Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

$$
\begin{gathered}
\text { F. u:Cow. } \\
\text { Finekaw. } \\
\text { 16/11/91 } \\
\text { Fill chews }
\end{gathered}
$$

CHAPTERS ON THE MODERN GEOMETRY OF THE POINT, LINE, AND CIRCLE.

VOL. I.
Two Vols. in one,

CAMBRIDGE:
W. Metcaleg, frintel, arken styilet.

CHAPTERS

on the

MODERN GEOMETRY

 OF TH:POIN'T, LINE, AND CIRCLE ;

BEINO THE BURSTANCE OF

Lactures dridyered in the university or dublin to the CaNDIDATES FOR HOXORS OR THE FIRST YEAR IN ARTS.
BY THE

REV. RICHARD TOWNSEND, M.A.,
 0 UBLIV

VOL. I.

> DUBLIN :
> HODGES, SMITH, AND CO., publisiters to the university.
> 1863.

PREFACE.

Tris work now offered to the public contains, as its title indicates, the substance of lectures delivered for some years in the Univenity of Dablis to the candidates for mathmatical honons of the firnt year in arts; and nupposes, nocordingly, a previous aequaintance ouly with the fint six books of the Elements of Euclid, and with juet that amount of the principlea of Elementary Algobra cesputial to an intelligent conception of the nature of signs, and of the meaning and uso of the ordimary symbols of operation and quantity.

The acknowledged want of a systematic treatise on Modern Elementary Geometry, adapted to the requirements of students unacquainted with the higher processes of Algebraic Analysis, which of late years have been applied so succossfully to the extension of geometrical knowledge, has induced the author to come forward with the present attempt to supply the deficiency. The only existing work of the same nature in the English languago with which he is acquainted, the "Principles of Modern Geometry," of the late lamented Dr. Mulcaly;,
published in the year 1852, being now confessedly behind the present state of the subject; and tho only other work of the same nature in any language with which he is acquainted, the elaborate and masterly "Traité de Géométrie Supérieure" of the justly celebrated M. Chasles, published in the same year, having become so scarce as to be now hardly attainable at any price.

Though designed mainly for the instruction of students of the comparatively limited mathematical knowledge generally possessed at the transition from school to university life, and arranged with special reference to the existing course of mathematical instruction in the University of Dublin, the author has spared no pains to render the work as generally interesting and instructive as the extent of his subject admitted. The order adopted, though framed on the basis of an existing arrangement, appeared as natural as any other he could have substituted for it; the principles established have been considered in all the generality, and stated with all the freedom from ambiguity, of which they appeared to him susceptible; and the demonstrations submitted, which are to a considerable extent original, have been presented as directly referred to ultimate principles, and as completely disencumbered of unessential details, as he was capable of rendering them.

To the second of the works above referred to, the "Traité de Géométrie Supérieure" of M. Chasles, the author is indebted for many important suggestions in the advanced chapters of the work; in those especially on the Theories of Anharmonic Section, Homographic Division, Involution, \&c., of which its illustrious author was virtually the originator as well as the nomenclator, it will be at once seen that he has profited largely by the results so ably developed in the corresponding chapters of that claborate work, while at the same time he can in no sense be regarded as the mere copyist of any of its contents.

To the Board of Trinity College the best thanks of the author are due for the liberal assistance they have given towards defraying the expenses of the work.

Thinity Cozzeor, Demzis, October. 1863.

CONTENTS OF VOL. I.

CHAPTER I.

OX THE DOUBLE ACCETTATIOX OF OEOYETEICAL TEEMS.

ABy. $810=$
1 Division of the Science of Geometry. Magritude and Position 1
2 Consequent double acceptation of Geometrical Terms 1
3 Corresponding double acceptation of Liveral Symbols 2
4 Uniliteral and Biliteral Notation. Comparative adrantages of 2
5 Magnitudes expressed in Numbers. Unit of Magnitude 3
6 Units of the different Species of Magnitude not independent 3
7 Unit of Angular Magnitude. Theoretical and Practical 4
8 Reciprocal of a Magnitude. Reason why so called 4
9 Evanescent and Infinite values of Magnitudes, Reciprocals of 5
10 Construction for linear Reaiprocals on different Lines 6
11 Modification of the preceding for the aame Line 6
12 Most convenient construction for Conterminous Reciprocals 7
13 Evanescent and Infinite values of Magnitudes. Peculiarities of 8
14 The two ordinary Criteris of Equality not necessarily coexistant in their case 9
15 Illustrative example. Point at Infinity. Point of external bisec- tion of a Line 9
16 Parallel Lines. Nature of. Modification of Euclid's definition 10
17 Opposite directions of a Linc. Paradox respecting 12
18 The Point and Line the two limiting forms of the Circle when the radius is evanescent and infinite 12
19 Nature and Criterion of Contact in Geometry. Examples. Pre- caution to be observed in applying Criterion 13
20 Point on a Figure and Tangent to a Figure. Analogy between 15
ART. page
21 Permanent and Contingent Elements of Figures. The terms "real" and "imaginary" how and why employed in Geometry 16
22 Angles of intersection of Figures. Applications to a Line and Circle and to two Circles. Orthogonal intersection of Figures 16
23 Convention regarding the argle of intersection of two Circles. Ambiguity therefore avoided 17
24 Two-fold source of ambiguity in the comparision of angular Mag- nitudes. Meaning of the terms "equal" and "constant" as applied to Angles 18
25 Illustrative examples in the geometry of the Circle 19
CHAPTER II.
on the double oeneration of oeonetrical fioures.
26 Every Figure may be regarded as generated by the movement either of a Point or of a Line. Meaning of the terms "Locus" and "Envelope" in Geometry 22
27 The law governing the movement determines the Figure in either caso 22
28 Different laws of movement may give the same Figure 22
29 A single condition sufficient to determino the Locus or Envelope 23
30 A Locus or Envelope may be a compound Figure 23
31 Observations respecting particular cases of Loci and Envelopes 23
32 Similar Figures. Definition of. Distinction of as right and left 25
33 Ratio of Similitude. Angle of Inclination. Dircetions of Symmetry. Similar and opposito positions of 25
34 Double generation of Similar Figures 26
35 Exceptional peculiaritiea of Regular Polygons and of Circles as regards Similitudo 27
36 Special peculiarities of Circlen whose radii are evanescent and infnite 27
37 General properties of Similar Figures 28
33 Figures aimilar as Loci also similar ne Envelopes, and conversely 29
39 Homologous l'oints and Lines of Similar Figures. General defini- tion of. Miseellancous properties of 30
10 General property of a variable Figure of invariable form revolving round a fixed Point invariably connected with it 35
11 Particular properties of Similar Figures similarly or oppositely placed 35
42 Centre of Similitude. Definition and properties of 37
43 Iixeeptional easen in which two Centres of Similitude exist 38
41 Special peculiarity of Cireles in this respect. Determination and propertics of the two Centres of Similitude of any two Circles 38

Chapter III.

THEORY OF MAXIMA AND M8NなMA.

Abt. PAOE
45 Maxima and Minima. Nature of. Terms relative, not absolute 41
46 Variable Magnitudes may have several Maxima and Minima values 41
47 Of reciprocal Magnituder, when cither is a Maximum the other is a Minimum, and conversely 43
45 Miscellaneous Iixamples of Maxima and Minima 42
40 Particular Example of Maxiraa and Minima. Basis of certain pro- perties of 'Triangles 48
80 Reflexion of a Figure. Origin of the Term. Axis of Refexion. Properties of Figures Ileflexions of each other 60
61 Particular Examplo of Maxima and Minima. Basis of eernin pro- pertics of Circlos 62
82 Property of a variable Circlo pasing through two fixed Points and intersecting a fixed Circle 53
53 Generalization of the problem " 80 describe a Circle passing through two given Points and touching a given Line or Circle" 64
61 Solution of the Problem "rofind a loint on a given Line whose distanees from two given Points not on the line shall have a given sum or difference" 65
65 Particular Eixample of Maxima and Minima. Bauls of certaln pro- perties of Similar Figures 66
66 General property of a rariable Figure of invariable form revolving round a fixed Point invariably connected with it. Problems solved by its aid 59
67 Particular method of proving Maxima and Minima. Examples of its application 61
53 Evanescent and Infinito values of variable Magnitudes not neces. saxily Maxima and Minima 64
69 Extreme Maxima and Minima values of variable Magnitudes. Limits of Possibility and Impossibility in the Solutions of Problems. Circamstances under which Problems become Indeterminate 65
CLIAPTEK IV.
ON TAB TRICONONETASCAL FEXCTIONS OP ANOLES.
60 The Six Ratios so denominated. Occur frequenty in Geometry.Particular Cases67

61 IRatio of Sines of Segments of an Angle by a Line $=$ that of Perpendiculars on Sides of Angle from any Point on Line. Consequences
$\Delta k r$.
saOE
62 Sine of Angle in any Segment of a Circle = IRatio of Chord of Segment to Diameter of Circle. Consequences 69
63 Sines of Angles of a Triangle are as lengths of opposite Sides. Consequences 72
64 Sine of any Angle of a Triangle $=$ Ratio of Double Area to Product of containing Sides. Consequences 76
65 Ratio of Sines of Segments of any Angle of a Triangle by any Line = that of Segments of opposite Side by same Line divided by that of adjacent Sides.* Consequences 78
66 Relntions connecting the Sines of any two Angles with those of their Sum and Difference, and with those of their Semi-Sum and Semi-Difference. Consequences 80
67 Relations connecting the Sum and Difference of the Sines of any two Angles with the Sines of the Semi-Sum and Semi-Diffe- rence of the Angles. Consequences 83
CHAPTER V.
ON THE COSVRNTION OF POSITIVE AND NEGATITE IN OEOMETRY.
68 Most striking characteristic of Modern as contrasted with Ancient Geometry. Convention of Positive and Negative 85
69 Positive and Negative directions arbitrary 86
70 Modified acceptation of the terms "Sum" and "Difference" as employed in accordance with the Convention of Signs 86
71 Also of the terms "Product" and "Quotient" 87
72 Also of the terms "Arithmetic Mean" and "Geometric Mean" 88
73 Magnitudes change Sign in passing through Infinity, as well as in passing through Nothing S8
74 Convenience of the Biliteral Notation as indicating Direction as well as Magnitude 89
75 Relation connecting the Segments of a Line by an Arbitrary Point of section. Consequences 90
if Relations connecting the Segments of a Line cut equally and un- equally. Consequences 91
77 Generalization of the preceding relations. Consequences 93
78 Cyelic relation of Segmenis for any Number of Points disposed in any manner on a Lino 91

[^0]ALIT.
79 Mean Centre of any System of Points on a Line. Fundamental relations. Consequences 95
80 Gencralization of the preceding relations for any System of Mul. tiples. Consequences 97
81 Modification of those relations in the particular caso when tho Sunn of the Multiples $=0$ 100
82 General relation connecting the Six Segments determined by any Four Points on a Lise. Consequences 102
83 General relation connecting the squares of the distances of Three loints on a Line from any Fourth Point. Consequences 106
84 General formula for the Segments of a given Lise cut in a given ratio. Applications 112
CHAPTER VI.
THROMY GENERAL OP THE MEAN CENTER OF ANY BTETEM OF POMTB FOK ANY BYIJEM OP MOLTIPLEB.
85 Eundamental Theorem. Basis of the Theory 117
86 Importance of the Theory in the Scienco of Mechanics 118
87 The Mean Centre sometimes Indeterminate. When so the Sum of the Multiples always $=0$ 118
83 Case in which the Mean Centre is always Indeterminate 110
\$9 When for the samo System of Multiples swo different Mean Centres cxist, then for that Sysem every Point is a Mean Centre 119
90 For all 1Regular Polygons, the Centre of Figure is the Mean Centro of the Vertices where the Multiples are equal 120
01 General properties of Triangles as regards the Mean Centres of their Vertices for any Systema of Muliples. Particular cases 120
92 Gencral relstion connecting the distances of any System of Points with that of their Mean Centre from an arbitary Line. Consequences 122
93 For any System of Points divided into groups, the Mean Centro of the whole for any System of Multiples is the same as that of the Mean Centres of the groups for the Sums of the corre- sponding groups of the Multiples 125
01 Modification of the general relation of Art. 92, for the particular case where the Sum of Multiples $=0$. Consequences 126
95 Gencral property of the Nean Centre of any Syatem of Points as regards Projection on an arbitrary Line 127
96 General relation connecting the squares of the distances of any system of Points with those of their Mean Centre from any two Parallel lines. Consequences 128
Ant. PAGE
97 Modification of the preceding relation for the particular case when the Sum of the Multiples $=0$. Consequencea 129
98 General relation connecting the squares of the distances of any System of Points with that of their Mean Centre from an arbitrary Point. Consequences 130
99 General relation connecting the squares of the distances of any System of Points from their Mean Centre and from each other. Consequences 132
100 Modification of the general relation of Art. 98, for the particular case where the Sum of the Multiples $=0$. Consequences 134
101 Inference of the preceding from the general case 135
102 Application of the Theory of the Mean Centre to the Centres of the Circles inscribed and exscribed to a Triangle. Consequent relations 136
103 Application of the Theory of the Mean Centre to the Centres of Figure of legular Polygons. Consequent properties 140
CIIAPTER VII.
ON COMPLETE AND INCOMPLETB FIGURES OP POINTS AN゚D LINES.
104 Complete Figures of Points and Lines. Polsstigms and Polygrams. Incomplete Figures of Points and Lines. Polygons 144
105 Order of Sequence among constituent Points or Lines inadmissible in Complete Figures 144
106 Opposite Flements of Complete Figures 145
107 Secondary or derived Elements of Complete Figures. Definitions 145
108 Formule for the Numbers of certain derived Elements of Complete Figures, in terms of the Orders or Degrees of the Figures 145
109 Division of Polygons into Convex, Re-entrant, and Intersecting 146
110 General formula for the Sum of the External Angles of a Polygon of any Order or Form 147
111 Sum of Projections on any Line of Sides of any Polygon measured cyelically in either common direction $=0$ 148
112 Consequences frum the preceding Article 149
113 Propertien of a Coinitial Syatem of Lines, Parallel, Kiqual, and Co- directional with the Sides of a Polygon measured cyclically in elther common direction 150
114 Definition of the IResultant of any Coinitial System of Lincs 151
115 I'roperties of the Resultant of any Coinitial System of Lines 162
116 Determination of the Resultant of any Coinitial System of Lines 163
117 Locus of a variable Point determining with any Syatem of fixed Bases a System of 'Triangles having a constant Sum of Areas 154
PAOE
118 Gencral definition of the Area of π Polggon of any Order or Form derived from the preceding 156
119 General Problems solved by aid of the locus of Art. 11% 157
120 Locus of a variable Point the sum of whose Multiple distance from any System of fxed lines is constant. Central $A x$ is of any System of Lines for any Systern of Multiples 157
121 Properties of the Central Axis of any System of Three INes for any Systen of Three Afultiples. Particular Cases 169
122 General Problems solved by aid of the Locus of Art. 180 160
123 Case in which the general Locus of Art. 120, is Indeterminato 161
124 Problems solved by ald of the property of tho preceding Article 163
125 Extension of the property of Art. 120, from Perpendiculars to Isoclinals inclined at any constant Angles w the several Lines 163
120 Particular case when the Isoclinals have a common absolute direc- tion. Diametcre of Polygrame 163
127 General Problem solved by aid of the locua of the preeeding Article 164
128 Direct denonstration on other principles of the general property of Art. 120. Consequences resulting from the new suode of regarding it 165
CHAPTER VIII.

129 Collinear Systems of Points. Concurrent Systems of Lines. Row, l'encil, Axis, Focus 168
130 Rows and Pencils in Perspective. Centre and Axls of Perspective 168
131 Centres of Perspective of two Segments. Axes of Perspective of two Angles 169
132 General Criterion of the Concurrence of three Lines perpendiculars to the Sides of a Triangle 170
183 Examples of the application of the preceding criterion 171
134 General Criteria of the Collinearity of three Points on the sides, and of the Concurrence of three Lines through the Vertices, of a Triangle 173
135 Corollary from the criteria of the preceding Article 176
136 Important conclusions respecting Points at Infinley and respecting Parallel Lines resulting from the same criteria 177
137 Examples of the application of the same criteria 178
138 Gencralization of the properties established in the two last examples of the preceding Article 182
ant.
139 Particular case of Triangles in Perspective. Consequences 184
140 General case of Triangles in Perspective. Fundamental property of such Triangles 187
141 Figures of any nature in Perspective. Fundamental property. Centre and Axis of Perspective 189
112 Case when the Axis of Perspective is at Infinity. Relation of the Figures to each other in that case 190
143 Case when the Centre of Perspective is at Infinity. Relation of the Figures to each other in that case 190
144 Exceptional cases of Figures doubly in Perspective. Peculiarity of Circles in this respect 191
145 Exceptional peculiarity in the Perspective of Collinear Systems of Points and of Concurrent Systems of Lines 191
146 Inferences from the Fundamental Theorem of Art. 140 respecting Triangles in Perspectivo 192
147 Two general Criteria of Perspective of two Triangles in Per- spective 194
148 Examples of the application of the preceding criteria. Theorems of Pascal and Brianchon 196
CHAPTER IX.
THEORT OF INVERSE POLNT WITR RESPECT TO A CRRCLE.
149 Definition of Inverse Points with respect to a Circle. Particular cases 198
150 Inverse Points divide the Diameter on which they lie, internally and externally, in the duplicate ratio of their distances from the Centre. Particular case. Important remark respecting the Line at Infinity 198
181 Inverse of a Point unique when Point and Circle are both given. Exceptional cases 200
162 System of Circles having a common palr of Inverse Points 200
153 Determination of Circle having two pairs of Inverse Points given 201
156 Inverse Segments with respect to a Circle. Problems 202
165 Every two pairs of Inverse Points with respect to a Circle are concyclic. Consequences 203
160 Every Circle passing through a pair of Inverse Points with respect to another Circle is orthogonal to the other. Consequences 204
167 locus of a variable Point whose distance from a fixed Point is equal to the Tangent from it to a fixed Circle. Consequences 205
168 Locus of a variable Point whose distances from two fixed Points have a constant ratio. Consequences 20 o
48t.
Locus of a variable Point the square of whose distance from a fixed Point varies as its distance from a fixed Line. Consequences 208
160
Angle connecting any Point on a Circle with any pair of Inverso Points is bisected by Angle conneeting same Point with ex- tremities of Diameter containing Inverse Points. Conse- quences 209
101 Evers two Inverso Segments of any Diamoter of a Circlo Sub- tend similar Angles at every Point on the Circle. Con- sequences 210
102 The extremities of any Chord of a Circle, the Centre, and the Inverse of any Point on the Chord, are concyclic. Con- sequences 211
103 The Segments of all Chords of a Circle whose directions pass through either of two Inverso Points subtend similar Angles at the other. Consequences 213
104 When a Chord of a Circle turns round a fixed Point, tho rect- angles under the distanees of its extremities from the Inverse of the Point, and from the Axis of Meflexion of both Points, are both constant 216
CHAPTER X.
thenozt of polis and poraze witil mespect to a chacle.
105 Definition of Polen and Polars with respect to a Circle. Particular cases 216
166 Fundamental property of Poles and Polars with reapect to a Circle. Consequences 217
107 General property of two Points and two Lines, Pole and Polar to each other with respect to a Circle 210
163 Self-reciprocal Triangles with reapect to a Circle. Polar Circle of a Triangle 219
169 Reciprocal relation between any Figure and its Polar with respect so a Circlo 221
170 Definition of Figures Reciprocal Polars to each other with respect to a Circle. Examples. Self-reciprocal Figures with respect to a Circle 222
171 General properties of Figures Reciprocal Polars to each other with respect to a Circle 223
172 Process of Reciprocation. Reciprocating Circle in general arbitrary. A convenient selection of it sometimes advantagoous. Ex- amples 224
173 Deality of propertics adapted to Reciprocation. Double use of the Reciprocating Process in Modern Geometry 225
A풍․ paok
174 Definition of Conjugate Points and Lines with respect to a Circle. Particular case 226
175 General properties of Conjugate Points and Lines with respect to a Circle 227
176 Metric relations of Conjugate Points with respect to a Circle 228
177 General property of two orthogonal Circles with respect to Con- jugate Points. Consequences 229
178 General property of any two Circles with respect to Conjugate Points. Consequences 231
179 Dr. Salmon's Theorem respecting any two Points and their Polars with respect to a Circle. Consequencea 232
180 Properties of Triangles Reciprocal Polars to each other with respect to a Circle 234
CHAPTER XI.
ON THZ RADICAL AXES OP CIRCLES CONSIDERED IX PAIRS.
181 Definition of the Radical Axis of two Circles. Particular cases. Given with the Cireles 239
182 Fundamental property of the Radical Axis of two Circles. Con- sequences 240
183 Radical Centre of Three Circles. Circle orthogonal to three others. General properties of the Radical Centre 244
184 Coaxal Systems of Circles. Two Species of. Limiting case of both. Two Circles determine their Coaxal System 247
185 Conjugate Coaxal Systems. Reciprocal relations existing between 249
186 Problems connected with Coaxal Systems 250
187 Propertics of Coaxal Systems in general 251
188 Properties of the Limiting Points Species in particular 251
180 Properties of the four Triangles determined by any four arbitrary Lines 252
100 Properties of three Circles coaxal each with two of three arbitrary Circles 253
191 General relation of connection between the Centres and Radii of three Conxal Circles. Consequences 25.5
192 General relation of connection between the Centres of three Coaxal Circles, and the three Tangents to them from any a:bitrary Point. Consequences 256
103 General relation of connection between the Centres and Radii of three Coaxal Circles, and their three Angles of intersection with any arbitrary Circle. Consequences 259
. PAOB
194 General property of a Quadrilateral inseribed to a Circle whose pairs of opposite sides rouch Coaxal Circles. Consequences. Dr. Hart's demonstration of Poncelet's Theorem. Application to the case of the Triangle. Observations 264
CHAPTER Kil.
ON THE CEKTRES AND AXES OF PERSPECTITE OF CIRCLEB CONB8Deren is raste.
195 Definition of the Centres of Perspective of two Circles. Particular cases. Given with the Cireles 272
190 Circle of Similitude of two Circles. Propertice of. Alwaye coaxal with both 273
197 Axes of Similitude of three Circles. Propertics of 274
198 Homologous and anti-homologous P'oints with respect to both Centres of Similitude of swo Circles. Constant ratio of simili- tude and constant product of anti-similitude for both 275
199 Figure Inverse to a Circlo with respect to any Point always another Circle. Centre and Radius of the Inverse Circle 276
200 Formule for the two products of anti-similitude of two Circles in terms of their radii and the distance between their Centers 277
201 Circles of anti-similitude of two Circles. Each in all cases coasal with both. Consequences 278
202 Properties of the six Circles of anti-similitude determined by three arbitrary Cireles taken in pairs 279
203 Extended definition of anti-homulogous Points. Properties of. Always inverse Points with respect to the corresponding Circlo of anti-similitude of the Circles 279
204 General properties of homologous and snti-homologous 'Tangents with respect to cither Centre of Perspective of two Circles 281
205 Property of the Polars of each Centre of Perspective with respect to two Circles 282
206 General properties of homologous and anti-homologous Chords with respect to either Centre of Perspective of two Cireles 283
207 Quadruple relation of Perspective between every two Cireles in the samo plane, resulting from the properties of the preceding Article 284
208 Pairs of Polar relations illustrative of the analogy existing between the Centres and the Axes of Perspective of two Circles 285
209 General properties of Circles having contacts of similar or opposite species with two others. Consequences 288
ART. Page210 Properties of two Circles hsving contacts of opposite species witheach of threo others. Consequences. Gergonne's constructionfor determining in conjugate pairs the eight Cireles of contactof three given Circles. Properties resulting from the con-struction292
211 General properties of Circles intersecting two others at equal or supplemental Angles. Consequences. Extension of the properties of Art. 209
.294
212 General properties of a system of three arbitrary Circles. Dr. Hart's property respecting their eight Circles of contact. Demonstration by Elementary Geometry still wanting297

THE MODERN GEOMETRY OF THE POINT, LINE, AND CIRCLE.

CHAPTER I.

on the double acceptation of geometrical terms.

1. Geometmear propositions refer cither to the comparafive magnitudes of geometrical quantities, as in the propositions: "Rectangle under sum and difference $=$ difference of squares," "Square of sum + square of difference $=$ twice sum of squares," \&.c., or to the relative positions of geometrical figures, as in the propositions: "All points equidistant from the same point lie on the same circle," "All lines equidistant from the same point touch the same circle," \&c. Hence the modern division of the science of Geometry into the two departments of Geometry of magnitude or quantity and Geometry of position or figure respectively.
2. The ordinary terms of Geometry are, with few exeepions, employed in double acceptations with reference to these two departments, and denote sometimes magnitudes and sometimes figures; the familiar term "line," for instance, denoting sometimes the indefinite figure so denominated extending to infinity in both directions and sometimes the distance from one point to another; the equally familiar term "angle," again denoting sometimes the complete figure formed by two ingefinite lines extending to infinity in both directions and sometimes the inclination of one line to another. The ambiguity
arising from this duality of application rarely, if ever, causes any inconvenience or confusion, as the sense in which geometrical terms are employed is generally apparent from the context in which they oecur, as for instance in the expressions: "points of bisection of a line," "lines of bisection of an angle," \&c.
3. The literal symbols also by which geometrical figures of all kinds are wont to be represented, are employed occasionally in a similar duality of application with reference to the two departments of geometry; thus if A and B represent two points, $A B$ represents indifferently the indefinite line passing through both and the linear interval between them. If A and B represent two lines, $A B$ represents indifferently the unique point common to both and the angular interval between them. If A and B represent one a point and the other a line, $A B$ represents indifferently the indefinite line passing through the former at right angles to the latter, and the perpendicular interval between them; for the reason already stated the ambiguity arising from this duality of application rarely, if ever, causes any inconvenience or confusion in practice.
4. Of the two different ways in which linear and angular magnitudes are alike ordinarily represented, viz. by the two letters which represent their extreme points or lines, or by a single letter denoting the number of linear or angular units they contain; the latter or uniliteral notation is generally the more convenient when magnitude only need be attended to, as in the familiar instance of the triangle in which the three sides are ordinarily represented by the three small letters a, b, c, and the three respectively opposite angles by the three corresponding capitals A, B, C, a notation than which nothing conld be more convenient; but the former or biliteral notation is, on the contrary, the more convenient, when, as is often the case, direction as well as magnitude has to be taken into account, which under the biliteral notation may be indicated, in a manner at once simple and expressive, merely by the order in which the two letters are written, $A B$ naturally representing the segment, or the angle, or the perpendicular
interecpted between the two points, or the two lines, or the point and line, A and B considered as measured in the direction from A to B, and $B A$ the same segment, or angle, or perpendicular considered as measured in the opposite direction from B to A; this mode of distinction wo shall have frequent occasion to employ in the sequel.
5. When a geometrical magnitudo of any kind is represented or said to bo represented, as it often is, by a number, or by a letter regarded as the representative of a number, it is always to be remembered that what is meant by such number or representative letter is the ratio the magnitude bears to some other magnitude of the same kind, given or assumed arbitrarily, but not either evanescent or infinite, to which it is implicitly, if not expressly, referred as a standard, and which is called the unit of that particular kind of magnitude, because that when the compared and standard magnitudes are equal, the number representing the former is then unity. The given or assumed unit of any particular kind of magnitude may have theoretically any finite value, as, whatever it is, it always disappears whenever different magnitudes of tho same kind aro compared with each other, their relative magnitudes, or ratios to each other, being of courso independent of the arbitrary standard by which their absoluto values may happen to be estimated; it is thus, and thus only, that magnitudes other than abstract numbers become subjects of calculation, the proper and only subjects of which aro numbers and numbers alone.
6. With respect to the three species of geometrical magnitude, length, area, and volume, it is to be observed that as the magnitudes themselves are not all independent of each other, but on the contrary vary simultaneously according to known laws, their three units conseq̧uently are never all arbitrary together, but are always made to correspond to each other according to the same laws of simultancous rariation in a manner at once obvious and natural ; areas and volumes varying, cæteris paribus, as the squares and as tho cubes respectively of the lengths on which they depend, the unit of area
accordingly is always the square and the unit of volume the cube of the unit of length; the latter, however, or more generally some one of the three, being arbitrary; it is for this reason that we are justified in asserting the area of a parallelogram and the volume of a parallelopiped to be equal in abstract numbers to the products of their two and of their three dimensions reapectively, and similarly of other areas and volumes as having the same necessary and known connection with the lengths on which they depend.
7. With respect to the only remaining species of geometrical magnitude, viz. inclination, as no connection exists between it and any of the other three, its unit is therefore at once arbitrary and independent of any of theirs; any finite angle, consequently, may be given or assumed at pleasure, considered as the angular unit, and all other angles estimated by the numbers, integer or fractional, of such units contained in them; and this accordingly is what is done in Astronomy, Geography, Navigation, Geodesy, \&c., and in other practical applications of Geometry where angles are ordinarily estimated by the numbers of degrees, minutes, and seconds, \&c. which they contain.

Theoretically considered, the most convenient unit of angular measure as well in Geometry as in the science which treats more especially of angles and their relations, is the angle which from the centre of a circle subtends an arc = the radius, and which, as all circles are similar figures, is consequently unique, because in reference to it as unit the numerical value of any angle is simply the ratio of the subtending arc to the radius in any circle described round the vertex as centre, a value simpler than for any other unit. Practically considered, however, this unit has the twofold disadvantage; firstly, of being so large that angles of ordinary magnitude, if referred to it, must bo expressed as fractions ; and, secondly, of not being a sub-multiple of, or even commensurable with, four right angles, the exact divisions and sub-divisions of which are of such importance in all practical subjects.
8. As in Arithmetic the third proportional to any number and unity is terned the reciprocal of the number, so in Geo-
metry the third proportional to any maguitude and the unit, whatever it be, to which it is referred, is termed the reciprocal of the magnitude.

By taking the reciprocal of the reciprocal, as thus defined, cither of a magnitude or number, we evidently get back agrain the original magnitude or number. Hence the reason why magnitudes or numbers so related are termed reciprocals to each other, the process by which either produces the other always reciprocally reproducing itself from the other.

The product of the extremes being equal to the square of the mean in every proportion of three terus, the product of every pair of numbers reciprocals to each other $=1$, and that of every pair of magnitudes of any kind reciprocals to each other $=$ the square of the common unit, whatever it be, to which they are referred; and, conversely, if the product of two numbers $=1$, or the product of two magnitudes of any kind = the square of the unit to which they are referred, such numbers or magnitudes are reciprocals to each other.

When two ratios $a: b$ and $c: d$ are reciprocals to each other, the four component maguitudes a, b, c, d, whatever be their nature, are evidently "reciprocally proportional" in Euclid's meaning of the phrase. (Luc. vi. 14, 15, 16).
9. As in Arithmetic the numbers nothing and infinity aro reciprocals to each other, each being evidently the third proportional to the other and any finite number, so in Geometry enanescent and infinite values of any kind of magnitude are always reciprocals to each other, whatever be the absolute value of the unit to which they are reforred, each being evidently the third proportional to the other and any finite value of the same kind of magnitude.

The rectangle under two linear magnitudes, reciprocals to each other, being constant and $=$ the square of the unit, whatever it be, to which they are referred. The reader, familiar with the Second Book of Euclid, may take as exercises in its principles the four following problems: "Given the sum, difference, sum of squares, or, difference of squares, of theo linear magnitudes reciprocals to each other to a given unit, to determine the magnitudes."
10. There are several constructions by which pairs of reciprocals in linear magnitudes may be simultancously determined, of which the following is perhaps the simplest:

Round any one of the four corners C of any equilateral parallelogram $A B C D$ the common length of whose four sides

$=$ the linear unit, let an indefinite line $X Y$ be conceived to revolve intersecting the two sides $A D$ and $B D$ opposite to C in two variable points X and Y; the intercepts $A X$ and $B Y$ between the two points of meeting and the two corners A and B adjacent to C are always reciprocals to each other.

For, by similar triangles $X A C$ and $C B Y$,

$$
A X: A C=B C: B Y \text { or } A X \cdot B Y=A C \cdot B C
$$

in every position of the revolving line, and therefore, \&c.
The parallelogram in the above need not be equilateral; any parallelogram, the rectangle under whose adjacent sides $C A . C B=$ the square of the linear unit, would obviously do as well.
11. In case it should be desirable to have the simultaneous reciprocals $A X$ and $B Y$ measured on the same in place of on different lines, the following modification of the above may be employed for the purpose:

Round the vertex C of any isosceles triangle $A C B$, the

common length of whose sides $=$ the linear unit, let two indefinito lines $C X$ and $C Y$ inclined to each other at a constant angle equal to either base angle of the triangle be conceived to revolve intersecting the base $A B$ in two variable points X and Y; the intercepts $A X$ and $B Y$ between the two points of meeting and the two extremities of the base $A B$, for which the three angles $C A X, C B Y$, and $X C Y$ are of the same affection; that is, all three acute (fig. a) or all three obtuse (fig. β) are always reciprocals to each other.

This is obviously identical with the preceding construction modified by turning the unit line $C B$ round C, bringing with it the two indefinite lines $B Y^{\circ}$ and $C Y^{\prime \prime}$ until the former coincides with $A X$, and the rame demontration, word for word, and letter for letter, applies indifferently to either.

Since during the revolution of the constant angle $X C Y$ its acute and obtuse regions alternately comprehend the intercept $X^{1} 1^{\prime}$, hould ony doubt exit in any particular position as to how tho two points I and V correspond to the two A and B in measuring the reciprocals $A X$ and $B I$; it will he at once settled by remembering, as above stated, (see the figures of the original as well as of the modified conitruction which have been drawn to correspond) that the augles $C A X$ and $C B Y$ mut be always of the same affection with $\mathrm{N}^{\circ} \mathrm{Cl}$:

If the vertical angle of the isosceles triangle $A C B$ were nothing, its unit sides $C A$ and $C B$ would coincide and be perpendicular to XY ; tho conatant revolving angle XCY would be right in every poition; the two reciprocals $A X$ and BY woull be meatured from a common origin, and the ambiguity adverted to above would not exist: in the corresponding cave of the original coustruction the lozenge $A B C D$ would evidentiy be a square.
12. The following, however, is the most convenient construction for the simultancous determination of pairs of conterminous reciprocals upon any given indefinite line $M N$, inasmuch as by it they may be determined at pleasure either in similar or in opposite directions from any given common origin O.

Drawing arbitrarily from the common origin O in any similar or opposite directions, according as the directions of the
reciprocals are to be similar or opposite, any two lengths $O P$

and $O Q$, the rectangle under which $O P \cdot O Q=$ the square of the linear unit. Every circle passing through their two extremities P and Q intersects the given line $M N$ in two points X and Y whose distances from O are always reciprocals to each other.

For, Euc. iII. 35, 36, OX.OY $=O P . O Q$, whatever be the circle, and therefore, \&c.

The above three methods have all the common advantage of allowing to both reciprocals every range of magnitude from nothing to infinity, and of shewing very clearly how the passage of either through nothing or infinity is accompanied by the simultaneous passage of the other through infinity or nothing, whatever, in any case, be the absolute value of the unit to which they are referred, provided only it be finite.
13. Geometrical magnitudes of every kind, when eompared with others of the same kind, present in their evanescent and infinite states some anomalous peculiarities, to which, as constantly occurring in geometrical investigation, we proceed to call early attention.

The product of an evanescent or of an infinite with any finite maguitude and the ratio of an evanescent or of an infinite to any fiuite magnitude being necessarily evanescent or infinite, when therefore two geometrical magnitudes of any kind have any finite product or ratio, one necessarily becomes infinite as the other vanishes, and conversely, in the former case, and both vanish or become infinite together in the latter case; hence, as in abstract numbers the product of 0 with ∞ or of ∞ with 0 , and the ratio of 0 to 0 or of ∞ to ∞ is plainly indeterminate, so in geometrical magnitudes of every
kind, the product of an evanescent with an infinite or of an infinite with an evanescent magnitude, and the ratio of an evanescent to an evanescent or of an infinite to an infinito magnitude, considered in the abstract, is also indeterminate; though in every particular instance in which either product or ratio actually arises it has generally somo particular definite value deterninable and to be determined from consideration of the particular circumstances under which it arises; as, for instance, if the product or ratio were constant in the general and therefore in every particuiar state of the magnitudes.
14. The ratio of two magnitudes of any kind, considered in the abstract, being thus indeterminate when the magnitudes are both either evanescent or infinite, it follows therefore that the two criteria of equality between two magnitudes of the same kind when compared with each other, riz, that 1°. their ratio $=1$, and 2°. their difference $=0$, each of which necessarily involses the other so long as the magnitudes are finite, do not involve each other when the magnitudes are either evanescent or infinite, for while the difference between two evanescent magnitudes is always $=0$, their ratio, as above shewn, may have any value $=$ or not $=1$, and while the ratio of two infinite magnitudes may bo and often is $=1$, their difference, as may be easily shewn, may have any value $=$ or not $=0$.
15. The following useful example may be taken as an illustration of the preceding observation:

The ratio of the distances of a point P at infinity from any two points A and B not ut infinity is alvcays equal to unity, though their diyi rence may (Euc. 1. 20) have any value from nothing to the interval $A B$.

For, whatever be the position of P, whether at or not at infinity, or on or not on the line $A B$, since (Euc. 1. 20) $P A$ differs from $P B$ by a quantity not exceeding $A B$, therefore $P A: P B$ differs from $P B: P B$, or 1 , by a quantity not exceeding $A B: P B$, which quantity $=0$, whatever be the length of $A B$ whether evanescent or finite, when $P B=\infty$, that is, when P is any where at infinity whether on or not on the line $A B$.

In the particular case when the two points A and B coincide, then for every position of P, whether at infinity or not, the two criteria of equality $P A: P B=1$, and $P A \sim P B=0$ cridently hold, except only for the point $A=B$ itself, for which the ratio assumes the indeterminate form $0: 0$, and, therefore, (13) may have any value as well as 1 . This particular case often occurs in geometrical investigations, and whenever it does its peculiarity must always be attended to.

In the general case when A and B do not coincide, for every point P on the indefinite line bisecting internally at right angles the interval $A B$, whether at infinity or not, both criteria of equality $P A: P B=1$, and $P A \sim P B=0$, hold without any exception, while for a point P not on that line $P A \sim P B$ is never $=0$, and $P A: P B$ is therefore $=1$ only when P is at infinity.

In the general case again, for every point P on the indefinite line $A B$ itself, whether at infinity or not, $P A \sim P B$, except only for the finite interval betwecn A and B, has (Euc. 1. 20) the greatest possible value $A B$, and therefore for points external to that interval $P A: P B=1$ only when P is at infinity, in which position it is consequently termed the point of external bisection of the segment $A B$. Hence we see that-

The point of external bisection of any funte segment of a line is the point at which the line intersects infinity, and conversely, the point at vehich a line intersects infinity is the point of external bisection of amy finite segment of the line.

In the particular case when the segment is evaneseent, then, as already stated, every point on the line, except only that at which the extremitics coincide, is indifferently a point of external bisection of the segment.
16. Admitting that any number of lines passing through a common point divide similarly (Euc. vi. 10) any two parallel lines in the ratio of their distances from the point, and that, conversely, any number of lines dividing any two parallel lines similarly in auy ratio pass through a common point whose distances from the parallels are in that ratio; the following very important, but at first sight somewhat paradoxical, con-
clusion respecting points at infinity, results inmediately from the general property of the preceding article, viz.-

Every systom of lines passing through a common point at infinity is a system of parallel lines; and concersly, every system of parallel lines is a systam of lines passing through a common point at infonity.

For, conceiving any two parallel lines L and L^{\prime} drawn arbitrarily intersecting the entire syitem of lines, in either case, in two systems of points $A, B, C, D, \& \in$. and $I^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, \& \cdot$., then since, in the furmer cane, the aureral lines $A A^{\prime}, B B^{\prime}$, $C C^{\prime}, D D$, sic. prase, by hypothenie, through a common puint O, therefore, (Euc. v1. 4)

$$
A B: A^{\prime} B^{\prime}=A C: A^{\prime} C^{\prime}=A D: A^{\prime} D^{\prime}, A c \cdot=A O: A C_{1}=1 \text {, }
$$

since, by hypothesis, O is at infinity (15); therefore $A B=A^{\prime} B B^{\prime}$, $A C=A^{\prime} C^{\prime \prime}, A D=A^{\prime} D^{\prime}, \mathbb{N}$. ; and therefure (Eue. 1. 33) IBB' $, C C^{\prime}, D D^{\prime}$, dice are all parallel to All' and to each uther; and since, in the latter cmen, the weveral line $A \cdot I^{\prime}, B B^{\prime}, C C^{\prime}$, DD', dic. are, by hypothesis, perallet; therefore (liuc. 1. 34) $A B=A^{\prime} B^{\prime}, A C=A^{\prime}\left(1^{\prime}, A 1\right)=A^{\prime} D^{\prime}$, dic.; and, therefure, as $A B: A^{\prime} B^{\prime}=A C: A^{\prime} C^{\prime}=A D: A^{\prime} D^{\prime}, \delta($ e, the several lines $B B^{\prime}, C C^{\prime}, D D^{\prime}$, ic. all intersect $A A^{\prime}$ at the same point O (Euc. VI. 4); and as the common ratio $=1$ that point O is at iufinity (15).

The above is but no of a multitude of arguments for the truth of a concluaion long placed beyond all question by the simplest considerations of projection and perspective.

By a very slight modification Euclid's excellent definition of parallel lines, those, viz., "which lying in the same plane never meet though indefinitely produced," might be made to express the preceding most important and indeed fundamental property of such lines without failing to convey at the same time the notion intended by the original. The simple substitution of the two words untit infinitely in place of the two though indefinitely would manifestly effeet this.

It is evident from the above that the position of a point at infinity buth determines and is determined by the direction of any line passing through it.
17. If a variable line be conceived to revolve continuously in one direction round a fixed point and to intersect in every position a fixed line not passing through the point; the point of intersection evidently traverses continuously in one direction the entire fixed line in the course of each complete semirevolution of the variable line; approaches to infinity in tho direction of its motion as the latter approaches to a position of parallelism with the former; reaches infinity as that position is attained; and emerges again from infinity from the opposite direction when that position is passed; from this and from many other considerations geometers have long satisfied themselves that

The two opposite directions of every line, not itself at infinity, are to be regarded, not as reaching infinity at two different and opposite points, but as running into each other and meeting at a single point at infinity.

Hence the propriety of the expression "point of external bisection" of any finite segment of a line (15).

Paradoxical as the above conclusion may appear when first stated, the grounds confirmatory of it are so numerous and varied that any early hesitation in admitting its legitimacy is generally very rapidly got over.
18. If the centre of a variable circle touching a fixed line at a fixed point be conceived to traverse continuously in one direction the entire circuit (17) of the orthogonal line passing through the point, starting from and returning to the point through infinity (Euc. 111. 19). The eircle itself evidently commences from evanescence with the commencement of the motion; expands continuously at the side of the line corresponding to its direction during the first half of the circuit; opens out into the line itself as infinity is reached; contracts continuously at the opposite side of the line during the second half of the circuit; and, terminates in evanesence with the completion of the motion. Hence, and from many other considerations, it appears that-

Eivery point not at infinity may be regarded as a circle of evanescent radius whose centre is the point; and every line not at infinity as a circle of infinite radius vehose centre is the point at infinity in the direction orthogonal to the line (16).

In the geometry of the point, line, and circle, therefore the point and line are the limiting forms of the circle in the extreme cases of its radius being evanescent and infinite.
19. If a variable line be considered to revolve continuously in one direction round a fixed point, and to intensect in every position a fixed circle passing through the point, the variable point of intersection evidently traverses continuously in une direction the entire circumference of the circle in the course of each complete semi-revolution of the line; and, on its way every time, approaches to, reaches, and passes through the fixed point as the line approaches to, reaches, and passes throngh the particular position in schich it is a langent to the circle at that point. Hence, and from innumerable other considerations, it appears that-

When the two points of intersection of a line and circle coinciule, the line and circle touch at the print of coincidence.

And generally that-
When tico points of interanction of any tuco figures coincide, the figures themseloes touch at the point of coincidence.

This, indeed, as fundamentally correct in conception and invariably simple in application, might be made the formal criterion of contuct in elementary, ns it is in advanced, geometry; and from it the several known properties respecting the contact of circles with lines and with each other, established in the Third Book of Euclid and elsewhere, might be easily shewn to be mere corollaries from more gencral properties respecting their intersection, deduced by simply introducing into the latter the particular supposition of coincidence between their two, in general separate, points of intersection. A few examples will shew this more clearly.

Ex. 1. A line and circle or two circles having contact at any point can never meet again either by contact or interseetion. (Euc. III. 13 and 16.)

For they ean never under any circumstances meet at all in more than tuco points (liuc. III. 2 and 10); which property being true in general, whatever be the interval between the points, is therefore true in the particular case where the interval $=0$; that is, when the figures touch.

Ex. 2.. At every point on a circle the tangont is perpendicular to the radius. (Euc. IH. 18.)

Let P be the point, $X Y$ any line passing through it, Q the other point in whieh $X Y$ meets the circle, and $O P$ and $O Q$ the radii to P and Q; then, echatever bo the interval $P Q$, since the triangle $P O Q$ is always isosceles, the two external angles $O P X$ and $O Q Y$ are altoays equal (Euc. J. 5); they are therefore equal in the particular case when Q coincides with P, and therefore $O Q$ with $O P$, and therefore the angle $O Q Y$
 with the angle $O P Y$, in that case, therefore, the angles $O P X$ and $O P Y$ are equal ; and, therefore, (Euc. I. def. 11) the radias $O P$ is perpendicular to the tangent $X Y$.

Ex. 3°. At every point on a circle the angles made by any chord with the tangent are equal to the angles in the alternate segments, (Euc. III. 32).

Let P be the point, $P R$ the chord, $X Y$ any line passing through P, Q the other point in which $X Y$ meets the circle, S any arbitrary point on the circle, and $S P, S Q, S R$ the lines connecting it with P, Q, R, then, vhatever be the interval $P Q$, the angles $R P Y$ and $R S Q$ being in the same segment are always equal (Euc. III. 21); they are therefore equal in the particular case when Q coincides with P, and therefore $S Q$ with $S P$,
 and therefore the angle $R S Q$ with the angle $R S P$, in that case therefore the angles $R P Y$ and $R S P$ are equal, that is, the angle the chord $P R$ makes with the tangent $X Y$ is equal to the angle in the alternate segment PSR.

Ex. 4. When two circles touch, externally or internally, the line joining their centres passes through the point of contact and is perpendicular to the line touching both at that point, (Euc. III. 11 and 12).

Let $P Q R$ and $I^{\prime} Q S$ be any two intersecting eireles, P and Q their two points of intenection, A and B their two eentres, and $X Y$ the indefinite line passing through P and Q; then, on account of the two isosecles triangles $I ' A Q$ and $P B Q$ formed by conneeting A and B with P and Q, the line $A B$ connecting their vertices A and B always both biseets and
is perpendicular to their common base $P Q$ (Uuc. III. 3); and this being akoays true in general, whatever be the length of $P^{\prime} Q$, is therefore true in the particular case when that length $=0$, that is, when the two points I and Q coincide, but when they do, their middle point I coincides with both, the two circles touch, externally or inturnally, at the point of coincidence, and the indefinite lino $X Y$ touches both at that point.

In every application of the abrve methol, one precaution, observed it will be perecirod in ench of the above illuitrative examplea, is invariably to be attended to. Tho supposition of coiscidence between the two painte of intensection I^{\prime} and Q_{1} in which the contact of the figure consints, is mm mer to be introduced until the mure general property, independent of tho distance between them, has fins been etabliaked.
20. As in the compound figure comsisting of a lino and circla veriable in relative pusitim with repees to each other, tho two points common to both poes evidently from exparation, through coincidace, to simulamoous dimppoarance, or converely, as the dintance of tho line from the centre passes from being $<$, through being $=$, to being $>$ the radius of the circle, or conversely; so in the compound figure consisting of a point and circle variable in relative position with respect to each other, tho two tangents common to both pam similarly from separation, through coincidence, to simultaneous disappearance, or conversely; as the distance of the point from the centre paeses from being $>$, through being $=$, to being $<$ tho radius of the circle, or conversely. Hence, as in many ways otherwise, it appears that-

As every tangent to a circlo or any other figure is the connector of two coincident points on the circh or figure, and conversely, so every point on a circle or any other figure is the intrection of two coincident tangents to the circle or figure, and conversely.

In the applications of this, as of the preceding principle, of which it is the correlative, the same precaution again is invariably to be observed; in investigating any property of a point on a circle or any other figure regarded as tho intersection of two coincident tangents to the circle or figure, the supposition of coincidence between the two tangents is never to be intro-
duced until the more general property of the point of intersection of any two tangents, in which it is involved, has first been established.
21. In the language of modern geometry every two points, lines, or other similar elements of, or connected with, any compound figure, which with change of relative position among the constituents of the figure pass or are liable to pass, as above described, from separation, through coincidence, to simultaneous disappearance, or conversely, are termed contingent as distinguished from permanent elements of the figure, and are said to be real or imaginary according as they happen to be apparent or non-apparent to sense or conception. Geometers of course have not, nor do they profess to have, any conception of the nature of contingent elements in their imaginary state, but they find it preferable, on the grounds both of convenience and accuracy, to regard and speak of them as imaginary rather than as non-existent in that state: in the transition from the real to the imaginary state, and conversely, contingent clements pass invariably through coincidence, through which, as above described, they always change state together.

In the geometry of the point, line, and circle, it is only in figures involving, directly or indirectly, the latter in its finite form, that contingent elements from their nature could occur; in figures, however complicated, consisting of points and lines only all elements not depending on the circle in its finite form are invariably permanent.
22. When a line and figure of any kind intersect, the angles between the line and the tangents to the figure at the several points of intersection are termed the angles of intersection of the line and figure at the points; when two figures of any kind intersect, the angles between the tangents to them at the several points of intersection are termed the angles of intersection of the figures at the points; in the cases of a line and circle and of two circles the angles of intersection at the two points of intersection being evidently equal, each separately is called the angle of intersection of the figures.

With respect to the angle of intersection of a line and circle it is evident that:
1°. Every line pasing through the centre of a circle interancts the circle at right angles; and converscly; every line interweting a circle at right augles pases through the centre of the circle, (Euc, 1tt. 18, 19).
2. Every line dividing a circle into segments contaiaing any angle, intensocts the circle at the angle in the segtnents; and conversely, every line intersecting a circle at any angle divides the circlo into segments containing tho angle, (Euc. III. 32).
3°. A variable line whose diatance from a fixed point is constant intersects at a constant augle every circle of which tho point is the centre.

And with respect to the angle of intensection of two circles that:

1'. Every circlo touching at cither extremity any diameter of another circle intensects the other at right angles; and conversely, every circle intersecting another at right angles touches at each proint of intensection a diameter of the other.

2'. Fivery circle touching at either extremity any chord of another circle intersects the other at the angle in the segments determined by the chord; and conversely, every circle intersecting another at any angle touches at each point of intersection a chord dividing the other into segments containing the angle.
3. A variable circle of constant radius the distance of whose centre from a fixed point is constant intersects at a constant angle every circle of which the point is the centre.

A line and circle, two circles, or any other two figures, intersecting at right angles, are said to cut orthogonally, or, as it is sometimes termed, to the orthotemic.
23. In order to avoid the ambiguity as to which of tho two supplemental angles, regarded as magnitudes, between the two tangents at either point of intersection of two circles is to be regarided as the angle of intersection of the circles,
in cases in which it is necessary, as it often is, to distinguish between them, the following convention has been agreed to by geometers.

The radius being perpendicular to the tangent at every point of a circle, and the two supplemental angles between any two lines being equal to those between any two perpendiculars to them, if from either point of intersection P or Q (fig., Ex. 4°, Art. 19) of the two circles, the two radii, $P A$ and $P B$, or, $Q A$ and $Q B$, be drawn, one of the two supplemental angles between the two tangents is equal to the internal and the other to the external angle between the two radii; the former, $A P B$ or $A Q B$, is that which is considered as the angle of intersection of the circles; this is obviously tantamount to regarding that angle as measured either from the convex circumference of one circle to the concave circumference of the other; or, vice versa, from the concave of one to the convex of the other; but not either from the concare of one to the concare of the other, or from the convex of one to the convex of the other.

In accordance with this convention the angle of intersection of two circles is to be regarded as acute, right, or obtuse, according as the square of the distance between their centres A and B is less than, equal to, or greater than the sum of the squares of their radii $A P$ and $B P$, or $A Q$ and $B Q$ (Euc. II. $12,13)$; in the extreme case of the former when $A B=$ the difference of the radii, that is, when the circles touch at the same side of their common tangent, the angle of intersection is to be regarded as $=0$; and in the extremo case of the latter when $A B=$ the sum of the radii, that is, when the circles touch at opposite sides of their common tangent, the angle of intersection is to be regarded as = two right angles; and, for the same reason, generally, when any two figures touch, their angle of intersection at the point of contact is to be regarded as $=0$, or $=$ two right angles, according as they lio at the same side or at opposite sides of their common tangent at the point.

[^1]every two finite conterminous lines determine tuco different angular intervals of separation from each other, one exceeding by as much as the other falls short of two right angles, and having in the abstract equal claims to le rugarded as the angle between the lines; and, 2°. That every two intersecting indefinite lines determine teo pairs of opposite equiangular regions, one exceeding, in angular interval of separation between the determining lines, by as much as the other falls short of a right angle, and laving in the abmtract equal claims to be regarded as the anglo between the lines. The twofold source of ambiguity thus arising must always be attended to in comparing augular maguitudes, as, whaterer be the nature of two compared angles, the greater interval for one corresponds often to the lesser for the other in tho former case, and the obtuse region for one corresponds often to the acute for the other in the latter casc; and that even for angles similar as figures, that is, whose sides, whether finite or indefinite, are capable of simultancous coincidence. Whenever, therefore, two angles different in position but similar in furn, are said, as they often are, to be equal, and when an angle variable in position but invariable in form is said, as it often is, to bo constunt, the terms so employed, though applicable properly to magnitudes only, aro to be regarded as indicating the aforesaid similarity or invariability of furm, rather than absolute equality or constancy of value, in such cases generally.
25. The two following examples, of repeated occurrence in the modern geometry of the circle, are important illustrations of the preceding observations.

1. A variable point on the circumference of a fixed circle subtends a constant angle at any theo fixed points on the circle.
2°. The segment of a variable tangent intercepted between any two fixed tangents to a circle subtends a constant angle at the centre of the circle.

To prove 1°. Let O be the centre of the circle, A and B the two fixed points and P the variable point; the angle $A P B$ is, according to the position of P, equal to half the less or greater

angular interval $A O B$, and therefore constant in the sense above explained.

For, joining $O A, O B, O P$, and producing the latter through O to meet the circle again at Q; then, as in Euc. III. 21, 22, the angles $A P O$ and $B P O$ being the halves of the angles $A O Q$ and $B O Q$, the sum, or difference as the case may be, of the former, that is the angle $A P B,=$ half the sum, or difference, of the latter, that is, half the (less or greater) angle $A O B$; and therefore \&.c.

To prove 2°. Let $A C$ and $B C$ be the two fixed tangents, $X Y$ the segment of the variable tangent intercepted between them, Q its point of contact, and O, as before, the centre of the circle; the angle $X O Y$ is, according to the position of $X Y$, equal to half the less or greater angular interval $A O B$, and therefore constant in the sense above explained.

For, joining $O A, O B, O Q$; then, Euc. III. 17, the angles $X O Q$ and $Y O Q$ being the halves of the angles $A O Q$ and $B O Q$, the sum, or difference as the case may be, of the former, that is, the angle $X O Y=$ half the sum, or difference, of the latter, that is half the (less or greater) angle $A O B$; and therefore \&c.

Now it is evident that it is as figures and not as magnitudes (2) the two angles $A P B$ and $X O Y$ are strictly speaking invariable; for as the two points P and Q, on which their positions depend, traverse the entire circumference of the circle, their magnitudes in the positions indicated in fig. (γ), in which they are halves of the greater angular interval $A O B$, are evidently the supplements of their magnitudes in the positions indicated
in the figures (α) and (β), in which they are halves of the lesser angular interval $A O B$; and an universally in all cases of the same nature, two finite conterminous lines presenting indifferently their greater and lesser angular intervals of separation, and two indefinite intersecting lines their obtuse and acute regions of figure, when revolving through four right angles.

In the particular cases when either the two fixed points A and B or the two variable points P and Q are diametrically opposito points of the circle, the two constant angles $A P B$ and $X O Y^{\circ}$ are always not only similar as figures but equal as magnitudes; for in the former cave, whatever be the prositions of P and Q, the two pairs of lines $P_{A} A$ and $P 13, O X$ and $O I^{\circ}$ intersect evidently at right angles, and therefore \&e., nad in the latter case (that represented in the figures), whatever be the positions of A and B, the two pairs of lines $P A$ and $O N, P B$ and $O Y^{\circ}$ are evidently parallels, and therefore \&e.

CHAPTER II.

ON THE DOUBLE GENERATION OF GEOMETRICAL FIGURES.

26. Whes a variable point moring according to some law lies in every position on a figure of any form, such figure is termed the locus of the point. When a variable line moving according to some law touches in every position a figure of any form, such figure is termed the envelope of the line. As every simple figure, whatever be its form, may be conceived to be generated, either, if not itself a point, by the continued motion of a point, or, if not itself a line, by the continued motion of a line; with those two exceptions therefore every simple figure in geometry, whether existing alone or in combination with other figures, may be regarded cither as the locus of a variable point or as the envelope of a variable line.
27. The law directing the movement of the generating point or line being given, the nature of the figure described or enveloped is implicitly given with it, though its actual determination presents of course very different degrees of difficulty in different cases; thus, for instance, the locus of a variable point, or the envelope of a variable line, moving so as to preserve a constant distance from a fixed point, is evidently a circle of which the fixed point and constant distance are the centre and radius.
28. But the law directing the movement of the generating point or line, by which a figure, the nature of which is given, may be described or enveloped, need not necessarily be that expressing the primary or fundamental property by which such figure may have been defined, but on the contrary may be one resulting from amy of its secondary or derived properties iu-
stead: thus, thongh a circle may, as above, be regarded either as the locus of a variable point, or as the envelope of a variable line, the distance or the aquare of the distance of which from a tixed point is constant; it may also, as will hereafter appear, be regarded either as the locus of a variable point the sum of the squares of whose distances, or as the envelope of a variable line the sum of whose ditances, from any number of fixed proints is constant.
29. A single genmetrical condition governing the movement of a variable point or line is sufficient in all cases to restrict the point or line to nome locus or envelope; thus, for instance, the single condition that a variable point subtend, or that a variable line intersect, a fixed circle at a constant angle, is sufficient to restrict the proint or line to a coneentric circle as its locus or envelope, of this the reason is evident, for white no condition on the one hand leaves the proint or line free to occupy any position, two conditions on the other hand suffice when independent to fix it altogether.
30. The locus of a variable print or the envelope of a variable line may be, and often is, a compound figure whome compronent simple figures satify ecparntely the condition governing the movement of the point or line; thus, for instance, the locus of a variable proint whose distances from two fixed lines are equal consists evidently of the two lines of bisection external and internal of the angle determined by the lines, and the envelope of a variable line whose distances from two fixed points are equal consists evidently of the two points of bisection external and internal of the segment determined by the points; and similarly for any other constant ratio as well as that of equality. In such cases the compound figure consisting of the two or more simple figures is sometimes termed the complete locus or envelope of the point or line.
31. With respect to particular cases of loci and envelopes it is to be ouserved in general that-
1°. A locus or envelope, or any part of either if a compound tigure, which, under the general circumstances of the
conditions under which it arises, is a circle in its finite form, may, and often does, under particular circumstances of the conditions, assume the evanescent or infinite form of point or line (18): thus, for instance, the locus of a variable point or the envelope of a variable line whose distance from a fixed point is constant, which in general is the circle whose centre and radius are the point and constant, becomes of course evanescent or infinite when the constant $=0$ or ∞.
2°. A locus or envelope, which, under the general circumstances of the conditions under which it arises, is a single figure of any form, often breaks up under particular circumstances of the conditions into two or more figures of simpler forms; thus, for instance, the locus of a variable point, the product of whose distances from any number of fixed lines, or the envelope of a variable line, the product of whose distances from any number of fixed points, is constant, which in general is a single figure of form depending on the number and disposition of the points or lines, breaks up into the entire system of lines or points when the constant $=0$.
3°. A locus or envelope, which, under the general circumstances of the conditions under which it arises, is a definite determinate figure, simple or compound, becomes often indeterminate under particular circumstances of the conditions; thus, for instance, the locus of a variable point whose distances form two fixed lines, or the envelope of a variable line whose distances form two fixed points, are equal, which in general consists of the two lines or points of bisection of the angle or segment determined by the lines or points, becomes indetersninate when the lines or points coincide; every point in the former case, or line in the latter, then evidently satisfying the conditions of the locus or envelope.

As particular examples of loci and envelopes will appear in numbers in the course of the following pages, we shall not delay to give any here, but shall devote instead the remainder of the present chapter to the theory and properties of similar figures considered under their double aspect as loci of points and as envelopes of lines.
32. Two geometrical figures of any kind F and F°, whether regarded as loci or envelipes, whose generating points or enveloping lines A, B, C, D, dic. and $\left.A^{\prime}, I^{\prime}, C^{\prime}, I\right)^{\prime}, ~(i c$ c. correspond in pairs A to A^{\prime}, B to B^{\prime}, C to $\left.C^{\prime}, l\right)$ to I^{\prime}, \mathcal{N}. are said to be similar when two points O and O, whether belouging to tho figures or not, exist, such that for ewry two pairs of corresponding distances or perpendiculars $O .1$ and $O^{\prime} A \prime, O B$ and $O^{\prime} B^{\prime}$, the two angles $A O B$ and $A^{\prime} O^{\prime} B^{\prime}$ and the two ratios $O A: O B$ and $O^{\prime} A^{\prime}: O^{\prime} 1 B^{\prime}$ are equal; and so aleo are two figures componed of syatems of any conmon number of isolated points or lines, or mixed points and linet, A, B, C, D, Sc. and $A^{\prime}, B^{\prime}, C^{\prime \prime}, D^{\prime}$, \&c. whose constituent elemente correnpond in pains fulfilling the same conditions.

Two figures thus related to each other are said, like two hands or two feet, to be both right or left or one right and the other left according as the diroctions of rotation of the several pairs of correnponding angles $A O B$ and $A^{\prime} O^{\prime} B^{\prime}, B O C$ and $B^{\prime} O^{\prime} C^{\prime \prime}, C O D$ and $C^{\prime \prime} O^{\prime} I P^{\prime}$, Ne. are nimilar or opponite.

As two angles, two ration, or two mannitudes of any kind when equal to a chird are equal to each other, it is evident from the conditions of similitudo as above stated, that teo figures of any kind when similar to a thind are similar to cuch other.
33. Since, for two figures fulfilling the conditions of similarity, the ration of the several pains of correpronding distances or perpendiculars $O A$ and $O^{\prime} A^{\prime}, O B$ and $O^{\prime} B^{\prime}, O C$ and $O^{\prime} C^{\prime}$, $O D$ and $O^{\prime} D^{\prime}$, \&e., by the second condition, are all equal, the constant value common to them all is termed the rutio of similitude of the figures; in the particular case when the ratio of similitude $=1$, that is, when she several pairs of corresponding distances or perpendiculars are all equal, the figures themselves also are said to be equal.

Since again, for two figures fulfilling the conditions of similarity, the angles between the several pairs of corresponding distances or perpendiculars $O A$ and $O^{\prime} A^{\prime}, O B$ and $O^{\prime} B^{\prime}, O C^{\prime}$ and $O^{\prime} C^{\prime}, O D$ and $O D^{\prime}$, © ce., by the first condition, are all equal when the figures are both right or left, and all bisected by the same two rectangular directions when they are one right and the
other left, the constant value common to them all in the former case is termed the angle of inclination, and the fixed directions of bisection common to them all in the latter the directions of symmetry of the figures; when in the former case tho angle of inclination $=0$ or $=$ two right angles, that is, when the directions of the several pairs of corresponding distances or perpendiculars (in both eases of course parallel) are all similar or opposite, the figures (in both cases said also to be parallel) are said to be similarly or oppositely placed.

34. From the preceding it is evident, conversely, that-

When two lines $O A$ and $O^{\prime} A^{\prime}$, variable in length according to any law, turn in similar or opposite directions round two fixed extremities O and O^{\prime}, revolving simultaneously through equal angles and preserving as they revolve a constant ratio to each other, their two variable extremities A and A^{\prime} describe, and the two perpendiculars to them at their variable extremities A and A^{\prime} envelope, similar figures, whose ratio of similitude and angle of inclination or directions of symmetry are those of the lines.

For if A and A^{\prime}, B and B^{\prime} be any two pairs of corresponding positions of the variable extremities, it follows at once from the conditions of revolution that the two angles $A O B$ and $A^{\prime} O^{\prime} B^{\prime}$ and the two ratios $O A: O B$ and $O^{\prime} A^{\prime}: O^{\prime} B^{\prime}$ are equal, and the two conditions of similarity of the figures described or enveloped being thus satisfied, the other circumstances respecting their ratio of similitude and angle of inclination or directions of symmetry are in fact stated in the conditions of revolution.

When the two fixed extremities O and O^{\prime} coincide, and the two variable lines $O A$ and $O^{\prime} A^{\prime}$ revolvo in the same direction round the common extremity O, the species of the variable triangle $A O A^{\prime}$ is evidently constant, hence-

If one vertex of a triangle variable in magnitude and position but inevriable in figure be fixed, the two variable vertices describe, and the treo perpendiculars through them to the conterminous sides envelope similar figures, whose common ratio of similitude and anyle of inclination are those of the variable sides containing the fired vertex.
35. Two similar figures may be of such a form that a correspondence between their points or lines, in pairs satisfying the conditions of similarity, may exist in more soays than one, in the cass of two regular polygons of any common order n, for instance, it may exist in n ways, and in the case of two circles in an infinite number of ways, and that whether tho two figures be regarded as both right or left or one right and the other left. For, if O and O° be the centres of the two figures in either case, any pair or vertices or sides of the polygons, and any pair of points or tangents of the circles may be regarded as correaponding, and the correspondence between one pair of points or lines of the figures A and A^{\prime} once established, that of all the remaining pairs B and B^{\prime}, C^{\prime} and C^{\prime}, D and $D, \& \in$, is of course fixed by the conditions that tho several pairs of corrowponding angles $A O B$ and $A^{\prime} O^{\prime} B^{\prime}, A O C$ and $A^{\prime} O^{\prime} C^{\prime}, A O D$ and $A^{\prime} O^{\prime} D^{\prime}, \& \cdot$., mearured all either in similar or opposite directions of motation, are equal. Such cases of similar figures are of course exceptional, but whenever they occur, as they necemarily to frequently in the geometry of the circle, their peculiarity in this respect leads sometimes to consequences not exiting in the general case when the correspondence between the points or lines of the figures is unique.
36. In the particular cases when the radii of two circles regarded as similar figures are cither cvanescent or infinite; that is, when the two circles are either points or lines, their ratio of similitude, being in all cases that of their radii, is indeterminate. This peculiarity, which is evident on the general principles explained in (13), may easily be shewn, a priori, for both species of figures separately. For if l and I^{\prime} be any two lines regarded as loci of points, or any two points regarded as envelopes of lines, O and O^{\prime} in cither case any two points taken arbitrarily, and A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, \&c. any number of pairs of points on the lines or of lines through the points, for which the several pairs of angles 10 A and $I^{\prime} O^{\prime} A^{\prime}$, $I O B$ and $I^{\prime} O^{\prime} B^{\prime}, I O C$ and $I^{\prime} O^{\prime} C^{\prime}$, de. measured all in similar or opposite distances of rotation round O and O^{\prime} are equal; since then in either case the several ratios $O A: O^{\prime} A^{\prime}, O B: O^{\prime} B^{\prime}$,
$O C: O^{\prime} C^{\prime}, \& c$ are equal, the two figures are similar, and since in either case their common value $=O I: O^{\prime} T^{\prime}$, their ratio of similitude, the two points O and O^{\prime} on which it depends being arbitrary, is indeterminate.

The preceding peculiarities of circles in general, and of points and lines in particular, regarded as similar figures, must always be carefully attended to in every application of the general theory of similar figures to their particular cases.
37. For every pair of corresponding points of two similar figures F^{\prime} and $F^{\prime \prime}$ regarded as loci, the two lines of connection with O and O^{\prime} make equal angles and ratios with the two perpendiculars on their tangents fiom O and O^{\prime}.

For every pair of corresponding tangents to two similar figures F and $F^{\prime \prime}$ regarded as envelopes, the two perpendiculars from O and O^{\prime} make equal angles and ratios with the two lines connecting their points of contact with O and O^{\prime}.

To prove the first. If A and A^{\prime} be the two points, B and B^{\prime} any other pair of corresponding points, $O P$ and $O^{\prime} P^{\prime}$ the two perpendiculars from O and O^{\prime} upon the two indefinite lines
 $A B$ and $A^{\prime} B^{\prime}$, then since, whatever be the positions of the two pairs of corresponding points A and A^{\prime}, B and B^{\prime}, the two triangles $A O B$ and $A^{\prime} O^{\prime} B^{\prime}$ are by hypothesis similar (32), therefore the two triangles $A O P$ and $A^{\prime} O^{\prime} P^{\prime}$ are also similar, and therefore the two angles $A O P$ and $A^{\prime} O^{\prime} P^{\prime}$ and the two ratios $O A: O P$ and $O^{\prime} A^{\prime}: O^{\prime} P^{\prime}$ are equal ; and this being true in general, whatever be the common magnitude of the two equiangular intervals $A O B$ and $A^{\prime} O^{\prime} B^{\prime}$, is therefore true in the particular case when that interval is evanescent, that is, when (19) the two lines $A B$ and $A^{\prime} B^{\prime}$ are the two tangents to the two figures at the two points A and A^{\prime}.

To prove the second. If A and A^{\prime} be the two tangents, B and B^{\prime} any other pair of corresponding tangents, $O A$ and $O^{\prime} A^{\prime}, O B$ and $O^{\prime} B^{\prime}$, the two pairs of perpendiculars upon them from O and O^{\prime}, and P and P^{\prime} the two points of intersection of

A and B, and of A^{\prime} and B^{\prime}; then since, whatever bo the positions of the two pairs of corresponding tangents A and A^{\prime}, B and B^{\prime}, the two triangles $A O B$ and $A^{\prime} O^{\prime} B^{\prime}$ are by hyprothen is similar (32); therefore the two triangles $A O P$ and $A^{\prime} O^{\prime} P^{\nu}$ aro also similar, and sherefore the two angles $A O P$ and $A^{\prime} O^{\prime} Y^{Y}$, and the two ratios $O A: O P^{\prime}$ and $O^{\prime} A^{\prime}: O^{\prime} I^{y}$ are equal, and this being true in goneral, whatever be the common mannitude of the two equiangular intervals $A O B$ and $A^{\prime} O^{\prime} B^{\prime}$, is therefore true in the particular case when that interval is evanescent, that is when (20) the two points P and I^{y} are the two points of contact with the two figures of the two tangents A and A '.
35. When two fiyures regardel as loci of points are similar, they are also similar regarded as envelopes of lines, and conversely.

For if P and P^{ν}, Q and Q, be any two pairs of corresponding points, S and $S^{\prime \prime}, T$ and T, the two accompanying pairs of corresponding tangents; then since, by the preceding, the two pairs of angles $P^{\prime} O S$ and $P^{\prime} O^{\prime} S^{\prime}, Q O T$ and $Q^{\prime} O^{\prime} T^{\prime \prime}$, and the two pairs of ratios $O P: O S$ and $O^{\prime} P^{\prime}: O^{\prime} S^{\prime}, O Q: O T^{\prime}$ and $O^{\prime} Q^{\prime}: O^{\prime} T^{\prime \prime}$, are equal, when the figures whether regarded as loci or envelopes are similar; therefore the equality of the two angles $P O Q$ and $P^{\prime} O^{\prime} Q^{\prime}$, and of the two ratios $O P: O Q$ and $O^{\prime} P^{y}: O^{\prime} Q^{\prime}$ involves that of the two angles $S O T$ and $S O^{\prime} T^{\circ}$, and of the two ratios $O S: O T$ and $O^{\prime} S^{\prime}: O^{\prime} T^{\prime}$, and conversely, and therefore \&e.
39. When two figures F and F^{*} are similar, every two points or lines X and X^{\prime}, whether belonging to the figures or not, which are such that for any one pair of points or lines of the figures A and A^{\prime}, the two angles $A O X$ and $A^{\prime} O^{\prime} X^{\prime}$ and the two ratios $O X: O A$ and $O^{\prime} X^{\prime}: O^{\prime} A^{\prime}$ are equal, are evidently, from the conditions of similarity (32), such that for every other pair B and B^{\prime}, the two angles $B O X$ and $B^{\prime} O^{\prime} X^{\prime}$ and the two ratios $O X: O B$ and $O^{\prime} X^{\prime}: O^{\prime} B^{\prime}$ are also equal. Every two such points or lines, whether belonging to the figures or not, are said to be similarly situated, and are termed homologous points or lines, with respect to the figures; all pairs, of corresponding points or lines A and A^{\prime}, of tangents T and $T^{\prime \prime}$ at pairs of corresponding points P and P^{\prime}, and of points of contact P and P^{\prime} of pairs of corresponding tangents T and T, of the figures, are evidently homologous.

From the nature of homologous points and lines as thus defined, it is evident for similar figures in general that-
1°. If X and X^{\prime} be any pair of homologous points or lines with respect to two similar figures F and $F^{\prime \prime}$, the two distances or perpendiculars $O X$ and $O X^{\prime}$ have the constant ratio of the similitude of the figures.

For if A and A^{\prime} be any pair of corresponding points or lines of the figures, since then, by hypothesis, $O X: O A=O^{\prime} X^{\prime}: O^{\prime} A^{\prime}$, therefore, by alternation, $O X: O^{\prime} X^{\prime}=O A: O^{\prime} A^{\prime}$, and therefore \&c.
2°. If X and $X^{\prime \prime}$ be any pair of homologous points or lines with respect to two similar figures F and $F^{\prime \prime}$, the two distances or perpendiculars $O X$ and $O^{\prime} X^{\prime}$ have the same angle of inclination or directions of symmetry as the figures.

For, if Λ and A^{\prime} be any pair of corresponding points or lines of the figures, since then, by hypothesis, the two angles $A O X$ and $A^{\prime} O^{\prime} X^{\prime}$ are equal; therefore, according as their directions of rotation are similar or opposite, the two distances or perpendiculars $O X$ and $O^{\prime} X^{\prime}$ have the same angle of inclination or directions of symmetry as the two $O A_{-}$and $O^{\prime} A^{\prime}$, and therefore \&ic.
3. If P and P^{r}, Q and Q^{\prime} be any two pairs of homologous
points woith respect to theo similar figures F and F, the theo connuctors $P Q$ and $I^{\nu} Q^{\prime}$ have the constant ratio of the similitude of the figures.

For, if A and A^{\prime} be any pair of corresponding points or lines of the figures, since then, by liypothesis, the two pairs of angles $A O I^{\prime}$ and $A^{\prime} O^{\prime} I^{\prime}, A O Q$ and $A^{\prime} O^{\prime} Q$, and the two pairs of ratios $O P^{\prime}: O A$ and $O^{\prime} I^{\nu}: O^{\prime} A^{\prime}, O Q: O A$ and $O^{\prime} Q^{\prime}: O^{\prime} A^{\prime}$ are equal; therefore the two angles $P^{\prime} O Q$ and $P^{\prime} O^{\prime} Q^{\prime}$ and the two ratios $O P^{\prime}: O Q$ and $O P^{\prime}: O^{\prime} Q$ are equal ; and therefore, by similar tringles (Euc. V1. 4),

$$
P Q: P^{\prime} Q=O P: O I^{\nu}=O Q: O Q=O A: O^{\prime} A^{\prime},
$$

and therefore \&e.
4°. If P and P^{v}, Q and Q^{\prime} be any theo pairs of homologous points teith respect to theo similar figures F and $F^{\text {r }}$, the theo connectors $P Q$ and $P Q$ have the same angle of inclination or directions of symmetry as the figures.

For, if A and A^{\prime} be any pair of corresponding points or lines of the figures, since then, by hypothesis, the two pairs of angles $A O P$ and $A^{\prime} O^{\prime} P, A O Q$ and $A^{\prime} O^{\prime} Q^{\prime}$, and the two pairs of ratios $O P: O A$ and $O P^{\nu}: O A, O Q: O A$ and $\sigma^{\prime} Q^{\prime}: O^{\prime} A^{\prime}$ are equal; therefore the two angles of incliuation of $P Q$ to $O A$ and of $P^{P} Q^{\prime}$ to $O^{\prime} A^{\prime}$ are equal; and, therefore, according as their directions of rotation are similar or opposite, the two connectors $P Q$ and $P Q$ have the same anglo of inclination or directions of symmetry as the two distances or perpendiculars $O A$ and $O^{\prime} A^{\prime}$, and therefore ©c.
5. If P and I^{ν} be any pair of homolegous points and L and L^{\prime} 'any pair of homologous lines weith respect to theo similar figures F^{\prime} and F^{\prime}, the the perpendiculars $P L$ and $P^{\prime} L^{\prime}$ have the ratio of similitude and the angle of indination or directions of symmetry of the figures.

For, if A and A^{\prime} be any pair of corresponding points or lines of the figures, since then, by hypothesis, the two pairs of angles $A O P$ and $A^{\prime} O P^{\prime}, A O L$ and $A^{\prime} O^{\prime} L^{\prime}$, and the two pairs of ratios $O P: O A$ and $O^{\prime} P^{\nu}: O^{\prime} A^{\prime}, O L: O A$ and $O^{\prime} L^{\prime}: O^{\prime} A^{\prime}$ are equal; therefure the two angles $P O L$ and
$P^{\prime} O^{\prime} L^{\prime}$ and the two ratios $O P: O L$ and $O^{\prime} P^{\prime}$: $O^{\prime} L^{\prime}$ are equal; and therefore by pairs of similar right-angled triangles

$$
P L: P^{\prime} L^{\prime}=O P: O^{\prime} P^{\prime}=O L: O^{\prime} L^{\prime}=O A: O^{\prime} A^{\prime}
$$

and therefore $\mathbb{N e}$; the second part being evident from the parallelism of $P L$ and $O L$ and of $P^{\prime} L^{\prime}$ and $O^{\prime} L^{\prime}$.
6°. If X and X^{\prime}, Y and Y^{\prime} be any two pairs of homologous points or lines with respect to two similar figures F and $F^{\prime \prime}$, the two lines of connection or points of intersection $X Y$ and $X^{\prime} Y^{\prime}$ are homologous lines or points with respect to the figures.

For, drawing the two perpendiculars or connectors $O P$ and $O^{\prime} P^{\prime}$ from O and O^{\prime} to $X Y$ and $X^{\prime} Y^{\prime \prime}$. Since then for every pair of corresponding points or lines A and A^{\prime} of the two figures F and $F^{\prime \prime}$, the two pairs of angles $A O X$ and $A^{\prime} O^{\prime} X^{\prime}$, $A O Y$ and $A^{\prime} O^{\prime} Y^{\prime \prime}$, and the two pairs of ratios $O X: O A$ and $O^{\prime} X^{\prime}: O^{\prime} A^{\prime}, O Y: O A$ and $O^{\prime} Y^{\prime}: O^{\prime} A^{\prime}$ are by hypothesis equal ; therefore the two angles $A O P$ and $A^{\prime} O^{\prime} P^{\prime}$ and the two ratios $O P: O A$ and $O^{\prime} P^{\prime}: O^{\prime} A^{\prime}$ are equal, and therefore $\mathcal{E c}$.
7°. If P and P^{\prime} be any pair of homologous points and L and I' any pair of homologous lines with respect to two similar figures F and F^{\prime}, the two perpendiculars $P L$ and $P^{\prime} L^{\prime}$ are homologous lines and their two intersections with L and L ' are homologous points with respect to the figures.

For, drawing from O and O^{\prime} the two perpendiculars $O Q$ and $O Q^{\prime}$ to $P I$, and $P^{\prime} L_{L}$. Since then for every pair of

correspondipg points or lines A and A^{\prime} of the two figures F and F^{\prime}, the two pairs of angles $A O P$ and $A^{\prime} O^{\prime} P^{\prime}, A O L$ and $A^{\prime} O^{\prime} L^{\prime}$, and the two pairs of ratios $O P: O A$ and $O^{\prime} P^{\prime}: O^{\prime} A^{\prime}$, $O L: O A$ and $O^{\prime} L^{\prime}: O^{\prime} A^{\prime}$, are by hypothesis equal, therefore the two angles $A O Q$ and $A^{\prime} O^{\prime} Q^{\prime}$ and the two ratios $O Q: O A$ and $O^{\prime} Q^{\prime}: O^{\prime} A^{\prime}$ are equal, and therefore $\mathcal{N c}$. ; the second part following from the first by the second part of 6°.
8. Any two homologous points P and P with respect to two similar figures F^{\prime} and F^{*} may be substiluted for the fico O and O^{\prime} rithout cioluting the conditions of similitule of the figures.

For, if A and A^{\prime}, B and B^{\prime} be any two pairs of corresponding points or lines of the figures; then since by hypothesis the two pairs of angles $A O P$ and $A^{\prime} O^{\prime} P^{\prime}, B O P$ and $B^{\prime} O^{\prime} P^{\prime}$, and the two pairs of ratios $O A: O P$ and $O^{\prime} A^{\prime}: O^{\prime} P, O B: O P$ and $O^{\prime} B^{\prime}$: $O^{\prime} P^{\prime}$ aro equal ; therefore, by pairs of similar triangles, the two angles $A P B$ and $A^{\prime} P^{\prime} B^{\prime}$ and the two ratios $P A: P B$ and $P^{\prime} A^{\prime}: P^{\prime} B^{\prime}$ are equal, and therefore dic., (32).
9°. For every two similar figures F and $F^{\prime \prime}$ if any number of points connected with either F lie on a line L, the homologous points with respect to the other $F^{\prime \prime}$ lie on the homologous line L^{\prime}, and, if amy number of lines connected with either F pass through a point P, the homologous lines with respect to the other $F^{\prime \prime}$ pass through the homologous point P^{\prime}.

For, since by 5°, for every pair of homologous points P and P^{\prime}, and for cvery pair of homologous lines L and L, of the figures, $P L: P^{\prime} L^{\prime}=$ the constant ratio of similitude of F and $F^{\prime \prime}$, therefore if either of them $=0$ so also is the other, that is, if the point P lie on the line L the point P^{\prime} lies on the line L^{\prime}, and if the line L pass through the point P the line L^{\prime} passes through the point P^{\prime}, and therefore \&c.
10°. For every two similar figures F^{\prime} and $F^{\prime \prime}$, if any number of points or lines connected with either F lie on or touch a eircle C, the homologous points or lines with respect to the other $F^{\prime \prime}$ lie on or touch a circle C^{\prime}, the centres of the two circles being homologous points and their radii having the ratio of similitude of the figures.

For, since by 3° and 5° or by 8°, for every pair of homologous points P and P^{\prime}, and for any number of pairs of homologous points or lines X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime}, \&c. of the figures $P X: P^{\prime} X^{\prime}=P Y: P^{\prime} Y^{\prime}=P Z: P^{\prime} Z^{\prime}, \& c .=$ the constant ratio of similitude of F to $F^{\prime \prime}$, therefore if $P X=P Y=P Z$, \&c., that is if X, Y, Z, \&c. lie on or touch a circle of which P is the centre and their common distance from it the radius, then $P^{\prime} X^{\prime}=P^{\prime} Y^{\prime}=P^{\prime} Z^{\prime}, \& c$. , that is $X^{\prime}, Y^{\prime}, Z^{\prime}, \& c$. lie on or touch a circle of which P is the centre and their common distance from it the radius, and therefore \&c.
11. If a pair of homologous points or lines X and X^{\prime} with respect to two similar figures F and $F^{\prime \prime}$ vary simultaneously according to any lanc, the two figures G and G^{\prime} they describe or envelope are similar and have the same ratio of similitude and the same angle of inclination or directions of symmetry as the original figures.

For, if A and A^{\prime} be any pair of corresponding points or lines of F and F, then since in every position of the two variable homologues X and $X^{\prime \prime}$, the two angles $A O X$ and
$A^{\prime} O^{\prime} X^{\prime}$ and the two ratios $O X: O^{\prime} X^{\prime}$ and $O A: O^{\prime} A^{\prime}$ are equal, therefore \&ec., (32). This general property, here established on general principles, includes of course the particular cases 9° and 10° established above by particular considerations.

Every two figures G and G^{\prime} described or enveloped as above are said to be homologous fiyuree with respect to the originals F and F, which again reciprocally are evidently homologous figures with respect to G^{\prime} and G^{*}, and every pair of points P^{\prime} and P^{\prime}, of lines L and L^{\prime}, of circles C and C^{\prime}, and generally of figures of any kind E and E, which are homologous with respect to either pair F and F are evidently also homologous with respect to the other pair G and $G^{\prime \prime}$, and conversely.
40. If a figure of any incariable form recolve round any point inturiably conneeted with it as a fixed centre, varying in magnitule as it revolevs according to amy lane, all points invariably connected with it describe, and all lines in woriably commicted reith it envelope, similar fiyures, all right or left, whose ratios of similitude and anglea of indination two and tuco are thase of the distances of the describing points or enveloping lines from tha fixeed centre.

For, if O be the fixed point, and $X, Y, Z, \mathcal{N c}$ any number of variable points or lines all invariably connected with the variable tigure; then since the form of the figure, whatever be the law of its variation in magnitude whilo revolving round O, is by hypothesis invariable, therefore, by the preceding (39), the several angles $X O Y, 1^{\circ} O Z, \mathbb{N}$., and the several ratios $O X: O Y, O Y: O Z$, \&c. are all constant, and therefore \&e., (32).

For points and lines of the revolving figure not evanescently or infinitely distant from O, it is easy to verify by particular considerations as in 9° and 10° of the preceding article, that in particular, if any one point P describe a line or circle all points $P, Q, R, d \cdot c$. describe lines or circles, and if any one line L envelope a point or circle all lines L, M, N, dec. envelope points or circles; this verification, there gone through in detail, need not of course be repeated here.
41. When two similar figures of any liind, both right or left, are similarly or oppositely placed (33), all lines $A A^{\prime}, B B^{\prime}$,
$C C^{\prime}, D D^{\prime}$, \&c. connecting pairs of corresponding points pass through a common point O, and are there cut, externally or internully, in the ratio of the similitude of the figures.

For if O be the point in which any one of them $A A^{\prime}$ intersects the line $P P^{\prime}$, connecting any pair of homologous points P and P^{\prime} with respect to the figures; since then, by hypothesis (33), the two directions $P A$ and $P^{\prime} A^{\prime}$, whether similar (fig. α) or opposite (fig. β), are parallel; therefore, by similar triangles, the two ratios $O P$: $O P^{\prime}$ and $O A: O A^{\prime}$ are each = the ratio $P A: P^{\prime} A^{\prime}=$ the ratio of similitude of the figures; therefore all
 connectors $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$, \&c. cut and are cut by the same line $P P$ at the same point O, and in the same ratio $O P: O P^{\prime}$, and therefore \&c.

Conversely, if the several lines connecting any arbitrary point O with all the points A, B, C, D, dec. of a figure of any kind, be increased or diminished in sinilar or opposite directions in any common ratio, the several extremities $A^{\prime}, B^{\prime}, C^{\prime \prime}, D^{\prime}$, dec. of the increased or diminished distances determine a second figure similar to the original, and similarly or oppositely placed with it according as the directions of the original and altered distancts are similar or opposite.

For, every pair of corresponding angles $A O B$ and $A^{\prime} O B^{\prime}$ and every pair of corresponding ratios $O A: O B$ and $O A^{\prime}: O B^{\prime}$ being equal, the figures are similar; and every pair of corresponding directions $O A$ and $O A^{\prime}, O B$ and $O B^{\prime}, O C$ and $O C^{\prime \prime}$, dic. being similar or opposite, the figures are similarly or oppositely placed (33), and therefore \&c.

Since, by pairs of similar triangles $A O B$ and $A^{\prime} O B^{\prime}$, the two lines $A B$ and $A^{\prime} B^{\prime}$ connecting any two points A and B
of either figure, and the two correqponding points A^{\prime} and B^{\prime} of the other are always parallel, whatever be the angle between the two lines $A A^{\prime}$ and $B B^{\prime}$ passing through O, they are therefore so in the particular case where that angle $=0$, that is, when $A A^{\prime}$ and $B B^{\prime}$ coincide and when therefore (19) $A B$ and $A^{\prime} B^{\prime}$ are the two tangents to the figures at A and A^{\prime}. Hence, tehen lueo similar right or lift figures are similarly or oppowitely placed, all pairs of tangents at pairs of corroponding points, like all other pairs of homologous lines of the figures, are parallel.
42. The point O related as above to two similar right or left figures, when similarly or oppositely placed, is terned their centre of similitud, and is said to be external or internal, with respect to them, according as the section by it of all lines comnecting pairs of homologots points in the common ratio of their similitude is external or internal, that is, according as they are similarly or eppowitely placed; when the two figures in either case are given in abmolute pusition, their centre of similitude O in evidently given by the intenection of any two lines $P^{\prime} P^{\prime}$ and $Q Q^{\prime}$ comnecting pairs of homologous points on or in any way situated with respect to them.

As all lines connecting pairs of homulogous prints P and P, Q and Q^{\prime}, R and R^{\prime}, S and S^{\prime}, \mathcal{S}., nituated in any manner with respect to the figures, pass through O, and are there cut in the ratio of their similitude, exterually or internally, according as their positions aro similar or opposite; so, convensely, all pairs of points P and P^{ν}, Q and Q, R and I^{\prime}, S and S^{\prime}, \mathcal{E}, , which connect by lines passing through O, and there cut in their ratio of similitude, externally or internally according as their positions are similar or opposite, are evidently homologous pairs with respect to the figures; and the two similar and similarly or oppositely placed figures P QRS \&c. and $P^{\prime} Q R S^{\prime \prime}$ dic., determined by any number of such pairs, are evidently similarly situated with respect to, and have the same centre and ratio of similitude with, the original figures $A B C D$ \&c. and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ \&c.

Every line passing through O being evidently its own homologne with respect to both figures and intersecting them,
if it meet them at all, at pairs of corresponding points A and A^{\prime}, B and B^{\prime}, C and $C^{\prime}, \mathcal{E c}$., of which the number depends, of course, on the nature of the figures; at which the several pairs of corresponding tangents, by (41), are parallel ; and for which the several pairs of ratios $O A: O A^{\prime}, O B: O B^{\prime}$, $O C: O C^{\prime \prime}, \& c .$, by the same, are equal to the ratio of similitude of the figures, so that if $O A=O B$, or any two of the points of meeting for either figure coincide, then also $O A^{\prime}=O B^{\prime}$, or the two corresponding points of meeting for the other also coincide. Hence, when two similar right or left figures are similarly or oppositely placed, every line passing through their centre of similitude, like every pair of homologous lines in general, divides and is divided by them similarly into pairs of corresponding segments in the linear ratio of their similitude, intersects them at equal angles at every pair of corresponding points of meeting, and if it touch either at any point of meeting touches the other also at the corresponding point of meeting.
43. Two similar figures of such a form, that a correspondence between their points and lines in pairs satisfying the conditions of similarity, exists in more ways than one (35), may be, moreover, of such a form that when similarly placed for one mode of correspondence, they are at the same time oppositely placed for another, or conversely; as for instance, two similar parallelograms, or, more generally, two similar polygons of any even degree whose several pairs of opposite sides are equal and parallel; every two such figures when thus at once similarly and oppositely placed have of course teco different centres of similitude, one external corresponding to their similar, and the other internal corresponding to their opposite, parallelism, each determined, as in the general ease, by the intersection of any two lines connecting pairs of homologous points for the relative positions corresponding to itself, and each possessing all the properties of the unique centre of similitude of the same kind with itself in the general case.
44. Oi figures coming under the above head two circles, however circumstanced as to magnitude or position, absolute
or relative, provided only they be in the same plane, possess, for the reason explained in (35), the property, confined to them exclusively, of being aluays at once similarly and oppositely placed, and of having therefore in every position two

different centres of similitude, one E external as similarly placed, figs. (α) and (β), and the other I internal as oppositely placed, figs. (α^{\prime}) and $\left(\beta^{\prime}\right)$; both situated on the line $C C^{\prime}$ connecting their centres C and C^{\prime} and dividing that line, the former externally and the latter internally, in the ratio of their radii ; both determined by the intersections with that line of the lines $A A^{\prime}$ connecting the extremities of any two parallel radii $O A$ and $C^{\prime} A^{\prime}$ drawn in similar directions, figs. (α) and (β), for the former, and in opposite directions, figs. $\left(\alpha^{\prime}\right)$ and (β^{\prime}), for the latter-or, which comes to the same thing, by the intersections with each other of the pairs of lines $A A^{\prime}$ and $B B^{\prime}, A B^{\prime}$ and $B A^{\prime}$, connecting the extremities,
adjacent for the former and non-adjacent for the latter, of any two parallel diameters $A B$ and $A^{\prime} B^{\prime}$, figs. ($\alpha^{\prime \prime}$) and ($\beta^{\prime \prime}$); and each possessing, as for every two figures coming under the same head, all the properties of the unique centre of similitude of its kind for any two similar figures similarly or oppositely placed, (41) and (42).

As every line touching two circles in the same plane connects the extremities of the two parallel radii to which it is perpendicular (Euc. III. 18); and consequently, by the above, passes through either the external or the internal centre of similitude of the circles, according as the directions of the radii are similar or opposite; hence two circles in the same plane, however circumstanced as to magnitude and position, admit, in general, of two, and of but two, pairs of common tangents, real or imaginary, both symmetrically situated with respect to, and intersecting upon, their line of centres; one, termed in consequence the external pair, intersecting at their external centre of similitude, and the other, termed in consequence the internal pair, intersecting at their internal centre of similitude ; and, evidently, both real, both imaginary, or, one real and one imaginary, according as the distance between their centres is greater than the sum, less than the difference, or, intermediate between the sum and difference, of their radii.

The two centres of similitude, external and internal, of two given circles, determined as above, or by any other method, give, consequently, in two conjugate pairs (Euc. III. 17), the four solutions, real or imaginary, of the problem "To draw a common tangent to the two circles."

CHAPTER III.

THP:OBI OY MAXIBA AND MINIBA.

45. Whes a geometrical magnitude of any kind, which varies continuously accorling to any law, paeses in the course of its variation through a value greater than either its preceding or succeeding values, it is said to be a morrimum, even though at some other stage of its variation it may paes through a value absolutely greater; and, on the other hand, when it passes in the coume of its variation through a value lese than cither its preceding or mucceeding values it is said to be a minimum, even though at swme other etage of its variation it may pans through a value aleolutcly less; the remns "maximum" and "minimum," as employed in geometry, aro therefore relative, not abinlute.
46. As, to a traveller ou a rond which is not a dead level, the top of every hill is a position of maximmm, and the bottom of every hollow a position of minimum, clevation above the sea or any other standard level; wo, for geometrical figures of the higher orders, the different variable magnitudes connected with them, may pass in tho course of their variation through several maxima and several minima values, of course necessarily alternating with each other in the order of their occurrence; as, for instance, the linear distance from any fixed point, or the perpendicular distance from any fixed line, of a variable point, traversing the entire figure or any part of it; for the point, line, and circle, however the variable magnitudes most commonly considered in connection with them and their combinations, rarely pass during their variations through more than a single maximum and a single minimum value; as, for instance, the distance of a variable point on
a circle from any fixed point or line situated in any manner with respect to it, which, in either case (Euc. 1II. 7, 8, 19), is a maximum for and only for the distance which passes through the centre, and a minimum for and only for the distance which if produced would pass through it; in all such cases the single maxima and minima values are not only relatively but also absolutely the greatest and least values through which the variable magnitude passes in the course of its variation.
47. As every increase or diminution of a magnitude of any kind is necessarily accompanied by the simultancous dimiuttion or increase of its reciprocal (8); it follows, of course, that when a variable magnitude passes under any circumstances through a maximum or minimum value, its reciprocal to any unit, passes simultancously through a minimum or maximun value.
48. The following are a few simple but fundamental examples of maxima and minima, to which many others are reducible:-

Ex. 1°. When two sides of a triangle are given in magnitude the area is a maximum (in this case the maximum) echen they contain a right angle.

For (Euc. I. 41), whatever be their angle of intersection, acute, right, or obtuse, the area $=$ half the product of either into the perpendicular on its direction from the remote extremity of the other, which perpendicular is evidently equal to the other for the right and less than the other for any position at either side of the right angle; and, in the same way generally, when one side of a triangle is constant the area varies as, and therefore passes through, its maxima and minima values with the perpendicular upon its direction from the opposite vertex.

Ex. 2^{2}. For the point of internal bisection of any segment of a line the product of the distances from the extremities is a maximum, and the sum of their squares a minimum.

For (Euc. 11. 5 and 9, 10), the product for that point exceeds the product for any other point of internal section on either side by the square, and the sum of the squares for that point falls short of the sum of the squares for any other point of section, external or internal, on either side, by twiee the square, of the distance between that and the other point of section; and, in the same way generally, for any two magnitudes expressed in numbers, as product $=$ square of half sum square of half difference, and as sum of squares = twice square of half sum + twice square of half difference; if the sum be constant, the product
is a maximum and the sum of the equares a minimum ; and if the product or the sum of the squares be comsant, the sum is a minimum in the former caso and a maximum in the latter, when the magnitudes ase equal.

Ex. 3°. For any tono magnibudes espressed in numbers whase awm is constant, the oum, product, swm of squares, and product of squares, of the reciprocals are all minima when the magnitwdes are egwal.

For, the product of the reciprocals being $=$ the reciprocal of the product, and the product of the squares of the reciprocals being = the reciprocal of the square of tho product aro both muima when the product is a maxinum, that is, Ex. 2', when the magnitudes are equal; and again, the sum of the reciprocals being o the sum divided by the product, and the sum of the squares of the reciprocals being a the sum of the squares divided by the product of the squares, are both minima also, when the product is a maximum, the sum being comotant by bypotheals, and the sum of the squares being then a minimum, Ex. 20 .

Ex. 4°. Fior the point of internal bisection of any side of a triangle the ares of the inscribed parallelingram formed by drascing parallels to the other tweo sides is a masimum.

For, whatever be the ponition of the point of sectimn, the angle of the parallelogram being conttant, its area (Fiuc. Vi. 23) varios as the product of the parallels ; that in, as the product of the segments of the divided side determined by the point of section, the former being to the latter procluct in the constant ratio of the rectangle under the other two sidea to the square of that side (liuc. V1. 23); but the latter product being a maximum, by Ex. 2, for the point of bisection of the side, so therefore is tho former, and therefore the area of the parallelograms and, in the same manner exactly, it appears that, fr the point of interual lisection of any side of the triangle the product of the perpendiculars on the other two sides, of more generally of the two lines drawn in any two given directions so meet thetn, is a maximum.

Ixx. 5°. For the point of internal bisection of any are of a circle, the sum of the squares of the linear distunces from the estremutics is a masimum or a minimum, and for tho point of esternal bisection a minimum or a maximum, according as the are is greater or less than a semicircle.

For, if $A B$ be the arc, C the middle point of its chord, M and N its two points of bisection, internal and external, P any other point on the
circle, and $P Q$ the perpendicular from P on $A B$; then since (Euc. II. 12, 13), whatever be the position of $P, P A^{2}=P C^{2}+C A^{2} \pm 2 C A . C Q$, and $P B^{r}=P C^{2}+C B^{2} \mp 2 C B . C Q$, therefore $P A^{2}+P B^{2}=C A^{2}+C B^{2}+2 . C P^{2}$, which is a maximum or a minimum when $C P$ is a maximum or a minimum ; that is (Eue. III. 7), when P is at M or N in the former case, and at N or M in the latter; and, in the same manner, it appears generally that the sum of the squares of the linear distances of a variable point P, on any geometrical figure from any two fixed points A and B, situated in any manner with respect to the figure, increases and diminishes and passes through its maxima and minima values, with the distance $P C$ of the variable point P from the middle point C of the line $A B$ connecting the two fixed points A and B.

Ex. 6°. For each point of bisection, internal and external, of any arc of a circle, the sum and product of the linear distances from the extrenities, and the area of the triangle they determine with the chord, are all maxima.

For, since whatever be the position of P, (same figures as in last), $P A \cdot P B=M N N . P^{P} Q$ (Euc. v1. 16), and area $A P B=\frac{1}{2} A B \cdot P Q$ (Euc. I. 41); the property is evident as regards the product and area, and it remains only to prove it for the sum $P A+P B$, which is easily done as follows: since for every position of P at the same side of the chord with M (as in the figures), by Ptolemy's Theorem (Euc. vI. 16, Cor.), $P A \cdot N B+P B \cdot N A=P N \cdot A B$, and since, by hypothesis, $N A=N B$, therefore $P A+P B: P N:: A B: A N$ or $B N$, that is, in a constant ratio, and therefore $P A+P B$ is a maximum when $P N$ is a maximum, that is, when P is at M; nnd in the same way it may be shern (hy simply substituting M for N in the above) that for positions of P at the same side of $A B$ with $N, P A+P B$ varies as $P M$, and is therefore a maximum when P is at N.

Ex. 7°. For each point of bisection, internal and external, of any arc of a circle, the segment of the tangent intercepted betucen the tangents at the extremities, and the area of the triangle it subtends at the centre of the circle, are loth minima.

For, if $A B$ be the are, $A C$ and $B C$ the tangents at its extremities, $X Y$ the segment intercepted between them of the tangent at any other point P, and O the centre of the circle; then, since whatever be the position of P, the lines $O X$ and $O Y$ bisect the angles $A O P$ and $B O I^{\prime}$ ((Euc. ili. 17), the angle between them, XOY is equal to half the angle $A O B$ subtended at O by the arc $A P B$, therefore
 in the triangle whose vertex is O and base $\mathbb{N} Y$, the altitude $O F$ and vertical angle $\mathbb{X O P}$ are both constant; and it is evident from the preceding, or independently, that when the vertical angle of a triangle is constant, the
altitude and area are both maxima for a given base, and the base and area both ninima for a given altitude, when the triangle is isosceles, that is, for the triangle XOF when P ir a point of bisection, internal or cxternal, of the are $A B$.

Ex. 8^{3}. For the point of internal bisection of any are of a circte, the area of the triangle formed by the tangent with the tangents at the extromities is a masimum or a minimnem, and fer tho point of esternal lisection a mininuum or a masimom, acoirding as tho are is toss or greater than a semicircle.

For, since in either case (same figures as in lavt), the pentagonal areas NAOBI, being double the triangular ame NOJ; is a minimum, by the preceding, for each point of biestion of ATs; and the quadrilateral area $A O H C$ being of couse contiam, whatever be the position of $\mathrm{X}^{\circ} 1{ }^{\prime}$, therefore the triangular area XCS; being - the quadrilateral - the pentagon in one case (fig. e), and = the quadrilateral the pentagon in the other caso (fig. β), is a maximum in the former caso and a minimum in tho latter.

Ex. ρ^{ρ}. For each point of bisection, internal and external, of any are of a circle, tho product of the perpondioulars upon the lengents at the estremities, and tho product of the perpondiculars from the estromities upon the langent, are both masima.

For, if $A B$ be the arc, P any point upon it, exturnal or internal, $P M$ and $P N$ the perpendientars frons P^{\prime} uppors the tangents at A and H_{0}, $A X$ and $B S^{\circ}$ the perpendicutans from of and If upon the tangent at P, and $P Q$ the perpendicular from P upous the chort A B ; then, joining r with A and 13 , by puirs of equal trianglen

$A P M$ and $P A X, B P N$ and $P H X^{\prime}$, we have $I^{\prime} M=A N$ and $P N=1 B I^{\prime}$, and thoreforo PM.PN $=A X^{\prime} . B 1$, and by paira of similar triangles
 we have $P M$ or $A X: P Q:: P Q: P N$ or $B Y$, both being $=P A: P B$, therefore $P M . P N^{\prime}$ and $A X . B Y^{\prime}$ both $=I^{\prime} Q^{\prime}$, and therefore $\&{ }^{(c}$.

Ex. 10°. Of all lines passing throngh a fixed point that ehich determines with tweo fized lines the Criungle of minimum area is that shose segment intercepted between tho lines is bisected at the point.

For, if P be the point, $A C$ and $B C$ the lines, $A B$ the intercept hisected at P, and $A^{\prime} b^{\prime}$ or $A^{\prime} B^{\prime \prime}$ any other intercept; then through A and B drawing $A D$ and $B D$ parallels to $B C$ and $A C$, mecting $A^{\prime} B^{\prime}$
or $A^{\prime \prime} B^{\prime \prime}$ at X^{\prime} and $Y^{\prime \prime}$ or $X^{\prime \prime}$ and $Y^{\prime \prime}$. As the two triangles $A P X^{\prime}$ and $B P B^{\prime}$, or the two triangles $B P Y^{\prime \prime}$ and $A P A^{\prime \prime}$, are evidently equal (Euc. 1. 4); therefore the triangle $A C B$ is less than the triangle $A^{\prime} C B^{\prime}$ or $A^{\prime \prime} C B^{\prime}$, and therefore \&c.

The point and lines being given, to draw $A B$ so as to be bisected at P, is, of course, but a particular case of the more general problem to draw it so as to be cut in any given ratio, of which the preceding construc-
 tion suggests the following obvious solution: drawing from P any line $P A^{\prime}$ or $P A^{\prime \prime}$ to either line $C A$, and producing it through P to Y^{\prime} or $Y^{\prime \prime}$ so that $P A^{\prime}: P Y^{\prime}$ or $P A^{\prime \prime}: P Y^{\prime \prime}=$ the given ratio, the parallel $Y^{\prime} B$ or $Y^{\prime \prime} B$ to $C A$ through Ψ^{\prime} or $Y^{\prime \prime}$ evidently intersects the other line $C B$ in the extremity B of the required line $A B$.

Ex. 11°. Of all lines passing through either point of intersection of two circles, that whose segment intercepted betwcen the circles is of maximum length, and subtends at the other point of intersection, the triangle of maximum area is that which is perpendicular to the chord of intersection.

For, if $P Q A$ and $P Q B$ be the circles, P and Q their points of intersection, and $A B$ any line passing through either of them P and meeting the circles at A and B; then since, joining A and B with the other intersection Q, the angles $P A Q$ and $P B Q$ are both constant (Euc. III. 21), the triangle $A Q B$ is constant in species, whatever be the position of $A B$, and therefore its hase $A B$, area $A Q B$, and sides $Q A$ and $Q B$ are all maxima together; but the sides $Q A$ and $Q B$ are maxima when they are diameters of their respective circles, that is (Euc. III. 31) when $A B$ is perpendicular to $P Q$.

Ex. 120. Of all lines passing through a fised point that whoss segments intercepted in opposite directions between the point and tuco fired lines contain the rectangle of minimum aros is that which makes equal angles with the lines.

For, if I le the point, $A C$ and $B C$ the lines, $A 13$ the line through 1 ' making equal anglen with $A C$ and $B C$, and $A^{\prime} B^{\prime}$ or $A^{\prime \prime} B^{\prime}$ any other line through P; then, as eridently

the cirele $A D B$ toucling $A C$ and $B C$ at A and B intersects $A B$ or $A^{\prime} B^{\prime}$ at points X^{\prime} and Y^{\prime} or X^{7} and J^{7} internal to A and $I^{\prime \prime}$ or $A^{\prime \prime}$ and $F^{\prime \prime}$, the retangle $l^{\prime} 1$. $P B$ which is equal to the rectangle $P X^{\prime} . P P^{\prime \prime}$ or $P^{\prime} X^{*} \cdot P^{\prime} \Gamma^{-1}$ (I.uc. 118.23), is therefore less than the rectangle $P^{\prime} A$. $P E^{r}$ or PA. PIr, and therefore \&

Fx. 13°. Of all lines pasaing through cither point of intersoction of two circles that whose uggments intercepted in opposite directions betwown the point and circles contain the restangle of maximum area is that which maker equal angles with the circles (22).

For, if $P \cdot A Q$ and $P P Q$ be the circles, P and Q their two points of intersection, $A B$ the line pasing through either of them P making equal anglas with the circtes, that in (22) with the tangents to them $A C$ and $B C$ at its extremities A and B, and A Ir or A IS any other line through P_{i} then, is evidently the circle ADIB touching $A C$ and $B C$ at A and B intersects $A B$ or $A^{\circ} J$ at pointr X^{2} and y^{F} or X^{-}and y^{\sim} external to A° and I^{5} or A° and J^{5} : the rectangle $P A, P$ ' B which is equal

 (Wuc. ${ }^{\text {inf. }} 35$) is therefore grester than the rectangle $P^{\prime} A^{\prime}, P B$ or P.A.PIF, and therefore \&e.

Ex. 14. The rectangle of maximum aros insecribed in any oegment of a circle, or of any other conses figure, is that whose side parallel to the bass of the srgment bisects tho sides of the triangle formed with the lase by the lines tovehing at its estremitios the cirste or figure.

For, if $A E F H 3$ be the segment. $E F F$ the chord parallel to its bese $A B$, which bisects the sides $X \%$ and $I \%$ of the triangle $X Y V^{\circ}$ formed with $A B 3$ by the tangents at E and F°; then, by Ex. 4°, the rectangle (or parallelogram) EFKKH is the maximum that could be inseribed in the triangle $X Z Y$, and therefore, a fortiori, in the segment $A E F E$ to which the triangle is external.

To draw $E F$ so as to bisect the tangents $Z \mathrm{X}$ and $Z Y$ is, of course, a particular case of the more general problem, to draw it so as to cut them in any given ratio, which for the circle may be done as follows: through the centre O drawing $O C$ and $M N$ perpendicular and parallel to $A B$ (the former of course passing through Z), and through X and Y, supposed found, drawing $X M$ and $I N$ parallel to $O C$ to meet the radii $O E$ and $O F$, supposed found, at P and Q respectively; then by pairs of similar triangles PEX and $O E Z, Q F Y$ and $O F Z$, the two ratios $P E: E O$ and $Q F: F O$ each $=$ the given ratio of the tangents, and therefore as $E O$ and $F O$ are given and equal, $P E$ and $Q F, P O$ and $Q O$, and the rectangles $P E, P O$ and $Q F . Q O$, are given and equal; but by other pairs of similar triangles $P E X$ and $P M O, Q F Y$ and $Q N O, P M . P X=P E . P O$, and $Q N \cdot Q Y=Q F \cdot Q O$, therefore the rectangles $P M . P X$ and $Q N . Q Y$ are given and equal; but $M X$ and $N Y$, being each $=C O$, are also given and equal; therefore (Euc. II. 6) $P M$ and $Q N, P X$ and $Q Y$, and the angles $P O M$ and $Q O N$ are given and equal, and therefore E and F are known.
49. The next example we give scparately as the basis of some useful properties of the triangle.
a. The lines connecting a variable point on a fixed line with two fixed points at the same side of the line have the maximum difference when they coincide in direction, and the minimum sum when the angle between them is bisected (of course externally) by the line.
b. The lines connecting a variable point on a fixed line with two fixed points at opposite sides of the line have the minimum sum vhen they coincide in direction, and the maximum difference achen the angle between them is bisected (of course internally) by the liuc.

