bezdan，（Suph）
lieziers．Alligenses．
Bezonr－stones，Coprolifes．
Bhabhur，Cotton Grass．
Phaclarsa，（Supf．）
Rhadri（r．），Bellur（Supp．）
Bhagecrettc（r．），Bhadivinath．
Bhaghireti（ r. ），Ganges， 014.
Ehagruttec（ - ），Burhathpore （Susp．）
Rhagrutti（r．），Garges， 615.
Bhagul，Basul．
13hamo（ \cdot ．），firatuadi．
Bhampura，Bampura（Supp．）
Bharuch，Barpach（Susf．）
Bhatgong，（Susp．）
lihâts，Tudia， 539 ．
Bhavini，¿MA6．
Bheel，India， 539.
Bhel，Bach．
Bhewamee．Showan（Supt．）
Bhilsa，Silsa（Suep．）
Whojpur，（Sups．）
Phovani－Kudar，Bhazani－
Кuสar．
Bhowan，（Suffl）
Rhugcisur，Allahabad．
Phuji，（Suph．）
Bla（r．）．Ob．
Binfo glacier，Tibet．
Bialogrod，Akjermam，
Bialy，Bialystok．
Biana，（Sups．）．
lianson（ r ．$)$ ，orr．
Bibawan，Allias Jite．
Dible Christians，Jicthedists．
Litule Communists，Perfection－
ists（Sugh．）
13ihorate of soda，Borrex．
Bibractc，Aubur．
Biceps muscle，J／and， 223.
Bichacz，Bihach．
Bichir，Polypteris．
Bicker，Beaker．
Bidouze，Pyremies，Basses．
Bicla（ r－），fiokemiz， 189.
Biclaga，Sturgeon．
1Biclaia（r：），Zïntrr，UV，
Bicloe，Aorkorad．
Biclstein，Biclshöhle．
Bièvre，Seine．
Bigahpur，（Suft．）
Bighorn，Argali，Sheep，662．
Big Laurcl，Alagnolia．
Bignolles，A／fes，Basses．
Big Sandy River，Temuessee．
Big Viermilion（ r ），Wiabash．
Dihar，（Supp．）
Bijawur（ 5 usß $)$
Biji，Bhuji（SuAN．）
Bijnour（Suspí）
1ijiuga（i．），jijissages．
Bikshu，fuddhism，407．
Jila．Bilin．
Bilhilis，Calatayud．
Bilharzia，Trematoda．
Biling，Reformation， 159 ．
Bilious Fever，Typhus and
Tiphoid Fevers，615．
Eill－book．Book－keecing， 227.
Bill of Pains and 1＇cnalties，
Bill of Attainder．

Pill of Portland，Portiard／s．
lible，Denmart：
litlows Falls，Fiermonf．
Dills（in parli．），d＇artigatesn， 288.

Lhilsa，（Sups．）
limah，histua，（Sußp．）
Jimn，Susubarena．
Bindloes（i．），Galapagos／s．
1 lingerloch，Binger．
Bingol－su，Arits．
Ninnen，Bay of，dmbeyna．
linny，Barbe？
13inondo，（Susp．）
linue，Benue．
liomehorg，（Supho）
lipinnate，Letries．
lirbhoom，fiecrblioom．
Birch，Samuel，（Swfo．）
Birch－oil．Birch， 104 ．
Birch－tar，Birch， 104.
Bird（e．），Amervia． 194.
Bird（i．）．Chaos／slomels．
Bird－mite，Epizorz．
Birch－jik，lijr．
Riren，Firon．
Bir－es－selaa，Becrshicba．
Biretum，Iestments．
kirgus，pursecratb．
Wiribi，Rougeet－noir．
Birkenfold，Cluemburg．
Birket－cl－Kerun，Narris，L ．
lisket－cl－Mariult，Marcotis．
Birlaw：Byrlaty．
Firs Nimrid，Dyramid，3x．
Birth，Berih．
Bisanagar，Biswlnuǧu；Supp．）
1 lisceglic，（Susp）
Biscoc＇s Range，Graham＇s Land．
Biscuit ront，Caamash．
Biscuit ront，Cuama
Biserta（l．），7ruis．
Biserta（l．），Truis．
Bishari，Africa， 69 ，Aubia．
Dishop－Wearmouth，Sunder－ lam．
Bishop－weed，Gout－reed．
Bhismark－Schoenhausen，（Suff．）
lissayac，Philippine／slands．
bisnlmageur，（Sußp．）
Bisulphide of carbon，Sul－
phirer， 200.
Misulpur，（Sufs．）
lisutun，Fehistun．
1iswamintri，Barod．s．
liternate，Ledares．
Ritlis（ r ），Tigris．
Mitolia，Mlomnstir．
Bito－tree，SJajilij．
Bittacle，Binmacle．
Bittenfeld．H．von，（Sußf．）
Bitter apple，Colecyuth．
litter cucumber，Colocymih．
Bitter（l？！Stucz，Suez̈（Suph．）
13itter liquid，Bitterm．
Bititer of senna，Catharfinc．
Bitter waters，Jincral IH ishers．
lijelbog，Slazes．
1hack（i．），Ress हn Cromarly．
1’lack（i．），polynesia．
Black（mif．），MFottencgro．
Black r．），Famaica．
Black（r．），Mlississiffi．
Dhack（r．），Aiger．
Blackindder（r），Gerzuichshire．
Black－ash，Solla， 729 ．
Blackbine，Surcheuficat．
Blacklind，Moor，King Onzel．
Blackburn，（Supp．）
Black Country．IV est Brons－ such．
Black cumin，Coctive．
Bhack I Seath，the recent，（Supp．）
black Down，Mchilis／／fills．
Hack draught，Maghesium， Scma．
Black－cyed pen，Doliches．
Blackfish，Tavtos．
Black gram，Kiducy－bean．
Llack gonse，Erent Goase．
Plack Eronsc，Blackeoch：
Black Hawk War，U．S． 657.
Black belmet，Cameo．
Black lark，Dumfriesshire．
black leg，Black Quarter．
Hlack locust，MIoney Locrist Tree．
Plack onk，Etrexcifron．
Llack orang，Chimpasizce．

INDEE

Blackpool，（Sutps．）
Black Russia，Lithnaniar．
Black saltwort，Claux．
Black Saturday，Perth，Fize Articles of．
Black－shouldered hawk，Ela－
Black spald，Black Quarter．
13lack squitch，Bent Grass．
Blackstairs（mt．）Wexford．
Blackstone（r．），Hoonsocket．
13lack tang，Irrack．
Black Town，Bombay．
Hack varnish tree，iNelintor－
riata．
Black vomit，Jellow Feiver．
Black vulture，Carrion Crow． Blackwater，Essex．
Blackwater，Ozeryssel．
Black whale，Caning IVtate． Blackwood，Roseavood： Blad－el－Djerid，Algeriz， 138 ． Eladenoch（r．），Wigtour？． Rlair－Drummond，Bog． Blanch Town，South Aus－ tratia．
Plankenstein，Blankenburg． Blanquette，Sprat．
Llanquilla，Antilles．
Llantyre，Lord，Stewart Family， 126.
Plasquets，Kerry．
Blastema，Cells，7o6．
Blau（r．），Ulan．
Plauw，Blactr．
Blavia，Blaye
13laze，Brash
Blazing star，Melanthacea．
Bleeding，tenesection．
Bleiberg，Bleibach．
Bleking，Carlscrona．
Blelhani（l．），Windermere．
lilemmyes，Nubia．
Blench holding，Blanche．
Blennorrhagia，Gonorrtace （Supp．）
Pleone，Durance
Blera，Gravina．
Blessington，Earls of，Stewart Family， 126
Pleu de Paris，Dye－stuffs． Blewfields，Nicaragua． Elimbing，Carambola． Blind Bay，Nelsor（Supp．） Plindheim，Blenheim
Blind rat，Alole－rat．
Blister copper，Electro－muctad largy（Sutp．）
Plisterng agents，Vesicants． Glistering paste，Cantharis． Hoaters，Herving－fishery， 347.
Bloem Fontein，Orange River Free State
Blonde，Chautilly．
Blood－feud，Veridetta．
Blood－letting，Venesection．
Blood－striking，Black Quarter
Blood－worm，Mrage．
Bloody Council of the Nether－ lands，Alba．
Bloody urime，Fed 1 itter．
Blooms，Iront， 636.
Blossom，Flower．
Blower，Spinning， 46 ．
llowing Cave，Virginiz．
131nwing－machines，（Supp．）
Bluebell，Marebell．
Blue－botile，Centaurea．
Bluebreast，Blucthroat．
Hlue－cheeked honey－eater， Bhece－eye．
Bluefish，（Supto．）
Jlue gum，Tasmanta， 307
lkue light，Bengal Light．
Blue－light Federalist，Refob－ lican．
Blue Mull Sound，J＇ell．
Bhue wren，AFalurws．
Blundeville，letcrinary Medi－
Boarding，Boart
Boarding，Boart．
Board of Green Cloth，Sterlu ard of the Householi．
Poatbill，（Supp．）
Foat－fish，Dory．
Soat－tail，Quiscalus．
Roavista，Cape I＇ent Islands．
Eobstays，Kigging．

Boca Coquito，Atrato．
Boca del Drago，Dragon＇s Mowth．
Bocland，Bockland．
Boco，Capo，Sicily， 704.
Bode（r．），Bielslowhle．
Bode，Barons de，（Supp．）
Bodjong．Samarazg．
Bodrog（r．），Theiss．
Bochmeria，（Supp）
Boel，Engraving，6g 1／og（r．），Bug．
Bogdo－lama，Lantaism． Hogdshe－Adassi，Tencitos． Boghaz，Samos．
Boghead coal，Torbanchill Aineral．
Poghra（mets．），Cork
Bogles，Goblins．
Bog orchis，Bryopleyltun （ 5 u今户．）
Bogue，Bocca Tigris．
Bohemian Deists，Abrakam－ ites．
Bohemian glass，Cassius， Purple of．Eohemia， 189. Bohmerwald，Dohemaz， 189.
Bohoduthov，Bosodonitioz． Boĭdæ，Boa．
Boiling－point，Thermometer， E 403.
Bois de Chypre，Cortiacea， Elm．
Boissonade．J．F．（SuzB．）
Boium，Doris．
Bojahs，Nitobir．
Bojana rai．，Scutari
Bökel，Beukelzoon．
Bola，Hibiscus．
Boldy，Morimiacer．
Boli，（Supp．）
Bolivar，New Gretrada．
Boll，Lettrue．
Bolor－tag（nts．），
Turkestan， $5^{8} 3$.
Polsec，Jerome，Calvin， 526. Bolsward，Supp．j
Molswert，Ensraving， 69. Bolt－bar，Lace．
Bolton，Captain，Siguals． Boly，Boli（Sugp．） Bomarsund，Aland Is． Eombay duck，Bumanaloti． Gombay duck，
Bombelli，Algebra．
Bomb－ketch，Bonb－vessel． Bombus，Humble－bec： Bombycidr，Silk \＆o Silk－ zeorm， 723 ．
Bombycilla，Wax－aing．
Bom Jardim，（Sugp．）
Bon，Cape，Africa，66，Tunis． Bona Bona，Bolr Boliz．
Bonacca，Liay 1s．，Ruatart． Bonaccio，Algebra．
Bón Air，Buen Ayré．
Bonaparte，Jle de，Reismion． Bona Vista，Newforndlaud． Honcherie process，Wook－ preserving．
Bond of presentation，Ca：－ tion，Futicial．
Pondue，Guilandina．
Bone－bed，Lias．
Bonc－cave，Kent＇s Cavern （Supp．）
Done－earth，Bonc－ash．
Bonelli，Telegraph ${ }^{2}$ ， 340. Eone－oil，Tar．
Boness，Borrowstornness． Bonhard，Bonylkad（Supp．） Boniface（governor of Africa）， Ronte，321，Valent miarms． Donillo，（Supp．）
Bonington，J＇ainting， $\mathbf{x} 6$. Bonmahon，Waterford． Bonnet，Fortification，445． Lonnet（r．），Leitrimr．
Bonnet limpets，Calyptraaz．
Bonnet－piece，N゙umismatics， 5 ． Bonneville，Sazoy．
Bonniton Linn，Clyde．
lonny，Niger．
Eonplandia，Angesturn Bark：
Bonte Quagga，Dauzv．
Bony，Bout．
Bonyhad，Supr．）
Boobialla，Tasmania， 308.

Book－madness，Bibliomania Book of Sports，Sports，Book of． Baok scorpion，Chelifer（Supp．） If sok－society，Book－club． Buolak，Boulac．
Bool－work，Buhl－wort．
Boomkin，Bumkin．
Boondee，Burdi（Subp．）
Kootan，Bhotan．
Booth，John Wilkes，Seuard， 644．U．S．661．
Bootikin，Boot
Boots，Shoes．
Eooty，War Services（Supp．） Dora，Nips．
I＇ora Bora，Bola Bola．
Bora－dagh（mts．）Albania．
Bora Samba，（Supp．）
Borate of lime，Hayesine．
Borcette，Burtscheid．
Bordeu，Anatomy，227．
Border（Heraldry），Bordure． Bordoe，Faróe Isles．
Bordone，Amhrogiotto，Giotto．
Bore，Bristol Chutnul，Hang－
Chow－Fioo．
Boreal crown，Aturora．
Borecole，Kiale．
Borer，Hag．
Borgetto，（Snff．）
Borgholm，Elannt．
Borgomanero，（SuNs．）
Borgonone，Painting，195．
Borgo San Donino，（Supp）．
Borgotaro，（Supt．）
Borgotaro，（sappo）
Borlazzo， l Sormida，
Borne，Bowrbonne－les－Bains．
Borocalcite，Hayesine．
Borofsk，Borowsk．
Boroihme，Brian Boroihne． Borovitchi，（Supp．）． horrowdale，Keswick．
Rort，Diantord．
Forysthenes，Duicper．
Morzna，（Susp．）
13os，Fungly Gau（Supp．）
Bos Aroee，Arnee．
Bos brachyceros，Zamouse
Bosch Vark，Wart－hog．
Bosco Reale，（Supp．）
Boshes，Blast Fumace．
Bosjesman＇s（r．），Bushman＇s
下iver．
Bosna（r．），Turkey， 586. losok，Ajuatolit， 227. Bosporus，Kertche．
loston Port Bill，U．S． 653. Böszōrmeny，Haidutk＇s（Supp．） Botany Bay Kino，Eucalyplus． Botaurus，Bittern
Bothriocephalidæ，Tapervorm，
Botley Hill，Donus，Surney llotrophis actroides，Actara． 13otskay，Trarsylvantia． Botta，Buccino．
Botticelli，Engraving， 69. Bottlehead，Dolphin． Botrle－nosed whale， head．
Bouched，Grur．
Boucher，Engrazing； 70
Boucicault，D．（Suept
Boudroum，Boodroom．
Roufarik，（Suphb．）
Boulac，Eoolak．
Houlton，Matthew，Watt．
Bound，Dr Nicolas，Sabbath， 402.

Bounty，mutiny of，Bligh， HF^{-}． Pourbonl＇Archambault，Aliticr． Bourbon－Vendéc，Nizpoleon－
Fendée（Supp．）
Dourg，Ain，Aydeche．
Bourganeuf，Crense：
Bourgeois，Type， 607.
Poursa，Bronssa．
Bourun，Boodroon．
Boussac，Creuse．
Bout－du－monde，Cascade of，
Sa：oy．
Bouvardia，（Supp．）
Bouza，Abyssinia，Beer．
Bovele，Rininoceros．
Bovey coal，Brown Coal． lioviliz，Mutrino（Supp．） Buw（ris，Sastiatchewan．

Bow－chaser，Chase．
Bowen，Quecrsland．
Bowfell，Westmoreland．
Bowman＇s root，Gillenia．
Bow－window，Bay－windotw．
Bow－wow theory，Oroma－ topatia．
Box－tortoises，Chelonia．
Boyaca，Nexu Grenada．
Boyana（r）．Bosmia．
Boyar，Bojar．
Boyce，Boece．
Boyle，Plain of，Foscommton．
Boyne，Banflshire．
Boyne（ r ．），Queensland．
Bozrah，Edom．
Brabourne，Sabbath， 402.
Bracadale（z．），Skiye．
Brachiale，Brassurts．
Brachionus dorcas，Rotatoria．
Brachirus，Sole．
Brachycephale，Skinll， 760
Brach－y－Pwll，Cardigan biry．
Bracken，Brake．
Bracklesham beds，Eagshot Beds．
Dracks，Braxy．
Bractea，bracteoles，bractlets， Bract
Braddon，M．E．（Supp．）
Braeriach（ont．），Dee．
Braganç，Braganza．
Bragg，General，U．S． 660.
Brahe（r．），Vistula．
Brahmadundu oil，Curuku Oil （Supp．）
Trâhmanas，Vedra， 723
Erahmany kite，Eme．
Brahmin，Brahtrar．
Erahminy bull，Zebr．
Braid，Mr，Animal dagmet ism， 268.
Eraik，Eraxy．
Bräiloff，Brahilow
Brain，diseases of，Brair， 304.
Brain－fever，Braits，304，Ty． phus and Tyshord Fovers，
Brake，Flux－dressing．
Brama Raii，Chretodontidr．
Erambanam，Irdian Archi－ ticture．
Bramber，Rape of，Sussex．
Brancher，Falconry， 228.
Branchiæ，Gills（Supp．）
Branchiosregal rays，Fishes， 353.

Brancursine，Acantrus．
Brandano，Basilicatiz．
Brandon（mt．），Kilkenty．
Brandt，Strucisee．
Brandywine，Pemnsylvania．
Branecki，Targowitz．
Branks，MIumbs．
Branning，Leather
Bras d＇Or，Nava Scotica．
Brass instruments，\＃\％̈ßd Snstraments．
Brasso，Cronstadt．
Brass soldering，Erazing．
Brassy，Bib．
Bratish，Chub
Brathay（r．），IVindermerc．
Brattocks．Ezider．
Brava，Cape Verd Islands．
Bray，Wicklow，（Supp．）
1ray，Mrs A．E．（Suspo．）
Brazéléin，Brazil Nituts．
Brazil cabbage，（Supp．）
Brazilian eagle，Eagle Hawh．
Brazilian plum，Hes Plum．
Brazilian tea，Gerars．
Brazil pine，Arawaria．
Brda，Montenegro．
Bread，unfermented，Eitfir－ mented Bread．
Bread，unleavened，Unlea－ vented Bread．
Breadalbane，Perthshiri．
Bread－nut，Cow Tres．
Bread－plants，Cerealia．
Bread－root，Psoraleiz．
Bread－tree，Zamia．
Bread－trees，Caffir Bread．
Break－bone fever，Denghe．
Breakspeare．Nicolas，Adrian．
Breast－wheel，Wiater－power，94．
Brechan，Gulfof，Corriewrekim．

INDEX．

Breckenridge，John C．U．S．658．
Brecknock．Erecon．
Bredon Hills，Worcestershire．
Breech－loading arms，（Supp．）
Brecze， Eot．
Brege，Dambe．
Brehon Laws．Irish Laug．
Brembo，Bergamo．
Brenner Pass，（Supp．
Brenta，Asestris．
Brent bamacle，BamacleGoose．
Brentella，Cithadella．
Brent goose，Bamuacle Goose．
Jhressuire，Saures，Dewx．
］3ressumer，Breash／summer．
Hrethren of Social Life，the
Common Lot，or of Good
Will，Brotherfsoots，Telia．
Brethren of the Sword，Fess－ tonic N＂uights．
Mretwalda，Auglo Saxons， 263
Breven（mit．），Chamouni
13revel， 1 ＂ar Services（Supp．）
Grevier，Type，6o7．
Brezowa，（Supp．）
Jiriançon chalk，Steatite．
Briançon manna，Larcli．
Bride，St．Eridget，St．
Bride，St．Eridget，St．
Bridge of boats，Bridge，Milit．
Bridges，suspension，Suspers－
sion Bridges．
Bridgetown，Barbadoes
Bridgetown，Totnes．
Bricile，Briel，Holland，Southe．
Brienne－Napolcon，Briente le－Cháteall．
Brierly Hill，（Sufp．）
Prieve，Breze．
Briey，Moselle．
Brigach，Danubie．
Brigg，Gla ndford Brisgi Supp．）
Bright，Sir Charles，Tele－ graph． 335.
Brighthelmstone，Brighton．
Brigitte，Bridget．
Brigite，Bridget． $\mathrm{Brihuega} ,\mathrm{battle} \mathrm{of}, \mathrm{Vendome}$.
Brihuega，battle of
Brill，the，Bried．
Brilliant，Type， 607
Jrilliants，Diamond．
Brimstone Hill，Christo Bher＇s，St．
Brinjal，Efg－flants．
Prioude，Loive，Haute．
tirisbane，Moreton Bay．
Brisbane（r．），Queenshind．
Jrisé，Brizure．
Iristol，Rhode I slaunt．
Bristol Bay，Alaska．
Iristol brass，Alloy．
Brisures，Abatement．
Britannia metal，（Supp．）
British America，America， Brifish．
British Channe！，Enolish Chaunel．
British Columbia，Canada （ $\$ v \beta p$ ）$) 44^{8 .}$.
Britons，Celtic Nations．
Britzschika，Conch．
Brivas，Brioucte．
Erive，Correze．
Brixham，（Supp．）
Brixham Cave，Tomquas．
Brizé，Brizure
Broach，Baroach（5upp．）
Broad Bay，Leteis－with Harmis．
Broad Church，Englaus and
Ireland，Church of．
Broadford，Skye．
3roadstairs，Thanet．
Broadstone，Cromlech．
Broadstone，Cromiech．
Broadway Hill，Coteswold． （Supp．）
Broche，Braach
Brochel Castle，Raasag．
Irock，Briger．
13rock，General，U．S． 656.
Frocket，Stag．
Erogic，Seven J゙ears Har， 636.

Brogue，Brog．
Broken Ray，Hawkesbury． Bromberg．Poseh．
Bromsgrove．（Supp．）
Bromus，Browe－grass．
Bronchocele，Throat．
786

Pronzed skin diseasc，Supra
renal Capsules．
Bronzite，Diallage
Brookx，C．Shirley；（Supp．）
Brookweed，Pimperiel．
13room－corn，（Supp．）
Brora（r．），Sufherland．
Brosimum，Freat－unt．
Brosmius，forsh：
Brosmius，Sorsti．
Brosna（ r ．），Shanthont．
Brothers of Christian Schnols，
Schools，Brothers of Chris－ tian．
Brothock，Arbraatif．
Tirougham，Coach．
Browwer，Brawher．
Brow－ague，IJemicrania．
Brown，Chas．Foster，（Supp．）
Hrown，John，Sabbath， 102. Brown（mto），Columbia，Brit
ish，Kochy Moomhaius．
Brown Bess，Riffed Arme． Brown hemp，Sum，
1hrown ptarmigan，Moorfowel Brown University，Rhode／s liroyc，Freiburg．
Brshesiny，（Sush．）
Bruck，Brugg．
Brude，Picts．
Rrusgemann，Hans，Cariés．
Brubma，Bra／buta．
Bruise，（Supp．）
Pruisers，Crushers．
Brum，Gomuto．
Brammagem，Birninghou． Brun，Burnley．
Bruna（r．），Castiglioné，L．of．
Brunai（r．），Bomeo．
Brumanburgh，batsle of，Scot
land， 556.
Brundisium，Erindisi，
Brunjuke，Browssa．
Brusa．Bilhynia
13nsche（r．），Strasbours．
Bnisla turkey，Talegathe．
Bnish turkey，
lirussa，fintolia，zaz
Brussa，finatolia，237
Pruttians，Rowe， 314.
liryanites，Alethodists．
Bryge－bot，Trimeda necessitas． Mryher，Scilly／slands．
Iryophyllum，（Suph．）
Mubastis，Esypt， 7^{87} ．
Bubastis a gria，Belbeys． Bubble－shells，Fulla．
liubucle，WFhelk．
Juccari，（Supp．）
Buccinari（i．）．Capreva（Sug今．） Bucco，Atcliania．
Buceros，Honibill．
Suchan，Earls of，Slemvart
Family， 126.
Stezuast
Buchan Deeps，Buchar－Niess．
Bucinaric Islands，Bonifacio，
Strait of．
Iuck，Fallow Deer
liuck－cye，Horse－chesnath．
Bucker fever，Dengue．
Puckie，Ennffshire．
Buckie，Whelk．
Bucking，Blerching． 148 ． Buckinghan，Duke of，Aick－ ard 111．
Buckland，F．T．（Supp．）
l＇ucksport，Penois
Bucktails，Republican． Buczacz，（Swopp．）
Budaon，or Budayoon，（Supp．） Budd．Dr William，Typhus and Typhod fevers，or4 Buddhism，Ceylon， 738.
Buddle，Tin，448．
Bude，Guil．，Buderus．
Budhanuh，（Supp．）
Inudissin，Batazen．
Budjak，Bessarabia．
Budukhshan．Badakiksiners．
Budytes，Wagtnil．
Buech，Durauce．
Buenia Vista，batile of，Taylor，
Zactary，U．S． 6,5 ．
Buffalo（r．），Naffinvia，Brit－ ish．Vatal
Buffalo－fish，Chatonlontider．
Buffel－headed duck，Giarrot
Buffo，（Supp．）
llufo and lbufonide，Toud．
Bugio，Desertirs．

Bugis，nornen
Hugle horn，Ifrentiug Horm．
Buhreach，（Sropt．）
lunik（r．）．Kishenau（Supp．）
Builth，Brecknockshtre．
Buitenzorg，耳aza（Supp．）， 570.
Bukharest，Pucherest．
Bukharia，Litule，Tuokeston，
Bukke Fiord，Carmuse
Bukkur，（Supp．）
Bulgarians，Cabhari
Bulse，Bilge．
1Sulíbani，Bonrioz．
Bull，sacred，Zebu．
Bulla，Seal．
Bullic，（Supp．）
13ullas，（Suntp．）
Bullion bar，Glass．
Jullock＇s heart，Custard Asple
Bull of the bag，Bitterz：
Bull Rum，U．S 6 s？
1hull Run（mts．），Virginia．
Bull＇s mouth，Caneo．
Bully－tree，Bullet－8ree．
Bulrampur．（Supp．）
Bulsar，（Supp．）
Bulustan，Tibet
Bulubgurh，（Supp．）
Bum－bailiff，Borrd－bailif？
Bum－bee，Humble－bee．
Bunas，Bouas（Supp．）
Buncrana，Szuilly，Loch
Bundeleand Hills，ludirs， 537.
Bundemeer，Fars．
Bunder Abbas，Goubroon．
13ungarus，Bonsur．
Bungay，（Suft）
Bunion，（SwPp）
Punker＇s Hill，Bostong．
Bunsen－burner，Warmites，sec．
Bunzlau，（Supp．）
linoyancy，IIydrostatics． 190.
Buoys，Lighting of Beacous， Eve．（Supp．）
Purada，Bayradir
Burass，（Supp．）
Burburet，Bay Islands．
Burdekin（r．），Qweensland？
Bureaucracy，Eureat．
Bu－Regrel（r．），Eabat．
Burenda P．ıss，（Supp．）
Bureng，（Supp．）
Burette，Volumetric Attalysis，
Burg，Femern．
Burg，Leviten
Burg，burgh，Berg．
Burg－bot，Trineda necessitas．
Burghaz，Burgas．
Burghead，Elginshire．
Burgher，Eurgess．
Burgher Synod，U．P．Charell，
645 ．
Burgh－Mousa，Mousa（Supp．）
Burhampore，（Supp．）
liurhaunpur，（Susp．）
liuriats，Siberia， 703
liurins，Chizerots．
Wurins，Chizerots．
Burke，R．O＇Hara，Ausirg－
lian Explorations（SuAp．），
Burke and Hare．Aratomy．
Burlaw，Bystazu．
Durier Woollen aud Hiorsiat
Marmefacturs， 265.
Burlington，Jozua．
Burnoase，Bedruins．
Lurms，Rev．Jabez，（Supp．）
Burnside，Gencral，Richuom， U．S． 660.
Purnuggur，（Supt．）
liurr，A：iron，U．S．655， 656.
1hurra，South Australia．
Bursche，Unizersity， 664.
1 hurslem，Stoke－uport－Tresit．
Burtah，Marugo Fish．
Purton，Heury．，Sabbath． 402.
Thurton，Rich．Fr．（Supp．）
Burn，Noluceas．
Burunhem，firranhent．
Burwell，Erie，Lalic．
Busaquino，Busachivo． Piusento，Cosener．
Bush（r．），Antrin：
Bush－cat，Serand．
Bush－cow，Zamouse．
liushehr，Abwheltr．
Bush－hog，Heg．

Bush－key，Torlupas．
Busiris，Гy amúb， 30.
Bussahir，（Supp．）
Bussora，fazsoris．
Busuan－foul，Khemmatism．
Busto－Arsizio，（Supp．）
Bute，Earls and Marruises of，
Strourrt fiamily，zat．
Buteo，Buzzard？
Butera，（Supp．）
Builer，Ben．F．（Supt．）
Butom，Beuthen（Supp．）
Butt，Leuther．
Butter－and－taliow tree，Fenta．
desma，Nathou Tree．
Rutter hur，Tiessibage．
Butter－mits，Caryocur．
Buttes（mif．），Sierra Nevadia．
lhution snakeront，Eryugo．
Butly gangs，Raikedys， 88.
Byzacium，Earbury．
Bzewieski，Targowidz．
Camma，Ḱtama．
Calades，Sassauida．
Calbage－trec，Andira．
Cabeza del Buey，（Suppo）
Caboolture，Moreton buty：
Cabotsville，Chicopec（Supp．）
Cabree，tyoug－horn．
Cahrera，Cabral．
Cabriolet，Conch．
Cabrit，Provg－hont．
Cacolet，Ambulauce．
Cadaburi（ r_{1} ），Rio Negro．
Cadamba，（Supp）
Cader Fromwen，nenbiang－
shire．
Cadesia，battic of，Sassumidic．
Cadge，Fialconry， 229.
Cadvalonga，Catbalogana．
Ciclebs，Chaffinch．
Cixlenternta，Ridiarta．
Calian Hill，Nome． 322
Caer－Gwent，Wirchester．
Cacr－Sciont，Caermarvore．
Cxsarea Augusta，Saragossa
Cxsarion，Clenpatro
Casium， K ubidiuns．
Cessius，Blacz．
Castus，Cretus
Cacte，Calisté（Supp．）
Cahčzé，（Supp．）
Caiman，slligazor．
Cainites，Caish．
Cairngarm，Aberdeenshire，
Fianytshire，Grampians．
Carmharrow，Kirkcudbright． Cairnsmore，Kirkcudbright．
Cairnoul，Aberdernshire．
Cairo，Illinois．
Caite（r．），Bragarafa．
Caithenss，Earls of，Sinchair Pianily．
Caivano，（Supp．）
Cajetan，lionifrace，Fope．
Calabar bean，（Suspp．）
Calacalla，Chifo．
Caladum，Brazil Cablase （SuAp．）
Calah，Assyria．
Calappa，Cocon－Hzut．
Calascibetta，（Srepp）
Calaveras，mammoth trecs of
Wellingtonia．
Calavor，Durance．
Calbe，Kialbe
Calcareous alabaster，Cak－ sinter．
Calcraft，Exccutionter．
Calc－spar，Calcareous Spar．
Cak－tuff，Calcareous Tifu．
Caldecot，AMoumouth．
Calder，Coluc．
Caldera，Chili，Iolcanoes．
Calderoon，battle of，Selim I ．
Caldetas，Caldas．
Caldew，Cartisle．
Caldwell，C．Fhernolegy， 512.
Caledonians，Celtic Natiors．
Calela，Casacalesuta．
Calepine Lexicon，Facciolati．
Calf of Man，Man，Isle of．
Calico bush，Kalmia．

INDEX.

Caligus, Fish-louse, 356.
Caliope (r.), Queensland, 56 .
Calisaya bark, Cinchona
Calixtus III. Borgia.
Calla, ($\mathrm{Sup} \mathrm{p}^{\circ}$)
Callan, Armagh, Kilkensry.
Callan Mount Clare.
Callcedra wood, Flindersiaz
Callernish, (Supp.)
Calloma, El Dorado
Callon, Sculpture, 577
Calmont Creek, Sierra Leonc.
Calmont (r.), Mayente.
Calocephalus, Seal.
Calonyction bona nox, Belle de Nuit.
Caloo-sa-hatchee, O-kee-choobee.
Calore, Berrevento
Caliabellota, (Supp.)
Caltagirone, Catatagirome
Caltaro, Dalmatia.
Caltavuturo, (Supp.)
Calvert, Raisley, 1 Vordswort $/ 2$
Calvi, Corsica.
Calvinistic churches, R eformed Chitrches.
Calw, (Supp.)
Camaïeu gris, Manuscripts.
Camassia, Qurmash.
Cambo, Pyrénées, Basses.
Cambodia (r.), Cochiu Chiura
Camboja, Cambodia.
Camboose, Caboose.
Carnden, (Sust.)
Camden Fort, Convict.
Camden Society, Rox. Club.
Camel (r.), Cormwall.
Camerlengo, Cardinal.
Camille, Cordcliers.
Camirus, Rhodes.
Canorra, (Sispo.)
Camowen (C. . Yyporc.
Campanella Cape, Capri
Campanha, (Stepp.)
Campeador, Cid Camperador
Campelophilus, Woodpecker.
Camp fever, Typhass, 615
Camphilene, Camplene.
Campinas, R io Graude do Sul, (Supp.)
Campine, Belgium, x, Ghecl
Campo Felice, Italy.
Camulodunum, Malion.
Canaan, Phernicia, 490-491.
Canada, ($S u p p$.)
Canada Creek, West, Treicton Falls.
Canadian boat-song, Ottazua.
Canadian hemp, Apocynacer, Dogbane.
Canadian rice, Cerealia, Rice.
Canalé, Canaletto
Canandaigua, (Szpp.)
Canandaigua(l.), Sussquehumera
Canarese language, Tamil.
Canatix, Felanitche (Supp.)
Cancer, chimney-sweepers',
Soot.
Cancer of the stomach, Stomach.
Cancer of the womb, Womb, Diserses, soc. of t/ee, 252 . Canche, Pas-de-Calais
Cancroma, Boatbill (Supp).
Cancrum oris, MIouth, (Suppo)
Candela, (Supp.)
Candle-fish, (Sutp.)
Cane straw or trash, Bagasse Canha, Estrentadura.
Canicula, Sirius.
Caoje, Greazua, British, 132.

Canker, Mouth.
Canna, Canea.
Cannacer, Marantacere.
Cannon, Billiards, 98.
Camon, Warservices (Supp.)
Cannon bone, Ruminantia.
Cannor (l.), Crantroges, 305
Canobus, Canopus.
Canon, Type, 607.
Canomsation, Saints.
Canons, Regular Canons.
Canque, Carg.
Canso Troubadour
Cantabria, Baspue Provinces.
Cantago, Costa Ríca.

Canterbury, Archbishop of, Archbistop.
Cantharides plaster, Vesicants. Cantharus, Scarabaus.
Cantliver. Cantaliver.
Canto, Rhapsodists.
Canto Fermo, Plainsons.
Canto (r.), Bayamo (Supp.)
Cant-timbers, Shipbuildiug, 684.

Cantu, Canturio.
Canvas (in painting), Pairt ${ }^{2}$ ing 147.
Canvas-back duck, Pocliord Caouran ilimacea Pochard. Capac (Manco, Huayna, \&c.), Perre, 438.
Capana, Monte della, Elba. Cape ash, MTeliacea.
Cape Cod Bay, Mrassachusetts bay
Cape Fear River, Carolima, N. Cape guevei, Klvere Boc (Swpos.)
Cape of Good Hope, Pagzaa,250 Cape sheep, Albatross.
Capitation grant, Volunteers. Capitation tax, Richard $1 /$. Capitolium, Rome, 308.
Cap la Rocca, Portugal.
Capnio, Rerchltiv.
Cap of dignity, Maintenarte, Cat of.
Capollim, Cherry
Cappoquin, II aterfort.
Capra, Capelia.
Capreolus, Roe.
Caprera, (Supp.)
Caproic acid, (Supp)
Caprus, Boar-fish.
Caprylic acid, Capric Acid (Supt.)
Capsella, Shepherd's Parse.
Capsular, "Ligaments.
Capulets \& Montagues, (Sufp.)
Caqueta, \neq ариra.
Carabineers, Carbineers
Carabost, Skye.
Caraccioli, Alfonso V. of Aragon.
Caracol, Gzayarmil.
Caradoc, Welsh Lang. \& Lit. 136.

Caradrina, Wrillow-moth.
Caramania, Karantan.
Carambole, Billiards.
Caranaiba Palm, Carnahuba Palm.
Carapano, Crunanta.
Carapata, Tick.
Carausius, Saxons
Caravats, Kibbonism, WhitcCoy,
Carbides, (Su\&p.)
Carbo-hydrates, Vegetable
Chenhstry, 732.
Carbolic acid, (Supp.)
Carbonates, Carbonic Acir
Carburets, Carbiders (Supp.)
Carcaso, Carcassone.
Carcavela, Kattlesnake.
Cardener (r)), Cayctona.
Carder, IV oollen and Worsted Montufactures, 265 .
Carders, Ribbonism.
Cardigan B. Pr. Edzuard Is. Cardinal (beverage), Bishop (beverage).
Cardinal de Lugo's powder, Cinechora.
Cardiospermum, Sapindacea. Cardonet, MIauresa (Suph.) Carduchi, Drises, Lurdistan. Carduelis spinus, Aberderine. Caremata Passage, Billiton. Caretta, Tortoweshell, 7 tortle. Carham Burn, Border
Caribou, Reindeer.
Caribs, Christoplier's, St.
Caricinea, Cypheracee.
Caries of the teeth, Teetlt, 330 .
Carigliano. Mrscatel.
Carina, Papilionacce.
Caripe, (Supp)
Carisbrooke Castle, Wight, Isle of.
Carjacou, Cariacort
Carle Sunday, Care Sunday.

Carlingford Bay, Dozerr.
Carlingford (mets.), Lontht
Carlisle, U.S. (Supp.)
Carlisle Bay, Barbadoes.
Carloman, Carlovingizus.
Carlos, San, (Supp.)
Carlshamn, (Susp.)
Carlsten, Swedert, 237
Carlyle Fort, Convict
Carmania, Kerman.
Carmathans, Kiarmathiants (Supp.)
Carminatives, Narcotics. ('arnarvon, Earl of, (Supp.)
Carnedd-Llewelyn (mt.),Syozu-

dow.

Carnsore Point, Wexford
Carolina catchlly, Diorcea
Carolina parrot, Macaw.
Carolina rail, Crake.
Caromi, Orinoco.
Carora, (Supp.)
Carouge, (supp.)
Carpal bones, Hand, 222.
Carpat, Carpathiun MIts.
Carpathos, Scarpanto.
Carpi, Transylanaiz.
Carpophore, Unbelliferce.
Carr, Viscount Rochester,
Overbury, Sir 1.
Carran-tual, Magillycuddy Reeks.
Carrapato, (Supp.)
Carrara - water,
Aërated
Hiaters
Carrera, Rafael, Guatemala.
Carriacou, Grentadizes.
Carrick, Ayrshive
Carrick-beg, Waterford.
Carrick Road, Corwwall. Carrion-bird, fay:
Carrot-fy, Carrot
Carroting, Fur.
Carrying-trade, Carriers.
Carson City, Ncuada.
Carson's (r.) Hiashoc.
Cart, Black (r.), Renfiezu.
Cart, White (r.), Renfrew
Carte, Fencing, 283.
Carter, Dr, Parasitic Diseases. Carter Fell, Cheviot Hills. Carthamus, Safflower.
Carthusian Powder, Kermes
Alineral.
Carton-pierre, Papier-mache.
Cartridge, Snider, Ereech-
loading Arms (Supp-), 438.
Carum, Carazuay.
Carvin-Epinoy, (Su\&力.)
Caryll, Crail.
Carystos, Euboca.
Cascade (mits.), Oregon.
Cascade City, Washington
Caselli, Telegraph, 340.
Cashan (nuts.), Transvaab Re-
preblic.
Cash-book, Book-kectints, 227
Cashen, Kerry.
Casherbox, Glass, 770
Cashmere (town), Scrinagur.
Casia, (Suph)
Cask-bridge, Bridge, Milit.
Caskets (Rocks), Aldermey.
Casmarynchus, Bell-bird.
Cassada bread, Manioc.
Cassia, oil of, Cimpamtic $A c$.
(Supp.)
Cassidaria, (Sutho.)
Cassiripe, Casareeb
Cassis, Currant.
Cassis, Helonet-skell (Susp.)
Cassiterite, Firr, 448.
Cassowary tree, Casuariva. Cassumunar, Girger. Castalian Spring, Castri. Castanum, Chesmut. Castanulas, Castanets.
Castel, Chisterrio.
Castello, Monte-Catini.
Castello, Lago di, Albeno.
Castelnau, Peter of, Albigenses.
Castel Nuova, IIanduria.
Castel St. Angelo, Tomb.
Castiglione, (Suph.)
Castine, Perobscot.
Castle Blayney, AIoncrghan.

Castlecomer, Kilkenny
Castlederg, Tyrome.
Castie Douglas, Kirkeui-

> brightshire.

Castle Harbour, Bermudas.
Castlemilk, Stuarts of, Stecu-
art Family, 125.
Castlerea, Roscommon.
Castlereagh ($r_{\text {r }}$), Darling.
Castlestuart, Lords and Earls
of, Stewart Family, 123.
Castleton, Dundalk.
Castri, Delphi.
Castro, Chiloi.
Catacanstic, Cortstic.
Cataract (mts.), U.S. 649.
Cat Bells, Derventwater.
Cat Castle, Cat.
Catechist, Cateckism.
Catesby, R. Gurpozeder I'lot.
Cat-fall, Cat (shipboard).
Cat fish (r_{0}). Four Lakes.
Cat-fish, Wolf-fish.
Catha, (Sutp.)
Catharinea, Prunes.
Cat-harpings, Cat (shipboarn").
Cathartes, Vulture
Cat-head, Cat (shipboard).
Catharine wheels, Pyrotecliny.
Catherine Archipelago, Aleutimn slands.
Catholic rent, Roman Catri.
Emancipation.
Cat-hook, Cat (shipboard).
Cat (i.), Baluemmas, Granakani. Catlaw, Forfarshire.
Cat's-foot, Cudruced
Cat's gold, מica.
Cat shark, Cestracion.
Cat Stane, Sianding Stones. Cat's silver, Miea.
Catsup, Ketchup.
Cat thyme, Germander.
Cattle-plague, (Sups.)
Catwater, Plymonth Sound. Canci, Wicklow.
Caudal artery, Aorta.
Caura, Orinoco.
Causality, Phrenology, 517. Cauterets, Pyrences, Houtes. Cautery, Bleeding, 152.
Caux (nits.), Seine-Inferientr.
Cavado (r.), Entre D. e Btivho.
Cavaillon, Vaucluse.
Cavarzere, ($S u c^{\prime} p$.)
Cave Hill, Belfast.
Cavendisb, Tobacco, 4 6.
Caverns, Caves.
Cavour (town), Cazor.
Cawdor, Namistive
Cawsand Bay, Plymonth
Sound.
Cayambe, Andes, 239.
Cayo Hueso, Kiey li ist.
Cayos, Caicos.
Cazanare, Boyaca.
Cazas, Turhey, 587.
Cazique, Cacigue.
Cedar, bastard, Toons.
Cedar of Goa, Cypress.
Cedar, white and red, Icica
($S u \beta \beta$.)
Cedrela angustifolia, Alli-
aceous Plazts.
Cedrela Touna, Toor.
Cedron, Simarmbacere.
Cefalonia, Cephalorzia.
Cefola, Sofala.
Ceglie, (Suphe.)
Cerrog, Dec.
Celandine, Lesser, Ranucnculus. Celeriac, Celery.
Celestial Mountains, ThianShant.
Cell, Grecian Arckitecture, 77.
Cellular plants, Spiral Viessels. Celtic Society, Rox. Cluh. Celts' pipes, Tobacco-pipes. Cement, Teeth, 327.
Cemeteries, Sanitary Sciencf (Sxppp.), 723.
Cenchrex, Corint/a
Cenchris, Trigonocephatuts.

INDEX．

Centeles，Terrec．
Centime，Cent．
Centime，Cent．
Centuer，fon．
Central America，America
194． 203.
Centriscus，Trumpet：fosh．
Centrolophus，Black／ish．
Centropomus，Sers－fike．
Centurators，Shagdeburs
Centuries．
Ceos，Grecce， 85.
Cephalopus，Impion（Suff．），
Fleeste Boc（Supp．）
Cephalothorax，Spitier．
Cephissus，Aifsica，Baosian
Orchomerios．
Cephus，Fotihe．
Cephis pygmzus，Sazufy．
Censtium，Chicktreed．
Cerasus，Cherry．
Corbera Tanglin，Tiughint．
Cereado，Cruzo．
Cereal grasses，Cercalit．
Cerebellum，Hisernolugy， 5 ± 3 ．
Cerebral hemispheres，Brain，
302.

Cerer，Pyrenfes Oriendales．
Cerin，or Cerotic acid，Wirs．
Cerne，Aflas MIt．
Cernobog，Slazes．
Ccrolern，Wax．
Cerro de Pasco．Pasco．
Cerro de Potosi．Audes．239．
Ceruminous glands，Skirs， 755 ．
Cerveri，Ceredere．
Cervino，Cardinal，Trent，C．of． Cervo，biella．
Cervus Canadensis，IV aspiti．
Cestrotum，Cerastrotum．
Cetonia，Rose Bicefle，Zurrais．
Cetrarine，Lichen．
Cettigne，Montenegro．
Cettina（r）），Dalnatriz．
Cettinji，IVondenesro．
Cevadic acid，Sabudillia．
Ceylon moss，Plecaria．
Ccyluntea－tree，Elizodentron．
Chabert，Animal fiect：
Chaco，Paraguay， 257
Chad， Se ．Anjlo－Catholic Chumh， 258.
Charaphyllum
Umiclifion．
Chetognatha，IFormss， 279.
Chaillu，P．B．de．Su今P．t．
Chain－armour，Cha：s－math．
Chained book，Book．2a．4．
Chairs，railway，Railiewys，$\$ 8$.
Chaitya，Tope．
Chak－Chak，pembiz（Sups．）
Chalcis．Caliosyria．
Chalcopyrite，Byrites，
Chalk，red，Fedidle．
Chalk formation，Creiaccons Grast．
Chalk－siones，V゙ric Acid．
Chalonuais，Sar ne－ct－Leire．
Chalybeates，Mineral 1 ＂aters．
Chamba，Cashmere．
Chamber acid，Sulfik．Acid， 203.

Chambered limpet，Criby
Chambord，Renaissance
Chambre Introuvable，（Su\＆ค．） Chamhuru，P＇apazu．
Chameleon silk，Taffety．
Chamelicon ：．），Honduras．
Chamonix，Chamorens．
Champ leve，Enamel．
Chance，Messes，Glass， 783 ．
Chancellary，Chaneery．
Chancellorsville，batile of，
Rappahirnnock．
Chancres，Syphifis， 258.
Chandah，（Supa）
Chanderi，Chandhasirer＇Supp．）
Chandhairee，（Supp．）
Chandpoor，（Supp）
Chandragupta，judia， 54 S．
Chank－shell，SupA．）
Chanson，Ring．
Chansons de Geste，Rolumd．
Chansons de Geste．
Chantaburl，Statm，
Chantelle－le－Chateau，sillier：
Chanter，Bagrigc．
Chão，Deserfas．
Chaosyen，Corca．
783

Chaou－Chow，Chang－Chow Foo．
Chapeau Bras．JJiat．
Chapel－le．Frith，Derbyshive．
Chapman Barrow；Exmo： Fores：
Chapoo．Jlang－Chozv．Fos．
Chappun，citopin．
Charbon，Malignant I＇ustuke．
Charctte，Chomans．
Chariot，Coa．h．
Charities，law of
harities，law of，Charibnlic Uses．
Charles E！），Gazizpiapos 1s．
Charles（r．）Cambridse．
Charles the Fat，Cirthoin－
Charles II．Boscobel．
Charles IV．Cajeftien Dynasty．
Charles \mathcal{X} ．，or Gustavus （Supp．）
Charles XI．（Supt．）
Charles XV．Sitcden， 239.
Charlock，jointed，Riadsh．
Charlotte－town．Grenadi．
Charmonzis，Conece， 83 ．
Charmwood Forest，Letiester． shive
Charollas，Sadne－cf－Loire．
Charta vesicatoria，fisicants．
Chase，Cider
Chasseurs d＇Afrique，Alseria，

Chista（mi．），Kocky Mis
Châteaubriant，Loircoinfe－
remys．
Chitcau－Chinon，sifzere．
Chateillon．Costclio．
Chấcl，Chífectu．
Chatelain，Costclius
Chateldon，$\Gamma u y$－de－Dome．
Chateldon，Tuy－der－Dome．
Chatham is．）Gelon．
Chati，Tiger－cat．
Chatoyant，Olesilits，
Chatrian，A．E．Eirikmaurs （Supd．）
Chatsk，（Suff）
Chatsworth，Merbyshire．
Chateerton＇s compound，Tels－ graph $3,36$.
Chatan，Clan：Tobens．
Chatt，Cati，
Chaturaji，Carts．
Chaturpur，Firmielcunt．
Chau－Chou，Sierseou Supp．）
Chauci，Sazrens．
Chaudice Falls，Cftaiux＇f．） Chaud－miedley，Chamie－medo lcy．
Chauna，Scriamer
Chauvinisme，Sugh．）
Chavica，Betel．
Cheadle，（Supp．）
Chebucto Eay．Canso．
Checkmate，Chess，790．
Chedabucto Pay，Canso
Cheena，Nillict．
Cheese tof thistles ，Recenfacie．
Cheese rennet，Bidstraiv．
Cheesy meramorphosis，Tin－
Chectham Society，Rox．Club Chee Tor，Burious
Chega，Carlo，Jlogrnis＝
Cheimatohia．If inter JHoth
Cheiron，Chirm，
Che－Keang．China，Sif． Cheldir，Alihalzik／h（Suffi）
Chelifer，Supp．）
Chelm，（Supp．）
Chelmer（ r ：＇Essex．
Chelmon，Archer－fish
Chelonia iumbricata，Tortoise－ sliell．
Chelsea Pensioner，Sulphur， － 20 ．
Chelt，Cheltenham．
Chemical equivalents，Alomic of Clshts．
Chentical physicians，Miedicine， ／Fise．of， 3^{86} ．
Chemical toys，（Supp．）
Chemicking，Pleisifing，${ }^{2} \%$ ．
Chentisery，Suff．l
Chemnis，Ekhmi＝，SupAl
Chemung（r．），Eimirat．
Chenalupex，Barmacle Goose．

Chennapatanam，Ifodras．
Chenonceaux，Renetssance．
Chemopodium album，Sha green．
Cheops，E5 Nt，789，Tymamid．
Cheribon，Gaz，S Sufs．）
Cheroot．Totaces． 465.
Cherry－brandy，Rirschaensser．
Chersonese，Heracleotic，Se－ bastopol．
Cherty：Cher：
Cherubini，（Syps．）
Cherwell，O．xferdsh．，Tirames．
Chesil Bank．Fortland Islamd．
Chessart，Cheese
Chesterfield coal－field， C＇S 2 S．670．
Chevin，Chrob．
Chewing of the eud，Kumi－
Chiari，batcle of fichor．
Amaderts．
Chibchas，Necu Grenada．
Chichmecs，Mexico， 434 ．
Chuckadec，Blackent Tis－
Chickahay，Pnscagouhz．
Chickahominy r．，l＇irginiz．
Chickamauga，battle of，U．S Efo．
Chickrassia，Clithorgors IIVod （Susp）
Chicipee，（Supp．）
Chiti－chaff，Stepo
Chileotin，firneser Kierer
Child－crowing，Thymms Gland
Children，Parent ant Child．
Chiliasm，Jillennium．
Chilicothe，Chithiothe Susp．）
Chilihueque，Aucheniz．
Chili pine，Aratacayia．
Chilka，Cathack，Ganjous．
Chilli，Chili
Chillicothe：（Supp．）
Chilon，Seern if isc ifers．
Chilopoda，Chilegraihiz．
Chmney swallow，Szvift．
Chimney－swecpers＇cancer， soot．
Chim－tai，Coreas．
China－blue，Calico Printing．
Chinandega，（Supp．）
Chunchas is．I，Perro， 435
Chincha bue，fizoa．
Chine－felon，Rhesumitisur．
Chines，II ight i．）．
Chinese arrow－root，Jelumbo．
Chincse edible dog，（Suß今．
Chinese fire，Pyrotechny．
Chinese sugar－cane，Darrir．
Chinhai，Aingfo．
Chinoline，Dye－straffs．
Chiozza，Chioggia．
Chip．Pis（Supp．）
Chipmuek，Sguirrel．
Chippewa（r．），V＂isconsir．
Chipping squirrel，Grotesd Sguirrel．
Chipre，Csperts．
Chiretta，Chirizia．
Charimoya，Cherimoyer．
Chirzon，Tyuemouth．
Chisels，Carpentry
Chittagong wood．（Supp．）
Chistah，Cheetalt．
Chiusa，La，（Sußp．
Chlamydosaurus，Agama
Chloral，Alcohols（Supp＇， 384.
Chloride of sulph．Sulphar；200．
Chlorocarbonic acid，P＇hosgene Gas．
Chloradyne，（Suph）
Chloroform，Alcoluls iSapp． $3^{8} 4$.
Chlorohydric acid，Hydro－
ditoric Acid．
Chloromethyl，
（Suph．）
Chlorophyll corpuscles，Cells， 709.

Chloroxylon，Siatin－zuood．
Chobanata mit．，Sismartiand．
Cnobe r．．Zambest
Choctawhatchee，Filorids．
Choczim，Chofyn．
Cholera，Samtary Sc．（Supp．）
Choluppus，Siotk．

Cholula，pyramid nf，Tcocal＇i Choluteca，JPorduras．
Chondrology，Amsivny， 227. Chonka（r，Ghogris．
Choo－Keang，Canton，China，
Chopin，Fred．（Supp．）
Choquard，Checard
Chorasmia，R＂hiriz．
Chorisia，Silk－cottor．
Choroid，Eyye，zo3．
Choroid plexus，brain， 303.
Chorolque．Nev．de，Andes， 232
Chota Valley：Andes， 241 ．
Chott Melrhir．Sahafa．
Chotusisz，battle of，Succes．
siom II ars， 172.
Chow，Jleen
Chowian，Carolina，North．
Chowries，Jiak．
Chowringhce．Calimfta
Christ Cross Row，flornbook （ Susp. ．）
Christiana Crcek，Brandy－ wine Crecs．
Christianshavn，Copenhage\％．
Christians of Se John，Zabism，
\qquad －Christian Y＂ear，＇R゚eble（SupA．）
Claristnas，Gerard，Eiji\＃a－
bethane Architecture．
Christopher Niusth，IIIsont， Yokn．
Chromatic aberration，Eys，zo8．
Chrome yellow，Lead．
Chromogens，Scirefors
Chronograph，（Supp．）
Chryselephantinc statues，
scmeture． 576.
Chryseus，Dhole
Chrysobalanacere，（Sugh．）
Chrysobergos，R usssum Chi irch．
Chrysographi，Afamuscripts．
Chrysographi，Mfamiscripts．
Chrysolite，volcanic，Pesmrath
Chrysomitris，Bellow－bi
Chrysopolis，frigolstidt，Scet
Chuck
Chucuito（Smet
Chuenpec，Boccia Tigris
Chui－rol，Scmipalusinst，Si－ Seria， 702.
Chulin ，r ：Tomst

Chumalari，Himalagaz．
Chumalea，Ghogra．
Chumic ！r．！，Kaftrarin，Erit．
Chunam，（Supp．
Chundni（r．），Gangers， 624.
Chun Quoit，Cromiech．
Chupat．Eatagonis．
Chuquibamba，Nievado de．
Andes， 239.
Chuquito，Chucuito（Supp．）
Chur，（Supp．）
Churehyard beetle，Blaps．
Chum（ r ．），Thames．
Churubusco，battle of，U．S．S．G58．
Chur－worm，Mole－criskef．
Chusan Han－tsi，Amaras：／t．
Chuttees，（iumuy biags．
Chuteree，Cirste． 657.
Chuolson，Zabism， $33 z$.
Ciablese，Sasoy，
Cialdini，（Susp．）
Ciaran，Ircland， $6=6$
Cibao，J／ayti．
Cibber，Sculplame， 577
Cibol，Ifals：Oniun．
Cibotium，Talts．
Cibro，Cyprus．
Cicero，Typr，607．
Cieester Cirencester
Cicindela，（Supp．）
Ciconia argala，Argria．
Cidacos，Cahahorra．
Cimandef，Bourbon，lle de．
Cimolos，Greece 85 ．
Cimone（mt．，Afernines．
Cinaloa，（ $S w p_{\beta}$ ．
Cinchona alkaloids．Qusinta．
Cinchonia．Quinia．
Cinchonicine．Outisia．
Circhonidine，Ouinur．
Cincinnurus，Bird of ${ }^{\prime}$ aradisc．
Cinel Enna，Adamnan Supp．）
Cincture，Vesements．

INDEX.

Cinisi, Srets
Cinnameine, Balsam.
Cinnamic acid. iSufp.
Cinnamon, oil of, Cinnamic Acid 'Supp.)
Cinnamyl series, Cinnamic Acid Supp.
Circle of Ulloa, Arethelia.
Circocele, Va ricocele.
Circular Head, Tasmania. 306.
Circular operation, Ampzthation.
Cirrhi, Cirrmopoda.
Cirrhosis, Lizer, Diseases of.
Cirripeda, Cirrhopotu.
Cirro-cumulus, Clomis.
Cirro-stratus, Clouds.
Cirrus, Cirrines.
Cirsium, Thistle
Cirta, Constantine, Numidis.
Cisapona cetobrix, Almaden.
Cistophorus, Wrer.
Cithium, Lamica (Stepp.)
Citoyen, Bourgeoisit.
Citrates of lime, potash, and ammonia, Citric fid Sutp.)
Citren, Lemoss, Oil of.
Citric acid, (Szpp.)
Citrin, Rosk Crystal.
Citronyl, Lemors, Oil of.
Citrul, Melorz.
Ciudad de Victoria, Durango.
Cive, Chive.
Civet, Perfuntery, 397.
Civitanova, (Sust.)
Civitas, Rome, 308 .
Civray, Viente.
Claddagh, Galway
Claddich, Awer, L.
Cladonia rangiferina, deer Moss.
Claerwen, Brecknockshire.
Clain :r.), Vienne.
Clamecy, Nï̈ure.
Clamps, Ship-builling', 684.
Clanis, Chiana
Clare (r.), Corrib L., Tzam.
Clareace, Coach.
Clarence Peak, Fermando Fo.
Clarence (r_{-1} N. S. Wiales.
Clarias, Silurida.
Clanmontium, Clermont.
Clark's process, Wrater-sutply.
Clark's (r.), Tenhessec.
Claspers, Fishes, 354
Claterna, Medicina
Claudia Gens, Appins Clazdivis.
Claudius Czcus, Ap. Fyrrizs.
Clavaria, (Supp.)
Claverhouse, Grizhant, Folmo.
Clavier, Orgars.
Clavigo, Compostella.
Clean bill, Bill of Healtts.
Clear cole, Gilding.
Clearing, Wise, 222 .
Clearwen, Cardigarshire.
Cleave Hill, Coteswolet.
Cleaving, Ploreghing.
Cleddau, Pembrokeshire.
Cleesh Hills, Kinross-shire.
Clement, Clesteres.
Clenient VII., Pope, Schism, Wiesternt.
Clement's Strait, Billiton
Cleobulus, Seien Wise Men.
Cleopatra's Needles, Alcxanana.
Clere-story, Clear-story.
Clergy, regulas, Regriars
Clergyman's sore throat, Throat.
Clerk Register, Lord, Regisfer, Lord.
Clifford, Boat-lowering Appuratus.
Climate, Sanitary Science (Suppi), 719.
Clinch 'r.), Ternessee
Clingstones, Peach.
Clinker-built, Clincher-buiti.
Clint Hill, Berwickshire.
Clinton, Iowerz.
Clinton, SirH. André, U.S. 654.
Clintonians, Reproblicans.
Clod-crusher, Roller.

Clod-fishing, Eet.
Clodius Albinus, Severtas.
Clothing, Samitary Science Sufto.), 719.
Clothing army, W$a r$ Ser. ovices supp. 1
Clotho, \quad Huff-aditer.
Clotted Cream, ChotedCream. Clouet, François, Painting, 195.

Clova, Forfarsitire
Clove pink, Camation.
Clown, Harlequin.
Club Ereton, Facabins.
Club-root, finbrer
Clubs, golf, Golf.
Club-shell, Clazagella.
Clugny; All-Souls' Duj.
Clusium, Chizsi.
Clusius, Botary, 266.
Clutha, New Zealam?
Clypeus, Shiclat.
Clyweddog. Dee
Coach-dog, (Supp.)
Coal-naphtha, Tiar.
Coalsey, Conl-fish,
Coal-supply, (Supp.)
Coary (r.), Amasons.
Coast-guard, Hiar Services (Suph.)
Coatbridge, (Suctot.
Coatzacoalcos, Americi, 196. Cobades, Sassanida.
Cobaltine, Arscnialalinerals, Pyrites
Coban, (Stcsp.)
Cotble, Coble.
Cobbold, Dr, Sclegestoma.
Cobequid Imts.), Nova Scotia.
Cobham, Lord, Oldeastle, Sir Yohn.
Cobs, Maize.
Coburg, Ontario
Cocaigne, New Bronswick.
Coccomdia, (Sufp.:
Cocculus, Guluncha (Sießs.)
Cochlearia, Suail.
Cock, J., Coccejus.
Cockburn Isle, Manitoulin Is. Cockburn Sound, Buache. Cockle, Warming and Vent:lation, 6_{4}.
Cock-metal, Alloy
Cock of the rock, Rock, Cock of the.
Cock paidle, Lumpsucker.
Cockrail, Roze Beetie.
Cock-up, Lates.
Coco, Cocoa, Sumatra. Cocoa-nut fibre, Coir.
Cocoa-root, Cocco.
Cocumiglia, Cosomiziar (Susp.) Cocum oil, (Supp.) Cocus wood, Kokra Wood. Codarium, Tamarive.
Codbeck (r.), Thirsk.
Code Henri, Christophe.
Codex Argenteus, UVfilas.
Codex Aureus, Tre'es.
Codrolites, Plwosthorvs.
Coendus, Porctetime.
Coffee-bug, Cocits.
Coffer-fish, Ostracion.
Coffin, Magitalen Island. Coffre de Perote, Mexico. Cognation, Aspate. Cognomen, Aliatue Sumame. Cohesion figures, iSufßi) Cohesion of metals, Alfoy. Cohorn, Cehiourn. Coire, Chur Swip.)
Coiruisg (2.), Skge.
Coix, Cerentiat.
Coke-oil, Gastar.
Col, Cor.
Colaba, Bombary.
Colair :-), Ellore
Colchicia, colchicine, Colchicum.
Col de Tenda, Apenurines. Cold frame, Cold Pit.
Cold Harbour, ba:cle of, U.S. 66 r .
Coldingham, Beraickstare. Col-di-Tenda, Alfs.
Colcbrook, Fermizagk.

Colegates, Hops
Coles, Captain, Turret-sinip,
Masts Tran, Eoc. Suest.)
Coikito, Crannoges. 303.
Colla parte, Ad Libifum.
Collapse, Shack.
Collar-hone, Clazicle.
Collateral relationship,
sangraintty . Supp.)
Collet, Colewort.
Collie, Sheplerd's DCs.
Collier, Elisha H. Revolier.
Collimation, line of, Circle,
Collines Nantaises. V゙erdice, Luz Collodion, Fhotography, 509 . Collodion cantharidis, tesicauts.
Collodium vesicans, Vesicants.
Colloids, Osmose.
Collop Monday, Shrozetrite.
Coln r. , Thames.
Colne (r_{0}), Buckinghanshire.
Colocasia macrorhiza, Tara.
Colombo, Calsumba.
Colonel, War Services (Susp)
Colonial corps, War Services
(.Supp.)

Colonne, Cape, Cortoné.
Colophonic acid, Rosin.
Colperty, Colonzo.
Col Roburent (ms.), Alps.
Cols, Pyrinées.
Colt, Colonel Samuel, Revolver.
Columbia, Tennessee.
Columbine, Harkequin.
Columbu, Colonbo.
Columbus, Mississitpi.
Comana, Bostart.
Coma vigil, Typhus and Ty. fhoid Ferers, 612.
Comayagua, (Supó)
Combativeness, Phrenology,
Comb-bar, Lace.
Comino, Malta.
Cominoto, Malta.
Comitas gentium, Lave.
Comitia, Rome, 3^{15}
Curnmander's balsam, Bensoin.
Commandery, Momastery.
Commedia buffa, Buffo Supp.)
Commernoration, (Susp.)
Commentry; (Susp.)
Commercy, Merse.
Commissarint staff corps, Sinff Corps.
Commissions, army; Wiar Serivices (Supp.)
Commissure, Brait, 302. Committees, parliameatary, Parliament. 288
Committee's Punchioowl, Athz* basca.
Commonmilkwort, Polygaica. Communion table. Altar. Company of the Indies, $\mathrm{M} / \mathrm{w}^{-}$ sissifti Sikeme.
Company of the West, IVississifti Scheme.
Compass Hill, Camna
Complement, Trigosometry:
Complutensian Bible, Alcala die Henares.
Composing-machine, Typesettors Machine (Susp.)
Composition, Tir, 447
Compositor, matrix, Printing (Susp.)
Comprehension, Ex'ension.
Compressed-air engine, , Susth.)
Comptrol deparment, ivar
Seratices Susp.)
Comrawattee, Berar.
Comyn, Cumy,
Comynes, Comiries.
Cona, Glencoe.
Conal Gulban,
Adannan
Conapt.)
Conan, Cromarty Firth.
Conca d'Oro, Sicily, 704.
Concealment of birth, Birt/3,
Concealment of birth, Birth, Concealment of.
Concepcion de la Chiaa, Entre Rios.
Conception, Deafoundamd.
Conciergerie, Paris.

Concionero General, Spasisis
Lange © Lit 20.
Concord town., (Suph.)
Concrete stone, Stose, drtb Jiczal.
Condamine, Darliurg.
Condenser, Liebig's, Retort.
Condé-sur- Noireau, Coude.
Condiments, Foodind Drink,
406.

Condom, (Supp.)
Condrieu, Theme
Conduction, Heat, 23 ?
Condy's ventilating grate,
W anming and Fentil. Eg.
Conessi bark, "I rightur.
Conestoga, Lancaster, U.S.
Confection of sulphur, Sut-
fhether, 200.
Confederate States, UV.S. 659.
Confessors, Saints.
Confitures, Swets.
Conflans, Sazoy.
Confolens, Charente.
Confronté, Abaissé.
Congestion, (Supp.)
Congestion in rectum, Recium Congoon, (Supp.)
Congo pea, Pigeont Pea.
Congregation, Oxfort liziíersity.
Congreve. Sir W. Rocket.
Consa or Coniine, Hemluck.
Coniomycetes, Frougz.
Conisborough Castle, Rother kam.
Conister, Doteglas.
Coniston Lake, Lancashire.
Conistone Water, Cumbriun Mts.
Connemara, Galanay:
Conodonts, Fishes, 355.
Conolly, Captain, Bokhara.
Conon, Autalcitias.
Conon (r.), Ross \& Crourty. Conrad, Konrad.
Consanguinity, (Suspb.)
Conservation, Thermondy-
Consmics (Supp.
Conservatorium. Conseratoire
Consignee, Bill of Lading.
Consignor, Bill of Lading.
Consolato del Mare, Mercantile Lave
Consonants, Letters.
Constable, Painting, 196.
Constantine, King, Anairews,
Constantine Ill. IV., V.
Byzantine Emitire, 470 .
Constantine V1., Vil.. VIII.
IX., X. Byzartine Empire, 47 t.
Constitucion, Chili.
Constitutional Associate Pres-
bytery, U.P. Church, 646 .
Coastitutiones Apostolica,
Apostolic Canons. Dires
Constrictor muscles,
tiont, 559.
Constructiveness, Parenology.
Contas, Bahziz.
Contessa, Gulf of, Athos.
Contilene, Cantabile.
Continued fractions, Fractions, Contionted.
Contorniati, Medal.
Contradiction, Identity.
Coarralto, Singirg.
Contraposition, Corrersion.
Contra Remonstrants, Gomiarists.
Contreras, batule of, Scott. W゙иffeld, U.S. 658.
Control Department, W"ar Seraices (Susp.)
Contusion, Eruise (Sresp.)
Convalescent hospitals, (Susf ${ }^{6}$.)
Convection, Heat, 282.
Conversion, Consierse.
Convocation, Oxford University.
Conway, Densbighshire.
Coo, Billiards, 93.
Cook (met.). Seu Zealand.
Cooke \mathbb{S} Wheatstone, Tele
graph, 334, 339, 340.

INDER.

Cookery. Food So Drink, 407.
Cook's Inlet, Alasfia.
Cook's Strait, Nesu Zealund.
Coolin IItls, Skye.
Cool Tankard, Sorage.
Coonb, Comb.
Coonoor, Dotacammat?
Cooper, Shaftesbsory.
Cooper (r.), Charlestorers.
Cooper's River, Tybler.
Cooper's River, Tybce.
Coordinates, Polar, Fadirs.
Co-ordinates, Polar, Na
Coosa (r_{-}), Alabama.
Coosa r_{-1}) Alab
Coossy, Coosy.
Copaiba, Copaiza.
Copaifera, Purple Wvord.
Copaline, Copal.
Coping, Cops.
Copper (miss., Cuba.
Copper-green, Chrysocollia.
Copperhead, Republican.
Copper-nickel, Pyrifcs.
Copper powder, bronzing.
Coppice, Copse
Copra, (5 wisp.)
Coprophagi, Scarabacille.
Coptis, (Supp.)
Coquet (r.), Chervot Hills.
Coquilla-nue palm, Piassaba.
Coquito, (Supp.)
Coracle, Currach.
Coracoid process, Scapula.
Corales, Nicarafra Lake.
Coral rag, Oolite.
Coral-root, Dentaria (Supp.)
Cora-mota, Ophicentealus.
Coranich, Corarach.
Corato, (Sufp.)
Coray, Corais, Adanantios.
Corbel table, Cornice.
Corcobado, Andes, 239, 240
Corcyra Nigra, Curzola.
Cordelier, Lacs d'A $^{\prime \prime}$ mour.
Cordilleras, Aisdes, 239 .
Cordoba, Cordoria.
Corduba, Cordora.
Corduray, Moleskinn (Supp.)
Cordyline Ti, Ti.
Coré, Cora.
Cori, Cora.
Coriaria myrtifolia, Sumach.
Corio Harbour, Geclons.
Corkwing, W'rasse.
Corkwood, Cork?
Cormac. Aidars (Supp.)
Cormontaigne, fiortification, 44^{6}.
Corn-crake, Crakc
Corn-drill, Sorvies
Cornean, Trap.
Cornelian, Carnefian.
Cornclian cherry, Cornel.
Cornelissen, Flemish Lang. \& Lit.
Cornet-a-piston, Corret.
Corn-Aag, I ris.
Corniche, La, Alps.
Cornings, Beer.
Cornish literature, Nations.
Corn marigold, Chysanthemune
Corno, Monte, Gran Sisso d"ltalia.
Corn-plants, Cerealiiz.
Corn sawfly, Sawfly.
Cornua Ammonis, Ammonites.
Cornwallis, C. F. (Sugp.)
Corn-worm, Corve Moilh.
Coronella lavis, Sersents, 627,
Sиafi.
Corporal punishment, FlogCorpora crym.
Corpora striata, Cerebrım,
Corporation Acts, Test Acts.
Corpse-gate, Lych-gate.
Corpulence, Obesity.
Corpus callosum, Brair, 303 .
Corpus Christi, Texas.
Corpus striatum, Brain, 303. Corradi, Domenico, Ghirlarzdajo. Domerico.
Corra Linn, Clyde.
Correggio (town), (Suifh.)
Correvpondences, science of,
Corroch, Cork, Cily of.

Corrozzo nuts, faory, Vegetable.
Corrybrechtan, Comiezrekin. Corryhablie, Banflahire. Corry Lough, Shamnon. Corsican moss, flocaric. Corsned, Orient.
Cort, Engraving, 69.
Corte, Corsica.
Cortez, Sea of, Califurmia, Gulf. Corunna, Coruina.
Corvo, Azores.
Corylacea, Cifntifera. Coryphodon, Fapir.
Coryphodon Rlumenlachii, Kat-snakic.
Corzuola, liattle of, Vicuice, 753.

Cosecant, Trigonometry.
Cosman, Boshia.
Cossack asparagus, Typha. Cossacks of the Steppes, Kirghis.
Cosseir, Red Sea.
Cossike Art, Alsebra.
Cossus, Stag Beetle.
Cossya Hills, Chirra Poonjee. Cost, Cotice.
Costard, Apple.
Co-tangent, Trigonometry.
Cotenux, Mfontreal Ss.
Cotentia, Cherbourg.
Côte Rôtic, אhone.
Cöthen, (Supp.)
Cothy, Cacrmarthenshire. Cotizum, fufaich.
Cotoneaster, (Sisps.)
Cottage farming, SA, Sde-/zuso bandry.
Cotonfamine, (Suff.)
Cotton-trec, Clane.
Couching, Becr, 807.
Congh, spasmodic, ringing, \&c. Nervous Dis. (Supp.)
Coulies, Conties
Counter-embowed, Emboned. Counter-rampant, Rampant. Counter-salient, Salient.
Countess's powder, Cinchona. Coup de grace, ITheel, Brealo ing ont the.
Coup de soleil. Sur-strolic.
Couplet, Ehime.
Contrach, Cerrack.
Couroupita, Canнor-ball Tree. Coursc, ship's, Sailives. Court of Auginentations, Records, Public.
Coury, Catechus.
Cousin (r.), Avallor (Supp.)
Cousin:german, German,
Cousir.
Couteria, Guiana Bark.
Couve Tronchuda. Cabbage. Covenanters, Scoiland, Chmich of, 56 t .
Cove of Cork, Curenstasur. Covered Way, Covert Hiay. Covington, (Sipph.) Cow. Ox.
Cowal, Argyleshire.
Coward, Lion.
Cow-bird, Cosu-pen Bird,
Cuctioo.
Cow Llack bird, Coweper Bird. Cow bunting, Cow-enen Bird. Cow-cow, Cuckoo.
Cow-grass, Clover.
Cow-itch, Corvage.
Cow-plant, Asclepiadiacce. Coxswain, CocAswain. Coyote, Wolf. 2.44 . Coypel, Paimins, 195. Crab, Roger, (Supp.) Crabby Bay, Aldency. Crab-dag, Raccoor. Crab-tree, Afple. Cradle, Lainhth. Craigan-gowan, Balmoral. Craigan-gowan, Crake, firearmes, 337. Crakeberry, Crowberry. Crambus, Grass-moth (Sußf.) Cramond Isle, Forth, Firth. Cramp fish or ray, Torpedo. Cran, Herring-fishery, 347. Crance, Cap.

Cranes,
($S u \neq \beta$.)
Craspedocephalus, Trigono-
cephantus.
Cratbe, Rracmar.
Craven, Jorkishire.
Craw, Birds, tog.
Crawfish, Crayfish.
Crawford, Farlh of, Limdsay
Family (Sump.)
Creance, Fialconry, 228.
Creationism, Truducianism.
Credoz, Y̌iPa.
Cree (r.), kirkicudbrighishirc.
Creedy (r.), Creditos.
Creek Town, Calabazr.
Creetowo, Kifkiculbrightshire.
Creich, Vitrified Fort.
Crescentius, Oifo J/J. of
Germany.
Cress-tiles, Creste
Cressy, Crecy.
Crested eagle, Eagle //aruk. Crest-tiles, Creste.
Creus, Cape, Catalonsa.
Creusa, Eveas.
Creuze, Cape, Spain, 12.
Creuzot, Le, (Srepp.)
Crib Law, Bervoickshire.
Criccicth, Cuemarmonslige.
Crickhowell. breckwockshire.
Cricoid cartilage, farynz
Cricula, Silk: \&o Silhzuorm, 724.
Criffel, Kiokewibrightshive.
Crimissus, battic of the, Timo leon.
Crinières, Clarger.
Criosphiax, Sphivx.
Crispalt (mit), Rhiste.
Criss Cross Row, Hombook (Supp.)
Crith, Chemistry (Supp.) 460 . Croagh Patrick, Maryo, Croaker Alole-cricket.
Crocketford, buchanites.
Croca, Cher
Crofting, Bleachins, 148.
Cronach, Coraunch,
Croob (misi), Dowers.
Crookes, Mr, Thaflium.
Crop, Birds, 109.
Crops, rotation of, Rotation (Supp.)
Croquet, (Supp.)
Crose, Laci,
Cunberlavi,
Tync, II cstmoreland.
Cross-fish, Star-fish.
Cross-hatching, Hooct-engraying, 258.
Cross of Cong, Mayo.
Crossopus fodiens, Slirezo.
Cross week, Perambulation.
Cross week, Perams, Rathesuakic.
Crotalus, Kattleshacke.
Croton, Cotroné, Sybaris.
Crouch, Essex.
Croud, Denis, St.
Croup, bastard, spasmodic, Thynus Gland.
Croupières, Charger
Crow blackhird, Quiscalus.
Crow garlic, Allisen.
Crown, Arch, 366.
Crown, Coronia.
Crown-ageat, Adrocate, Lord. Crow-steps, Corbic-ateps. Croyland, Crowland.
Crura cerebri, Erair, 303, Cerebrwo.
Crusenstern, Diomerie ds. Crush-room. Theatre, 388. Cruzada, Lerte.
Cryolite, Alumininи.
Cryptococcus fermentum, Tore ula Cereusia.
Crystalline, Globuline.
Crystalline lens, Eye, 204 -
Crystallisation, water of, Salhs. Crystalloids, Osmose
Crystal Palace, Sydenham. Crystal pock, Chicker Pox. Cservenka, (Supt.) Cuanene ($\boldsymbol{r}_{\mathrm{r}}$) Zambesi.
Cube, duplication of the,
Quadrative of the Circle.
Cutist, Mr, Euilinug.
Cuckoo-flower, Cress.

Cuckoo's mate, Wroneck.
Cuckoo-spit, Froth flf
Cuckow pint, Arums.
Cuckshavn, Hamburg.
Cucurbit, Alesubric.
Cuddapah, Balushaf (Sups.)
Cuddies. Coal- fish.
Cueva, Juan de fa, Sfanish
Lang. Solit. 20 .
Cuilcagh (mts.), Shasuron.
Culbin Sands., Findhork.
Culebra, V゙irgin ไshzuł.
Culex, Grat.
Cullera, (Supo.)
Cullercoats, Tymemonth.
Culler, Glass, 777.
Culm (r) EEx
Culna, Burdauan, (Smふ̊.)
Culpa, Croatia.
Cultivator, Grruber.
Cumberland (mis.), Appalachiasts, 32 r, l'irgintis.
Cumberland, Duke of, lieorse II.

Cumberland, U.S. (Sust.)
Cumean sybil, Averrus.
Cumin, Comemir.
Cummeragh (mets.!, Waterford.
Cumming, Cumys.
Cummings, Beer, 807.
Cumulus, Clonds.
Cuncatic, Carseiform.
Cunco, Coni.
Cunninghain, Ayvshire
Cupand saucerlimpets, \dot{C} alys trea.
Cupania sapida, Akee.
Cupid's arrows Rock Crystal.
Cupid's net, fiock Crystal.
Cupola, Forrndug.
Curana wood, Iciea (Sups.)
Curarin, Ifooralf.
Curise, Roule
Curis, Rome, 330.
Curiosolits:, Dinan.
Curitiba, P'arasa.
Curl, fotato.
Curlew (mits.), Roscommon.
Curlew, stone, Thick-ince.
Curral, Afadeira.
Curratow fibre, Bromeliacce.
Curricle, Coach.
Curruca, Blackeap, W"Hitce throat.
Curtatonc, battle of, Radicisky.
Curtesy, Courtesy.
Curthe, MIaas.
Curtius, E. \& G. (Supp.)
Curuku oil, (Supp.)
Curvature, Spine, Curoat of
Cur-wälsch, Romasic Lar-
guages.
Curwen, Rev. J. Tonsic Solfic. Cush, Arabia.
Cusparin, Argostura Bart.
Custozza, battle of, Frutetsiy.
Cutch, Calechift.
Cuthites, Driuses.
Cutteamundu, (Siupp.)
Cutting grass, Hair Grass.
Cutty-stool, Stool of Repert
ance.
Cutwa, Burdzuar.
Cuve-mère, Wine, 222.
Cuyaba, Paragzay (r.)
Cuyahoga, Cleveland, Ohio.
Cyanopterus, Bluerwing.
Cybium, Seir-fish, (Supp.)
Cyclanthce, Pandanacee.
Cycle, Licaves.
Cyclic Poems, Troy.
Cyclostomi, Cartiliaginous
Fishe's.
Cydippe, Beröe.
Cydonia, Canea.
Cyllene, Greece, 79, Arcadia.
Cymurodorion, Welsh Lang.
Es Lit. 138.
Cymri, Cinbri.
Cymric languages,
Lang. \&o Lit. J 35.
Cynanthropia, Lycamithropia.
Cynoscephalse, battic of, Rome, 316.
Cynosura, Uysa Alajor.
Cynthia cardui, Butterfy.
Cynthus, Delos.

INDEX.

Cyphel, House-leek.
Cypsela, Acherrizom.
Cyrenaica, Barbary.
Cyrus (r.) K tera.
Cystic oxide, Cystirt.
Cystidians, Siluriont Rocks.
Cythera, Cerigo, Pheruicia, 492
Cythnos, Greece, 85 .
Cytinaceæ, Rizanthea.
Cytisine, Labrmumt.
Cyroblastema, Cells.
Czelakowski, Bolvemia, igo. Czerski, German Catholics.
Czirknitz (l.), Zirknitz, L.
Dabrowski, Dombronuski.
Dacca Jelaipur, Furidgur.
Dacoits, Oude.
Dacotah, Dakota.
Dactylobranchiata,
Pyroso
mida.
Daddy Long-legs, Crane-fly
Dadoxylon, Trigonocarpos.
Daët, (Supp.)
Daff, Leitrim.
Daguerreotype, Photography, 508-509.
Dagö Island, Riga, Gulf of.
Dagon, Oannes, Philistines.
Dagops, Tope.
Dahgopa, Dagoba.
Dahrel Khotib, Lebanon.
Daiman 'r.), Urugray.
Däi Nipon, Fapar.
Dak, Dazuk.
Dakshína, Deccar.
Dal (r.), Szuederr, 236
Dalarné, Dalecarlia.
Dalbo (?.), Wencr, Lake.
Dalby, Queensland.
D'Alembert's principle, Rigid Dynamics.
Dalifen, Ozerysse?.
Dalias, (Supp.)
Dalkeith, Earl of, Bucelench.
Dalniatia, Duke of, Soult.
Dalmatian dog, Coack-dog ($5 u p \beta$.)
Dalry, Ayrshire, (Supp.)
Dal Segno, Repeat, Segno.
Dalton, (Supp.)
Damar, Ferren.
Damaras, Ozampos.
Damascening, Dientaskeening
Damaum, India, Portuguese.
Dambool, Ceylons, 739 -
Dambrod, Dralights.
Dammer (l.), Pomeraniz.
Damper, Bread.
Damper, Piaroforte.
Damrémont, General, Algeria, 14 r .
Dam-stone, Blast Furnace. Dan (r.), Roanoke.
Danaides, Danaz̈s.
Danda (r.), Argola.
Dando, Congo.
Dandriff, Pityriasis.
Dane (r.), Congleton,
Dane law, Dane-lage.
Danemora, Szeeden, ${ }_{23} 6$.
Dane's Hill, Daventry.
Danes' pipes, Tobacco-pipcs.
Danewort, Elder.
Dänholm, Stralsund.
Danigan, Phrilidor.
Danilevski, Russ. Lang.EoLit.
Danish tongte, Scandinavian
Lang \&o Lit. 522
Danzıg deal, Fir.
Darab, Fars.
Darabgerd, Fars.
Daragunj, (Stepr.)
Darbyites, Plymout/a Bret/ryen.
Dare, Dace.
Darent (r.), Thames.
Darik, Shekel.
Darius I., signet of, Gems, 664,
Darjeeling, (Supp.)
Darking, Dorking
Darkling beetle, BlaAs
Darnley, Earls of, Stewuart
Fantily, 124.
Darnton, Darlingtont.
Darrampoot, Coizhontore.
Dart, Dace.
Dart (r.), Dartmoor
Dasyprocta, Agouti.

Datiscin, Datiscacea
Datu, Cape and Bight, Sarawak.
Daturia, Atrofia (Supp.)
Dauglish, Dr, Unfernented Bread.
Daule, Gzayaquil.
Davenport. Tow, (Supp.)
David, Emperor, Byzantine Empire. 472.
Davies, Lady E. Ancagram.
Davies, Rev. Edward, Wels: Larg. \& Lit. 138.
Davis's Land, Easter Island.
Davydd ab Gwilym, Welsh Lavis. © Lit. 136 .
Dawley Magna. (Supp.)
Dawson (r.), Queensland.
Day-book, Book-keeping, 227.
Ddaw (r.), Cowubridge.
Dead. disposal of, Sanitary Science (Supp.), 723.
Dead man's fingers, Alcyoniun, Coral.
Dead-oil, Gasstar.
Deadwood, Shipbrilding, 684.
Deak, F. (Supt.)
Dean, rural, Rural Dear.
Dearborn, Fort, Chicrgo.
Dearhorn, General, U.S: 656.
Dearne, Dont.
Deathadder, Adder.Viperide:
Deben (r.), Woodbridge.
Debts, recovery of, (Supp.)
Decade, Deca.
Decameron, Eoccaccio.
Decamps, A. G. (Supp.)
Decatur, Commodore, U.S. 655.
Deckanee hemp, Hibiscus.
Deck-cargo, Cirgo.
Deckle, Paper, 243.
Declarator, action of, Action.
Declaratory statutes, Act of
Pisrliament.
Decompound, Leaves.
Decours, Decrement.
Decoy-duck, Wild-fouv?
Decree-arbiral, Arbitrations, 36 r.
Decrescent, Decrement.
Dectaun, (Supp.)
Decurrent, Leazies
De Donis, statute, Recovery.
Deed, execution of, Execu-
tian of decd.
Deeds, register of, Records, Prblic.
Deel, Boyne, Limerick.
Dee Nettle, Derad Nettle.
Deer Berry, Gautiheria.
Deer's Hair, Scirprs.
Defamed, Infamet.
Degradation, Orders, Holy.
De Grasse, Count, Rodzey.
Dehiscence, Fruit.
Deir, Old, Deer, Old.
Deir-el-Kamr, Dair-elKiamar.
Delabole, Candel ford.
De laine, Calico Printing, 512.
De la Rue, Sien.
Delaware Water Gap, New fersey.
Delftshaven, (Suft.)
Delgado, Cape, Tonga Bay.
Delirium ebriosum, (Supp.)
Delirium nervosum or traumaticum, (Supp.)
Delirium tremens, (Suph.)
Delitzsch, (Supp.)
Della Porta, Sculpture, 577.
Dellys, (Srpp.)
Delphinorhynchus, (Supp.)
Delphinus, Datephin.
Delundung, (Sresp.)
Delvenau, Deumark
Delvigne, Captain, Rifled Arms.
Demavend (mt.), (Supp.)
Dementia, Fatuity.
Demer (r.), Diest.
Demetrius, Russian Lang. or Lit.
Demiurgos, Grostics, 802.
Democrats, Refablican,U.S.
655.

Demodex folliculorum, Acrrus Folliculorum (Supp.)

Dempster, Deemster.
Demy, Book, 225.
Demyat, Clackmannanshire.
Denarius, Pcmny.
Dender (r.), Alost, Schelift. Dender (r.), Nile, 772 .
Dendronessa sponsa, Summer Duck.
Denham, traveller, Africa, 66.
Denization, Alich.
Denner, J. C. Clarinet.
Dennery, A. P. (Sußp.)
Dennet, Coach.
Demroos, Kibisczus.
Dentaria, (Supp.)
Dentine, Teet/: 327.
Denys, Transfirsion of Blood.
Deobund, (Supt.)
Departure, Sailings.
Dephlogisticated air, Oxygenz,
Dephlogisticated marine air, Chlorine.
Deposition, Orders, Holy
Depôts, War Semices (Supp.)
Dera Deen Punah, Derajat
Dera Deen Punah, Derajat.
Dera Futti Khan, Derajat.
Dera Ismail Khan, Derajat.
Derayeh, Derreyelt El, (Supp.)
Derborenze, Diableyets.
Derceto, Dagon.
Dereyeeyah, Derayek (Supp.)
Derg (l.), Donegal
Derma, Skin, 754.
Derpt, Dorpat.
Derrick, Tybum.
Derwent (r.), Ctuaberland,
Derbyshire, Onse, Trent.
Desaret, Utak.
Descabezado(mt.), Andes, 239.
Deseada, Autilles, Desirade.
Desio, (Supp.)
Desmodus, Vampire.
Desmoncus, Facilara Palnn (Supp.)
Desmond, Tipperary,
Desna, Duieper, Orel
Desnoyers, Engrazing, 70.
Desolation (i.), Patirgonia.
Des Patos (L.), Rio Grazude do
Sul.
Despoto Dagh (mzts.), Turkey, 586.

Despretz, Gerns, Arti. 6 ó7.
Dessant, battle of, Thirty
Years lVar.
Deutsch or Dutch, Germany,
Development, hypothesis of, Tribe.
Developnent, progressive, Species.
Deveron, Doveron,
Devi, Sakitas, Umá.
Devil-in-a-bush, Nigella.
Devil-in-a-mist, Nigelld.
Devil's bit, Melauthacea.
Devil's Bit, Tisperary.
Devil's Ditch, Cambridyeshire.
Devil's Lake, Wisconsirr.
Devil's leaf, Nettle.
Devil's Throat, Cromer.
Dewar, Dr, Sulphucrous Acid (Supp.)
Dewas, (Supp.)
Dewi, St, David, St.
Dew-point, Rain, 94.
Dew-worm, Earthzorm.
Dexter, Base.
Dextro-racemic acid, Tartaric Acid, 304 .
Dhanchi, Drunchce.
Dharmasâstra, Sanscrit Lit.
Dhi, Indore.
Dhil mastic, Lead, 62.
Dhinliba, Niger.
Dholka, (Supp.)
Dhoo (r.), Douglas.
Dhoona, Dizmar.
Dhouli, Ghogra.
Dhuns, Himalaya.
Dialium Indicum, Tamaritt. Dialysis, Osmose.
Dialytic telescope, Achronatic.
Diamond, Tspe, 607.
Diamond Hill, Buxtor.
Diapason regulator, (Supp.)

Diapré, Diaper:
Diarthrosis, foints.
Dias, Permian.
Diatesseron, Harmony of the Gospels.
Dibranchiata, Cephalopoda.
Dichroism, ($S_{u p p}$.)
Dichuill, Ireland.
Dick, Veterinary Medicine.
Diego Ramirez, Andes, 237.
Diepenveen, Overyssel.
Diet, Sanitary Science (Supp.)
Dieterichs, J.F. C. (Susp.)
Dietrich of Bern. (Supp.)
Dieu et mon droit, Gisors.
Dievenow, Oder, Pomerania.
Dieze, NTazs.
Difference engine, Calculat-
ing Machine.
Differential axle, Windlass.
Digby, Sir Everard, Gutpowder Plot.
Digenea, Trentatoda.
Digenesis, Reproduction, 195.
Diggings, Gold. 8r6.
Dikamalli, (Supp.)
Dike, Dyke.
Dikowa, (Susp.)
Dilemi, Persia, 423, Samani.
Dill (r_{-}), Nassau.
Dilly, Timor.
Dilolo (2.), Zanbesi.
Dilwara, Abu (Supp.)
Dima, (Supp.)
Dimidiation, (Supp.)
Dimorphodon, Pterodactyl.
Din, Mohzavinzedanism, 504, 506.

Dinar, Ǩrefic Coins.
Dindigul, (Supp.)
Dinnamare, Monte, Sicily,704.
Diocles, Anatomy, 228 .
Diocletianus, (Supp.)
Diogenes, (Supp.)
Diogenes of Babylon, Stoics.
Dionysos, Baccluas.
Dioscurias, Colchis.
Diospolis, Ammopt, Thebes.
Diplöe, Skrall, 759.
Dip of the horizon, Depressiors.
Dipsomania, (Supp.)
Dipterocarpacex, Disteracea.
Dipteryx odorata, Tonka Bean.
Directrix, Parabola.
Dirhems, Kufic Coirs.
Dirigent, Conductor.
Dis, Rom. Relig. Ahze. 30z.
Discant, Descrut.
Discharge style, Calico
Priuting, 513.
Discharge with infamy, Infamous Discharge.
Disco (i.), Baffin's Bay.
Discretion, years of, Age.
Discus, Qroit.
Disinfectants, Sanitary Sci-
Disinfectants, ${ }^{\text {ent }}$ Everlasting,
Disinectants,
Dismembered, Denenturé.
Disna (r.), l'iluo.
Dispersion, irrationality of, Refraction.
Diss, (Supp.)
Dissection wounds, ($S u p p$.) Dissentis, R hitre
Distaff, Spinning, 46
Distance, apparent, Vision,82r. Disthené, Cyanite.
Distoma hepaticum, Rot.
Jistomidæ, Trematoda.
Distortion, Spine, Curvat. of. Ditchelling Beacon, Dowus. Dittander, Cress.
Dives (r.), Calvados.
Dividers, Compasses.
Dividing Range, Aew South Wales.
Divina Commedia, Dante.
Divirigi, (Supp.)
Divis (mt.), Belfiast.
Divot, Feal.
Diyala, firurtistar.
Dizon, Cebe-d'Or.
Dizziness, Vertigo.
Djaafere, Nubia.
Djalal Eddin, Persian Lang. EL Lit. 4^{27}.

INDEX．

Djambi（r．），Sumatra．
Djami，Perston Laug．\＆o Lif． 427.
1）jati，Sumabri，Sumbater．
1）jiggetai．Dzigsefhat．
I jinn，Gerti．
1）jithik（r．），Tissikend．
1）jokjokarta，fava（Su̧b．）， 580.
njowaberc．Jinbia．
1）mitri，Kiussia， 385.
Dmitriev，Russian Lang．\＆ Lit．
1），bbo，Arru Islianls．
Jobehick，Gribe．
Dobundee，Cishri．
Dochart（l．），Perthshirc．
1 lochart（r．）．Tiay：
Docks，floating，
FFoating Docks（Sunp）．
Dock－wall，Retninins II alls．
Doctor Scraphicus，bomaven－ bura．
Dodabetta，Peak of，Ghauts．
Dodekaskoinos，Egyph， $7^{86 .}$
Dodesa（r．），Enarea．
Dou，Fiallow lleer．
Dociburgh，（Suft．）
Dofting－knife，Carding of Cotion．
Dog，edible，Chinese Edible Dog（SuAs．）
Dogberry；Dogruod．
Dogmatic school，Medicise， History of．
Dog－star，Sirius．
Dog－zailed baboon，
Cerco－
cebus．
Dog－toath spar，Calcareors
Dog－tooth violet，Eryibiro． mum．
Dokkum，（Supp．）
Dolabella，P．C．Fome，314．
Dolichocephale，Sknfl， 760.
Dolina，（Supp．）
Doll，rigeon Cca．$^{\text {B }}$
Dollinger，J．J．1．von，（Supp．）
Dolly－shop，Pazubroking．
Dolo，（Sufs．）
Dombrek（ r ），Tray
Domes，imilia， 539 ．
Domfront，Ome．
Dominica，America，205．
Dominica in Allis．Albe， Onasimoilo Sumday：
Dominique，Dominica
Dominium utile，Superior
Don，Jont．
Don（r．），Tasmania， 306.
Dona，San，（Supp．）
Donald lane，Scorlandi， 556.
Donaldsnn，A Book－frate，232．
Donato di 13．Bardi，Donatcllo
Donetz，Don，Belgorod．
Doniphan，Ŕansas．
Don Juan d＇Austria，John of Austria．
Donnai r．）Saigon．
Donogh，Jrelans？
Doobelloo，Dialise．
Doon－baok，Don－boc．
Doopsgezinden，Anabaptists， 219.

Doorba，Cymodon．
Doornik，Toumay．
Dora Baltca（r．），Alps，Aosfiz， Po．
Dora Riparialry，Po，Turin．
Doras，Callickthys．
I）orchester，（Sufph．）
Horchester lleights，Boston．
Horchester 1 cights，Boston．
Dore，P．G．（Supp．）
Dort，P．G．（Supp．）
Darcma，Ammentacu
1 Woris Cove，Gillert／slands．
Jorking fowl，Fowel．
Dormitor（mt．），Montenegro．
I loro Channcl，Audros（Supp．）
Doroz，Faniductes（Surps）
I）orsibranchiata，Aurclita．
llou，Dose．
Double entry，Book－kiecting，
Doulble vision，Sight，De－
fietsof．
Douglas pine，trimower＇s Island．
Douglass，Fr．（Sufp．）

Douleia，Image－zuorshis． Dounc，Lords，Steumary Fam－ ily， 124.
Dounc Rock，Donegizl．
Doura，furra．
Dourance dynasty，A／J／has－ istan．
Doure，Wanche．
Douw，Dutw，Gerard．
I Dove（r．），Derbyshire
Dovc＇s law of rotation，Siorms．
Dove－tailing，Carfentry．
Dovey，Alerioneth．
Down，Fenthers．
Downing Coll．，Cirn．（Suff．）
Downs，Darling：
Drac，Iscie．
Dracena terminalis，Ti． Drachenberg，Satal，Zubuhnul． Draconara，Mischo．
Draconic，Draco．
Drag－hook，Augling． 257.
Dragon－plant，Arumt．
Dragon－trec，Dracon＇s Blood． Drainage－area，Rizer．
Drainage of towns，Sranage，642． Drainage－tubes，（Sufp．） Drakoncria，Styx．
Dram，Drachmia．
Drance（r．），Saioy．
Drangiana，$-1 \mathrm{f}_{\mathrm{h}}$ haniston．
Imper，J．W．（Supp）
Drapier Letters，Swift．
Draught，Draft．
Dravidian languages，Tizmil． Drawing－slate，Chalk，Black． 1）rever，Engrazing，69．
Drin（r．），ilbania，Bosnia．
Drinassi（ r ．），Scutari．
Drinking insanity＂，Difso－
mania（Sußp．， 499.
Drinkwater，Colonel，Gibral－ tar， $74^{8 .}$
Droighneach，7rish farg． Drome，M．de 1．a，${ }^{1}$＇cather．
Dromme，Calzudos．
Dronc，Bagरipe．
Dronne，Charente，Coutras． Dronte，Dodo．
Drover＇s dog，Shepherd＇s Deg．
Droylsden，（Sußp．）
Druggists，Chemists \＆o Drus－
Drum（mis．），Winterford
Irumaleague（l．）．Crannoges．
Drumfish，poconias，Scicrusus． Drumfish，Pofonias，Scicuides． Drummond＇s Isle，Gilhert／s．
Drummossic Moor，Calloden， Drummossic Moor，Amygalect． Iruz，Duiefer．
Iryotomus，Woodfecker． 1）．S．Repent，Segno．
1）sang，Tibet．
Dualistic system，Chemistry
Sufp．） 7^{63} ．
Mubizza（r．），Rossicny（Supp．） Iu Buisson，Shale． Ilubuque，Tosua，iSusp．） Duchray，Forth．
Muck（r．），Temuessee．
Duck hawk，J／arrice：
Ducos，Girondists．
Duddon（r．）Laucashere．
Dudwick Hill，Buchan
Duffown，Banfishire．
Dufour，G．H．（Supp．）
1）uilius，C．Rome， 315
Duiveland，Zreland，Aother． lands．
Duke Town，Calishar．
Dulciana，Organ， 111.
Dulcitc，Sugar． 188.
Dumaresque，Darling．
Dumbovitza，Buchares！
Dummodah，Dammudah．
Dum palm，Dooss．
Dumtaur，Dhbentony．
Dun，Dors．
Dun－Engus，Arran
Dunafi Head，Sarilly，Lach
Dunamare，Queen＇s Cornety：
Dun bird，Pochara？
Duncan，Kev．H．Sasings－
sauks．
Dundaf Fall，Clyde．
Dundalk M．L Lowf
Dundee，Viscount，Graham，
Ұои，

1）undiver．Coosamer．
Dunfermline，Lurd，
cromby
Nungal．Irelithit．
Ihungaria，Chinese，Turkestum， 585.

Munkery Leacon，Exmoor Forest．
1）ummanus Bay．Cork
1 humyat，Clackminnanshire．
Jumachen stone，Simpeured
Stures．
J unnideer，I＇itrificid fort．
Hunskcig，Fitrijed Fort．
1hnvegan，Skye．
Duodecimo，Biook， 225.
Ihippel，（Sußf）
1）urant，Tammy＇．
Wurante，Dante．
I＇Urban，Natal．
1 Hurgai，Saktas，Siua，C゙ma．
Uurgàpújâ，Umat．
Durham Buok，British ．Ins－
curn， 359.
1）ürkhem．（Suph．）
Durtz，Durazzo．
I）＇Urville（c．），P’＾ßua， 250 ．
1）utchman＇s pipe，Aristolochia．
Dutch mice，Lathyrifs．
Dutch whire，Baryid．
Duty，JFork， 276 ．
1）uty，Steam－engiue，so4
I bujker－bok，impoon（Sufp．）
Dina，Dtera．
Dwari standards，Orchard．
Twina，Durus．
Dyad elements，or dyads， Triads．
Nyaks，Forneo，Saraiuak．
I yala＇r．），Tigris．
Uybboul，Disppel（Supt．）
1）Jcoteles，feccary：
Dyer＇s buckwheat，Polygonear． Dyer＇s oak，Querciron Dyer＇s rocket or weed，II ${ }^{\circ} \mathrm{Cl} l^{\prime}$ ． Dykehcad，Shotis．
Dynamical theory of heat，
Thermo－dynamics（Supp．）
Dymamometer，Spring Eial－
Dysart，Fifeslive
1 y＇sare Hills，Ouecvis County． Dysoxylon，Alliacions Plants． Drig弓ethai，Ass，

Fange（i．），Fathland Islands． Eagle wood，Aloes JVoot． Fagre，（Suspo．）
Earache，Otalgia，Ofitis．
Earlston，Berwickshire．
Early English．Anglo－Saxon Lang．\＆Lit．
Farth almonds，Cyperus
Earth－closet，Scwage Eirth－
closet（Susp．）
Earth－nuts，Lathyrus．
Fiarthquakes，A merica， 194.
Barthwork．Embunkmen？．
Easdalc，Flebrides．
East River，Long Isl．Sound．
Lastern Empire，liyeantine
Empire， 469.
FasthwaiteWater，Laneashive． kast London，F゙affraria， British．
East－Lothian，firadilington．
Ean de luce，I＇enomons Bites and Stinss，（Supp．）
Ean dor．Lity of the l＂alley． l：hal，Gerizim．
Ebelimen，Gems，Arrificial，667．
Eblis，Adam，Genii．
Ebn，Bes．
Fbin Batuta，Africa， 65.
Fbony，American．Wheetera． 1：boracum，l＇or\％．
Eccalcobion，lucubation．
Ecclesiastical history；Chureh
History．
Fhatz ri，Remflinger．
F．chencida，Remora．
Echidna，Tywhon．
EChinops，Thistle
Eckenforde Fiord，Slestig．
Eckhart，Venusberg．
Eclogue，Fasforal Foctry．
Ecrascur，（Suß凡．）
licricok，（SupA．）
Ecstany，Jion－lhatonists．
Ecthyma，Supp．）
Edam，（Supp．）
Filder，J／esse－Cisssel．
Eden，Fifeshire．
lidenkoben，（Supp．）
lidgar，Scothond，5sh
Edgar Town，Miartha＇s l＇ine－ yard．
JdacworthiaGardneri，D_{1} f／hnf，
 Education，National EdWars tion（Supp．）
Educationists，Volsmeary；lool－ untaryism， 24 －
Educt，Supp．）
Edwardes，Lieut．Sikhtiars．
Felec，К゙uldja．
Efingham，Earl of，Reignte．
Efision，Guses， 642.
E，galité，Philippe，Crleans，Itre． Fgede Island，Spit＝bergetr．
Egerton，Francis，Ellesmere Egg－apple，Egg－dlant．
Egina，REg7Ma．
E，wina Marbles，Scutpture， 57%
Eglinton 1 ournament，Citro
rousel．
Egremont，Cnmberland．
Fgyptian bean，Nelumbo． E．gyptologr，Archarolizy． Ehretiace：c，Buraginte．
Eibenstock，（Supp．）
Eifel，Prussur， 810.
Eigg，EgF．
Eigg，Ekg．
Eight Nighes，Seven Wise
Eight Nigh
Eil（l．），Caledontian Cintual．
Einbeck，Eimbect．
Finhard，Esinhara
Linsdorf，battle of，Seven
Yars 1 l＇ar， 637.
Eird－houses，Earble－houses．
Eisach（r．），Breruer J＇ass
（Supto．）
Eisk，Xeisk（Supp．）
Fisleben，Jnhn，Agricolia，T．
Eisthal，Carmathisn IIts．
Fjutla，（Suft．）
Ekhmim，（Supp．）
Ekron，rhilissines．
Flaopten，Oils，so．
Elam，Susa．
Flateritc，Bibumers．
Elaters，Hepaticar．
Elath，Edom．
Elan（r．），firecknockshire．
EI Bassan，（Supp．）
Elbe，Nassam．
El Bostari，Ekypt，787．
EI Buka＇a，Caric－Sjrria．
Elburz Mountains，Tchran．
Flehn，Lord，（Supp．）
E．Dakkel，Oases， 20
Elder－flower water，Elder．
Elder rob．Elder．
Election，Pariament， 2 ）1．
Elector＇s Jlat，Gourd．
Electric cel，Gymuntus．
Electric ega．Juduction of
Electric Currents．
Electric light，use of，Light
ing of Beacons，\＆oc．（Supp．）
Flectric loom，（Sußp．）
Elcctro－ballistic pendulum，
Vclocity，Initial．
Electrobiology，Animal．Mag． netism， 267.
Electrode，Anode．
Electrolyte，Anodio．
Electro－metallurgy，（Sufp．）
Electrophone，（Supp．）
F．leme，Fig．
Elephantiasis，（Supp．）
Elephant＇s foot，Dioscorencers．
Eleuthera，Bahmmas．
Elfin pipes，Tobacco－jipes．
El Gharbye，Nubia．
F．L Ghyt，Syria．
El Haje，Asp．
Elic rubies，Pyrope．
Elisenbad，Bohemia， 189
Elissa，Diulo．
Elixir salutis．Semua．
Elizondo：Sfain， 14.
Elk，JVafist．
\qquad

INDEX．

El Kab，Eilicthyia，Aecropolis．
El Kasr．Oiases， 20.
El Khulit，Hebrose．
Ellezelles，（Susp－）
Ellichpore，Berar．
Ellis，A．J．Phonctic Itrit－ Ellis， W ．（Supp．）
Elodea Canadensis， charis．
Elohists，Fentateruch， $3 S_{3}$－
Elom，Finistere．
El Pao，Camanz．
Elphin，Roscommon．
Elssler，F．（Susp．）
Elswick，Gun Fuctories．
Eltham Palace，Hall， 201.
El U㑲，Algeria， 140.
Elvas，Alemtejo．
Elvina，Corkīia
Elwick Bay，Slazpirzstay．
Elwy，Derbighashire．
Eiytra，Coleoptera．
Eiz ．r．），Black Forest．Rhine．
Embarras（r），Wabrash．
Ember goose，Diver．
Embiotocidæ，Viviparons Fish（Supt．）
Embolism，（Supp．）
Embossed printing，Elined， 157.
Embrued，Imbrued．
Embs（r．），Nassam．
Emerald，Type， 607
Emeraldine，Dye－strifs
Emerita Augusta，Spair，15．
Emetine，（Supp．）
Emen wren，Maluriws
Emgedesiye language，Agades．
Emir－ul－mumenin，Iforacco．
Emmaauel Coll．，Cam．（Sropp．）
Emmen，Berr．
Empirics，Medicise，Hist．of．
Empyteal air，Oxygen．
Enaima，Zoology， 357.
Encenia，Commemoration （Supp．）
Encapsulation，Infiusoria．
Eacaustic，Painting，19x．
Eucephalocele，（Susp．）
Eochanter＇s nightshade，Cir－ cara．
Eochondroma，（Supp．）
Encounter Bay，South Aus－ tratia．
Fncrome mineral，Cappagh Brown．
Encumbered Estates Court， Incumbered Estates Court （Swpp．）
Encysting，fufirsoria．
Enderby，Dampier Arch．
Enderby＇s Land，Antarctic
Ocean．
Endermic method of treat－ ment，（Stops．）
Endophlceum，Bark．
Endopleura，Seed．
Endorsed，Indorsed．
Endosperm，Albumen．
Endrick（r．），Stirlingshire．
Endrōd，（Supp．）
Energy；Force．
Energy，conservation，trans－ formation，Sc．，of，Thermo－ dynamics（Supp．）
Enfield ritie，Rifled Arms．
Enfis（r．），Aghmet（SmpB．）
Enfleurage，Perfuntery， 397.
Eogelhardtia，Walnat．
English，Type， 607.
Eoglish Harbour，Antiszua．
Enclish mercury；Chirnopo－ dism．
Engrossing，Ingrossing．
Enraulis，Aжcho：＇y．
Enhallow Sound，Pomona．
Enköping，Maclar，L．
Enlistment，army，War Ser－ tices（Swhp．）
Enna，CastraGiovaunt．
Ennistymon，Clare．
Ens，Transcembental．
Enschede，（Supp．）
Ensete，Plantain．
Ensign，War Services（Supp．）
Entails，register of，Records， Deeds，Registra

Entasis，Colunzn
Enteric fever，Typhus，\＆c． Enthronement，Archbishop Entomyza，Blue－eye． Entre Rios，Argentime Reo public．
Entrochites，Bcais，$S:$ Cuth－ beri＇s．
Enzir．），Black Forest，heckar Enza，P_{0}
Enzie，Buzufthire
Eōtvōs，J．，Baron，（Susp．）
Epacto，Lepanto．
Epencephalon，Skull，761．
Eperva，Wallaba Tree．
Ephedra，Sea－grape．
Ephelis，Macula．
Ephyre，Corinth．
Epidaurus，Ragusa．
Epidemic cerebral meningitis， （Supp）
Epigynous，Stamert．
Epilatories，Depilatories．
Epimachus，Plume－bird $S u p p$ ．） Epiphegus，Cancer－root． Epiphlœum，Bark，
Epiphysis，Ossification． Episcopal Chureh．American

Anglo－Catholic Church， 259 Episperm，Seed．
Epistaxis，Nostrils，Dis．of． Epistle，the，Lessort（Sugp．） Equations，polar，Radius． Equilibrium，Statics． Equilibrium，stable，Stability Equinia，（Suspo．）
Equites，Equestrian Order Legion．
Equivalent number，Triads． Equivocation，Reservation． Eradicated，Erased．
Erasistratus，Medicine，Hist．of． Erastianism，Erastius． Erbia，Ytirium．
Erbil Arbela．
Ercildoune，Erilston，Rhymer． Ercilla y Zuôiga，Alonso de， Spanish Lavig．EO Lit． 20. Erckmann，E．E．（Supp．） Erdre（r．），Viantes． Erebus（mt．），AntanticOcean． Eredia，Costa Rica． Eresma（r．），Segovia．
Ergent＇r ．）＇Albania．
Ergloz（r）．Basel．
Eria，Silk \＆Silhuornt， 724 ErichEdmundson，Sweden， 238 ． Eridanus，Po．
Erie Canal，Buffizlo．
Erigal，Donegal．
Eriodendroo，Razor－stroh． Erisort（l．），Lewis－with－Harris Eristalis，Rat－tail Maggot． Erlenbach（r．），Zabern． Erlitz（r．）Bohemia， 189. Erme，Dartmoor．
Ernée（r）．Wayenue．
Ernst，H．W．（Supp．）
Erotemata，Lescaris．
Errocht，Ericht
Erromango，New Hebrides． Ervum，Tare．
Erythaca，Blue Bird，Red－
treast．
Eryehizon dorsatum，Ǔrsorr．
Erythre，ionter
Esaro，Cotronce
Escambia（ r_{1} ），Floriula．
Eschweiler，（Supp．）
Escondido，Nicaragua．
Escrow，Execution of Deed． Escuase．Scutage．
Escuintla，Esquintla（Supp．） Esdraēlon，Carntel．
Esdud，Azotus．
Esedi，Persian Lars． 427.
Esk，Cumberlanct．
Eskar，（Supp．）
Eskdale Muir，Esk．
Eski－Hissar，Laodicea．
Esparsa，Cosia Rica．
Esparto，Murcia．
Espinosa，battle of，licter Espiritu Santo，New Hebrides． Esquiline Hill，Roaze， 322. Esquintla，（Sußf．） Es Said，Egypt， 787.
Essences，（Suspb．）

Essera＇r．），Aragor．
Essone ir．，Seine．
Estatica，Stighuttisation．
Estars mt ，Ariege
Esterlings，Sterling．
Esthwaite（l．），W Indermere．
Estienne，Stephens．
Estrella，Costa Rica．
Eswan，Assouct．
Eteocles，Antigone，Exdiptus．
Etesian winds，${ }^{2}$ ind， 215 ．
Ethbaal，Phcuiciu， 49 ．
Ethelred，Englaud， 59.
Ether，Quintessence．
Etherow r．，Glossop＇Supp．
Ethiopian pepper，Guinea
Ethyl，sulphate of，Sulphuric Ether．
Ethylene，Alcohots＇Susp．）， 384.
Etruscan language，Etruriz．
Etruscans，Rome， 307.
Ettrick Pen，Dunifiesshire． Etzel，Attilt．
Eucalyn，Sugar， 87.
Eudoxia，Alexei Petrowitis．
Eudoxia，Ronse， 321.
Eulachoo，Candle－fish（Susts．）
Eulophia，Sales．
Eumenidx，Wasp．
Euphodite，Trap．
Euphorion，Alexandrine Age．
Eupompus，Painting，rgt．
Euptoa humata，Butterfly．
Eureka，Arckimedes．
Euric，Spazin， 16.
Eurcpa Point，Gibrallar．
European lorus，Date P＇rum．
Eurydice，Orphens．
Euscaldunac，Basque Prov．
Euscaleria，Basque Procinces．
Euscara，Basque Provinces．
Eustrongylus，Strongylus．
Eustyle，intercolnmmiation．
Eutychius，Arabian Lang．
E Lit．347．
Evans，Mr，Welsh Lang．Eo
L21． 137.
Evans，Miss M．A（Swop．）
Eve or Even，Fisiz．
Eventuality，Phrerology，5：7．
Everest（ne．，Himalaya
Evergreen oak，Ilex．
Ewe（r．），Maree（l）
Exalbuminous，Albumer．
Exchange，bill of，Bill of
Exchange．
Excision of joints，Resection of zonis．
Excluded middle，Identity．
Excrementitious products，Se－ cretion．
Exequatur，Consul， 1 Mercautile．
Exequatur，Placetum Resirm！．
Exercise，Saniary Science
（Supp．）
Exergue，Armisntatics，I．
Exidium，Yemis Ear（Sup力．） Exostosis，Ossifictitont
Extine，V̈gefable Physiology，
735
Extract of flesh，Soisp．
Extrados，Arch， 365.
Exuma，Bahamas．
Eyder，Destuark．
Eye（r．），Berwickshire：
Eyemouth，Berwicksisire．
Eyeo，Katruega（Suppi．）
Eyes，Mining．
Eyess，Falionry， 228
Eylkhanians，Persia， 423 ．
Eynort，Loch，Uist．
Eyre，Eire．
Eyre，E．J．（Supp．）
Eyub，Constantinople．
Eyun，Wakzis． 4 t ．
Eziongeber，Edomt，Ked Sea．
Ezra，Pentateuch， 382.
Faale，Alhancine el Grande （SuA今．）
Fabrizio，Fabricius，Girolamo． Fachingen，Niassaz．
Facial angle，Et／inology．
Factory Acts，（Supp
Faculty to burden，－ifpoint－

Fadhl A．R．Eddin，
Lang．\＆Lit． 428 ．
Fadievskoi，New Siberia．
Fasopyrum，Buckwheat．
Faham，Faam．
Fahlun，Falurr．
Fair lsle，（Sitsp．）
Fairway，Dionnede Ishut＇s．
Fairy pipes，Tobiscco－pipes．
Fal ir．，Cornwall．
Falaise，treaty of，Willium the Lyon．
Falashas，Abyssinin．
Falcon，J．Ch．L＇enezuela．
Fall r ．），Oregon．
False acacia，Lorust Tree．
False calabash，Bottle－gouril．
False decretals，／sidorian Decretals．
Falsecto voice，J＇oice．
Famagosta，Cyprus．
Fanily of Love，Agapemone．
Fan，Blowing－mackires
Susp： 429.
Fanad Point，Swilly．
Fancy franchises，Reform Susp．）
Fane，Dundalk，Louthe
Fanners，Blowing－machines （Stup．） 429.
Faradisation，Tabes Dorsalis．
Farcy；Equinia Supp．）
Fardingale，Crinoline．
Fario，Salnon， 445 ．
Farnworth，iSufp．）
Faro，Benté．
Faro．Capo del，Sicily， Fo_{4}
Farragut，D．G．（Suf̆p．）
Farsistan，Fars．
Fasa．Fisa．
Fasting－tide，Shrore－tide．
Fast－mass，Shrove－tide．
Fat glands，$S k i n, 756$.
Fauna，arctic，tropical．\＆c． Geographical Distribution of Animals．
Faunus and Fauna，Komizn Religion，Ancient， 302.
Faustrecht，Goldert Bril．
Faustus，Bishop of Riez，Semi－ pelagzanism．
Faverge，lalley of，Sezos．
Fawn，Fallow Deer．
Fayence，Faicsice．
Feale（r．），Shanuon．
Fear，Emotion．
Fearne，Farme Isles．
Featherfoil，Hottonia．
Feathering，Oar．
Fecht，Colmar．
Fechter，C．A．（Susp．）
Federalists，Republican，U．．S．
655.