Let $L L$, figs. α and β, be the fixed line, A and B the two fixed points, $A E$ and $B F$ the two perpendiculars from them on $L L, A^{\prime}$ and B^{\prime} the two points on the perperdiculars for which $A E=E \angle A^{\prime}$ and $B F^{\prime}=F B^{\prime}$, then the distances of any point I^{\prime} on $L L$, from A and A^{\prime}, or from B and B^{\prime}, being equal
(Euc. 1. 4), if D be the point on it at which $A B$ or $A^{\prime} B^{\prime}$ intersects it, that is the point on it for which $P A$ and $P B$ coincide in direction, and if C be the point on it at which $A B^{\prime}$ or $A^{\prime} B$ intersects it, that is the point on it for which the angle $A P B$ is bisected (externally fig. α, or internally fig. β) by it; it is to be shewn that, in fig. $\alpha, D A \sim D B>P A \sim P B$, and $C A+C B<P A+P B$, and that, in fig. $B, D A+D B<P A+P B$, and $C A \sim C B>P A \sim P B$, which are evident, the first for each figure from the triangle $A P B$ or $A^{\prime} P B^{\prime}$, and the second for each figure from the triangle $A P B^{\prime}$ or $A^{\prime} P B$, any side of a triangle (Euc. 1. 20) being greater than the difference and less than the sum of the other two.

The maximum difference in a (fig. a), or minimum sum in b (fig. β), is of course the distance $A B$ between the two points A and B; the minimum sum in a (fig. a), or maximum difference in b (fig. β), may be expressed in terms of the distances of the points from the line and from each other as follows:

In both cases the four points $A B A^{\prime} B^{\prime}$ lie evidently in a circle, and the two pairs of opposite connectors $A B$ and $A^{\prime} B^{\prime}$, $A B^{\prime}$ and $A^{\prime} B$ are evidently equal; therefore, by Ptolemy's Theorem (Euc. vi. 16, Cor.), $A^{\prime} A^{\prime} \cdot B B^{\prime}=A B^{\prime} . A^{\prime} B-A B . A^{\prime} B^{\prime}$ in fig. α, and $=A B . A^{\prime} B^{\prime}-A B^{\prime} . A^{\prime} B$ in fig. β; but $A A^{\prime}=2 . A E$, $B B^{\prime}=2 . B F$, and $A B^{\prime}=A^{\prime} B=A C+B C$ in fig. a, and $=A C \sim B C$ in fig. β; therefore

$$
\begin{aligned}
& (A C+B C)^{2}=A B^{2}+4 \cdot A E \cdot B F \cdot \ldots \ldots \text { in fig. } \alpha \\
& (A C-B C)^{2}=A B^{2}-4 \cdot A E \cdot B F \cdot \ldots . . \text { in fig. } \beta
\end{aligned}
$$

and
which are the formule by which to calculate in numbers the mininum sum or maximum difference when the distances of the points from the line and from each other are given.

The line $L L$ being in fig. α the external and in fig. β the internal bisector of the rertical angle C of the triangle $A C B$, we see from the above formula that-

If from the extremities of the base of a triangle perpendiculars be let full upon the external or internal bisector of the vertical angle, their rectangle $=$ square of half sum of sides - square of half base in the former case, and = square of half base-square of half difference of sides in the latter case.

If the interval $A B$ between the two points A and B bo
bisected or conceived to be bisected at O, and the point of bisection O connected or conceived to be connected with the feet of the two perpendiculars E and F; then, evidently, $O E=\frac{1}{2} B A^{\prime}$ and $O F=\frac{1}{2} A B^{\prime}$, therefore $O E=O F=\frac{1}{2}(A C+B C)$ in fig. α, and $=\frac{1}{2}(A C \sim B C)$ in fig. β. Hence-

If from the extremities of the base of a triangle perpendiculars be let fall upon the external or internal bisector of the vertical angle, their feet are equidistant from the middle point of the base by an interval=half the sum of the sides in the former case, and $=$ half the difference of the sides in the latter case.

From these last two properties combined we see that, when the base of a triangle is fixed and the sum or difference of the sides constant, if perpendiculars be let fall from the extremities of the base upon the external or internal biscetor of the vertical angle-
a. Their feet are equidistant from the middle point of the base by a constant interval = half the sum or difference of the sides.
b. Their rectangle is constant and=square of half sum or difference of sides \sim square of half base.

The interval EF between the feet of the perpendiculars being a chord of the circle round O as centre, whose radius $=\frac{1}{2}(A C+B C)$ in fig. α, and $=\frac{1}{2}(A C \sim B C)$ in fig. β, and the square of the semi-interval $A B$ between the two points A and B being = the square of the radius of the circle \mp the rectangle $A E . B F$, wo see that-

The two perpendiculars erected at the extremities of any chord of a circle meet any diameter of the circle at two points equidistant from the centre and contain a rectangle $=$ the square of the radius of the circle ~ the square of the semi-interval they intercept on the diameter.

A useful property of the circle which the reader may very easily prove, al priori, for himself.
50. If from any point A a perpendicular be let fall upon any line L, and produced, as in the preceding, through the line to a second point A^{\prime} equidistant from L with A, the new point A^{\prime} is termed the reflexion of the original point A with respect to the line L; and, generally, if from all the points $A, B, C, D, \& c$. of any geometrical figure perpendiculars be let
fall upon any line L and produced through L, in the same mamner, to their reflexions at tho opposite side, the new figuro $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, d.c. is termed the reflexion of the original with retpect to the line. - A convenient term introduced into Geometry from the science of Optics.

The relation between any figure and its reflexion with respect to any line is evidently reciprocal (8); that is, if one figure F be the reflexion of another F with respect to a line L, the latter F is reciprocally the reflexion of the forner F^{*} with reapeet to the same line L; it is evident aleo, that every two figures F and F reflexions of each other with respect to any line L, are right and lift figures (32), similar in form, equal in magnitude, and symmetrically situated, like two hands or two feet, with respect to the line and to each other.

Thus, the reffexion of a line is a line, of a circlo a circle, of the line passing through two points the line pressing through the reflexions of the points, of the circle paasing through three points or touching three lines the circle passing through the reflexions of the points or touching the reffexions of the lines, \&e.; aud, geuerally, of any figure intersecting or touching another a similar and equal fygure touching or intersecting the reflexion of the other at the reflexions of the point or points of intersection or contact of the original figures.

All points common to two figures reflexions of each other lie of course on the live (or axis as it is sometimes termed) of refexion, which evidently bisects at once all the angles finite or evanescent at which they intersect or touch each other.

Every circle having its centre on the axis of reflexion of any two figures reffexions of each other evidently intersects or touches both, when it meets them at all, at pairs of points reflexious of each other with respect to the axis; this peculiarity of the circle arises from the evident circumstance that every diameter of the figure divides it into two balves reflexions of each other with respect to itself.

If the plane of any figure be turned round any line in itself through an augle of 180°, the figure in the new is evidently the reflexion of itself in the old position with respect to the line.

From properties a and b of the preceding article it appears that-

When the lines connecting a variable point on a fixed line with two fixed points not on the line are reflexions of each other with respect to the line, their sum is a minimum or their difference a maximum according as the points lie at the same or at opposite sides of the line.
51. The next example again we give separately as the basis of some important properties of the circle.

The lines connecting a variable point on a fixed line, circle, or any other geometrical figure with two fixed points situated in any manner with respect to the figure, contain a maximum or minimum angle for every point at which a variable circle passing through the points touches the figure.

For, (Euc. III. 21 and I. 16), every chord of a circle subtends at any point on the circle an angle greater than at any point outside and less than at any point inside the circle, or conversely, according as the lesser or greater angular interval between the containing lines (24) is the subject of comparison for each angle; and, when a circle touches a line, circle, or any other figure, while the point of contact is common to the circle and figure, those at both sides of it on the figure are either both outside or both inside the circle according as the contact of the former with the latter is external or internal, and therefore \&c.

The problem" to find the points on a given line, circle, or any other geometrical figure which subtend maxima or minima angles at two given points" is reduced, therefure, to the problem "to describe a circle passing through the two given points and touching the given line, circle, or other figure;" the solutions of which for the line and circle are respectively as follows:

For the line. If P and Q be the points and $M N$ the line (figg. α and β, Art. 12); describing any circle $P Q X Y$ passing through P and Q and intersecting or not intersecting $M N$, and drawing to it a tangent $O T$ from the point O in which the line $P Q$ intersects $M N$, the circle round O as centre whose radius $=O T$ intersects $M N$ in the points of contact A and B of the two circles required.

For, from the described circle PQXI (Fuc. III. 36), $O T^{3}=O P . O Q$, and, by construction, $O A^{2}$ and $O B^{2}$ each $=O T^{3}$, therefore $O A^{3}$ and $O B^{3}$ each $=O P . O Q$, and therefore (Euc. iII. 37) the circles $P Q A$ and $P Q B$ touch respectively at A and B the given lise $M N$.

For the circle. If P and Q be the points and $M N$ the circle; describing any circle $P Q N Y$ passing through P and Q

and intersecting $M N$ in two points X and Y, and from the point O in which the chord of intersection $X Y$ meets the line $P Q$ drawing the two tangents $O A$ and $O B$ to $M N$, their points of coutact A and B are those of the two circles required.

For, from the given circle, $O A^{3}$ and $O B^{2}$ each $=O X . O Y$ (Euc. 111.36), and from the described circle $O X . O Y=O P . O Q$, therefore $O A^{1}$ and $O B^{3}$ each $=O P \cdot O Q$, and therefore (Euc. iti. 37) the circles PQ. A and $P Q B$ touch respectively at A and B the given circle $M N$.

If either of the points P or Q were on the line or circle $M N$, the other not being on it, the two points A and B would evidently coincide with it and with each other; and if P and Q were at opposite sides of the line or circumference $M N, A$ and B would evidently be both impossible as no circle passing through P and Q could then possibly touch $M N$.

Hence, for the line or circle alike, the two solutions of the problem would be distinct if P and Q were at the same side of $M N$, coincident if either P or Q were upon $M N$, and inpossible if P and Q were at opposite sides of $M N$.
52. With respect to the point O, determined as above in the solution for the circle, the following property is important-

The extremities $\mathrm{N}^{\prime \prime}$ and $Y^{\prime \prime}$ of every chord of $3 \mathrm{~N}^{\prime}$ whose direction passes through O lie in the same circlo with P and Q, and conversely, the chord of interscetion $X^{\prime} Y^{\prime}$ of every circle passing through P and Q and meeting MN passes through O.

For, in the first ease, the rectangles $O X^{\prime} . O Y^{\prime}$ and $O P . O Q$ being each equal to the rectangle $O X . O Y$ are equal to each other, and therefore \&c.; and, in the second case, conceiving O connected with either point of intersection X^{\prime} of the two circles $M N X^{\prime}$ and $P Q X^{\prime}$, and supposing the connecting line $O X^{\prime}$ to meet them again if possible at two different points Y^{\prime} and $Y^{\prime \prime}$, wo would have the two different rectangles $O X^{\prime} . O Y^{\prime}$ and $O X^{\prime} . O Y^{\prime \prime}$ equal to the same rectangle $O P . O Q$ which could not be, and therefore \&c.

Hence the general property that-
If a variable circle pass through two fixed points P and Q and intersect a fixed circle $M N$, the variable chord of intersection $X Y$ passes through a fixed point O on the line $P Q$, that, viz., for which the constant rectangle $O X . O Y=$ the fixed rectangle OP.OQ.

The circle $M N$ being given, if P and Q be both given, O is of course implicitly given with them, being, as above, the point in which $X Y$ (the chord of intersection with $M N$ of any circle through P and Q) meets $P Q$; but, if on the other hand, O only be given, P and Q may be (as in 12) on any line passing through O, and at any two distances from O (measured in similar or opposite directions according as 0 is external or internal to $M N$) for which $O P . O Q=$ the given rectangle OX.OY.
53. The problen to describe a circle passing through two given points P and Q and touching a given line or circle $M N$, is evidently a particular case of the problem.

To describe a circle passing through two given points P and Q and intercepting on a given line or circle $M N$ a segment or chord of given length $X Y$.

To solve which, as the direction of $X Y$ passes, by the preceding, in cither case through O, we have $O X . O Y=O P . O Q$ and $O X \mp O Y=X Y$ according as P and Q are at similar or opposite sides of $M N$, therefore, by Fuc. II. 6 or 5 , we have $O X$ and $O Y$ and therefore X and Y themselves.

When P and Q are at the same side of $M L N$, any length of segment or chord $X Y$ (less of course than the diameter in the case of the circle) might be intercepted by a circle through
P and Q, but when P and Q are at opposite sides of $M N$, figs. β Art. 12 and γ Art. 51, sinco the rectangle under the segments of a line cut internally can never (Euc. II. 5) exceed the square of half the line, no length less than twiee the side of the square $=$ the rectangle $O P . O Q$ could be intercepted; in that case, therefore, the two solutions of the problem are, distinct for any greater length, coincident for that particular length, and impossible for any lesser length.

Cor. Since a circle passing through a fixed point and haring its centre on a fixed line pases necessarily through a second fixed point the reflexion of the first with respect to the line (50), the four following problems are reduced immediately to the preceding.

To descrive a circle passing through a given point, having its centro on a given line, and touching, or intercepting a given segment or chord of, a given line or circle.
54. If A be any point, A^{\prime} its reflexion with respect to any line L, and E and F the centres of the two circles passing through A and A^{\prime} and touching any circle $M N$, figs. a and β,

then, if B be the centro of $M N$, it is evident that $A E+B E$ and $A F+B F$ in fig. α, and $A E \sim B E$ and $A F \sim B F$ in fig. β = the radius $B M$ or $B N$ of $M N$. Hence the following solutions of the two useful problems-

On a given line L to detormine the two points E and F, the sum or difference of whose distances from two given points A and 13 shall be giten.

With; either of the two given points B as centre and with a radius $B M$ or $B N=$ the given sum (fig. α) or difference (fig. β) describe a circle MN, the centres E and F of the two circles passing through the other given point A and its re-
flexion A^{\prime} with respect to the given line L and touching that circle, are the two points required.

Should $M N$ happen to pass through either A or A^{\prime} the two points of contact M and N would evidently coincide at whichever of them it passed through; therefore the two centres E and F would also coincide, and the construction then at the extreme limit of possibility or impossibility would become that already given in (49) for the minimum sum and maximum difference of the distances in question.
55. The next example, again, we give separately as leading naturally to an important property of similar figures.
a. Of all triangles of any constant species, whose sides pass through three fixed points, the maxinum is that the perpendiculars to whose sides at the points intersect at a common point.
b. Of all triangles of any constant species, whose vertices lie on three fixed lines, the minimum is that the perpendiculars to the lines at whose vertices intersect at a common point.
 (β)

For if $A B C$ and $P Q R$ be any two triangles such that the sides of $A B C$ pass through the vertices of $P Q R$, or the vertices of $P Q R$ lie on the sides of $A B C$; the three circles $Q A R, R B P$, $P C Q$ pass evidently in all cases (Euc. III. 21, 22) through a common point O, for which the three angles $Q O R, R O P, P O Q$ are equal or supplemental to the three angles $B A C, C B A, A B C$ respectively, and the three angles $B O C, C O A, A O B$ to tho sums or differences of the three pairs of angles $B A C$ and $Q P I$, $C B A$ and $R Q P, A C B$ and $P R Q$ respectively (see 24), and which, when either of the two triangles $A B C$ or $P Q R$ is fixed and the species of the other constant, is therefore fixed, and determines with the three sides of the variable triangle, which-
ever it be, three variable triangles $B O C, C O A, A O B$, or $Q O R$, ROP, $P O Q$ of constant species revolving round it as a common vertex. Hence, O being fixed in both cases, when, as in (a), $P Q R$ is fixed and $A B C$ wariable, $B C, C A, A B$ are maxima with $O A, O B, O C$, that is, when the latter are diameters of the three fixed circles $Q O R, 11 O P, P O Q$ reapectively, and therefore \&c. ; and when, as in (b), $A B C$ is fixed and $P Q R$ variable, $Q H, R P, P Q$ are minima with $O P, O Q, O R$, that is, when the latter are perpendiculars to the three fixed lines $B C, C A$, $A B$ respectively, and therefore isc.

Hence, to construct the triangle of given specine and maximum area $A B C$ rehose sides shall pass through three given points $P Q R$, or the tricmgle of given specien and minimum ares $P Q R$ whose vertices shall lie on three giem lines $B C, C A, A B$. The three angles $Q O R, B O P, P O Q$ in the forner case, and the threo $B O C, C O A, A O B$ in the latter, being given by tho above relations, the point O therefore in either caso is given immediately by the common intersection of threo given circles (Enc. 11t. 33), and therefore the three perpendiculars BC, $C A$, $A B$ to $O P, O Q, O l$ in the fonner case, and the three $O P$, $O Q, O R$ to $B C, C A, A B$ in the latter, are given, and therefore dc.

Cor. 1°. By aid of the point O, detenmined as above, the two problems: to construct a triunglo $A B C$ or $P Q R$ of given magnitude and species, whose three sides $B C, O A, A B$ shall pass thirough three given points $P, Q, I R$, or whose three vertices P, Q, R shall lie on three given lines $B C, C A, A B$, of which the two above are the extreme cases, may be solved with equal readiuess; for, the species of the six triangles $B O C, C O A$, $A O B$ and $Q O R, \angle O P, P O Q$ being given in both cases, when, ns in the former case, the three tengths $B C, C A, A B$ aro given, so therefore are the three $O A, O B, O O$, and therefore the three points A, B, O onl the three given circles QOR, ROP, POQ, and when, as in tho latter case, the three lengths $Q R, M P, P Q$ are given, so therefore are the three $O P, O Q, O R$, and therefore the three points P, Q, R ou the three given lines $B C, C A, A B$.

Hence, again, as in the problems, Arts. 51 and 53, the two solutions of the problem are distinct, coincident, or im-
possible according as the given magnitude of the triangle to be constructed $A B C$ or $P Q R$, is less than, equal to, or greater than its maximum value in the former case, or greater than, equal to, or less than its minimum value in the latter.

Cor. 2°. By aid of the same again the two problems: to construct a quadrilateral of given species, whose four sides A, B, C, D shall pass through four given points P, Q, R, S, or whose four vertices P, Q, R, S shall lie on four given lines A, B, C, D may be readily solved. For, in the former case, to tind any vertex $A B$ of the required quadrilateral $A B C D$. As the two triangles $P R Q$ and $P S Q$, through whose common vertices P and Q the two sides A and B corresponding to that vertex pass, are given, and as the two triangles $A C B$ and $A D B$, which they determine with the other two sides C and D, are of given species; therefore by the above the circle passing through P and Q and though the required vertex $A B$ passes through two given points M and N, whose distances from $A B$ have a given ratio and which therefore determine $A B$. And, in the latter case, to find any side $P Q$ of the required quadrilateral $P Q R S$, as the two triangles $A C B$ and $A D B$, on whose common sides A and B the two vertices P and Q corresponding to that side lie, are given, and as the two triangles $P R Q$ and $P S Q$ which they determine with the other two vertices R and S are of given species; therefore, by the above, the circle passing through the intersection of A and B and though the extremities of the required side $P Q$ passes through two given points M and N, which consequently determine that circle and with it therefore the two points P and Q at which it intersects the two given lines A and B.

The same problem, the solutions of which, differing from those of Cor. 1°, are always in both cases unique and possible, may also, in the former case, to which the latter is evidently reducible, be solved otherwise thus as follows: Since the diagonal connecting any pair of opposito vertices $A B$ and $C D$ of tho required quadrilateral $A B C D$ divides the two corresponding angles $A B$ and $C D$ each into segments of given magnitude; it therefore intersects the two given circles through P and Q and through R and S, on which $A B$ and $C D$ lic, at two given points I and J which consequently determine that diagonal and therefore the quadrilateral.
N.B. If the two points $M / \begin{aligned} & \\ & \text { and } \\ & \\ & \text { in the former or the two }\end{aligned}$ I and J in the latter of tho coustructions just given happened to coincide, the construction otherwise determinate would bo evidently indeterninate, and consequently an infinite number of quadrilaterals could be constructel satisfying the comditions of the problem. The circumstances under which such cases ariso in general will be considered further on.

Con. 3°. In the particular case of the above when, as is nearly the case in fig. β, one angle of the triangle $P Q R=$ two right angles, and when therefure the other two each $=0$, it is evident from the values of the three angles $B O C, C O A, A O B$, as given above, that the point O lies on the circle circumscribing the triangle $A B C$. Hence wo see that-
a. If thrce proints P, Q, R, tuken arlitrarily on the three sides $B C, C A, A B$ of any triangle $A B C$, lie in a right line; the thrce circles $Q A R, I R B P, P C Q$ intersect at a common point O on the circle ABC.
b. If thile the triangle is fium the three points P, Q, B vary so as to preserve the constancy of the three ratios QII: IIP: PQ, the point of int-rsction O is a fixed point, and conversely.

The four lines $13 P^{\prime} C, C Q A, A R B$ and $P Q R$, in the above, being entirely arbitrary, it follows at once from property a, as the reader may very easily prove à priori for himself, that-

The four circles circumscribing the four triangles determined by any four arbitrary lines taken three and three intersect at a common point.

By Cors. 1° and 2° applied to the same particular case we obtain ready solutions of the two following problems, viz.
1°. Io drano a line intersecting three given lines so that its segment intercepted betucen any two of them shall be out in given lengths by the third.
2. Io draw a line intersecting four given lines so that its segment intercepted letween any two of them shall be cut in given ratios by the other tuco.
56. From the nature of similar figures and of their homologous points and lines, it appeared (40) that if one point O of or connected with a figure l ' of any nature variable in magnitude and position but invariable in form be fixed, all points
$P, Q, R, S, \&$ c. of or connected with it describe, and all lines $A, B, C, D, \&$ c. of or connected with it envelope similar figures, so that in such a case if one point P move on a line or describe a circle, all points $Q, R, S, \&$ c. move on lines or describe circles, and if one line A turn round a point or envelope a circle, all lines $B, C, D, \&$ c. turn round points or envelope circles. Hence from the preceding it follows that-

For a figure F of any nature variable in magnitude and position but invariable in form, if three points P, Q, R connected with it in any manner move on fixed lines A, B, C, all points S, T, de. connected with it move on fixed lines D, E, dec., and if three lines A, B, C connected with it in any manner turn round fixed points P, Q, R, all lines D, E, dec. connected with it turn round fixed points S, T, de.

For, in the former case, the variable triangle P, Q, R, whose vertices move on the three fixed lines A, B, C, and in the latter case the variable triangle A, B, C, whose sides pass through the three fixed points P, Q, R, being invariable in form; therefore by tho preceding the point O, connected as above with the variable triangle and therefore with the figure, in both cases is a fixed point, and therefore \&c.

Cor. 1°. The above general properties supply obvious solutions of the four following general problems, viz.

To construct a figure of given form, 1°. four of whose points shall lie on given lines; 2°. four of whose lines shall pass through given points; 3°. three of whose points shall lie on given lines, and one of whose lines shall pass through a given point; 4°. thrce of those lines shall pass through given points, and one of whose points shall lie on a given line.

Of these four general problems 1°. and 2°. admit always of possible and generally of uniquo solutions, depending on the unique point of intersection of two lines in 1°., and on the unique line of connection of two points in 2°., which may however by the possible coincidence of the two lines in 1°, or of the two points in 2°. become in certain cases indeterminate (55, Cor. 2°.) ; 3°. and 4°. on the other hand admit in all cases of two solutions, distinet, coincident, or impossible according to circumstances.

The circumstances under which the solutions of 1°. and 2°.
may in certain cases become indeterminate, appear at once from the two general properties of the present article; the four points of the figure P, Q, R, S, in i°. may so correspond to the four given lines A, B, C, D, or the four lines of the figure A, B, C, D in 2°. to the four given points P, Q, R, S, that when in 1°. three of the points P, Q, R lis on three of the lines A, B, C, the fourth point S must lie on the fourth line D, or when in 2°. three of the lines A, B, C pass through three of the points $P, Q, I l$, the fourth line D must pass through the fourth point S; in either case the problem would evidently admit of an infinite number of solutions and conserquently be indeterninate.

Cor. 2. The same ngain by aid of the principles established in the preceding article supply obvious solutions of the four following additional ןroblems, viz.-

To construct a figure of given form and of minimum or given magnitude, three of those points shall lie on given lines.

T'o ronstruct a figure of given form and of maximum or given magnitud, three of ichose lines shall pass through given points.

Of which the two for the cases of given magnitude admit each, ns in Cor. 1°. of the preceding, of two solutions, distinet, coincident, or impossible, according as the given magnitude happens to be within, upon, or beyond the limiting value of which it is susceptible under the circumstances of tho case.
57. There are many cases in which a variable magnitude is shewn to be a maximum (or a minimum) in some particular relative position of the elements of the figure with which it is connected, by its being shewn that for any other relative position it could be increased (or diminished), and that every change which would increase (or diminish) it would tend to bring it to the particular configuration in question, of this the four following instructive examples may be taken as illustrations:

Fix. 1. The sum of the distances of a variable point on a fired lino from two fixed points at the same side of the line is a minimum when they make equal angles with the line (lix. $a, 49$); from this it follows that-

Of all polygons of any order whose vertices in any assigned order lis 1 on fixed lines, that of minimum perimeter is that whose sereral angles are all bisecteid externally by the lines on which their vertices lie.

For, supposing any angle of the polygon not to be so bisected, the removal of its vertex to the point at which it would be so bisected, would,
weithout affecting in any manner the remaining sides of the polygon, diminish the sum of the containing sides, and therefore the entire perimeter of which that sum is a part.

Ex. 2. For the middle point of any arc of a circle: 1°. The sum of the chords of the segments and the area of the triangle they form with the chord of the arc, are both maxima (Ex. $6^{\circ}, 48$) ; 2°. The perimeter and area of the quadrilateral formed by the tangent with the chord of the arc and the tangents at its extremities are both minima (Ex. 70, 48); from these it follows that-
1°. Of all polygons of the same order inscribed in the same circle, that of maximum perimeter and area is the regular.
2°. Of all polyyons of the same order circumscribed about the same circle, that of minimum perimeter and area is the regular.

For, supposing any vertex of the polygon in 1°. not to bisect the arc of the circle intereepted between the adjacent two, its removal to the middle point would, without affecting in any way the remainder of the polygon, increase both the perimeter and area of the triangle it determines with the chord of the are, and therefore of the entire figure of which that triangle is a part; and, supposing the point of contact of any side of the polygon in 2°. not to bisect the arc of the circle intercepted between those of the adjacent two, its removal to the middle point would, without affecting in any woay the remainder of the polyyon, diminish both the perimeter and area of the quadrilateral determined by that side with the chord of the arc and the tangents at its extremities, and therefore of the entire figure of which that quadrilateral is a part.

Ex. 3. When a line of any length is cut into two equal parts, the product of the parts is greater, and the sum of their squares less, than if it were cut into any two unequal parts (Ex. $2^{\circ}, 48$); from this it follows that-
1^{1}. When a line of any length is cut into any number of equal parts, the continued product of all the parts is greater, and the sum of their equares less, than if it were out in any way into the same number of enequal parts.
2°. When a line of any length is cut into any number of parts a, b, c, d, $\&_{i} c$ in the ratios of any set of integer numbers $a, \beta, \gamma, \delta, f c$., the product $\sigma^{2} . b A \cdot c^{\gamma} . d^{3}, f^{c}$. is greater, and the sum $\frac{a^{3}}{a}+\frac{b^{2}}{\beta}+\frac{c^{2}}{\gamma}+\frac{d^{2}}{\delta}+f c$. is less, than if it were cut in any other seay into the same number of parts.

To prove 1°. Supposing any two of the parts not to he equal, the equable division of their sum would, withont nffecting any of the remaining purts, inerease the product and diminish the sum of the squares of those two, and therefore increase the product and diminish the sum of the squares of the entire set.

To prove 2^{2}. Conceiving a subdivided into a equal parts, b into β equal parts, c into y equal parts, d into ${ }^{8}$ equal parts, \&ec., then since
as a a^{2} times the continued product of the a subdivisions of $a, \nu^{\beta}=\beta^{\beta}$ times the continued product of the β sublivisions of $b, c^{7}=\eta^{7}$ times the continued product of the $\%$ subdivisions of $e, d^{3}=8$ times the continued product of the 8 subdivisioms of $d, \& e . ;$ and since $a^{2}=a$ times the sum of the squares of the esubdivisions of $a, b^{2}=\beta$ times the sum of the squares of the β subdivitions of $b, c^{\circ}=\gamma$ times the sum of the squares of the γ subdirisions of $e, d^{7}=\delta$ times the sum of the squares of the δ subdivisions of $d_{1} \& c$, therefore $a^{6} \cdot V^{n} \cdot c^{7} \cdot d^{d} \cdot \& c,=a^{0} \cdot \beta_{B} \cdot \gamma^{7} \cdot \delta^{2} \cdot$ \&c. times the continued product of the whole $a+\beta+\gamma+\delta+\delta$. subdivisions, of the entire line, and $\frac{a^{3}}{\alpha}+\frac{b^{b}}{\beta}+\frac{c^{3}}{\gamma}+\frac{d^{7}}{8}+\delta c_{0}=$ the sum of the aquares of the same $e+\beta+\eta+\delta+\delta c$. sublivisions; and therefore, by \mathfrak{I}°., the former is a maximum and the latter a minimum then tho several subdivisions are all equal, that is, as a contuine of them, b, β of them, c, γ of them d, δ of them, \&c., when $a: b: c: d, \mathcal{A} 0::: \varepsilon: \beta: \gamma: \delta, \& c$. Q.R.D.

Fx. 4. When two conterminous lines of any lengthes are placed at a right angle, the area of the triangle they determine is greater than if they wero placed at any other anglo obluse or acute ($\mathrm{Kx} .1^{\circ}, 48$) from this it follows that

1. W'hen all the sides but one of a polygon aro given in length and order, the area of the figure is the masimum when the nemicircle deecribed on the closing aide as diameter passes through all its eertices.
2. When all the sides of a polygon are giren in longth and onder, the ares of the figure is tho marimum when all its rertices lie in a circlo.
3^{3}. Whon tho extremities of a lent line of giren length are connected by a straight line, the area of the enclosed figure is the masimum when its form is a semicircle.
4°. When the perimeter of a closed flgure is given, its area is tho maximum when ite form is a circle.

To prove 1° and 3°. Supposing any single vertex P of the polygon in the former case, or any singlo point P of the bent line in the lateer case, not to lie upon the semicircle doscribed on the closing side or connecting lino $A B$, then the two conterminous lines $A P$ and $I P P$ not being at a right angle (Eike. iti. 31). The puting of them at a right aggle would, without affecting on any way, escept in position, the remaining portions of the figure which might bo regarded as attached to and movenblo with them, increase the area of the triangle $A P B$ and therefore of the entire figure of which it is a part.

To prove 4°. Supposing the perimeter to form a circle, then any diameter $A B$ would divide the whole figure into two semicircles, one or both of which would necessarily be altered in form and therefore diminished in area $\left(3^{\circ}\right.$.) by any change whatever from the circular form of the entire.

To prove 2 . Supposing the several vertices of the polygon to lie in a circle, then conceiving the circle described through them, any change whatever in the figure of the polygon would without affecting in any ceay except in position the circular segmente on the seceral siles which might be
regarded as attached to and moveable reith them alter the form and thercfore diminish the area of the entire circular figure (4°.), and consequently of the polygon itself the only part of the whole undergoing change of area.

Otherwise thus, from 1°. without the aid of 4°. the polygon and circle being supposed described as before; then, firstly, if any two vertices of the former A and B happened to determine a diameter of the latter, that diameter would divide the polygon into two whose areas, by 1°., would both be diminished by any change of figure they could receive; and, secondly, if no two vertices happened to determine a diameter, then drawing any diameter $A B$, and connecting its extremities A and B each with the two adjacent vertices of the polygon M and N, P and Q, between which it lies, that diameter would divide the entire figure consisting of the variable original polygon and the two invariable appended triangles MAN and $P B Q$ into two parts, whose areas, by 1°., would both be diminished by any change of figure they could receive; therefore in either case any change of figure in the original polygon, as necessarily producing a change of figure in one or both of the partial polygons, would diminish the area of one or both, and therefore of the whole.

The former demonstration, though perhaps less elementary, will probably be regarded by the reader as simpler than the latter.
58. In the Theory of Maxima and Minima it happens very often, so often as to require special notice at the very outset of the subject, that a variable magnitude which in a certain relative position of the elements of the figure with which it is connected has a maximum and a minimum value each for the proper position corresponding to itself, appears in another relative position of the very same clements to have two maxima or two minima values for the same positions alternating with two minima values each $=0$, or two maxima values each $=\infty$, at certain internediate positions, as, for example, the distance of a variable point on a fixed circle from a fixed line, which when the circle and line do not intersect, is a maximum for the farther and a minimum for the nearer extremity of the diameter perpendicular to the line, but which when they do intersect has apparently maxima values at both those extremities alternating with apparently minima values each $=0$ at the two points of intersection.

In the preceding, and in all similar eases, however-as will more fully appear when we come to the subject of the Signs of geometrical magnitudes-a change of sign takies place at each passage of the varinble through 0 or ∞, after which a
negative increase is of course a positive decrease, and conversely, and a negative maximum consequently a positive minimum, and conversely; and the two values $=0$ or ∞ are not real minima or maxima values at all (45), but merely the particular values through echich the variable magnitude in continuous decrcase or increase pousses at the moment of changing sign. Of course if absolute values of magnitudes only were taken into account, as in arithmetic and in the geometry of ancient times, the particular values 0 and on would be the least of all minima and the greatest of all maxima for magnitudes of every kind; but in the geometry of the present day, in which magnitudes of certain kinds are rogarded as having not ouly absolute value but also sign, they are looked on as in no way differing from any other particular values through which rariable magnitudes in continuous decrease or increase may happen to pass. In the case of magnitudes incapable of change of sign, the values 0 and ∞ are of course the extreme minima and maxima values in modern as in ancient geometry, and it might at fint sight appear questionable whether it would not be better to regard them as such for magnitudes of all kinds as well. The advantages, however, resulting from the convention of signs in modern geometry are so numerous and considerable, that in the present stato of tho science it could scarcely be regarded as optional to forego them or not.
59. The extreme maxima and minima values of variable magnitudes, in whichever light regarded, give evidently in all eases the extremo limits of possibility and impossibility in tho solutions of all problems involving the magnitudes; it being of course impossible to construct a magnitude of any kind greater than the extreme maximum or less than the extreme minimum of which it is susceptible under the circumstances of its data.

Should the extreme maxima and minima values of a magnitude variablo in position happen to be equal, of course all intermediate values would be also equal, and the magnitude would be constant; in every such case the problem to construct the magnitude so as to have a given value would of course bo impossible for any other than the constant value, while for that
value it would evidently admit of an infinite number of solutions or be indeterminate as it is termed.

When on the other hand, as is of course the case generally, the extreme maxima and minima values of a magnitude variable in position are not equal, the problem to construct the magnitude so as to have any intermediate value, admits always of at least two distinct and definite solutions, more or less separated from each other, which approach to coincidence as the value continuing within the limits of possibility approaches cither limit, which actually coincide for each limiting value, and which become impossible together once the limits are passed; and the same is the case generally for all problems admitting of two solutions and therefore for all in which, directly or indirectly, the circle is involved, the two solutions in general distinct become coincident at the limits of possibility and impossibility, and so pass together through coincidence from possibility to impossibility, and conversely, (See 21).
Λ s an example of the preceding principles: suppose it were required to draw from a given point to a given circle a line of given length. For the centre of the circle the solutions of the problem would manifestly be impossible for any value of the given length different from the radius and indeterminate for that value; while for every point different from the centre it would admit of two, and but two, determinate solutions which would be distinct, coincident, or both impossible, according as the given length happened to lie between, upon, or beyond the extreme limits for the point.

The above principles are all general and deserving of particular attention; for, 1°. - No problem in geometry admitting in its gencral form of but a single solution ever becomes impossible, however in certain cases it may appear to do so ; 2°. Whenever a problem admitting in its general form of two solutions becomes impossible, the two solutions always become impossible together, and pass invariably through coincidence in their transition from possible to impossible, and conversely ; and 3°.-There is no problem in geometry that does not become indeterminate under certain circumstances of its data.

CHAPTER IV.

ON THP TRIGONOMETRICAL FUNCTIONS OP ANGLRS.

60. Ip from any point I ' taken arbitrarily on either M of two indefinite lines M and N intersecting at a point O and constituting an angle of any forms $M N$ a perpendicular $P Q$ be let fall upon the other line \boldsymbol{N}, the perpendicular determines with the two lines a right-angled trianglo $P Q O$ whose form it is evident depends only on that of the angle, and every two of whose sides determine two reciprocal ratios which aro implicitly given with, and which, reciprocally, implieitly give the form of the angle. The six ratios thus determined from their importance in the science of Trigonometry are termed the trigonometrical functions of tho angle, and aro designated in that science by appropriato names as follows:
$1^{\text {. }}$. The ratio of the perpendicular $P Q$ to the interval $P O$ between its head and the vertex of the angle is termed the sine of the angle.
61. The ratio of the perpendicular $P Q$ to the interval $Q O$ between its foot and the vertex of the angle is termed the tangent of the angle.
3°. The ratio of the former interval $P O$ to the latter interval $Q O$ is termed the secant of the angle.
4°. The ratio of the interval $O Q$ to the distance $O P$ is termed the co-sine of the angle.
5°. The ratio of the interval $O Q$ to the perpendicular $P Q$ is termed the co-tangent of the angle.
6°. The ratio of the distance $O P$ to the perpendicular $P Q$ is termed the co-secant of the angle.

Upon the question as to the origin and appropriateness of the names 'sine,' 'tangent,' and 'secant,' we need not enter here; the three simple ratios so designated are of such frequent oc-
currence, the first of them especially, in geometrical researches, as absolutely to require some distinguishing appellations; and the old and familiar names by which they have always been known in another science, are at least as convenient as any others that might be proposed for the purpose ; the remaining three, termed respectively co-sine, co-tangent, and co-secant, have been so named as being to the complement of the angle what the sine, tangent, and secant, are to the angle itself.

If the angle determined by the two lines be conceived to change figure and to pass continuously through every variety of form, from the extreme of two parallel to the opposite extreme of two rectangular lines; the whole six ratios will pass evidently in the course of the variation, the sine, tangent, and secant in continuous increase, and the co-sine, co-tangent, and co-secant in continuous decrease, through every variety of value of which they are severally susceptible; the sine from 0 up to 1 and the co-sine from 1 down to 0 , the secant from 1 up to ∞ and the co-secant from ∞ down to 1 , the tangent from 0 up to ∞ and the co-tangent from ∞ down to 0 ; the whole six being of course implicitly given for each particular form of angle, and any one of them reciprocally determining the corresponding form of the angle and with it of course the remaining five.

Of all the trigonometrical functions of the angle the sine is that which enters most largely into the investigations of modern geometry, and we shall accordingly devote the present chapter to the consideration of a few simple but very important properties involving the sines of angles.
61. The ratio of the sines of the segments into urich an angle is divided by any line possing through its vertex is the same as that of the perpendiculars on its sides from any point on the line; and conversely, the ratio of the perpendiculars from any point on the sides of an angle is the same as that of the sines of the segments into which the angle is divided by the line connecting its vertex with the point.

For if $A A^{\prime}$ and $B B^{\prime}$, or M and N, be the sides of the angle; $P P^{\prime}$, or L, the line passing through its vertex O; P, or P^{\prime}, the point, and $P X$ and $P Y$, or $P^{\prime} X^{\prime \prime}$ and $P^{y} Y^{\prime \prime}$, the perpendiculars. Then since by definition $P X: P O$ or $P^{\prime} X^{\prime}: P^{\prime} O=\sin L M$
and $P Y: P O$ or $P^{\prime} Y^{\prime \prime}: P^{\prime} O=\sin L N$, therefore $P X: P Y$ or $P^{\prime} X^{\prime \prime}: P^{\prime} Y^{\prime \prime}=\sin L M: \sin L N^{\prime}$, and therefore \&c.

Con. 1°. If the two perpendiculars $P X^{\circ}$ and $P Y$, or $P^{\nu} X^{\prime \prime}$ and $I^{\nu} 1^{\prime \prime}$, were turned round P, or I^{\prime}, through any common augle so as to become, more generally, isoclinals inclined at any equal angles to the sides of the given angle M and N,
 the same property would obvionsly be true of the isoclinals as of the perpendiculars, as the ratio of the former would evidently be constant and equal to that of the latter through whatever angles they were turned.

Cons. 2. A very obvious solution of a very useful problem "to divid, a gieen angle internally or externally into tao parts whose sinss shall have a given ratio" might evidently be based on the above, but another and in many respects more convenient method of effecting the same division will be given further on.
62. In a circle the ratio of any chord to the diametr is the sine of the constant anglo subtemled by the chord at every point on the circumfirence of the circle: 25).

If $A B$ be the chord; through either extremity of it A drawing the diameter $A C$ and joining $C B$, then since the angle subtended by the chord at any point on the circle is independent as to form of the position of the point (25), if the theorem be true for any one point on the circle it is true for every point, but it is
 true for the point C, for the angle $A B C$ being in a semicircle and consequently a right angle, therefore by (60) the ratio of $A B: A C$ is the sine of the angle $A C B$, and therefore \&c.

Cor. 1°. Hence tico or any number of chords of the same circle are to each other as the sines of the angles theys severally subtend at the circumference of the circle; for each chord, by the above, being equal to the diameter of the circle multiplied
by the sine corresponding to itself, and the diameter being the same for them all, therefore \&c.

Cor. 2°. The angle any chord of a circle makes with the tangent at either of its extremities being similar in form to that in the two segments into which it divides the circle (22). Hence from Cor. 1°.-

Two or any number of chords of the same circle are to each other as the sines of the angles they make with the tangents at their several extremities.

COR. 3°. The several chords may be conterminous, in which case it appears at once from Cor. 2°., that -

Two or any number of chords diverging from the same point on the circumference of a circle are to each other as the sines of the angles they severally make with the tangent at the point.

Cor. 4°. Any two adjacent sides of any polygon inscribed in a circle being conterminous chords of the circle; therefore from Cor. 3°.-

The tangents at the several vertices of any polygon inscribed in a circle divide the several angles of the polygon externally into parts whose sines are in the ratios of the adjacent sides of the polygon.

Cor. 5°. The three sides of every triangle being chords of the same circle, that viz. which passes through its three vertices, and the three angles being those subtended by their opposite sides at the circumference of the circle; hence at once, from the above, the important property of the triangle, that-

The sine of any angle of a triangle is equal to the opposite side divided by the diameter of the circle circumscribing the triangle; and conversely, the diameter of the circle circumscribing any triangle is equal to any side of the triangle divided by the sine of the opposite angle.

Cor. 6°. Denoting in any triangle by a, b, c the three sides, and by A, B, C the three respectively opposite angles, then always-

$$
a \div \sin A=b \div \sin B=c \div \sin C
$$

for each by the above is equal to the diameter of the circle circumscribing the triangle.

Con. 7°. Denoting by d the diameter of the circumscribing circe, and by p, q, r the three perpendiculars from the three vertices A, B, C upon the respectively opposite sides a, b, c; then since (60), $p=c \cdot \sin B$ or $b \cdot \sin C, q=a \cdot \sin C$ or $c \cdot \sin A, r=b \cdot \sin A$ or $a \cdot \sin B$, and since, Cor. 6°., $d=a+\sin A=b \div \sin B=c+\sin C$, therefore $p d=b c, q d=c a, r d=a b$, and therefore generally-

In every triangle the product of any too sides is equal to the product of the diameter of the circumscribing circle into the perpendicular on the third side from the opposite vertex.
'This property supplies an obvious method of solving the problem: "given of a triangle one side, the opposite angle, and the product of the other two sides to construct it."

Cur. 8°. If P be any point on the circumscribing circle, and $P A, P B, P C$ tho three lines connecting it with the three erties A, B, C, then since, whatever be the position of P, any two of the connecting chords

$P A$ and $P B$, divided each by the diameter of the circle d, are the sines of the two segments $P C A$ and $P C B$ into which the third $P C$ divides, internally or externally, the angle $A C B$ through whose vertex it passes; it follows that-

The turco general problems: "to divide a given angle internally or externally into two parts those sines shall have any given relation to each other," and "to divide a given arc of a circle, internally or externally into tico parts whose chords shall have the same relation to each other," are identical.

Con. 9°. If $P \mathrm{P}, P Y, P \%$ be the three perpendiculars from P on the three sides $B C, C A, A B$ of the triangle $A B C$, then since, Cor. 7°.,

$$
P B \cdot P C=d \cdot P X, P C \cdot P A=d \cdot P Y, P A \cdot P B=d \cdot P Z ;
$$

therefore

$$
\begin{aligned}
& \sin P A B \cdot \sin P A C=P X \div d \\
& \sin P B C \cdot \sin P B A=P Y+d \\
& \sin P C A \cdot \sin P C B=P Z \div d
\end{aligned}
$$

and therefore generally-
The product of the sincs of the segments into which any angle of a triangle is divided by a variable line passing through its vertex, varies as the perpendicular to the opposite side from the point in which the line meets the circumscribing circle.

This property gives a very definite conception of the law according to which the product of the sines of the segments of a fixed angle by a variable line of section varies with the position of the dividing line, and supplies moreover an obvious solution of the useful problem-

To divide a given angle internally or externally into two parts whose sines shall have a given product.

Cor. 10°. If A, B, C, D be any four points on a circle, $P X$ and $P X^{\prime}, P Y$ and $P Y^{\prime}, P Z$ and $P Z^{\prime}$ the three pairs of perpendiculars from any fifth point P on the circle upon the three pairs of opposite chords $B C$ and $A D, C A$ and $B D, A B$ and $C D$ they determine, and d the diameter of the circle; then since by Cor. 7°.,

$$
\begin{aligned}
& P X=P B \cdot P C \div d \text { and } P X^{\prime}=P A \cdot P D \div d \\
& P Y=P C \cdot P A \div d \text { and } P Y^{\prime}=P B \cdot P D \div d \\
& P Z=P A \cdot P B \div d \text { and } P Z^{\prime}=P C \cdot P D \div d
\end{aligned}
$$

therefore

$$
P X \cdot P X^{\prime}=P Y \cdot P Y^{\prime}=P Z \cdot P Z^{\prime}=P A \cdot P B \cdot P C \cdot P D \div d^{2}
$$ and therefore-

The products of the three pairs of perpendiculars from any point on a circle upon the three pairs of opposite chords connecting any four points on the circle are equal; and their common value is equal to the product of the distances of the one point from the four divided by the square of the diameter of the circle.

If the six perpendiculars were turned round the point P through any common angle, so as to become, more gencrally, isoclinals inclined at any equal angles to the six chords; the products of the three pairs of isoclinals for opposite pairs of chorls would still continue equal, each isoclinal being equal to the corresponding perpendicular multiplied by the secant of the angle of rotation.
63. In every triangle the ratio of the sines of any two of the angles is the same as that of the sides opposite to them.

Fur if A, B, C be the three angles, a, b, c the three opposite
sides, and r, q, r the three perpendiculars on the latter from the opposite vertices; since then by definition $\sin B=p: c$ and $\sin C=p: b, \sin C=q: a$ and $\sin A=q: c, \sin A=r: b$ and $\sin B=r: a$, therefore at once

$$
\sin B: \sin C=b: c, \sin C: \sin A=c: a, \sin A: \sin B=a: b,
$$

nnd therefore generally for all three,

$$
\sin A: \sin B: \sin C=a: b: c,
$$

or, in ceery triangle the sines of the anglea are as the opprasite suids.
Otherwise thus: conceiving a circle circumseribed round the triangle, then since, by the preceling (62), each side divided by the diameter of the circle is the sime of the opponito angle, therefore \&ic.

This latter though less direct has the advantage over the former and more orlinary method of proving this important theorem, that besides establishing the proposition it gives at the same time the common value of the threo equivalent quotients $a \div \sin A, b \div \sin B, c+\sin C$, viz. the diumeter of the circle circumscribing the trianyle.

Con. 1. The angle between any two lines being similar in form to that between parallels to them through any point, it follows at once from the above, that-

Every three lines dracn from a point parallel and equal to the three sides of a triungle are to each other euch as the sino of the angle between the other two.

That is, if O be the point, and $O A, O B, O C$ the three lines, then $O A: O B: O C=\sin B O C: \sin C O A: \sin A O B$.

Cor. 2.. In every parallelogram any two adjacent sides and the conterninous diagonal being equal and parallel to the three sides of either triangle into which the parallelogram is divided by the diagonal. Hence from Cor. $1^{\circ}-$

Euch side of every parallelogram is divided by the diagonal which passes through it into parts rhoso sines are in the inverse ratio of the adjucent sides of the parallelagram.

That is, if $O A$ and $O B$ be the sides about the angle, and $O D$ the diagonal, then $\sin A O D: \sin B O D=O B: O A$.

Cor. 3°. The above supplies obvious and rapid solutions of the two following problems:
1°. To divide two or four right angles into three parts zehose sines shall be as three gicen numbers.
2°. To determine two angles whose sines shall be to the sine of their sum or difference as two given numbers to a third.

For, in the case of 1°., constructing any triangle whose three sides are as the three numbers, its three internal angles furnish obviously the solution for two and its three external for four right angles, (Euc. I. 32) ; and in the case of 2°., constructing any triangle two of whose sides are to the third as the two given numbers to the third, its two internal angles opposite to the two sides furnish obvionsly the solution for the case of the sum, and either of them with the external adjacent to the other for the case of the difference (Euc. I. 32).

If the three given numbers were such that three lines representing them were incapable of forming a triangle, that is, (Euc. I. 20), if one of them were greater than the sum or less than the difference of the other two, the above constructions would of course fail; thus showing that in such cases the required division or determination would be impossible.

Cor. 4°. The three internal angles $B O C, C O A, A O B$, subtended by the three sides $B C, C A, A B$ of any triangle $A B C$ at any arbitrary point O, being either together equal to four right angles, or each separately equal to the sum or difference of the other two, according as the point O is within or without the triangle; the abore leads again, as in Cor. 3°, to the four solutions of the following problem, viz.-

To determine the point O for which the sines of the three angles subtended by the three sides of one given triangle $A B C$ shall be as the three sides of another given triangle $A^{\prime} B^{\prime} C^{\prime}$.

For the three angles subtended at O by the three sides of $A B C$ being, according to the position of O, as just observed, either the three external or one of the external and two of the internal corresponding angles of $A^{\prime} B^{\prime} C^{\prime}$; therefore describing on the three sides of $A B C$ as chords the three pairs of equal circles which intersect them internally and externally at the three corresponding angles, internal and external, of $A^{\prime} B C^{\prime}(22)$; of the six circles thus described, the three which intersect the sides of $A B C$ internally at the three internal and externally at the three external corresponding angles of $A^{\prime} B C^{\prime}$ intersect with each other at a common point O, which is one of those required, and intersect with the remaining
three, each with the two not corresponding to itself, at three other common points P, Q, R, which are the remaining three of those required.

In the particular case when the three pairs of corresponding angles of the two triangles $A B C$ and $A^{\prime} B C$ are equal, and when the triangles themselves are therefore similar; while the three circles determining tho point O intersect at the point of concurrence of the three perpendiculars from the rertices on the opposite sides of $A B C$, that being the point for which the three internal angles $B O C, C O A, A O B$, are the supplements of the three internal angles BAC, CBA, $A C B$, of the triangle; the remaining three evidently coincide with each other and with the circlo circumscribing $A B C$, and the three points P, Q, R are consequently indeterminate. This is also evident a priori from (G2); every point on the circle circumscribing any trianglo $A B C$ subtending, as there shewn, its three sides at angles whone sines are proprortional to their lengths.

Cur. 5°. Denoting by P, Q, R the radii of the three equal pairs of conjugato circlel in the preceding corresponding to the three sides $B C, C A, A B$, respectively of the triangle $A B C$; since then three of those circles for different sides pass through the point O, and consequently circumseribe the three partial triangles $B O C, C O A, A O B$, therefore by (62).
$2 P=B C \div \sin B O C, 2 Q=C A \div \sin C O A, 2 R=A B \div \sin A O B$, and therefore

$$
P: Q: R=B C \div \sin B O C: C A \div \sin C O A: A B \div \sin A O B .
$$

Hence again, by Cor. 4°., the four solutions of the following additional problem, viz.-

To determine the point O such that for three given points A, B, C the radii P, Q, R of the three circles $B O C, C O A, A O B$, shall be as three given numbers.

For since from the propmsitions just stated

$$
\sin B O C: \sin C O A: \sin A O B=1: C \div 1^{\prime}: C A \div Q: A B \div R,
$$

the problem is therefore reduced at onee to that of Cor. 4°, the two groups of three ratios $B C: C A: A B$ and $P: Q: R$ being both given, and therefore with them the group to which the three sines are proportional.

In the particular case, when $P=Q=R$, since then

$$
\sin B O C: \sin C O A: \sin A O B=B C: C A: A B
$$

the point O as already noticed in Cor 4°., is either the unique point of concurrence of the three perpendiculars from the vertices on the opposite sides, or any point indifferently on the circumscribing circle, of the triangle $A B C$; the three equal circles $B O C, C O A, A O B$, in the former case being equal to, and in the latter case coinciding with, the circle $A B C$.
64. In every triangle the ratio of double the area to the rectangle under any two of the sides is the sine of the angle contained by those siles.

For if, as in the preceding, A, B, C be the three angles, a, b, c the three opposite sides, and p, q, r the three perpendiculars on the latter from the opposite vertices; since then (Euc. 1. 42.) 2 area $=a p=b q=c r$, and since (60) $p=b \cdot \sin C$ or $c \sin B, q=c \sin A$ or $a \sin C, r=a \sin B$ or $b \sin A$, therefore

$$
2 \text { are }=b c \cdot \sin A=c a \cdot \sin B=a b \cdot \sin C
$$

and therefore \&c.
Cons. 1°. Since from the above
therefore-

$$
\text { area }=\frac{1}{2} b c \cdot \sin A=\frac{1}{2} c a \cdot \sin B=\frac{1}{2} a b \cdot \sin C,
$$

In every triangle the area is equal to half the product of any two of the sides multiplied into the sine of the included angle.

Hence if two sides of a triangle be given, the area varies as the sine of the included angle, has equal values for every pair of supplemental angles, and is the maximum for a right angle.

Cor. 2°. Denoting by R the radius of the circle circumseribing the triangle, then sinec by (62),

$$
\sin A=a \div 2 R, \sin B=b \div 2 R, \sin C=c \div 2 R,
$$

and since by the above, $\sin A=2$ are $a \div b, \sin B=2$ area $\div c a$, $\sin C=2$ area $\div a b$, therefore $R=a b c \div 4$ area, or-

In cevery triangle the radius of the circumscribing circle is equal to the product of the thrce sides divided by four times the area.

Which is the well-known formula by which to calculate in numbers tho value of R, when those of a, b, c are given.

Con. 3. If from any proint P prerpendiculars PI, PY, $P \%$, be let full upon the sides $1 B C, C A, \triangle B$, of any triangle $A B C$, then

2 area of triangle $X Y Z=\left(O I I^{2}-O P^{2}\right) \cdot \sin A \cdot \sin B \cdot \sin C$ vehere O and $O R$ are the centre and radius of the circle circumscribing the triungle $A B C$.

For, connecting I with any two of the vertices A and B of the triangle $A B C$, and the point D where the conaector for either A intersects the circumscribing circle with the other B; then by the above, 2 area $X Y Z=Z X \cdot Z Y$. sin $X \% Y$; but the two groups of four points Σ, P, Z, A and X, P, Z, B being evidently concyclic, and $P A$ and $P B$ being the diameters of the two circles (Filuc. InI. 31.) ; therefure (62), $Z Y=P A$ sin A, $Z I^{\circ}=P B$. sin B, and (Euc. 111. 21. 22.) angle $\Sigma^{\circ} Z \Sigma^{\circ}=$ angle $P B D$, the two angles $P \% X$ and $P Z \Sigma$ being equal to the two $P B X$ and PAY or CBD respectively; therefore

2 area $X Y Z=P A \cdot P B \cdot \sin A \cdot \sin B \cdot \sin P B D$,
but (63) $P B \cdot \sin P B D=P D \cdot \sin P D B=I^{\prime} D$. $\sin C$ (Einc, 111. 21.) therefore

$$
2 \text { area } \cdot I Y=P A \cdot P D \cdot \sin A \cdot \sin B \cdot \sin C,
$$

and therefore de; since (Eue. us. 3J. 36.) PA. $P D=\left(O R^{r}-O P^{\infty}\right)$ or ($O I^{\mu}-O R^{*}$) aceording as P is within (fig α) or without (fig β) the circle circumscribing $A B C$.

If in the above the three perpendiculars $P X, P Y, P Z$, were turned round P in the same direction of rotation through any common angle, so as to become, more generally, isoclinals $P^{\prime \prime}, P^{\prime} \Gamma^{\prime \prime}, \Gamma \%^{\prime}$ inclined at the complement of the angle to the sides; the same value multiplied by the square of the secant of the angle of rotation, or, which is the same thing, divided by the
square of the sine of the angle of inclination to the sides (60), would evidently (Euc. vi. 19.) be the value of the area of the triangle $X^{\prime} Y^{\prime} Z^{\prime}$.

Cor. 4°. It follows of course from the preceding, Cor. 3°., that, whether for perpendiculars or isoclinals, the area of the triangle $X Y Z$ is- 1°. constant, when P is on any circle concentric with O; 2°, evanescent when P is on the circle circumscribing $A B C ; 3^{\circ}$, a maximum in absolute value (58) when P is at O, or at infinity; from the second of which it appears that, the feet of the perpendiculars upon the sides of a triangle from any point on its circumscribing circle, or more generally of any isoclinals inclined to the perpendiculars at the same angles and in the same directions of rotation, lie in a line; a property the reader may easily prove directly for himself. See figs. Cor. 9°. Art. 62.

Cor. 5°. The preceding propertics, Cor. 4°., supply obrious solutions of the three following problems:-"On a given line or circle to determine the point or points from which if perpendiculars be let fall upon thrce given lines the area of the triangle determined by their feet shall be a minimum, a maximum, or given ;" or more generally of the three corresponding problems in which the perpendiculars are replaced by isoclinals inclined to them in either direction at any given angle of rotation.
65. Every line passing through any vertex of a triangle divides the opposite side into segments in the ratio compounded of that of the conterminous sides and of that of the corresponding segments into which it divides the angle at the vertex.

For, if $A B C$ be the triangle, C the vertex, and $C Z$ the line; letting fall upon $C Z$ from the other two vertices A and B, the two perpendiculars $A P$ and $B Q$, then since by similar triangles $A Z: B Z=A P: B Q$, and since by (60),

$$
A P=A C \cdot \sin A C P=A C \cdot \sin A C Z
$$

and

$$
B Q=B C \cdot \sin B C Q=B C \cdot \sin B C Z
$$

therefore $A Z: B Z=A C \cdot \sin A C Z: B C \cdot \sin B C Z$, that is, Euc. VI. $(23)=$ the ratio compounded of the two ratios $A C: B C$ and $\sin A C Z: \sin B C Z$, and therefore \&e.

Otherwiso thus, since by triangles having the same altitude, $A \%: B \%=$ area $A C \%$: area $B C \%$, and since by (64)

$$
\begin{aligned}
& \text { area } A C Z=\frac{1}{1} A C \cdot(\% \cdot \sin A C \% \\
& \text { area } B C Z=\frac{1}{2} B C \cdot C Z \cdot \sin B C Z,
\end{aligned}
$$

therefore as before,

$$
A \%: B Z=A C \cdot \sin A C Z: B C \cdot \sin B C \%,
$$

and therefore de.
Cor. 1. If the sides $A C$ and $B C$ about the vertex be equal, then $A \%: B \%=\sin A C \%: \sin B C \%$, or-

Every line pasaing through the wrixe of an isooceles triungle diviles tho base into a juents sehuer rutio is the same as that of the sines of the segments into tehich it divilis the evertinal angle.

Con. 2. If CZ bisect the angle throngh whose vertex it paases either internally or externally, then, as in either case $\sin , 1 C Z=\sin B C Z$, therefore $A \%: B Z=A C: B C$, or (Euc. vi. 3)-

The line lisecting internally or externally any angle of a triangle divides the opprasite side internally or externally into segments in the ratio of the conterminous sides.

Cor. 3°. If $C Z$ divido tho angle through whose vertex it passes into segments whose sines are in the inverse ratio of the adjacent sides, that is, so that $\sin A C Z: \sin B C Z=B C: A C$, then $A Z: B Z=1$, or -

The live dividing internally or externally any angle of a triangle into segments whose sines are in the inverse ratio of the aljacent sides bisects internally or externally the opposite side.
$\mathrm{COR} .4^{\circ}$. If $\mathrm{C} Z$ divide the angle through whose vertex it passes into segments whose sines are in the direct ratio of the adjacent sides, that is, so that $\sin A C Z: \sin B C D=A C: B C$, then $A Z: B Z=A C^{2}: B C^{7}$, or-

The line divilling internally or externally any angle of a triangle into segments whose sines are in the direct ratio of the adjacent sides divides internally or externally the opposite side into segments in the cluplicate ratio of the conterminous sides.

Cor. 5°. As each angle of a triangle is divided externally into segments similar in form to the other two angles both by the parallel through its vertex to the opposite side (Euc. I. 32), and by the tangent at its vertex to the circumseribing circle (Euc. III. 32), the sines of the segments are therefore by (63), inversely in the former case and directly in the latter, in the ratio of the adjacent sides, and therefore, by Cors. 3° and 4° above-

Euch side of a triangle is bisected externally by the parallel to it through the opposite vertex, and divided externally into segments in the duplicate ratio of the conterminous sides by the tangent to the circumscribing circle at the opposite vertex.

Cor. 6°. Of the many methods of effecting the very useful division "to divide a given angle internally or externally into two parts whose sines shall have a given ratio," the following based on the above is perhaps on the whole the most convenient.

Connecting any two points A and B taken arbitrarily one on each side of the given angle $A C B$, (see figures) and cutting the connecting line $A B$ (Euc. vi. 10), internally or externally as the case may be, in the ratio compounded of the known ratio of $A C: B C$ and of the given ratio of the required seginents, the line $C Z$ connecting the point of section Z with the rertex of the angle C divides by the above the angle as required.

The two points A and B being both arbitrary, they might be taken so that $A C=B C$, in which case Z would be simply the point of section, internal or external, of $A B$ in the given ratio of the sine $A C Z: \sin B C Z$ (Cor. 1° abovo), or they might be taken so that $A C: B C$ in the inverse of the given ratio of $\sin A C Z: \sin B C Z$, in which case Z would bo simply the point of bisection, internal or external, of $A B$ (Cor. 3° above).
66. The difference of the squares of the sines of any tuoo angles is cqual to the product of the sines of the sum and of tho difference of the angles.

The product of the sines of any tro angles is equal to the
difference of the squares of the sincs of half the sum and of half the diffirence of the angles.

The reader familiar with the Second Book of Euclid will at once perceive that these are not two different propositions, but only two different modes of stating the same general property respecting the equal and unequal divisious of an angle; nor can he fail to observe at the samo time the complete analigy between the common property they express, and the general property respecting the equal and unequal divisions of a line contained in propositions 5 and 6 of that Book.

On account of their importance, bowever, we shall give separate and independent demonstrations of each.

To prove the first. Constructing a triangle $\triangle B C$, two of whose angles A and B are equal to the two angles, and through the third vertex C drawing the chord $C D$ of its circumscribing circle parallel to the opposite side $A B$; then since $A D=B C$ (Euc. 11. 30) and therefore $A C \sim B C=C D$ the four chords
 $A C, B C, A B, C D$ divided each by the diameter of the circle are respectively (62) the sines of the four angles B, A, $B+A, B \sim A$, and to prove the theorem it remains only to shew that $A C^{\prime} \sim B C^{\prime \prime}=A B . C D$.

From C and D letting fall $C E$ and $D F$ perpendiculars on $A B$, then (Euc. 1. 47),

$$
\begin{aligned}
A C^{2} \sim B C^{\prime}=A E^{2}-B E^{2}=(A E+B E) & \cdot(A E-B E) \\
& =A B \cdot E F=A B \cdot C D
\end{aligned}
$$

and therefore \&c.
To prove the second. Constructing as before a triangle $A B C$, two of whose angles A and B are equal to the two angles, measuring from its third vertex C on either of the opposite sides $O A$ a length $C D$ equal to the other $C B$, joining $B D$ meeting tho circumscribing circle of the triangle at E, and drawing $A E$ and $C E$; then, the angles $C B E$ and $A B E$ being respectively half the sum and half the difference of the angles B and A, the four chords $A C$, $B C, C E, A E$ divided each by the diameter of the circle are re-
spectively (62) the sines of the four angles $B, A, \frac{1}{2}(B+A)$, $\frac{1}{3}(B \sim A)$, and to prove the theorem it remains only to shew that $A C . B C=C E^{2} \sim A E^{2}$.

The triangle $B C D$ being isosceles by construction, so is the triangle $A E D$ which is similar to it (Euc. III. 21), therefore, (Euc. II. 5, 6, Cor.), $E C^{21} \sim E A^{2}=C A . C D=C A . C B$.

Cor. 1°. The preceding furnish obvious solutions of the two following problems:

1. To divide a given angle, internally or externally, so that the difference of the squares of the sines of the segments shall be given.
2°. To divide a given angle, internally or externally, so that the product of the sines of the segments shall be given.

Cor. 2 ${ }^{\circ}$. The following deduction from the above furnishes a convenient mode of representation, as well as a very definite conception, of the law according to which the product of the sines of the segments of an angle varies with the change of position of its line of section.

If a circle of any radius be inscribed in an angle the product of the sines of the segments into which the angle is divided by a variable line passing through its vertex varies as the square of the segment of the line intercepted by the circle.

Let O be the centre of the circle, A and B its points of contact with the sides of the angle, and $X Y$ the line passing through C; then letting fall $O Z$ perpendicular from O on $X Y$, we have by the above $\sin A C Z \cdot \sin B C Z=\sin ^{2} O C A \sim \sin ^{2} O C Z$

$$
\begin{aligned}
& =\left(O A^{2} \sim O Z^{2}\right) \div O C^{2} \\
& =\left(O X^{2} \sim O Z^{2}\right) \div O C^{8} \\
& =X Z^{2} \div O C^{x}=X Y^{2} \div 4 O C^{x}:
\end{aligned}
$$

therefore $\propto X Z^{n}$ or $X Y^{r}$. Q.E.D.
When the rariable line of section in the course of its revolution round C enters the supplemental region of the angle $A C B$, the circle $A O B$ is of course no longer available for the above representation; but then it may be replaced by another $A^{\prime} O^{\prime} B^{\prime}$ inscribed in the supplemental region, and the now circle
will continue to represent the law of the variation on the same scale as before, provided only the distance $C O^{\prime}$ of its centre from the vertex of the angle is equal to the distance $C O$ of the centre of the original circle from the same.

Cor. 3°. Letting fall $A P$ and $B Q$ perpendiculars from A and B on $X Y$; then, since $A P \cdot B Q \div A C \cdot B C=\sin A C Z \cdot \sin B C Z$, therefore, from Cor. $2^{\circ} ., A P \cdot B Q \div X Z^{2}=A C . B C \div O C^{7}$, or

$$
4 A P \cdot B Q \div X Y^{7}=A C \cdot B C \div O C
$$

a property of the circle which may be easily proved directly.
67. The sum of the sines of any tico angles is equal to twice the product of the sines of half the sum and of the complement of half the difference of the angles.

The difference of the sines of any tueo angles is equal to tevice the product of the sines of half the difference and of the complement of half the sum of the angles.

Constracting, as in the properties of the preceding article, a triangle $A B C$, two of whose angles A and B are the two angles, bisecting internally or externally the are $A C B$ of the circumscribing circle at M and N respectively, and connecting both points of bisection with A, B, and C; then the angles MNA, or MNB, and MNC being respectively half
 the sum and half the difference of the angles $C N A$ and $C N B$, that is, of the angles B and A, the four chords $C A, C B, M A$, or $M I B$, and $M C$ divided each by the diameter of the circle are respectively the sines of the four angles $B, A, \frac{1}{2}(A+B)$ and $\frac{1^{\prime}}{1} A \sim B$), and the two chords $N A$, or $N B$, and $N C$ divided each by the diameter are the sines of the complements of $\frac{1}{2}(A+B)$ and $\frac{1}{2}(A \sim B)$; and to prove the theorems it remains only to shew that, $\quad(C A+C B): C N::(M A+M B): M N$, and that $\quad(C A \sim C B): C M::(N A+N B): N M$.

From the two inscribed quadrilaterals $M N C A$ and $M N C B$, since by Ptolemy's theorem,

$$
C A \cdot M N=C N \cdot M A \pm C M \cdot N A
$$

and

$$
C B \cdot M N=C N \cdot M B \mp C M \cdot N B,
$$

thereforo by addition and subtraction

$$
(C A+C B) \cdot M N=C N \cdot(M A+M B)
$$

and

$$
(C A \sim C B) \cdot M N=C M \cdot(N A+N B)
$$

and therefore \&c.
Or, more directly, from the two inscribed quadrilaterals $A B C N$ and $A B C M$, since by the same theorem

$$
C A \cdot N B+C B \cdot N A=C N \cdot A B
$$

and $C A \cdot M B \sim C B \cdot M A=C M \cdot A B$,
therefore at once
$(C A+C B): C N=A B:(A N$ or $B N)=(M A+M B): M N$, and $(C A \sim C B): C M=A B:(A M$ or $B M)=N A+N B: N M$, and therefore \&c.

Cor. The preceding supply evident solutions of the four problems :

To divide a given angle, internally or externally, into two parts whose sines shall have a given sum or difference.

And the proportions on which they depend of the two problems.

Given of a triangle ($A C B$) the base, the vertical angle, and the sum or the difference of the sides, to construct it.

CHAPTER V.

ON THE CONVENTION OF POSITIVE AND NEOATIVE IN GEOMETRY.

68. Tue most striking characteristic of moderu as contrasted with ancient geometry is comprehensiveness of languago and demonstration. General enunciations on the one hand, and general demonstratious on the other, couprehending in the geometry of the present day all the different cases of the various properties considered, arising from variations in number, position, or magnitude, among the elements of the figures involved, which in the geometry of former days would have been regarded as so many distinet propositions, requiring each a separate statement and independent proof of its own. All such enunciations and demonstrations, moreover, uneneumbered, in consequence of this very character of comprehensiveness and generality, with the accidental peculiarities and unessential details of particular cases, and involving accordingly the essential elements of abstract principles only, being thus the more readily apprehended, easily remembered, and instructively suggestive, in proportion as they are comprehensivo and general. These important and characteristic advantages are mainly due to the employment, now universally recognised by geometers, of the algebraic sigus + and - to indicate the directious in which the various magnitudes coming under their consideration are measured, with regard to which they have laid down the following general rule of convention.

In every case of the comparison of magnitudes susceptible of measurement in cither of two oppasite directions the signs + and - are employed to distinguish betwoen the directions.

Segments measured on the same line, ares measured on the same circle, angles measured round the same vertex, triangles
or parallelograms deseribed on the same base, perpendiculars or any other isoclinals crected to or let fall upon the same line, are obvious examples of different kinds of geometrical magnitudes coming under the above head; every two of each of which, when considered together in any number, are therefore to be regarded as having similar or opposite signs according as the directions in which they are measured are similar or opposite.
69. In every application of the above principle of convention it is optional which of the two opposites is to be regarded as the positive and which the negative direction, but the selection once made, and either sign given to either direction in any case, the same sign must be given to the same direction and the opposite sign to the opposite direction throughout the entire case. In the comparison of magnitudes whose directions of measurement are not either similar or opposite, such as segments on different lines, triangles or parallelograms on different bases, perpendiculars or isoclinals to different lines, not parallel to each other, the selection for each separate direction and its opposite is also optional ; but once made for each in any case must invariably be adhered to throughout the entire case.

It is this distinctive principle of modern as contrasted with ancient geometry, this recognition of magnitudes as having not only absolute or numerical value but also sign determined by application of the above general rule of convention, which has mainly tended to render the language and demonstrations of the former independent of all accidental variations among the component elements of the figures to which they refer.
70. In accordance with the preceding principle the familiar terms "sum" and "difference" are employed in the geometry of the present day with an important modification of their accustomed significations as employed in the geometry of former times, and to the present day in arithmetic, which must be carefully attended to in order to an accurate, and in many cases even an intelligible conception of the true meaning intended to be conveyed by their use, which is as follows:

The term" suin" as employed in arithmetic is used to denote the result of adding together the numerical values of any number of magnitudes taken absolutely without any regard to their
signs, so that there it is always a positive quautity ; in geometry, on the contrary, it is applied to the same result with this difference that the signs of the several magnitudes are taken into account in the addition; so that the geometric sum of any number of magnitudes really means the arithmetic sum of all that are positive among them minus the arithmetic sum of all that are negative, and this is what is uniformly meant by the term "sum" as now invariably emploged in geometry unless the contrary be expressly stated.

It thus appears that the sum of any number of geometrical magnitudes is to be regarded as positive, negative, or nothing, according as the aggregate of the positive individuals or terns composing it happens to excced, fall short of, or equal, that of the negative.

All that has been said in the above remarks applies equally to the term "difference" as employed in the geometry of the present day in reference to two magnitudes. It denotes in arithmetic the result of suberacting one from the other attending only to their absolute values, and in geometry the same result taking into account also their signs; thus the geometrical difference of two magnitudes may be their arithmetic sum, and conversely.
71. Similar remarks apply to the terms "product" and "quotient" as employed in the geometry of the present day; compared with their known significations as employed in arithmetic; in the latter, as in the cases of "sum" and "difference," the absolute ralues of the magnitudes only being taken into account, while in the former their signs also are attended to. Hence, since in the multiplication or division of any two quantitics like signs produce always a positive and unlike signs a negative result, the product or quotient of any two geometrical magnitudes is to be regarded as positive or negative necording as they have similar or opposite sigus; and so, more generally, is the product of any number of magnitudes according as thero happens to be an even or an odd number of negative signs amongst them.

The rectangle under any two lines being the same as their product, and the ratio of any two lines the same as their quotient: it follows from the above that the rectangle and the ratio
of any two lines have always the same sign, and are positive or negative together according as the lines themselves have similar or opposite signs. The square of every real line for tho same reason is always positive, whether the line itself be positive or negative.
72. The terms "Arithmetic Mean" and "Geometric Mean," as employed in the geometry of the present day in reference to any number of magnitudes, ought for uniformity sake to bear the same relation to their "Arithmetic Sum" and "Geometric Sum" respectively. Such however is not the case, those terms having been employed to denote two entirely different things long before the consideration of signs had been foreed on the attention of geometers, the former to denote the $n^{\text {th }}$ part of the sum, and the latter to denote the $n^{\text {th }}$ root of the product of any n magnitudes. In the same acceptations they are still employed, only with this difference, that in estimating the sum or product the signs as well as the absoluto values of the several magnitudes are taken into account.

In geometry, therefore, the terms "Arithmetic Mean" and "Geometric Mean," in reference to any number of magnitudes, denote respectively the $n^{\text {th }}$ part of their geometric sum and the $n^{\text {th }}$ root of their geometric product, n being the number of the magnitudes. Hence, n being necessarily a positive integer, the former is pusitive or negative with the sum in every case, and the latter positive or negative with the product when n is odd, but real or imaginary and of either sign indifferently according as the product is positive or negative when n is even.
N.B. The term "Arithmetic Mean" is employed in geometry in the same sense as the term "mean" or "averago" is employed in ordinary language.
73. Since by the evident lavo of continuity, as it is termed in geometry, a magnitude of any kind which varies continuously according to any law cannot possibly pass either in iucrease or decrease from any one value to any other without passing through every intermetiate value on the way. It might appear at first sight as if a variable magnitude at the point of transition from positive to negative, or conversely, should necessarily pass aleo iys through the particular value 0 . Such however
is not the case. Magnitudes susceptible of indefinite increase, as for instance the distance of a variable from a fixed point on a line, passing as often through ∞ as through 0 in changing sign.

To see this, if indeed it be not evident of itself from tho example adduced, we have but to conceive two reciprocul nagnitudes of any kind (8) to vary continuously, and either of them to change sign by passing through 0 ; for since tho product of two such magnitudes is, from the nature of their connection, invariable both in magnitude and sign, every change of sign in either is necessarily accompanied by a simultaneous change of sign in the other, and every passage of either through 0 or ∞ by the simultancous passage of the other through ∞ or 0 , and therefore \&ec.

On the other hand, however, magnitudes unsusceptible of indefinite increase, and oscillating therufure as they vary between their extreme maxima and minima values (59), if they chauge sigu at all, do so only by passing through 0 at each point of transition; thus for instance, the sine of an angle regarded as a magnitude, whose absolute value can never exceed 1 (60), changes sign only by passing through 0 , its valuc whenever the angle itself in continuous increase or decrease $= \pm 2 n$ right angles, n being any integer of the natural series $0,1,2,3,4,5,6$, \&.c. to infinity.
74. In every application of the principle of signs, some method of notation which would indicate the directions, as well as represent the magnitudes, of the quantities considered would be of manifest convenience, and should as far as possible be systematically adhered to; the biliteral notation (4) which represents a magnitude of any kind by means of the two letters representing its extremities, whenever otherwise convenieut, effects this purpose in as simple and expressive a manner as could be desired, by merely the order (4) in which the two letters are written.

Thus, a geometrical magnitude of any kind whose extremities are A and B is to be considered as measured, if represented by $A B$ in the direction from A to B, and if by $B A$ in the opposite direction from B to A. So that in accordance with the
convention of signs, $A B$ is always to be regarded as $=-B A$, or which is the same thing $A B+B A=0$, whatever be the nature of A and B and of the magnitude intercepted between them (3).

This premised, we proceed now to illustrate the convenience of the convention of signs by a few applications of very general utility in almost every department of pure and applied geometry.
75. If A and B be any two points on a line, and P any third point taken arbitrarily on the same line, then whatever be the position of P with respect to A and B,

$$
A P-B P=A B
$$

regard being had to the signs as well as the magnitudes of the three intervals involved.

For, if $1^{\circ}, P$ be external to $A B$ at the side of B, then as $A P, B P$, and $A B$ have all the same direction, and therefore the same sign, the relation is evident; if $2^{\circ} . P$ be external to $A B$ at the side of A, then, as by case $1^{\circ} ., B P-A P=B A$, and as by the convention of signs $B A=-A B$, therefore \&c. And if 3°., P be internal to $A B$, then as evidently $A P+P B=A B$, and as by the convention of signs $P B=-B P$, therefore \&c.

A point P thus taken arbitrarily upon a line $A B$ is said to divide that line, externally or internally according to its position, into two segments $A P$ and $B P$, which, whether both measured from the extremities of the line to the point of section or from the point of section to the extremities of the line, have evidently similar or opposito directions, and therefore similar or opposite signs, according as the point of section is external or internal to the line. Hence the above relation expresses the general property that, when a line $A B$ is cul, externally or internally, at any point P, the geometrical difference (70) of the segments into which it is divided is constant and equal to the length of the line.

The segments of a line $A B$ divided at any point P having similar or opposite directions, and therefore similar or opposite signs, according as the point of section is external or internal to the line, their rectangle and ratio are therefore both positive in the former case and negative in the latter.

Hence, the problems "to divide a given line into segments, having a given rectangle or ratio," which would be ambiguous were the absolute magnitude of the rectangle or ratio alone given, becomes completely determinate when the sign also is given with it.

Cor. 1. If a line $A B$ be cut, externally or internally, at any point P, then whatever be the pasition of P with respect to A and B,

$$
A P^{a}+B P^{m}=A B^{a}+2 A P \cdot B P
$$

regard being had to the signs as vell as the magnitudes of the theo segments $A P$ and $B P$.

For, since by the above $A P-B P=A B_{1}$ whatever bo the position of P, therefore $A P^{0}+B P^{n}-2 A P \cdot B P=A F^{F}$, and therefore \&ic.

This relation being true for every position of P includes therefore the two properties (Euc. 11. 7 and 4), the rectangle $A P \cdot B P$ being positive or negative according as P is external or internal to $A B$.

Cor. 2. If from any point P a pergendicular $P Q$ be let fall upon a line $A B$, then whatever be the position of P with respect to A and B,

$$
A P^{x}-B P^{n}=A B^{n}+2 A B \cdot B Q,
$$

regard being had to the signs as teell as the magnitudes of $A B$ and $B Q$.

For by (Euc. 3. 47 , Cor.) $A P^{6}-B P^{\beta}=A Q^{B}-B Q^{p}$, and by the preceding Cor. $1^{\circ}, A Q^{5}=A B^{5}+B Q+2 A B . B Q$, therefore de.

This relation being true for every position of P includes therefore the two propertics (Euc. 11. 12 and 13), the rectangle $\angle B . B Q$ being positive or negative according as the angle $P B A$ is obtuse or acute.
76. If A and B be any theo points on a line, C the point on the line for zohich $A C+B C=0$, and P any other point on the line, then whaterer be the position of P,

$$
\begin{aligned}
& A P+B P=2 . C P \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(1) \text {, } \\
& A P \cdot B P=A C \cdot B C+C I^{n} \ldots \ldots \ldots \ldots \ldots \ldots \text { (2), } \\
& A P^{a}+B P^{3}=A C^{3}+B C^{13}+2 C P^{p} \ldots \ldots \ldots \ldots \ldots(3) \text {, } \\
& A P^{n}-B P^{n}=2 A B . C P \ldots \ldots \ldots \ldots \ldots \ldots \ldots(4) \text {, }
\end{aligned}
$$

regard being had to the signs as well as the magnitudes of the several segments involved.

For, taking the sum, product, sum of squares, and difference of squares of the relations,

$$
A P=A C+C P, \text { and } B P=B C+C P
$$

which by the preceding (75) are true, whatever be the position of C, and remembering that by hypothesis $A C+B C=0$, and that always $A C-B C=A B$, the above relations are the immediate results.

The point C on the line $A B$ for which as above $A C+B C=0$? being evidently the point of internal bisection of the line; the second of the above relations includes therefore the two properties (Euc. II. 5 and 6), and the third the two (Euc. II. 9 and 10), both being independent of the position of P; the first expresses that whatever be the position of P the distance $C P$ is the arithmetic mean of the distances $A P$ and $B P$; and the fourth, that whatever be the position of P the difference of the squares of the distances $A P$ and BP varies as the distance $C P$. The four combined also supply obvious solutions of the four general problems: "To cut a line of given length, so that the sum, difference, sum of squares, or difference of squares of the segments, shall have a given magnitude and sign."

Cor. If $A B$ and $A^{\prime} B^{\prime}$ be any two segments on the same line, C and $C^{\prime \prime}$ their two middle points, then always

$$
C C^{\prime}=\frac{A A^{\prime}+B B^{\prime}}{2} \text { or } \frac{A B^{\prime}+B A^{\prime}}{2}
$$

regard being had to the signs as well as the magnitudes of the several segments involved.

For, siuce for any arbitrary point P on the line, by the first of the abovo relations

$$
\text { 2. } C P=A P+B P \text { and } 2 . C^{\prime} P=A^{\prime} P+B^{\prime} P
$$

therefore by subtraction
$2\left(C P-C^{\prime} P\right)=\left(A P-A^{\prime} P\right)+\left(B P-B^{\prime} P\right)$ or $\left(A P-B^{\prime} P\right)+\left(B P-A^{\prime} P\right)$,
and therefore as above (see 75)

$$
2 C C^{\prime}=A A^{\prime}+B B^{\prime} \text { or } A B^{\prime}+B A^{\prime} \text {. Q.E.D. }
$$

77. If A and B be any tico points on a line, a and b any teco numbers positive or negative achose sum is not $=0, O$ the point on the line for velich $a \cdot A O+b \cdot B O=0$, and P any other point on the line, then, whatever be the position of P,

$$
\begin{array}{r}
a \cdot A P+b \cdot B P=(a+b) \cdot O P \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(1), \\
a \cdot A P^{a}+b \cdot B P^{3}=a \cdot A O^{6}+b \cdot B O^{a}+(a+b) \cdot O P^{\cdots} \cdots(2),
\end{array}
$$

regard being had to the signs as well as the magnitucles of the several quantities involevel.

For, since by (75), $A P=A O+O P$ and $B P=B O+O P$, whaterer be the position of O, multiplying the first by a and the second by b and adding, then multiplying the square of the first by a and the square of the second by b and adding, remembering in both cases that by hypothesis $a \cdot A O+b \cdot B O=0$, the above relations are the immediate result.

Given the two points A and B and the two multiples a and b, to determine the point O, for which as above $a \cdot A O+b \cdot B O=0$, and which is evidently internal or external to $A B$ according as a and b have similar or opposite sigus. Assuming arbitrarily any point P on the line $A B$, and measuring from it a length PO equal in magnitude and sign to tho sum $\frac{a \cdot P A+b \cdot P B}{a+b}$, the point O by the first of the above relations is that required, and by aid of it the two relations supply obrious solutions of the two following problems: "on a gieen line $A B$ to determine the point P for which the sum $a . A P+b . B P$ or the sum of the squares $a \cdot A P^{0}+b \cdot B P^{a}$ shall have a given magnitude and sign."

In the particular case when $a+b=0$, the value of $P O$, on which the position of O determined as above depends, being then infinite, the point O is therefore at an infinito distance, and the above relations both fail in consequence of their righthand members becoming both indeterminate (13). Since, however, in that case $b=-a$, the sum

$$
a \cdot A P+b \cdot B P=a \cdot(A P-B P)=a \cdot A B,(\pi 5)
$$

and therefore is constant ; and the sum of the squares

$$
a \cdot A P^{\bullet}+b \cdot B P^{a}=a\left(A P^{n}-B P^{2}\right)=2 a \cdot A B \cdot C P,(76),
$$

C being the middle point of $A B$, and therefore varies as $C P$;
relations simpler than those for the general case where $a+b$ is not $=0$.

Cor. If from the three points A, B, and O, perpendiculars or any other isoclinals $A L, B L$, and $O L$ be let fall upon any arbitrary line L, then, whatever be the position of L,

$$
a \cdot A L+b \cdot B L=(a+b) \cdot O L
$$

regard being had to the signs as well as the magnitudes of the several quantities involved.

For, in the particular case when L is parallel to $A B$, since then $A L=B L=O L$ the relation is evident; and in any other case if P be the point in which L intersects $A B$, since by similar triangles $A L: B L: O L=A P: B P: O P$, and since by the first of the above relations $a \cdot A P+b \cdot B P=(a+b) O P$, therefore \&c.
78. If A, B, C, D, E, F, \&c. be any number of points on a line, situated in any manner with respect to each other, then, whatever be their order and disposition-

For every three of them A, B, C,

$$
A B+B C+C A=0
$$

For every four of them A, B, C, D,

$$
A B+\bar{B} C+C D+D A=0
$$

For every five of them A, B, C, D, E,

$$
A B+B C+C D+D E+E A=0
$$

and so on for any number, the last being always connected with the first in completing the circuit, and the signs as woll as the magnitudes of the several intercepted segments being alvoays taken in account in the summation.

For, since by (75),

$$
\begin{aligned}
& \qquad \begin{array}{l}
A B+B C=A C, A C+C D=A D \\
A D+D E=A E, A E+E F=A F, \& \mathrm{c} \\
\text { therefore, } \\
A B+B C+C A=A C+C A=0 \\
A B+B C+C D+D A=A D+D A=0 \\
A B+B C+C D+D E+E A=A E+E A=0 \text {, \&c., } \\
\text { and therefore \&c. Q.E.D. }
\end{array} \text { ? }
\end{aligned}
$$

79. If A, B, C, D, scc. be any number (n) of points on a line, lisposed in any manner, O the proint on the line for vehich $A O+B O+C O+D O+S C=0$, and P any other point on the line, then, vehatever be the position of P,

$$
\begin{align*}
A P+B P+C P+D P+\mathcal{E} \mathrm{c} & =n . O P \ldots \ldots \ldots \ldots \ldots \ldots(1) \tag{1}\\
A P^{2}+B P^{a}+C P^{2}+D P^{2}+\delta \mathrm{c} . & =A O^{\circ}+B O^{\circ}+C O^{\circ}+D O^{\circ}+\mathcal{E} . \\
& +n . O P^{n} \ldots \ldots \ldots \ldots \ldots \ldots(2) \tag{2}
\end{align*}
$$

the signs as well as the magnitudes of the several segments being taken into account in the first.

For, taking the sum and the sum of the squares of the several relations $A P=A O+O P, \quad B P=B O+O P, \quad C P=C O+O P$, $D P=D O+O P, \& c$., which by (75) are true whatever be the position of O, and remembering that, by hypothesis,

$$
A O+B O+C O+D O+\& c=0
$$

the above relations are the immediate result.
The point O on the line for which, as above,

$$
A O+B O+C O+D O+\& c=0
$$

or, as it may be more concisely written, $\Sigma(A O)=0$, being such by relation 1 , that for every other point P on the line the distance $O P$ is the arithmetic mean of the several distances $A P$, $B P, C P, D P$, dc., is termed, in consequence, the mean centre of the system of points $A, B, C, D, d \cdot c_{0}$; and to determine its position when the latter are given, we have but to assume arbitrarily any point P on the line, and to measuro from it a distance $P O$ equal in magnitude and sign to the $n^{1 s}$ part of the sum of the distances $P A, P B, P C, P D$, \&ic., or, as it may be more concisely written, $=\frac{\mathbf{\Sigma}(P A)}{n}$; the point O, by relation 1 , is that required, and by its aid the two relations 1 and 2 supply obvious solutions of the two general problems: "Given any number of points $A, B, C, D, d c$. on a line, to determine the point P on the line for which the sum $\Sigma(A P)$ or the sum of the squares $\mathbf{\Sigma}\left(\Lambda P^{m}\right)$ shall be given."

Cor. 1°. If at the mean centre O a perpendicular $O S$ be erected to the line whose square $O S^{2}=$ the $n^{\text {ti }}$ part of the sum of the squares $\Sigma\left(A O^{2}\right)$, then for any point P on the line the sum of the squares $\Sigma\left(A P^{*}\right)=n . S P^{3}$.

For, sinco by relation $2, \Sigma\left(\Lambda P^{2}\right)=\Sigma\left(A O^{2}\right)+n . O P^{a}$, and since by construction, $\Sigma\left(\Lambda O^{2}\right)=n . O S^{2}$, therefore

$$
\Sigma\left(A P^{2}\right)=n\left(O S^{2}+O P^{2}\right)=n . S P^{2}
$$

Hence the variable sum $\Sigma\left(A P^{z}\right)$ has equal values for every two points on the line equidistant from O, and the minimum value for the point O itself.

Cor. 2°. Since when, as in relation $1, \Sigma(A P)=n . O P$, then, as in relation 2 ,

$$
\Sigma\left(A P^{2}\right)=n . O P^{2}+\Sigma\left(A O^{2}\right)=n . O P^{2}+\Sigma(A P-O P)^{2}
$$

it follows consequently that-
When the same sum, $\Sigma(A P)$, is cut into any number n of unequal parts $A P, B P, C P, D P$, \&e., and also into the same number n of equal parts $O P, O P, O P, O P$, dic., the sum of the squares of the n unequal parts $\Sigma\left(A P^{2}\right)$ is equal to the sum of the squares of the n equal parts $n . O P^{2}+$ the sum of the squares of the n differences $\Sigma(A P-O P)^{2}$.

Cor. 3°. If A, B, C, D, dec. and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, dec. be two ,stems of any common number of points on the same line, O and \checkmark^{\prime} their mean centres, and n their common number of points, then

$$
O O^{\prime}=\frac{A A^{\prime}+B B^{\prime}+C C^{\prime}+D D^{\prime}+d c .}{n}
$$

any mode of correspondence between the points of the systems in pairs being adopted in the summation.

For since, for any arbitrary point P on the line, by relation 1,

$$
n . O P=A P+B P+C P+D P+\& c
$$

and

$$
n \cdot O^{\prime} P=A^{\prime} P+B^{\prime} P+C^{\prime} P+D^{\prime} P+\& c
$$

therefore

$$
\begin{aligned}
n \cdot\left(O P-O^{\prime} P\right)=\left(A P-A^{\prime} P\right) & +\left(B P-B^{\prime} P\right) \\
& +\left(C P-C^{\prime} P\right)+\left(D P-D^{\prime} P\right)+\& \mathrm{c}
\end{aligned}
$$

or (75)

$$
n . O O^{\prime}=A A^{\prime}+B B^{\prime}+C C^{\prime}+D D^{\prime}+\& \mathrm{cc}
$$

and therefore \&ic.
Cor. 4°. If A, B, C, D, de. and $A, B^{\prime}, C^{\prime}, D^{\prime}$, dec. be any two systems of points on the same line, O and O^{\prime} their mean centres, and n and n ' their numbers of points, then

$$
O O^{\prime}=\frac{\mathbf{\Sigma}\left(A A^{\prime}\right)}{n n^{\prime}}
$$

reery point of ons syst m being combined in the summation with every point of the other.

For, adding together the several relations,

$$
\begin{aligned}
& A A^{\prime}+B A^{\prime}+C A^{\prime}+D A^{\prime}+\mathcal{S c}=n . O A^{\prime}, \\
& A B^{\prime}+B B^{\prime}+C B^{\prime}+D B^{\prime}+\mathcal{A} \mathrm{c}=\mathrm{n} . O B^{\prime}, \\
& A C^{\prime \prime}+B C^{\prime \prime}+C C^{\prime \prime}+D C^{\prime \prime}+\AA \mathrm{c}=\mathrm{n}=\mathrm{O} . O C^{\prime}, \\
& \left.A D^{\prime}+B I\right)^{\prime}+C D^{\prime}+D D^{\prime}+\uparrow \mathrm{c} .=n . O D^{\prime}, d \mathrm{c} .
\end{aligned}
$$

there results at once the relation
$\Sigma\left(A A^{\prime}\right)=n \cdot\left(O A^{\prime}+O B^{\prime}+O C^{\prime}+O D^{\prime}+\mathcal{S}^{\circ} \cdot\right)=n \cdot \Sigma\left(O A^{\prime}\right)=n n^{\prime} . O O^{\prime}$, and therefore \&c.
80. If A, B, C, D, dec. be any system of points on a line, disposed in any manner, a, b, c, d, d.c. any system of corresponding multiples, positive or nolutive, rehose sum is not $=0$, O the point on the line for which

$$
a \cdot A O+b \cdot B O+c \cdot C O+d \cdot D O+d x \cdot=0
$$

and P any other print on the live, then, whatever be the positiom of P,
$a . A P+b . B P+c . C P+d . D P+d c=(a+b+c+d+d f c.) \cdot O P \cdots(1)$, $a \cdot A P^{m}+b \cdot B P^{n}+c \cdot C P^{n}+d \cdot D P^{a}+d c$.

$$
\begin{align*}
& =a \cdot A O^{a}+b \cdot B O^{3}+c \cdot C O^{2}+d \cdot D O^{6}+d c . \\
& +\left(a+b+c+d+d(c \cdot) \cdot O P^{n} \ldots \ldots \ldots \ldots \ldots \ldots\right. \tag{2}
\end{align*}
$$

regard being had to the signs as well as the magnitudes of the several quantities involred.

For, multiplying the several relations $A P=A O+O P$, $B P=B O+O P, C P=C O+O P, D P=D O+O P$, de., which, by (75), are true whatever be the position of O, and also their squares, by the several corresponding multiples $a, b, c, d, \& c$., and adding, remembering in both eases that by hypothesis $\mathbf{\Sigma}($ a. $A O)=0$, the above relations are the immediate result.

The point O on the line, for which as above $\mathbf{\Sigma}(a \cdot A O)=0$, is termed, in virtue of relation 1, the mean centre of the system of points $A, B, C, D, d \in c$. for the system of multiples a, b, c, d, $d c$. ; and to determine its position when the several points and multiples are given, we have but to assume arbitrarily any point P on the line, and to measure from it a length $P O$ equal
in magnitude and sign to $\frac{\Sigma(a . P A)}{\sum(a)}$, the point O, by relation 1 , is that required, and by its aid the two relations 1 and 2 supply obvious solutions of the two general problems: "Given any number of points on a line A, B, C, D, \&.c., and the same number of corresponding multiples a, b, c, d, dic. whose sum is not $=0$. To determine the point P on the line for which the sum $\Sigma(a . A P)$, or the sum of the squares $\Sigma\left(a . A P^{2}\right)$ shall be given."

In the particular case when $\Sigma(a)=0$, the value of $P O$, as given by the above formula, being then infinite, the point O is therefore at an infinite distance, and the relations 1 and 2 both fail in consequence of their right-hand members becoming both indeterminate (13). This case, the laws of which, though simpler, differ altogether from those of the general case when $\Sigma(a)$ is not $=0$, will be considered separately in the next section.

Cor. 1. If round the mean centre O as centre and with a radius $O P$ whose square equal to the absolute value of $\frac{\Sigma\left(a \cdot A O^{2}\right)}{\Sigma(a)}$, disregarding its sign, a circle be described intersecting the line at the points M and N, and the perpendicular to it through O in either direction at the point S, then for any point P on the line the sum of squares $\Sigma\left(a . A P^{2}\right)=\Sigma(a) . S P^{2}$ or $\Sigma(a) \cdot M P \cdot N P$, according as $\Sigma(a)$ and $\Sigma\left(a . A O^{v}\right)$ have sinilar or opposite signs.

For since, by relation $2, \Sigma\left(a . A P^{z}\right)=\Sigma(a) . O P^{z}+\Sigma\left(a . A O^{z}\right)$, and since by construction $\Sigma\left(a \cdot A O^{2}\right)= \pm \Sigma(a) . O R^{2}$, therefore

$$
\Sigma\left(a \cdot A P^{v}\right)=\Sigma(a) \cdot\left(O P^{z} \pm O R^{z}\right)=\Sigma(a) \cdot S P^{2} \text { or } \Sigma(a) \cdot M P \cdot N P
$$

Hence, in both cases, the variable sum $\Sigma\left(a . A P^{x}\right)$ has equal values for every two points on the line equidistant from O, and the minimum value for the point O itself; it being remembered however that as it ranishes in the second case at the two points M and N, and increases negatively from each up to O, the term minimum is to be understood in the senso of negative maximum in that case, see (58).

Cor. 2. If a systom of any number of points on a line A, B, C, D, dec., and their mean centre O for any system of multiples c, l, c, d, dec., be projected by perpendiculars or any other parallels $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$, d.c., and $O O^{\prime}$ upon any arbitrary line L, then, whatrver be the pesition of L.
a. The projection O^{\prime} of the mean antre is the mean centre of the projections $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, sc. of the points for the same system of multiples.
6. The projector $O O^{\prime}$ of the mean centre, is the mean of the projectors $A A^{\prime}, B B, C C^{\prime}, D D^{\prime}$, dcc. of the points for the same system of multiples.

For, as in Cor. 1 (75), for the case of two points. If L be parallel to the line of the points, both properties are evident; and in any other position, if P bo tho point in which the two lines intensect, since by similar triangles, $A P: B P: C P: D P, \& \in: O P=A^{\prime} P: B^{\prime} P: C^{\prime} P: D^{\prime} P$, \&c.: $O^{\prime} P$

$$
=A A^{\prime}: B B^{\prime}: C C^{\prime}: D D^{\prime}, \text { ©c. }: O O^{\prime}
$$

and since by relation 1 ,
$\Sigma(a, A P)=\Sigma(a) . O P$; therefore $\Sigma\left(a . A^{\prime} P\right)=\Sigma(a) . O^{\prime} P$,
and $\Sigma(a . A A)=\Sigma(a) . O 0^{\prime}$, and therefore $\&$
Cors. 3°. If A, B, C, D, dre and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, de. be two sylstems of any common number of points on the same line, O and O^{\prime} their mean centres for any common system of multiples $n, b, c_{3} d$, d.c. then

$$
O O^{\prime}=\frac{a \cdot A A^{\prime}+b \cdot B B^{\prime}+c \cdot C C^{\prime}+d \cdot D D^{\prime}+i c}{a+b+c+d+d c},
$$

pairs of points having common multiples being combined in the summation.

For, since for any arbitrary point P on the line, by relation 1, $\Sigma(a) \cdot O P=a \cdot A P+b . B P+c . C P+d . D P+s c .$,
and $\geq(a) \cdot O^{\prime} P=a \cdot A^{\prime} P+b . B^{\prime} P+c \cdot C^{\prime \prime} P+d . D^{\prime} P+\&{ }^{\prime}$., therefore

$$
\begin{aligned}
& \Sigma(a) \cdot\left(O P-O^{\prime} P\right)=a \cdot\left(A P-A^{\prime} P\right)+b \cdot\left(B P-B^{\prime} P\right) \\
&+c \cdot\left(C P-C^{\prime} P\right)+a \cdot\left(D P-D^{\prime} P\right)+\delta c
\end{aligned}
$$

and therefore as above

$$
\mathbf{\Sigma}(a) \cdot O 0^{\prime}=a . A A^{\prime}+b . B B^{\prime}+c . C C^{\prime}+d . D D^{\prime}+\& c
$$

Cor. 4°. If A, B, C, D, dec. and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, dec. be any thoo systems of points on the same line, O and O^{\prime} their mean centres for any tuo systems of mulliples $a, b, c, d, d \cdot c \cdot$, and $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$, d.c., then

$$
O O^{\prime}=\frac{\Sigma\left(a a^{\prime} \cdot A A^{\prime}\right)}{\Sigma(a) \cdot \Sigma\left(a^{\prime}\right)}
$$

every point of one system being combined in the summation with every point of the other.

For, adding together the several relations

$$
\begin{aligned}
& a \cdot A A^{\prime}+b \cdot B A^{\prime}+c \cdot C A^{\prime}+d \cdot D A^{\prime}+\& c=\Sigma(a) \cdot O A^{\prime}, \\
& a \cdot A B^{\prime}+b \cdot B B^{\prime}+c \cdot C B^{\prime}+d \cdot D B^{\prime}+\& c .=\Sigma(a) \cdot O B^{\prime}, \\
& a \cdot A C^{\prime}+b \cdot B C^{\prime}+c \cdot C C^{\prime}+d \cdot D C^{\prime}+\& c .=\Sigma(a) \cdot O C^{\prime} \\
& a \cdot A D^{\prime}+b \cdot B D^{\prime}+c \cdot C D^{\prime}+d \cdot D D^{\prime}+\& c .=\Sigma(a) \cdot O D^{\prime}, \& c .
\end{aligned}
$$

multiplied respectively by $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, \& c$. there results immediately the relation

$$
\Sigma\left(a a^{\prime} \cdot A A^{\prime}\right)=\Sigma(a) \cdot \Sigma\left(a^{\prime} \cdot O A^{\prime}\right)=\Sigma(a) \cdot \Sigma\left(a^{\prime}\right) \cdot O O^{\prime}
$$

and therefore \&c.
81. If $A, B, C, D, d c$. be any system of points on a line disposed in any manner, $a, b, c, d, \& c$. any system of corresponding multiples, some positive and some negative, whose sum $=0$, then for every point P on the line not at infinity the sum $\Sigma(a . A P)$ has the same constant value.

In the same case, if I be the point on the line for which the sum $\Sigma\left(a . A I^{2}\right)=0$, then for every other point P on the line the sum $\Sigma\left(a . A P^{v}\right)=2 k . I P, k$ being the constant value of the sum $\mathbf{\Sigma}(a . A P)$ for every point on the line.

To prove the first,-since for any two points P and Q on the line by (75),
$A P-A Q=Q P, B P-B Q=Q P, C P-C Q=Q P, D P-D Q=Q P, \& c$. therefore, multiplying by $a, b, c, d, \& c$. and adding,

$$
\Sigma(a . A P)-\Sigma(a . A Q)=\Sigma(a) \cdot Q P=0
$$

when $\Sigma(a)=0$, whatever be the positions of P and Q, provided neither of them be at infinity, and therefore \&c.

To prove the second,-since for any two points P and Q on the line by (76 (4)),

$$
\begin{array}{ll}
A P^{3}-A Q^{2}=2 A R \cdot Q P, \quad B P^{n}-B Q^{2}=2 B R \cdot Q P \\
C P^{3}-C Q^{3}=2 C R \cdot P Q, \quad D P^{3}-D Q^{3}=2 D R \cdot P Q, \& c
\end{array}
$$

R being the middle point of $P Q$; therefore, multiplying by a, b, c, d, \&c. and adding,

$$
\Sigma\left(a \cdot A P^{P}\right)-\Sigma\left(a \cdot A Q^{\Sigma}\right)=2 \Sigma(a \cdot A R) \cdot Q P=2 k . Q P
$$

when $\pm(a)=0$, whatever be the positions of P and Q; and therefore when either of them Q is the particular point I for which $\Sigma\left(a . A I^{2}\right)=0$, then for the other P, whatever be its position, $\mathbf{\Sigma}\left(a . A P^{\circ}\right)=2 k . I P$, as above stated.

From the above relations it appears that, while the sum $\mathbf{\Sigma}(a . A P)$ is invariable, the sum $\mathbf{\Sigma}\left(a . A P^{*}\right)$ follows a very simple law of variation when $\Sigma(a)=0$, being simply proportional to the distance of P from a certain point I on the line, admitting therefore of no maximum or minimum value, but susceptible of every value positive and negative from 0 to co , passing through infinity as P passes through infinity, and through nothing as P passes through I, and changing from positive to negative, and conversely, at the passage through each.

To determine the point I, when the several points A, B, C, D, \&c. and the several multiples a, b, c, d, \&c. are given; assuming arbitrarily any point P on the line, and measuring from it a length $P I$ equal in magnitude and sign to

$$
\frac{\mathbf{\Sigma}\left(a \cdot P \cdot A^{7}\right)}{-2 k}=\frac{\mathbf{\Sigma}\left(a \cdot P \cdot A^{7}\right)}{2 \cdot \Sigma(a \cdot P A)},
$$

the point I, by relation 2, is that required, and by its aid the same relation supplies an obvious solution of the more gencral problem, "to determine the point P on the line for which the $\mathbf{\Sigma}\left(a . P A^{2}\right)$ shall have any given magnitude and sign."

In the particular case where the constant $k=0$, the value of $P I$, as given by the above formula, being then infinite, the point I is therefore at an infinite distance, and the relation $\Sigma\left(a . A P^{M}\right)=2 k$. IP fails in consequence of its right-hand member becoming indeterninate (13). In that case however it is easy to see that, as it ought, the sum $\mathcal{Z}\left(a, A P^{m}\right)$ has the same constant value for every point on the line not at infinity.

For since for every two points P and Q on the line, as above shown, $\Sigma\left(a . A P^{2}\right)-\Sigma\left(a . A Q^{\prime \prime}\right)=2 k . Q P$, whatever be the value of k, therefore when $k=0, \pm\left(a \cdot A P^{*}\right)=义\left(a \cdot A Q^{*}\right)$, whatever be the positions of P ' and Q, provided neither of them be at infinity, and therefore \&c.

Among the various ways in which the constant k may be represented in the form of a single quantity, when the several points A, B, C, D, \&c. and the several multiples $a, b, c, d, \& c$. are given, the following is perhaps the most convenient.

Conceiving the entire system of points $\mathbf{\Sigma}(A)$ divided into two distinct groups, one $\Sigma\left(A_{+}\right)$corresponding to the positive, and the other $\Psi\left(A_{-}\right)$to the negative multiples. If O_{+}and O_{-}be the mean centres of the two groups for their respective systems of multiples $\Sigma\left(a_{+}\right)$and $£\left(a_{-}\right)$, the constant sum

$$
\Sigma(a \cdot A P)=\Sigma\left(a_{+}\right) \cdot O_{+} O_{-}, \text {or }=\Sigma\left(a_{-}\right) \cdot O_{-} O_{+} .
$$

For, $\mathbf{\Sigma}(a \cdot A P)=\Sigma\left(a_{+} \cdot A_{+} P\right)+\mathbf{\Sigma}\left(a_{-} \cdot A_{-} P\right)=\mathbf{\Sigma}\left(a_{+}\right) \cdot O_{+} P$

$$
+\Sigma\left(a_{-}\right) \cdot O_{-} P, \text { by }(80),
$$

but $\quad \Sigma\left(a_{+}\right)+\Sigma\left(a_{-}\right)=\Sigma(a)=0$, by hypothesis,
therefore $\quad \geq(a, A P)=\Sigma\left(a_{+}\right) \cdot\left(O_{+} P-O_{-} P\right)$,

$$
\text { or }=\Sigma\left(a_{-}\right) \cdot\left(O_{-} P-O_{+} P\right)=\Sigma\left(a_{+}\right) \cdot O_{+} O_{-}, \text {or }=\Sigma\left(a_{-}\right) \cdot O_{-} O_{+}
$$

Hence when the two points O_{+}and O_{-}coincide, the constant $k=0$ at all points of the line.

In every case where the constant $k=0$, the position of the mean centre O of the entire system of points $\Sigma(A)$ for the entire system of multiples $\Sigma(a)$ is indeterminate. The relation $\leq(a . A O)=0$, by which that point, in general unique, is characterized (80), being then satisfied indifferently by every point on the line. An example of this for the ease of three points will be given in the next number.

Hence, generally, the position of the mean centre O of any system of points $A, B, C, D, \& c$. on a line for any system of multiples $a, b, c, d, d \in$. whose sum $=0$, is either indeterminate or impossible at any finite distance, indeterminate if the value of the constant $k=0$, impossible if not.
82. If A, B, C, D be four points on a line disposed in any manner, then alooays, none of the four being at infinity,

$$
B C \cdot A D+C A \cdot B D+A B \cdot C D=0
$$

regard being had to the signs as well as the magnitudes of the six segments involved.

For since whatever be the positions of the four points (75),

$$
A D-C D=A C, \text { and } B D-C D=B C
$$

therefore, multiplying the first by $B C$ and the second by $A C$, and subtracting

$$
B C . A D+C A \cdot B D+(A C-B C) C D=0
$$

the same as above, $A C-B C$ being always $=A B(75)$.

Hence, (seo preceding article), the mean centre O of three points A, B, C on a line for three multiples a, b, c, proportional in magnitude and sign to the three intervals $B C, C A, A B$ is indeterminate. Every point P on the line in virtue of the above relation, satisfying indifferently the characteristic condition,

$$
a \cdot . A P+b \cdot B P+c \cdot C P=0 .
$$

As four points on a line A, B, C, D, however disposed, determine in every case six different segments corresponding to each other two and two in chree different sets of opposite pairs $B C$ and $A D, C A$ and $B D, A B$ and $C D$, the above is the general relation comnecting those six segments in all cases, regard being had to their signs as well as their magnitudes, and interpreted absolutely, disregarding sigus, it expresses evidently the general property that -

Whatever be the disposition of four points on a line the rectangle under one puir of opposites of the six agments they ditermine is numerically equal to the sum of the rectangles under the other two pairs.

If the four points in the order of their disposition be denoted by 1, 2, 3, 4 respectively, it is easy to see that in all cases the rectangle $\overline{13} .24$ is the one that is equal to the sum of the other two $12 . \overline{34}$ and $\overline{23} . \overline{14}$; for denoting by $x, y_{2} z$ the absoluto intervals from 1 to 2,2 to 3,3 to 4 , respectively, diaregarding their signs, the relation

$$
(x+y)(y+z)=x z+y(x+y+z)
$$

is evidently in all cases identically true.
Cor. 1°. If A, B, C, D be four points on a line lisposed in any manner, and O any point whatever not at infinity, then alvays area $B O C$. area $A O D+$ area $C O A$. area $B O D$

$$
+ \text { area } A O B . \text { area } C O D=0
$$

regard being had to their signs as well as their magnitudes.
For in the relation $B C \cdot A D+C A \cdot B D+A B \cdot C D=0$, multiplying each segment by half the length of the perpendicular from O on the line, the relation just given is the immediate result.

Cor. 2. More generally if A, B, C, D be any four points
and O amy fifth point, none of the five being at infinity, then always area $B O C$. area $A O D+$ area $C O A$. area $B O D$

$$
+ \text { area } A O B \text {. area } C O D=0
$$

regard being had to their signs as well as their magnitudes.
For conceiving the four lines $A O, B O, C O, D O$, met by any fifth line L not parallel to one of themselves in the four points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, since then (64)

$$
\text { area } B O C: \text { area } B^{\prime} O C^{\prime}=O B \cdot O C: O B^{\prime} \cdot O C^{\prime}
$$

and area $A O D$: area $A^{\prime} O D^{\prime}=O A . O D: O A^{\prime} . O D^{\prime}$, both pairs of triangles having the same angles at O; therefore area $B O C$. area $A O D$: area $B^{\prime} O C^{\prime}$, area $A^{\prime} O D^{\prime}$

$$
=O A \cdot O B \cdot O C \cdot O D: O A^{\prime} \cdot O B^{\prime} \cdot O C^{\prime} \cdot O D^{\prime}
$$

and (both remaining pairs of corresponding products having for the same reason the same ratio) therefore area $B O C$.area $A O D$: area COA.area $B O D$:area $A O B$.area $C O D$ $=\operatorname{area} B^{\prime} O C^{\prime}$. area $A^{\prime} O D^{\prime}$: area $C^{\prime} O A^{\prime}$. area $B^{\prime} O D^{\prime}$

$$
\text { : area } A^{\prime} O B^{\prime} \text {. area } C^{\prime} O D^{\prime} ;
$$

but by Cor. 1°. the sum of the three consequents $=0$, therefore, also the sum of the three antecedents $=0$, and therefore \&c.

Cor. 3°. If $O A, O B, O C, O D$ be four lines passing through a point, then in all cases whatever be their directions, $\sin B O C \cdot \sin A O D+\sin C O A \cdot \sin B O D+\sin A O B \cdot \sin C O D=0$, regard being had to the signs as well as the magnitudes of the six angles incolved.

For, if A, B, C, D be the four points in which any line not passing through O intersects the four lines; since then by (64) $O B . O C \cdot \sin B O C=2 \operatorname{arca} B O C$ and $O A . O D \cdot \sin A O D=2$ area $A O D$, therefore
$O A . O B . O C \cdot O D \cdot \sin B O C \cdot \sin A O D=4$ area.$B O C$. area $A O D$, and, similar relations for the same reason existing for the other two pairs, therefore, $\sin B O C \cdot \sin A O D: \sin C O A \cdot \sin B O D: \sin A O B \cdot \sin C O D$ $=\operatorname{area} B O C$ area $A O D:$ area $C O A \cdot \operatorname{area} B O D: \operatorname{area} A O B$.arca $C O D$,
but by Cor. 1°. the sum of the three antecedents $=0$, therefore also the sum of the three consequents $=0$, and therefore dic.

Otherwise thus, if A, B, C, D, be the four points in which any circle passing through O intersects the four lines, then since (62) diameter of circle. $\sin B O C=$ chord $B C$, and diameter of circle. $\sin A O D=$ chord $A D$; therefore diameter of circle $\cdot \sin B O C \cdot \sin A O D=$ chord $B C$. chorl $A D$, and (similar relations for the same reason existing for the other two pairs) therefure
$\sin B O C \cdot \sin A O D: \sin C O A \cdot \sin B O D: \sin A O B \cdot \sin C O D$
$=$ chord $B C$. chord $A D$: chord $C A$.chordBD : chord $A B$.chord $C D$; but by Ptoleny's theorem (Euc. Vi. 16, Cor.) one of the three consequents is always numerically equal to the sum of the other two, therefore, disregarding signs, the same is true also of the three antecedents, and therefore de.

Cins. 4°. If A, B, C be any three proints in a line, and $A L, B L$, $C L$, their three distances perpendicular or in any common direction from any line L not at infinity, then alicays

$$
B C \cdot A L+C A \cdot B L+A B \cdot C L=0
$$

regard being hud to the signs us well us the magnitudes of the several quantities innoled.

For, if L be parallel to the line containing the points, then since $A L_{L}=B L_{0}=C L$, and since by (78) $B C+C A+A B=0$, therefore dic., and if not, then if P be the intersection of the two lines, since $A L: B L: C L:: A P: B P: C P$, and since by the above $B C \cdot A P+C A \cdot B P+A B \cdot C P=0$, therefore die.

Cor. 5°. If L, M, N be any three parallel lines and $P L, P M$, $P N$ their three distances perpendicular or in any common direction from any point P not at infinity, then alcays

$$
M N \cdot P L+N L \cdot P M+L M \cdot P N=0
$$

regard being had to the signs as vell as the magnitudes of the several quantities involved.

For if A, B, C be the three points in which any line through P not parallel to their common direction intersects L, M, N, then since $M N: N L: L M: P L: P M: P N:: B C: C A: A B: P A: P B: P C$, and since by the above $B C \cdot P A+C A \cdot P B+A B \cdot P C=0$, therefore \&c.

Cor. 6°. If L, M, N be any three lines passing through a point O, and PL, PM, PN the three perpendiculars or any other isoclinals upon them from any point P not at infinity, then always

$$
\sin M N \cdot P L+\sin N L \cdot P M+\sin L M \cdot P N=0
$$

regard being had to the signs as well as the magnitudes of the several quantities involved.

For, dividing by $P O$ the distance of P from O, or more generally by the diameter of the circle passing through P and O and through the feet of the three perpendiculars or isoclinals, the relation becomes evidently identical with that of Cor. 3°. for the four lines $O L, O M, O N, O P$, and therefore \&c.

The three sides of every triangle being as the three sines of the opposite angles (63), the three sines in the preceding formula may therefore be replaced by the three sides of any triangle formed by parallels to the three lines.

Cor. 7°. If α, β, γ be the three angles of any triangle, and $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ those at which the three opposite sides a, b, c intersect any line d, then always

$$
\sin \alpha \cdot \sin \alpha^{\prime} \cdot+\sin \beta \cdot \sin \beta^{\prime}+\sin \gamma \cdot \sin \gamma^{\prime}=0
$$

regard leing had to the signs as well as the magmitudes of the six angles involved.

For, drawing through any arbitrary point O four lines $0 . A$, $O B, O C, O D$ parallel to a, b, c, d, then since by parallels $B O C=\alpha, C O A=\beta, A O B=\gamma$, and $A O D=\alpha^{\prime}, B O D=\beta^{\prime}$, $C O D=\gamma^{\prime}$, the relation is evident from that of Cor. 3°.
83. If A, B, C be three points on a line disposed in any manner, and $A P, B P, C P$ the three lines connecting them with any point P not at infinity, then always

$$
B C \cdot A P^{2}+C A \cdot B I P^{2}+A B \cdot C P^{2}=-B C \cdot C A \cdot A B
$$

regard being had to the signs as well as the magnitudes of the three segments involved.

For letting fall from P the perpendicular $P Q$ on the line, then since (75 Cor. 2°.)

$$
\begin{aligned}
& A P^{n}-C P^{n}=A C^{2}+2 A C \cdot C Q \\
& B P^{3}-C P^{n}=B C^{2}+2 B C \cdot C Q
\end{aligned}
$$

and
therefore, multiplying the first by $B C$ and the second by $A C$, and subtracting,

$$
\begin{aligned}
B C \cdot A P^{a}+C A \cdot B P^{3}+(A C-B C) \cdot C P^{n} & =B C \cdot A C^{1}-A C \cdot B C^{1} \\
& =-B C \cdot C \cdot(\cdot(A C-B C)
\end{aligned}
$$

the same as the above, $A C-B C$ being always $=A B$ (is).
From the above which is the geweral relation connecting any three lines druien from "point to a line, and the three segments they intercept on the line; it is evident that echen A, B, and C
 dent of the prasition of I^{\prime} und therffore comathent firr all Y pints at a finite distance; an example of the general property entablialied in (81), that when, as in the present instance (see preceding article), the sum $\dot{(}(a, A Q)$ is nothing for every point on a line, then tho sun $£\left(a . A Q^{3}\right)$ is conatant fur every point on the line, and therefore for every point whatever not at infinity, tho quantity $\Sigma(a) P Q$ by which the sums for the two points P and Q differ, Fuc. 1. 47, vanishing with $\mathcal{E}(a)$ for every position of P for which $P Q$ is not infinite.

Dividing both sides of the above relation by its right-hand nember - BC.C.A. $A B$, it assumes the not leas symmetrical but more compact form

$$
\frac{A I^{\infty}}{A B \cdot A C}+\frac{B I^{\infty}}{B C \cdot B \cdot 1}+\frac{C I^{\infty}}{C A \cdot U B}=1
$$

regard being had of course to the signs as well as the magnitudes of the three rectangles $A B . A C, B C . B . A$, C'A. C ' B in the addition.

Cur. 1. If A, B, C be three points on a line ilisposed in any munner, and $A R, B S, C T$ the three tangents from theon to any circle, not either at infinity or infinite in rulius, then alwcays

$$
B C \cdot A R^{2}+C A \cdot B S^{y}+A B \cdot C T^{2}=-B C \cdot C A \cdot A B
$$

regard being had to the signs as well as the magnitudes of all the quantities incolved.

For, if P be the centre of the circle, then since

$$
A I^{2}=A P^{3}-P I^{2}, \quad B S^{3}=B I^{B}-P S^{2}, C T^{2}=C P^{3}-P T^{3}
$$

and since $P l l=P S=P T=$ radius of circle, therefore

$$
\begin{aligned}
& B C \cdot A R^{n}+C A \cdot B S^{n}+A B \cdot C T^{n}=B C \cdot A P^{n}+C A \cdot B P \\
& +A B \cdot C P^{x}-(B C+C A+A B) \cdot \text { radius of circle }
\end{aligned}
$$

the first part of which by the above $=-B C \cdot C A \cdot A B$, and the second point of which by $(78)=0$, and therefore \&c.

Dividing, as in the original, both sides of this latter relation by its right-hand member $-B C . C A . A B$, it too assumes the more compact and not less symmetrical form

$$
\frac{A R^{2}}{A B \cdot A C}+\frac{B S^{2}}{B C \cdot B A}+\frac{C T^{2}}{C A \cdot C B}=1
$$

regard again of course being had to the signs as well as the magnitudes of all the quantities involved.

Cor. 2°. If $C Z$ be any line drawn from the vertex C to the base $A B$ of any triangle $A C B$, then always

$$
A Z \cdot C B^{2}-B Z \cdot C A^{2}=A B \cdot\left(C Z^{2}-A Z \cdot B Z\right)
$$

regard being had to the signs as well as the magnitudes of the three intercepts $A Z, B Z$, and $A B$.

This relation is obviously the same as the above, only stated in the form in which it most naturally presents itself in the process by which it was established above.

The following particular cases are deserving of notice:
1°. If Z bisect $A B$, then $A Z=\frac{1}{2} A B$ and $B Z=-\frac{1}{2} A B$, and the relation becomes

$$
C Z^{2}-A Z . B Z=\frac{1}{2}\left(C A^{2}+C B^{2}\right)
$$

the known relation connecting the base, bisector of base, and sides of a triangle, (Euc. 11. 12, 13, Cor.).
2°. If $C Z$ bisect $A C B$ externally or internally, then as $A Z: B Z= \pm A C: B C$, (Euc. vi. 3), therefore $A Z . C B= \pm B Z . C A$ according as the bisection is external or internal, and the relation, remembering that in either case $A Z-B Z=A B(75)$, becomes

$$
C Z^{3}-A Z \cdot B Z=\mp C A \cdot C B
$$

the known relation connecting the sides of a triangle, either bisector external or internal of the vertical angle, and the segments into which it divides the base.
3°. If the triangle be isosceles, then $C A=C B$, and the relation, remembering as before that always $A Z-B Z=A B$, becomes $C Z^{2}-A Z \cdot B Z=C A^{2}$ or $C B^{2}$ or $C A \cdot C B$, the known relation connecting either side of an isoseeles triangle, any line drawn from the vertex to the base, and the rectangle under the segments into which it divides the base (Euc. II. 5, 6, Cor.).
4°. If the triangle be right-angled, then $C A^{2}+C B^{2}=A B^{2}$, and the relation, multiplying its two sides, the first by $A Z-B Z$, and the second by its equivalent $A B$, which causes the rectangle $A Z . B Z$ to disappear in virtue of the property of the triangle, becomes

$$
B C^{3} \cdot A Z^{2}+A C^{2} \cdot B Z^{2}=A B^{2} \cdot C Z^{2}
$$

the general relation comecting the sides and the distances of any point on the liypotenuse from the vertices of a rightangled triangle.

Cor. 3. If A, B, C, D be any four points on a circle taken in the order of their dispasition, and P any ffith point withour, within, or upon the circle, but not at infinity, then always area $B C D \cdot A P^{m}-\operatorname{area} C D A \cdot B P^{n}+$ area $D A B \cdot C P^{n}$
$-\operatorname{arca} A B C . D P^{B}=0$,
regard being had only to the absolute magnitudes of the several areas zhich from their disposition are incapuble of being compared in sign.

For, joining P with the intersection O of the two chords $A C$ and $B D$, which from their positions necessarily intersect internally ; then from the relation, Cor. 1°., applied successively to the two triangles $A P C$ and $B P D$, disregarding all signs in each, and attending only to absolute values throughout,

$$
\begin{aligned}
& C O . A P^{2}+A O . C P^{n}=A C \cdot\left(P O^{2}+A O . C O\right), \\
& D O . C P^{2}+B O . D P^{2}=B D \cdot\left(P O^{a}+B O . D O\right),
\end{aligned}
$$

from which, as $A O \cdot C O=B O \cdot D O$, (Euc. III. 35), therefore immediately

$$
B D \cdot C O \cdot A P^{3}+B D \cdot A O \cdot C P^{w}=A C \cdot D O \cdot B P^{9}+A C \cdot B O \cdot D P,
$$

which is evidently identical with the other, the four rectangles $B D . C O$, \&c. multiplied each by the sine of the angle of intersection of the two chords $A C$ and $B D$ being respectively the double areas of the four triangles $B C D$, \&c.

This theorem is due to Dr. Salmon, who has given it in his Conic Sections as the geometrical interpretation of the analytical condition that four points A, B, C, D should lie on a circle.

Cor. 4. If A, B, C, D be any four points on a circle taken
in the order of their disposition, and $A Q, B R, C S, D T$ the four tangents from them to another circle not either infinitely distant or infinite in radius, then alveays area $B C D \cdot A Q^{2}$ - area $C D A \cdot B R^{2}+$ area $D A B \cdot C S^{2}$

$$
- \text { area } A B C . D T^{2}=0
$$

regard being had, as in Cor. 3°., only to the absolute values of the several areas.

For, if P be the centre of the latter circle, then since

$$
P Q=P R=P S=P T=\text { radius of that circle }
$$

and since
area $B C D+\operatorname{arca} D A B=$ area $C D A+$ area $A B C$

$$
=\text { area of quadrilateral } A B C D,
$$

therefore
area $B C D \cdot P Q^{2}-\operatorname{arca} C D A \cdot P R^{2}+\operatorname{area} D A B \cdot P S^{2}$

$$
-\operatorname{arca} A B C \cdot P T^{2}=0
$$

which relation, subtracted from that of Cor. 3°., leaves immediately that just stated, and therefore \&c.

If in this relation, as in that of Cor. 1°., any of the points A, B, C, D be within the second circle, the squares of the corresponding tangents are of course negative.

Cor. 5°. If $O A, O B, O C, O D$ be four lines passing through a point, then in all cases, whatever be their directions, $\frac{\sin B O D \cdot \sin C O D}{\sin B O A \cdot \sin C O A}+\frac{\sin C O D \cdot \sin A O D}{\sin C O B \cdot \sin A O B}+\frac{\sin A O D \cdot \sin B O D}{\sin A O C \cdot \sin B O C}=1$, regard being had to the signs as well as the magnitudes of the six angles involved.

For, drawing any line L parallel to $O D$, meeting $O A, O B$, $O C$ in A, B, C, then since (63)

$$
\frac{\sin B O D}{\sin B O A}=\frac{A O}{A B} \text { and } \frac{\sin C O D}{\sin C O A}=\frac{A O}{A C}
$$

therefore

$$
\frac{\sin B O D \cdot \sin C O D}{\sin B O \cdot 1 \cdot \sin C O A}=\frac{A O^{*}}{A B \cdot A C},
$$

and, similarly,
$\frac{\sin C O D \cdot \sin A O D}{\sin C O B \cdot \sin A O B}=\frac{B O^{*}}{B C \cdot B A}$ and $\frac{\sin A O D \cdot \sin B O D}{\sin A O C \cdot \sin B O C}=\frac{C O^{2}}{C A \cdot C A}$;
but, by the original relation of the present article, the sum of the three right-hand members $=1$, therefore also the sum of the left-hand members $=1$, and therefore \&e.

Car. 6°. If $0.1, O B, O C$ in thrie lines passing through a point, and $P A, P B, P C$ the thren prpendiculurs upon them from any point P not at iufinity, then alicays echatesur the the ir directions $P B . P C \cdot \sin B O C+P C \cdot P A \cdot \sin C O A+P A \cdot P B \cdot \sin A O B$
$-P O^{2} \cdot \sin B \cap C \cdot \sin C O A \cdot \sin A O B$,
regard being had to the signs as well as the magnitudes of the several quantilics incolvel.

For, dividing both sides of the relation by its right-hand member $-P O^{\prime} \cdot \sin B O C \cdot \sin C O A$ sin $A O B$, the relation of Cor. 5°., for the four lines $O A, O B, O C$, and $O P$, is the immediate result, and therefore \&ic.

Cor. 7°. If α, β, γ be the theres angles of any triongle, amd $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ those at which the thres appusite sules a, b, c interset any line d, then alirays

$$
\frac{\sin \beta^{\prime} \cdot \sin \gamma^{\prime}}{\sin \beta \cdot \sin \gamma}+\frac{\sin \gamma^{\prime} \cdot \sin \alpha^{\prime}}{\sin \gamma \cdot \sin \alpha}+\frac{\sin \alpha^{\prime} \cdot \sin \beta^{\prime}}{\sin \alpha \cdot \sin \beta}=1,
$$

regard leing had to tho sigms as well as the magnitudes of the sixe angles intolved.

For, as in Cor. 5°. of the preceding article, drawing through any arbitrary point O, four lines $O A, O B, O C, O D$ parallel to a, b, c, d; then since $B O C=\alpha, C O A=\beta, A O B=\gamma$, and $A O D=\alpha^{\prime}, B O D=\beta^{\prime}, C O D=\gamma^{\prime}$, the relation is evident from that of Cor. 5°.

Cor. 8°. If A, B, C be the three vertins of any triangle, and $A X, I B I, C Z$ three parallels drauen from them in any direction to meel the three opposite sides $B C, C A, A B$, then alirays

$$
\frac{B N \cdot C I}{A \cdot I^{2}}+\frac{C I \cdot A Y}{B Y^{2}}+\frac{A Z \cdot B Z}{C Z^{2}}=1
$$

regard being had to the signs as well as the magnitudes of the thiree rectungles intolvel.

For, if α, β, γ be the three angles of the triangle at A, B, C, and $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ those at which the three opposite sides intersect
any line parallel to the common direction of the three parallels, since then

$$
\frac{B X}{A X}=\frac{\sin \gamma^{\prime}}{\sin \beta} \text { and } \frac{C X}{A X}=\frac{\sin \beta^{\prime}}{\sin \gamma} ;
$$

therefore

$$
\frac{B X \cdot C X}{A X^{2}}=\frac{\sin \beta^{\prime} \cdot \sin \gamma^{\prime}}{\sin \beta \cdot \sin \gamma^{\prime}},
$$

and similarly,

$$
\frac{C Y \cdot A Y}{B Y^{2}}=\frac{\sin \gamma^{\prime} \cdot \sin \alpha^{\prime}}{\sin \gamma \cdot \sin \alpha} \text { and } \frac{A Z \cdot B Z}{C Z^{2}}=\frac{\sin \alpha^{\prime} \cdot \sin \beta^{\prime}}{\sin \alpha \cdot \sin \beta},
$$

and the relation consequently is evident from that of Cor. 7°.
84. We shall conclude the present chapter with one or two applications of a very simple problem of very frequent occurrence in Pure and Applied Geometry.

Given in magnitude and sign the ratio $m: n$ of the segments $A P$ and $B P$ into which a given line $A B$ is cut at a point P, to determine the segments in magnitude and sign.

Since, by hypothesis, $A P: B P=m: n$, therefore

$$
A P: A P-B P: m: m-n, \text { and } B P: B P-A P=n: n-m,
$$

and since in all cases $A P-B P=A B$, and $B P-A P=B A$, therefore

$$
\begin{aligned}
& A P=\frac{m}{m-n} \cdot A B=\frac{m}{n-m} \cdot B A \\
& B P=\frac{n}{m-n} \cdot A B=\frac{n}{n-m} \cdot B A
\end{aligned}
$$

which are the general formulæ by which to calculate in numbers the segments of a line of given length cut in any given ratio.

Cor. 1°. As an application of the preceding let it be required to determine for any triangle $A B C$ the lengths of the bisectors, external and internal, of the three angles, and the segments they intercept on the opposite sides.

If $A X, B Y, C Z$ be the three external, and $A X^{\prime}, B Y^{\prime}, C Z^{\prime}$ the three internal bisectors, then since (Euc. vi. 3)

$$
\frac{B X}{C X}=+\frac{B A}{C A} \text { and } \frac{B X^{\prime}}{C X^{\prime}}=-\frac{B A}{C A}
$$

therefore, by the above,

$$
\begin{aligned}
& B X=\frac{B A}{B A-C A} \cdot B C, \quad B X^{\prime}=\frac{B A}{B A+C A} \cdot B C \\
& C X=\frac{C A}{C A-B A} \cdot C B, \quad C X^{\prime}=\frac{C A}{C A+B A} \cdot C B
\end{aligned}
$$

and therefore at once, by subtraction, remembering that similar formula for the same reason hold for the other two sides,

$$
\begin{gathered}
X^{\prime} X=\frac{2 B A \cdot C A}{B A^{2}-C A^{*}} \cdot B C, \quad Y^{\prime} Y=\frac{2 C B \cdot A B}{C B^{2}-A B^{\prime}} \cdot C A \\
Z Z=\frac{2 A C \cdot B C}{A C^{2}-B C^{2}} \cdot A B
\end{gathered}
$$

which are the general formula by which to calculate in numbers the lengths of the three intercepts $X^{\prime \prime} X, Y^{\prime \prime} Y, Z^{\prime} Z$, when the sides of the triangle are given.

Since again, at once, by multiplication,
$B X \cdot C X=\frac{B A \cdot C A}{(B A-C A)^{\circ}} \cdot B C^{3}$, and $B X^{\prime} \cdot C X^{\prime \prime}=-\frac{B A \cdot C A}{(B A+C A)^{2}} \cdot B C^{n}$,
with corresponding values for the other two sides, therefore, by Cor. 2. (83),
and

$$
\begin{aligned}
& A X^{2}=B A \cdot C A\left\{\left(\frac{B C}{B A-C A}\right)^{x}-1\right\}, \\
& A X^{\prime /}=B A \cdot C A\left\{1-\left(\frac{B C}{B A+C A}\right)^{n}\right\},
\end{aligned}
$$

which with similar values for the other two sides are the formula by which to calculate in numbers the lengths of the six bisectors $A X$ and $A X^{\prime \prime}, B I^{\prime}$ and $B Y^{\prime \prime}, C Z$ and $C Z^{\prime}$ when the sides of the triangle are given.

From the above values for $X^{\prime \prime} X, Y^{\prime} Y, Z Z$, it is evident that their reciprocals are connected in all cases by the two following relations:

$$
\frac{1}{X X^{\prime}}+\frac{1}{Y Y^{\prime \prime}}+\frac{1}{Z Z^{\prime}}=0, \text { and } \frac{B C^{\prime}}{X \Lambda^{\prime}}+\frac{C A^{\prime}}{Y Y^{\prime \prime}}+\frac{A B^{2}}{Z Z^{\prime}}=0
$$

from which, regarding them as positive or negative according as they are similar or opposite in direction with the sides of the triangle measured from B to C, from C to A, and from A to B respectively, it is evident that one of then must have in all cases the sign opposite to that of the other two.

Cor. 2°. As a second application of the same, let it be required to determine for any triangle $A B C$ the sides of the squares exscribed and inscribed to the three sides, and the segments they intercept on the perpendiculars from the opposite vertices.

Let $E F M N$ be, fig. α, the inscribed, or, figs. β and γ, the exscribed square corresponding to the side $B C$ of the triangle $B A C$; then drawing $A D$ the perpendicular on that side from the opposite vertex A, intersecting $M N$ in O, by similar triangles $M A N$ and $B A C$, we have $M N: A O=B C: A D$, but, on account of the square, $M N=O D$, therefore, disregarding signs for a moment, $D O: A O=B C: A D$; that is the perpendicular $A D$ is cut at the point O, internally, fig. α, in the case of the inscribed, and externally, figs. β and γ, in the case of the exscribed square in the ratio of $B C: A D$; and therefore, by the above

$$
O D=\frac{B C}{B C_{ \pm} A D} \cdot A D=\frac{B C \cdot A D}{B C_{ \pm} A D},
$$

the upper sign corresponding to the inscribed and the lower to the exscribed square.

Similar formula holding of course for the other two sides $C A$ and $A B$; if a, b, c be the three sides of the triangle, p, q, r the three perpendiculars upon them from the opposite vertices, x, y, z the sides of the three inscribed, and $x^{\prime}, y^{\prime}, z^{\prime}$ those of the three exscribed squares; then, by the above,

$$
\begin{array}{ll}
x=\frac{a p}{a+p}, & y=\frac{b q}{b+q}, \quad z=\frac{c r}{c+r}, \\
x^{\prime}=\frac{a p}{a-p}, \quad y^{\prime}=\frac{b q}{b-q}, \quad z^{\prime}=\frac{c r}{c-r},
\end{array}
$$

which are the general formule by which to calculate in numbers the sides of the six squares when the sides of the triangle are given.

It is crident from these formula, or directly, that while the inseribed square corresponding to any side of a triangle lies always on the same side of that side with the triangle itself, (fig. a); the exscribed square on the contrary lies on the same or on the opposite side, figs. β and γ, according as the side of the triangle to which it corresponds is greater or less than the perpendicular upon it from the opposite vertex ; in the particular case when a side of a triangle is equal to the perpendicular upon it from the opposite vertex, the exscribed square corresponding to such side is infinite, and may therefore be regarded as lying indifferently in either direction.

Combining the above formula in corresponding pairs, by addition and subtraction, we have immediately

$$
\begin{array}{ll}
x^{\prime}+x=\frac{2 a p}{a^{2}-p^{\prime}} \cdot a, \quad y^{\prime}+y=\frac{2 b q}{b^{3}-q} \cdot b, \quad z^{\prime}+z=\frac{2 c r}{c^{2}-r^{2}} \cdot c, \\
x^{\prime}-x=\frac{2 a p}{a^{2}-p^{\prime}} \cdot p, \quad y^{\prime}-y=\frac{2 b q}{b^{3}-q^{2}} \cdot q, \quad \varepsilon^{\prime}-z=\frac{2 c r}{c^{3}-r^{2}} \cdot r,
\end{array}
$$

which latter, regard being had to their signs as well as their magnitudes, are the formula for the lengths of the segments intercepted on the three perpendiculars of the triangle by the three pairs of squares.

Taking again the reciprocals of the above formule, viz.

$$
\begin{array}{ll}
\frac{1}{x}=\frac{1}{p}+\frac{1}{a}, & \frac{1}{y}=\frac{1}{q}+\frac{1}{b}, \quad \frac{1}{z}=\frac{1}{r}+\frac{1}{c}, \\
\frac{1}{x^{\prime}}=\frac{1}{p}-\frac{1}{a}, & \frac{1}{y^{\prime}}=\frac{1}{q}-\frac{1}{b}, \quad \frac{1}{z^{\prime}}=\frac{1}{r}-\frac{1}{c},
\end{array}
$$

and combining them also in corresponding pairs, by addition and subtraction, we get

$$
\begin{array}{ll}
\frac{1}{x}+\frac{1}{x^{\prime}}=\frac{2}{p}, & \frac{1}{y}+\frac{1}{y^{\prime}}=\frac{2}{q}, \quad \frac{1}{z}+\frac{1}{z^{\prime}}=\frac{2}{r}, \\
\frac{1}{x}-\frac{1}{x^{\prime}}=\frac{2}{a}, & \frac{1}{y}-\frac{1}{y^{\prime}}=\frac{2}{b}, \quad \frac{1}{z}-\frac{1}{z^{\prime}}=\frac{2}{c},
\end{array}
$$

which are the formule by which to calculate in numbers a side and perpendicular of a trianglo when their inscribed or exscribed squares are given.

116 convention of positive and negative in geometry.

From the several preceding formulæ it is crident that any two of the four corresponding magnitudes, viz., a side of a triangle, the perpendicular upon it, the inscribed and exseribed squares resting upon it, determine the other two.

The sides of the squares inscribed and exscribed to any side $B C$ of a triangle $A B C$, being given by the above formulæ, the squares themselves can of course be immediately constructed; if however it were required only to construct them without having also to calculate their sides, of the several methods of doing so the following is perhaps the most convenient.

On the side $B C$ of the triangle upon which the squares are to be constructed, describe the square $B C H K$, and connect its two opposite vertices H and K with the opposite vertex A of the triangle; the two connecting lines $H A$ and $K A$ will intercept on $B C$ the base $E F$ of the required inscribed or exscribed square $E F M N$-of the inscribed if $H K$ and A lie at opposite sides of $B C$ (fig. a)-of the exscribed if they lie at the same side of it (figs. β and γ).

For, drawing $E M$ and $F N$ perpendiculars to $B C$ and joining $M N$; as the three lines $A H, A K$, and $A B$ pass through a point A, and as $E M$ and $E F$ are parallels to $H B$ and $H K$, therefore $E M: E F=H B: H K$, and similarly $F N: F E=K C: K H$, but by construction $H B=K C=H K$, therefore $E M=F N=E F$, and therefore \&c.

A method exactly similar might obviously be employed to solve the more general problem: "On any side $B C$ of a given triangle $A B C$ to inscribe or exscribe a parallelogram of any given form."

CHAPTER VI.

THEORY GENERAL OF THE MRAN CENTRR OF ANY SYSTEM OF POINTS FOK ANV SYSTEM OF MULTIPIJS.

85. The main features of this theory for the particular case of a system of points disposed along a line having been already given in sections $79,80,81$ of the preceding, its extension to a system of points disposed in any manner will form the chief subject of the present chapter; the following fundamental theorem may be regarded ns the basis of this extension.

If A, B, C, D, sec. be any system of points, disposed in any manner, but none infinitely distant, a, b, c, d, dec. any system of corresponding multiples, positive or negative, but none infinitely great, and O a point such that for two lines M and N passing through it $\mathbb{\Sigma}(a . A M)=0$, and $\mathbb{E}(a . A N)=0$; then for every line L passing through $O \pm(a . A L)=0$, regard being had in all the sums to the signs as well as the magnitudes of the several quantities involved.

For, if O be at an infinite distance, then for the several points by Cor. 5°. (Art. 82) of the preceding chapter,

$$
\begin{aligned}
& M N \cdot A L+N L \cdot A M+L M \cdot A N=0 \\
& M N \cdot B L+N L \cdot B M+L M \cdot B N=0 \\
& M N \cdot C L+N L \cdot C M+L M \cdot C N=0 \\
& M N \cdot D L+N L \cdot D M+L M \cdot D N=0, \& c .
\end{aligned}
$$

And, if O be at a finite distance, then for the several points by Cor. 6°. (Art. 82) of the same,

$$
\begin{aligned}
& \sin M N \cdot A L+\sin N L \cdot A M+\sin L M \cdot A N=0, \\
& \sin M N \cdot B L+\sin N L \cdot B M+\sin L M \cdot B N=0, \\
& \sin M N \cdot C L+\sin N L \cdot C M+\sin L M \cdot C N=0, \\
& \sin M N \cdot D L+\sin N L \cdot D M+\sin L M \cdot D \cdot N=0, G c .
\end{aligned}
$$

which multiplied in either case by $a, b, c, d, \& c$. and added, give at once, in the former case the relation

$$
M N \cdot \Sigma(a \cdot A L)+N L \cdot \Sigma(a \cdot A M)+L M \cdot \Sigma(a \cdot A N)=0
$$

and in the latter case the relation

$$
\sin M N . \Sigma(a . A L)+\sin N L \cdot \Sigma(a \cdot A M)+\sin L M \cdot \Sigma(a \cdot A N)=0
$$

from which it follows immediately in either case that if any two of the three sums $\Sigma(a . A L), \Sigma(a . A M), \Sigma(a . A N)=0$, the third also $=0$, and therefore \&c.

The case of O at an infinite distance corresponds, as may be easily shewn, to that of $\Sigma(a)=0$, a case requiring, as we shall see, special treatment in almost every point connected with the present subject; for, since $\Sigma(a . A N)-\Sigma(a . A M)=\Sigma(a) \cdot M N$ for every two parallel lines M and N whatever be their interval of separation $M N$; therefore if, as above, $\Sigma(a . A N)=\Sigma(a . A M)$ for any two parallel lines M and N not coinciding with each other, then $\Sigma(a)=0$, and if conversely $\Sigma(a)=0$, then $\Sigma(a \cdot A N)=\Sigma(a \cdot A M)$ for every two parallel lines M and N not infinitely distant from each other, and therefore \&c.
86. The point O related as above to a system of points $A, B, C, D, \& e$. that for every line L passing through it the sum

$$
a \cdot A L+b \cdot B L+c \cdot C L+d \cdot D L+\& c \cdot=0
$$

is termed the centre of mean position, or more shortly the mean centre of the system of points for the system of multiples a, b, c, d, \&c. and is in general a unique point depending upon and varying with the positions of the points and the values of the multiples; the propriety of the name depending on the properties of the point will appear in the sequel.

In the science of Mechanics, if $A, B, C, D, \& c$. be the positions, and a, b, c, d, \&ce the masses of any system of material particles situated in the same plane, then is the point O, as above defined, the centre of gravity of the system; in that science, therefore, all propositions relating to this subject are of considerable importance.
87. For every system of points A, B, C, D, \&c. there exists a particular system of multiples $a, b, c, d, \& c$. indeterminate of
course in absolute but fixed and unique in relative values, such that for every line L not actually at infinity, the sum $\mathcal{\Sigma}(a . A L)=0$, and for which therefore the mean centre O of the system is indeterminate; in all such cases it is easy to see, 1°. that $£(a)=0$, and 2°. Thut each point of the system is the mean centre of the others for thirir respective mulliples; for, the values of $\mathbf{\Sigma}(a . A L)$ being by hypothesis $=0$ for two different lines passing through a point at infinity, therefore by the preceding $\Sigma(a)=0$, and being again by hypothesis $=0$ for two different lines passing through any point of the system, therefore by the same that point is the mean centre of the others for their respective multiples; instances of such cases are of conrse exceptional, but whenever they present themselves, as they occasionally do, their exceptional preculiarities must always be attended to.
88. From the fundamental property of the preceding article, it is easy to see that if a system of multiples $a, b, c, d, \& c c$ corresponding to a system of points A, B, C, D, \&c. be such that for any three lines L, M, N not passing through a common point $\pm(a . A L)=0, \Sigma(a . A M)=0, \mathcal{\Sigma}(a . A N)=0$, then for every line I not actually at infinity $\mathcal{\Sigma}(a . A I)=0$. For, if $L^{\prime}, M^{\prime}, N^{\prime}$ be any three lines passing respectively through the three points $M N, N L, L M$, and intereecting on I, then since by (85),

$$
\pm\left(a . A L^{\prime}\right)=0, \quad \Sigma\left(a . A M^{\prime}\right)=0, \quad \Sigma\left(a . A N^{\prime}\right)=0
$$

therefore by the same $\Sigma(a . A I)=0$, and therefore \&c.
89. From the same again it appears, that if for a system of multiples $a, b, c, d, \mathbb{d c}$. a system of points A, B, C, D, \mathbb{N}. have teo different mean eentres O_{1} and O_{n}, then is every point O indifferently a mean centre of the samo system of points for the same system of multiples; for, whatever be the position of O, since for the two lines L_{1} and L_{2} connecting it with O_{1} and O_{2}, the two sums $\Sigma\left(a . A L_{\mathrm{i}}\right)$ and $\Sigma\left(a . A L_{\mathrm{z}}\right)$ are both $=0$, therefore for every line L passing through O the sum $\Sigma(a . A L)=0$, and therefore dec. Hence, whatever be the positions of the points A, B, C, D, dc. and whatever be the values of the multiples $a, b, c, d, d \cdot c$. the mean centre O is always either indeterminate or unique.
90. If A, B, C, D, \&ic. be the several vertices of a regular polygon of any order, and O the geometric centre of the figure, then is O the mean centre of the several points A, B, C, D, dc. for the particular system of multiples each $=$ unity.

For, if the polygon be of an even order, since for every line passing through O the several pairs of perpendiculars from pairs of opposite vertices are equal and opposite, therefore for every line passing through O the sum of the perpendiculars from all the vertices $=0$, and therefore \&c.; and, if the polygon be of an odd order, since for every line passing through O and through a vertex of the figure the several pairs of perpendiculars from pairs of vertices equidistant from that through which the line passes are equal and opposite, and the one from that vertex itself $=0$, therefore for every line passing through O and through a vertex of the figure, and therefore by the preceding for every line passing through O, the sum of the perpendiculars from all the vertices $=0$, and therefore \&c.

In consequence of the above, all properties true in general of the mean centre of any system of points $A, B, C, D, \& c$. for any system of multiples $a, b, c, d, \& c$. whose sum is not $=0$, are true in particular of the geometric centre of any regular polygon regarded as the mean centre of its several vertices for the particular system of multiples each $=$ unity.
91. If A, B, C be the three vertices of any triangle, and O their mean centre for any three multiples a, b, c, then alvayys-
1°. The three lines $A O, B O, C O$ intersect with the three opposite sides $B C, C A, A B$ at three points X, Y, Z such that
$b \cdot B X+c \cdot C X=0, \quad c \cdot C Y+a \cdot A Y=0, \quad a \cdot A Z+b \cdot B Z=0$.
2°. The three triangles $B O C, C O A, A O B$ are connected with the three multiples a, b, c by the proportions

$$
\operatorname{area} B O C: \operatorname{arca} C O A: \operatorname{area} A O B=a: b: c
$$

regard being had to the signs as well as the magnitudes of the several quantitics involved in each.

To prove 1°. Since for every three lines L, M, N passing through $O,(86)$

$$
\begin{gathered}
a \cdot A L+b \cdot B L+c \cdot C L=0, a \cdot A M+b \cdot B M+c \cdot C M=0, \\
a \cdot A N+b \cdot B N+c \cdot C N=0
\end{gathered}
$$

if L pass through A, then

$$
A L=0 \text { and } B L: C L=B X: C X
$$

and therefore $b . B X+c . C X=0$; if M pass through B, then

$$
B M=0 \text { and } C M: A M=C Y: A Y,
$$

and therefore $c . C Y+a . A Y=0$; and if N pass thruagh C, then

$$
C N=0 \text { and } A N: B N=A Z: B Z
$$

and therefore $a \cdot A Z+b \cdot B Z=0$.
To prove 2°. Since the two triangles $A O B$ and $A O C$ lave a common base $A 0$, therefore

$$
\operatorname{area} A O B: \operatorname{arca} A O C=B L: C L=B X: C X
$$

sinee the two $B O C$ and $B O A$ have a common base $B O$, therefore

$$
\text { area } B O C: \text { area } B O A=B M: C M=B Y: C Y
$$

and since the two $C O A$ and $C O B$ have a common base $C O$, therefore

$$
\text { area } C O A: \operatorname{area} C O B=A \mathrm{~V}: B N=A Z: B Z ;
$$

and the proportions 2°. follow therefure immediately from the relation 1°.

Cor. The above relations supply each an obvious method of determining the mean centre O of any three points A, B, C forming a triangle, for any three multiples a, b, c given in magnitude and sign; the two following partieular cases are deserving of attention:
1°. If in absolute magnitude $a=b=c$, then $A X, B Y, C Z$ bisect the three sides of the triangle, all internally or two externally aud one internally according as the signs of a, b, c are all similar or two opposite to the third; O in either case is the intersection of the three bisectors; and the three areas BOC, $C O A, A O B$ are equal in absolute magnitude and have signs in accordance with those of a, b, c.
2°. If in absolute magnitude $a: b: c=B C: C A: A B$, then $A \mathrm{Y}, B Y, C Z$ bisect the three angles of the triangle, all internally or two externally and one internally according as the sigus of a, b, c are all similar or two opposite to the third; O in either case is the intersection of the three bisectors, and therefore the centre of the inscribed or of one of the three exscribed circles of the triangle; and the three areas $B O C, C O A, A O B$ are proportional in absolute magnitude to the three sides $B C$, $C A, A B$, and have signs in accordance with those of a, b, c.
92. If A, B, C, D, \& c. be any system of points, O their mean centre for any system of multiples $a, b, c, d, d \cdot c$. whose sum is not $=0$, and L any arbitrary line, then always whatever be the position of L

$$
\Sigma(a . A L)=\Sigma(a) . O L
$$

regard being had to the signs as well as the magnitudes of the several quantities involved.

For, drawing through O the line M parallel to L, then since for any two parallel lines L and M whatever be their common direction or distance asunder $\Sigma(a . A L)-\Sigma(a . A M)=\Sigma(a) \cdot M L$, if, as in the present case, one of them M passes through O, since for it $\Sigma(a . A M)=0(86)$ therefore for the other L whatever be its position $\Sigma(a . A L)=\Sigma(a) . O L$, and therefore $\mathbb{\&} c$.

Cor. 1°. This is the property which gives to the point O its designation of "Mean Centre" of the system of points A, B, C, D, $\& c$. for the system of multiples $a, b, c, d, \& c$., and by its aid when the latter are both given the former may be determined in all cases by the following general construction :

Drawing arbitrarily any two lines L and L^{\prime} not parallel to each other, the two parallels to them M and M^{\prime} distant from them by the intervals $L M$ and $L^{\prime} M^{\prime}$ equal in magnitude and sign to the quantities $\frac{\Sigma(a . L A)}{\Sigma(a)}$ and $\frac{\Sigma\left(a . L^{\prime} A\right)}{\Sigma(a)}$ pass, by the above, through, and therefore intersect at, the mean centre O; in the particular case where $\Sigma(a)=0$, the position of O thus given is at infinity (85), unless also $\Sigma(a . L A)$ and $\Sigma\left(a . L^{\prime} A\right)$ both $=0$, in which exceptional case it is indeterminate (87).

Cor. 2. The mean centre O of any given system of points $A, B, C, D, \& c$. for any given system of multiples $a, b, c, d, d i c$. may also be determined by the following in general less rapid, but in many cases not less convenient process, based like that just given on the above, viz.:

Connect any two points A and B of the system, and take on the connecting line $A B$ the point P for which $a \cdot A P+b \cdot B P=0$ (77). Connect then the point P with any third point C of the system, and take on the connecting line $P C$ the point Q for which $(a+b) \cdot P Q+c \cdot C Q=0$. Connect then the point Q with any fourth point D of the system, and take on the connecting line $Q D$ the point R for which $(a+b+c) \cdot Q R+d \cdot D R=0$. Conneet then the point R with any fifth point E of the system,
and take on the connecting line $R E$ the point S for which $(a+b+c+d) \cdot R S+e \cdot E S=0$, and so on, until all the points of the system are exhausted, the last point O thus determined is the mean centre required.

For since for every arbitrary lino L, by (77) Cor.

$$
\begin{aligned}
a \cdot A L+b \cdot B L & =(a+b) \cdot P L \\
(a+b) \cdot P L+c \cdot C L & =(a+b+c) \cdot Q L \\
(a+b+c) \cdot Q L+d \cdot D L & =(a+b+c+d) \cdot R L \\
(a+b+c+d) \cdot R L+c \cdot E L & =(a+b+c+d+c) \cdot S L, d c c
\end{aligned}
$$

therefure for the last point $O, b y$ addition
$a \cdot A L+b . B L+c \cdot C L+d . D L+\delta c \cdot=(a+b+c+d+d i c.) . O L$, which, by the above, is the characteristic property of the mean centre.

In the particular case when $\mathbb{\Sigma}(a)=0$, the point O thus determined being the point of external bisection of the last connecting line in the above process is therefure at infinity, unless when the length of thut connecting line $=0$ in which exceptional case it is indeterminate.

Cor. 3°. Stating the abore general relation in the equivalent form $\Sigma(a . A L)-\Sigma(a) . O L=0$, it appears that, if to any system of points A, B, C, D, \&c. be added their mean centre O for any system of multiples $a, b, c, d, \mathcal{d} c$., then is the system of points A, B, C, D, \mathcal{N}. and O, for the system of multiples $a, b, c, d, \& c$. and $-\Sigma(1)$, of the exceptional claracter mentioned in (87), for which for every line L not at infinity the sum $\Sigma(a . A L)=0$, and for which therefore the mean centre is indeterminate. Hence the original system of points A, B, C, D, \&c. and of multiples a, b, c, d, dic. being entirely arbitrary, it appears that-

For a system of the exceptional character whose mean centre is indeterminate, all but one of the points may have any positions vehatever, and their corresponding multiples any values vehatever, provided only the remaining point be the mean centre of the others for their system of multiples, and the remaining multiple corresponding to it be equal in magnitude and opposite in sign to the sum of the others.

Cor. 4°. Since for every line L tangent to any circle round O as centre the distance $O L$ is constant and equal the radius of the circle, and since, by the above, the sum $\mathbf{\Sigma}(a . A L)$ is con-
stant when the radius $O L$ is constant, and conversely, there-fore-

If A, B, C, D, dic. be any system of. points, and O their mean centre for any system of multiples a, b, c, d, \&cc. whose sum is not $=0$, then for every line L tangent to any circle round O as centre the sum $\Sigma(a . A L)$ is constant and $=$ the radius of the circle multiplied by $\Sigma(a)$, and, conversely, every line L for which the sum $\Sigma(a . A L)$ is constant touches the circle round O as centre whose radius $=$ the constant sum divided by $\Sigma(a)$.

This property supplies obvious solutions of the following general problems, viz.: "Given any system of points A, B, $C, D, \& c$., and any system of corresponding multiples a, b, c, d, $\& c$. whose sum is not $=0$, to draw a line L parallel to a given line, or passing through a given point, or touching a given circle, so that the sum $\Sigma(a . A L)$ shall $=0$, or be a maximum, or have any given value."

COR. 5°. For every line L tangent to the circle inscribed in any triangle $A B C$ the sum of the three rectangles

$$
B C \cdot A L+C A \cdot B L+A B \cdot C L
$$

is constant and equal to double the area of the triangle.
For, by (91), the centre O of that circle being the mean centre of the three points A, B, C for the three multiples $B C, C A$, $A B$, therefore, by the above,
$B C \cdot A L+C A \cdot B L+A B \cdot C L=(B C+C A+A B) \cdot O L ;$
but
$B C . O L=2$ area $B O C, C A . O L=2$ area $C O A, A B . O L=2$ area $A O B$; therefore their sum $=2$ area $A B C$, and therefore \&ec.

A relation exactly similar holds of course for each of the three exscribed circles of the triangle, the sign of the side to which the circle is exscribed being merely changed in the above, see 91, Cor.

COR. 6. For every line L tangent to any circle concentric with a regular polygon of any order n the sum of the perpendiculars from the several vertices is constant and $=n$ times the radius of the circle.

For, by (90), the centre O of the polygon being the mean centre of the several vertices $A, B, C, D, \& c$. for the particular system of multiples each $=1$, therefore, by the above, $\mathbf{\Sigma}(A L)=n . O L$, and therefore \&c.

For a regular polygon of any order n the sum of the perpendiculars from any point P upon the several sides is also constant and $=n$ times the radius of the circle inscribed in the figure.

For the sums of the perqendiculars from the centre O and from any other point P upon the several sides multiplied each by the common length of all the sides $=$ double the area of the figure, and therefore \&e.
93. If any system of points $\mathcal{\Sigma}(A)$ and of corresponding mulliples $\Sigma(a)$ bo divided into any number of groups $\mathcal{\Sigma}\left(\Lambda_{1}\right), \mathcal{\Sigma}\left(\Lambda_{s}\right)$, $\Sigma\left(A_{2}\right), \Sigma\left(A_{4}\right)$, (cce, and $\Sigma\left(a_{1}\right), \Sigma\left(a_{8}\right), \Sigma\left(a_{2}\right), \Sigma\left(a_{0}\right)$, de. ., none of the latter being $=0$; then, if $O_{4}, O_{n}, O_{n}, O_{0}$, (foc. be the several mran centres of the several gronps of points for the several groups of corresponding multiples, the mean centre O of the system of points $O_{3}, O_{0}, O_{0}, O_{0}$, dec. for the systems of multiples $\Sigma\left(a_{1}\right), ~ \Sigma\left(a_{3}\right)$, $\pm\left(a_{2}\right), \geq\left(a_{0}\right)$, ice. is the sume as that of the system of points A, B, C, D, drc. for the system of multiples a, b, c, d, de.

For, since for every arbitrary line L, by the preceding,

$$
\begin{aligned}
& \Sigma\left(a_{1} \cdot A_{1} L\right)=\Psi\left(a_{1}\right) \cdot O_{1} L, \quad \Sigma\left(a_{8} \cdot A_{1} L\right)=\Sigma\left(a_{2}\right) \cdot O_{8} L,
\end{aligned}
$$

therefore the sum of all the first members $=$ the sum of all the second members; but, by hypothesis, the sum of all the first members $=\Sigma(a . \Lambda L)$, and, by the preceding, the sum of all the sccond members

$$
=\left\{\mathbf{\Sigma}\left(a_{1}\right)+\mathbf{\Sigma}\left(a_{8}\right)+\mathbf{\Sigma}\left(a_{2}\right)+\mathbf{\Sigma}\left(a_{1}\right)+\& \mathcal{C}_{c}\right\} . O L
$$

from which, since by hypothesis

$$
\mathbf{\Sigma}\left(a_{1}\right)+\mathbf{\Sigma}\left(a_{2}\right)+\mathbf{\Sigma}\left(a_{2}\right)+\mathbf{\Sigma}\left(a_{1}\right)+\mathcal{E} c .=\mathbf{\Sigma}(a)
$$

therefore $\Sigma(a . A L)=\Sigma(a) . O L$, and therefore \&c.
Cor. In the particular case when $\Sigma(a)=0$, if $\Sigma(A)$ be divided into any two groups $\mathbb{\Sigma}\left(A_{1}\right)$ and $\mathbb{\sum}\left(A_{8}\right)$ for which $\mathbb{\Sigma}\left(a_{3}\right)$ and $\Sigma\left(a_{2}\right)$ are not separately $=0$; then since, by hypothesis, $\mathbf{\Sigma}\left(a_{1}\right)+\mathbf{\Sigma}\left(a_{8}\right)=0$, if O_{8} and O_{8} be the mean centres of the two groups for their respective shares of the multiples, that of the entire system for all the multiples being, by the above, the point of external bisection of the line $\mathrm{O}_{1} \mathrm{O}_{8}$ is therefore the unique point in which that line intersects infinity (15), except only when the lico partial mean centres O_{1} and $O_{\text {, }}$ coincide in
which exceptional case it is indeterminate (87). The division of $\Sigma(A)$ may, if we please, be into the two groups $\Sigma\left(A_{+}\right)$and $\Sigma\left(A_{-}\right)$corresponding to the division of $\Sigma(a)$ into its positive and negative constituents $\Sigma\left(a_{+}\right)$and $\Sigma\left(a_{-}\right)$respectively; or one group may, if wo please, consist of but a single point and the other of all the rest.
94. If $A, B, C, D, \& \circ$. be any system of points, M any line parallel to the direction of their infinitely distant mean centre for any system of multiples a, b, c, d, $d c$. whose sum $=0$, and L any other line, then, whatever be the position of L,

$$
\Sigma(a \cdot A L)=k \cdot \sin M L
$$

k being a constant depending only on the disposition of the points and the values of the multiples.

For, if N be a third line passing through the intersection P of L and M, and perpendicular to the latter, then as in (85) the three lines $L M N$ passing through a common point P,
$\sin M N . \Sigma(a . A L)+\sin N L . \Sigma(a . A M)+\sin L M . \Sigma(a . A N)=0$,
from which as $\Sigma(a . A M)=0$ from the property of the mean centre (86), and as $\sin M N=1$ from the right angle $M N(60)$, therefore

$$
\Sigma(a \cdot A L)=\Sigma(a \cdot A N) \cdot \sin M L
$$

which proves the proposition, the two sums $\Sigma(a . A L)$ and $\Sigma(a . A N)$ depending when $\Sigma(a)=0$ (85) only on the directions and not on the absolute positions of L and N.

Otherwise thus, as a corollary from the general case, when $\Sigma(a)$ is not $=0$; conceiving the entire system of points $\Sigma(A)$ divided into any two groups $\Sigma\left(A_{1}\right)$ and $\Sigma\left(A_{2}\right)$ for which the sums $\Sigma\left(a_{1}\right)$ and $\Sigma\left(a_{2}\right)$ of the corresponding groups of multiples are not separately $=0$; then, by the general relation of the preceding article, if O_{1} and O_{2} be the mean centres of the two partial groups for their respective systems of multiples, and L any line intersecting $O_{2} O_{2}$ at any point P and at any angle α,

$$
\Sigma\left(a_{1} \cdot A_{1} L\right)=\Sigma\left(a_{1}\right) \cdot O_{1} L, \text { and } \Sigma\left(a_{2} \cdot A_{2} L\right)=\Sigma\left(a_{2}\right) \cdot O_{2} L
$$

and therefore, by addition,

$$
\Sigma(a, A L)=\Sigma\left(a_{1}\right) \cdot O_{1} L+\Sigma\left(a_{2}\right) \cdot O_{2} L ;
$$

but $O_{1} L=O_{1} P \cdot \sin \alpha, O_{3} L=O_{2} P \cdot \sin \alpha$, and $\Sigma\left(a_{1}\right)+\Sigma\left(a_{2}\right)=0$;
therefure

$$
\Sigma(a \cdot A L)=\Sigma\left(a_{1}\right) \cdot O_{2} O_{2} \cdot \sin \alpha, \text { or } \Sigma\left(a_{2}\right) \cdot O_{2} O_{1} \cdot \sin \alpha_{9}
$$

which proves the proposition, and gives at the same time in its most convenient form the value of the constant k or $\mathbb{\Sigma}(a, A N)$ viz. $\Sigma\left(a_{1}\right) \cdot O_{1} O_{2}$ or $\Sigma\left(a_{2}\right) \cdot O_{3} O_{1}$. See (81).

The law of the variation of the sum $\mathbb{\Sigma}\left(a . A L_{0}\right)$ for different positions of L is therefore very simple when $\Sigma(a)=0$; depending only on the direction and not on the absolute ponition of L; vanishing for the direction of the infinitely distant mean centre of the system; being a maximun for the rectangular direction; and varying as the sine of the angle of inclination to the central for every intermediate direction; in the excoptional case where the thoo prertiel mean centres O_{1} and O_{3} coincide, and shen (93, Cor.) the prosition of O is consequently indeterminate, the sum $\searrow(a . A L)$ undergors no variation and is absolutely $=0$ for every position of L not actually at infinity, see (87).

Cor. 1°. By means of the above relation the direction of the infinitely distant mean centre of a given system of points $A, B, C, D, d c$. for a given system of multiples a, b, c, d, de. whose sum $=0$, if not previously known may be readily determined. For drawing arbitrarily any two lines L and $L i$ not parallel to each other, the line M dividing the angle between them LL' so that in magnitude and sign

$$
\sin M L: \sin M L^{\prime}=\mathbf{\Sigma}(a . A L): \mathbf{\Sigma}\left(a . A L^{\prime}\right)
$$

gives, by the above, the required direction; in the exceptional case when the theo sums $\mathbb{\Sigma}(\pi . A L)$ and $\mathbb{\Sigma}\left(a . A L L^{\prime}\right)$ are both $=0$, the mean centre of the system is indeterminate, sec (87).

Cor. 2°. The above relation also supplies obvious solutions of the six following problems, viz.: "given any system of points $A, B, C, D, \mathbb{N} .$, and any system of corresponding multiples $a, b, c, d, d c$. whose sum $=0$, to draw a line L passing through a given point or tonching a given eircle so that the sum $\Sigma(a . A L)$ shall be nothing, or a maximum, or have any given valuc."
95. If any system of points $A, B, C, D, d \in$. and their mean centre U for any system of mulliples a, b, c, d, dc. be projected in any common direction upon any line L, the projection O of the
mean centre is always the mean centre of the projections A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, dic. of the several points for the same system of multiples.

For, from the several points $A, B, C, D, \& c$ conceiving lines $A A_{3}, B B_{1}, C C_{1}, D D_{1}, \& c$. drawn parallel to the line L to meet the line $O O^{\prime}$; then since, Euc. I. $34, A A_{1}=A^{\prime} O^{\prime}, B B_{1}=B^{\prime} O^{\prime}$, $C C_{1}=C^{\prime} O^{\prime}, D D_{1}=D^{\prime} O^{\prime}, \& c$., and since, by the fundamental property of the mean centre (86), $\Sigma\left(a . A A_{1}\right)=0$, therefore $\Sigma\left(a \cdot A^{\prime} O^{\prime}\right)=0$, and therefore O^{\prime} is the mean centre of the system of points $\Lambda^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, \& c$. for the system of multiples a, b, c, d, \&c.; when L passes through O then $\Sigma\left(a . A^{\prime} O\right)=0$ and O itself is the mean centre of the projected as well as of the original system for the same system of multiples.

In the particular ease when O is at an infinity, and when therefore $\Sigma(a)=0$, its projection O^{\prime} upon every base L is of course also at infinity, except only when the direction of projection is parallel to that of O itself in which case it is indeterminate.

In the exceptional case when O itself is indeterminate, and when therefore again $\Sigma(a)=0$, its projection O^{\prime} upon every base and for every direction of projection is of course also indeterminate.
96. If A, B, C, D, dec. be any system of points, O their mean centre for any system of multiples $a, b, c, d, \& c$. whose sum is not $=0$, and L and M any two parallel lines, then always

$$
\Sigma\left(a \cdot A L^{y}\right)-\Sigma\left(a \cdot A M^{2}\right)=\Sigma(a) \cdot\left(O L^{2}-O M^{v}\right)
$$

whatever be the common direction and distance asunder of L and M.
For, identically,

$$
\Sigma\left(a \cdot A L^{2}\right)-\Sigma\left(a \cdot A M^{2}\right)=\Sigma(a) \cdot\{(A L+A M) \cdot(A L-A M)\},
$$

from which since $(A L-A M)=$ the constant interval between L and $M=(O L-O M)$, and since, by $(92), \Sigma(a . A L)=\Sigma(a) . O L$, and $\Sigma(a . A M)=\Sigma(a) . O M$, therefore at once

$$
\begin{aligned}
\Sigma\left(a \cdot A L^{v}\right)-\Sigma\left(a \cdot A M^{2}\right)=\Sigma(a) \cdot(O L & +O M) \cdot(O L-O M) \\
& =\Sigma(a) \cdot\left(O L^{2}-O M^{2}\right) . \quad \text { Q.E.D. }
\end{aligned}
$$

Corm 1. When one of the lines M passes through O, then for the other L,

$$
\Sigma\left(a . A L^{2}\right)=\mathbb{\Sigma}\left(a . A M M^{y}\right)+\Psi(a) \cdot O L^{y}
$$

from which it appears that for a given direction of L the sum
$\pm\left(a . A L^{x}\right)$ is a minimum when L passes through O, and has equal values for every two positions equidistant in opposite directions from O; it appears also from the same that if the sum $\mathcal{\Sigma}\left(a . A M^{2}\right)$ is constant for all lines passing through O the sum $\mathcal{E}\left(a . A L^{2}\right)$ is constant for all lines touching a circle of any radius described round O as centre.

Cor. 2°. The same relation also supplies an obrious solution of the general problen: "Given any system of points A, B, C, D, dic., and any system of corresponding multiples $a, b, c, d, d \in$, whose sum is not $=0$; to draw a line L in a given direction so that the sum $\mathbf{y}\left(a . A L^{\nu}\right)$ shall be given."
97. If $A, B, C, D, d \in c$. be any syst m of points, $a, b, c, d, d e c$. any system of correaponding multiples whose sum $=0$, and I, and Mamy tuo parallel lines, then alvonys

$$
\Sigma\left(a \cdot A L^{2}\right)-\Sigma\left(a \cdot A M^{2}\right)=2 \cdot k \cdot \sin \alpha \cdot M L
$$

k and a having the same signification as in (91).
For, as in the preceding, identically

$$
\Sigma\left(a \cdot A L^{2}\right)-\Sigma\left(a \cdot A M^{2}\right)=\Sigma(a) \cdot\{(A L+A M) \cdot(A L-A M)\}
$$

from which since $(A L-A M)=M L$ and since (94)

$$
\pm(a . A L)=\mathfrak{\Sigma}(a . A M)=k \cdot \sin z,
$$

therefore at once, as above,

$$
\pm\left(a . A L^{v}\right)- \pm\left(a . A M M^{v}\right)=2 k \cdot \sin \alpha \cdot M L .
$$

Con. 1°. When one of the lines M is the particular line for its direction for which the sum $£\left(a . A M M^{z}\right)=0$, then for the other L,

$$
\mathbf{y}\left(a \cdot A L^{v}\right)=2 k \cdot \sin \alpha \cdot M L,
$$

from which it appears that for a given direction of L the sum $\geq(a . A L)$ follows a very simple law of variation when $\mathbf{\Sigma}(a)=0$; being simply proportional in sign as well as in magnitude to the distance of L from a certain line M in that direction; admitting therefore of no minimum or maximum value; passing through 0 and on with the distance $M L$; and changing sign at the passage through each. For the particular direction for which $\alpha=0$ whatever be the value of k, and for the exceptional case for which $t=0$ whatever be the value of α, the sum $\Sigma\left(a, A L^{v}\right)$ undergoes no variation with the movement of L, but
preserves in magnitude and sign the same constant value for every position of L in the same constant direction.

Cor 2°. To find the line M corresponding to a given direction of L, for which in the general case the sum $\Sigma\left(a . A M{ }^{2}\right)=0$; drawing arbitrarily any line L in the given direction, the parallel M distant from it by the interval $M L=$ in magnitude and sign to the quantity $\frac{\Sigma\left(a \cdot A L^{2}\right)}{2 k \cdot \sin \alpha}=\frac{\Sigma\left(a . A L^{2}\right)}{2 \Sigma(a \cdot A L)}$, by the relation of Cor. 1°, is that required. For the particular direction for which $a=0$ whatever be the value of k, and for the exception case for which $k=0$ whatever be the value of α, the sum $\Sigma(a . A L)$ being $=0$, the position of M given by the above is at infinity, unless at the same time the sum $\Sigma\left(a . A L^{2}\right)$ also $=0$ in which case it is indeterminate.

Cor. 3°. The above supplies an obvious solution of the following general problem: "Given any system of points A, B, C, D, $\& c$., and any system of corresponding multiples $a, b, c, d, \& c$. whose sum $=0$, to draw a line L in any given direction so that the sum $\mathrm{\Sigma}\left(a . A L^{2}\right)$ shall have a given magnitude and sign."
98. If $A, B, C, D, \& c$. be any system of points, O their mean centre for any system of multiples $a, b, c, d, \& c$. whose sum is not $=0$, and P any arbitrary point, then always, whatever be the position of P,

$$
\Sigma\left(a \cdot A P^{y}\right)=\Sigma\left(a \cdot A O^{v}\right)+\Sigma(a) \cdot O P^{\Sigma}
$$

the same relation as for a system of points on a line and leading to the same consequences. See (80).

For, from the several points $A, B, C, D, \& c$. conceiving perpendiculars $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime} \& c$., let fall upon the line $O P$, then since $\left(75\right.$, Cor. 2°.)

$$
\begin{aligned}
& A P^{a}=A O^{2}+O P^{2}+2 A^{\prime} O . O P \\
& B P^{2}=B O^{2}+O P^{2}+2 B^{\prime} O . O P \\
& C P^{2}=C O^{2}+O P^{2}+2 C^{\prime} O . O P \\
& D P^{2}=D O^{2}+O P^{a}+2 D^{\prime} O . O P, \& c .
\end{aligned}
$$

therefore inultiplying by $a, b, c, d, \& c$. and adding

$$
\Sigma\left(a \cdot A P^{*}\right)=\Sigma\left(a \cdot A O^{z}\right)+\Sigma(a) \cdot O P^{x}+2 \cdot \Sigma\left(a \cdot A^{\prime} O\right) \cdot O P
$$

from which, since by $(95), \Sigma\left(a \cdot A^{\prime} O\right)=0$, therefore \&c.

Con. 1. If round O as centre and with a radius OR ichose square $=$ the absolute value of $\frac{\Sigma\left(a \cdot A O^{z}\right)}{\Sigma(a)}$, disregarding its sign, a circle be descrived intersecting the line OP at the two points M and N, and the perpendicular to it through O in either direction at the point S, then, whatever be the position of P, the sum $\mathbf{\Sigma}\left(a, A P^{m}\right)=\mathbf{\Sigma}(a) \cdot S P^{*}$ or $=\mathbf{\Sigma}(a)$.MP. NP according as $\mathbf{\Sigma}(a)$ and $\mathbf{\Sigma}\left(u . A O^{5}\right)$ have similar or opposite signs.

For, since, by the above relation,

$$
\Sigma\left(a \cdot A I^{w}\right)=\Sigma(a) \cdot O P^{w}+\Sigma\left(a \cdot A U^{v}\right)
$$

and since, by construction, $\searrow\left(a \cdot \mathcal{A} O^{\dagger}\right)= \pm \Sigma(a) . O R^{2}$, therefore

$$
\mathbf{\Sigma}\left(a \cdot A P^{v}\right)=\mathbf{\Sigma}(a) \cdot\left(O P^{z} \pm O R^{v}\right)=\mathbf{\Sigma}(a) \cdot S P^{*} \text { or } \mathbf{\Sigma}(a) \cdot M P \cdot N P .
$$

Hence, in both cases, the variable sum $\mathbb{\Sigma}\left(a . A P^{*}\right)$ has the same value for all positions of P equidistant from O, and the minimun value for the point O itself; it being remembered however that as it vanishes in the second case for all points on the circle $O R$, and increases negatively from the circumference in to the centre, the term minimum is to bo understood in the sense of negative maximum in that case. Sce (80), Cor. 1°.

Cor. 2. For every point P on any circle round O as centre, the sum $\Sigma\left(a . A P^{\prime \prime}\right)$ is constant and $=\Sigma\left(a . O A^{2}\right)+\Sigma(a)$. radius ${ }^{2}$ of circle; and, conversely, every point P for which the sum $\mathbf{\Sigma}\left(a . A P^{\prime \prime}\right)$ is constant lies on the circle round O us centre the square of vehose rudius $=\frac{\Sigma\left(a \cdot A P^{m}\right)-\Sigma\left(a . A O^{\eta}\right)}{\Sigma(a)}$.

These are both evident from the above, the first from the general relation $\Sigma\left(a . A P^{\prime \prime}\right)=\Sigma\left(a . A O^{\natural}\right)+\Sigma(a) . O P^{a}$, and the other from its equivalent $\mathbf{\Sigma}\left(a . A P^{\prime}\right)-\Sigma\left(a \cdot A O^{\prime}\right)=\mathbf{\Sigma}(a) . O P^{*}$; and they supply obvious solutions of the six general problems, viz.: "Given any system of points A, B, C, D, \&c. and any system of corresponding multiples $a, b, c, d, d \in c$ whose sum is not $=0$, to determiue on a given line or circle the point P for which the sum $\Sigma\left(a . A P^{*}\right)$ shall be a maximum, a minimum, or given."

From the general property of this corollary, combined with that of Cor. 4°. (92), it follows evidently that every circle round O as centre is at once the locus of a variable point P for which the sum $\Sigma\left(a . A P^{\text { }}\right)$ is constant, and the envelope of a variable line L for which the sum $£(a, A L)$ is constant.

Cor. 3°. For every point P on the circle inseribed in any triangle $A B C$, the sum $B C . A P^{2}+C A . B P^{2}+A B \cdot C P^{2}$ is constant, and exceeds the corresponding sum for the centre O by double the area of the triangle multiplied by the radius of the circle.

For, by (91), the centre O of that circle being the mean centre of the three points A, B, C for the three multiples $B C$, $C A, A B$, therefore, by the above,
$B C \cdot A P^{2}+C A \cdot B P^{2}+A B \cdot C P^{2}=B C \cdot A O^{2}+C A \cdot B O^{2}$

$$
+A B \cdot C O^{2}+(B C+C A+A B) \cdot O P^{*}
$$

but, as in Cor. 5°., (92),

$$
(B C+C A+A B) \cdot O P=2 \text { area of triangle ; }
$$

and therefore \&c.
A relation exactly similar holds of course for each of the three exscribed circles of the triangle, the sign of the side to which the circle is exscribed being merely changed in the above. See (91), Cor.

Cor. 4°. If O be the centre and $O R$ the radius of the circle which passes through the several vertices $A, B, C, D, d e$. of a regular polygon of any order n, then for every point P without, vithin, or upon the circle $\Sigma\left(A P^{v}\right)=n \cdot\left(O R^{z}+O P^{2}\right)$.

For O being the mean centre of the system of points A, $B, C, D, \& c$. for the system of multiples each $=1(90)$; therefore, by the above,

$$
\Sigma\left(A P^{2}\right)=\Sigma\left(A O^{2}\right)+n . O P^{2} ;
$$

but

$$
O A=O B=O C=O D, \& \mathrm{c} .=O R
$$

therefore

$$
\Sigma\left(A P^{*}\right)=n . O R^{2}+n . O P^{z}
$$

In the particular ease when P is on the circle, since then $O P=O R$, therefore $\Sigma\left(A P^{*}\right)=2 n . O R^{*}$.
99. If A, B, C, D, dec. be any system of points, and O their mean centre for any system of multiples $a, b, c, d, d c c$. whose sum is not $=0$, then always

$$
\Sigma(a) \cdot \Sigma\left(a \cdot A O^{z}\right)=\Sigma\left(a b \cdot A B^{z}\right)
$$

every binary combination of the points of the system being included in the latter summation.

For, in the general relation of the preceding article,

$$
\Sigma\left(a \cdot A P^{n}\right)=\Sigma(a) \cdot P O^{z}+\Sigma\left(a \cdot A O^{z}\right)
$$

conceiving the arbitrary point P to coincide successively with the sereral points A, B, C, D, \mathbb{N}. of the system, then
$a . A A^{2}+b . A B^{2}+c . A C^{2}+d . A D^{2}+\mathbb{N} c=\Sigma(a) . A O^{\circ}+\Sigma\left(a . A O^{7}\right)$,
$a \cdot B A^{2}+b \cdot B B^{2}+c \cdot B C^{2}+d . B D^{2}+i c \cdot=\Sigma(a) \cdot B O^{ }+\Sigma\left(a \cdot A O^{2}\right)$,
a. $C A^{3}+b \cdot C B^{\top}+c \cdot C C^{2}+d \cdot C D^{2}+\delta \mathcal{E} c=\Sigma(a) \cdot C O^{9}+\Sigma\left(a \cdot A O^{7}\right)$,
 which multiplied by a, b, c, d, $\mathcal{A c}$. and added give, as $A A=0$, $B B=0, C C=0, D D=0, \& \in$., the relation

$$
\geq\left(a b \cdot A B^{a}+b a \cdot B A^{p}\right)=\Sigma(a) \cdot \pm\left(a \cdot A O^{p}\right)+\Sigma\left(a^{j} \cdot \Sigma\left(a \cdot A O^{p}\right) ;\right.
$$

or, which is the saune thing, the relation

$$
2 \pm\left(a b \cdot A B^{\prime}\right)=2 \pm(a) \cdot \pm\left(a \cdot A O^{\eta}\right)
$$

the same as the above multiplied by 2.
The relation just proved, as furnishing for any given system of points and multiples the value of the indispensable constant $\pm\left(1 . A O^{\circ}\right)$ without requiring the previous determination of the point O, is, consequently, of considerable importance in every numerical application of the furnula of the precoding article.

Cur. 1. If O be the centre of the circle inscribed in any triangle $A B C$, then

$$
B C \cdot A O^{6}+C A \cdot B O^{2}+A B \cdot C O^{r}=B C \cdot C A \cdot A B,
$$

with similar relations for the centres of the three exseribed circles, the sign of the side corresponding to each being simply changed in the above.

For, by (91), O being the mean centre of the three vertices A, B, C for the three multiples $B C, C A, A B$, therefore, by the above,

$$
\begin{aligned}
\left(B C \cdot A O^{2}\right. & \left.+C A \cdot B O^{2}+A B \cdot C O^{2}\right) \cdot(B C+C A+A B) \\
& =\left(B A \cdot C A \cdot B C^{2}+C B \cdot A B \cdot C A^{2}+A C \cdot B C \cdot A B^{2}\right) \\
& =(B C \cdot C A \cdot A B) \cdot(B C+C A+A B)
\end{aligned}
$$

which is the same as the above relation multiplied by

$$
B C+C A+A B
$$

Cor. 2. If O be the centre and $O R$ the radius of the circle which passes through the several vertices A, B, C, D, ©c. of a regular polygon of any order n, then alvays $\dot{X}\left(A B^{2}\right)=n^{2}$.OR'.

For, by (90), O being the mean centre of the system of points $A, B, C, D, \& c$. for the system of multiples each $=1$; therefore, by the above, $\Sigma\left(A B^{2}\right)=n . \Sigma\left(A O^{2}\right)$, but

$$
O A=O B=O C=O D, \& \mathrm{c} .=O R
$$

therefore $\Sigma\left(O A^{2}\right)=n . O R^{2}$, and therefore \&c.
100. If $A, B, C, D, \& c$. be any system of points, M and N any two lines perpendicular to the direction of their infinitely distant mean centre O for any system of multiples a, b, c, d, dc. whose sum $=0$, and P and Q any two points on M and N not either of them at infinity, then always

$$
\Sigma\left(a \cdot A P^{2}\right)-\Sigma\left(a \cdot A Q^{2}\right)=2 k . N M,
$$

k having the same signification as in (94).
For, drawing through P and Q two other lines M_{0} and N_{0} parallel to the direction of O, and therefore at right angles to M and N, then (Euc. I. 47)

$$
\begin{aligned}
& \mathbf{\Sigma}\left(a . A P^{2}\right)=\Sigma\left(a . A M^{2}\right)+\Sigma\left(a . A M_{0}^{v}\right), \\
& \Sigma\left(a . A Q^{2}\right)=\Sigma\left(a . A N^{z}\right)+\Sigma\left(a . A N_{0}^{z}\right) ;
\end{aligned}
$$

from which, by subtraction, remembering (97) that
and that

$$
\begin{gathered}
\Sigma\left(a \cdot A M^{2}\right)-\Sigma\left(a \cdot A N^{2}\right)=2 k . N M \\
\Sigma\left(a \cdot A M_{0}^{2}\right)-\Sigma\left(a \cdot A N_{0}^{2}\right)=0,
\end{gathered}
$$

the relation above stated is the immediate result.
Cor. 1°. From the relation just proved it follows that the two sums $\Sigma\left(a . A P^{2}\right)$ and $\Sigma\left(a . A Q^{2}\right)$ are both constant as long as the two points P and Q continue on the same two lines M and N perpendicular to the direction of O. If one of them N be the particular line in that perpendicular direction for every point Q of which the sum $\Sigma\left(a, A Q^{2}\right)=0$, then for every point P on the other M not at infinity

$$
\pm\left(a . A P^{2}\right)=2 k . N M=2 k . N P
$$

from which it appears that the sum $\Sigma\left(a . A P^{2}\right)$ follows, for different positions of P, a very simple law of variation when $\Sigma(a)=0$; being simply proportional in sign as well as magnitude to the distance $N P$ of the variable point P from a constant fixed line N perpendicular to the direction of O; admitting therefore of no minimum or maximum value ; passing through nothing and infinity
with the distance $N P$; and changing sign at the passage through each. In the exceptional case when $k=0$, and when therefore (9:4) the gosition of O is indeterminate, the sum $\Sigma\left(a . A P^{m}\right)$ undergoes no variation with the variation of P, but preserves in magnitude and sign the same constant value for all positions of P not actually at infinity ; an instance of which wo have met with in (83), where for three points A, B, C on a line, we have seen that for the three multiples $B C, C A, A B$, the sum

$$
B O \cdot A P^{\infty}+C A \cdot B P^{a}+A B \cdot C P^{x}
$$

is constant, whatever be the position of P provided ouly it bo not at infinity.

Cons. 2. To find the particular line N^{*} perpendicular to the direction of O for every point of which in the general caso the sum $\Sigma\left(a \cdot A Q^{\prime \prime}\right)=0$; drawing arbitrarily any line M perpendicular to the direction of O, the parallel to it N distant from it by the interval $N M=$ in magnitude and siga to the quantity

$$
\frac{\Sigma\left(a \cdot A M^{z}\right)}{2 k}=\frac{\Sigma\left(a \cdot A M^{2}\right)}{2 \Sigma(a \cdot A M)},
$$

by tho above is that required. In the exceptional case when $k=0$, and when the direction of L is therefore indeterminate with that of O, the position of N gieven by the above is at infinity, unless at the same time $£\left(a . A M^{2}\right)$ also $=0$ in which case it is indeterminate.

Cor. 3°. The abore supplies an obrious solution of the following general problem: "Given any system of points A, B, C, D, \&c. and any system of corresponding multiples a, b, c, d, \&c. whose sum $=0$, to determine on a given line or circle or any other figure the point or points P for which the sum $\Sigma\left(a . A P^{\prime \prime}\right)$ shall have a given magnitude and sign."
101. The law, determined directly in the preceding, of the variation of $\mathcal{\Sigma}\left(a . P A^{2}\right)$ for the particular case of $\Sigma(a)=0$, may also be inferred as a corollary from that of the same for the general case of $\Sigma(a)$ not $=0$, given in (98); for, as in (81) and (94), conceiving the entire system of points $\Sigma(\Lambda)$ divided into any two groups $\Sigma\left(A_{2}\right)$ and $\mathcal{L}\left(A_{2}\right)$ for which the sums $\Sigma\left(a_{1}\right)$ and $\Sigma\left(a_{2}\right)$ of the corresponding groups of multiples are not
separately $=0$; then, by the general relation of that article (98), if O_{1} and O_{2} be the mean centres of the two partial groups for their respective systems of multiples, and P any arbitrary point not at infinity, as

$$
\text { and } \quad \begin{aligned}
& \Sigma\left(a_{1} \cdot A_{1} P^{z}\right)=\Sigma\left(a_{1} \cdot A_{1} O_{1}^{2}\right)+\Sigma\left(a_{1}\right) \cdot O_{1} P^{2}, \\
& \Sigma\left(a_{8} \cdot A_{8} P^{x}\right)=\Sigma\left(a_{8} \cdot A_{8} O_{8}^{2}\right)+\Sigma\left(a_{8}\right) \cdot O_{8} P^{p} ;
\end{aligned}
$$

therefore, by addition, remembering that $\Sigma\left(a_{1}, A_{1} O_{1}{ }^{2}\right)$ and $\Sigma\left(a_{8} \cdot A_{2} O_{2}\right)^{y}$ are both constant, and that $\Sigma\left(a_{1}\right)+\Sigma\left(a_{8}\right)$ by hypothesis $=0$, it appears that the sum $\mathbf{\Sigma}\left(a \cdot A P^{*}\right)$ depends on the quantity. $\Sigma\left(a_{1}\right) \cdot\left(O_{1} P^{3}-O_{2} P^{2}\right)$ or its equivalent $\Sigma\left(a_{2}\right) \cdot\left(O_{2} P^{2}-O_{1} P^{2}\right)$, that is, on the difference of the squares of $O_{1} P$ and $O_{3} P$, and is therefore constant (Euc. I. 47, Cor.) when P is any where on the same line perpendicular to $O_{1} O_{y}$, and therefore $\mathbb{\&} \cdot \mathrm{c}$. In the exceptional case when O_{1} and O_{2} coincide, and when therefore O is indeterminate, as $O_{1} P^{2}-O_{2} P^{2}=0$ for every posilion of P not at infinity, the sum $\Sigma\left(a . A P^{2}\right)$ undergoes therefore no variation, but preserves in magnitude and sign the same constant value (which may $=0$) for all positions of P not at infinity.

Cor. If I be the line bisecting at right angles the interval $O_{1} O_{2}$; since then (76), $O_{1} P^{2}-O_{8} P^{y}=2 . O_{1} O_{2} . I P$, therefore $\Sigma\left(a_{1}\right) \cdot\left(O_{1} P^{z}-O_{2} P^{2}\right)$, or its equivalent $\Sigma\left(a_{8}\right) \cdot\left(O_{2} P^{z}-O_{1} I^{p}\right)$, $=2 \Sigma\left(a_{1}\right) \cdot O_{1} O_{8} \cdot I P$, or its equivalent $2 \Sigma\left(a_{9}\right) \cdot O_{2} O_{1} \cdot I P=2 k \cdot I P$, (94); and therefore if P and Q be any two points on any two lines M and N parallel to I, that is, perpendicular to $\mathrm{O}_{1} \mathrm{O}_{2}$ the direction of O, then, by the above,

$$
\Sigma\left(a . A P^{2}\right)-\Sigma\left(a \cdot A Q^{2}\right)=2 k \cdot(I P-I Q)=2 k . N M ;
$$

the saine formula exactly as that found directly in the preceding and leading of course to the same consequences there given.
102. If O be the centre of the circle inscribed in any triangle $A B C, O^{\prime}, O^{\prime \prime}, O^{\prime \prime \prime}$ those of the three exscribed to the three sides a, b, c, and s the semi-perimeter, then

1. For every arbitrary line L not at infinity,

$$
(s-a) \cdot O^{\prime} L+(s-b) \cdot O^{\prime \prime} L+(s-c) \cdot O^{\prime \prime \prime} L-s . O L=0 \ldots \text { (1). }
$$

2. For ceery arbitrary point P not at infinity, $(s-a) \cdot O^{\prime} P^{x}+(s-b) \cdot O^{\prime \prime} P^{m}+(s-c) \cdot O^{\prime \prime} P^{n}-s \cdot O P^{a}=2 a b c \ldots(2)$.

To prove 1°. From the general relation $\Sigma(a, A L)=\Sigma(a) . O L$, (92) applied successively to the four points $O, O^{\prime}, O^{\prime \prime}, O^{m \prime}$ regarded (91) as the four mean centres of the three points A, B, C for the four varieties of signs of the three multiples a, b, c,
$a \cdot A L+b \cdot B L+c . C L=(a+b+c) . O L=2 s . O L$
$b \cdot B L+c \cdot C L-a \cdot A L=(b+c-a) \cdot O^{\prime} L=2(s-a) \cdot O^{\prime} L$
c. $C L+a \cdot A L-b \cdot B L=(c+a-b) \cdot O^{\prime \prime} L=2(s-b) \cdot O^{\prime \prime} L$
$\left.a \cdot A L+b \cdot B L-c \cdot C L=(a+b-c) \cdot O^{\prime \prime \prime} L=2(s-c) \cdot O^{\prime \prime \prime} L\right)$
and it is evident, from were inspection of their right-hand numbers, that, as above stated, the first is = the sum of the other three.

To prove 2°. From the general relation

$$
\Sigma\left(a \cdot A P^{2}\right)-\Sigma\left(a \cdot A O^{2}\right)=\Sigma(a) \cdot O P^{2},(98)
$$

applied successively to the four points $O, O^{\prime}, O^{\prime \prime}, O^{\prime \prime \prime}$ regarded as before, and remembering that by Cor. 1°. (99), $\mathbf{x}\left(a . A O^{2}\right)=a b c$, and that by the same $\Sigma\left(a \cdot A O^{2}\right)=\Sigma\left(a . A O^{\prime z}\right)=\Sigma\left(a \cdot A O^{\prime \prime \prime s}\right)=-a b c$, $a \cdot A P^{2}+b \cdot B P^{3}+c \cdot C P^{3}-a b c=(a+b+c) \cdot O P^{3}=2 s \cdot O P^{3}$ $b \cdot B P^{x}+c \cdot C P^{z}-a \cdot A P^{3}+a b c=(b+c-a) \cdot O^{\prime} P^{z}=2(s-a) \cdot O^{\prime} P^{z}$ c. $C P^{z}+a \cdot A P^{3}-b \cdot B P^{y}+a b c=(c+a-b) \cdot O^{\prime \prime} P^{z}=2(s-1) \cdot O^{\prime \prime} P^{z}$ $\left.a \cdot A P^{y}+b \cdot B P^{z}-c \cdot C P^{y}+a b c=(a+b-c) \cdot O^{\prime \prime \prime} P^{y}=2(s-c) \cdot O^{\prime \prime \prime} P^{x}\right)$
the first of which subtracted from the sum of the other three, gives evidently the above relation multiplied by 2.

Cor. 1°. Since for every line I passing through any one of the four points $O, O^{\prime}, O^{\prime \prime}, O^{\prime \prime \prime}$ the perpendicular from that point $=0$, therefore, by relation 1 , each of the four points $0, O^{\prime}, O^{\prime \prime}, O^{\prime \prime \prime}$ is the mean centre of the remaining three for the corresponding three of the four inultiples $-s, s-a, s-b, s-c$; a property the reader may easily prove direetly for himself.

Cor. 2°. Denoting by $r, r^{\prime}, r^{\prime \prime}, r^{\prime \prime \prime}$ the radii of the four circles, and by R that of the eircle circumscribing the triangle, it may be shown at once-
1°. From relation 1 , that

$$
\begin{equation*}
\frac{O^{\prime} L}{r^{\prime}}+\frac{O^{\prime \prime} L}{r^{\prime \prime}}+\frac{O^{\prime \prime \prime} L}{r^{\prime \prime \prime}}-\frac{O L}{r}=0 \tag{5}
\end{equation*}
$$

2°. And from relation 2 , that

$$
\frac{O^{\prime} P^{2}}{r^{\prime}}+\frac{O^{\prime \prime} P^{2}}{r^{\prime \prime}}+\frac{O^{\prime \prime \prime} P^{2}}{r^{\prime \prime \prime}}-\frac{O P^{2}}{r}=8 R \ldots \ldots .(6)
$$

for since by $\left(92\right.$, Cor. $\left.5^{\circ}.\right)(s-a) r^{\prime}=(s-b) r^{\prime \prime}=(s-c) r^{\prime \prime \prime}=s r=$ area of triangle $=\Delta$, and since by (64, Cor. 2°.) $a b c=4 R \Delta$; therefore dividing 1 and 2 by Δ they assume at once the forms 5 and 6 ; from the first of which again, as in Cor. 1°. it follows that each of the four points $O, O^{\prime}, O^{\prime \prime}, O^{\prime \prime \prime}$ is the mean centre of the remaining three for the corresponding three of the four multiples $-\frac{1}{r}, \frac{1}{r^{\prime}}, \frac{1}{r^{\prime \prime}}, \frac{1}{r^{\prime \prime \prime}}$, the reciprocals of $-s,(s-a),(s-b),(s-c)$ to the unit whose square $=\Delta$; a property again as easily proved directly for the reciprocal as for the original multiples.

Cor. 3°. Conceiving in the four relations (4), the arbitrary point P to coincide with the centre of the circle circumscribing the triangle, and denoting in that case by $D, D^{\prime}, D^{\prime \prime}, D^{\prime \prime \prime}$ the four distances $O P, O^{\prime} P, O^{\prime \prime} P, O^{\prime \prime \prime} P$, then, as $A P=B P=C P=R$, the four relations become

$$
\left.\begin{array}{l}
(a+b+c) \cdot R^{2}-a b c=(a+b+c) \cdot D^{2} \\
(b+c-a) \cdot R^{2}+a b c=(b+c-a) \cdot D^{\prime 2} \\
(c+a-b) \cdot R^{2}+a b c=(c+a-b) \cdot D^{\prime \prime 2} \tag{7}\\
(a+b-c) \cdot R^{2}+a b c=(a+b-c) \cdot D^{\prime \prime 2}
\end{array}\right\}
$$

which are the formulx by which to calculate in numbers the four distances $D, D^{\prime}, D^{\prime \prime}, D^{\prime \prime \prime}$ when the sides of the triangle are given; and from which again, as for any other position of P, it follows that

$$
(s-a) D^{2}+(s-b) D^{\prime 2}+(s-c) D^{\prime \prime \prime 2}-s D^{2}=2 a b c \ldots \text { (8) }
$$

Cor. 4°. Substituting in the four relations (7), for abe its value $4 R \Delta\left(64, \operatorname{Cor} .2^{\circ}.\right)$, and for $s,(s-a),(s-b),(s-c)$ their values $\frac{\Delta}{r}, \frac{\Delta}{r^{\prime}}, \frac{\Delta}{r^{\prime \prime}}, \frac{\Delta}{r^{\prime \prime \prime}}$, we get at onee the values of the four distances in the well known forms*

$$
\begin{array}{r}
D^{2}=R^{2}-2 R r, \quad D^{\prime 2}=R^{2}+2 R r^{\prime}, \quad D^{\prime \prime 2}=R^{2}+2 R r^{\prime \prime}, \\
D^{\prime \prime \prime 2}=R^{\prime}+2 R r^{\prime \prime \prime} \cdots \tag{9}
\end{array}
$$

[^2]from which it appears that the radii of tweo circles and tho distance beticeen their centres must fulfil a certain relation of condition, in order to the prossibility of a triangle being at once circumscribed to one of them and inseribel or exscrived to the other; a particular case of a more general property which will be given in another chapter.

Cor. 5°. If $O T, O^{\prime} T, O^{\prime \prime} T^{\prime \prime}, O^{\prime \prime \prime} T^{\prime \prime}$ be the four tangents from the four points $O, O^{\prime}, O^{\prime \prime}, O^{\prime \prime \prime}$ to the circle circumscribing the triangle ; since then

$$
O T^{n}=D^{2}-I^{2}, \quad O^{\prime} T^{23}=D^{2}-I^{n}, \quad O^{\prime \prime} T^{\prime 2}=D^{\prime 3}-I^{\prime \prime},
$$

$$
O^{m \prime \prime} T^{\prime \prime n}=D^{\prime \prime n}-R^{n}
$$

therefore, by relations 7,

$$
\begin{array}{r}
O T^{n}=-\frac{a b c}{a+b+c}, \quad O^{\prime} T^{n z}=\frac{a b c}{b+c-a}, \quad O^{\prime} T^{\prime N}=\frac{a b c}{c+a-b}, \\
O^{\prime \prime \prime} T^{v / n}=\frac{a b c}{a+b-c} \cdots \ldots(10),
\end{array}
$$

which are the formule by which to calculate in numbers the lengths of the four tangents $O^{\prime}, O^{\prime} T, O^{\prime \prime} T^{\prime \prime}, O^{\prime \prime \prime} T^{\prime \prime \prime}$ when the sides of the triangle are given; and from which, as is otherwise evident, it appears that the first of the four OT is always imaginary and the remaining three $O^{\prime} T^{\prime \prime}, O^{\prime \prime} T^{\prime \prime}, O^{\prime \prime \prime} T^{\prime \prime \prime}$ always real.

Cor. 6°. Taking the values of $D^{n}-R^{2}, D^{n}-R^{n}, D^{\prime n}-I^{n}$, $D^{\prime \prime n}-R^{2}$ from relation 9 , we see again that

$$
\begin{aligned}
O T^{2}=-2 R r, \quad O^{\prime} T^{\prime 2}=2 R r^{\prime}, \quad O^{\prime \prime} T^{\prime \prime 2} & =2 R r^{\prime \prime}, \\
O^{\prime \prime \prime} T^{\prime \prime 2} & =2 R r^{\prime \prime \prime} \ldots \ldots \ldots(11),
\end{aligned}
$$

which are the formule by which to calculate in numbers the length of any one of the four tangents $O^{\prime} T, O^{\prime} T, O^{\prime \prime} T^{\prime \prime}$, $O^{\prime \prime \prime} T^{\prime \prime \prime}$ when the radii of the circumscribed and of the corresponding inscribed or exscribed circles are given ; and from which it follows at once
that $O^{\prime} T^{\prime \prime 2}: O^{\prime \prime} T^{\prime 2}: O^{\prime \prime \prime} T^{\prime \prime \prime 2}: O T^{3}=r^{\prime}: r^{\prime \prime}: r^{\prime \prime \prime}:-r \ldots$ (12),

that $O^{\prime} T^{\prime 2}+O^{\prime \prime} T^{\prime \prime 2}+O^{\prime \prime \prime} T^{\prime \prime \prime}+O T^{\prime \prime}=8 R^{6}$
and that each of the four points $O, O^{\prime}, O^{\prime \prime}, O^{\prime \prime \prime}$ is the mean centre of the remaining three for the corresponding three of the four multiples $\frac{1}{O^{2}}, \frac{1}{O^{1} I^{1 / 2}}, \frac{1}{O^{\prime \prime} I^{1 / 2}}, \frac{1}{O^{111} T^{1 N^{1 / 2}}}$.

Cor. 7°. Regarding the point O as the mean centre of the three $O^{\prime}, O^{\prime \prime}, O^{\prime \prime \prime}$ for the three multiples $\frac{1}{r^{\prime}}, \frac{1}{r^{\prime \prime}}, \frac{1}{r^{\prime \prime \prime}},\left(\right.$ Cor. 2°.) it follows at once from the gencral relation

$$
\Sigma\left(a b \cdot A B^{z}\right)=\Sigma(a) \cdot \Sigma\left(a \cdot A O^{z}\right)(99)
$$

that
$\frac{O^{\prime \prime} O^{\prime \prime \prime}}{r^{\prime \prime \prime} r^{\prime \prime \prime}}+\frac{O^{\prime \prime \prime} O^{\prime 2}}{r^{\prime \prime \prime} r^{\prime}}+\frac{O^{\prime} O^{\prime \prime 2}}{r^{\prime} r^{\prime \prime}}=\frac{O O^{\prime 2}}{r r^{\prime}}+\frac{O O^{\prime \prime 2}}{r r^{\prime \prime}}+\frac{O O^{\prime \prime \prime 2}}{r r^{\prime \prime \prime}}=8 \frac{R}{r} \ldots(15)$,
which would also follow at once, as in the general relation referred to, by conceiving the arbitrary point P in relation 6, Cor. 2°., to coincide successively with each of the four points $O, O^{\prime}, O^{\prime \prime}, O^{\prime \prime \prime}$.
103. If P be any point on the circle passing through the several vertices A, B, C, D, dec. of a regular polygon of amy order n, and L any line passing through the centre O of the figure, then-
1°. The sum of the squares of the perpendiculars from P upon the several radii $O A, O B, O C, O D$, $\& c$. is constant, and $=\frac{1}{2} n$ times the square of the radius of the circle.
2°. The sum of the squares of the perpendiculars upon L from the several vertices $A, B, C, D, d \cdot c$. is also constant, and $=\frac{1}{2} n$ times the square of the radius of the circle.

To prove 1°. On the radius $O P$ as diameter conceiving another circle described intersecting the several radii $O A, O B$, $O C, O D$, \&c. in the feet $A^{\prime}, I B^{\prime}, C^{\prime}, D^{\prime}, \& c$. of the several perpendiculars upon them from P; then the several angles $A^{\prime} O B^{\prime}$,
$B^{\prime} O C^{\prime}, C^{\prime} O D^{\prime}, D^{\prime} O E^{\prime}$, \&c. being equal, and each $=$ the $n^{\text {im }}$ part of four right angles, the several points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, \&ce. form therefore on the auxiliary circle, if n be odd (fig. α) the n vertices of a regular polygon of the order n, and if n be even (fig. β) the $2 \frac{n}{2}$ vertices of two coincident regular polygons of the order $\frac{n}{2}$ (since in that case they evidently coincide two and two in opposite pairs), and therefore in cither case $\Sigma\left(P A^{\tau}\right)$ (98), Cor. $4^{\circ},=2 n$ times the square of the malius of the auxiliary, that is $=\frac{1}{2} n$ times the square of the radius of the original circle, and therefore \&c.
N.B. In the same way exactly, it appears that the sum of the squares of the several interecpts $O A^{\prime}, O B^{\prime}, O C^{\prime}, O D^{\prime}$, de. between the centre of the circle and the feet of the several perpendiculars from P upon the n radii $O A, O B, O C, O D$, \&e. is constant, and $=\frac{1}{8} n$ times the square of the radius of the circle.

To prove 2. Since for any two points on a circle, the perpendicular from either upon the diameter passing through the other $=$ the perpendicular from the latter upon the diameter passing through the former, therefore the several perpendiculars from the n points A, B, C, D, S.c. upon the one diameter passing through any other point P on the circle $=$ the several perpendiculars from the one point I ' upon the several diameters passing through the n points A, B, C, D, \&c.; but by 1°. the sum of the squares of the latter is constant, and $=\frac{1}{2} n$ times the square of the radius of the circle, therefore so is also the sum of the squares of the former, and therefore dic.
N.B. In the same way exactly it appears, from the note to 1°., that the sum of the squares of the several intercepts between the centre of the circle and the feet of the several perpendiculars from the n vertices $A, B, C, D, \& \in$. upon any diameter L is constant, and $=\frac{1}{2} n$ times the square of the radius of the circle.

Cur. 1°. From the above 1°. and 2°. combined with the two properties of regular polygons given in (92, Cor. 6°.) it follows that-

If O be the centre of a regular polygon of any order $n, O Q$
and OR the radii of its inscribed and circumscribed circles, P any arbitrary point, and L any arbitrary line, then-
1°. The sum of the squares of the perpendiculars from P upon the several sides is constant and variable with $O P$, and

$$
=n\left(O Q^{x}+\frac{1}{2} O P^{x}\right) .
$$

2°. The sum of the squares of the perpendiculars upon L from the several vertices is constant and variable with $O L$, and

$$
=n\left(O L^{2}+\frac{1}{2} O R^{2}\right) .
$$

To prove 1°. Since by (92, Cor. 6°), the sum of the perpendiculars from P on the several sides $=n$ times $O Q$, therefore by $\left(79\right.$, Cor. 2°.) the sum of their squares $=n$ times $O Q^{2}+$ the sum of the squares of the n differences between each of themselves and $O Q$; but the circle on $O P$ as diameter intersecting the several perpendiculars from P in the feet of the several perpendiculars upon them from O, and intercepting thereforo upon them the several differences in question, therefore by the above 1°. the sum of the squares of the n differences $=\frac{1}{2} n$ times the square of $O P$, and therefore \&c.

To prove 2°. Since by (92, Cor. 6°.) the sum of the perpendiculars upon L from the several vertices $=n$ times $O L$, therefore by (79, Cor. 2°.) the sum of their squares $=n$ term $O L^{2}+$ the sum of the squares of the n differences between each of themselves and $O L$; but the parallel to L passing through O cutting off from the several perpendiculars the n differences in question, therefore by the above 2°. the sum of the squares of the n differences $=\frac{1}{2} n$ times the square of $O P$, and therefore \&e.; and the same thing is also evident from the general property (96, Cor. 1°.) of which this is evidently a particular case.
N.B. It is evident from the above 1°. and 2°. that every circle concentric with a regular polygon of any order, is at once the locus of a variable point the sum of the squares of whose distances from the several sides is constant, and the envelope of a variable line the sum of the squares of whoso distances from the several vertices is constant.

Cor. 2°. Conceiving, in the above, the arbitrary point P to be on the circlo $O Q$, and the arbitrary line L to touch the circlo $O R$, it follows at once that -
1°. If from any point on the circle inscribed in a regular polygon of any order n perpendiculars be let fall on the several sides, the sum of their squares is constant, and $=\frac{1}{3} n$.radius of circle.
2. If upon any line L touching the circle circumscribed to a regular polygon of any order n perpendiculars be let fall from the several vertices, the sum of their squares is constant, and $=$ sin.radius of circle.

For, when in $1^{\circ} . O P=O Q$, then $O Q^{\circ}+\frac{1}{1} O P^{\circ}=1 O Q^{\circ}$, and therefore \&c. $;$ and when in 2°. OL $=O R$, then $O L^{2}+\frac{1}{2} O R^{\circ}$ $=\$ O R^{n}$, and therefore dic.

Cor. 3°. Comparing with each other the values of the two sums of squares in the particular cases just given, it follows also that-
1°. If tuco regular polygons of any common order n be constructed one circumseribed and the other inscribed to the same circle, the constunt sum of the squares of the perpendiculars from any point on the circle upon all the sides of the former $=$ the constant sum of the squares of the perpendiculars upon any tangent to the circle from all the evertices of the latter.
2°. If two circles be described one circumseribed and the other inscribed to the same regular polygon of any order n, the constant sum of the squares of the perpendiculars upon all the sides of the prolygon from any point on the former = the constant sum of the squares of the perpendiculars from all the vertices of the polygon upon any tangent to the latter.

For, by the above 1°. and 2°. both constant sums, in the former case $={ }^{1} n$. radius 2 of common circle, and in the latter case $=n$.radins ${ }^{8}$ of inscribed circle $+\frac{1}{2} n$. radius 2 of circumscribed circle, and therefore \&c.

CHAPTER VII.

ON COMPLETE AND INCOMPIETE FIGURES OF POINTS AND LINES.

104. Every system of points or lines, whatever be their number and position, in which the several lines of connection or points of intersection of each point or line with all the others are taken into account without exception, is said to form a complete figure, which in the absence of any as yet generally recognized nomenclature may be termed a polystigm in the former case and a polygram in the latter. A system of points or lines, on the other hand, in which any of the lines of connection or points of intersection of each point or line with all the others are omitted, is said to form an incomplete figure, whose degree of incompleteness depends of course on the number of the omitted points or lines. In the extreme case of the latter, when the lines of connection or points of intersection of each point or line with but two others are taken into account, the figure evidently is simply a polygon, of which the several points or lines of the system are the several vertices or sides, and of which the shape and character depend, of course, on the order of sequence in which the several points or lines of the system are taken in the several connections or intersections of each with the two regarded as adjacent to it.
105. The several points or lines constituting the vertices or sides of a polygon of any order being always taken in some definite order of sequence, it is therefore an intelligible mode of expression to speak, as is often done, of "opposite vertices" and of "opposite sides" in one of an even order, or, of "the vertex opposite to a side" and of " the side opposite to a vertex" in one of an odd order; but to speak similarly of the constituent points or lines determining a complete figure of any
order would be meaningless and consequently inadnissible; each point or line standing by itself absolutely, and having no relation of the nature expressed by such terms as "adjacent," "opposite," \&c. to any other.
106. But though the determining points or lines in complete figures have no relation amongst each other as regards order of sequence, certain other clements of the figures may be, and often are, with propriety and convenience, said to be opprosites to each other; thus, for instance, in a tetrastign or tetragram every line of connection of two points or point of intersection of two lines is said to be the opposite of that of the remaining two; in a hexastigm or hexagram every triangle deternined by threo points or lines is said to be the opposite of that determined by the remaining three; and, generally in a polystigu or polygram of any even order, every two polystigms or polygrams of inferior orders determined by half the points or lines and by the remaining half are said to be opposites to each other, \&e.
107. In the complete figure determined by any number of points, erery two points are said to determine a line of connection, and every two lines of comnection to determine an angle of connection of the figure. In the complete figure deternined by any number of lines, every two lines are said to determine a point of intersection, and every two points of intersection to determine a chord of intersection of the figure; for the same obvious reason as for the extreme case of incomplete figures, the several chords of intersection in the latter case are sometimes termed also diagovals of the figure.
108. If n be the number of the points or lines determining a complete figure of either species, it may be easily shown that, generally:
109. The entire number of lines of connection or of points of intersection of the figure $=\frac{n(n-1)}{2}$.
110. The entire number of angles of connection or of chords of intersection of the figure $=\frac{n(n-1)(n-2)(n-3)}{8}$.
3°. The entire number of polygons of which the determining points or lines are the vertices or sides $=\frac{(n-1)(n-2)(n-3) \ldots 1}{2}$.

For, in the case of 1°., the n points or lines connecting or intersecting each with the remaining ($n-1$) produce $n(n-1)$ lines of connection or points of intersection coinciding in pairs, and therefore \&c.; in the case of 2°., the $\frac{n(n-1)}{2}$ lines of connection or points of intersection of two points or lines intersecting or connecting with the $\frac{(n-2)(n-3)}{2}$ for the remaining ($n-2$) produce $\frac{n(n-1)(n-2)(n-3)}{4}$ angles of connection or chords of intersection coinciding in pairs, and therefore \&c.; and, in the case of 3°., any one of the n points or lines, taken arbitrarily as first vertex or side of all the polygons, may be followed in order of sequence by any one of the remaining $(n-1)$ as second vertex or side, each of which $(n-1)$ second vertices or sides may be followed in order of sequence by any one of the remaining $(n-2)$ as third vertex or side, each of which $(n-1)(n-2)$ third vertices or sides may be followed in order of sequence by any one of the remaining $(n-3)$ as fourth vertex or side, and so on to the last, thus producing $(n-1) \cdot(n-2) \cdot(n-3) \cdot(n-4)$, \&c. 2.3.1 last vertices or sides, and therefore the same number of polygons coinciding in pairs, every order of sequence giving evidently the same polygon as the reverse order, and therefore \&e.
109. A polygon of any order greater than three is said to be convex, reentrant, or intersecting, according as every two of its non-adjacent sides intersect externally, as any two of them intersect one externally and one internally, or as any two of them intersect internally; thus the quadrilateral $A B C D$ in

fig. α is convex, in fig. β is reentrant, and in fig. γ is intersecting,
and it is evident from any of the three figures that of the three different quadrilaterals $A B C D, A E C F, B E D F$, determined by the same four lines (108), one is always convex, one always reentrant, and one always intersecting.
110. The sum of the external angles of a polygon of any order, convex, reentrant, or intersecting, regard being had to their signs as well as their magnitudes, $= \pm 4 m$ righe angles, m being some integer of the natural series $0,1,2,3$, dec. less than half the order of the polygon.

For, conceiving the polygon described by the motion of a point setting out from any position on one of its sides, and traversing its entire perimeter, returning again to the point of starting; the several external angles of the polygon are then evidently the several deviations to the right or left, in the direction of its motion, made by the describing point in passing during the circuit from the several sides to their successors, which for convex polygons universally (fig. a), and for others too occasionally (figs. β^{\prime} and γ), take place all in the same direction, and have therefore all the same sign, bnt which for reentrant and intersecting polygons generally (figs. β, γ, and α^{\prime}) take place some in one and others in the opposite direction, and have therefore some one and others the opposite sign ; but since, on the completion of the entire circuit, the original direction of the motion is always finally regained, therefore the total amount of deviation however made up, that is the sum with their proper signs of the external angles of the polygon, $=0$, or $=4$ right angles, or $=4 \mathrm{~m}$ right angles, m however being
always less than half the order of the polygon, the deviation at each angle being necessarily limited to two right angles.

In the three polygons represented in figs. α, β, and γ, and in all convex polygons universally, $m=1$; in the three represented in figs. $\alpha^{\prime}, \beta^{\prime}$, and $\gamma^{\prime}, m=0,=2$, and $=3$ respectively ; and in all six alike the sides are supposed to be described in the directions indicated by the arrow heads in the figures, and the deviations are supposed to be positive or negative according as they take place to the right or to the left, as marked in the figures.

Any two sides of a polygon are said to be measured cyclically in similar or opposite directions, according as a moving point, going round as above the entire perimeter continuously in the same cyelic direction, would describe both in directions similar or opposite to those of their measurement or describe one in the similar and the other in the opposite direction.
111. If the several sides of any polygon measured cyclically in the same direction be projected in any direction upon any line, the sum of the projections, regard being had to their signs as well as to their magnitudes, $=0$.

For, if $P, Q, R, S, T, \&$ c. be the several vertices of the polygon, and $P_{1}, Q_{1}, R_{1}, S_{1}, T_{1}, \& c$. their several projections upon any arbitrary line L, then the several sides, measured cyclically in the common direction indicated by the arrow heads in the figure, being $P Q, Q R, R S, S T$, \&c. returning back again to P, their several projections on L are respectively $P_{1} Q_{1}, Q_{1} R_{1}$, $R_{1} S_{1}, S_{1} T_{1}$, \&e. returning back again to P_{1}, and the sum of the latter (by 78) being always $=0$, therefore \&ic.

The above useful property may obviously be stated otherwise thus, as follows-

If the seceral sides of any polygon be projected in any direction upon any line, the projection of amy one side measured cyclically in cither direction, or more generally the sum of the projections of any number of the sides measured cyclically in either direction, is equal to the sum of the projections of the remaining sides measured cyclically in the opposite direction.
112. Assuming the evident property that, if two finito parallel lines, however circumstanced as to absolute position, be equal and co-directional, their projections in any direction upon any line are equal and co-directional; the following consequences result immediately from the very useful property of the preceding article, viz.
1°. A system of any number of finite lines given in length and direction but not in absolute position weuld form a polygon if placed end to end in any order of sequence, proviled that for theo different directions of projection the sum of their projections upion any line $=0$.

For, if when placed end to end in any one of the different orders of sequence in which they could be disposed, the last extremity of the last side failed to coincide with the first extremity of the first side, then, though the sum of their projections would $=0$ upon every line for the particular direction of projection parallel to the line connecting those tuo extremities, such obviously would not be the case upon any line for any other direction of projection, nud therefore isc.
2. If a system of any number of finite lines given in length and direction but not in absolute position trould form a polyyon if placed end to end in any one ordir of sequence, they reould do so equally for every order of sequence in thich they could be disposed.

For, if for any one order of sequence they formed a polygon, then since, by (111), the sum of their projections in every direction upon every line $=0$, therefore, by 1°., they would form a polygon for every order of sequence, and therefore \&e.
3. If a sysh m of any number of finite lines, hovever circumstunced as to direction, length, und position, be such that for tuo
different directions of projection the sum of their projections upon any line $=0$, then for every direction of projection the sum of their projections upon any line $=0$.