Federsee，IIfrtenberg．
Feeders，Minting．
Feejee，Fiji 1slards．
Felanitche，（Supp．）
Feldberg，Black Forest．
Fellows，University， 664 ．
Felsina，Bologna．
Feme Sole，Fome Coserte．
Fenian Society；Sups．）
Fens，Midulle Letel（Suspo．）
Fen Town，Fiusbury：
Feodor，Ronarzoff，House of．
Feral races， 1 oif： 243.
Fer de Moulin，Millrind．
Ferdinand III．of Castile． Spain， 17.
Ferghal，freland．
Fergus，Scotham，555－
Fergus ir．），S／ubnnos．
Ferid Eddin Attar，Persion
Lang．\＆Lit． 427.
Ferishtah，Persian Larg．\＆ Lit． 428.
Ferment， $1 /$ Ïue，221．
Ferm Isles，Farne Isles．
Fernandina，Cubre．
Fernando de Noronha，（Supp．）
Fernand Vas r．Ogobai Suph＇．） Ferney，！oltaire．
FeroliaGuianensis，Satis－zvood．
Ferozabad，（Sutp．）
Ferrari，Ludovico，Algebra．
Ferreo，Scipio，Alsebra．
Ferruchi，fiorsith Lang．ea
Lit． 427.

INDEX．

Fernum tarturaturn，Tirfaric Acid， 304
Pervala，pharsalus
Fertile Isle，Christopher＇s，St
Ferula，dennoniscum．
lervenga（r．），Rmgruan．
Fiesch，Jos．（SuA今．）
liengh，Dee．
Fenillea，（Sups．）
Fever，relapsing，Kelupsing
fieter
Fever，remittent，Remiltent Pecer．
Fever，sheumatic，Khesoms－ dish．
Fever，scarlet，Searhifina．
Fever－bush，Benzain
Ficysul，$\|_{a}^{\prime} h_{\text {mab }}$ is， 4 ．
－CZ，Marocio
Fihre－platiag，Goldlace．
Fibro－muscular tissue，I＇us－ cular Tissue．
Yibrous tumour，Womb，Dis－ enses，\＆ec．of， 257 ．
Fibula．Foot， 409.
Fichtelgebirge，Jair，
liidaris REtolia．
Fricld，C．W．（Supp．）
Field－glass，Operr－ghiss．
Fijeld－rush，fuzula（Supp．）
Ficr（r．），Savoy．
l＇ife，Earlsof，Stezuart Fandily， 323.

Fifer，IF ar Serrices（Suph．）
Frighine，F̈̈gline（Suph．）
Figline，（Supp．）
Figucira，（Supß．）
Figues－caques，Dade P／um．
Figure，Syliogisme．
Filadelfia，（Supp．）
Filamens，Ssemen．
Filaria hominis bronchialis， Strongylus．
Filaria piscium，stimoptera． Filature，Silk E－Silheworm，725． File，Label
File－fish，Batistes
Fiffila marble，lheilipseatide．
Fijlta，Malta．
Fillets，Jlint
fiilmore，Uhirh
Finale，（Supp．）
Fine，Referst．
Fincs and Recoverics，Firse of Land，Reconts，l＇ublic．
Fin－fish，Rorgual．
Fingerling，Sulmon，447． Finigucra，Eиgrazige， 60. Finlay（r．）．Columbiar，firifish Fimman haddocks．Haddock： F＂inow Canal，Geruaray， 718. Finsterberg（mat．），Thuringer－ rerald．
Fiorentino，Jialy． 657.
Fiorenzuola，（Susth．）
Firbolgs，（Strß今．）
Firc－backed pheasant，M／s． carthey Cack．
Firchalls，Aürolites
Fire－draught，Warming \＆ l＇entilations 68.
Fire－flaire，Sting Ray．
Fircweed，Sencaio．
Fire－worship，Sun \＆Fire Horshis．
Firminy，（Supb．）
Firola，（Susp．）
1－irst－fruits（ín law），Ausates． Firth of Lorn，Colonsay． Fish－culture，Pisciculture． Fisherrow．AHusselbureh，
Fishes，showers of，Slowvers of Fishes．
Fishguard Bay，Pembrokeshire． Fishing，（Supp．）
Fishing eagle or hawk，Ostrey． Fish－ladders，Salmon，+46 ． Fish－maws，Mango Fish． Fish－plate，Raihutays， 88. Fish salamander，Bafrachia． Fish－skin discasc．Tcheltoosis． Fish－stairs，Salmon， 44^{6} ． Fissuparousmultiplication，Re－ firootuctions， 193.
Fissure of the anus，Anus （SuAp）
Fistula lachrymatis，Lachorg mal Organs．

Fitch，Colecar．
F゙itch，Sieans－uatigation．
Fïtri（l．），Sudan．
Fitweed，Erynso．
Fizz－alan，Stcaurd lion uily． 128
lititzoy（r．），©uecnsland．
fumara，frume．
Fmmicino r ！，Ћubicon．
live－day fever，Nelupsing

firver．

Five fangers，Star－fish．
Flaccus Albinus，ficusis．
Flag，Wiar Services（Supp．）
1 lagellum，Kunner．
Flagstadoc，Lofordene
Flahault，Comte de，（Sufos）
Flail．Thristings：
Flamango，Dionsio，Calvaert．
Flan of Monasterlooice，I ris／b
Larg．En Lit． 630.
Flanqucs，Flituches．
Flap operation，Amphtatios．
Flashed glass，Glass， 782.
Fileabane，Coryca．
Fleawort，Phntagines．
lileche，fiortification，444：
Flectwood，War Scruices
（ङupp．）
Flenangites，Sigillaris．
Flies，artificial，Angling， 256.
Flinders（r．），Quernslaud，
A fustralian Explositions
（SuAP．），412．
Flime（ r ．），Tennessee
Elittermonse，Bat．
Flix－weed，Tledge－mustard．
Floating docks，（Supp．）
Floating gardens，floating 1slawds．
Flonting mattress，Hater－lied． Floating sweet meadow grass， Mirnhat Grass．
Floating warchouses，（Suph．）
Flonac，Lozèrc．
Flores，A＝oves．
Florets，dilower
Floridia，（Sups．）
Floripendio，Thom－npple．
Flos Adonis，Aldonis．
Floscularia，Rotatortia．
Flotation，Hydrostatics， 490.
Flote fescue，N／anha Grizss．
Flotow，Fr．you，（Supp．）
Flower City，Spring field．
Flowering ferm，Osmands．
Flowering rush，Eutomus．
Flowers of arscnic，Arsentons Acid．
Flowers of sulphur，Smiphur， 198.

Flowk－wort，／lydracotyle．
Fluke，Flourder．
Flush，Cribbage．
Flushing，Lourg Jslaud．
Flutemouth，Fistularider， 356.
Fly agaric，Amanita．
Fly－fishing，Augliug， 257
Flying fox，Flying Lemur．
Flying opossum，folying 1／ha－
Faeniculum Capense，Unbel－
Fanicura．
Foggic，Ilumble Bee．
Fogo，Cape Verd／siauds
Foktshany，Strvomf，（Sunp．） Folio，Book， 225.
Folkland，Saxony，54．
Follicle，Glands．
Follicle，Legrime．
Folquet de Marscille，Trors－ badour．
Fonka，Cape，Cos．
Fontaine，Algcbra
Fontainebleau，Renaissance．
Fontargente（mf．），Arige．
Foo，heen．
Food，（Suts．），San．Science （Supp．）， 730 ．
Foramen magnum，Spiral Cord．
Forbes，Lough，Shannos．
Forecastle，Fore．
Forefang，Forfang．
Forest Courts，Foress Lazus． Forest Kidge，Siassex．
Forest wool，f＇ine．
Form，Ty；pe，6os．
Formartin，Aberdecushire．

Formentern，Balearic／s．
Formylc，IVethylene（Suph．） 636.

Fort Duuphin，Bembasookr，
Fiurt du Quesue，U．S． 653.
Forteviot，Scothrud， 555 ．
Forth（r．），Tasmaria， 306.
Fort Hope，Columbia，British．
Fort Madison，lozva．
Fort Moultric，Sumuter，Fort
Fortunate Islands，fharviciu， 492.

Fortune Bay，Newfourdland．
Fortunc，Robert，（Sufp．
Fore Waync，Ituliana，（Supt．）
Fort William，Calcutha．
Fossil alkali，Sodium， 8 or．
Foucts，house－leci．
Foula，（Supp．）
Foul bill，Fili of Healih．
Foumart，Polecire
Fourchamboult，（Stop ．）
＇Four Lands，＇the，Dergedorf （Suff．）
Fous，Housc－leek．
Fousel－oil，Frusel
Foveaux Sorait，Neu Zealand． Fovilla，Liegefable Plysiology， 735.

Foxing，Beer， 80 g．
Fox－tatled monkes；Saki．
F＇Oy，Fiowey．
Foyers，Theatre， 388.
Foynes，Limerick，Shannon．
Fraga，（Suf申．）
Fraises，Fortification， 440.
Frambesia，fazas．
Frambaesin，facus．
rance，education in，Na－
tional Edweations（Supp．）
Franchise，Parliamerr，283，
Reform（Supp．）
Frankenburg，Ais－la－Chapelle．
Frankenwald（snts．），Thums gervald．
Franklin（wt．），White Mis＇
Fraochcilean，Awe L ．
Froochalean，Azue 2.
Fra Paolo．Sarfi．
Fra Paolo．Sarfis．
Frasers＇County，Inverzess－ shire．
l＇rauds，statute of，Statute of Frisuds．
Frederick－Angust I．and II．， Saxary，5s5．
Frederick－Charlcs，Prince， （Supp．）
Frederick City，（Supp．）
Fredericksborg，Szueden， 237.
Fredcricksburg，Africa， 66.
Fredericksburg，Virginia， （Susp．）
Fredericksoord，Drenthe，Pati－ per Colonies．
Frederick the Wise，Saxony，
Frederick－W＇illiam，Prince， （Susph．）
Frederiksham，Cofenhasen．
Frce livers，Perfectionists （Supp．）
Frec－soil Democrats，Neprob－ lican．
Frec－soil Party，U．S． 658.
Frcestones，Peach． 658.
Freestones，Peach．
Frégate（i．），Seychelles $/ s$.
Fregenal de la Sierra，（Supp－）
Freiverg，battle of，Severs
Years＇W＇ar， 637.
Freirira，（Supp．）
Fremon＇s Basin，Great Basin．
Fromone＇s Peak，Rocky IMls．
French chalk，Stentite．
French pie，Woodpecker．
French rye－grass，Arrikera．
French willow，Epilobinh．
Freshford，Ailkenny．
Freshman，Cambridge U＇ui－ versily， 531 ．
Fresh－water polype，IIJdra．
Fresh－water shrimp，Garno－ maris．
Fresnillo，（Strpp）
Freudenstadt，（Supp．）
F＇reycinct＇s Peninsula，
mandar， 306.
Freystidicl，（Sußp．）
Fribourg，Freiburg．
Friction－wheels，frictiors．

Friedeberg，（Supb．）
Fricdrichshall，Sare－vein－
ingen
Fricdrichshamm，Peace of， Alexasder 1. of Kisssid．
Friedrichs－stadt，Leipsis．
Fricdrich－Wilhelm＇s Canal，
Germany，718，Sprec．
Frigna，foreyig．
Iringilla spinsus，dibrencoviue．
Frio，Aiscaragsa Latie．
Frio，Cape，Nio ite Junciro．
Frit，Girs55， 778.
Frith，Reformadion， 259.
Jritigern，Falens．
Frog－lly，Frodiofly．
Frog－hopper，frolit－fy．
Frog－spitile，Froth－hzy．
Froude，R．II．Trachariamism．
lrouit－sugar，Froctose．
Fuchsine，Dye－stufls．
Fucus vesiculosus，A／Guz．
Fucnte Alamo，（Sußp．）
Fucutes，Count of，Rocros．
Fucric，（Supp．）
Fuerte de Andalgala，（Supp．）
Fuhi，lloman．
Fti－kian，Frsh－deen．
Fulgentius，Semi－priagiantsm．
Fwithan，Convict．
Fulimart，Polecat．
Fullimg，Wroollen en Worste． 2
Alanufacirres， 265.
Fulness of blood，Congestion of Blood．
Fulwa trce，Dassia，Fuma－
F＇umitory，conamon，Fumat wmitory，cominon，
riacea． macea．
Funaria，（Supp．）
Funcha，Bogota．
Funfhaus，（Susp．）
Fung．Funt．
Funghwa，A「ゥgro．
Fungic acid．fiungz．
J＂ungus Melitensis，Cymonso． riแm．
Fungus salicis，Amador．
Funiculus，Seed．
Funny bonc，Brackial Artery．
Furnace，reverberatory，fie
Ficrieratory fornace．
Furnarius，Oven－bigh（Sußß）
Furness，Lancashire．
Fiur seal，Otary．
Fusaro（6．）．（Supp．）
F＇usible alloy，Bismuth．
Fusils，Lock．
Fusiyama，yaßan．
Fustic，young．Smunack．
Futteh－Alt，Persis． 423
Furtocks，Ship－builiting， 633.
Futwa，Futtisha．
Fyrd，Traiu－bands．
Fyrd，Trinodre Necessitas．
Fytte，Fibysoadisis．
Gabii，Konse， 308.
Gabres，Guebres．
Gachua，Ophicephalus．
Gadajos，Gwatalqutit
Gaddi，Taddeo，Primting，
192.

Gadenolite，I／trjurs
Gades，Cadiz．
Gadhelic，Gaelic Eang．© Lit
Gadjatch，（Sup $\left.\beta_{-}\right)$
Gaga．fieiskamma．
Gagali，Porlocar＞＞s
Gagea，Siar of Bethletwen． Gaisin，（Supp．）
Galam butter，Bussin．
Galatca，grosto of，Aci Reirile，
Galaxias，Sulmoniles．
Galegos，Lisbon．
Galcuists，Arabastists， 2 19．
Galcus canis，Tope．
Galgacus，Agricola，C． 7 ．
Galgocz，Freysfidil（Supp．）
Galincere，R rubincea．
Galileans，Jeruish Sects．
Galipot，Rosish．
Gall，James，Siunday Scluonls，
Gallanda，Gall，St，Canton of．
Gallarate，（Siuph．）
Gallenstock，Vialais．
Galletytes，Gallipo
Gallia Belgica，Belgiuen，t

INDEX．

Gallia Cisalpina，Cispadana， Transalpina，Traospadana， Rome， 308.
Galliate，（Supp．）
Gallicanism，Gallicanh Church， 586.

Gallinago，Smide
Gallinazo，Vulture．
Gallinsecta，Coccus．
Gallitzin，Galyzizu．
Galloway breed，ox．
Galloway，Earls of，Stcreart Fatmez 126.
Gallus，Ireland， 626.
Gally－worms，frulus
Galofaro，Scyilla in Charyb． Galoshes，Goloshes．
Galston，Ayrshire．
Galtees（mts．），Tipperary．
Galvanic pair，Galvanism，524．
Galvanometers，Galvanism， 601.

Gal－wihara，Ceglor， 739.
Gamant，Abyssintia．
Gambeer，Ganibir．
Gambet，Sandpiper．
Gambeta，Yellowlegs．
Game－licences，Game．
Gamgee，John，Veterinary Medicine．
Gaming，Gastbling．
Gamle－by，Coperhagen．
Gamrie，Banffshire．
Gamtoos，Camtoos．
Gamtoos，Camer Rolf，Harald I．
Ganger Rolf，${ }^{\text {Gangi，}}$（Supp．）
Gangrene of the mouth，Moutin．
Gangs，agricultural，（Supp．）
Gangue，（Supp．）
Gan－king－foo，Gan－$/ 2 w n t y$ ．
Gansfort，Wessel．
Gapau（ r ．），Var．
Garagantua，Rabelais．
Garay，B．de，Stearm－ergine，
97，Steam－navigation．
Garciade la Huerta，Spanisk
Lang \＆Lit． 20.
Garcinia，Cocum Oit（Sutp．）
Garden Island，Erachie．
Gardeners＇garters，Carary
Grass．
Gare（2．），Dumbartorstize．
Garioch，Aberdeenshire．
Garlic，crow，Allium．
Garnet，pyramidal，Veswviar．
Garnock，Ayrshire．
Garon bush，Daploze．
Garreg，Flintshire．
Garrague（r．），Sligo．
Garrague（r．），Singerness－stive．
Garry，（ r_{0} ），Tay．
Gartan，Columba．
Gartempe（ $r_{\text {．}}$ ），Vienue．
Garum，Auchovy．
Garvock，Kincaritineshire．
Gaseng，Goat．
Gas－engine，（Supp．）
Gas－lighting，railway，（Supts．）
Gastein，treaty，Germary
（Supb．）， 532 ．
Gasterosteus，Stickleback．
Gastrodynia，Gastralgia，
Gastro－enteritis，Gastritis．
Gastropods，Gasteropoda．
Gatehouse，Rirkendbrightsh．
Gath，Philistines．
Gatin，Plateau de，Verdie，La． Gatto，Cape，Cysras．
Gatto，Pype，Cénes，Bosses．
Gau，Py－ènes，Bosses．
Gaudens，St，Garonne．
Gauls，Celtic Nations，Kome， 307．
Gaultheric acid \＆gaultheri－
lene，Winter Green，Oil of． Gauntlet，Gartlet．
Gavarnie Falls，Waterfald．
Gavra，battle of，Fenian
Society（Supp．）
Gawler（r．），South Australia．
Gay－Lussac＇sLaw，Aërostratics．
Gayndah，Quecnsland．
Gaza，Phxuricia，49x．
Gaza，battle of，Selime I ．
Ge，Gera．
Gean，Cherry．
Gebatsch（mt．），Tyrol．

Gecinus，Wooipecker．
Ged，William，Stercotysing．
Gedd，Pike．
Gedrosia，Beloociustan，
Geelvink Bay，Paprua， 250.
Geer，Cape，Blanco．
Geilnau，Nassar．
Gelatine，sugar of，Glycine
Gelders，duchy of，Rheneists Prussia．
Gelimer，Vandals．
Gell－ale，Grourai－ivy．
Gelya，Cambay．
Gemmiparous generation， Gertmation．
Gemmi Pass，Alps，Valizis．
Gemmule，Seed．
Gemmulue，（Sut力．）
Gemona，（Suth．）
Generationism，Traducianism．
Generationism，Traducianism．
Genèvre（mt．）．Alps．
Genèvre（mt．），Alps．
Gensano，Geszano（Supp．）
Gensonné，Girondists．
Genzano，（Suspp．）
Ceometers，Caterpillar．
Geophilus，Centipede．
Geordie lamp，Safety－lamp．
－George Eliot，Evans（Suit $\dot{\text { G．}}$ ）
－George Eliot，Evans（Sufth．）
George of Denmark，Prince，
Ame，Queen．
George＇s Town，Biafra．
Georgetown，Delateize．
Georgetown，Pr．Edzuard＇s I．
Georgetown，Pr．of Wales I．
Georgina，Dahlia．
Gephyrea，Worms， 279 ．
Geraniacea，（Supt．）
Geranium，oil of，Grass Oil．
Geranium maculatum，Alum
Gerard，Balthasar，Willian，
Prince of Orange．
Gère（r．），l＇ienne．
German acacia，Sloe．
German acacia，Sruciars．
German casp，Cructan： German greens，Kale． German rice，Barley．
Germantown，Penmsylvartia．
Germany，（Supp．）
Germersheim，（Supp．）
Gerome，J．L．（Supsp．）
Gerrara，Guerara．
Ghadames，Gadames．
Ghagra，Ghogra，Onde．
Ghardeia，Gardain．
Ghazel，Ghasel．
Ghebres，Gucbres．
Ghent，pacification of．Wil－
lians，Prince of Orange．
Gherkins，Cucurnber．
Ghetto，Rome， 323.
Ghore，Ghur．
Ghori（r．），Anderab（Supp．）
Ghosts，optical，（Sutt．）
Ghurkas，Ncpaul．
Giacomo da Ponto，Bassano．
Giarre，（Supp．）
Giarretta（r．），Sicily， 704
Gibbe（r．）Enarea．
Gibing，Gybing：
Gibson，Veterimary Ifed．
Giczin，Gitschion（SwA今．）
Gid，Sturdy．
Gien，Loiret．
Gier－eagle，Lammergeier．
Gig，Boat，Boratirg
Gig－mill，Woolless \＆u Wor
sted Mantufictures，$=65$ ．
Giguela，Gradiana
Gilbert de laPorrée，Scholustics．
Gilge（ $r_{\text {．}}$ ），Niemert．
Gill（l．），Sligo．
Gill，John，（Supp．）
Gill－ale，Ground－iziv．
Gillespic，Thomas，U．P．C． 646.
Gillot，Joseph，Per．
Gills，Heckles．
Gills，（Supp．）
Gillyflower，stock，Stock．
Gimignano，San，（Supp．）
Giminal，Ring．
Gimmal，Kins．
Ginneling，Fisking（Supp．）
Giorgio Barbarelli，Giorgionse．
Giovanni di Bologna，Sculp－
ture， 577.
Giovanni（San）in Fiore，（Suth．）

Giovanni＇San），Rotondo，（Suikg，
Gipping（r．），Suffolk：
Gipps＇Land，Victoria， 785. Gupsy herring，Pilchard． Giraffe（r．），Nile．
Girard，Algebra．
Girard College，Priladelplia．
Girouetre，Epi．
Gitanos，Gypsies， 170.
Gitschin，（Supp．）
Giuseppino，Cesari．
Gizeh，Ghizelt．
Gizzard，Birds，ıog．
Glace，Taffety．
Gladbach，（Supp．）
Glade－net，（Supp．）
Gladova，（Supp．）
Gladsheim，Waiterlha．
Glanders，Equinia（Supp．）
Clandford Brigg，（Sufp．）
Glasnevin，Agricultural Edz－
cation， 684.
Glass，earliest use of，in Eng－
land，Beriedict Eiscop（Supp．）
Glass－snake，（Supp．）
Glastonbury thorn，Hawthorn．
Glatt（r．），Zürich．
Glead，or Gled，Kite．
Gleet，Gonorrhace＇Supp．1，544．
Glen（r．），Bedford Level．
Glendalough，IVicklow．
Glendalure，Wicklow．
Glenelg，Inverness－shire．
Glenelg（ $r_{.}$），Iictoria， 785.
Glenelg，Lord，Grant，Ch．
（Supp．）litrified Fort．
Glenever，Etrified Fort
Glen Garry，Inverness－shire．
Glen Morriston，Inverness－sh．
Glen Ness，Door．
Glenshee，Perthshire．
Glen Urquhart，Iuvermess－
Gliadin，Gluters．
Globe animalcules，Morad．
Glabe－fish，Diodor．
Globiocephalus，Caaing IVTuale．
Globules，Homaopathy， 401.
Glomach，Fall of，Koss है
Cromarty．
Glommen，Norway．
Glonoin，Nitro－glycerine
Glory，Halos， 206.
Glory，Nimbus．
Glossinia morsitans，Tsetse．
Glassitis，Tongue．
Glossop，（Supp．）
Gloucester nut，Hickory．
Glover，Miss，Tonic Selfa．
Glover＇s roll，Koll of Arms．
Glue，liquid，mariae，\＆c．Ce－ ments．
Gluten，Gelatigenors Tissues．
Glycinum，Gluctioum．
Glycocine，glycocoll，Glycine．
Glycosides，Sizlicin．
Glyde（r．），Louth．
Glykys（r．），Allaziza．
Gmelina，（Supp．）
Gmunden，（Sufp．）
Gnidia，Thymeleactar．
Gnidos，Cnidus．
Goat＇s beard，Fungzi，55§．
Godfrey，Gottfried．
Godounof，Boris，Risssis， 386 ． Godrun，Alfred．
God＇s gift，Dulzuick College． Goenang Api，Miolinccas． Goeree，Hollaud，Sorth．
Goes，Hugo Vander，Paintius，
102.

Goetz von Berlichingen，Arti－
focial Limbs（Supp．）
Goff，Golf．
Goggra，Owae（city）．
Gohanuh，（Supp．）
Gohfeld，battle of，Severs Jears＇If ar， 636.
Goito，battle of，Radetsky： Gold，extraction by sodium
amalgams，（Supp．）
Goldberg，（Supp．）
Golden Age，Ages，Pastoral
Poetry．
Golden carp，Goldfish．
Golden charter，Transylvaria．

Goldene Aue，Saxony，Prus－
sian．
Golden Gardens，Danzbe．
Golden Gate，San Francisco．
Golden Horn，Constantinople．
Golden Plain，Nordhauseभt．
Golden maidenhair，Polytri－
chum（Supp．）
Goldeo－tailed fies，Chrysis．
Golden Vale，Limerich．
Golden Vein，Tipperary．
Gold farthing，Fose－moble．
Goldfinny，Goldsinny．
Goldilocks，Polyerichume
（Supp．）
Goldings，Hops．
Gold powder，Bronzing．
Gold purple，Purple of Cassius．
Gold－seed，Dog＇s－tail Grass． Gōlek Bógház，Cilicia．
Golo，Corsica．
Golyzin，Galjain
Gombo，Hibiscus．
Gomphrena，Amaranth
Gomu！Pass，Goolairee（Sufp．）
Gonaive，Haytt．
Gônd，Tamil．
Gondokaro，Baker（Supp．］
Gonds，「naika， 539.
Gonidia，Lichers．
Gonoma，Moluccas．
Gonorrhoea，（Supp．）
Gonubi，Kaffraria，British．
Gonzaga，Card．Trent，C．af． Good．Stoics．
Good Henry，Chenopodiam．
Goodsir，Professor J．（Supp．）
Goodsir，Processor（Supp．）
Goodyear，
Goolairee Pass，
（SLAAP．）
Gooma，Canbay．
Goor，Dziggethai．
Goorjun tree Disteracea．
Gooseberry gourd，Alomordica．
Goosefoot，Cheropodium．
Goose－grass，Bed－strazu．
Gore（r．），Gintes， 614.
Gordon，Mr，Eyre（Supp．）
Gorebill，Garfish，
Gorey，Wexford．
Gorge，Bastion．
Gorges，Gurges．
Gorica，（Supp．）
Gorigunga（r．），Ghogriz．
Göritz，Görs．
Gorse，Furze．
Goshob，Abyssinia．
＇Gospel，＇the，Lessoun（Supp．）
Gosselies，（Sups．）
Göta（r），Swetiert，236，Wener．
Gōtaland，Götlanul．
Götarike，Götlund．
Gottesgabe，Eragebirge．
Gotthelf，Jeremias，Bitzius．
Gouet，Cotes－d u－Nord．
Gouges，Cartentry．
Gouges，J．B．（Srupp．）
Goulard＇s extract，Lead．
Goulburn，New Soutls Vales，
Gounod，F．C．（Sufp．）
Gour，Gaur．
Gourami，Goramy．
Gourdon，Lot．
Gournah，Necropolis，Tiebes．
Gout，in corm，Cort－fiy．
Gout，rheumatic，R heumatism．
Gout powder，Duke of Port－
land＇s，Gentiarr．
Governor，Stean－engine，ro3． Gowan，Daisy．
Gowdie，Dragonet．
Goyt，Mersey．
Gradiska，Riisienland．
Gräfenberger，Rhine－wine．
Gräfrath，（Supp．
Grafton，New South Wales．
Graham＇s Dike，Antuminus， Wall of．
Graigue，Carlone
Grakle，purple，Quisealus．
Gran，Gratue．
Grana，Caraglio．
Granard，Long ford．
Grancio，Kiver－crab．
Grand Lake，Níw Brunswici：
Grand Bé Island，Saint Mralo．
Grand Beroard，Bourbinn，Ile de．
Grandburg，Marie Galante
Grand Charter，Chartc．

INDEX:

INDEX.

Hedgehog plant, (Suph.)
Iledge hyssop, Gratiola.
Hedge netule, Stachys.
Hefa, Caifa.
Hegelianism, Hegel, G.
Hegius, A. Agricola, R.
Hegumenos, Greek Church, 87 Hegyallya (mts.). Tokay.
Heidenmauer, Ribeauville.
Heka, Ezypt, 787.
Hekla, Hecla.
Helamys, \mathscr{F} umfing Hare (Supp.)
Helena, Bay Is., Ruatan.
Helenin, Elecampane.
Helgoland, Heligoland.
Heliacal year, Canicular.
Heliand, Germany, 724.
Helianthemum vulgare, Cistus.
Heliocantharus, Scarabars.
Heliostat, Heliotrope.
Heliotypography, (Sußp.)
Hellbender, Batrachia, Mesoponte.
Hellendon, Overyssel.
Hell Kettles, Darlingtor.
Helmet-shell, (Supp.)
Helmond, (Supp.)
Helmsdale Water, Sutherland.
Helonias, Sabadilla.
Helsingborg, (Sus.)
Helvoetsluvs, Hellevoetsluis.
Hemeralopia, Sight, Defectsof.
Hemerobaptists, Yewish Sects.
Hemionus, Ass
Hemling, Hans, Painting, rgz.
Hemp agrimony, Eupatorium.
Hempholme, Chiltern Husdreds.
Hemp-nettle, Dead Vetile.
Hemp-palm, (Supp.)
Hemp-seed, oil of, Hemp
Hen and chickens, Daisy:
Hendred, East, Chilitern Hundreds.
Hengistbury, Christchurch.
Hen-hawk, Buzzard.
Henley-on-Thames, (Supp.)
Henry VIII.'s Survey, Re cords, Public.
Henty, Victoria, 786.
Henware, Badderlocks,
Henzada, Pegu.
Hep, H ip.
Heralds' visitations, Visitations, Heralds'.
Heraz (r.), Amal (Supp.)
Herb Bennett, Geam.
Herb Christopher, Actea.
Herbert family, Camarvon (Supp.)
Herb Gerard, Gout-veed.
Herb of grace, Rue.
Herb Robert, Geranium,
Herb St Barbara, Cress.
Heri, (Supp.)
Herisau, Aßpenzell.
Herjedal, Szeden, 236.
Herm, Fersey.
Hermaness, Shelland
Hermanric, Valens.
Herman-schlacht, Varus.
Hermes, George, (Supp.)
Hermesianism, Hernes, Sußp.)
Hermon, Palestive.
Hermopolis, Syra.
Hermosillo, (Supp.
Hermus (r.), Ahatoiz
Hemad (r.), Theiss.
Hernandia Guianensis, Amadow.
Hernosand, Angernannland.
Herodians, Yewis/t Sects.
Heroic Age, Ages.
Heron. Hero.
Herophilus, Medicine, Hist. of.
Herpestes, Ichneumon.
Herring, Vancouver Island, (Supp.)
Herrings, king of the, Shad.
Herring salmon, Coregornus.
Herris, Harris.
Hermhut and Hermhuters, Zinzendorf.
Herstal, Heristir.
Hertford, Earls of, Seyntour.
Hertha Lake, Rugen.
Herts, Hertfordshire.

Herveland, Liege.
Herz, Henri, (Supp.)
Herzogenbosch, Hertogenbosch:
Hesperides Insulx, Scilly Is.
Hesperis, Rocket.
Hesse-Darmstadt, Germany Supp.),535.
Hestia, Vesta.
Hesudrus (r.), Sutlej.
Heteroclite grouse, Sy rrhaptes.
Heterogenesis, Reproduction, 195.

Heteropods, Nucleolranch-
Heyn, Heiju, P. P.
Heytesbury, H'iltshive.
Heywood, (Sups)
Hexhamshire, Shire
Hialtland, Shetlntud.
Hiamum, Fuh-keen.
Hiawassee (r.), Ternessce.
Hibernia, lreland.
Hidalgo, Afexico.
Hiddekel (r.), Tigris.
Hielmar (li), Siveden, 236
Hières, Hyères.
Hieronymites, Brotherhoods. Hierro, Ferro.
High Church, England and
Irelard, Citurch of, 62.
Highgate resin, Copal.
High Harrogate, Harrogate.
Highland and Agri. Soc. of
cot. Agricultural Societies. High Peak, Derbyshire.
High Peak, Sidmouth.
High Peak (int.), Catskill MIts.
Hildlurghausen, Saxe-Meiningen.
Hildebrandslied, Dietric/s of Bern (Swfp.)
Hilden, (Supp.)
Hillah, Babylon. 600.
Hill mustard, Bunzirs.
Hillsborough Bay, Prince E. I.
Hilum, Seed.
Hilversum, (Supp.)
Himyaritic Lang. Shentitic
Lang. 670-672.
Hind, Stag.
Hindley, (Supp.)
Hindōe, Lefoders.
Hindon, \mathcal{F} wn $n a$.
Hinkelhahn (mit), Saxe-He i -mar-Eisertach.
Hinna, Henna.
Hiong-nu, Turks.
Hippo, Indian, Gillentia.
Hippobroma, Sapindacea.
Hippo Diarrhytus, Bizerta.
Hippolyte, Amtazons.
Hippophagy, (Sufp.).
Hippo Regius, Numidia.
Hiram, Phouicia, 493, Tyre.
Hirling, Sazmont, 449 -
Hispania, Spain, 15.
Hitchin, (Supp.)
Hittites, Ramesses.
Hitu, Moluccas, 522
$\mathrm{Hiz}(r$.$) , Mitchinn (Sutp.)$
Hoazin, (Supp.)
Hobbima, Paintins, 195.
Hocco, Curassow.
Hochelaga, Montreal.
Höchst, Nassart, Tilly,
Hochwald, Pressica.
Hod, Bricklaying, 340,
Hodeida, Femers.
Hoci-he, Seljnks.
Hofimann, A. H. (Sußp.)
Hoffmann, E. T. A. (Suph.)
Hoffmann, Melchior, Anabaptists, 258.
Hoffimann von Fallersleben, Holfmann, A. H. (Sußp.)
Hofluf, Wahabis, 42
Hog-apple, Podophyllum.
Hog-fish, Scorpara.
Hog.gum, (Supp.)
Hog-nut, Cobstut.
Hog-weed, Coav Parsmip,
Höhescheid, (Supp.)
Holasganz, Bahar.
Holda, Hulda.
Holibut, Halibut.
Holland Inlet, Prince Ed.I.

Holland, education in, Niatoonal Education (Susp.)
Hollands, Bleaching, 48 ,
Hōllenhacken, Rhine.
Holle Pass, Black Forest.
Hollow-ware, (Sußp.)
Holly (poet), Slowaks.
Holm, Peel.
Holm oak, Ilex.
Holston (r.) Ternnessce.
Holt, Denbighishire
Holt, T. Elizatiethant Arch.
Holy birds, Pillar Saints.
Holy bitter, Hiera Picra.
Holy fire, (Supp.)
Holy Innocents' Day, Chilermas.
Holy Isle, Buteshire.
Holy Office, the, Inquisition.
Holy of holies, Tabernacle.
Holy Sepulchre, Holy Places.
Holy Thursday, Ascernsion Day.
Holy-water font, tap, \&c., Bentizer. Spiriualism
Home Mission, of Germany; Wichern.
Homerita, A rabia, 346 , Yemten.
Hominy, Maize.
Homogenesis, Reproduction,
Inomopbony, Antiphony.
Homs, Hents.
Honda, NIagdalena.
Honey bear, Kinkajor.
Honey berry, Melicocca Suph.)
Honeycomb bag, Ruminantia.
Honey-sucker, Honey-eater.
Honi soit qui mal y pense,
Garter, Order of.
Honuman, Entellus Monkey.
Hood I sle, Gahapagos Islands.
Hood's Canal, IVashinngtor
territory).
Hooker mii, Rocky MIts.
Hooker, General, Ricfintond, U.S. 660.

Hooks, fishing. Anglingo, 256.
Hoolock, Gibbor.
Hooper, Swith.
Hoom, Count,
Prince of Orarge.
Hoosic (r.), Hudsort.
Hopenthal, Labrador.
Hop frog-ty, (SuAh)
Hop froth-Ay, $(S \mu p \beta$.)
Hopkins (r.), Victorit, $7 \$_{5}$.
Hopkins, M. Witcheraft, z36.
Hopping Dick, Tirush.
Horx Paulinx, Paley.
Horaforas, Anboyna.
Hōrde, (Supp.)
Horeymelah, Wahabis, 4r.
Hormazd, Ormuzd.
Hormesta, Orosizs.
Hormuz, Ormaz.
Hormuzan, Suscr.
Horn, Lippe.
Hornbook, (Supp.)
Hom, Cape, Cape Hors.
Homed hog, Babyrowssa.
Horned owl', Eagle Owel.
Horned ray; Cephaloptera.
Horned viper, Cerastes.
Homel, Lautce.
Homstone, Chert.
Horodenka, (Supp.)
Horopter, Vision, 823 .
Horse-bee, Bot.
Horse-flesh as food, Hiß-
Hophagy (Susp.)
Hôrsel, Eisenach.
Horse mackerel, Scad.
Horse-tail, Equisetum.
Horta, Fayal.
Hospital fever, Typhius and
Tyshoid Feters, 615 .
Hospital gangrene, Phage-
dena.
Hostix, Lord's Supper, 193.
Hotch-potch, Supp.)
Hotham's Island, Grahante's I.
Hottentot's bread, Elephant's
Foot.
Hottentot's fig, M/icsembryacere.
Houghton-le-Spring, (Supp.)
Hougomont, Wiaterloo.

Houscbreaking, House.
Houscs, Suzeiz. Sc. (Supp.), 7^{23}.
Hovas, Madagascar.
Hovellers, Goodzin Sands.
Hovenia dulcis, Rhamturied.
Howdah, Elephant, ${ }^{-}$
Howe, General, U.S. 654.
Howling whale, Caaing

II hate.

Hoyle, Edmond, IWist.
Huaco, Eupatorinn.
Huallaga r i, Perrs, 437.
Huanchaco, Truxillo.
Huasco, Chili.
Hubertusburg, (Supp.)
Hucho, Salmon, 449.
Huckleberry, Whortleberry.
Hudibras, Butler: S.
Hueque, Auchewia
Hufeland, C. W. Sufp.)
Hughes, Thos. (Suph.)
Hugo Capet, Capeliarz Dy*
nasty.
Hugti r.), Mysore.
Huisne, Orne.
Huitzilopochtli, Mexico, 434.
Hulls, Jonathan, Steansmavigation.
Humboldt'r and mits.', Utak.
Humboldt's Bay, Papita, 251 .
Humeerpore, Allaiabiad.
Humerus, Hand, 222.
Humin, Hranzs.
Hummel, J. N. (Supp.)
Hums, Hems.
Hungarian balsam, Pine
Hungarian wines, Wirre, 226.
Hungary, Germary Supp..,
${ }^{536 .}$
Hungry Hill, Bantry Bay.
Hung-sew-tseuen. China, 82r.
Hung-tsin-hu, China, 8ry.
Hungus, Picts.
Hunkiar, Turkey, 587.
Hunnerberg. Nijutegern.
Hunnerberg, Nymegent.
Hunterian inuseum, Owen,
Runterian Museum,
Richard.
Hunting dog, Ejcaor.
Hunting leopard, Chectaht.
Huntly, Marquises of, Gorion
Family, 8.
Hunze, Groningen.
Huon (r.), Tizsmantia, 306.
Huon pine, Dacryitilu!.
Huon pine, Dacryititun
Huri, Heri Supp.
Hurlgate, Hell Gate.
Hurt, Koundle.
Husch, (Supo.)
Huso, Sturgeor.
Hut, Edfor.
Hutia, Hog Rat.
Huxley, T. H. (Sufp.)
Hyacinth, Pyrope.
Hyacinth, volcanic, Iesuviar. Hyena dog. Lycion.
Hyalite, Opal.
Hybla Minor, Ragusa.
Hydatid disease of the breast,
Adenccele (Supp.)
Hydnora, (Susp.)
Hydrastis, (Supp.)
Hydraulic cranes, (Susp.)
Hydraulic engines, (Sufp.)
Hydraulic litts, Hyarantic
Cranes (Supp.)
Hydrogen acids Hudracids. Hydromancy, Ditimation. Hydrostatic bed, Whaicr-bert. Hydrostatic bellows, Hydro
statics, 490
Hygiene, Hydropathy, Sani-
tary Science Suss.)
Hylx and H yladx, Tree-frogs Hymenxa, Anime.
Hymenium, Fungi.
Ityoid bone, Tongue.
Hyperamia, Congestion of Blood.
Hyperhorean Mts. C'ral M/s.
Hyperite, Trap.
Hyperoödon, Botllchead.
Hyphomyंcetes, Funsi, 357.
Hypnum, Stupt.
Hspodermic, Endernic'Sufp.
Hypogynous, Stament.
Hyposulphuric acid, Sulpolizor
199.

INDEX

Hyposulphurous acid，Sul－ phur， 100.
Ilypoxanthine，Urinary Sedt－ ments，Urine．
Hysterotomy；
Casarcan
Operation．
Hythe，（Srip．）
Hywel Dha，Welsh Lan3 \＆Lit． 336 ．

Ialysus，Rhodes．

lunbua，famho
lambus，fambic rerse．
lapygian Peninsula，Oirafito
lapygians，Rome， 307
tar Cunnanght，Galivny．
Ibernia，Mibernia．
1 berus，Ebyo．
lbi－Gamin Pass，Kimalaya．
lbis，wond，Tantalus．
Iblis，Afohammedanism．
Iblis，Afoh
Ibs Pathta．Arabian Larg． \＆u Lit． 347.
Ibn Mayman，Almeric．
Ibn Yalisa，Arabiant Lang． EO Lit． 348.
Iho，Hicebo
Ice－knees，$\quad \mathrm{W} / \mathrm{hale}, 152$.
Iceland spar，Calcareous Star
1 chmusa，Sarfinin，Is．of．
l cica，（Susp．）
1co，（Supp．）
1 con Amlac，Abyssinia．
Iconium，Koriel？
1 cosium，sultanate of，Othman．
1 cononzo，bridge of ${ }_{z}$ bogota．
cononzo，bridge
I cos，Greece， 85.
Icos, Grecte， 85 ．
1 cricok．Fuph．）
lcricok，Ficricok（Suif
letis，Hishe，Isle of．
Idaho，U．S． 647 ，（Susfo．）
Ideality，Phrerolory， 515
ideographs，Kieroglyphics，361．
Ideology，Jdea．
Ide（r．）Trent．
Jdola tribus，specus，Ec Fallacy．
Jdumza，Edom．
Idzu，Cape，Simoda
ierne，IJibernia．
Iesi，Jesi（Supp．）
Ignis sacer，Kose．
ignoratio elenchi，Falliriy．
ilile，Eurg：
$\mathrm{I}_{\mathrm{j}} \mathrm{l}$ ，Amensterdant．
Ijssel，Y＇ssel．
ile de la Camargue，Bouches－ dis－Rhone．
Ileo－ciecal valve，Digestion， 5 G5． Ilerda，Lerida．
Ilex Paraguayensis，Nfate．
Ihavo，（Suspt．）
ili，K゙uldja．
lliac fossa，Alimentary Caual． Iliac passion，Ikeus．
lliad，Homer．
Ilissus，Aitticur．
Jlitz，Sertia， 63 r．
Ilkva，Oedientorg（Supp．）
111，Khin，Jias．
Iller（r．）Alps．
Illicer，Ormithology．
Illinois nut．Hickory
Jlen $1 r$ ，Saxe－Weimar－Eise－
nach．
Ilmenan，Saxe－lleimar－Eise－
Iloilo，Miagao．
＇Il Passatore，＇Bana＇i
Ilz．Bazィンin， 760 ．
1 mago，Insects， 591.
Imail，H＂cklosu．
Inıabura，Ibarra
Imhricaria，Sapotacea．
inihampoors，Sofala．
i moschi，（Supp．）
Impari－pinnate，Leaves．
impasto．Ground in Painting．
Imperial liquid，Cream of
Imphee，Sugarcane．
Imping，Falcorry： 229
Implacental，Mammalia．
Impoor，Eland．
Impoon．（Sups．）
Imposition of bands，Orders， 20ky．

1паја I＇alm，（SußA．） Inch Cape，Bell Rock． 1nchmarnoch，Buseshire． Incisors，Teeth， 329 ．
Incumbered Estates Courts， （Supp）．
Indal（r．），Suerter， 23 h． Indefatigable 1sle，Galapagos Sslands．
Indemanity，Bill of，Boll of Indemtnity．
Inderah，Anderab（Supp．）
Indian ass，Rhinoceros．
Indian Caucasus，HivduǍus／h． Indian cress，Trofarohum． Indian herıp，Hashish，Hemo． Indian jade，Nephrrife．
Indian millet，Durra．
Indian oil tree，Bassia． Indianola，Texas．
Indian ox，Zebs．
Indian physic，Gillerria．
Indian iohacco，Lobelia．
Indicator，Stcanrengine， 102 Indicollite，Tourmaline． Indicopleustes，Cosuas．
Indigo bird，（Sutp．） Individuality，P／arenology，516． Indmgiri，fiomel． Indrapura（r．），Simmatra． Induration，Softening and Muturatior．
Industrial exhibitions，Ex／si－ bitions（Sufp．）
Incluriates，establishments for， Dipsomaria（Supp．）， 500. Infantile remittent fever， W＇orm Fever．
Infected languages，I＇hilology＇， 485
Infundibula，Respiration， 208. Ingathering，feast of，Tabem
nacles，fenst of：
Ingleborough，forkshire．
Inglis（r．），Tasmantire，305，307． Ingluvies，Digestion， 567. Ingolf，Jceland， 506.
Ingres，J．D．A．（Sugb．）
Inguinal glands．Anal Clands． Inhabitiveness，frimerol． 524. Inhambanc，Sofaltr．
Injector，Giffard＇s，（Sutp．） Ink，marking，Silzer， 130. Inkpen Beacon，W＇ilishire，
Innakillv，Yorghal．
Innerhoden，Appenzell．
Innes，Thomas，（Supp．）
Innishannon，Baudon（Sufp．） Innissherkin（i．），Cork． Innocent I1．，Pope，Roger 11. Innuนs，Jfzatus．
Inoculation，Budding．
Inosin，or Inosite，Sugar， 887. Inselberg（mt．），Thuringer－ wald．
Insomnia，Slecp．
Inspissated juice，Extracts． inster，Pregel．
Insurance，post－office，Insur－ ance（Supp．）［（Wizpp．） Insumance－broker，Shitbroker Intendant－general，Staf． Intendant－general，Stall
Interamna，Teramo． Interamna，Teramo． Iaternuncio，Zesates，Nuncio． Iatestinal fever，Typhus os Typhoin Feaers． 615.
Intestinal juice，Digestion， 565 ． Intine，Vigetable Physiol． 735. Jntrados，Arch， 366 ．
Inverury，Aberdeenshire．
Inverury，Aberdeenshire．
Iovoice－book，book－kieçing，
Ionidimm，Violacea．
Ios，Grecce， 85.
Ipek，Petsh．
ipe－tobacco，Bignonzacca． ipo，Upas．
Ipswich，Queensland．
Ireton，lilenry，（Suph．）
Iriartea andicola，wax－paim． 1 ris（ r_{0} ），Anatolia， 226 ． Irmensenle，Y＇ggarasil．
Iron，Age of，Lirorze，Age of． Iron Island，Tenasserim．
Iron，wine of，Tartaric Acid，
Irod－bark trec，Eucalyptics．

Iron－froth，IIcmatise．
Iron（Gate，Serivis，6zo．
Iron－refining，Bessemer＇s Iro－ cess．
Iron－sand，Loadstone．
ironsides，Cromwell＇s，Cromr－ well．
Ironstone，Elack－band Iron－ stone．
Ironstone Mount，Tasmania， 306.
iroh－wood，Date Plum．
Irnn－wood，whitc，lianthoxy－ ham．
Irrationality of dispersion， Refraction．
Irritability of muscles，Tor－ icity，Muscular．
Irun，Spain， 14.
Is aac Angelus，Andronicus．
Isaac I1．Byzantine Empb．475．
I saacs River，Queenslund．
Isabella il Spain，（Supp．）
isabnormal lines，Isothermal Lines．
Isatis，Wond．
Ischys，FEsculafisus．
Isel，Drave．
Iser，Flanders，II＇est．
Iscr，Burzlau（Susp．）
Iscrine，Titanium．
Isgaur，Colckis．
ishak－ben－Soleiman，Arabian
Lang．\＆o Lit． $34^{8 .}$
Iskandere Scutari．
Iskelib，（Supp．）
Isker（r．），Tirkey， 586.
Islamabad，Cashmere．
Islampoor，Dacca．
Island of Desolation，ภer－ guelen＇s Land．
Islandshire，Shire．
Islebius，Agricola，Jolsn．
Isle of Bourbon Tea，Fram．
Isle of Serpents，Black Sea．
Isle Rnyal，Superior，Lakic．
Isles，Lords of the，（Supp．）
1 strail，Persia， 423 ．
Ismaili，Smez Camal（SusAp．）
Ismailis，（Supp．）
Ismid，Nicomedia．
Isogonic lines，Terrestrial
Magnetis：n， 371.
Isolating languages，rhilology， $485,484 \cdot$
Isonandra，Fasstronti（Supp．）
Isonza（r．），Austria， 568.
Israfil，Mohammedanism．
Issik－kul（l．），Semipalatinsk．
1ssoudun，fordre．
Issuant，Fessant．
Istaccihuat（met．），Mexico， 432 ．
Italian paste，Macaroui．
Italians，ancient，Rome， 307.
Italy，（Supp．）
Itaparica（i．），All Saints Eiay．
Itapicuru（r．），Eahia．
Itchen（ $r_{\text {r }}$ ），Southampton．
Ithon（r．），Radmors／hire．
Itri，（Simph：）
Itu，（Supp．）
Iturbide，Emp．of Mexico， （Supp．）
Itz（r．），Saxe－Coburs－Gotha．
Ivan Kalita，Russia， 385.
ivanovo，（Suft．）
Ivay，Parante．
ivel，Jiedfordshire．Ouse． 1 verdun（l．）．Nevfitublel．
Ivernia，Hibernia．
1 visan，Capiz．
1 wry，battle of，Henry $I \mathrm{~V}$ ．
（France）．
Ixodes and Ixodide，Tick．
Jzmid，Áicomeala．
Jahlonovy（mts．），／rkutsk．
Jacare，Alligator
Jacitara palm，（Supp．）
Jack，Pike．
Jackatallah，Ootacamurnd．
Jack－by－the－hedge，Alliaria．
Jackson，fugilism．
Jackson，Temmessce．
Jacobean style of architecture，
Renaissance．
Jacova，（Susp．）

Jafina peninsula，Ceytors， 737. Jagata，THrkestan， 583.
lagers，Chasseurs．
Jahnuvi $\left(r_{0}\right)$ Ganges， 614 ．
Jask（r．），Urad．
Jailum，Bijbahar．
Jaton（r．）．Cala tayud．
Jalun，Burndelcurad．
Jamaica，Long Jsland．
nmaicina，Andira
lames Isle，Calopagos 1 s．
Jamestown，Barbadoes．
Tamuri，Albanía．
Janiculus，Mons，and the Jani－
culum，Fome，322， 323.
Jankovatz，（Steppo．）
Jantra（r．），Tirnova．
apan earth，Catechu．
arama（r．）．Tagus．
Jarchi，אiashj．
Jardin des Plantes，Bobonic Garders．
Jargonelle，fear．
Jatool，Lazerstramia．
Jaroslaf，fiussia， 384.
Jar－ra－wamang．Baritak．
lasmine fire，Pyrotechuy，
Jason（i．），F＇alkhind Is．
Jatropha nuts，Physic－ntet．
Jâts，Purjiob，Sikits．
Jaulna，（Sutt．）
Juurn，Paragzay，rizer．
Java，（Supp．）
Javalon，Cuadiana．
Javorskij，尺ussian Lars．है

Lit．

Jaw－fall，Trismrus Niacers＇tum．
Jaworow，（Suspp．）
Jaxt，weckar．（Supp．）
Jazyges，Transylvatio
Iean laul，Richter．
Jebel Abad（3nts．），Persia，
Jchel－el－Bied，Blanco，Cape．
Jebel－er－rahme，Arafat Alf．
Jebel－esh－sherki，Lebanon， Anti．
Jeliel IJadnar，Ailos M／s．
Jebel Kacharin，Sinai．
Jebel MUsa，Sinar．
leddah，Fiddah．
Jefferson（ms＇），White Mis．
Jegani，Allania．
Jehovists，Pentateuch， $3^{8} 3$ ．
chroont，Fars．
Jcisk，（Supp．）
Jejunum，Alimenlary Canal．
Jellinghee $\left(r_{0}\right)$ ，Bengal，Gauges， $6: 5$.
Jelly－fish，Acalephe．
Jemnuingen，batile of，William，
Prince of Orange．
Jemtland，Sweders， 236
Jenibazar，Novibazer．
Jenil，Cranada，Spain
Jenner，Dr，Typhus and Ty
phosd Fevers，ons．
Jeres，Xeres（Supp．）
Jer－falcon，Gymfalcon．
Jericho＇s Ford，battle of，U．S 661.

Jerusalem oak，Chemopodiusm．
Jesi，（Supp．）
Jesses，Falconry，226， 227.
Jesuit＇s drops，Bersoin．
Jetce，Asclepiadacea．
Jethou，Yersey．
Jews＇apple，Eggoplatit．
Jew＇s ear，（Supp．）
jew＇s ear，（sump．
Jikadaze，（Supp．）
Jikadaze，
Jiloca，
（Suro．
Jimena，（Supp．）
Jinn．Gerit．
Joachim，Jos．（Suffe．）
Joachimsthal，（Sufp．）
Joannes Christians，Zabism， 329
loannes Eremita，Crassianus．
Joannina，Albania．
Jocaste，Gedipus．
Joe Miller＇s Jests，（Supto＇）
Joggs，Fougs．
Johannes，emperors，Fyass－
fine Empire，472．
John of Brienae，Byzantine
Empire， 47 ：

INDEX.

John of Bruges, Alrabaptists, 219.

Johnshaven, Kincardineshive.
Johnson, Andrew, (Supp.)
Johnsoniana, Anc.
John the Almoner, Cherysostomz.
John Tzimiskes, Byzantine
Empive, 471.
Ohn XXIII., Pope, Schism,
Western.
Jointed pipewort, Eriocaulacea.
Joints, resection or excision of, Resection of Foints.
J oints, stiffiness in, Aukylosis.
Jokgrin, Zabern.
Joliffes, Africa, 70.
Jonathan ben Uzziel, Targums.
Jones, Owen, Welsh Lang. \&o Lit. 137
Jongleur, Trowbadour.
Jonzac, Charente-Itiférictere.
Joonaghur, (Susp.)
Jorat, Mont, Vard.
Jordanes, Fornandes.
Jordshani, Arabian Lang. \&o Lit. 349.
Josa, Tarifa.
Jōtuns, Giarts and Drearfs, 74 s .
Joubert, Glass, 783 .
Jouffroy, Marquis de, Steamnavigation.
Journal, Book-keeping, 227 .
Jovinus, Valentinianus.
Jowaree, Durra.
Juana, Cиba.
Juan Mavuel, Spamish Lanc. \& Lit. 19.
Juarez, Benito, (Susp.)
Juba, IIruscat.
Jubal, or Jublah, Strait of, Red Sea.
Jubeil, Byblos.
Jublanik, Bosmia.
Juca, Manioc.
Juca, Manioc.
Judcock, Suipe.
Juggs, Fougs.
Jugulars, Circulation, 47.
Jujuy, ($S u p p$.)
Julapur, (Susp.)
Julia, (Supp.)
Julian, Count, Roderic.
Jiana, Prures
Julian Period, Period.
Julich, (Supp.)
Juliers, Fubficis (Suspp.)
Jumarts, Hybrid.
Jumper, Blasting.
Jumping hare, (Supp.)
Jumping mouse, Deernorse.
Juncaginex, Alismacec.
Juncus, R iush.
Jnne-berr; ; Antelanctier.
Jungferasprung (m4.), Saxony, $513{ }^{5}$.
Jungle, (Supp.)
Jungly gau, (Supp.)
Jungmann, Bohestia, x go.
Juniata ($r_{\text {. }}$), Sresquelzanua.
Junior optime, Wrangier.
Junjera, Concan.
Jupiter, Planets.
Jupiter, Planets.
Jurassic, Oolite.
Jurat, Affiavit.
Jurnut, Earth-nut.
Jurua (r_{-}), Amazon.
Justicia, Acanthus.
Justin II. Byz. Emfire, 470.
Justinian II. Byz. Empire, 470 .
Jusuf-ben-Jakub, Alforso 1 .
Jusur-ben-Jakub, Al
Jutay (r.), Antazon.
Jutes, Arglo-Sarons, 261 .
Juts, Sinde.
Jyhua (r_{0}), Zeithan,
Kaab-ben-Zohair, Arabian Lang. Eo Lit. 347.
Kabinda, Loango.
Kabiri, Phacricin, 494.
Kabus, Persian Lats. \& Lit. 427.
Kabyles, Berbers.
Kachugsk, Lenk.

Kadi-kane, Millet.
Kadikōi, Coustantinople.
Kadjak Isles, Russia, 378 . Kadoe, fava (Suph.), 580. Kadom, (Swho.)
Kæmpreria pandurata, Turo
meric.
Kafu, Nile.
Kahlamba (mts.), Zulnlant.
Kahoolani, Sandzerid Is.
Kaid, Sheep-lowse.
Kaifung-fu, Honen
Kaila, Irdus.
Kailasa, Temple of, Ellora. Kaïmakans, Turkey, 587. Kaisarijeh, Auatolia, 226. Kaiserstuhl, Black Forest. Kakapo, (Supp.)
Kakaterra iree, Dacryditur.
Kakerlac, Cockroach.
Kakerlaken, Albinos.
Kaki, Date Plun.
Kalabagh (mts.), Salt Range.
Kalagwe (2.), Zanbesi.
Kalambi (nt.), Kaffraria.
Kalambu, Cólombo.
Kalamita, Bay of, Alma.
Kalany-ganga, Colombo.
Kaldera, Screw Pine.
Kalì. Úma?
Kalihara Desert, Namaqua-
Kali-mas (r.), Surabaya
Kalimazoo, Mfichigar.
Kalı Nuddi (r.), Kusunoj (Supp.)
Kalipani, Ghogra.
Kalouga (r.), Borodino. Kamburg, Saxe-Meiningers. Kamehameha 1., II., \&c.
Sandzuich Islands.
Kamela, Vermifuges.
Kamtchadales, Kimitchatka.
Kanarak, Cuttack.
Kandalak, Gulf of, White Sea.
Kandyans, Ceylor, 738 .
Kangaroo apple, (Supp.)
Kangaroo rat, Potoroo.
Kangaroo vine, Vitacee.
Kang-tung, China, 8ı7.
Kanizsa, (Supp.)
Kankari, (Supp.)
Kanowry, Bomtr.
Kanpoo, Hang-Chow-Foo.
Kan-su. China, 8 I7.
Kapunda, South Arstralia.
Karadagh, Mostenegro.
Karague, Albert V'yanza
(Supp.)
Kara Kerman, Babatag.
Kara-kool, Bothrra.
Karakorum (mits.) Tibet.
Kara-kum, Ǩizil-kun.
Karasch, Banat.
Kara See, Russia, 377. Karatchi, Sinde.
Karlsburg, Carlsburg.
Karmathians, (Supp.)
Karmoot, Silkrida.
Karmöe, Carmōé.
Karoefa, Papua, 250.
Karotcha, Korotcha (Supp.)
Kart, J. A, (Supp.)
Karshi, (Swpp.)
Karshn (r.), Shitister.
Kasanlik, (Suph.)
Knsbec ($m t$.), Sere\%.
Kasbin, Persia, 422.
Käsenburg, Schzuaraburg.
Kashin, (Supp.)
Kasipoor, Kım,
Kassu, Catech\%.
Kastron, Autiparos.
Katahdin (mit.), IVhite MIts.
Katchi, Tibet.
Katherinenberge, R.zdom.
Katif, Wahabis, 42
Katschalinskala, D:zbor'/sa,
Katskill (mts.), $N: z \cup$ Jork,
state.
Kattegat, Cattegat.
Kattywar, Guzirat.
Katune, Ob.
Katunga, (Susp.)
Katunsk (mits.), Altai JIts.
($S 7 \% \phi \delta$.)
Kaui, Sanaivich Islands.
Kava, Aこ'a.

Kaye, Bishop, Sabbath, 403.
Kayinga (l.), Victoria Lake. Kayserling, Count, Russia,382. Kazbeck (mt.), Ti/Ris.
Kazembe, Cazenbe.
Kazvin, Casbirt.
Kea, Cang:
Keang-se, China, 817.
Keang-su, Chima, 817.
Kearsage, the (ship), Alabanma ($S u p p_{0}$), 380 .
Keble, John, (Supp.)
Kedah, Quedich (Suts.)
Kedirie (r.), Suraürya,
Kedron, Kidron.
Keedah, Quedah (Susp.)
Keeper (mit), Tipperary.
Kee-wee-naw, Superior, Lake.
Keffing, Molncias.
Kefr Cana, Cana of Gatile.
Keg.fig, Date Pltunt.
Keilberg, Eragebirge.
Keith, Banffshive.
Keith, Marshal, (Suph.)
Keitloa, Rhinoceros.
Kelænonesia, Polynesia, 659.
Keller, Engraving, 70.
Kellet Straits, Melville I.
Kelp ware, Wrack.
Kelt, Salmor, 446.
Kemi, Egypt.
Kemi, Lapland.
Kempen, (Sistó)
Kempenfeldt, Admiral, Royal

George.

Ken, Cane.

Ken (!.), Dee
Kenia, MFoon, Moratains of.
Kenmare Bay, Kerry.
Kennet (r .) , Themes.
Kenneth, Scotlaud, 555, 556.
Kenosha, Wiscousin.
Kent's Cavern or Hole, (Suhó.)
Kentucky coffee tree, Gym-
nocladus.
Kenwyn (r.) Truero
Keppel, Falklond Sslards.
Keppel Bay, Queenslunut.
Keptchak, Kiptchak.
Reratose, Sponge.
Kerka, Dalmatia
Kerkhah, Persia, 419.
Kerki, (Suph.)
Kern, J. C. (Supp.)
Kernwald, Untervalden.
Kerrera, Hebrides.
Kerry Head, Shantron. Kershope Water, Border. Kertch, Surait of, lenikale
Strait.
Keswick (l.), Derwentwater. Ket, Ob.
Ketch, Jack, Executioner,
Tyburn.
Ketly, Shropshire
Key, Moluccas.
Key Islands, (Supp.)
Keys, Caicos.
Keys, relative, Relative Ǩe'g's.
Keystone, Arcle, 366.
Kezanlik, K"asanlik (Swpp.)
Khabs, Cabes.
Khafaloun, (Suspós)
Khafren, Egyots, 789.
Kham, Tibet.
Khamsin, Esy.pt, 7^{85}
Shan, Ciarazansarai
Khampur, (Srpp.)
Khapalu, K"heffoloun (Susp.)
Kharfah, 11 a/labis, 42.
Kassou-Kaye, K゙haya.
Khât, Catha (Supp.)
Khaurezm, Khiza.
Khnum, Egypt, 7^{87}.
Khoi, (Supp.).
Khond, Tami!.
Khouds, Judia, 539, Orissa.
Khopah, Trebizond.
Khoper (r.), Don, Penta.
Khor, Tibet.
Khorz, Samos
Khaten, Turkestan, 585 .
Khudavenkiar, Anatolia, 227.
Khur, Dziggethai.
Khurja, (Supp.)
Kia-ling (r.) 1 -uns-tze-kicng.
Kiang, Dziggetrai.
Kichenev, Kishenau (Sutp.)

Kidwelly, Caermarthenshire.
Kiery, simarantlo.
Kiesh, Cowe Parsnis
Kikinda, (Supp.)
Kilauea (i.), America, 194, Sandwich Vslands.
Kilbimie, Argyleshive.
Kilbrennan Sound, Srran.
Kildrum, Waterford.
Kileh-shergat, Assyria, 498.
Kilimane, Zambesi.
Killaloe, Clare.
Killington Peak, Afpala-
chians, 32 I .
Killybegs, Donegal.
Kilmichael Point, Wexford.
Kimair (r.), Troy.
Kimbri, Cimbri.
Kimmeridge coal, Shale.
Kimpolung, ($S r_{i} p_{\text {p }}$)
Kinchow, (Supp.)
King, explorer, Australả
Exploratious (Supp.). 410.
Kingarth, Vitrified Fort.
King-bird, Tyrant Shrike.
King Charles's South Land,
Tierra del Fnego.
King-duck, Eider.
King-ki-cao, Corea.
King of the herrings: Shod.
King's hood, Rumirantia.
King's Island, Bengal, Bay of.
King's Island, Limerick.
Kingtang, Niugpo.
King vulture, Conzior
King William's Town, Kif:
fraria, Britis/t.
King-wood, (Supp.)
Kini Balu, Bormeo.
Kino, Jamaica, Seaside Grape.
Kinphu, Corea.
Kin-te-Ching, (Suppo.
Kintore, Aberdeenshire.
Kinzig (r.), Black Forest.
Kipper, Salnon, 446.
Kippure (mt.), Dublin.
Kirchheim, (Supp.)
Kirensk, Irkutsh.
Kiriaghuna, Asclepioulacea.
Kirkdale Cavern, Caves.
Kirk-kilissia, (SuAp.)
Kirkton, Creditont.
Kirtynassa, Ganges, 614.
Kishenau, (Sutp.)
Kishengunga, Mazufuralout (Supp.)
Kishon, Carmel.
Kish-Tshai, Nuclue (Susp.)
Kisil (r.), Ural.
Kisil-1rmak(r.), Anatoliz, 226 . Kisky Thomas nut, Hickory.
Kissavo, Ossa.
Kitchen middens,
Recers:
Period.
Kitjap, Soy.
Kitta, Magpie.
Kittalinnies, Athalachiars,
Kizil-Uzen, Azerbijan.
Klar (r.), Wener Lake.
Klaus Narr, Cowrt-fool.
Kleene boc, (Supp.)
Klek (mt.), Dinaric Alps.
Klephts, Armatoles.
Klettgau, Schaftrazsers.
Klip (r.), ACtaz?
Klip-dasse, Datman.
Klipspriager, (Sugpo)
Kliuchi, Zlatoust.
Kliutschewsk, Volcanoes.
Klodnitz, Oider.
K'loster-Erbacher, Khine-zeitue.
Klutha, Otago.
Kneading by machinery, (Supp.)
Knees, broken, Broken Kinees.
Kneph, Ammon.
Kniashnio, Russian Lang.
night-heads, Shisurilating 684.

Knock (n t.), Banffikire.
Knockmahon, Haterford
Knockmeledown (mt.), Tip-
perary.
Knot, bird, (Susp.)
Knot of Cusco and Pasco,

INDEX．

Kınw－nothing party，U．S．6is8．
Knox＇s Isle，Gilbert／shands．
Kny：sna Inlet，Carte of Goort Hope．
Koblo（r．），Altai Mis（Supp．）
Kobrin，（Supp．）
Kocher（ r ），Veckar．
Kochia，Eeliedere．
Kocpang，Fimor．
Kocti，Bornes．
Kohik，Bolhara．
Ko－ko－nor fibc
Kokumoil，Cachm Oil（Susp．） Kolberg，Colberg．
Koleah，Algeriar．${ }^{2} 41$.
Kolerum，batile，Tippoo Suhib．
Koles，India， 539.
Kolguev，Kintgwe
Kolubara（r．），Servia，639．
Koluri，Salamis．
Komort，Comorn．
Komotapur，
（SuAp．）
Komul，Turkestan， $5^{8} 5$ ．
Komuldsina，Ghtumarijina．
Konaic（r．），Eralsmaputriz．
Konevetz，Ladegit．
Kongsberg，Silver， 730.
Kongun，Cougoon（Supp．）
Königgrätz，battle，Gcrmany
（Strpp．）， 534
Künigsborn，salt－works of， ไnna．
Künigsmark，Countess A． Saxe，Connt of．
Königstein（mt．），Sa．enny，5ı3．
Künigswarth，（Sufp．）
Koolohamba，Gorillts．
Koombar，Gmelina（Supp．）
Kooth，Putciask．
Köping，Maclar，L
Köprili，Moh．Ot．Én β ． 49 ． Koree（r．），Ajumer．
Korkilo，Cape，Cos．
Kormachiti，Cape，Cyprrs． Koro，Fiji lslands．
Konrona，Carlstadt．
Karas（r．），Theiss．
Korotchn，（Sufp－）
Kosala，Oude．
Kosciusko（mit．），N：S．Hiales． Kosel，Oder．
Kosi，Little（r．），Purneah． Ǩosila（r．），Almora（Supp．） Kosmos，Chaos．
Kosso，Cusso．
Kotelnoi，New Siberiz．
KBthen，Cobluen（Susp．）
Kotorosl，Taroslav
Kotoura，K／hoi（Supp．）
Kottagherry，Ootacamurt．
Kottbus，Cottbus．
K゙otzcbue＇s Sound，Americn， Kussiar．
Kowek，Air－tab（Supp．）
Kowno honcy，Lime（Linder）．
Kowric，Кィィムグ．
Krafla，lecland， 505.
Krakov，Cracoue．
Krakowska（r）．Fanuoroue （Sups．）
Kral，Padishah．
Krame，Booth．
Kranen，Peter，ICudel．
Kranichfeld，Saxe－1／einingen．
Krapina，（Supp．）
Krasnoi－yar，Caspian Sect
Kremsir，（Suph）
Kriegsberg，battle，
Nisch （Sufb．）
Kris，（Suff．）
Kronenberg，（Supf）
Krotalon，Castancts．
Krückau，Elmshorn．
Krupp＇s steel，（Supp．）
Krusenstern，Chev．von，（Sußp．）
Krylov，J．A．（Suppo）
Kuang－nam，Qwang－nan （Suph：）
Kuban（r．），Caucrasus．
Kudamba，Cadamha（Subp．）
Kuilenburg，Culenborz．
Kukolnik，Nestor，Russian Lang \＆Lit．
Kulpa（r．），Carmiola．
Kuluglis，Biarbary．
Kunawur，Russafir（Supp．）
Kund，Tausil．

Kunduz，Åmberab（Suph）．）
Kungara，Subiut．
Kunnoj，（Supp．）
Kupperwunj，（Supt．）
Kurland，Courlind．
Kurnal，（SupA．）
Kurnali，
Ghogra．
Kurnalli，Ghogra．
Kurrumfuli，Chittagong．
Kurshi，Bokhara．
Kurumnassa，Gunges， 634
Kush，Ethiopia．
Kusha，Abyssinia．
Kusip，Ozanthos．
Kuti Lanıa，Berneo．
Kutshouk－K゙ainardji，Otha－
Man Emfiri， 149.
Kuvan－Daria，Favartes
Kuyp，Cayh，耳acob Ger．
Kvals（i），Tromsoe．
Kwang－se，China，8：7．
Kwan－lun，Кँзел－lun．
Kwei－chow，China， 817.
Kyabuca，Kiaboucca．
Kyanite，Cyanilc．
Kyfhausen，Schevarzburg－ Rudolstadt．
Ky Gariep（r．），Vaal（r．）．
Kyle，Ayrshire．
Kyleakin，Skye．
Kyle Rhea，Shye．
Kyll．Moselle
Kyrte，John，Ress，Man of． Kythnos，Archipelusgo．
Laach，Rhenish Architecture
Labedoyère，Count de，Supp． La［Belle Alliance，Unterloo Lablache，L．（Supp．）
La Bosse du Dromedaire， Hont Elane．
Labrador tea，Ledum．
Lahurie，E．Compréssed－air Bath．
Labyrinth，Ear； 730
Labyrinthibranchida，Ana－ basidiz．
Lacedamon，Sparia．
La Chatre，Indore．
Lachlan（ $\%$ ）N．S．Wales
Laconia，Morea，Spartit．
Lacroix，S．Fi．（Supp．）
La Crosse，（Supp．）
Lactine，lactose，Sugar， 187.
Lactometer，Galaciomeier． Ladhia，Ghogra．
Ladies＇traces，Canary Grass． La Digne（i．），Segchelles Is． Ladislius I．Hangary， 460 ． Lady fern，（Sußp．）
Lady＇s fingers，र́jducy－vetik．
Lady＇s smock．Cress．
Laens，Sweiten， 237.
Laertes，Ulysses．
Lavo－racemic acid，Tartaric Acill， 304.
Lafayctte（met．），Sew／Vimp－ shive，White Mts．
La Fourche（r．），H ashila． Lagan（r．），Antrim，Down． Lagenaria，Bottle－gourd． Lagidium，Chinchillar． Lago di Salpi，Manfredoniz． Lagos，（Suipp．）
Lagostomus，Chinchilliz． Lagotis，Chinchilla． La Haye Sainte，Wirterloo． Lahn，Nassan．
La Ilogue，battle，Tourville La lsoletta，Cartagena． Laisse（ $r_{\text {．}}$ ），Savoy．
Lakaan（mi），Timor．
Lakahia，Pafurz， 250.
Lalita－I＇atan，（SMopo）
Lally－Tolendal，（Supp．）
Lalo，Adarsomia．
Lamar，Bolivia．
La Marmolata（mt．），Alps．
Lambasa．Barbary．
Lambay Isle，Drblis．
Lambel，Lnbel（her．）．
Lambert＇s nut，Wazel．
Lambeyequé，（Srph．）
Lambourn，Berkshire．
Lambrequin，Mantling．
Lamb＇s lettuce，Com SaLud
Jaminitis，Founder．
Lammer Law，Lamentermoors．
Lamnidx，Shark．

Lamo．Muscat
Lamolle（ r ．），V＇rmont
Lampedusa，（Susp．）
lampern，Lamprey．
Lampeter，Cartigansiirr．
Lampeter Brethren，Alsupe－ mone．
Lancastrians，Fidentrd／b．
lancret，Painting， 195.
Landau，Coach．
landau（\％．），Aral
Land－claims，Railiuays， 86.
Landed Estates Court，$/ N$－
cumbered Estintes（Supp．）
Landerneau，（Suß今．）
Landskrona，（Supp．）
Landsturm，Landivehr．
Lanceend，Lompton（Supp．）
Langdale pike，＂estmorehard．
Langdon Hill．Eissex．
Langenbeck，B．von，（Supp．）
L．angnau，（Susp．）
Langone，Lefoiler．
Language，origin of，Phi－ lology， 483 ．
Janguage，science of，lhis－ 6logy＇， 480.
Langue d＇oui or d＇oil，Lan－ suctoc．
L．ansch，Ifeliacere．
Lantana，l＇erbenacect．
Lanuvium，Reme， 308.
Lap．Spisstive，40， 47
La Palisse，Alifer
Lap－dog，（Supp．）
Lapérouse，Count de．（Supp．） Lapis ollaris，Potstone
S．ap－jointed，Clincher－built． La Rabitá，Abuñol（Supp．） Larantooka，Solor lslornds．
Larat（i．）．Timor－laut．
Larghetto，Largo．
Largo Law，Fifcshire．
Lariat，Lasso．
Latk（r．），Cambritgestire．
Larkins＇s lamp，Magnesiuns （Supp．）
Larme，Autrint．
Iarnica，（Supp．）
Laryogismus stridulus，Thy－ mus Gland．
Laryngotonys，Fracheotomy Las Lagrimas，Mirlusto． J．a Soufrière，Guadeloupc． I assell，Telescope， 344. Lasting，Tammy．
latent heat，Rectt， 280 ．
1．ath，Riding．
I．athe，Batfers．
I．atium，Latini，Rome， 308.
Latooka．Albert N＇yanza （Supb．）
La Tour－du－Pin，／sire
Latreia，Image－zorshio．
Latreille，P．A．（Susp．）
1．a Trezza Bay，Cabunia． Ina Trobe（r．），İictoria， 785. Latter－day Saints，Mormons． fauch（r），Colmar
I．auder（ r ），fiervichshire． lauderdale，Eiemuickshire． 1－aucnhurg．（Supp．）
Laufenbers，Rhine．
Launch，War Services（Swsis．）
laune（ r ），Kerry
Lanny（ r ．），Clogher．
Petrarca
Laurel－cherry，Cherry－laurel． Laurel Ridge（mis．），＇irgintia． Laurencekirk，Nincarivitesh． Laurentum，Rome， 308.
Lauria，（Suph．）
Laurium，Grefce， 79.
Laurvig，（Supp．）
L．auter（r．），Bavaria， 760. Lauter（r．），Bazaria，
Lauterbrunnen，Bern．
Lautern，Kasershoutern：
LAAutunois，Saôre－Cl－Loire．
La Villemarque，Vicomte de （Suph．）
L．avinium，Rome， 308. Lawajang，Solor／sherds． Lawn，Bleaching，${ }^{18} 8$.
Law of nature and nations， Proferedorf：
，awrence，Kiansas
Lawrence，Sir W．（Suph．）

Lawrence，St．．Wontrical．
Lawsonia incrmis，A／hysh，
l－axatives，I＇ug＇atizes．
Lay，Batten．
1．ay－abbot，Abhot．
Layamon，（supp）
Layton－cum－Warbreck，RLitw：
pool（Swip．）
Lazaretto Creek，Tyber．
1．azarists，Paul，Jincent ds．
lazariych．Bethary：
I azarus（is．），Ladrones．
l．azi and Lazistan，Trebizond． Lazy beds，Potato．
Lea，Esser．
L．each，Entomology．
Leach（ r_{i} ），Thiswes
Leader（r．），Beravikshire．
Lead－glance，Giafena：
Leadhills，Lanarkshire
Leaf（r），Hisciagomht．
Leaf－woods．Conifer．r．
League of Poor Conrad，Pcizs
ant War．
Leambye（r．），Zambesi．
Lemotong，Minhtchuria．
Leaping fislı，（Supp．）
Learmount，＇1homas， $\mathrm{flizmer}$,

Thomas ther．

Leather－cloth，（Supp．）
Leather substitute，Leatior－ cloth（Supp．）
Leavenworth，Kipusas．
Le Bas，E＂usrazting，6g．
I．e Blane，fralre
Leblane，Soda， 798.
lebrija，（Supp．）
Lec，lanilla．
L．ecanora，Archil．
1．ecco（l：i）Comro，Lake of．
Lech（r．），Dambe．
1．Ecluse，Botany， 266.
Lectionary，（．5usp．）
l．ectoure，Armagnac．
Leda（r．），Leer（Supp
Leddon，berkshare．
Ledger，Book－Kcéping， 227.
Ledyard，traveller，ifytica， 66.
Lee（ r ．），Tralce
J．ceambye（ r ．）， 1 frica， 66.
Leecba（ r ．），Zambesi．
1．eer，（Sush．）
Left－handed marriage，Nfor：
granatic Narringe．
Leg，l＇amilla．
Leegacy，residuary，Resid／uary Legacy．
Legatec，universal，U゙uizersal Legatce．
Iegend，Numismatics，z．
1．egendrc（i．，Dumpier Archi－． ficlago．
Leeger，John，Wrathenses．
Legitimate and illegitimate，
Parent and Child．
J．egnago，（Supp．）
Legray，Photographiy， 509.
L．chigh（r．），Pcomsylvariat．
Lehua，Sandsuich 1 slamts． Lecicester，Earls of，Stereir．b of England，Lort Hight． Lechhardt，Austrittion E．r．
flonations（Supp．）， 409 Leine（r．），Hamoser． Leiocome，Fritish Gurn．
1．eipa，（Suppo）
leire Leicester．
I．eister，Fishing（Supt．）
Leitha Hills，instria，567．
Leith Hill，Surres：
I．eith，Water of，Eliniumeshish．
Leitmeritz，（Sups．）
Leitomischl，（Supp．
Lek，Holhum，Sowth，Rhime．
Le－king，Chirese Empire， 818
Lemberg（mit．），Wäriembers． Lemgo，Lifpe．
Lemma，Vertelirata， 767.
l．e Nain，P＇ainting，r95．
Lenitive electuary，Semba．
Lennep，（SuAp．）
Lennox，Dumbartonshire．
Lennox，Earls and Dukes of， Stewart Familj；224．
Lens，（Supp．）
Lenten mandates，Pastoral

INDEX

Lemtulus，Spartacrss． Leal．，IV．，V．，VI．Byzantine Empire，470， 471.
Leo Africanus，Africa， 65.
Leon，Luiz de，Sparish Lang． \＆Lit． 20.
Leonde，Rcvuma（Supp．）
Leonine City，Rome， 323 ．
Leonisti，Waldenses．
Leopoldinia，Chiquichiqui．
Lepanto，Gulf of，Coristh， Grulfof．
Lepidolite，Mitict．
Lepidostrobus，$(S r o p p$.
Leporides，Hybrid．
Leptidæ and Leptus，Tick．
Leptis，Barbary．
Le Puy，$P_{z u}, L_{l}$ ．
Lercara de＇Freddi，（Supp．）
Lernean Marsh，Argolis．
Le Rocher d＇Aaron，St incalo．
Lescon，Najurre
Les Saintes，Guadeloupe．
Lesse（r．），Vantur．
Lesseps，M．de，Suez，（Supp．）
Lesson，（Supp．）
Lestocq，Elizabet／s Petrozna．
L＇Estrange，H．Sabbath， 402.
Lestris，Skura．
Letter－book，Book－keepins．
Letter－book，Book－keen？
Lettran，Lecteris．
Letters－patent，Letters．
Leuckart，Tupeworni， 294, Trichina．
Leucœethiopes，and leucopathy or leucosis，Albinas
Leucorrhoea，（Supp．）
Leucosia，Lefkosia．
Leukœmia，Leucocythemia．
Leutschau，（Szoh．）
Leuze，（Supp．）
Le Vaillant，Fr．（Stopp．）
Levanter，Meditcrranears Sea．
Levator ani，Auzs（Supp．）
Levellers，Whiteboy．
Leven（r．），Darmbartoushire．
Leven（r．），Lancashire．
Leven（r．），Tasmauia， 306.
Leveson Gower，Ellesmere．
Levico，（Supp．）
Levisticum，Unbellifera．
Lewanda，Trssion Lang．\＆ Lit．
Lewis，Danfier Archibelago．
Lewis（r．），Washingtons（ter ritory）
Lewis，Ch．Bookbindirg
Lewis＇s Fork，Suake Rizer．
Lex Hortensia，Rome， 313°
Lex Julia，Stontrtuary Laves．
Ley，John，Sabbath，foz．
Leyden，John，（Supp．）
Leyte，Philippine Islands．
Ley－Timor，Molucats．
Lez，Hernult．
L＇hombre，Quadrille
Lhoughor，Caermarthenshire
Li^{i}（Supp．）
Liakhoff Islands，Siberia， 702.
Liaou，Ner6－Churarsg（Supp．）
Libertines，Calvin， 525 ．
Libra，As．
Libri－Carrucci，（Supts．）
Licata，Alticata（Supp．）
Licentiate，Orders，Holy．
Lichen，Prickly Hilat．
Lichen starch，Iceland Moss． Liche－wache，W＇ake．
Lichtenberg，Γ／henishi Pressic．
Lichtenstein（trav．），Africa，
66.

Licinian Law，Agrarian Iazu．
Licking（r．），Rentrcliv．
Liddel（r．），Cheviot Hills．
Liebfravenmilch，Worms
（torert）．
Liehig＇s condenser，Retort．
Liebig＇s extract，Soup．
Liebig＇s soup for children， Sonp．
Liedertafel，Vanderille．
Lienz，Tyrol．
Life－line，Life－prescraces．
Life mortars and rockets，
（Suph．）
Life－rocket department，（Suß $\beta_{\text {．}}$ ）

Life－shot，bolt，\＆c． Mortars，sec．（Supp．） Liffey，Kildare
Ligament，Bivalve Shells．
Light，undulatory theory of， Undula tory Theory of Light． Lighting of beacons and buoys at sea，（ $5 \pi p p$ ．）
Lightning，accidents from， （Supp．）
Lightning－meal， Lycopodizcece． Lign aloes，Alocs Wood．
Lilienstein（mit．），Sarary． 513. Lilienstein（mit．），Saxany＇． 513.
Lily，Guernsey，Ammrrilidese． Lily，Guernsey，Amarylidides．
Lima（r．），Entre Douro Lima r．）
Minho．
Limassol，Cyprus．
Limbara（mits．），Sardimia I ． Limber，Shipbuilding．684．
Limbs，artificial，Artificial Limbs（Supp．）
Lime－ball light，Drammond Light．
Limestone shales，lower， Carboniferous System． Limmat（r．），Alps，Zuirich． Limne，Hy the（Supp．） Limousin，Fravice， 469. Limoux，（Supp．）
Limacre，Medicinc，His．of，386．
Linacre，Medzcinc，His．of，386． Linares，（Stcpp．）
Linaria，Tood－fia．x．
Lincoln College，Oxfd．（Supp．） Lindisfarne，Holy Island． Lindsay，Famaily of，（Suph．） Lines，fishing，Angling， 256. Ling，Heatt．
Lingavats，Saizas．
Lingga（is．），Rioniv．
Linguagrussa，（Supp．）
Lingual bone，Torigze
Lingua Romana rustica， Ramanic Langrages． Linguetta，Cape，Albantia， 104. Lingula，（Supp．） Links，Golf．
Linnhe（l．），Argyleshire． Linoleum，$(S u z p p$. Linth，
Linton，Cambridgestive．
Lion monkey，little，Tantarin． Lipalula，Oori．
I．iparis vulgaris，Sucking Fish． h．apla，Alaysia．
I．ippstadt，（Sxpp．）
Liquation，Tin， 449
Liquidation，Foint－stock Coy
Liquidation，${ }^{\text {Linp．}}$
Lismore，IHaterford．
Lismore，Dean of，his book，
Grelic Lang．Eo Lit．
Lissum，Cable．
Lithang，Tibet．
Litholius，Centikede
Litho－fracteur，Nitro－glycer－ ine（Supp．）
Lithomancy，Divinatior．
＇Little Go，Cambridge U゙uで＇
Little Snake（i，），Anguillz．
Littorina，Periwimkle．
Littré，M．P．E．（Supp．）
Livas，Trerkey， 587.
Liver－rock，Qwary．
Liverworts，Hepatica．
Livingston，Ed．（Susp．）
Livingston，R．R．（Supp．）
Lixurl，（Supp．）
Ljungan，Swedert， 236.
Ljusne（r．），Swedicu， 236.
Llandeilo－vawr，Caerntar－
Llandeilo rocts，silur focks． Llandovery，Cacmartheush． Llandovery rocks，Silur Racks． Llanerch－y－medd，Anglesey． Llangefni，Anglesey． Llantwst，Denbighshire． Llerena，（Sucpp．） Llobregat，Catalonia． Lloyd＇s Bonds．（Supp．） Llumayor，（Supp．）
Loading，Tontine． Loapula（ r．2 ，Zambesi． Löhau，（Sukp．）
Loblolly Bay．Gordonia．
Lobolobo，Violacea．

Lobos（is．），（Supp．）
Lobositz battle of，
I＇ears＇ V＇ar $^{\prime} 636$.
Lob－worm，Lug－wornt．
Locality，Phrenology， 516 ． Locarno，Ticino．
Lochaber，Inverness－shire． Lochan－Eilean，Craumoges， 305. Lochar．Dumfriesshire．
Lochgilphead，Argyleshire．
Lochindorb，Crantoges， 305. Loch Lochy，Calct．Camal． Lochmaben，Dumfriesshive． Loch Muick，Balmoral． Loch－na－gar，Aberdeenshire． Loch－na－Keal，Mull． Lochy（r．），Inverness－stirc． Lochy（r．），Tay．
Locofoco，Resnblicanz
Locomotive，Railuays， 80.
Locust（r．），Black Warrior．
Locusta，Lobster．
Locust－bean，Carob．
Loddon（ r ．），Thames．
Lodomeria，Galicia，Austrian．
Lodz，（Supp．）
Loewy，Sme．
Logan，Queersland．
Logan stones，Corrizuall，तock－ ing Stanes．
Logcock，Voodpecker．
Log－hut，Hut．
Logon（r．），Begharmi．
Lohri，Rovel．
Lokao，Indiga．
Lolland，Laaloud？
Loll Bazaar，（Supp．）
Loma（mt．），Niger．
Lombarco－Venetian Kingdom，
Venice， 754.
Lomnitz，Carpathian Ifts．
Lomond（mts．），Fi／fishire，
Kinross－shire．
London pride，Saxifrage．
London rocket，Hedge－mizst－ ard．
Long－beard，Eromeliacea．
Long Bird（i．），Bermudas．
Long Forties，Buchan－Niess．
Long Hope，Hoy．
Long Island，Bakamas．
Longobardi，Lombards．
Long－sight，Sight，Defects of． Longton，（Supp．）
Longue $(i$.$) ，Seychelles Is．$
Longueville，Duchesse de， Rambowillet．
Long－wall，Minitg．
Lonneker，Oweryssel．
Loon，Diver．
Loopers，Caterpillar．
Loop Head，Shennons
Lope de Rueda，Spanish Lang．EN Lit． 20.
Lopez，Paragtayy，258．
Lopez，Cape，Guinea，Girlf of．
Lopez，Gen．Maximiliar （Supp）
Lophiodon，Tapir．
Lophophanes，Tit．
Lophorina，Bird of Caradise．
Lorca，Miturcie．
Lord Howe＇s Isl．Society Is．
Lord of Misrule，Revels，
Blaster of the
Lords of Erection，Te：inds．
Lord＇s Prayer，Pater－noster．
Loreley，Sircus．
Lorenco Marquez，Sofirla．
Loricata，Reptiles， 197.
L＇Orient，Morbihan
Lorn，Argyleshize．
Lorn，Lords of，Stemart
Fatmity， 126 ．
Los Pastos，Ardes， 239.
Los Pastos，－iudes， 239.
Los Pinos，Cuba
Losse，Gers．
Los Serranos，Tatagonia．
Lossie，Elginshire．
Losva，Perm．
Lot（r．），Villencwば a゙ Agen．
Lota，Burbot．
Lotharius I．Carlovingians．
Loudon，Marshal，Seven
Years＇War， 637.

Loudun，Vicme．
Loughrigg Fell，Westmore－
land．
Louis II．，V．Carloviryious． Louis VI．，VII．，VIII．，X．
Capetian Dynasty．
Louisburg，America， 196. Lonisiade Archipelago，Pa sua， 251.
Loule，（Supp．）
Loup（r．），Alpes Maritimes （Supp．）
Loup－garou，Were－wolf．
Louse，sheep－，Sheep－louse． Louven（ r ．），Norway， 799. Louvre，Paris， 273.
Lovat（r．），Veliki－Louki．
Love－feasts，Agapa．
Love－lies－bleeding，Antor－ anth．
Lover，Sam．（Supp．）
Low Archipelago，（Supp．）
Low Church，England and
Irelind C／zurch of，61．
Lowe，Robt．（Sufp．）
Lowea，Rose．
Lōwenberg，or Lōwenkopf， Siebengebirge．
Lowes，Locly of the，Yarroze．
Lowthers，Lanarkishire．
Lowtherston，Fermanagh．
Loxa，Eewador．
Lozėre（mt．），Cevennes．
Luabo（r．），Zambest．
Lubber－line，Compass，Mari－ ner＇s．
Luca，Lucta．
Luca Borgo．Alyebra．
Luca della Robbia，Sculdtucre， 577.
Lucas，

Lucas，traveller，Africir， 66. Lucayos，Bahamas．
Luce，Pike．
Luce（r．and bay），WFtgtozers． Lucken gowan，Globe－flower． Lucky proach，Father－lasher． Lucuma，Sapotrace．
Lucumo，Tarquinirs．
Lucumo，Tarquinirs．
Ludenscheid，（Supp．）
Ludwig＇s Canal，Germany，7i8．
Luftia（r．），Africa， 68.
Lugar，Ayrshire．
Lugdunum，Lyon．
Lugdunum Batavorum，Leyden
Lugg（r．），Radrarshire．
Lugna－quilla inti，＇Wicklow．
Lugo，（Swht．）
Lugos，（Supp．）
Lulea（r．）Szueder， 236.
Lulli，Opera．
Lumpfish，Lumpsucker．
Lumps of delight，Ratel－i－ cantm．
Luna，Selene．
Luna，Gulf of．Spezia．
Luna cornea，Photography， 507.
Lunawaura，（Sufp．）
Lundu（r．and mit．），Sarazuak．
Lundy I sle，（Supp．
Lundy＇s Lane，battle of，Scott， Winfeld．
Lune，Lancashire．
Lunel，Mirscatel．
Lunule，Biralze Shells．
Lupata！（nts）！Africa， 66.
Lupuline．Hops．
Lure．Falconry， 227.
Luschnitz，Moldaw．
Lusiad，Camortis．
Luso（r．），Rubicon．
Luss，Dumbartonshire．
Luta Nzige，Little，Albert
Nyarza（SupA．）
Lute，（Sup p ．）
Lute，（Sutpp．）
Har， 637.
Lutetia，Paris，27t．Thirty
Lutter，battle of，Ther I＇ears＇ 1 ＇ar．
Lutterbach，Bielefeld．
Lüttich，Liege
Lüttringhausen，（Supp．）
Luxemburg，Germary（Supp．），
536.

Luxor，Thebes．

INDEX．

1，uynes，Whe de，Richelictu． luzan，Ignacio de．Spamish Lan ：Ex Lil．${ }^{20}$
Luzula，（Supf）
l．yciscus，Wolf 244 ．
Lycium，for－horth．
Lycophron，Alexamivine Age．
Lycophron，Thessaly．
L＇copsis，Bugloss．
Lycopus，Gypsy－iemart＇＇Supp． Lydoch（i．），Nianroch． Lydoch（6．），太
Lyme－wake，
Wakie．
Lyke－wake，W＇ake，
Lympre，Hy the（Supp．）
Lyon（ - ．），Firay：
Lyonia，Sorrl Trec．
Lyre pheasant，Lyre Bint．
Lyrie，fogze．
Lysippus，Sculpture． 577
Lysippus，seriptrre 577
Lystra，Binf－Lir－A
Lythe，Pollack：Columbis，Britisth．
Maanelvan Falk．Waferfiall．
Mabinogion，W＇elsh Langr．\＆－ Lit．： 36.
Mabola，Date Plump．
Macacus，Rhesus Monkey．
Macacus silenus，Warderoo．
Macallister r．， 1 icioria， 785 ．
Macarsca，（Supp．）
Macarthy＇s Island，Cambius．
Macanco，Lemtur．
Marcalube，（Stupp．）
M＇Clellan，Gencral，Richonomd．
Macdonald，Flora，Stimet， Ch．Ed．
M＇Dowell，General，U．S．659． Macduff．Banff．
Macdutis Cross，Sancfuary．
Macedonian wars，Roste， 316.
Macfarren，C．A．（Supt．）
Mac－Flecknoe，Shart．
M＇Gregor，Kolvert，Kob Roy． Machaon，Asculapins
Machavanna，Delugor Bay．
Mache，Corn Sialait
Machery，Alzuar（Sußp．）
Machetes，Rufo．
Mackarel midge，Rockling．
Mackenzie（\％．），乌uecuslamil．
Mackerel－guide，Gurfish．
M＇Kinlay，explorer，Austra－ lian Eixplorations（Supp．），

Maclear，Sir T．Triungulurion．
M＇Leay（ro！i Ariu Sosib Wales．
Maclure，Sir R．J．Ie．M．（Supp．）
MacMurrougl 1_{5} Wexford．
Maconnais，Sabne－el－Loire．
Macot．Snzey．
Macouba，Marfinique．
Macosa，M／acaiu－free．
Macpherson，Major，Orissa．
Macquarie Harbour，Tas－ Maria， 306
Macrocystis pyrifcra，Algre．
Macroom．（susk．）
Mada，Ḱama．
Madalena，Mideira River．
Mad－apple，（Supp．）
Madawasca，Offawn Rizer．
Maddalena（i．），Caprera
（Supp．）
Madder style，Calico Print－ inf， 512.
Madermo，Carlo，Peter＇s，St．
Madhuca－tree，Bassize．
Madiana，Martinione．
Madison（mit．），Whire Mis．
Madoc，America， 193.
Madog of Powys，Prince， Welsh Lang．© Li\＆． 136 ．
Madre de Dios，Palngonia．
Madrepore glass，Glass， 774 ．
Mxnon，Agathocies．
Maeshowe，（Supp．）
Miestral，Mistral．
Mafia，Zanzibar．
－Maga，Blackeeood．
Magalhaens，Slagellan．
Magdala，Gernesaret，Sea of． Magdala，Germiesaret
Magdala，（Supp．）
Magdashoo．，Zanzibar．
Magelang，faza（Supp．）， $58 a$
Maghrib，Moracro．
Magi，Parsees，zg9．

Macister equitum，Rome，zro． Magnesian limestone，Dolo－ milc．Pernsiatm．
Magnesian water，Azrated Haters．
Magnesium，magnesium light， Supp．）
Magnetic equator，meridians， and poles，Terrestrial Mlas－ nefism， 372.
Mannctism，Animal，Auintal Magnetism．
Magnetisin of rotation，Roter tion，Magnetism of．
Magneto－electric лashine， （Supp．）
Magog．Goge Magos．
Magonia claturata，Tingi．
Magot，Barksry Ape．
Maguey，A Amve．

Mihaleb，Cherry．
Malamera（mit），Yaミa
supp．）， 572.
Maha Sarboji，Schavars：
Maha－Singh，Rauject－Simeta．
Mahawelli－ganga．Ceylor， 737.
Mahe，Pondicherry．
Mahé（ $i .1$ ，Segchelles Islomis．
Mahebourg．Miauritizs．
Mahee，Gisils．
Mahi（r．），Falasinore（Supp．）
Mahim，（Supp．）
Mahmondich，cinal of，Alex－ amdria．
Mahmud I．，II．Ot．Emp． 142， 150.
Mahon Ray，Neva Scotit．
Mahowa－tree，Bassia
Mähren，Mornzis．
Maiasiti，Socicty fslands．
Maidan，Calcutfa．
Maiden of Norway．Alex． aniter IVI．of Scoilana．
Maiden Rocks，Antrim．
Maiden Stone，Sculpfured Stomes．
Waigue（r．），Shanmors． Main（ r ），Antrim．
Mane（ r ） ），Kerry．
Mainland，Pomonia．
Mainland．Shellarnd．
Maio，Cape Verid／slands．
Mais del Agua．Victoria， 789.
Maitai（r．），Nelsore Supp．）
Maitia，Society／shinds．
Maitland．（Srifp．）
Maitland Club．Rox．Club．
Maize beer，Chica．
Majak（ r_{0} ），Bormeo．
Majestery of bismuth，Bis－ muit．
Maioon，Hashish
Majunga，Bermbaiooka．
Makarius，Rerss．Lang．\＆Li6．
Maki，Lemur．
Ma－klang，Cochin－China．
Makololo iribe，Zambesi．
Makta，batile of，Algeric，ial． Malabar rat，Bandicoof．
Malacca canes，Ratian．
Malachite green，Bice．
Maladetta，Pyremees．
Malahite，pyrcures．
Malakhoff，Duc de，Pelissier．
Malaskerd，battle of，Alp
Arslan．
Malatia，N゙7urdishon．
Malayâam or Malayârma， Tamil．
Malbrouk，Cercocebres．
Malcolmia，Stock．
Maldah，（Supp．）
Malegnano，Miclegnano．
Malckites，Sumrutes．
Mali，Maldize fslisuds．
Malland，Duck．
Mallemba，Cisongo．
Mallet，C．F．de，（Supps）
Malleus Maleficarum，Wifch
Mallicollo，Nea ffebrides．
Maloewa，Ombay．
Malpighian corpuscles，spleers．
Malta，Phonicia， 422.
Maltese－point，Lace
Maliese work，Filigree．

Malucha，Ninmidia．
Maluti，Orange R．Fi．State． Malvern Hills，Worcestersh． Mambai，Boathay．
Mambai，Bohrbay．
Mambone，Sofala．
Mammaliferous crag，Nor．
wich Crag．
Mammary tumour，Adenocele （Supt．）
Mammoth trees of Calaveras，
W＂ellingtonia．
Manmerk（mits．），Golivay．
Mamore，Madeira River．
Manacles，Torture．
Managua，（Supp．）
Manama，Bahrein fslonds．
Mana P．ss，Dhadrinath．
Manbote，Heregild．
Manby，G，W．（Supp．）
Manchester Schonl，Gilison．
Manchas，Tunens．
Manco Capac，Perre， 43^{3} ．
Mandarin duck，Susumer
Duct．
Mandi K゙mmaon．
Mandibles，Bill，gr．
Mandoc，Mrapioc．
Mandrites，Abbos．
Mandu，（Sutp．）
Manetobah（l．），
Red Rizer
Settlement．
Mangabeys，Cercocebus．
Mangcia．Cook Islasuds．
Mango ginger，Curcumar．
Mangonste，fchreumor．
Mangrove hen，Kail．
Manguaba（l．），Alagons．
Man－hole，Boiler， 195 ．
Manice，Delagoa Bay．
Manillas，Ring Money．
Manille，Quadiville．
Maniple，Legion．
Manitch，Dou．
Manitoba（l．），Winnipeg．
Manjera，Bceder．
Mannheim gold，Alloy．
Manning（r．），New Sowth Wales．
Manresa，（Supp）
Mansel，H．L．（Supp．）
Mansourah，battie of，Eisypt，
Mansuctic nature，Tame
Animals．
Mantaro（r．），Ucayali（Supp．） Mantes，（Supp．）
Mantis crab or shrimp，Squill．
Man－traps，Trespass．
Mantras，Veda， 723.
Manuel，emperors．By：aッ－
sine Empire， 472.
Manuherikia，Otago．
Manukau，Neze Zealand，74s．
Man－wyrth，Weregild．
Mape，fnocarpus．
Mapoota（r．），Zululard．
Mar，Aberdeenslive．
Mar，Aberathanga，Gimgers，6y
Marabhanga，Gunges， 6 y ．
Maracanda，Samarkand．
Maracanda，Samarkatrd．
Maragatos，Leon．
Maragatos，Leon．
Maraja palm，Batris
Marakah，Dongola．
Marakina，Tamurin．
Marangaba，Gunza．
Maranoa，Darling．
Maranon，Amazor．
Marnon，Kurdistan．
Marash，Kuras！
Mara wood，lcica（Supp．）
Marazques，Liguess．
Marburg，battle of，Setent
Years＇War， 637.
Marcasite，Pyrifes．
March，Morava River．
March，（Sapp．）
March，Earls of Sicwart
Family， 123.
Marchan（ P．$^{\text {O }}$ ，Alhana（Supp．）
Marcomanni，Boliemia，90，
Suevt．
Marcy（mt．），New Yort．
Marden，Calne．
Mareca，Widgeon．
Marecchia（r．），Rimini． Mare Erythroum，Arabian
Sea．
Marennes，Charente－fufe－

Maret，Caronme．
Margaret Maultasche，Tyrol．
Margarita，Antilles
Margay，（Supp．）
Margeride（mss．）Lazive
Margosa tree，Jifeluacere．
Mari，Viger．
Maria f．）．Tasmania，zo6．
Mariakirch，St．MarielSupp）
Mariampol，Mcariupol．
Mariana（is．），Ladrones．
Marianna，（SuAA．）
Marianne $(i$ ．），Scychelles $/ s$ ．
Maricuana，Bahamus．
Mariefried，Maelar，Lake．
Marienhers，（Supp．）
Marienthal，batle of，Tureune． Marignano，Ifelecmano
Marigot，Marie Gatumte．
Marimonda，Abeles．
Marineo，（Supp．）
Marino，（Supp．）
Marion，Alabama．
Mariqua，Oori．
Maris，Sumatra．
Markaska，Mocarsca（Supp．）
Mark－duren，Dilren．
Markelo，Ozeryssel．
Marken，Z̈uiter Zee．
Markgrafenhain，Grossenhair．
Marking－ink，Silver， 730
Marking－nut，（SupA．）
Markobrunner，Fhime anime．
Marlborougla dog，Blenheint
Deg．
Marl－grass，Clover．
Marlstone，Lias，Oolite．
Marmotta，Olio di，Rhorlo－ dendron．
Marony（ $r_{\text {－}}$ ），Guiana，French．
Maros（r．），Thriss．
Maros Porto，Carlsburg．
Marquette，Superior，Lake．
Marrah，Darfur．
Marron d＇Fan，Trapiz
Marsaglia，battle of，Victor－
Amaieus．
Marsdiep，Helder．
Marshall，Afichigar．
Marshall，Texas．
Marsh harrier．Buseard．
Marsh hen，Fiail．
Marshland，Middle Level
（Supp．）
Marsh pennywort，／／ydrocotyle．
Marsh rosemary，Sfrafica
Marsh erefoil fuckbears．
Varsivan，（Supp．）
Vlarsupium Eye， 206
Marta and Martana，Bolsena．
Martinach，B／arliguy．
Martin Garcia，Bucnos Ayres．
Maru（i．），Timor－laut．
Marua，Socicty lslands．
Marvejols，Lozire．
Marwar，Rajpoots．
Mary（r．），Owerusland．
Maryborough，Queerts Coun＇y．
Maryborough，Qureensland．
Mary＇s grass．ficelamd Moss．
Masaccio，Painting 19a．
Masagran，Algeris， 142.
Masaya，（Supp．）
Masbate，Philippine Islands．
Mascarn，（Susit．）
Masham，Mrs，Anne，Cucen．
Mashena，（Supt．）
Mask（l．），Cornb L．，Galwerg．
Maskat，Muscat．
Masora，Massorah，Jews， 721.
Masoretic text，Bible， 76 ．
Masoua，Massozule（Supp） Massangane，Bay of，Sofisla．
Massilia，i／arseille．
Massilians，Semr－Pelagianism．
Massinissa，Carthage．
Massowah，（Supp．）
Master and servant，（Supp．）
Master of the Revels，Revels，
Alaster of the．
Master－singers，Minnesingers．
Masts，iron and steel．（Supp．）
Masudi，Arabian Lang．E－
Lit． 347.
Matachel，（Supp．）
Matadores，Quadrille．
Mataram，Lombok．
Mataram，Ofago．

INDEX.

Mate, Merchant Shisping Act (Supp.)
Materials,strength of Strength of Materials, 160.
Mat-grass, Nardus.
Mathematical physicians, Mcticine, Hist. of
Matin dog. (Supp.)
Matrix, Type, 606.
Matrix Compositor, Printing (Supp.)
Matrona (r.), Mame River. Matronalia, $\mathcal{F}_{\text {urso. }}$
Matsumai, (Supp.)
Mattawa, Ottavea River.
Matterhorn, Cervin.
Matthiesen, John, Anabaptists, 218.
Matthiola, Stock.
Mattock (r.), Boyze.
Maruka, Sofala.
Manchline, Ayrskirc
Maud, Empress, Stephen of England.
Maughold Head, Marr, Isle of. Maule (r.), Chili.
Mauléon, Pyrénées, Basses.
Mauna, Navigators' Islands.
Mauna, Samiwick Islands.
Maunch, Manch.
Mauraneria, Styz.
Maurice of Saxony, (Susp.)
Maurolycus, Optics.
Mavering, Glass, 778.
Mavrocardato, Matrracordato
Mawddach (r.), Merioneth.
Naw-worm, Ascaris.
Maxillary arch, Sheleton, 753. Maximilian of Mexico, (Supp.) Maximliana, Inaja Palm,
(Supt.)
Maximin, Alexander Seurrus
Maximus Planudes, Anthol-
ogy, 288.
May, Hawtiorn.
Мауa, Moluccas.
May-apple, Podophyllum,
Nayaguez, Puerto Rico.
May-drink, Cowmarin, Woodmiff.
Ther Aratoni, 227
Mayhem, Beating Eo Wounding.
Maymene, (Sush.)
Mayo (r.), Sonora.
Mayonnaise, Remonlade.
Mayotta, (Supp.)
Mays del Monte, Rhizanthere
Mayweed, Feverfew.
Mazamet, (Supp.)
Mazarron, (Sthph.)
Mazufurabad, (Stupp.)
Mbau, Fiji Islands.
Meade, General, U.S. 660.
Meadow lark, Starling
Meadow sweet, Spirar
Meal, monatain, Animnticnle,
Meander, Caria.
Meandrina, Bruinstone Coral.
Meandrina, Brainsionc Coral.
Measures, Merasures.
Measures, Freoch, Chemistry (5 wht.)
Ieat, preserved, Preserves (Supp.)
Meat-biscuit, Biscuit, Meat.
Meatus, external, Ear, 729.
Medeah, (Supp.)
Mediasch, Transyivania.
Medical officer of health, Sanitary Sc. (Supp.), 725.
Medina ($\mathrm{r} \cdot$), Wight, Isle of.
Medina de Rio Seco, (Sropp.)
Medinat Habu, Ramesses, Thebes.
Mediolanum, Milian, Saintes.
Medlock, OLiJan.
Medusa, Perseus.
Medusa's head, Pentacrinus
Medvieditza(r.), Don (Russia).
Meenas, Bundi (Sufp.)
Meerane, ($S_{u p} p p_{0}$)
Megakles, Peisistratos.
Megala Kastron, Candia.
Megalopolis, Arcadic.
Mlegapode, Yruisle Fowl.
Megaptera, Whale, 152.

Meghna (r.), Bralimaputra.
Mehadpore, Intore.
Meiaponte, (Sufp.)
Meikle, Andrew, Therashing,
Mei-kwan, Chinese Emp. 815 .
Meislav, Lithuaruia.
Mejerdah (r.), Tunis.
Meklong, (Supp.)
Meknaza, Miknas.
Melancholic diathesis, Scruf \#ila.
Melanesia, Polynesia.
Melanine, Cutlle-fista
Mela-Rosa, (Supp.)
Melassic acid, Glucose
Meleagrida, Turkey.
Meleguetta pepper, Grains of Paradise.
Melek Shah, Seljuks.
Meletta, Hicring (Supp.)
Melfi, (Supp.)
Melicocca, (Supg.)
Melinda, Musca
Melino, Lesbos.
Melitophili, Scarabacida
Melitose, Sugar, 187.
Melkart, Baal.
Melkhout, Sideroxylon.
Mellarosa, Bergamot.
Melle, Sizares, Deux.
Mellite, Honey-stone.
Mellivora, Ratel.
Melloco, Portulacea.
Melon thistles, Cactece.
Melophagus, Sheep-loruse
Melos, Greece, 85.
Membrana nictitans, $E y c, 206$.
Mimbrana putaminis, Allan-
Ifemmi, Simone, Painting, 122
Memorial, Brier
Menaccanite, Titanium.
Menangkabou, Sumatra.
Mencheres, Esypt, 789
Mencius, Meng-tse.
Miendaïtes, Zabism, 329.
Mendawa (r_{i}), Bormeo.
Mendere ($r_{.}$), Scanazider.
Mene, Selene
Menez (mts.), Cotes-du-Nord,
Menf, (Supp.)
Menfrici, Menfz (Supp.)
Menhaden, (Supp.)
Menilek, Sabarats.
Menilite, Opat.
Meninges, Membrare.
Menkara, Pyramid, 30.
Mennonites, Anababtists, 219 .
Menomonce (r.), Wisconsin.
Menselinsk, OrenBrurg.
Menstruum, Solution.
Menteith, Perthshire.
Menteith, Earls of, Slewart
Family, 123.
Mentone, Monaco.
Mentu, Egypt, 787.
Mephitis Stuk 76 .
Mercantile Marine Fund, Mer.
chant Ship. Act (Supp.), 632 .
Merchant Shipping Act, (Swpp.)
Mercury, Planets.
Mercury Bay, New Zealand.
Mer de Glace, Chamouni.
Mer de Sargasse, Alga.
Mer Douce, Huron.
Mergellus, Smerv.
Mergulus, Rotche.
Meriah, Orissa
Merida, (Supp.)
Merienptah, Egypt, 790.
M crim (2.), R io Grande do Sul.
Merimée, Pr. (Supp.)
Merlangus, Whiting.
Merle, Blackbird.
Merlucius, Hake.
Mermaids' purses, Shark.
Mern, Murgab (Supp.)
Merope, Pleiades.
Merope, Pleia
Meropis, Cos.
Merops, Bec-eater.
Merse, Berwickshire.
Mersey (r.), Tasmania, 306.
Mertola, Alerntejo.
Merv, N/urgab (Supp.)
Mervede (r.), Maras, Ritine.
Merwan, Omtutades, 71.

Mesas, Venezula
Mesencephalon, Skull, 76r.
Mesophloenm, Bark.
Mesothorax, Insects.
Messala, Tibullus.
Messalians, Orietists.
Messalians, Quetzsts.
Messiah, Ant.da, Painting, 19
Mestre, Supp.)
Mesurata, Tripoli.
Meta (r.). Boyaca, Orinoco.
Meta, Circus.
Metacarpal bones, Hand, 222.
Metal casting, Fourdius.
Metals, cohesion of, Alloy.
Metal-spinning, Eritannia
Metal (Supp.)
Metapontum, Basiento.
Metastannic acid, Tin, 447.
Metathorax, Insects.
Metatungstic acid, Tungsten.
Metau (r.), Bohemia, 189.
Meteorites, Aërolites.
Meteors, (Supp.)
Meter, Gas, 638.
Methodics, Mfedicitte, Hist. of.
Methone, Messenia.
Methven, Lords, Stewart
Family, 124.
Methylene, bichloride of, (Supp.)
Metidja, Plain of, Algerin, 141.
Metrosideros buxifolia, Alkee.
Meudon, (Supp.)
Meulebeke, (Sufp.)
Mewse lizard, Mososaur:es.
Mewar, Ríjpoots.
Mews, Falcorry', 229
Mexian (r.), Ogobai (Supp.)
Mexico, (Supp.)
Mezen (mto) Cevernes.
Mezières, (Supp.)
Mezquite, (Supp.)
Mezzojuso, (Supp.)
Mezzo-rilievo, Alto-riticeo.
Mezzo-soprano, Soprano.
Mglin, (Supp.)
Mhar, Concan.
Mhendigunj, (Supp.)
Mhow, (Supp.)
Miami Canal, Cincintati.
Miana, Azerbijan.
Miana bug, Epizon.
Miava, (Supp.)
Michael, emperors, Byzan-
tine Empire, 471, 472.
Michael Abaff, Iransylarnia.
Michael House, Trinity Cot lege, Cambridge.
Michatoya, Esquintla (Supp.)
Mickle Fell, Yorkshire.
Micronesia, Polymesia.
Micronesia, Polynes
Micropyle, Seed.
Microsporon, Parasitic Diserases, Tinea.
Microzamia, (Supp.)
Midas, Tamarin.
Midas's ear, Auricula
Middleburg 'i.), Eoor.
Middle English, Auglo-Saxon
Lang. \& Lit.
Middle Level, (Supp.)
Midgard, Scand. Myth. 524
Midi, Canal du, Caual, 551.
Midouze (r.), Mont de Nar $\operatorname{sanz}($ Stupp.)
Midsland, Terscielling.
Migliazza (r.), Bosuz-Semz.
Mikail Feodorovitch, Rom-
anoff, House of.
Mikania, (Snpp.)
Miklos, St. ToroE (Supp.)
Miknlov, Nikolsourg.
Milan Decree, Orders in Council.
Milcom, Anmonites.
Mildew, root, Root-mildew.
Mild yellow fever, Relapsing
Fever.
Miletus, Caria.
Milfoil, Achillara.
Milford, Delazuare
Miliary eruption, Sudamina.
Military administratioo, War
Services (Swfo.)
Military regulations, Regr-
lations.
Milk-leg, Phlegnasia.