For, if without alteration of length or direction they were, if not already in such a position, placed end to end in any order of sequence, then, since by hypothesis the sum of their projections for two different directions $=0$, therefore, by 1°., they would form a polygon, and therefore, by (111), the sum of their projections for every direction $=0$.
113. If from any point O as common origin (fig., Art. 111) a system of finite lines $O A, O B, O C, O D, \& c$. be drawn parallel, equal, and co-directional to the several sides $P Q, Q R, R S, S T$, $\& c$. of any polygon $P Q R S T \& c$. measured cyclically in the same direction, it is easy to see from the same property that-
1°. The sum of their projections in any direction upon any line $=0$.
2°. The sum of the perpendiculars, or any other isoclinals, from their extremities upon any line passing through $O=0$.
3°. The sum of the areas of the triangles they subtend at any point not at infinity $=0$.
4°. The sum of the rectangles under them and the perpendiculars upon them from any point not at infinity $=0$.

To prove 1°. and 2°. If $O_{1}, A_{1}, B_{1}, C_{1}, D_{1}, \& c$. be the several projections in any direction $O O_{1}$ of the several points O, A, B, $C, D, \& c$ upon any line $L ; P_{1}, Q_{1}, R_{1}, S_{1}, T_{1}$, \&c. those of P, $Q, R, S, T, \& c$. in the same direction on the same line, and $A A^{\prime}$, $B B^{\prime}, C C^{\prime}, D D^{\prime}, \& c$. the several isoclinals from A, B, C, D, \&c. to $O O_{1}$ in the direction parallel to L; then since, by hypothesis, Art. 112, and Euc. I. 34, $P_{1} Q_{1}=O_{1} A_{1}=A^{\prime} A, Q_{1} R_{1}=O_{1} B_{1}=B^{\prime} B$, $R_{1} S_{1}=O_{1} C_{1}=C^{\prime} C, S_{1} T_{1}=O_{1} D_{1}=D^{\prime} D, \& c$., and since, by (111),

$$
P_{1} Q_{1}+Q_{1} R_{1}+R_{1} S_{1}+S_{1} T_{1}+\& \mathrm{c} .=0
$$

therefore

$$
O_{1} A_{1}+O_{1} B_{1}+O_{1} C_{1}+O_{1} D_{1}+\mathbb{d c}=0
$$

$$
\text { and } \quad A A^{\prime}+B B^{\prime}+C C^{\prime}+D D^{\prime}+\& c .=0
$$

and therefore \&c., the directions of L and of $O O_{1}$ being entirely arbitrary.

To prove 3°. If I be the point and $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$, \&c. the several perpeudiculars from $A, B, C, D, \& c$. upon
the line $O I$ passing through the two points O and I, then since, by 2°.,

$$
A A^{\prime}+B B^{\prime}+C C^{\prime}+D D^{\prime}+\mathcal{E} c=0
$$

and since by hyputhesis $O I$ is not infinite, therefore

$$
O I \cdot A A^{\prime}+O I \cdot B B^{\prime}+O I \cdot C C^{\prime}+O I \cdot D D^{\prime}+\mathbb{E} c=0
$$

and therefore \&c., each rectangle being double the area of the triangle subtended by its base at the point I.

To prove 4°. If I, as before, be the point and $I X, I Y, I Z$, \&c. the several perpendiculars from it upon $O A, O B, O O$, \&c., then since $O A \cdot I \mathrm{X}=2$ area $O A I, O B \cdot I Y=2$ area $O B I$, $O C . I Z=2$ area $O C I$, sec., and since, by 3°.,

$$
2 \operatorname{arca} O A I+2 \text { area } O B I+2 \operatorname{area} O C I+\& c=0
$$

therefore

$$
O A \cdot I X+O B \cdot I Y+O C \cdot I Z+N c \cdot=0
$$

and therefore \&e.
Of the above properties, 2°. shews evidently (86) that the peint O is tho mean centre of the system of points A, B, C, D, de. for any system of multiples having a common magnitudo and sign; and 4°. expresses obviously for any number of lines $O A, O B, O C, O D$, \&c. passing through a common point O, what the property, Cor. 6°., Art. 82, established on other considerations in Chapter V., expresses for three.
114. When any number of lines $O A, O B, O O, O D, \& \cdot$. diverging from a common origin O, are, as in the preceding article, parallel, equal, and co-directional to the several sides of a polygon PQRST \&ic. measured cyclically in the same direction, any one of them $O E$ turned without change of length round the common origin O into the opposite direction $O K^{-}$is termed the resultant of the others $O A, O B, O C, O D$, dic., a name borrowed from the Science of Mechanics, in which the properties of the preceding and of some of the following articles are of considerable importance.

As all the sides but one of a polygon of any order are of course perfectly arbitrary in length and direction, the length and direction of the last however being implicitly given with those of the others, therefore the several lines $O A, O B, O C$, $O D$, \&ec. composing the system of which $O K$ is the resultant
as abore defined are equally arbitrary in length and direction, but their lengths and directions once given their resultant in length and direction is implicitly given with them; two very rapid constructions for its determination in all cases will be presently given.

In the particular case of but two components $O A$ and $O B$, the resultant $O K$ in length and direction is evidently the conterminous diagonal of the parallelogram of which $O A$ and $O B$ in length and direction are adjacent sides. All properties therefore which are true in general of any system of coinitial lines and their resultant are true in particular of two adjucent sides and the conterminous diagonal of any parallelogram.
115. Since, in accordance with the foregoing definition, the several pairs of magnitudes $O E$ and $O K, O E^{\prime}$ and $O K^{\prime}, O E I$ and $O K I, O_{1} E_{1}$ and $O_{1} K_{1}, E E^{\prime}$ and $K K^{\prime}, \mathcal{S c}$., in the figure of Art. 111, are equal and opposite, it follows at once from the several properties of Article 113 that the resultant OK of any system of lines $O A, O B, O C, O D$, \&e. diverging from a common origin O possesses the following properties with respect to the component lines of the system-
1°. The sum of the projections of the camponents in any direction upon any line is equal in magnitude and sign to the projection of the resultant in the same direction upon the same line.
2°. The sum of the perpendiculars or other isoclinals from the extremities of the components rpon any line passing through the common origin O is equal in magnitude and sign to the perpendicular or isoclinal from the extremity of the resultant on the same line.
3. The sum of the areas of the triangles subtended by the components at any point not at infinity is equal in magnitude and sign to the area of the triangle subtended by the resultant at the same point.
4°. The sum of the rectangles under the components and the perpendiculars upon them from any point not at infinity is equal in magnitude and sign to the rectangle under the resultant and the perpendicular upon it from the same point.

These properties require no proof, they result immediately, as above enumerated from those similarly mentioned in Art. 113,
from the obvious consideration that when the sum of a number of magnitudes of any kind $=0$ then any one of them changed in sign $=$ the sum of all the others; and it follows at once from any or all of them, as is also evident from the fundamental definition of the preceding article, that for a system of components parallel, equal, and co-directional to the several sides of any polygon measured cyclically in the same direction, the resultant is in magnitude evanescent and in direction indeterminate.
116. Given in magnitude and direction any number of lines $O A, O B, O C, O D$, de. diverging from a common origin O, tu determine their resultant $O K$ in magnitude and direction.

Finst method. From any arbitrarily assumed point P (fig., Art. 111), drawing a line $P Q$ parallel, equal, and co-directional to any one of the components $O A$; from its opposite extremity Q a second $Q R$ parallel, equal, and co-directional to a second of them OB; from its opposite extremity $l i$ a thind $13 S$ parallel, equal, and co-directional to a third of them $O C$; from its opposite extremity S a fourth $S^{\prime} T$ parallel, equal, and co-directional to a fourth of them $O D$; and so ou until all the components are exhausted. 'The line $O K$ from O parallel, equal, and codirectional to the line $P T$ connecting the first extremity P of the first parallel $P Q$ with the last extremity T of the last parallel $S T$ is (114) the resultant required.

Should the last point T, determined by this construction, coincide with the first point P, assumed originally, that is, should the given lines $O A, O B, O C, O D, \mathbb{N}$. form a system parallel, equal, and co-directional to the several sides of anypolygon measured eyclically in the same direction; their resultant $O K^{\circ}$, thus determined would, as it ought (115), be evanescent in magnitude and indeterminate in direction.

Second method. Projecting all the components $O A, O B$, $O C, O D$, \&e. in any direction upon any line $O O_{1}$ (same figure) passing through their common origin O, and measuring from O on $O O_{1}$ a length $O K^{\prime \prime}$ equal in magnitude and sign to the sum of the several projections $O A^{\prime}, O B^{\prime}, O C^{\prime \prime}, O D^{\prime}$, \&c., the length $O K^{\prime \prime}$ thus determined is (115) the corresponding projection of the required resultant $O K$. Repeating the same process with a different direction of projection on the same or another line
passing through O, the new length similarly determined is a second projection of the required resultant $O K$, and therefore \&c.

Should the two different lengths, determined as above, bo both $=0$, that is, $\left(112,1^{\circ}\right.$.) should the given lines $O A, O B, O C$, $O D$, \&c. form a system parallel, equal, and co-directional to the several sides of any polygon measured cyclically in the samo direction, their resultant $O K$ thus determined would again, as it ought, be evanescent in magnitude and indeterminate in direction.

Of the above two general constructions the second, though less obvious and simple, is better adapted to numerical computation than the first.
117. The principles established in the preceding articles supply a ready solution of the very general problem-

Required the locus of a variable point P for which the sum of the areas of the system of triangles $A_{1} P A_{3}, B_{1} P B_{2}, C_{1} P C_{2}, D_{1} P D_{3}$, \&ic., subtended by any number of fixed bases $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$, $D_{1} D_{2}$, \&ic. is constant, the length and line of direction with the positive and negative sides of each base being given.

Case 1°. When the several lines of direction of the several bases $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}, D_{1} D_{2}$, \&c. pass through a common point O; from the common point O measuring on the several lines of direction lengths $O A, O B, O C$, $O D$, \&c., equal to the several lengths $A_{1} A_{2}, B_{1} B_{y}, C_{1} C_{v}, D_{1} D_{y}$, \&c., and in directions, indicated by the arrow heads in the figure, such that the positive and nega-
 tive sides of the several bases correspond to the right and left sides of the several directions, and taking, by (116), in length and direction the resultant $O K$ of the several coinitial lines $O A, O B, O C, O D, \& \in$. thus obtained; then for every arbitrary point P not at infinity, since, by Euc. I. 38, the sum of the system of triangles $\mathcal{\Sigma}\left(A_{1} P A_{8}\right)=$ the sum of the system of triangles $£(O P A)$, and since, by $\left(115,3^{\circ}.\right)$, the sum of the latter system of triangles $=$ the single triangle $O P K$, therefore
for every position of P not at infinity the sum of the system of triangles $\mathcal{Y}\left(A_{1} P A_{2}\right)=$ the single trianglo $O P K^{-}$; but the baso $O K$ of the latter being fixed its area is positive, negative, or nothing, according as its vertex P lies on the right or left side of or upon the line of direction of $O K$, and if its area is constant the locus of its vertex P is a line parallel to $O K$ and at a distance from it equal in magnitude and sign to twice the constant value divided by $O K$.

Cor. In the particular case when $O K=0$, that is, when the several bases $A_{1} A_{2}, B_{1} B_{v}, C_{1} C_{2}, D_{1} D_{2}$, \&c. are parallel, equal, and co-directional with the several sides of a polygon measured eyclically in the same direction; then, as is evident from the above, the sum of the areas of the system of (riangles $\mathrm{E}\left(A_{1} P A_{2}\right)=0$ for every position of P not at infinity.

Case 2°. When the several lines of direction of the several bases $A_{1} A_{8}, B_{1} B_{2}, C_{1} C_{8}^{\prime}, D_{1} D_{2}$, \&c. do not pass through a common point; assuming arbitrarily any fixed point O not at infinity, drawing from it a system of lines $O A, O B, O C, O D$, de., parallel and equal to the several bases $A_{1} A_{3}, B_{1} B_{s}, C_{3} C_{3}, D_{1} D_{v}$, \&c., and in directions, indicated
 by the arrow heads in the figure, such that the positive and negative sides of the several bases correspond as before to the right and left sides of the several directions, and taking as before in magnitude and direction the resultant $O K$ of the system of coinitial lines $O A, O B, O C, O D, \mathcal{E c}$. thus obtained; then for every arbitrary point P not at infinity, since, by ((5), the sum of the system of triangles $\mathcal{Z}\left(A_{1} P A_{3}\right)=$ the sum of the system of triangles $\pm\left(A_{1} O A_{8}\right)+$ the sum of the system of triangles $\Sigma(O P A)$, and since, by $\left(115,3^{\circ}.\right)$, the sum of the latter system of triangles $=$ the single triangle $O P K$, therefore for every position of P not at infinity, the sum of the system of triangles $\Sigma\left(A_{1} P A_{8}\right)=$ the sum of the system of triangles $\mathbb{\Sigma}\left(A_{1} O A_{8}\right)+$ the single triangle $O P K$; but the sum of the system of triangles $\pm\left(A_{1} O A_{8}\right)$ being fixed with the point O, and the base $O K$ of
the single triangle $O P K$ being also fixed with the same, if the sum of the system of triangles $\Sigma\left(A_{1} P A_{2}\right)$ be constant, the locus of P is a line parallel to $O K$ and distant from it by an interval equal in magnitude and sign to the constant sum $\mathbf{\Sigma}\left(A_{1} P A_{8}\right)$ - the fixed sum $\mathbb{\Sigma}\left(A_{1} O A_{8}\right)$ divided by half the length of $O K$.

Cor. In the particular case when $O K=0$, that is, when the several bases $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}, D_{1} D_{2}, \& c$. are parallel, equal, and co-directional with the several sides of a polygon measured cyclically in the same direction, then, as is evident from the above, the sum of the areas of the system of triangles $\Sigma\left(A_{1} P A_{8}\right)$ is constunt for every position of P not at infinity.
118. As the several fixed bases $A_{8} A_{2}, B_{1} B_{y}, C_{2} C_{y}, D_{1} D_{2}, \& c$., in the general case of the preceding, may be in length and direction the several sides of any one of the different polygons determined by their several lines of direction ($108,3^{\circ}$.) measured cyclically in the same direction, and as then, by the corollary to that case, the sum of the areas of the several triangles $A_{1} P A_{2}, B_{1} P B_{2}, C_{1} P C_{2}, D_{1} P D_{2}, \& \mathrm{c}$. is constant for every position of P not at infinity; hence the important property that-

For a polygon of any form, convex, reentrunt, or intersecting, the sum of the several triangular areas subtended by the several sides at any point not at infinity is constant, any two of the triangles being regarded as having similar or opposite signs according as they lie at similar or opposite sides of their respective bases measured cyclically in either common direction.

This property is important as supplying a formal definition of the area of a polygon, which is applicable without exception to every varicty of form whether convex, reentrant, or intersecting, viz., "The constant sum of the areas of the several triangles subtended by the several sides at any arbitrary point not at infinity and regarded as positive or negative according as they lie at the positive or negative sides of their several bases measured cyelically in either common direction."

If an intersecting polygon were of such a form that the sum of the triangular elements constituting its area as thus defined $=0$ for any one point not at infinity, they would of course by virtue of the above $=0$ for every point not at intinity, and the area of the polygon would consequently $=0$; an inter-
secting quadrilateral in which the two opposite sides that do not intersect internally are equal and parallel, (as in fig. α^{\prime}, Art. 110), furnishes the simplest example of a polygon of this nature.
119. The linear locus in the general case of Art. 117 supplics obvious solutions of the four following very general problems-

Given in magnitude, position, and direction any number of fixed lases $A_{1} A_{3}, B_{1} B_{8}, C_{1} C_{2}, D_{1} D_{3}$, dic. to determine-
1°. On a given line the point P for thehch the sum of the several triangular areas $\mathcal{E}\left(A_{1} P A_{4}\right)$ shall have any given value, positive, negative, evanescent, or infinite.
2°. On a given circle the point P for which the sum of the several triangular areas $\mathcal{L}\left(A_{1} P A_{9}\right)$ shall have the maximum, the minimum, or any intermediate given value.

In the particular case when the several bases $A_{1} A_{3}, B_{1} B_{3}$, $C_{1} C_{3}, D_{1} D_{2}$, אc. are parallel, equal, and co-directional with the several sides of a polygon measured cyelically in the same direction, the sum $\mathcal{Z}\left(A_{1} P A_{2}\right)$ being then constant for every position of P not at infinity, these several problems are in consequence all indeterminate.
120. Denoting by A, B, C, D, \mathcal{S}. the several indefinite lines of direction, and by $a, b, c, d, \& c$. the several numerical values to any unit of linear measure of the several fixed bases $A_{1} A_{8}, B_{1} B_{2}, C_{1} C_{2}, D_{1} D_{8}$, \&c. in the linear locus of Art. 117; it follows immediately from the general property there established that-

If A, B, C, D, de. be any system of lines disposed in any manner, but none infinitely distant, and a, b, c, d, dec. any systein of corresponding multiples positive or magatice, but none infinitely great, the locus of a variable point P for which the sum

$$
a \cdot P A+b \cdot P B+c \cdot P C+d \cdot P D+d \cdot c \cdot
$$

or more shortly $\Sigma(a . P A)$, has any constant value, positive, negative, or nothing, is a line whose direction depends on the directions of the lines and the ratios of the multiples, and whose position depends on the value of the constant.

The positions and sides, positive and negative, of the sereral lines $A, B, C, D, \& e$., and the magnitudes and signs, positive or negative, of the several multiples a, b, c, d, \&ec. being given,
to determine the common direction of the sereral loci for all values of the constant, the particular position of the locus for any particular value of the constant, and the law governing the variation of the locus for the variation of the constant; on the several lines $A, B, C, D, \& c$. from any arbitrarily assumed points $A_{1}, B_{1}, C_{1}, D_{1}$, \&c., taking any system of lengths $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{9}, D_{1} D_{2}$, \&c., proportional to the numerical values of the several multiples $a, b, c, d, \& c$., and in directions, indicated by the arrow heads in the figures, such that the positive and negative signs of the several products $a . P A, b . P B, c . P C$, d. $P D, \& c$. shall correspond to the right and left sides of the several directions; then since for every position of P not at infinity $A_{1} A_{2} \cdot P A=2$ area $A_{1} P A_{2}, \quad B_{1} B_{2} \cdot P B=2$ area $B_{1} P B_{2}$, - $C_{1} C_{2} \cdot P C=2$ area $C_{1} P C_{2}, \quad D_{1} D_{2} \cdot P D=2$ area $D_{1} P D_{2}, \quad \& c$., and since therefore $\Sigma\left(A_{1} A_{2} . P A\right)=2 \Sigma\left(A_{1} P A_{2}\right)$, therefore, by (117), the locus of P for which $\Sigma\left(A_{1} A_{2} . P A\right)$ has any constant value, positive, negative, or nothing, is a line L parallel to the resultant $O K$ of any coinitial system of lines $O A, O B, O C, O D, \mathbb{\& c}$., parallel, equal, and co-directional with $A_{1} A_{2}, B_{2} B_{2}, C_{1} C_{8}, D_{1} D_{8}$, \&c., and distant from it by an interval equal in magnitude and sign to the quantity $\frac{\Sigma\left(A_{2} A_{8} \cdot P A\right)-\Sigma\left(A_{1} A_{2} \cdot O A\right)}{O K}$, or to its equivalent $\frac{\Sigma(a . P A)-\Sigma(a . O A)}{k}$, where k is the numerical value of $O K$ to the same unit that $a, b, c, d, \& c$. are those of $O A, O B, O C, O D, \& c$.

If I be the particular line of the system parallel to $O K$ for which the value of the constant $=0$, it is easy to see that for any other line L of the systern its value $=k . L I$; for, since for any two points P and Q on any two lines L and M parallel to $O K$, by (117),

$$
\Sigma(a . P A)=\Sigma(a . O A)+k . L O \text { and } \Sigma(a . Q A)=\Sigma(a . O A)+k . M O,
$$ therefore at once, by subtraction,

$$
\Sigma(a . P A)-\Sigma(a . Q A)=k . L M
$$

and therefore if M be the particular line I of the system for every point Q of which $\Sigma(a . Q A)=0$, then for every point P of any other line L of the system $\Sigma(a . P A)=k . L I$, as above stated.

Given the particulars of the system of lines A, B, C, D, rec. and of the system of multiples $a, b, c, d, d c c$. to determine the line I. Assuming arbitrarily any point O, and drawing from it in magnitude and direction the resultant $O K$ of the coinitial system of lines parallel, equal, and co-directional with the several segments $A_{1} A_{2}, B_{1} B_{y}, C_{1} C_{z}, D_{1} D_{2}$, dic. determined as above, the line I parallel to $O K$, distant from it by the interval $\mathbf{\Sigma}(a .0 A) \div k$, and at the positive or negative side of its direction according as the sign of $\mathrm{\Sigma}(a . O A)$ is negative or positive, is, by the above, that required.

The line I, for every point Q of which the constant smm $\mathbf{\Sigma}(a . Q A)=0$, is termed the central axis of the system of lines A, B, C, D, dec. for the system of multiples a, b, c, d, de., and, by aid of it, determined as above or otherwise, the position of the parallel line L for every point P of which the constant sum $\mathbf{\Sigma}(a . P A)$ shall have any given value, positive or negative, is given at once by the above; for it is distant from I by tho interval $\Sigma(a . P A) \div k$, and it lies at its positive or negative side according as the sign of $\mathbf{\Sigma}(a, P A)$ is positive or negative.

In the particular case when $k=0$, that is (116), when the several segments $A_{1} A_{3}, B_{1} B_{3}, C_{1} C_{3}, D_{1} D_{2}$, \&.c., deternined as above, are parallel, equal, and co-directional with the several sides of a polygon measured cyclically in the same direction, the central axis I is at infinity, except only vehen the ralue of $\pm(a . P A)$, which $(117$, Cor.) is then constant for every prasition of P not at infinity, $=0$, in which exceptional case it is indeterminate. And for the same reason gencrally the several parallel loci of the present article are all at infinity, except only the particular one corresponding to the constant value of $\geq(a . P A)$, which one is indeterminate.
121. If A, B, C be any three lines, 1 their central axis for any three multiples a, b, c, and P, Q, R the three points at which A, B, C intersect with I, then always (sec $91,1^{\circ}$.)

$$
\text { b. } P B+c \cdot P C=0, c \cdot Q C+a \cdot Q A=0, a \cdot R A+b \cdot R B=0 .
$$

For, since for every three points P, Q, R on I, by the preceding, $a \cdot P A+b \cdot P B+c \cdot P C=0, a \cdot Q A+b \cdot Q B+c \cdot Q C=0$, $a \cdot R A+b \cdot R B+c \cdot R C=0$; if P lie on A, then $b \cdot P B+c \cdot P C=0$;
if Q lie on B, then $c \cdot Q C+a \cdot Q A=0$; if R lie on C, then $a \cdot R A+b \cdot R B=0$; and therefore \&c.

Of the above, which supplies an obvious and very rapid method of determining the central axis I of any three lines A, B, C for any three multiples a, b, c, the two following particular cases are deserving of attention. See (91, Cor.).
1°. If in absolute magnitude $a=b=c$ the three lines connecting P, Q, R with the three opposite rertices bisect (61) the three opposite angles $B C, C A, A B$ of the triangle $A B C$, all externally, or one externally and two internally, according as the signs of a, b, c are all similar, or that of one opposite to those of the other two.
2°. If in absolute magnitude $a: b: c$ as the lengths of the three corresponding sides of the triangle $A B C$, the three points P, Q, R bisect ($65, \operatorname{Cor} .3^{\circ}$.) the three sides on which they lie, all externally, or one externally and two internally, according as the signs of a, b, c are all similar, or that of one opposite to those of the other two.

In the first case of 2°, the three points of external biscetion of the three sides of the triangle $A B C$ being at infinity, so therefore is the central axis I which contains them; this is in exact accordance with the closing observation of the preceding article, the three segments $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{9}$, determined as there directed on the three lines A, B, C, being then parallel, equal, and co-directional with the three sides of the triangle $A B C$ measured cyclically in the same direction.
122. The linear loci of Art. 120, determinable as there explained for all given values of the constant $\Sigma(a . P A)$, supply obvious solutions of the four following very general problems analogous to those of Art. 119-

Given the positions and sides, positive and negative, of any system of lines $A, B, C, D, d e c$., and the magnitudes and signs, positive or negative, of any corresponding system of multiples $a, b, c, d, d c$., to determine-
1°. On a given line the point P for which the sum $\Sigma(a . P A)$ shall have any given value, positive, negative, evanescent, or infinite.
2. On a given circle the point P for which the sum $\Sigma(a . P A)$
shall have the maximum, the minimum, or any intermediate given value.

In the particular case, when, as explained in the elosing paragraph of that article (120), the particulars of the lines and multiples are such that the sum $\mathbb{Z}(a, P, A)$ has the same value for every position of P not at infinity, then such problems are of course indeterminate for that particular value, and impossible at a finite distauce for every other value of the sum.
123. Since in the particular case when the several segments $A_{8} A_{8}, B_{1} B_{3}, C_{1} C_{3}, D_{1} D_{8}$, \& C_{0}, determined as in (120), on the several lines A, B, C, D, dic. are parallel, equal, and co-directiunal with the several sides of a polygon mensured cyelically in the same direction, then, by (117), the sum Σ ($n . P A$) has the same constant value for every position of P not at infinity, which value $=0$ when the lines pass through a common point. Hence-

When a number of fureed lines A, B, C, D, dec. are parallel to the several siles a, b, c, d, de. of any polygon, and that their positite and negatice sudes aurrspoond to those of the sides of the polygon masured cyclically in cither common direction, then for etsry proint P not at infinity the sum $2(a . P A)$ is constunt, and $=0$ when the lines peass through a common point (see 113, 4°.).

When the polygon is equilateral, since then $a=b=c=d$, \&c., therefore $\mathcal{\Sigma}(a . P A)=a . \sum(P A)$, and therefore the sum $\mathcal{\Sigma}(P A)$ is constant for every point not at infinity. Hence-

When a number of fixed lines A, B, C, D, dec. are parallel to the several sides of any equitateral polygon, and that their positive and neyative sides correspond to those of the sides of the polygon measured cyclically in either common direction, then for every point I ' not at infinity the sum $\pm(P A)$ is constant, and $=0$ rehen the lines pass through a common point.

Of all equilateral polygons of any order, one, the regular, being also equiangular, the term "equilateral" may therefore be replaced by "equiangular" in the statement of the latter property, the altered however being but a particular case of the original property, and no new priuciple of any kind being involved or expressed in the change.
124. The general property of the preceding article supplies ready solutions of the two following problems-

Given three points, or two points and a line, P, Q, R, to determine the point O for which the sum $a . O P+b . O Q+c . O R$ shall be the minimum ; a, b, c being any three positive multiples no one of which is greater than the sum or less than the difference of the other two.

For, if O be the point for which the three perpendiculars at P, Q, R to $O P, O Q, O R$ in the former case, or the two perpendiculars at P and Q to $O P$ and $O Q$ with the line R in the latter case, determine a triangle $A B C$ similar to that determined by the three multiples a, b, c,
 and including O within its area; then if O^{\prime} be any other point, and $O^{\prime} P^{\prime}, O^{\prime} Q^{\prime}, O^{\prime} R^{\prime}$ the three perpendiculars from it upon the three sides of $A B C$, since, by the preceding,

$$
a . O P+b . O Q+c . O R=a . O^{\prime} P^{\prime}+b . O^{\prime} Q^{\prime}+c . O^{\prime} R^{\prime},
$$

therefore $a . O A+b . O B+c . O C<a . O^{\prime} P+b . O^{\prime} Q+c . O^{\prime} R$ in the former case, and $<a . O^{\prime} P+b . O^{\prime} Q+c . O^{\prime} R^{\prime}$ in the latter case, and therefore O in either case is the point required; but O is the common intersection of the three known circles $Q O R$, $R O P, P O Q$ in the former case, and the intersection of the two known directions $P O$ and $Q O$ in the latter case, and therefore \&ic.

When the three given multiples a, b, c are incapable of forming a triangle, the above method of determining O of course fails in both eases, but it is easily seen, at once without any construction, that if any of the three multiples a, b, c in the former case, or either of the two a and b corresponding to tho two points P and Q in the latter case be $=$ or $>$ the sum of the other two, the point itself corresponding to that multiple is that for which the sum $a . O P+b . O Q+c . O R$ is the minimum.

But if the multiple c corresponding to the line R in the latter case be $=$ or $>$ the sum of the other two a and b corresponding to the two points P and Q, then through the required point O as before is easily seen without any construction to be on the line R, to determine its position on that line, that is, the
position of the point O on R for which the sum $a . O P+b . O Q$ is the minimum, is a problem incapable of solution by the geometry of the point, line, and circle.
125. In the linear loci of Art. 120 the several distances $P A, P B, P C, P D$, \&ec. need not be measured perpendicularls to the several lines A, B, C, D, \&e.; they might be measured in directions inclined to them at any constant angles $\alpha, \beta, \gamma, \delta, \& \in c$, and the several conclusions there established, with some slight and obrious modifications, would be true for the oblique as well as for the perpendicular distances.

For, $P A, P B, P C, P D$, \&c. being the several oblique distances, and $a, b, c, d, \& \in c$ as before the several corresponding multiples, if $P A_{1}, P B_{1}, P C_{1}, P D_{1}$, \&ic. be the several perpendicular distances, and $a_{1}, b_{12}, c_{1}, d_{1}$, \&ic. a system of multiples corresponding to them, having to the original multiples a, b, c, d, \&c. the constant ratios of the several oblique to the corresponding perpendicular distances ; then, since for every position of P not at infinity $a \cdot P A=a_{1} \cdot P A_{1}, b \cdot P B=b_{1} . P B_{1}, c \cdot P C=c_{1}, P C_{1}$, $d \cdot P D=d_{1} \cdot P D_{1}, \mathcal{E} \cdot$, therefore $\Sigma(a \cdot P A)=\Sigma\left(a_{1}, P A_{1}\right)$, and therefore dic., the multiples for the perpendiculars being simply those for the oblique distances divided by the sines of the constant angles of inclination.

By virtue of the above the four general problems of Art. 122 may be still further generalised, by the substitution for perpendicular of oblique distances measured in any given directions from the required point P to the given lines A, B, C, D, \&c.
126. If the several oblique distances $P A, P B, P C, P D, \& c$. in the preceding, were all measured in the same absolute direetion, their several points of meeting A, B, C, D, \&c. with the several fixed lines would then lie in a line L passing through P parallel to the direction, and the sum $\mathcal{E}(a . P A)$ would (Art. 80) $=\mathbf{\Sigma}(a) \cdot P O$, when O is the mean eentre on the line L of the system of points A, B, C, D, \&e. for the system of multiples $a, b, c, d, \& c$. Hence, by the preceding-

For a variable line L moving parallel to itself in any constant direction, and intersecting the several fixed lines of a polygram of amy form in a system of variuble points A, B, C, D, dic.
1°. The locus of the mean centre 0 of the system of points $A, B, C, D, d c$. for any system of multiples $a, b, c, d, d c$. is a line M whose position depends on the direction of L.
2°. The locus, more generally, of the point P on L for which the sum $\Sigma(a . P A)$ has any constant value, positive or negative, is a line N parallel to M and distant from it in the direction of L by the interval $N M=\Sigma(a . P A) \div \Sigma(a)$.

In the particular case when $a=b=c=d$, \&e., the several lines M, loci of O for different directions of L, are termed, from the analogy of the circle, diameters of the polygram. The latter being given, the position of the particular diameter M corresponding to any given direction of L is determined by drawing any two lines L_{1} and L_{8} parallel to the given direction, taking the two mean centres O_{1} and O_{2} of the two systems of points A_{1}, B_{1} C_{1}, D_{1}, \&c. and $A_{2}, B_{2}, C_{2}, D_{2}$, \&e., in which they intersect the several lines of the figure, and drawing the indefinite line $\mathrm{O}_{1} \mathrm{O}_{2}$. In the particular case where all the lines of the figure pass through a common point O, as every diameter M, corresponding to every direction of L, passes evidently through it, a single other point O_{1} is therefore sufficient to determine each particular diameter in that ease. Remarks precisely similar apply, of course, when the several multiples a, b, c, d, \&ic. have any values whatever.

In an equilateral triangle the several diameters of the figure - envelope the inscribed circle; this very particular case of a much more general property, to be given in a future Chapter, is left for the present as an exercise to the reader.
127. The general property of the preceding article, combined with that of Art. 80, Cor. 1°., may be employed for the solution of the following very general problem-

Given any system of lines A, B, C, D, dec. and any corresponding system of multiples $a, b, c, d, d c$. to determine the point P for which the sum $\Sigma\left(a . P A^{2}\right)$ is the minimum.

Drawing arbitrarily any two parallel lines L_{1} and L_{2} intersecting the entire system of lines $A, B, C, D, \mathcal{C c}$. at the system of angles $\alpha, \beta, \gamma, \delta, \& c$; taking the two mean centres O_{1} and O_{2} of the two systems of intersections $A_{1}, B_{1}, C_{1}, D_{1}, \&$. and $A_{s}, B_{3}, C_{3}, D_{n}$, dic. for the system of multiples $a \div \sin ^{2} \alpha$,
$b \div \sin ^{2} \beta, c \div \sin ^{2} \gamma, d \div \sin ^{2} \delta, \mathcal{d} \cdot$. ; drawing then the indefinite line $O_{1} O_{8}$ intersecting the entire system of lines A, B, C, D, de. at the system of angles $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}, \mathcal{S}$.; and taking finally the mean centre O^{\prime} of the system of intersections $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, , c. for the system of multiples $a \div \sin ^{2} \alpha^{\prime}, b \div \sin ^{2} \beta^{\prime}, c \div \sin ^{2} \gamma^{\prime}$, $d \div \sin ^{2} \delta^{\prime}, \mathcal{S c}$. ; the point O^{\prime} thus determined is that required.

For, by (80, Cor. 1°), O^{\prime} is the point on the line $O_{1} O_{8}$ for which the sum $\Sigma\left(a \cdot P A^{3}\right)$ is the minimum for points confined to that line; and supposing, if possible, a point I not on that line were that for which it were absolutely the minimum, the line L, passing through I parallel to L_{1} and L_{2} would intersect the lino $O_{1} O_{2}$ at a point O, which, by the preceding, would be the mean centre for the system of multiples $a \div \sin ^{2} \alpha, b \div \sin ^{2} A, c \div \sin ^{2} \gamma$, $d \div \sin ^{2} \delta$, dic. of the system of points in which it would intersect the system of lines A, B, C, D, \mathcal{S}. ., and for which therefore, by (80, Cor. 1°.), the sum $\Sigma\left(a . P A^{x}\right)$ would be the minimum for points confined to the line L, and consequently less than for the point I, which therefore could not, as supposed, be off the line $\mathrm{O}_{1} \mathrm{O}_{8}$; and therefore \&e.

It is easy to see from the more general property (98, Cor. 1°.), that the point P, however determined, for which the sum $\pm\left(a . P A^{2}\right)$ is the minimum, is the mean centro of the feet of the several perpendiculars $P A, P B, P C, P D, \& \in$, for the system of multiples a, b, c, d, de.

12S. We shall conclude the present Chapter with a direct demonstration of the general property of Art. 120, not based like that there given upon auy property of polygons, but resulting immediately from the nature of independent lines; the following general theorem, analogous to that established in Art. 85 for any system of points, may be regarded as the basis of the direct demonstration-

If A, B, C, D dec. be any system of lines, disposed in any manner, but none infinitcly distunt, and $a, b, c, d, d \cdot c$. any system of corresponding multiples, positive or negative, but none infiniuly great, then for every thrce points P, Q, M in a line, supposed all at a finite distance,

$$
Q R . 义(a \cdot P A)+R P \cdot \pm(a \cdot Q A)+P Q . \Sigma(a \cdot R A)=0
$$

the distances under the symbols of summation being measured in
directions inclined at any constant angles $\alpha, \beta, \gamma, \delta, \delta \in c$ to the several lines $A, B, C, D, \& \subset$.

For, the three points P, Q, R being by hypothesis in a line, therefore, for the several lines $A, B, C, D, \&<c$., by $\left(82\right.$, Cor. $\left.4^{\circ}\right)$,

$$
\begin{aligned}
& Q R \cdot P A+R P \cdot Q A+P Q \cdot R A=0 \\
& Q R \cdot P B+R P \cdot Q B+P Q \cdot R B=0 \\
& Q R \cdot P C+R P \cdot Q C+P Q \cdot R C=0 \\
& Q R \cdot P D+R P \cdot Q D+P Q \cdot R D=0, \& \mathrm{c} \cdot
\end{aligned}
$$

from which, multiplying horizontally by $a, b, c, d, \& c$. and then adding vertically, the above relation at once results, and from it the following consequences may be immediately inferred-
1°. When two of the three sums $\Sigma(a . Q A)$ and $\Sigma(a . R A)=0$, the third $\Sigma(a . P A)$ also $=0$; this is evident, as the three coefficients $Q R, R P, P Q$ are by hypothesis all finite. Hence the Tocus of a variable point P for which the sum $\Sigma(a . P A)=0$ is a line, the central axis I of the system for the particulars of the case.
2°. When two of the three sums $\Sigma(a . Q A)$ and $\Sigma(a . R A)$ have equal values, the third $\Sigma(a . P A)$ has the same value; this is evident, as the sum of the three coefficients $Q R, R P, P Q$ is always $=0$ (Art. 78). Hence the locus of a variable point P for which the sum $\Sigma(a . P A)$ has amy constant value, positive or negative, is a line L parallel to the central line I; for if it met the latter at any finite distance, the sum $\Sigma(a . P A)$ for the point of intersection would have at once the two different values corresponding to the two lines.
3°. When one of the thrce sums $\Sigma(a . R A)=0$, then for the other two $\Sigma(a . P A): \Sigma(a . Q A)=P R: Q R=P I: Q I$; this is crident, as R, by 1°., is then on the central axis I. Hence for every point P on any line L parallel to I, the constant sum $\Sigma(a . P A)$ is proportional in magnitude and sign to the distance $L I$; these are the principal results for the general case as otherwise established in Art. 120.
4°. In the particular case when the central axis I of the system is at infinity, the sum $\Sigma(a . P A)$ has the same value for every position of P^{\prime} 'at a finite distance; for since, by 3°., for every two points P and Q at a finite distance $\Sigma(a . P A): \Sigma(a . Q A)=P I: Q I$, whatever be the position of I, therefore for every two points
P and Q at a finite distance $\Sigma(a . P A): \Sigma(a . Q A)=1$ when \rfloor is at infinity, and therefore \&c.
5°. When the sum $\mathbf{y}(a . P A)$ has the same value, finite or evanescent, for three points P, Q, R not in the same line, it has the same value for every point O at a finite distance; for having the same value for the three points P, Q, R, it has it, by 2°., for the three points X, Y, Z, in which the three lines $O P, O Q, O R$ intersect with the three $Q R, R P, P Q$, and having it for each pair of points P and X, Q and Y, R and Z, it has it, by the same, for the point O which is in the same line with each pair; and therefore \&ic.
6. The particulars of the systen being all given, the position of the central axis I may be determined rapidly as follores: assuming arbitrarily any three points P, Q, Π not in the same line, and dividing the three distances $Q R, R P, P Q$ at X, Y, Z respectively, so that in magnitude and sign

$$
\begin{aligned}
& Q X: R X= \pm(a . Q A): \mathbb{\Sigma}(a . R A) \\
& R Y: P Y=\mathbb{Z}(a . R A): \pm(a . P A) \\
& P Z: Q Z=\Sigma(a . P A): \pm(a . Q A)
\end{aligned}
$$

the three points X, Y, Z thus determined lic, by 3°., on the central axis I of the system, and therefore $\mathbb{N} \mathrm{c}$. ; when the three sums $\mathcal{\Sigma}(a . P A), \mathcal{Z}(a . Q A), \mathcal{\Sigma}(a . R A)$ have the same valuc, the three points X, Y, Z being then at infinity or indeterminate, according as the common value is finite or evanescent, so also is the central axis.

CHAPTER VIII.

ON COLLINEAR AND CONCURRENT SYSTEMS OF POINTS AND LINES.

129. Systems of points ranged on lines, and of lines passing through points, enter largely into the investigations of modern geometry, and are distinguished by appropriate names, as follows:

A system of points ranged along a line is termed a collinear system, the figure they constitute a row of points, and the line on which they lie the base or axis of the row. A system of lines passing through a point is termed a concurrent system, the figure they constitute a pencil of lines, or rays as they are sometimes called, and the point through which they pass the vertex or centre or focus of the pencil. The terms "Ray," "Pencil," and "Focus," have been introduced into geometry from the science of Optics.

The axis of a row of points, or the centre of a pencil of lines, might be at infinity; in the former case the points of the row would, of course, be all at infinity, and in the latter case the lines of the pencil would (16) be all parallel; but in no other respects is there any difference between these particular and the general cases, when the axis of the row is any line whatever, and the centre of the pencil any point whatever.

Two points of a row or rays of a pencil determine, of course, the axis or vertex of the row or pencil to which they belong.
130. 'Two rows of any common number of points on different axes, or pencils of any common number of rays through different centres, $A, B, C, D, \mathbb{S c}$., and $A^{\prime}, I^{\prime}, C^{\prime}, D^{\prime}, \mathbb{C}$. , whose constituents correspoud in pairs A to A^{\prime}, B to B^{\prime}, C te C^{\prime}, D to l^{\prime}, \&ec., are said to be in perspective, in the former case when the several lines of connexion $A A^{\prime}, B B^{\prime} C C^{\prime} D D^{\prime}$, \&c., of pairs of
corresponding points are concurrent, and in the latter case when the several points of intersection $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}, \mathcal{N}^{c}$., of pairs of corresponding lines are collinear. In the former case the centre of the peneil determined by the several concurrent comectors is termed the centre of perspective of the rows, and in the latter case the axis of the row determined by the several collinear intersections is termed the axis of perspective of the pencils. Every two rows of points determined on different axes by the same pencil of rays, and every two pencils of rays determined at different centres by the same row of points, are evidently in perspective; the centre of the deternining pencil being the centre of perspective of the rows in the former case, and the axis of the determining row being the axis of perspective of the pencils in the latter case.

The centre of perspective of two rows in perspective, or the axis of perspective of two pencils in persipective, might be at infinity; in the former case the several comectors $A A^{\prime}, B B^{\prime}$, $C C^{\prime \prime}, D D^{\prime}, \& \mathrm{c}$. being all parallel, the two rows of proints would be similar (32), and in the latter ense the several pairs of corresponding rays A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and D^{\prime}, (Ec., being two and two parallel, the two pencils would be similar, and at once similarly and oppositely placed (33). In these particular cases of perspective the two rows or pencils $A B C D$ \&c., and $A^{\prime} B^{\prime} C^{\prime} D^{\prime} \& c$, are said also to be projections of each other; though both terms "perspective" and "projection" aro often applied indifferently as well to the general as to the particular case, and, as we shall see in the sequel, to other figures as well as to rows and pencils.
131. Every two rows or pencils of but tuo points or rays each having different axes or vertices being, of course, necessarily in perspective, however circumstanced as to position, absolute or relative, or whichever way regarded as corresponding two and two. Hence for two segments or angles $A B$ and $A^{\prime} B^{\prime}$ having different axes or vertices, the two points of intersection, or lines of connection, of $A B$ with $A^{\prime} B^{\prime}$, and, of $A B B^{\prime}$ with $A^{\prime} B$, are termed respectively the two eentres of perspectice of the segments, or, the two axes of perspective of the angles-names, at onee convenient and expressive, by which to designate a pair
of points or lines of very frequent occurrence in geometrical research.

Reserving for future chapters the remarkable developments of modern Geometry as regards collinear and concurrent systems in general, we shall devote the present chapter to the consideration of some of their most important properties as regards the sides and angles of rectilinear figures in general, and of triangles in particular.
132. When three lines $L X, M Y, N Z$ intersecting at right angles the three sides $B C, C A, A B$ of any triangle $A B C$ are concurrent, they divide them at the three parts of meeting X, Y, Z so as to fulfil the relation

$$
\left(B X^{y}-C X^{y}\right)+\left(C Y^{2}-A Y^{y}\right)+\left(A Z^{z}-B Z^{2}\right)=0
$$

and, conversely, when they divide them at the three points of meeting so as to fulfil the above relation, they are concurrent.

To prove the first or direct part; if O be the point of concurrence of the three lines $L X, M Y, N Z$, then joining $O A$, $O B, O C$, since (Euclid 1, 47, Cor.) $\left(B X^{2}-C X^{2}\right)=\left(B O^{2}-C O^{2}\right)$, $\left(C Y^{2}-A Y^{2}\right)=\left(C O^{2}-A O^{2}\right),\left(A Z^{2}-B Z^{2}\right)=\left(A O^{2}-B O^{2}\right)$, therefore

$$
\begin{aligned}
\left(B X^{2}-C X^{2}\right) & +\left(C Y^{2}-A Y^{2}\right)+\left(A Z^{2}-B Z^{2}\right) \\
& =\left(B O^{2}-C O^{2}\right)+\left(C O^{2}-A O^{2}\right)+\left(A O^{2}-B O^{2}\right)=0
\end{aligned}
$$

as above stated. And to prove the second or converse part; if O be the point of intersection of any two of them $L X$ and $M Y$, and Z the point at which the parallel through O to the third $N Z$ intersects the line $A B$ to which the third is perpendicular; then since by the first part

$$
\left(B X^{2}-C X^{2}\right)+\left(C Y^{2}-A Y^{z}\right)+\left(A Z^{\prime 2}-B Z^{12}\right)=0
$$

and since by hypothesis

$$
\left(B X^{2}-C X^{2}\right)+\left(C Y^{2}-A Y^{2}\right)+\left(A Z^{2}-B Z^{2}\right)=0
$$

therefore $\left(A Z^{\prime z}-B Z^{n}\right)=\left(A Z^{x}-B Z^{2}\right)$, and therefore $Z^{\prime}=Z$, which, of course, could not be the case unless, as above stated, NZ passed through 0 .

A relation of exactly the same form, and proved in precisely the same manner as the above, connects the several pairs of segments into which the several sides of any polygon are divided by every concurrent system of perpendiculars to them. But the converso property which establishes the relation as a criterion of concurrence of the several perpendiculars is true only for the triangle. The reasoning by which it was inferred as above for that case from the direct property evidently proving only for the general case of any order (n), that when $(n-1)$ of them pass through a common point the $n^{\text {" }}$ passes through the same point.

The relation itself may evidently be written also in the following form, viz.-

$$
B X^{\gamma}+C Y^{\gamma}+A Z^{\gamma}=C \Gamma^{\gamma}+A Y^{\gamma}+B Z^{\gamma}
$$

which in cases of numerical calculation is sometimes more convenient than the original.
133. The following are a few examples of the application of the preceding relation as a criterion of the concurrence of three lines perpendiculars at three points X, \sum, Z to the three sides of a triangle $A B C$.

Fx. 1°. The three perpendiculars at the middle points of the sides of a triangle are concurrent.

For, since here by hypothesis, $B X=C X, C Y=A Y, A Z=B Z$, therefore the criterion relation $\left(B X^{2}-C X^{4}\right)+\left(C Y^{7}-A Y^{2}\right)+\left(A Z^{8}-B Z^{\prime}\right)=0$ is satisfied identically in the simplest manner of which it is susceptible, and therefore \&c.

Ex. 2'. The thiree perpendiculars through the vertices to the opposite sides of a triangle are concurrent.

For, since here, Euc. 8. 47,

$$
\begin{aligned}
\left(B X^{2}-C X^{v}\right)= & \left(B A^{2}-C A^{2}\right),\left(C Y^{7}-A X^{2}\right)=\left(C B^{2}-A B^{2}\right), \\
& \left(A Z^{2}-B Z^{2}\right)=\left(A C^{C}-B C^{7}\right) ;
\end{aligned}
$$

therefore the criterion relation again is satisfied, and therefore \&.c.
Ex. 3°. The three perpendiculars to the sides of a triangle at the internal points of contact of the three exscribed circles are concurrent.

For, if a, b, c be the three sides and s the semi-perineter of the triangle, then since, Euc. Iv. Appendix,

$$
B Z=C Y=(z-a), C X=A Z=(s-b), A Y=B X=(s-c) ;
$$

therefore, as in Ex. 1°., the criterion relation is identically satisfied, and therefore \&c.

Ex. 4°. Every two perpendiculars to sides of a triangle at points of contact of exscribed circles external to the same vertex are concurrent with the perpendicular to the opposite side at the point of contact of the inscribed circle.

For, if A be the vertex to which the two contacts are external; then since, Euc. IV., Appendix,

$$
A Y=B Z=(s-b), A Z=C X=(s-c), B Z=C Y=s ;
$$

therefore, here again, as in the preceding example, the criterion relation is identically satisfied, and therefore \&c.

Ex. 5°. When three circles touch two and two, the three tangents at the three points of contact are concurrent.

For, if A, B, C be the centres of the three circles, a, b, c the three radii, and X, Y, Z the three opposite points of contact, then since

$$
A Y=A Z=a, B Z=B X=b, \quad C X=C Y=c
$$

therefore, as in each of the preceding examples, the criterion relation is again identically satisfied, and therefore \&c.

Ex. 6°. When three perpendiculars to the sides of a triangle are concurrent, the other three equidistant from the middle points of the sides are also concurrent.

For, if $L X, M Y, N^{\prime} Z$ and $L^{\prime} X^{\prime}, M^{\prime} Y^{\prime}, N^{\prime} Z^{\prime}$ be the two sets of perpendiculars, then since by hypothesis $B X=C X^{\prime \prime}$ and $C X=B X^{\prime}, C Y=A Y^{\prime}$ and $A Y=C Y^{\prime}, A Z=B Z^{\prime}$ and $B Z=A Z^{\prime}$; therefore $\left(B X^{2}-C X^{3}\right)+\left(C Y^{2}-A Y^{2}\right)+\left(A Z^{3}-B Z^{2}\right)$

$$
=\left(C X^{n}-B X^{3}\right)+\left(A Y^{n}-C Y^{n}\right)+\left(B Z^{\prime 3}-A Z^{\prime 3}\right)
$$

and therefore when either equivalent $=0$, so is the other; that is, when either set of perpendiculars is coneurrent, so is the other.

Ex. 7°. When the three perpendiculars from the vertices of one triangle upon the sides of another are concurrent, the three corresponding perpendiculars from the vertices of the latter upon the sides of the former are also concurrent.

Let $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ be the two triangles. If $A^{\prime} X, B^{\prime} Y, C^{\prime} Z$ pass through a rommon point O, then $A X^{\prime}, B Y^{\prime}, C Z^{\prime}$ pass also through a common point O, and conversely. For, joining A with B^{\prime} and C^{\prime}, or A^{\prime} with B and $C ; B$ with C^{\prime} and A^{\prime}, or B^{\prime} with C and $A ; C$ with A^{\prime} and B^{\prime}, or C^{\prime} with A and B; that is, each vertex of either triangle with the two of the other it does
 not correspond to, then

$$
\begin{aligned}
& \left(B X^{2}-C X^{\eta}\right)+\left(C Y^{2}-A Y^{2}\right)+\left(A Z^{2}-B Z^{2}\right) \\
= & \left(B A^{n}-C A^{7}\right)+\left(C B^{2}-A B^{2}\right)+\left(A C^{\prime 2}-B C^{\prime 2}\right) \\
= & \left(C^{\prime \prime} A^{2}-I Z A^{\prime}\right)+\left(A^{\prime} B^{2}-C^{\prime} B^{2}\right)+\left(B^{\prime} C^{8}-A^{\prime} C^{2}\right) \\
= & \left(C^{\prime} X^{\prime n}-B X^{\prime \prime}\right)+\left(A^{\prime} X^{\prime n}-C^{\prime} Y^{n}\right)+\left(B^{\prime} Z^{\prime 2}-A^{\prime} Z^{\prime 2}\right)
\end{aligned}
$$

but of these four equiralents the first $=0$ is the condition for $A^{\prime} X, B I, C^{\prime} Z$ to pass through a common point O, and the last $=0$ is the condition for $A X^{\prime}, B Y^{\prime}, C Z^{\prime}$ to pass through a common point σ^{\prime}, and therefore \&c.
134. When three points X, Y, Z lying on the three sides $B C$, $C A, A B$ of any triungle $A B C$ are collinear (figs. α, β, γ).
a. Thry divide the three sides so as to fulfil the relation

$$
\frac{B I}{C X} \cdot \frac{C Y}{A Y} \cdot \frac{A Z}{B Z}=+1
$$

b. They connet with the opposito evertices so as to fulfil the relation

$$
\frac{\sin B A X}{\sin C A \lambda^{2}} \cdot \frac{\sin C B Y}{\sin A B Y} \cdot \frac{\sin A C \%}{\sin / B C \%}=+1
$$

and conversly, then they either divide the three sides so as to fulfil the former relation, or connect with the oppasite vertices so as to fulfil the latter relution, they are collinear.

When three lines $A X, B Y, C Z$ passing through the three vertices A, B, C of any triong'e $A B C$ are concurrent (figs. $\left.a^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$.
a. Thay clivide the three angles so as to fulfil the relution

$$
\frac{\sin B A X}{\sin C A X} \cdot \frac{\sin C B Y}{\sin A B Y} \cdot \frac{\sin A C Z}{\sin B C Z}=-1
$$

b. They intorsect the opposite sitles so as to fulfil the relation

$$
\frac{B X}{C X} \cdot \frac{C Y}{A Y} \cdot \frac{A Z}{B Z}=-1
$$

and conversely, when they either divile the three angles so as to fulfil the former relation, or intersect the opposite sides so as to fulfil the lutter relation, they are concurrent.

To prove the first or direct part of a.-From the three vertices of the triangle $A B C$ drawing three perpendiculars, or parallels in any arbitrary direction, $A P, B Q, C R$ to meet the line containing, by hypothesis, the three points X, Y, Z, then since (Euc. vı. 4) $B \mathrm{BI}: C X=B Q: C R, C Y: A Y=C R: A P$, $A Z: B Z=A P: B Q$; therefore, as above stated, the compound
of the three antecedents $=+1$; the reason of the positive sign appearing also from the obvious consideration that three collinear points on the sides of a triangle necessarily divide an even number of them internally (75). And to prove the second or converse part of the same.-If Z^{\prime} be the point at which the line containing any two of the points X and Y meets the side $A B$ of the triangle containing the third Z; since then, by the first part, X, Y, and Z^{\prime} being collinear,

$$
(B X: C X) \cdot(C Y: A Y) \cdot\left(A Z^{\prime}: B Z^{\prime}\right)=+1
$$

and since also, by hypothesis,

$$
(B X: C X) \cdot(C Y: A Y) \cdot(A Z: B Z)=+1
$$

therefore $A Z^{\prime}: B Z^{\prime}=A Z: B Z$ in magnitude and sign, and therefore (75) $Z^{\prime}=Z$, so that, as above stated, Z is collinear with X and Y.

To prove the first or direct part of a^{\prime}.-From the point O through which, by hypothesis, the three lines $A X, B Y, C Z$ concur, letting fall three perpendiculars, or isoclinals at any arbitrary inclination, $O P, O Q, O R$ upon the three sides $B C$, $C A, A B$ of the triangle $A B C$; then since (61)
$\sin B A X: \sin C A X=-O R: O Q, \sin C B Y: \sin A B Y=-O P: O R$,

$$
\sin A C Z: \sin B C Z=-O Q: O P
$$

therefore, as above stated, the compound of the three antecedents $=-1$; the reason of the negative sign appearing also from the obvious consideration that three concurrent lines through the vertices of a triangle necessarily divide an odd number of the angles internally (75). And to prove the second or converse part of the same.-If $C Z^{\prime}$ be the line by which the point O, common to any two of the lines $A X$ and $B Y$, connects with the vertex C of the triangle through which the third $C Z$ passes; since then, by the first part, $A X, B Y$, and $C Z^{\prime}$ being concurrent,
$(\sin B A X: \sin C A X) \cdot(\sin C B Y: \sin A B Y) \cdot\left(\sin A C Z^{\prime}: \sin B C Z\right)=-1$,
and since also, by hypothesis,
$(\sin B A X: \sin C A X) \cdot(\sin C B Y: \sin A B Y) \cdot(\sin A C Z: \sin B C Z)=-1$, therefore $\sin A C Z^{\prime}: \sin B C Z^{\prime}=\sin A C Z: \sin B C Z$ in magnitude and sign, and therefore (75) $C Z^{\prime}=C Z$, so that, as above stated, $C Z$ is concurrent with $A X$ and $B Y$.

Relations of exactly tho same form, and proved in precisely the same manner as the above (a and a), connect the several pairs of segments into which the several sides of any polygon are divided by every collinear system of points lying upon them, and into which the several angles of any polygon are divided by every concurrent system of lines passing through them; the only modification being that while, in the former case, the sign of the compound is, as abore, always positive, in the latter case it is negative only when, as above, the order of the polygon is odd, but positive when it is even. The converse properties howerer, which establish the relations a and a^{\prime} as criteria of collineurity and concurrence of the several points and lines are true only for the triungle; the reasoning by which they have been inferred, as above, for that case from the direct properties proving only for the general case of any order (n), that when $(n-1)$ of the points in the former case are collinear the $n^{2 m}$ is collinear with them, and that when $(n-1)$ of the lines in the latter ease are concurrent the n^{18} is concurrent with them.
'To prove b and 6 '.-Since, by (65), whatever be the positions of X, Y, Z in the former case, or the directions of $A X$, $B Y, C Z$ in the latter case,
$\frac{B X}{C X}=\frac{B A}{C A} \cdot \frac{\sin B A X}{\sin C A X}, \frac{C Y}{A Y}=\frac{C B}{A B} \cdot \frac{\sin C B Y}{\sin A B Y}, \frac{A Z}{B Z}=\frac{A C}{B C} \cdot \frac{\sin A C Z}{\sin B C Z} ;$
therefore, the two compounds

$$
\frac{B X}{C X} \cdot \frac{C Y}{A Y} \cdot \frac{A Z}{B Z} \text { and } \frac{\sin B A X}{\sin C A X} \cdot \frac{\sin C B Y}{\sin A B Y} \cdot \frac{\sin A C Z}{\sin B C Z}
$$

are always equal in magnitude and similar in sign; whenever, therefore, either $= \pm 1$, so is also the other, and therefore \&e.

Relations of exactly the same form with these last (b and b^{\prime}), and very easily proved directly, as they ton may be, connect the several pairs of segments into which, for any polygon of an odd order (105), the several angles are divided by their con-
nectors with collinear systems of points on the opposite sides, and the several sides at their intersections with concurrent systems of lines through the opposite vertices; but, as in the cases of a and a^{\prime}, the converse properties which establish the relations as criteria of collinearity and concurrence of the several points and lines, are, for the same reason as in their cases, true only for the triangle.

The criteria (a and b^{\prime}) for three points X, Y, Z on the sides of a triangle to be collinear and to connect with the opposite vertices by three coneurrent lines $A X, B Y, C Z$, and the criteria (b and a^{\prime}) for three lines $A X, B Y, C Z$ through the vertices of a triangle to be coucurrent and to intersect with the opposite sides at three collinear points X, Y, Z, being in both cases identical, if signs be disregarded or unknown; should any ambiguity arise in consequence, as to which of the two relations in either ease is indicated by the fulfilment of the criterion in any particular instance, in which the signs of the compound ratios are not explicitly given or known; the obvious consideration, on which the difference of sign in each case depends, that an odd number of the points or lines must be external to their respective sides or angles for collinearity, and internal to them for concurrence, is sufficient always to remove it.
135. The following is an obvious corollary from, or rather indeed a different manner of, stating the two general properties a^{\prime} and b of the preceding article, viz.,

When three points P, Q, R, however situated, connect with the three vertices A, B, C of a triangle $A B C$ by three lines $A P, B Q$, $C R$ which are either concurrent or collinearly intersectant with the opposite sides, the three pairs of perpendiculars $P P^{\prime}$ and $P P^{\prime \prime}$, $Q Q^{\prime}$ and $Q Q^{\prime \prime}, R R^{\prime}$ and $R R^{\prime \prime}$ from them upon the three pairs of sides containing the respective vertices are connected by the relation

$$
\frac{P P^{\prime}}{P P^{\prime \prime}} \cdot \frac{Q Q^{\prime}}{Q Q^{\prime \prime}} \cdot \frac{R R^{\prime}}{R R^{\prime \prime}}= \pm 1
$$

and conversely, when the three pairs of perpendiculars from them upon the sides of the three angles of the triangle are connected by the above relation, the three lines connecting them with the
corresponding vertices are cilher concurrent or collinearly intersectant with the opposite sides.

For, whatever be the positions of P, Q, R, since (61)

$$
\begin{aligned}
& P P^{\prime}: P P^{\prime \prime}=-\sin P A B: \sin P A C, \\
& Q Q^{\prime}: Q Q^{\prime \prime}=-\sin Q B C: \sin Q B A, \\
& R R^{\prime}: R R^{\prime \prime}=-\sin R C A: \sin R C B,
\end{aligned}
$$

therefore the two compounds

$$
\frac{P P}{P P^{\prime \prime}} \cdot \frac{Q Q^{\prime}}{Q Q^{\prime}} \cdot \frac{R R^{\prime}}{R R^{\prime \prime}} \text { and } \frac{\sin B A P}{\sin C A P} \cdot \frac{\sin C B Q}{\sin A B Q} \cdot \frac{\sin A C R}{\sin B C R}
$$

are always equal in magnitude and opposite in sign, and therefore when either $= \pm 1$ the other then $=\mp 1$, and therefore $\mathbb{S} \cdot$.
136. Two very important conclusions, one respecting points at infinity, the other respecting parallel lines, result immediately from the general relations a or b, and a^{\prime} or b^{\prime} of Art. 131, regarded as criteria of the collinearity of three points X, Y, Z on the sides, and of the concurrence of these lines $A X, B I, C \%$ through the vertices, of a triangle $A B C$ -
1°. Every three points X, Y, Z at infinity evidently divide the three sides $B C, C A, A B$ of every triangle $A B C$ whose directions pass through them, so as to fulfil identically the relation

$$
(B X: C X) \cdot(C Y: A Y) \cdot(A Z: B Z)=+1
$$

and as evidently connect with the opposite vertices, so as to fulfil identically the relation
$\left(\sin B A A^{\prime}: \sin C A K\right) \cdot(\sin C B Y: \sin A B Y) \cdot(\sin A C Z: \sin B C Z)=+1$, therefore, by relation a or b, they are collinear, and therefore-

Every three, and therefore all, points at infinity are collinear.
2°. Every three parallel lines $A X, B Y, C Z$ evidently divide the three angles $B A C, C B A, A C B$ of every triangle $A B C$ whose vertices lic on them, so as to fulfil identically tho relation $(\sin B A X: \sin C A X) \cdot(\sin C B I: \sin A B Y) \cdot(\sin A C Z: \sin B C Z)=-1$, and as evidently intersect with the opposite sides, so as to fulfil the relation

$$
(B X: C X) \cdot(C Y: A Y) \cdot(A Z: B Z)=-1,
$$

therefore, by relation a^{\prime} or b^{\prime}, they are concurrent, and thereforeEvery three, and therefore all, parallel lines are concurrent.

Paradoxical as these conclusions always appear when first stated, all doubt of their legitimacy has been long set at rest by the number and variety of the considerations tending to verify and confirm them.
137. In the following examples of the application of the preceding relations, as criteria of the collinearity of three points X, Y, Z on three lines, and of the concurrence of three lines $A X$, $B Y, C Z$ through three points, ono only of the two relations equally establishing the circumstance being proved in each case, the verification à priori of the other may be taken as an exercise by the reader.

Ex. 1°. Every three points of bisection of different sides of a triangle are collinear, or connect concurrently with the opposite vertices, according as an odd number of them is external or internal.

For, since by hypothesis, $B X: C X= \pm 1, C Y: A Y= \pm 1, A Z: B Z= \pm 1$, according as each section is external or internal, therefore the criterion relation (a or b^{\prime}) for collinearity or concurrence, viz.

$$
(B X: C X) \cdot(C Y: A Y) \cdot(A Z: B Z)= \pm 1
$$

according as an odd number of them is external or internal, is satisfied in the simplest manner of which it is susceptible, and therefore \&c.

Ex. 20. Every three lines of bisection of different angles of a triangle are concurrent, or intersect collinearly with the opposite sides, according as an odd number of them is internal or external.

For, since by hypothesis,
$\sin B A X: \sin C A X= \pm 1, \sin C B Y: \sin A B Y= \pm 1, \sin A C Z: \sin B C Z= \pm 1$, according as each section is external or internal, therefore the criterion relation (a^{\prime} or b) for concurrence or collinearity, viz.
$(\sin B A X: \sin C A X) \cdot(\sin C B Y: \sin A B Y) \cdot(\sin A C Z: \sin B C Z)=\mp 1$, according as an odd number of them is internal or external, is satisfied in the simplest manner of which it is susceptible, and therefore \&c.

Ex. 3°. In every triangle circumscribed to a circle the three points of contact of the sides connect concurrently with the opposite vertices.

For, if X, Y, Z be the three points of contact, then, since, by pairs of equal tangents from $A B C$ to the circle, $A Y=A Z, B Z=B X, C X=C Y$, therefore, as in Ex. 1°., the criterion relation (b^{\prime}) for the concurrence of $A X, B Y, C Z$ is identically satisfied; it being evident, from the nature of the case, that the three points X, Y, Z must, according to circumstances, be either all internal or one internal and two external to their respective sides, and therefore \&ic.

Ex. 4°. In every triangle inseribed in a circlo the thres langents at the vertices intersect collinearly weith the opposito sides.

For if AX, BY, C\% be the three tangents, then, since, by pairs of equal angles between $B C, C A, A B$ and the circle, $\sin C B Y=\sin B C Z$, $\sin A C Z=\sin C A X, \sin B A X=\sin A B Y$, therefore, as in example 20 , the criterion relation (8) for the collincarity of XYZ is identically satisfied; it being evident from the nature of the case, that the three lines $A X, B Y, C Z$ must, under all circumstances, be external to their respective angles, and therefore \&c.

Ex. δ°. In every triangle the threo perpendiculars through the vertices to the opposite sides are concurrent (See Ex. $2^{\circ}, 133$).

For, if $A X, H Y, C Z$ be the three perpendiculars, then, since, by pairs of similar right-angled triangles about $\boldsymbol{A}, \boldsymbol{B}, C$ as common vertices,

$$
\sin A B Y=\sin A C Z, \quad \sin B C Z=\sin B A X, \quad \sin C A X=\sin C B Y,
$$

therefore the criterion relation (a) for the concurrence of $A X, B Y, C Z$ is identically satisfied; it being evident, from the nature of the case, that, according as the trianglo is acute or obtuse angled, they are either all internal or one internal and two external to their respective angles, and therefore \&c.

Ex. 0°. In every triangle the three porpendiculare through any point to the three lines connecting them with the rertices interseet collinearly with the opposite sides.

For, if O be the point, and $O X, O Y, O Z$ the three perpendieulars through it to $O A, O B, O C$ respectively, then, since, by (65),

$$
\begin{aligned}
& B X: C X=(B O: C O) \cdot(\sin B O X: \sin C O X) \\
& C Y: A Y=(C O: A O) \cdot(\sin C O Y: \sin A O Y), \\
& A Z: B Z=(A O: B O) \cdot(\sin A O Z: \sin B O Z)
\end{aligned}
$$

and since, by pairs of perpendiculars,

$$
\sin C O Y=\sin B O Z, \quad \sin A O Z=\sin C O X, \quad \sin B O X=\sin A O Y,
$$

therefore the criterion relation (a) for the collinearity of $X Y Z$ is satisfied; it being evident, from the nature of the case, that they must be, according to circumstances, either all external or one external and two internal to their respective sides, and therefore \&c.

Ex. 7°. If the three sides of a triangle be reflected with respect to any line (30), the three lines through the certices parallet to the reflexions of the opposite sides are concurrent.

For, if $A X, B Y ; C Z$ bo the three parallels, then, since, by differences of pairs of equal angles (50),

$$
\sin A B Y=\sin A C Z, \quad \sin B C Z=\sin B A X, \quad \sin C A X=\sin C B Y,
$$

therefore the criterion relation (a^{\prime}) for the concurrence of $A X, B Y, C Z$ is identically satisfied ; it being evident, from the nature of the case, that, according as the axis of reflexion is or is not parallel to a bisector of an
angle of the triangle, either two of them coincide with the sides of that angle or two are external and one internal to their respective angles, and therefore \&c.

Ex. 8°. If the three vertices of a triangle be reflected with respect to any line (50), the three lines connecting the reflexions with any point on the line intersect collinearly with the opposite sides.

For, if $A^{\prime}, B^{\prime}, C^{\prime}$ be the three reflexions, O the point on the line, and X, Y, Z the three intersections of $O A^{\prime}, O B^{\prime}, O C^{\prime}$, with $B C^{\prime}, C A, A B$ respectively, then, since, by (65),

$$
\begin{aligned}
& B X: C X=(B O: C O) \cdot(\sin B O X: \sin C O X) \\
& C Y: A Y=(C O: A O) \cdot(\sin C O Y: \sin A O Y) \\
& A Z: B Z=(A O: B O) \cdot(\sin A O Z: \sin B O Z)
\end{aligned}
$$

and since, by differences of pairs of equal angles (50),

$$
\sin C O Y=\sin B O Z, \quad \sin A O Z=\sin C O X, \quad \sin B O X=\sin A O Y
$$

therefore the criterion relation a, for the collinearity of X, Y, Z, is satisfied exactly as in Ex. 6°; it being evident, from the nature of the case, that, here as well as there, they must, according to circumstances, be either all external or one external and two internal to their respective sides, and therefore \&c.

Ex. 9°. When three of the six intersections of a circle with the three sides of a triangle connect concurrently with the opposite vertices, the remaining three also connect concurrently with the opposite vertices,

For, if X, Y, Z and $X^{\prime}, Y^{\prime}, Z^{\prime}$ be the two sets of intersections, then, since, by Euc. III. 35, 36,

$$
A Y \cdot A Y^{\prime}=A Z \cdot A Z^{\prime}, B Z \cdot B Z^{\prime}=B X \cdot B X^{\prime}, C X \cdot C X^{\prime}=C Y \cdot C Y^{\prime}
$$

therefore
$(A Y: A Z) \cdot(B Z: B X) \cdot(C X: C Y)=\left(A Z^{\prime}: A Y^{\prime}\right) \cdot\left(B X^{\prime}: B Z^{\prime}\right) \cdot\left(C Y^{\prime}: C \Lambda^{\prime}\right)$, and therefore when either equivalent $=-1$ so is the other; that is, when either set of connectors $A X, B Y, C Z$, or $A X^{\prime}, B Y^{\prime}, C Z^{\prime}$ is concurrent so is the other. As no three points on a circle could be collinear, neither equivalent could $=+1$ in this case.

Ex. 10°. When three of the six tangents to a circle from the three vertices of a triangle intersect collineurly with the opposite sides, the remaining three also intersect collinearly with the opposite sides.

For, if $A X, B Y, C Z$ and $A X^{\prime}, B Y^{\prime}, C^{\prime} Z^{\prime}$ be the two sets of tangents, and a, b, c the lengths of the three chords intercepted by the circle on the three sides of the triangle, since then, by (66, Cor. 2°),

$$
\begin{aligned}
& \sin B A X^{\prime} \cdot \sin B A X^{\prime}: \sin C A X \cdot \sin C A X^{\prime}=c^{2}: l^{2} \\
& \sin C B I^{\prime} \cdot \sin C B Y^{\prime}: \sin A B Y \cdot \sin A B Y^{\prime \prime}=a^{2}: c^{2}, \\
& \sin A C Z \cdot \sin A C Z^{\prime}: \sin B C Z \cdot \sin B C Z^{\prime}=b^{3}: a^{\prime},
\end{aligned}
$$

therefore

$\left(\sin B . A X^{\prime}: \sin C A K^{\prime}\right) \cdot\left(\sin C B 5^{\circ}: \sin A B 1^{\prime}\right) \cdot(\sin A C Z: \sin B C Z)$
$=\left(\sin C A X^{\circ}: \sin B A X^{\circ}\right) \cdot\left(\sin -1 B I^{\circ}: \sin C B 1^{\circ}\right) \cdot\left(\sin B C \%^{\circ}: \sin B C Z^{\circ}\right)$, and thereforo when either equivalent $=+1$ so is the other; that is, when either set of intersections $\boldsymbol{X}^{\prime \prime}, \bar{\Sigma}^{\prime}, \boldsymbol{Z}$ or $\bar{X}^{\prime}, \bar{J}^{\circ}, Z^{\prime}$ is collimear so is the other. As no three tangents to a circle could be concursent, neither equivalent could $=-1$ in this case.

Ex. 11°. When three points on the sides of a triangle are cither collinear or concurrently comnectant with the apposite certices, the other three equally distant from the bisections of the sides are also sither callinear or concurrently connectant with tho opposife rertices.

For, if $X, \mathcal{J}^{\prime}, Z$ and $X^{\prime \prime}, J^{\circ}, Z^{\prime}$ bo the two sets of points, then, since, by hypothesis, $B X=C X^{\circ}$ and $C X=B X^{\circ}, C Y^{\circ}=A I^{\circ}$ and $A Y=C Y^{\circ}$, $A \%=B \%^{\prime}$ and $B \%=A Z^{\prime}$, therefore
$(B X: C X) \cdot\left(C Y^{\circ}: A Y^{\prime}\right) \cdot(A \%: B K)=\left(C X^{-1}: B X^{\prime}\right)\left(A V^{\circ \prime}: C I^{\circ}\right) \cdot\left(B Z^{\prime}: A \%\right)$ and therefore when either equivalent $- \pm 1$ so is also the other; that is, when either set of points $X^{\prime}, \mathcal{Y}, \%$ or $\mathbb{X}^{\prime}, J^{\prime \prime}, \%^{\prime}$ is collinear, or, when
 also the other, and therefore \&.C.

Ex. 12°. When three lines through the certices of a triangle are either concurrent or collinearly intersedant with the opposite sides, the other three equally inclined to tho bisectors of the angles are also cither comewrrent or collinearly indersectant wild the opposito sides.

For, if $\mathcal{A}, B \sum_{i}^{\circ} C Z$ and $A X^{\circ}, B Y Y^{\prime}, C \%^{\prime}$ be the two sets of lines, then since by hypothesis $B A X=C A X^{\prime}$ and $C A X=B . A X^{\circ}, C B I^{\circ}=A B Y^{\prime}$ and $A B I^{\prime}=C D 1^{\circ}, A C Z-B C \%^{\prime}$ and $B C \%=A C \%^{\circ}$, therefore
$\left(\sin B A X^{\circ}: \sin C A X\right) \cdot\left(\sin C B F^{\circ}: \sin A B F^{\circ}\right) \cdot(\sin A C \%: \sin B C \%)$
$=\left(\sin C A X^{\prime \prime}: \sin B A X^{\prime}\right) \cdot\left(\sin A B \Sigma^{\prime \prime}: \sin C Z Y^{\prime \prime}\right) \cdot\left(\sin B C \%^{\prime}: \sin A C Z^{\prime}\right)$, and therefore when either equivalent $=\mp 1$ so is also the other, that in when either set of lines $A \mathbb{N}, B Y, C \%$ or $A \mathbb{X}^{\prime}, B 1^{\circ}, C \%^{\prime}$ is concurrent, or wher either set of points X, \underline{I}, Z or $X^{\prime}, Y^{\prime}, Z^{\prime}$ is collinear, so is also the other, and therefore \&.c.

Ex. 13°. When three lines through the vertices of a triangle are concurrent, the sis bisectors of the three angles they determine intersoct with the corresponding sides of the triangle at six points, ecery three of which on different sides are aither collinear or concurrently connectant with the oppasite certices, according as an odd number of them is external or internal.

For, if O be the poist of concurrence of the lines, and X, Y, Z the intersections with the sides of the triangle of any three of the sis bisectors of the three angles $B O C, C O B, A O B$, then, since Euc. ri. S,

$$
B X: C X= \pm B O: C O, C Y: A Y= \pm C O: A O, A Z: B Z= \pm A O: B O
$$

according as each bisector is external or internal, therefore

$$
(B X: C X) \cdot(C Y: A Y) \cdot(A Z: B Z)= \pm 1
$$

according as an odd number of them is external or internal, and therefore \&c.
Ex. 14°. When three points on the sides of a triangle are collinear, the six bisections of the three segments they determine connect woith the corresponding vertices of the triangle by six lines, every three of which through different vertices are either concurrent or collinearly intersectant woith the opposite sides, according as an odd number of them is internal or external.

For, if P, Q, R be the three collinear points, and $A X, B Y, C Z$ any three of the six lines through A, B, C bisecting externally and internally the three intercepted segments $Q R, R P, P Q$, since then, by ($65, \operatorname{Cor} 3^{\circ}$.),

$$
\begin{gathered}
\sin B A X: \sin C A X= \pm A Q: A R, \sin C B Y: \sin A B Y= \pm B R: B P, \\
\sin A C Z: \sin B C Z= \pm C P: C Q,
\end{gathered}
$$

according as each bisector divides its angle of the triangle externally or internally, and since, by (a),

$$
(B P: C P) \cdot(C Q: A Q):(A R: B R)=+1
$$

the three points P, Q, R being by hypothesis collinear, therefore $(\sin B A X: \sin C A X) \cdot(\sin C B Y: \sin A B Y) \cdot(\sin A C Z: \sin B C Z)=\mp 1$, according as an odd number of the bisectors is internal or external, and therefore \&c.
N.B. With respect to this last example and all others of the same kind, it is to be observed that, since, of the three segments intercepted on any line by the three angles of any triangle, two are always comprehended in the internal and one always in the external regions of the intercepted angle, (see figs. α, β, γ, Art. 134), therefore an odd number of sections of either kind for the segments corresponds always to an odd number of sections of the other kind for the angles, and conversely.
138. The two last Examples, 13° and 14°, of the preceding Article are particular cases of the two following general pro-pertics-
1°. When three points X, Y, Z on the sides of a triangle $\triangle B C$ are collinear or connect concurrently with the opposite vertices, their connectors $O X, O Y, O Z$ with any arbitrary point O divide the three angles $B O C, C O A, A O B$ subtended at that point by the sides of the triangle, so as to fulfil the relation

$$
\frac{\sin B O X}{\sin C O X} \cdot \frac{\sin C O Y}{\sin A O Y} \cdot \frac{\sin A O Z}{\sin B O Z}= \pm 1
$$

and conversely, when they connect with any point O so as to fulfil the above relation they are collinear or connect concurrently with the opposite vertices.
2°. When three lines $A X, B Y, C Z$ through the vertices of a triangle $A B O$ are concurrent or intersect collinearly with the opposite sides, their intersections X, Y, Z with any arbitrary line L divide the three segments $Q R, R P, P Q$ intercepted on that line by the angles of the triangle, 80 as to fulfil the relation

$$
\frac{Q X}{R X} \cdot \frac{R Y}{P Y} \cdot \frac{P Z}{Q Z}= \pm 1
$$

and conversely, when they intersect with any line $L s 0$ as 10 fulfil the above relation they are concurrent or intersect collinearly with the opposite sides.

For, whatever be the positions of X, Y, Z in 1°, since, by (65), disregarding signs for a moment,

$$
\begin{aligned}
& \sin B O X: \sin C O X=(B X: C X) \cdot(C O: B O) \\
& \sin C O Y: \sin A O Y=(C Y: A Y) \cdot(A O: O O) \\
& \sin A O Z: \sin B O Z=(A Z: B Z) \cdot(B O: A O)
\end{aligned}
$$

and since, evidently, the internal and external sections of $B O$, $C A, A B$ and of $B O C, C O A, A O B$ always correspond, therefore the two compounds,
$(\sin B O X: \sin C O X) \cdot(\sin C O Y: \sin A O Y) \cdot(\sin A O Z: \sin B O Z)$ and

$$
(B X: C X) \cdot(C Y: A Y) \cdot(A Z: B Z)
$$

are always equal in magnitude and similar in sign, and therefor o when either of them $= \pm 1$ so is the other also, which, by relations a and b^{\prime} of the preceding, proves both parts of 1°. And whatever be the positions of $A X, B Y, C Z$ in 2°, since, by the same, again disregarding signs for a moment,

$$
\begin{aligned}
& Q X: R X=(Q A: R A) \cdot(\sin C A X: \sin B A X) \\
& R Y: P Y=(R B: P B) \cdot(\sin A B Y: \sin C B Y) \\
& P Z: Q Z=(P C: Q C) \cdot(\sin B C Z: \sin A C Z)
\end{aligned}
$$

and since, by (a), the three points P, Q, R being collinear,

$$
(Q A: R A) \cdot(R B: P B) \cdot(P C: Q C)=+1
$$

therefore, remembering (see note to the preceding Article) that the odd number of sections of either kind for $Q R, R P, P Q$
corresponds always to the odd number of sections of the other kind for $B A C, C B A, A C B$, and conversely, the two compounds

$$
(Q X: R X) \cdot(R Y: P Y) \cdot(P Z: Q Z)
$$

and
$(\sin C A X: \sin B A X) \cdot(\sin A B Y: \sin C B Y) \cdot(\sin B C Z: \sin A C Z)$, are always equal in magnitude and opposite in sign, and therefore when either of them $= \pm 1$ the other then $=\mp 1$, which, by relations a^{\prime} and b of the preceding, prove both parts of 2°, and therefore \&c.
139. The next example is given separately from the utility

11of the double property in the modern geometry of the triangle.
a. When three lines through the vertices of a triangle are concurrent, their three points of intersection with the opposite sides determine an inscribed triangle whose sides intersect collinearly with those of the original to which they correspond.
b. When three points on the sides of a triangle are collinear, their three lines of connection with the opposite vertices determine an exscribed triangle whose vertices connect concurrently with those of the original to which they correspond.

To prove a.-If $A B C$ be the original triangle, $A^{\prime} B^{\prime} C^{\prime}$ any in- B_{2} scribed triangle, and X, Y, Z the three intersections of their three pairs of corresponding sides $B C$ and $B^{\prime} C^{\prime}, C A$ and $C^{\prime \prime} A^{\prime}, A B$ and $A^{\prime} B^{\prime}$, then, whatever be the positions of $A^{\prime} B^{\prime} C^{\prime}$, since, by (134, a.),
$B X: C X$

$$
=\left(B O^{\prime}: A C^{\prime \prime}\right) \cdot\left(A B^{\prime}: C B^{\prime}\right)
$$

$C Y: A Y$

$$
=\left(C A^{\prime}: B A^{\prime}\right) \cdot\left(B C^{\prime}: A C^{\prime}\right)
$$

$A Z: B Z$

$$
=\left(A B^{\prime}: C B^{\prime}\right) \cdot\left(C A^{\prime}: B A^{\prime}\right)
$$

therefore, in all cases,
$(B X: C X) \cdot(C Y: A Y) \cdot(A Z: B Z)$

$$
=\left(C A^{\prime}: B A^{\prime}\right)^{2} \cdot\left(A B^{\prime}: C B^{\prime}\right)^{2} \cdot\left(B C^{\prime}: A C^{\prime}\right)^{2},
$$

and therefore, as above stated, when $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent X, Y, Z are collinear, and conversely, both equivalents being then $=+1$.
'To prove b. -If $A B C$ be the original triangle, $A_{1} B_{1} C_{1}$ any exscribed triangle, and X, Y, Z the three intersections of their three pairs of corresponding sides $B C$ and $B_{1} C_{12} C A$ and $C_{1} A_{1}$, $A B$ and $A_{1} B_{1}$, then, whatever be the directions of $A X, B 1, C Z$, since, by ($134, a^{\prime}$.), $\sin B A A_{1}: \sin C A A_{1}=-(\sin B C Z: \sin A C Z) \cdot\left(\sin A B I^{\circ}: \sin C B Y^{\circ}\right)$, $\sin C B B_{1}: \sin A B B_{1}=-(\sin C A X: \sin B A N) \cdot(\sin B C Z: \sin A C Z)$, $\sin A C C_{1}: \sin B C C_{1}=-(\sin A B Y: \sin C B Y) \cdot(\sin C A X: \sin B A X)$, therefore, in all cases, $\left(\sin B A A_{1}: \sin C A A_{1}\right) \cdot\left(\sin C B B_{1}: \sin A B B_{1}\right) \cdot\left(\sin A C C_{1}: \sin B C C_{1}\right)$ $=-\left(\sin C A X^{2}: \sin B A X\right)^{\prime} \cdot\left(\sin A B I^{\prime}: \sin C B Y\right)^{2} \cdot(\sin B C Z: \sin A C Z)^{2}$, and therefore, as above stated, when X, Y, Z are collinear $A A_{1}, B B_{1}, C C_{1}$ are concurrent, and conversely, both equivalents being then $=-1$.

Con. 1°. When, as in a, the three lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent, and the three points X, Y, Z therefore collinear, or conversely, it is easy to see that then always

$$
\frac{B X}{C A^{\prime}}=-\frac{B A^{\prime}}{C A^{\prime},}, \frac{C Y}{A Y}=-\frac{C B^{\prime}}{A B^{\prime},} \quad \frac{A Z}{B Z}=-\frac{A C^{\prime}}{B C^{\prime \prime}},
$$

relations which give at once, numerically, the positions of the three points X, Y, Z when those of the three $A^{\prime}, B^{\prime}, C^{\prime \prime}$ are known, and conversely.

For, by (134) a and b^{\prime}, the common values of the three pairs of equivalents are expressed alike by the three compounds,

$$
\begin{gathered}
\left(B C^{\prime}: A C^{\prime}\right) \cdot\left(A B^{\prime}: C B^{\prime}\right), \quad\left(C A^{\prime}: B A^{\prime}\right) \cdot\left(B C^{\prime}: A C^{\prime}\right) \\
\left(A B^{\prime}: C B^{\prime}\right) \cdot\left(C A^{\prime}: B A^{\prime}\right),
\end{gathered}
$$

respectively, and therefore \&ic.
Cor. 2°. When, as in b, the three points X, Y, Z are collinear, and the three lines $A A_{4}, B B_{1}, C C_{4}$ therefore concurrent, or conversely, it is easy to see that then always

$$
\begin{gathered}
\frac{\sin B A X}{\sin C A X}=-\frac{\sin B A A}{\sin C A A_{1}}, \frac{\sin C B Y}{\sin A B Y}=-\frac{\sin C B B_{1}}{\sin A B B_{1}}, \\
\frac{\sin A C Z}{\sin B C Z}=-\frac{\sin A C O_{1}}{\sin B C C_{1}}
\end{gathered}
$$

relations which give at once, numerically, the directions of the three lines $A A_{1}, B B_{1}, C C_{1}$, when those of the three $A X, B Y$, $C Z$ are known, and conversely.

For, by (134) b and a^{\prime}, the common values of the three pairs of equivalents are expressed alike by the three compounds

$$
\begin{aligned}
& (\sin B C Z: \sin A C Z) \cdot(\sin A B Y: \sin C B Y) \\
& (\sin C A X: \sin B A X) \cdot(\sin B C Z: \sin A C Z) \\
& (\sin A B Y: \sin C B Y) \cdot(\sin C A X: \sin B A X)
\end{aligned}
$$

respectively, and therefore \&c.
Cor. 3°. From the preceding relations it may be easily shown, that, for the same triangle $A B C$, the same line $X Y Z$ corresponds always to the same point O, and the same point O to the same line $X Y Z$, in the two properties a and b.

For, if $X Y Z$ be given, then since, by the relations of Cor. 1°, the three sets of lines $B Y, C Z$, and $A A^{\prime}, C Z, A X$, and $B B^{\prime}$, $A X, B Y$, and $C C^{\prime}$ in (a) are concurrent, and since, by hypothesis, the three sets $B Y, C Z$, and $A A_{1}, C Z, A X$, and $B B_{1}$, $A X, B Y$, and $C C_{1}$ in (b) are concurrent, therefore three pairs of lines $A A^{\prime}$ and $A A_{1}, B B^{\prime}$ and $B B_{1}, C C^{\prime \prime}$ and $C C^{\prime}$ coincide, and therefore \&c. And, if O be given, then since, by the relations of Cor. 2°, the three sets of lines $B O, C O$, and $B_{1} C_{1}$, $C O, A O$, and $C_{1} A_{1}, A O, B O$, and $A_{1} B_{1}$ in (b) intersect collinearly with the opposite sides of $A B C$, and since, by hypothesis, the three sets $B O, C O$, and $B^{\prime} C^{\prime}, C O, A O$, and $C^{\prime} A^{\prime}$, $A O, B O$, and $A^{\prime} B^{\prime}$ in (a) do the same, therefore the three points X, Y, Z are the same for both, and therefore \&c.

Cor. 4°. Given, with the triangle $A B C$, either the point 0 or the line I containing the three points X, Y, Z, which in the modern geometry of the triangle are intimately connected with each other, and distinguished by correlative names expressive of their relation to each other and tho triangle, the other may be immediately determined by mere linear constructions based on the above properties a and b, as follows-

For, the triangle $A B C$ being given, the point O gives the three lines $O A, O B, O C$, they the three points $A^{\prime}, B^{\prime}, C^{\prime}$, they the three lines $B^{\prime} C^{\prime}, C^{\prime \prime} A^{\prime}, A^{\prime} B^{\prime}$, they the three points X, Y, Z, and they finally the line I, by property (a); and conversely,
the triangle $A B C$ being given, the line I gives the three points X, Y, Z, they the three lines $A X, B Y, C Z$, they the three points A_{1}, B_{1}, C_{1}, they the three lines $A A_{2}, B B_{1}, C C_{1}$, and they finally the point O, by property (b).

Con. 5°. The point O, or line I-and with either of course the other-being given, if from the original triangle $A B C$ two series of triangles $A^{\prime} B^{\prime} C^{\prime}, A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}, A^{\prime \prime \prime} B^{\prime \prime \prime} C^{\prime \prime \prime}$, \&c., and $A_{i} B_{0} O_{4}$, $A_{11} B_{\text {." }} C_{\ldots,} A_{\text {wi }} B_{m} C_{\text {m, }}$ \&c. be derived by the continued repetition of the two inverse constructions indicated in the statements of the properties a and b; applied first to the original triangle itself $A B C$, as in the figure, producing the two first derivatives $A^{\prime} B^{\prime} C^{\prime}$ and $A_{6} B C_{0}$, then to each of them, in the same manner, producing the two second derivatives $A^{\prime \prime} 1 B^{\prime \prime} C^{\prime \prime \prime}$ and $A_{\text {" }} B_{\text {", }} C_{\text {u }}$ then to each of them again, in the same manner, producing the two third derivations $A^{\prime \prime \prime} B^{\prime \prime \prime} C^{\prime \prime \prime}$ and $A_{\ldots \prime} B_{\ldots} C_{w,}$ and so on to infinity; the two series of triangles thus derived from $A B C$, by the directing agency of O and I, would form evidently, through the connecting link of the original, one continuous, and in both directions mulimited, system of comnected triangles, each inscribed to one and exscribed to the other of the two between which it lies; their three systems of corresponding sides passing in different directions through the same three points X, Y, Z on the line I; their three systems of corresponding vertices lying in different positions on the same three lines $O A, O B$, $O O$ through the point O; and the point and line O and I having to each and all of them, individually and collectively, the same relations as to the original $A B C$.

In the particular case of the line I being at infinity, the triangles constituting the system would evidently be all similar, alternately similarly and oppositely placed, and having all the point O for common centre of similitude, (42).
140. The next Example, again, is giren separately from the importance of the property as the basis of the theory of perspective, or homology, as it is termed by the French writers, in the geometry of plane figures.

For two triangles of any nature whose vertices and sides correspond in pairs, when the three pairs of corresponding verlices connect concurrently the three pairs of corresponding sides intersect
collinearly, and conversely, when the three pairs of corresponding sides intersect collinearly the three pairs of corresponding vertices connect concurrently.

For, if $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ be any two triangles whose vertices and sides correspond in pairs, $A A^{\prime}, B B^{\prime}$, $C C^{\prime}$, the three connectors of corresponding pairs of vertices, and X, Y, Z the threcintersections of corresponding pairs of sides; from the vertices $A B C$ of either letting fall pairs of perpendiculars $A P$ and $A P^{\prime}, B Q$ and $B Q^{\prime}, C R$ and $C R^{\prime}$ upon the pairs of sides about the corresponding vertices $A^{\prime}, B^{\prime}, C^{\prime}$ of the other, since then, in all cases,

$$
\begin{aligned}
& B Q: C R^{\prime}=B X: C X \\
& C R: A P^{\prime}=C Y: A Y \\
& A P: B Q^{\prime}=A Z: B Z
\end{aligned}
$$

therefore, in all cases, the two compounds

$$
\begin{aligned}
& \left(B Q: C R^{\prime}\right) \cdot\left(C R: A P^{\prime}\right) \cdot\left(A P: B Q^{\prime}\right) \\
& \left(A P: A P^{\prime}\right) \cdot\left(B Q: B Q^{\prime}\right) \cdot\left(C R: C R^{\prime}\right)
\end{aligned}
$$

or
and
are equal in magnitude and similar in sign, and therefore when either $=+1$ so is the other also; but when the former $=+1$ the three lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ through the vertices of $A^{\prime}, B^{\prime}, C^{\prime}$ are concurrent, and conversely, (135), and when the latter $=+1$ the three points X, Y, Z on the sides of $A B C$ are collinear, and conversely, (134, a.), and therefore \&c. Of courso when either equivalent $=-1$ so too is the other also, but the general property resulting from the circumstance, though equally obvious, is not equally important in that case.

As both parts, a and b, of the property of the preceding Article are evidently included in the above as particular cases, the former, therefore, though independently established in the text, are not really independent, but are merely converse properties; which is evident also from the obvious consideration, adverted to in Cor. 5°, that the two derived triaugles $A^{\prime} B^{\prime} C^{\prime}$ and $A_{1} B_{1} C_{1}$,
see figure to the preceding Article, are related each to the original $A B C$ as the original to the other.
141. From the above the following important extension of itself may be readily inferred, viz.-

For tuo yeometrical figurcs of any kind, F and F, thich are of such a nature that, to every point of one corrtsponds a point of the other, to every line of one a line of the other, to every point of intersection of tico lines of one the point of intersection of the theo corresponding lines of the other, and to every line of connection of tico points of one the line of connection of the tico corresponding 1 points of the other; then the several pairs of corresponding points connet concurrently the sceeral pairs of corresponding lines intersect collinearly, and contersely, elien the seteral pairs of corresponding lines intersect collinearly the several pairs of corresponding points connect concurrently.

For, if, in the former case, L and I_{\circ}^{\prime}, M and $M \prime, N$ and N^{\prime} be any three pairs of corresponding lines, nnd therefore, by the ansumed comnections, M, N and $M^{\prime} N^{\prime}, N L$ and $N^{\prime} L^{\prime}, L M$ and L'M' three pairs of corresponding points, of the figures; since then, by hypothesis, the three latter comect concurrently, therefure, by the above, the three former intersect collinearly; and the property being thus true for every three is therefore truo for all pairs of corresponding lines, and therefore \&e.; and if, in the latter case, P and I^{\prime}, Q and $Q^{\prime}, I R$ and I^{\prime} be any three pairs of corresponding points, and therefore, by the assumed connections, $Q R$ and $Q^{\prime} K, R P^{\prime}$ and $R^{\prime} P^{\prime}, P Q$ and $P^{\prime} Q^{\prime}$ three pairs of corresponding lines, of the figures; since then, by hypothesis, the three latter intersect collinearly, therefore, by the above, the three former comect concurrently; and the property being thus true for every three is therefore true for all pairs of corresponding points, and therefore \&e.

Every two triangles, or figures of any nature related as abovo to each other, when so relatively situated that their several pairs of corresponding points comnect concurrently and their several pairs of corresponding lines intersect collinearly, are said to be in perspective, or, as the French writers term it, in homology with each other; and, in the same case, the point of concurrence O of the several coneurrent connectors, and the
line of collinearity I of the several pairs of collinear intersections, cither or both of which may be at infinity, are termed respectively the centre and the axis of perspective or homology; the meaning and origin of the terms are obvious.
142. Two similar figures F and F^{\prime}, both right or left, whatever be their nature, when placed either in similar or in opposite positions with respect to each other (41), furnish the most obvious as well as the simplest examplo of figures in perspective; for, their several pairs of homologous points P and P^{\prime} connect concurrently through their centre of similitude (42), which therefore in their case is the centre of perspective; and, their several pairs of homologous lines L and L^{\prime}, being parallels, intersect collinearly on the line at infinity ($136,1^{\circ}$.), which therefore in their case is the axis of perspective.

Conversely, when the axis of perspective of two figures F and F^{\prime} in perspective is at infinity, the figures themselves, whatever be their nature, are similar, both right or left, and either similarly or oppositely placed; for, as their several pairs of corresponding lines L and L^{\prime} intersect at infinity, they are parallel, and, as their several pairs of corresponding points P and P^{\prime} connect through the centre of perspective, that point satisfies for the figures the conditions of similitude (32), and therefore \&c. When, in addition, the centre of perspective also is at infinity, the ratio of similitude being then $=+1$, the figures are not only similar in form, and similarly placed in position, but also equal in magnitude.
143. Two figures F and F^{\prime} composed of pairs of corresponding points P and P^{\prime}, Q and Q^{\prime}, R and $R^{\prime}, \& c$., connecting by parallel lines all cut in the same ratio by the same line I, furnish another obvious example of figures in perspective, the line of section being the axis, and the point at infinity in the direction of the parallels the centre, of perspective; for perpendicular section generally, every two such figures are said also to be refractions, and in the particular case when the ratio of section $=-1$, as already mentioned in (50), to be reflections of each other, with respect to the line or axis of section; the general, like the particular, name having been introduced for conrenience into Geometry from the science of Optics.

Conversely, when the centre of perspective of two figures F and $F^{\prime \prime}$ in perspective is at infinity, the figures themselves, whatever be their nature, are comected with each other by the preceding relation; for, as every two connectors $P P^{\prime}$ and $Q Q^{\prime}$ of their pairs of corresponding points intersect at infinity, they aro parallel, and, as the two corresponding lines $P Q$ and $P^{\prime} Q^{\prime}$ connecting their extremities intersect on the axis of perspective, they are divided by that line in the same ratio, and therefore de. When, in addition, the axis of perapective also is at infinity, the ratio of section being then $=+1$, the figures, which for that ratio would necessarily coincide were the axis not at infinity, are, as already noticed in the preceding article, cxact duplicates in form, magnitude, and direction, and merely separated from each other in absolute position by an interval of finite maguitude.
144. Two figures F^{\prime} and F^{\prime} may be of such a nature as to form, and so circumstanced as to position, that a correspondence between their points and lines in pairs, satisfying the conditions of perspective, may exist in more ways than one. Two similar figures, for instance, of such a form as to be susceptible simultancously of similar and opposite positions by different ways of correspondence (35), are of such a character, and are accordingly not only in perspective but doubly in perspective when in any positions of similitude or opposition, the two centres of similitude, external and internal, being the centres of the two perspectives, and the line at infinity the common axis of both.

Two circles being similar figures which, however situated, are aluays at once in similar and opposite positions with respect to each other, are therefore always in perspective for each centro of similitude; but, as wo shall see in another chapter, they possess moreover the additional property of being not only in perspective but doubly in perspective for each centre of similitude, the line at infinity being the common axis for two of the perspectives, and another line at a finite distance the common axis for the other two.
145. In the perspective of two rows of points on different axes or of pencils of lines through different vertices, already
alluded to in (130), an exceptional peculiarity presents itself, which, if not attended to, might cause embarrassment in the applications of the general theory to their particular cases; while the centre of perspective in the case of the rows, and the axis of perspective in the case of the pencils, is unique and deterninate (130), the axis in the former case, and the centre in the latter, is indeterminate; every line concurrent with the axes of the rows in the former case, and every point collinear with the centres of the pencils in the latter case, being indifferently an axis of perspective in the one case, and a centre of perspective in the other. All such cases however are exceptional, figures in perspective having in general but a single centre and a single axis of perspective, both gencrally at a finite distance, but either or both of which may be at infinity.
146. The following are a few consequences from the fundamental theorem of the preceding article (140) respecting triangles in perspective-
a. When three pairs of points P and P^{\prime}, Q and Q^{\prime}, R and R^{\prime} connect concurrently, the six centres of perspective X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime} of the three pairs of segments $Q Q^{\prime}$ and $R P_{0}^{\prime}$, $R R^{\prime}$ and $P P^{\prime}, P P^{\prime}$ and $Q Q^{\prime}$ they determine (131), lie in four groups of three $X Y Z, Y^{\prime} Z^{\prime} X, Z^{\prime} X^{\prime} Y, X^{\prime} Y^{\prime} Z$ on four lines; each pair of corresponding centres thus constituting a pair of opposite intersections of the same tetragram (106).
a^{\prime}. When three pairs of lines L and L^{\prime}, M and M^{\prime}, N and N^{\prime} intersect collinearly, the six axes of perspective U and U^{\prime}, V and V^{\prime}, W and W^{\prime} of the three pairs of angles $M M^{\prime}$ and $N N^{\prime}, N N^{\prime}$ and $L L ', L L^{\prime}$ and $M M^{\prime}$ they determine (131), pass in four groups of theree UVW, V' $W^{\prime} U, W^{\prime} U^{\prime} V, U^{\prime} V^{\prime} W$ through four points; each pair of corresponding axes thus constituting a pair of opposite connections of the same tetrastigm (106).

For, in the former case, the directions of the three segments $P P^{\prime}, Q Q^{\prime}, R R^{\prime}$ being by hypothesis concurrent, the three pairs of points P and P^{\prime}, Q and Q^{\prime}, R and R^{\prime} determine therefore four pairs of triangles $P Q R$ and $P^{\prime} Q^{\prime} R^{\prime}, Q R P^{\prime}$ and $Q^{\prime} R^{\prime} P$, $R P Q^{\prime}$ and $R^{\prime} P^{\prime} Q, P Q R^{\prime}$ and $P^{\prime} Q^{\prime} R$, whose pairs of corresponding sides loy (140) intersect collinearly at the six centers of perspective of the three segments, viz. $Q R$ and $Q^{\prime} R^{\prime}$ at X,
$R P^{\prime}$ and $R^{\prime} P^{\prime}$ at $Y, P Q$ and $I^{\nu} Q^{\prime}$ at $Z, Q R^{\prime}$ and $Q^{\prime} R$ at $N^{\prime \prime}$, $R P^{\prime}$ and $R^{\prime} P$ at $Y^{\prime \prime}, P Q^{\prime}$ and $I^{\prime} Q$ at Z, and therefore $\mathcal{A} c . ;$ and, in the latter case, the vertices of the three angles $L L^{\prime}, M M$, $N \sim N$ " leing by hypothesis collinear, the three pains of lines I s and L^{\prime}, M and M^{\prime}, N and N^{\prime} determine therefore four pairs of triangles $L A M N$ and $L^{\prime} M^{\prime} N^{\prime}, M N L^{\prime}$ and $M^{\prime} N^{\prime} L, N_{L} M^{\prime}$ and $\mathcal{N}^{\prime \prime} L^{\prime} . I T, L, M N^{\prime}$ and $L^{\prime} \cdot M^{\prime} N$, whose pairs of corresponding vertices, by (140), connect concurrently by the six axes of perspective of the three angles, viz., $M N^{\prime}$ and $M^{\prime} N^{\prime}$ by $U, N L$ and $N^{\prime} L^{\prime}$ by $V^{\prime}, L M$ and $L^{\prime} M^{\prime}$ by $W, M N^{\prime}$ and $M^{\prime} N^{\prime}$ by $U^{\prime}, N L^{\prime}$ and $N^{\prime} L$ by $\mathrm{I}^{\prime \prime}, L M M^{\prime}$ and $L^{\prime} M$ by $\mathrm{H}^{\prime \prime}$, and therefore \&c.
l. When three trialls of $p^{\text {mints }} P, Q, R ; Y^{\prime}, Q^{\prime}, I^{\prime} ; P^{\prime \prime}, Q^{\prime \prime}, R^{\prime \prime}$ determine three triangles those sides pass concurrently through three collinear points, the three conjugate triuds $P^{\prime}, P^{\prime}, P^{\prime \prime} ; Q, Q^{\prime},\left(Q^{\prime \prime} ;\right.$ $R, R^{\prime}, I^{\prime \prime}$ also determine three triangles vhase sites $p^{\text {mass }}$ concurrently through three collincar points.
l^{\prime}. When three triads of lines $L, M, N_{;} ; L^{\prime}, M^{\prime}, N^{\prime} ; I_{0}^{\prime \prime}, M^{\prime \prime}, N^{\prime \prime}$ determine three triangles those vertices lie collinearly on three concurrent lines, the thrce conjugate triads $L_{0}, I_{i}, L_{\prime \prime}^{\prime \prime} ; M_{,}, M^{\prime}, M^{\prime \prime}$; $N, N^{\prime}, N^{\prime \prime \prime}$ also determine three triungles shose vertices lic collinearly on three concurrent lines.

For, in the former case, if $L, M, N ; L^{\prime}, M^{\prime}, N^{\prime \prime} ; L^{\prime \prime}, M^{\prime \prime}, N^{\prime \prime}$ be the three triads of sides of tho three original, and $U, U^{\prime \prime}, U^{\prime \prime}$; $V, V^{\prime \prime}, V^{\prime \prime \prime} ; W, W^{\prime \prime}, W^{\prime \prime \prime}$ those of the three conjugate triaugles; then, since by hypothesis the three triads of points $L^{\prime} L^{\prime \prime}, M^{\prime} M^{\prime \prime}$, $N^{\prime \prime} N^{\prime \prime \prime} ; L^{\prime \prime} L, M^{\prime \prime} M, N^{\prime \prime \prime} N ; L I^{\prime}, M M \prime, N N^{\prime \prime}$ are collinear, therefore by (140) the three triads of lines $U, V, W^{\circ} ; U^{\prime}, V^{\prime \prime}, W^{\circ}$; $U^{\prime \prime}, V^{\prime \prime \prime}, H^{\text {"n }}$ are concurrent ; and again, since by hypothesis the three triads of lines $L_{1} L^{\prime}, L^{\prime \prime} ; M, M^{\prime}, M^{\prime \prime} ; N, N^{\prime \prime}, N^{\prime \prime}$ are concurrent, therefore, by (140), the three triads of points VH , $V^{\prime} W^{\prime \prime}, V^{\prime \prime} W^{\prime \prime} ; W U, W^{\prime} U^{\prime}, H^{\prime \prime \prime} U^{\prime \prime} ; U V, U^{\prime} V^{\prime \prime}, U^{\prime \prime} V^{\prime \prime}$ are collinear, and therefore \mathbb{N}. . And in the latter case, if P, Q, l; $I^{\prime}, Q^{\prime}, R^{\prime} ; P^{\prime}, Q^{\prime \prime}, l^{\prime \prime}$ be the three triads of vertices of the three origimal, and $X, X^{\prime \prime}, X^{\prime \prime \prime} ; Y^{\prime}, I^{\prime \prime}, Y^{\prime \prime \prime} ; Z_{2} Z^{\prime \prime}, Z^{\prime \prime \prime}$ those of the three conjugate triangles; then, since by hypothesis the three triads of lines $P^{\prime} P^{\prime \prime}, Q^{\prime} Q^{\prime \prime}, R R^{\prime \prime} ; I^{\prime \prime} P, Q^{\prime \prime} Q, R^{\prime} R ; P P^{\prime}, Q Q^{\prime}, R l^{\prime}$ are concurrent, therefore, by (140), the three triads of points $X, Y, Z ; X^{\prime \prime}, Y^{\prime \prime}, Z^{\prime} ; X^{\prime \prime}, \Upsilon^{\prime \prime \prime}, Z^{\prime \prime}$ are collincar; and again, since by hypothesis the three triads of points $P^{\prime}, P^{\prime}, I^{\prime \prime} ; Q, Q^{\prime}, Q^{\prime \prime}$;
$R, R^{\prime}, R^{\prime \prime}$ are collinear, therefore, by (140), the three triads of lines $Y Z, Y^{\prime} Z^{\prime}, Y^{\prime \prime \prime} Z^{\prime \prime} ; Z X, Z^{\prime} X^{\prime}, Z^{\prime \prime} X^{\prime \prime} ; X Y, X^{\prime} Y^{\prime}, X^{\prime \prime} Y^{\prime \prime}$ are concurrent, and therefore $\& c$.
c. When three figures of any kind $F, F^{\prime \prime}, F^{\prime \prime}$, in prespective two and two, have a common axis of perspective, the three centers of perspective of the three pairs they determine are collinear.
c^{\prime}. When three figures of any kind $F, F^{\prime \prime}, F^{\prime \prime \prime}$, in perspective two and two, have a common centre of perspective, the three axes of perspective of the three pairs they determine are concurrent.

For, in the former case, if $P, Q, R ; P^{\prime}, Q^{\prime}, R^{\prime} ; P^{\prime \prime}, Q^{\prime \prime}, R^{\prime \prime}$ be any three triads of corresponding points of the three figures; then, since by hypothesis the three triads of lines $Q R, Q^{\prime} R^{\prime}, Q^{\prime \prime} R^{\prime \prime}$; $R P, R^{\prime} P^{\prime}, R^{\prime \prime} P^{\prime \prime} ; P Q, P^{\prime} Q^{\prime}, P^{\prime \prime} Q^{\prime \prime}$ pass concurrently through three collinear points, therefore, by the preceding (b), the three triads of lines $P^{\prime} P^{\prime \prime}, Q^{\prime} Q^{\prime \prime}, R^{\prime} R^{\prime \prime} ; P^{\prime \prime} P, Q^{\prime \prime} Q, R^{\prime \prime} R ; P P^{\prime}, Q Q^{\prime}$, $R R^{\prime}$ also pass concurrently through three collinear points, and therefore \&c. And, in the latter case, if $L, M, N ; L^{\prime}, M^{\prime}, N^{\prime}$; $L^{\prime \prime}, M^{\prime \prime}, N^{\prime \prime}$ be any three triads of corresponding lines of the three figures; then, since by hypothesis the three triads of points $M N, M^{\prime} N^{\prime}, M^{\prime \prime} N^{\prime \prime} ; N L, N^{\prime} L^{\prime}, N^{\prime \prime} L^{\prime \prime} ; L M, L^{\prime} M I^{\prime}, L^{\prime \prime} M I^{\prime \prime}$ lie collinearly on three concurrent lines, therefore, by the preceding $\left(b^{\prime}\right)$, the three triads of points $L^{\prime} L^{\prime \prime}, M^{\prime} M^{\prime \prime}, N^{\prime} N^{\prime \prime} ; L^{\prime \prime} L$, $M^{\prime \prime} M, N^{\prime \prime} N ; L L^{\prime}, M M^{\prime}, N N^{\prime}$ also lie collinearly on three concurrent lines, and therefore \&c.