Milk of sulphur, Sulikur, 599.
Milkom, Moloch.
Milkov, Foktchrny (Supp.)
Millau, Milhaur.
Millbank, Convict.
Millboard, Cardboard.
Mill-cake, Gumpozuder.
Millefiori' glass, Glass, 774. Millenary Petition, Hampton
Const Conference.
Miller, Steam-nawigation.
Maller, J. Reportisg, Par-
diamentary.
Miller's Dos, Tope.
Milline, Woollen and Worsted Manufactures, 265.
Milistone grit, Carboniferous System.
Milnea edulis, Meliacece.
Milner, John, Safes, Fireproof. Milosch, Servia, 630.
Milt, Fisices, 354, Reprodisctior, 197.
Mifsin, Atlas Mit.
Milizer, Saxony, 515.
Milz (r.), Saxe-Meiningerto
Mimigardevorde, AIzuster.
Mimusops, Sapotacea.
Min (r.) Fing-tze-kiarg.
Minas Channel, Fundy, Bry of. Minchinadom, Ardes, 239. Mincio, battle of, Germanuy (Sutp.), 534
Mindoro, Philippine Is.
Mindszent, (Supp.)
Mineo, (Supp.)
Mineral alkali, Sodium, 8or.
Mineral pitcb, Caoutchoute, Bitumen.
Mineral soda, Alwninizm. Mines Basin, Nosia Scotia. Minié buliet, Rifled Armzs. Minion, Type, 607.
Mink, (Supp.)
Mink, (SHehaba, Minuesota.
Minnehaba, Afin
Minority, Age.
Miolnir, Scand. Myyth. 525.
Miomaffo (mt.), Tinor.
Mira, Ecuador.
Mirabilis, Nyctagenacer.
Miramichi, Neat Brunsavick. Miranda, F. de Saa de, Spruish Lang. \& Lil. 20.
Mirbane, essence of, Nitrobenzol (Supp.)
Mirdites, Albania, Croia.
Mire-dnim, Bitterrt.
Miriti palm, Mauritia.
Mirkhond, Persian Lang. \&o Lit: 428.
Mirmiram, Sanjizk.
Mirta, (Supp.)
Mirat, A lecrut
Miscarriage, Abortion (Supp.)
Mishmee bitter, ($S u p p$.)
Misilmeri, (Susp.)
Misl, Sikhs.
Misool, Paptra, 25 t.
Misprision of treason, Treasorn.
Missebroed, Calla (Supp.)
Missisquai (r.), Vermont.
Mississippi (in Canada), Ot-
tawa River
Missouri(r.), Little, Washita. Mist, Fog.
Mistra, Soresina.
Mitau, Courland.
Mitchell (mt.), Carolina, N. Mitchell (r.), Victoria, 785. Mitchellstown caves, Clogheen.
Mitteveida, (Supp.)
Miyani, Meeance.
Moate, Westmenth.
Moattalites,MIotazitites'Supp.)
Moawiyah, Onnmiades, 7r.
Mobarrek, Persian Lang. © Lit. 428.
Mock-sun, Halos, 207.
Moc-main, Silk-cotton:
Moder, Rhin, Bas.
Moderates, Scotland, Churcit of: 562 .
Moderato, Termpo.
Modulation, Reading \& Speaking.
Moel-Siabod (mt.), Snozudors.
Moel-y-Wyddfa (nt.), Snowdon.

INDES．

Moẽ－moc̈，Tabu．
Moftha，Rolert，（Suß̧．）
Mogilev，Mohiles．
Mogonny，I mazeradio．
Mogucr，（Supf．）
Mohammed I．，if．，111．，IV．， Ottoman Einthere， 48 ．
Mohammeds，of Span，Om－ miades， 72.
Mohammed Ali，Melaemed．
Mohammedan sects，（Supp．） Mohammed－ben－Allamar， Spair， 17.
Mohammed－ben－Jakub，Arsk－ bim Lang．\＆～fit＇349． Mohammed－ben－Musa，Alge－ bra．
Mohammed 1 bon －Toumers， Almohades．
Mohar，Jillef．
Mohaut，Jibiscus
Mohilla，Commolsies．
Mohn（i．），Riga，Gulf of．
Moidart，Loch，Shicts，Lock． Mokassin snake，Trigono cephalus．
Moke，Belgium， 3 ．
Mokkadam（mnts．），．Vmonne lites．
Moko－mokn（r．）．Sumatroz．
Noksha，Perya，Tamboz，
Mokshansk．Fessa．
Molars，Teeth， 3 an
Mole（r．），Surrey，Thames．
Molccule，Chemistry（Susp．）， 467.

Molcskin，（Supp．）
Molina，Tirso de，Alarcony
Blendoza．
Molino el Rey；battle of， Scoth， 1 ＇infichs．
Mölln，Lamenburg．
Moloch，Phomicin，404．
Moloch，nat．hist．（Swiph．）
Moloé，Cantharis．
Mologa（r．），．lozgorait．
Molokai，Sarmizuch Islusul＇s． Molossi，そ户irus．
Molothrus，Troopial
Noltke，H．（Suph．）
Molucca beans，Gisilundana． Mombacho，Picaragera l：． Mombassa or Mombaz，，Supp．） Mona，Anglesey．
Mona，Ceriefithecus．
Monacacy，Potuntac．
\onadhliadh（msso），Elsinsh， Monads，Triads．
Monaldeschi，Christivir． Monamines，Organic Bases． Monarchians，Patripassians， Unitarians， 641
Monas，Salellius．
Monastir，（SuAA．）
Monçada，Orshicz．
Mondega＇r．），firraguay（r．）
Mondego（r．）Portugal． Mondhar，Ommisudes， 72. Monevolagh（mis．），Mater－
ford．
Monfia，Zanzibar．
Monganui，Nesw Zealand． Mongrel，Hybrit．
Monitor，Turred－ship
Monkes－bread，Adansonis．
Monkey－flower，Mimulris．
Monk－fish，fingel－fish．
Monk－Wearmouth，Sturder－
land．
Monnica，Augrstime，A．St．
Monochlamydeous，rlower．
Monogenca，Trematoda，
Alonogencsis，Reproduction， 195.

Monokeros，Linicom．
Monomotapa，Zizmbesi．
Monooho，Jimeceros．
Monotropa，Winfer Greer， Oil of．
Monroc（mf．），Whisc NH＇s． Monselice，（Supp．）
Montagne，Montagnards．
Montagnes $\mathrm{Coires}, \mathrm{Cd} e \mathrm{~s}$－du－ Vord．
Montagues，I＇eroma．
Montagues，Capstlets（Susps．） Moutaldi，Genoa，684．
Montaña，Pera， 436 ．

Montana，U．S．647．（Suph．） Mont Ibluc，Seychelles $/ \mathrm{s}$ ． Montbrison，（Supp．）
Montcalm，Aridge．
Montcalin，Hrolje．
Mont－de－Marsan，（Supp．）
Mont d＇Or，Zurra．
Montc Epomeo，fschia
Montemayor，Jorge de，SAan
ish Larig．Eo Lif． 20.
Montesa，Hendy of Montesia．
Wonte Salvadore，Lisgamo．
Ionté Santo，Itíos．
Montes de Uca，I Cneaucla．
Monte Viso，Alps．
Monte Volture，Mclfo（Sup $)$ Monterrand，Clermons． Montgomery，Gens．U．S． 654. Monmedy，Meuse．
Mont Mezéne，Ardeche
isuntmorency，Falls of，Qiretec Mommorillon，Viesne．
Montpellier scammony；C_{y}－ nanchum．
Montpensier，Mademoiselle de， Orlents，7．B．G．，DwC d＇．
Mont I＇crdu，Pyrenees．
Muntralier，Ariegre．
Montralier，Arrige．
Montreuil，Fas－de－Cahabs，
Family（Susp－）
Monts de l＇Eisterel，bar．
Mont St llubert，Arideche Mont Sinint Jean，Wratcrivo．
Mood，Syllogism
Moodkee Valk
Moog，Kidney－bean．
Moairiverdorp，Transunal Republic．
Moonga，Silk \＆Silhwown，
724.

Moonta，Soush Australiar．
Moonwort，Botrychism，
Moor－ball，Confersa．
Moor buzzard，Harrier．
Moordilla，jarringtomiscera． Moorfoot Hills，fidinburgicsh Moor－ill，Redi Wrater．
Mourva，Bozusfring Hemb．
Moose，gray，Wafisi．
Moosehead l．），Maine．
Moosehillock，Afpalischians， 322.

Moqucsua，（Supp．）
Moradabad，（Susp．）
Morales，Spanish Earg．\＆ Lit 20
Moral expectation，Probauility．
Moral sense，Ethics，$+\frac{1}{}$
Mora－stones，Upsala．
Morat，Buy Islands，Kuatan Moravides，J／arabuts． Moray；Earls of，Stewart Family， 124.
Morbilli，Meresles．
More，Antonio，P＇ainting， 292.
Morclia，Sufp．）
Morella，SupA．）
＇More pork，＇Podaryus． Moreri，Eincycloperdia， 48
Moreton baypine，Aramiaria． Morgagni，Auntomy， 229. Morgan，Dr William，I＇clsk Lang．Er Lit 137. Morgan，IIenry，Bucaneers． Morgon（r．），Villefratuche－ sur－Snône
Moriah，Fernsalem．
Morinus，Samar．Pentateuch． Moriscoes， $\mathrm{J} / \mathrm{oors}$ ．
Morkuk，K゙urdisłant．
Morlaks，Dalmatia．
Morland，Sir Samuel，Speak． ing－trumfat，If islidenses． Marmond Hill，Brehons．
Mornington，Earl of，W＇ellesley． Moroc，Honey－guides
Moros，Moors．
Moroshkin，Nussian Lang． © L L \％
Morotaba（r．），Borneo． Moroxite，sifatite． Morphy，Paul，Chess，8or Morris，Ilugh，Welsh Lang． $\mathcal{s}=$ Lit．${ }^{3} 37$
Mörs，Rhenish Prussia．
Murse＇s recording instrument， Jelegraph， 335.

Mortagne，Orne
Murtain，Mamahe
Mortality，bills of，Bills of
Morfality， 95 ．
Mortars，Life Mortars，soc． Supt．）
Mortgages，tacking of，Tack－ ing of Morgugrs．
Murtlach，Banf／shire．
Morton，Dr，Ahursthesia
Morven，A gryveshire．
Mosaic gold，－1lloy，fironsing．
Mosaic wool，（Suph．）
Mosaylima，（Sufp．）
Mosbach，Fiberach．
Moschatel，tuberous，Aralia
Moskűcstrom，Nalström
Moskwa，（Sinf人）
Mosleman，Hustutmant
Musquitia，America， 205
Moss agates，Mocha Stores
Moss－bec，Hzemble BCe．
Mosslemah，Ommiudes， 7 t．
Mostaganem，Algerit，i\＆s
Mostarda，Soresins．
Motala（r．），IFetter，Lake
Motassem，Calif．
Motazilites，（Supp．）
Motella，Rockline．
Motenebbi，Arabian Lang． sw Lit．3f8．
Muther Goose，Fantomime．
Mather－of－pearl opal，Cucho long．
Moth－hunters，Goatsucters．
Motions，Puppet．
Motir，Molncicas．
Motores oculorum，Nervors Systems．
Molte－de－V＇csoul（me．），I＇csoul．
Mottin，Satire
Motlicy，J．Yoe Willer（Sups．） Motu Proprio，Consulos．
Moukden，JInkiden．
Mouldboard，Plowgh
Mouldiness of wine，WPine， 223
Mouldwarp，lole．
Moulin，Eiracier， 767
Moultric，Fort，Smlivan＇s／s．
Mountain bluc，bice
Mountain damson，Singars bacea．
Mountain finch，Brambling． Monntain four，Bergmeht． Mountain green，Green Earth Mountain House，Aspal． achiats， 328.
Mountain laurel，Oreoduphne． Mountain tea，Gazbhkeria．
Mount Barrow，Tissmania，306． Mount Desert，Maine
Mountjoy，V＇iscounts，Stiwart Family， $1=6$.
Mount Lecinster，Wexfiord？
Mount Lofty；S．Ausfralia Mountmellick，（Supf．）
Mount Miscry，Christipher＇s，
Mount＇s llay，Cornzuall．
Mount Seir：Edom．
Mount Wellington，Tasmarnia， 306.

Mousa，（Sufp．）
Mousseron，Minsispoom．
Moutan，Pacony．
Moutiers，Sazoy
Movable，Heritable．
Mowec（i．），Almericul， 191
Moy（r．），Sligo．
Moydart，Iniermess－shire
Mozdarians，Motazilites
（SuAp．）
Trozdok，（Supp．）
Msta（r．），Nozgorod，Twer．
Mualich，Mabalitch．
Muchettes，EEspringal
Muchucu，Rhmoceros．
Wuch Woolton，（Ssif β ．）
Muckers，（Supp．）
Mucus，Blennorrhica．
Mud－fish，（Safo．）
Muffic，Assay．
Mügrelsec，Spree．
Muglitz（r．），Saxeny＇，5：3．
Muswort，Artemisia．
Muhesur，（Suf申．）
Mühlenbach．Transylvania．
Muic（r．），Dee．

Muirkirk，Ayvshire
Muberry（r）Black 11 arriog
Mulberry rush．Typhus，í12．
Mulde（r．．，Saxony， 513 ．
Muleta，Bull－$\sqrt{2}$ hht
Mulgedium，Sosu Thistle．
Mulhacen（mt．），Sierra Nerada．
Muller，Grindirg．
Nüller，Eitgraring，go
Müller，G．Fr．Russiun Lang． riller
Miller，Jul．（Supp）
Mullidere \＆Inlluヶ，Survnallet．
Mullyash，Armagh．
Aululocular shells，Linizaters．
Multiple proportion，law of， Atomic Cheory
Muluia（r．），Athis Mt
Mumnelise，Buden
Munchengeatz，battle，Ger－ many（Swf今）， 533.
Mündeu，Vinten．
Mundinus，Amatomy，z23．
Mundlaisir，Indere．
Muncepoor，Cassay．
Mungo，K̈ilney－bean．
Musjah，Maonjah．
Munkaes，（Supp．）
Munster，Treaty of，Hesl－ phalia，Treaty of．
Muntz sheathing－metal，Alloy．
Muota（ r ），Ermunem，Seliseyz．
Mur（r．），Croatia．
Murad Bey，Thuts．
Mura Ussu（r．），I＇rnjr－teco kiong．
Murchison（mb．），Sastatche－ mat．
Murfreesborough，Tedinessee， ［＇．S． 660.
Murn（r．），Black Forest， Rhine．
Murgal，（Supp．）
Mur thal，Biace Forest
Muriated waters，Dineral liaters．
Muro，（Susp）
Murong（ r ），Barmeo
Alurony，fampire．
Murrain，Sterpe，Cattic． Mague（Sufp）
Murrcy，Sangruinc．
Murrumbidgec（r．），．V．S． Wiales．
Murry，Muriena．
Murumuru，isfrocaryium．
Murwa，filcersine．
Muscardinc，Dormoase．
Muscani，Grape－hyacinth （Supp．）
Muscatine，Jonva．
Muschiki，Servia，631，
Muscular force，origin of， （Supp．）
Mush，Kirrdistan．
Musi（r．）Ajstna．
Musi ri）Sumatra．
Music，Greek，Greek Music
Music recorder，（Supp．）
Musivum，Dronzins．
Muskegon（r．），Wichigan．
Musketry，schouls of，WI ar Scricices（Supp．）
Muskingum r． 1 Ohio
Musmon，Noufforr．
Muspelheim，Scandinavians Nyshology， $5=4$
Mussel－bands，Cavilinit．
Mussel Shoals，Tenmessec．
Mustafa 1．，［1．，III．，Offo
man Emport， 14 ．
Mustapha－ben－Abdalla，／fıdjs Khalifah．
Mustarabians，Mo＝arabian Siturgy．
Mutazalites，Mofazilites＇Susp．）
Mutina，ilodena
Mutina，battlc of，Anfonizs，JM．
Mutism，Aflomia（Supp．）
Mutton－bird，Tasmanis， 307.
Muttra，（SupA．）
Mutwal，Calcutta．
Muyscas，Nou Gramada．
Mycalc（mer．），Samos．
Myccrinus，Pyramrid， 30.
Mycctoma，Parasitic Dis－

LNDEX．

Mycoderma，Tontar Cerevisic．
Myconus，Greece， 85.
Mycose，Sugar， 187
Mydaus，Teledru．
Mygdooia，Visibis．
Myhee（ r ），Cambay．
Myletes：Salmonida．
Mympuri，（Supp．）
Myology，Anaions， 227
Myopia，Eye， 207.
Nyothera，Ant－catcher．
MyTa，Lycia．
Myriandros，Phernicia， 492.
Myricaria，Tamarist：
Myricin，Wax
Myrmeleon，Ant－lion．
Myrmica，Aut， 284 ．
Myrmidons，stgina．
Myron，Sculptrare， 577.
Myropetra，Wasp．
Myrrh，Cicely．
Myzomela，Blood－bird．
Naab，Bazerria， 760 ．
Naango，Biafra．
Nabegha，Armbian Lang．© Lit． $3+7$ ．
Nabou（r．），Fars．
Nadder（ r ．），Wiltshire．
N Naftia，Lago，（Sufp．）
Nâgas，Saivos．
Nagasena，Nagryjuna．
Nagla Ragee，Elersinte．
Nagna r ）Howanagar Supp．）
Naspore the Less，Chota Niag－
Nagy Karoly，（Sups．）
Nagy－Kikinda，Kikirda
（Supp．） Nasy－Szombath，Tyrnau．
Naharro，Spanish Lang．\＆ Lit． 20.
Vahavend，battle of，Sassa－ riaice．
Nahe（r．），Rhenish Prussis．
Nahiyehs，Turkey， 587 ．
Nahr－el－Asi，Orontes．
Nahrel－Haleb（r．），Aleppo．
Nain，Labrador．
Nainital（E．）Himalays．
Najerilla，Ebro．
Nakir．Nomammedous
Naksheb，Karshi Supp．）
Nakskov，Laukard．
Namagari（r．）．Vaal River．
Namatotte，Paszar， 25 I．
Namaycush，Supp．
Namby－pamby，Philips，Amb．
Namenghad，Turkestan， 58 ．
Aanenghaa，Turkestan， 58 －
Namoi（r．），Darleng．
Nânak，Sik／ts．
Nanas，（Srepp．）
－anda Devi，Himalaya．
Naning，Malacca．
Fan－ling ints．），Chinese Entpire， 8×5 ．
Napo（r．），Aянаzon．
Napoleon II．Reickstadt，
Duke of．
Napoleooa，Belzistia．
Napoleoo－Vindée，
（Supp．）
Napoleos－I endee，
Nar $(r$.$) ，Tiber．$
Nar（r．），Wash．
Narainganj，Dacca．
Narboroush Isle，Galuzagos Islards．

Narenta（
meatia．$)$ ，Bosnir，Dab Natia． $\begin{gathered}\text { niel } \\ \text { narels．}\end{gathered}$
Narim，Ob．
Narin ril，Thicrl－Shan．
Narova，Peipzs．
Narr Kilaus，Corrt－fool．
Narra，Sinde．
Narraganset Bay；Rhode I ．
Narragansets，Rhode 5 ．
Narrows，Necus shama．
Naseberry，Sapodilla Pl，
Nasmyth，James，Stean－iann－ mer，Sun， 209.
Sassich，（Supp．）
Nat，Egypt， 787.
National education，（Supp．）
National Sunday League，Sab－
bath，403．

National workhops，Atetiers Nationaux．
Nations，University， 663 ．
Natisone（r．），Civialale．
Natives，Oyster．
Natrium，Sodikms， 80 ． Natrix，Srake．
Natural Bridge，Virginia． Natural selection，Species． Nau，Cape，Cotrone
Nauclea，Cadamba＇Supp．） Naupactos，FEtolia，Leparto． Naussa，Paros．
Nautilus propeller，（Supp．） Naval regulations，Regula－ tions，Mil．\＆Fart
Navel－string，Umbilical Cord． Naver（r．），Sutherland．
Navvies，Caual，55m（note）， Railways， 83.
Navy，Eritish，W＂ar Serrices （Supt．）
Savy retirement，Retirement．
Navy schoolmaster，School－
master，Army δ Naxiy．
Nazaretb（r．），Ogobai（Supt．）
Naze，the，Scandinazia． Nazza，Soxe－Coburg－Gotha． Neapolis，Nraples．
Near－sight，Sight，Deftcts of．
Jecbtansmiere，battle of，Scot－
－ecbtansmere，battle of，Scot－
land， 555 ．
Veckar Highlands，Badent． Necrophorus，Burying Beetle． Vecrosis，Teet／t， 330 ． Nectan，Picts．
Nectandra，Greenheart Nectanebes，Esypt，791． そedjed，A rabia， 344
Needle－furze，Gersista
Needle－guns，Breech－loading Armis Supp．）
Needles，the，Wight，Isle of． Needle－woods，Conifera． Neemuch，＇Supp．）
Neenah，Fox River
Neepigon（r．），Superior，Lake．
Negapatam，（Sufp．）
Negative，Photograpley， 510.
Negrais，Bengal，Bay of．
Negro（r．），Red River．
Negrohead，Tobacco， 453.
Negromookey，Semnozrithecus． Negus，Abyssiain．
Neilgherries，Dotaccutund． Neill，General，Alla／tabad．
Neiva，Neviansk（Swhp．） Nekao，Egypt． 79 r ．
Nellore．（Supp．）
Nell＇s Point，Barry Islame．
Nelson，（Suph．）
Welson（r．），Hudson＇s Eay．
Nematoneura，Zoology， 359.
Nen，or Neae（ r ），Bedfort
Level，Cambridgeshire，
W＇ash。
Nenagb（r．），Tipperary．
Neo－Castro，Navariro．
Neokhori，pella．
Neokhori，pela．
Nepaul paper，Daphue．
Nepaul plateau，India， 537 ：
Sepean Bay，South Australia．
Nepeta，Catmint．
Nephin（mt．，Mayo．
Nephites，Mormors．
Nephralgia，K＇iäreys．
Nephrhys，Egypt， 788 ．
Nepidx，Water－bug．
Neptune，Planets．
Neptune＇s cup，Alyyorizus．
Net r_{0} ），Lodz（Sußp．）
Nera（r．），Tiber．
Nerac，Lot－et－Garomne．
Nerchinsk＇mits．！，Treutski．，
Nergal，Assyria， 500. Neriad，（Supp．i
Nens－les－Bains，Mons＇uggon．
Nero 2．，Rostof．
Neroulos，Greece， 83.
Nervion＇r．），Bilbao．
Nervous diseases，（Supp．）
Nest－building apes，（Suppp．）
Nestorius，Chronicle of， $\mathbb{R} u s-$
sian
ture， 389.
Nestos（r．），Macelonia．
＇Ne sutor supra crepidam，＇ Apelles．
Netherohy，Riode Faneiro．
Vettar，Augustowo（Sups．）
Vettuno，Antisur．
Netze，Posen．
Neu－Chwang，（Supp．）
Neuenburg，Veufihatel．
Neuera，Ceylon， 737.
Neufahrwasser，Darnaig．
Seuilly，（Supp．）
Neumunster，（ $S u p p_{0}$ ）
Neural arch，Skeleton， 751
Neurapophyses，Skeleton，75r．
Neurapophyses，Stotory， 227 ．
Neurology，Arata
Neustadt，Saxe－Wemer－
Eisenack．
Neustettin，（Sufg．）
Neusulza，Saxe－2Kcinidgen．
Neutra，（Supp．）
Nevada de Tolima，New Grartada．
Neviansk，（Supp．）
Neville，IV arwick，Earl of．
Sevin，Cacmarzoushire．
New Amsterdam，Berbice， Essequibo．
New Archangel，Fovoark－ hanghelsk．
Newars，Nefan？
Newborough，Arglesey．
－ew Brauafels，Texas．
New Brunswick，Canada
（Supp．）， 447 ．
Newcastle，Limerick．
Newcastle，iv．South Wrales． Newchurch，（Supp．）
Newcomen，Stean－engine，g9．
Newfoundland，Canada
（Sus Sp．），448．\quad Killoway，\quad irkcud－ Brightstive．
New Georgia，Astar．Ocean． New Grange cairn＇，Cairn．
New Holland goose，Cereopsis．
New Holland vulture，Tale－
New Jersey Tea，Ked Root
New Kingston，Kingstori－
－ew Kingston，
New Lanark，Ouen，Robert．
Newmilns，Ajrshire．
New Orkneys，Antar．Ocear．
New Orleans moss，Brome－ liacea．
Sew Philippines，Texas．
New Providence，Bahamas．
Jew River，Great Kiana：ula．
New River，Midalesex．
Fewry（mts－），Armagiz．
New Sarum，Salisbury．
New Spain，flzarado．
New Toledo，Crmana．
Newtod，G．S．Painting， 196. Newtowo，Jrigltt Isle of： Newtownbarty，Wexford．
Sewtown－Mouct－Keanedy， Wicelow．
Vew Westminster，Colzmb̋ia， Britis／t．
§ew－Year River，Bogas
Ngan－Hoee，Garr－Hierv；
Ngan－King，（Supp．）
－gomano，Rovuma（Susp．）
Ngornu，Argonwow（Supg．）
Ngotuane，Oori．
Ǩgouyai（r），Ogobai（Sresp．）
Niagara and Onondaga epocbs，
America， $20=$

Nicander，Alexandrize Age．
Nicaragua，（Swtp．）
Niccolo of Fuligno，Alurno．
Nice，Alpes Maritimes（Suph．）
Nicephorus Botaniates，Alex－
its Comurentis．
Nicephorus Phocas，Byzan－
tine Empire， 47π ．
Vicholajesk，Amoor．
Nicholajesk，Amoor．
Nicholson，Jn．Sreph．）
Nicholson，Jn．Supp．）
Nickeline，Arsenical．Jinerals．
Nicker－tree，Guilankana．
Xicolai，Otto，（Suph．）
Nicolas Kanabus，Byzatstine
Empire， 47 F ，

Nicosia，（Supp．）
Nicot，Jean．Tobacco， 463 ． Nicoya，Gulr of，Carikago． Nidaros，Trondijem．
Nidd（r．）forkstive．
Nid－Elv（r．），Trondijen．
Nidhugger，Niffheim．
Nidwald，Untervaliker．
Niende，Rozuma（Supp．）
Niers r，M，Macas．
Nieusiedlersee，Alps．
Nieuwe Diep，Amsterdan．
－ieuwer Amstel，（Suph．）
Nigger caterpillar，Black fack．
Night－blindness，Sight，De－
fects of．
Night－churr，Goatsucker．
Night－sceoted rocket，Dame＇s
Violet．
Nigritias Africa， 67.
Nibau，Sandurch lslands．
Nijneudinsk，Irkutsk．
Nijni－Kamtchatsk，
Fars－
zhatias．
N゙ikkul Seyn，Nicholson，F． （Srop．）
Nikolsburg，armistice，Ger－
Maryy isufp．：534．
Nilgiri．Neilgherry Mts．
Nimacb，Neemuch（Supか．）
Nimbus，Clouds．
Nimeguen，Nijneger
Nimrud，Layard．
Ning－tbee，frrawadi
Ninth－day disease，Trismus
Nascentizent．
Ninus，Vireref．
Niobrara，Nebraska．
Nipissing（l．），Canada，5\％9．
Nirmidea，Parasitic Animsals．
Niscemi，（Supp．）
Nisch，＇Supp．1
Nissa，Visch（Supp．），Sigis－ misura．
Nisus，Sparrosu－hawet．
Nith，Dumfricsshict．
Niti－Ghaut，（Supp．）
Nitocris，Egypt， 789.
Nitre－whey，Refrigerants．
Nitro－benzol，（ S usp．）
Nitro－glycerine，Supp．）
Nivelle，Pyrénees，Basses
Nizam－al－Mulk，Seljuks，Alp－
Arslar．
Nizami，Persian Lang．\＆o
L：2． 427.
＂No．290，＂Alabicuna（Swpp．）， 379.
o－Ammon，Amman．
Nobili，Thermoelectricity．
Noble，Pogge．
Noble，Rose－noble．
Noctua，Cabbage Moth．
Noctule，（Susp．）
Nogal（ r ），Somali Land．
Nogat $(r$ ）$)$ V istuliz．
Nogays，T zerks．
Noguera＇r．：，Aragon．
Noirmoutier，France， 470.
Noma，Cancruent Orss Supp．）
Nombre de Dios，（Suspo．）
None－so－precty，Saxijrage．
Nonoenstein（mt．，Saxomy：
Nonpareil，Type， 607.
Nonsuch（i．），Bermbulias．
Nopal，Coctiseral．
Norborg，Alses．
Forden，（Suph．）
Fore（r．），Tipperary
Worfolk Island pine，Aras－
caria．
Norhamshire，Shire．
Norse．Scandizazian Lang．

$$
\text { \& Lit. } 522
$$

Norska，Norway．
North Anna，battle of，U．S．66r．
North Branch（ r. ），Ternessce． North－east i．，Spit＝berger． Northern Light－houses，Com－ missioners of，（Supp．）
Northern．Lights，Auroriz Borcalis．
North German Confederation，
Gemtany（Szpp．）， 535.
Northshead，Chilieriz Hun－ dreds．

INDEX.

North-west Fissage, Maclure (Supp.)
Norton Sound, Arerica, Russiar.
Ninss, Firessay.
Nossi-Be, (Susp.)
Nassi-l brahim, (SuAp.)
Notation, cliemical, Chemistry (.Suph.)
Notonectidie, Water-bug.
Notormis, (Suph.)
Notre Dame Inlet, Neas formallard.
Nottorno. Semprati:
Nouba, W'ady, Niubia.
Noumenon, Philosophy, 487, Substance.
Nousa-Lavt, Aloluceas, 523.
Nousara, battle of, Radefsity.
Nora Scotia, Canada (Supp.),
Novelda, (Susp.)
Novello, C. \&i. Vupp.)
Novgorod-Ssjowersk, (Suph.) Novgrad-Volynski, (Supp.)
Novi, battle of, Suraref.
Novitiate, Monachism, 526.
Novo, Lailoga.
Novogrodek, L,ithrania
Nowanagar, (Supp.)
Noya Bay, Spair, z3-
Noyes. J. 11. Perfectionists (Susp).)
Nshiegn-Mbouvé, Gorillu.
Nu, Egy.pt, 788.
Nucha, (Supp.) philippöre fs.
Nugget, Gold, 815 .
Nuggina, (Supp.)
Nugrur, Bednore (Sußp.)
Nukha, Iuchaz (Supp.)
Nullification, (Supp.)
Numb-fish, Torgedo.
Numen, Om
Numenivs, H himbre?
Numitor, Romulus.
Nun, Viger
Nuncz, Senegambia.
Nuphar, ISater-dily.
Nurzek, Fiélsh.
Nuthe (r.), Zerist.
Nuborz, Frilines.
Nyirecyhaza, (Susp.)
Nykjobing, Falster.
Nylandischen Sküren, Sweaz-
barg.
Nyroca, Sciup Duck.
Oakingham, W"kinkfam.
Oak-lungs, Lengzoort.
Oat-cakes, Brata, 318
Oatike grass, Arrhenatherwhr.
Obcordate, Leaves.
Obdorsk, $O b$.
O liecre, Racz.
Ober-1lessc, Germany (Surfs.) 0535 .
Obertyn, batileof, Sigismunud.
Obi (i.). Molirccas.
Ohi, Ob:
Obion (r.), Tenmessec.
Object-lessons, Urbis Picirrs, Pestalozzi.
Obovate, Lenzes.
Obrec, Papıa: 250.
Obstetrics, Alidruifers:
Obwald, Unterwaider.
Ocean currents, Gulf Stream.
Ochiltree, Lords, Siczart
Family, 123.
Ochri (l.), Albaria.
Ochrüite, Ceritc.
Ock, Berkshire.
Ockment, West (r.), Dartmaor. Octant, Sertart
Octave, rule of the, Rule of the Octaze.
Octavo, Book, 225.
Octodecimo, Book, 225.
Oddern, Chinstiansand.
Odenkirchen, (Supp.)
Odet (r.). Finistare.
Odo, Pishop of Baycux,
Willian l. Eoll. of Eugland.
Odylism, Animal Alag. 267.
Odysseus, lybsses
Odysses; HIemer.
Oc, ${ }_{806}$.
80

Fa, Tripoli
Oedenburg, (Suppo)
Enanthe, Wifer Drofwort. Oerifa Jokul, Pcehend, 505. Oesel, (Supho)
Osir, Scathinazriansilyih. 324.
Oestre Bygd, Gremand.
Octa-Nata, Papra, 250.
Ofen, lisula.
Offa's Dyke, (Supp.)
Offentach, Jacques, (Susp.)
Officers' allowances, Alloseances, Officers
Ogechee lime, Tupelo.
Oglio (r.), Jseo (l.), F'o
Ogobai, (Suppt.)
Ogress, Foundle.
Oguzian Turks, Ottoman Empirc, 147.
Ohlau, (Suspo.)
Ohn's law, Galsaruisns, 603.
Oich (2.), Caledonian Canal.
Oidemia, Scoter, Swr Duck. Oidium, (Srifor.)
Oikel (r.), Ross E Cromarty. Oil City, Dil-zells (Supp.)
Qil-fuel, (Supp.)
Oil of apples, Inferianic Acil. Oil of spike. Lavesuder.
Oil of verbena, Lemon Grass.
Oil Springs itown), Oil-rvel/s (Suppi)
Oil-wells and oil-trade, (Supp.) Oinomania, Dipsonania, (Suppri, 499
Ointments, U'nguents.
Oistin, Barbadoes.
Okak, Labrador.
Okanda (r -, Ogibai (Suph.)
Okavango r.), Zambesi.
Okement, West (ri. $^{\text {) Dartmoer. }}$
Okonagan (r.), Washington
(territery).
Olan (me.), Alacs, Trautes.
Olauand Olawa, Ohlas 'Supp.)
Oldficldia Africana, Teak.
Old light Durghers, \&c. U. P.
Charech, 646.

- Old Man of Coniston,' Z.art-- cashire.
- Old Man of the Mountain,'

H/assar-bers-Sabazh.
Old man pipes, Tobneco-Aipes. Old man's beard, Brameliacea. Old Woman's INe, Jombay: Olearos or Oliaros, Ansiparos. Olekma and Olekminsk, Lems. Olekma and Allekminst, Lena.
Olfactory: bull, Brair, $30 z$. Olfactory bull, Brairs, 302. Olhão, (Supp.)
Oligoclase, Felspa
Olinda, (Supp.)
Oliva, Spart. Lars. E Lit. 20. Olive nuts, Elaocareacer. Olivenza, (Susp.)
Olona (- .) Milare.
Olat, (Susp).)
Olympia, Wishingzon (ier.).
Olympian Mountains, Var-
comerer's lshand.
Olympus (town), Lycia.
Olynthos, Blacerionia.
Om (r_{0}, T Tohols).
Dma, Molnceas.
Omaizdes, Ownindes, 7x. Omar II. Otrmiades, 73. Ombre, Ouadrille.
Ombres Chinoises, Proppet.
Ombronc (r.), Grosseto (Supp.) Omenck, Greendand. Ometepec, Niearagua (d.). Ommeyades, Ommindes, 77. Omototzi, Ǩumichutho. Omun, Cakbas.
Onatas, Sculpture, 577.
Onchus, Fishes, 355.
Ondatra, Sirsquash.
Oneglia, (Suff.)
Oneiromancy, Dizination.
Oneyzah, IVahabis, 41.
Onion (r.), Vemmort.
Onkaparinga (ri., Souta Aus-
tralia.
Ononis, Rest-harrosu
Onopordon, Thistle.
Onos agrios, Unicorm.
Ontario, Canada (Supp.), 447.
Onteniente, (Supp.)
Oolowtec, Cambay.

Oomrawutti, (Swft.)
Oori (r.) Transwalkepulic.
Oosterschelling, Terschelling.
Ovtrum, (Sufs.)
Opera bufta, Buffo (Sufß.)
Uphiology, Zoolegy. 357.
Ophiosaurus, Glass Sruake (Supp.)
Ophir (wt.), Mralacea.
Opossum shrimp, Mysis.
Oppa (r.), Oder, Treppisu.
Oppenheim, (Suft.)
Opposition (in astronomy',
Conjunction.
Optical ghoses, Ghosts, Optical (Smps.)
Optic thalamus, Brain, 302, 303, Cerebromt.
Oral Law, Talmud.
Orange, Rourulle.
Orange root, Hydrastis (Supp.)
Orarium, Stolc.
Orb (r.), llerauls.
Orbe (r), Neufichatel.
Orhitolites, Rhizopoda.
Orcades, Orkneys.
Orcagna, A. Paintime, 892.
Orchard grass, Cock's Foot
Civass.
Orchids, Orchidea.
Orchy, Avee (l.).
Orco Falls, Waierfalh.
Orcus, Roman Religion,
Ancient, 302.
Order-book, Book-kceping.
Order of the day, Parliament, a87.
Orellana, Amazor.
Orenburg gum, Larch.
Orense, ($S u$ isp.)
Orestes, Agamemnat.
Orestes, Odoacer, Rome, 321.
Orfa, Edessa.
Organ, Phrenology, 513.514.
Organography or organoloz̄7,
Botary, $26{ }^{2}$.
Organzine, Silk \& Silkuorm,
7^{24}.
Orient
Oriental jade, Vepharife.
Oriental wool, Carmine.
Oriflamme, Standard.
Original Eurgher Preshytery;
U. P. Churrch, 646 .

Orizava (3nt.). Alexice. 4:2.
Orkhan, Oifontan Emfire,
Orkney (derivation of name), Ilebrides.
Orkney, Earls of, Hamithon
Fant. 213, Sinclair Fam.
Orla (r.), Saxe-lVesuar-Eise-
nach.
Orlik, Orcl.
Ormista, Orosius.
Ormond, Tipperary.
Ormain Row-sir.
Ornain, Ear-le-Due
Omithichnites, Birds, Fossil.
Omithogalum, Star of Bethlefiers.
Oronsay, Colonsay.
Orontiacea, Calla (Supp.)
Oroszhaza, (Supf.)
Orpinc, Sedium.
Orsajo (गlit), Parma.
Orsza, batule of, Sigisminud.
Ortegal, Cape, Spain, 12.
Orthoclase, felspery.
Orthognathous cranium, Skulh,
Orthopadic surgery, Surgery,
Ortler Spitz, Tyrol.
Ortygia, Alpheius, Syractese.
Orlygia,
Ontro
(Suph $)$
Orwell (r.), Sufork.
Oryctognosy, Minteralogy.
Osborne, Captain Sberard,
Taefings.
Oschersleben, (Supp.)
Os innominatum, Pervis.
Osiût, Siout.

Osmanti, Dthmary.
Osmanlis, Ottoman Erpoire,
147, Turkey, 587 .
Osmeras, Smelt.
Os sacrum, Sacnum.

Ossification, Arteries, Dis.
of (Supp.i, 402.
Osteroc, Faris Isles.
Ostheim, Saxe - Weinar-
Eisenach.
Ostrich-farming, (Supp.)
Ostuni, (Supp.)
Ost Vaagen, Lefortem.
Dtaha, Society islands.
Othman I., 11., I11., Ottomar
Emfire, 147-14).
Othyl, Acety: (Susp.)
Otis, Busfard.
Otjiherern, Ozampas.
Otoconia, Ear, 731
Otolithus, (Supp.)
Otsego (l.), Susquehanma.
Oter, Ghestornoth.
Otter, Peaks of, A Apalachians,
321.

Otter (r.) N Norteray, 799
Ottocar, Rudelf.
Ottochar, Odeacer.
Otto of roses, (Supp.)
Ouchy, Lansanne.
Ouder Amstel, Jientucr
Amstel (Suph.)
Oudon (r.), Mayerne.
Ouessant, C'shtrnt.
Ouetre, Mनауеине.
Ougher (1.), Cavan.
Ougree, (Supp.)
Oulou-Keme (r.), lerisci.
Ouse (r.), Sussex.
Ousel, Onzel.
Ousel (r.), Euckinghamshive.
Ouycou, Manioc.
Ovar, (Supp.)
Ovarian tumour, OEaries.
Ovariotomy, Oararies.
Oven bird. (Sunt.)
Overflackkee, Rolland, South.
Overshot wheel, II ater-power.
Ovis, Stiecp. 663
Ovoca, díoca.
Ovolau, Fiji islinds.
Ovum anguinum, ?'iper
Owenmore (r.), Sliso.
Owen Stanlcy $($ Mh. $)$, Pistur,
Owı parrot, K"akizo (Supp.)
Owyhee 'r.), Oregon.
Oxen-le-Ficld, Darlingtor.
Ox-cye bean, Conage.
Oxford tracts, Tractariar eism.
Oxidising flame, Blowopiare.
Ox Mountains, Sligo.
Oxychloride of carbon, Phoso gene Gas.
Oxysalts, Salts.
Oyapock, Cuinna, Ferwh.
Oyster Bay, Tasmania, 306. Oyster plant, Salsafy.
Ozan, Chizerofs
Oziekerite, IIax.
Pabbay, Skye.
Pacasse, Pegasse
Pachacamac, Serw, 43^{8}.
Pacheco, Donna Maria dc,
Padillit, Эuan de.
Pachyrizos, $\bar{R} 00$ t.
Packenham, Gen. U.S. 650.
Paco, Alpaca.
Yacu, Salmonide.
Padaviry (r.), Rio Negro.
Padron, (Suph)
Padula, (Sups)
Padus, Eird-cherry.
Paganes, H. de, Templars.
Pagani, (Susp.)
Pagei, Sumatra
Paget, Hon. Wm. Auglesca, Marquis of.
Pago-Pago, Turuila.
Paillon (r.), Alpessharitimes (Suph)
Paimbucuf, Loirc-inftrienre.
Painted tortoise, Emys.
Painted pis, Wart-heg.
Paint Rock'(r.), Tennessec.
Paknam, Siatr.
Paks, (Sufs).
Palais, Jielleisle-err-MIer.
Palamedea, Screarner.
Palaocia ($\%$.), Segorbe.

INDEX

Palar'r.'. Chingstepus..
Palay, (Suthp.)
Palazzolo Acreide, (Supp.)
Palikat, Prlicrt (Supp.)
Palissch (l., Theresiopel.
Palki, Palanquin.
Pallet (in heraldry), Pale.
Palma, (Suft.)
Palmas, Cape, Guinea, Gulf of.
Palm cabbage, Cocon-rutit.
Palme, or Palmi. (Supp.)
Palm-honey, Coquito (Supp.)
Palmistry, Cheiromancy.
Palm-wine, Palms.
Palmyrene language. Shem-
itic Langzages, 672.
Palo de Vaca, Cow-iree.
Palos, Mogruet Supp-)
Palos, Cape, Sfain, 13.
Palshat, Coimbintore.
Paludina, Wealden Formation.
Pamiers, Arizge.
Pampas hare. Agouti.
Pampero, IVind, 215 .
Pamphilus, Painting, 19r.
Pampur, Cashmere.
Pamunkey (r.) York.
Panaceia, 度sculapius.
Panætius, Stoics.
Panama hats, Pardaracea.
Panaria, Lipari.
Panaro, Po.
Panay, Philifpise Island's.
Pancake Tuesday, Shrozetide.
Pancreatic sarcoma, Adenocele (Supp.)
Pancreatine, Digestion, 564-
Pandharpur, Punderpur (Suspo)
Pandokrátora, Corfr.
Paniani, Pouani (Supp.)
Panic, Pau.
Panke, Aralia.
Panniers, Packhorse.
Panormus, Palermo.
Panphobia, Fear.
Pantagruel, Rabciris.
Pataloon, Hariequin.
Pantar, Solor Islands.
Panthera, Wilitfowl.
Papa, Bishop, 118.
Papandayang, Volcamoes.
Paphos, Phternicia, 492.
Papier d'Albespeyres, Vesicants.
Papiete, Taliti.
Pappeaburg, Ems.
Papunha, Gulielma.
Papus, Earneo.
Para, belem
Paragoa, Philifpine Islards.
Parallelmotion, Steam-engime,
Parallel roads, Glenroy.
Parameters, Vaviation of.
Paramo de los Papas, Andes,
Parana (town!, Entre Rios.
Parang Pass, Himalaya.
Parasita, (Supp.)
Parasites, root, Root-parasites.
Paratartaric acid, Tartaric
Acid, 304
Paraty, (Supp.)
Pardepis, Sapindacea.
Pardo, Parara (r.)
Parekhia, Paros.
Parenchymatous worms, Sterelnintia.
Pareus, Landes.
Parga, Albania.
Parhelia, Halos, 206.
Paria, Gulf of, Trinidad.
Pariahs, Caste, 657.
Parinarium, Chrysobalanacea
Parkesine, (Supp.)
Parkhurst, Convict.
Parliament of Scotland, Scot-
Lsud, 55^{8}.
Parma, Duke of, Cambacérès.
Parma r.), Po.
Parmenio, Alexander the Grat.
Parmesan, Parma.
Parocatuck, Rhode IsTand.
Parodychia, Whitlow.

Patras, (Supp.)
Parret (r.), Somersetshire.
Parrish's Chemical Food,
(Susp.)
Parrot, owl, K"akapo (Supp.) Parse, Parts of Speech.
Parson-bird, Honey-eater
Partanna, (Supp.)
Parthenay, Sevres, Derrx.
Parthenon, Grecian Archi-
Parts of Holland, Kesteven, Lindsey, Lincolnstive.
Parus, Tit.
Par vagum, Preumogastric Aerve.
Pashiuba, Iriartea.
Pasht, Egypt, 7^{87}.
Pasma, (Supp.)
Pasoeroewan, Yava (Sutp.), 580.

Passage, right of, Serivitude. Passage-hawk, Falconry, 228. Passamaquoddy 'r.), Croix, S:Passaro, Capo, Sicilly, 704.
Passau, Peace of, Maturice
(Surfo.)
Passer, Spartoav.
Passifiora, Passion-flower.
Passir, Borneo.
Passover-cakes, Eread, 318.
Pasto, New Granada.
Pasture, right of, Servitude. Patani, Siam, Grlf of.
Patans, Purjinb.
Patarenes or Patarines, Cat/zare.
Patent laws, (Supp.)
Patent Office, Library, and
Museum, (Supp.)
Patent yellow, YeRiow Colosirs.
Pater, Penbrole.
Paterno, (Supp.)
Pati, fava (Supp.), 580.
Patience, garded, or dock, Spinach.
Patience Gulf, Sakkalir.
Patino, Patmos.
Patta, Muscat.
Pattan, Puthun (Subp.)
Pattay, Arrack.
Patti, Adelina \& Carlotta, (Supp.).
Pauchenti tree, (Supp.)
Paulenzelle, SchwarzburgRudolstadt.
Paume, Termis. Low Archiz-
Paurnota (i.), Low Archiplago (Sutf.)
Paunch, Fumiurutic.
Paupers, removal of, Remowal of Paupers.
Рант, Betel.
Pawn, C/Less, 799.
Pawtucket Falls, Loweld.
Pawtuxet (r.), Rhode Island. Payane (l.), Finland.
Payne, R. Bookbinding.
Payta Bay, Pertr, 435.
Paz (La) de Ayacucho, (Supp.)
Pazend, Persian Laug. Eo
Peace (r.), Columbia, Brit
Peace (r.), Columbia, Brit.
Peach palm, Gulieima:
Peach-wood, Dye-stutfs. Peacock, AlGed́ra.
Peacockmoth, Emperor Moth.
Peak, the, Derbyshire.
Peak Downs, Quensiand.
Peake, Life-boat.
Pearl, Type. 607.
Pearl lr.), Canton.
Pearl opal, Cacholong.
Pearl spar, Brown Spar.
Pearson's solution, Sodium, 802.

Pease, Edward, Railways, 85 .
Pebble (i.), falkiand Is.
Pecan-nut, Hichory.
Pechih-le, Chilh-le.
Pecten, Eye, 206.
Pectoral, Poitrinal.
Pectorales pedunculati, Angler.
'Peculiar People,' Tunkers
(Supp.)
Peculum, Serf, Slazery.
Pedal, Organ, 11 .
Pedal-poiat, Organ-puint.

Pediculidea, Parasitic Ani mals.
Pedilavium, IV ashing of Feet.
Pedrotallagalla, Ceycon, 737. Peene (r.), Oder, Ponerania. Pecp-of-day Boys, Orangeman. Pcers, trial of, Parliament,293.
Peganum, (Supp.)
Pegmatite, Kaolis.
Peirzus, Athens.
Peishwa, (Supp.)
Pekea trees, Caryocar.
Pelagia, Lampedusa (Supp.) Pelé (mit.), Martinique.
Pelias, Viper.
Pellegrin, Abbé, Kameau.
Pellegrino, Monte, Sicily, 704 -
Pellestrioa, (Sufs-)
Pelletier, Algeora.
Pellicle, Epidernis
Peloria, Toad-flax.
Peloric (mts.), Sicily, 704.
Pelt, Falcorry, 223 .
Pelt, Leather.
Peltate, Lerazes, 67.
Peltier, Therno-electricity.
Pelvoux (mint.), Alpes, Hautes.
Pemba, (Supp.)
Pembuan (r.), Borrueo.
Pemphigus, Bullue (Suth.)
Pen, Ben.
Peũa-de-Peñaranda (met), As-
Pendle Forest and Hill, Cli-

theroe.

Pendulum, ballistic, War
Services (Supp.)
Penedo, (Supp.)
Peneius or Peneus, Thessaly.
Penestr, Thessaly.
Penicillium, Vinegar-plant.
Pennant, Perdant.
Pennar (T.), Mysare.
Penny Dog, Tope.
Penny of gold, Rose-roble
Pentamerus limestone, Siluriant Racks.
Pentapolis and Pentapolitana Regia, Cyrenati.
Pentateuch, Samaritan, Samantan Penlatench.
Pertathionic acid. Sulphur, 199.

Pentelicus, Attica.
Penthesilea, Ama=ons.
Pentonville, Corarict.
Pepin, Lake, Wiscoussins.
Pepper-brand, Elight, Brand.
Pepper-com, Ear-cockles.
Pepperwor, Cress.
Peptones, Digestion, 36 r .
Perambulator, Odomeler.
Per baroniam, Parlinnenit,28a.
Perceptive faculties, P/arenology, 517.
Perch, linear, Rod.
Perching-birds, insessores.
Percy Society, Kox. Club.
Perdiccas, Alexander the Great.
Perdix, Partridse.
Perdu, Moot, France, 470.
Perejasslavl, (Sups.)
Pereskia, Cactece.
Perfectionists, (Susp.)
Perfoliate, Leazes.
Periander of Corinth, Sever Wise Mer.
Peridium, Puff-6alt,
Perigynous, Stamens.
Perimbakum, battle of, Tippoo Sakib.
Periphery, Circumference.
Perisperm, Albumen.
Perispare, Spori.
Periwig, Wig.
Perjury, subornation of, Sub
ornation of Perjury
Perkins, Engraving, 68.
Perleberg, (Supto.)
Perowskite, Titarimu.
Perry, Commodore, U.S. 656.
Perry, W. Keporting, Parlia-
mentary.
Persepolis, Persian Architec-
fure.
Persian lilac, Meliacea.
Persian wheel, Agriculture.

Persulphide of hydrogen, Sut-
phsur, 200.
Pertuis Breton, Ré, Tle de.
Pertussis, Hooping-cough.
Perun, Slaves.
Peruwels, (Supp.)
Petasites, Tussilago.
Petaurist, Flying Phalanger.
Peterhof, (Supp.)
Peterhouse, Cambridge Uni
Peteril, Carlisl
Petitions, Parliament, 29 r.
Petitio principii, Fallacy.
Petitot, Jean, Enamzel.
Petōfi, S. (Supp.)
Petong, Packforg.
Petrasowodsk, Olonetz.
Petrified fingers, Belemnites.
Petronius Maximus, Rome, 32 .
Petrovsk, (Supp.)
Petticoat breeches, Life Mor-
tars, \&cc. Supp.)
Pettychaps, Beccafico
Pettychaps, beccafico
Petty whin, Geristri. (Supp.)
Pevensey Bay, Sussex.
Peyer's glands, Digestion, 563 .
Pezophaps, Solitaire.
Phacochæerus, Wart-hog.
Phrenogamous, Phanerocamous.
Phaẽton, Coack.
Phalanges, Hard, 222, Foot,
Phalaris, Canary Grass.
Phantasiasts, Morofkysites.
Pharaoh's hed, Egyptian
lulture.
Pharaoh's serpeots, Suipliocyanogen.
Pharmacopocia, (Supp.)
Pharnabazus, Alcibiaies.
Pharo, Fara
Pharpar, Barrada.
Phascolomydx, ${ }^{\circ}$ ombat.
Pheasant, homed, Tragopan.
Pheasant's eye, Adons.
Phege, Damaschs.
Pheliprea, Cancer Root.
Phenakistoscope, Stereoscopc,
${ }^{117}$.
Phenakite, Glucina.
Phene, Benzole.
Pheneus, Arcadia
Phenic acid, Carbolic Acid
Phenomenon, Substance.
Phial, philosophical, Eologra Phital.
Phidias, Pheitias.
Philadelphia, Ala-Sheldr
($S_{w} \hat{j} \hat{p}$.)
Philadelphia, Ammonites.
Philanthropin, Philanthroky.
Philibert I., II., \&c. Savor,
Hotese of.
Philiphaugh, Selkirk, Selkirk-
Philipe. I., IV., V. Capetian Dynasty.
Philippeville, Namur.
Philippine Grossbeak, Baya.
Philippopolis, (Suft-)
Philippsburg, (Supp.)
Phillibit, Pillibrit (Sufts.)
Philohela, Woodcock.
Philoprogenitivedess, Phrerology, 514.
Philosopher's stone, Alehemy.
Philotarus, Weaver-bird.
Phinock, Salmon, 440 .
Phlegmatic diathesis, Scrofwla.
Phoca, Scal.
Phoenician lang. aod lit. Phemicia, 495.
Pheevicura, Binethroat, Redstart.
Phonautograph, ifustic Kecorder (Supp.)
Phonograph, Music Recorder (Sutpp.)
Phonolite, Clinksfone, Traf.
Phormium, Flax, NicuZealand.
Phosphorite, Apatite, P/Los-
phortes.
Photo-galvanography, Photo
graphy, 511.

INDEX．

Ihoto－glyphography， Eraphy， 58 ．
Photohcliography， pogntithy（Sunp．）
Photo－micrography， braphy， 5 2．
I＇huto－zincography，
Helioty

rhoto－

Shoto－
Eraphic Engra：ing
Ihulowdi，（Suppo）
Phyllocladis，leiv
Phyllophagi，Scarabaide
Phyllostoma，Spectre Bat， Irampire．
Physalus，Rorgual．
Physomycetes，fiungz．
Physostigma，Calabar Bean （Supp．）
Phytogeography，Botany， 265 ．
Phytography，Botany， 264 ．
Phytoromy．Botany， 264 ．
Piaçaba，Piassaba．
Piana de＇Greci，（Suph．）
Piatra，（Supp．）
Piave（r．），Alfs．
Piazza，（Supt．）
Picadores，Full－fight．
Pie d＇Anic，Pyrences．
Pic du Midi de Barèges，Fy－ reners．
Pic du Alidi de Pau，Jyrenec＇s．
Pic du Midid＇Ossan，Pyrenees．
Pichnc－writing，Writing， 289.
Pickercl，Pike
Pico Ruivo（me．），Madira．
Picric acid．Carbazotic Acid，
Dye－stuffs．
Picton island， Firego．
Picture－cleaning，Painting，rg8．
Pictured Rocks，Superior，L ．
Fictures，restoration of，（Supp．）
1 liculet，Woodpecker．
Piddock，Pholns．
Piddock，French or Wood，H＂ood－ pecker．
Piedimonte d＇Alife，（Supp．）
Piedra Blanca，（Susp．）
Pictermaritzburg．Nakioh．
Pictra Nero，Malla．
Pictraperzia，（Suph．）
Pigeon（r．），Superior，L．
Pigeon－breasted，Rickeis．
Pigeon－breasted，Barbary Ape．
Pignerol，finerolo．
Pig－nut，Earth－ruct．
Pig－rat，Bandicook．
Pigs＇faces，Mesembryacea．
Pig－tail，Tobacco， 465 ．
Pika，Lagomys．
Pike whalc，Rorqual．
Pilatus，Mt．Alpnacis．
Jilaya（ r. ），Pilcomago．
Pileworm，Teredo．
Pilica（r．），Radomt．
Pillar，Sirength of JIaterials， 76%.
Pillar，Cape，Tasmaria，${ }^{206}$ ．
Pillar of Elisy，Liangollen．
Pill bectle．Armadillo．
Pill beetle．A rmadillo．
Pillesden Pen，Do
Pillibhir，（Suph．）
Pilon，Germain，Sculpture， 577.
Pilza（r．），Vistula．
Pimpinclia，Avise．
＇Pimple＇copper，Electro
metallargy（Supp．）
Pimple－mite，dioizoa．
Pinann，Custara Apple．
Pinang，fietel．
pinang palm，Areca．
Pinara，Lescio．
Minaric acid，Rosin．
Pincers，Torture．
Pinchbeck，Alloy，
Pincia，Iralladolid．
Pincian Ifill，Rome， 322.
Pindóva palm，Arfalea．
Pincova palm，A Andus（town），Doris．
Pindus（town）Doris．
Pine（r．），Morefon Bay．
Pinc－apple oit，Butyric Ether．
Pincera（ r ），，Dwina．
Pinctum，Pine，547．
Pinha，Cusiard Afple．
Pinic acid，Rosin．
Pink，Salmor， 447.
Pink，brown，Ditch and Eng－ lish，I elloru Colours．
Pink salt，Tin， 447.

Pinua，Ear， 729.
Pinua，Cars ${ }^{292}$ ．
Pinzon，Americis，ign．
Piuneer $(r$.$) ，Quecnsiand．$
lip，（Sropp．）
Piper，Cridaris．
1＇iper，Ginrmara．
I＇iper，Jepper．
Piper，Wild－fosul．
Pipe Roll，Records，I＇ublic．
Pipes，flow of water in，$J I_{y}$－
drodynamics．484．
Pipe shrub，dristolochia． Pipette，Volumetric Anarlysis． Pipe－vine，Aristolochia． Piphles，Cathari．
Pipul，Peeक力ね．
Piquery Parana，
Piramidig，Night－itazus，
Piran Round，Theatre， 388. Piran Round，Bobia．
Pirate Isle，Bra
Piraticaba，Cantpinas（Suph－） Pirn，Bobbins，Spiuning， 46. Pir Panjal Pass，Duntum．
Pisano，Andrea，Sculpfure，577． Pishtaka，Fox River． Pisiform limestone，r＇ca－stone． Pismire，Ant，282，
Pisolite，P＇ea－stone．
Pistoja，Cino da，Jlaly， 657.
Piston，I＇ump．
Pisucrga（r．），Vralladolid．
Pit，Theatre， 388.
Pita fibre or flax， 1 ＇ucca． Pitea（r．），Sweden， 236 ． Pithiviers，Loiret．
Pillaud，sudore．
Pitman，I．Phoretic Ifriting，
pro，Sharthavd，692．
Pito，Chica．
Piton de l＇ournaise $\mathbb{\&}$ Neiges， Borrbon，fle dc．
Prittacal，Dye－stuffs．
Pittenweem，Lord，Stciuart
Family， 125 ．
Pitti Dalace，Ammenate，B．
Pittston（r．），Sursquehanna．
pist，the Elder，Chathom．
Pitt Town，Jlawhestury．
1＇itt Water，Tasmanion， 306.
Pixies，Fairics， 221.
Pixing，Mint．
PLx liquida，Tar．
Piziuba，friarteit
Pizzo，（Suf人）
Pizzo di Case，Apennines．
Placentia，Newfoundiand．
Placerville，Caljfornia．
Pladda，Budeshire．
Plain silk．Taffety，
Plains of 1 ＇romise，Qucersland．
Plane figures，regular，lifgri－
Plane fimures，regular，
lar F＇hane Figures．
Planera，Zelkoun．
Planetoids，（Supp．）
Planking，Shippuidifins，684．
Planorbis，Pulmonata．
Plantain，Plantaginec．
Plantain，water，Alismacea．
Plassey，（Supt．）
Plaster，court，Stichingoplaster，
Platani（ r ），Sicily， 704.
Platanista，Soosoo．
Platcaux，Table－dands．
Plate－glass，Glass， 78 r ．
Plate－layers，Railzays， 89 ．
Platon，Russian Lang \＆Lit Platyelmia，Worms， 279 ． Plauc Canal，Germany， 718. Pleasant，Mount．Whiled／is． Pleasant，Mount， Pleisse，Elsier．
Pleissengau，Saxe－Altenburg． Plenum，Germargy， 723.
Plessis les Tours，Zours．
Plessur（r．），Chur（Supp．）
Plettenberg Bay；Cape of Good Hope．
Pleurapophysis，ribs．
Plinlimmon，（Sufp．）
Pliolophus，IIyracolierius．
Ploermel，Morbitar．
Plojeshti，（Susth．）
Plotzk，Ploch：
Plough，the，Ürsa Major．
Ploughman＇s spikenard，

Mlover，great，and Norfolk， Thick－knce．
Pluck，Poere．
Plumbers＇solder．Alloy．
Plume－bird，（Smpto．）
Plummer＇s pills，Giuaiacum．
Plumpudding－stone，Congio． merale．
Plusia gamma，IFmoth
Plutchevsky（mi．），K゙irms－ tibatika．
Pluviale，Vestments．
Plym（r．），Dartmeor．
Plymouth，Alontserrat． Plymouth，Roanoke．
Plymouth Bry，Wassachiro setts Bay．
1lymouth Breakwater，Break－ quater．
Plynlimmon，
rlinlimunon
（Srosp．）
Po（r．），Fang－fzerians．
Poached eggs，Cowery．
Podda（r．），Furvidpur．
Podleys，Coal－fish．
Podol，battle of，Gcrmany
（Supp．）， 533.
Podolian marmot，Mole－rat．
Podolinski，X゙assian Lang． \＆Lit．
Podolsk，Kaminelz－Fodolsk．
Pociphagus， 1 inli．
Pogodin，Russian Lartg．\＆ Lit．
Pohono Waterfall，I＇O－Sentite Falley（Supp．）
Point－a－Pitre，（Suph．）
Point d＇Alencon，Lace
Pointel，Glitss， $77^{8 .}$
Pointers，the，fole－star：
Point of sight，Perspectize， 430.
＇Points d＇appis，fippu．
Poisson，S．D．（Sripp．）
Pokhurn，（Sufif．）
Polalians，Staves．
Polaris，Pole－star．
Pole， Kod．
Poligny，Iura．
Poling，Tin， 449 ．
Polite literature，Belles－litheres
Polk，Uhthans．
Pollanarrua，Crylon， 739.
Pollard，IITeint， 157.
Pollentia，battle of，Alaric I
Pollen－tube，I＇egetable Fhysi－
ology，7：6．
Pollet，Diespe．
Pollinium，Stancess，Vege－
table Piysiology， 735.
Pollux，＇rugilism．
Pollux，Rubidium．
Polonaise，Solacer．
Pultiel，Skje．
Polycletus，Scritplisre， 577.
Polyghar，Zemindar
Polygnotus，Painting， 191. Polygonatum，Solomon＇s Scal． I＇olynices，Anfigone，CEdipus． Polypharmacy，Alchemty． Polyphemus，Cave of，Aci Reale．
Polyptych，Triptyck． Polystomidx，Frematoia． Polytrichum，（SuPN．） Polzen（r．），Leipa（Supp．） Pomel cross，Pomtanetice． Pomelo，P＇ompelmoose． Pomeranus，Bugenhagen． Pomeroon，Griaita，Brit． 132. Pomeroy，Ofio．
Pomfret，Pontefract．
Pommern，l＇oมerazia． Pompeiopolis，fiamplona． Pompholyx，Pemphygus． Ponani，（Supp．）
Ponce，Prevto fico．
Ponce de Leon，Juan，U．S． 653 －
Pondicherry kite，Eme．
Pond－snail，Limnaa．
Pons Yarolii，Brain， 303.
Pontac，Fivérées，Biasses．
Pontano Salso，Marfrectonia． Iontarlicr，Dowlis．
Iontificale Episcopornm， Kitual．
Pontivy，Morbihan．
Pontop Pike，Durhan．

Pood， \int^{3} mat．
Pool，litliarmis， 99
l＇ool，the Thuturs．
yrook＇s Inole，Jiuxton．
Poon，J＇oona－tcood，Tiacama
hatc．
Poon spars．Sterculiacea．
＇’ource，C゙ulhack．
Poorhouse，If orkhouse．
Poor man＇s herl，Gratiola．
Poor man＇s pepper，Cress．
Poornah，ferar．
Poor People of Lyon，W＇al． denses．
Poorundur，Poons．
Pop－corn，Maize．
Pope（beverage），Bishop．
Poperiughe，（Siupp．）
Popham，sir llome，Signals．
Poplar Alarshes，Dogs，lsle of．
Popolia，Amplupolis．
Poptulus，Rome， 308.
Pora，Sumatra．
Porcelain shell，Conury．
Porcupine（mts．），Michigan．
Porcupine fish，Diodos．
Porcupine grass，Australitha
Explovitions（Supp．i， 410.
Porcupine wood，J＇almyro－ zeood．
Pordenone，（Supp $)$
Porpesse，Porpoist
Port，the，Thames．
Porta，Baptista，Camera Obsczra．
Port Adelaide，S．Australia． Portage，Genesec．
Portalegre，Alemtejo．
Port Anson，Anstritian Ex－
plorations（Supp）， 41%
Porta Pompie，Circus．
Port Augusta，S．Australía．
Porta Trajan，balkan．
Port Dalrymple，Launceston．
Port llavey，Sasmauia，jo6．
Port Douglas，Columbia，Evit．
Port Dover，Eiric，Lalic．
Port－du－Bouc，Berve，Etangde．
Porter，D．I）．（Supp．）
Port Gaio，I＇ax
Port Gencssec，Ontario．
Jost Hood，Cape Sreton．
Port Iludson，U．S．66o．
Port Jackson，Bohany Bay， Sydney．
Port Jacksonshark，Cestracion．
Portland，Oregon．
Portland Harbour，IP eymouth． Portand powder，Germander Port Lincoln，Soush Australuz． Port Macdonnell，South Aus－ eralia．
Port Nalloth，NamaquaLund． Port Nicholson，Wrellingtons （Susp．）
Porto－Cabello，rucrto－Cabello （Suph）
Porto d＇Anzo，Antitum．
Port of Spain，Trinsidad．
Porto Grande，Cape 1 Cor ／／s． Porto Imperial，Zocamins． Porto－Maurizio，（Supp．） Porto Praya，Cafe ferd Is． Portrecve，Recere．
Port Republican，Porl－aro Pritrel．
Port Royal，Martinique．
Ports，Jyrenees．
Port Sorell，Tasmania， 306. Portsoy，Banflshiri．
Port Talbot，Aberaion（Supp．）
Portugal（derivation），Oporla Portugal（derivation），
Portugalete，Bilbao．
Portugal laurel，Chryry－durel．
Portuguese man－of－war， $\mathbf{1}^{\prime} / h j$ ． salia．
PortusTrajani，Civita Vicrchia． Posidonius，Stoics．
Positive，Pholograpliy，5xo．
Poso，Chica．
Post－office insurance，（Sust．）
Postulants，Monachism， 526 ．
Posy，Rivg．
Pot（paper），Praper， 246.

INDEX．

Potato War，Succession Wars，Prince of Wales，Cape，Ame－ 177．
Potidæa，Macedonia．
Potidæa，Macedonza．
Pot－metal，Glass， 782.
Potocki，Targowitz．
Potscherfistroem，Transena Republic．
Potsdam period，America， 202. Potteries，Staffont．
Potterystyle，Calico Printings， 514.

Pot tree，Brazil Nuts．
Pot－wallers or pot－wallopers， （Suph．）
Poulton－le－Fylde，Blackpool （Suxpp．）
oundage，
Pounds，John，Ragged Schools．
Pout，Sil．
Powtrail，Clyde．
Poyang（l．），Yang－tze－kiang．
Poyning＇s Act，Parlianent， 28 r ．
Pozzo di Gotto，Barcelloma （Supp．）
Prades，Pyrinées Orientales．
Pranomen，Name．
Prague，treaty，
Gerntanty
（Sutp．），535．
Prague Compact，Taoborites．
Prairie apple，Psoralea．
Prairie－du－Chien，（Sußp．）
Prangos，Umbelliferce．
Prasias（l．），Crantroges．
Praslin 1sland，Scychelles Islard．
Pratincoles，Charadriadie．
Prato，（Supp．）
Precelly Hills，Pembrokeshive．
Pregnancy，simulated，Ver－ vous Diseases（Supp．）
Premature labour，Abortion （Supp．）
Premna esculenta．V Verberaces．
Premolars，Teeth， 329.
Preparation，Anatomy， 229 ．
Pre－Raphaclite，Hunt，W． H ． Presbyies，Wanderoo．
Presentation of the Child Jesus， feast of，Purification of the Blessed Virgin Mary．
Preservation powder，Taxi－ dermy．
Preserved meat．Antiseptics， Food and Drink， 407.
Preserved provisions，Pre－ serves（Supp．）
Preserves，（Sulfo．）
Presl，Bolevinia， 190.
Presque Isle，Erie．
Presteign，Radnor，New．
Preston，Tyncmouth．
Prevera，（Supp．）
Previons question，to move the，Farliament， 287 ．
Prevost，Sir George，U．S． 656.

Prevost＇s theory of exchanges， Stut， 208.
Price，Rev．T．Welsh Lang． \＆Lit． 13^{8} ．
Pricking at the belt，First and Loose．
Prick the garter，Fast and Loose．
Pride of India，Mreliacea．
Pride＇s Purge，Rump Parlia－ ment．
Priego，（Supt．）
Prien（r．），Chicm－sce．
Prija，Slaves．
Prikas，Ukase．
Priluki，（Supp．）
Primaries，Bivds，ios．
Prime d＇opal，Opal．
Prime factors，Chemistry （Supp．）， 465 ．
Prime minister，Treasury
Primer，Long，Type， 607.
Prime staff，Clog Almantac．
Primordial utricle，Cells， 709 ．
Prince，H．J．Agapemone．
Prince－berry，Rubus．
Prince Edward Island，Canada （Stepp．）， 448.
Princeites，Agapenone．
Prince of Peace，Aicudia．

Prince Patrick island，Mel－ ville Islatud．
Prince＇s feather，Amaranth， Prince＇s Island，Biafra．
Prince wood，Cordiacere．
Prinos glabra，\quad ěR， 323.
Prinsepia，Chrysobahnacece （Supp．）
Printing，（Susp力．）
Prionodon，Delzudrug（Sutp．）
Pripet（ r ．），Volhynia．
Privas，Ardiche．
Privat－docent，University， 664.
Privilege（in parliament），Par
liament，284．
Prizzi，（Sugp．）
Probolinggo，fava（Sugb．）， 580 ． Proboscis scal．Elephant，Šer．
Procellaria，Petrel．
Procida，G．da，Sicitian Veso
pers．
Procidentia，Womb，Diseases of．25x．
Procopius，V＂alens．
Proctalgia，Recturn
Proctor，General，U．S． 656.
Product，chemical，Eituct （Supp．）
Professed houses，Monastery． Proglottides，Tapeworm，290． Prognathous cranium，Skull， 760.

Prognostications，Almanac． Prokopovitch，Russian Lang． \＆Lit．
Pro－legs，Caterpillar
Prolocutor，Convocations．
Prolok，Mount，Dinaric Alps． Prome，Pegre．
Pronation．Hand， 223.
Proof－spirit，Alcolzol．
Propeller，Nautilus Propeller （Supp）
Propensities，P／werzology，517． Property，real，Rent．
Propontis，Marmora，Sea of． Propylphycite，Alcohols （Supp．） 3^{84}（note＊）． Prorogation，Parlianincnt， 286. Proscenium，Thentre， 388. Prosencephalon，Skrull，76r． Prosopopocia，Perronification． Prospero Lambertini，Benedict． Prothorax，Insects．
Protopterus，Lepidosire\％： Protoxide，Oxides．
Provencal，Romanic Lang． Proventriculus，Birds，Iog． Prover，Approver． Provisional order，（Suft．） Prowe，Slaves．
Proxies（in parliament），Par－ liament， 232.
Prud＇hon，P＇ainting， 195
Pruritus，Rectuan，Anuts（Supp．） Prusa：Broussa．
Prussia，Germany（Supp．） Prussia，education in，V a－ tional Education（Supp．） Prussian carp，Gibel． Przemysl，（Supp．）
Przibram，（Supp．）
Psalms of the Steps，Graitual Psalms．
Psalterimm，Digestiont， 567. Pseudonymous，Anonymons． Psendopodia，Khizopoila． Pseudoscope，（Sutp．）
Pseudo－scorpions，Chelifer （Susp．）
Psila，Carrot．
Psiloriti，Ida．
Pskoff（l．），Peipus．
Psocns，Termite．
Psophia，Agami．
Psophis，Arcadiat．
Psora，Itchi．
Ptah，Egypt， 787.
Ptelea，Ephesus．
Pteroglossus，A racari，
Ptiloris，Riffe－bint．
Ptisan，Tisan．
Ptyaline，Digestion， 559 ．
Ptyalism，Salization．
Puberty，legal，Age．

Pubes，Pelvis
Publicans，Cathari．
Publichealth，Sanitary Science （Swho．）
Publilian laws，Nome， 3 ³．
Publishing，Book－irade．
Puccinia，（Srpp．）
Puccoon，Sanguinaria，
Pucha－pat，Patchouli．
Puck，Fairics，221．
Pudding－pipe tree，Cassia．
Puddling Iron， 636 ．
Puebla，Jwarez（Supp．）
Puerto－Cabello，（Supp．）
Puffinus，Shearwater．
Puget－Theniers，Alpes Mari－
times（Supp．）
Pughe，Owen，Weish Lang． \＆Lit． 137.
Puglia，Apulia．
Puglia，Francesca da，Savo．
natrola．
Pug－mill，Brick，338．
P＇ulcinella，Panch．
Pulicat，（Supp．）
Pulmonaria，Arachnida．
Pulmonary artery and veins，
Respiration， 209.
Pulsatilla，Pasque Flower．
Pulteney－town，W゙jck．
Pulu－Buru，A mboyna．
Pulwul，（Snpp．）
Puna，Pootza．
Punching－machine，Funcín．
Punctated tissue，Wood \＆o IVoody Fibre．
Punderpur，（Sutp．）
Punjnud，Chenab，Punjab̉．
Puno，Eczailor．
Punos，Veriezuela．
Punta Arenas，Costa Rica，
San fosé．
Punto，Quradrille．
Punty，Glass，779－
Pupilarity，Age．
Pupipara，Hormaloptera．
Pur autre vie，Estate．
Purbach．Almanac．
Puri，チ̈aggemaut．
Purna（r．），Oomratuttiz（Supp．）
Purnabada（r．），Dinagcpore．
Purples，the，Purpura．
Purpure，Colour（ker．）．
Purree，Indian ICllow．
Purses，$几$ ay．
Pursuk（r．），Kıtaich．
Purus（r．），Amazor，Per7t， 437.
Puruvesi（l．），Finliand．
Pushtaneh and Pushtu，Af－
ghanistats．
Pusterthal，Tyrol
Puteaux，（Susp．）
Puteoli，Campania．
Putten，IIollarad，South．
Putting－nets，Prawu，
Puttm，（Supp．）
Pu－tu，Chusian Islands．
Putumayo（r．），Amazon．
Puy－de－Sancy，Dor．
Puy－Vieux，Mont de，Vienne，
Hante．
Pwliheli，Caernarvonslite．
Pyenonotus，Bulbrel．
Pydna，Macedonia．
Pydna，battle of，Scipio
Pymiliandes．
Pygmalion，Tyre．
Pygmies of W．Africa，（Supp．）
Pyhäjärvi（L），Finland．
pylos，Messenia．
Pyne，Lonisa，（Supp．）
Pyramus（r．i，Zeithurt
Pyrethrum carneum，Porsian
Powder．
Pyrgita，Sparraave
Pyritz，（Sw S_{p} ．）
Pyroxyline，Coliodion．
Pyrrbic foot．Pywhic Dance． Pyerhula，Bull－fizch．
Pyrus Japonica，乌uince．
Pysang，Mrolwecas．
Pythias，Damon．
Pythogenetic fever，Typhus
\＆Typhoid Fezers， 615 ．
Quade，Grane．
Quadi，Silesia
Quadrantes，Rose－noble．

Quadrat，Type， 608.
Uuadrequivalent elements， Triads．
Quaker bird，Albatross．
Quality，in logic．Quantifica－ tion of the Predicate．
Quang－Nam，（Supp．）
Quantity，in logic，Qusutifi－ cation of the Predicate．
Quantity，in verse，Risythtu．
Quantock Hills，Somersetsh，
Quarnero Bay，Adriatic Sea．
Quarry，Falconry
Quarter evil，Black Quarter．
Quarter－pieced，Square－pieced．
Quarto，Book， 225 ．
Quartz resinite，Girinsol．
Quartz，smoke，Rock－crystal．
Quaternate，Leaves．
Quathlamba，K̈cffaria．
Quathlamba（mts．），Natals， Oratuge River Free State．
Quebec，Canada（Supp．）
Quedah，（Supp．）
Queen Elizabeth＇s Foreland， Frobisher，Sir $M I$ ．
Queensberry（mit．），Dumfries－ shire．
Queen＇s cadets，Sandiurst．
Queen＇s Coll．，Cam．（Supp．）
Queen＇s coroners，Queen＇s Bench．
Queen＇s conch，Cameo．
Queen＇s Pipe，（Sufp．）
Queen＇s ware，Wedgrood．
Queich（r．），Bazaria，760， Landau．
Quelpaerts，Corea．
Quercine，Oak．
Quercite，Sugar， 188.
Quercus ballota，Kacahout．
Quercus tinctoria，Quercitron．
Querquedula，Tea．
Quesaltenango，（Supp．）
Question，the，Torture
Quetsch－Hahn，Volumetric Analysis．
Queyles（r．），Tarazona．
Quick grass，Bent Grass．
Quicks or quicksets，Hazu－
thorn．
Quida，Scrudinavine Laitg．
So Lit．522， 523.
Quieto，Kusterland．
Quiloa，Mruscat．
Quillota，（Smpp．）
Quilon，（Swpp．）
Quina，Cinchona．
Qumate，Leares．
Quinic acid，Kinic Acir．
Quinicine，Euinia．
Quinidine，Quinit．
Quininism，Ouinia．
Quinoline，Dye－stuffs．
Quinquina，Cinchonaz．
Quinte，Bay，Ontcrio．
Quippo，IVriting．
Quipn，or Quippu，Perse，438．
Quirinal，Emirinus．
Quiriquino（i．），Concepcion．
Quirites，Rome， 3 Io．
Quiver，Archers， 37 I ．
Quoad sacra，Parisit．
Ra，Ambors
Raab（ro），sips．
Rabato，Gozzo．
Rabbath－Anımon，Ammonites．
Rabbets，Shipbouilding， 683. Rabe，Martha，Caskarine I． Racalmuto，（Sups．）
Race，Cape，Newform？land．
Race（current），（Supp．）
Rachelberg，Bavaria．
Rachitis，Rickicts．
Rack，drrack．
Radagaisus，Stilicho．
Radaune，Danzis．
Raddle，Reitale．
Radegast，Slazes．
Radiaria，Zoophyte．
Radicle，Seed．
Raditshevitz，Servia， 63 ．
Radius，Hand， 222.
Rae Isthmus，Meloille I．
Raffaello Santi，Raphart．
Raft－bridge，Bridge，Molitary．
Rafue（r．），Zambesi．

INDEX．

Ragalbuto，Regalbutc．
Ragalin土to．Racalmuto Supp．
Ragatz，Dfoffers．
Kage，Emorion．
Ragged Robin，S－vchenis．
 tholerey， 525.
Ragotski，Transy\％amis．
Ras－trade．（Supp．）
kahad，Vile．
Rahajan（r．），Bermes．
Kaia，Ray，Thornback．
Katatea，Coral／s．，Socirty／s
Rain torpedo，Eleciricity， Animal， 82 z ．
Railway trains，Gas－lighting in， Gas－lighting（Supp．）
Raim，Coulking．
Kain－dactors，Betjuans．
Rajagriha，Jahar．
Rajasthinn，Rajpiots．
Rajmahal llills，India，537．
Raki，Arrick．
Ralick Islands，Radnck．
Ramee．Raphmeria（Supp．）
Kame II and，Commall．
Ram feast，Beltrint．
Ramgunga＇r．），Bulaon＇Supp．）
Kamier，Mount，Washisteror （territory）．
Ramisseram，Manaar，G．of． Kamnad，（Supp．）
Ramnugger，batte of，Sik／t Wars．
Ramps，Ramhion．
Rampur，Rohilcund．
Kampura，drudore．
Ramrec，Aracas（prov．）
Ramses，Ramesses．
Ramsoos，Allium．
Ram－turai，Hibiscos．
Ranay，Natrua fs．
Kance（r．），Cotes－du－Nord．
Kandazzo，（Supp．）
Kanclagh，Supp．）
Rank，relative，liflitive Fank
Ransome，Frederick，Sione，
Artificial．
Rapaces，Accipitres．
Rape，Ridimg．
Raphoc，Adiontan（Supb．）
Rapperschwyl，Gizll，St，
citnton of．
Rapti（r．），Ghegra，Orde．
Raratonga，Cook f＇s．
Ras，Abyssinin．
kas Mohammed，Reत Ser．
Kasores，Gallimaceons Birds． Rat Islands，Aleutian／s．
Rata，Inocarpus．
Ratamanow，Diomede Is．
Ratan，Rettar．
Katanhia，Rattany．
Rathdrum，Wickione．
Kathmelton，Donegal．
Rathmines，Dublin．
Katnagheriah，Contart．
Rattan，Ructor．
Rattening，Trade＇s＇Uuions （Supp．）
Rattes，Respiratory Sounds， Katllesnake fern，Botry－ clisum．
Rattoons，Siggar－cane．
Ratzeburg，Samemburs，Meck－ ienburg－Strelitz．
Rancoux，battle of，Saze， Coment of．
Raucmithaler，Rhime－zuine．
Ravec or Ravi（r．），Chenab，
Punjab．
Ravenala，Trawelier＇s Trec．
Ravensbournc，Deptford．
Ravensburs，（Supp：）
Rawtenstali，（icuechurch （Supt．）
Ray，Cape，Nevefornalicud． Ray－grass，R ye－grass． Kaymond VI．and VII．Counts of Toulouse，Albigenses． Rays of fins，Fislues， 353. kazor－back，Rorgual． Rea，Rei．
Rea（r．），Birninghan． Read，Gabriel，Ofago． Keal distance，fision， 82 x ． Reate，likis．
Rebaptisers，Reskoluik．
＇Rebeca＇riots，Caermar thenshire．
Rebeira Grande，Azores．
Recanati，（Supp．）
Recerceléc，Cercelic．
Reciprocal proportion，law of， Alomic Theory．
Recognitinn，W＇ardholding． Record of Titce Office，$/ \mathrm{m}$－ cumbered Estates（Supp．） Kecrementitious products，Se－
Recruiting，Wiar Scrives （Supp．）
Rectified spirit，Alcoldol． Rectus muscle，Piatella． Reculet de Toiry（mut．），Эura． ked bird，Cardinal Bird． Red－breasted goose，biarna－te Goose．
Red charcoal，Charbon Kionse． Red dog，Dhoie．
Red flames，Sure
Kedir，Turkey，588，
Redl，Signals．
Ked lead，lied Colonrs． Red－legged crow，Chough． Redon，llieat－l＇ilaine． Redondillas，Spanish Lasts－ Fo Lit． 20.
Red River Settlement，Carrada （Sufp．）， 448 ．
Red－tailed hawk，Bu＝zard．
Reed，Raminantia．
Reed r．），「yur．
Reed bird，Bob－o－link．
Reed－mace，Bulrush．
Reed meadow grass，Manna Grass．
Reedy sweet water grass， Afanta Grass．
Reck，the，W＇estfort．
Keel，Spinning， 48.
Recl，angler＇s．Antlins， 256.
Recve，$R u / \boldsymbol{J}$ ．
Recves，Sims，（Supp．）
Referce，Arbilration，359－
Reflecting faculties，f／ivers－
clogy＇， 537.
Reform，（Suppo）
Reformed Frameiscans，Re－
Refriceratinemachines， Sup（ $)$
Refrigerating machines，Stofo．
Refrigeratory，Still．
Regalim，Severn．
Regalim，Seeren．
Regen（ V_{H} ）B＇araria， 760.
Reggio，Duke of，Oudino：．
Regina，そ̛uno．
Regi Lagni，flecraa（Supp．） Regnier，Satir．
Regnitz（r．），Baiaria， 760.
Regola de la Cosa，Algebra．
Regulus，St，Andresus，St．
Reichenbach，batle of，Seven
1ears IV＇ar， 637
Reidkjobing，Langeland．
Rei interventus，Locus Poni－
entia．
Reims，Rheins．
Reineke Vos，Keynard the Fox． Reisner work，Buhl－atork．
Rejang（ $\%$ ．），Saraturk．
Relief，Sculpterre，575．
Relief Preslyytery，Scotiand， Churche of 562.
Religious lBrotherhoods，Bro－ therioods，ficlistons．
Rembang，faral（Supp．）， 5^{80} ． Kembo（r．），Ogobai（Supp．） Remus，Rionrulus．
Rena，Glummers．
Reni，（Srıp．）
Rennel＇s curzent．Fiscay，E．of．
Reллеt，Кumimanfia．
Rental bolls，Tcinds．
Reo，Salmon，44）．
Repeating circle，Sexiant． Repeating guns，Rirwolver． Republican Fork，Ne引rasika， Rescript，Pragmatic Sanction Rescrve forces of the United
Kingdom，II ar Services （Sulp．）
Reshid Pasha，Abd－ul－MTedjü－
Residual，Congruoss．
Resiststyle，Calico Prinfing，

Resort（l．），Lecwis－avil／s－／／arris． Responsibilty，Belief， 8.
Restitution edict，Thirly F＇ears＇ 1 ＇ar．
Retemirabile，Cirentation， 47. Reticulum，Ruminantia．
Retimo，（Supho）
Retinite，Trip．
Ketort，gas，Gas， 635
Ketours of Services，feconds， lublic．
Retrone（ $r_{\text {l }}$ ），l＇icenza．
Retroversion．W＇omh，Diseases
\＆Deringement of the，251．
Retting，Fitx－dressing．
Return tickets，Railunzys，go．
Reuse，Nerfichatel．
Reuss，Germany（Supp．）， 535. Reuss（r．），Al／s．
Revivals of religion，（Sust．）
Rewah，（Suph．）
Rewbel，Directary
Rewund，R Rubarb
Reynosa，battle of，Spain， 17.
Rhetians，Szuitzerland， 246.
Rhaiadr Waterfall，Denbiglish．
Rhamnin，Buchithorn．
Rhamphorhynchus， diaceyl．
Rhazes，N／cdicine，Hist．of．
Rhea Silvia，Rommus．
Rheidol，Cardiganshire．
Rheïn，Rhmbarb．
Rheineck，Rhine．
Rheinpreussen，
तhenish Prissia．
Rheinprovinz，Rhenisth Prus－
Rhein－Zabern，Zaberng．
Rhenus，fitiole．
Rheostat，Galwanism， 602.
Rheum，R＇habarb．
Rheydt，（Supp．）
Rhinencephalon，Skull，762．
Rhins of Galloway，／＂；ifown，
Rhion，Cape，Etolia．
Rhipai Montes，Ural Jits．
Rhipiptera，Strepsiplerr． Rhithymnos，Candia．
Rhizocarpex，Marsileacea．
Rhizomes，Carex．
Rhizophagon，Truffie．
Rhodanus，Rhone．
Rhodez，Aveyron．
Rhonchus，Respiratory Sornds． Rhöngebirge，Bavaria，Saxe－ Meintingen．
Rhun，Alolnecias．
Rhus，Sumach．
Rhyddlan，Flintshire．
Rhyme，Rhime．
Rhynancy，Curdiff．
Rhynchaspis，Shozefler．
Rhynchies，Weeril．
Rind，Waluabis， 4 I ．
Rialto，Isola di，İerice， 750. Ribalta，Francesco，Ribera． Ribbing，Count，Ankarstrons． Ribble，Lancashire．
Ribbon grass，Canary Grass．
Ribchester．Prestore
Ribeira Grande，St ilichact＇s．
Riles，Gooseberry．
Ribs，Ship－buiding， 684 Kice bird，Bob－a－link： Rice weevil，Corn I／＇earil． Richardia，Calla（Supp．） Richardson，Dr，Methylene （Suph．）
Richebourg，Lille．
Richelieu，Carada， 548.
Richibucto，Neio Brantsuick． Richmond，J＇r．Edzuard＇s／． Kichmond（r．），N．S．Whles． Richmond，Easl of，Tudor．
Ricimer，Rome， 327.
Riciniz，or Ricnia，Rathlirs．
Ricord，Ph．（Supph）
Ridean，Ottazen（ r ．）
Rideau Canal，Castadn， 530.
Riders，W＇all－trees
Ricselstock（ m f．），Schauyz．
Riesi，（Supp．）
Rifled arms，Wer Services
（Supp．）
Rifles，Bresch－loading Arms
（Supp．）
Right－boys，Whitcboy．

Rights of Man，Finine，T
Right whale－porpose，Del－
Rille Orne．
Rimi，Eriodendron
Rimna（ r_{1} ），Ural．
Rim stock，Clog Almanac．
Jinaldo，Armside．
Rind，Jumbus．
Rinderpest，Catrle－plagne
（Surs．）
Ringed snake，Coluber．
Ringtail，Harricr．
Rink，Curling．
Rimman＇s green，Cobald．
Rinn，Lough，Leitrim．
Riobamba，（Supp．）
Rio Coco，Nicarapua．
Rio d＇Avciro，Auciro（Susp．）
Rio del Monte，Tagus．
Rio del Rey，Eiafra．
Rio de Senna，Sofala．
Rio Dulce，Goifo Dulce．
Rio Grande，Texas．
Rio Grande de Lerma，Clsap－ ahiz．
Rion，Phasis，Foty．
Rios di Scnna，Zambesi
Rio Tinto，Voguer（Suppo） Rippling，Flaxadressing．
Rissel，Lille．
Ristori，Ad．（Supp．）
Ritardando，Senhitrdo．
Ritualism，（Supp．）
Riva，TyFol．
Rivas，Nicaragua（Susp．）
River limpet，Limhura． Rivers，Mr，Onikuerd－louse． Rivesalt，Mfuscatel． Rivesaltes，Iynintes Ories－ tales．
Rivière du Dièvie，Otfavea（r．）．
Rivière du Moinc，Ortazur（r．）．
Rivulct＇controversy，Bin－
Mey，Th．
Rizah，（Susp．
Rjev，Rslece（．Supf．）
Roach（r．），Heyzuood（Supp．）
Road，right of，Servitmif． Roag（l．），Leaiss－2wilh－／harris． Roanne，loire．
Roaring buckic，Fusus．
Robert，Louis，Caper，244－
Robertina，Serbouth．
Roberts，David，（Supf．）
Robertson，Jus．（Supp．）
Robin，Redlirerst．
Robin，（5upp．）
Robusti，Jacopo，Tintoretio．
Roccaluruna，Aloraco．
Rochambeau，Count de，U．S．
655.

Rochechountt，＂ierme，I／ante．
Rock，Spinning， 4^{6} ．
Rock（ r ），＂infertorun
Rock－cork，Asbestus．
Rocket，dyer＇s，Weld．
Rockets，Life－dnortars，\＆e． （Susp．）
Rock－fish，Basse．
Rockhampton，Qucensf（c）ut．
Rockites，Whilchoy．
Rock－leather，Asbestus．
Rock manakin，fiock，Cock of sic．
Rock－rose，Cisfus．
Rock－sheli，MTurer．
Rock－snakc，Bongar，Fydion．
Rock－wood，Ashestrus．
Rocky Island，Cork．
Rocky Mit．shecp，Argalf．
Rod，fishing，Angling， 256.
Rodach（r．），Saxe－Coburs Gotha．
Rodger，Andrew，Fermers． Roding（ r ．），Essex，Thames． Rodman gun，War Services （Suph．）
Rodna，Transyluania
Rod of Aaron，Divising Rod． Rodolf，Rudolf，
Rodrigucz，Island of，Solitaire．
Roc，Fislues， 354
Roc，soft，Reproduction， 197. Rocbuck，Roc．
Rocbuck，Dr，WFatt．
Roet（r．），Maas，Koermord．
Roci（r．），Malpheins．
Rofia

INDEX.

Rogenia, Whitcbait.
Rogers, Professors, America, 202.

Rogues' Novel, Spanis/t Lang. \&o Lit. 20.
Rohan, Duke of, Huguenots, 452.

Rohtuk, (Susp.)
Rohuna, Cedrelacea.
Rojak (i.), Alerition Is.
Roker, Susderlaud.
Rolandins, Rolard de in Platière.
Rolling stock, Nailzurys, 89 .
Rolls, Records, Patblic.
Rom, Gypsies, 170.
Romaic Greek, Greece, 82.
Romaika, Pyrrkic Dance.
Roman candle, Pyrotechay.
Romance languages, Romenic Languages.
Romanche, Isire.
Ronano, Gíulio Pitpi.
Roman order, Roman Arckitecture.
Roman strings, Gut Marisfacture.
Romanus II. III. IV. Byzarttine Empire, 471.
omeo and Juliet,

Capalets (Supp.)
Romerswaal, Bevelind.
Romney, America, Owch, Robert.
Romni, Moldavia.
Romulea, Bisaccia.
Ronan, Adantran (Suth.)
Ronas Hill, Shetland.
Ronay, Siyye.
Roncal, Naverre.
Rondelet, W. (Sufip.)
Rōnne, Bornholm.
Rood, Rod.
Roodpeer, Phoberos.
Room, Acanthics.
Roopnerain, Dalkissore.
Root r.), Racine (tozun'
Koot, crown of the, Stent.
Roper (r.), Australian Exploriztions (Suff.), 4 II.
Roquefort cheese, Affrique, St. Sufp).
Rosalia's, St. wreath of roses, Rosary.
Kosa Marix, Rose offericho. Rosamond, Alboir.
Rosamond, Henry II. of Eng land.
Rosario, (Sucp.)
Rosas Bay, Catalonia. Rose, Rev. Hugh, Tractarianism.
Rose apple, Eugenia.
Rose bay, Oleander.
Roseberry Toppiog Hill, Cleveland.
Rose-chafer, Tumip.
Roseine, Dye-stufts.
Rose laurel, Oleander.
Rosemary, Dampier Archip.
Rosemary, naarsh, Statice.
Rosencranz, General, U.S. 660.
Roseneath, Dumbartorshire.
Rosenkreuz, Father, Nosi-
crncians.
Rose of the Virgin, Rose of Fericha.
Rose-point, Lace.
Rose-spots, Typhus and Typhoid Fewers, 612
Rosette, Leaves.
Rosewood, Convolvulus.
Rosmarinus, Rosemary.
Rosoglia, Orange.
Rosolic acid, Tar.
Rcssieny, (Supp.)
Rosslare Point, jFexford.
Rosso antico, Trầ.
Rossoli, Sundez.
Ros solis, Sundez
Rota, (Supp.)
Rotation of crops, (Supp.)
Rothay (r.), Windermere.
Rothenberger, Rhine-qvine.
Rother $(r$.$) , Don, Yorkshive.$
Rother (r.), Midhurst.
Rothschild, Almaden.
Rotomagus, Roues.

Rotorua (. .), New Zealand. Rottang, Rattar.
Rottlera, Vermifuges (Susp.) Rottum, Sornholn.
Rotuli Curix Regis, Records, Public.
Rotuli Hundredorum, Records, Public.
Rotuli Scotiæ, Records, Pubüc.
Roubilliac, Rysbrach.
Roucou, Amotfo.
Rouenneries, Rouen.
Roughan (l.), Crannoges.
Rough Bounds, Invernessshire.
Rouher, Eugène, (Sufpg.)
Rouillon, Denis, St.
Roumania, Rumania (Sufop.)
Roumpona, Schelidt.
Roundels, Besiznts.
Round-fish, (Susp.)
Round-tail, Bull-trout.
Round Top (mt.), Appala-
chians, 321.
Roup, Pip (Sußp.)
Rovigo, Duke of, Sazary.
Roving, Spinning, 46.
Rovuma, (Snpp.)
Row-lock, Oar.
Rowsa, Rousay.
Roxana, Alex. the Great.
Roxburghia, Smilacere.
Roxolani, Sarmatians.
Royal Canal, Westmeath.
Royal fern, Osmzenda.
Royal Islands, Mfoluccas.
Royal islands, Mrotuc
Royer-Collard, I.P. (Sutpo)
Roymatla, Calcutta.
Royston, Cambridgeshire.
Rozeniurg, Netherlands.
Rozingain, Dioluctas.
Rshew, (Supp.)
Ruabon, Derdighshire.
Ruapahu, New Zealand.
Ruapahu, New
Rubble, Brash.
Rubellite, Tonrmaline. Rubeola, Mearsles.
Ruble, or rubel, Rouble.
Ruby, Tyse, 607.
Ruby, Alamandine, Spinel. Ruby, Bohemian, Rose-quartz. Ruby-tailed flies, Chrysis. Rudnik Mts. Servia, 620 . Rudnif, Christian, Algebra.
Rudolphine Tables, R iudolfir. Ruellia, (Susp.)
Ruféa, or Rufí (r.), Alprcizrs. Ruffec, Charente.
Ruffed grouse, Bomasia. Rungallic acid, Gallic Acid. Rufus the Ephesian, Auatomy, 228.
Ruglen, Rutherglen.
Ruisdael. Roysdael.
Ruiz, Juan, Spanish Lang. Rule Sit. 19.
Rule, St, Andreaws, St.
Rumania, (Susp.)
Rumen, Ruminautia.
Rumex, Sorrel.
Rumination, N zminntitia.
Rumney (r.), Glumorganshire, Nonmouth.
Rumonsh, RomanicLanguages.
Rumsey, Steam-mavigation.
Rumuni. Austria.
Run, Victorsi, 78°.
Runcinate, Leazes.
Runes, Araeshonve (Supt.)
Runic knotwork, Rurres.
Runic staff, Clog Almanac.
Runn, Cutch.
Runstaffs, Almanac.
Rupel (r) , Scheldit.
Rupertsberg, Birgen.
Rupicola, Rock, Cock of the. Ruremonde, Roermond.
Rush-nut, Cyperics.
Rush-nut,
Rusky Mit. Pruth.
Russ (r.), Niemer2.
Russell, W. H. Times, The.
Russia, Great, White, Little, \& C: Russias, All the (Sutp.) Russian America, America, Russian, U.S. (Sush.)
Russias, All the, (Swpp.)

Rustenberg, Trauswal Re-
public.
Ruta, Rue.
Rute, (Supp.)
Rutheni, Russmiaks.
Ruthenians, Rom, Cath. Ch.
Rutic acid, Caproic Ac. (Swpp.)
Ruticilla, Redstart.
Rutland, Vermontt.
Ruvigado, (Supp.)
Ryland, Engraving, 68.
Rymnik, battle of, Suvorof.
Ryots, Oude.
Ryssen, Oweryssel.
Rytina, Stellerime.

Sa, Sais.

Saabs, Africa, 62
Saale, Mrain.
Sal-Eisenberg, Saxe-fiten-
birrg.
Saalfeld, Saxe-Meiningen.
Saane, Freiburg.
Saarlouis, (Supp.)
Saba, Antilles.
Sabluatarians, Sabbath, 402.
Sabbathaites, or Salibathians,
Sabbathais Zwi.
Sabbaths, witches',
Witch-
craft, 234 .
Sabia(r.), Trauscaal Refrilic. Sabine women, rape of the, Romaltus.
Sabinus, P. Vitelliks, Aulus. Sabor (r.), Braganza.
Sabre-fish, Hair-tail.
Saburmuttee, Cambay. Sacadina, Bormeo.
Saccharates, Glucose.
Saccharomyces, Tortula Cereylsia.
Sacramedia, Aorta.
Sacred Isle, Manitomlin Is. Sacred standard, Relics. Sacrifice, human, Orissa. Sadang (r.), Sarawak. Sadang (r.), Sarawak. Sadeler, Eng raving, 69 .
Saenredam, Engraving, 69.
Safeguard, Dragon. Saftron, bastard, Saffower. Saftronwood, Elaodendron. Sagitta, Worms, 279. Sagoskin, Russiar Lang. So
Sagua-la-Grande, (Sutp.) Saguenay (r.), (Supp.) Saharanpur, (Supp.)
Sahel, Algeria, 14 .
Sahidic, Copts.
Sai, Cebus.
Saïan (mets.), Irkutsk.
Saīd, Port, Suez Crzual (Supp.)
Saigon, dock at, Floating
Docks (SuAp.)
Sail-sous-Couzan, Loire. Saima (6.), Finland. St Agnes, Scilly Islands. St Alban, Loire.
St Alban Hall, Oxf. (Sufp.)
St Albans, Vermont.
St Alban's Head, Dorsetshire. St Andeol, Ardeche.
St Anne (i.), Seychelles $1 s$,
St Anthony's Fire, Raflania. St Anthony's Well, Antony, St. St Bel, C. V. de, Veterinary

Medicine.

St Bride's Bay, Pentroliesh. St Cassian Beds, Secondary. St Colme, Lords, Stewart

Family, I24.
St Colum-cill, Coltemba
St Cuthbert's duck, Eider. St Denis, Bourbor, Ile die. Ste Ampoule, La, R/wims.
Ste-Beuve, C. A. (Sugh.)
Ste-Claire Deville,H.E. (Supp.) Ste Claude, 7 ura.
St Edmundsbury, Bury St
Edmunds.
St Elmo, Point of. Valetta.
Ste Marie, Nossi-Ibrahint (Supp.)
Ste-Marie-aux-Mines, (Suft.)
Ste-Ménéhould, Martt.
Ste-Reine, Alésia.
St Erancis, Canada, 548 .

St Francis Bay, Cape of Good Hope.
St Galmies, Loire.
St George, Grenada.
St George's, Nexuforndland. St George's (r.), Suliua. St Girons, Arrege.
St Helen, Mount, Washing
ton (territory).
St Helen's Beds, Osborre Beds.
St Helen's Roads, Wight, Isle of.
St Hubert dog, white, Talbot.
St Jacques, Cape, Saigon.
St Jago di Compostella, Galicia
St Jean de Luz, Pass of, Pyrences.
St Jean de Maurienne, Sazroy.
St Jean Pied du Port, Pass of,
Pyrenees.
St John, Cape, Staten Island (Supp.)
St John, H. Bolingbrole.
St John (r.), R̈afraria.
St John Long's liniment,
Turpentine.
St John's (i.), America, 205.
St John's (r.), Aciel Errans weick.
St Jorgo, Azores.
St Julian, Sazoy.
St kitts, Christopher's, SA.
St Leonard's. Forest, Sussex.
St Louis, Nossi-Ibrahim (Sukb.)
St Louis, (Supp.)
St Louis (r.), Lawrence, St (r.) St Louis (r.), Superior, Lake. St Lucia (r.), Zululand.
St Marcellin, Jsire.
St Margaret's Bay, IVova Scotia.
St Margaret's Hope, Forth, Firth of.
St Mark, Grenada.
St Martha wood, Brazil II ood. St Martin, Ré, Tle de.
St Martin's, Scilly Isiands.
St Martin's summer, Weather
St Mary, Azores.
St Mary, Lezurence, St 'r.)
St Mary's, Nezefortndlard.
St Mary's, Scilly Islands.
St Mary's Bay, Nova Scotia St Mary's Loch, Vorrow.
St Mary's Loch, 1 a
St Maurice (r.), Canada, 548 .
St Michel (mt.), furanches
(Supp.)
St Myon, Puy-dc-Dome.
St Patrick, Grenada.
St Paul (i.), Amsteráam I
St Pauls (i.), Laurence, St, G
St Peter's Bay, Pr. Edward's I.
St Peter's $\left(r_{0}\right)$, Minuesota R. St Pierre, (Suft.)
St Pierre, Hill of, Maastricht St Pierre-les-Calais, (Supp.) St Pietro di Brazza, Erazza.
St Pol, Pas-de-Calais.
St Sauveur, Pyrénées, Ifautes.
St Sebastian's Day, Cape of
Good Hope.
St Sever, Lardes.
Saint's Isle, Derg.
St Sophia, Zarskoe-Sclo(Supt.)
St Thomas, U.S. (Sufp-)
St Ube's, Serubra.
St Vincent, Gulf, S. Australiar. St Yrieix, Vieroue, Haute. Saisang (l.), Siberia, 702.
Sajo (r.), Roscraz.
Saka, Enarea.
Sakaria (r.), Turkey, 587 :
Sakáyt-el-Kublee, Berenice.
Sakkariah, Anatolia, 226.
Sakky, Lake of, Taunida.
Sal, Cape Verd Island's.
Sal, Don.
Salar, Salmon, 445
Salarias, Lerping Fish (Supp.)
Salassi, Aosta.
Salawatti, Pasza, 25I.
Salcombe Hill, Sidmouth. Salduba, Saragossa (Supp.) Sale, bill of, Bill of Sale.
Salem, Oregont

INDEX.

Salemi, (S:spos.)
Salcsbury, William, Wels/s
Lang. © Lit. 137.
Salgado (r.), fio (Supp.)
Salgir (r.), Tauridas.
Salicaceac, Willowe.
Salicaria, Warbler.
Salic lands, Sialic Laie
Salicnt angles, Fortification,
Salifi, Batavi.
Salin, Batand:
Saline (r.) II ashita.
Salins, (Sups.)
Salisbury Cathedral, Gothic
Architecture, 25.
Salishury Crags, Arthur's Seat.
Salle, Abbe de la, Schools,
Brothers of Choristian
Sallec, (Supp.)
Salmalia, Silk-cotton.
Salmon of North-west America, (Supp.)
Salinon peal, Salmor, 44 S.
Salon (r.), Aragon.
Salsa (r.), Alicata (Suth.)
Salsilla, Alstrameria
Salsa (r.), Sicily, 704.
Salsola, Belvedere.
Salsolacca, Cheropodiacer.
Salt (i.), Holyheat.
Salea, Sierra de, Audes, 239.
Saltamentum sardicum, 7 mango
Saltance, Vatron.
Salter's balance, Spring Bal-
ance.
Sile Hill, Montem Custom,
Salt of sorrel. Lemon, Salt of.
Salt oil, Bitterre.
Salepetre, Chili, Soditom, 8 or. Salt-water fluke, Dab.
Salvage, Mcrchant Shipping
Act (SuAp.), 632 .
Salwarp, Droitwick.
Salwern (r.), Tenasserim. Salza (r.), Envs, Suloburg. Salzburgher Head, Nassaf. Samailov, Russiosn Lang. \& Lit.
Samara (r.), Somme.
Samaria wood, Jcica (Sußp.) Sambas. Borneo.
Sambawa: Comodo.
Sambor, New, (Sufs).)
Sambre (r), Mazas, Vamur.
Sambuli, Simoom.
Samen or Samien (mis.), Abys. sinia.
Sameralian (r. and mt.), Sarazeak.
Samhara, Abyssinit.
Sinticl, Simoons.
Samlet, Salmon, 447.
S.mmeas, Shammui.

Samnite wars, Rome, 3 14.
Samogitia, Lithuania.
Sinnokrischtchina, Raskolniz.
Samolus, Pimperne?
Samoo (i.), Timor.
Samoun, Simoom.
Samoyedic language, Tura-
nian Languages.
Samp, Jaize.
Sampet (r), Bormeo.
Sampson (i.), Scilly Islands. Samshoo, China, 818.
Sumson's Ribs, Arthur's Seat. Simsun, Bluck Sea.
San (r.), Vistula, Yaworozv (SuAP:)
San Antioco Island, Sardinia, fslind of.
San Antonio, Cape Verd Is. Sin llernardino, Mount, Sierriz Neicada.
San Carlos, Chiloz̈.
San Carlos, Canfinas, Sujp.) Sancerre, Cher.
Sanctuary, Tabernacic.
Sand-box iree, Jluria.
Sanders, Sandal-wood.
Sanders, Joseph, Raikuays, 85. Sand Hcad, N. \& S. Goodzuin Sards.
Sandlurst, (Suph.)
Sand-mole, Mfole-rat.
Sandomir Mis. Radom.

Sandoway, Aracan (prov.). Sandown, Wight, lisio of. Sand ray, ffomelyn. Sand reed, Ammophish. Sand smelt, Atherive. Sandstone, red, Red Samdstone. Sand-wasps, Bembecituc. Sandwich (is.). America, 194. Sandwich Harbour, Nimaqualand.
Sandwich Land, Antarctic Oceart.
Sandy Point, Ch ristopher's, St. San Felc, (Supp.) San Ficmando, Trinilad. San Fratello, (Supp.)
Sanga, Galla O.x.
Sangar, Sumbazua.
Sangar Strait, Yesso
San Germano, vapour baths of, Agnamo.
Sandiuliano, Montc, Sicily, 704 Sanguine diathesis, Scrofucha. San lgıacio de Agaũa, Ladrones.
Sanitary science, (Supo.)
San Jacinto, hattle of, Tesas.
San Jacinto, hatlic of,
San Jose, Coliforniar
San Juan (i.), Fiuca, Strait of. San Juan (r.), Nicaragiaa. San Juan de la Frontera, (SuAR.)
San Luis de la Punta, (Supple-
San Luiz de Maramham, Marantant.
San Iuzia. C. I'erd Islands. San Marco in Lamis, (SuAf.) San Martin (r_{i}), Aragon. San Maten, (Supp.) San Miguel, G. of, Durrics. San Migucl de Ibarra, Iharra. San Pictro (i). Sarfinia, I. of. Sanpo (r.), Dikong:
Samquhar, Dumefriessh.
Sinn Ramon, Fort, Aules, 23^{8}. San Roque (r.), Coltrmbit. San Salvador, Fahirmas. San Salvador, Bahia.
San Salyador, Bayamo (.SuA .) Sun Salvador, Congo, (Sufp.) San Sebastian, Cape, Catalonia. Sansevicra, Eavsering llemp. Santa Anna, (Supp.)
Santa Anra de Tamaulipas, Tamstico.
Santa Casa, Leretto.
Santa Clarn, Claire, St.
Santa Crocc (mf), Cypryes.
Santa Croce, Capc, Catanio. Santa Cruz, Croix, Sainte. Santa Cruz, patigyona. Santa Cruz, U.S. (Supp.) Sant: FE, (Supp.)
Sinta fé de Guanajuato, Gramajuato.
Santals, India, 539.
Santalum, Saudal-zuood.
Santa Maria de Puerto Principé, Puerto principe. Santa Marta, (Supp.)
Sintander, Nez Cranada. Santa Rosa, Cöahuila. Santiago, Crba.
Santoncs, Saintes.
San Vicente, C. Verd /s.
Sanzio, Raphlael.
S.o Jose do Norte, Rio Sariznie do Sul.
Sao Pedro do Rio Grande do Sul, Rio Gramic rlo Sml. Saparoua, Moluccas. Sapindus's tears, Fir, 331. Sapor, Sassanida. Saporogi, Cossacks. Sappare, Cyanit:. Sappho's Leap, Ducato, C. Sap-roller, Gabion. Sap-roller, Glburnum.
Sap-wood, Abrinn Sira, Moonjah.
Sarabaitz, Mfonachism, 525. Sarabat (r.), Arsatolir, $22^{5} 5$. Saragossa, (Supp.) Sarajewo, Gosma-Seras.
Saransk, (Supp.)
Sarapis, Serapis.
Sarapis, Serapis

Sarcophaga, Blowe fiy.
Sarcoptes, Epizor.
Sard, Onys.
Sardo, Sardinia, Ishatd of.
Sardonyx, Oryy.
Sargans, Khime.
Sargasso Sca, Alsa, Cuifruced.
Sargus, Sheep's-kerad, Sparidide. Sargut, Ob.
Sari-kol, Oxus.
Surine (r.), fireiburg.
Sarmentace: Fitacer.
Sarmiento, Andes, 239 .
S.arnen, Z"uterunaltes.

Sarner Aa ir:), Untemalden. Sarothamnus, Broom.
Sarp-foss, Glommer.
Sarre (r.), Moselle.
Sarsooty (r.), Saraswatt.
Sart, Sardes.
Sartene, Corsica.
Sarts, Turkestant, 584.
Sarum, New, Salisbury.
Sasinqua tea, Camellia.
Sasignan (is.), Alettion Is.
Sasines, Register of, Registra-
tion of Deeds and Writs.
Sassafras nuts, Pitchurim, Beans.
Sataliah, (Supp.)
Sati, Unti.
Satin spar,
Satcara, Sútürta.
Saturcja, Savory.
Saturn, Plancts.
Saturnia, Silk aild Silkworm, Saucc.
Saucc-alonc, Alliaris.
Sauchie Burn, Banmockburn.
Sa'u'd, Wahabis, 39, 40.
Sauerland, Priessia.
Saligor, (Supp.)
Salut Ste Marie, Suferior (8.).
Sannders (i.). Falklamit /s.
Sumrophidia, Blindatorm, Serperts, 626,
Sauvegarde, Nomitor.
Savage (r.), f'otomac.
Savaii, Nazigator's Is.
Savanna blackbird, Crotophage.
Save (r.), Garonme.
Savena (r.), Eologna
Savenay, Loirc-infirieure.
Saverne, Zabern,
Savery', Captain, Steam-
cugine, 99
Savoy Palace, Sracoy Conference.
Saw-wort, Composita.
Saxc-Lauenburg, Saxony, 515. Saxe - Wicimar, Duchess of, Amalia.
Saxe-Wittenberg, Saxory' 515 . Saxicola, Stone-chat, IFiteatcar, IVMirr-chat.
Saxifraga crassifolia, Tea, 323. Saxony, Germany (Supp.), 535. Saxony bluc, Indigo.
Sayan, Chay Root.
Sayer's Law, Bervickshire. Sazawa, Moldau. Scab, Potato.
Scevola, Adzocate. Scalaria, I'entletraf. Scala Santa, Lateran. Scalops, Sherew alyote. Scalpay, Skiye.
Scandia, Scandinavia.
Scanning, Me're, 429.
Scapa Flow, Pomemiz.
Scaphites, Ammerites.
Scapular arch, Skeleton, 753.
Scapulars, Birds, 108. Scarborough, Tobaga. Scardagh. Bosnia. Scardian Mits. MIacedonia. Scarf-skin, Epidermis. Scarifier, Grubber.
Scarlet fever, Scarlative. Scarlet grain, Coccres, Kerimes. Scarlet rash, Roseola.
Scarpa's shoc, Club-foot. Scarpe (r.), Pas-de-Caluis. Scarus, Parrot-fish. Scavaig, Bay of, Skye. Scavenger bectle, Scarabaida.