These two latter properties the reader may easily verify, a priori, for the particular cases when the common axis in the former case and the common centre in the latter case is at infinity.
147. When two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, whose vertices and sides correspond in pairs, are in perspective.
a. The sides of each intersect with the non-corresponding pairs of sides of the other so as to fulfil (see fig.) for $A B C$ the general relation

$$
\frac{B Y \cdot B Z}{C Y \cdot C Z^{\prime}} \cdot \frac{C Z \cdot C X^{\prime \prime}}{A Z \cdot A X^{\prime}} \cdot \frac{A X \cdot A Y^{\prime \prime}}{B X \cdot B Y^{\prime}}=+1
$$

for $A^{\prime} B C^{\prime}$ the corresponding relation

$$
\frac{B^{\prime} Y^{\prime} \cdot B^{\prime} Z}{C^{\prime} Y^{\prime} \cdot C^{\prime} Z} \cdot \frac{C^{\prime} Z^{\prime} \cdot C^{\prime} X}{A^{\prime} Z^{\prime} \cdot A^{\prime} X} \cdot \frac{A^{\prime} X^{\prime} \cdot A^{\prime} Y}{B^{\prime} X^{\prime} \cdot B^{\prime} Y}=+1
$$

3. The verlices of each connect with the non-corresponding pairs of vertices of the other so as to fulfil (see fig.) for $A B C$ the general relution $\frac{\sin B A B^{\prime} \cdot \sin B A C^{\prime \prime}}{\sin C A B^{\prime} \cdot \sin C A C^{\prime}} \cdot \frac{\sin C B C^{\prime} \cdot \sin C B A^{\prime}}{\sin A B C^{\prime} \cdot \sin A B A^{\prime}} \cdot \frac{\sin A C A^{\prime} \cdot \sin A C B^{\prime}}{\sin B C^{\prime} A^{\prime} \cdot \sin B C B^{\prime}}=+1$, for $A^{\prime} B^{\prime} C^{\prime}$ the corresponding relation
$\sin B^{\prime} A^{\prime} B \cdot \sin B^{\prime} A^{\prime} C \sin C^{\prime} B^{\prime} C \cdot \sin C^{\prime} B^{\prime} A \sin A^{\prime} C^{\prime} A \cdot \sin A^{\prime} C^{\prime} B$ $\sin C^{\prime} A^{\prime} B \cdot \sin C^{\prime} A^{\prime} C^{\prime} \cdot \sin A^{\prime} B^{\prime} C \cdot \sin A^{\prime} B^{\prime} A^{\circ} \sin B^{\prime} C^{\prime} A \cdot \sin B^{\prime} C^{\prime} B$

$$
=+1
$$

and conversely, when two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, whose vertices and siles correspond in pairs, are such thut the sides of one intersect with the non-corresponding pairs of siles of the other so as to fulfil cither relation (a), or that the vertices of one connect with the non-corresponding puirs of vertices of the other so as to fulfil either relation (b), they are in perspective.

For, from the three vertices of either triangle $A B C$, letting fall the three triads of perpendiculars $A P, A P^{\prime}, A P^{\prime \prime} ; B Q, B Q$, $B Q^{\prime \prime} ; C R, C R, C R^{\prime \prime}$ upon the three sides, corresponding and non-corresponding, of the other $A^{\prime} B^{\prime} C^{\prime}$; then, since, in the case of (a), by pairs of similar rightangled triangles,

$$
\begin{aligned}
& B Y^{\prime}: C Y^{\prime}=B Q^{\prime}: C R \text { and } B Z^{\prime}: C Z^{\prime}=B Q: C R^{\prime}, \\
& C Z: A Z=C R^{\prime}: A P \text { and } C X^{\prime}: A X^{\prime}=C R: A P^{\prime \prime} \\
& A X: B X=A I^{\prime}: B Q \text { and } A Y^{\prime \prime}: B Y^{\prime}=A P: B Q^{\prime}
\end{aligned}
$$

and since, in the case of (b), by (61), directly $\sin B^{\prime} A^{\prime} B: \sin C^{\prime} A^{\prime} B=B Q^{\prime}: B Q$
and $\sin B^{\prime} A^{\prime} C: \sin C^{\prime} A^{\prime} C^{\prime}=C R: C R^{\prime \prime}$, $\sin C^{\prime} B^{\prime} C: \sin A^{\prime} B^{\prime} C=C R^{\prime}: C R$
and $\sin C^{\prime} B^{\prime} A: \sin A^{\prime} B^{\prime} A=A P: A P^{\prime}$, $\sin A^{\prime} C^{\prime} A: \sin B^{\prime} C^{\prime} A=A P^{\prime}: A P$
and $\sin A^{\prime} C^{\prime} B: \sin B^{\prime} C^{\prime} B=B Q: B Q^{\prime \prime}$,
therefore the left-hand numbers of the first relation (a) and of the second relation (b) are always equal in magnitude and sign to the compound

$$
\left(B Q^{\prime}: O R^{\prime \prime}\right) \cdot\left(C R^{\prime}: A P^{\prime \prime}\right) \cdot\left(A P^{\prime}: B Q^{\prime \prime}\right)
$$

or which is the same thing to the compound

$$
\left(A P^{\prime}: A P^{\prime \prime}\right) \cdot\left(B Q^{\prime}: B Q^{\prime \prime}\right) \cdot\left(C R^{\prime}: C R^{\prime \prime}\right)
$$

which, by (135) $=+1$ when the triangles are in perspective, and conversely, and therefore \&c.

By simply interchanging the two triangles in the preceding construction and demonstrations, the second relation (a), which is for $A^{\prime} B^{\prime} C^{\prime}$ what the first is for $A B C$, and the first relation (b), which is for $A B C$ what the second is for $A^{\prime} B^{\prime} C^{\prime}$, result of course in the same manner.
148. With an important example of the application of each of the preceding criteria of perspective between triangles, whose vertices and sides correspond in pairs, we shall conclude the present chapter.

Example of criterion (a). -In every hexagon inscribed in a circle the two triangles determined by the two sets of alternate sides are in perspective, opposite suides in the hexagon being corresponding sides in the perspective.

For, supposing in the figure of the preceding article the six vertices X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime} of the hexagon $Y Z X Y^{\prime} Z X^{\prime}$ determined by the six sides of the two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ to be six points on a circle; then, since Euc. IIf. 35, 36,

$$
A X \cdot A Y^{\prime}=A Z \cdot A X^{\prime}, B Y \cdot B Z^{\prime}=B X \cdot B Y^{\prime}, C Z \cdot C X^{\prime}=C Y \cdot C Z^{\prime}
$$

therefore relation (a) for the triangle $A B C$ is satisfied in tho simplest manner of which it is susceptible, and therefore $\mathbb{\&} \mathrm{c}$.

This is the celebrated Theorem of Pascal respecting a hexagon inscribed in a circle, and accordingly the centre and axis of the perspective in this case are often spoken of as the Pascal point and line of the hexagon.

Example of criterion (b).-In every hexagon circunscribed to a circle the tuo triangles determined by the tieo sets of alternate vertices are in perspective, opposite vertices in the hexagon being corresponding vertices in the perspective.

For, supposing in the same figure the six sides $B C^{\prime \prime}$ and $B^{\prime} C^{\prime \prime}$, $C A^{\prime}$ and $C^{\prime \prime} A, A B^{\prime}$ and $A^{\prime} B$ of the hexagon $B C^{\prime} A B^{\prime} C A$, determined by the six rertices of the two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$ to be six tangents to a circle; then, if a, b, c be the lengths of the three chords intercepted by the eircle on the three sides $B C, C A, A B$ of either triangle $A B C$, since, by ($66, \operatorname{Cor} .2^{\circ}$),

$$
\begin{aligned}
& \sin B A B^{\prime} \cdot \sin B A C^{\prime \prime}: \sin C A B^{\prime} \cdot \sin C A C^{\prime}=c^{7}: b^{\prime \prime} \\
& \sin C B C^{\prime} \cdot \sin C B A^{\prime}: \sin A B C^{\prime} \cdot \sin A B A^{\prime}=a^{7}: c^{7}, \\
& \sin A C A^{\prime} \cdot \sin A C B^{\prime}: \sin B C^{\prime} A^{\prime} \cdot \sin B C B^{\prime}=b^{2}: a^{\prime},
\end{aligned}
$$

therefore relation (b) is satisfied for the triangle $A B C$, and therefore \&ic.

This is tho celebrated Theorem of Brianchon respecting a hexagon circumscribed to a circle, and accordingly the centre and axis of the perspective in this case are often spoken of as the Brianchon point and line of the liexngon.

If of the two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ one be either inscribed or exscribed to the other, and the latter therefore either exscribed or inscribed to the former, the circle in either of the above properties would manifestly pass tbrough the three vertices of the inscribed and there touch the three sides of the exscribed triangle, and the two properties of triangles circumscribed and inscribed to a circle, given in examples 3° and 4°, Art. 137, would follow at once as particular cases from cither of the above.

CHAPTER IX.

THEORY OF INVERSE POINTS WITH RESPECT TO A CIRCLE.

149. Every two points P and Q on any diameter of a circle, the rectangle $C P . C Q$ under whose distances from the centre C is equal in magnitude and sign to the square of the radius $C R$, are said to be inverse points with respect to the circle.

From the mere definition of inverse points it is evident that: 1°. When the radius of the circle is real they always lie at the same side of the centre and at opposite sides of the circumference, and coincide on the latter when their common distance from the former is equal to the radius; 2°. When the radius is imaginary they always lie at opposite sides of the centre, never coincide, and are at their least distance asunder when equidistant from the centre; 3°. Whether the radius be real or imaginary, as one recedes from, the other approaches to the centre, and conversely, and when one is at infinity in any direction the other is at the centre, and conversely; 4°. In the extreme case when the radius is evanescent, and the circle therefore a point, one is always at the point and the other any where indifferently; 5°. In the other extreme case when the radius is infinite, and the part of the circlo not at infinity therefore a line, they are simply reflexions of each other with respect to the line (50). Of these particulars the last, less evident than the others, will appear more fully from the following general property of inverse points.
150. If P and Q be any pair of inverse points with respect to a circle of any nature, A and B the two extremities, real or imaginary, of the diameter on which they lie, and C the centre of the circle, then alveays

$$
A P^{3}: A Q^{3}=B P^{3}: B Q^{3}=C P: C Q .
$$

For, since, by hypothesis, $C P \cdot C Q=C R^{\circ}$, therefore

$$
C P: C R=C R: C Q=C P \pm C R: C R \pm C Q,
$$

and therefore $\left(C P_{ \pm} C R\right)^{2}:\left(C R_{ \pm} C Q\right)^{2}=C P: C Q$, but

$$
C P+C R=A P, C Q+C R=A Q, C P-C R=B P, C Q-C R=B Q ;
$$ and therefure \&s.

Hence, in the particular case when C is at infinity, that is, when the part of the circle not at infinity with it is a line at a finite distance; since then $C P^{\prime}: C Q=1$, therefore, by the above, $A P^{x}: A Q^{2}=1$ and $B P^{x}: B Q^{2}=1$, or the two points A and B are tho two points of bisection, external and internal, of the segment $P Q$, and therefore, as stated in the preceding Article, the tivo points P and Q are in that case reflecions of each other weith respect to the line into which the part of the circle not at infinity then opens out.

In the Geometry of the Circle, upon which we are now formally entering, the reader will find, as he proceeds, that universally, as above, when the centre of a circle goes off to infinity without carrying the entire circle with it, the line at a linite distance, into whieh the figure in its limiting form for the extreme magnitnde of its radius $=\infty$ then opens out (18), is in reality but part of the entiro circle; the line at infinity (136) being invariably the remaining part, and possessing, in combination with the line not at infinity, all the properties of the complete circle in the general case; instances confirmatury of this will appear in numbers in the sequel, and though to avoid circumlocution we shall continue generally to speak, as we have hitherto done, of a circle becoming a line when its centre goes to infinity learing itself belind, the circumstance that the line
at infinity is always to be associated with the line not at infinity as part of the entire circle must never, in such eases, be lost sight of whenever it may be necessary, as it often is, to take it into account.
151. Whatever be the nature of the circle, the inverse Q of every point P, not the centre C, is evidently unique and determinate, being on the line $C P$ connecting two known points C and P, and at a distance $C Q$ from one of them C of known magnitude and sign; of the centre itself, however, the inverse, being on the line connecting two coincident points, is indeterminate, any point at infinity when the radius is funite, and any point whatever in the particular case when it is evanescent, satisfying evidently the conditions that determine it.

When two points P and Q are such that one P is the inverse of the other Q with respect to any circle, the latter Q is, of course, reciprocally, the inverse of the former P with respect to the same circle.
152. As every circle has an infinite number of pairs of inverse points P and Q, P^{\prime} and $Q^{\prime}, P^{\prime \prime}$ and $Q^{\prime \prime}, \mathcal{\&}$., whose lines of connection all pass through its centre C, and for which the several rectangles $C P . C Q, C P^{\prime} . C Q^{\prime}, C P^{\prime \prime} . C Q^{\prime \prime}, \& e$ are all equal in magnitude and sign to the square of its radius $C R$; so conversely, every two points P and Q have an infinite number of circles to which they are inverse, whose centres $C, C^{\prime}, C^{\prime \prime}, \& c$. all lie on their

line of connection $P Q$, and the squares of whose radii $C R, C^{\prime} R^{\prime}$, $C^{\prime \prime} I^{\prime \prime}$, \&c. are severally equal in magnitude and sign to the corresponding rectangles $C P . C Q, C^{\prime} P . C^{\prime} Q, C^{\prime \prime} P . C^{\prime \prime} Q, \& \cdot$.; every such circle is said, for a reason that will appear in another chapter, to be coaxal with the two points P and Q, and its radius $C R$ is evidently real or imaginary according as its centre C is external or internal to the segment $P Q$, cvanescent when C coincides with either point P or Q, and infinite when C is at infinity, in which case the line into which the part of the circle not at infinity then opens out is (150) the axis of reflexion L of the two points P and Q.

Every two circles belonging to such a system being evidently equal in magnitude when their centres C and D, C^{\prime} and D^{\prime}, $C^{\prime \prime \prime}$ and $D^{\prime \prime}$, \&c. are equidistant in opposite directions from the middle point of $P Q$, the entire system consists therefore of two similar and opposito groups, symmetrically disposed in equal and opposite pairs, reflexions of each other with respect to the axis of reflexion of I 'and Q, by and through which, in combination with the line at infinity, the circles of one group are separated from and pass into those of the other; each circlo of each group enclosing all within and being encosed by all without itself; and each point P and Q being the nucleus round which the circles of its own group are eccentrically disposed, and the evanescent limit through which they pass from real to imaginary, and conversely.

In the particular case when the two points P and Q coincide, the circles of the system are all real, the range of centres $P Q$ for which they are imaginary in the general case being then evaneseent. In this, the only case in which any two circles of the entire system have a common point or any two of the same group a common tangent, they evidently all pass through the point of coincidence $P=Q$, and all touch at that point the line L passing through it perpendicular to their line of centres; and all the other particulars respecting their distribution, as above stated for the general case, are obvious, and have been already stated in Art. 18.
153. In connection with the subject of the preceding Article the following problem not unfierquently presents itself:

Given two pairs of points P and Q, P^{\prime} and Q^{\prime} on the same line, to determine the centre C and radius $C R$ of the circle conxal with both.

To solve which, since, by the preceding,

$$
C P \cdot C Q=C P^{\prime} \cdot C Q^{\prime}=C R^{2},
$$

therefore, assuming arbitrarily any point M not on the line, describing through it the two circles $P M Q$ and $P^{\prime} M Q^{\prime}$, and drawing their chord of intersection M / N intersecting the given line at the point C; the circle round C as centre, the square of whose radius $C R$ is equal in magnitude and sign to the rectangle CM. CN, is evidently that required. For (Euc. 11I. 35, 36)

$$
C P \cdot C Q=C P^{\prime} \cdot C Q^{\prime}=C M \cdot C N=C R^{2},
$$

and therefore \&c.
The circle thus determined, though its centre C is always real, is itself imaginary when the two points P and Q alternate with the two P^{\prime} and Q^{\prime} in the order of their occurrence on their common axis; this is evident from the obvious circumstance that the rectangle CM.CN is then necessarily negative; in every other case however it is positive, and the circle is therefore real.

In the particular case when the two intereepted segments $P Q$ and $P^{\prime} Q^{\prime}$ have a common middle point, the centre C, determined as above, being then at infinity, the part of the circle itself not at infinity opens out, as it ought, into the common axis of reflexion of the two pairs of points P and Q, P^{\prime} and Q^{\prime}, see (150).
154. Any two segments of the same diameter of a circle, which are such that the extremities of one are the inverses of the extremities of the other with respect to the circle, are termed inverse segments with respect to the circle; thus, if $P P^{\prime}$ be the segment intercepted between any two points P and P^{y} on the same diameter of a circle, and $Q Q^{\prime}$ that intercepted between the two inverse points Q and Q^{\prime}, the two segments $P P^{\prime}$ and $Q Q^{\prime}$ are inverse segments with respect to the circle.

Since, from the interchangeability of inverse points (151), every two pairs of inverse points P and Q, P^{\prime} and Q^{\prime} on the same diameter of a circle, determine evidently two different pairs of inverse segments $P P^{\prime}$ and $Q Q^{\prime}, P^{\prime} Q^{\prime}$ and $Q P^{\prime}$, hence
connected with every pair of inverse segments $P P^{\prime}$ and $Q Q^{\prime}$ with respect to any circle, there exists always a conjugate pair $P Q^{\prime}$ and $Q P^{\prime}$ with respect to the same circle.

Again, as every two segments $P Q$ and $P^{\prime} Q^{\prime}$ of the same line thus determine two different pairs of segments $P I^{y}$ and $Q Q^{\prime}$, $P^{\prime} Q^{\prime}$ and $Q P^{\prime}$ inverse to the unique circle coaral with themselves (153), so conversely, they determine two different circles with respect to which they are themselves inserse segments, one that coaxal with the two $P P^{\prime}$ and $Q Q$, and the other that coaxal with the two $P Q^{\prime}$ and $Q I^{\prime}(153)$.

Hence the uscful problem, given two segments $I^{\prime} Q$ and $P^{\prime} Q^{\prime}$ of the same line, to determine the tuco circles with respect to which they are inverse sigments, is reduced to that of the preceding Article (153), viz. to determine the two circles which are coasal, one with the two segments $P P^{\prime}$ and $Q Q^{\prime}$, and the other with the two $P Q^{\prime}$ and $Q P^{\prime}$, and which, from the construction given in that Article, are easily seen to be both real in the ease when the extremities of the two given segments $l^{\prime} Q$ and $P^{P} Q^{\prime}$ alternate with each other in the order of their occurrence on their common axis, and to be one real and one inaginary in either of the two cases when they do not.
155. Every two proints and their theo inverses with respect to the same circle lis in a circle.

For, if (fig., Art. 150) P and P^{\prime} be the two points, Q and Q^{\prime} their two inverses, and C the centre of the circle; then since, by the definition of inverse points, $C P \cdot C Q=C P^{\prime} . C Q^{\prime}$, each being $=$ the square of the radius of the circle, therefore \mathcal{E}.

Conversely, every circle passing through a pair of inverse points with respect to another circle determines a pair of inverse points on every liameter of the other.

For, if P and Q, P^{\prime} and Q^{\prime} (same figure) be the two pairs of points in which any circle intersects any two diameters of any other circle, and C the centre of the latter; then, since $C P \cdot C Q=C P^{\prime} . C Q^{\prime}$, if either rectangle $=$ the square of either radius, so is the other.

Cor. 1°. It is evident from the above that if the same circle pass through a pair of inverse points with respect to one circle, and also through a pair of inverse points with respect to an-
other circle, it cuts the diameter common to both in a pair of inverse points common to both.

Cor. 2. The preceding furnishes an obvious solution of the problem, "to determine on the common diameter of two given circles the two points, real or imaginary, inverse to both." For, assuming arbitrarily any point P, and describing the circle passing through it and through its two inverses Q and R with respect to the two circles; the circle $P Q R$ thus described intersects, by the preceding, the common diameter in the two points required.

The two points E and F thus determined are inaginary when the two circles intersect, real when they do not, and coincident at the point of contact when they touch. See Art. 152.
156. Every circle passing through a pair of inverse points with respect to another circle is orthogonal to the other. (22).

For, if C (fig., Art. 150) be the centre of any circle, P and Q any pair of inverse points with respect to it, and R either point in which any circle through P and Q intersects it ; since then by hypothesis $C P . C Q=C R^{z}$, therefore $C R$, a radius of one circle, is a tangent to the other, and therefore \&e. (22).

Conversely, every circle orthogonal to another determines pairs of inverse points on all diameters of the other.

For, if C (same fig.) be the centre of either circle, P and Q the two points in which any line through it meets the other, and R either point of intersection of the two; then since tho radius $C R$ of the former is, by hypothesis, a tangent to the latter, therefore $C P . C Q=C R^{2}$, and therefore \&ec. (22).

Cor. 1°. It is cvident from tho above that every circle passing through the common pair of inverse points with respect to two others (155, Cor. 2°) is orthogonal to both, and conversely that, every circle orthogonal to two others passes through their common pair of inverse points.

Cor. 2°. It is also evident from the same that all the circles of a system having a common pair of inverse points (see tho undotted circles of fig., Art. 152) are cut orthogonally by every circle passing through the points, and, conversely, that all the circles of a systcm passing through a pair of common points (see the dotted circles of same figure) are cut orthogonally by every circle coaxal with the points.

Cor. 3°. It follows also from the above and from Cor. 1°. that if a variable circle pass through a fixed point and cut a fixed circle at right angles, or, more generally, if it cut theo fixed circles at right angles, the locus of its centre is a line; for passing through the point and its inverse with respect to the circle in the former case, and through the common pair of inverse points with respect to the two circles in the latter case, its centre in either case describes therefore the axis of reflexion of the two points through which it passes; a more general proof for the second case will be given in another chapter.

Cor. 4°. The preceding supply obvious solutions of the three following problems: "To describe a circle, 1^{*}. passing through tho given points and cutting a given circle at right angles; 2°. passing through a given point aml cutting two given circles at right angles; 3°. cutting three given circles at right angles." For the circle passing through the two points and through the inverse of either with respect to the circle, in the first case; that passing through the point and its two inverses with respect to the two circles, in the second case; and that orthogonal to any one of the three circles, and passing through the common pair of inverse points with respect to the other two, in the third case; is evidently that required; a more general construction for the third case will be given in another chapter.
157. The teo tangents to a circle from any point in the axis of reflexion of any pair of inverse points are equal to the theo distances of the point from the inverse points.

For, if P and Q (fig., Art. 150) be the inverse points, O any point in their axis of reflexion L, and $O R$ and $O S$ the two tangents from O to the circle; since then, by the preceding, the circle round O as centre which passes through P and Q cuts the original circle at right angles, it passes through R and S, and therefore $\&$

Conversely, the locus of a rariable point, not at infinity (15), the tangents from which to a fixed circle are equal to its distance from a fuxed point is a line, the axis of reflexion of the point and its inverse with respect to the circle.

For, if P (same fig.) be the fixed point, and O any point for
which the two tangents $O R$ and $O S$ to the fixed circlo are each equal to the distance $O P$; since then the circle round O as centre which passes through P passes through R and S, it cuts the fixed circle at right angles, and therefore passes also through Q, the inverse of P with respect to the fixed circle, and therefore \&c.

Cor. 1°. It is evident from the first part of the above that when (152) any number of circles have a common pair of inverse points P and Q, tangents to them all from any point in the axis of reflexion L of the two points are equal.

Cor. 2°. The second part of the above supplies of itself obvious solutions of the two following problems:
1°. To determine the point on a given line or circle, the tangents from which to a given circle shall be equal to its distance from a given point.
2°. To determine the point, the tangents from which to taco given circles shall be equal to its distances from tao given points.

And, by aid of Cor. 2°., Art. (155) of the two following:
1'. To determine the point on a given line or circle, the tangents from which to two given circles shall be eqtual.

2'. To determine the point, the tangents from which to three given circles shall be equal.
158. The squares of the distances of a variable point on a fixed circle from any fixed pair of inverse points have the constant ratio of the distances of the centre from the inverse points.

For, if C be the centre of the circle, P and Q the fixed pair of inverse points, and X the variable point on the circle; since then, by hypothesis, $C P \cdot C Q=C \Gamma^{3}$, or, which is the same thing, $C P: C I:: C I: C Q$; therefore the triangles $P C X$ and $X C Q$ are similar, and
 therefore $P^{1} \mathrm{~N}^{2}: Q \Lambda^{1}:: P C^{n}: C X^{2}:: C X^{2}: Q C^{2}:: P C: Q C$. The property of Art. (150) is evidently a particular case of this.

Conversely, the locus of a variable point the distances of which from two fixeel points have any constant ratio, is the circle coaxal with the fixal points (152) wehose centre divides the distance between them in the duplicate of the constant ratio.

For, if P and Q be the two fixed points, X any position of the variable point, and C the point on $P Q$ for which $C P . C Q=C X^{2}$; then since, as above, the triangles $P C X$ and $\Lambda C Q$ are similar, therefore, as above, $P C: Q C:: P \Lambda^{3}: Q \mathrm{X}^{3}$, which being by hypothesis constant, therefore i.e.

If while the two points P and Q remain fixed, the constant ratio $P X: Q X$ be conceived to vary and pass continuously through all values from 0 to ∞, the locus circle will pass evidently through all the phases of coaxality with P and Q described in (152); see fig. of that article. Commencing with the point P as the nascent limit for the extreme valuo 0 ; opening out into the axis of reflexion L of P and Q as the part of the locus not at infinity (150) for the mean value 1 ; and ending with the point Q as the evanescent limit fur the extreme value on.

Since for every point X at infinity the ratio $P I: Q X=1$ (15), the complete locus, which for every value of the ratio not $=1$ is by the above a single mbroken circle in its general form, consists therefore for the particular value of the ratio $=1$ of teo lines, viz. the axis of reflexion of P and Q, and the line at infinity (136) ; this is an instance confirmatory of the general statement made at the close of Art. (150), that when the centre of a circle of infinite radius is at infinity the circle itself breaks up into two lines, one at a finite distance, and the other at infinity.

Cor. 1°. Since from the similarity of the two triangles $P C X$ and $Q C X$ in the first part of the above, the two pairs of angles $X P C$ and $Q . I C, X Q C$ and $P I C$ are ahways similar (24), it follows consequently that-

Of the hoo lincs comecting any point on a circle with any pair of inverse points, the angle dtermined by either with the radius at the point is similar to that determined by the other with the diameter containing the inverse points. .

Cor. 2. The second part of the above supplies obvious solutions of the two following problems:
1°. To determine the point on a given line or circle, the ratio of whose distances from two given points shall be given.
2°. To determine the point, the ratios of whose distances from three given points shall be given.
159. The square of the distance of a variable point on a fixer circle from any fixed point varies as its distance from the axis of reflexion of the point and its inverse with respect to the circle.

For, if C (figure of last Article) be the centre of the circle, P and Q the fixed point and its inverse, X any position of the variable point on the circle, and $X L$ the perpendicular from X on the axis of reflexion L of P and Q; since then, Euc. 11., 5, 6,

$$
P X^{2}-Q X^{x}=2 P Q \cdot L X=2(P C-Q C) L X
$$

and since, by the preceding, $P X^{2}: Q X^{2}:: P C: Q C$, therefore $P X^{2}=2 P C . L X$ and $Q X^{* 2}=2 Q C . L X$, and therefore \&c.

Conversely, the locus of a variable point the square of whose clistance from a fixed point varies as its distance from a fixed line is a circle coaxal with the point and its reflexion with respect to the line (152).

For, if P (same fig.) be the fixed point, L the fixed line, Q the reflexion of P with respect to L, X any position of the variable point, $X L$ its distance from the fixed line, and C the point on $P Q$ for which $P X^{*}=2 P C . L X$; since then, as above,

$$
P X^{z}-Q X^{z}=2 P Q . L X=2(P C-Q C) L X
$$

therefore $Q \mathrm{X}^{2}=2 Q C . L X$, and therefore $P \mathrm{X}^{2}: Q \mathrm{~N}^{y}:: P C: Q C$, from which, since by hypothesis $P C$ is constant, and therefore C fixed, it follows from the preceding that the locus of X is the circle coaxal with P and Q whose centre is C.

If while the point and line P and L remain fixed, the base $P C$ of the variable rectangle $P C . L X$ be conceived to vary and take successively in the direction opposite to that of $P Q$ all values from 0 to ∞, the locus circle will pass evidently through half the system of phases of coaxality with P and Q described in (152); commencing with P as the nascent limit for tho extreme value 0 , and ending with L as the part not at infinity of the infinite limit for the extreme value ∞. And if then after passing through infinity $P C$ be conceived to change direction and take successively all values from ∞ to $P^{\prime} Q$, the locus circle
will pass evidently throngh the remaining half of the same series of phases; commencing with L as the part not at infinity of the infinite limit for the extreme value ∞, and ending with Q as the evanescent limit for the extremo value $P Q$; after which, changing its nature, it will evidently become and continue imaginary for all lesser values from $P Q$ down to 0 .

Cors. The second part of the abore supplies obrious solutions of the two following problems:
1°. To determine the point on a given line or circle, the square of vohose distance from a given point shall be equal to the rectangle under a given base and its distance from a given line.
2°. To determine the point, the squares of whose distances from two given points shall be equal to the rectangles under two given bases and its distances from tooo given lines.
160. The angle connecting any point on a circle with any pair of inverse points is bisected, internally and externally, by the lines connecting the point with the extremities of the diameter containing the inverse points.

For, if (same figure as in Art. 158) C be the centre of the circle, P and Q the pair of inverse points, A and B the extremities of the diameter on which they lic, and X auy point on the circle; since then, by the first part of (158),

$$
P A^{2}: Q A^{2}=P B^{2}: Q B^{2}=P X^{3}: Q X^{3}=P C: Q C
$$

therefore (Eac. VI. 3) the angle $P X Q$ is bisected internally and externally by the two lines $P A$ and $P B$, and therefore $\mathbb{N c}$.

Conversely, the locus of a variable point the angle connecting which with two of three fixed collinear points is lisected, internally or externally, by the line connecting it with the third, is the circle coaxal with the tico rehich passes through the third.

For, if P and Q (same figure) be the first and second of the fixed points, A or B the third, C the point on their common line for which $P C: Q C=P A^{2}: Q A^{y}$ or $P B^{2}: Q B^{2}$, and X any position of the variable point; since then, by hypothesis, the angle $P X Q$ is bisected by the line $P A$ or $P B$, therefore (Eue. v1. 3) $P X^{2}: Q X^{y}=P A^{*}: Q A^{y}$ or $P B^{3}: Q B^{z}=P C: Q C$, consequently, by the second part of (158) $C C X^{3}=C P \cdot C Q=C A^{3}$ or $C B^{2}$, and therefore \&e.

Cor. The second part of the above supplies obrious solutions of the two following problems:
1°. To determine the point on a given line or circle, the angle connecting which with two of three given points in a line shall be bisected by the line connecting it with the third.
2°. To determine the point, the angles connecting which with the extremitics of two given lines shall be bisected by the lines connecting it with two given points on the lines.
161. Every two inverse segments of any diameter of a circle (154) subtend similar angles (24) at every point on the circle.

For, if $P P^{\prime}$ and $Q Q^{\prime}$ be the two inverse segments, P and Q, P^{\prime} and Q^{\prime} their two pairs of inverse extremities, A and B the extremities of the diameter to which they belong, C the middle point of $A B$, and X any point on the circle; then since, by the first part of the preceding (160), the two angles $P X Q$ and $P^{\prime} X Q^{\prime}$ have the same bisectors $X A$ and $X B$, therefore the two angles $P X P^{\prime}$ and $Q X Q^{\prime}$ (and also the two $P X Q^{\prime}$ and $Q X P^{\prime}$ (154)) are similar, and therefore \&e.

Conversely, the locus of a variable point the angles subtended at which by two fixed coaxal segments are similar, consists of the two circles (154) with respect to which the two segments are inverse.

For, if $P P^{\prime}$ and $Q Q^{\prime}$ (same figures) be the two segments, and X any position of the variable point ; then since, by hypothesis, the two angles $P X P^{\prime}$ and $Q X Q^{\prime}$ are similar, therefore either the two angles $P X Q$ and $P^{\prime} X Q^{\prime}$, or the two $P X Q^{\prime}$ and $Q X P$, have the same bisectors; in the former case (that of the figures), if C be the middle point of the segment $A B$ intercepted on the axis of the segments by the common bisectors $X A$ and $X B$, then since, as in the second part of the preceding $(160), C X^{2}=C P \cdot C Q=C P^{\prime} . C Q$, therefore C and $C X$ are the centre and radius of the circle coaxal with $P Q$ and $P^{\prime} Q^{\prime}(153)$, and therefore \&c.; and in the latter case (not that of the
figures), if C^{\prime} be the middle point of the segment $A^{\prime} B^{\prime}$ intercepted on the axis of the segments by the common bisectors $X A^{\prime}$ and $X B^{\prime}$, then since, for the same reason as before, $C^{\prime} X^{2}=C^{\prime} P \cdot C^{\prime} Q^{\prime}=C^{\prime} Q . C^{\prime} P^{\prime}$, therefore C^{\prime} and $C^{\prime} X$ are the centre and radius of the circle coaxal with $P Q^{\prime}$ and $P^{\prime} Q$ (153), and therefore \&c.

Of the two different circles comprising the above locus, though the first is real for all the three possible modes (82) in which the two segments $P P^{\prime}$ and $Q Q^{\prime}$ could bo disposed on their common axis, as represented in the three figures $(\alpha),(\beta)$, (γ), the second is real muly for the disposition, represented in fig. (β), in which the extremities of one segment alternate with those of the other in the order of their occurrence on their common axis (see 153).

Cor. 1°. From the similarity of the two pairs of angles $P X P^{\prime}$ and $Q X Q^{\prime}, P X Q^{\prime}$ and $Q X P^{\prime}$ in the first part of the above, it follows immediately from (65), combined with (155), that

$$
\frac{P P^{\prime} \cdot P Q^{\prime}}{Q P^{P} \cdot Q Q}=\frac{P X^{2}}{Q X^{2}}=\frac{P A^{2}}{Q A^{2}}=\frac{P B^{2}}{Q B^{2}}=\frac{P C}{Q C}, \quad \times \times \times
$$

and, of course, for the same reason that

$$
\frac{P P \cdot P^{\prime} Q}{Q^{\prime} P^{\prime} \cdot Q Q}=\frac{P^{\prime} X^{2}}{Q^{\prime} X^{3}}=\frac{P^{\prime} A^{2}}{Q^{\prime} A^{2}}=\frac{P^{\prime} B^{2}}{Q B^{3}}=\frac{P^{\prime} C}{Q^{\prime} C},
$$

and therefore, generally, that-
The rectangles under the distances of any pair of inverse points from any other pair on the same diameter are as the squares of their distances from each extremity of the diameter, and as their distances from the centre of the circle.

Cor. 2°. The second part of the above supplies obvious solutions of the two following problems:
1°. To determine the point on a given line or circle, the angles subtended at which by two given coaxal segments shall be similar.
2°. To determine the point, the angles subtended at rehich by three given coaxal segments shall be similar.
162. The extremities of any chord of a circle, the centre, and the inverse of any point on the chord, lic in a circle.

For, if C be the centre of the circle, X and Y the ex-

tremities of any chord, P any point, external or internal, on $X Y$, and Q the inverse of P with respect to the circle ; since then $C X^{2}$ or $C Y^{2}=C P^{2}-P X . P Y$, by the isosceles triangle $X C Y$, and $=C P . C Q=C P^{x}-P C \cdot P Q$, by the inverse points P and Q, therefore $P X . P Y=P C . P Q$, and therefore \&c.

Conversely, every circle passing through the centre of another circle passes through the inverse of every point on its chord of intersection with the other.

For, if C bo the centre of any circle, X and Y its points of intersection with any circle passing through C, P any point, external or internal, on $X Y$, and Q the point in which the circle $X C Y$ intersects the line $C P$; since then $P C . P Q=P X . P Y$, therefore $P C^{3}-P C . P Q=P C^{3}-P X . P Y$, that is, $C P . C Q=C X^{2}$ or $C Y^{2}$, and therefore \&c.

Cor. 1°. From the above, supposing the two points P and Q to remain fixed, and the line and circle $X Y$ and $X C Y$ to vary simultaneously, it appears that-

If a variable line pass through a fixed point and intersect a fixed circle, the circle passing through the points of intersection and though the centre of the latter passes through a second fixed point, the inverse of the first with respect to the fixed circle.

And conversely, that-
If a variable circle pass through a fixed point and through the centre of a fixed circle, its chord of intersection with the latter passes through a second fixed point, the inverse of the first with respect to the fixed circle.

Cor. 2. From the same, supposing, conversely, the line $X Y$ and circle $X C Y$ to remain fixed, and the two points P and Q to vary simultaneously, it appears again that-

If a variable point describe a fixed line, its inverse with respect
to any circle describes the circle determined by the centre of the latter and by its intersections with the fixed line.

And conversely, that -
If a variable point describe a fixed circle, its inverse with respect to any cirole through those centre it parses describes the line determined by the points of intersection of the two circles.

Cor. 3°. In the particular case when P is the middle point of the chord $X Y$, since then $C Q$ is eridently a diameter of the circle $X C Y$, therefore the two angles $C X Q$ and $C Y Q$ are both right, and therefore, from the above-

The middle point of any chord of a circle and the intersection of the two tangents at its extremities, and conversely, the intersection of any two tangents to a circle and the middle point of their chord of contact, are inverse points with respect to the circle.
163. The diameter containing any pair of inverse points with respect to a circle lisects, externally or internally, the angle subtended at cither point by any chord of the circle zchose direction pusses through the other.

For, if P and Q (figures of last article) be the two points, X and Y the extremities of any chord passing through either of them I, and C the centre of the circle; then, since by (158), $P X^{*}: Q X^{2}=P Y^{3}: Q Y^{z}$, each being $=P C: Q C$, therefore, by alternation, $P X^{3}: P Y^{z}=Q X^{3}: Q Y^{3}$, and therefore, Euc. vi. 3, the angle $X Q Y$ is bisected, externally or internally, by $Q P$; or, since, by (162), the circle $X C Y$ passes through Q, as the arc $X Y$ is bisected, externally or internally; at C, so is the angle $X Q Y$ by $Q C$.

Conversely, if theo points on the same diameter of a circle be such that the angle subtended at one of them by any chord of the circle, not perpendicular to the diameter, whose direction passes through the other is bisected by the diameter, they are inverse points with respect to the circle.

For, if P and Q (same figures as before) be the two points, and $X Y$ the chord whose direction passes through one of them P; then, since by hypothesis, the angle $X Q Y$ is bisected, externally or internally, by $Q P$, therefore, Euc. vi. $3, P X: Q X=P Y: Q Y$, and therefore (158) X and Y are two points on the same circle coaxal with P and Q, which, as its centro lies on the line $P Q$,
unless in the particular case when $X Y$ is perpendicular to $P Q$, coincides therefore necessarily with the original circle, and therefore \&c.; or, if C be the point in which the circle $X Q Y$ intersects the line $P Q$, since by hypothesis the angles $X Q C$ and $Y Q C$ are equal or supplemental, therefore the lines $C X$ and $C Y$ are equal, and therefore either $X Y$ is perpendicular to $P Q$, or C is the centre of the original circle, in which case (162) $C P . C Q=C X^{z}$ or $C Y^{z}$, and therefore \&c.

Cor. 1°. It is evident from the above, that when any number of circles have a common pair of inverse points (152), all pairs of opposite segments, intercepted by pairs of them on any line passing through either, subtend similar angles at the other. For, if $X Y$ and $X^{\prime} Y^{\prime}$ be the two chords intercepted by any two of them on any line passing through either point P, the two angles $X Q Y$ and $X^{\prime} Q Y^{\prime}$, subtended by them at the other Q, have the same bisector $P Q$, and therefore the two pairs of angles $X Q X^{\prime}$ and $Y Q Y^{\prime}, X Q Y^{\prime}$ and $Y Q X^{\prime}$ are similar.

Cor. 2°. It is also evident from the converse, that the two centres of perspective of any two parallel chords of a circle are inverse points with respect to the circle. For, when two chords $X Y$ and $X^{\prime} Y^{\prime}$ are parallel, the two pairs of opposite lines $X X^{\prime}$ and $Y Y^{\prime}, X Y^{\prime}$ and $Y X^{\prime}$ connecting their extremities, two and two, intersect evidently upon, and make equal angles with, the same diameter, and therefore ©.E.
164. If a variable chord of a fixed circle turn round a fixed point, the rectangles under the distances of its extremities from the inverse of the point and from the axis of reflcaion of the point and its inverse are both constant.

For, if C (same figures as before) be the centre of the circle, P the fixed point, Q its inverse with respect to the circle, L the axis of reflexion of P and Q, and $X Y$ any position of the variable chord turning round P; then, to prove the first, since, by (158),

$$
Q X^{2}: P X^{2}=Q Y^{2}: P Y^{2}=Q C: P C
$$

therefore

$$
Q X \cdot Q Y: P X \cdot P Y=Q C: P C
$$

and since (Euc. 111. 35, 36)

$$
P X \cdot P Y=P C \cdot P Q=2 P C \cdot P L
$$

therefore $\quad Q X . Q Y=Q C . Q P=2 Q O . Q L$,
and therefore \&c.; and, to prove the second, sinee, by (159),

$$
\begin{gathered}
P \Gamma^{3}=2 P C . L X \text { and } P Y^{2}=2 P C \cdot L Y, \\
L X . L Y=P X^{3} \cdot P Y^{2} \div 4 P C^{2},
\end{gathered}
$$

therefore
and since (Euc. III. 35, 36)

$$
P X^{y} \cdot P Y^{3}=P C^{2} \cdot P Q^{3}=4 P C^{3} \cdot P L^{3},
$$

therefore $L X . L Y=L P^{1}$, and therefore ©.c.
Conversely, if a variable chord of a fixed circle, turning round one of theo fixed points on the same diameter of a circle, bo such that the rectangle under the distances of its extremities cither from the other or from the axis of reflexion of the two is constant, the theo points are inverse points with respect to the circle.

These are both evident from the direet properties, by taking the two extreme positions of tho variable chord, those, viz. in which it coincides with the diameter containing the points, and in which it either intersects that diameter at right angles or touches the circle according as tho point round which it turns is external or internal to the latter.

Con. It follows at once from the above, that for a system of circles having a common pair of inverse points (152), the several rectangles under the distances of the extremities of all chords passing through either from the other are constant, and from the axis of reflexion of both are constant and equal to the square of the semi-segment intercepted between them.

CHAPTER X.

THEORY OF POLES AND POLARS WITH RESPECT TO A CIRCLE.

165. The line passing through the inverse of any point with respect to a circle, and intersecting at right angles the diameter containing the point, is termed the polar of the point with respect to the circle; and, conversely, the inverse of the foot of the perpendicular from the centre of a circle upon any line is termed the pole of the line with respect to the circle.

From the mere definition of a point and line, pole and polar to each other with respect to a circle, it is crident that-In the general case when the radius of the circle is finite, 1°. They lie at the same side or at opposite sides of the centre, according as the circle is real or imaginary; 2°. In either case, as one approaches to or recedes from, the other, conversely, recedes from or approaches to, the centre; 3°. The polar of the centre is the line at infinity, and conversely, the pole of the line at infinity is the centre; 4°. The polar of any point on the circle is the tangent at the point, and conversely, the pole of any tangent to the circle is the point of contact ; 5°. The polar of any point at infinity is the diameter perpendicular to the dircetion of the point, and conversely, the pole of any diameter is the point at infinity in the direction perpendicular to the diameter; 6°. The point of intersection and chord of contact of any two tangents to the circle are pole and polar to each other with respect to the circle (162, Cor. 3°.). In the extreme case when the radius of the circle is evanescent, 1°. Every line, however situated, is a polar of the centre; 2°. Every line, not passing through the centre, is a polar of the centre only; 3°. Every line passing through the centre is a polar, not only of the centre, but of every point indifferently on the orthogonal line passing
through the centre. And in the extreme case when the radius is infinite, the polar of every point, however situated, is parallel to the line into which the part of the circle not at infinity then opens out, and distant from it at the opposite side by an interval equal to that of the point.

Every two angles being similar whose sides are mutually perpendicular, it is evident also that, whatever be the nature of the circle, the angle subtended at the centre by any two points is similar to that determined by the polars of the points, and couversely, the angle determined by any two lines is similar to that subtended at the centre by the poles of the lines.

In the theory of poles and polars with respect to a circle, the diameter passing through any point is termed the polar axis of the point, and the projection of the centre on any line the polur centre of the line.
166. Of the various properties of points and lines, pole and polar to each other with respect to a circle, the two following, converse to each other, lead to the greatest number of consequences, and may be regarded as fundamental.

When a line passes through a point, its pole with respect to any circle lies on the polar of the point weith respect to the circle; and conversely, when a point lies on a line, its polar with respect to any circle passes through the pole of the line with respect to the circle.

To prove which, P and L being the point and line, pole and
polar to each other, and C the centre of the circle ; if, in the first case, $X Y$ be any lino through $P, C E$ the perpendicular from C on $X Y$, and M the point in which $C E$ intersects L; then since, by similar right-angled triangles $C E P$ and $C Q M$, the rectangles $C E . C M$ and $C P . C Q$ are equal, and since, by hypothesis, the latter rectangle $C P . C Q=$ the square of the radius of the circle, therefore the former rectangle $C E . C M$ is also $=$ the square of the radius, and therefore the point M is the pole of the line $X Y$ with respect to the circle. And if, in the second case, M be any point on $L, M C$ the line connecting it with C, and $P E$ the line through P perpendicular to $M C$; then, as before, $C E . C M=C P . C Q=$ square of radius of circle, and therefore the line $P E$ is the polar of the point M with respect to the circle.

Cor. 1°. Since, by the above, the pole of every line passing through P lies on L, and, conversely, the pole of every point lying on L passes through P, it follows consequently that-

If any number of lines of any geometrical figure pass through a point, their poles with respect to any circle lie on a line, the polar of the point with respect to the circle; and conversely, if any number of points of any geometrical figure lie on a line, their polars with respect to any circle pass through a point, the pole of the line with respect to the circle.

Cor. 2 ${ }^{\circ}$. If, in the above, one pole and polar P and L be conceived to remain fixed with the circle, and the other M and $X Y$ to vary, it appears again that-

If a variable line turn round a fixed point, its pole with respect to any fixed circle describes a fixed line, the polar of the point with respect to the circle; and conversely, if a variable point describe a fixed line, its polar with respect to any fixed circle turns round a fixed point, the pole of the line with respect to the circle.

Con. 3°. Since when, as in the figures, the points X and Y are real, tangents at them intersect at M, and conversely (162, Cor. 3°), it follows of course, as included in the preceding, that-

If a variable chord of a fixed circle pass through a fixed point, the teo tangents at its extremities intersect on a fixed line, the polar of the point; and conversely, if two variable tangents to a fixed circle intersect on a fixed line, their chord of contact passes through a fixed point, the pole of the line.

Cor. 4°. It being evident, from the right angle PEC, that as the point M describes the line L its inverse E with respect to the circle describes the circle on $P C$ as diameter, and conversely. Hence, as shewn otherwise for a particular caso in (162, Cor. 2°) -

If a point describe a line, its inverse with respect to any circle describes the circle passing oppositely through the centre of the circle and the pole of the line; and conversely, if a point describe a circle, its inverse with respect to any circle through whose centre it passes describes the line polar with respect to the latter of the point of the former opposite to its centre.

The above properties, suitably modified, are of course all true in the particular cases when either of the two points P or Q is at infinity, and the other therefore at the centre of the circle.
167. From the fundamental property of the preceding article, it is evident with respect to any circle, that-

The line of connection of any teeo points is the polar of the point of intersection of the polars of the points; and, reciprocally, the point of intersection of any theo lines is the pole of the line of connection of the poles of the lines.

For, by that property, when a line passes through two points its pole lies on the polars of both, and reciprocally, when a point lies on two lines its polar passes through the poles of both, and therefore \&c.

The point of intersection and the chord of contact of any two tangents to a circle being polo and polar to each other with respect to the circle (162, Cor. 3°), it follows, of course, as included in the preceding, that the point of intersection of the two chords of contact and the line of comnection of the two points of intersection of any theo pairs of tangents to the same circle, are pole and polar to each other with respect to the circle.

Of the many consequences from the above, which in the modern geometry of tho circle are numerous and remarkable, the six next articles contain a few of the most important.
168. When a triangle is such that two of its vertices and their opposite sides are pole and polar to each other with respect to a circle, the third vertex and its opposite side are pole and polar to each other with respect to the same circle.

For, since for three points $P M N$, (see figures of article 166), when P is the pole of $M N$, and M the pole of $P N$, then, by the preceding, N is the pole of $P M$, and therefore \&c.

Every triangle MPN thus related to a circle, that its three vertices and their opposite sides are pole and polar to each other, is said (for a reason that will presently appear) to be self-reciprocal with respect to the circle; and it is evident from the definition of pole and polar, in Art. 165, that in every selfreciprocal triangle with respect to a circle, the three perpendiculars from the vertices upon the opposite sides intersect at the centre, and are there divided so that the rectangle under the segments of each $=$ the square of the radius of the circle.

Since in every triangle $A B C$ the three perpendiculars $A X$, $B Y, C Z$ from the vertices upon the opposite sides intersect at a common point O for which the three rectangles $O A . O X$, $O B . O Y, O C . O Z$ are equal in magnitude and sign; therefore, by the above, every triangle $A B C$ is self-reciprocal with respect to the circle whose centre is the intersection O of the three perpendiculars $A X, B Y, C Z$ from its vertices on its opposite sides and the square of whose radius is the common value of the three equal rectangles $0 A . O X, O B . O Y, O C . O Z$, and which is therefore real or imaginary according as that common value is positive or negative, that is, according as the triangle is obtuse or acute angled.

In the particular case of a right-angled triangle of any finite magnitude, the point O being the vertex of the right angle, and the common value of the three rectangles $O A . O X$, $O B . O Y, O C . O Z$ being $=0$; hence, from the above, every right-angled triangle of finite magnitude is self-reciprocal with respect to the circle of evanescent radius whose centre is the vertex of the right angle.

If, while the vertex of the right angle remains at a finite distance, the opposite side bo conceived to recede to infinity; since, then, the common value of the three rectangles $O A . O X$, $O B . O Y, O C . O Z$ is indeterminate (13), hence, again, from the above, every right-angled triangle whose hypotenuse is at infinity is self-reciprocal with respect to every circle of finite radius whose centre is the vertex of the right angle.

For any triangle $A B C$, whatever be its magnitude and form,
if A, B, C be its three angles, and d the diameter of its circunscribing eircle; the square of the radius $O R$ of the circle to which it is self-reciprocal is given in all cases by the formula

$$
O R^{2}=-d^{2} \cdot \cos A \cdot \cos B \cdot \cos C,
$$

which, as the cosine of a right angle is evanescent, includes evidently with all others the two particular cases just noticed.

For, since for its centre 0 , which, in virtue of the property of the present article, is termed the polar centre, as the circle itself is, for the same reason, the polar circle of the triangle, the three circles $B O C, C O A, A O B$ are all equal to the circle $A B C$, therefore, by (62, Cor. 7) and by (62), disregarding signs,

$$
\begin{aligned}
& O X=O B \cdot O C \div d, O Y=O C \cdot O A \div d, O Z=O A \cdot O B \div d \\
& \text { and } \quad O A=d \cdot \cos A, O B=d \cdot \cos B, O C=d \cdot \cos C
\end{aligned}
$$

therefore

$$
\begin{aligned}
& O R^{n}=O X \cdot O A=O Y \cdot O B=O Z \cdot O C \\
&=O A \cdot O B \cdot O C \div d=d^{2} \cdot \cos A \cdot \cos B \cdot \cos C
\end{aligned}
$$

and as the two magnitudes thus shewu to be always equal in absolute value are evidently always opposite in sign, therefore \&c.

If a, b, c be the three sides of the triangle, and d, as before, the diameter of its circumscribing circle, it is easy to see from the above, or directly, that also

$$
O I^{2}=\frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right)-d^{2}
$$

which is the formula for the square of the radius of the polar circle in terms of the three sides of the triangle.

In every triangle the polar circle, real or imaginary, intersects! at right angles the thrce circles, of which the three sides are diameters. For the extremities of each perpendicular of the triangle being inverse points with respect to the polar circle (149), and the circle on each side as diameter passing through the four extremities of the two perpendiculars to the other two sides (Euc. III. 31), therefore \&c. (156).
169. When two triangles, whose vertices and sides correspond in pairs, are such with respect to a circle, that each vertex of one is the pole of the corresponding side of the other, or conversely,
then, reciprocally, each vertex of the latter is the pole of the corresponding side of the former, or conversely.

For if P, Q, R be the three vertices of either triangle, and $L^{\prime}, M^{\prime}, N^{\prime}$ the three corresponding sides of the other; then, since, by hypothesis, P is the pole of L^{\prime}, Q of M^{\prime}, R of N^{\prime}, thereore, by (167), $Q R$ is the polar of $M \Gamma^{\prime} N^{\prime}, R P$ of $N^{\prime} L^{\prime}, P Q$ of $L^{\prime} M M^{\prime}$, and therefore \&c.

More generally, when two polygons of any order are such with respect to a circle, that every vertex of one is the pole of a corresponding side of the other, or conversely, then, reciprocally, every vertex of the latter is the pole of a corresponding side of the former, or conversely.

For, if $P, Q, R, S, \& c$. be the several vertices of either polygon, and $L^{\prime}, M^{\prime}, N^{\prime}, O^{\prime}$, \&c. the several corresponding sides of the other; then, since, by hypothesis, P is the pole of L^{\prime}, Q of M^{\prime}, R of N^{\prime}, S of $O^{\prime}, \&{ }^{\prime}$ ', therefore, by (167), $P Q$ is the polar of $L^{\prime} M I^{\prime}, Q R$ of $M^{\prime} N^{\prime}, R S$ of $N^{\prime} O^{\prime}, \& c$., and therefore \&c.

More generally still, when two figures of any nature are such with respect to a circle, that every point of one is the pole of a corresponding tangent to the other, or conversely, then, reciprocally, every point of the latter is the pole of a corresponding tangent to the former, or conversely.

For if P and Q be any two points of either figure F, and L^{\prime} and M^{\prime} the two corresponding tangents to the other F, then, since, by hypothesis, P is the pole of L^{\prime} and Q of M, therefore by (167), $P Q$ is the polar of $I^{\prime} M^{\prime}$; and this being true in all cases, whatever be the separation of Q from P or of M^{\prime} from L^{\prime}, is therefore true in the particular case when Q coincides with P, and consequently M^{\prime} with L^{\prime}; that is, when (19) $P Q$ is the tangent L at the point P to the figure F, and when (20) $L^{\prime} M^{\prime}$ is the point of contact P^{\prime} of the tangent L^{\prime} with the figure $F^{\prime \prime}$, and therefore \&c.
170. Every two triangles, polygons, or figures of any kind F or $F^{\prime \prime}$ then reciprocally related to each other, that the several points of either and the corresponding lines of the other are pole and polar to each other with respect to a circle, are said, each to be the polar of the other, and both together to be reciprocal polars to each other, with respect to the circle; the reciprocality
between them consisting in the circumstance, above established, that when either is the polar of the other with respect to a circle, then, reciprocally, the latter is the polar of the former with respect to the same circle.

Two polygons of any order, one inscribed and the other circumscribed to a circle at the samo system of points on its circumference, furnish an obvious example of a pair of polygons reciprocal polars to each other with respect to the circle; the vertices and sides of the former being respectively the points of contact of the sides and the chords of contact of the angles of the latter. Two concentric circles again furnish another obvious example of a pair of figures, reciprocal polars to each other with respect to the concentric circle the square of whose radius equals the rectangle under their radii; either being indifferently the locus of the poles of all the tangents to the other, or the envelope of the polars of all the points of the other, with respect to that circle.

A figure of any nature F is said to be self-reciprocal with respect to a circle, when its several points and lines correspond in pairs pole and polar to each other with respect to the circle; thus, as stated in (168), every triangle $A B C$ is self-reciprocal with respect to the particular circle, real or imaginary, to which its vertices and opposite sides are pole and polar to each other.

If either of two figures of any nature, reciprocal polars with respect to any circle, bo turned round the centre of the circle into the opposite position, the two figures will then evidently be reciprocal polars with respect to the concentric circle the square of whose radius is equal in magnitude and opposite in sign to that of the original circle; of the two circles, for the two opposite positions, one therefore is always real and the other always inaginary.
171. Every two figures F and F, reciprocal polars to each other with respect to a circle, possess evidently (165 and 166) the following reciprocal properties:
1°. Every line L of either is perpendicular to that connecting the corresponding point P^{\prime} of the other with the centre of the circle; and conversely.
2°. The angle determined by any two lines L and M of either
is similar to that subtended by the two corresponding points P^{\prime} and Q^{\prime} of the other at the centre of the circle; and conversely.
3°. When of three lines L, M, N of either, two make equal angles with the third, then of the lines connecting the three corresponding points $P^{\prime}, Q^{\prime}, R^{\prime}$ of the other with the centre of the circle, the corresponding two make equal angles with the third; and conversely.
4°. The rectangle under the distances of any point P of either and of the corresponding line L^{\prime} of the other from the centre of the circle is constant ; and conversely.
5°. When two points P and Q of either are equidistant from the centre of the circle, the two corresponding lines L^{\prime} and $M M^{\prime}$ of the other are equidistant from the centre of the circle; and conversely.
6°. When three points P, Q, R of either are collinear, the three corresponding lines $L^{\prime}, M^{\prime}, N^{\prime}$ of the other are concurrent ; and conversely.
172. Any figure F being given or taken arbitrarily, its polar F^{n} with respect to any circle can always be derived from it, by the simple construction of taking either the polars of its several points or the poles of its several lines with respect to the circle; and the repetition of the same process to the new figure F^{*}, thus determined by either construction, always (169) reproduces the original figure F; thus, every figure F, whatever be its nature, has its polar figure $F^{\prime \prime}$ with respeet to every circle, and every two figures F and $F^{\prime \prime}$, reciprocal polars to each other with respect to any circle, always produce and reproduce each other alternately by continued repetition of either process by which one may be derived from the other.

The process of transformation, just described, by which all the points of a figure of any nature are changed into their polars, and all the lines of the figure into their poles, with respect to an arbitrary circle, is sometimes termed polarization, the circle by aid of which it is performed the polarizing circle, and the centre and radius of the circle the centre and radius of polarization; but from the reciprocality, as above explained, existing between the original and derived figures, the process of transformation is more generally known as reciprocation, the
circle by aid of which it is performed as the reciprocating circle, and the centre and radius of the circle as the centre and radius of reciprocation.

In the process of reciprocation, the reciprocating circle, provided only it be of a finite radius and at a finite distance, being otherwise entirely arbitrary as to magnitude and position, should of course, when necessary, be selected so as to accord most conveniently with the circumstances of the casc ; as, for instance, if it were required to obtain the reciprocal of any property of a single circle as far only as another property of a single circle is concerned, the circle itself, or at least one concentric, with it, should be made the reciprocating circle, as one not concentric with it would transform it by reciprocation into a figure of more general form than a circle; or, if it were convenient for any reason to have any point or line of the reciprocal figure at infinity, the centre of the reciprocating circle should be placed on the corresponding line or at the corresponding point of the original figure, as any other position of its centre would leave the point or line in question at a finite distance ($165,3^{\circ}, 5^{\circ}$) ; thus, a tetrastigm in its general form reciprocates into a tetragram in its general form, into a traperium, or into a parallelogram, according as the centre of reciprocation is arbitrary, on any one of its six lines of connection, or at the vertex of any one of its three angles of connection (107); a circle, as above stated, reciprocates into a figure of more general form or into a circle, according as tho centre of reciprocation is arbitrary or at its centre; and similarly, for figures of all kinds, the reciprocals of whose properties adapted to reciprocation are often much simplified by a convenient selection of the reciprocating circle.
173. As figures consisting of combinations of points and lines give by reciprocation to every circle figures consisting of combinations of lines and points, all propertics of such figures adupted to reciprocation are accordingly double, and from either of two reciprocal propertics established for such a figure the other may alocays be inferred without further demonstration; thus, from the Theorem of Pascal $(148, a)$, that "in every hexagon inscribed in a circle the three pairs of opposite sides intersect
collinearly," may bo, and in fact originally was, derived, by reciprocation to the circle, the Theorem of Brianchon $(148, b)$, that "in every hexagon circumseribed to a circle the three pairs of opposite vertices connect concurrently," or conversely, (see $171,6^{\circ}$)-Hence one very important use of the reciprocating process as enabling us at once to doulle our previous knowledge of all properties adapted to reciprocation in the geometry of the point and line.

Again, as circles give by reciprocation to circles not concentric with themselves figures of more general forms than circles, all properties of circles obtained by reciprocation are consequently true of the more general figures derived from them by reciprocation, and from either of two reciprocal propertics established for a circle, the other may always be inferred without further demonstration for the more general figures into which the circle reciprocates for different positions of the centre of reciprocation ; thus, from cither of the two aforesnid reciprocal properties of Pascal and Brianchon established for the circle, the other may be inferred without further demonstration for every variety of figure into which the circle reciprocates-Hence another and still more important use of the reciprocating process, as enabling us to evolve from the familiar and comparatively simple properties of the circle adapted to reciprocation, all the reciprocal properties for the more general figures into which the circle becomes transformed by reciprocation.

In a treatise confined like the present to the geometry of the point, line, and circle, any examples of the reciprocating process in its second and ligher use cannot of course be given, nor would they be intelligible to the reader withont some previous knowledge of the Theory of Conic Sections; in its other use, however, examples of reciprocal properties of elementary figures, grouped in reciprocal pairs, marked by corresponding numbers or letters, but independently established, will be found in considerable numbers all through the advanced chapters of the work; the process of connecting the several pairs by reciprocation as they occur, thus furnishing a continued and very valuable exercise to the reader.
174. The two fundamental propertics of Art. 167, from which the important consequences of the several succeeding

Articles have been inferred, may obviously bo stated otherwise thus, as follows-

When tico points are such that one lies on the polar of the other with resp ct to a circle, then, reciprocally, the latter lies on the polar of the former with respect to the circle; and, conversely, when tuco lines are such that one passes through the pole of the other with respect to a circle, then, recigrocally, the latter passes through the pole of the former with respect to the circle.

For, as there proved, see figures of that Article, when MI lies on L then P lies on $X Y$, and, conversely, when $X Y$ passes through P then L passes through M, and therefore \&e.

Every two points thus related to each other, that each lies on the polar of the other with respect to a circle, are termed conjugate points with respect to the circle; and every two lines thus related to each other, that each passes through the pole of the other with respect to a circle, are termed conjugate lines with respect to the circle; in the figures of Art. 166 the two points M and N are evidently conjugate points, and tho two lines $P M I$ and $P N$ are evidently conjugate lines with respect to the circles.

From 5°, Art. 165, it is evident that-Every two points at infinity in directions at right angles to each other are conjugate points with respect to cvery circle, and every tico lines at right angles to each other are conjugato lines with respect to every circle whose centre is the interscction of the lines.
175. Conjugate points and lines with respect to a circle possess evidently, see figures of Art. 166, the following general propertics-
1°. Every point has an infinite number of conjugates, viz. all points lying on its polar; and, every line has an infinite number of conjugates, viz. all lines passing through its pole.
2°. When two points are conjugate so are their polars; and, conversely, when two lines are conjugate so are their poles.
3°. The common conjugate to any two points is the pole of $/$ their line of connection; and, conversely, the common conjugatel to any two lines is the polar of their points of intersection.
4°. The lines by which two conjugato points connect with the pole of their line of connection are the polars of the points;
and, conversely, the points at which two conjugate lines intersect with the polar of their point of intersection are the poles of the lines.
5°. Every two conjugate points connect with the pole of their line of connection by a pair of conjugate lines; and, conversely, every two conjugate lines intersect with the polar of their point of intersection at a pair of conjugate points.
6°. Every two conjugate points determine with the pole of their line of connection a self-reciprocal triangle (168); and, conversely, every two conjugate lines determine with the polar of their point of intersection a self-reciprocal triangle (168). Hence, every self-reciprocal triangle with respect to a circle is said also to be self-conjugate with respect to the circle.
176. For every pair of conjugate points with respect to a circle the following metric relations exist, each of which reciprocally determines a pair of conjugate points with respect to the circle.
1°. The square of the distance between them is equal to the sum of the squares of the tangents from them to the circle.
2°. The semi-distance between them is equal to the length of the tangent from its middle point to the circle.
3. The rectangle under their distances from the polar centre T of their line of connection is equal in magnitude and opposite in sign to the square of the tangent from that point to the circle.

For, if M and N (figures, Art. 166) be any two points, O and Q the middlo point and polar centre of their line of connection, C the centre of the circle, and P the intersection of the three perpendiculars $M F, N E$, and $C Q$ of the triangle $M C N$, then-

To prove 1° and its converse. Since, by Euc. II. 12, 13, $M N^{2}=C M^{2}+C N^{2}-2 C M . C E$ or $-2 C N . C F$; when M and N are conjugate points, and when therefore CM.CE, or its equivalent $C N . C F,=\operatorname{rad}^{2}$ of circle, then $M N^{2}=C M^{2}+C N^{2}-2 \mathrm{rad}^{2}$ of circle $=\left(C M^{2}-\mathrm{rad}^{2}\right)+\left(C N^{2}-\mathrm{rad}^{2}\right)=\tan ^{2}$ from $M+\tan ^{2}$ from N; and, conversely, when the latter relation holds, then CMI.CE, or its equivalent $C N . C F,=\operatorname{rad}^{2}$ of circle, and therefore M and N aro conjugate points with respect to the circle.

To prove 2° and its converse. Since, by 98, or Euc. 11. 12, 13, Cor.,

$$
C M^{2}+C N^{y}=O M^{y}+O N^{y}+2 O C^{2}
$$

and consequently

$$
C M^{2}+C N^{3}-2 \mathrm{rad}^{3} \text { of circle }=O M^{3}+O N^{2}+2 \tan ^{3}
$$

from O to circle; when M and N are conjugate points, and when therefore, by 1°,

$$
C M^{2}+C N^{3}-2 \mathrm{rad}^{2} \text { of circle }=M N^{3}=2\left(O . M^{3}+O N^{2}\right),
$$

then $O M M^{y}+O N^{x}=2 \tan ^{2}$ from O to circle, and therefore $O M^{y}=O N^{y}=\tan ^{2}$ from. O to circle; and, conversely, when the latter relation exists, then $C M M^{2}+C N^{2}-2 \mathrm{rad}^{2}$ of circle $=M N^{3}$, and therefore, by $1^{\circ}, M$ and N are conjugate points with respect to the circle.
'T'o prove 3° and its converse. Since, by either pair of similar right-angled triangles $M Q P$ and $C Q N$, or $N Q P$ and $C Q M$, the two ratios $Q M$: QP' and $Q C: Q N$, and therefore the two rectangles $Q M . Q N$ and $Q P . Q C$, are equal in magnitude and opposite in sign; when M and N are conjugate points, and when therefore (174) P is the pole of $M N$, then the latter rectangle (165) is equal in magnitude and sign to the square of the tangent from Q to the circle; and, conversely, when the latter rectangle is equal in magnitude and sign to the squaro of that tangent, then (165) P is the pole of $M N$, and therefore (174) M and N are conjugate points with respect to the circle.

In tho particular case when the radius of the circle is evanescent, the above properties all follow immediately from the obvious consideration (168) that every two conjugate points with respect to an evanescent circle subtend a right angle at the centre of the circle, and that, couversely, every two points which subtend a right angle at the centro of au evanescent circle are coujugate points with respect to the circle.
177. Every circle having for diameter the interval between tieo conjugate points with respect to another circle is orthogonal to the other.

For, the circle on M.V as diancter (figures, Art. 166) passes evidently through the two points E and F, which are the inverses of M and N when the latter are conjugates with respect to the circle C, and therefore © Ec . (156).

Conversely, When two circles intersect at right angles, the extremities of every diameter of either are conjugate points with respect to the other.

For, $M N$ (same figures) being any dianeter of either, C the centre of the other, and E and F the two points in which the former intersects the two diameters $C M$ and $C N$ of the latter; since then (156) E and F are the two inverses of M and N with respect to the latter, therefore (165) $E N$ and $F M$ are the two polars of M and N with respect to the same, and therefore \&ic. (174).

Cor. 1°. The above property is evidently identical with 2° of tho preceding Article, and from either it obviously follows immediately that-
1°. The line connecting any two conjugate points with respect to a circle may be turned round its middle point through any angle without its extremities ceasing to be conjugate points with respect to the circle.
2°. When the distance betwoen two conjugate points with respect to a circle of given radius is given, the distance of their middle point from the centre of the circle is also given, and conversely.
3°. If the same circle be orthogonal to a number of others, the extremities of every diameter of it arc conjugate points with respect to all the others.
4°. The locus of points having a common conjugate with respect to three circles is the circle intersecting the three at right angles.

Cor. 2°. Since, when two points are conjugates with respeet to a number of circles, the polars of either with respect to them all pass through the other (174); hence, from 3° and 4°, Cor. 1° -
1°. If the same circle be orthogonal to a number of others, the polars of every point on it with respect to them all pass through the diametrically opposite point.
2°. The locus of points whose polars with respect to three circles are concurrent is the circle intersecting the thres at right angles.

Cor. 3°. By aid of 156, Cor. 3°, the above supply obvious solutions of the four following problems-
1°. On a given line or circle to determine tioo points separated by a given interval which shall be conjugates with respect to a given circle.
2°. On a given line or circle to determine two points which shall be at once comjugates with respect to two given circles.
178. When a line intersecting two circles meets either in a pair of conjugate points with respect to the other.
1°. Then reciprocally it meets the latter in a pair of conjugate points with respect to the former.
2°. Its twoo segments intercepted by them are bisected by the circle passing through their points of intersection achose centre bisects the distance betiocen their contres.
3°. The rectangle under its clistances from their centres is equal in magnitude and sign to half the sum of the squares of their radii - half the square of the distance between their centres.

For, if C and C^{\prime} be the centres of the two circles, R and S their two points of intersection, $M N$ and $M^{\prime} N^{\prime}$ the two segments they intercept on the line, O and O^{\prime} the two middle points of the segments, and I the middle point of $C C^{\prime}$; then-

To prove 1°. The relation $O M^{\prime} . O N^{\prime \prime}=\left(\frac{1}{8} M N\right)^{2}$, or the equivalent relation $O^{\prime} M . O^{\prime} N=\left(\frac{1}{2} M^{\prime} N^{\prime}\right)^{2}$, (Euc. 11. 5,6$)$, being at once the condition ($176,2^{\circ}$ and 3°) that M and N should be conjugate points with respect to the circle $C^{\prime \prime}$, and that M^{\prime} and N^{\prime} should be conjugate points with respect to the cirele C, therefore ©c.

To prove 2°. Since

$$
O M^{\prime} \cdot O N^{\prime}=\left(\frac{1}{2} M N\right)^{2} \text { and } O^{\prime} M \cdot O^{\prime} N=\left(\frac{1}{2} M^{\prime} N^{\prime}\right)^{2},
$$

therefore

$$
\begin{aligned}
& C^{\prime} O^{2}-C^{\prime} R^{2}=C R^{2}-C O^{2} \\
& C O^{2}-C R^{2}=C^{\prime} R^{n}-C^{\prime} O^{\prime 2} ;
\end{aligned}
$$

and
therefore $C O^{2}+C^{\prime} O^{2}=C O^{\prime 2}+C^{\prime \prime} O^{\prime 2}=C R^{2}+C^{\prime} R^{2}$,
from which it follows, by $\left(98, \operatorname{Cor} .2^{\circ}\right.$.), that O, O^{\prime}, and R lic on the same circle having I for centre, and therefore \&c.

To prove 3°. Since $O C$ and $O^{\prime} C^{\prime}$ are perpendiculars at the
extremities of the chord $O O^{\prime}$ of the circle $O R O^{\prime}$, meeting the diameter $C C^{\prime}$ at the points C and C^{\prime} equidistant from the centre I; therefore (49)
$C O . C^{\prime} O^{\prime}=I R^{2}-\left(\frac{1}{2} C C^{\prime}\right)^{2}=\frac{1}{2}\left(C R^{2}+C^{\prime} R^{2}-C C^{\prime 2}\right),\left(83, \operatorname{Cor} .2^{\circ}.\right) ;$ and therefore \&c.

Cor. 1°. In the particular case when the two circles intersect at right angles, since then (23) $C R^{2}+C^{\prime} R^{2}=C C^{\prime 3}$, therefore, from the above $\left(3^{\circ}\right), C O . C^{\prime} O^{\prime}=0$; and therefore, as proved otherwise in the preceding Article-

When two circles intersect at right angles every line intersecting either in a pair of conjugate points with respect to the other passes through one of their centres.

COR. 2°. The above (2° and 3°) supply obvious solutions of the two following problems-
1°. Through a given point to draw a line intersecting one of two given circles in a pair of conjugate points with respect to the other.
2°. To draw a line intersecting two of three given circles in pairs of conjugate points with respect to the third.
179. In connection with the subject of poles and polars with respect to the circle, the following useful theorem is duo to Dr. Salmon.

The distances of any two points from the centre of a circle have the same ratio as their distances each from the polar of the other with respect to the circle.

If P and Q be the two points, M and N their two polars, and C the centre of the circle, then $P C: Q C=P N: Q M$; for, letting

fall from P and Q the perpendiculars $P X$ and $Q Y$ upon the diameters $C Q$ and $C P$, then since (165)

$$
C P . C M=C Q . C N=\mathrm{rad}^{2} \text { of circle, }
$$

therefore $C P: C Q=C N: C M=C N+P N: C Y+Q M$,
but, by similar right-angled triangles, $C P: C Q=C X: C Y$, therefore $C P: C Q=P N: Q M$, and therefore ©ce.

In the particular case when $C P=C Q$, it is evident without proof that then $P V=Q M$, or, in general, that-Every tico points equidistont from the centre of a circle are equidistant each frons the polar of the other; and, in particular, that-Every theo points on the circumference of a circle are equidistant each from the tangent at the other.

Con. 1°. If one of the two points Q, in the above, with its polar N, bo supposed fixed and arbitrary, and the other P, with its polar M, variable and confmed to the circumference of the eircle; sinee then the ratio $C P: C Q$ is constant, therefore,

by the above, its equivalent $P N: Q M$ is also constant, and therefore, the polar of any point on a circle being the tangent at the point,

The distance of a variable point on a fixed circle from any fixed line is to the distance of the tungent at the point from the pole of the line in the constunt ratio of the radius of the circle to the distance of the pole from its centre.

Cor. 2°. The following among many consequences follow immediately from Cor. 1° -
1°. The product of any number of constant ratios being of course constant, therefore-

The rectungle under the distances of a variable point on "
fixed circle from any two fixed lines is to the rectangle under the distances of the tangent at the point from the poles of the lines in the constant ratio of the square of the radius of the circle to the rectangle under the distances of the poles from its centre.
2°. Every two polygons reciprocal polars to each other with respect to a circle (170) being such that the vertices of either and the corresponding sides of the other are pole and polar to each other with respect to the circle, therefore-

For every two polygons, reciprocal polars to each other with respect to a circle, the product of the distances of any point on the circle from the n sides of either is to the product of the distances of the tangent at the point from the n vertices of the other in the constant ratio of the $n^{\text {th }}$ poover of the radius of the circle to the product of the distances of the n vertices from its centre.
3°. For every two polygons, one inscribed and the other circumscribed to a circle at the same system of points on its circumference (polygons which evidently come under the preceding head) the products of the distances of the two sets of sides from any point on the circle being equal (48, Ex. 9°.), therefore-

For every two polygons, one inscribed and the other circumscribed to a circle at the same system of points on its circumference, the products of the distances of the two sets of vertices from any tangent to the circle have the constant ratio of the products of their distances from the centre of the circle.
4°. In every tetrastigm inscribed in a circle, the rectangles under the distances of the three pairs of opposite connectors from any point on the circle being equal (62, Cor. 10°), therefore-

In every tetragram circumscribed to a circle, the rectangles under the distances of the three pairs of opposite intersections from any tangent to the circle have the constant ratios of the rectangles under their distances from the centre of the circle.
180. With the three following properties of two triangles, reciprocal polars to each other with respect to a circle, we shall close the present chapter.
1°. Every two triangles reciprocal polars to each other with respect to a circle are in perspective (140).

For, if $A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$ be the two triangles, and O the

centre of the circle, from the three vertices A, B, C of either triangle, letting fall the threo pairs of perpendiculars $A P$ and $A P, B Q$ and $B Q, C I R$ and $C T R^{\prime}$ upon the three pairs of sides about the corresponding vertices of the other $A^{\prime} I C^{\prime}$; then, since by Dr. Salmon's 'Theorem (179),

$$
\frac{B Q}{C I^{\prime}}=\frac{O B}{O C^{\prime}}, \quad \frac{C I}{A L^{\nu}}=\frac{O C}{O A}, \quad \frac{A P}{B Q^{\prime}}=\frac{O A}{O B},
$$

therefore, at once, by composition

$$
\frac{A P}{A I^{\nu}} \cdot \frac{B Q}{B Q} \cdot \frac{C R}{C K^{\prime}}=1
$$

and therefore \&c. (140).
In the particular case of two triangles, one inscribed and the other circumscribed to a circle at the same three points on its circumference, this general property obviously gives at once the two reciprocal properties established on other principles in Exanples 3° and 4°, Art. 137. See also (148), where the same properties have been already inferred as particular cases from the general theorems of Pascal and Brianchon, respecting any hexagons inscribed and circumscribed to a circle.
2°. Any two triangles, hozever circumstanced as to magnitude antl form, may be placed relatively to each other, so as for any assigned correspondence of vertices and sides to be reciprocal polars with respect to a circle; and that in one or in three pairs of opposite positions (170), according as the theo sets of corresponding vertices are disposed in similar or opposite directions of rotation round the tho triangles.

For, that the two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ (same figures as before) should be reciprocal polars with respect to a circle, real or imaginary, it is sufficient that the three perpendiculars $A X^{\prime}, B Y^{\prime}, C Z^{\prime}$ from the vertices of $A B C$ upon the corresponding sides of $A^{\prime} B^{\prime} C^{\prime \prime}$ pass through a common point O, and that the three $A^{\prime} X, B^{\prime} Y, C^{\prime} Z$ from the vertices of $A^{\prime} B^{\prime} C^{\prime}$ upon the corresponding sides of $A B C$ pass through the same point $O\left(133, \mathrm{Ex} .7^{\circ}\right.$.); those conditions securing (by pairs of similar triangles, see figures), that the six rectangles $O A . O \mathrm{X}^{\prime}, O B . O Y^{\prime}, O C . O Z^{\prime}$, $O A^{\prime} . O X, O B^{\prime} . O Y, O C^{\prime} . O Z$ shall be equal in magnitude and sign; taking therefore, according as the corresponding vertices of the two triangles are disposed in similar or opposite directions of rotation, as in figs. α and β respectively, for the triangle $A B C$, the internal or one of the three external points 0 for which the three angles $B O C, C O A, A O B$ are similar to the three $B^{\prime} A^{\prime} C^{\prime}, C^{\prime} B^{\prime} A^{\prime}, A^{\prime} C^{\prime} B^{\prime}$, and for the triangle $A^{\prime} B^{\prime} C^{\prime}$, the internal or corresponding external point O^{\prime} for which the three angles $B^{\prime} O^{\prime} C^{\prime}, C^{\prime} O^{\prime} A^{\prime}, A^{\prime} O^{\prime} B^{\prime}$ are similar to the three $B A C$, $C B A, A C B\left(63, \operatorname{Cor} .4^{\circ}\right)$; and then placing the two triangles, so that the two points O and O^{\prime} shall coincide, and that the six connectors $O A, O B, O C, O A^{\prime}, O B^{\prime}, O C^{\prime}$ shall be similar or opposite in direction with the six perpendiculars $O X^{\prime}, O Y^{\prime}, O Z^{\prime}$, $O X, O Y, O Z$, the required position is obtained; the circle, to which the triangles are polars, being real in the former ease and imaginary in the latter (170).

In tho particular case when the two triangles are similar, and when the correspondence is between their homologous vertices and sides, the two points O and O^{\prime}, evidently homologous points with respect to the triangles (39), are, for similar directions of rotation, fig. α, the two points of concurrence of their two sets of perpendiculars (63, Cor. 5°.), and for opposite directions of rotation, fig. β, any two homologous points on their circumscribing circles (63, Cor. 5°.) ; hence, as is also evident direetly-Every triangle reciprocates into a similar triangle to every circle whose centre is either the unique point of concurrence of its three perpendiculars or any point indifferently on its circumscribing circle; the two similar triangles being both right or left in the former case, and one right and one left in the latter (32); in the former case also their homologous sides being evidently parallel, they are
consequently similarly or oppositely placed (33), thus verifying for their particular case the general property 1°, see (142).
3°. If $A B C$ be any triangle, $A^{\prime} B^{\prime} C^{\prime}$ its polar triangle with respect to any circle, O the centre and OR the radius of the circle, then

$$
\left(A^{\prime} B^{\prime} C^{\prime}\right)=\frac{O I^{4}}{4} \cdot \frac{(A B C)^{2}}{(B O C) \cdot(C O A) \cdot(A O B)}
$$

and similarly for $(A B C)$ in terms of $\left(A^{\prime} B^{\prime} C^{\prime}\right)$; the quantities within the parentheses signifying the areas of the several triangles they respectively represent.

For, since, by pairs of similar angles (64), (same figures as before)
$\frac{\left(B^{\prime} O C^{\prime}\right)}{(A B C)}=\frac{O B^{\prime} \cdot O C^{\prime}}{A B \cdot A C}, \frac{\left(C^{\prime} O A^{\prime}\right)}{(A B C)}=\frac{O C^{\prime} \cdot O A^{\prime}}{B C \cdot B A}, \frac{\left(A^{\prime} O B^{\prime}\right)}{(A B C)}=\frac{O A^{\prime} \cdot O B^{\prime}}{C A \cdot C B^{\prime}}$ and, since, by (165),

$$
O A^{\prime} . O X=O B^{\prime} . O Y=O O^{\prime} . O Z=O R^{\prime \prime},
$$

therefore

$$
\begin{aligned}
& \left(B^{\prime} O C^{\prime}\right)=\frac{O R^{\prime} \cdot(A B C)}{(A B \cdot O Z) \cdot(A C \cdot O Y)}=\frac{O R^{\prime}}{4} \cdot \frac{(A B C)}{(A O B) \cdot(A O C)}, \\
& \left(C^{\prime} O A^{\prime}\right)=\frac{O R^{\prime} \cdot(A B C)}{\left(B C \cdot O X^{\prime}\right) \cdot(B A \cdot O Z)}=\frac{O R^{\prime}}{4} \cdot \frac{(A B C)}{(B O C) \cdot(B O A)}, \\
& \left(A^{\prime} O B^{\prime}\right)=\frac{O R^{\prime} \cdot(A B C)}{\left(C A \cdot O Y^{\prime}\right) \cdot\left(C B \cdot O X^{\prime}\right)}=\frac{O R^{\prime}}{4} \cdot \frac{(A B C)}{(C O A) \cdot(C O B)} ;
\end{aligned}
$$

and therefore, by addition, remembering whatever be the position of O (118), that

$$
\left(B^{\prime} O C^{\prime}\right)+\left(C^{\prime} O A^{\prime}\right)+\left(A^{\prime} O B^{\prime}\right)=\left(A^{\prime} B^{\prime} C^{\prime}\right)
$$

and that

$$
(B O C)+(C O A)+(A O B)=(A B C)
$$

the above relation is the evident result.
It is cvident from the above, that for a given triangle $A B C$, and for a circle of given radius, but variable centre O, the area of the polar triangle $A^{\prime} B^{\prime} C^{\prime}$ varies inversely as the product of the three areas $(B O C),(C O A),(A O B)$, and is therefore a minimum when that product is a maximum, that is ($57, \mathrm{Ex} .3^{\circ}$.), when its three factors, their sum being constant (118), are equal, or when (91, Cor.) O is the mean centre of the three points A, B, C for multiples all $=1$.

It may also be readily shewn from the same that-In every triangle the polars of the middle points of the sides with respect to the inscribed circle determine a triangle equal in area to the original; for a, b, c being the three sides, α, β, γ the three perpendiculars, s the semi-perimeter, and r the radius of the inscribed circle of any triangle; if A, B, C be the middle points of its sides, and O the centre of its inscribed circle, the three areas $(B O C),(C O A),(A O B)$, in the above, are easily seen, on drawing a figure, to be equal to the three products

$$
\left(\frac{\alpha}{2}-r\right) \frac{a}{4},\left(\frac{\beta}{2}-r\right) \frac{b}{4},\left(\frac{\gamma}{2}-r\right) \frac{c}{4}
$$

from which, since

$$
a \alpha=b \beta=c \gamma=2 s r=2 \text { arca of } a b c=8(A B C),
$$

it follows, without difficulty, from the abore, that

$$
\left(A^{\prime} B^{\prime} C^{\prime}\right)=\frac{s^{3} r^{3}}{s(s-a)(s-b)(s-c)}=\frac{\text { area }^{3} \text { of } a b c}{\operatorname{area}^{2} \text { of } a b c}=\text { area of } a b c,
$$

and thereforo \&c.

CHAPTER XI.

on the radical axes of circles considered in pairs.

181. Tue line intersecting at right angles the common diameter of two circles, and dividing the internal $A B$ between their centres A and B at the point I for which the difference of the squares of the segments $A \Gamma^{*}-B I^{2}$ is equal in magnitude and sign to the difference of the squares of the conterminous radii $A I^{m}-B S^{n}$, is termed the radical axis of the circles.

From the mere definition of the radical axis of two circles, it is evident that : 1°. when the circles intersect, it passes through the two points of intersection (Exc. 1. 47) ; 2°. when they touch, it touches both at the point of contact (Euc. II1. 16); 3°. when they are equal and not concentric, it coincides with their axis of reflexion (50) ; 4°. when they are concentric and not equal, it coincides with the line at infinity $\left(136,1^{\circ}\right)$; 5°. when they are at once equal and concentric, it is indeterminate (13) ; 6°. when ono is a line and the other not, it coincides with the line (150); 7°. when one is a point and the other not, it coincides with the axis of reflexion of the point and its inverse with respect to the other (157); and 8°. when they are both points or lines, the case comes under the head of 3°. or of 5°. Of these particulars, some, less evident than the others, will appear more fully from the general properties of the radical axis of any two circles, which will form the main subject of the present chapter.

When two circles, whatever be their nature, are given in magnitude and position, their radical axis, when not indeterminate, is of course implicitly given with them; the relation $A I^{3}-B \Gamma^{2}=A R^{2}-B S^{z}$ fixing, evidently, the position, when determinate, of the point I at which it intersects at right angles their line of centres $A B$.
182. Of all the properties of the radical axis of two circles, the following leads to the greatest number of consequences, and may be regarded as fundamental.

The difference of the squares of the tangents from any point to two circles $=$ twice the rectangle under the distance betwcen their centres and the distance of the point from their radical axis.

For, if A and B be the centres of the two circles, $A R$ and

$B S$ their radii, $I L$ their radical axis, P the point, $P R$ and $P S$ the tangents from it to the circles, $P L$ and $P Q$ the perpendiculars from it on $I L$ and $A B$, and C the middle point of $A B$; then, since, (Euc. 1. 47),
therefore

$$
P R^{2}=A P^{2}-A R^{2} \text { and } P S^{2}=B P^{2}-B S^{2}
$$

$$
\begin{gathered}
\left(P R^{2}-P S^{2}\right)=\left(A P^{2}-B P^{2}\right)-\left(A R^{2}-B S^{2}\right), \text { but, }(\text { Euc. I. } 47) \\
A P^{4}-B P^{2}=A Q^{3}-B Q^{*}=2 A B . C Q,(\text { Euc. II. } 5,6)
\end{gathered}
$$

and, by the definition of the radical axis (181),

$$
A R^{2}-B S^{2}=A I^{2}-B I^{2}=2 A B . C I,(\text { Euc. I. } 5,6)
$$

therefore

$$
\left(P R^{2}-P S^{2}\right)=2 A B \cdot(C Q-C I)=2 A B \cdot I Q=2 A B \cdot L P
$$

and therefore \&
Cor. 1°. If $P L=0$, then $P R^{y}-P S^{2}=0$; and, conversely, if $P R^{2}-P S^{2}=0$, then $P L=0$. Hence-Tangents to two circles from any point on their radical axis are equal; and, conversely, when tangents to two circles from a point not at infinity are equal, the point is on the radical axis of the circles.

It is this property, of which that of (157) is evidently a particular case, which has given the name "Radical axis" to the
line in question, the tangents to two circles from any point being expressed by radicals, and the locus of points for which they are equal being a line.

The two tangents to the same circlo from any point being equal, it follows of course from the second part of the above, that-

The tangents to two circles at their points of contact teith any circle touching both intersect on their radical axis.

Cor. 2°. If $P S=0$, then $P R^{\circ}=2 A B . L P$, and conversely, if $P l^{n}=2 A 33$. LP, then $P S=0$. Hence-

The square of the tangent to either of theo circles from any point on the other terries as the clistance of the point from their rudical axis ; and, conrersely, when the square of the tungent from a print to a circle varics as the clistance of the point from a line, the point lies on another circle, of which and the original the line is the radical axis.

Of this property, that of (159) is evidently a particular case.
COR. 3°. If O be the intersection of any two chords $\mathrm{XX}^{\prime \prime}$ and $Y Y^{\prime \prime}$ of the eircles. Since, when their four extremities are concyelic, then $O \mathbb{X} . O \mathrm{X}^{\prime \prime}=O Y . O Y^{\prime \prime}$, and conversely, (Luc. 111 . $35,36)$; and since, by Cor. 1°., the same is the condition that the point O should be on the radical axis of the circles, and conversely. Hence-

Every two chords of two circles vhose four extremities are concyclic intersect on their rudical axis; and, conversely, when thoo chords of two circles intersect on their radical axis, their four extremities are concyclic.

This property will be stated more generally in the next article.

Cor. 4°. The point O, as before, being on the radical axis, if $O X=O Y$, that is, if X and Y be two of the four intersections with the two circles of any third circle having its centre on their radical axis; then, since, by Cor. $3^{\circ} ., D X^{\prime}=Y Y^{\prime \prime}$, and since, by $(62), X X^{\prime}=2 A X^{\prime} \cdot \cos A X^{\prime} O$, and $Y^{\prime} Y^{\prime}=2 B Y \cdot \cos B Y O$, therefore $\cos A X O: \cos B Y O=B Y: A X$, and both angles having evidently the same affection (11). Henco-

Every circle having its centre on the radical axis of thoo others intersects then at angles, of the same affection, those cosines are inecrsely as their ralii; and, conterscly, every circle intersecting
two others at angles, of the same affection, whose cosines are inversely as their radii, has its centre on their radical axis.

The general property, of which this is a particular case, will bo given further on.

Cor. 5°. In the same case, since when $X X^{\prime}=0$, then $Y Y^{\prime}=0$, and conversely, therefore as a particular case of Cor. 4°., or as is also evident directly from Cor. 1°.-

Every circle having its centre on the radical axis of two others, and intersecting either at right angles, intersect the other at right angles; and, conversely, every circle intersecting two others at right angles has its centre on their radical axis.

This last is the more general proof of the latter property to which allusion was made in Art. 156, Cor. 3°. of chap. $1 \times$.

Cor. 6°. Whatever be the position of the point O, whether on the radical axis or not, since, by the fundamental property above,

$$
O X . O X^{\prime}-O Y . O Y^{\prime}=2 A B . L O
$$

where $L O$ is the distance of O from the radical axis, if $O X=O Y$, that is, if X and Y be two of the four intersections with the two circles of any third circle having its centro at O, then

$$
O X .\left(X X^{\prime}-Y Y^{\prime}\right)=2 A B . O L
$$

and therefore
$O X: O L=2 A B: X X^{\prime}-Y Y^{\prime}=A B: A X \cdot \cos A X O-B Y \cdot \cos B Y O$, a ratio which is constant when the two angles of intersection $A X O$ and $B Y O$, whatever be their affections, are constant. Hence-

If a variable circle intersect two fixed circles at two constant angles, its radius is to the distance of its centre from their radical axis in a constant ratio; and, conversely, if a variable circle, whose radius is to the distance of its centre from the radical axis of two fixed circles in a constant ratio, intersect either circle at a constant angle, it intersects the other also at a constant angle.

Cor. 7°. As either angle of intersection may $=0$, or $=$ two right angles. Hence, by (23), as a particular case of the preceding-

If a variable circle touch two fixed circles, the nature of its contact with each being invariable, its radius is to the distance of its centro from their radical axis in a constant ratio; and, con-
versely, if a variable circle, whose radius is to the distance of its centre from the radical axis of two fixed circles in a constant ratio, touch in every position either circle with contact of the same species, it intersects the other at a constant angle, wehich may $=0$ or two right angles.

Cor. 8°. The ratio $O L: O X$ being (22) the cosine of the angle, real or imaginary, at which the variable circle in Cors. 6°. and 7°. intersects the radical axis of the two fixed circles. Hence, in general, from Cor. 6° -

A variable circle intersecting two fixed circles at constant angles intersects their radical axis at a constant angle; and, conversely, a variable circle intersecting eilher of two fixed circles and their radical axis at constant angles intersects the other at a constant angle.

And, in particular, from Cor. $7^{\circ}-$
A variable circle touching tico fuxed circles, the nature of the contact with each being invariable, intersects their radical axis at a constant angle; and, conversely, a variable circle intersecting the radical axis of theo fixed circhs at a constant angle, and touchiny cither circle with contuct of invariable species, intersects the other at a constant angle, telich may $=0$ or tico right angles.

The general property established in this corollary is but a particular case of another still more general, which will be given in a subsequent article of the present chapter.

Cor. 9°. It is immediately evident from Cor. 1°. that-
The radical axis of two circles bisects the four segments of their four common tungents, real or imaginary, intercepted between their points of contact with the circles; and, conversely, the line joining the midelle points of the intercepted segments of any two of the four common tangents to two circles, or, more generally, any thoo points the tangents from which to two circles are equal, is the radical axis of the circles.

And, from the first part of this latter property, that-
The tico chords of contuct of two circles with each pair of their common tangents, external and internal, are equidistant in opposite directions from their radical axis; and so, therefore, are the two chords for both pairs in the tico circles from euche other.

Con. 10°. Since when two circles intersect at right angles,
their chord of intersection is the polar of the centre of each with respect to the other $\left(165,6^{\circ}\right)$. Hence from Cors. 5°. and 3°. sec (166)-

The chords of intersection with two circles of every circle orthogonal to both pass through the poles of their radical axis.

The polars with respect to two circles of any point on their radical axis intersect on their radical axis.

This latter property is evidently true also of the lino at infinity, a line which we shall see, in the sequel, possesses with respect to two circles nearly all the properties of their radical axis.
183. The following general property of any three circles includes evidently the first part of that established in Cor. 3°. of the preceding article as a particular case, viz.-

The three radical axes of any three circles, taken two and two, intersect at a common point, termed the radical centre of the circles.

For, if A, B, C be the three centres of the circles, $A R, B S, C T$ their three radii, L, M, N the three radical axes of their three groups of two, and X, Y, Z, the three points in which L, M, N intersect at right angles the three sides $B C, C A, A B$ of the triangle $A B C$; then since, by definition (181),

$$
\begin{aligned}
& \left(B X^{y}-C X^{2}\right)=\left(B S^{2}-C T^{2}\right) \\
& \left(C Y^{2}-A Y^{2}\right)=\left(C T^{2}-A R^{2}\right) \\
& \left(A Z^{3}-B Z^{2}\right)=\left(A R^{2}-B S^{2}\right)
\end{aligned}
$$

therefore

$$
\left(B X^{2}-C X^{3}\right)+\left(C Y^{2}-A Y^{2}\right)+\left(A Z^{2}-B Z^{2}\right)=0
$$

and therefore (132) the three perpendiculars L, M, N intersect at a common point O.

Cor. 1°. It is evident from Cors. $1^{\circ} .4^{\circ}$. and 5°. of the preceding, that-
1°. The six tangents, real or imaginary, to thrce circles from their radical centre are equal; and, conversely, when the six tangents, real or imaginary, to three circles from a point, not at infinity, are equal, the point is their radical centre.
2. Every circle having its centre at the radical centre of three others intersects them at angles, of the same affection, whose cosines are inversely as their radii; and, conversely, every circle intersecting three others at angles, of the same affection, echose cosines
are inversely as, their radii, has its centre at their radical centre.
3°. The circle having its centre at the radical centre of three others, and intersecting one of them at right angles, intersects the other two at right angles; and, conversely, the circle intersecting three others at right angles has its centre at their radical centre.

The obvious solution of the problem "to describe the circle which intersects three given circles at right angles," furnished by this latter property, is that to which allusion was made in Art. 156, Cor. 4°, of Chap. ix.

Since for every three chords $X X^{\prime \prime}, Y^{\prime \prime}, Z Z$ of any three circles A, B, C, which concur to their radical centre O, the three products $O \mathbb{X} . O \mathrm{X}^{\prime \prime}, O Y . O Y^{\prime \prime}, O Z . O Z$ are always equal in magnitude and sign; their common valuo is sometimes termed the radical product of the three circles, and is, of course, always equal in magnitude and sign to the square of the radius of their orthogonal circle, which circle, consequently, is real or imaginary according as the sign of the radical product is positive or negative.

Cor. 2°. The point of concurrence 0 of the three perpendiculars $A P, B Q, C R$ of any triangle $A B C$ is the radical centre of the three circles of which the three sides $B C, C A, A B$ are diameters.

For, as the three circles on $B C, C A, A B$ as diameters pass respectively through the three pairs of points Q and R, R and P, P and Q, (Euc. III. 31), therefore $A P, B Q, C R$ are the three common chords of those circles, taken two and two, and therefore \&c. ($181,1^{\circ}$.).

Cor. 3°. More generally, the point of concurrence 0 of the three perpendiculars $A P, B Q, C l l$ of any triangle $A B C$ is the radical centre of the three circles, of which any three lines $A X, B Y, C Z$ drawn from the vertices to the opposite sides $B C, C A, A B$ are diameters.

For, whatever be the positions of the three diameters $A X$, $B Y, C Z$, the three perpendiculars $A P, B Q, C R$ are three chords of the three circles concurring to a point O for which the three products $O A . O P, O B . O Q, O C . O R$ are equal in maguitude and sign (1GS), and therefore \&c. (Cor. $1^{\circ}, 1^{\circ}$.)

Cor. 4°. For any system of three combined with any system of two circles, both systems being arbitrary.
a. The six radical axes of the six combinations of one of the three with one of the two determine two triangles in perspective (140).
b. The radical centre of the three and the radical axis of the two are the centre and axis of the perspective (141).

For, if A, B, C be the system of three, E and F the system of two, U, V, W and X, Y, Z the two sets of three radical axes of A, B, C combined each with E and F respectively, L, M, N the three radical axes of B and C, C and A, A and B respectively, which by the above intersect at the radical centre O of A, B, C, and I the radical axis of E and F; then, by the above, the three points $U X, V Y, W Z$ lic on I, and the three pairs of points $V W$ and $Y Z, W U$ and $Z X, U V$ and $X Y$ lie on L, M, N respectively, and therefore $\& c$.

The radical axis of two circles which intersect being their chord of intersection ($181,1^{\circ}$), the properties just proved are consequently true, in particular, of the two triangles determined by the six chords of intersection of any two with any three circles with which they intersect, both systems in all other respects being arbitrary.

Cor. 5°. If A, B, C be the three centres, and $A R, B S, C T$ the three radii, of any three circles, L, M, N the three radical axes of their thrce groups of two, O their radical contre, P and $P Q$ the centre and radius of any fourth circle which intersects them, and α, β, γ the three angles of intersection; then-

$$
\begin{aligned}
& P L: P Q=B S \cdot \cos \beta-C T \cdot \cos \gamma: B C \\
& P M: P Q=C T \cdot \cos \gamma-A R \cdot \cos \alpha: C A \\
& P N: P Q=A R \cdot \cos \alpha-B S \cdot \cos \beta: A B
\end{aligned}
$$

For, if X, Y, Z bo three of their six points of intersection with the fourth circle, and $X^{\prime}, Y^{\prime}, Z^{\prime}$ their three second points of intersection with its three radii $P X, P Y, P Z$; then, since, by the fundameutal property of the preceding article (182),

$$
\begin{aligned}
& P Y . P Y^{\prime}-P Z . P Z^{\prime}=2 \cdot B C \cdot P L \\
& P Z . P Z^{\prime}-P X \cdot P X^{\prime}=2 \cdot C A \cdot P M, \\
& P X^{\prime} \cdot P X^{\prime}-P Y \cdot P Y^{\prime}=2 \cdot A B \cdot P V^{\prime}
\end{aligned}
$$

therefore, as in Cor. 6°. of the same,

$$
\begin{aligned}
& P L: P Q=Y Y^{\prime}-Z Z Z^{\prime}: 2 B C, \\
& P M: P Q=Z Z^{\prime}-X X^{\prime}: 2 C A, \\
& P N: P Q=X X^{\prime}-Y Y^{\prime}: 2 A B,
\end{aligned}
$$

and since (62),

$$
\begin{aligned}
X X^{\prime} & =2 A R \cdot \cos \alpha, \\
Y Y^{\prime \prime} & =2 B S \cdot \cos \beta, \\
Z Z^{\prime} & =2 C T \cdot \cos \gamma,
\end{aligned}
$$

therefore do.
Hence, for the threo circles whose centres are A, B, C and radii $A R, B S, C ' T$ ', the centre P of tho circlo which intersects them at the three angles α, β, γ lies on the line passing through their radical centro O which makes with tho three radical axes L, M, N angles whose sines aro proportional (61) to the three quantities
$\frac{B S \cdot \cos \beta-C T \cdot \cos \gamma}{B C}, \frac{C T \cdot \cos \gamma-A R \cdot \cos \alpha}{C A}, \frac{A R \cdot \cos \alpha-B S \cdot \cos \beta}{A B}$
and which therefore is giren when the three circles and the three angles of intersection are given.

Cor. 6°. It appears, from the preceding, (Cor. 5°.), that the solution of the general problem "to describe the circle which intersects three given circles at three given angles," is reduced to that of the problem "to describe the circle having its centre on a given line and intersecting tweo given circles at given angles," which in the particular case of contacts of assigned species with the two (23), (to which, as we shall see in the sequel, every other caso may bol reduced), can always be solved by (54) ; the sum or difference, according to the nature of the contacts, of the distances of its centre from those of the two circles being evidently given. Of the celebrated problem "to desoribe the circle having contacts of given species with three given circles," which is of course a particular case of the above, a moro general and instructive solution will be given in the next chapter.
184. Any number of circles whose centers $A, B, C, \& c$ are collinear, and whoso radii $A R, B S, C T, \& c$ are such that

$$
A R^{2}-A I^{2}=B S^{2}-B I^{2}=C I^{2}-C I^{2}=\& c .= \pm h^{2},
$$

I being any point on the line of eentres, are said to be coaxal, every two of them having evidently the same radical axis, viz. the perpendicular to the line of centres at the point I (181).

Of coaxal systems of circles there are two species, the sign of the constant difference or modulus, as it is termed, of the system $\pm k^{4}$ being positive for one and negative for the other; in the

former case, if M and N (fig. a) be the two points on the radical axis, for which

$$
: I I^{2}=I N^{2}=A R^{2}-A I^{2}=B S^{2}-B I^{2}=C T^{2}-C I^{2}=\mathbb{\& c} .=k^{2}
$$

all the circles of the system (Euc. I. 47) pass evidently through M and N, and the system accordingly is said to be of the common points species; the two points M and N being common to all the circles, which, in that case, are all real, whatever be the positions of their centres A, B, C \&c. upon the line on which they all lie; and, in the latter case, if E and F (fig. β) be the two points on the line of centers, for which

$$
I E^{2}=I F^{2}=A I^{2}-A R^{2}=B I^{2}-B S^{2}=C \Gamma^{2}-C T^{2} \& c .=k^{2},
$$

all the circles of the system (Euc. II. 5, 6) have evidently E and F for a common pair of inverse points (149), and the system accordingly is said to be of the limiting points species; the two points E and F being evanescent limits (152) to the circles, which, in that case, are real or imaginary, according as their centres A, B, C, dec. are external or internal to the intercepted segment EF of the line on which they all lie. In both cases alike the radical axis itself is evidently the part not at infinity of the particular circle of the system corresponding to the particular position of the centre at an infinite distance, and is the common axis of reflexion (50) of the several pairs of evidently
equal circles of tho system whose centres are equidistant in opposite directions from the central point I; for which particular point as centre the square of the radius of the corresponding circle of the system is evidently the absolute minimum in the former case, and the negative maximum in the latter.

In the particular case when the constant $k=0$, the system may be regarded as belonging indifferently to either of the above species, or, more properly, as being at once in the limiting state of each, and at the trausition phase from one to the other; the two common points M and N of the former species, or the two limiting points E and F of the latter, then evidently coinciding at the point I, the circles of the system all passing through that point, and the system itself being of the comparatively simple kind considered in (18).

It is evident from the above that two circles, given in magnitude and position, determine in all cases the coaxal system, whatever be its species, to which they belong; for, by the preceding articlo (181), they determino the position of the central point I, and with it the value of the modulus $\pm h^{3}$, of the systern, and therefore Sic.
185. Connected with every coaxal system of either species, as explained in the preceding article, there exists a conjugato system of the other species; the two common or limiting points of one being the two limiting or common points of the other; the radical and central axes of one being the central and radical axes of the other; the constant difference of squares or modulus for one being equal in magnitude and opposite in sign to the constant difference of squares or modulus for tho other; and every circle of one system intersecting at right angles every circle of the other system; which latter property is evident from the consideration, that every circle coaxal (152) with the two common points M and N of a common points system, or passing through the two liniting points E and F of a limiting points system (see the dotted circles in figs. α and β of the preeeding article) intersects at right angles, by (156), every circle of the system.

Between the original and its conjugate or orthogonal system, as in consequence of the preceding property it is also terned,
the relations, as above stated, are evidently reciprocal (8); either being transformablo into the other by the simple interchange of the elements peculiar to its character, and every property true of either in relation to the other being, consequently, true also of the latter in relation to the former.
186. Given two circles of a coaxal system of either species, to determine the circle of the system which, 1°. passes through a given point; 2°. cuts orthogonally a given line or circle; 3°. touches a given line or circle.

These three problems, to which many others in the theory of coaxal circles are reducible, require different solutions according as the system to which the given circles belong is of the common or of the limiting points species; in the former case, the two points common to both on their radical axis are the common points of the system, and in the latter case, the two points inverse to both on their central axis ($155, \mathrm{Cor} .2^{\circ}$.) are the limiting points of tho system; and the common or limiting points, as the case may be, being thus given, the solutions, based in the latter case on the general property of the preceding article, are respectively as follows:

To solve $1^{\circ} . ;$ in the former case, the circle passing through the given point and through the two common points is that required; and in the latter case, the tangent at the given point to the circle passing through it and through the two limiting points intersects the central axis at the centre of the required circlo (152). To solve 2°.; in the former case, the circle passing through the two common points and through the inverse of either with respect to the line or circle is that required (156); and in the latter case, the two circles passing through the two limiting points and touching the lino or circle (51) determino on the latter its two points of intersection with the required circle. And to solve 3°. ; in the former case, the two circles passing through the two common points and touching tho line or circle (51) aro those required; and in the latter case, the circle passing through the two limiting points and through the inverse of either with respect to the line or circle determines on the latter its points of contact with the two circles required.
187. For coaxal systems in general, whatever be their species, it is evident, from Cors. $1^{\circ}, 3^{\circ}, 4^{\circ}, 5^{\circ}$, Art. 182, that-
1°. The tangents, real or imaginary, to all the circles of a coaxal system from any point on their radical axis are equal; and, conversely, when three or more circles are such that for two points, not at infinity, the tangents to them, real or imaginary, are equal, they are coaxal, and the line containing the two points is their radical axis.
2°. The chords of intersection, real or imaginary, of all the circles of a coaxal system with any arbitrary circle concur to a point on their radical axis; and, conversely, when three or more circles are such that their chords of intersection, real or imaginary, with two others are concurrent, they are consal, and the line containing the two points of coneurrence is their radical axis.
3°. Every circle having its centre on the radical axis intersects all the circles of a coaxal system at angles, of the same affection, whose cosines are inversely as their radii; und, conversely, when three or more circles are intersected by two others at angles, of the same affection, whoso cosines are inversely as their radii, they are coasal, and the line of centres of the two is their radical axis.
4. Every circlo having its centre on the radical axis and intersecting any circle of a coaxal system at right angles intersects every circle of tho system at right angles; and, conversely, when three or more circles intersect two others at right angles, they are coasal, and the line of centres of the two is their radical axis.

It is ovident also from (1ii), combined with the preceding property 4°, that-
5°. Every point has a common conjugate with respect to all the circles of a coaxal system, viz. the diamotrically opposite point of the circle of the orthogonal system which passes through it; and, conversely, when three or more circles have two pairs of common conjugate points, whose distances are not at once equal and concentric, they aro coaxal, as intersecting two different circles at right angles $\left(4^{\circ}\right)$.
188. For systems of the limiting points species in particular, it is also evident, from the properties referred to, that-
1°. The two limiting points are inverse points with respect to every circle of the system; and, conversely, when two circles have a common pair of inverse points, those points are the limiting points of the coaxal system they determine (152).
2°. Each limiting point and the perpendicular to the line of centres passing through the other are pole and polar with respect to every circle of the system; and, conversely, when two circles have a common pole and polar, the pole and polar centre are the limiting points of the coasal system they determine (165).
3°. The tangents to every circle of the system from each limiting point are bisected by the radical axis; and, conversely, when the tangents to two circles from a point on their line of centers are bisected by their radical axis, that point is a limiting point of the coaxal system they determine (157).
4°. The tangents to every circle of the system from any point in the radical axis are equal to the distances of the point from the two limiting points; and, conversely, when the tangents to two circles from any point in their radical axis are equal to the distances of the point from two points on their line of centres, the latter are the limiting points of the coaxal system they determine (157).
5°. Every circle passing through the two limiting points is orthogonal to every circle of the system; and, conversely, when two circles which do not intersect are orthogonal to two circles which do, the common points of the coaxal system determined by the intersecting pair are the limiting points of the coaxal system determined by the non-intersecting pair (156).
6°. For every line touching two circles of the system, the segment intercepted between the points of contact subtends a right angle at each limiting point; and, conversely, when for a line touching two circles the segment intercepted between t^{t}. points of contact subtends right angles at two points on their line of centres, those points are the limiting points of the coaxal syatem they determine. (22, 1', and Euc. 1II. 31.)

[^3]2°. The four polar centres of the four triangles $Y A Z, Z B X$, NCY , and $A B C$ are on their radical axis.
3°. The four polar circles of the four triangles $Y A Z, Z B X$, $X C Y$, and $A B C$ are coaxal.
4. The three middlle points of the three connectors $A X, B Y$, CZ are on their radical axis.

For, the three comectors $A X, B Y, C Z$ being three lines from the vertices to the opposite sides of each of the four triangles $Y A Z, Z B X, X C Y$, and $A B C$; therefore, by Cors. 3°. and 1°. Art. 183, the four polar circles of the four triangles (168) intersect at right angles the three circles of which the three connectors are diameters, and, as consequently the circles of the two groups are conjugately coaxal (185), therefore \&c.