Seavenger's daughter, Torture.
Schafank, Dohenia,
Schafarik, Liohenia, 190
Scham, Syria.
Scham, Syria.
Schaniyl. Shanyl
Scharlachberger, Rhine-evine.
Schartlin, Schuralionhd.
Schazk, Chatsk (Supp.)
Scheemakers, Rysbrach. Schellenberg, Licchtenstrin. Schelly, Gтемиiud.
Schelly, Grequiat
Schicdam, Gin.
Schichallion, Grampians. Schicrmonnikoog, Friesland, Schiller-spar, Diallage. Schilling, Maron von, TeleEraph, 339 .
Schirbe (mit.), Gall, St.
Schleitheim, Schufhausen.
Schlina (r.), Caspinu Sea.
Schloss-Johannisberger, $\mathrm{F}_{\text {bine- }}$ quine.
Schnceberg, Ewiger (mt.), Sal=burg.
Schneckoppe (nt.), Sudetengro-
Schncekopf (mt.), Thurin-
Schokland, Overyssel, Zuider Zee.
Scholar's mate, Chess, 800 .
Schōngauer, Engraving, 6 . Schoodic (r), Croiz, Ste. Schooley's Mit. New Yersey. Schoolnien, Scholastics. Schools, reformatory, Refor matory Schools.
Schoppe, Sciof inius.
Schouten (is.), Papua, 2580
Schouwen, Seheldt.
Schreckhorn'mit.), Alps, 172. Schturaz (mt.), Servit, G29. Schultheiss, Lucerne. Schumadia, Servin, 62g. Schüt (i.), Comorns.
Schwalbach, Niassatu.
Schwale (r.), Vicumbustir (Sufs.)
Schwann, Anatomy, 227.
Sclowarza (r.), SchzuaraburgRiurolstadt.
Schwarzkopf (mt.!, Würtembers.
Schwarzwald, Black: Forest Schwegler, Basr.
Schwiclochsee, Spree
Schyl (r.) Danube
Schyl (r.), Danube.
Sciathos Grece, 85
Scicli, (SuAf.)
Scilla, Squill.
Scilly (i.), Society Islands.
Scioto (r.). Chillicothe (Supp.)
Scipiones Runici, Almansc.
Sclerotic, Eye, 202.
Scodra, Scufari.
Scogan, Court Fool.
Scoglio Marfo (i.), Mialir.
Scolex, Cestoid Worms, Larva. Scolo del Casale, Allit.
Scolopini, riarists.
Sconcs, Bread.
Scoor-nan-Gillean (mt), Skiye. Scopelos, Grecte, 85.
Scopus, Umber.
Scorpion fish, Scorprena.
Scorpion grass, Forget-menot.
Scot and lot voters, (Suph.)
Scotch broth, Sorip.
Scots, Bretis and Scots.
Scote family, Buccleselh
Scottish Episcopal Church, Scotland, Church of, 562.
Scotus, Marianus, Ireland.
Scougal, Henry, Scottis/s Larg. © Lit.
Scouring drops, Lemons, Oit of.
Scrabster, Tliurso.
Scratched,' florse-racing, 428.

Screw-alley, Ship-buiding 684.

Screw bean, Mrezquite (Supp.)
Scribe, A. E. (Supp.)
Scriptorium, Book.
Scripture, Bible, 72.
Scripture,
Scripture-wort, Graphis(Supß-)
\qquad

Sarcade, Syonge.

INDEX．

Scriveners＇palsy．Writer
Cramb
Crophula，Scrofizia．
Scuir of Egg，Egg．
Scurvy grass，Cress
Scutching，Fla，- －dressing．
Scutching－machine，Colton， 275.

Scutum，Shrield．
Scymnus，Shark．
Scyros，Skyro．
Scytbia Minor，Dobrudscha．
Scythian lamb，Barometz．
Sea－bear，Otary．
Sea－beet，Beet．
Sea－blubber，Acaledize．
Sea－buckthorn，Buckithonn，
Sallozu－thort．
Sea－calf，Seal．

Sea－centipedes，Annciadi．
Sea－cow，Mranatee．
Sea－crayfish，Lobster．
Sea－crayfish，Lobster．
Sea－cucumber，Béche－de－mer．
Sea－devil，Angler．
Sea－eagle，Eme．
Sea－eggs，Echinidu．
Sea－fan，Gorgonia．
Seaford Bay，Sussex．
Seaforth（ $\%$ L，Lervis－with－
Harris．
Sea－grapes，Cuttle Fish．
Sea－hare，Tectibriznchiata．
Sea－holly，Evyingo．
Sea－horse，Hippocampres．
Sea－horse，Morse．
Sea Island cotton，Cotton， 267.
Sealed earth，Lemmidn Earth．
Sea－lemons，Doris．
Sea－leopard，Seal．
Sea－loach，Rockling．
Sea－louse，Fish－louse， 356. Sea lyme－grass，upright，ice－ land， 505.
Seamen，iverciunt Shipping Act（Sukp．）
Sea－milkwort，Glartx
Sea－nettles，Acalephe
Sea－nettles，Acalupha．
Sea－pie，Oyster－crither．
Sea－purses，Sharí．
Search，Edward，Tucker．
Sea－reed，Ammophilcr．
Sea－rush，Penututula．
Sea－scorpion，Cothus．
Sea－serpent，Gymunetrus．
Sea－sice balsam，cascarilla． Sea－5ide beech，Cariblec Bart． Sea－snail，Sucking Fish．
Sea－trout，Salmor， 44^{8} ．
Sea－unicorn，Narwhal．
Sea－ware，IV rack．
Sea－worms，Annelida．
Seb，Esyit 787.
Sebaceous glands，Skin，756．
Sehak，Egypt， 787.
Sebaste，Samarta．
Sebeknefru，Egypt， 7 89．
Sebesten plum，Covizacce．
Sebollati（r．），Uruzuay．
Seboua，Wiady，Jubia．
Seboua，Wady，Tubia．
Sebustieh，Sa
Seccession to tbe Sacred Hill，
Kome， 3^{22} ．
Secondaries，Birds，zos．
Secretiveness，Phernology．53．4．
Secular canons，Rejulur
Canons．
Sedses，Cyperacea．
Seebeck，Thermo－electricity．
Seebguoge，Gariges， 63_{4} ．
Seend，Wiitshire．
Seenzoor，Yumena．
Seenzoor，
Secz $(r$.$) unntia．$
Gall，St．
Seez（r．），Gall．St．
Sefatians，Ifohammedan Sects （Supp．）
Sefton fancy，Rametion．
Segarelli，Gerard，A／postolic Brethren．
Segnia，Zengg．
Segontium，Caernarvors．
Segovia，Nicarasta．
Segovia，Maine－et－Loire．
Segre（r．），Pyrcisées Orientales．
Sehi，Anthology， 289 ．

Seille（r．），Noselle．
Seim（r．），Desna．
Sejrah（i．），Tinor－Lant．
Selache，Shurk．
Selachii，Cartilaginors Fishes．
Selenga，Biaikal．
Self－baptisers，Raskolnik．
Self－ordainers，Raskolnit．
Selkirk，Earl of，Red River Settlement．
Selkirk，Earls of，Hamilton
Family， 213 ．
Selma town，Alabama．
Selma town，Alabama． Selmas town，Azerbijan．
Selvzogene，AErated Wiaters． Selizogene，Timated
Selu（i．），Timor－lat．
Selune（r．），Marike．
Selvas，Situas．
Semaway（l．），Sumatra．
Semée，Powdered．
Semgall，Courland．
Semi－Saxon，Englishit Lang． 64.
Semmes，Raphael，Alabrama
（Supp．），（Supp．）
Semola，Macaroni．
Semonn，Simoom．
Sempione，Simplor
Sempronian Law，Agrarian
Law．
Semur，CotedOr．
Sena－Gallia，Sinigaglia．E
Senaji，Persiun Lang．©
Litt． 427.
Senatus Academicus，Unsiver－
sity， 663 －
Senayi，Persian Lange Lit．
Sendre（ r ．），Charente－figêri－
Senefern，Esypt， 788.
Seneferu，Egypt， 7^{788} ． Senj，Zengs．
Senkovski，Russian Lang．Eo Lit．
Senna，Rio de，Sofizla．
Senne ir．Brtussels．
Sense－capsules，Skeietor， 750. Sentiments，Phrerology， 517. Sentiments，Arenolosy， 5 Sentis（nt）AB Anpenz
Sepistan，Sebesten． Sepphoris，Galilee．
Septinsular Republic，Iouian Isiands．
Sequana（r．）Seime．
Sequillo，Medina（Supp．）
Seraing，（Supp．）
Serapeion，Alexardrit，Alex－
andriant Library．
Serbal（me．），Sinaz：
Serbs，Seraia， 630.
Serchio，Lircera．
Serendib，Ceylon．
Sergio（mt．），Ragrisa．
Seriboe（r．），Borneo．
Serio r．），bergamo．
Serjania，Susple Fack（Supp．） Sermione，Garda，Lago dit． Sermoyer，Chizerots． Serocystic sarcoma，Adenocele （Suth．）
Serous diathesis，Screfula． Serpent，Pyrotechny．
Serpent－cater，Secrefary． Serpent＇s Mouth，Trinidad． Serpent－worship．Ophites，

Toternes（Supp．）
Serra da Junto，Portugal． Serra de Calderão，Portugal． Serra de Estrella，Portugal． Serra de Monchique，Poringal． Serrasalmo piraya，Pirayz． Serrere mit．）－triege．
Serriere r_{o} ），Nienfinatel． Sertularia，（Supp．）
Serum praparatum，Stuct．
Servant，Master and Serane：
（Supp．）
Service－berry．Beam－free．
Services，Ret Jurs of，Records，
Puthc．
Sesia ${ }^{1}$ ．）．Aths．
Ses puatchie r．，Termessee．
Sessile，Flower，Lerves．
Sestos，Damianelles．
Sesuvium，Tetragoniacea．
Set，Egypt， 787 ．

Setines，Athens， 5 57．
Set－off，Offset．
Setroonjee，Cambay．
Seulle（r．），Calvados．
Sevan（l）A mmenia
Sevang，Gorkeka，Lake of．
Sevang，Gorkeka，Sebiopol．
Seven－day fever，Relapsing
Fever．
Severians，Monophysites．
Seversk，Russia， 384.
Sèvre－Nantaise＇r．，Nantes．
Sèvre－Niottaise（r．），Charente－

inferiesure．

Sewage Act，Sanitary Science （Supp．）， 723 ．
Sewage earth－closet，（Sugp．）
Sewalik（mits．）lrutia， 537.
Sewen，Bull Tront．
Seyf－ud－deen，Ghuri．
Seyon（r．），Nersfluatel．
Shachovski，Russian Lang

os Lit．

Shaden，Siluride
Shadoof，Agrictulture．
Shahabad，Orude．
Shahjehanabad，Dclhi．
Shahjehanpore，（Supf．）
Shahpur（city），Fars．
Shahpur I．and II．Sassantice．
Shah Sujah，Afgranistan．
Shahzadpore，Allahabad．
Shakers，（Swo．）
Shakspeare Society，Rox－ burgite Club．
Shaloo，Durra．
Sham，Unubeilifera
Shambles，Portiand Island．
Shamil，Sufism．
Shanavests，Whiteboy．
Shanfara，Arabian Lang．\＆o
Lit． 347
Shangalla，Abyssinia．
Shang－pe－shan，Coreaz．
Shany－tung，Ckina，817．
Shanklin，Wight．Isle of
Shans，Tenasserim．
Shapinsha，Pomona．
Shard－born bectle，
Dutg
Share，Mlought．
Share－broker，Stock－broker （ $S u p p$ ．）
Sharp，Granville，Ska＇cyy．
Sharps，Wheat， 157
Shary（r．），barnu．
Shashank I．Egyet， 790.
Shasta，Califormia．
Shaston，Shafiesbury
Shawanese salad，Hydrothyy？
lacea．
Shayook（r．），K＂hafaioust （Supp．）
Shea butter，Bassia．
Sheaf（ r_{1} ），Sheftichd．
Shearing strain，Strengtic of
Afaterials， 363.
Sheat－fish，Siluritice．
Sheba，Queen of，Ethiopia． Shebsen，Sabbather is Zuz． Shechem，Nabuhis．
Shedder，Salnunz， 446 ．
Shediac，Niciv Erumswick．
Sheep antelope，Goat，Rocky
Morntaint．
Sheep－dog，Shepherit＇s Dog．
Sheep－drains，Waste Lands． Sheep＇s bane，Hydrocotyle． Shehr，Iemen．
Sheikh－al－jibal，Assassires．
Sheikh－ul－islam，Turkey， 587 －
Shekel，Numismafics， 2.
Sheksna（r．），Biēlo－Ozero．
Shelif（ r_{0} ，Algeria， 138 ．
Shelton，Hancy Sutp．）
Shen－se，Chinza， 817 ．
Shepherd Kings，Hykshos． Shepherd＇s needle，Chercil
Sheref E．A．I＇ezdi，Persian
Lirnge Lit． 428 ．
Sheribon，Chevibun．
Sheridan，General，R ichurouml．
Sherwin，Engraiding， 68.
Shetland，temperature of
Great Britain， 65.
Sheygya，Nisbit．
Shieldrake，Shellirake．
Shikarpur，Desert of，Sirde．

Shikatze，Yikadaze（Srist．）
Shilfa，Chafinch．
Shillelagh（town），Wicione．
Shillibeer，Omsibus．
Shimfa，sile．
Shin（ r ．），Sutherland．
Shinar，Babylontia．
Shinar，Babylonia．
Shing－king，Mantchuria．
Shingles（disease），（Supp．）
Shingling，Iror， 636 ．
Ship－barrow，Seprilcheral
Mozend．
Ship－broker．（Supp．）
Shipping，Merclurut Shippirg
Act（Supp．）
Shire－gemot，Gemote
Shire－reeve，$\overparen{\text { Cove．}}$
Shirvan，Kurdistan．
Shisdra，（Supp．）
Shivers，Brasio．
Shoalhaveo，New S．Walis．
Shoay Dagon，Rangoor．
Sbooting－stars，Aérolites，
Metcors Sreps．）
Shoots，friming．
Shores，Launch．
Shortbread，Eread，${ }^{19} 9$ ．
Short fever，Relapsing Fever．
Shorthorn breed，$O x$ ．
Shot of grease，Wecd．
Shut silk，Taffety．
Shouas，Bornht．
Shoulder－blade，Scapaza．
Shrapuel shell，Case－shot．
Shrewsbury cakes，Biscuits．
Shriving，Sherotitiule．
Shubeoacadie，Nova Scotic．
Shupayoo，Cashmere．
Shur（plant），Moonjah
Shushan，Susa．
Siak，Riowte．
Siak（r．），Stunatri．
Sialia，Blue Eird．
Siamang，Gibbon．
Sias（r．），Ladogez．
Sibbens，Fazes．
Siberian stone pine，Cedar．
Sibylline Books，Sibyt．
Sicambria，－4it－Ofers（Supp．）
Sicca，Numidia．
Sichem，Nabritits．
Sicinos，Greece， 85.
Sickle，Reaping．
Sid（r），Siamouth．
Siddhartha，Euddhism， 403 ．
Sidereal day，Day．
Siderolites，Metcors（Susp．）
Side－saddle fluwer，Sarraceria，
Sidi－Rached，Oasis of，Algeria，
Sidon，
Sidon，Phenicia，49士．
Sidra，Gulf of，Syrtis，Tripoli．
Siebold，Tapeworm， 294.
Sierra Anambahy；Paraguay：
Sierra de Holucar，Alpujzrras．
Sierra de Perija，＂encozucia．
Sierra Maracajn，Paraguaj．
Sierra Nevada de Merida，
「enezuela．
Sierra Seca，Segura．
Sierra Tejada，l＇elez－Malaga． Sieve r．，Arro．
Sievero Vostochnii，Sibcria，子oz． Sifleur，＂idseon．
Sigmaringen，Hownzoliern．
Sigmoid fiexure，Alimentary CaHal．
Signorelli，Lnca，Painting，rgz．
Sigogne，Satire．
Sigtuna（town），Matlar Laže．
Sihl（r．），Schatyz，Zürich．
Sihon，Amorites．
Sihor，sile．
Sikok，or Sikopf，Fapar．
Sil（r．），Galxcia，SAain．
Silberberg，Frankenstein．
Silenus veter，Wiarderso．
Silex，Silicor．
Silhouette（i．），Seychelles／s． Silicic acid，Silicon．
Silicule，Sifique．
Siljan（1．），Siveder， 236.
Silk，vegetable，Silk－cotion．
Silkworm rot，Botrytis．
Sill（ r_{1} ），Brenner Pass（Sust．）
Sillocks，Coal－jish．

INDEX．

Silloth，（SuAp．）
Silures，Silurion Rock：s．
Silva，Desert．
Silvanite，Chance
Silver Are，Ages．
Silver Glen，Alto（Sup今o）
Silvia，Romulus．
Silvbum，Thistle
Si llalu，Sumatra．
Simarona，Vanilla．
Simaruba excelss，Quassia．
Simeon，feast of，Pryifica－ tiors of the Blessed Virgin Mary．
Simeto（r．），Sicily， 70.
Similia similibus curantur，
Homratathy， 400.
Simmenthal，Bern．
Simms，W．G．（Supp．）
Simois（r．），Troy．
Simpson，Sir J．Y．（Supp．）
Simpson（r．），Columbia，Bril．
Simulated pregnancy，Ner－
vous Diserses（Supp．）
Sin（town），Pclusism．
Sinagawa，l＇eddo．
Sina Longa，Asimelunga （Susp．）
Sinapism，Cataplisht，
Sincerc Brethren，（Sush．）
Sind，Jumma．
Sine，Trigonometry．
Sinfonia，Symphony．
Singhalese，Ceylon， 73 S．
Singhur，Poona．
Singkarrah（1．），Sumatra．
Singkel，Sumatra．
Single entry，Book－kerping，227．
Singles，Silk ÉSilizwornH， 7^{24} ．
Sinister，Base．
Sinno（r．），Basilicata．
Sin－oficring，Sacrifice， 412.
Sinople，Colour（her．）．
Sintleberg，battle of the，Wit－ tekind．
Sintoc bark，Cutilawars Bark： Sintuism，Miako．
Sinuate，Lerves．
Siphnos，Greece， 85.
Siphuncle，Ammonites．
Sipiri，Greenbeart．
Sir－Daria，Orenburg．
Sirichont，Compasila．
Sirino，Monte，Lauria $\{$ Sufp．$)$
Sir－i－Pul，（Sespo．）
Siris，battle of，Dyrrius．
Sirvente，Troubadour．
Siskin，Aberdevine．
Sismondi，Cornwallis，C．F ． （Supp．）
Sissoo，Dalbergin．
Sisters of the Christian Schools，
Schools，Brothcrs of Chris－ tian．
Sisymbrium，Rocket．
Sittern，Apperrell．
Sitz－baih，Ifydropathy， 433.
Sium，Shirret．
Sivvens，Jiaws．
Siwah，Oases， 20.
Siwash，Crimer．
Sizandro（r．），Torycs－Vedres． Sjalland，Seeland．
Skaers，Bothreiz．
Skalitz，battle，Germany
（Suか力）， 533.
Skanderich，Alezardria．
Skate－barrows，Kay．
Skaw，the，Skagen，Cape．
Skeatta，Numismatics： 4 －
Skeena，Columbir，British．
Skelly，Chub．
Skene，Loch，Yarrow．
Skerne，Darlingion．
Skin，the，Sanitary Science （Sups．）， 722.
Skip－jack，Click－bectle，Elater． Skiport，Loch，Uist．
Skipuer，Saury Pike．
Skombi＇$(r$ ），Albania．
Skombi（ r U ）Askith．
Skripu，Orchomenos．
Skypetars，Albania．
Sla，Sallee（Supp．）
Slabs，Iron， 636.
Slade，Easf Wain．
Slade（r．），Strourd．
Slamat（ntt．），Эava（Supp．），579．
814

Slaney（r．），Carlocu，Wexford． Slate－clay，Shate．
Slater，Armadillo， 11 ＂ood－lowse． Slate spar，Calcareors Spary． Slave（ r ．），Alackenzic River． Sleaford，（Smpp．）
Slecp，morbid，Trance．
Sleepers，railway，Railways， 88.

Sleep－walking，Sommambu－ lism．
Sleevefish，Calamary．
Slepez，Mrole－rai．
Slesvig－Holstein，Oldentirrg． Sleut－hound，Blood－toumb． Slie（r．），Slessig．
Slievardagh Hills，Tipperary． Slieveance（me．），Antrim． Slieve Barnagh（mits．），Clare． Slieve Baugha（mis．），Clisre． Slieve Lawn（mts．），Ros－ commor．
Slicve Bloom（unts．），Quceri＇s County．
Slicve Croob，Dozer．
Slieve Curkagh，Roscommor． Slieve Donard，Down． Slieve Gamph（wts．），Sligo． Slicve Gullion，Armagh． Slievenamuck（mts．），Tipper－ ary．
Slieve Sawel（me）．Tyrone． Slipper limpets，Calyptrcea． Sliver，Cotion， 275. Slivinza（mht．），Zirkntez（1．）． Slobodse，Ginrgavo．
Sloke，Laver．
Slovzov，Russian Lang．\＆Lit． Slow－worm，Blindworm．
Slubbs，Slubbings，\＆c． 1 Oollen \＆o Worsted Afanufactures， 265.

Smalkald Articles，Keforma－ tion， 158.
Smailage，Celery．
Smaltine，Arsenicaldinerals． Smelting－house smoke，Arsen－ ious Acid．
Smeru（mt．），Yava（Supp．）， 579.

Smievka（r．），Zmeinogorsh．
Smilace dolce，Durra．
Smith，Engraving，69．
Smith，Goldwin，（Supp．）
Smith，Sir Harry，Alizeal．
Smoky quartz，Caintgorm Start．
Smolensk，Lithuania．
Smyrna，Delaware．
Smyrnium，Alexanders
Snaefell，Matn，fle of．
Snake，glass，Glass Sunke
（Suph．）
Snake－fish，Bard－fish．
Snake－lizards，Chalcis．
Snake－millipedes，Yutus．
Snape，Veterinary Medictine． Snedshill，Shropshire．
Sneeuwberg（mits．），Africa， 66. Sneezewort，Achillar． Snejirev，Professor，Russianz Lang．\＆Lit．
Sneyders，Suyders．
Snider gun，Breech－loading Arms（Supp．）
Sniejas（r．），Karatchef Sniggling，Eel． Snipe，summer，Sandpiper． Snov，Desra．
Snow Mts．Papra．
Snow，red，Red Snow．
Snow－bird，（Supd．）
Snow－blindness，Sight，Defects of．
Snow－finch，Snowu－bird（Supp．） Snowflake，Bunting． Snowfleck，Suow Bunting． Snowflower，Firinge Tree． Snowy Mts．Athrs Mht．
Snowy River，Victoria， 785. Soap－root，Sonfrwort．
Soar（ r_{1} ），Trent．
Soar－hawk，Falcorry， 228. Soay，Skye．
Sobat，Nile，771．
Sobieski，fohn JII
Social War，Sulla．
Social whaie，Cuaing Ithale．

Society for Northern Antiqui－ ties，Riffir．
Suciety for Promoting Chris－ tian Knowledge，Christian R＇nozuledge，Saciety for Pro－ moting．
Society for Promoting Religi－ mus Knowledge amang the Poor，Acligiows 1 racrsociety． Society of Jesus，Zesuits． Socii，Kome， 315.
Sociology，Sizences．
Socins criminis，Approter Sudermalin，Stock／iolm． Soffarides．Persia，$\$ 23$. Soffit，Entablature． Sofi Chai（ r ．）Bituro． Sofecning of the brain，Erair， 304.

Solt－shells，Repubbicar．
Sogamozo（r．），Boyaca．
Soham，Cambridgeshire．
Soil，Santitry Scicuce（Supp．），
Soje，Driçer．
Soja，Soy．
Solani，the，Ganoes Canal． Solaro，Monte，Caprzi．
Solenette，Sole．
＇Solere＇Hall，Clare Collige． Soleus muscle，Leg．
Solfa，Tonic，Tonic Solfa．
Solidor，Port，St Ser＂ima，
Solidus，Penny．
Solis，America， 199.
Solis，Spanish Lang．So Lif． 20.

Solmona，Sulmora
Sologne，Loiret．
Solohub，Cnunt
Lans．\＆Lit．
Solos．Qiwits．
Solothurn，Soletrre．
Solovjev，Russian Lang． 5 Lit．
Solubility，lines of，Solruion．
Sulations，standard，Fiolume－
tric Athalysis．
Solyman 1．II．
fimpire， 148,149
Solymi，Lycia．
Soma sacrifices，Veda， 727.
Sombrerete，（Supp．）
Sombrero，Nicolar $1 s$ ．
Somerled，Oirir－Giad．
Somersel（i．），Bermiaitas．
Somerset（r．），Albert ふ＇yarza
（ $S u p p_{1}$ ）
Somerset，Dukes of，Seymorr． Somerset，Earl of，Oeerbury， Sir T．
Sommeiller，M．Tunnel． Sommer＇s Isles，Bermudits． Somosomo，Fijit／slands． Sonderborg，Alsen．
Sonderhurg－Glücksburg，Ol－ denburg．
Sondeli，Mirste Rat．
Sone，Ganges，6x4．
Songari，Amoor．
Song－ca，Cochin－China．
Songs of degrecs，Gradual p＇salms．
Songuine，Castel－Samasir． Sonnachees，A／rica，69． Sonneburg，Sar．xe－MCizingen． Sonoma，Califormia． Sonora，California．
Soo－Chow，（Supp．）
Sooders，Caste， 657.
Soonwald，Prussiu， 810.
Soothing syrups，Narcotics． Sooty tern，Egg－bird．
Soph，Cambridge University， 53 r ．
Sora rail，Crakie．
Sorata，Nevadude，Audes，239． Sorb，Beant－lrec．
Sorbin or Sorbite，Sugar， 187. Sorbs，Saxany，515．
Sore throat，inflammatory， Eutusy．
Sorghum，Braom－com（Susp．） Sorgo，Sugaricane．
Sorgue，Alfrigue，St（Sug ${ }^{\text {．}}$ ） Sorrel，salt of，Ozalis．
Sorrel cool drink，Hibiscus．
Sosii，Book－trade， 228 ．

Sosna，Birioutchet，Don，Orel． Sosva，Perm．
Sothis，Serdinand de，U．S． 653
Soto，Ferdinand de，U．S． 653 ．
Soubise，／Truguenots， 452, Seven
Jerrs $1 \mathrm{Var}, 636$ ．
Souchez（r．），Sers（Smps．）
Soufricre（mit．）．Lutid，So．
Souling，All Saimt＇s Day．
Soumiathon，Sanchumialhor． Soura，renza．
Souring，Bleaching， $1,48$. South－cast Cape，Pispuri， $25 a$ South Esk（r．），Tasmanuia， 307. Southsea，Portsmouth．
Southwick，Sumderland．
Soutsos，P．and A．Greese，83． Sowans，Oats．
Sowbread，Cycimmen．
Spadille，Qusdrille．
Spaenoletto Riber
SpaldingClub，RoxburgiveClub Span Head，Exmoor Forest． Spanish Black，Cork． Spanish Ilcad，Man，Isle of Spanish Main，（Supp．） Spanish March，Spain， $\mathbf{r} 6$. Spanish plum，llog Plum． Spanish wool，Carmine． Sparling，Sinelt．
Sparring－matches，Pugilishr． Spartleton，Lammermoors． Spasmodic croup，Thymus Gland．
Spat，Oyster．
Speanvort，Ranumerdics．
Specific heats Hent， 280 ．
Speckled wood，Fulmyra
Woad．
Spectacle snake，Cobra diz Capello．
Spectator，Adiisor．
Spectonclay，CietaceorsGroup． Spectre－candles，Belemitites． Specular cast－iron，dirusp＇s Sical（SnAp．）
Specularia，Ventes＇s Looking gkess．
Speightstown，Barbadocs
Speke，J．H．（SuAh．）
Spelter solder，Alloy
Spencer，Herbert，（Sûp．）
Spencer magazine riffe
Breeck－loading A rnas＇Supp． 483.

Spent fish，Salmon， 446.
Spercheus，Greece， 79.
Spergula，Sprorrey．
Spermatozoa，（Suip．）
Spermatozoon，Vertebrata
Spermoderm，Seed．
Sperm whale，Cacholot．
Sphargis，Turtle．
Spheniscus，P＇engzin．
Spherical case，Case－shet．
Sphincter ani，spasm of the，
Antus（Supp．）
Sphygmograph，（Suph．）
Spice－wood，Bcиzoin．
Spider wheel，IVatemfower：95 Spider－wort．Commerymaceas Spieglitzer Schneeberge，Si－
lesia，Austrian．
Spike（i），Convict，Cork：
Spikenard，oil of，Grass Oi？． Spina，Circius．
Spinach，mountain，Orache．
Spinal ice－bags，Sea－sicleress．
Spindle，Spinining， 46.
Spinifex，Ainstratian E．x－
plorations（Supp．）， 410.
Spiuneret，Silk \＆Silkzorm，
723．Spider．
Spinning－jenny，Spiznzing， 46 Spinola，Geror， 684.
Spires，speyer．
Spirit of salt，I／ydrochioris Actid．
Spirit of wine，Alcolsol．
Spirit－rapping，Andmad Nas netism，267， 269.
Spirketting，Shipbuilaing， 68 \＆ Spirling，Smelt．
Spirting cucumber，Elaterium Spital，Hospitals， 432.
Spithead Forts，（Srpp．）
Splanchnology，Anatomy＇， 227 Splashers，Wild－fowl．

INDEX.

Splenic corpuscles, Splcen.
Spondec, Hexameter.
Sponge, Bread, 319.
Spore-case, Spore.
Sporidium, Spore.
Sporuphore, Spore.
Spotted fever, Typlius \mathcal{S} Typhoid Fevers, 615-
Spotted persicaria, Polygonece. Spotted ray, Hontelyn. Spotesylvania Court-house,
batcle of, U.S. 661 .
Spreader, fute (Supp.) Spring, Bivalve Shells. Spring, Seasont.
Springal, Espringal.
Spring Bay, Tasmavia, 306. Spring-buck, Prong-horn. Springfield nut, Hickory Spring-guns. Trestacts. Spring herring, Alervife (Supp.) Spring tail, Podura.
Sprits or Sprots, Rusil.
Spruce partridge, Grouse
Spruce partridge, Grous
Spunkie, Ignis Fature.
Spunkie, Ignis Fatuiz
Spurred rye, Ergot.
Spurred rye, Ergot
Spurs, battle of the
grate, Battle of.
Squaring the circle, Qundrature of the Circle.
Squeteague, Otolithits (Supp.) Squib, Py rotechiny.
Squid, Calamary.
Squirrel monkey, Sagouin.
Squirting cucumber, Ela-
ter"unt.
Sreznevski, Russian Lang. os Lit.
Sri, Latesimrt.
Staats Flanders, Zeeland. Stabile, Francesco, Italy, 657 Stachytarpheta, Verbenacece. Stack of Scarlett, Man, I.of. Stadion, battle of, Jïlly. Staffin, Loch, Skye.
Staggers, Cestoid Worms. Stagmaria, Varnish Tree. Stag Rock, Cape Wrath. Stainton, Entomtology. Stalemate, Chess, 709. Stalemate, Chess, 799-
Stalking.horse, Wild--fowl. Stalking-horse,
Stan ford Brig, battle of, Yowerkshire.
'Stamping-out,' Cattle Plagze (Supp-)
Stanchio Cos
Standard solutions, Volumetric Analysis.
Stane, Shotts.
Stanez, MIndeira River
Stanfield, Clarkson, (Supp.)
Stảnga (r.), Linkóting. Stanhope, Coach.
Stanhope, Ph. D. Chesterfield, Earl.
Stanko, Cos.
Stanley, Erie, Lake
Stanley, Folkland /slcnds.
Stanley crane, Demoiselle.
Stanz, Untemealden
Staphorst, Overyssel.
Staphylinus, Rove Becile.
Staple, Hrasp.
Starch, patent, Rice
Stargard, Mecklenburg-Strelitz.
Starker, Mr, Embossing.
Starkey, Mr, Agnpemone
Starowierzi, Rastiolnik.
Star-rooms, Thectere, 390. Star sapphires, Corubutum
Star-showers, Meteors (Suph.)
Starwort, Melanthacta.
State medicine, Santitary Science (Supp.)
Staten (i_{0}), (Sropp.)
State papers, Records. Public.
States' Rights Party, U.S. 655.
Station, Victorica, 7^{87}
Station Isle, Derg.
Statistics, vital, Vital Statistics.
Statute-labour tax, Roads \& Roart-making.
Staunton(r_{0}), Roaroake.
Stavanger, (Supp.)
Stave, Thime
Stavesacre, (Supg.)

Stavro Vuno (mrt.), Cyprots. Steam-cans, Bleaching, 149. Steam-carriage, (Sufp)
Steam-crane, (Supp.)
Steam-vessels, Nuutilus Propeller (Supp.)
Stearophanic acid, Stecaric Acid.
Steatoma, Tunuours.
Steel, K'rupp's Steel (Supp.) Steel, John, (Supp.)
Steel manufacture, Indian, Salen.
Steenwskerswolden, Oviryssel.
Steinach (r.), Saxe-Meintingen. Steinberger, Rhine-wine. Steinheil, Telegraph, 339 . Stella, Swi/t.
Stellatre, Rubiacea
Stelliferi, Cross, Order of the. Stemmatopus, Seal
Stentor, Howler, Vorticellide. Stephanoceros, Rotatoria. Stephanovitch, Servia, 63 r. Stephen(several kings), Servia, 630.

Stephen 1. /furgary, 460. Stephens, Alex. H. U.S. 659. Stephens, Thomas, Wels/a Lang. 00 Lit. 138.
Steppe murrain, Cattle-plague (Stupp.)
Stereochromic painting, Fresco. Steriza (mt.), Bossia Sterling, Edward, Times, The. Sternbergia, Trigonocarpos. Stern-chaser, Chase.
Sterope, Pleizdes. Stettiner Haff, Pomerania. Steward, Factor
Stewart $\left(r_{0}\right)$, Fraser Kiver. Stewart, astronomer, Surt. Stewart, Dr A. P. Typhres \&o Typhoid Fevers, 6rı. Stewart, Lady Arabella, Stewart Family, 125.
Stewart's I. New Zealand. Stichomancy, Sortes Biblica. Stick-lac, Dye-streffs.
Stigmites, Chalcedory.
Stille (r.), Schmalkalder.
Stillicide, Servitude. Stillingia, Tallow Tree. Stillwater, Minnesota. Stilts, Ploregh.
Stinchar, fiyrshive.
Sting-bull, Weever. Stinkhorn, Phallus.
Stinking rust, Blighe.
Stipple, Engraving, 68. Stock, Orchard
Stock, Tribe.
Stockades, Fortification, 440.
Stock-book, Book-keeping. Stock-broker, (Supp.)
Stock-pat, Sowh.
Stockying of hose, Fastion,
Stoddart, CoL Bokhara.
Stoder $(r$.), Denmark, 49 r Stoke, Bedford Level? Stoke, Stow.
Stone lilies, Encrinites. Stones, standing, Standirg Stones.
Stonyhurst, Lancashire.
'Stoop-and-room,' Mining of Conl.
Stor-elv, Glommen.
Storm Bay, Tasmania, 306
Stormbergen, Zululand.
Stormontfield Ponds, Tay
Stothard, C. A. Eray, Mrrs (Supp.)
Stoughton's elixir, Gentiars. Stout, Cleg.
Stout, Porter.
Stowe, David, Sunday Schools. Strae, Azve (L.).
Straight-edge, Carpertry Strain, Sprain.
Straining-beam, Collar-beam. Strake, Shipbuilding, 684. Strand, Cable.
Strangford Lough, Down.
Strathavon, Banffshire.
Strathdoveran, Banffstire.

Strathearn, Perthshire.
Stratherne, Shire.
Strathglass, Inverness-shire. Strathgryffe, Renfrew.
Strathisla, Barffshire.
Stratus, Clouds.
Straw, Jack, Tyler Insurrection.
Strawberry blite, Chesopodiacea.
Strawherry Ifill, Pr. of Wales I
Strawberry Hill, Walpote, Horace.
Strawberry tree, Arbutizs. Streltzi, Strelitz.
Strengnäs, Maelar (l.).
Strepsulas, Turistione.
Stretchers, Bricklaying.
Striated monkey, Marmoset. Stricture, Gonorrhea (Sutp.), 545.

Strigops, Kakapo (Sutp.)
Strikes, Trades' Unions(Szopp.)
Strings, Mining.
Stringy bark tree, Eucalyptus.
Stripa (r.), Buczacz (Supp.)
Stripe-bellied tunny, Bonito.
Striped quagga, Datre.
Stroganoff, Amka, Siberiut,703. Strokestown, Roscontnon. Strokr, Geyser.
Stroma, Pentlard Firth. Stromatology, Geology, 699. Stromoe, Faröe Isles.
Strood, Rachester.
Stroudwater (r_{0}), Stroul. Strovjev, Russian Language on hiterature.
Strumo (r.), Turkey, 586. Strutting, Floors.
Strymon ($r_{\text {. }}$), Thrace.
Strzelecki (rut.), Victoriaz, 785.
Stuart, J. M. Australiant Ex-
plorations (Supp.), 409
Stuart de Rothesay, Lord, Stewart Family, 124.
Stubbekjöbing, Falster.
Stubbenkammer, Rugen.
Studium, Unizersity, 66z.
Stump tree, Gymnocladtus.
Stura, Coni.
Sturiones, Cartilatginous Fishes.
Sturla, Chinvari.
Sturm Head, Cardigan Bay.
Sturm-und-Drang, Germany, 726.

Sturnidx, Starling.
Stuttering, Stammering.
Styca, Numismatics, 4 .
Styrax and Styracacex,
Storax
Suavi, Alemamer.
Sub-arachnoid space, Cerebro-
spinal Flutid.
Suanoda, Sea of, Simonoseki. Subchloride of sulphur, Sulpleur, 200 .
Subclavian veins, Circulation,
Sub-families, Sub-kingions.
Subject, Subjective, Object.
Subject, Syllogism.
Sublingual gland, Salivary

Glands.

Submaxillary gland, Salivery Glands.
Submersion figures, Cohesion Figures (Supp.)
Suborbital sinus, Deer.
Sub-salts, Salts.
Subscribing, Book-trade, 230 . Subsoil, Sails.
Succadana, Borneo.
Successor, singular, Singzhar Successor,
Succisio (mth), Parma.
Succory, Chicory.
Succus hypocistidis, Rhizantheer.
Suchona (r.), Dwina (N.), Vologrda.
Suck (r.), Galway, Shannon. Sucken and Suckeners, Thirlage.
Sucré, Chmquisaca.
Sucrose, Sugar, I86

Suctoria, Annelida.
Sudaroe, Farö Isles.
Südborg, Alsen.
Sudoriparous glands, Skirr, 756.

Suerra, Mogadore.
Suevia, Suabia.
Suez Canal, (Supp.)
Sugar, Beet-root Suger (Supp.) Sugar-berry, Netlic-tree.
Sugar-grass, Durra, Sugarcane.
Sugar-loaf, Gibraltar.
Sugar-loaf(mt.),Riode ̧aneiro.
Sugar-loaf Hill, Monmouth.
'Sugar-loaves,' Galcrites.
Sugar-louse, Lepismar (Supp.)
Suhl (r.), Saxe-Weinur-
Eisenack.
Suhurinpur, Sakaranpur (Supp.)
Suil Veinn (mt.), Assynt, Mountains.
Suipacha (r.), Pilcomayo.
Sukara, Naraka
Sukarchakiyâ, Sikhs.
Suleiman, Solymarr.
Suli (mts.), Ablania, Suliots. Suliman, Ommiades, 71. Sulitelma, Norvay. Sullane (r.), Macroom (Supp.) Sulphur, Allotroty.
Sulphur (mt.). Lucia, St.
Sulphur anhydride, Sulplizur, Sulph
Sulphur cure, Smlptarous Acid (Supp.)
Sulphurets, Sulphides
Sulphuretted hydrogen, $H y d r o-$ stalphuric Acid.
Sulphuring, Bleackitts, 150 . Sulphurising, Wine, 222,
Sulphurous acid, Sulphur, 199, (Szopp.)
Sulphurous waters, Mineral Waters.
Sulphydric acid, Hydro-sul. phizeric Aczd.
Sulpicius Rufus, Publius, Sublut. Sülze, Lйие
Sumarokov, Nussian Lang. \& Lit.
Summer, Seasors.
Summerside, $P r$. Edward's I. Summer teal, Garganey.
Sumner, Chas. (Supp.)
Sumter (steamer), Alabianta (Supp.), 378.
Sunart, Argylesthire
Sunday (r.), Algoa Bay.
Sune, Moselle.
Sunflower (r.), Mississippi.
Sungari, Mantchuria.
Sunium Promontorium, Ca Lonna, Cape.
Sun Kosi, Ganges, 61_{4}. Sunstone, Felspar, Girasol. Superb warbler, Alaltcrus. Supination, Hand, z23.
Supple Jack, (Stifp.)
Supplement, Trigonometry. Suppression of urine, Reterttios of Urine.
Supranaturalism, Kationalisnt. Sura (r.), Volga.
Surbiton, Kirngston-upors Thames.
Sîri, Ghuri.
Surinam toad, Pisa.
Surju, Glogra
Surmeneh, Trebizond.
Surtees Society; Roxburghe Club.
Suse, Morocco
Susiana, Eutsdad.
Suspected bill, Bill of Health Suspension wheel, TVaterpower, 95.
Sussex marble, Pctworth.
Su-Tchou, Soo-Chww (Srpp.) Sutermann, Engrazing, 69.
Sutors, Cromarty Firth.
Suwanee (r.), Florida.
Sveaborg, Sweaborg.
Svenigorodka, (Supp.)
Sverige, Sureden, 236.

INDEX．

Svislocz，Winsk．
Swabia，Siarticia．
Swäbisch－Hall，Hall．
Swainson，fintomolosy，Omi－ tholisy：
Swakop．Ovampos．
Swammerdam，Jan．（Supp．）
Swamp oak，Caswarina
Swan Kiver Settlement，W ，est－
ern Austraha．
Swatow，（Supp．）
Sweating，Beer，807．
Swect calabash，Granadilla．
Swect canc，Cahimtus Aro－ maticus．
Swect gale，Cardleberry．
Sweet juca，．Mraioc．
Sweet locust，Honey Locust Trec．
Sweet milk vetch，Astragatios．
Swect sultan，Centaurea．
Swect virgin＇s bower，Clemafis．
Sweetwager grass，Catabrosa．
Sweet woods，decoction of， Sarsaparilla．
Swenta（r．），likomir．
Sweyn or Swein，Canute．
Swiatowit，Slaves．
Swift，Silk．\＆Silhivorgn， 726.
Swimming－bladder，fir－blad－ der．
Swine（r．），Jomerania．
Swinestone，Stinksione．
Swinge，Hanover
Swing－flying bridge，Brifge，
Military．
Swiss tea，Achillea
Switzerland，Austrian，Salz－ kiammergut．
Switzerland，education in，
National Education（Supple－ menf）．
Syajee Rao，Guicozuar（Supp．）
Syboes，Onion．
Sychar，Nabrius．
Sydney，Cape Brelors．
Sydney，Algernon，Situey．
Sylvia，Chiff．chaff（Supp．）
Sylvic acid，Rosin：
Symbolism，Writing：
Syme，James，（Supp．\}
Symanerry，R hythm．
Symonds，Rodolph，
bethan Architecture
Symphemia，Willet．
Symphoria or Symphoricarpus， Snowbery．
Symplegades，Argoncuts．
Synarthosis，foints．
Syndesmology，Anatonty， 227.
Synodites，Corrobites．
Synthesis，Alcolols（Sutp．）
Synthetic method，Analysis．
Syriam，Bengul，Bay of．
Syrian rue，Pesumn（Susp．）
Syrina，Ridille．
Syros，Greece， 85.
Szakolcza，Skalitz．
Szamos（r．），Theiss．
Szarvas，（Supp．）
Szeklers or Szekhelyi，Tran sylemnia．
Szeksma（ $r_{\text {．}}$ ），Nocgornd．
Szoboszlo，Maiducks（Sisto．）
Tang，Sum，
Taas，Yenen．
Mab，Fars．
Tabah，Medina．
Tabah，Medina．${ }^{\text {Tabri，Arabiun Lang．Eo }}$
Lit． 347 ．
Tabaris，Bamboo．
Tabeniow，Bornjermannis．
Tablature，Lute（Supp．）
Table Mt．Sierra Nevada．
＇Table d＇hote，IIotel， 437.
Tabriz，Lake of，U rumeyalı（6）．
Trabujong（ r ，Stumatra．
Tabur stycke，Faleonry， 227.
Tacape，Cabes．
Taclit－i－Suliman，
Mowntains．
（itus，Ammianus，Marcel
Tackle，Elock，Pulley．
IIacoary，Paristury River．
Tacon，Clatrele，St．
Taula．Tofsa．

Tadorna，Shellurate．
Tæu，
T＇aff（ r ），BristolCh， $7^{8,}$ ． mirrithensh．Glamorgansh．
Tafilelet，Mourocco．
Tagal，fava（Suppi），5So．
Tagherain，Allias inis．
laghmon，Hexford．
Taglianento（ \quad o），Alps，
Austria．
Tahaa，Coral Is．
Taher，Calif．
Taherites，Persiv， 422.
＇l＇ahiti applc，HOE f＇laun．
Taic language，Tৈルยルi，n
Langurges．
Taida，Calcutha．
Tai－hu，China， 815.
Taisch，Second Sight．
Tai－广＂uan，（Supp．）
Taj－al－Tuarikh，Suad－ed－atin．
Tajiks，Turkesfarn， 5^{8} t
Tajuña（ r_{0} ），Brihuega．
Takas，Nubiz．
Takazze，Nile
la－kiang（ r_{0} ，bang－tzekians．
Takinos（l．），Crantoges．
Takkatu（mi．），Beloochishor．
Takkazie（r．），Abyssinua．
Takvins，Mohamencdarism． Talcahuano，Chili，Concepcion． Tale of a Tub，Swift．
Talha，Mimosece．
Talsacotian operation，Rhino－ plastic Operation．
Taliesin，Welsh Lans．\＆ Lit．J35．
Talisker，Skye．
Tallahatchic（r．），Fazoo．
Tallies in Exchequer，Records， Public．
Tallow，Waterford．
Tamandua，Ant－arter．
Tamandua（ C．），Shirien．
Tamar，Devoushive．
Tamaricacex，Tamarish
Tamarind plum，Tamarime．
Tambilar is．），Kionze．
Tambo（ r ），UCayali（Supt．）
Tanbookic，Tcmbr．
Tambora（mit），Sunbazua．
Tame（ r_{1} ），Birminghans．
Tamega（r．），A marzzte（Supp．）
Tamias，Squirrel．
Tamils，Ceylore， 73^{8} ．
$\begin{array}{ll}\text { Tamils，} & \text { Ceylore，} 73^{8} \\ \text { Tamina，} & \text { Gall．St．}\end{array}$
Tanacetum，Tarsy．
Tanais，Don．
Tanantasia，Savoy．
Tanaquil，Targuinius．
Tanaro，Cherasco，Po．
lanera，Summer fslands．
Tangent sajling，Great Circle
Sailing．
Tangleberry，Whortleberry．
Tangnu Úla（mis．），Aktai
Motstains（Supp．）
Tanis，Egype， 789.
Tanist stone，Standing Stones．
Tanjong Putri，New Yuhore．
Tanna，New Hebride＇s．
Tanna，Tentrec．
Tantallon Castle，
tonshire．
Taotl，Mexico， 434
Tzou，Laot－fsue．
lapanuli，Sumatra．
Tapoa，Phalanger．
Tapoa tafa，Phascogale．
Tappan Zee，Hfutson，Tiarry tozur．
Taprobane，Ceylor．
Tapus，Tabr．
Taquari，Coxim．
Tare，Jifeath．
Tarabosan，Anatolia， 227.
Taragurh（mit．），Ajuteer．
Taraika，Sakalin．
Tarandus，Reindeer．
Tarandus，Rernis，
Tarapia，Therrpia．
Tarbert，Argyleshive． Tardouère（ r ）．Chtarente． Tarentella，Tarantism． Tarentines，Rome，314． Tarentum，Taranio．
Tarichea，Galilee．
Tariga，Bolivia．

Tarik，Roderic．
＇I．rn（r．）Trent．
T．iso（ r ．）P_{0} ）
Tarpa1s，Iforse，$\$ 24$.
Tarquinia，Carmeto．
Tirraco，Tarragona．
Tarsal spur，firds， 109 ．
larso，Tarstus．
Tarsus，Birds， 108.
Tarsus，f＇haniciar，49a．
Tartaglia，Algebra．
Tartaglia，Ailgebra，
Tartar eneactic，Tartaric Acid， T． 304.
Tartarian lamb，Earenecta．
Tartaro r．！，lillafroztert．
＇lartessus，Andakiusia，Ta\％
Torurated iron，Tarturi
Tarburated iron Tartaric
Acin， 304.
Tar Vale，Clogheens．
T＇asmanian devil，Tasmania，
Tasman＇s Peninsula，Tizs－
manta， 306.
Tastelcss purging salt，So－
diuns， 8020 ．
Tate，Zouch，Self－denying
Ordinance．
Tatishshev，Russian Lans． Lit．
Fatler，Ádilison．
Tatra（mfs．），Austria，Cav－ pathian Monntains．
Tauber（r．），Bavaria，Wär tenbers．
Taupo（l．），N．Zealand， 741 ．
Tauranga Bay，N，Zealund，741．
Taurica，Kerdch．
Tauris，Tabri＝
Tant，Thoth．
Tave，Caermarthenshire．
Tavignano，Corsica．
Tavira，（ $S_{n} f_{p o}$ ）
Taviuni，Fiji Zsiands．
Tavola，Corsica．
Tavy；Dammoor．
l＇av（r．），Darenour Draonsh
lawe，Erectnocksfire，Cila－ morganthite．
Tawing，Leather
raxacue and taxus，I＇cu．
Taxila，Attock，Indus．
Taxolozy，Butany，264．
Taxonomy，Potaryy， 264 ．
＇laylors of Norwich，fiustin，
Mrs（Supp．）
Tchadda（r．），Bersas．
Tchadir Dagh（mis．），Aima，
Crimea．
Tchany（l．），Siberia， 702
Tchar－dagh，Balkan．
Therkasi，（Supp．）
Tchernaya（r．），Scbastopol．
Tchernigof，Russia， $3^{9} 9$ ．
Tchernomorski．Cossacks．
Tchoros，Nalmucks．
Tchuktchis，Siberia， 703 ．
Tchulim，Ob．
Tchuruksû，Trebizond．
Tchuvashes，Russia， 38 r ．
Tea，Now Jersey，Red Root．
Tea－cucumber，Holothuria．
Teaser，Woollen \＆o Worsted
Mantufactures， 265 ．
Tea－trec，Leptospermum．
Telu，Air．
Technical education，（Supt．）
＇Tecoma，Trumper－fosuer．
Tecumseh，U．S． 656.
Tedding－machinc，Hay．
Tedla，Tefsa．
Tce，Curling．
Tectotal，Temperance， 348.
Tcf，Eqypt， 78.
legbahádar，sikhs．
legea，Arcadia，Trisolitaa．
Teguexin，Monitor．
Tehama，Arabia，344，J＂emen
Tehuantepec（r．，A Anerica． 106 ．
＂＇eafy，Caermarthensh．Car－
dicaush．，Pembrokesh．
Teign（r．），Dartmoor．
Teith．Callander．
1＇cjucigalpa，．（SupA）
Tekedempt，Alseria， 142.
T＇ekoah，Bethleken．

Tela vesicntoria，Vesicants．
T＇el Basta，Burbrstis．
Telegraph，Atlantic，sthontic
Telegrath（Sust．）
Tel－el－Amarna，figyt，790．
Tell－es－Sâfret，Gush．
l＇ell－hûn，Capernaum．
Tellicherry，（Supp．）
Telma，prkwsk．
Telugu，Tomil．
lemie，SIereford＇s／s．，Severts，
Sheropsh，Worcestersh．
Temes（r．）Banat，Dimube．
Temini，Arabian Lang．©
Lit．347．
Temminck，Ornifholagy Temnodon，Bluefish（Supp．）
Temor，Neatí．
Temsah（6．），Sues，（Supp．）
Temants，removing of，Re－ mants removing of Terants．
Tendo Achillis，Achilles Tint don．
Tendril，Cirrlins．
Tengiz，לinkash．
＇rengri－Tagh（mets．），Thine－ Stan．
Tenimber（is．），Timor－laut．
Ten Kiate，flemish Larng．
so Lif．
Tenné，Abatement，Colour （her．）．
Tennees（i．），Beranieh（6．）．
Tenochtitlan，Mexico．
Tenos，Tinos．
Tensas（r．），Wizhitr．
Tenthredo，Sazufiy．
Tcos，Anacreon．
Tepe Suene（mits．），Nerico．
Tepic，（Supp．）
Teplitz，Toplitz．
Tequendama Fall，Bogota．
Ter（r．），Catalonia．
Terai，Oute．
Tarcel，Peregrine Falcon．
Terchloride of formyle，Chiora
form．
Tcreh，Caspian Sca．
Terequivalest elements， Triads．
Terglu，Mont，Alps．
Tergoes，Goes．
Teroli，Tyrol．
Termila，Lycir．
Termo $(r$.$) ，{ }^{\text {L }}$ Bosia．
Tern（r．），Severn，Shropshire．
Ternate，Leaves．
Terney，Admiral De，U．S． 655.
Terraces，river，River Ter－ races．
Terra Firma，Darien．
Terra sigillata，Lemnian Earth．
Terticola，Amnelida．
Terror（met），Antarctic Oceant．
Terror，Reign of，Reign of Terror．
Terry Ales，Whitcboy．
Tersus，Tarsus．
Tertiaries，Biris， 108.
Terucl，Arapou．
Tern－tero，Lappeing：
Test（r．），Hampshire．
Testa，Seed．
Testigos，Antilles．
Testimony，belief， 8.
Testoon，Numismatics， 4.
Testudo imbricata，Fortoisc－ shell．
Tetè，Sofala，Zambesi．
Tetrabranchiata，Cephalopodia．
Tetrads，Triuds．
Tetrads，fritits． ramentarian．
Tetrarhynchidx，Topewornt， ${ }^{2 g o .}$
Tetraspore，Spare．
Tctrathionic acid，Suthlur，rog． Tetuan，Duke of，O＇Donnel？． Tetuaroa，Society islands．
Teucheira，Cyrenaica．
Teverone（ $(r$.$) ，Siber．$
Tevios（r．），Tweed．
Textor，Weazer－bird．
Teyde，Pico de，Teneriffe．
$\mathrm{Tcz}(r$.$) ，Alhai Nts．（Supp．）$
Thamamians，Motazilites （Sust．）

INDEX．

Thame，Alerscy．
Thames，Connecticut．
Thapsus，battle of，Cesar， 49 r Thara Lake，Corrientes．
Tharawady，Pegz．
Thatta，Fatta．
Thaumatrope，Sícreoscôte， 117
Thebaid，Esy St， 7^{86} ．
Theism，Deism．
Theodemir，Theodoric．
Theodicea，Optimism．
Theodora，Byanatine Ems． 47 r ．
Theodore of Abyssinia，（Supp．） Theodorus，St，Gregory Thats－ maturgos．
Theodorus Lascarus，Byzien－ tine Enpire，472．
Theodosia，Kaffa．
Theodosians，IIononin；sites．
Theodosians，Raskolntit．
Theodotus．Hromasuitarians．
Theophania，Otwo II．of Ger－ many：
Theophilus，Byzantine Enpp． 471.

Thera，Archipelago，Greece， 85.
Therain，Oise．
Theresa of Castile，Alforiso I．
Thermæ Helveticæ，Bader．
Thermo－dynamics，（Supp．）
Thermo－electricity，（Smph．） Thermo－magnetism，Thermo－ electricity（Supp．）
Thetes，Solor．
Tbetis＇s hair－stone，Roik－ crystal．
Thevenot，traveller，Africa， 66.
Thiaki，Ithraca．
Thian－shao nan－lû，Turrkeston， 535.

Thian－shau pe－lû，Turhestan， 585.

Thibet，Tïuet．
Ther－epos，Germany； 725. Thionville，Moselle．
Thirty Cities，confederacy of the，Fome， 3 I4．
Thisbe，Pyramus \＆Thisbic．
Thiva，Thebes．
Thlaspi，Shetherd＇s Preve．
Thodas \＆Thodawurs，Toders．
Thomas I．Savoy，Horse of．
Thomason Collection，Britus／g Mouseam， 359.
Thomastown，Kilkenry
Thomond，Clare，Limerick．
Thompson（r），Fraser River．
Thomson（r），ictoria， 785.
Thomsoo，Professor W．Stot， Telegrashl，337， 339.
Thonlounides，dyzasty of， Esjpt，79：．
Thonon，Sawoys．
Thorismund，Attiliz．
Thorn acacia，Locust Tree， Robituta．
Thorney，Cambridgeshive．
Thornhill，Sir James，Paint－ zigs， 195.
Thorpe，John，Elizabethen Architecture．
Thorshälla，Maetar，Lake．
Thorshatn，Faröe Isles．
Thothmes，Egypt，7S9．
Thoumart，Polecat．
Thourout，（Supp．
Thouvenin，Col．Rifled Arms． Thrasamund，Ficudals．
Thrax，Dionysius，Grammar．
Three Chapters，Theodore．
＇Hree Kings＇Reef，Cromarty Firth
＇Three Sisters，＇Barrow．
Thresher，Fox Shart．
Threshers，Ribbou ism，
Thrombus，Veresection．
Throstle，Therush．
Throwing，Silk \＆Silkwormu， 726.