Con. 1°. The four lines $B X C, C Y A, A Z B$, and $X Y Z$ in tho above being entirely arbitrary, the four properties consequently may be stated, otherwise thus, as follows-
1°. The three circles of which the thres chords of intersection of any four lines are diameters are conxal.
2°. The four polar centres of the four triangles determined by the four lines are on their radical axis.
3°. The four polar circles of the four triangles determined by the four lines are coaxal.
4. The three middle points of the three chords of intersection of the four lines are on their radical axis.

Cor. 2°. The centres of all circles of a coaxal system being collinear (184), and the two lines of centres of two conjugate systems being orthogonal (185), it follows, consequently, from Cor. 1°., that, for every system of four arbitrary lines-
1°. The three middle points of the three chords of intersection they determine are collinear.
2°. The four polar centres of the four triangles they determine are collinear.
3°. The tivo lines of collinearity for the middle points of the chords and for the polar centres of the triangles are orthogonal.

The preceding properties may be established by many other considerations, but by none more simply or elegantly than the above, which are due to Mr. W. F. Walker.
190. If D, E, F be three circles connected with three others
A, B, C by the relations that D is coaxal with B and C, E with C and A, and F with Λ and B, then-
1°. They have always the same radical centre and product with A, B, C.
2°. When they pass through a common point P they pass through a second common point P^{\prime}.
3°. When their centres are collinear they are themselves coaxal.
For, if $R R^{\prime}, S S^{\prime}, T T^{\prime \prime}$ be any three chords of A, B, C concurring to their radical centre O, and $U U^{\prime}, V V^{\prime}, W W^{\prime}$ any three of D, E, F concurring to the same point O; then, to prove 1°., since by hypothesis, the three groups of circles B, C, and $D ; C, A$, and $E ; A, B$, and F are coaxal, thercfore ($187,1^{\circ}$) the three groups of rectangles OS.OS' OT.OT", and OU.OU'; OT.OT', OR.OR', and OV.OV' ; OR.OR', OS.OS', and $O W . O W^{\prime}$ are equal in magnitude and sign, and therefore the two groups of circles D, E, F and A, B, C have the same radical centre and product (183, Cor. 1°.) ; to prove 2°., when D, E, F pass through a common point P they pass also through a second common point P, that viz. on the line $O P$ for which the product $O P . O P^{\prime}$ is equal in magnitude and sign to their radical product, and of course to that of $A, B, C\left(1^{\circ}.\right)$; and to prove 3°., when the centres of D, E, F are collinear, if X, Y, Z be their three centres, $X U, Y V, Z W$ their three radii, and I the foot of the perpendicular from O on the line $X Y Z$; since then, by 1°,

$$
X O^{3}-X U^{2}=Y O^{2}-Y V^{2}=Z O^{3}-Z W^{2}
$$

therefore (Euc. 1. 47),

$$
X I^{2}-X U^{2}=Y I^{2}-Y U^{2}=Z I^{2}-Z W^{2}
$$

and therefore the three circles D, E, F aro coaxal (184).
Otherwise thus: the circle G orthogonal to the three A, B, C being, by (182, Cor. 5°), orthogonal also to the three D, E, F, its centre O and the square of its radius $O G^{z}$ are, by (183, Cor. 1°.), the radical centre and product of both triads A, B, C and D, E, F which proves 1°.; when D, E, F pass through a common point P, they pass also, by (156), through its inverse P^{\prime} with respect to the circle G, which proves 2°.; and when the centres of D, E, F are collinear, they are at once orthogonal to the circle G and to the line of their centres $\left(22,1^{\circ}\right)$, and therefore coaxal ($187,4^{\circ}$.), which proves 3°.

Cor. In the general case, if P and P^{\prime}, Q and Q^{\prime}, R and R^{\prime} be the three pairs of intersections of the three pairs of circles E and F, F and D, D and E, and if X, Y, Z be the three intersections of the three pairs of lines $Q R$ and $Q^{\prime} R^{\prime}, R P$ and $R^{\prime} P^{\prime}$, $P^{\prime} Q$ and $P^{\prime} Q^{\prime}$; then since, by 1°, the three lines $P P, Q Q, R R^{\prime}$ are concurrent, and the three rectangles $O P . O P^{\prime}, O Q . O Q, O R . O R^{\prime}$ are equal in magnitude and sign, therefore (140) the three points Γ, Γ, Z are collinear, and, (Euc. III. 35, 36), the three pairs of rectangles $X Q . X 1 /$ and $\mathcal{N}^{\prime} Q^{\prime} \cdot X R, Y R . Y P$ and $Y R ' Y P^{Y}$, $Z P . Z Q$ and $Z P^{\prime} . Z Q$ are equal in magnitude and sign; or, in other words, the two triangles $P Q R$ and $P^{\prime} Q^{\prime} I l^{\prime}$ are in perspective, and the centre and axis of their perspective aro tho radical centre of the three circles A, B, C and the radical axis of the two $P Q R$ and $P^{\prime} Q^{\prime} R^{\prime}$.
191. If A, B, C be the three centres, and $A R, B S, C T$ the three radii, of any three coaxal circles, the relation

$$
\frac{A R^{2}}{A B \cdot A C}+\frac{B S^{2}}{B C \cdot B A}+\frac{C T^{2}}{C A \cdot C B}=1
$$

is true in all cases, whatever be the species of the systems to which they lelong.

For since, by liypothesis (184), I being the central point of the system, $A I^{2}-A I^{2}=B S^{2}-B I^{3}=C T^{3}-C I^{2}= \pm k^{3}=$ the modulus of the system; therefore,

$$
\begin{aligned}
& B C \cdot A I^{2}+C A \cdot B S^{y}+A B \cdot C T^{2} \\
& \quad=B C \cdot A I^{2}+C A \cdot B I^{2}+A B \cdot C I^{2} \pm(B C+C A+A B) \cdot k^{2}
\end{aligned}
$$

but, by (78),$B C+C A+A B=0$, and, by (83),

$$
B C \cdot A \Gamma^{2}+C A \cdot B I^{2}+A B \cdot C I^{2}=-B C \cdot C A \cdot A B
$$

therefore

$$
B C \cdot A I^{2}+C A \cdot B S^{2}+A B \cdot C T^{2}=-B C \cdot C A \cdot A B
$$

and therefore \&c., the latter relation being evidently equivalent to the abore.

The above general relation, which when the circles belong to a system of the common points species is evident from (83), may be regarded as the criterion of coaxality between three circles whose centres are collinear, and by aid of it the radius corresponding to a given centre, of any circlo coaral with two
others, is given at once without requiring the previous determination of the central point 1 and of the modulus $\pm l^{8}$ of the system; it is evident also from it that when two of three coaxal circles are concentric and unequal, the third, as it ought (181, 4°), is concentric with both.

Cor. 1. If $C T=0$, that is, if, in a system of the limiting points species, C be one of the two limiting points; then, whatever be the positions of A and B and the magnitudes of $A R$ and $B S$,

$$
\frac{A R^{2}}{A C}-\frac{B S^{2}}{B C}=A B
$$

which accordingly is the relation by which to calculate in numbers the positions, real or imaginary, of the two limiting points, when two circles of the system are given in magnitude and position.

Con. 2 ${ }^{\circ}$. If $A R=0$ and $B S=0$, that is, if, in a system of the limiting points species, A and B are the two limiting points; then, for every position of C, whatever be the interval $A B$,

$$
C T^{2}=C A \cdot C B
$$

from which it appears, as stated in (184), that, in a system of the limiting points species, the two limiting points are inverse points with respect to every circle of the system (152).
192. If A, B, C be the centres of three coaxal circles, $A R$, $B S, C T$ their three radii, and $P R, P S, P T$ the three tangents to them from any point P not at infinity, the relation

$$
B C \cdot P R^{2}+C A \cdot P S^{2}+A B \cdot P T^{2}=0
$$

is true in all cases, whatever be the species of the system to which they belong.

For, since, by the general relation of Art. 83,

$$
B C \cdot A P^{a}+C A \cdot B P^{2}+A B \cdot C P^{y}=-B C \cdot C A \cdot A B
$$

and since, by the general relation of the preceding article,

$$
B C \cdot A R^{2}+C A \cdot B S^{2}+A B \cdot C T^{2}=-B C \cdot C A \cdot A B
$$

therefore, at once, by subtraction,

$$
B C \cdot\left(A I^{\star}-A I^{2}\right)+C A \cdot\left(B P^{p}-B S^{2}\right)+A B \cdot\left(C P^{n}-C T^{2}\right)=0
$$

which is manifestly the same as the above.

Otherwise thus: if D be the centre of the circle of the system which passes through P, then since, by Cor. 2°, Art. 182,

$$
P R^{2}=2 . A D \cdot L P, \quad P S^{2}=2 . B D . L P, \quad P T^{z}=2 . C D . L P ;
$$

therefore, multiplying by $B C, C A, A B$, and adding

$$
\begin{aligned}
B C \cdot P R^{2}+C A \cdot P S^{2} & +A B \cdot P T^{s} \\
& =2 \cdot L P \cdot(B C \cdot A D+C A \cdot B D+A B \cdot C D)=0
\end{aligned}
$$

since $L P$ by hypothesis is not $=\infty$, and therefore dic.
Cor. 1°. If $P T=0$, that is, if P be on the circle C, then

$$
B C \cdot P R^{1}+C A \cdot P S^{3}=0, \text { or } P R^{2}: P S^{1}=A C: B C,
$$

and, conversely, if the latter relation exist, then $P T=0$, or P is on the circle C. Hence-

When three circles are coaxal, the squares of the tangents to two of them from any point on the third have the constant ratio of the distances of their centres from the centre of the third; and, conversely, the locus of a variable point the squares of the tangents from thich to theo fixed circles have any constant ratio, positive or negative, is the coaxal circle rehose centre divides the distance between their centres in the magnitude and sign of the ratio.

By aid of Cor. 2°, Art. 182, this important property, which obviously includes those of Art. 155 , and of Cor. 1°, Art. 182, as particular cases, may be proved, otherwise thus, as follows: since, by the corollary in question, when P lies on the circle C, then $P^{P} R^{z}=2 . A C . L P, P^{3} S^{3}=2 . B C . L P$, and conversely, therefore, at once, by division, $P R^{3}: P S^{3}=A C: B C$, and therefore \&e.

Con. 2°. If $P R=0$, and $P S=0$, that is, if P be on two of the circles A and B at once, then $P T=0$, or P is on the third circle also. Hence, as already stated in (184), when two circles intersect, every third circle coaxal with them passes through their points of intersection.

Cor. 3°. If M and N be the teo points of contact with any line of the two circles of any coaxal system which touch it, P and Q its two points of intersection with any third circle of the system, and O its point of intersection with the radical axis, then always

$$
P I^{2}: Q M^{2}=P N^{z}: Q N^{z}=P O: Q O .
$$

For, if A and B be the centres of the two circles touching the line at M and N, C that of the circle intersecting it at P and Q, and L the radical axis of the system; then since, as above, by Cor. 2°, Art. 182,

$$
\begin{aligned}
& P M^{z}=2 \cdot A C \cdot P L, Q N^{2}=2 \cdot A C \cdot Q L, \\
& P N^{z}=2 \cdot B C \cdot P L, Q N^{z}=2 \cdot B C \cdot Q L ;
\end{aligned}
$$

therefore, at once, by division,

$$
P M^{2}: Q M^{2}=P N^{2}: Q N^{2}=P L: Q L
$$

and since, by similar triangles, $P L: Q L=P O: Q O$, therefore \&c.
Cur. 4°. In the same case, for a system of the limiting points species, if E and F be the two limiting points, the two angles MEN and MFN are right angles, and their sides bisect externally and internally the two angles $P E Q$ and $P F Q$ respectively: see $186,6^{\circ}$.

For, since by Cor. 1°,

$$
P M^{2}: P N^{y}: P E^{2}: P F^{2}=Q M^{2}: Q N^{z}: Q E^{2}: Q F^{2}
$$

therefore at once, by alternation,

$$
P M^{2}: Q M^{2}=P N^{z}: Q N^{x}=P E^{x}: Q E^{z}=P F^{x}: Q F^{2},
$$

and therefore de. (Euc. vi. 3.)
Cor. 5°. If P, Q, R be the three vertices of any triangle inscribed in any circle of a coaxal system, X, Y, Z the three external, and $X^{\prime}, Y^{\prime}, Z^{\prime}$ the three internal, points of contact with its sides $Q R, R P, P Q$ of the six circles of the system which touch them in pairs $\left(186,3^{\circ}\right)$, then aleoays -
a. The four groups of three points $Y^{\prime}, Z^{\prime}, X ; Z^{\prime}, X^{\prime}, Y ;$ $X^{\prime \prime}, Y^{\prime}, Z$; and X, Y, Z are collinear.
b. The four groups of three lines $Q Y, R Z, P X^{\prime} ; R Z, P X, Q I^{\prime \prime} ;$ $P X, Q Y, R Z^{\prime} ;$ and $P X^{\prime}, Q Y^{\prime}, R Z^{\prime}$ are concurrent.

For, if A and A^{\prime}, B and B^{\prime}, C and C^{\prime} be the centers of the six circles touching $Q R, R P, P Q$ at X and X^{\prime}, Y and $I^{\prime \prime}$, Z and Z^{\prime} respectively, and D the centro of the circle containing P, Q, I, then since, by Cor. 1°,

$$
\frac{P \Gamma^{2}}{P Z^{z}}=\frac{B D}{C D}, \quad \frac{Q Z^{z}}{Q X^{3}}=\frac{C D}{A D}, \quad \frac{R X^{y}}{R Y^{z}}=\frac{A D}{B D}
$$

with seven other groups of the same form, one for the accented,
and six for the mixed accented and unaccented letters; therefore, at once, by composition of ratios,

$$
\frac{P^{\prime} Y^{2}}{P^{2}} \cdot \frac{Q Z^{2}}{Q \Gamma^{2}} \cdot \frac{R X^{2}}{R Y^{2}}=1
$$

and similarly for each of the seven remaining groups, and therefore de.

It is evident also, from Cor. 3°, that the three intercepts $X^{\prime \prime}, Y Y^{\prime \prime}, Z Z^{\prime \prime}$ between the points of contact of the three pairs of circles touching the three sides of the triangle, are cut internally and externally in common ratios by every cirele of the system, and are bisected internally by its radical axis.

Con. 6°. The general relation of the present article may obviously be stated in the equivalent form

$$
B C \cdot P X \cdot P X^{\prime \prime}+C A \cdot P Y \cdot P Y^{\prime \prime}+A B \cdot P Z \cdot P Z^{\prime}=0
$$

X and $X^{\prime \prime}, Y^{\text {and }} Y^{\prime \prime}, Z$ and Z^{\prime}, being tho pairs of intersections with the three circles of any three lines passing through P. This furm has the comparative advantage, that the three rectangles it involves, whatever be their signs, are always real, whereas the three tangents, whose squares are involved in the original form, may be, and often are, some or all, imaginary.
193. If A, B, C be the antres of three coaxal circles, $A R$, $B S, C T$ their three radii, and α, β, γ their three angles of intersection with any arbitrary circle whose centre is not at infinity, the relation

$$
B C \cdot A R \cdot \cos \alpha+C A \cdot B S \cdot \cos \beta+A B \cdot C T \cdot \cos \gamma=0
$$

is true in all cases, whatever be the species of the system to which they belong.

For, if P be the centro of the arbitrary circle, $P Q$ its radius, X, Y, Z three of its six points of intersection with the three coaxal circles, and $X^{\prime \prime}, Y^{\prime \prime}, Z^{\prime}$ their three second points of intersection with its three radii $P X, P Y, P Z$; then since, by the general property of the preceding article,

$$
B C \cdot P X \cdot P X^{\prime}+C A \cdot P Y^{\prime} \cdot P Y^{\prime}+A B \cdot P Z \cdot P Z^{\prime}=0
$$

and since in the present case $P I=P Y=P Z=P Q$, therefore

$$
(B C+C A+A B) \cdot P Q^{2}+\left(B C \cdot X X^{\prime}+C A \cdot Y Y^{\prime}+A B \cdot Z Z^{\prime}\right) \cdot P Q=0,
$$

from which as $B C+C A+A B=0$, and as $P Q$ not $=\infty$, therefore

$$
B C \cdot X X^{\prime}+C A \cdot Y Y^{\prime}+A B \cdot Z Z^{\prime}=0,
$$

which, as

$$
X X^{\prime}=2 \cdot A R \cdot \cos \alpha, Y Y^{\prime}=2 . B S \cdot \cos \beta, Z Z^{\prime}=2 . C T \cdot \cos \gamma,
$$

is therefore equivalent to the above.
Otherwise thus: by Cor. 6°, Art. 182, see also Cor. 5°, Art. 183,
$\frac{B S \cdot \cos \beta-C T \cdot \cos \gamma}{B C}=\frac{C T \cdot \cos \gamma-A R \cdot \cos \alpha}{C A}=\frac{A R \cdot \cos \alpha-B S \cdot \cos \beta}{A B}$,
each being $=P L: P Q=$ the cosine of the angle, real or imaginary, Cor. 8°, Art. 182 , at which the arbitrary circle intersects the radical axis L of the three coaxal circles A, B, C, and from either of these equalities the above manifestly results immediately.

This latter method has the advantage over the former, of not only establishing the general relation connecting the cosines of the three angles of intersection, real or imaginary, of any arbitrary circle with three coaxal circles, but of connecting with them at the same time the cosine of its angle of intersection, real or imaginary, with their radical axis.

Cor. 1°. When C is such, that

$$
B C \cdot A R \cdot \cos \alpha=A C \cdot B S \cdot \cos \beta,
$$

or, which is the same thing, that

$$
A C: B C=A R \cdot \cos \alpha: B S \cdot \cos \beta,
$$

then $C T \cdot \cos \gamma=0$, and therefore $\cos \gamma=0$; except only when $C T=0$, in which case it is indeterminate. Hence-

Every circle intersecting two circles A and B at two angles α and β intersects at right angles the coaxal circle C whose centre is given by the preceding proportion; exccept only when that circle is a point, in which case it passes through it, and intersects it at an indeterminate angle.

Cor. 2°. When in Cor. $1^{\circ}, \cos \alpha: \cos \beta= \pm 1$, that is, when α and β are equal or supplemental, then $A C: B C= \pm A R: B S$, and therefore (44) C is a centre of similitude, external in tho former case and internal in the latter case, of the circles A and B. Hence-

Every circle intersecting tico circles A and B at equal or supplemental angles, intersects at right angles the conxal circle, real or imuginary, whose centre is the external or internal centre of similitude of A and B; except only when that circle is a point, in which case it passes through it, and intersects it at an indeterminate angle.

Con. 3°. When in Cor. $1^{\circ}, A R \cdot \cos \alpha: B S \cdot \cos \beta= \pm 1$, that is, when $\cos \alpha: \cos \beta= \pm B S: A R$, then $A C: B C= \pm 1$, and therefore C is a point of bisection, external in the former case and internal in the latter case, of the interval $A B$. Hence-

Every circlo intersecting two others A and B at angles, of similar or opposite affections, vohose cosines are inversely as their radii, intersects at right angles the coaxal circle tchose centre bisects externally or internally the interval betrecen the centres of A and B; except only, in the latter case, zohen that circle is a point, in schich case it passes through it, and intersects it at an indeterminate angle.

Cor. 4°. When $A R \cdot \cos \alpha=0$, that is, when either $A R=0$ or $\cos \alpha=0$, then $A C \cdot B S \cdot \cos \beta=A B \cdot C ' \cdot \cos \gamma$, or, as before (Cor. 1°.), BS. $\cos \beta: C T \cdot \cos \gamma=B A: C A$. Hence-

Every circle either passing through a point or cutting orthogonally a line or circle A, and intersecting another line or circle B ut any other constant angle β, intersects every third line or circle C coaxal with A and B at a third constant angle γ, whose cosino is given by the preceding relation.

Cor. 5°. When $A R \cdot \cos \alpha=0$, and $B S \cdot \cos \beta=0$, that is, when either $A R=0$ or $\cos \alpha=0$, and either $B S=0$ or $\cos \beta=0$, then $C T \cdot \cos \gamma=0$, whatever be the position of C, and therefore $\cos \gamma=0$; except only when $C T=0$, in which case it is indeterminate. Hence, see 156 and 185 -

Every circle passing through two points, or cutting orthogonally tuco circles, or passing through a point and cutting orthogonally a circle, cuts orthogonally every circle cooxal with the two ; except only when that circle is a point, in which case it passes through it, and intersects il, like every other cvanescont circle, at an indeterminate angle.

Cor. 6°. When C is such, that

$$
B C \cdot A R \cdot \cos \alpha-A C \cdot B S \cdot \cos \beta= \pm A B \cdot C T
$$

then $\cos \gamma=\mp 1$, and therefore $\boldsymbol{\gamma}$ either $=$ two right angles or $=0$. Hence-

Every circle intersecting two circles A and B at two angles α and β touches, one externally and one internally, the two coaxal circles whose centres are given by the preceding relation.

Cor. 7°. When $\cos \alpha= \pm 1$, and $\cos \beta= \pm 1$, that is, when α either $=0$ or $=$ two right angles, and β either $=0$ or $=$ two right angles, then $A B . C T \cdot \cos \gamma=\mp B C \cdot A R_{ \pm} A C . B S$. Hence-

Every circle touching, with definite contacts, two circles A and B intersects any coaxal circle C at the angle y whose cosine is given by the preceding relation.

7 an
Cor. 8°. In general, when two of the circles A and B and the two corresponding angles of intersection α and β are given, then, in virtue of the general relation, the third circle C determines the third angle γ, and conversely. Hence, generally-

Every circle intersecting two circles A and B at the same two angles α and β, intersects every third circle C coaxal with them at the same third angle γ determined by the general relation, cuts orthogonally the particular circle D determined by the velation Cor. 1°, and touches, one internally and one catternally, the two particular circles E and F determined by the relation Cor. 6°.

The two circles A and B and the two angles α and β being given, to determine the two circles E and F coaxal with A and B which are touched by the intersecting circle in every position; describing any circle K intersecting A and B at the given angles α and β, the two circles E and F coaxal with A and B which touch the circle $K\left(186,3^{\circ}\right)$, by the above, are those required.

Of the many circles K which could be described intersecting A and B at the given angles α and β, one of given radius is that most easily constructed; for when a circle of given radius intersects two given circles at given angles, its centre lies evidently on two concentric circles of given radii, and is therefore given.

It is evident that when one of the two intersected circles A is evanescent, then one of the two enveloped circles E coincides with it; and, that when the two intersected circles A and B are evanescent, then the two enveloped circles E and F coincide with them.

Cor. 9°. By aid of the general property Cor. 8°-the general problem "to describe a circle intersecting three given circles A, B, C at three given angles α, β, γ " may be readily reduced to the particular case of itself: "to describe a circle having contacts of assigned species veith three given circles." For the required circle to intersect the three circles A, B, C at the three angles α, β, γ must touch with opposite contacts three pairs of circles D^{\prime} and $D^{\prime \prime}, E^{\prime \prime}$ and $E^{\prime \prime}, F^{\prime \prime}$ and $F^{\prime \prime}$, coaxal with B and C, C and A, A and $I 3$ respectively, and determinable by Cor. s°; any three of these six, for different pairs of the given circles, heing constructed by Cor. 6°, the circle touching them with the species of contact to which they correspond is that required.

By supposing first one and then two of the three given circles A, B, C to become evanescent, the two problems "to describe a circle passing through a giren point and intersecting theo given circles at given angles," and "to describe a circle prassing through teo given proints and intersceting a given circle at a grien angle," are obviously included in the above as particular cases.

Cor. 10°. As, by the same general property Cor. 8°, the circle intersecting three given circles A, B, C at three given angles α, β, γ euts orthogonally three circles D, E, F conxal with B and C, C and A, A and B respectively, and determinable very readily by Cor. 1°; and as the problem to describe the circle orthogonal to three others is one that presents no difficulty (183, Cor. 1°) ; it might at first sight appear as if an easier solution of the general problem Cor. 9°, would be obtained by substituting the three auxiliary circles D, E, F in place of the three employed in the construction actually given; such, however, would not be the case, the three circles D, E, F being, as may be easily shewn, coaxal, and consequently admitting of an infinite number of orthogonal circles (185).

For, A, B, C being the three centres, and $A R, B S, C T$ the three radii of the three given circles; if X, Y, Z be the three centres of the three circles D, E, F, then since, by Cor. 1°,

$$
\frac{B X}{C X}=\frac{B S \cdot \cos \beta}{C H \cdot \cos \gamma}, \frac{C Y}{A Y}=\frac{C T \cdot \cos \gamma}{A R \cdot \cos \alpha}, \frac{A Z}{B Z}=\frac{A R \cdot \cos \alpha}{B S \cdot \cos \beta}
$$

therefore, at once, by composition,

$$
\frac{B X}{C X} \cdot \frac{C Y}{A Y} \cdot \frac{A Z}{B Z}=1
$$

consequently $(134, a)$ the three centres X, Y, Z are collinear, and therefore ($190,3^{\circ}$) the thrce circles D, E, F are coaxal.

The general problem itself, "to describe the circle intersecting three given circles at three given angles," is of course, for the same reason, indeterminate or impossible when the circles are coasal; indeterminate where the circles and angles are such as to fulfil the general relation of the present article, impossible when they are not.
194. With the two following converse properties of coaxal circles, and a few of the consequences to which they lead, we s'aall close the present Chapter.

When four points on two circles are collinear, the four vertices of the quadrilateral of which the tangents at the two on each are opposite sides lie on a third circle coaxal with both; and, conversely, when of a quadrilateral inscribed in a circle tiro opposite sides touch a second circle, the remaining two touch a third circle coaxal with the first and second, and the four points of contact with the two circles touched are collinear.

To prove the first part : If X and X^{\prime}, Y and Y^{\prime} (figs. α and β) be the two pairs of points, A and B the centres of the two circles, α and β their two angles of intersection with the line of the points, and P, Q, R, S the four vertices of the quadrilateral, that is, the four points in which the two tangents at X and X^{\prime} to one circle intersect the two at Y and $Y^{\prime \prime}$ to the other; then since, in the four triangles $X P Y, X Q Y^{\prime}, X^{\prime} R Y^{\prime}$, $X^{\prime} S Y$, the four ratios $P X^{\prime}: P Y, Q X: Q Y^{\prime}, R X^{\prime}: R Y^{\prime}, S X^{\prime}: S Y$
are equal to the same ratio $\sin \beta: \sin \alpha(63)$, they are equal to each other, and therefore (192, Cor. 1°) the four points P, Q, R, S lie on the circle coaxal with A and B whose centre C is given by the relation $A C: B C=\sin ^{8} \beta: \sin ^{3} \alpha ;$ and therefore $\mathbb{E} c$.
'To prove the second part: If P, Q, R, S (same figures) be the four vertices of the quadrilateral, C the centre of the circle on which they lie, X and $X^{\prime \prime}$ the points of contact of its pair of opposite sides $P Q$ and $I S S$ with the second circle, A the centre of that circle, Y and $Y^{\prime \prime}$ the points of intersection of the line $X X^{\prime \prime}$ with the other pair of opposite sides $P S$ and $R Q$ of the quadrilateral, and B the centre of the circle which (Fuc. In. 21, 22) touches those sides at Y and $Y^{\prime \prime}$; then since, by the first part, the circle C is coaxal with the two A and B, therefore, reciprocally, either of the latter is conxal with the other and C, and therefore \&c.

As to the possibility of a circle touching $P S$ and $R Q$ at Y and $Y^{\prime \prime}$, it is evident, from Euc. III. 21, 22, that for the three pairs of angles of iutersection α and α^{\prime}, β and β^{\prime}, γ and γ^{\prime} of any line with the three pairs of opposite comnectors L and $L i$, M and M^{\prime}, N and $N^{\prime \prime}$ of any four points P, Q, N, S on a circle, if $\alpha=\alpha^{\prime}$ then $\beta=\beta^{\prime}$ and $\gamma=\gamma^{\prime}$, and therefore \&ic.

Con. 1°. In both the above properties, while the three circles A, B, C remain fixed, the line and quadrilateral may vary simultancously, provided only the ratio $\sin \alpha: \sin \beta$, of which, by the above, the ratio $B C: A C$ is the duplicate, be constant; or, which is the same thing, provided the ratio $X X^{\prime \prime}: Y Y^{\prime \prime}$ be constant, since (62) $X X^{\prime \prime}=2 \cdot A X \cdot \sin \alpha$, and $Y Y^{\prime}=2 \cdot B Y \cdot \sin \beta$. Hence-

If a variable line intersect two fuxed circles at angles shose sines have any constant ratio, or, which is the same thing, intercept in them chords having any constant ratio, the four vertices of the quadrilateral, of which the tangents at the points of intersection with each are opposite sides, lie on the fixed circle coaxal with both whose centre divides the distance between their centres in the inverse duplicate of the constant ratio of the sines.

And, conversely -
If from a variable point on one of three fixed coaxal circles pairs of tangents be drawn to the other two, the four lines containing a point of contact with one and a proint of contact with
the other intersect them at angles the squares of rohose sines have the constant inverse ratio of the distances of their centres from the centre of the first, and therefore intercept in them chords whose squares divided by the squares of their radii have the same constunt ratio.

In the particular case, when $\sin \alpha: \sin \beta=1$, or (62) when $X X^{\prime}: Y Y^{\prime \prime}=A X: B Y$, or (44) when the line of intersection passes through a centre of similitude, external or internal, of the circles intersected, then $A C: B C=1$, and therefore, of the four vertices of the quadrilateral $P Q R S$, two opposites lie on the line at infinity, and the remaining two lie on the radical axis of the circles A and B, the two lines into which the coaxal circle C then breaks up (184); and the same is evident from the consideration that when $\alpha=\beta$ the pairs of tangents at two pairs of intersections X and Y, X^{\prime} and Y^{\prime} are parallel, and intersect consequently at infinity, and the pairs of tangents at the remaining pairs of intersections X and Y^{\prime}, X^{\prime} and Y form isosceles triangles with the line of intersection and intersect consequently on the radical axis of A and B. $\left(182\right.$, Cor. 1°.)

Cor. 2°. If L and L^{\prime}, M and M^{\prime}, N and N^{\prime} be the three pairs of opposite lines connecting any four points P, Q, R, S on a circle, X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime} their three pairs of intersections with any line making equal angles $\alpha=\alpha$ with one pair of them $L L$ ', and therefore (Euc. III. 21, 22) pairs of equal angles $\beta=\beta^{\prime}$ and $\gamma=\gamma^{\prime}$ with the remaining two pairs $M M M^{\prime}$ and $N N^{\prime}$; the three circles touching L and L^{\prime}, M and Γ^{\prime}, N and N^{\prime} at X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime} are coaxal with each other and with the circle $P Q R S$.

For, by the first part of the above, the latter circle is coaxal with every two of them, and therefore \&c.

If the intersecting line pass, as it or a parallel to it in every case may, through one of the three points $L L^{\prime}, M M^{\prime}, N N^{\prime}$, the corresponding circle of contact being then evanescent, that point is consequently a limiting point of the coaxal system to which the remaining two and the circle $P Q R S$ belong; and if it pass through two of them at once, which, in compliance with the condition restricting it to one or other of two rectangular directions, it only could do when one of the three is at infinity, the two corresponding circles of contact being then evanescent, these points are consequently the two limiting points of the
coaxal system to which the third and the circle $P Q R S$ belong. Hence, see Cor. 2°, Art. 163, the two centres of perspective of any tuo parallel chords of a circle are at once interse points zeith respect to the circle itself and to that which touches the tuo chords at their midelle points; a property the reader may easily verify, a priori, for himself.

Cor. 3°. If $\mathrm{X}^{\text {and }} \mathrm{N}^{\prime \prime}, Y^{\circ}$ and $Y^{\prime \prime}, Z$ and Z^{\prime} we the three pairs of intersections of an arbitrary line vith any three circles, L and I^{\prime}, M and $M \prime, N$ and $N^{\prime \prime}$ the three pairs of tangents at then to the circls; the three circles containing the vertices of the three quadrilaterals, of shich MM' and $N N^{\prime}, N N^{\prime}$ and LLI', LL' and MM' are pairs of opposite sides, are coaral.

For, if A, B, C be the centres of the three original circles, α, β, γ their three angles of intersection with the line, and $A^{\prime}, B^{\prime}, C^{\prime}$ the centres of the three circles containing the vertices of the three quadrilaterals, which, by the above, are coaxal with the pairs of the originals whose centres are B and C, C and A, A and B respectively; then since, by the above,

$$
\frac{B A^{\prime}}{C A^{\prime}}=\frac{\sin ^{3} \gamma}{\sin ^{2} \beta^{2}}, \frac{C B^{\prime}}{A B^{\prime}}=\frac{\sin ^{4} \alpha}{\sin ^{2} \gamma^{2}}, \frac{A C^{\prime}}{B C^{\prime}}=\frac{\sin ^{2} \beta}{\sin ^{3} \alpha} ;
$$

therefore, at onee, by composition of ratios,

$$
\frac{B A^{\prime}}{C A^{\prime}} \cdot \frac{C B^{\prime}}{A B^{\prime}} \cdot A C^{\prime} \cdot \frac{B C^{\prime}}{}=1
$$

consequently $(134, a)$ the three centres $A^{\prime}, B^{\prime}, C^{\prime}$ are collinear, and therefore \&ec., $\left(190,3^{\circ}\right.$.).

In the particular ease when the centres of the three original circles A, B, C are collinear, those of the three derived circles $A^{\prime}, B^{\prime}, C^{\prime \prime}$ are of course necessarily collinear with them; but the preceding relation, proved exactly as above, exists in the particular as in the general case, and equally in both establishes the coaxality of the derived system; the same remark applies to the similar property proved, in a similar manner, in Cor, 10° of the preceding Article.

Con. 4°. For a variable polygon of any order inscribed to a fixed circle of any coaxal system, if all the sides but one touch in overy position fixed circles of the system, that one also touches in ceery, position a fuxed circle of the system.

2 Ce larey Let P, Q, R, S, de. T, and $P^{\prime}, Q^{\prime}, R^{\prime}, S^{\prime}, \mathcal{S c}$. $T^{\prime \prime}$ be any two positions of the vertices of the polygon on The circle of the system round which they move. If in the two positions the several pairs of sides $P Q$ and $P^{\prime} Q^{\prime}, Q R$ and $Q^{\prime} R^{\prime}, R S$ and $R^{\prime} S^{\prime}$, \&c. up to, but not including, the last, touch the same circles of the system, the last pair $T P$ and $T^{\prime \prime} P^{\prime}$ also toueh the same circle of the system.

For, joining the extremities $P P^{\prime}$,
 $Q Q^{\prime}, R R^{\prime}, S S^{\prime \prime}, \& c . T T^{\prime \prime}$ of the several pairs of sides touching the same circles in the two positions of the polygon; then since, by liypothesis, $P Q$ and $P^{\prime} Q^{\prime}$ touch a common circle of the system, therefore, by the second part of the above, $P P^{\prime}$ and $Q Q^{\prime}$ touch a common circle of the system; since again, by hypothesis, $Q R$ and $Q^{\prime} R^{\prime}$ touch a common circle of the system, therefore again, by the same, $Q Q^{\prime}$ and $R R R^{\prime}$ touch a common circle of the system ; since again, by hypothesis, $R S$ and $R^{\prime} S^{\prime}$ touch a common circle of the system, therefore again, by the same, $R R^{\prime}$ and $S S^{\prime}$ touch a common circle of the system; and so on to the last pair of sides but one; from which it follows that the first and last connectors $P P^{\prime}$ and $T T$ touch a common circle of the system, and therefore, by the same as before, that the last pair of sides $T P$ and $T^{\prime} P^{y}$ touch a common circle of the system.

This simple and elegant demonstration of the above celebrated Theorem of Poncelet is due to Dr. Hart, who published an extension of it in The Quarterly Journal of Pure and Applied Mathematics, Vol. ir., page 143; a proof nearly identical was arrived at independently about the same time by Mr. Casey.

Cor. $5{ }^{\circ}$. The principle of the above demonstration depending on the circumstance that the several chords of connection $P P$, $Q Q^{\prime}, R R R^{\prime}, S S^{\prime}, \& \in$. $T^{\prime \prime} T^{\prime \prime}$ for any two positions of the polygon all touch a common circle of the system, and that again depending only on the circumstance that every circlo of the system touched by a side of the polygon in one position is Couched also by a side of the polygon in the other position, irrespectively altogether of the circumstance as to whether the contacts of
the several sides of the polygon with the circles they touch take place in the same order of sequence in the two positions or not; hence, in Poncelet's Theorem the order of sequence in achich the several circles enveloped are touched by the several successive sides of the variable polygon in its different positions is entircly arbitrary, provided only no circle touched in one position be omitted in another ; a circumstance noticed by Poncelet himself, and established by him, in connection with the Theorem, on principles instructive and suggestive but involving conceptions beyond the limits of mere elementary geometry.
'To see this clearly, the figure and notation employed abore, for facility of conception in the first instance, being adapted only to the case when the order of the contacts with the several circles touched is the same in the two positions of the polygon; denoting by $P_{1} P_{2}$ and $P_{2}^{\prime} P_{2}^{\prime}, Q_{1} Q_{8}$ and $Q_{2}^{\prime} Q_{3}^{\prime}, R_{1} R_{2}$ and $R_{2}^{\prime} R_{2}^{\prime}$, $S_{1} S_{3}$ and $S_{1}^{\prime} S_{y}^{\prime}, \& c$., the several pairs of sides of the two polygons corresponding to the two positions which touch the same circles $A, B, C, D, \& \in$. of the system, measured cyelically in the same direction for each polygon (110), but in similar or opposito directions for both, and independently altogether of the order of sequence in either; then since, by the above, the several pairs of connecting chords $P_{1} P_{1}^{\prime}$ and $P_{2} P_{2}^{\prime}, Q_{1} Q_{1}^{\prime}$ and $Q_{2} Q_{2}^{\prime}, R_{1} R_{1}^{\prime}$ and $R_{2} R_{3}^{\prime}, S_{1} S_{1}^{\prime}$ and $S_{2} S_{2}^{\prime}$, de. touch the same circles of the system $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, \mathbb{\&}$. ; and since, from the nature of the case (every side of a polygon being conterminous with the two adjacent), every connector of the system $P_{1} P_{j}^{\prime}$, $Q_{1} Q_{1}^{\prime}, R_{1} R_{1}^{\prime}, S_{1} S_{1}^{\prime}$, \&c. coincides necessarily with some connector of the opposite system $P_{8} P_{8}^{\prime}, Q_{2} Q_{2}^{\prime}, R_{2} R_{8}^{\prime}, S_{8} S_{8}^{\prime}, \mathbb{E}$., and conversely; therefore the several circles $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, ©.c. touched by the several pairs of comectors all coincide, and therefore $\mathbb{\&}$.

Cor. 6°. It appears at once from the above, Cors. 4° and 5°, that the general problem, "to inscribe in a given circle of a coaxal system a polygon of any degree whose several sides in any order of sequence shall touch given circles of the system," is indeterminate when the circles are such that for every polygon inscribed to the first, all whose sides but one touch in any order of sequence all the others but one, the last side touches the last circle; when this is not the case the four common tangents, real or imaginary, to the last circle and to that touched in every
position by the last side (Cor. 4°), give the last sides of the four polygons that solve the problem, and with them therefore the polygons themselves.

Since, when two circles intersect, two of their four common tangents, those passing through their external centre of similitude, are always real, and the other two, those passing through their internal centre of similitude, are always imaginary; bence when, in the above problem, the coaxal system to which the circles belong is of the common points species, two of the four polygons that solve it are always real and the other two always imaginary; when, however, the system is of the limiting points species, all four may be real or all four imaginary according to circumstances.

Cor. 7°. As all the circles touched by the several sides of the variable polygon in every position may coincide, thus reducing the several circles in the general case to two, it appears therefore, from the same, that the modified problem, "to construct a polygon of any order all whose vertices shall lie on one given circle and all whose sides shall touch another given circle," is indeterminate when the two circles are such that for every polygon of the required order all whose vertices lie on the first, and all whose sides but one touch the second, the last side also touches the second. When this is not the case the four common tangents, real or imaginary, to the second circle, and to the third circle, coaxal with the first and second, which is touched in every position by the last side (Cor. 4°), give, as in Cor. 6°, the last sides of the four polygons that solve the problem; which polygons for all odd orders, by taking the two symmetrical positions for which the last side is perpendicular to the line of centres of the three circles, are easily seen to be all real, all imaginary, or, two real and two imaginary, according as the distance between the centres of the two given circles is greater than the sum, less than the difference, or, intermediate between the sum and difference, of their radii.

In the particular case when the polygon is, a triangle, the condition for indeterminateness, as regards the centres and radii of the two given circles, is given immediately by the known relation (102, Cor. 4°) that for every triangle, having no exceptional peculiarity of form, the square of the distance between
the centres of the circle passing through its three vertices and of any of the four touching its three sides = the square of the radius of the former \pm twice the rectangle under the radii of both; when, therefure, for two circles given in magnitude and position, the centres and radii fulfil either condition expressed in that relation, the problem to construct a triangle having its three vertices points on one and its three sides tangents to the other is indeterminate; and when they do not, though four or two real solutions still exist under the circumstances stated above, the resulting triangles, as may be easily seen on drawing the figures corresponding to the two eases, have each a pair of coincident sides, and therefore, besides their ordinary inscribed and exscribed circles, which for then as for every other triangle fulfil the relation, have each an indefinite number of other cireles touching its three sides, which, including the given circle touched by the three, do not fulfil either relation. The fact as well as the explanation of the existence of real solutions in the latter caso has hitherto been very generally overlooked by geometers.

CHAPTER XII.

ON THE CENTRES AND AXES OF PERSPECTIVE OF CIRCLES CONSIDERED IN PAIRS.
195. The two points on the common diameter of two circles which divide the interval between their centres, externally and internally, in the ratio of the conterminous radii, are termed indifferently (44) the two centres of similitude, external and internal, and also (144) the two centres of perspective, external and internal, of the circles; that they possess a double right to the latter appellation will appear in the sequel.

From the mere definition of the centres of similitude or perspective of two circles, it is evident that: 1°. When the circles intersect, they connect with each point of intersection by the two bisectors, external and internal, of the angle between the radii, and therefore (23) of the angle between the circles at the point (Euc. vi. 3); 2°. When the circles touch, one of them, the external or the internal according to circumstances, coincides with the point of contact; 3°. When the circles are equal and not concentric, they bisect, externally and internally, the interval between the two centres; 4°. When the circles are concentric and not equal, they both coincide with the common centre; 5°. When the circles are at once concentric and equal, one, the internal, coincides with the common centre, while the other, the external, is entirely indeterminate (15); 6°. When one circle is a point and the other not, they both coincide with the point; 7°. When oue circle is a line and the other not, they coincide with the extrenities of the dianeter of the latter whose direction is perpendicular to the former; 8°. When both circles are points, with the exception of dividing, externally and internally, in a common ratio the interval between the points, they are otherwise both indeterminate (13);
and 9°. When both circles are lines, they connect from infinity, as in 1°, with the point of intersection by the two bisectors, external and internal, of the angle determined by the lines. Of these particulars, some, less evident than the others, will appear more fully from the general properties of the centres of similitude or perspective of any two circles, which will form the main subject of the present chapter.

When two circles, whatever be their nature, are given in magnitude and position, their two centres of perspective, external and internal, being in fact the two centres of perspective, external and internal, of any pair of their parallel diameters (131), are of course implicitly given with them; and, as already stated in (44), possess with respect to the circles, considered as similar figures at once similarly and oppositely placed, all the properties of the corresponding centres of similitude of similar figures of any form similarly or oppositely placed; all lines passing throngh either intersecting them at equal angles, dividing them into pairs of similar segments, determining on them pairs of homologous points at which the radii and tangents are parallel, and intercepting in them pairs of homologous chords in tho constant ratio of the radii ; and the two particular lines, real or imaginary, which are tangents to either circle being tangents to the other also (42).
196. The circle on the interval between the centres of similitude of two circles as diameter, which when the circles intersect passes evidently through the two points of intersection $\left(195,1^{\circ}\right)$, is sometimes called the circle of similitude of the circles, and may be easily shown to be always coaxal with them, and to be such that from every point of it they subtend equal angles, real or imaginary.

For, the distances of every point on it from their centres having, by (158), the constant ratio of their radii, therefore, by pairs of similar right-angled triangles, the tangents to them from every point on it hare the same constant ratio; but hecause the ratio of the tangents to them from every point of it is constant, it is coaxal with them (192, Cor. 1°); and because the constant ratio is that of their radii, the pairs of tangents to them from every point of it contain equal angles, realor imaginary, and therefore \&c.

Or, more briefly, thus: the tangents, real or imaginary, to two circles from each of their centres of similitude having the ratio of their radii (44), therefore, by (192, Cor. 1°), so have the tangents, real or imaginary, to them from every point of the circle of which the interval between the two centres of similitude is diameter, and therefore \&e.

We shall see, in the next article, that the three circles of similitude of the three groups of two determined by any system of three arbitrary circles, besides being thus coaxal each with the two original circles of its own group, are also coaxal with each other.
197. For any three circles, whose centres are A, B, C, and radii $A R, B S, C T$, if X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime} be the three pairs of centres of similitude, external and internal, of the three groups of two whose centres are B and C, C and A, A and B, respectively, then -
1°. The six points X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime} lie three and three on four lines.
2°. The six lines $A X$ and $A X^{\prime}, B Y$ and $B Y^{\prime}, C Z$ and $C Z^{\prime}$ pass three and three through four points.
3°. The three middle points of the three segments $X X^{\prime}, Y Y^{\prime}$, $Z Z^{\prime}$ are collinear.
4°. The three circles of wohich the three segments $X X^{\prime}, Y Y^{\prime}$, ZZ' are diameters are coaxal.

Of these properties, the two first follow at once from the general criteria a and b^{\prime} of Art. 134, by virtue of the relations (195) which determine the three pairs of points X and X^{\prime}, Y and Y^{\prime}, Z and Z on the three sides $B C, C A, A B$ of the triangle $A B C$, viz.:

$$
\begin{aligned}
& \frac{B X}{C X}=+\frac{B S}{C T}, \quad \frac{C Y}{A Y}=+\frac{C T}{A R}, \quad \frac{A Z}{B Z}=+\frac{A R}{B S} \\
& \frac{B X^{\prime}}{C X^{\prime}}=-\frac{B S}{C T}, \quad \frac{C Y^{\prime}}{A Y^{\prime}}=-\frac{C T}{A R}, \quad \frac{A Z}{B Z^{\prime}}=-\frac{A R}{B S}
\end{aligned}
$$

and the two last follow immediately from the first, by virtue of the two gencral properties 1° and 4° of Cor. 1°, Art. 189, of which they furnish obvious examples; or they may be established independently as follows.

If U, V, W be the three middle points of the three segments $X X^{\prime \prime}, Y Y^{\prime}, Z Z^{\prime}$, then since, by (150),

$$
\frac{B U}{C U}=\frac{B S^{2}}{C T^{2}}, \quad \frac{C V}{A V}=\frac{C T^{2}}{A S^{2}}, \quad \frac{A W}{B W}=\frac{A R^{2}}{B S^{2}}
$$

therefore, by $(134, a)$, the three points U, V, W are collinear ; and because the centres of the three circles of which the three segments $X X^{\prime}, Y Y^{\prime}, Z Z^{\prime}$ are diameters are collinear, the three circles themselves, being, by the preceding (196), coaxal each with the corresponding pair of the original circles to which it is the circle of similitude, are therefore, by $\left(190,3^{\circ}\right)$, coaxal with each other.

The four lines $Y^{\prime} Z^{\prime} X, Z^{\prime} X^{\prime \prime} Y, X^{\prime \prime} Y^{\prime \prime} Z$, and $X Y Z$, on which the six points X^{\prime} and X^{\prime}, Y^{\prime} and Y^{\prime}, Z and Z^{\prime}, by property 1°, are grouped three and three, are termed, from their origin, the four axes of similitude of the threo original circles, and occur very frequently in Modern Geometry in enquiries connected with systems of three circles. As passing each through a centro of similitude of every two of the three, they each, if they meet the three circles at all, intersect them at three equal angles; determine on them two systens of three points at which the radii and tangents are parallel; intercept in them three chords in the matios of their radii; and, if happening to touch one of the three, touching the other two also (42).

The four axes of similitude of any system of three circles furnish evidently the four solutions of the problem "to draw a line intersecting the three circles at equal angles."
198. As every line passing through either centre of similitude O, external (fig. a) or internal (fig. β), of any two circles whose centres are C and $C^{\prime \prime}$, meets them at two pairs of homologous

points (39) X and X^{\prime}, Y and Y^{\prime}, at which the two pairs of corresponding radii $C X$ and $C^{\prime} X^{\prime}, C Y$ and $C^{\prime} Y^{\prime}$, and of corresponding tangents $Z X$ and $Z^{\prime} X^{\prime}, Z Y$ and $Z^{\prime} Y^{\prime}$ are parallel (42); so it meets them at two pairs of anti-homologous points, as they are termed, X and Y^{\prime}, Y and X^{\prime}, at which the two pairs of corresponding radii $C X$ and $C^{\prime} Y^{\prime}, C Y$ and $C^{\prime} X^{\prime}$, and of corresponding tangents $Z X$ and $Z^{\prime} Y^{\prime}, Z Y$ and $Z^{\prime} X^{\prime}$, though not parallel, make equal angles and determine isosceles triangles with the line. Hence any two circles C and C^{\prime} may be conceived to be divided by a variable line revolving round either of their centres of similitude O, and simultaneously exhausting them both, either into pairs of homologous points X and X^{\prime} or Y and Y^{\prime}, or into pairs of anti-homologous points X and Y^{\prime} or Y and X^{\prime}; the distances of every two of the former from the centre of similitude to which they correspond having, as already shown in (42), a constant ratio termed that of the similitude of the figures, and the distances of every two of the latter from the same having, as may be casily sbewn, a constant product termed that of the anti-similitude of the figures.

For, since, by (Euc. III. 35, 36), the two rectangles $0 X .0 Y$ and $O X^{\prime} . O Y^{\prime}$ are both constant, and since, by (42), the two ratios $O X: O X^{\prime}$ and $O Y: O Y^{\prime}$ are both constant and equal, therefore the two rectangles $O X . O Y^{\prime}$ and $O Y . O X^{\prime}$ are both constant and equal, and therefore $\mathcal{\& c}$.

The constant ratio $O X: O X^{\prime}$ or $O Y: O Y^{\prime}$ being positive or, negative according as O is the external or the internal centre of similitude, and the two constant rectangles OX.OY and $O X^{\prime} . O Y^{\prime}$ being both positive and both negative together according as O is external or internal to the circles; hence, as regards the two centres of similitude of any two real circles, the constant rectangle of anti-similitude $O X . O Y^{\prime}$ or $O Y . O X^{\prime}$ is positive for the external and negative for the internal, positive for the internal and negative for the external, or, positive for both, according as the distance between the centres of the circles $C C^{\prime \prime}$ is greater than the sum, less than the difference, or, intermediate between the sum and difference, of their radii.
199. From the propertics of the preceding article, it follows evidently, conversely, that-

If on a variable line, revolving round a fixed point O and intersecting a fixed circle C in two variable points X and Y, two variable points Y^{\prime} and $\mathrm{X}^{\prime \prime}$ be taken, such that $O X . O Y^{\prime \prime}=O Y . O \mathrm{X}^{\prime}$ $=a n y$ constant magnitude, positive or negative; the locus of the two points $Y^{\prime \prime}$ and $X^{\prime \prime}$ is another circle C^{\prime}, with respect to which and the original the point O is a centre of similitude, the external or the internal according as the two constant rectangles $O \mathbb{X} . O Y^{\prime \prime}$, or OY.OX', and OX.OY have similar or oppasite signs.

For, if on the diancter $A B$ of the original circle which passes through O (figs. of last article) the two points B^{\prime} and A^{\prime} bo taken for which $O A . O B^{\prime}=O B . O A^{\prime}=$ the given rectangle, the circle on $A^{\prime} B^{\prime}$ as diameter fulfils evidently, by the preceding, the conditions of the required locus; but since, as regards it and the original, if C^{\prime} be its centre, as $O A . O B^{\prime}=O B . O A^{\prime}$, therefore

$$
O A: O A^{\prime}=O B: O B^{\prime}=O C: O C^{\prime \prime}=C A: C A^{\prime}=C B: C^{\prime} B^{\prime},
$$ and therefore \&s.

If D and D^{\prime} (same figures) be the two inverses of the point O with respect to the two circles; since then, by (164),

$$
O X . O Y=O C . O D \text { and } O X^{\prime} . O Y^{\prime}=O C^{\prime} . O D^{\prime}
$$

therefore the constant product of anti-similitude for the point 0 , viz.,

$$
O X . O Y^{\prime} \text { or } O Y . O X^{\prime \prime}=O C . O D^{\prime} \text { or } O C^{\prime} . O D
$$

a value found very useful in the modern Theory of Inversion.
200. The two products of anti-similitude, external and internal, for any two circles may be expressed, in terms of their radii and of the distance between their centres, as follows:

If (same figures as before) C and C^{\prime} be their two centres, $C R$ and $C^{\prime} R^{\prime}$ their two radii, and O either centre of similitude, external (fig. α) or internal (fig. β), then since (Euc. 1u. 35, 36),

$$
O X . O Y=O C^{z}-C R^{2} \text { and } O X^{\prime} . O Y^{\prime}=O C^{r y}-C^{\prime} R^{\prime}
$$

and since (42)

$$
O X: O X^{\prime}=O Y: O Y^{\prime}=O C: O C^{\prime}= \pm\left(C R: C^{\prime} R^{\prime}\right)
$$

accerding as O is external or internal, therefore $O X . O Y^{\prime \prime}$, or its equivalent $O Y . O X^{\prime},=O C . O C^{\prime} \mp C R . C^{\prime} R^{\prime}$; but, by (84),

$$
O C=\frac{C R}{C R \mp C^{\prime} R^{\prime}} \cdot C^{\prime} C \text { and } O C^{\prime}=\frac{C^{\prime} R^{\prime}}{C^{\prime} R^{\prime} \mp C R} \cdot C C^{\prime}
$$

therefore, denoting by r and r^{\prime} the two radii and by d the distance between the two centres, the two products of anti-similitude, external and internal, have respectively for values

$$
\frac{r r}{\left(r-r^{\prime}\right)^{2}} \cdot\left\{d^{2}-\left(r-r^{\prime}\right)^{2}\right\} \text { and } \frac{r r^{\prime}}{\left(r+r^{\prime}\right)^{2}} \cdot\left\{\left(r+r^{\prime}\right)^{2}-d^{2}\right\} ;
$$

which are the formulæ by which to calculate them in numbers when the centres and the radii of the circles are given, and which for real circles, it will be observed, give them signs in exact accordance with the particulars already stated in Art. 198.
201. The two circles round the two centres of similitude of any two circles as centres, the squares of whose radii are equal in magnitude and sign to the corresponding rectangles of antisimilitude, are termed the two circles of anti-similitude, external and internal, of the original circles. When the latter intersect, they evidently (198) pass through their two points, and bisect, externally and internally, their two angles, of intersection, and are therefore in that case coaxal with them and with their circle of similitude (196); that they are so in all cases may easily bo shewn as follows:

Since for each centre of similitude O (same figures as before)

$$
O X: O X^{\prime}=O Y: O Y^{\prime}=O C: O C^{\prime}
$$

therefore

$$
\begin{aligned}
& O C^{\prime} . O X . O Y-O C . O X^{\prime} . O Y^{\prime} \\
&=\left(O C-O C^{\prime}\right) \cdot\left(O X . O Y^{\prime} \text { or } O Y . O X^{\prime}\right)
\end{aligned}
$$

but $O C-O C^{\prime}=C^{\prime} C$, and $O X . O Y^{\prime}$ or its equivalent $O Y . O X^{\prime}$ $=$ the square of the radius of the circle of anti-similitude round $O,=-O X^{\prime \prime} . O Y^{\prime \prime}$, if $X^{\prime \prime}$ and $Y^{\prime \prime}$ be any two diametrically opposite points of that circle; therefore for the three; circles whose collinear centres are C, C^{\prime} and O,

$$
O C^{\prime} . O X . O Y-O C . O X^{\prime} . O Y^{\prime}=C C^{\prime} . O X^{\prime \prime} . O Y^{\prime \prime}
$$

and therefore by $\left(192\right.$, Cor. $\left.6^{\circ}\right)$ those three circles are coaxal.
As every two anti-homologous points with respect to either centre of similitude of two circles are evidently inverse points (149) with respect to the circle of anti-similitude corresponding to that centre, it follows therefore, from (156), that every circle passing through any pair of anti-homologous points with respect to
either centre of similitude of two circles intersect at right angles the circle of anti-similitude corresponding to that centre.

Again, as every circle orthogonal to two others is orthogonal to every circle coaxal with the two ($187,4^{\circ}$), it follows, of course, from the relations of coaxality, established above and in (196), between any two circles, their circle of similitude, and their two circles of anti-similitude, that every circle orthoyonal to two others is orthogonal at once to their circle of similitude and also to their tioo circles of anti-similitulle.
202. For any three circles A, B, C, if D and D^{\prime}, E and $E^{\prime \prime}$, F and F^{*} be the three pairs of circles of anti-similitude, cxternal and internal, of B and C, C and A, A and B respectively; then-
1°. The four groups of three circles $E^{\prime \prime}, L^{\prime \prime}, D ; I^{\circ}, D^{\prime}, E$; $D^{\prime}, E^{\prime \prime}, F$; and D, E, F are coaxal.
2°. Their four radical axes pass through the radical centre of the original group A, B, C.
3°. Their four pairs of common points, real or imaginary, are inverse pairs with respect to the four axes of similitude, and to the orthogonul circle, of the group A, B, C.
4. Their four pairs of limiting points, imaginary or real, are the intersections of the four axes of sinilitude with the orthogonal circle of the group A, B, C.

These several properties follow immediately from, or rather are all examples of, the general properties of Art. 190; the three pairs of circles D and D^{\prime}, E^{\prime} and $E^{\prime \prime}, F$ and F^{\prime} being coaxal with the three pairs B and C, C and A, A and B (201); the four groups of centres of the four groups of circles $E^{\prime \prime}, F^{\nu}, D ; F^{\prime \prime}, D^{\prime}, E$; $D^{\prime}, E^{\prime \prime}, F$; and D, E, F being collinear (197, 1°); their four lines of centres $Y^{\prime}, Z^{\prime}, X^{\prime} ; Z^{\prime}, X^{\prime}, Y ; X^{\prime}, Y^{\prime}, Z$; and X, Y, Z being the four axes of similitude of the group $A, B, C(19 i)$; and the whole six circles themselves being all cut orthogonally by the common circle, real or imaginary, orthogonal to the three $A, B, C\left(183\right.$, Cor. $\left.1^{\circ}\right)$.
203. As for any two circles, regarded as similar figures, every two points P and P^{\prime}, or Q and Q^{\prime}, whether on the circles or not ${ }_{2}$ which connect through either centre of similitude O, and which are such that the ratio of their distances from it $O P^{\prime}: O P^{P}$, or $O Q: O Q^{\prime}$, is equal in magnitude and sign to the constant ratio
of similitude for it, are termed homologous points with respect to it (42); so for any two circles, regarded as anti-similar figures, every two points P and Q^{\prime}, or R and $S^{\prime \prime}$, whether on the

circles or not, which connect through either centre of antisimilitude O, external (fig. α) or internal (fig. β), and which are such that the product of their distances from it $O P . O Q$, or $O R . O S^{\prime}$, is equal in magnitude and sign to the constant product of anti-similitude for it, are termed anti-homologous points with respect to it. And again, as in the former case, cvery two connectors $P Q$ and $P^{\prime} Q^{\prime}$ of two points P and Q, and of their two homologues P^{\prime} and Q^{\prime} with respect to either centre of similitude O, are termed homologous lines with respect to that centre ($39,6^{\circ}$); so, in the latter case, every two connectors $P R$ and $Q^{\prime} S^{\prime}$ of two points P and R, and of their two anti-homologues Q^{\prime} and S^{\prime} with respect to either centre of anti-similitude O, external (fig. a) or internal (fig. β), are termed anti-homologous lines with respect to that centre.

It is evident (Euc. III. 35, 36) that every two pairs of antihomologous points P and Q^{\prime}, R and S^{\prime} with respect to cither centre of similitude O of two circles, whether on the circles or not, lie, when not collinear, on a circle, the square of the tangent to which from that eentre is equal in magnitude and sign to the corresponding product of anti-similitude of the circles; and, conversely, that every circle passing through any pair of antihomologous points P and Q^{\prime} with respect to either centre of similitude O of two circles, whether on the circles or not, determines pairs of anti-homologous points R and S^{\prime}, real or imaginary, with respect to that centre on all lines passing through it; intersects the circles themselves in two pairs of anti-homologous
points U and $V^{\prime \prime}, X$ and $I^{\prime \prime}$, real or imaginary, with respect to the same; and, when, by the coincidence of the two points of intersection at E or G, touching either circle, then, by the simultaneous coincidence of the two anti-homologous points of intersection at $F^{\prime \prime}$ or H^{\prime}, touching the other also (19).

It is evident also that, in their more general as in their more restricted acceptation (198), all pairs of anti-bomologous points P and Q^{\prime}, R and S^{\prime}, ©c. with respect to either centre of similitude O of two circles are inverse pairs with respect to tho circle of anti-similitude corresponding to that centre (201); and that, consequently, all circles passing, as in the abovo figures, through any pair of them P^{3} and Q, with respect to either centre O, intersect at right angles the circle of antisimilitude corresponding to that centre (156).
204. All pairs of homologous tungents with respect to either centre of similitude of theo circles intersect on the line at infinity.

All pairs of anti-homologous tangents seith reqpect to either centre of similitude of two circles intersect on their radical uxis.

For, if X and $X^{\prime \prime}$ or Y and $Y^{\prime \prime}$ (figures of Art. 198) be any pair of homologous points on the circles, X and $Y^{\prime \prime}$ or Y and X^{\prime} any pair of anti-homologous points on the same, and O the centre of similitude, external or internal, to which they correspond; then the two pairs of tangents at the former being parallel (41) intersect therefore on the line at infinity (16); and the two pairs at the latter determining isosceles triangles $X P Y^{\prime \prime}$ and $Y^{\prime} Q I^{\prime \prime}$ with the line of the points (198) intersect therefore on the radical axis (182, Cor. 1).

Conversely, if from any point either on the line at infinity or on the radical axis of twoo circles four tangents be drawn to the circles, their four chords of contact with different circles intersect theo and two at the two centres of similitude, external and internal, of the circles.

For, the four tangents being parallel in the case of the line at infinity (16) and equal in the case of the radical axis (182, Cor. 1°), their four chords of contact with different circles in either case make equal angles with the circles, and therefore \&c. (42).

Cor. Since, in the converse property, the two chords of contact of the two pairs of tangents to the same circles in-
tersect, in either case, on the line containing the point, and pass, in either case, through its two poles with respect to the two circles, see Art. 182, Cor. 10°; it follows consequently, from that property, that-

The two centres of perspective, external and internal, of any two chords of two circles which pass through the two poles with respect to the circles either of the line at infinity or of their radical axis, and which intersect on the line whichever. it be, are the two centres of similitude, external and internal, of the circles.
205. The interval between the polars of either centre of similitude of two circles, of course bisected externally by the line at infinity, is bisected internally by the radical axis of the circles.

For, if X and Y, X^{\prime} and Y^{\prime} (same figures as before) be the four intersections with the circles of any line passing through either centre of similitude O; then since, of the four vertices of the parallelogram $P Z Q Z^{\prime}$ determined by their four tangents (41), the two opposites Z and Z^{\prime}, at which the pairs of tangents to the same circles intersect, lie on the two polars of O with respect to the two circles $\left(166, \mathrm{Cor} .3^{\circ}\right)$, and the two opposites P and Q, at which the pairs of tangents to different circles intersect, lio on the radical axis of the circles (204); and since in every parallelogram the two diagonals mutually bisect internally (Euc. 1. 34), therefore \&c.

Conversely, if the interval between two homologous points with respect to either centre of similitude of two circles, of course bisected externally by the line at infinity, be bisected internally by the radical axis of the circles, the two points lie on the two polars of that centre of similitude with respect to the circles.

For, if connected with another pair of homologous points on the two polars in question, the interval between which, by the above, is also bisected by the radical axis, the two homologous connectors, being parallel to each other (41), would be parallel to the radical axis (Euc. vi. 2), and therefore \&c.

Cor. It follows evidently from the above, as proved before for a particular case in (182, Cor. 9), that for any two circles, hovever circumstanced as to magnitude and position, the two polars of the two centres of similitude with respect to each are equidistant in the two.
206. The two properties of Art. 204 are evidently particular cases of the two following, viz. -

All pairs of homologous chords with respect to either centre of similitude of tueo circles intersect on the line at infinity.

All pairs of anti-homologous chords with respect to cither centre of similitude of two circles intersect on their radical axis.

For, if $U X$ and $U^{\prime} \Gamma^{\prime \prime}$, or $U Y$ and $U^{\prime} Y^{\prime}$, or $V X$ and $V^{\prime} X^{\prime \prime}$, or $V Y$ and $V^{\prime \prime} Y^{\prime}$ be any pair of homologous chords of the circles, $U X$ and $V^{\prime} Y^{\prime}$, or $U Y$ and $V^{\prime} X^{\prime \prime}$, or $V X$ and $U^{\prime} Y^{\prime}$, or $V Y$ and $U^{\prime} X^{\prime \prime}$ any pair of anti-homologous chords of the same, and O the centre of similitude, external (fig. α) or internal (fig. β), to which they correspond; then since, by the similitude of the figures,

$$
O U: O U^{\prime}=O V: O V^{\prime}=O X: O X^{\prime \prime}=O Y: O Y^{\prime}
$$

therefore the directions of the several pairs of homologous chords are parallel, and therefore the several pairs themselves intersect on the line at infinity (16); and sinee, by the anti-similitude of the figures,

$$
O U . O V^{\prime}=O V . O U^{\prime}=O X . O Y^{\prime}=O Y . O X^{\prime}
$$

therefore the extremities of the several pairs of anti-homologous chords are coneyclic, and therefore the several pairs themselves intersect on the radical axis of the circles (182, Cor. 3°).

In the two parallelograms $P Z Q Z^{\prime}$ and $R W S W^{\prime}$ (see figs.) formed by the four pairs of homologous and of anti-homologous
chords determined by any two lines passing through O and intersecting the circles, the two diagonals $Z Z^{\prime}$ and $W W^{\prime}$, which connect the homologous intersections of pairs of chords of the same circles, being both bisected by the radical axis, their ex-. tremities lic consequently, as in the preceding (205), on the two polars of the point O with respect to the two circles; lines which with respect to that point possess evidently the property peculiar to themselves of being at once homologous and antihomologous chords of the figures.

In the application of the above properties to any system of two circles, it is evident, from Art. 204, Cor., that-

All pairs of chords passing through the two poles of and intersecting upon the line at infinity are homologous pairs with respect to both centres of similitude.

All pairs of chords passing through the two poles of and intersecting upon the radical axis are anti-homologous pairs with respect to both centres of similitude.
207. The two general propertics of the preceding article establish, as stated in (144), the quadruple relation of perspective existing between every two circles in the same plane, however circumstanced as to position and magnitude; the first their double relation of perspective as similar figures at once similarly and oppositely placed, and the second their double relation of perspective as anti-similar figures at once similarly and oppositely placed; the line at infinity and their radical axis being the axes of their double perspective in the two cases respectively, and the two centres of similitude or of anti-similitude, external and internal, being the centres of their double perspective in both eases alike.

As every two figures in perspective, whatever be their naturo (141), evidently intersect their axis of perspective, whatever be its position, (or each axis of perspective if like two circles they have more than one), at the same system of points, real or imaginary, whose number depends, of course, on the nature of the figures; it follows, consequently, from the above, that for every two circles in the same plane, hovever circunstanced as to magnitude and position, the radical axis and the line at infinity, boing both axes of perspective, are both chords of interscction; the corresponding points of intersection, real or imaginary, according
to circumstances in the case of the former, being of course from the nature of the figures alicays imaginary in the case of the latter. This remarkable conclusion, as regards the line at infinity in relation to every two circles, the reader will find abundantly verified by various other considerations in the course of the sequel.

As again, every two figures in perspective, whatever be their nature, subtend, as stated in (41), their centre of perspective, whatever be its position, (or each centre of perspective if like two circles they have more than one), in the same system of tangents, real or imaginary, whose number depends, as before, on the nature of the figures. Hence, and from the above, the following pair of analogous properties respecting the two centres aud the two axes of perspective of cvery two circles in the same plane, viz.-

Every two circles in the same plane, hovever circumstanced as to magnitude and position, subtend the aame two angles, real or imaginary, at their theo centres of perspective.

Every twoo circles in the same plane, hovever circumstanced as to magnitude and position, intercept the same tuco segments, real or innaginary, on their two axes of perspective.

20S. The following pairs of polar relations, common respectively to both centres and to both axes of perspective of two circles, supply additional illustrations of the analogy noticed at the close of the preceding article, viz. -
a. The tioo poles of every line throngh either centre of perspective of tico circles conned through the same centre of perspective.
a^{\prime}. The tico polars of every point on either axis of perspective of two circles intersect on the same axis of perspective.

For, in the former case, the two polars of the line are evidently homologous points with respect to the centre, whichever it be, and therefore \&c. (41); and, in the latter case, tho property is evidently that already noticed in Art. 204, Cor., and therefore \&c.
b. Every two lines through ether centre of perspective of two circles which are conjugates with respect to cither circle are conjugates with respect to the other also.
b '. Every two points on either axis of perspective of two circles
which are conjugates with respect to either circle are conjugates with respect to the other also.

For, in the former case, the two lines, passing each through the polo of the other with respect to one of the circles (174), pass, therefore, by (a), each through the pole of the other with respect to the other circle also, and therefore \&c.; and, in the latter case, the two points, lying each on the polar of the other with respect to ono of the circles (174), lic, therefore, by (a^{\prime}), each on the polar of the other with respect to the other circle also, and therefore \&c.
c. In every two circles the two centres of perspective are those of every two inscribed chords whose poles coincide on either axis of perspective.
c. In every two circles the two axes of perspective are those of every two circumscribed angles whose polars coincide through either centre of perspective.

For, in the former case, the four extremities of the two chords determine, according to the axis, two pairs either of homologous or of anti-homologous points with respect to both centres of perspective (204), and therefore \&c.; and, in the latter case, the four sides of the two angles determine, whichever be the centre, two pairs of homologous and two pairs of anti-homologous tangents with respect to the centre (204), and therefore \&.c.
d. In every two circles the two centres of perspective divide, externally and internally, in common ratios the intervals between the two poles of each axis of perspective.
d^{7}. In every two circles the two axes of perspective divide, externally and internally, in common ratios the intervals between the two polars of each centre of perspective.

For, in the latter case, the two axes of perspective, as already shewn in (205), bisect, externally and internally, the intervals between the polars of each centre of perspective, and therefore $\& \mathrm{cc} . ;$ and, in the former case, the two centres of perspective being, by (204, Cor.), those of every pair of chords of tho circles which pass through the poles of and intersect on either axis of perspective, are therefore those of the particular pair perpendicular to the line of centres, the interval between which they consequently divide, externally and internally, in the ratio of their lengths, and therefore \&c.
c. When two circles intersect at right angles, the polar of either centre of perspective with respect to either circle is the polar of the other centre of perspective with respeet to the other circle.
e^{\prime}. When two circles intersect at right angles, the pole of either axis of perspective with respect to cither circle is the pole of the other axis of perspective with respect to the other circle.

For, in the latter case, the centre of each circle being the pole of the line at infinity with respect to itself $\left(165,3^{\circ}\right)$, and the pole of the radical axis with respect to the other $(165,6 \%$, therefore \&c.; and, in the former case, as the two lines connecting either point of intersection of the circles with their two centres of perspective make each half a right angle with each of the two radii at the point of intersection ($195,1^{\circ}$), therefore the two lines from either point of intersection which make each half a right angle with the line of centres of the circles intersect that line at two points, each of which, by (158, Cor. 1°), is the inverse of one centre of perspective with respect to one circle, and of the other centre of perspective with respect to the other circle, and therefore \&c. (165).
f. When two circles intersect at right angles, every two tangents to either which intersect on a polar of cither centre of perspective are conjugate lines with respect to the other.
f^{\prime}. When tweo circles intersect at right angles, every two points of either which connect through a pole of either axis of perspective are conjugate points with respect to the other.

For, in the latter case, the centres of the two circles being the poles of both their axes of perspective ($165,3^{\circ}, 6^{\circ}$), and the extremities of all diameters of either being conjugate points with respect to the other (177), therefore \&ic.; and, in the former case, if C and C^{\prime} be the centres of the two circles, O either of their centres of perspective, the external (fig. α) or the internal (fig. β), X and Y, X^{\prime} and Y^{\prime} their two pairs of intersections with any line passing through $O, X^{\prime} Z^{\prime}$ and $Y^{\prime} Z^{\prime}$ the two tangents to either C^{\prime} at its pair of intersections $X^{\prime \prime}$ and $Y^{\prime \prime}$, which, by ($166, \mathrm{Cor} .3^{\circ}$), intersect on the polar of O with respect to itself, P and Q, R and S their two pairs of intersections with the two homologous radii $C X$ and $C Y$ of the other C, to which, by (198, and Euc. III. 18), they are respectively at right angles, and, P^{\prime} and Q^{\prime}, R^{\prime} and $S^{\prime \prime}$ the two pairs of intersections, real or

imaginary, of their circle with the same radii; then, since, by the isosceles triangle $X^{\prime} Z^{\prime} Y^{\prime}$, the two angles at X^{\prime} and Y^{\prime} are equal, therefore, by (63), or by $(134, a)$,

$$
P X^{\prime 2}: Q Y^{\prime 2}=P X^{y}: Q X^{Y}, \text { and } R X^{\prime 2}: S Y^{\prime 2}=R Y^{2}: S Y^{2}
$$

and therefore, by Euc. III. 35, 36,

$$
P P^{\prime} \cdot P Q^{\prime}: Q P^{\prime} \cdot Q Q^{\prime}=P X^{2}: Q X^{3}
$$

and

$$
R R^{\prime} \cdot R S^{\prime}: S R^{\prime} \cdot S S^{\prime}=R Y^{2}: S Y^{\gamma y}
$$

but, since the circles, by hypothesis, intersect at right angles, therefore, by (156),

$$
C P^{\prime} \cdot C Q^{\prime}=C X^{2}, \text { and } C R^{\prime} \cdot C S^{\prime}=C Y^{2}
$$

and therefore, by (161, Cor. 1°),

$$
C P \cdot C Q=C X^{2}, \text { and } C R \cdot C S=C Y^{2},
$$

from which, since, by (198), the two tangents $Z^{\prime} X^{\prime}$ and $Z^{\prime} Y^{\prime}$ are perpendiculars to the two radii $C X$ and $C Y$, it follows, consequently, from (165), that they are the polars of the two points Q and R with respect to the circle C, and therefore \&c. (174).

- 209. Every circle having contacts of similar species with two others touches them at a pair of anti-homologous points with respect to their external centre of perspective.

Every circle having contacts of opposite species with two others touches them at a pair of anti-homologous points with respect to their internal centre of perspective.

For, if C and C^{\prime} (figures, Art. 198) be the centres of the two touched circles, and X and Y^{\prime}, or Y and X^{\prime}, their two
points of contact with the tonching eircle; then since the chord of contact $X^{\prime \prime}$, or $Y^{\prime \prime}$, makes equal angles with the radii of the latter, it does so with those of the former at its extremities, and therefore (42) passes through a centre at perspective of the former, the external (fig. α) or the internal (fig. β), according as their radii $C \Gamma^{\prime}$ and $C^{\prime} Y^{\prime \prime}$, or $C Y$ and $C^{\prime} \Lambda^{\prime \prime}$, at its extremities are at similar or opposito sides of it (44); that is, according as the contacts of the touching with the touched circles are of similar or opposite species, and therefore dec.

Conversely, Every circle passing through a pair of antihomologous proints seith respect to either centre of perspective of two others, and touching either rith contact of either species, touches the other with contact of similar or opprosite species, according as the centre of perspective is external or internal.

For the line $\mathrm{X}^{\prime \prime}$, or $\mathrm{Y}^{\prime \prime}$, (same figures as before), passing through a pair of anti-homologous points X^{\prime} and $Y^{\prime \prime}$, or Y and $\lambda^{\prime \prime}$, with respect to a centre of perspective O of the two circles whose centres are C and C^{\prime}, makes equal angles with their radii at the poiuts, and also with those of every circle passing through the points; consequently, if the latter circle liave contact of either species with either of the former, it has contact of similar or opposite species with the other, according as their radii at the points, (those of itself lying neceasarily at the same side), lie at similar or opposite sides of the line; that is, according as the centre of perspective is external (fig. a) or internal (fig. β), and therefore \&e. Sce also Art. 203.

Cor. 1°. Every two anti-homologous points with respect to either centre of perspective of two circles being inverse points with respect to the corresponding circle of anti-similitude (203), it follows at once (156) from the first part of the above, that-

Every circle having contacts of similar species veith two others intersects at right angles their external circle of anti-similitude.

Every circle having contacts of opposite species with two others intersects at right angles their internal circle of anti-similitude.

Properties which, as the two circles of anti-similitude are coaxal with the original circles, coincido consequently with those already established on other principles in (193, Cor. 2°), viz. that-

Every circle having contacts of similar species with two others intersects at right angles the coaxal circle whose'centre is their external centre of perspective.

Every circle having contacts of opposite species with two others intersects at right angles the coaxal circle whose centre is their internal centre of perspective.

Cor. 2°. Since when a number of circles are orthogonal to the same circle, the radical axis of every two of them passes through, and the radical centre of every three of them coincides with, its centre; it follows consequently, from Cor. 1°, or indeed again directly from the first part of the above, that-

For every two circles having contacts of similar species with two others, the radical axis passes through their external centre of perspective.

For every two circles having contacts of opposite species with two others, the radical axis passes through their internal centre of perspective.

For every three circles having contacts of similar species with two others, the radical centre coincides with their external centre of perspective.

For every three circles having contacts of opposite species with two others, the radical centre coincides with their internal centre of perspective.

Cor. 3. Since when three circles are orthogonal to three others, both systems are coaxal and conjugate to each other (185), it follows also from Cor. 1°, or again, directly from the first part of the above, that-

The circle orthogonal to thrce others, and the two circles touching the three with contacts of similar species, are coaxal, and have for radical axis the line passing through the three external centres of perspective of the three groups of two contained in the three ($197,1^{\circ}$).

The circle orthogonal to three others, and the two circles touching the same two of them with contacts of similar species and the thirel with contact of the opposite species, are coaxal, and have for radical axis the line passing through the external centre of perspective of the twoo and the two internal centres of perspective of the teo combined each with the third $\left(197,1^{\circ}\right)$.

Cor. 4°. The sccond part of the above supplies obvious and rapid solutions of two following problems, viz.-

To describe a circle passing through a given point and having contacts of similar or opposite species with theo given circles.

For by it, (see figures Art. 203), the two circles, real or imaginary, passing through the given point P and its antihomologue Q^{\prime} with respect to either centre of perspective O of the given circles, and touching either circle, touch the other with contact of similar or opposite species, according as O is (fig. α) the external or (fig. β) the internal centre of perspective of the two, and therefore \&o.

Of the four circles supplied in pairs by the two cases of the above, each evidently is the unique solution of some one of the four different cases of the more definite problem: "To describe a circle passing through a given point and having contacts of assigned species with troo given circles."

Con. 5°. Since if a circle O have contacts of definite species with three given circles A, B, C, a concentric circle O^{\prime} passing through the centre of any one of them C eridently touches with contacts of definite species two circles A^{\prime} and B^{\prime} concentric with the other two A and B, whose radii are equal to the sums or differences, according to circumstances, of the radii of A and C and of B and C, and which are therefore given with the latter; hence the unique solation of the definite problem: "To describe a circle having contacts of given species with three given circles," is reduced at once to that of the definite problem just stated: "To describe a circle passing through a given point and having contacts of given species with thoo given circles ;" and, consequently, the eight different solutions of the celebrated problem: "To describe a circle touching three given.circles," corresponding to the eight different combinations of contacts of both kinds with the three, may be regarded as all given in detail by so many applications of the definito construction of Cor. 4°, which, though indirect, is perhaps on the whole the simplest of which they are susceptible, see 183 , Cor. 6° and $186,3^{\circ}$.

Of all the constructions ever given for the direct determination of the eight circles of contact of three given circles, that of M. Gergome, who regarded them as divided into four con-
jugate pairs having contacts of opposite species with the three given circles, and who determined simultancously the six points of contact of each pair of conjugates, is decidedly the most elegant. The principles on which it depends are contained also in the above, and form the subject of the next article.
210. When two circles have contacts of opposite species with each of three others.
a. If they have each contacts of similar species with the three, their radical axis passes through the three external centres of perspective of the three groups of two contained in the three.
b. If they have each contacts of similar species voith the same two of the three and contact of the opposite species with the third, their radical axis passes through the external centre of perspective of the two and through the two internal centres of perspective of the two combined each with the third.
c. Their three chords of contact with the three pass, in either case, through the radical centre of the three and through the three poles of their radical axis with respect to the three.

For, if A, B, C be the three centres of the touched circles,

X, Y, Z and $X^{\prime}, Y^{\prime}, Z$ ' their six points of contact with the two touching each with contacts of opposite species and having themselves each either contacts of similar species with all three (fig. a), or contacts of similar species with two of them A and B and contact of the opposite species with the third C (fig. β), D, E, F the three centres of perspective, external or internal, of B and C, C and A, A and B respectively, through which
the three pairs of connectors $Y Z$ and $Y^{\prime} Z^{\prime}, Z Y^{\prime}$ and $Z^{\prime} X^{\prime}$, $X 1$ and $X^{\prime \prime} \Gamma^{\prime \prime}$ by (209) pass, and O the internal centre of perspective of $X Y Z$ and $X^{\prime \prime} Y^{\prime \prime} Z^{\prime}$, through which the three connectors $X X^{\prime}, Y Y^{\prime \prime}, Z Z^{\prime}$ by the same pass; then, since, by (198),
$D Y^{\prime} \cdot D Z=D Y^{\prime} \cdot D Z^{\prime}, E Z \cdot E X=E Z^{\prime} . E X^{\prime}, F X \cdot F Y=F X^{\prime} \cdot F Y^{\prime}$, therefore, by ($182, \operatorname{Cor} .1^{\circ}$), the line $\operatorname{DEF}\left(197,1^{\circ}\right)$ is the radical axis of the two circles $X Y Z$ and $X^{\prime} Y^{\prime \prime} Z$, which proves a and l; since, by (198), OX.OX' $=O Y . O Y^{\prime}=O Z . O Z^{\prime}$, therefore, by (183, Cor. 1°), the point O is the radical centre of the three circles A, B, C, which proves the first part of c; and, since, by (182, Cor. 1°), the three pairs of tangents at X and $X^{\prime \prime}$, Y^{\prime} and $Y^{\prime \prime}, Z$ and Z^{\prime} to the two circles $X Y^{\prime \prime} Z$ and $X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$ intersect on their radical axis DEF, therefore, by ($166, \mathrm{Cor} .3^{\circ}$), their three chords of contact $X X^{\prime}, Y Y^{\prime}, Z Z^{\prime}$ pass through the three poles P, Q, R of that line with respect to the three circles A, B, C, which proves the second part of c; and therefore $\& \cdot$

Con. 1. Hence the following elegant construction of M. Gergonne for determining directly the six points of contact X, Y, Z and $X^{\prime}, I^{\prime}, Z^{\prime}$ of any particular conjugate pair of the eight circles of contact of three given circles A, B, C.

T'ake the axis of similitude DEF of the three given circles (197) which, by the above (a or b), is the radical axis of the conjugate pair whose points of contact are required, and connect its three poles $P, Q, I R$ with respect to the given circles with their radical centre O; the three connecting lines $O P, O Q, O R$ intersect the three circles in three pairs of points, real or imaginary, X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime}, which, by the above (c), are the six points required.

The unique solution of the definite problem, "to describe a circle baving contacts of given species with three given circles," is of course involved in this construction, which with its three points of contact gives evidently those of its conjugate at the same time.

Cor. 2°. If G and G^{\prime} be the centres of the two circles XYZ and $X^{\prime} Y^{\prime} Z^{\prime}$, since, by (199) and (181), the line $G G^{\prime}$ passes through the point O and intersects at right angles the line DEF. Hence-

For the eight circles of contact of any system of three circles, the eight centres lie two and two in conjugate pairs on the four perpendiculars to the four axes of similitude through the radical centre of the three.

Cor. 3°. The circle round O as centre, the square of whose radius is equal in magnitude and sign to the common value of the three equal rectangles $O X . O X^{\prime}, O Y . O Y^{\prime}, O Z . O Z$, being, by (201), the internal circle of anti-similitude of the two XYZ and $X^{\prime} Y^{\prime} Z^{\prime}$, and, by ($183, \operatorname{Cor} .1^{\circ}$), the orthogonal circle of the three A, B, C. Hence-

Of the eight circles of contact of any system of three circles, the four conjugate pairs have a common internal centre and a common internal circle of anti-similitude, viz. the radical centre and the orthogonal circle of the three.

Cor. 4°. Each circle of anti-similitude, external and internal, of any two circles being coaxal with the two (201). Hence by Cor. 3°.-

Of the eight circles of contact of any system of three circles, the four conjugate pairs belong to the four coaxal systems determined by the four axes of similitude with the orthogonal circle of the three. See Cor. 3°, Art. 209.
211. The two properties of Art. 209 are evidently particular cases of the two following, viz.-

For any system of two circles, every circle passing through any pair of anti-homologous points with respect to their external centre of perspective intersects them at equal angles, and every circle passing through any pair of anti-homologous points with respect to their internal centre of perspective intersects them at supplemental angles.

For, if C and C^{\prime} (figs. Art. 203) be the centres of the two circles, P and Q^{\prime} any pair of anti-homologous points with respect to either of their centres of perspective, the external (fig. α) or the internal (fig. β), $U X$ and $V^{\prime} Y^{\prime \prime}$ their pair of anti-homologous chords of intersection (203) with any circle passing through P and Q, and I the centre of that circle; then, since (Euc. 1. 5) the two pairs of angles $I U V^{\prime}$ and $I V^{\prime} U, I X^{\prime} Y^{\prime \prime}$ and $I Y^{\prime \prime} X$ are equal, and since (198) the two pairs of angles $C U V^{\prime}$ and $C^{\prime} V^{\prime} U$,

therefore the two pairs of angles $I U C$ and $I V^{\prime \prime} C^{\prime \prime}, I \mathrm{XC}$ and $I Y^{\prime \prime} C^{\prime}$ are equal (fig. a) or supplemental (fig. β), and therefore ©c. (23).

Conversely, For any system of tweo circles, every circle intersecting them at equal angles intersects them in a pair of antihomologous chords with respect to their external centre of perspective, and every circle intersecting them at supplemental angles intersects them in a pair of unti-homologous chords with respeet to their internal centre of perspectice.

For, if C and $C^{\prime \prime}$ (same figures as befure) bo the centres of the two circles, $U X$ and $V^{\prime \prime} Y^{\prime}$ their two chords of intersection with any circle intersecting them at equal angles (fig. a) or at supplemental angles (fig. β), and I the centre of that circle; then, since (Euc. 1. 5) the two pairs of angles $I U V^{\prime \prime}$ and $I V^{\prime} U$, $I X Y^{\prime \prime}$ and $I Y^{\prime} X$ are equal, and since, by hypothesis, the two pairs of angles $I U C$ and $I V^{\prime} C^{\prime}, I X^{\prime} C$ and $I \Gamma^{\prime} C^{\prime}$ are equal (fig. a) or supplemental (fig. β), therefore the two pairs of angles $C U V^{\prime}$ and $C^{\prime} V^{\prime} U, C X Y^{-\prime}$ and $C^{\prime} \Gamma^{\prime \prime} X$ are equal (tig. a) or supplemental (fig. β), and therefore \&ec. (198.)

Con. 1°. Every two anti-homologons points with respect to either centre of perspective of two circles being inverse points with respect to the corresponding circle of auti-similitude (201), it follows at once from the second part of the above, precisely as in Cor. 1°, Art. 209, that-

Every circle intersecting twoo others at equal angles intersects at right angles their external circle of anti-similitude, and every circle intersecting teo, others at supplemental angles intersects at right angles their internal circle of anti-similitude.

Properties which, as both circles of anti-similitude are coaxal with the original circles, coincide evidently, as in the corollary referred to, with those already established on other principles in (193, Cor. 2°), viz. that-

Every circle intersecting two others at equal angles intersects at right angles the coaxal circle whose centre is their external centre of perspective, and every circle intersecting two others at supplemental angles intersects at right angles the coaxal circle whose, centre is their internal centre of perspective.

Cor. 2. Again, as in Cor. 2', Art. 209, since, wheu a
number of circles are orthogonal to the same eircle, the radical axis of every two of them passes through, and the radical centre of every three of them coincides with, its centre; it follows therefore, from Cor. 1°, as in the corollary referred to, that-

When two circles intersect two others at equal angles their radical axis passes through the external centre of perspective of the two, and when two circles intersect two others at supplemental angles their radical axis passes through the internal centre of perspective of the two.

When three circles intersect two others at equal angles their radical centre coincides with the external centre of perspective of the two, and when three circles intersect two others at supplemental angles their radical centre coincides with the internal centre of perspective of the two.

Cor. 3°. Again, as in Cor. 3°, Art. 209, sinco when three eircles are orthogonal to three others, both systems are coaxal and conjugate to each other (185); it follows also from Cor. 1°, as in the corollary referred to, that-

Every three circles intersecting three others at equal angles are coaxal, and have for radical axis the line passing through the three external centres of perspective of the three groups of two contained in the three $\left(197,1^{\circ}\right)$.

Every three circles intersecting the same two of three others at equal angles and the third at the supplemental angle are coaxal, and have for radical axis the line passing through the external centre of perspective of the two and the two internal centres of perspective of the two combined each with the third (197, 1°).

Cor. 4°. As the unique cirele, real or imaginary, orthogonal to three others intersects the three at equal angles, and, at the same time, every two of the three at equal angles and the third at the supplemental angle, it follows immediately as a particular case of Cor. 3°, that-

The unique circle orthogonal to three others is coaxal with every two circles intersecting the three at equal angles, and also with every two intersecting the same two of them at equal angles and the third at the supplemental angle; the axis of similitude of the three external to them all in the former case, and that
external to the tuo and internal to the third in the latter case, being the corresponding radical axis of the system.

Cor. 5°. In the particular case where one of the two intersecting circles has one combination of the angle of intersection and its supplement, and the other the opposite combination of the same angle of intersection and its supplement, with the three; then, by the second part of Cor. 1°, for the same reason as in (210 , Cor. 3°), the radical centre and orthogomal circle of the three are the internal centre and circle of anti-similitude of the two. Hence the following extension of the property Cor. 3°, of the preceding article, viz. -

The unique circle orthogonal to three others is the common internal circle of anti-similitude of every pair of conjugate circles intersecting the three at any opposite combinations of the sams angle and its supplement.

Cor. 6°. The following properties of a variable circle intersecting a system of two or three fixed circles at equal or supplemental angles are evident, from Cors. $1^{\circ}, 3^{\circ}$ and 4° of the above, viz.-
a. A variuble circle passing through a fixed point and intersecting tuoo fixed circles at equal or at supplemental angles passes through a second fixed point, the anti-homologue of the first sith respect to the corresponding centre of perspective of the circles.
b. A variuble circle intersecting three fixed circles at equal or at any invariable ombination of equal and supplemental angles describes the coaxal system deterninal by the corresponding axis of similitule with the orthogonal circle of the three.

Properties, the converses of which supply obvious solutions of the several problems of the three following groups, viz. -

To describe a circle (a) passing through tuo given points and intersecting too given circles at equal or at supplemental angles, (b) passing through a given point and intersecting three given circles at equal or at any assigned combinations of equal and supplemental angles, (c) intersecting four given circles at equal or at any assigned combinations of equal and supplemental angles.
212. With the two following properties of a system of three arbitrary circles, wo shall concludo the present chapter and volume.

1. For any system of three circles, the three pairs of points, at which they are touched by the three pairs of circles tangent to one and orthogonal to the other two, lie on three circles, coaxal cach with the two of the original three to which it does not correspond, and coaxal with each other.
2°. For any system of three circles, the three pairs of points, at which they are touched by any conjugate pair of their eight circles of contact, lic on three circles, coaxal each with the two of the original three to which it does not correspond, and coaxal with each other.

For, if A_{0}, B_{0}, C_{0} be the three circles, A, B, C their three centres, O their radical centre, P and P^{\prime}, Q and Q^{\prime}, R and R^{\prime} the three pairs of points of contact in either case, and X_{0}, Y_{0}, Z_{0} the three circles passing through them and having their three centres X, Y, Z on the three lines $B C, C A, A B$ respectively; then, since P and P^{\prime}, Q and Q^{\prime}, R and R^{\prime}, in the case of 1°, by 186, 2°, are the intersections with A_{0}, B_{0}, C_{0} of the three circles orthogonal to themselves and coaxal with B_{0} and C_{0}, C_{0} and A_{0}, A_{0} and B_{0} respectively, and in the case of 2°, by $210, c$., are collinearly distant from O by intervals such that the three rectangles $O P . O P^{\prime}, O Q . O Q^{\prime}, O R . O R^{\prime}$ are equal in magnitude and sign, the first parts of both properties are evident; and it remains only to shew that in both cases the three points X, Y, Z on the three lines $B C, C A, A B$ are collinear, in order to shew that in both cases the three circles X_{0}, Y_{0}, Z_{0}, of which they are the centres, are coaxal. See 190, 3°.

In the case of 1°, if α, β, γ be the three angles of intersection, real or imaginary, of the three pairs of original circles B_{0} and C_{0}, C_{o} and A_{0}, A_{0} and B_{o} respectively; then, since by the above, the three circles X_{0}, Y_{0}, Z_{0} are coaxal with B_{0} and C_{0}, C_{0} and A_{0}, A_{0} and B_{0}, and orthogonal to A_{0}, B_{0}, C_{0} respectively, therefore, by 193 , Cor. 1°,

$$
\frac{B X}{C X}=\frac{B Q \cdot \cos \gamma}{C K \cdot \cos \beta}, \quad \frac{C Y}{A Y}=\frac{C R \cdot \cos \alpha}{A Y \cdot \cos \gamma}, \frac{A Z}{B Z}=\frac{A P \cdot \cos \beta}{B Q \cdot \cos \alpha},
$$

and therefore \&c. $(134$, a. $)$. See also 193, Cor. 10°, where it was shewn, in a manner exactly similar, that three circles orthogonal to the same circle and coaxal each with a different pair of three others, all four being arbitrary, are coaxal with each other.

In the case of 2°, if $P B_{0}$ and $P C_{0}, Q C_{0}$ and $Q A_{0}, R A_{0}$ and $R B_{0}$ be the three pairs of tangents, real or imaginary, from the three points P, Q, R to the three pairs of original circles B_{0} and C_{0}, C_{0} and A_{0}, A_{0} and B_{0} respectively, and D, E, F tho three centres of perspective of the latter at which the three lines $Q R, R P, P Q$ intersect collinearly with the three $B C, C A$, $A B$ respectively ($210, a$ and b); then, since by 134, a.,

$$
\frac{Q D}{R D} \cdot \frac{A E}{P E} \cdot \frac{P F}{Q F}=1 \text {, and } \frac{B D}{(D D} \cdot \frac{C E}{A E} \cdot \frac{A F}{B F^{\prime}}=1 \text {, }
$$

therefore, from the first, immediately,

$$
\frac{Q D \cdot Q R}{R D \cdot R Q} \cdot \frac{R E \cdot R P}{P E \cdot P R} \cdot P F \cdot P Q=-1 ;
$$

but since from the three constant ratios of similitude of the three pairs of circles B_{0} and $C_{0} C_{0}$ and A_{0}, A_{0} and B_{0} respectively, by Euc. III. 35, 36,

$$
\begin{aligned}
& \frac{Q D \cdot Q R}{R D \cdot R Q}=-\frac{B D}{C D} \cdot \frac{Q C_{0}^{*}}{R B_{0}^{*}} \\
& \frac{R E \cdot R P}{P E \cdot P R}=-\frac{C E}{A E} \cdot \frac{P A_{0}^{*}}{P C_{0}^{z}}, \\
& \frac{P F \cdot P Q}{Q F \cdot Q P}=-\frac{A F}{B F \cdot} \cdot \frac{P B_{0}^{2}}{Q A_{0}^{*}},
\end{aligned}
$$

therefore, from the second, by composition,

$$
\frac{Q C_{0}^{8}}{R B_{0}^{3}} \cdot \frac{R A_{0}^{8}}{P C_{0}^{3}} \cdot \frac{P B_{0}^{8}}{Q A_{0}^{3}}=1 ;
$$

from which, since by 192 , Cor. 1°,

$$
\frac{P B_{0}^{2}}{P C_{0}^{z}}=\frac{B X}{C X^{1}}, \quad \frac{Q C_{0}^{2}}{Q A_{0}^{2}}=\frac{C Y}{A Y}, \frac{R A_{0}^{3}}{R B_{0}^{8}}=\frac{A Z}{B Z},
$$

therefore $\mathcal{\& c}$. $(134, a$.
Of the eight circles of contact of any system of three arbitrary circles, Dr. Hart has shewn, by a process, of the first part of which he has given an abstract in the Quarterly Journal of Pure and Applied Mathematics, Vol. 1F. page 260, that they may always be divided, in four different ways, into two groups of four and their four conjugates, having each a fourth common circle of contact in addition to the original three; and Dr. Salmon, by an analysis of remarkable elegance, which he has

300 centres and axes of perspective of circles.
given in Vol, vr. page 67 of the same periodical, has verified Dr. Hart's results and extended them to the more general figures of which circles are particular cases. The methods employed by both geometers, however; involve prineiples beyond the limits of the present work; and a demonstration of the property by Elementary Geometry, within the domain of which it manifestly lies, has not, so far as the Author is aware, been jet given.

[^4]CHAPTERS ON THE MODERN GEOMETRY OF THE: POINT, LINE, AND CIRCLE.

VOL. II.

CAMBRIDGE:

frimied my williak metcalpa, orean stexet.

CHAPTERS

ON THE

MODERN GEOMETRY

08 5Hx
POINT, LINE, AND CIRCLE;

BL: XO TAB SCDETANCE O8

Lectures delivered in the Uxiversity of dublin to the CANDIDATES FOR HONORS OF THE FIRST YEAR IN ARTS.

B8 THE
REV. RICHARD TOWNSEND, M.A.,
FKLLOW $A X D$ รยรOR OF รแมเTT COLLBOE,

VOL. II.

DUBLIN:
HODGES, SMITH, AND CO., PUBLISILERS TO TLE UNIVEHSITY.
1865.

* $11 h^{11}$

$$
\text { dill } 1760 \text { rill } x^{1} 10
$$

$$
\text { Ex- T II Moi in } 11 \text {, 211 }
$$

CONTENTS OF VOL. II.

CHAPTER XIII.
THEORY OP MARMONIC BECTION.
ART. 8408
213 Harmonic Section of a Lino or Angle. Modulus of. Ifarmonic Conjugates. Harmonic Systems 1
214 Equation of Harmonicism of a System of four Points or llays. 2
215 In IIarmonic Section either pair of Conjugates may be imaginary 2
216 Particular positions of Conjugates for particular values of the Ratio of Harmonic Section 3
217 Conjugato Lines with respect to Segment. Conjugate Points with respect to an Angle. Pole of a Lino with respect to a Segment. Polar of a Point with respect to an Angle. 4
218 Erery Segment or Angle cutting another Harmonically is cut Harmonically by the other 5
219 Relations connecting the three pairs of opposite Segments or Angles - determined by the four Points or Rays of an Harmonic System 6
220 Relations connecting the three pairs of Segments or Angles deter- mined by two Points or Lines with threo others forming with one of them an IIarnonic Syatem 0
221 Every Iarmonic Row determines an Harmonic Pencil at every Vertex, and every Harmonic Pencil determines an Harmonic Row on every Axis. Great Importance of this Property 8
222 Consequences from the General Property of the preceding Arriele 8
223 The four Polars of an Harmonic Row, and tho four Poles of an Harmonic Pencil, with respect to any Cirele are IIarmonic. Important General Consequence resulting from this Property. 11
Abt. paze
224 When two Angles cut each other Harmonically, every Chord of either parallel to a Side of the other is bisected internally by the second Side of the other 12
225 When two Segments cut each other Harmonically, Square of half either $=$ Rectangle under distances of its Middle Point from Extremities of other 13
226 Properties of a variable Segment of a fixed Axis cutting a fixed Segment of the Axis Harmonically 16
227 When two Segments cut each other Harmonically, Square of distance between their Middle Points $=$ Sum of Squares of their Semi-Lengths 17
228 Every Circle cutting Harmonically any Diameter of another is or- thogonal to the other ; and, conversely, every Circle orthogonal to another cuts Harmonically every Diameter of the other 18
229 Properties of any two Segments of a Line and of the Segment intercepted between the two Harmonic Conjugates of the Extremities of either with respect to the other 20
230 Solutions of the Problem "to determine the Segment or Angle which cuts two given Segments or Angles Harmonically" 21
231 Statement of the Harmonic Relation of four Collinear Points in terms of the three Distances of any three of them from the fourth. Gencral Formulæ resulting from the Relation so stated 22
232 Harmonic Progression. Harmonic Mcan and Extremes 24
233 General Properties of Magnitudes in Harmonic Progression resulting from the General Formulæ of Art. 231 24
234 Statement of tho Harmonic Relation of four Collinear Points in terms of their four Distances from any fifth Point on their Common Axis. Consequences 26
235 Gencral Relations connecting threo Segments, of a Line one of which cuts Harmonically and is cut Harmonically by the other two. Consequences 27

CHAPTER XIV.

 HARMONGC PROPERTIES OF THE POINT AND LINE.230 Fundamental Harmonic Properties of the Tetragram and Tetrastigm 32
237 Those Properties, as well as the Demonstrations given of them, are Reciprocal 33
238 They follow also each from the other without the aid of the Reci- procating Process 35
AEt. 5AOE
230 Particular Cases, when one of the four Lines of the Tetragram, and of the four Points of the 'retrastigm, ia at Infinity 36
210 General Consequences resulting from the Fundamental Reciprocal Properties of Art. 236 37
241 Reciprocal Problems solved by aid of the same Properties 38
$2 t 2$ Reciprocal Harmonic Propertien of Triangles, expressed by a different Statement of the same 33
243 Other Marmonic Properties of Triangles, in pairs lleciprocals of each other. Consequences 41
244 Reciprocal Properties of the Tetragram and Tctrastigm resulting from the Fundamental Properties of Art. 230 44
215 Other Marmonic Properties of the Tetragram and Tetrastigm, in pairs Ileciprocals of each other. Coneequencea 45
216 Polar of a Point with respect $t 0$ an Angle, and Pole of a Line with respect to a Segment. Harmonic Properties of 80
247 Polar of a Point with respect to any two Lines, and Polo of a Line with respect to any two Points, for any two Multiples. General Properties of 81
248 Polar of a Point with respect to any System of Lines, and Pole of a Line with respect to any System of Points, for any Syatem of Multiples. Gencral Properties of 81
240 The two Gencral Properties of the preceding Article, and also those to which they have been reduced, ase Reciprocal 85
250 Polar Properties of Triangles, in pairs Reciprocals of each other. Consequences 60
251 Polar Properties of the Centres and Axes of Perspective of Triangles in Perspective. Consequences 62

CHAPTER XV.

EARMONIC PROTERTIES OF THE CIRCRE.

252 Fundamental Harmonic Properties of the Cirele. Property of four Points. Property of four Tangents 67
253 Those Properties are Reciprocal 67
254 Harmonic Systems of Points on and Tangents to a Circle. Conju- gate Lines and Points with respect to a Circle 68
255 Reciprocal Inferences from the Fundamental Properties of Art. 252 69
256 Meiric Relations connceting the threo pairs of opposite Chords determined by an Harmonic System of Points on a Circle 70
art. page
257 Conjugate Points lic each on the Polar of the other, and Conjugate Lines pass each through the Pole of the other, with respect to the Circle. Consequences 71
258 Reciprocal Irarmonic Properties of the Connectors of the Terminal Points and of the Intersections of the Terminal Tangents of two Ares of a Circle which cut each other Harmonically 76
259 Reciprocal Harmonic Properties of Conjugate Points and Lines with respect to a Circle. Consequences 78
260 Remarkable Conclusions, from the Properties of the preceding Article, respeeting "The Two Circular Points at Infinity" 81
261 Reeiprocal Polar Properties of the Tetrastigm determined by any four Points on, and of the Tetragram determined by any four Tangents to, a Circle. Consequences S3
262 Reciprocal Properties of a Triangle with respect to an arbitrary Circle 94
263 Reciprocal Solutions of the Reciprocal Problems "To construct a Triangle at once exscribed or inseribed to a given Triangle and inscribed or exscribed to a given Circle." Peculiarity of the ease when the Triangle is Self-Reciprocal with respect to the Circle 96
264 Metric Relation connecting the three Triangles determined by any arbitrary Point on a Circle with the three Sides of any Triangle Self-Reciprocal with respect to the Circle 98
265 Reciprocal Harmonic Properties of the Tetrastigm determined by four Points on and of the Tetragram determined by four Tan- gents to a Circle. Consequenees 100
266 Reciprocal Harmonic Properties of a Point and Line Pole and Yolar to each other with respect to a Circle 103
267 Reciprocal Properties of a Point and its Polar, and of a Line and itsPole, with respect to any System of Circles, for any System ofMultiples104

CHAPTER XVI.

THEORY OF ANHARMONIC SECTION.

Anharmonic Ratios of the Section of a Line or Angle by two Points or Lines of section. Always Reciprocals of each other. Reason why so called

[^5]AkT. FAG:
270 Simplification of Arharmonic Ratios in the case of a Line when one Point of Section is at Infinity 109
271 Equianharmonic Section, Nature of. Mode of Expression often used for Shortsess with respect to 109
272 When a Segment or Anglo $A B$ is eut Equianharmonieally by two pairs of sectors C and D, C^{\prime} and D^{\prime}, it is also cut Equianhar- monically by the two pairs C and C^{\prime}, D and D^{\prime}; and conversely 110
273 Every two Segments having a Common Axis or Angles having a Common Vertex, $A B$ and $C D$, cut each other liquianhar- monically 111
271 Every four Collinear Pointe or Concurrent Lines A, B, C, D, deter- mine aix different Anharmonic llatios, in pairs lieciproeals of each other 112
275 Simplification of all Six in the furmer case when one of the four Points is at Infinity 113
276 Of the three pairs of Ratios determined in all cases by the four constituent Point or llays, two are always Ponitive, and the third always Negacivo 113
277 General Relations connecting the six Anharmonic Ratios determined by any System of four constituent Points or lays 114
278 Kiery two Syatems of four Constituents, whith heve one Anharmonic Ratio common, have all six commoa 115
279 Dr. Salmon's Notation for tho Jelation of Nquianharmonicism between two or moro Systems of four Constituents. Sense in which the exprestion "Anharmonic IRatio" is to be regarded when applied to such in the singular number 116
250 Any two Conatituents of an Anharmonic Syatem may be interchangedwithout affecting any Arharmonic Ratio of the System, providedthe other two be interchanged also117
281 One casc, and one only, in which the double interchange is un- necessary; viz. when the System is Marmonic, and when the Constituents of a siugle interchange are either pair of Conjugates 110
292 Gemeral Properties of two variable Constituents which determine in every position Equianharmonic Systems with two Triads of fixed Constituents 119
293 General Property of six Constituents, corresponding two and two in three Conjugate pairs, any four of which are Equianharmonic with their four Conjugates 124
284 General Property of eight Constituents, corresponding two and two in four Conjugate pairs, any two Systems of four of which are Equianharmonic with their four Coajugates 126
295 Every Anharmonic Pencil determines an Equianharmonic Row onevery Axis, and every Anharmonic Row determines an Equian-harmonic Pencil at every Vertex. Great Importance of thisTroperty in Modern Geometry128
Aㄹ. fage
286 Consequences from the General Property of the preceding Article 130
237 Reciprocal Problems solved by aid of the same 131
288 Every two Equianharmonic Systems having two Triads of Corre- sponding Constituents in Perspective, are themselves in Perspective 133
289 Every two Equianharmonic Systems having a coincident pair of Corresponding Constituents are in Perspective 134
290 Reciprocal Conditions that two Equianharmonic Rows should determine Pencils in Perspective at two Points, and that two Equianharmonic Pencils should determine Rows in Perspective on two Lines 136
291 Solutions by Linear Constructions of the two Reciprocal Problems, Given three pairs of Corresponding Constituents of two Equian- harmonic Systems of Points or Rays, and the fourth Constituent of either System, to determine the fourth Constituent of the other System 137
292 Every four Collinear Points, or Concurrent Lines, and their four Concurrent Polars, or Collinear Poles, with respect to any Circle are Equianharmonic. Important General Consequence resulting from this Property 138
CHAPTER XVII.
ANHARMONIO PROPERTIES OP THE POINT AND LINE.
General Property of two Triads of Collinear Points or ConcurrentLines. Anharmonic Relations existing between them andtheir derived Triad. Cyclic Connexion of all three .140
294 Reciprocal Inferences from the General Property of the preceding Article. Anharmonic Properties of a Cycle of three Triangles each inscribed to one and exscribed to the other of the remain- ing two 142
295 General Property of two Triads of Points or Lines in Perspective. Anharmonic Relations existing between them and their Centre and Axis of Perspective. Particular case of Harmonic Section. 148
296 Reciprocal Inferences from the General Property of the preceding Article. Anharmonic Properties of two Triangles in Perspective 163
297 General Anharmonic Relation existing between any two Figures in Perspective. Anharmonic Ratio of Perspective. Particular case of Harmonic Perspective. Examples 156
293 Important Propertics of Figures in Perspective as regards Recipro- cation to an arbitrary Circle. Examples 158

290	Recinrocal Anharmonic Properties of the Tetrastigm and Tetragram. Involve their Harmonio Properties as particular cases. Consequences	160
300	Reciprocal Problems solved by aid of the Properties of the preceding Article	164
301	General Property of a System of sis Points, or Lines, any four of which connect, or intersect, Equianharmonically with the remaining two. Consequences	5
302	Reciprocal Theorems of Pascal and Brianchon. Nature of the Hexagons involved in the general cases of both. General Property of Triangles in Perepective with regard to such Hexagons	168
303	General Properties resulting from tho Theorems of Pascal and Brianchon, combined with tho Fundamental Property of Triangles in Perspective	170
304	General Criterin, that three pairs of Points on the three Sides of a Triangle should determine a Pascal Hexastigm, and that threo pairs of Lines through the threo Vertices of a Trisngle should determine a Brianchon Hexagram. Consequences resulting from their application. Examples	173

CHAPTER XVIII.

AKHARMONIC EROPERTIEA OF THE CIMCZE.

305 Fundariental Anharmonic Properties of the Circle. Property of
four Points. Property of four Tangents. Both true of all
Figures into which the Circle can be transformed by Recipro-
cation
306 Different mode of stating the Reciprocal Properties of the preceding
Article. Meaning of the expression "Constant Anharmonic
Ratio" as applied to a system of four fixed Points on, or
Tangents to, a Circle
.

307 Every System of four Points on a Circle is Equianharmonic with the
corresponding System of four Tangents to the same Circle; and
conversely
308 Values of the six Anharmonic Ratios of any System of four Points
on a Circle in terms of the six Chords they determine in pairs 180
309 Equianharmonic Systems of Concyclic Points or Tangents. Nature of. Notation representing 181
310 Pencila in Perspective determined by Equianharmonic Systems of
Points on, and Rows in Perspective determined by Equianhar-
monic Systems of Tangentg to, the same Cirele
xii CONTENTS.
ART. pases
311 Reciprocal Anharmonic Properties of the Tetrastigm determined by any four Points on, and of the Tetragram determined by any four Tangents to, a Circle. Consequences 183
312 Remarkable Conclusion, from the Properties of the preceding Article, respecting the two Circular Points at Infinity 189
313 Reciprocal Anharmonic Properties of two Concyclic Triads of Points and Tangents in Perspective. Consequences 190
314 Reciprocal Anharmonic Properties of two Concyclic Quartets of Points and Tangents in Perspective. Consequences 192
315 Different Statement and Proof of the two Reciprocal Properties of the preceding Article 195
316 Anharmonic Propertics of a System of two Circles with respect to their Centres and Axes of Perspective. Consequences 198
317 General Property of any two Triads of Concyclic Points or Tan- gents. Anharmonic Relations thence resulting 200
318 Reciprocal Inferences from the General Property of the preceding Article. Anharmonic Properties of the Pascal Line, or Brian- chon Point, of any Hexagon inscribed, or exscribed, to a Circle 203
319 Important Reciprocal Problems solved by aid of the same. Simpli- fication in the particular case of Perspective 206
320 Reciprocal Properties of the two Triangles determined by two Concyclic Triads of Points or Tangents in Perspective. Con- sequences 207
CHAPTER XIX.
THBORY OP HOXOORAPHIC DIFIBION.
321 Homographic Systems of Collinear Points and Concurrent Lines. Homographic Division of Lines and Angles 210
322 Homographic Systems of Points on and Tangents to Circles 210
323 Systems Homographic with a Common System, or with different Homographic Systems, are Homographic with each other 211
324 Notation for representing Symbolically the Relation of Homography between two or more Systems 212
325 Fundamental Examples of Cases of Homographic Division; grouped in lleciprocal pairs 213
326 Additional Examples of Cases of Homographic Division ; grouped in Inverse pairs 216
Ant. PAOS
327 General Relation connecting two variable Oonstituents of any species generating by their movement two Homographic Systems. Three pairs of Corresponding Constituents in all cases determine completely the Syatems to which they belong 220
323320330 Criterion of Similarity between two IIomographic Rows of Points.Points at Infinity always Corresponding Constituents of suchRows223
331 Peculiarity of the Points corresponding to those at Intinity in any two Ilomographic Rows. Iectangle under their Distanees from all pairs of Corresponding Points always constant both in magnitude and sign 224
332 Application of the General Property of the jreceding Article to the particular case of afixed Segment cut in any constant An- harmonic Itatio by a variablo pair of Sectors 225
333
Examples, grouped in leciprocal pairs, of cases of Homographic Division, reducible to the caso referred to in the preceding Article 220
334 When, of two Homographic Rows of Points on different Axes or Peucils of Rays through different Vertices, or Coneyclic Systems of either species, any two Triads are in P'erspective, the Systems are in Perspective 229
335 Criteria of Perspective of two Homographic Rows and Pencils. Coin- cidence of a pair of Corresponding Constituents with the single Point or lay common to their Axes or Vertices. Consequences 230
336 Examples, grouped in Reciprocal pairs, of the application of the preceding Criteria 231
337 Dircctive Axis of any two Homographic Systems of Points on two different Axea or on a Common Circle. Directive Centre of any two Homographic Systems of Tangents to two different Points or to a Common Circle. Reason why so denominated. Propertics, Uses, and Determination of 234
338 General Properties of any two Momographic Systems of Points on two different Axes, or on a Common Circle, as regards the Connectors of their several pairs of Corresponding Points. Reciprocal Properties of any two Homographic Systems of Tangents to two different Points, or to a Common Circle, as regards the Intersections of their several pairs of Corresponding Lines. Consequences 236

CHAPTER XX.

ON THE DOUBLE POINTS AND LINES OP HOMOGRAPHIC SY8TEME.
341 Double Points and Rays of Coaxal Rows and Concentric Pencils.
Reason why so named. Fundamental Properties of
246
342 Segment or Angle determined by cut in the same constant Anhar-
monic Ratio by every pair of Corresponding Constituents of the
Systems
343 Same Segment or Angle cut in the square of the same constant
Anharmonic Ratio by the Correspondents in the two Systems of
every Point on tho common Axis or Ray through the common
Vertex -
344 Character of Coaxal Rows having one or both of their Double
Points at Infinity 249
345 General Properties of Coaxal Rows whose Double Points are Real 250
346 General Properties of Coaxal Rows whose Double Points are 251
317 Doublo Points and Tangents of Concyclic Systems. Properties
identical with those of Coaxal Rows and Coneentric Pencils . 252
348 General Solutions of the four cases of the Problem "Given three $\begin{aligned} & \text { pairs of CorrespondingConstituents of two Homographic Systems } \\ & \text { of Points on a Common Line or Circle, or of Tangents to a } \\ & \text { Common Point or Circle, to construct the Double Points, or } \\ & \text { Lines, of the Systems" } 253\end{aligned}$
349 Chasles' Particular Construction for the case of Collinear Systems
on a Common Axis 254
350 Another Particular Construction for the same case. Simplification
of all constructions when ono Double Point or Line is known 255
351 Remarkablo Resules from the General Constructions for Coneyclic Systems of Points and Tangents, when applied to the particular cases of Similar and Similarly Ranged Systems separated by an interval of any finite magnitude
Alit. 2AOE
352 General Property of every two IIomographic Pencils of Rays deter- mined by the Sides of a variable Angle of invariable form revolving round a fixed Vertex, resulting from that of the preceding Article 256
353 Examples of Problems in IIomographic Division reducible to the determination of the Double Points or Lines of Homographic Sybtems 257
354 Preliminary Process necessary in all cases when the three pairs of Corresponding Constituents which determine the Systems are not given 266
305 Method of Trial. Analogy of to the "Mfethod of False Position" in Arithmetic 267
356 Miscellancous Examples of Problems solved by the Method of Trial 207
CHAPTER XXL.
ON THE RELATION OP BKYOLUTION BETWREN EONOORAPAIC EYETEMB.
357 Fundamental Property of Coaxal Rows of Poines and Concentric Pencils of Rays having an Interchangeable pair of Correapond- ing Constituents 276
358 Relation of Involution between two Homographic Rows of Yoints or Pencils of Rays having a common Axis or Vertex 277
359 Two pairs of Corresponding Constituenes sufficient to determine two Homographic Rows or Pencils in Involution with each other 277
360 Homographic Systems of Points on or Tangents to a Common Circle in Involution with each other 278
361 Fundamental Examples of the Relation of Involution between two Homographic Systems generated by a variable pair of Conju- gates connected by a known law 278
362 Additional Examples left as Exercises to the Reader 279Any two Homographic Systems of Points on a Common Line orCircle, or of Tangents to a Common Point or Circle, may beplaced in Involution, by the movement of either, or both,on the Common Line or Circle, or round the Common Point orCircle280

364 Every threo pairs of Conjugates of two Homographic Systems in Involution determine a System of six Constituents every four of which are Equianharmonic with their four Conjugates.
AIT. PAGE
365 Fundamental Examples, grouped in Reciprocal pairs, of three pairs of Corresponding Constituents satisfying the Criterion of Invo- lution supplied by the Property of the preceding Article 252
366Additional Examples left as Exercises to the Reader283
367
Metrie Relations connecting the three pairs of Corresponding Seg- ments or Angles determined by the six pairs of non-correspond- ing Constituents of any two Collinear or Concurrent Triads of Points or Rays in Involution 285
368 Examples of two Collinear and Coneurrent Triads of Points and Raya satisfying the Criteria of Involution supplied by the Metric Relations of the preceding Article $2 S 6$
369 Additional Examples left as Exercises to the Reader 258
370 Every two Conjugate Points or Lines of two Homographic Systems in Involution are Harmonic Conjugates with respect to the two Double Points or Lines of the Systems 259
371 Consequences resulting from the General Property of the preceding Article 289
372 Property of "The Centre" of two Homographic Rows of Points in Involution on a Common Axis. A particular case of the General Property of article 331 292
373 The General Property of article 363 an easy Consequence from tho Property of the Centre in the case of any two Homographic Rows of Points on a Common Axis 292
374 Examples of Involntion between three or more pairs of Points on a Common Axis resulting from the Property of the Centre 293
375 Properties of Involution with respect to the Double Points or Lines of any two Homographic Systems of Points on a Common Line or Cirele, or of Tangents to a Cominon Point or Circle 294
370 Reciprocal Prohlems in Involution solved by virtue of the General Property of article 370 296
377 Reciprocal I'roblems in Involution solved by virtue of the Equian- harmonic Relations of article 30t, combined with the General Property of article 327 296
378 Reciprocal Properties of Involution with respect to the Directire Centre of any two HomographicPeneils of Rays through different Vertices, and the Directive Axis of any two Homographic Rows of Points on different Axes 298
378 Reciprocal Problems in Involution solved by aid of the Directive Centre of two Homographic Pencils of Rays through different Vertices, and of tho Directive Axis of two Homographic Rows of Points on different Axes 300

CHAPTER XXII.

METHODS OP GEOMETRICAL TRANFFORYATION. THEORT OF HONOORASHIC
Ylou゙azs.

351 Fundamental Propertice of Figures satisfying the four Preliminary Conditions, whether llomographic or not 301
382 General l'roperty of any two llomographic Figures, with respect to any two pairs of Corresponding Points or Lines of the Figures. Property of tho two Lines whose two Correspondents coincido at Infinity. Consequences. I'roperty of two Figures having two Corresponding Lines coinciding at Infinity. Consequences 307
383 General Property of any two Homographic Figures, with respec: to any three pairs of Correspondug l'oints or Lines of the Figures. Consequences 312
381 Chasles' General Construction for the Double Gencration of two IIomographic Figures by the simultaneous variation of a pair of connected Points or Lines 314
385 Consequences respecting the Homographic Transformation of Figures, resulting from the General Constructions of the preceding Article 317
380 Properties of Figures Momographic to the Cirele, deduced by Homographic Transformation from the Corresponding Proper- ties of the Circle 321
357 General Propertien of any two IIomographic Figures. Conditions of Perspective of two Homographic Figures. Chaslea' Con- struction for placing any two IIomographic Figures in Per- spective with each other. Becomea Indeterminate for Figures having a Double Line at Infinity. Construction for that casc. Observation

CHAPTER XXIII.

METHODS OP OEOMETRICAL TRAS゙SFORXATION TREORY OP COREELATIV FIOURES.

358 Definition of Correlative Figures. Every two Figures Reciprocal
Polars to each other with respect to a Circle are Correlative.
Every two Figures Correlative with a Common Figure are
Homographic with each other
xviii
ART. paoz
389 Fundamental Properties of Figures satisfying the Four Preliminary Conditions, whether Correlative or not 339
390 General Property of any two Correlative Figures, with respect to any two pairs of Corresponding Points or Lines of the Figures 345
391 General Property of any two Correlative Figures, with respect to any three pairs of Corresponding Points or Lines of the Figures. Consequences 346
392 Chasles' General Construction for the Double Generation of two Correlative Figures, by the simultaneous variation of a con- nected Point and Line, or Line and Point 349
393 Consequences respecting the Correlative Transformation of Figures, resulting from the General Constructions of the preceding Article 352
394 Properties of Figures Correlative to a Circle, deduced by Correlative Transformation from the Corresponding Properties of the Circle. Identity of Figures Homographic and of Figures Correlative to the Circle 355
395 General Properties of any two Correlative Figures. Conditions of Interchangeability between their several pairs of Corresponding Elements. Chasles' General Construction for placing any two Correlative Figures so as to fulfil those conditions. The Figures when so placed are Reciprocal Polars to each other with respect to a Figure Homographic to a Circle 358

CHAPTER XXIV.

method of oeometrical transformation. Tifeory of interse figures.
396 Definition of Inverse Figures. Erery two Concentric Circles Inverse
to each other with respect to the Concentric Circle the Square
of whose Radius is equal to the Rectangle under their Radii 363
397 Two parts of the Same Figure may be Inverse to each other with respect to the Dividing Circle. Every Line or Circle is thus divided by every Circle intersecting it at right angles

The Same two Figures may be Inverse to each other with respect to
more than one Circle. Every two Circles are thus related to each
other with respect so each of their two Circles of Antisimilitude 363
399 Transformation of any Figuro into an Inverse Figure. Process of Inversion. Circle, Centre, and ladius of Inversion 363
400 Observations respecting the Process of Inversion 364
A 87. FAOE
101 General Properties of any two Figures Inverse to each other with respect to any Circlo 364
402 General Properties of any two pairs of Figures Inverse to each other with respect to a Common Circle 367
403 Figures Inverse to the Line and Circle with respect to any Circle of Inversion. Different eases of under different circumstances of Magnitude and relativo Position 368
404 Position of the Centro and Length of the Radius of the Circle Inverso to a given Line or Cirelo 372
405 Construction for the Centre of the Circle Inverso to a given Line or Circle. Consequences 373
406 Anharmonic Equivalence of all pairs of Collinear and Conceclic Quartets of Points Inverse to each other with respect to any Circlo 374
407 Angle of Intersection of any two Circlea Ligual or Supplemental to that of their two Inverses with respect to any Circle $3 ; 1$
408 Metric Relation between the Squares of the Common Tangents and the Rectanglea under the ladii of any two Intersecting Circles and of their two Inverses with respect to any Cirelo 375
409 Other Properties of Intersecting Circles with respect to Invervion 376
410 Important Properties of Inverse Points with respect to one Circle as regards Inversion with respect to another Circle. Consequences 878
111 Gencral Property of any two Inverse Figures with respect to one Circlo as regards Inversion with respect to another Circle. Example 350
412 Important Properties of Coaral Circles with respect to Inversion 381
413 Converse Propertics of Concurrent Lines and Concentric Circles with respect to Inversion 382
414 Utility of the Preceding Propertics in the application of the Process of Inversion to the Investigation of tho Properties of Coaxal Circles. Examples 383
115 Utility of the same in the application of the Process of Inversion to the Solution of Problems connected with Coaxal Circles. Ex- amples 384
116 Other useful Property of Coaxal Cireles with respect to Inversion. Conseq̧uences 384
417 Relations connecting the Distances, absolute and relative, between pairs of Points and their Inverses with respect to any Circle. Consequences 356
418 Facilities supplied by the Process of Inversion in the Investigation of Certain Classes of Properties in the Geometry of the Line and Circle. Examples 385
ART. fage419 Facilities supplied by the same in the Solution of Certain Classes ofProblems in the Geometry of the Line and Circle. Examples 389
420 Miscellancous Examples illustrative of the Fertility of the Process of Inversion as an Instrument for the Evolution of Certain Classes of Properties in the Geometry of the Line and Circle390

THE MODERN GEOMETRY OF THE POINT, LINE, AND CIRCLE.

CHAPTER XIII.

THEORY OF HARMONIC SECTION.

213. A line $A B$ cut at two points X and Y (fig. 1), or an angle $A B$ cut by two lines X and Y (fig. 2), is said to be cut harmonically when the ratios ($A X: B X$ and $A Y: B Y$) of the two pairs of segments into which it is divided in the former case, or $(\sin A X: \sin B X$ and $\sin A Y: \sin B Y)$ of the sines of the two

Fig (1)

pairs of segments into which it is divided in the latter case, are equal in magnitude and opposite in sign. The absolute magnitude common to the two ratios (or to their reciprocals according to the extremities of the line or angle from which VOL. II.
the antecedents and consequents are respectively measured) is called the ratio, and sometimes the modulus, of the harmonic section; the two points or lines of section X and Y are termed harmonic conjugates to each other with respect to the extremitics of the line or angle A and B; and the four points or lines A and B, X and Y, taken together, are said to form an harmonic system.

As the ratio of the harmonic section of a line or angle may have any value, real or imaginary, a line or angle may be cut harmonically in an infinite number of ways; but the ratio of the harmonic section, or the position of one of the two conjugates, is of courso sufficient to determine the particular harmonic section in the case of a given line or angle.
214. The relation characteristic of the harmonic section of a line or angle $A B$ by a pair of conjugates X and Y, viz. $A X: B X=-A Y: B Y$, or $\sin A X: \sin B X=-\sin A Y: \sin B Y$, may obviously be stated in the more symmetrical form $A X: B X+A Y: B Y=0$, or $\sin A X: \sin B X+\sin A Y: \sin B Y=0$, which is that most generally employed, and which is called the equation of harmonicism of the row or pencil of four points or rays A, B, X, Y.

When three points or rays of an harmonic row or pencil are given, the fourth evidently is implicitly given with them; provided, of course, it be known to which one of the given three it is to be conjugate.

215 . In the theory of harmonic section either pair of conjugates A and B, or X and Y, may be imaginary; and as cases of each, of the section of a real line or angle by an imaginary pair of conjugates, and of an imaginary line or angle by a real pair of conjugates, are of familiar and necessary occurrence in every application of the theory to the geometry of the circle, the reader must be prepared from the outset to encounter and not be embarrassed by them.

When a line or angle and its ratio of harmonic section are both real, the two points or lines of harmonic section are of course real also, and necessarily one external and the other internal to the line or angle; the former corresponding to the positive, and the latter to the negative sign of the ratio.
216. Conceiring the ratio of harmonic section of a real line or angle $A B$ to take successively all real values from 0 to ∞, the following particulars respecting the simultancous positions and changes of position of the two conjugates X and Y are evident from the mere definition of harmonic section (213), viz.
1°. In the extreme case when the ratio $=0$, the two antecedents $A X$ and $A Y$, or $\sin A X$ and $\sin A Y$, in the two ratios of section simultancously vanish; and, therefore, the two conjugates I and Y coincide at the extremity A of the line or angle from which the antecedents are measured.
2°. In the extreme case when the ratio $=\infty$, the two consequents $B X$ and $B Y$, or $\sin B X$ and $\sin B Y$, in the two ratios of section simultancously vanish; and, therefore, the two conjugates X and Y coincide at the extremity B of the line or angle from which the consequents are measured.

Hence, for the two extreme values 0 and \propto of the ratio of harmonic section of a real line or angle, the two points or lines of harmonic section coincide with each other and with an extremity of the line or angle.
3°. In the particular case when the ratio $=1$, the two conjugates X and Y are the two points or lines of bisection, external and internal, of the line or angle; and are, therefore, at their greatest distance asunder; being infinitely distant from each other in the case of the line, and at right augles to each other in the case of the angle.

Hence, for the mean value, 1 , of the ratio of harmonic section of a real line or angle, the tien points or lines of harmonic section are in their position of greatest separation from cach other; being infinitely distant from each other in the former case, and at right angles to each other in the latter case.
4°. For all values of the ratio <1, the two antecedents $A X$ and $A Y$, or $\sin A X$ and $\sin A Y$, in the two ratios of section, are less than the two consequents $B X$ and $B Y$, or $\sin B X$ and $\sin B Y$, and diminish or increase simultaneously with the diminution or increase of the ratio; therefore the two conjugates X and Y lie in the same seginent or angle, intercepted between the two points or lines of bisection of the line or angle, with the extremity A from which the antecedents are measured, and
simultaneously approach to or recede from that extremity and each other as the ratio approaches to or recedes from 0 .
5°. For all values of the ratio >1, the two consequents $B X$ and $B Y$ or $\sin B X$ and $\sin B Y$ in the two ratios of section are less than the two antecedents $A X$ and $A Y$, or $\sin A X$ and $\sin A Y$, and diminish or increase simultaneously with the increase or diminution of the ratio; therefore the two conjugates X and Y lie in the same segment or angle, intercepted between the two points or lines of bisection of the line or angle, with the extremity B from which the consequents are measured, and simultancously approach to or recede from that extremity and each other as the ratio approaches to or recedes from ∞.

Hence, for all values of the ratio of harmonic section of a real line or angle different from 1 , the two points or lines of harmonic section lie in the same segment or angle intercepted between the two points or lines of bisection of the line or angle; and move or revolve in opposite directions with the change of the ratio; approaching to or receding from each other and the extremity of the line or angle at the side of which they lic as the ratio recedes from or approaches to 1.

These several particulars undergo, as will appear in the sequel, considerable modifications when the extremities A and B of the line or angle are, as they often are, imaginary.
217. Every two lines whose intersections with the axis of a segment cut the segment harmonically are termed conjugate lines with respect to the segment; and every two points whose connectors with the vertex of an angle cut the angle harmonically are termed conjugate points with respect to the angle.

It is evident, from the definition of harmonic section, that every line has an infinite number of conjugates with respect to every segment, all passing through the point on the axis of the segment which with the intersection of the line and axis cuts the segment harmonically, and which is termed the mole of the line with respect to the segment; and that every point has an infinite number of conjugates with respect to every angle, all lying onthe line through the vertex of the angle which with the connector of the point and vertex cuts the angle harmonically, and which is termed the polar of the point with respect to the angle;
the origin and appropriateness of these several names, based as they have been on the analogy of the circle (165), will appear in a subsequent chapter.

For every two lines or points M and Λ^{\prime}, conjugates to each other with respect to a segment or angle $A B$, it is evident, from the equation of harmonic section (213), that in either case $A M: B M=-A N: B N$ (Euc.vi. 4 , and Art. 61), or more symmetrically $\quad A M: B M+A N: B N=0$ (21.4);
a relation which, conversely, may bo regarded ns a criterion of two lines or points M and N being conjugates to each other with respect to a segment or angle $A B$.

21S. When a line or angle $A B$ is cut harmonically ly two proints or lines X and Y, then, reciprocally, the line or angle $X Y$ is cut harmonically by the teo points or lines A and B.

For, the relation,
$A X: B X+A Y: B Y=0$, or $\sin A X: \sin B X+\sin A Y: \sin B Y=0$, which (214) expresses the harmonic section of $A B$ by X and Y, gives at once, by simple alternation, the relation
$X A: Y A+X B: Y B=0$, or $\sin X A: \sin Y A+\sin X B: \sin Y B=0$, which expresses the harmonic section of $X Y$ by A and B (214).

Hence, When four points on a common axis, or rays through a common vertex A, B, X, Y form an harmonic system (213); the thoo segments or angles $A B$ and $X Y$, intercrpted betiocen the theo pairs of conjugate points or rays, cut each other harmonically; and the equation of harmonicism of the system (21.1) is the c:xpression of the fact of their mutual hurmonic section.

In exactly the same manner it may be shewn from the closing relation of the preceding article (217), that When two lines or points M and N are conjugates to each other with respect to a segment or angle $A B$, then, reciprocally, the two points or lines A and B are conjugates to cach other with respect to the angle or segment $M N$; a very important property of harmonic section which will be presently considered under another form.

It follows, of course, from the above, that every property of harmonic section which is true of X and Y in relation to A and B, is true reciprocally of A and B in relation to X and Y, and conversely.
219. When four collinear points or concurrent lines, in conjugate pairs A and B, X and Y, form an harmonic system; the three pairs of opposite segments or angles they determine (82) are connected two and tico.
a. In the former case by the three following relations

$$
\begin{aligned}
& A X \cdot B Y+A Y \cdot B X=0 \ldots \ldots \ldots \ldots \ldots .(1), \\
& A B \cdot X Y+2 A Y \cdot B X=0 \ldots \ldots \ldots \ldots \ldots(2), \\
& A B \cdot Y X+2 A X \cdot B Y=0 \ldots \ldots \ldots \ldots \ldots(3)
\end{aligned}
$$

a^{\prime}. In the latter case by the three corresponding relations

$$
\begin{aligned}
& \sin A X \cdot \sin B Y+\sin A Y \cdot \sin B X=0 \ldots \ldots \ldots\left(1^{\prime}\right), \\
& \sin A B \cdot \sin X Y+2 \sin A Y \cdot \sin B X=0 \ldots \ldots \ldots\left(2^{\prime}\right), \\
& \sin A B \cdot \sin Y X+2 \sin A X \cdot \sin B Y=0 \ldots \ldots \ldots\left(3^{\prime}\right)
\end{aligned}
$$

the signs as well as the magnitudes of the several segments or angles being regarded in all.

For, the first relation of each group is manifestly equivalent to the equation of harmonicism of the system (214), which it expresses in perhaps its most convenient form ; and the second and third of each follow immediately from the first, in virtue of the general relation (82) connecting the six segments or angles determined by any four points on a common axis (82) or rays through a common vertex (82, Cor. 3°).

Since, in virtue of the general relation in question, any one of the three relations in each group involves the other two; each, therefore, by itself singly, may be regarded as characteristic of an harmonic system, and sufficient to determine it.
220. When four collinear points or concurrent lines, in conjugate pairs Λ and B, \boldsymbol{X} and \boldsymbol{Y}, form an harmonic system ; the three pairs of segments or angles determined by any one of them A, and by any arbitrary fifth collinear point or concurrent line K, with the remaining three X, Y, and B, are connected.
a. In the former case by the folloving relation

$$
K X: A X+K Y: A Y=2 . K B: A B .
$$

a^{\prime}. In the latter case by the corresponding relation

$$
\sin K X: \sin A X+\sin K Y: \sin A Y=2 \cdot \sin K B: \sin A B
$$

the signs as well as the magnitudes of the several segments or angles involved being regarded in each.

For, whatever be the position or direction of \bar{K}, since, in the former case, by the general relation of Art. $\$ 2$,

$$
B Y . K X-B X . K Y=X Y \cdot K B ;
$$

and, in the latter case, by the corresponding relation, Cor. 3°, of the same article,

$$
\sin B Y \cdot \sin K X-\sin B X \cdot \sin K Y=\sin X Y \cdot \sin K B
$$

and, again, from the harmonicism of the system A, B, X, Y, since, in the former case, by relations (a) of the preceding article,

$$
B Y \cdot A X=-B X \cdot A Y=\frac{1}{2} \cdot X Y \cdot A B ;
$$

and, in the latter case, by the corresponding relations (a^{\prime}) of the same article,

$$
\sin B Y \cdot \sin A X=-\sin B X \cdot \sin A Y=\frac{1}{2} \cdot \sin X Y \cdot \sin A B
$$

therefore, in the former case,

$$
K X: A X+K Y: A Y
$$

or its equivalent
$K X \cdot B Y: A X \cdot B Y+K Y \cdot B X: A Y \cdot B X$,

$$
=X Y \cdot K B: \frac{1}{2} \cdot X Y \cdot A B=2 \cdot K B: A B ;
$$

and, in the latter case,

$$
\sin K X: \sin A X+\sin K Y: \sin A Y
$$

or its equivalent
$\sin K X \cdot \sin B Y: \sin A X \cdot \sin B Y+\sin K Y \cdot \sin B X: \sin A Y \cdot \sin B X$,

$$
=\sin X Y \cdot \sin K B: \frac{1}{2} \cdot \sin X Y \cdot \sin A B=2 \cdot \sin K B \cdot \sin A B ;
$$

and therefore \&c.
By taking the arbitrary fifth point or ray K to coincide successively with the three B, X, and Y of the four A, B, X, Y constituting the harmonic system, the above useful relations become obriously those of the preceding article in the order of their enumeration; which accordingly they include as particular cases, and equally with which they may be regarded as characteristic of the relation of harmonicism between four points or rays, and sufficient to determine it.
221. Every harmonic pencil of rays determines an harmonic row of points on every axis; and, conversely, every harmonic row of points determines an harmonic pencil of rays at every vertex.

For, if, in either case, O (fig. 2, Art. 213) be the vertex of the pencil, and A, B, X, Y the four points of the row; then since, by (65),

$$
\frac{A X}{B X}=\frac{A O}{B O} \cdot \frac{\sin A O X}{\sin B O X}, \text { and } \frac{A Y}{B Y}=\frac{A O}{B O} \cdot \frac{\sin A O Y}{\sin B O Y}
$$

therefore at once, by division of ratios,

$$
\frac{A X}{B X}: \frac{A Y}{B Y}=\frac{\sin A O X}{\sin B O X}: \frac{\sin A O Y}{\sin B O Y}
$$

consequently, if either equivalent $=-1$ so is the other also, that is, if either the row or the pencil be harmonic (213) so is the other also; and therefore \&c.

There is one case, and one only, in which the above demonstration fails, that, viz. when the vertex O of the pencil is at an infinite distance; but in that case, the four rays of the pencil being parallel (16), the property is evident without any demonstration (Euc. vi. 10).

Of all properties of harmonic section the above, from which it appears that the relation of harmonicism of a row of points or pencil of rays is preserved in perspective (130), is by far the most important. As an abstract proposition it was known to the Ancients, but it was only in modern and comparatively recent times that its importance was perceived. It is to it indeed mainly that the theory of harmonic section owes its utility and power as an instrument of investigation in modern geometry.
222. Among the many consequences deducible from the general property of the preceding article, the following are of repeated occurrence in the applications of the theory of harmonic section.

1. When a pencil of four rays determines an harmonic rowo of points on any axis, it does so on cvery axis; and, reciprocally, when a row of four points determines an harmonic pencil of rays at any vertex, it does so at every vertex.

For, the pencil, in the former case, as determining an harmonic row of points on an axis, is itself harmonic ; and the row, in the latter case, as determining an harmonic pencil of rays at a vertex, is itself harmonic; and therefore \&ic.
2°. When a row of four points or pencil of four rays is harmonic, the prrspective of either to any centre and axis is also harmonic.

For, the row and its perspective, in the former case, comect with the centre of perspective by the same pencil of rays; and the pencil and its perspective, in the latter case, intersect with the axis of perspective at the same row of points; and therefore \&c.
3°. When thoo harmonic roves of points on different axes A, B, X, Y and $A^{\prime}, B^{\prime}, X^{\prime}, Y^{\prime}$ are such that any pair of their points A and A^{\prime}, the conjugate pair B and B^{\prime}, and either of the remaining pairs X and X^{\prime} connect by lines $A A^{\prime}, B \mathcal{B}^{\prime}, \mathrm{XX}^{\prime}$ passing through a common point P^{\prime}, the fourth pair Y and $Y^{\prime \prime}$ connect also by a line $Y Y^{\prime}$ passing through the same point P.

For, the two rows of four points A, B, X, Y and $A^{\prime}, B^{\prime}, X^{\prime}, Y^{\prime}$ being, by hypothesis, harmonic, so therefore, by the preceding, are the two pencils of four rays $P(A, B, X, Y)$ and $P^{\prime}\left(A^{\prime}\right.$, $\left.B^{\prime}, X^{\prime}, Y^{\prime \prime}\right)$; butthree pairs of corresponding rays of those two harmonic pencils $P A$ and $P A^{\prime}, P B$ and $P B^{\prime}, P X$ and $P X^{\prime}$, by hypothesis, coincide; there-
 fore (214) the fourth pair $P Y$ and $P^{\prime} Y^{\prime}$ coincide also; and therefore \&e.
4°. When two harmonic pencils of rays through different vertices A, B, X, Y and $A^{\prime}, B^{\prime}, X^{\prime \prime}, Y^{\prime}$ are such that any pair of their rays A and A^{\prime}, the conjugate pair B and B^{\prime}, and cither of the remaining pairs X and X^{\prime} intersect at points $A A^{\prime}, B B^{\prime}, X X^{\prime}$ lying on a common line L, the fourth pair Y and Y^{\prime} intersect also at a point $Y Y^{\prime}$ lying on the same line L.

For, the two pencils of four rays A, B, X, Y and $A^{\prime}, B^{\prime}, X^{\prime}, Y^{\prime}$ being, by hypothesis, harmonic, so therefore, by the preceding, are the two rows of four points $L\left(A, B, X, Y^{\prime}\right)$, and $L\left(A^{\prime}, B^{\prime}, X^{\prime}\right.$, $\left.Y^{\prime}\right)$; but three pairs of corresponding points of those two harmonic rows $L A$ and $L A^{\prime}$, $L B$ and $L B^{\prime}, L X$ and $L X^{\prime}$, by hypothesis, coincide, therefore (214) the fourth pair $L Y$ and $L Y^{\prime}$ coincide also; and therefore \&c.

5. When of two harmonic rows of points on different axes A, B, X, Y and $A^{\prime}, B^{\prime}, X^{\prime}, Y^{\prime}$, any pair of points A and A^{\prime} coincide at the intersection of the axes, the conjugate pair B and B^{\prime} are collinear with the two centres of perspective P and Q of the two segments $X Y$ and $X^{\prime} Y^{\prime}$ determined by the remaining two pairs X and X^{\prime}, Y and Y^{\prime}.

For, as in 3°, of which this is evidently a particular case,

the two rows of four points A, B, X, Y and $A^{\prime}, B^{\prime}, X^{\prime}, Y^{\prime}$ being, by hypothesis, harmonic, so therefore, by the preceding, are the four pencils of four rays $P\left(A, B, X, Y^{\prime}\right)$ and $P\left(\Lambda^{\prime}, B^{\prime}, X^{\prime}, Y^{\prime}\right)$, $Q(A, B, X, Y)$ and $Q\left(\Lambda^{\prime}, B^{\prime}, X^{\prime}, Y^{\prime}\right)$; but, for both pairs of harmonic pencils, three pairs of corresponding rays, viz. $P X$ and $P X^{\prime}, P Y$ and $P Y^{\prime}, P A$ and $P A^{\prime}$ for the first pair, and, $Q X$ and $Q Y^{\prime}, Q Y$ and $Q X^{\prime}, Q A$ and $Q A^{\prime}$ for the sccond pair, by
hypothesis, coincide, therefore the fourth pairs for both, viz. $P B$ and $P B^{\prime}$ for the first, and, $Q B$ and $Q B^{\prime}$ for the second, coincide also; and therefore $\mathbb{\&} \mathrm{c}$.

6 . When, of two harmonic pencils of rays through different vertices A, B, X, Y and $A^{\prime}, B^{\prime}, X^{\prime}, Y^{\prime}$, any pair of rays A and A^{\prime} coincile along the connector of the vertices, the conjugate pair B and B^{\prime} are concurrent with the two axes of perspective L and M of the two angles $X Y$ and $X^{\prime} Y^{\prime}$ determined by the remaining two pairs X and X^{\prime}, Y and $Y^{\prime \prime}$.

For, as in 4°, of which this is evidently a particular case,

the two pencils of four rays A, B, X, Y and $A^{\prime}, B^{\prime}, X^{\prime \prime}, Y^{\prime \prime}$ being, by hypothesis, harmonic, so therefore, by the preceding, are the four rows of four points $L(A, B, X, Y)$ and $L\left(\Lambda^{\prime}, B^{\prime}, X^{\prime \prime}, Y^{\prime}\right)$, $M(A, B, X, Y)$ and $M\left(A^{\prime}, B^{\prime}, X^{\prime}, Y^{\prime}\right)$; but, for both pairs of harmonic rows, three pairs of corresponding points, viz. $L X$ and $L X^{\prime}, L Y$ and $L Y^{\prime \prime}, L A$ and $L A^{\prime}$ for the first pair, and, $M X$ and $M Y^{\prime}, M Y$ and $M X^{\prime}, M A$ and $M A^{\prime}$ for the second pair, by hypothesis, coincide, therefore the fourth pairs for both, viz. $L B$ and $L B^{\prime}$ for the first, and, $M B$ and $M B^{\prime}$ for the second, coincide also; and therefore \&ic.
223. When four points form an harmonic row, their four polars with respect to any circle form an harmonic pencil; and, converscly, when four lines form an harmonic pencil, their four poles with respect to any circle form an harmonic row (166, Cor. 1°).

For, in either case, the pencil determined by the four rays being similar to that subtended by the four points at the centre
of the circle ($171,2^{\circ}$), the harmonicism of either, consequently, involves and is involved in that of the other (213); but, by virtue of the general property of Art. 221, the hamnonicism of the latter pencil involses and is involved in that of the row determined by the four points, and therefore \&e.

In the applications of the theory of harmonic section, the above property, from which it appears that the relation of harmonicism of a rozo of points or pencil of rays is preserved in reciprocation (172), ranks next in importance to that of Art. 221, from which, as above demonstrated, it is indeed an inference. By virtue of it all harmonic properties of geometrical figures are in fact double, every harmonic property of any figure being accompanied by a corresponding harmonic property of its, reciprocal figure to any circle (172), the establishment of either of which involves that of the other without the necessity of any further demonstration (173). The principal harmonic properties of figures consisting only of points and lines, which will form the subject of the next chapter, will be found arranged throughout in reciprocal pairs, placed in immediate connection with each other, and marked by corresponding letters, accented and unaccented, so as to keep the circumstance of this remarkable duality continually present before the reader, and supply him at the same time with numerous examples by which to keep up the valuable exercise of inferring one from the other by the reciprocating process described in Art. 172. The principal harmonic properties of figures involving circles, which will form the subject of the following chapter, will also, when their reciprocals are propertics involving no higher figures (173), be arranged as far as possible on a similar plan.
224. When two angles having a common vertex cut cach other harmonically, every chord of either parallel to a side of the other is bisected internally by the second side of the other.

For, by the general property of Art. 221, every chord of either, whatever be its direction, is cut harmonically by the sides of the other; but for the particular direction in question, one point of harmonic section is at an infinite distance (16), and therefore the other is the middle point of the chord $\left(216,3^{\circ}\right)$.

Conrorsely, When tion angles having a rommon vertex are
such that a side of one bisects vhile its second side is parallel to any chord of the other, they cut each other harmonically.

For, the extremities of the chord with its points of internal and external bisection form an harmonic row ($216,3^{\circ}$); and therefore, by the same general property (221), subteud an harmonic pencil at every vertex.

Cor. The preceding furnishes a rapid method of constructing the fourth ray of an harmonic pencil conjugate to any assigned one of three given rays; for, drawing any transversal parallel to the assigned conjugate, and bisecting its segment intercepted between the other two rays, the line connecting the point of bisection with the vertex of the pencil is the fourth ray required.
225. When two segments having a common axis cut each other harmonically, the rectangle under the distances of the extremitios of either from the midelle point of the other, is equal in magnitude and sign to the square of half the other.

Let $A B$ and $X Y$ (fig. 1, Art. 213) be the segments, C and Z their middle points; then since, by hypothesis,

$$
A X: B X+A Y: B Y=0
$$

therefore

$$
(A X+B X):(A X-B X)::(A Y-B Y):(A Y+B Y)
$$

but ($76,(1)$, and 75)
$A X+B X=2 C I, A Y+B Y=2 C Y ; A X-B X=A Y-B Y=A B$, therefore

$$
2 C X: A B:: A B: 2 C Y
$$

and therefore $4 C . I . C Y=A B^{p}$, or $C X \cdot C Y=\left(\frac{1}{2} A B\right)^{2}$;
and in the same manner exactly it may be proved, that

$$
4 Z A \cdot Z B=X Y^{2}, \text { or } Z A \cdot Z B=\left(\frac{1}{2} X Y\right)^{2},
$$

and therefore \&c.
Conversely, When two segments having a common axis are such, that the rectangle under the distances of the extremities of one from the middle point of the other is equal in magnitule and sign to the square of half the other, they cut each other harmonically.

For, since, by hypothesis,

$$
C X . C Y=\left(\frac{1}{2} A B\right)^{2}, \text { or } 4 C X \cdot C Y=A B^{2},
$$

therefore

$$
2 C X: A B:: A B: 2 C Y
$$

but ($76,(1)$, and 75)
$2 C X=A X+B X, 2 C Y=A Y+B Y, A B=A X-B X=A Y-B Y$,
therefore $A X+B X: A X-B X:: A Y-B Y: A Y+B Y$,
and therefore $\quad A X: B X+A Y: B Y=0$;
and similarly, if it had been given that

$$
Z A \cdot Z B=\left(\frac{1}{2} X Y^{y}\right), \text { or } 4 Z A \cdot Z B=X Y^{2},
$$

and therefore \&c.
Of all properties of the harmonic section of lines, the above leads to the greatest variety of consequences, and, as a criterion of the relation between two segments having a common axis, is generally found the most readily applicable, especially in questions relating to the circle. An analogous criterion of harmonic section between two angles, having a common vertex might be established, in precisely the same manner, with or without the aid of Trigonometry, but the general property (221) renders this unnecessary, and reduces at once all questions respecting the harmonic section of angles to the corresponding questions respecting the harmonic section of lines.

Con. 1°. Since $C A . C B=-\left(\frac{1}{2} A B\right)^{2}$, and $Z X . Z Y=-\left(\frac{1}{2} X I\right)^{2}$, the preceding relations may obviously be stated in the forms

$$
C X \cdot C Y+C A \cdot C B=0, \text { and }, Z A \cdot Z B+Z X \cdot Z Y=0
$$

which, therefore, equally with their equivalents, express each the mutual harmonic section of the two coaxal segments $X Y$ and $A B$.

Cor. 2°. A convenient and rapid construction, for determining in any number segments of a given axis cutting a given segment $A B$ harmonically, is supplied immediately by the above; drawing a line, in any direction different from that of the given axis, through the middle point C of the given segment $A B$, and taking upon it any segment $P Q$ for which the rectangle $C P . C Q$ is equal in magnitude and sign to the square of half the given segment $A B$; every circle passing through P and Q will intercept on the given axis a segment $X Y$ cutting harmonically the given segment $A B$.

For, Euclid iti. 35, 36, CA. $C Y=C P . C Q$, which by construction $=\left(\frac{1}{2} A B\right)^{3}$, and therefore \&ic.

From this construction it appears at once, as observed in (215), that when A and B are real, and therefore $\left(\frac{1}{2} A B\right)^{2}$ positive (fig. α) X and Y may be, as they often are, imaginary; and that when A and B are, as they may be and often are, imaginary, and therefore ($\left.\frac{1}{2} A B\right)^{2}$ negative (fig. β), X and Y are always real.

Con. 3°. Since for a fixed segment $A B$, real or imaginary, cut harmonically by a variable pair of conjugates \mathcal{A}^{-}and Y, the rectangle $C X . C Y$, as appears from the above, is constant, and equal to the square, positive or negative, of half the fixed segment; the following particulars respecting the simultaneous positions and fluctuations of X and Y may be immediately inferred:
1°. When A and B are real, and $\left(\frac{1}{2} A B\right)^{2}$ therefore positive; they lie at the same side of the point C, move in opposite directions on the axis $A B$, and coincide with each other at each of the points A and B (fig. α).
2°. When A and B are imaginary, and $\left(\frac{1}{2} A B\right)^{2}$ therefore negative; they lie at opposite sides of the point C, move in the same direction on the axis $A B$, and are at their least distance asunder when equidistant from C (fig. β).
3°. Whether A and B be real or imagimary; when either of them is at or passes through C, the other is at or passes through infinity; and, conversely, when cither of them is at or passes through infinity, the other is at or passes through C (figs. a and β).

Cor. 4°. Again, for a fixed angle $A B$, real or imaginary, cut harmonically by a variable pair of conjugates X and Y, if O
be its vertex and C and D its two lines of biscetion (fig. 2, Art. 213); the following analogous particulars, respecting the simultancous positions and movements of X and Y, follow immediately from the preceding by virtue of the general property of Art. 221, viz. :
1°. When A and B are real; they lie in the same region of the angle $C D$, revolve in opposite directions round the vertex O, and coincide with each other at each of the lines A and B.
2°. When A and B are imaginary; they lie in different regions of the angle $C D$, revolve in the same direction round the vertex O, and are at their least separation asunder when equally inclined to C or D.
3°. Whether A and B be real or imaginary; when either of them is upon or passes over either bisector C or D, the other is upon or passes over the other bisector D or C.
226. If a variable segment $X Y$ of a fixed axis cut a fixed segment $A B$ of the axis harmonically-
1°. The circle on the variable segment XY as diameter determines a coaxal system (184), whose limiting points (184) are the extremities, real or imaginary, of the fixed segment $A B$.
2°. The circle on the variable segment $X Y$ as chord which passes through any fixed point P, not on the axis, passes also through a second fixed point Q, on the line connecting the first, real or imaginary, with the middle point C of the fixed segment $A B$.

Both these properties follow at once from the preceding. The first from the consideration that for the variable circle of which $X Y$ is diameter, and therefore Z centre, $C Z^{2}-\left(\frac{1}{2} X Y\right)^{2}$, which (Euc. II. 5,6$)=C X . C Y$, is constant and $=\left(\frac{1}{2} A B\right)^{2}(184)$; and the second from the consideration that for the variable circle PXY, if Q be the second point in which it intersects the line $P C$ (figg. α and β, Cor. 2°, Art. 225), $C P . C Q$, which (Euc. III. 35, 36) $=C X . C Y$, is constant and $=\left(\frac{1}{2} A B\right)^{*}$.

Conversely, Every circle of a coaxal system cuts harmonically the segment, real or imaginary-

1. Of the line of centres intercopted between the two limiting points of the system.
2. Of any line intercepted betzceen its two proints of contact with circles of the system.

For, $A B$ as before being the segment of the line, $N Y$ the dianeter or chord of the circle, and C and Z the middle points of $A B$ and $A Y$; then since in the case of 1°, by (184),

$$
C Z^{1}-\left(\frac{1}{2} I I\right)^{x}=C A^{3}=C B^{3}=\left(\frac{1}{2} A B\right)^{2}
$$

therefore $C X . C Y=\left(\frac{1}{2} A B\right)^{2}$, and therefore \&e. (225), and since in the case of 2°, by ($182, \mathrm{Cor} .9^{\circ}$), C is on the radical axis of the system, therefore $C X . C Y=C A^{2}=C B^{2}=\left(\frac{1}{8} A B\right)^{3}$, and therefore \&c. (225).
227. When two segments having a common axis cut cach other harmonically, the square of the distance between their middle points is equal to the sum of the squares of their semi-lengths.

Let, as before, $A B$ and $X Y$ be the segments, C and Z their middle points; then, since (Euc. 11. 5,6$) C Z^{7}=C X, C Y+\left(\frac{1}{8} N Y\right)^{x}$ or $=Z A . Z B+\left(\frac{1}{2} A B\right)^{2}$, and since $(225) C X . C Y=\left(\frac{1}{2} A B\right)^{2}$ and $Z A \cdot Z B=\left(\frac{1}{2} X Y^{2}\right)^{2}$, therefore $C Z^{3}=\left(\frac{1}{2} A B\right)^{2}+\left(\frac{1}{2} X^{2} Y\right)^{3}$, and therefore \&c.

Conversely, when two segments having a common axis are such that the square of the distance between their middle points is equal to the sum of the squares of their semi-lengths, they cut each other harmonically.

For, since, by hypothesis, $C Z^{3}=\left(\frac{1}{\frac{1}{2}} A B\right)^{y}+\left(\frac{1}{2} N Y\right)^{y}$, therefore $C Z^{3}-\left(\frac{1}{2} X I\right)^{x}$, or $C X . C Y,=\left(\frac{1}{2} A B\right)^{x}$, and $C Z^{s}-\left(\frac{1}{2} A B\right)^{2}$, or $Z A . Z B,=\left(\frac{1}{2} X Y\right)^{2}$, and therefore \&c. (225).

Cor. 1°. Since, in a right-angled triangle, the square of the side subtending the right angle is equal to the sum of the squares of the sides containing the right angle, and, conversely, (Euc. I. 47, 48), it appears immediately, from the above, that-

If two coaxal segments which cut each other harmonically be turned round their middle points and made conterminous in position, they will form a right angle; and, conversely, If two conterminous segments which form a right angle be turned round their middlle points and made coincident in direction, they will cut each other harmonically.

Cor. 2°. Since, when two circles intersect at right angles, the square of the distance between their centres is equal to the vol. 11.
sum of the squares of their radii, and conversely (23), it appears again, from the above, that-

When two coaxal segments cut each other harmonically, the two circles of which they are diameters intersect at right angles; and, conversely, when two circles intersect at right angles, their thoo diameters which coincide in direction cut each other harmonically.

Cur. 3°. The above, also, supplies obvious solutions of the three following problems:
1°. Given one segment $A B$ of a line and the length XY of another cutting it harmonically, to determine the middle point Z of the other.
2°. Given one segment $A B$ of a line and the middle point Z of another cuitting it harmonically, to determine the length XY of the other.
3°. Given two segments $A B$ and $A^{\prime} B^{\prime}$ of a line, to determine the middle point Z and the length $X Y$ of the segment which cuts both harmonically.
228. When two segments having a common axis out each other harmonically, every circle passing through the extremitics of either cuts orthogonally the circle of vehich the other is a diameter.

Let, as before, $A B$ and $X Y$ be the segments, C and Z their middle points; then since (225) CX.CY $=\left(\frac{1}{2} A B\right)^{2}$, therefore (Euc. III. 35, 36) square of tangent from C to any circle passing through X and $Y=$ square of radius of circle of which $A B$ is diameter; and since $Z A \cdot Z B=\left(\frac{1}{2} X Y\right)^{2}$, therefore square of tangent from Z to any circle passing through A and $B=$ square of radius of circle of which $X Y$ is diameter; and therefore \&c. (23).

Conversely, when two circles of any radii cut each other orthogonally, every diameter of either is cut harmonically by the other.

Let $A B$ be any diameter of either, O its middle point, and X and Y the two points, real or imaginary, at which it intersects the other; then since (Euc. 111. 35, 36) $O X . C Y=$ square of tangent from C to the latter, that is, as the circles cut orthogonally $y_{1}=$ square of radius of former,$\left(\frac{1}{2} A B\right)^{2}$, therefore \&ec. (225).

Cor. 1°. Since a variable circle passing through a fixed point, and cutting a fixed circle orthogonally, passes through a second fixed point, the inverse of the first with respect to the fixed circle (149), it appears at once from the above, as already noticed in ($226,2^{\circ}$), that-

A variable circle passing through a fixed point, and cutting a fixed segment of a fixed axis harmonically, passes also through a second fixed point, on the line connecting the first with the centre of the fixad segment.

Cor. 2. Again, since a variable circle cutting two fixed cireles orthogonally determines a coaxal system, whose radieal axis is the line of centres, whose line of centres is the radical axis, and whose limiting points are the intersections, real or imaginary, of the fixed circles (185); it appears also, from the above, that-

A variuble circle cutting teo fixed segments of two fixed axes harmonically determines a couxal system, whose radical axis is the line of centres, ichose line of centres is the radical axis, and whose limiting points are the intersections, real or imaginary, of the circles of ehich the fixed segments are diumeters.

Cor. 3°. Since (156, Cor. 4°) a circle may be described, 1° passing through two given points and cutting a given circle orthogonally; 2° passing through a given point and cutting two given circles orthogonally; 3° cutting three given circles orthogonally; the radical centre of the given group and its tangential distance from each circle of the group, evanescent or finite, being the centre and radius of the cutting circle in each case; the above furnishes solutions at once simple and obvious of the three following problems, viz.

To descrive a circle, 1° passing through tico given points and cutting a given segment of a given axis hasmonically; 2° passing through a given point and cutting two given segments of theo given axes harmonically; 3° cutting three given segments of three given axes harmonically.

Cor. 4°. As three segments of three axes may be the three sides of the triangle determined by the axes, the problems of the preceding corollary (3°) consequently include as particular cases the three following, respectively, viz. -

To describe a circle, 1° passing through two given points and cutting a side of a given triangle harmonically; 2° passing through a given point and cutting two sides of a given triangle harmonically; 3° cutting the three sides of a given triangle harmonically.

Cur. 5°. Since (168) the three circles of which the sides of any triangle are diameters are cut orthogonally by the polar circle, real or imaginary, of the triangle; that is, by the circle round the intersection of its three perpendiculars as centre, the square of whose radius is equal, in magnitude and sign, to the common value of the three equal rectangles under the segments into which they mutually divide each other; hence again, from the above, it appears that-

In every triangle the polar circle, real or imaginary, cuts the three sides harmonically.

Cor. 6°. Since ($189,1^{\circ}$, Cor. 1°) the three circles of which the three chords of intersection of any tetragram are diameters are coaxal, and since consequently (185) every circle cutting two of them orthogonally cuts the third also orthogonally; hence also, from the above, it appears that-

Every circle cutting two of the three chords of intersection of amy tetrugram harmonically cuts the third also harmonically.
229. If a line $A B$ be cut harmonically by two pairs of conjugates X and Y, X^{\prime} and Y^{\prime}, both pairs being arbitrary.
a. The three circles on $X \mathrm{Y}^{\prime}, Y Y^{\prime}$, and $A B$ (and also the three on $X Y^{\prime \prime}, Y X^{\prime}$, and $A B$) as diameters are coaxal.
b. The three circles on $X X^{\prime}, Y Y^{\prime}$, and $A B$ (and also the three on $X^{Y} Y^{\prime}, Y X^{\prime}$, and $A B$) as chords, which pass through any common point P not on the line, pass also through a second common point Q not on the line.

To prove (a). Since by hypothesis

$$
A X: A Y=-B X: B Y \text { and } A X^{\prime}: A Y^{\prime}=-B X^{\prime}: B Y^{\prime}
$$

thercfore, by composition of ratios,

$$
A X \cdot A X^{\prime}: A Y \cdot A Y^{\prime}:: B X \cdot B X^{\prime}: B Y \cdot B Y^{\prime \prime}
$$

and therefore \&ic. $\left(192\right.$, Cor. $\left.1^{\circ}\right)$.
To prove (b). Since, by (a), thero exists a point O on $A B$ for which OX.OX ${ }^{\prime \prime}=O Y . O Y^{\prime}=O A . O B$, therefore, if Q be
the point on $O P$ for which each $=O P . O Q$, the three circles $N P X^{\prime}, Y P Y^{\prime}$, and $A P B$ all pass through Q, and therefore \& \mathcal{E}.

The point O on $A B$ for which $O X . O \mathbb{N}^{\prime \prime}=O Y . O Y^{\prime}$, and each therefore $=O A . O B$, is evidently that determined by the relation $O Z . X^{\prime \prime} Y^{\prime \prime}+O Z^{\prime} \cdot X Y=0, Z$ and Z^{\prime} being the middle points of $X Y$ and $X^{\prime \prime} Y^{\prime \prime}$; for, since when $O X^{\circ} . O X^{\prime}=O I^{\circ} . O Y^{\prime \prime}$ then $O X: O Y=O Y^{\prime \prime}: O X^{\prime \prime}$, therefore

$$
O X+O Y: O X-O Y=O Y^{\prime \prime}+O X^{\prime}: O Y^{\prime \prime}-O X^{\prime \prime}
$$

or $2.0 Z: Y^{\prime} Y=2.0 Z^{\prime}: I^{\prime \prime} Y^{\prime \prime}$, and therefore $\mathbb{A} c$.
230. In the applications of the theory of harmonic section to the geometry of the circle, the solutions of a variety of problems are reduced to those of the following:

Given two segments or angles $A B$ and $A^{\prime} B^{\prime}$ having a common axis or vertex, to determine the seyment or angle $\mathrm{X} Y$ thich cuts both harmonically.

By virtue of the general relation of Art. 221, the case of the augle is of course reduced at once to that of the segment, which is given immediately by any of the three following constructions, all based on the property of Art. 225, viz. :
1°. Describing the two circles of which $A B$ and $A^{\prime} B^{\prime}$, bisected at C^{\prime} and C^{\prime} respectively, are diameters; any circle cutting them both orthogonally will intercept on the given axis the required segment XY.
For (22S) $C X^{\prime} . C Y^{\prime}=\left(\frac{1}{2} A B\right)^{3}$, and $C^{\prime} X . C^{\prime} Y^{\prime \prime}=\left(\frac{1}{2} A^{\prime} B^{\prime}\right)^{3}$,
and therefore \&c. (225).
2°. Taking arbitrarily any point P not on the given axis, and describing the two circles $P A B$ and $P A^{\prime} B^{\prime}$; their chord of intersection $P Q$ will intersect the given axis at the middle point Z of the required segment $X Y$; and the circle round Z as centre, the square of whose radius is equal to the rectangle $Z P . Z Q$, will intercept on the given axis the required segment itself.

For, (Euc. 1II. 35, 36) $Z A . Z B=Z P . Z Q=\left(\frac{1}{2} X Y\right)^{2}$, and $Z A^{\prime} . Z B^{\prime}=Z P \cdot Z Q=\left(\frac{1}{2} X I\right)^{3}$, and therefore dic. (225).
3°. Taking arbitrarily any point P not on the given axis, connecting it with the middle points C and C^{\prime} of $A B$ and $A^{\prime} B^{\prime}$, and taking on the counceting lines $P C$ and $P C^{\prime}$ the two points Q and Q^{\prime}, for which $C P \cdot C Q=\left(\frac{1}{2} A B\right)^{\prime \prime}$, and $C^{\prime \prime} P^{\prime} \cdot C^{\prime} Q^{\prime}=\left(\frac{1}{2} A^{\prime} B^{\prime}\right)^{*}$;
the circle $Q P Q^{\prime}$ will intercept on the given line the required segment $X Y$.

For, (Euc. III. 35, 36) $C X . C Y=C P . C Q=\left(\frac{1}{2} A B\right)^{\circ}$, and $C^{\prime} X . C^{\prime} Y=C^{\prime} P . C^{\prime} Q^{\prime}=\left(\frac{1}{2} A^{\prime} B^{\prime}\right)^{2}$, and therefore \&c. (225).

If either or both of the given segments $A B$ and $A^{\prime} B^{\prime}$ be imaginary, the last alone of the preceding constructions is applicable; and the problem, as solved by it, is obviously in its most general form equivalent to the following, viz.:

On a given line to determine the two points X and Y the rectangles under whose distances from each of two given points on the line C and C^{\prime} are given in magnitude and sign.

When the two given segments or angles $A B$ and $A^{\prime} B^{\prime}$ are such that A and B alternate with A^{\prime} and B^{\prime} in order of succession, the segment or angle $X Y$ which cuts them both harmonically is of course necessarily imaginary; its two points or lines of bisection are however in all cases real (225, Cor. 2°).
231. The harmonic relation of a system of four points on a common axis A, B, X, Y may be expressed in terms of the three distances of any three of them from the fourth as follows:

If A be the point from which the distances of the remaining three are measured; substituting for $B X$ and $B Y$ their equivalents $A X-A B$ and $A Y-A B$, the fundamental proportion of harmonic section (213) becomes

$$
A X: A Y:: A X-A B: A B-A Y \ldots \ldots \ldots \text { (1). }
$$

If B be the point; substituting for $A X$ and $A Y$ their equivalents $B X-B A$ and $B Y-B A$, it becomes

$$
B X: B Y:: B X-B A: B A-B Y \ldots \ldots \ldots \text { (2). }
$$

If X be the point; substituting for $Y A$ and $Y B$ their equivalents $X A-X Y$ and $X B-X Y$, it becomes

$$
\begin{equation*}
X A: X B:: X A-X Y: X Y-X B \tag{3}
\end{equation*}
$$

And if Y be the point; substituting for $X A$ and $X B$ their equivalents $Y A-Y X$ and $Y B-Y X$, it becomes

$$
Y A: Y B:: Y A-Y X: Y X-Y B \ldots \ldots \ldots(4)
$$

in each of which the relation is expressed in terms of the distances of three of the points from the fourth, in a form which is precisely the same from whichever of the four the three distances are measured.

Cor. 1. The four preceding relations give at once the equalities

$$
\left\{\begin{array}{l}
2 \cdot A X \cdot A Y=(A X+A I) \cdot A B \\
2 \cdot B X \cdot B I=(B X+B I) \cdot B A \\
2 \cdot M A \cdot X B=(X A+X B) \cdot X Y \\
2 \cdot Y A \cdot Y B=(Y A+Y B) \cdot Y X
\end{array}\right\} \ldots \ldots \ldots(\mathrm{I}),
$$

from which it follows immediately, that

$$
\left\{\begin{array}{l}
A B=\frac{2 \cdot A X \cdot A Y}{A X+A Y}=\frac{A X \cdot A I}{1(A X+A L)} \\
B A=\frac{2 \cdot B X \cdot B Y}{B X+B Y}=\frac{B X \cdot B Y}{1(B X+B Y)} \\
X Y=\frac{2 \cdot X A \cdot X B}{X A+\Gamma B}=\frac{M A \cdot X B}{1(X A+I B)} \\
Y X=\frac{2 \cdot Y A \cdot Y B}{Y A+I B}=\frac{Y A \cdot Y B}{\frac{1}{1}(I+Y B)}
\end{array}\right\} \ldots(I I),
$$

relations which express the distance of any point of an harmonic system from its conjugate, in terms of its distances from the remaining two points of the system.

Cor. 2'. The reciprocals of the four latter relations (II), give again immediately

$$
\left(\begin{array}{l}
\frac{1}{A X}+\frac{1}{A Y}=\frac{2}{A B} \\
\frac{1}{B X}+\frac{1}{B Y}=\frac{2}{B A} \\
\frac{1}{\overline{X A}}+\frac{1}{X B}=\frac{2}{\Gamma Y} \\
\frac{1}{Y A}+\frac{1}{Y B}=\frac{2}{Y X}
\end{array}\right) \text { or }\left(\begin{array}{l}
\frac{1}{A B}=\frac{1}{2}\left(\frac{1}{A X}+\frac{1}{A Y}\right) \\
\frac{1}{B A}=\frac{1}{2}\left(\frac{1}{B X}+\frac{1}{B Y}\right) \\
\frac{1}{X Y}=\frac{1}{2}\left(\frac{1}{X A}+\frac{1}{\Gamma B}\right) \\
\frac{1}{Y X}=\frac{1}{2}\left(\frac{1}{Y A}+\frac{1}{Y B}\right)
\end{array}\right) \ldots \text { (III), }
$$

which express, in a remarkably simple manner, the harmonic relation of four points, in terms of the reciprocals of the distances of any three of them from the fourth.

Cor. 3°. If C and Z (fig. 1, Art. 213) be the middle points of the two conjugate segments $A B$ and $X Y$ respectively; then since (i6, 1)

$$
\begin{array}{ll}
A X+A Y=2 \cdot A Z, & B X+B Y=2 \cdot B Z \\
X A+X B=2 \cdot X C, & Y A+Y B=2 \cdot Y C
\end{array}
$$

the four general relations (I) of Cor. 1°, are obviously equivalent to the following :

$$
\left\{\begin{array}{l}
A X \cdot A Y=A Z \cdot A B \tag{IV}\\
B X \cdot B Y=B Z \cdot B A \\
X A \cdot X B=X C \cdot X Y \\
Y A \cdot Y B=Y C \cdot Y X
\end{array}\right\}
$$

relations of considerable utility, each of which, like any of the preceding, is characteristic of an harmonic system, and sufficient to determine it.
232. When four points on a common axis A and B, X and Y form an harmonic system, the three distances from any one of them to the remaining three, regard being had to their signs as well as to their magnitudes, are said to be in harmonic progression, and the distance from each to its conjugate is termed the harmonic mean of the distances from it to the other two.

Thus, A and B, X and Y being the two pairs of conjugates, the four sets of their magnitudes $A X, A B$, and $A Y ; B X, B A$, and $B Y ; X A, X Y$, and $X B ; Y A, Y X$, and $Y B$, taken all with the proper signs due to their several directions, are each in harmonic progression, $A B, B A, X Y$, and $Y X$ being the harmonic means in the four cases respectively.

From the invariable order of the four points of an harmonic system when all real, it is evident, from the above definition, that the harmonic mean of two magnitudes has the sign common to both when their signs are similar, and that of the numerically lesser of the two when their signs are opposite.

According to the analogy of arithmetic and geometric progression, any number of magnitudes are said to be in harmonic progression when every consecutive three of them are in such progression.
233. The several groups of relations of Art. 231 and its corollaries, interpreted in accordance with the above definitions, express all the ordinary properties of three or more magnitudes in harmonic progression, regard being had to their signs as well as to their absolute values in every case.

The group of proportions (1), (2), (3), (4) express innmediately that-
1°. When three magnitudes are in harmonic progression, the first : the third :: the first - the second : the second - the third.

The group of equalities (II) that-
2°. When three magnitudes are in harmonic progression, the mean $=$ theice the product of the extremes divided by their sum, or $=$ the product of the extremes divided by half their sum.

The group of equalities (III) that-
3°. When three magnitudes are in harmonic pragression, the sum of the riciprocals of the extremes $=$ tucice the reciprocal of the mean; or, the reciprocal of the morn $=$ half the sum of the reciprocals of the extremes.

As half the sum of two magnitudes $=$ their arithmetic mean, and the product of two magnitudes $=$ the square of their geometric mean; the group of equalities (I) or (IV) shew that-
4. The prorluct of the arithmetic and harmonic means of troo maynitudes $=$ the square of their geometric mern.

As three magnitudes are in geometric progression when the product of the first and third $=$ the square of the second; it appears, from 4°, that-
5°. The arithmetic, geometric, and harmonic means of tuco magnitudes are in geometric progression.

As three magnitudes aro in arithmetic progression when the sum of the finst and third $=$ twice tho second, or, the second $=$ half the sum of the first and third; it appears, from 3°, that-
6°. When three or any number of magnitudes are in harmonic progression, their reciprocals are in arithmetic pragression.

Between the three kinds of progression, arithmetic, geometric, and harmonic, the following relation appears from 1° -
7°. For every three consecutive terms a, b, c, the difference $(a-b)$: the difference $(b-c)$, in arithmetic progression :: $a: a$, in geometric progression $:: a: b$, and in harmonic progression $:: a: c$.

An extension of the term harmonic mean from two to any number of magnitudes, by the same kind of analogy by which the terms arithmetic mean and geometric mean have been similarly extended, has been suggested by 3°.
8°. As, for two magnitudes a, b, we say that-
Arithmetic mean $=$ half of $(a+b)$,
Geometric mean $=$ square root of $(a \times b)$,
Harmonic mean $=$ reciprocal of $\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)$.
So, by analogy, for n magnitudes $a, b, c, d, \& c$., we say that-
Arithmetic mean $=n^{\text {th }}$ part of $(a+b+c+d+\& c$.$) ,$
Geometric mean $=n^{\text {th }}$ root of ($a \times b \times c \times d \times \&$ c.),
Harmonic mean $=$ reciprocal of $\frac{1}{n}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\&_{c}.\right)$.
The harmonic mean of any number of magnitudes thus signifying the magnitude whose reciprocal $=$ the arithmetic mean of the reciprocals of the magnitudes.
234. More generally (231) the harmonic relation of a system of four points on a common axis A, B, X, Y, may be expressed in terms of their four distances from any arbitrary point P on the axis of the system, as follows:-

In the fundamental proportion of harmonic section (213) substituting for $A X, A Y, B X$, and $B Y$ their equivalents $P X-P A$, $P Y-P A, P X-P B$, and $P Y-P B$, the result

$$
(P X-P A):(P X-P B)+(P Y-P A):(P Y-P B)=0 \ldots(1)
$$

or, which is the same thing,

$$
(P X-P A) \cdot(P Y-P B)+(P Y-P A) \cdot(P X-P B)=0 \ldots\left(1^{\prime}\right)
$$

expresses the relation in terms of the four distances in question, and may, like any of the preceding, be regarded as characteristic of an harmonic system, and sufficient to determine it.

Dividing both terms of the proportion (1) by the ratio $P A: P B$, or of the equality (1^{\prime}) by the product $P A . P B . P X . P Y$, the resulting proportion

$$
\left(\frac{1}{P X}-\frac{1}{P A}\right):\left(\frac{1}{P X}-\frac{1}{P B}\right)+\left(\frac{1}{P Y}-\frac{1}{P A}\right):\left(\frac{1}{P Y}-\frac{1}{P B}\right)=0 \ldots \text { (2) }
$$

or the resulting equality

$$
\left(\frac{1}{P X}-\frac{1}{P A}\right) \cdot\left(\frac{1}{P Y}-\frac{1}{P B}\right)+\left(\frac{1}{P Y}-\frac{1}{P A}\right) \cdot\left(\frac{1}{P X}-\frac{1}{P B}\right)=0 \ldots\left(2^{\prime}\right)
$$

expresses again the relation in terms of the reciprocals of the four distances, in precisely the same form as in terms of the distances themselves.

Cor. 1°. The first of the preceding proportions (1), or its equivalent (1^{\prime}), gives at once the equality

$$
2 \cdot P \mathrm{X} \cdot P Y+2 \cdot P A \cdot P B=(P A+P B) \cdot(P \Gamma+P \Sigma) \ldots(3),
$$

and the second (2), or its equivalent (2^{\prime}), the corresponding equality

$$
\frac{2}{P X \cdot P Y}+\frac{2}{P A \cdot P B}=\left(\frac{1}{P A}+\frac{1}{P B}\right) \cdot\left(\frac{1}{P N}+\frac{1}{P Y}\right) \cdots(4)
$$

in which the forms again, as they ought to be, are identical.
Con. 2. If C and Z be the middle points of $A B$ and $X Y$ respectively, then, as $P A+P B=2 \cdot P C$ and $P X+P I^{\circ}=2 \cdot P Z$, the tirst of these latter equalities (3) becomes

$$
P X \cdot P Y+P A \cdot P B=2 \cdot P C \cdot P Z \ldots \ldots \ldots \ldots .(5)
$$

a relation of considerable utility in the applications of the theory of harmonic section.

Con. 3°. If Q and Q^{\prime} be the harmonic conjugates of P with respect to $A B$ and $X Y$ respectively, then, as

$$
\frac{1}{P A}+\frac{1}{P B}=\frac{2}{P Q}, \text { and } \frac{1}{P X}+\frac{1}{P Y}=\frac{2}{P Q},(231, \mathrm{MY} .)
$$

the second (4) becomes

$$
\frac{1}{P X \cdot P Y}+\frac{1}{P A \cdot P B}=\frac{2}{P Q \cdot P Q}, \cdots \cdots \cdots \ldots(6) ;
$$

a relation again identical in form, and, as may be easily seen from ($233,6^{\circ}$) : in meaning too, with that for the direct distances (5) to which it corresponds.
235. If a line $A B$ cut harmonically at tuo points X and Y be again cut harmonically at two other points P and $Q, b o t h$ pairs of conjugates being arbitrary, then

$$
\begin{aligned}
& P X . P Y=2 P C . R Z \ldots \ldots \ldots \ldots \ldots \ldots(\alpha), \\
& Q X . Q Y=2 Q C . R Z \ldots \ldots \ldots \ldots \ldots(\beta),
\end{aligned}
$$

C, R, and Z being the middle points of the three segments $A B$, $P Q$, and XY respectively. (See fig. 1, Art. 213).

For, by (234, Cor. 2°),

$$
P X \cdot P Y+P A \cdot P B=2 P C \cdot P Z,
$$

and, by (231, Cor. 3°),

$$
P A \cdot P B=P C \cdot P Q=2 \cdot P C \cdot P R,
$$

therefore $P X \cdot P Y=2 \cdot P C \cdot(P Z-P R)=2 \cdot P C \cdot R Z$; and, similarly,

$$
Q X . Q Y=2 . Q C \cdot(Q Z-Q R)=2 . Q C \cdot R Z
$$

and therefore $\mathcal{\& c}$.
Otherwise thus, by (Euc. II. 5, 6), $P X . P Y-C X . C Y=P Z^{2}-C Z^{2}=(P Z-C Z) \cdot(P Z+C Z)$

$$
=P C \cdot(P Z+Q Z-Q C)=2 \cdot P C \cdot R Z-P C \cdot Q C,
$$

and, by (225), $C X . C Y=C P . C Q$, therefore $P X . P Y=2 . P C \cdot R Z ;$ and, similarly, $Q X . Q Y=2 . Q C . R Z$; and therefore \&c.

The latter proof, depending only on the single consideration that the two rectangles $C X . C Y$ and $C P . C Q$ are equal in magnitude and sign, shews that the relations themselves, (α) and (β), depend on that circumstance alone, and are therefore independent of the accident as to whether the two points A and B are real or imaginary.

Cor. 1. T'aking successively the sum, difference, product, and quotient of the above equalities (α) and (β), we get at once the four following relations:-
1°. Adding, remembering that $P C+Q C=2 . R C$, we get

$$
\begin{equation*}
P X \cdot P Y+Q X \cdot Q Y=4 \cdot R C \cdot R Z \tag{1}
\end{equation*}
$$

2°. Subtracting, remembering that $P C-Q C=P Q$, we get

$$
P X \cdot P Y-Q X \cdot Q Y=2 \cdot P Q \cdot R Z \ldots \ldots \ldots \ldots \text { (2). }
$$

3°. Multiplying, remembering that $4 . C P . C Q=A B^{y}$ (225), we get

$$
\begin{equation*}
P X \cdot P Y \times Q X \cdot Q Y=A B^{2} \cdot R Z^{2} \tag{3}
\end{equation*}
$$

4. Dividing, we get at once, without any reduction,

$$
\begin{equation*}
P X . P Y: Q X . Q Y:: P C: Q C \tag{4}
\end{equation*}
$$

relations which, like those from which they are derived, are perfectly general, and independent alike of the position of either pair of conjugates X and Y, or P and Q, and of the accident of A and $I 3$ being real or imaginary.

Cor. 2°. From (α) and (β), and from $\left(3^{\circ}\right.$, Cor. $\left.1^{\circ}\right)$, we get at onee the equalities

$$
\begin{gather*}
P C=\frac{P X \cdot P Y}{2 \cdot R Z}, \quad Q C=\frac{Q X \cdot Q Y}{2 \cdot R Z} \ldots \ldots \ldots \ldots(5), \\
A B^{2}=\frac{P X \cdot P Y \cdot Q X \cdot Q Y}{R Z^{2}} \ldots \ldots \ldots \ldots \ldots(6), \tag{6}
\end{gather*}
$$

which are the simplest formula by which to calculate in numbers the position and length of $A B$ when those of $P Q$ and $\mathcal{X} Y$ are given; a problem for which, it will be remembered, various constructions were given in Art. 230.

Col. 3°. If, while P and Q, and therefore R, are supposed to remain fixed, \mathcal{X} and Y, and therefore \mathscr{Z}, be conceived to vary, and in the course of their variation to coincide all three first at A and then at B; we see, from $\left(4^{\circ}, \operatorname{Cor} .1^{\circ}\right)$, that $P X . P Y: Q X . Q Y$ $=$ a constant ratio, and also that

$$
\frac{P A^{2} \cdot P Y}{Q I \cdot Q Y}=\frac{P A^{2}}{Q A^{2}}=\frac{P B^{2}}{Q B^{2}}=\frac{P C}{Q C} \ldots \ldots \ldots \ldots(\text { () },
$$

relations which, for the particular positions of A and B, may be easily verified from the fundamental conception of harmonic section. See Arts. 150 , and 161, Cor. 1°.

Cos. 4°. If $X Y, X^{\prime \prime} Y^{\prime \prime}, X^{\prime \prime \prime} Y^{\prime \prime}$, \&e. be any number of segments cutting the same segment $A I B$ harmonically, $Z, Z^{\prime}, Z^{\prime \prime}$, אe. their several middle points, P and Q as before any arbitrary pair of conjugates, and I their middle point; then since, from (α) and (β),
PI.PY: PX' $P Y^{n}: P I^{\prime \prime \prime} . P Y^{\prime \prime \prime}$, ©c.
$=Q K \cdot Q Y: Q X^{\prime} \cdot Q Y^{\prime}: Q X^{\prime \prime} \cdot Q Y^{\prime \prime}, \mathcal{N}=R Z: R Z^{\prime}: R Z^{\prime \prime}, \mathbb{N} .$,
if the several distances $R Z, R Z^{\prime}, R Z^{\prime \prime}$, \&c. form an arithmetic, geometric, or harmonic series, so do the two sets of rectangles $P X . P Y, P X^{\prime \prime} . P Y^{\prime \prime}, P X^{\prime \prime} . P Y^{\prime \prime}$, \&c., and $Q X . Q Y, Q X^{\prime \prime} . Q Y^{\prime \prime}$, $Q I^{\prime \prime \prime} . Q Y^{\prime \prime \prime}$, de., whatever be the positions of P and Q.

Cor. 5°. If $X Y, X^{\prime \prime} Y^{\prime}, X^{\prime \prime} Y^{\prime \prime}$ be any three segments cutting the same segment $A B$ harmonically, $Z, Z^{\prime}, Z^{\prime}$ their three middle points, and P any arbitrary point on the axis of the segments; then

$$
P X \cdot P Y \cdot Z Z^{\prime \prime}+P X^{\prime} \cdot P Y^{\prime \prime} \cdot Z^{\prime \prime} Z^{\prime}+P X^{\prime \prime} \cdot P Y^{\prime \prime \prime} \cdot Z Z^{\prime}=0 \ldots(8),
$$

a theorem due to Chasles, and made much use of by him in the theory of involution.

For, Q being the harmonic conjugate of P with respect to $A B$, and R the middle point of $P Q$, therefore by (α),
$P X \cdot P Y=2 P C \cdot R Z, P X^{\prime} \cdot P \bar{Y}^{\prime}=2 P C \cdot R Z^{\prime}, P X^{\prime \prime} \cdot P Y^{\prime \prime}=2 P C \cdot R Z^{\prime \prime}$, and $R, Z, Z^{\prime}, Z^{\prime \prime}$ being four points on a common axis, therefore, by (82),

$$
R Z \cdot Z^{\prime} Z^{\prime \prime}+R Z^{\prime} \cdot Z^{\prime \prime} Z+R Z^{\prime \prime} \cdot Z Z^{\prime}=0
$$

and therefore \&e.
This proof, it will be observed, is independent of the circumstance as to whether A and B are real or imaginary.

Cor. 6°. If $P O Q$ and $X O Y$ be two angles cutting harmonically the same angle $A O B$, then, all three being otherwise entirely arbitrary,

$$
\frac{\sin P O X \cdot \sin P O Y}{\sin Q O X \cdot \sin Q O Y}=\frac{\sin ^{2} P O A}{\sin ^{2} Q O A}=\frac{\sin ^{2} P O B}{\sin ^{2} Q O B} \cdots \cdots(9)
$$

which are the formule by which to calculate in numbers the positions of the sides of the angle $A O B$ when those of the angles $P O Q$ and $X O Y$ are given.

For, if $P Q, X Y$, and $A B$ be the three seginents intercepted by the three angles on any arbitrary line not passing through their common vertex O, then since, by (65),

$$
\frac{\sin P O X}{\sin Q O X}=\frac{P X}{Q X}: \frac{P O}{Q O}, \text { and } \frac{\sin P O Y}{\sin Q O Y}=\frac{P Y}{Q Y}: \frac{P O}{Q O}
$$

therefore, at once, by composition of ratios,

$$
\frac{\sin P O X \cdot \sin P O Y}{\sin Q O X \cdot \sin Q O Y}=\frac{P X \cdot P Y}{Q X \cdot Q Y}: \frac{P O^{2}}{Q O^{\prime \prime}}
$$

and since, by the same again directly,

$$
\frac{\sin ^{2} P O A}{\sin ^{2} Q O A}=\frac{P A^{2}}{Q A^{2}}: \frac{P O^{2}}{Q O^{2}}, \text { and } \frac{\sin ^{2} P O B}{\sin ^{2} Q O B}=\frac{P B^{2}}{Q B^{2}}: \frac{P O^{2}}{Q O^{2}},
$$

therefore \&ic.; the rest being evident from relation (7), Cor. 3°.
Cor. 7°. In the particular case when the angle $P O Q$ is right, that is, when the two conjugates $O P$ and $O Q$ are the two bisectors, internal and external, of the anglo $A O B\left(216,3^{\circ}\right)$, the sines of the several angles measured from $O Q$ may be re-
placed by the cosines of the corresponding angles measured from OP, or conversely, and the above relation (9) becomes for the harmonic section of an angle what that of Art. 225 is for that of a line, viz.

$$
\tan C O I \cdot \tan C O Y=\tan ^{2} C U A=\tan ^{2} C O B \ldots \ldots(10)
$$

$O C$ being either bisector, internal or external, of the angle $A O B$. This latter relation, however, appears more immediately from that of the article referred to, by drawing the arbitrary line in the general proof of (9) perpendicular to the direction of $O C$, and then dividing the relation of that article, $C X . C Y=C A^{3}=C B^{3}$, by the square of $O C(60)$.

CHAPTER XIV.

HARMONIC PROPERTIES OF THE POINT AND LINE.

236. Of the various harmonic properties of figures of points and lines, the two following, reciprocals of each other (173), lead to the greatest number of consequences, and may be regarded as fundamental.
a. In every tetragram the three pairs of opposite intersections (106) divide harmonically the three sides of the triangle determined by their three lines of connection.
a^{\prime}. In every tetrastigm the three pairs of opposite connectors (106) divide harmonically the three angles of the triangle determined by their three points of intersection.

To prove a. If X and X^{\prime}, Y^{\prime} and Y^{\prime}, Z and Z^{\prime} be the three pairs of opposite intersections of the tetragram determined by the four lines in the figure on which they lie, three and three, and $A B C$ the triangle determined by their three lines of connection; the three segments $X X^{\prime}, Y Y^{\prime}, Z Z^{\prime}$ cut harmonically and are cut harmonically by the three $B C, C A, A B$.

For, in the triangle $X Y X^{\prime}$, having any one of the three former $\mathrm{XX}^{\prime \prime}$ for a side, and either extremity \bar{V}^{5} of either of the remaining two $Y Y^{\prime \prime}$ for the opposite vertex; the axis of the third $Z Z^{\prime}$ intersecting with the three sides at three collinear points Z, Z^{\prime}, B, and the other extremity $Y^{\prime \prime}$ of the second connecting with the three vertices by three concurrent lines $\mathrm{X} Z$, $X^{\prime} Z^{\prime}, I^{\prime} C$, therefore, by relations a and b^{\prime}, Art. 134,

$$
\frac{X B}{I^{\prime} B}=+\frac{X^{\prime} Z}{I^{\prime} Z^{\prime}} \cdot \frac{Y Z}{I^{\prime} Z} \text {, and } \frac{X C}{I^{\prime} C^{\prime}}=-\frac{X Z}{Y^{\prime} Z^{\prime}} \cdot \frac{Y Z}{I^{\prime} Z}
$$

which eridently (213) prove the property for the pair of segments $X X^{\prime \prime}$ and $B C$; and, as it may be proved exactly similarly for the remaining two pairs $Y^{\prime \prime} Y^{\prime \prime}$ and $C A, Z Z^{\prime}$ and $A B$, therefore \&c.

To prove a'. If $Q R$ and $P S, R P$ and $Q S, P Q$ and $R S$ be the three pairs of opposite connectors of the tetrastigm determined by the four points P, Q, R, S in the same figure, and $A B C$ the triangle determined by their three points of intersection; the three angles $P A Q, Q B R, R C P$ cut harmonically and are cut harmonically by the three $B A C, C B A, A C B$.

For, in the triangle $P A Q$, having any one of the three former $P A Q$ for an angle, and cither side $P Q$ of cither of the remaining two $A C P$ for the opposite side; the vertex of the third $Q B R$ comnecting with the three vertices by three concurrent lines $P R, Q S, A B$, and the other side $R S$ of the second intersecting with the three sides at three collinear points R, S, C, therefore, by relations a^{\prime} and b, Art. 134,

$$
\frac{\sin P A B}{\sin Q A B}=-\frac{\sin P Q S}{\sin A Q S} \cdot \frac{\sin A P R}{\sin Q P I 6},
$$

and

$$
\frac{\sin P A C}{\sin Q A C}=+\frac{\sin P Q S}{\sin A Q S} \cdot \frac{\sin A P R}{\sin Q P R},
$$

which evidently (213) prove the property for the pair of angles $P A Q$ and $B A C$; and, as it may be proved exactly similarly for the remaining two pairs $Q B R$ and $C B A, R C P$ and $A C B$, therefore \&e.
237. That the two properties just established are reciprocals of each other, in the sense explained in Art. 173, may readily be shewn, in general terms, as follows:-

If L, M, N, O be any four lines, and P, Q, R, S their four poles with respect to any circle, either systen being arbitrary; U and U^{\prime}, V and $V^{\prime \prime}, W$ and W^{\prime} the three pairs of opposite intersections $M N$ and $L O, N L$ and $M O, L M$ and $N O$ of the four lines; X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime} the three pairs of opposite connectors $Q R$ and $P S, R P$ and $Q S, P Q$ and $R S$ of the four points; A, B, C the three vertices of the triangle determined by the three connectors $U U^{\prime}, V V^{\prime}, W W^{\prime}$; and D, E, F the three sides of the triangle determined by the three intersections $X X^{\prime}, Y Y^{\prime}, Z Z^{\prime}$; then, since, by the fundamental property of poles and polars (167), the several pairs of points and lines U and X, V and Y, W and $Z ; U^{\prime}$ and X^{\prime}, V^{\prime} and Y^{\prime}, W^{\prime} and $Z^{\prime} ; A$ and D, B and E, C and F are pole and polar to each other with respect to the circle, therefore, by the general property of Art. 223, the harmonicism of the three rows of four collinear points $B, C, U, U^{\prime} ; C, A, V, V^{\prime} ; A, B, W, W^{\prime}$ involves and is involved in that of the three pencils of four concurrent lines $E, F, X, X^{\prime} ; F, D, Y, Y^{\prime} ; D, E, Z, Z^{\prime}$; and therefore \&c.

The reader understanding the spirit of the above mode of reasoning is recommended to apply it for himself to the several other examples of pairs of reciprocal properties which will be given him in abundance in the course of the sequel. He will in general find the transformation of a property into its reciprocal to be a process almost purely mechanical, consisting ordinarily of little more than merely changing in its statement all points into lines and lines into points, all connectors of points into intersections of lines and intersections of lines into connectors of points, all points on a circle into tangents to the circle and tangents to a circle into points on the circle, \&ic. In cases presenting any exceptional peculiarity, or involving the necessity of any intermediate considerations, the reciprocality of the properties will occasionally be proved for him, but in all ordinary cases, like the abore, the process of tracing it will be left as an exercise to himself; especially when, as in the preceding article, the demonstrations actually given of the reciprocal properties are thenselves also reciprocal; a circumstance which in that article would have been rendered more apparent by the employment, as above, of corresponding notation applied to the reciprocal parts of separate figures for both properties,
had not, for other reasons which will appear in the sequel, the figures for the two been combined in their case instead.
238. It is easy to see, from the general property of Art.221, that the harmonicism of ang one of the three rows of four points $X, X^{\prime \prime}, B, C ; Y, Y^{\prime \prime}, C, A ; Z, Z^{\prime}, A, B$ in property a, or of any one of the three pencils of four rays $Q R, P S, A B, A C$; $I P P, Q S, B C, B A ; P Q, R S, C A, C B$ in property a^{\prime} of Art. 236, (see figure of that article), involves that of the other two; for, in the former case, the two rows for every two of the three connectors $X \mathbf{N}^{\prime \prime}, Y^{\prime}, Z Z^{\prime}$ being in perspective at both extremities of the third, viz. $Y^{\prime}, Y^{\prime \prime}, C, A$ and Z, Z^{\prime}, A, B at X^{*} and $X^{\prime \prime} ; Z, Z, A, B$ and $X^{\prime}, \Gamma^{\prime \prime}, B, C$ at Y and $Y^{\prime \prime} ; X_{,}, X^{\prime \prime}, B, C$ and I, I^{-}, C, A at Z and $Z^{\prime \prime}$ (see fig.); and, in the latter case, the two pencils for every two of the three intersections A, B, C being in perspective on both lines determining the third, viz. $I P, Q S, B C, B A$ and $P Q, R S, C A, C B$ on $Q R$ and $P S$; $P Q, R S, C A, C B$ and $Q R, P S, A B, A C$ on $R P$ ' and $Q S$; $Q R, P S, A B, A C$ and $R P, Q S, B C, B A$ on $P Q$ and $R S$ isee fig.); therefore, by property $2^{\circ}, \Delta \mathrm{At} .222$, if any one of the three rows in the former case, or of the three pencils in the latter case, be harmonic, so are the other two; and therefore ide.

It is again easy to see, from the same, that of the two reciprocal properties themselves, a and a^{\prime}, either involves the other directly without the aid of the reciprocating process explained in Art. 173, and applied in Art. 237. For, in the trianglo ABC (see fig.), if the three sides $B C, C A, A B$ are cut harmonically hy the three pairs of conjugates X^{\prime} and $X^{\prime \prime}, Y$ and $Y^{\prime \prime}, Z$ and Z^{\prime}, then, by the general relation of Art. 221, the three opposite angles $B A C, C B A, A C B$ are cut harmonically by the three pairs of conjugates $Q R$ and $P S, R P$ and $Q S, P Q$ and $R S$; and, conversely, if the three angles $B A C, C B A, A C B$ are cut harmonically by the three pairs of conjugates $Q R$ and $P S, 1 R P$ and $Q S, P Q$ and $R S$, then, by the same, the three opposite sides $B C, C A, A B$ are cut harmonically by the three pairs of conjugates X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime}; and therefore ©ic.

A tetragram and tetrastigm, related as in the figure to the same central triangle $A B C$, possess many interesting har-
monic properties in connexion with each other and the triangle, some of which will be noticed in the course of the sequel.
239. In the particular cases, when, in property a of Art. 236, one of the four lines $X^{\prime} \Gamma^{\prime \prime} Z^{\prime}$ constituting the tetragram in the general case is the line at infinity (131), and when, in property a^{\prime} of the same article, one of the four points S constituting the tetrastigm in the general case is the polar centre of the triangle $P Q R$ determined by the remaining three (168); since, in the former case, the three pairs of harmonic conjugates X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime} connect by infinite intervals, they bisect, internally and externally, the three sides $B C, C A, A B$ of the triangle $A B C$ determined by their three lines of connection ($216,3^{\circ}$); and since, in the latter case, the three pairs of harmonic conjugates $Q R$ and $P S, R P$ and $Q S, P Q$ and $R S$ intersect at right angles, they bisect, externally and internally, the three angles $B A C, C B A, A C B$ of the triangle $A B C$ determined by their three points of intersection $\left(216,3^{\circ}\right)$; hence, the two reciprocal properties themselves, a and a^{\prime}, shew for these particular cases, as is otherwise evident, that-
a. In every triangle the three vertices bisect the three sides of the triangle determined by the directions of the three parallels through them to the opposite sides.
α^{\prime}. In every triangle the three sides bisect the three angles of the triangle determined by the intersections of the three perpendiculars to them through the opposite vertices.

These latter properties are not reciprocals in the same sense as those from which they have been inferred; each, to an arbitrary circle, reciprocating, not into the other, but into the more general property of which the other is a particular case. In reciprocating the first, the line at infinity (136), on which the three parallels through the vertices intersect with the opposite sides of the triangle, must be taken into account, with the latter, in order to complete the tetragram of the general property, under which, as above shewn, it comes as a particular case.

In the particular case when the tetragram in property a of Art. 236 is a parallelogram; since then one chord of intersection, $I X^{\prime}$ suppose (see figure of that article), of the figure,
and with it, of course, the side $B C$ of the triangle $A B C$, is at infinity; therefore, by virtue of that property, the other two chords of intersection $Y Y^{\prime}$ and $Z Z^{\prime}$ mutually bisect each other at the opposite vertex A of the triangle $A B C$. Hence the familiar property that in every parallelogram the two diagonals mufually bis ct each other, comes as another particular case under the same general property a; and, to an arbitrary circle, reciprocates (like the above α) into the general property a^{\prime} reciprocal to a.
240. From the two fundamental properties of Art. 236, the following general consequences, in pairs reciprocals of each other, may be immediately inferred, viz.-
a. The twoo centres of perapectice of any tico segments (131) divide hurmonically the segment intercepted on their line of connexion by the axes of the segments.
a. The theo axes of perspective of any theo angles (131) divide harmonically the angle subtended at their point of intersection by the vertices of the angles.

For, if, in the figure of that article, any two of the three pairs of opposite intersections X and $X^{\prime \prime}, Y^{\prime}$ and $Y^{\prime \prime}$ of the tetragram be regarded as the extremities of the two segments in a; then are the remaining pair Z and Z, the two centres of perspective (131) of those segments, and, by property a of the article in question, they divide harmonically the segment $A B$ intercepted on their line of comnection by the axes of the segments ; and therefore die. And, if, in the same figure, any two of the three pairs of opposite connectors $Q R$ and $P S, R P$ and $Q S$ of the tetrastigm be regarded as the sides of the two angles in a^{\prime}; then are the remaining pair $P Q$ and $R S$ the two axes of perspective (131) of those angles, and, by property a^{\prime} of the same article, they divide harmonically the angle $A C B$ subtended at their point of intersection by the vertices of the angles; and therefore \&e.
6. The theo centres of perquective of any two segments conneet harmonically with the vertex of the angle determined by the axes of the segments.
b. The tue uxes of perspective of any two angles intersect harmonically with the axis of the segment determined by the vertices of the angles.

For, if, in the figure of the same article, any pair of opposite connectors $Q R$ and $P S$ of the tetrastigm be regarded as the two segnents in b; then are the two intersections B and C of the other two pairs $R P$ and $Q S, P Q$ and $R S$ the two centres of perspective of those segments, and, by property a^{\prime} of the article in question, they connect harmonically with the vertex A of the angle determined by the axes of the segments; and therefore \&c. And, if, in the same figure, the two pairs of lines determining any pair of opposite intersections X and X^{\prime} of the tetragram be regarded as the two angles in b^{\prime}; then are the two connectors $Y Y^{\prime}$ and $Z Z^{\prime}$ of the other two pairs Y and Y^{\prime}, Z and Z^{\prime} the two axes of perspective of those angles, and, by property a of the same article, they intersect harmonically with the axis $B C$ of the segment $X X^{\prime}$ determined by the vertices of the angles; and therefore \&c.
c. The two centres of perspective of any two segments are conjugate points (217) with respect to the angle determined by the axes of the segments.
c^{\prime}. The two axes of perspective of any two angles are conjugate lines (217) with respect to the segment determined by the vertices of the angles.

These, by Art. 217, are obriously but another mode of stating the two general properties b and b^{\prime}; which, though proved independently above by reciprocal demonstrations, follow at once, it may be observed, from the two a and a^{\prime}, by virtue of the general property of Art. 221. For, since, by a, the three rows of four points $B, C, X, X^{\prime} ; C, A, Y, Y^{\prime} ; A, B, Z, Z^{\prime}$ (see fig.) are harmonic, therefore, by the general property in question, the three pencils of four rays $Z Z^{\prime}, Y Y^{\prime}, A X, A X^{\prime}$; $X X^{\prime}, Z Z, B Y, B Y^{\prime} ; Y Y^{\prime}, X X^{\prime}, C Z, C Z^{\prime}$ are harmonic, and therefore \&c. And, since, by a^{\prime}, the three pencils of four rays $A B, A C, Q R, P S ; B C, B A, R P, Q S ; A B, A C, P Q, R S$ (see fig.) are harmonic, therefore, by the same gencral property, the three rows of four points $B, C, X^{\prime}, X ; C, A, Y^{\prime}, Y$; A, B, Z, Z are harmonic, and therefore \&c.
241. The two fundamental properties of Art. 236 supply also obvious solutions, by linear constructions only without the aid of the circle, of the two following reciprocal problems, viz.-
a. Given three points of an harmonic rov, to determine the fourth conjugate to any assinged one of the given three.
a^{\prime}. Gieen three rays of an harmonic pencil, to determine the fourth conjugate to any assigned one of the given three.

Thus, in the figure of that article, of the harmonic row $B, C, X, N^{\prime \prime}$ given the three points $X^{\prime}, X^{\prime \prime}, C$ to determine the fourth l ' conjugate in C; and, in the same figure, of the harmonic pencil $A B, A C, A X^{\circ}, A X^{\prime \prime}$ given the three rays $A X, A X^{\prime \prime}, A B$ to determine the fourth $A C$ conjugate to $A B$.

To solve the first; on any line $C A$, drawn arbitrarily through the point C whose conjugate is to be determined, taking arbitrarily any two points V° and $\Gamma^{\prime \prime}$; their connectors with the other two points X and $\mathrm{X}^{\prime \prime}$ determine the two centres of perspective Z and Z of the two segments $X X^{\prime}$ and $I^{\prime} Y^{\prime \prime}$, whose line of connection $Z Z^{\prime}$, by a, Art. 236, intersects with the axis of the given points at the required conjugate 13 . And, to solve the second, throngh any point B, taken arbitrarily on the ray $A B$ whose conjugate is to be determined, drawing arbitrarily any two lines $B Y^{\prime}$ and $B I^{\circ "}$; their intensections with the other two rays $A X^{\circ}$ and $A X^{*}$ determine the two axes of prerspective $P Q$ and $R S$ of the two angles $N A X^{\prime}$ and $I^{\prime} B Y^{\prime}$, whose puint of intersection C, by a', Art. 236, comnects with the vertex of the giren rays by the required conjugate $A C$.

Cors. Every point of an harnonic row being the pole of every line through its conjugate with respect to the segment determined by the remaining two pointa, and every ray of an harmonic pencil being the pohr of every point on its conjugate with respect to the angle determined by the remaining two rays (217) ; the above reciprocal constructions give, consequently, solutions of the two following reciprocal problems, as well as of those for which they have been given, viz. -

To determine byl linear constructions only without the aid of the circle: a. the pole of a giren line with respect to a given sryment; $a^{\text {a }}$. the polar of a given point rith respect to a given angle.
242. The two fundamental properties themselves, of Art. 236, may obviously be stated in the following equivalent forms, in which they express two reciprocal harmonic propertics of triangles, viz. -
a. Every three collinear points on the sides of a triangle determine with the opposite vertices three segments dividing harmonically the sides of the triangle determined by their axes.
a. Every three concurrent lines through the vertices of a triangle determine with the opposite sides three angles dividing harmonically the angles of the triangle determined by their vertices.

For, if (fig. of Art. 236) $X Y Z$ be any triangle, and $X^{\prime}, Y^{\prime}, Z^{\prime}$ any three collinear points on its three sides; then, since, in the tetragram determined by the line of collinearity with the three sides of the triangle, the three segments $X X^{\prime}, Y Y^{\prime}, Z Z^{\prime}$, by property a of that article, are intersected harmonically each by the axes of the other two, therefore \&c. And if (same fig.) $P Q R$ be any triangle, and $P S, Q S, R S$ any three concurrent lines through its three vertices; then, since, in the tetrastigm determined by the point of concurrence with the three vertices of the triangle, the three angles $X A X^{\prime}, Y B Y^{\prime}, Z C Z^{\prime}$, by property a^{\prime} of the same article, are subtended harmonically each by the vertices of the other two, therefore \&c.

Cor. 1°. As every three lines through the vertices of a triangle which intersect collinearly with the opposite sides determine an exscribed triangle in perspective with it, and as every three points on the sides of a triangle which connect concurrently with the opposite vertices, determine an inscribed triangle in perspective with it (141); it appears consequently, from the above reciprocal properties, or from those of Cors. 1° and 2°, Art. 139 , with which they are evidently identical, that-
a. When a triangle exscribed to another is in perspective with it, its sides are cut harmonically by the corresponding vertices and sides of the other.
a^{\prime}. When a triangle inscribed to another is in perspective with it, its angles are cut harmonically by the corresponding sides and vertices of the other.

Con. 2°. Since, for every two triangles in perspective, the three pairs of corresponding vertices connect through the centre of perspective, and the three pairs of corresponding sides intersect on the axis of perspective (140) ; it follows consequently, from the two reciprocal properties of the preceding corollary, that-
a. When a triangle exscribed to another is in perspective with
it, its sides are the polars of the centre of perspective sith respect to the corresponding angles of the other.
a. When a triangle inscribel to another is in perspective with it, its vertices are the poles of the axis of perspective with respect to the corresponding sides of the other.
243. Of the various other harmonic properties of triangles, the following, is pairs reciprocals of each other, result immediately from the four geueral relations of Art. 134.
a. When three points on the three sides of a triangle are collinear, their three harmunic conjugates with respect to the sides connect concurrently with the opposite vertices; and concersely.
a'. When three lines through the three vertices of a triungle are concurrent, their three harmonic conjugates with respect to the angles intersect collinearly with the opposite sides; and conversely.

For, in the case of a, if A, B, C be the three vertices of the triangle; X, Y, Z any three proints on its three opposite sides; and $X^{\prime \prime}, Y^{\prime \prime}, Z^{\prime}$ their three harmonic conjugates with respect to the three segments $B C, C A, A B$ respectirely; then, since, by the detinition of hammonic section (213),

$$
\frac{B X^{\prime}}{C X^{\prime}}+\frac{B X^{\prime \prime}}{C X^{\prime \prime}}=0, \quad \frac{C Y}{A Y}+\frac{C Y^{\prime}}{A Y^{\prime \prime}}=0, \quad \frac{A Z}{B Z}+\frac{A Z^{\prime}}{B Z^{\prime}}=0
$$

therefore at once, by composition of ratios,

$$
\frac{B X}{C X^{-}} \cdot \frac{C Y}{A Y} \cdot \frac{A Z}{B Z}+\frac{B X^{\prime \prime}}{C \Lambda^{\prime \prime}} \cdot \frac{C Y^{\prime \prime}}{A Y^{\prime \prime}} \cdot \frac{A Z^{\prime}}{B Z^{\prime}}=0
$$

consequently, when either compound $= \pm 1$, the other then $=\mp 1$, and therefore \&e. (134). And, in the case of a^{\prime}, if A, B, C be the three sides of the triangle; X, Y, Z any three lines through its three opposite vertices; and $\mathcal{I}^{\prime \prime}, Y^{\prime \prime}, Z^{\prime}$ their three harmonic conjugates with respect to the threc angles $B C, C A, A B$ respectively; then, since, by the definition of harmonic section (213),

$$
\begin{gathered}
\frac{\sin B X}{\sin C X}+\frac{\sin B X^{\prime}}{\sin C X^{\prime}}=0, \frac{\sin C Y}{\sin A Y}+\frac{\sin C Y^{\prime}}{\sin A Y^{\prime \prime}}=0 \\
\frac{\sin A Z}{\sin B Z}+\frac{\sin A Z^{\prime}}{\sin B Z^{\prime}}=0
\end{gathered}
$$

therefore at once, by composition of ratios,

$$
\frac{\sin B X}{\sin C X} \cdot \cdot \frac{\sin C Y}{\sin A Y} \cdot \frac{\sin A Z}{\sin B Z}+\frac{\sin B X^{\prime}}{\sin C X^{\prime}} \cdot \frac{\sin C Y^{\prime}}{\sin A Y^{\prime}} \cdot \frac{\sin A Z^{\prime}}{\sin B Z^{\prime}}=0
$$

consequently, when either compound $=\mp 1$, the other ithen $= \pm 1$, and therefore \&c. (134).
b. When three points on the three sides of a triangle are collinear, their three harmonic conjugates with respect to the sides determine with them the three pairs of opposite intersections of a tetragram (106).
b^{\prime}. When three lines through the three vertices of a triangle are concurrent, their three harmonic conjugates with respect to the angles determine with them the three pairs of opposite connectors of a tetrastigm (106).

For, in the case of b, employing the same notation as in the proof of a, the four compounds

$$
\begin{aligned}
& \frac{B X}{C X} \cdot \frac{C Y}{A Y} \cdot \frac{A Z}{B Z}, \frac{C Y^{\prime}}{A Y^{\prime}} \cdot \frac{A Z}{B Z^{\prime}} \cdot \frac{B X}{C X}, \\
& \frac{A Z^{\prime}}{B Z^{\prime}} \cdot \frac{B X^{\prime}}{C X^{\prime}} \cdot \frac{C Y}{A Y}, \frac{B X^{\prime}}{C X^{\prime}} \cdot \frac{C Y^{\prime}}{A Y^{\prime}} \cdot \frac{A Z}{B Z},
\end{aligned}
$$

being always equal in magnitude and sign, when any one of the four $=+1$, the remaining three each $=+1$, that is $(134, a)$ when any one of the four groups of three points X, Y, Z; $Y^{\prime}, Z^{\prime}, X ; Z^{\prime}, X^{\prime}, Y ; X^{\prime}, Y^{\prime}, Z$ is collinear, the remaining three are also collinear, and, the four lines of collinearity consequently determining a tetragram of which X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime} are the three pairs of opposite intersections (106), therefore \&c. And, in the case of b^{\prime}, employing the same notation as in the proof of a^{\prime}, the four compounds

$$
\begin{aligned}
& \frac{\sin B X}{\sin C X} \cdot \frac{\sin C Y}{\sin A Y^{\prime}} \cdot \frac{\sin A Z}{\sin B Z}, \frac{\sin C Y^{\prime}}{\sin A Y^{\prime}} \cdot \frac{\sin A Z^{\prime}}{\sin B Z^{\prime}} \cdot \frac{\sin B X}{\sin C X^{\prime}}, \\
& \frac{\sin A Z^{\prime}}{\sin B Z^{\prime}} \cdot \frac{\sin B X^{\prime}}{\sin C X^{\prime}} \cdot \frac{\sin C Y}{\sin A Y^{2}}, \cdot \frac{\sin B X^{\prime}}{\sin C X^{\prime}} \cdot \frac{\sin C Y^{\prime}}{\sin A Y^{\prime}} \cdot \frac{\sin A Z}{\sin B Z},
\end{aligned}
$$

being always equal in magnitude and sign, when any one of the four $=-1$, the remaining three each $=-1$, that is $\left(134, a^{\prime}\right)$ when any one of the four groups of three lines X, Y, Z; $Y^{\prime \prime}, Z^{\prime}, X ; Z^{\prime}, X^{\prime}, Y ; X^{\prime}, Y^{\prime}, Z$ is concurrent, the remaining
three are also concurrent, and the four points of concurrence consequently determining a tetrastigm of which X and X^{\prime}, Y and $I^{\prime \prime}, Z$ and Z^{\prime} are the three pairs of opposite connectors (106), therefore $\mathcal{E c}$.
c. When three points on the three sitles of a triangle are collinear, their three polars (21i) with respect to the three opposite angles are concurrent.
c. When three lines through the three vertices of a trianglo are concurrent, their three poles (21i) with respect to the three opposite sides are collinear.

These two reciprocal properties follow at once from the two a and a^{\prime}, by virtue of the general property of Art. 221; the harmonic conjugate of each point in c with respect to its own side connecting with the opposite angle by the polar of the point with respect to that angle ; and, the harmonic conjugate of each line in c^{c} with respect to its own angle intersecting with the opposite side at the pole of the line with respect to that side.
d. The three poles of any line seith respect to the three sides of a triangle connect concurrently with the oppasite vertices.
d. The three polars of any point with respect to the three angles of a triangle interseet collinearly reilh the opposite sides.

These two reciprocal properties are obviously identical with the two a and a; the three poles of the line with respect to the three sides in d being the three harmonic conjugates of its three points of intersection with the sides; and the three polars of the point with respect to the three angles in d ' being the three harmonic conjugates of its three lines of connection with the rertices (217).

In the particular eases when the line in d is the line at infinity, and the point in d any point at infinity; since, in the former case, the three poles of the line at infinity with respect to the three sides are the three middle points of the sides ($216,3^{\circ}$) ; and since, in the latter case, the three polars of the point at infinity with respect to the three angles bisect internally the three segments intercepted by the angles on any lino passing through the direction of the point (224); the two reciprocal properties d and d^{\prime} become, consequently, those already
established on other principles in examples (1° and 13°, Art. 137), viz.-

In every triangle, α. the three middle points of the sides connect concurrently with the opposite vertices; α. the three lines comnecting the vertices with the middle points of the segments intercepted by the corresponding angles on any line, intersect collinearly with the opposite sides.

Of the several pairs of reciprocal propertics established in this article, it may be observed that either reciprocal would follow directly from the other by virtue of the general property of Art. 121 ; from which it follows, evidently, for a triangle, that every two points harmonic conjugates with respect to any side connect harmonically with the opposite angle, and, that every two lines harmonic conjugates with respect to any angle intersect harmonically with the opposite side.
244. From the fundamental properties of Art. 236, combined with the two a and a^{\prime} of the preceding article, the two following reciprocal properties of the tetragram and tetrastigm may be readily inferred, viz.-
a. In every tetragram, the three pairs of opposite intersections connect with the opposite vertices of the triangle determined by their three lines of connection by six lines passing three and three through four points, and thus determining the three pairs of opposite connectors of a tetrastigm.
a^{\prime}. In every tetrastigm, the three pairs of opposite connectors intersect with the opposite sides of the triangle determined by their three points of intersection at six points lying three and three on four lines, and thus determining the three pairs of opposite intersections of a tetragram.

For, in the case of the tetragram, the three pairs of opposite intersections X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime} (tig. Art. 236), dividing harmonically, by $(236, a)$, the three sides of the triangle $A B C$ determined by their three lines of connection, and lying, by hypothesis, three and three on four lines $\mathrm{I}_{2} \mathrm{KN}^{\prime}, Z X Y^{\prime}$, $X Y Z^{\prime}, X^{\prime} Y^{\prime \prime} Z^{\prime}$; therefore, by $(243, a)$, they connect with the opposite vertices A, B, C by three pairs of lines $A X$ and $A X^{\prime}$, $B Y$ and $B Y^{\prime}, C Z$ and $C Z^{\prime}$ passing three and three through four points P, Q, R, S; and therefore \&c. And, in the case of
the tetrastigm, the three pairs of opposite connectors $Q R$ and $P S, R P$ and $Q S, P Q$ and $R S$ (same fig.) dividing harmonically, by ($236, a^{\prime}$), the three angles of the triangle $A B C$ determined by their three points of intersection, and passing, by hypothesis, three and three through four points $P, Q, I B, S$; therefore, by ($243, a^{\prime}$), they intersect with the opposite sides $B C, C A, A B$ at three pairs of points Γ^{\prime} and $X^{\prime \prime}, \Gamma$ and $\Gamma^{\prime \prime}$, Z and Z^{\prime} lying three and three on four lines $I^{\prime} \% \mathrm{~N}^{\prime}, Z \mathrm{XY} Y^{\prime \prime}$, $X^{\prime} \Gamma Z^{\prime}, X^{\prime \prime} Y^{\prime \prime} Z^{\prime}$; and thereforo dic.

It will be seen in the sequel that the four lines $I^{\prime \prime} \mathrm{N}^{\prime \prime}, Z \mathrm{I}^{\prime \prime}$, $X Y^{\prime} Z^{\prime}, \Gamma^{\prime} Y^{\prime} Z^{\prime}$ and the four points P, Q, R, S, related as above to each other, possess also several other reciprocal harmonic relations in connection with the triangle $A B C$.
245. From the same fundamental relations, combined with the two (7) and (3) of Art. 235, two other important reciprocal properties of the tetragram and tetrastigm may again be readily inferred, viz.-
a. In the triangle determined in a tetragram by the axes of the three chorils of intersection of the figure (107), trhen three points on the sides are either collinear or concurrently connectant with the opposite vertices, their three harmonic conjugutes with respec to the three chords of intersection are also either collinear or concurrently comnectant with the opposite verlices.
a'. In the triangle determined in a tetrastigm by the rertices of the three angles of connection of the figure (107), then three lines through the vertices are cilher concurrent or collinearly intersectant with the opposite sides, their three harmonic conjugates with respect to the three angles of connection are also cither concurrent or collinearly intersectant with the opprosite siden.