Throw－stick，Will－fozol．
Thsio－ling Mts．Chima， 815.
Thunder－stones，Belemmites， Elf Arrow－hcads．
Thur（r．），Gall，St，Canton of，R hine．
Thur，Sinde．
Thurible，Censer，Thumifir．

Thurmberg，Durlach．
Thurn，Count，Thirty I＇ars war．
Thyatira，Ak－Hissar（Snfip．） Thymallus，Grayting．
Thynnus，$T_{\text {dutzy }}$
Tia－Huanacu，Perk， 438.
Tiber－stone，Limestoze．
Tiber－stone， Limestoze．
Tibia，Foot， 409 ．
Tibia，Foot， 409 ．
Tibur，Ronte， 308 ，Tivoli．
Ticinum，Pavia．
Ticinus，battle of the，Scipio， P．C
Tick，sheep－，Shee－louse． Tidone，Moluccas．
Tie，S\｛ur．
Tierras Calientes，MIexico．
Tierras Frias，MCixico
Tierras Templadas，Mexico．
Tier－shot，Grape－shot
Tiete（ r_{r} ），Parana River，Itu （Supp．）
Tiger－cat fur，Serval． Tigerhnach， 1 relinud， 627 Tiger－walf，Hyarta． Tigté，Abyssitaia．
Tigridia，Tiger－flower
Tiguin（r．），Cabatuan
Tikritch（r．），Zvenigorodka．
Tilbury，Caach．
Tilestones，Otd Red Sandstone． Tilgate，Wealden Formation， Till（r．），Northamberland Taveed．
Tillicoultry，（Suph．）
Tilon，Crannoges．
Tilt（ r ．）Blate Alinal．
Til－wood，Oreodaphnze．
Timanthes，Painting，Igr
Timbri，Niger．
Timby，Theo．R．Turret－slaip．
Time，Space $\hat{\text { ór Tinfe．}}$
Timok（r．），Seraia， 629.
Timon，purrhosz
Timor，Bostia．
Tinca，Terech．
Tincal，Borax．
Tineh．Pelzsizu＂：
Tin－foil，Foil，Tin， 447
Ting，Heent．
Ting－hai，Chusane．
Tiogis，Bug：
Tingitana，Athes Mounatains． Tinker，Skate．
Tinnevelly，（Susp．）
Tinstone，Tin， $44^{8 .}$ ．
Tio－cen－koak，Carea．
Tioga r．），Stuşuzchanna．
Tirailleurs，Chassears de l＂in－
Tirailleurs d＇Afrique，Algeric，
Tirần，Strait of，Red Sea．
Tir Enna，Adamuan（Susp．）
Tirowli，Azinmabad（Susp．）
Iirring，enarry
Tirso de Molina，Tellez．
Tirua，Borneo．
Tissaphernes，Alcibiades．
Tissue，areolar，reticular，\＆ic．
Cellular Tissine
Titeri，Alseria，$x 4 x$
Titisee，Bazerr．
Titulars，Erection，Lords of．
Titusville，Oil－wells（Suspp．）
Tiza，Hayesine．
Tiziano，Titials．
Tmolus，Lydiar，Pactolus．
Toa，Casuarina．
Tobacco－pipe fish，（Susp．）
Tobacco－root，Levisiat．
Tobercurry，Sliga．
Tobias，Apocryphta．
Tobol（r．），Tobrisk．
Tockenbirg，Tosgenbrers．
Toddy，Cocoa－mut，Date Falm． Todi．Tiber．
Tōdiberg，Glarrıs．
Todmorden，（Suphr．）
Togrul Beg，Seljuks．
Tohkani，Albania．
Täkely，Tekeli．
Tokology，Midwifery
Toktemesh Khan，Timztr
Tolima，Pic de，Aules．232．
Toli Meastir，Monastir．

Tolomei，John，Olĩetarrs．
Tolosa，battle of，Almoluades， Spatr， 17.
Toltecs，Merico
Tom（r．），Ob，Tomsh
Tomantoul，Banfs／hire．
Tombenhorn，Splügen．
Tombigbee r ．，Alabama．
Tomi，Otchakow．
Tompion，Organ，irt
Tone (r) Tathtort．
Tongariro，．Vew Zealand．
Tonge r．，Farmworth Swip．
Tongheni，Turkestan， 585.
Tonghoo，Pegu．
Tonka（r．），NrGhami，Lake
Tons（r．），Ganges，6I4．
Toongroo，Divorcatee．
Toowoomber，Queerslard．
Topaz，gold，Rock－crystal． Topeka，K゙ansas．
Topical style，Calico Printing，
Topinamburi，Yerasalem Ar tichoke．
Top－timbers，Shipbuidding， 683
Torch thistles，Cactea．
Torden，Thor．
Tordina（r．）：Teramo．
Torgoch，Char：
Torgots，Ralmucks
Tor Hill，Glestonbary．
Toro（mit．）Ainuorca．
Torockzo，Transylacnia
Torregiano，Sculpture， 577.
Torrens（li，Australiais Ex－
plorations（Suchp．）， 41 T.
Torrens（ r ），Afelaide，A
Torrens（ r ），Adclaide，Aus－
Torridalself，Chistiansauzd．
Torridge，Bristol Chanizel， Dcyorshive．

Torto，Tero．

Torsion，Streng：h of Mate－
rials， 163. rentileced．
Tortoise beetle，（Suhb．）
Tortuga，Hayti．
Corwars，Meilgherry M＇s．
Tory，Whig \＆Tory．
Tory Isle，Donegal．
Tosa Falls，Donvo d＇Ossolu．
Töss＇r！R R／tine，Zürich．
Total abstinence societies，
Temperance， 34^{8} ．
Totanus，Greenshank（Supp．）， Sandipiper．
Totarra，Podocarpus．
Totem，（Supps．）
Touched patent or bill，Bill of Health．
Touch－me－not，Balsam．
Touchwood，Amadon．
Touques，Caluados．
Toura（r．），Tobolsk：
Touraco，Hoaziv（Suspp．），
Plantain－eater．
Tournil，Meะquite（Supp．） Touse，framzas．
Toweym，Wakabis， 41 ．
Towtun，battle of，II arwick，
Ear＇of，Yorkshire．
Towy，Bristol Channet，Cacr－
ntartizet．
Toxotes jaculator，Archer－fish， Toys，chemical，ChemicalToys （Supp．）
Toys，steel，Steel Tous．
Trachearia，Arachrtidu．
Trachinus，Weceer．
Traction，coefficient of，Fric－
rizart 519.
Tract Society，Religious，Re－
ligions Tract Society．
Trades＇unions，（Su（f）
Traeth Mawr，Meriowithe
Tragopogon，Salsafs．
Trasus，Ear， 730.
Trail－flying bridge，Eridge， Military．
Trajectum ad Mosam，Maas－ triclet．
Trajecrum ad Rhenum，
Tralee Bay，Nerry．
Tralles，Aiditr．
Tram，Silk हu Silkworn， 724.
Tramore，Waterford．

Tramps，l＂azrants．
Tramways，Railways， 85 ．
Transcendental analysis，Cat－
crizus，Infinitesinal．
Transpiration，Gases， 642.
Trapassi，Metastasio
Trapeza Prothesis，Credence．
Trapezus，Trebizond＇．
Traquair，Earls of，Stewart Family， 126 ．
Trastevere，Rome， 323.
Traueosee，Gmuruleu（Snsp．）
Traun（l．and r, ），Salzkant－
mergzt．
Traveller＇s joy，Clematis．
Traverse table，Sailings．
Treacle mustard，Erysimum，
Trebbia，battle of the，Suroorof．
Trebisond，date of，Date Plzm．
Trebnitz Heights，Prussia．
Tree lilies，V゙ellozia．
Trefoil，Clover．
Trefrhiw，Conzuay．
Tregaton，Curdiganshire．
Trehalose，Susar， 187.
Trelo Vouni，Hymetizs．
Tremadoc，Caernarzonshire：
Tremando，Tremolo．
Tremont，Boston．
Trente－et－quarante，Rouge－ et－1oir．
Trente－un，Rouse－ct－Noir．
Trenton period，America， 202.
Tresco，Scilly Islands．
Tresham，Grintsowder Plot．
Trestle－bridge，Bridge，Mil：
Tret，Tare é Tret．
Treveryn，Dee．
Trevethick，Richard，Rail－ zucy＇s， 85 ．
Treviri of Treveri，Trères．
Triads，JVelsh Lang．© Lit． 236．
Triballi，Servia， 630.
Tributary，River．
Tributers，Minirg．
Trichas Marylaodica，Iellow－
throat．
Trichinris，Hair－fail．
Trichosis，Ringworm
Tricophyton，Parasitic Dis－
eases，Tinea．
Trient，Trent．
Trifle，Peuter．
Trigone，Bladder．
Trimabor Trimah（r．），frelum．
Trimelone，Garda，Lago di．
Tring，（Supp．）
Tringa，Kuot（Suppo．）
Trinitrophenic，Phenyl．
Trinity，Nexformalitud．
Trinity Term，Terms．
Trinobantes，Essex．
Triodia pungens，riustralian
Explorations（Supp．i， 410.
Triosteum perfoliatum，Tin－
kar＇s Root．
Triphoena，Surface Grub．
Tripinnate，Leazes．
Triplet，Rhime．
Tripos，Wrangler．
Triptolomea，尺oservood．
Trismus．Tétrarits．
Tristomidæ，Tremafoda．
Triternate，Leazes．
Trithionic acid，Sulphur，r99．
Trogen，Aspernzell．
Troglodytes，Wrerr．
Trogosita，Cadelle．
Troitzko－Savsk，Irkutsk．
Trojans，Troy．
Trolhātten，Siceder： $2 \hat{2}^{6}$
Trombay，Bombay 1.
Trombidium，Acarzes．
Trommer＇s test，Sugar，186，187．
Trooa，Natron，Sodikn，Sor．
Trophonius，Oracle．
Tropidonotus，Srake．
Trostan ，ML．），Autrim． Trossō，Cariscronta． Trozzendorf，Friediand，I．
Troup Head，Buchan．
Trout，Salmon of North－surs？ Anerica $\left(S w_{p} p\right.$ ．）
Trout，salmon，Salmant， 445.

INDEX．

Troutbeck（2．），windermere．
Trout of Australia and New Zealand，Salmoritie
Troy weight＇，Octrai．
Traando，Aitrato．
Trubsch（r．），Saxory＂， 513.
True Delievers，Sincere firctirest（Supp．）
Trump，game of，$\|$ Fish
Trumpeter，Agrami．
Trumper－wood，Cecropia．
Trunk－fish，Ostracion．
Trush Thish，Thenst
＇Iryphiodorus，Lipoyrann．
Tsad（l．），TChad，Lake．
＇Tsau－hu，Chima， 815.
Tschernobolzi，Rasholnik．
Tshapodshirs，Tungits．
Tshar－dagh（snts．），Alkunit．
Tshousovaia，Perm．
Tsiangshan，Ningpo．
Tsike，Ningfo．
Tosi－tsi－har，Manteluria．
Tsna（r．），OLas，Tambov，Teer
I＇somo（r），Rei River，Tembr．
Tsugar Sirnit，Yesso．
Tuatha de Dinam，Firtiolgs （Suspo）
Tuba，Socicty Jslands．
Tubbergen，Ozerysel．
Tuber，Truffe．
Tuberathi，Berat．
Tubes，rifes．
Tuber，Tibet．
Tube－well，（Supp．）
＂Tübingen School，＇Bible，7t．
＇Tübingen School＇New
Bible， 75.
Tubular bridge，Britannia Tubular Bridgc，Sirength of haterials． 163.
Tuck，Castine－net．
Tucker，Waollen \＆Worstea Mantufuctures， 265.
Tucum and tucuma，Aistro－ cotym：
Tudas，Neitsherry His， Tantil Todars．
Tudela，battic of，Spazi＇r， 17.
Tu－duk，Coctin－Crima．
Tufaceous limestone，Catica－
reous Tufa．
Tuffstein，Arwdergach．
Tufted duck，Pochard．
Tugela，Satal．
Tuisco，Manhus．
Tui－tui，／loney－eater
Tulang－Bawang（r．），Sitmatra．
Tullibardine，Marquis of， Stuart，p＇rince C．E．
Tullow，Carlow．
Tuloma，Rola，
Tulu or Tuluva，Tamil．
Tulukdars，Orule．
Tunbez Guayaguil．
Tumble－dung beetic，Dung Berile．
Tumbling－net，Trammel－net．
Tumbrel，Ducking－stool．
Tumbudra，D／sarvar．
Tumen－kiang，Corea．
Tummel，Loch，Pertishire．
Tummel（r．），Tay．
Tumour，fibrous，Wonb，Dis
rases，E～C．of the， 251.
Tunbridge calies，Biscrits．
Tunga，Boyzea．
Tungabhadro，Kistha，Mysore．
Tungani，Turkestan， 335 ．
Tung－ting－hu，Chinh， 815 ， J（ths゙ tzc－kiang．
Tunguragua，Audes，zчo．
Tunguracur，Chestht．
Tungusic language，Thuranian Lanstages．
Tunguska r．），Fenisci． Tunic，Vestments． Tunica palmata，Triumpls． Tunicated，Butb．
Tunkers，（Supp．）
Tunseal Court，Stole－upors－ Trent．
Tunstall，（Supt．）
Tuolumne，Crescent City． Tuoro Trasimenus Lacus Tupa f illei，Lobelia．
－Tnчuerrez，Now Grienadio．
＇turd，f＇erm．
£18

Turan，Tuyanian Langmages， Turkestan， 583.
Turbellaria，Worms， 279. I＇urbinella，Chankeshell（Sufop．） lurf，Peat．
Tirfan，Turkestart， 585.
Turia，Guadalaviar
Turk，the，Bark BeeRle．
rurkic languagc，Turaniant
fangrages．
lurkish manna，Sugar， 187.
＇Iurk＇s cap，Goterd．
Turk＇s Island，America，20弓， Bahatras．
Turma，Legion．
Turnbull，Dr G．Reid，T
Turner＇s cerate，Zinuc． 35 x
THrning of winc，ぼine， 223 ．
I＇urnip butterfly，Cubbage liutterfly．
＇ruruip－drill，Sozving．
T＇unip sawlly，Sazoffo．
＇uron，Qzang－Nan（Supb．）
Turoukchau（r．），Yensei．
＇lurps，Paints．
Turriff，Buchan．
Turrilites，Ammonitcs．
Tursi，Diasilicata．
Turtur，Turiledows．
Tusea（r．），Nuspuilia．
Tuscaloosa，Alabama．
THsk，Torsk．
Tusseh，Silk \＆Silkworm，
Tustan，Hypericacer．
Tutela， 7 michi．
Tutmen，sifing
Tvertza（ r_{0} ！）Caspian Sea，
Tiver．
Tweeg，A／cmopome．
Twelve Pens，the，Galiuny．
Twe－twe，Alyab（Sufp．）
I＇wig－rush，Cladiarn．
Twist，Tobacco， 465.
Twite，Limuet．
Two hundred and ninety，No．
（No．290），flubama（Susp．）
Ty（ r－）Sadializ．
Ty－cock－tow，bocea Tigris．
Tyldesley，（Supp．）
Tymy（r．），Sakhalir．
Tyndale，Reformation， 1 ：2．
T＇yndal！，Jn．（S＊pp．）
Tync，Haddengtonshire．
T＇ype－setting machines，（Sups．）
Typlia，Dyolucces．
Typhlopsidx，Ser，hents，$i=6$ ．
Typhon，Osiris．
Typographer bectie，Fark beetle．
Tyrannus，Peichary，Tyrant
Tyrconnel，Donegal．
I＇yrconnel，Duke and Earl of， （Susts．）
Tyre，Phacnicia， 49 r ．
Tyrian purple，Purple Colours．
Tyszmanikn，i）roliobicz．
Tzana（l．：A A rica， 63.
Tana（r．），Ok：z，Tambor，
Vishzzi－Volotchek．
Ubaje，Durance．
Ucayali，（Sush．）
Udasis，Sikits．
Udine（ r. ），Gemona（Supp．）
Udo，Amicers．
Ufa（r．），Zlatoust．
Ugni，Eugenti．
Uig，Skyc．
Uj－Videk，Nensata．
Ulceration of anus，Alsus
（Susp．）
Uleer of the stomach，Stomach．
Ulea ir．），Uleaborg：
Uliassers，Moluceas．
Ulna，Jland， 222.
Ulna（r．），Honduras．
Ulater（ r_{H} ），Saxg－Weimar－
Eisenach．
Ulva，Hebrities．
Uman，（Supp．）
Umisalla，（Suft．）
Umbashec $\left(r_{-}\right)$，Kaforaria， Protr．
Unubellule，ZTmictlifera．
Umbilicus．Secd．
Unber，Lizurate Shells．

Unbrella tree，Magnolic．
Umbro－Sabellians，Rome， 307, Sabini．
Umcomanzi $\left(r_{0}\right)$ ，Sirtal．
Umea r．），Laplont，Swed＇力， 236.

Umgani，Natal．
Ummerapooma，Alvearaprora．
Umooti，Nitial．
Umrohah，（Supp）
Um Shaumer，Sinar．
Umtata，Kaffraria，
Umturcla（r．），Zalishand
Umvoluzi（r．），Zululand．
Umzimculu $\left(r_{0}\right)$ ，Jatal．
Umzimvoobo（r．），Kit／fraria．
Umzinyati（ \cdot. ），Zululand．
Unalaskn，Aleutian／s．
Unau，Sloth．
Uncaria，Grapple－plint（Supp．）
Undercliff，Wight，file of．
Underground railway；U．S．658
Undershot wheel，Water． power： 95.
Undenving moth，SurfaceGrub．
Undistributed middic，Fallacy．
Unguentum cetacei，Sper－
Uniamesi（6）．Africa， 68.
Unicorn＇s horn，Mrelanthacea．
Unicquivalent elements， Triads．
Unilocular shells，Univalucs．
Uninak（i：），Alcutian $/ \mathrm{s}$ ．
Union（r．），Ellswarst
Union Party，Retublican．
United Drethren，JYorazinars，
United Kingdon Alliance， Temssrance， 351.
Linited States，（Susp．）
United States，education in， Nutional Education＇：Supsic－ Uncmersal
rose engine，
Unjon Tengravirg
Unleavenced bread，feast of， Passoicer
Unna（r．．Eusnia．
Unstrut（r．），Saxe－Cobur Go Gothat．
＇Unter den Linden，＇Berling， 52.
Unecrinnthal，Tyrot．
Unter Sce，R／ine．
Unz（r．），Zirkitz（l．）．
Upa（r．），Tostit．
Upa Canal，Volona．
Upper I＇crn，fiolizia．
Upsilorites，Candiar．
Uramel，Uric Acid．
Urania，Trateller＇s Tree．
Uranus，Plasicts．
Urate of ammonia，Litisic Acid Diaticesis．
Uruanists，Claire，St．
Urchvy，Argyleshize．
Ure（r．）Jorksleire．
Uredo rubigo vera，Rust．
Urethra，spasm of the，Re－
Icntion of Urine．
Urgendji，Turkiestan，584．
Ursunge，K゙hiza．
Uthur，Pizcon Pea．
Uria，Grillentof．
Uriconium，（Supp．）
Urine，bloody，ficd W゙ater．
Urinc，incontinence of，Re．
tintion of Urine，（Sripp．）
Urine，retention of，Retention of Urine．
Urine，suppression of，Reterz－ tion of Urine．
Urk，Netherlauds，Zuider Zce． Urlingford，N＂ilkeury．
Urmea（l．），Urumejah（l．）
Ürquiza，Don J．J．Fiosas
Ursine opossum，Dasyure．
Ursine scal，Otarj．
Urumijah＇．），Ursmeyalt（l．）．
Ury，Dor．
U＇saguadero（r．），Nicaragua L ．
Usbekistan．Bokhar，s．
Usdum，juead Serr．
U＇shant，hattle oft，floade．Eiarl．
Usk r．，Brocknoslishive，
Mormoutif．
Uskudar，Sc：ularz．
Usq̧ucbaugh，II：Misky．

Ussel，Corrize．
Usses（r．）Sazoo：
Ustica，Lifari．
Ustrialov，Kuss．Kang．Eu İir．
Usumasinta，Palengut
Usuri（r），S／amecheriat， Siberia，703．
Utparda－Loki，Loki：
Utica，Barbary，C8ı．
Utila nr Utilla，Buy／slands， Rwatas．
Utrecht，Union of，William， Prince of Orange．
Utricularia，Blaidertuort．
Uvaria triloba，Pafā＂．
Uvula，J＇alate．
Vaagen，Berger．
Yaagnaer，Dcalfish．
Vaagoe，Fitrōe fsles．
Vacoa，Sercell Fine．
Vheovia，Allert がyロダa
（Supp．）
Vacuum pan，Sugar， 190.
Vadutz，Liechieristcis．
Vahalis（r．），Waal．
Vaigatch，lraygach．
Vaisatz，Vassach．
Vaisya，Casic， 657.
Vala，Ifitcherafl， 233.
Valanm，Ladoga．
Val d＇Aran，Pyrenees．
Fal del Bove，Etna．
Valdenses，Waldenses．
Valdez，Spantish Lang．is Lit． 20.
Valdivia，Chili．
Valencin，（Sukp．）
Valentia，Britatnia， 353.
Valentin，Anatomy： 227
Valerien，Mont，Scime．
Valesquer，Diego，Cor：ts， Kermar．
Valguamera，（Sunk．）
Valis r ．IF＂and．
Vallatolid，Borelia（Supp．）
Valladolid la Dueva，Comb．
yagya（Stusp．）
Vallejo，Califormiv．
Valls，（Supes．）
Vnlognes，drancir．
Valparaiso corn，Jh，2izc．
Falseline，Alps．
Valvassor，Fa：arome．
Vamospircs，／Iatiducks Supp．）
（ancouver，Washington（er．）
Vancouver 1．Herring，／lcr－
ring，I ancorrect f．Suph．）
Van den Bosch，Cape，l＇apka，
－250．
Yanderhels：，Tainting， 104.
Vandyke（in dress），firshion， 254.

Yanessa，Swift．
Vanishing，fractions，Frac－
tions，I＇cusishin．
Vanishing point，perspoctice， V^{430}
Vannucci，Pietso，Prougino． Vanozza，Rosa，Alewinuter V1．Pope．
Van Swicten，iledicime，ITist．of．
Vanua Levu，Fiji／slusuls．
Vaqueros，isturias．
Var（r．），Alpes Baritimes （Sropp．）
Vamn，Monitor．
Vardar（r．），Turkey， 586.
Vardhamara，Jihuřira．
Varenne，Mayeune．
Vargas，Don Juan de，Jlia．
Variable cod，Dorse．
Varicolaria，Arelith．
Varied monkey，Cercopithecus．
Variegated Laurcl，ducuba．
Variou－Bc，Nossi－Be（Susph．）
Vanvels，Vorels．
Vasa lactea，Diession，sfic．
Vascular plants．Spiral liessels．
Vascular zurgeseence，Con－
gestion of Biluar．
Vassili 1．，II．，I11．Russia， 385 ．
Vass li Shnuisky，Russia， 386.
Yassy：Barme，Fintute．
Vatavi，Batavi．
Vatazes，John，Ey antine
Fupire，472．

INDEX.

Vateria, Sal.
Vathy, Sahtos.
Vati Ambrym, Nicu Hebrites.
Vaunks (r.), Cafe River.
Vecht, Overyssel, Rhize
Vechte (r.), Hanozer.
Veddahs, Ceylorr, 73S.
Ved-el-Kebir (r i, Truis.
Vcd-cl-Melianah (r.), Tmis.
Vedius Pollio, Slatiery.
V'cenhuizen, F'atoper Colonties.
Vere, Campvere.
Vega, A modovar del Campo (SMAs)
Vegetable brimstone, Lycopoatacea.
Vegetable butter, Avocado Pear.
Vegetable jelly, Gelatire.
Vcgetable leather, Leathercloth (Supp.)
Vegetables for food, Foot (Supp.)
Vcgetabie sill; Tultu, Silkcottor.
Vegeto-alkalies, Alkalineter.
Veglia, Arestria.
'Veiled Prophet,' Moluannucdirn Sects (Supp.)
Vein, contraction of, Hydrodyuanics, 484.
Veit Stoss, Carriugs.
Velebich (mts)), Dalmatia.
Velela and Velcintes, lellcia.
relckaia, Peipus.
Veleta (met), Sierra Nevada.
Velhas.Rio das, Säo Frazucisco.
Velikaia, Pstiov.
Velino (mt.), Afernimes.
Vellenore, Pondicherry.
Vellore, (Supp.)
Velvet leaf, Cissampelos.
Vena contracta, HiydrodyHamizes, 484.
Venæ cavæ, 心c. Circulation.
Vendidad, Zent, 341, amd Zend-Atecsta, 344.
venedi, Sarmatiaus.
Venefica, Wifclucraft, 233°
Venephes, $E_{\text {syyth }} 78$.
Venerable, Reverenth.
Veneti, Verisice,751.
Venetia, Germany (Supp.), 536, Italy (Supp.)
Venetian-point. Lacc.
Venice talc, Steatite.
Venice turpentine, PiHe.
Venice white, Baryta.
Vennachar (l.), Fatrine (l.)
Ventadour, Dernard de, Trorbadour.
Ventilator, Archimedean screw, Blowing-macikises (Susp.),
${ }^{430}$.
entnor, temperature of, Grast Britain, 65.
Ventoux, Mont, Jauclesse.
Ventricles, Brain, 303, Circulation, 43 .
Vicntriculus succenturiatus, Birds, 109.
Ventuare, Urinoco.
Venus, Plantis.
'Venus of Quinipily; Bard (Supp.)
Ticnus's comb, Chowil?
Venus's comb, MIurcz.
Venus's hair-stone, Rocicrystal.
Yenus's pencils, Rock-crystal.
Venns's slipper, Carimariz.
Yepris nndulata, Alanthoxy lump.
Ver (r.), Albans, St.
Veratric acid, Sabudilla.
Verbas, Bosnia,
Verbena triphylla, Aloysia.
Vercingetorix. Akesia, Casar.
Vcrdandi, Norne.
Vicrde, Cape, Africa, 66.
Verde di Corsica duro, Diallase.
Verden, (Supp.)
Ferdon, Duranuce.
Fere, Campuerc.
Verkholensk; frisuts\%,
Vermanduis, lizlois.
Vermes, Vorms, 5^{8}.

Vcrmetus, Serpriala. Vermicular motion, Peristaltic Motiort.
Vermilion Pass, Sashatchewan.
Vermillion (r.), Ohio.
Verneuil, E. de, Russir, 3 8z.
Vernon, Admiral, Puerto Vello.
Verocchio, Sculpture, 577.
Veronica Giuliani, Sticmatisatios.
Verplancks Point, Stony Point.
Verres, Sicily, 706.
Verrières, Scine.
Vcruce, Warts.
Ferte, Neve Brunswich.
Verticil, Vegetable Pleysi-
ology', 735.
Verticillate, Leavers.
Vcrulam, Albass, $S t$.
Vervick, (Sutp.)
Vespa and Vespidæ, IV asp). Vespertilio, Noctule (Sush.) Vestibule, Ear, 730 . Vestini, Civita di Pemue. Veto law, Free Chasch of Scotland.
Vexilum, Papilionacer.
Vexin, Counts of, Standard.
Vezere, Dordogne.
Vezzola (r.), Teranto.
Via Jmilia, Rerggio.
Via Appia, Appias Way.
Via Dolorosa, Feriesalcm.
Viaud, Satire.
Vicary, Thos. Antatomy, 229. Vichada, Orinoco.
Victor Harbour, S. Australia.
Victoria, New Zcalaud.
Victoria, Seychelles Islands. Victoria (r.), S. Anstraliz. Victoria cross, War Services, (Supp.)
Victoria Falls, Zambest
Victoria Land, Antarctic Oceats.
Victualling bill, Bill of Victualling.
Vidal, Pcire, Troubadour.
Vidae, Eider.
Vidua, IVhydaw Eird.
Viena Mountains, Etolia.
Vienna (treaty), Germaty
(Susp.), 536.
Vienna white, Chal\%.
Vienue (r.), Charente, Loire.
Vieque, Firgin Islirwds.
Vierlinder, Bergetorf (Stup.)
Viersen, (Susp.)
Vierzon-Ville, (Susp.)
Vigita Magna, Zantbesi.
Vigo Bay, Spaits, 13.
Vigors, Ornithology.
Vile and Ve, Odin.
Vilia (r.), Nienter, V"ilus.
Villach, Alps.
Villa del Fuerte, Fucrte (Sufp.)
Village-system, Iratia, 539.
Villalobos, Spanish Lavg. ©
Litt. ${ }^{20}$
Villani, Giovanni, Italy, 657. Villars, Succession Wars. 178. Villa Rufni, Columbariums. Villa Viciosa, battle of, Vers-
dome.
Villonage scrvice, Terure of
Villeroy, Marshal, Ramillies. Villiers, Buckinginam, Dukio of. Vilni, Lemr.
Vimieira, battle of, Wellington. Viminal Hill, Jiome, 322.
Vinaroz, (Susp.)
Vincent of Scanvais, EncycioVin cotti, 47 Wiute, 221 .
Vin de paille, Wike, 22т. Vindobona, Vicuma.
Vine gall, Coccus.
Vinegar, wood, Pyrolig7eores ACilt.
Vingoria, Conean.
Vin sec, W'ine, 22 .
Vintschgan, Tyrol.
Violet moss, Vinlet Stones.
Violine, I;it-stuffs.
Violone, Contra Bass.
Viper's grass, Scorzoneri.
Virgue, "icit.

Vira, Malavira.
Virchow, Rud. (Susp.)
iretons, Espritgrat
Yirgilus, Mreland, 626.
Virgin-Gorda, Virgin $1 s$.
Virginia City, Neanda.
Virginian decr, Cariacolt,
Virgman silk, Ascleplas.
Virginian snakeroot, A ristolochita.
Virginian stock, Stack
Virginius Rufus, T. Rante, 320.
Virgin's milk, Eenzoint.
Viroma, Esthonia.
Virtue, Stoics.
Virtues, Cardinal Virtues.
Visa, Passport.
Viscay'a, Biscay.
Vischer, Eugraving, 69.
Vishni-Volotchek Canal, Volgiz.
Vishnugunga (r.), Bhadrimath.
Vismia, Hypericacca, Wu,x-
tive.
Vison, Mink (Supp.)
Visparad, Zend, 34r, and
Zered-Azersta, 343°
Visurgis, IVeser.
Vital capacity, Respiration,
Vitalian,
italian, Auastasius 1. (emperor).
Vitava, Moldam.
Vitellus, Devclopment of the
Endryo.
Yiti Islands, Fiji Islards.
Viti Levu, Fiji Islands.
Vitim ($\%$), Lena.
Vitis, ines, 795.
Vitreous bnmour, Eye, 204.
Vivace, Tempo:
Viviparous fish, (Supp.)
Vivis, F゙evay.
Vizezy, Moutbrison (Supp.)
Viziadroog, Costant.
Vizor, Visor.
Vladika, Montimegro
Vladimir, Prince George of,
Russia, ${ }^{3}{ }^{8} 4$.
Vlieland, Hol.arte, North,
Netherlizads.
Voandzou, Gobbe.
Vogelberg (mt.), Rhine.
Vogelweide, Walther von der,
Wallher v. d. Vogelweine.
Vohlgemuth, Engraving, Gg. Voice, Registers of Voice.
Voigtland, Gernutasy, 717,
Saxony, 514
Toirlich, Een, Dumbartonshitre.
Vojussa ($r_{\text {r }}$) Albania.
Volatile alkali, Ammonit.
Volcano (i.), Eoracic Acil. Volkenrode, Saxe-Coburg-

Tolkhof (r.), Ilmezt.
Vollhov ivolehow
Volme (r.), Iudenschicid'(Supp.)
Volsinii, Ronte, 313.
Volta $(r$.$) , Ashanti, Dahomey.$
Volta (r.), Ashanti, Dahomey.
Voltameter, Gakuausm, 602. Volterra, Alabaster.
Volterra, Daniele da, Paint-
illg, 193.
folturnum, Cabicr
Vülundr and Vólntudar-quida, Scaudinavian Lang. © Lit. 523.

Voluntary controversy; U.P.
Church, 646, Voluntary isha. Voluntary cducation, Nitional Education (Swh.)
Vomiting of blood, Stossach Voorne, Holland, Sorth.
Voragine, James de, Golders Legena.
Vorarlbers, RLine: Tyrol.
Vorhate Island, Timor-laut.
Vormen, Glominens.
Vörösmarti, Petōf (Suş̧.)
Vorsova $\left(r_{0}\right)$, Theiss.
Vostermain, Engraving 69.
Voters, registration of, P ar

lisurchit, $2 \mathrm{~S}_{4}$

You-Chang, (SuSN.)

Vouziers, Ardentes.
Voyutza (r.), Turkey, 586. Vrana (l.), Dalntatia,
Vriesland, Friesland.
Vriua (r.), Bosnia.
Vulcano, Lifari.
Vulpine opossum, Phalanger.
tulturnus, Campania.
Vuna, Fiji $\overline{\text { shands. }}$
Vurla, Clazomena.
Vyborg, Christian 11 .
Vyrnwy (r.), Montgomerysh.
Vyrnwy (r.), Nen. Howard, Pyramiond. Vytchegda, Davina, N.
Vytegra, Onega.
Waag, Comorn, Danube.
Wacaka des Indes, IVikana
Wachita (r.), Hot Springs. Wachtlieder, Minnesingers. Wackenroder Romantic
School.
Wadt, Faud.
Wady Kawas, Bilma.
Wady Magara, Egypt, 780 .
Waes, Pays de, St Nicholas.
Waga, Dwina.
Wagel, Gtill.
Wager-boat, Boating.
Wager of battel, Battel.
Wagon, the, Ursa Major
Wah, Parda.
Wahsatch (muts.), Uttale.
Waiau (r.), Nevo Zealared.
Waigatz, loygach.
Wai-1ni (r.), Gutiona, Brit. 132.
Waikato (r.), Nezu Zcalavd.
Wain Ganga (r.), Nagpur.
Waitaki, Otago
Wakatip, Oiagn.
Wakefield, battle of, Iork-
shitre.
Wakeficld theory of colonisa-
tion, Sout/s Australis.
Wake Robin, Ayzum.
Walderbsenkopf, Prussic.
Waldheimia, Terebritula.
Waldo, Peter, Waldezses.
Waldseemüller, Martin, Ame-
rigo l'espucct.
Waldshut, Auabaptists, 218. Walet, Birte.
Walfish Bay, Namtaqualaw. Walid, Ommatiads, 7 I .
Walis, Spain, 16, Tur**
Walker, Eugraving, 68.
Walkham, Dartmoor.
Walkill (\%.), Hudsor.
Wallaroo, South Aftstralius. Wallawalla, Washitgton (ter.) Wallfower cabbare, Brassica. Wallia, Spaitr, ró.
Wallis, Valais.
Wall-rue, Asplesinm.
Walls, retaining, Rciaining Walls.
Wall's Cut, Tybee
Wallsend, (Supp.)
Walney I Island, Piarrow (Supp.)
Walsh Mts. Ailkenry. Walter, John, Tines, The.
Wamba, Spain, 16.
Wambeys, Gambeson:
Wampce, Aurantircea.
Wangaroa, ㅊ.. Zealant.
Wan-li-chans. Chima, 815
Wanlockhead, Dumfricssiare
Wanny, Ccylons, 737.
Wantsome, T/idnct:
Wantung, Bocca Tigris.
Waranger Fiord, Scandimzaia. Warble, Eot.
Warbnrg's fever drops, Guianta Bark.
Ward, Gwardian:
Warchouses, foating, Floating
Warelwouses (Sutp.)
Wargöc, Squetzbors
Warm plaster, Rubefacients. Warnemūnde. Rostock.
Warncria, ifjulrizs:is (Sups.) Warnow (r) $)$, Rostuch:
Waring, Rope 5 Rose-

Warree, bionith
Warren, Kisoide Isheres.
Warren, Hen. (Sußp-)

INDEX.

Warren de la Rue, Sterio-
scope. 117.
Warren Ilead, Cheristinhrik.
Warrior, © targets, Armour.
Whar-serviceso, (Supp.)
Wart lill, Hoy.
Warud, Arrils.
Wasgau, Vorges Mountains.
Wash, Distillation.
Washington (mt.), Appala-
clicars, 321, IFhite Mlis.
Washingtonia, Welimgtonit. Waste-hook, Book-hecting, 228. Wastrel lands, Stammavies.
Wast Water, Hindermere.
Water, Sanitary Scicuce
(Suph,1, 717.
Water, harduess in, M"atersupply.
Water, resistance of, $/$ yydrodyuarivics, 4^{84}.
Water avens, Gewn:
Water-beetles, Gyrinus.
Water-boatman, Bent-fly.
Water cancer or canker, Cancrum Oris (Stobp.)
Water-cure, Hytropatity.
Water-flannel, Conferma.
Water-fowl, Wadr-foreb.
Water-hemlock, HFater Drop.
Water-hog
Water hos, Capybara.
Water-horse, Capsuar, Asclus.
Waterländers, Ahsabaptists, ${ }^{219}$.
Water-mole, $n u c k-b i l l$.
Water-moss, Fontinalis.
Water-moss,
Water-pepper, Folysoncie.
Water-plantain, Alismacce.
Water-rat, Vole.
Whter-scorpion, Hiate-bug.
Water-snail, I'ulmonat.e.
Water-soldier, Stratiotcs.
Waterways, Shisbuilding, 684 .
Water-withe, Jine, pog.
Whtcr-yatn, Latrice Lcal
Wating Strect, (Suift.)
Wating Street, (Sush).
Watson, Sheriff, Schools.
Watt, Encraving. 70 .
Wattled and combed, Bard so Crested.
Wattled turkey, Tiategalliz.
Wateles. Fonv!.
Watts, Thomas, (Supp.)
Watt's Dyke, Offits Dylic (Srusp.)
Waukesha, H isconsin.
Wavency $\left(r_{0}\right)$, Suffoll.
Waverley novels, .Scolt, Sir Hister.
Wax-cluster, Gattlheriz.
Wax-flower, C'lusia.
Wax-moth, Honeycomb Moth.
Wax-shruh, Camdlebery.
Way (i.), Moliucals.
Wayhread, I'hntayinea.
Whyfaring trec, tioumeniene.
Wayland Smith's Cave, Cromlech.
Waynesborough, Jirginia.
Weal- fish. Oiolithas (SuAß.)
Weald, Sissser.
Wear, Weir (Strpp.)
Wearinouth Monastery, Be\%zdict Bircon (Suph.)
Weary=all Hill, Giastorbtury.
Weasel-snout, Derud Netlle.
Weathercote Cavern, Jorkshire.
Weaver (r.). Cheshire.
Weaver's shiute shell, Cowery.
Weaving, (Sufp.)
Webbe Shebcli (r.), Sonali Land.
Weber, Tildgrapu, 339.
Weber, E. 11. Anatomy, 227. Weden, Shitnyl.
Wedge-shaperd, Cumeiform. Wed gwood, 'th. Photography, ${ }^{508}$
Wed Mzi, Sahariz.
Wecms, Earth-horses.
Weems, Ring Moncy.

Weenen, Niztrib.
Wee pown, fiazubluoding. Weeper monkey, Cchus. Wecrselo, Ozerysse\% Weichsel (r.) I istule Weights, Freneli, Chemistory (Suft.)
W'cil (r.), Nassa\%.
Weir, (Sufh.)
Weir's Cave, lirginia.
Weishaupt, Adtun, /lheminati. Weiszbrum, l"eszfrim.
Welcomb, Comivall.
Weldon, Reanole.
Welland, Emucdus底e, Hiash. Wellesley (is.), Campentaria. Wellington, (Supp.)
Wellington (d.). I'atoryemicr.
Wellington Strat, Bafin's R.
Well of the Sun, Ammoutism.
Wells, Water-supply, 104.
Wemyss Fumily, Elcho (Supp.)

Wendover, Chiltern Hills.
Wente, j on.
Wentloog, Monmoutl.
Werden, Essert.
Werra, Hisse-Cassel, IU"escr. Werst, Jierst.
Wervieq, Vervich (Supp.)
Wheseritz $\left(r_{1}\right)$, Yoachimesthal
(Supp.)
Wessintz (r.), Sa.zonty 5 I $_{3}$.
West Branch (r.), Susighze-
hatme.
Wcsteras, Maclar, Lake.
Westerlüs.a, Derzelius.
Western (r.) Si-kiang.
Western cure, Fenomous bites So Stings. 757.
Westerschelling, Terschelling. Westerwald, Nassaut, Prussiiz, Rhenish Srassit.
West France, Neustria.
Westminster Assembly, Assembly of Dizines.
Westre Bygd, Grenhand.
West Roall (r.), fivaser River. West Vaagen. Lefodert. Westwood, Queenshind. Wet-rot, Potrato.
Wet-rot, Potato, Wetumpka, Alabana. Wey (r), Surrej.
Whale Island, Bafen's Bay Whalley; Laneristire. Wharfe (r.), Jorkishive. Wharnclife, Lords, Stewort
fiamily; 12.1.
Wharton Society, Rooiburgic Club.
Whaup, Curliqu.
Wheat aphis, Come Aphis. Wheat grass, Couch Grass Wheelock (r.), Savdluacts. Wheel of lise, 7.ötrape' Sups.) Whell, anatomy of, Gastir-

Whelk, red, Fusus.
Whernside, Inviskire. Wherry, Bantius.
Whetile, Woodfecter. Whet-stones. /lours.
Whew duck and whewer, If"iageor.
Whey-cure, Sugar, 187.

Whiddy (i), Eithitry Bay', Cork.
Whiss, Republia: Us, U.S. 657,
Whiskers (of eats and rodents), Touch.
Whitadder, Bervickshire.
White (r), sustr.
White (r.) Wrabas/d.
White alkal, Sodit, 800
White ant, Termitc.
White balsam of I'cru, Liguidambar.
White bay, Magnolia. White-bellics, Shan Statcs. Whitechurch, Waterford. White cinnamon. Carella. White copper, Timbac. White cyelid monkey; White ey
cocebrs.

Whiteflux, Tartaric - Acid, 303. Whute Hilts, Apposhachiars, White Horse Hill, Berkshire. Whitchotss I'cal, Chillirn fills.
White Inlet, Newforudlased. White irun, Cast Iron.
Whitelaw's mill, Barke?'s mill. White mangrove, Aubcenma. White rainbow, Anthelia.
White rocket, Dame's binlet. White-root bark, Carsellit. White-rot, fiydrocotyle.
White Kussia, Lithuasia, . Mohtilc:
White salts, Rectifying.
White sassafras, Magnolis.
White Swedish moss, Culbertr.
Whitethorn, Hâuthorn.
White Top (mf.) Viugidaz.
White whale, Boluga, Dolpher. White Woman (mit.), Mexico. Whiting pout, Bib,
Whitling, Bull Trout, Salmon, wit9.
Whittington, (Sups)
Whatworth, Mr, and Whitworth
rifle, Kifed Arms.
Whorled, Leazes.
Whorl grass, Catabrosa.
Why't, Medicine, Hist. of.
Wichita, Bis and Little ($\%$), Rad Kizer.
Wickets, Cricket.
Widow bird, Whydazo Bird. Wicpre (r.), Fistrah.
Wierden, Overyssa.
Wicringen, Holland, North, Zuider Zec.
Wiese (r)) Rhine
Wiessen (r.1, Bla Forest.
Wigean, IV idgror.
Wijayo, Ceylan, 740
Witk, Metastricht.
Wilberforce, Mazwicsbuyy.
Wilbrord, St, Hillihrot, St.
Widd ananas, bromeliacce.
Wild apricot, Mammec Apple.
Wild-cherry hark, Choki-
cheriy.
Wild cinnamon, Caucila,
My friat.
Wild clove, AJyrair.
Wild dog, Lyczou.
Wildenuwia teres, Restiacra.
Wilderness, battle of the, $\mathbb{N a p}$ pahammock: U.S. 60 t.
Wilde-Weisseritz(φ.), Saxony,

513 .

Wild ipecacuanha, Aselepizas.
Wild lemon, I'odophyilum.
Wild liquorice. Astragralus.
Wild olive, Eilcaguris.
Wildsee, Buterr.
Wild spinage, Chenopodism.
Wilhelmstal, battle of, Scerch
Wilibald Alcxis, jhaving, 16°.
Wilk, Perivinkle, Whell.
Wilkinson, Sir J. G. (Susp.)
Willamente, Oregon.
Willé, Engraving, 69.
Willemsoard, Drenthe.
Willey, Shoddy, Spisnins, 46 .
William, Mount, Gra/am's
Willian, Mount, Grampiaus,
Williams, Edward, H clsh
Villiams, Edward, 11 clshe
Lang. \& Lit. 137.
Williams, Moses, Welsh Lang.
sw Lid. 137
Williams, Mr, Vitrificd Forts. Williams, Rev, Isaac, Tracfarianism.
Willis's Rooms, Almack's.
Will-o'-the-wisp, Ignis Finturs.
Willow, Spinuing, 46.
Willow-grouse, parmigan.
Willow-herb, Epilobium.
Willowing-machine, Cottots,
Willow-leaves, $S_{t z r}$
Wills, W. J. Australian Er-
slomtious (Suppl) 410.
Will's Neck, Somersetshire.
Willughtueia, Apocynacci.

Nilly, Woollest \& Worsted Alamyfactares, ali5.
Wilmot, I.ord, Rechester.
Wilmot proviso U.S. 658
Wilson, Dr Danicl, Satibrath,
403.

Wilson, Robert, Steam-hiamo
mer, Steath-matigation(note).
Wilson's Proniontory,
toria, 785.
Wily $\left(r_{1}\right)$ Wilton, Wittshire.
Wimpfen, battle of, Tilly.
Winandermere, Jivilermere.
Wiscey, Hitusey.
Winchester, General, U.S. 656.
Windhover, Rerst'sl
Wincllestrae, Wair Grass.
Windpipe, Resciration, zo8.
Windrush (r) , Thames.
Windsor, Masekesbury, Iter. mont.
Windward (is.), Antilles.
Wine of iron, Tartaric Acid, winfrie
Winfried, Boniface.
Wint-coverts, Birds, 108
Winged pea, Birif's Foot
Trefoil.
Wing-feathers, Birls, 108.
Winkelried, Arnold von, Sentfach.
Winona, Minucsota.
Winooski, lialls of the, I'ero mont
Winslow, Capt. Slisbamsaz (Suft.), 380.
Winster, Lancashire.
Wimter, Seasons.
Wintera, Wileters hrreti
Winter aconite, Hellethore
Winter cherry, Physalis.
Wirksworth. Derbysfire.
Wirral, Cheshire.
Wisdom, linok of, Apocrypha.
Wisdom of Jesus, son of Sirach, Ecclesiasticus.
Wisdom tooth, Ticth, 320.
Wise woman, WHichcraft, 233.
Wisha (r.), Jistula.
W'itchegda (r.), Vrologda.
Witches' hutter, "rimetha.
W"isches" mean Tremedh.
Witches' salblaths, W"tclso craft, $234 \cdot$
Wiech-finders, IIFtcheraft,236.
Witch-meal, I.ycoporiancue.
Witebsk, Lilhseзиіа.
Witham (ri), Limolushire, W'ash.
Witiza, Roderic
Witnessing part of decd, Tistatumf.
Wittstock, battle of, Therty Fars' llar.
Wizin, Russian Lanc. co Lit.
Woaded colours. Hroollen is Horsted Mantufactures.
Wodlo, Onega.
Woed Gitogra. of are
Voimk, battle
Wolctop
Wolchof, Noigrorad.
Wold, Dye-stufts, 721
Wolds, Lincolnstiere, Iurkslime.
Wolf $\left\langle r_{1}\right.$) Is isconsin.
Wolff, Dr, Bokhiard.
Wolf-holes, Trous-de-loup.
Wolkhof (r_{i}), Ladoga.
Wollin (i.), (scdom, Oder.
Wolmar, Melchior, Beza.
Wolstan, Jutstan.
Women's rights, (Suph.)
Wonder, Emotion.
Wongshy, Dye-stafts.
Woo (r.). I'zng-tze-Niant.
Woo-Chang, Fou-Chang
(Suph.)
Woodill, Wood/ecker
Wond coal, broues Coal.
Woodcock' shell, Misrer.
Wood duck, S'unmer Duck.
Wood-evil, Constipation.
Woodfall, W. Reporting, Sarliamentary.
Woodford (r.), Cavan, Fer. managh.

Wood gronse, Capercailaic.

INDEX.

Wood ibis, Tantalus.
Wood instruments, IVind Iststrwments.
Wood oil, Gurgina Balsan, Dipteraceur
Wood pie, Woodpecker.
Wood-rush, Luzula (Supp.)
Wood sage, Germanter.
Wood-shock, Pckan.
Wood-sorrel, Oxalis
Wood-spirit, Pyroxylic Spirit.
Woodspite, Woodpecker.
Wood vinegar, Pyroligneous Acid.
Wood wren, I' a rbler.
Woody nightshade, Bittcrsavert.
Woof, ITeft.
Wool-bearing antelope, Goat, Rocky Mowntain.
Wool-combing machines, Wooller \&o IVorstix Maru-
foctures, 267.
Woold, Welt.
Woolhope limestone, Siluriant Rocks.
Woolmer Forest, Hampstire.
Wool mosaic, Mosaic Wool
Woolton, Mruch Woolton Woolton,
Woul-tre)
Wool-tree, Erindendron.
Woo-peì-tsze, Galls.
Woorali, woorara, Curari.
Worcester, Marquis of, Rewiotzer, Steann-engine, 99. Work,
(Suph.)
Workshop Regulation Act, (Suth.)
Worksop, ($5 u t \phi$.)
Worm, Still.
Wormal, Bot.
Wornı bark, Andïa.
Wormen (r.), Noralay, 799.
Wormian bones, Skull, 759 .
Wormseed, Artemisia, Clenopodizum, Erysimum.
Wormser Joch, Alps.
Wornitz (r), Bavaria, 760 .
Woronzoff, Prince, Shameyl.
Wort, Distillation.
Wörthsee, Klagerfurt.
Wotawa (r.), Molackt.
Wounds, dissection, Disseclion IVounds (Suht.) Woundwort, Stachys.
Wow-wow, Gibbor2
Wray, John, Ray.
Wroxeter, Uriconimm (Supp.)
Wry-neck, Stiff-reck.
Wuchang, Hupeft.
Wudwan, Supp.)
Wunsentake (mit.), 7afart, 683. Wurm (r.), Bavaria, 760.
Würtemberg, Germany (Supp.), ${ }^{5} 535$.
Wutach (r.), Rhine.
Wyk, Folir.
Wynne, Ellis, Welsh Lang. \& Lit. 137.

Xarayes, Paraguay (r.)
Xativa, Fativa.

Xeres-de-la-Frontera, (Supp.)
Xeres - de - los - Caballeros,
(Suph.)
Xerophthalmia, Lachrymal
Organs.
Xieng-Mlai, Shar States.
Ximena, fintena (Supp.)
Xingo (r.), Amazor.
Xiphias, Sword-fish.
Xyloidin, Staxis.
Xylophili, Scarabaide.
Y, the, Ansterdam:
Yablonnoi (mits.), Siberia, 702.
Yacaré, Allizalor.
Yacca, Timber.
racou, Guar.
Yaia, joppa.
Yaffle, ivooipecker.
Yagachi (r.), Bellucr (Supp.)
Vaguaron ' r.), Uruguay. Yajur-veda, Veda, 724. Yakkhos, Ceylon, 73^{8}. Yakootsk, fakiuts/:. Yakova, Jacoza (Sufp.) Jakuts, Siberia, 703. Jallobusha (r.), Yazoo Y'a-loong ($r_{\text {r }}$), Yang-tze-kiaug. I'alu-kiang, Corea.
Yranacota, Andes, 238. l'ankovitz, battle of Torsterz-

Yanor, India, French.
Yanteles(mit.), Andes, 239, 240. Yapura (r_{0}), Amazor.
Yaqui (r.), Sonora.
Yarmouth, Wight, Isle of. Yarn, Turkish, or Camel, Angora.
Yarm-roll, Loont.
Yarr, SAnrey.
Yarra-larral r), Victovia, 785
Yarriba, Yoruba (Sutp.)
Yaruba, Queershand.
Yashts, Zend, 341 .
Yasna or Y'azna, Zend, 34r,
Zend-Avesta, 343.
Yava, Ava.
Yavari ($\%$), Athazor.
Yawry Bay, Sicrra Leoze.
Yé(r.), Terasserim.
Yeadon, (Supp.)
Yealm, Dartmoor.
Yelk, Vitellus Ovi.
Yellow bird's nest, Monotropacer.
Yellow-copper, Pyrites.
Yellow fever, mild, Relapsing Feruer.
Yellow rattle, Rhinarthus.
Yellow River, Leitrint.
Yellow River, Pensacola.
Yellow rocket, Cress.
Yellow root, Hydrastis (Sutp.)
Yellow showers, Pyrotechary
Yellow stars, Pyroteching.
Yellaw weed, Held.
Yellow wood, Fustic.
Yembo, I Iznbr\%.
Yenikiung, I'ella.
Yenitschir, Larissa
Yeou (r.), bornat.
Yerba de maté, Mrate.
Yerkiang, I arkand.

Yermak, Vassili, Siberia, 703.
Yesdigerd 1II. Sassanida.
Yeshil-Irmak, Anatolia, 225.
Yes Tor, Dartmoor
Yeu (r.), Birnce.
Yeu, Isle d', France, 47°
Yezid, Ommiades, 7 r.
Yguassu ir.i, f'araua
Jing-Tsze, Neu-Chwang
(Susp.)
Yird-houses, Earth-houses.
I'ite, Vellow-Aammer.
Ymir, Giants \& Duarfs, 741,
Nifhein.
Yo (r.), Bornur.
Yo-Hamite, Jo-Semite (Supp.)
Yoldrin, I cllow-fammer.
Yolk, Bleaching, 140
Yolk, Development of the
Embryo.
Yoni, Linga.
York, Archb. of, Archbishtop.
York Factory', Hudson's

Bay.

Yorkists, Edzuard IV.
Yoruba, (Supp.)
Yo-Semite, (SuAp.)
Young, James, shale
Young alligator, Menopome.
Young Breslau, Inozuraclazv.
Young fustic, Suntach.
Young fustic, Chetah
Tpao (l.), Paragzay, 257
Yren, Cardigan Bay.
Irfon (r.), Brecknockshire.
Isselmonde, Hollaud, Sowith
lissengeaux, Loire, Haute.
Istwith, Cardiganshire.
Vithan, Aberdechshive.
Ytterby, Erbizen.
Yitternaes, Aland Islands.
Yttrotantalite, Fitriunt. Yı, Jade.
Yucca, Marioc.
Yucca gloriosa, Razor-strop. Yulan, Mlagnolia.
Yule-month, December.
Yungu, Fran Fernandez
lungu, Chan, China, Sı7.
Jun-nan, China,
Yunx, brynect.
vide's (Supp.)
Zaatcha, Algeria, 142
Zab (r.), Great and Little, Tigris.
Zab-Ala (r.), Kurdistan,
Zab-Asfal (r.), Kurdistan.
Zachun, Amyridacer, Hajilij.
Zacynthus, Zante.
Zadikim, Chasidims.
Zagarello, Bitonto.
Zagora, Pelion.
Zaires, Cruives
Zamboango, Philifpine is
Zamboni's dry pile, Galua-

mism, 598.

Zancudoes, Mosquito.
Zanthoxylum octandra, To camalhac
Zzondzi, Mayotta (Susf.)
Zapatero, Nicaragta (2.).
Zapolya, Trausylvamia.
Zar-afshan (r.), Bokham.

Zaragoza, Saragossa (Sufp.) Zariaspa, Battria.
Zantus, Bizerta.
Zaro, Dalmatia.
Zarskoe-Selo, (Supp.)
Zator, Galicia, Austrian. Zealots, Phayisces. Zebra of the plains, Dauzu. Zebra wood, Connaracea.
Zebu, Philippine Is.
Zebub, Zimb.
Zecchino, Sequin.
Zeeland streams, Schelidt
Zegerin (r.) Guerara.
Zeida, Scomberide.
Zeiri, Algeria, 38.
Zeirides, Roger II.
Zela, Zille\%.
Zell, Cellé.
Zeller, Baur.
Zeminogorski, Altai Mits.
(Supp.)
Zemni, Mole-rat
Zemzem, Hajj, Molannmedanesm.
Zenghi (r.), Aras.
Zenker, Trichina
Zeno, Byantine Empire,
Zephyrinus, Hunamitariars. Zerda, Fennec.
Zerdusht, Zoroaster, 359 .
Zermagna ($r \cdot$ i, Austria, 568
Datmatia.
Zerumbet, Ginger.
Zetland, Shethand.
Zeugitamia, Barbary.
Zezere (r.), Tagus.
Zigrhir (r.), Guerara
Zincali, Gytsies, 70.
Zio or $\mathrm{Ziu}, \mathrm{Tyr}$.
Zirmie (r.), Sokoto.
Zizania, Rice.
Zizka, Ziska.
Zjeta, AIonteregro.
Zmief, Zmeinogorsk.
Znaim or Znavm, (Susp.)
Zoea, Crustacerus, Lan'a.
Zuetrope, (Supp.)
Zohak, Bamziar.
Zohak, Dendazend (Sust.)
Zomba (mit.), Sherzera.
Zoom, Bergen-op-Zoom.
Zone, Cestus.
Zooids, Tapeworm, 290 .
Zootomy, Anatomy, z27.
Zorn (r). Zabern.
Zontpansberg, Transiaa
Republic.
Zschopau (r.), Fravienberg:
Zugspitz, Bazaria.
Zulia, Boyacia.
Zulla, Adulé.
Züllichau, bartle of, Sczest
Cars' War, 637.
Zurbaran, Francisco, Paint-
ityg, 194.
Zurita, Geronimo, Starish
Lang. E0 Lit. 20.
Zusha (r_{0}), Mizerst.
Zwart-bast, Ebctacea.
Zwarte Water, Zavolle.
Zwollerkersp 1 , Oモerysscl.

AE5
C351
1858
v． 10

ouch mererereceno
icercerer ser
icuererrier secoce
anc escrere ercoces
erere ererinercecol
arcerereresecke

cure ericrine ecole
incerentrestecole

＜eosecrereresisests

erererceresisece
encrecerercrectereec．cc
corrererectrom
－ －rereneresererecore
cercoscorrecester recererercerce

 ereresererose

 reracemerricucesele
ceresecerererrere

《

[^0]: * The name Wayland is from a root signifying art, cumning; from which come Eng. wilc and (through old Fr.) guilc. Ang.-Sax. velan means to fabricate.

 476

[^1]: * A certain rariety of grape, when grown upon the Thine, furnishes a species of Hock; the same graye, when raised in the ralley of the Tagus, yields Bucellas; whilst in the island of Madeira it produces the wine known as Sercial, which has a flavour quite different from cither of the others. See Miller's Urganic C'hemistry, 3d cil. p. 157.

 220

[^2]: *We lave expressed the substances in the followin: equation in accordance with the theory of types, because the substitution of the ethyl for the potassinm is thus more clearly seen than in the corresponding equation, $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{I}+2 \mathrm{KO}=\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}+\mathrm{KI}$.
 $33!$

[^3]: * The older observers fixed the necessary quantity of fresh air far too low: Peclet thought 212 feet sufficient; Arago, 353 fect; and Dr Reid, 600 feet per hour.

[^4]: * On this subject Dr Letheby has recently published an excellent Memoir, which will be found in the Medical Press and Circular for August 7 and 14, 1867; and Dr Kumsey's address On State Mcdicine in Great Brituin and Ircland (Lond. 1867), may also be consulted with advantage.