To prove a. If, as in the figure of Art. 236, X and X^{\prime}, Y and $Y^{\prime \prime}, Z$ and $Z^{\prime \prime}$ be the three pairs of opposite intersections of the tetragram; $A B C$ the triangle determined by their three lines of connection; U, Γ, W any three points on its three sides $B C, C A, A B$; and $U^{\prime \prime}, V^{\prime \prime}, W^{\prime \prime}$ their three harmonic conjugates with respect to the three chords of intersection $X^{\prime} X^{\prime}, Y Y^{\prime \prime}, Z Z^{\prime}$ of the figure; then since, by hypothesis and $(236, a)$, the three latter segments are cut harmonically at once by the three $U U^{\prime}$,
$V V^{\prime}, W W^{\prime}$, and also by the three $B C, C A, A B$, therefore by (7) Art. 235,

$$
\begin{aligned}
& \frac{B U \cdot B U^{\prime}}{C U \cdot C U^{\prime}}=\frac{B X^{2}}{C X^{z}}=\frac{B X^{\prime 2}}{C X^{\prime 2}} \\
& \frac{C V \cdot C V^{\prime}}{A V \cdot A V^{\prime}}=\frac{C Y^{2}}{A Y^{2}}=\frac{C Y^{\prime 2}}{A Y^{\prime 2}} \\
& \frac{A W \cdot A W^{\prime}}{B W \cdot B W^{\prime}}=\frac{A Z^{z}}{B Z^{2}}=\frac{A Z^{\prime 2}}{B Z^{\prime 2}},
\end{aligned}
$$

and since, by a and b^{\prime}, Art. 134, the two compounds

$$
\frac{B X^{2}}{C X^{2}} \cdot \frac{C Y^{2}}{A Y^{2}} \cdot \frac{A Z^{2}}{B Z^{2}} \text { and } \frac{B X^{12}}{C X^{12}} \cdot \frac{C Y^{12}}{A Y^{12}} \cdot \frac{A Z^{22}}{B Z^{18}}
$$

both $=+1$, therefore the compound

$$
\frac{B U \cdot B U^{\prime}}{C U \cdot C^{\prime} U^{\prime}} \cdot \frac{C V \cdot C V^{\prime}}{A V \cdot A V^{\prime}} \cdot \frac{A W \cdot A W^{\prime}}{B W \cdot B W^{\prime}}=+1 \ldots \ldots \ldots(a)
$$

consequently, when either of the two compounds

$$
\frac{B U}{C U} \cdot \frac{C V}{A V} \cdot \frac{A W}{B W} \text { or } \frac{B U^{\prime}}{C U^{\prime}} \cdot \frac{C V^{\prime}}{A V^{\prime}} \cdot \frac{A W^{\prime}}{B W^{\prime}}
$$

$= \pm 1$, the other also $= \pm 1$, and therefore \&c. (134, a and $\left.b^{\prime}\right)$.
To prove a^{\prime}. If, as in the same figure, $Q R$ and $P S, R P$ and $Q S, P Q$ and $R S$ be the three pairs of opposite connectors of the tetrastigm ; $A B C$ the triangle determined by their three points of intersection ; $A U, B V, C W$ any three lines through its three vertices A, B, C; and $A U^{\prime}, B V^{\prime}, C W^{\prime}$ their three harmonic conjugates with respect to the three angles of connection $X A X^{\prime}$, $Y B Y^{\prime \prime}, Z C Z^{\prime}$ of the figure; then since, by hypothesis and $\left(236, a^{\prime}\right)$, the three latter angles are cut harmonically at once by the three $U A U^{\prime}, V B V^{\prime}, W C W^{\prime}$, and also by the three $B A C$, $C B A, A C B$, therefore by (9) Art. 235,

$$
\begin{aligned}
& \frac{\sin B A U \cdot \sin B A U^{\prime}}{\sin C A U \cdot \sin C A U^{\prime}}=\frac{\sin ^{2} B A X}{\sin ^{2} C A X}=\frac{\sin ^{2} B A X^{\prime}}{\sin ^{2} C A X^{\prime \prime}} \\
& \frac{\sin C B V \cdot \sin C B V^{\prime}}{\sin A B V \cdot \sin A B V^{\prime}}=\frac{\sin ^{2} C B Y}{\sin ^{2} A B Y}=\frac{\sin ^{2} C B Y^{\prime}}{\sin ^{2} A B Y^{\prime}} \\
& \frac{\sin A C W \cdot \sin A C W^{\prime}}{\sin B C W \cdot \sin B C W^{\prime}}=\frac{\sin ^{2} A C Z}{\sin ^{2} B C Z}=\frac{\sin ^{4} A C Z^{\prime}}{\sin ^{2} B C Z^{\prime}},
\end{aligned}
$$

and since, by b and a^{\prime}, Art. 131, the two compounds

$$
\frac{\sin ^{2} B A X}{\sin ^{2} C A X} \cdot \frac{\sin ^{3} C B Y}{\sin ^{2} A B I} \cdot \frac{\sin ^{3} A C Z}{\sin ^{2} B C Z}
$$

and

$$
\frac{\sin ^{2} B A X^{\prime \prime}}{\sin ^{2} C^{\prime} A X^{\prime \prime}} \cdot \frac{\sin ^{2} C B \Sigma^{\prime \prime}}{\sin ^{2} A B Y^{\prime \prime}} \cdot \frac{\sin ^{2} A C Z^{\prime}}{\sin ^{2} B C Z^{\prime}}
$$

both $=+1$, therefore the compound

$$
\begin{aligned}
\frac{\sin B A U \cdot \sin B A U^{\prime}}{\sin C A U \cdot \sin C A U^{\prime}} \cdot \frac{\sin C B V \cdot \sin C B V^{\prime \prime}}{\sin A B V^{\prime} \cdot \sin A B V^{\prime \prime}} \cdot & \frac{\sin A C W \cdot \sin A C W^{\prime}}{\sin B C H \cdot \sin B C W^{\prime}} \\
& =+1 \ldots \ldots \ldots\left(\alpha^{\prime}\right),
\end{aligned}
$$

consequently, when either of the two compounds

$$
\frac{\sin B A U}{\sin C A U} \cdot \frac{\sin C B V}{\sin A B V} \cdot \frac{\sin A C W}{\sin B C W}
$$

or

$$
\frac{\sin B A U^{\prime}}{\sin C A U^{\prime}} \cdot \frac{\sin C B V^{\prime \prime}}{\sin A B V^{\prime}} \frac{\sin A C W^{\prime \prime}}{\sin B C W^{\prime \prime}}
$$

$=\mp 1$, the other also $=\mp 1$, and therefore sec. $\left(134, b\right.$ and $\left.a^{\prime}\right)$.
Cur. 1°. Since, by (217), every two lines which intersect with the axes of any number of segments harmonically are conjugate lines with respect to all the segments; and, every two points which connect with the vertices of any number of angles harmonically are conjugate points with respect to all the augles; it fullows, consequently, from the first (and more important) parts of the above properties a and n^{\prime}, that-
b. Eiery heo lines comjugates to each other with respect to tero of tha three chords of intersection of a tetragram are conjugates to each other with respees to the thired also.
b'. Eierry lico points conjugutes to each ofher with resprect to tico of the three angles of connection of a tetrastigm are conjugutes to each other with respect to the thind also.

Every two lines I and I^{\prime}, thus conjugates to each other with respect to the three chords of intersection of a tetragram, are said to be conjugate lines reith respect to the tetrayram; and, every two points O and O^{\prime}, thus conjugates to each other with respect to the three angles of connection of a cetrastigm, are said to be conjugute points with respect to the tetrastigm. Every two conjugates in both cases are evidently interchangeable.

Cor. 2°. Since, by the general property of Art. 221, every
two lines I and I^{\prime} conjugates to each other with respect to a tetragran (Cor. $1^{\circ}, b$) divide harmonically the three angles subtended at their point of intersection $I I^{\prime}$ by the three chords of intersection $X X^{\prime}, Y Y^{\prime}, Z Z^{\prime}$ of the figure ; and, every two points O and O^{\prime} conjugates to each other with respeet to a tetrastigm (Cor. $1^{\circ}, b^{\prime}$) divide harmonically the three segments intercepted on their line of connection $O O^{\prime}$ by the three angles of connection $X A X^{\prime}, Y B Y^{\prime}, Z C Z^{\prime}$ of the figure; hence, from the same, the reciprocal properties that-
c. Every two conjugate lines with respect to a tetragram divide harmonically the three angles subtended at their point of intersection by the three chords of intersection of the figure.
c^{\prime}. Every two conjugate points with respect to a tetrastigm divide harmonically the three segments intercepted on their line of connection by the thrce angles of connection of the figure.

Cor. 3°. Since again, by the first parts of a and a^{\prime}, combined with the general property of Art. 221, the two lines, real or imaginary (230), which divide harmonically two of the three angles subtended at any arbitrary point O by the three chords of intersection $X X^{\prime}, Y Y^{\prime}, Z Z^{\prime}$ of a tetragram (107) divide harmonically the third also ; and, the two points, real or imaginary (230), which divide harmonically two of the three segments intercepted on any arbitrary line I by the three angles of connection $X A X^{\prime}, Y B Y^{\prime}, Z C Z^{\prime}$ of a tetrastigm (107) divide harmonically the third also; hence, from the same again, the reciprocal properties that-
d. The three angles subtended at any point by the three chords of intersection of a tetragram have a common angle of harmonic section, real or imaginary.
d. The three segments intercepted on any line by the three angles of connection of a tetrastigm have a common segment of harmonic section, real or imaginary.

Cor. 4°. Every harmonic pencil of rays, whatever be its vertex, determining an harmonic row of points on every axis, and every harmonic row of points, whatever be its axis, determining an harmonic pencil of rays at every vertex (221); it appears consequently, from the two reciprocal properties of the preceding corollary (3°) applied to the particular cases when the point in d and the line in d^{7} are at infinity, that-
e. The three seguents det rmined on any axis, by the three pairs of perpendiculars, or any other isoclinals, throngh the thiree pairs of opposite intersections of any tetragram, have a common segment of harmonic section, real or imaginary.
c. The three ungles dutermined at any vertex, by the three pairs of parallels, or any other isoclinals, to the three puirs of opposite comnetors of any letrastigm, lute a common angle of larmonic section, real or imaginary.

Cos. 5°. Every two points harmonic conjugates to each other with respect to any segment being each the pole of every line through the other with respect to the segment (217), and, every two lines harmonic conjugates to each other with respect to any angle being each the polar of every point on the other with respect to the angle (217); the first parts of the original properties a and a may consequently be stated otherwise thus as follows-
f. In exery tetragram, the three polse of any line veith respect to the three chords of introection are collinear.
f. In ctery tetrustigm, the three pulars of any point with regpect to the three ungles of connection are concurrent.

Cus. 6. In the particular cases where the line in $f\left(\right.$ Cor. $\left.5^{\circ}\right)$ is the line at infinity, and the point in f (same Cor.) any point at infinity; since, in the former case, the three poles of the line at intinity with respect to tho three chords are the three middle points of the chords ($216,3^{\circ}$), and since, in the latter case, the three polars of the point at infinity with respect to the three angles lisect interually the three segments intercepted by the angles on any line passing through the direction of the point (224); from the properties themselves (f and $f^{\prime \prime}$, Cor. 5°) applied to those cases, it appears, consequently, that-
g. In every tetragram, the three mildllo points of the three chorls of intersection are collinear.
g^{\prime}. In ciery tetrastigm, the thrce lines connecting the vertices of the thrce angles of connection with the middlle points of the three segments they intercept on any arbitrary line are concurrent.

Of these properties the first (g), it will be observed, is identical with that already established on other principles in (189, Cor. 2°).

Cor. 7°. In the particular cases, when, in the original pro-
perty a, one of the four lines $X^{\prime} Y^{\prime} Z^{\prime}$ constituting the tetragram is the line at infinity (136), and, in the original property a^{\prime}, one of the four points S constituting the tetrastigm is the polar centre of the triangle determined by the remaining three P, Q, R (168) ; since, in the former case, the three pairs of harmonic conjugates X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime}, connecting by infinite intervals, bisect, internally and externally, at once the three segments $U U^{\prime}, V V^{\prime}, W W^{\prime}$ and the three $B C, C A, A B\left(216,3^{\circ}\right)$; and since, in the latter case, the three pairs of harmonic conjugates $Q R$ and $P S, R P$ and $Q S, P Q$ and $R S$, intersecting at right angles, bisect, internally and externally, at once the three angles $U A U^{\prime}, V B V^{\prime}, W C W^{\prime}$ and the three $B A C, C B A$, $A C B\left(216,3^{\circ}\right)$; hence the two reciprocal properties themselves (a and a^{\prime}) shew, for these particular cases, that-
h. When three points on the sides of a triangle are either collinear or concurrently connectant with the opposite vertices, the conjugate three equally distant from the bisections of the sides are also either collinear or concurrently connectant with the opposite vertices.
h. When three lines through the vertices of a triangle are either concurrent or collinearly intersectant with the opposite sides, the conjugate three equally inclined to the bisectors of the angles are also either concurrent or collinearly intersectant with the opposite sides.

Properties which, it will be remembered, have been already established, on other principles, in Examples 11° and 12°, Art. 137.
246. The two following reciprocal properties are evident from the fundamental relation of harmonic section (214), combined with the general property of Art. 221, viz.-
a. If on a variable line L, turning round a fixed point O, and intersecting with two fixed lines A and B at two variable points X and Y, a variable point P be taken so as to satisfy in every position the relation

$$
\frac{P X}{O X}+\frac{P Y}{O Y}=0
$$

the point P moves on a fuxed line I, passing through the intersection of A and B; the polar, viz., of the point O with respect to the angle $A B$ (217).
a. If through a variable point P, moving on a fixed line I, and connecting with two fixed points A and B by two variable lines U and V, a variable line L be draven so as to satisfy in every position the relation

$$
\frac{\sin L U}{\sin 1 U}+\frac{\sin L V}{\sin 1 V^{\prime}}=0 ;
$$

the line L turns round a fixed point O, lying on the connector of A and B; the pole, vis. of the line I with respeet to the segment $A B$ (217).

For, in the case of a, the two points O and P, being harmonic conjugates (214) with respect to the two X and F, connect harmonically (221) with the vertex of the angle $A B$; and in the case of a^{\prime}, the two lines I and L, being harmonic conjugates (214) with respect to the two U and V, intersect harmonically (221) with the axis of the segment $A B$; and therefore \&ic.
247. The two reciprocal propertics of the preceding articlo are evidently particular cases of the two following, viz. -
a. If on a verriablo line L, turning round a fixed point O, and intersccting with two fixed lines A and B at two variable points X and Y, a variable point P be taken so as to satiagy in every position the relation

$$
\text { a. } \frac{P X}{O X}+b \cdot \frac{P Y}{O Y}=0
$$

a and b being any two finito multiples, positive or negative; the point P moves on a fixed line I, passing through the intersection of A and B, and termed the polar of the point O with respect to the two lines A and B for the two multiples a and b.
a^{\prime}. If through a variable point P, moving on a fixed line I, and connecting with teco fixed points A and B by tuco variable lines U and V, a variable line L be draten so as to satisfy in every position the relation

$$
a \cdot \frac{\sin L U}{\sin I U}+b \cdot \frac{\sin L V}{\sin I V}=0
$$

a and b being any heo finite multiples, positive or negative; the line L turns round a fixed point O, lying on the connector of A and B, and termed the pole of the line I with respect to the two points A and B for the two multiples a and b.

To prove which. In the case of a, if $O A$ and $O B, P A$ and $P B$ be the four perpendiculars from O and P upon A and B; then since, by (Euc. vi. 4),

$$
\frac{P X}{O X}=\frac{P A}{O A}, \text { and } \frac{P Y}{O Y}=\frac{P B}{O B},
$$

therefore, by the relation determining the position of P on L,

$$
\text { a. } \frac{P A}{O A}+b \cdot \frac{P B}{O B}=0,
$$

from which, the ratio of $P A$ to $P B$ being constant, it follows, consequently, that P lies on the line I which divides the angle $A B$ into segments whose sines are in the constant ratio (61); and therefore \&e. And, in the case of a^{\prime}, if $A I$ and $B I, A L$ and $B L$ be the four perpendiculars from A and B upon I and L; then since, by (61),

$$
\frac{\sin L U}{\sin I U}=\frac{A L}{A I}, \text { and } \frac{\sin L V}{\sin I V}=\frac{B L}{B I},
$$

therefore, by the relation deternining the direction of L through P,

$$
\text { a. } \frac{A L}{A I}+b \cdot \frac{B I}{B I}=0,
$$

from which, the ratio of $A L$ to $B L$ being constant, it follows, consequently, that L passes through the point O which divides the interval $A B$ into segments in the constant ratio (Euc. vi. 4); and therefore \&c.

Cor. 1°. From the relations in properties a and a^{\prime} above, it is evident, by mere inversion of ratios, that-
b. When tweo points P and Q are such that one of them P lies on the polar of the other Q with respect to two lines A and B for two multiples a and b; then the latter Q lies on the polar of the former P woith respect to the two lines for the reciprocals of the tico multiples.
b '. When tioo lines L and M are such that one of them L passes through the pole of the other M with respect to two points A and B for two multiples a and b; then the latter M passes through the pole of the former L with respect to the two points for the reciprocals of the two multiples.

For, the relations of condition that the first parts be true, viz.-

$$
\text { a. } \frac{P A}{Q A}+b \cdot \frac{P B}{Q B}=0 \text {, and } a \cdot \frac{A L}{A M}+b \cdot \frac{B L}{B M}=0 \text {, }
$$

give immediately, by inversion of the two ratios in each, the relations

$$
\frac{1}{a} \cdot \frac{Q A}{1 \cdot A}+\frac{1}{b} \cdot \frac{Q B}{P B}=0, \text { and } \frac{1}{a} \cdot \frac{A M}{A L}+\frac{1}{b} \cdot \frac{B M}{B L}=0
$$

which are the relations of condition that the second parts le true; and therefore \&c.

Cun. 2. From the same relations again, it is evident, by mere alternation of proportions, that, for two points P and Q, two lines L and M, and two multiples a and b-
c. When P lies on the polar of Q with resject to L and M for a and b; then L passs through the pole of M with respect to l^{\prime} and Q for a and b ?.
c. When L prasecs through the pole of M with reappect to P and Q for a and b; then P lies on the polar of Q with respect to L and M for a and b.

For, the relations of condition that both parts of each bo true, viz.

$$
a \cdot \frac{P L}{Q I}+b \cdot \frac{P M}{Q \cdot M}=0, \text { and } a \cdot \frac{P L}{P J I}+b \cdot \frac{Q L}{Q \cdot M}=0,
$$

are evidently identical, by mere alternation of either; and therefore \&e.

Con. 3°. In the sane case, if X and 5° be the two points of intersection with L, and M of the line $P Q$, and if U and V be the two lines of connection with P and Q of the point L, M; then again, by mere alternation of proportions, it is evident that-
d. When P lies on the polar of Q teith respect to L and M for a and b; then I lies on the polar of V^{\prime} with respect to U and V for a and b.
d'. When L prasses through the pole of M rith respect to P and Q for a and b; then U passes through the pole of V with respect to X and Y for a and U.

For, the relations of condition that the first parts of each bo true, viz.

$$
a \cdot \frac{P Y}{Q X}+b \cdot \frac{P Y}{Q Y}=0, \text { and } a \cdot \frac{\sin L U}{\sin M U}+b \cdot \frac{\sin L V}{\sin M V}=0
$$

give immediately, by alternation of the proportions in each,

$$
a \cdot \frac{X P}{I P}+b \cdot \frac{X Q}{I Q}=0, \text { and } a \cdot \frac{\sin U L}{\sin V L}+b \cdot \frac{\sin U M}{\sin V M}=0
$$

which are the relations of condition that the second parts of each be true ; and therefore \&ic.

Cor. 4°. In connection with the subject of the present article, it may be readily shewn, that generally-

When four collinear points P, Q, X, Y lie on four concurrent lines L, M, U, V, or, when four concurrent lines L, M, U, V pass through four collinear points P, Q, X, Y; then, for every tico finite multiples a and b, the two relations

$$
a \cdot \frac{P X}{Q X}+b \cdot \frac{P Y}{Q Y}=0, \text { and } a \cdot \frac{\sin L U}{\sin M U}+b \cdot \frac{\sin L V}{\sin M V}=0
$$

with the two equivalent relations derived from them by alternation,

$$
a \cdot \frac{X P}{Y P}+b \cdot \frac{X Q}{Y Q}=0, \text { and } a \cdot \frac{\sin U L}{\sin V L}+b \cdot \frac{\sin U M}{\sin V M}=0
$$

mutually involve and are involved in each other.
For, evidently, of the two additional relations

$$
a \cdot \frac{P U}{Q U}+b \cdot \frac{P V}{Q V}=0, \text { and } a \cdot \frac{X L}{Y L}+b \cdot \frac{X M}{Y M}=0,
$$

the first is equivalent to each of the first two, and the second to each of the second two, of the above; and therefore \&c.
248. The two reciprocal properties of the preceding article are again evidently particular cases of the two following; which follow readily, the first from the general property of Art. 120, respecting the central axis of any system of lines for any system of multiples, and the second from the general property of Art. 86, respecting the mean centre of any system of points for any system of multiples; viz.-
a. If on a variable line L, turning round a fixed point O, and intersecting with any system of fixed lines A, B, C, dec. at a system of variable points X, Y, Z, \&ic., a variable point P be taken so as to satisfy in every position the relation

$$
a \cdot \frac{P X}{O X}+b \cdot \frac{P Y}{O Y}+c \cdot \frac{P Z}{O Z}+d c \cdot=0
$$

a, b, c, dec. being any system of finite multiples, positive or negative; the point P moves on a fixed line I, termed the polar of the
point O with respect to the system of lines $A, B, C, d c c$. for the system of multiples a, b, c, dec.
a. If through a variable point P, moving on a fixed line I, and cornecting with any system of fixed points A, B, C, dec. by a system of variable lines U, V, W, dec., a variable line L be draten so as to satisfy in every position the relation

$$
a \cdot \frac{\sin L U}{\sin I U}+b \cdot \frac{\sin L V}{\sin I V}+c \cdot \frac{\sin L W}{\sin I W}+d c \cdot=0
$$

a, b, c, dec. being any system of finite multiples, positice or negative; the line I turns round a fixed point O, termed the pole of the line I veith respect to the system of points A, B, C, dcc. for the system of multiples $a, b, c, d c$.

To prove a. From the two points O and P conceiving the two systems of perpendiculars $O A, O B, O C, O D$, de. and $P A, P B, P C, P D$, \&e. let fall upon the system of lines A, B, $C, D, \& \in$. ; then since, by (Euc. vi, 4),

$$
\frac{P \Lambda}{O X}=\frac{P A}{O A}, \frac{P Y}{O Y}=\frac{P B}{O B}, \frac{P Z}{O \%}=\frac{P C}{U C}, \text { \&c. }
$$

therefore, by the relation determining the position of P on L,

$$
\text { a. } \frac{P A}{O A}+\varepsilon \cdot \frac{P B}{O B}+c \cdot \frac{P C}{U C}+d \cdot \frac{P D}{O D}+\& c \cdot=0
$$

from which, as it follows, by (120), that the point P lies on the central axis I of the system of lines A, B, C, D, dec. for the system of multiples $a+O A, b+O B, c \div O C, d \div O D$, dec., therefore \&c.
 conceiving the two systems of perpendiculars $A I, B I, C I, D I$, \&c. and $A L, B L, C L, D L$, \&c. let fall upon the two lines I and L; then since, by (61),

$$
\frac{\sin L U}{\sin I U}=\frac{A L}{A I}, \frac{\sin L V}{\sin I V}=\frac{B L}{B I}, \frac{\sin L W}{\sin I W}=\frac{C L}{C I}, \text { \&c. }
$$

therefore, by the relation determining the direction of L through P,

$$
a \cdot \frac{A L}{A I}+b \cdot \frac{B L}{B I}+c \cdot \frac{C L}{C I}+d \cdot \frac{D L}{D I}+\& \mathrm{c}_{0}=0
$$

from which, as it follows, by (56), that the line L passes through
the mean centre O of the system of points A, B, C, D, \&c. for the system of multiples $a \div A I, b \div B I, c \div C I, d \div D I$, dcc, therefore \&c.

Cor. 1°. It having been shewn in the demonstrations just given, that-
b. The polar of a point O with respect to any system of lines A, B, C, D, \&c. for any system of multiples $a, b, c, d, d c$. is the central axis (120) of the system of lines for the system of multiples $a \div O A, b \div O B, c \div O C, d \div O D, d c$.
b '. The pole of a line I with respect to any system of points A, B, C, D, d.c. for any system of multiples $a, b, c, d, \mathbb{L} c$. is the mean centre (86) of the system of points for the system of multiples $a \div A I, b \div B I, c \div C I, d \div D I$, dec.

It follows, consequently, that the two general problems: "To determine" a. "the polar of a given point with respect to a given system of lines for a given system of multiples;" a^{\prime}. "the pole of a given line with respect to a given system of points for a giren system of multiples;" are reduced at once to the two: "To determine" b. "the central axis of a given system of lines for a given system of multiples;" b '. "the mean centre of a given system of points for a given system of multiples;" constructions for which in their most general forms have been already given in articles (120) and (92).

Cor. 2°. In the particular case when the fixed point O, in property a, is at infinity in any direction; since then, whatever be the position of the variable line L passing through it, the several ratios $O X: O Y: O Z: \& c .=1$; therefore, for the variable point P, by the relation determining its position on L,

$$
a \cdot P X+b \cdot P Y+c \cdot P Z+\& \mathcal{c}^{2}=0
$$

And, in the particular case, when the fixed line I, in property a^{\prime}, is the line at infinity; since then, whatever be the position of the variable point P lying upon it, the several ratios $A I: B I: C I: \& c$. all $=1$; therefore, for the variable line L, by the relation determining its direction through P,

$$
a \cdot A L+b \cdot B L+c \cdot C L+\mathcal{d c}=0
$$

Hence by (126) and (86) it appears that-
c. The polar with respect to any system of lines, for any
system of multiples, of a point at infinity, is the dianneter of the system of lines, for the system of multiples, corresponding to the dircction of the point.
c. The prole with respect to any syst mo points, for any systrm of multiples, of the line at infinity, is the mean centre of the system of points, for the syst m of multiples.

Cons. 3. In the particular case when the several fixed lines A, B, C, D, \&c, in property a, pass through a common point P; since then, for the particular line L passing through the two points O and P, the reveral segments $P N, P V^{\circ}, P \%$, dic. all $=0$; therefore the point P, on that line L passing through O, satisfics, for every system of tinite multiples a, b, c, d, de., the relation

$$
a \cdot \frac{P I}{U X}+b \cdot P Y Y+c \cdot \frac{P Z}{U Z}+\bowtie c=0
$$

and consequently lies on the polar of the point O with respect to the system of lines A, B, C, D, \&.e. for the system of multiples a, l, c, d, lic. And, in the particular cane, when the several fixed points A, B, C, D, dic., in property a, lie on a common line L; since then, for the particular point P lying on the two lines I and L, the sines of the several angles $L, U, L V^{\circ}, L, W^{\prime}$, dce. all $=0$; therefore the line L, through that point I ' lying on I, satiafies, for every system of finite multiples a, b, c, d, dic., tho relation

$$
a \cdot \frac{\sin L U}{\sin I U^{2}}+b \cdot \frac{\sin I V^{\circ}}{\sin I J^{+}}+c \cdot \frac{\sin I W^{\circ}}{\sin Z W^{+}}+\mathbb{C} c=0
$$

and consequently pases through the pole of the line I with reject to the system of points $A, B, C, D, d c$. for the system of multiples n, b, c, d, se. Hence it appears that-
d. Hor a concurrent system of lines, the polar of ecery point, for ceery system of finite multiples, passes through the point of concurrace.
d. For a collinear syst m of points, the pole of every line, for every system of finite multiples, lies on the line of collinearity.

Cor. 4°. In the particular case when the several multiples $a, b, c, d, \& c$. each $=1$; it may be easily shewn that in every position of the variable line L, in property a, the distance $O P$ is the hurmonic mean of the several distances OX, OY,OZ, \&c. $\left(233,8^{\circ}.\right)$.

For, in the relation determining the position of P on L, substituting for the several distances $P X, P Y, P Z, \& c$. their equivalents $O X-O P, O Y-O P, O Z-O P$, \&c. (75), and dividing by the interral $O P$, there results immediately the relation

$$
\frac{a}{O X}+\frac{b}{O Y}+\frac{c}{O Z}+\& c .=\frac{a+b+c+\& c}{O P}
$$

which, when $a=b=c=d, \& \mathrm{c} .=1$, becomes

$$
\frac{1}{O X}+\frac{1}{O Y}+\frac{1}{O Z}+\& c .=\frac{n}{O P}
$$

n being the number of multiples; and therefore \&c. $\left(233,8^{\circ}.\right)$.
N.B. It is this latter case (that, viz. in which the several multiples $a, b, c, d, \& c$. all $=1$) that is always implicitly intended whenever the terms "polar of a point with respect to a system of lines" and "pole of a line with respect to a system of points" are employed, as they often are, absolutely, without specifying the system of multiples to which they correspond.
249. That the two general properties a and a^{\prime} of the preceding article (248) are reciprocals of each other in the sense explained in Art. 173, being less obvious than for any of the other pairs of properties,stated in the preceding articles of the present chapter, may be readily shewn as follows:

If $P, Q, X, Y, Z, \& c$. be any number of collinear points; $L, M, U, V, W, \& c$. their several polars with respect to any circle; or conversely; and O the centre of the circle; then, the several angles subtended at 0 by the several pairs of the former being similar, by ($171,2^{\circ}$.), to those determined by the several corresponding pairs of the latter; therefore, by the general property, Art. 65,

$$
\begin{aligned}
& \frac{P X}{Q X}=\frac{P O}{Q O} \cdot \frac{\sin P O X}{\sin Q O X}=\frac{P O}{Q O} \cdot \frac{\sin L U}{\sin M U} \\
& \frac{P Y}{Q Y}=\frac{P O}{Q O} \cdot \frac{\sin P O Y}{\sin Q O Y}=\frac{P O}{Q O} \cdot \frac{\sin L V}{\sin M V}, \\
& \frac{P Z}{Q Z}=\frac{P O}{Q O} \cdot \frac{\sin P O Z}{\sin Q O Z}=\frac{P O}{Q O} \cdot \frac{\sin L W}{\sin M W}, \text { \&c. }
\end{aligned}
$$

which, multiplied by any system of finite multiples a, b, c, $\mathbb{d c}$., and added, give at once the relation

$$
\mathbf{\Sigma}\left(a \cdot \frac{P X}{Q X}\right)=\frac{P O}{Q O} \cdot \Sigma\left(a \cdot \frac{\sin M U}{\sin M U}\right)
$$

from which it follows that, under all circumstances of the several points and lines, the two relations

$$
\mathbf{\Sigma}\left(a \cdot \frac{P X}{Q X}\right)=0, \text { and } \Sigma\left(a \cdot \frac{\sin L U}{\sin M U}\right)=0
$$

mutually involve each other, and therefore that, under all circumstances, the two general properties they express are reciprocals of each other in the sense explained in that article (173); but, by property a of the preceding article, the first expresses that when Q is fixed, and X, Y, Z, \&.c. move on fixed lines, then P moves on a fixed line; and, by property a^{i} of the same article, the second expresses that when M is fixed, and U, V, W^{\prime}, de. turn round fixed points, then L turns round a fixed point; those properties are therefore reciprocals of each other, and either might be inferred from the other, without independent demonstration, by the reciprocating process described in Art. 173 and applied as above, in virtue of the general property, Cor. 2°., Art. 166, that when a variable point moves on a fixed line, its polar reith respect to any circle turns round a fixed point, the pole of the line roith respect to the circle; and, conversely, that when a variable line turns round a fixed point, its pole soith respect to any circle moves on afixed line, the polar of the point with respect to the circle.

That the two general properties, to which they have been reduced in the independent demonstrations given of them in the preceding article, are also reciprocals in the same sense, being again less obvious than for any of the more ordinary pairs of properties previously stated as such, mayy as readily be shewn as follows:

If $P, A, B, C, \& c$. be any number of points disposed in any manner ; L, E, F, G, dec. their several polars with respect to any circle; or conversely; and O the centre of the circle; then since, by Dr. Salmon's property, Art. 179,

$$
\frac{P E}{P O}=\frac{A L}{A O}, \quad \frac{P F}{P O}=\frac{B L}{B O}, \quad \frac{P G}{P O}=\frac{C L}{C O}, \& c_{0}
$$

therefore, multiplying by any system of finite multiples a, b, c, d.c., and adding,

$$
\Sigma\left(a \cdot \frac{P E}{P O}\right)=\Sigma\left(a \cdot \frac{A L}{A O}\right), \text { or } \Sigma\left(\frac{a}{P O} \cdot P E\right)=\Sigma\left(\frac{a}{A O} \cdot A L\right),
$$

from which it follows that, under all circumstances of the several points and lines, the two relations

$$
\Sigma(a . P E)=0, \text { and } \Sigma\left(a^{\prime} \cdot A L\right)=0,
$$

where $a^{\prime}=a \div A O, b^{\prime}=b \div B O, c^{\prime}=c \div C O$, \&c., mutually involve each other, and therefore that, under all circumstances, the two general properties they express are reciprocals of each other; but, by the general property of Art. 120, the first expresses that when $E, F, G, \mathcal{\&}$. are fixed, and P variable, then P moves on a fixed line; and, by the general property of Art. 86, the second expresses that when A, B, C, \&e. are fixed, and L variable, then L turns round a fixed point; these properties therefore are reciprocals of each other, and either might be inferred, as above, from the other, without independent demonstration, by the same reciprocating process, and in virtue of the same general property of poles and polars, as the more general two reduced to them in the preceding article.
250. With a few polar properties respecting triangles we shall now conclude the present chapter.
a. If A, B, C be any three lines, a, b, c any three corresponding multiples, O any arlitrary point, I the polar of O with respect to the three lines for the three multiples, and P, Q, R the three intersections of I with A, B, C respectively; then always

$$
b \cdot \frac{P B}{O B}+c \cdot \frac{P C}{O C}=0, \quad c \cdot \frac{Q C}{O C}+a \cdot \frac{Q A}{O A}=0, \quad a \cdot \frac{R A}{O A}+b \cdot \frac{R B}{O B}=0 .
$$

a^{\prime}. If A, B, C be any three points, a, b, c any three corresjonding multiples, I any arbitrary line, O the pole of I with respect to the three points for the three multiples, and L, M, N the three connectors of O with A, B, C respectively; then always

$$
b \cdot \frac{B L}{B I}+c \cdot \frac{C L}{C I}=0, \quad c \cdot \frac{C M}{C I}+a \cdot \frac{A M}{A I}=0, \quad a \cdot \frac{A N}{A I}+b \cdot \frac{B N}{B I}=0 .
$$

For, in the ease of a, since for every three points P, Q, R on the line I, by property a of the preceding article (248),

$$
\begin{aligned}
& \text { a. } \frac{P A}{O A}+b \cdot \frac{P B}{O B}+c \cdot \frac{P C}{U C}=0, \\
& \text { a. } \cdot \frac{Q A}{O A}+b \cdot \frac{Q B}{O B}+c \cdot \frac{Q C}{O C}=0, \\
& \text { a. } \frac{R A}{O A}+b \cdot \frac{R B}{O B}+c \cdot \frac{R C}{O C}=0,
\end{aligned}
$$

therefore for the three particular points P, Q, R on it for which respectively $P A=0, Q B=0, R C=0$ the above relations are true; and therefore \&e. And, in the ease of a°, since for every three lines L, M, N through the point O, by property a^{\prime} of the preceding article (248),

$$
\begin{aligned}
& \text { a. } \frac{A L}{A I}+b \cdot \frac{B L}{B I}+c \cdot \frac{C I}{C I}=0, \\
& \text { a. } \frac{A M}{A I}+b \cdot \frac{B M}{B I}+c \cdot \frac{C M}{C I}=0, \\
& \text { a. } \frac{A N}{A I}+b \cdot \frac{B N}{B I}+c \cdot \frac{C N}{C I}=0,
\end{aligned}
$$

therefore for the three particular lines L, M, N through it for which respectively $A L=0, B M=0, C N=0$ the above relations are true; and therefure \&\&.

Cor. 1°. It is evident, from the above relations, that, in a, the thiree points P, Q, R connect with the three BC, CA, AB by the three polurs of the point O weith respect to the three pairs of lines B and C, C and A, A and B for the three pairs of multiples b and c, c and a, a and b respecticely ($247, a$) ; and, that, in a^{\prime}, the three lines L, M, N intersect weith the three $B C, C A, A B$ at the thrce poles of the line I with respect to the three pmirs of points B and C, C and A, A and B for the three pairs of multiples b and c, c and a, a and b respratively (24i, a^{\prime}). Properties which, for any given system of three lines or points A, B, C, supply obvious and rapid constructions for determining, for any given system of corresponding multiples a, b, c, the polar I of any given point O with respect to the forner, or the pole O of any given line I with respect to the latter.

Corr. 2 ${ }^{\circ}$. In the particular case when $a=b=c=1$, it is evident, from Cor. 1°, that, in a, the three points P, Q, R on the three lines A, B, C are conjugates to the point O with respect to the three opposite angles $B C, C A, A B$ of the triangle determined by the lines (217); and that, in a^{\prime}, the three lines L, M, N through the three points A, B, C are conjugates to the line I with respect to the three opposite sides $B C, C A, A B$ of the triangle determined by the points (217). It is evident again, from the same, that, the line I, in the former case, is the line of collinearity of the three points P, Q, R at which the three polars of the point O with respect to the three angles intersect with the opposite sides of the triangle determined by the lines $\left(243, d^{\prime}\right)$; and that, the point O, in the latter case, is the point of concurrence of the three lines L, M, N by which the three poles of the line I with respect to the three sides connect with the opposite angles of the triangle determined by the points $(243, d)$. And it is evident also, from the same, that when, for any triangle $A B C$, a line I is the polar of a point O with respect to the three sides, then, reciprocally, the point O is the pole of the line 1 with respect to the three vertices, and conversely (139, Cor. 3°); a property which we shall presently see is true generally, not only for the particular system of multiples each $=1$, but for any system of finite multiples as well.

In the figure of Art. 236, the four points P, Q, R, and S are connected with the four lines $Y Z X^{\prime}, Z X Y^{\prime}, X Y Z^{\prime}$, and $X^{\prime} Y^{\prime} Z^{\prime}$ respectively by the above relation of being pole and polar to each other with respect to the vertices and sides of the central triangle $A B C$; and, in the figure of Art. 139, the point O is connected with the line $X Y Z$ by the same relation of being pole and polar to each other with respect to the vertices and sides, not only of the original triangle $A B C$, but of the several derivatives of both species $A^{\prime} B^{\prime} C^{\prime}$ and $A, B, C, A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ and $A_{1 \prime} B_{n} C_{m} A^{\prime \prime \prime} B^{\prime \prime \prime} C^{\prime \prime \prime}$ and $A_{1 \prime \prime} B_{m, \prime} C_{m,}$ \&c. obtained from it, through their directing agency, by the continued application of the two inverso processes of construction described in Cors. 4° and 5° of that article.
251. If A, B, C be the three vertices, and D, E, F the three opposite sides of any trianglo; O and I any arbitrary point and

line; L, M, N the three connectors of O with the vertices; P, Q, R the three intersections of I with the sides; U, V, W the three connectors of P, Q, R with the vertices; and X, Y, Z the three intersections of L, M, N with the sides; then-
a. The point O is the pole of the line I with respect to the three points A, B, C for any three multiples a, b, c such that

$$
b \cdot \frac{B X}{B P}+c \cdot \frac{C X}{C P}=0, \quad c \cdot \frac{C Y}{C Q}+a \cdot \frac{A Y}{A Q}=0, \quad a \cdot \frac{A Z}{A R}+b \cdot \frac{B Z}{B I Z}=0 .
$$

a^{\prime}. The line I is the polar of the point O with respect to the three lines D, E, F for any three multiples a, b, c such that

$$
\text { b. } \begin{gathered}
\frac{\sin E U}{\sin E L}+c \cdot \frac{\sin F U}{\sin F L}=0, \quad c \cdot \frac{\sin F V}{\sin F M}+a \cdot \frac{\sin D V}{\sin D M}=0, \\
a \cdot \frac{\sin D W}{\sin D N}+b \cdot \frac{\sin E W}{\sin E \cdot N}=0 .
\end{gathered}
$$

For, the three relations, in the case of a, being evidently equiralent to the three

$$
\text { b. } \frac{B L}{B I}+c \cdot \frac{C L}{C I}=0, \quad c \cdot \frac{C M}{C I}+a \cdot \frac{A M}{A I}=0, a \cdot \frac{A N}{A I}+b \cdot \frac{B N}{B I}=0 ;
$$

and the three, in the ease of a^{\prime}, to the three

$$
b \cdot \frac{P E}{O E}+c \cdot \frac{P F}{O F}=0, \quad c \cdot \frac{Q F}{O F}+a \cdot \frac{Q D}{O D}=0, a \cdot \frac{R D}{O D}+b \cdot \frac{R E}{O E}=0
$$

which being identical with those in a^{\prime} and a of the preceding article (250), therefore \&c.

Cor. 1°. Sinee, for the same triangle, by Cor. 4°, Art. 247 , the two groups of three relations in a and a^{\prime} of the above mutually involve each other for the same system of multiples a, b, c; hence, generally, as noticed in Cor. 2° of the preceding article for the particular system of multiples each $=1$. -

When, for any triangle $A B C$, a line I is the polar of a point O with respect to the three sides for amy system of multiples a, b, c; then, reciprocally, the point O is the pole of the line I with respect to the three vertices for the same system of multiples a, b, c.

This property, it may be observed, would have followed also from those of Cor. 1° of the preceding article (250), combined with those of Cor. 3° of $\Lambda \mathrm{rt} .247$.

Cor. 2°. Since, for two triangles in perspective (140), the three lines of connection L, M, N of the three pairs of corresponding vertices A and A^{\prime}, B and B^{\prime}, C and C^{\prime} pass through a common point O, their centre of perspective, and the three points of intersection P, Q, R of the three pairs of corresponding sides D and D^{\prime}, E and $E^{\prime \prime}, F$ and F^{*} lie ou a common line I,
their axis of perspective (see figure); hence again, from the above relations a and a combined with the general property of Cor. 4°, Art. 247, the two following polar properties of two triangles in perspective-
b. For every theo triangles in perspectice, the centre is the pole of the axis of perspective with resprect to the vertices of both triangles for the same system of multiples.
ℓ^{\prime}. For etery two criangles in perspective, the axis is the polar of the centre of perspective with respect to the sides of hoth trianyles for the same system of multiples.

For, the four lines I, L, M, N and the four points $O, P, Q, I R$, in the relations a and a^{\prime}, being the same for both triangles (see figure), if $U^{\prime}, V^{\prime \prime}, \|^{\prime \prime}$ and $X^{\prime \prime}, Y^{\prime \prime}, Z^{\prime \prime}$ be for the triangle $A^{\prime} B^{\prime} C^{\prime \prime}$ what U, V, W and X, I, Z as above stated are for the triangle $A B C$; then since the three pairs of corresponding systems of fuur collinear points B, C, X^{\prime}, P and $B^{\prime}, C^{\prime}, X^{\prime \prime}, P ; C, A, Y, Q$ and $C^{\prime \prime}, A^{\prime}, Y^{\prime}, Q ; A, B, Z, R$ and $A^{\prime}, B^{\prime}, Z, Z$ are in persprective at the print O (130), therefore, by the general property, Cor. 4°, Art. 24i, the three pairs of corresponding relations

$$
\begin{aligned}
& \text { b. } \frac{B X}{B P}+c \cdot \frac{C X}{C P}=0 \text {, and } b \cdot \frac{B^{\prime} X^{\prime \prime}}{B^{\prime} P^{\prime}}+c \cdot \frac{C^{\prime} X^{\prime \prime}}{C^{\prime \prime} P^{\prime}}=0, \\
& \text { c. } \frac{C Y}{C^{\prime} Q}+a \cdot \frac{A Y}{A Q}=0 \text {, and } c \cdot \frac{C^{\prime} Y^{\prime \prime}}{C^{\prime} Q}+a \cdot \frac{A^{\prime} Y^{\prime \prime}}{A^{\prime} Q}=0, \\
& \text { a. } \frac{A Z}{A R}+b \cdot \frac{B Z}{B R}=0 \text {, and } a \cdot \frac{A^{\prime} Z^{\prime}}{A^{\prime} R}+b \cdot \frac{B^{\prime} Z^{\prime}}{B^{\prime} R}=0,
\end{aligned}
$$

(see property a) nutually involve each other for the same system of multiples a, b, c, and therefore dic. as regards b; and since the three pairs of corresponding systems of four concurrent lines E, F, U, L and $E^{\prime \prime}, F^{*}, U^{\prime}, L ; F, D, V, M$ and $I^{*}, D^{\prime}, V^{\prime \prime}, M$; D, E, W, N and $D^{\prime}, E^{\prime \prime}, W^{\prime \prime}, N$ are in perspective on the line I (130), therefore, by the same general property, Cor. 4°, Art. 247, the three pairs of corresponding relations

$$
\begin{aligned}
& b \cdot \frac{\sin E U}{\sin E L_{\mu}}+c \cdot \frac{\sin F U}{\sin F L}=0 \text {, and } b \cdot \frac{\sin E^{\prime \prime} U^{\prime}}{\sin E^{\prime} L_{\rho}}+c \cdot \frac{\sin F^{*} U^{\prime}}{\sin F^{*} L}=0 \text {, } \\
& \text { c. } \frac{\sin F V}{\sin F^{\prime} M}+a \cdot \frac{\sin D V}{\sin D M}=0 \text {, and } b \cdot \frac{\sin F^{v} V^{\prime \prime}}{\sin F^{*} M}+c \cdot \frac{\sin D^{\prime} V^{\prime}}{\sin D^{\prime} M}=0 \text {, } \\
& a \cdot \frac{\sin D W}{\sin D N}+b \cdot \frac{\sin E W}{\sin E N}=0 \text {, and } a \cdot \frac{\sin D^{\prime} W^{\prime}}{\sin W^{\prime} N^{\prime}}+b \cdot \frac{\sin E^{\prime \prime} W^{\prime \prime}}{\sin E^{\prime \prime} N}=0 \text {, } \\
& \text { ril. II. }
\end{aligned}
$$

(see property a^{\prime}) mutually involve each other for the same system of multiples a, b, c, and therefore $\& c$. as regards b^{\prime}.
N.B. These two reciprocal properties, though thus established independently, evidently involve each other by virtue of Cor. 1°.

Cor. 3. It follows, of course, from the two reciprocal properties of the preceding corollary, that when any number of triangles $A B C, A^{\prime} B^{\prime} C^{\prime}, A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, \&c., in perspective two and two, have a common centre and axis of perspective O and I; the centre is the pole of the axis with respect to the vertices, and the axis the polar of the centre with respect to the sides, of all of them alike, for the same system of multiples a, b, c; for, the three lines L, M, N and the three points P, Q, R (see figure) being then necessarily the same for the entire system, and the property, as above shewn, being consequently true for every two of the component triangles, therefore \&c. Of this general property that stated in the closing paragraph of Cor. 2° of the preceding article (250) is evidently a particular case.

CHAPTER XV.

HARMONIC PROPERTIES OF THE CIRCLE.

252. OF the various harmonic propertics of the circle, the two following, reciprocals of each other (173), are those to which the appellation is most commonly given, and which, on the whole, lead, perhaps, to the greatest number of con-sequences-
a. When four points on a circle determine an harmonic pencil of rays at any fifth point on the circle, they do so at every point on the circle.
a^{a}. When four tangents to a circle determine an harmonic row of points on any fifth tangent to the circle, they do so on every tangent to the circle.

For, in the former case, if A, B, X, Y be the four points, P the fifth point, and Q any sixth point on the circle; then since, by property 1°, Art. 25 , the two pencils of four rags $P A, P B$, $P X, P Y$ and $Q A, Q B, Q X, Q 1$, or, as they may be more concisely denoted, P.AB.YY and Q.AB.YY, are similar, therefore (213) the harmonicism of either involves that of the other, and therefore de. And, in the latter case, if C, D, U, V be the four tangents, L the fifth tangent, and M any sixth tangent to the circle; then since, by property 2°, Art. 25 , the two rows of four points $L C, L D, L U, L V$ and $M C, M D, M U, M V$, or, as they may be more concisely denoted, L.CDUV and M.CDUV, subtend similar pencils at the centre O of the cirele, therefore, by the general property of Art. 221, the harnonicism of either involves that of the other, and therefore \&e.
253. These two properties, thus established independently, are evidently reciprocals of each other to the circle to which the points or tangents belong (see Art. 172) ; for, if A, B, X, Y
be any four points on a circle, and r, D, U, V the four tangents at thein to the same circle, or conversely; P any fifth point on the circle, and L the tangent at it to the circle, or conversely; then, since, by ($165,6^{\circ}$), the four collinear points L. CDUV are the four poles with respect to the circle of the four concurrent lines $P . A B X^{\top} Y$, and conversely, therefore, by the general property of Art. 223, the harmonicism of either system involves that of the other, and therefore dic.

From this last, or from properties 1° and 2°, Art. 25 , it is evident that when four points A, B, X, Y on a circle detcrmine (as in a) an harmonic pencil of rays P.ABXY at every fifth point P on the circle, the four tangents at them, C, D, U, V, determine (as in a') an harmonic row of points L.CDUV on evcry fifth tangent L to the circle; and conversely.
254. Esery four points A, B, X, Y on a circle which determine, as abore (a), an harmonic pencil of rays at every fifth point P on the circle are said to form an harmonic system of points on the circle, whose two pairs of conjugates A and B, X and Y correspond, of course, to thase of the pencil $P . A B X Y$ they determine at P; and every four tangents C, D, U, V to a circle which determine, as above (a^{\prime}), an harmonic row of points on every fifth tangent L to the circle are said to form an harmonic system of tangents to the circle, whose two pairs of conjugates C and D, U and V correspond, of course, to those of the row L.CDUV they determine on L. In either case the two ares of the circle intercepted between the two pairs of conjugates are said to cut each other harmonically; and, of two ares of a circle thus cutting each other harmonically, either may be, and in fact is, as often imaginary as real (215).

When four points A, B, X, Y on a circle form an harnonic system, the two lines of connection $A B$ and $X Y$ of the two pairs of conjugates Λ and B, X and Y are termed conjugate lines with respect to the circle; and when four tangents C, D, U, V to a circle form an harmonic system, the two points of intersection $C D$ an! $U V$ of the two pairs of conjugates C and D, U and V are termed conjugute points with respect to the circle. It will appear in the sequel that every two lines or points in this sense conjugates to each other with respect to a circle
are also coujugates to each other with respect to the circle in the more general sense in which the same tern was employed in Art. 174.

By virtue of the general relation of Art. 221, it is evident that when four points on a circle form an hurmonic system, their fuur lines of connection with any ,fith point on the circle determine an hurmonic roo of points on every axis; and that schen four tangents to a circle form un harmonic system, their four points of intersection weith any fifth tangent to the circle determine an harmonic pencil of rays at every vertex.
255. From the fundamental reciprocal properties of Art. 252 the two following, also reciprocals to each other, result at once by virtue of the two general primeiples explained in articles (19) and (20) ; viz.
a. When four paints on a circle form an harmonic system, the tangent to the circle ut rach forms un harmonic pencil with its three lines of connretion reith the remaining three.
a'. When four tangents to a circle form an hurmonic system, the point of contact with the circle of each furms an harmonic row with its three proints of intersection with the remaining three.

For, if A, B, X, Y be the four points, and C, D, U, V the four tangents; then, since, in the former case, for every print P on the circle, by property a, Art. 250, , the pencil of four rays $P . A B . X^{\prime} Y$ is harmonic, therefore, for the four points A, B, X, Y, the four pencils of four rays A.AB.YY; B. ABIY, N.ABAY, 1.AB.NY are harmonie; but of these four pencils the four mys $A A, B B, X X, \Gamma \Gamma$, by (19), are the four tangents to the circle at the four points A, B, X, Y; and therefore $\mathbb{\&} c$. And, since, in the latter case, for cuery tangent I, to the circle, by property a^{\prime}, Art. 252 , the row of four points L. CI)UV is harmonic, therefore, for the four tangents C, I, U, V, the four rows of four points $C . C D O V, D . C D U V, U . C D U V, V . C D C V$ are harmonic; but of these four rows the four points $C C, D D, U U, I V$, by (20), are the four points of contact with the circle of the four tangents C, D, U, V; and therefore ide.

It is, of course, evident conversely, as in Art. 252, that the larmonicism of any one of the four pencils of rays $A . A B X Y$, $B . A B X Y, X . A B X Y, Y, A B X Y$ in the former ease, or of any
one of the four rows of points C.CDUV, D.CDUV, U.CDUV, $V . C D U V$ in the latter case, involves that of the remaining three; for it involves, in the former case, that of the system of four points A, B, X, Y on the circle, and in the latter case, that of the system of four tangents C, D, U, V to the circle; and therefore \&c.
256. When two arcs of a circle cut each other harmonically, the two pairs of chords connecting the extremities of either with those of the other have equal ratios; and, conversely, when two arcs of a circle are such that the two pairs of chords connecting the extremities of either with those of the other have equal ratios, they cut each other harmonically.

For, if $A B$ and $X Y$ be any two arcs of a circle, $A X$ and $B X, A Y$ and $B Y$ the two pairs of chords connecting the extremities of either $A B$ with those of the other $X Y$, and P any arbitrary point on the circle; then since always, by ($62, \operatorname{Cor} .1^{\circ}$), disregarding signs,

$$
\frac{A X}{\overline{B X}}: \frac{A Y}{B Y}=\frac{\sin A P X}{\sin B P X}: \frac{\sin A P Y}{\sin B P Y}
$$

therefore when either equivalent in absolute value $=1$ so is the other; but (252), when the arcs $A B$ and $X Y$ cut each other harmonically, the latter equivalent in absolute value $=1$; and conversely, when the latter equivalent in absolute value $=1$, the ares $A B$ and $X Y$ cut each other harmonically; and therefore \&c.

Since, by the above, immediately and by alternation,

$$
\frac{A X}{B X}=\frac{A Y}{B Y}, \text { and } \frac{A X}{A Y}=\frac{B X}{B Y}
$$

therefore again, immediately and by alternation,

$$
\frac{A X^{2}}{B X^{3}}=\frac{A X \cdot A Y}{B X \cdot B Y}=\frac{A Y^{2}}{B Y^{2}}, \text { and } \frac{A X^{z}}{A Y^{z}}=\frac{A X \cdot B X}{A Y \cdot B Y}=\frac{B X^{y}}{B Y^{2}}
$$

and again also, immediately or by alternation,

$$
A X \cdot B Y=A Y \cdot B X=\frac{1}{2} \cdot A B \cdot X Y,(\text { see Art. } 219, a) ;
$$

any of which, consequently, may be regarded as characteristic of the harmonic section of two ares $A B$ and $X Y$ of a circle, and sufficient to determine it.
257. When theo arcs of a circle cut each other harmonically; the tangents at the extremities of either intersect on the chord of the other; and, reciprocally, the chord of either passes through the intersection of the tangents at the extremities of the other.

For, $A B$ and $X Y$ being the arcs, since, by the first part of the property of the preceding article,

$$
\frac{A X}{B X}=\frac{A Y}{B Y}, \text { and } \frac{X A}{Y A}=\frac{X B}{Y B}
$$

if Z be the point on the chord $A B$ for which

$$
\frac{A Z}{B Z}=\frac{A X^{z}}{B X^{2}}=\frac{A Y^{z}}{B Y^{2}}=\frac{A X \cdot A Y}{B X \cdot B Y},
$$

and O the point on the chord $X Y$ for which

$$
\frac{X C}{Y C}=\frac{X A^{2}}{\Gamma A^{4}}=\frac{X B^{2}}{\Gamma B^{2}}=\frac{X A \cdot X B}{Y A \cdot Y B}
$$

then, evidently, (Euc. III. 32, and Vi. 4), the two tangents at I and Y pass both through Z, and the two at A and B pass both through C; and therefore \&c.

Conversely, Every two points on a circle which connect through the intersection of twe tangents to the circle cut harmonically the arc of the circle intercepted between the tangents; and, reciprocally, every two tangents to a circle which intersect on the connector of two points on the circle cut harmonically the arc of the circle intercepted between the points.

For, if A and B be the two points, $A C$ and $B C$ the two tangents, X and Y any two points connecting through C, and $X Z$ and $Y Z$ any two tangents intersecting on $A B$; then since, for the pair of tangents $X Z$ and $Y Z$, and for the pair $A C$ and $B C$, respectively, by Euc. III. 32, and vi. 4,

$$
\frac{A X^{2}}{B X^{8}}=\frac{A Y^{2}}{B Y^{2}}=\frac{A Z}{B Z}, \text { and } \frac{X A^{2}}{\overline{Y A^{2}}}=\frac{X B^{2}}{\overline{Y B^{2}}}=\frac{X C}{Y C}
$$

therefore, by the seeond part of the property of the preceding article, the two arcs $A B$ and $X Y$ cut each other harmonically; and therefore \&c.

Of all properties of harmonic systems, whether of points on, or of tangents to, a circle, the above gives, in either case, the most definite conception of the actual disposition of the two pairs of conjugates on or round the circle.

Cor. 1°. The two points C and Z, in the above, being (165) the two poles with respect to the circle of the two lines $A B$ and $X Y$; it appears, consequently, from the first part of the above, as stated in other terms in Art. 254, that-

When four points on a circle form an harmonic system, the connectors of the two pairs of conjugates pass each through the pote of the other with respect to the circle; and, reciprocally, when four tangents to a circle form an harmonic system, the intersections of the thoo pairs of conjugates lie each on the polar of the other with respect to the circle. See (174).

And, from the second part of the same, conversely, that-
Every two lines passing each through the pole of the other with respect to a circle determine the two conjugate pairs of an harmonic system of points on the circle; and, reciprocally, every two points lying each on the polar of the other with respect to a circle determine the theo conjugate pairs of an harmonic system of tangents to the circle.

These last, as thus stated, include evidently those cases in
which one pair of the conjugates, whether points or tangents, is imaginary, as well as those in which both are real.

Cor. 2°. The point of intersection O of the two lines $A B$ and $X Y$, and the line of comection I of the two points C and Z (see figure), being also, by (167), polo and polar to each other with respect to the circle; and the triangle determined by the three points C, Z, and O, or by the three lines $A B, X Y$, and I, being, consequently, self-reciprocal with respect to the circle (168) ; it appears therefore, again, from both parts of the above, that-

Every triangle every tuco of those sides tetermine harmonic systems of points on a circle, or every theo of shase vertices determine harmonic systems of tanyents to a circle, is self-reciprocul with respect to the circle: and, conversely, in every triangle selfreciprocal with respect to a circle, every tuco of the siules det r mine harmonic systems of points on the circle, and rewry tho of the vertices determine harmonic systems of tangents to the circle.

Of the three pairs of points or tangente, thus determining two and two three harmonic systems, it is evident, from (168), or direetly from the nature of harmonic section, that, for a real circle, while two of them are always real, the third is always imaginary.

Con. 3°. If, in the first part of the above, while the line $A B$ and the point C are supposed to remain fixed, the line $X I$ and the point Z be conceived to vary simultaneously; then sinee, by that part, as above shewn, $X Y$ passes in every position through C, and Z lies in every prosition on $A B$, therefore-

If a fixed arc of a fixed circle be cut harmonically by a variable pair of conjugates, either points or tungents; the latter intersect in every prosition on the fised connector of its terminal points, and the former connect in every prosition through the fixal intersection of its terminal tungents.

Cor. 4°. The two reciprocal properties of the second part of the above supply obvious and rapid solutions of the three following pairs of reciprocal problems, viz.-
1°. To cut a given arc of a given circle harmonically, a. by two points connecting through a given point; a'. by theo tangents intersecting on a given line.
2°. To cut two given arcs of a given circle harmonically, a. by the same two points on the circle; a^{\prime}. by the same two tangents to the circle.
3°. To cut two given arcs of two given circles harmonically, a. by four collinear points on the circles; a^{\prime}. by four concurrent tangents to the circles.

As a circle of any magnitude may be described passing in any direction through the vertex of any angle, the solution of either problem (2°) respecting ares gives obviously a direct solution (see Art. 230) of the corresponding problem respecting angles, viz.-

Given in magnitude and position two angles having a common vertex, to determine in magnitude and position the angle that cuts both harmonically.

Cor. 5°. Since, for a given circle, the length of an are gives the length of its chord, and the points of bisection of an are the direction of its chord; the same again supply obvious solutions of the two following problems:-

Given in magnitude and position one arc of a given circle, and the length or points of bisection of another cutting it harmonically, to determine the other.

For the same reason as in the preceding corollary, the solutions of these two problems respecting ares give obriously direct solutions (see Art. 227, Cor. 3°) of the two corresponding problems respecting angles, viz. -

Given an angle in magnitude and position, and the magnitude or lines of bisection of another angle cutting it harmonically; to determine the latter.

Cor. 6°. The circle having C for centre which passes through A and B (sce figure) being orthogonal to the original circle $A B X Y\left(22,1^{\prime}\right)$; thercfore, from both parts of the above, directly and conversely-
a. When two circles intersect at right angles; every two points of either which cut harmonically its are intercepted by the other connect through the centre of the other ; and, conversely, every two points of either which connect through the centre of the other cut harmonically its arc intercepted by the other.
b. When tico circles intersect at right angles; every tioo
tangents to either which cut harmonically its arc intercepted by the other intersect on the common chord of both; and, conversely, every tuco tangents to either which intersect on the common chord of both cut harmonically its arc intercepted by the other.

It follows, of course, from the second part of (a), that when the same circle is orthogonal to a number of others, every line passing through its centre cuts harimonically the several ares it intercepts on them all.

Cor. 7°. Every two points X and Y on the original circle (see figure) which counect through C^{\prime}, being inverse points (149) with respect to the circle baving O for centre which passes through A and B, and every circle passing through them being consequently (156) orthogonal to that circle; therefore, again, from the abovo-

Every circle cutting an arc of another circle harmonically is orthogonal to the circle which passes orthogonally through the extremities of the arc; and, contersely, cvery circlo intersecting two others orthoyonally euts harmonically the ares of both intererpted betccen their points of intersction.

It follows, of course, from the second part of this, or of property (a) of the preceding corollary, (which it may be observed evidently involve each other), shat every circle coaxal with the same two points (15%) cuts harmonically the arcs intercepted by the latter on all circles passing through them.

Cons. 8°. If, as in Cor. 3°, while the two points A and B with the original circle are supposed to remain fixed, the two points X and Y with the intersecting circle be conceived to vary simultaneously; then from the first part of the preceding, Cor. 7°, by (156)—

1. A variable circle, pussing through a fixed point and cutting a fixed arc of a fixed circle harmonically, passes through a second fixed point, the inverse of the first with respect to the circle passing orthogonally lirough the extremities of the arc.
2. A variable circle, cutting tuo fixed arcs of two fixed circles harmonically, passes through the two fixed points, real or imaginary, inverse to the two circles passing orthogonally through the extremities of the two arcs.

Whether the two fixed points inverse to the two latter circles are imaginary or real, it follows of course, from ($187,4^{\circ}$), that the variable circle in 2° generates, in all cases, the coaxal system orthogonal to those circles.

Cor. 9°. As in Cor. 3°, Art. 228, the two properties of the preceding corollary $\left(8^{\circ}\right)$ reduce at once to those of Cor. 4°, Art. 156, the solutions of the three following problems, viz.-

To describe a circle, 1° passing through two given points and cutting a given arc of a given circle harmonically; 2° passing through a given point and cutting two given arcs of two given circles harmonically; 3° cutting three given arcs of three given circles harmonically.
258. When four points on a circle from an harmonic system, the comector of either pair of conjugates and the tangent at either of its points intersect harmonically with the axis of the segment determined by the other pair; and, reciprocally, when fuur tangents to a circle form an harmonic system, the intersection of either pair of comjugates and the point of contact of either of its tangents connect harmonically with the vertex of the angle determined by the other pair.

For, if, in the former case, the system of four concyclic points A and B, X and Y (figure of last article) be harmonic ; then since, by $(255, a)$, the two pencils of four rays $A . A B X Y$ and B.BAXY having the common ray $A B$, and the two $X . X Y A B$ and $Y . Y X A B$ having the common ray $X Y$, are hamonic ; therefore, by $\left(222,6^{\circ}\right)$, they intersect collinearly, the former pair on the line XY at the harmonic row of four points $C O X^{\circ} Y$, and the latter pair on the line $A B$ at the harmonic row of four points $Z O A B$; and therefore de. And, if, in the latter case, the system of four concyclic tangents $A C$ and $B C, X Z$ and $Y Z$ (same figure) be harmonic; then since, by $\left(255, a^{\prime}\right)$, the two rows of four points $A C P Q$ and $B C R S$ laving the common point C, and the two $X Z P R$ and $Y Z Q S$ haviug the common point Z, are harmonic; therefore, by $\left(222,5^{\circ}\right)$, they connect concurrently, the former pair through the point Z by the harmonie pencil of four rays Z.OCXI, and the latter pair through the point C by the harmonic pencil of four rays $C . O Z A B$; and therefore \&ic.

Conversely, since, in the former case, the harmonicism of any one of the four pencils of four rays A.ABXY, B.BANY, $X . X Y A B, Y$ Y. YAAB involves, by ($252, a$), that of the system of four points A, B, X, Y on the circle; and, since, in the latter case, the harmonicism of any one of the four rows of four points $A C I^{\prime} Q, B C R S, I \% I^{\prime} R, Y Z Q S$ involves, by (252, a^{\prime}), that of the system of four tangents $A C, B C, X Z, Y Z$ to the circle; therefore, the abore reciprocel propertivs are criterit, the former of the harmonicism of four points on a circle, and tho latter of the hurnonicism of four tangents to a circle.

The above demonstrations, as establishing directly the collinearity of the two triads of points $\Lambda, 1, C$ and A, B, Z for an hamonic syatem of points A, B, N, Y on a circle, and the concurrence of the two triads of lines $P R, Q S, A B$ and $P Q$, IIS, J Y for an hammonic syatem of tangents $A C, B C, N \%, I \%$ to a circle, and conversely, establish therefore, in a manner applicable to ligher figures as well, the two reciprocal properties established in the preceding article by a method applicable to the circle alone.

Coli. 1 ${ }^{\circ}$. By virtue of the above, the two points C and Z (see figure) being the poles of the two lines $A B$ and $X Y$ with respect to the two segments $X 1$ and $A B(217)$; and the two lines $1 / B$ and $X Y^{\prime}$ bring the polars of the two points C and Z with respect to the two angles $X Z Y$ and $A C B(217)$; it appears, consequently, from it, that-

The interstction of the two terminal tangents, and the comector of the turo terminal points, of any arc of a circle, are pole and polar to each other with resp, et, at once to the segment iletermined by every thoo points on the circle which connect through the former, and to the angle determined by every two tangents to the circle which intersect on the latter.

Cor. 2.. Again, the point O and the lise I (see figure) being, by the above, pole and polar to each other with respect at once to the two segments XY and $A B$, and to the two angles $X Z Y$ and $A C B$; and, the three points C, Z, and O, and the three lines $A B, \Gamma Y$, and I, being, by (167), pole and polar to eack other with respect to the circle itself; hence, again, from the above, for every point and line polo and polar to each other with respect to a circle, it appears that-

Every point and line, pole and polar to each other with respect to a circle, are also pole and polar to each other with respect, at once to the segment determined by every two points on the circle which connect through the former, and to the angle determined by every two tangents to the circle which intersect on the latter.

COR. 3°. The triangle determined by the three points C, Z, and O, or by the three lines $A B, X Y$, and I, (see figure) being self-reciprocal with respect to the circle (168), each vertex and its opposite side being pole and polar to each other with respect to the circle; hence, also, from the above, sce Cor. 2° of the preceding article.

In every triangle self-reciprocal with respect to a circle, the circle divides harmonically the three sides, and subtends harmonically the three vertices; and, conversely, the circle which divides harmonically the three sides or subtends harmonically the three vertices of a triangle is the polar circle of the triangle (168).
259. Of the various reciprocal propertics of points and lines, pole and polar to each other with respect to a eircle, the two following, termed their harmonic properties, and obviously tantamount to those just stated in Cor. 2° of the preceding article, are second only in importance to those of Art. 166, and lead, next to them, to the greatest number and variety of remarkable consequences in the modern geometry of the circle :-
a. Every two conjugate points with respect to a circle are harmonic conjugates with respect to the two collinear points on the circle; and, conversely, every two points harmonic conjugates with respect to the two collinear points on a circle are conjugate points with respect to the circle (174).
a^{\prime}. Every two conjugate lines with respect to a circle are harmonic conjugates with respect to the two concurrent tangents to the circle; and, conversely, every two lines harmonic conjugates with respect to the two concurrent tangents to a circle are conjugate lines with respect to the circle (174).

These properties follow immediately, indirectly, from those of the preceding article; the two points O and C (see figure of that article) being at once conjugate points with respect to the circle, and harmonic conjugates with respect to the two collinear points X and Y on the circle, and the two lines $Z O$ and $Z C$
being at once conjugate lines with respect to the circle and harmonic conjugates with respect to the two concurrent tangents $Z X$ and $Z Y$ to the circle; the two points O and Z being at once conjngate points with respect to the circle, and harmonic eonjugates with respect to the two collinear points A and B on the circle, and the two lines $C O$ and $C Z$ being at once conjugate lines with respect to the circle and harmonic conjugates with respeet to the two concurrent tangents $O A$ and $C B$ to the circlo; the two points C and Z being at once conjugate points with respect to the circle and harmonic conjugates with respect to the two imaginary collinear points on the circle, and the two lines $O C$ and $O Z$ being at once conjugate lines with respect to the circle, and harmonic conjugates with respect to the two imaginary concurrent tangents to the cirele; and therefore ic.

From their importance, however, we subjoin the ordinary direct demonstrations of them, based on the fundamental definition of poles and polars with respect to the circle given in Art. 165.

If, as regards $(a), P$ and Q be any two points, I and Y the

two collinear points on any circle C, and R the inverse of either of them P with respect to the circle; then since, by (221), the harmonicism of the row of four points $P Q X Y$ involves and is involved in that of the pencil of four rays R.PQXY, and since, by $\left(216,3^{\circ}\right)$, for the harmonicism of the pencil, the ray $R P$ being always equally inclined to the two rays $R X$ and $R Y$ (163), it is necessary and sufficient that the conjugate ray $R Q$ be at right angles to the ray $R P$, that is, that the point Q be
on the polar of the point P with respect to the circle (165), therefore \&c. And, if, as regards $\left(a^{\prime}\right), Z P$ and $Z Q$ be any two lines, $Z X$ and $Z Y$ the two concurrent tangents to the circle, and P and Q the two points at which their chord of contact $X Y$ intersects with $Z P$ and $Z Q$; then since, by (221), the harmonicism of the pencil of four lines $Z . P Q X Y$ involves and is involved in that of the row of four points $P Q X Y$, and since, by $\left(175,5^{\circ}\right), P$ and Q are conjugate points when $Z P$ and $Z Q$ are conjugate lines with respect to the circle, and conversely, therefore \&c., the rest being evident from (a).

From these properties, thus, or in any other manner, independently established, those of the preceding article, with all the consequences to which they lead, follow of course indirectly; both pairs of reciprocal properties, as above shewn, being, in fact, virtually identical.

Cor. 1°. From the first parts of the above, by virtue of the properties (225) and (235, Cor. 7°), it is evident that (see Art. 176) -
a. Every two conjugate points with respect to a circle determine with the polar centre of their line of connection two segments, whose product is constant and equal in magnitude and sign to the square of the semi-chord intercepted by the circle on the line.
a^{\prime}. Every two conjugate lines with respect to a circle determine with the polar axis of their point of intersection two angles, the product of whose tangents is constant and equal in magnitude and sign to the square of that of the semi-angle subtended by the circle at the point.

Cor. 2. ${ }^{\circ}$. By virtue of the general property of Art. 218, it is evident, also, from the same, that (see Art. 178)-
a. When a line intersects one of too circles at a pair of conjugate points with respect to the other, then, reciprocally, it intrrsects the latter at a pair of conjugate points with respect to the former.
a'. When a point subtends one of two circles by a pair of conjugate lines with respect to the other, then, reciprocally, it subtends the latter by a pair of comjugate lines with respect to the former.

Cos. 3°. For the particular case when the circles, in the preceding corollary, intersect at right angles, from the same again, by virtue of properties f^{\prime} and f, Art. 208, it appears that-
a. Every line intersecting two orthogonal circles in an harmonic system of points passes through one or other common pole of one axis of perspective with respect to one circle and of the other axis of perspective with respect to the other circle (205, e°.)
a'. Every point subteneling theo orthogonal circles in an harmonic system of tangents lies on one or other common polar of one centre of perspective with respect to one circle and of the other centre of perspective with respect to the other circle (208, e.)

Corr. 4°. By aid of the solutions (227, Cor. 3°) and (257, Cor. 5°), the second parts of the above supply obvious solutions of the four following problems, viz. -
a. On a giten line to determine tuco points conjugates to a given circlo and either sequated by a given intereal or having a given middle point.
a'. At a given point to intermine two lines conjugates to a given circle and either separated by a given intrval or having a giren middle line.

And by aid of the solutions (230) and (257, Cor. 4), the same, again, supply obvious solutions of the two following problems-
b. On a given line to determine the pair of points conjugates at once to the given circles.
b. At a given point to determine the pair of lines comjugates at once to theo giren circles.
260. The line at infinity being the polar of any point with respect to any circle laving its centre at the point (165), and the points of intersection of any circle with any line being the points of contact of the tangents to the circle from the pole of the line (165); the following remarkable consequences result from the reciprocal properties of the preceding article, applied to the particular cases of conjugate points at intinity, and of conjugate lines through the centres of circles:
1°. Every two points at infinity in directions at right angles to each other being conjugate points with respect to every circle (174), and every two lines through any point at vol. It.
right angles to each other being conjugate lines with respect to every circle laving its centre at the point; hence, from properties a and a^{\prime} of the preceding article, respectively-
a. Every two points at infinity in directions at right angles to each other are harmonic conjugates with respect to the two imaginary points at which any circle, however situated, intersects with the line at infinity.
a^{\prime}. Every two lines through any point at right angles to each other are harmonic conjugates with respect to the two imaginary tangents from the point to any circle having its centre at the point.
2°. If $O, O^{\prime}, O^{\prime \prime}, \& \mathrm{cc}$. be the several centres of any number of circles situated in any manner; X and Y, X^{\prime} and $Y^{\prime}, X^{\prime \prime}$ and $Y^{\prime \prime}$, \&c., the several pairs of imaginary points at which they intersect with the line at infinity; and, P and Q, R and S any two pairs of points at infinity in directions at right angles to each other; then since, by the same, the several segments $X Y$, $X^{\prime} Y^{\prime}, X^{\prime \prime} Y^{\prime \prime}$, \&c. divide harmonically the same two segments $P Q$ and $R S$, therefore (230) they coincide with each other; and since, by the same again, the several angles $X O Y, X^{\prime} O^{\prime} Y^{\prime}$, $X^{\prime \prime} O^{\prime \prime} Y^{\prime \prime}$, \&c. divide harmonically the sereral pairs of parallel angles $P O Q$ and $R O S, P O^{\prime} Q$ and $R O^{\prime} S, P O^{\prime \prime} Q$ and $R O^{\prime \prime} S$, \&c. therefore (230) they are parallel to each other; consequently-
b. All circles, however situated, intersect with the line at infinity at the same pair of imaginary points, termed the two circular points at infinity.
b^{\prime}. All circles, however situated, subtend at their several centres pairs of imaginary tangents parallel to the directions of the two circular points at infinity.
3°. In the particular case where the several points $O, O^{\prime}, O^{\prime \prime}$, \&c. coincide, that is, when the several circles are concentric; since then not only the several segments $X Y, X^{\prime} Y^{\prime}, X^{\prime \prime} Y^{\prime \prime}$, de. but also the several angles $X O Y, X^{\prime} O Y^{\prime}, X^{\prime \prime \prime} \cup Y^{\prime \prime}, \& c$. coincide, and since, consequently, the several circles have not only a common pair of imaginary points X and Y at infinity, but also a common pair of imaginary tangents $O X$ and $O Y$ at those points, therefore -

All concentric circles not only intersect but also touch at the two circular points at infinity.
4°. The following property of rectangular lines, which is one of considerable inportance in the ligher branches of geometry, is evilent from the preceding propertics 1° and 2° combined, viz.

Every thoo lines intersecting at right angles are conjugate lines with resplect to the luco circular points at infinity; and, conversely, the theo circular points at infinity are conjugate points with respeet to erery theo lines intersecting at right angles (217).

Paradoxical as the above conclusions 2° and 3°, like those of Art. 13f, always appear when first stated, all doubt of their legitimacy soon vanishes on consideration of their meaning; every system of figurea, in perspective two and two, which, like circles however situated, have a common axis of perspective, intersecting (141) at the samo system of points, real or inaginary, on their axis of perspective, and touching (20) at that system of points, if, like concentric circles, they have also a second common axis of perspective coinciding with the first (151, 4°. and 207).
261. The two following reciprocal properties, one of every tetrastigm determined by four points on a circle, and the other of every tetragram deternined by four tangents to a eircle, result also immediately from the two reciprocal properties of Art. 259, viz. -
a. In every letrastigm determined by four points on a circle, the interscctions of the thre pairs of oppesile connectors determine a self reciprocal triangle with respect to the circle (170).
a'. In ctery tetragram desermined by four langents to a circle, the connectors of the three pairs of opposile intersections determine a self reciprocal triangle with respect to the circlo (170).

To prove (a). If P, Q, R, S be the four points on the circlo; A, B, C the three intersections of their three pairs of opposite
connectors $Q R$ and $P S, R P$ and $Q S, P Q$ and $R S$; and, U and U^{\prime}, V and V^{\prime}, W and W^{\prime} the three pairs of intersections of the same pairs of connectors with the three opposite sides $B C, C A, A B$ of the triangle $A B C$; then since, by the fundamental property $\left(a^{\prime}\right)$ of Art. 236, the three pencils of four rays $A . B C U U^{\prime}, B . C A V V^{\prime}$, $C . A B W W^{\prime}$ are harmonic, and since, consequently, by (221), the six rows of four points $Q R A U$ and $P S A U^{\prime}, I R P B V$ and $Q S B V^{\prime}$, $P Q C W$ and $R S C W^{\prime}$ are harmonic, therefore, by the property (a) of Art. 259, the three pairs of points U and U^{\prime}, V and V^{\prime}, W and W^{\prime} lic on the three polars of the three points A, B, C with respect to the circle; and therefore \&c. (170).

To prove a^{\prime}. If X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime} be the three pairs of opposite intersections of the tetragram determined by the four tangents at the four points P, Q, R, S on the circle; and A, B, C the three vertices of the triangle determined by their three lines of connection $X X^{\prime}, Y Y^{\prime}, Z Z^{\prime}$; then since, by the fundamental property (a) of Art. 236, the three rows of four points $B C X X^{\prime}, C A Y Y^{\prime}, A B Z Z^{\prime}$ are harmonic, and since, consequently, by (221), the six pencils of four rays $X . Q R A X^{\prime}$ and $X^{\prime} . P S A X, Y \cdot R P B Y^{\prime \prime}$ and $Y^{\prime} . Q S B Y, Z . P Q C Z^{\prime}$ and $Z^{\prime} . R S C Z$ are harmonie, therefore, by the property $\left(a^{\prime}\right)$ of Art. 259, the three pairs of lines $X A$ and $X^{\prime} A, Y B$ and $Y^{\prime} B$, $Z C$ and $Z C$ pass through the three poles of the three lines $X X^{\prime}$, $Y^{\prime} Y^{\prime}, Z Z^{\prime}$ with respect to the circle ; and therefore $\mathcal{\&} \mathrm{c}$. (170).

The reader will perceive immediately, that not only are the above properties reciprocals to their common circle in the figure, but that the demonstrations above given of them are reciprocals to it also.

Con. 1°. Since, in the former case, by (166), the four tangents to the circle at the four points P, Q, R, S intersect two and two in opposite pairs on the polars of the three points A, B, C with respect to the circle; and since, in the latter case, by (166), the four points of contact with the circle P, Q, R, S of the four tangents connect two and two in opposite pairs through the poles of the three lines $B C, C A, A B$ with respect to the circle; hence, from the above properties a and a^{\prime} combined, it appears that-

In the tetrastigm determined by any four points on a circle, and in the tetragram determined by the four corresponding tangents
to the circle, or conversely; the theo self-reciprocal triangles determined by the vertices of the thres angles of connection, in the former case, and by the axes of the three chords of intersection, in the latter case, are illentical.

Cor. 2. Again, from the harmonicism of the three pencils of four rays $A . B C U U^{\prime}, B . C A V^{\prime}, C . A B W W^{\prime \prime}$, with that of the several rows they determine on all axes, in the former case, and of that of the three rows of four points $B C X X^{\prime \prime}$, $C A Y Y^{\prime \prime}, A B Z Z^{\prime}$, with that of the several pencils they determine at all vertices, in the latter case; it appears from the same that -

In the tetrastigm determined by any four points on a circle, and in the tetragram determinal lyy the four corresponding tangents to the circle, or conversely-
a. The three pairs of opposite connectors of the former divide harmunically the three ungles of the triangle determined by the axes of the three chords of intersection of the latter.
a. The thre pairs of opposite intersections of the latter dicitls harmonically the three vides of the triangle determined by the vertices of the three angles of connection of the former.

Cor. 3°. Again, the concurrence of the four triads of lines $P A, P B, P C ; Q A, Q B, Q C ; R A, R B, R C ; S A, S B, S C$ involving, by $\left(213, a^{\prime}\right)$, the collinearity of the four triads of points $U, V^{\prime \prime}, U^{\prime \prime} ; V, W^{\prime}, U^{\prime} ; W, U^{\prime}, V^{\prime \prime} ; U, V, W^{\prime}$ in the former case; and the collinearity of the four triads of points $\bar{Y}, Z, \mathcal{L}^{\prime \prime}$; $Z, X, Y^{\prime \prime} ; X, Y, Z^{\prime} ; X^{\prime}, \Sigma^{\prime \prime}, Z$ involving, by (243, a), the concurrence of the four triads of lines $A X, B Y^{\prime \prime}, C Z^{\prime} ; B Y$, $C Z^{\prime \prime}, A X^{\prime \prime} ; C Z, A X^{\prime \prime}, B Y^{\prime \prime} ; A X, B Y, C Z$ in the latter case; it appears from the same that-

In the tetrastigm determined by any four points on a circle, and in the tetragram determined by the four corresponding tangents to the circle, or conversely -
a. The three pairs of opposite connectors of the former intersect with the axes of the three chords of interscetion of the latter at six points lying three and three on four lines.
a^{i}. The three pairs of opposite intersections of the latter connect with the vertices of the three angles of connection of the former by six lines passing three and three through four points.

Cor. 4. Again, as the four points P, Q, R, S on the circle,
taken in different orders, determine the three different inseribed quadrilaterals whose pairs of opposite vertices connect by the three pairs of lines $Q R$ and $P S, R P$ and $Q S, P Q$ and $R S$; and as the four tangents at them to the circle, taken in different orders; determinc the three corresponding exscribed quadrilaterals whose pairs of opposite sides intersect at the three pairs of points X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime}; it appears also from the same that-

In each pair of corresponding quadrilaterals determined by any four points on a circle taken in any order and by the four corresponding tangents to the circle taken in the same order-
a. The two pairs of intersections of opposite sides are collinear and harmonic.
a^{\prime}. The two pairs of connectors of opposite vertices are concurrent and harmonic.

Cor. 5°. Again, the three pairs of points B and C, C and A, A and B being the three pairs of centres of perspective of the three pairs of opposite segments $Q R$ and $P S, R P$ and $Q S$, $P Q$ and $R S$, in the former case; and the three pairs of lines $Y Y^{\prime}$ and $Z Z^{\prime}, Z Z^{\prime}$ and $X X^{\prime}, X X^{\prime}$ and $Y Y^{\prime}$ being the three pairs of axes of perspective of the three pairs of opposite angles $Q X R$ and $P X^{\prime} S, R Y P$ and $Q Y^{\prime} S, P Z Q$ and $R Z^{\prime} S$, in the latter ease; it appears also from the same that-
a. The two centres of perspective of any two chords inscribed to a circle are conjugate points with respect to the circle, and connect harmonically with the intersection of the axes of the chords by a pair of conjugate lines with respect to the circle.
a^{\prime}. The two axes of perspective of any two angles exscribed to a circle are conjugate lines with respect to the circle, and intersect harmonically with the connector of the vertices of the angles at a pair of conjugate points with respect to the circle.

From these latter propertics it may be easily shewn conversely that-
b. When the directions of any two chords inscribed to a circle divide harmonically the angle determined by amy two conjugate lines with respect to the circle, the two centres of perspective of the chords are the two poles of the lines.
b. When the vertices of any two angles exscribed to a circle divide harmonically the segment determined by any two conjugate
points with respect to the circle, the tico axes of perspective of the angles are the two polars of the points.

For, in the former case, if $Q R$ and PS be the two chonts; $A B$ and $A C$ the two conjugate lines; B the pole of either of then $A C$ with respect to the circle ; $B Q$ and $B R$ its comectors with the extremitics of either chord $Q R$; and $P^{\prime} S^{\prime}$ the connector of the two second intersections of $B R$ and $B Q$ with the circle; then since, by the above (a), the two lines $Q R$ and $P^{\prime} S^{\prime}$ pass through the point A and divide harmonically the angle BAO O, and since, by hypothesis, the two lines $Q R$ and $D S$ do the same, therefore the two lines $P^{\prime} S^{\prime}$ and $P^{\prime} S^{\prime}$ coincide; and therefore die. And, in the latter case, if $Q J^{\circ} R$ and $P N^{\prime \prime} S$ be the two angles; B and C the two conjugate points; $A C$ the polar of cither of them B with respect to the circle; Γ and $Y^{\prime \prime}$ its intersections with the sides of either angle $Q X I R$; and $X^{\prime \prime \prime}$ the intersection of the two second tangents from l° nnd $Y^{\prime \prime}$ to the circle; then since, by the above (a^{\prime}), the two proints X° and X° lie on the line $B C$ and divide harmonically the segment $B C$, and since, by hypothesis, the two points X^{\prime} and $X^{\prime \prime}$ do the same, therefore the two points $X^{\prime \prime}$ nul $X^{\prime \prime \prime}$ coincide; and therefore de.

It is evident, from these latter properties, that for every trianjle self-recijrocal with respect to a circle, an infinite number of tetrastigms could be inscribed to the circle vehose juirs of oplosite points could conarct through the evertions of the trianyle, and an infinito number of tetrayrams could be exscribal to the circle schase puirs of opprosite lines would interacel on the sides of the triangl. For, by thoso properties, every pair of lines dividing harmonically any angle of the triangle would determine four points on the circle fulfilling the former condition, and every pair of points dividing harmonically any side of the trianglo would determine four tangents to the cirele fulfilling the latter condition; and therefore \&e.

Cor. 6°. Again, the three pairs of points X and $X^{\prime \prime}, 5$ and $I^{\prime \prime}, Z$ and Z^{\prime}, and the three pairs of lises $Q R$ and $P S, R P^{\prime}$ and $Q S, P Q$ and RS being pole and polar to each other with respect to the circle; therefore, from the harmonicism of the three rows of four points $I 3 C A X^{\prime}, C A Y Y^{\prime}, ~ A B Z Z^{\prime}$, and of the three pencils of four rays A.BCUU', B. CAVV', C.ABWW', it appears from the same, as in Cors. 2° and 4°, that-
a. For every two chords inscribed to a circle, the two poles of their directions are collinear with, and harmonic conjugates with respect to, their two centres of perspective.
a^{\prime}. For every two angles exscribed to a circle, the two polars of their vertices are concurrent with, and harmonic conjugates with respect to, their two axes of perspective.

Cor. 7°. Again, since, by the second part of Art. 257, the three lines $B C, C A, A B$ determine the three pairs of points on the circle, and the three points A, B, C determine the three pairs of tangents to the circle, which divide harmonically the three pairs of arcs $Q R$ and $P S, R P$ and $Q S, P Q$ and $R S$; it appears also, from the same, that-
a. The two centres of perspective of any two chords inscribed to a circle are collinear with the two points on the circle which divide harmonically the two arcs intercepted by the chords.
a^{\prime}. The two axes of perspective of any two angles exscribed to a circle are concurrent with the two tangents to the circle which divide harmonically the two arcs intercepted by the angles.

Of these latter properties the first (a) supplies an obvious and very rapid method of determining by linear constructions only, without the aid of a circle, the two points on a given circle which divide two given ares of it harmonically. See Arts. 230 and 257, Cor. 4°.

Cor. 8°. Again, every three of the four points P, Q, R, S on the circle, in the former case, determining an inscribed triangle whose three sides pass through the three points A, B, C, every two of which are conjugates to each other and to the third with respect to the circle; and every three of the four tangents at the four points P, Q, R, S to the circle, in the latter ease, determining an exscribed triangle whose three vertices lie on the three lines $B C, C A, A B$, every two of which are conjugates to each other and to the third with respect to the circle; it appears also, from the same, that-
a. In every triangle inscribed to a circle, every two of the three sides intersect with cvery line conjugate to the third at a pair of comjugate points with respect to the circle.
a^{\prime}. In every triangle exscribed to a circle, every two of the three vertices connect with cvery point conjugate to the third by ψ pair of conjugate lines with respect to the circle.

From these latter properties it may be easily shewn that conversely-
l. When, of a triangle inscribed to a circle, two of the three sides pass through a pair of conjugate points with respect to the circle, the third pusses through the pole of their line of connection.
l'. When, of a triangle exscribed to a circle, two of the three vertices lie on a pair of conjugate lines zeith respect to the circle, the third lies on the polar of their point of intersection.

For, in the former case, if $P Q R$ be the inscribed triangle whose two sides $P R$ and $P Q$ pass through the two conjugate points B and C with respect to the circle; A the pole of the line $B C$; and V and W the two points at which the two lines $A C$ and $A B$, which, by $(175,5 \%$, are the polars of the two points B and C, intersect with the aforessid sides $P R$ and $P Q$ of the triangle; then, the two rows of four points PRBV and $P Q C W$, having the common point P, being harmonic $(259, a)$, therefore, by $\left(222,5^{\circ}\right.$), the three lines $B W^{\circ}, C V$, and $Q R$ are concurrent ; and therefore \&ic. And, in the latter case, if $X Y^{-} \%$ be the exscribed triangle whose two vertices $I^{\prime \prime}$ and Z lie on the two conjugnte lines $A C$ and $A B$ with respect to the circle; $B C$ the polar of the point A; and $B I^{\circ}$ and $C Z$ the two lines by which the two points B and C, which, by $\left(175,5^{\circ}\right)$, are the polars of the two lines $A C$ and $A B$, comect with the aforesaid vertices Y and Z of the triangle; then, the two pencils of four rags Y.Z.XBC' and $Z . Y^{\prime \prime} X B C$, laving the common ray $I^{\circ} Z$, being harmonic ($259, a^{\prime}$), therefore, by (222,6$)^{\circ}$), the three points B, C, and X are collinear; and therefore \&e.

Cor. 9°. If, while the two triangles $P Q R$ and $X Y^{F} Z$ determined by any three of the four points on the circle, in the former case, and by the corresponding three of the four tangents to the circle, in the latter case, with the circle to which they are respectively inscribed and exscribed, are supposed to remain fixed; the triangle $A B C$, connected with them as above, be conceived to vars, in consequence of the simultancous variation of the fourth point S and of the corresponding tangent $X^{\prime} Y^{\prime \prime} Z^{\prime}$, on which, in that case, it of course depends; then since, by the above, the triangle $A B C$ in every position is self-reciprocal with respect to the circle; it appears, consequently, that-

For every theo triangles determined by any three points on a
circle and by the three corresponding tangents to the circle, or conversely, an infinite mumber of triangles could be constructed, at once inscribed to the former and exscribed to the latter, and all self-reciprocal with respect to the circle.

It is evident, from this latter, that the solutions of the two reciprocal problems, "for a given circle to determino a selfreciprocal triangle either inscribed to any triaugle inscribed to itself or exscribed to any triangle exscribed to itself," are both indeterminate.

Cor. 10°. If, on the other hand, while the triangle $A B C$, with the circle to which it is self-reciprocal, are supposed to remain fixed; the two triangles $P Q R$ and $X Y Z$, comnected with them as above, be conceived to vary simultancously, in consequence of the simultaneous variation of the point S and of the tangent $X^{\prime} Y^{\prime} Z^{\prime}$, on which, in that case, they of course depend; then since, by the above, the two triangles $P Q R$ and XYZ respectively inscribed and exscribed to the circle are respectively exscribed and inscribed to the triangle $A B C$; it appears, consequently, that-

Fur every triangle self-reciprocal with respect to a circle, an infinite number of triangles could be constructed at once inscribed to the circle and exscribed to the triangle; and, also, an infuite number of corresponding triangles at once exscribed to the circle and inscribed to the triangle.

It is evident, from this latter, that the solutions of the two reciprocal problems, "for a given circle to determine either an inscribed triangle exseribed to, or an exscribed triangle inscribed to, any self-reciprocal triangle with respect to itself," are both indeterminate.

Cor. 11°. Of the three triangles $P Q R, X Y Z$, and $A B C$, thus constituting in every position a cycle in which each triangle is inseribed to one and exscribed to the other of the remaining two; the two first being in perspective, with the third by virtue of their relations of connexion with it, and with each other by virtue of the general property 1° of Art. 180; it appears consequently that-

In cvery cycle of three triangles determined by any arbitrary triangle, any exscribel triungle inscribed to its polar circle, and
the corresponding inscribed triangle exscribad to its polar circle, every tuo of the three are in perspective (140).

It will be shewn, in another chapter, that for every cyele of three triangles, however originating, in which, as above, each triangle is inseribed to one and exscribed to the other of tho remaining two, when any two of the three are in perspective every two of the three are in perspective.

Cors. 12°. The centre of perspective S of the two triangles $P Q R$ and $A B C$ being a point on the circle, and the axis of perspective $\Gamma^{\prime} \Gamma^{\prime \prime} Z^{\prime}$ of the two $N \Gamma \%$ and $A B C$ being a tangent to the circle ; it appears consequently also that-
a. The centre of perspective of any triungle, with any exscribed triungle inscribed to its prolur circle, is a point on the circle.
a. The axis of perspnctive of any triungle, with any inacribal triangle cesseribal to its polar circle, is a tanyent to the circle.

It is evident that when, for the rame original triangle, the two derived triangles in those properties correapoud, the point on and tangent to the polar circle correppond also.

Cort. 13. If O be the point of concurrence of the three lines of connection $P X, Q Y ; J \%$ of the three pairs of corresponding vertices P and X, Q and Y, I and Z, and I the line of collinearity of the three points of intersection $P^{\nu}, Q^{\prime}, R^{\prime}$ of the three pairs of corresponding sides Q / R and $\bar{Z}, \Omega, R P$ and $Z X^{\circ}$, $P Q$ and $X Y$, of the two triangles $P Q R$ and $X Y Z$; then, from the harmonicism of the three pencils of tour rays $P . Q 16 . \mathrm{XX}^{\prime}$, Q.RPYY', R.PQZZ ($236, \pi$), and consequently (221) of the two rows of four points determined by any two of them on the two non-corresponding sides of the triangle $A B C$ through whose intersection their two vertices connect, which two rows have that intersection fur a common point; therefure, by ($(322,59$, the point O, that is, the centre of perspective of the two triangles $P Q R$ and $X Y Z$, is collinear with the threo points U, V, W, that is, with the axis of perspective of the two triangles $P^{\prime} Q R$ and $A B C$; and, from the harmonicism of the three rows of four points $Y^{\prime \prime Z P P}, Z^{\prime} Q Q Q, N Y R R^{\prime}\left(236, a^{\prime}\right)$, and consequently (221) of the two pencils of four rays deter-
mined by any two of them at the two non-corresponding vertices of the triangle $A B C$ on whose connector their two axes intersect, which two pencils have that connector for a common ray; therefore, by $\left(222,6^{\circ}\right)$, the line I, that is, the axis of perspective of the two triangles $P Q R$ and $X Y Z$, is concurrent with the three lines $A X, B Y, C Z$, that is, with the centre of perspective of the two triangles $X Y Z$ and $A B C$; hence it appears that-

In every cycle of three triangles determined by any arbitrary triangle, any exscribed triangle inscribed to its polar circle, and the corresponding inscribed triangle exscribed to its polar circle.
a. The centre of perspective of the second and third lies on the axis of perspective of the first and second.
a^{\prime} The axis of perspective of the second and third passes through the centre of perspective of the first and third.

The centre of perspective S of the two triangles $P Q R$ and $A B C$ lying also, evidently, on the axis of perspective $X^{\prime} Y^{\prime} Z^{\prime}$ of the two triangles $X Y Z$ and $A B C$; these propertics for the whole three triangles may consequently be stated more symmetrically as follows:-

In every cycle of thrce triangles determined by any arbitrary triangle, any exscribed triangle inscribed to its polar circle, and the corresponding inscribed triangle exscribed to its polar circle; the centre of perspective of each with that to which it is inscribed lies on its axis of perspective with that to which it is exscribed.

It will be scen, in another chapter, that this latter property is true generally of every cycle of three triangles, each inscribed to one and exscribed to the other of the remaining two and in perspective with either and consequently with both.

Cor. 14°. Since, from the harmonicism of the three rows of four points $Q R A U, R P B V, P Q C W$, the line of collinearity of the three points U, V, W is the polar of the point of concurrence of the three lines $A P, B Q, C R$ with respect to the three sides of the triangle $P Q R\left(250\right.$, Cor. $\left.2^{\circ}\right)$; and since, from the harmonicism of the three pencils of four rays $X . Y Z A X^{\prime}$, $Y . Z X B Y^{\prime}, Z . X Y C Z$, the point of concurrence of the three lines $A X, B Y, C Z$ is the pole of the line of collinearity of the three points $X^{\prime}, Y^{\prime}, Z^{\prime}$ with respect to the three rertices of the triangle $X Y Z\left(250\right.$, Cor. $\left.2^{\circ}\right)$; hence, conceiving the point S and
the line $X^{\prime \prime} Y^{\prime} Z^{\prime}$ to vary while the two triangles $P Q R$ and $X I Z$ remain fixed, it follows from the two reciprocal properties a and a^{\prime} of the preceding corollary (12°), that-
a. If a variable point describe a fixed circle, its polar with respect to the three sides of any inscribed triangle turns round a fired point, the centre of perspective of the inscribed with the corresponding exscribed triungle.
a^{\prime}. If a variable line envelopo a fixed circle, its pole with respect to the three vertices of any exscribed triangle moves upon a fired line, the axis of perspective of the cascribed with the corresponding inscribed triangle.

In the particular case when both triangles are equilateral, their centre and axis of perspective, in all cases evidently polo and polar to each other with respect to the circle, being then the centre of the circle and the line at infinity (142), it follows from the converses of the preceding properties a and a^{i}, that-
b. If a variable line turn round a fired point, its pole scith respect to the three vertices of any equilateral trimgle concentric with the point describes the circlo circumacribed to the triangle.
b. If a mariable point describe the line at infinity, its polar with respect to the three sides of any equilateral triungle enreleqpes the circle inscribed to the triangle.

The polar of a point at infinity, with respect to any system of lines, being the diameter, corresponding to its direction, of the polygram determined by the lines $(248, c)$; this latter property b is therefore identical with that stated in the concluding paragraph of Art. 126, viz., that in cevery equilateral triungle the several diameters of the figure envelope its inscribed circle.

Con. 15°. Again, since from the hamonicism of the three rows of four points $B C U U^{\prime}, C A V^{\prime}, A B W^{\prime} H^{\prime \prime}$, the line of collinearity of the three points U, V, W is the polar of the point of concurrence of the three lines $A U^{\prime}, B V^{\prime}, C W^{\prime}$ with respect to the three sides of the triangle $A B C$; and since, from the harmonicism of the three rows of four points $B C X^{\prime}, C A Y Y^{\prime \prime}, A B Z Z$, the point of concurrence of the three lines $A X, B 1, C Z$ is the pole of the line of collinearity of the three points $X^{\prime \prime}, Y^{\prime \prime}, Z^{\prime \prime}$ with respect to the three vertices of the triangle $A B C$; hence, from the same, again, it appears also, that-
a. The pole, with respect to the three vertices of any triangle, of its axis of perspective with any exscribed triangle inscribed to its polar circle, is a point on the circle.
a^{\prime}. The polar, with respect to the three sides of any triangle, of its centre of perspective with any inscribed triangle exscribed to its polar circle, is a tangent to the circle.

It is evident, as in Cor. 12°, that when, for the same original triangle, the two derived triangles in those properties correspond, the point on and tangent to the polar circle correspond also.
262. From the two reciprocal properties of the preceding article, combined with the general property $\left(180,1^{\circ}\right)$ that every two triangles reciprocal polars to each other with respect to a circle are in perspective, the two following reciprocal properties of a triangle with respect to an arbitrary circle can be readily inferred, viz.-
a. The three angles, subtended at the vertices of a triangle by the three pairs of intersections of its opposite sides with an arbitrary circle, determine three second pairs of intersections with the circle whose connectors intersect collinearly with the corresponding sides of the triangle.
a^{\prime}. The three segments, intercepted on the sides of a triangle by the three pairs of tangents from its opposite vertices to an arbitrary circle, determine three second pairs of tangents to the circle whose intersections connect concurrently with the corresponding vertices of the triangle.

For, in the case of a, if A, B, C be the three vertices of the triaugle; X° and $X^{\prime \prime}, Y^{\prime}$ and $Y^{\prime \prime}, Z$ and $Z^{\prime \prime}$ the three pairs of intersections of its opposite sides with the circle; U and $U^{\prime \prime}$, V and $V^{\prime \prime}, W$ and W^{\prime} the three second pairs of intersections of the thrce angles $X A X^{\prime}, I^{\prime} B Y^{\prime \prime}, Z C Z^{\prime}$ with the circle; and P, Q, R the three intersections of the three pairs of lines $U U^{\prime \prime}$ and $\mathcal{X}^{\prime \prime}, V V^{\prime \prime}$ and $Y \Sigma^{\prime \prime}, W^{\prime \prime}$ and $Z Z^{\prime}$; then since, by the general property (a) of the preceding article, the three points I, Q, I lic on the polars of the three points A, B, C with respect to the circle; therefore, by the general property ($150,1^{\circ}$), they lie on the axis of perspective of the triangle $A B C$ and its polar triangle $A^{\prime} B^{\prime} C^{\prime}$ with respect to the circle; and therefore \&e. And, in the case of a^{\prime}, if A, B, C, as before, be the three vertices of the triangle; $X X^{\prime \prime}, \Gamma Y^{\prime \prime}, Z^{\prime \prime}$, the three segments intercepted on its opposite sides by the three pairs of

tangents from them to the circle; and P, Q, R the three intersections of the three second pairs of tangents $N U$ and $X^{\prime \prime} U^{\prime}$, $Y V$ and $Y^{\prime} V^{\prime}, Z W$ and $Z^{\prime} W^{\prime}$ from the three pairs of points X and $X^{\prime \prime}, Y$ and $Y^{\prime \prime}, Z$ and Z^{\prime} to the circle; then since, by the general property (a^{\prime}) of the preceding article, the three lines $P A, Q B, R C$ pass through the poles of the three lines $B C, C A$, $A B$ with respect to the circle ; therefore, by the general property
($180,1^{\circ}$), they pass through the centre of perspective of the triangle $A B C$ and its polar triangle $A^{\prime} B^{\prime} C^{\prime}$ with respect to the circle; and therefore \&c.

Cor. In the particular cases when the circle either passes through the three vertices or touches the three sides of the triangle ; since then, in either case, the three lines $U U^{\prime}, V V^{\prime}$, $W W^{\prime}$, in a, are the polars of the three vertices, and the three points P, Q, R, in a^{\prime}, are the poles of the three sides, of the triangle $A B C$, with respect to the circle; the above properties give consequently, in those cases, the two reciprocal properties, established originally on other principles in Examples 3° and 4°, Art. 137, and inferred subsequently, as particular cases, firstly, from the two reciprocal theorems of Pascal and Brianchon (148, a and b) respecting any hexagon inscribed and exseribed to a circle, and afterwards, from the general property of $\left(180,1^{\circ}\right)$ respecting any two triangles reciprocal polars to each other with respect to a circle.
263. By virtue of the same general property $\left(180,1^{\circ}\right)$ respecting the perspective of every two triangles reciprocal polars to each other with respect to a circle, the two reciprocal properties, b and b^{\prime}, Cor. 5°, of the same article (261), supply the following very elegant reciprocal solutions of the two reciprocal problems-
a. To construct a triangle at once exscribed to a given triangle and inscribed to a given circle.
a^{\prime}. To construct a triangle at once inscribed to a given triangle and exscribed to a given circle.

In a, if $A B C$ be the given triangle ; $A^{\prime} B^{\prime} C^{\prime}$ its polar triangle with respect to the given circle; and D, E, F the three points of intersection of the three concurrent connectors $A A^{\prime}, B B^{\prime}$, $C C^{\prime}$ with the three corresponding sides $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}, A^{\prime} B^{\prime}$ of the latter triangle; then, of the six intersections of the three lines $E F, F D, D E$ with the circle, one set of three for different lines determine one $X Y Z$, and the other set of three the other $X^{\prime} Y^{\prime} Z^{\prime}$, of the two triangles required.

For, the three pairs of lines $B^{\prime} C^{\prime}$ and $A D, C^{\prime} A^{\prime}$ and $B E$, $A^{\prime} B^{\prime}$ and $C F^{\prime}$ being conjugate pairs with respect to the circle (174), and the three angles they determine being cut har-

monically by the corresponding angles of the triangle DEF determined by their three vertices (242, a^{\prime}); therefore, by property b, Cor. 5° of Art. 261, the three pairs of lines $Y \%$ and $Y^{\prime \prime} K^{\prime}, Z X$ and $Z^{\prime} X^{\prime \prime}, X Y$ and $X^{\prime \prime} Y^{\prime \prime}$ pase through the three points A, B, C respectivels; and therefore ©ic.

In a^{\prime}, if $A B C$ (tig., pnge 95) be the given triangle; $A^{\prime} B^{\prime} C^{\prime}$ its polar triangle with respect to the given circle; L, M, N, N the three collinear intersections of $B C$ and $B^{\prime} C^{\prime \prime}, C^{\prime} A$ and $C^{\prime \prime} A^{\prime}$, $A B$ and $A^{\prime} B^{\prime}$; and $P, Q, I B$ the three vertices of the triaugle deterninined by the three connectors of L, M, N with the corresponding vertices $A^{\prime}, B^{\prime}, C^{\prime \prime}$ of the polar triangle; then, of the six tangents frmm the three points P, Q, R to the circle, one set of three for different points deternine one $\mathrm{AI} Z$, and the other set of three the other $X^{\prime \prime} Y^{\prime \prime} Z^{\prime}$, of the two triangles required.

For, the three pairs of poiuts A^{\prime} and L, B^{\prime} and $M, C^{\prime \prime}$ and N being conjugate pairs with respect to the circle (174), and the three segments they determine being cut harmonically by the corresponding sides of the trianglo $P Q R$ determined by their three axes (242, a) ; therefore, by property b, Cor. 3° of Art. 261, the three pairs of points X and $X^{\prime \prime}, Y$ and $Y^{\prime \prime}, Z$ and Z^{\prime} ' lie on the three lines $B C, C A, A B$ respectively; and therefore $\mathbb{d} \mathrm{c}$.

Cor. In the particular case when the given triangle is self-reciprocal with respect to the given circle (170), the two triangles $1 B C$ and $A^{\prime} B^{\prime} C^{\prime}$ then coincide, and the two preceding vol. 11 .

constructions are consequently indeterminate; hence, as shewn already in Cor. 10°, Art. 261, the solutions of the two reciprocal problems to construct a triangle either exscribed to a given triangle and inscribed to its polar circle or inscribed to a given triangle and exscribed to its polar circle are both indeterminate.
264. For every triangle self-reciprocal with respeet to a circle (170), the following metric relation results readily from the
general property a of Art. 259, combined with the property of every right-angled triangle given in 4°, Cor. 2°, Art. 83 , viz.-

For any triangle self-reciprocal with respect to a circle, if A, B, C be the thres vertices, $A R, B S, C T$ ' the three tangonts from them to the circle, and P any arbitrary point on the latter, then alvorys-

$$
A R^{4} \cdot(B P C)^{2}+B S^{2} \cdot(C P A)^{2}+C T^{2} \cdot(A P B)^{2}=0
$$

the quantitiss within the parentheses signifying the areas of the three triangles they respectively represernt.

For, if C bo the vertex of the triangle internal to the circle, Q the second intersection of the line $C P$ with the circle, D its intersection with the side $A B$ of the triangle opposite to C, and $D U$ the tangent from D to the circle; then since, from the harmonicisu of the system of four points $C D P Q$ (259, a),

$$
\frac{C P^{\prime 2}}{D I^{\prime \prime}}=-\frac{C P^{\prime} \cdot C Q}{D P \cdot D Q}=-\frac{C T^{\prime 2}}{D U^{\prime \prime}}
$$

(Euc. III. 35, 36), therefore, at onee, multiplying by the square of $A B$,

$$
C P^{2} \cdot A B^{2} \cdot D U^{2}+D I^{x} \cdot A B^{3} \cdot C T^{3}=0
$$

from which, assuming for a moment that

$$
B D^{4} \cdot A 1 C^{2}+A D D^{2} \cdot B S^{t}=A B^{3} \cdot D U^{z}
$$

it follows of course, at once, that

$$
C I^{n} \cdot B D^{3} \cdot A R^{6}+C P^{n} \cdot A D^{2} \cdot B S^{3}+D P^{x} \cdot A B^{2} \cdot C T^{2}=0
$$

which is manifestly equivalent to the above, the three parallelograms $C P . B D, C I \cdot A D, D P . A B$ (see figure) being the doubles of the three triangles $B P C, C P A, A P B$ respectively; and therefore ide.

To prove the relation assumed in the above; if E and F (see figure) be the two points inverse at once to the circle and to the line $A B$ (149), which, by (156) and (177), lie both on the circle on $A B$ as diameter; then since, by (15i) $A R=A E=A F$, $B S=B E=B F, D U=D E=D F$, and since by the relation 4°,

Cor. 2°, Art. 83 , the two angles $A E B$ and $A F B$ being both right (Euc. III. 31),

$$
B D^{4} \cdot A E^{y}+A D^{2} \cdot B E^{2}=A B^{2} \cdot D E^{2},
$$

and $\quad B D^{2} \cdot A F^{2}+A D^{2} \cdot B F^{2}=A B^{2} . D F^{2}$,
therefore $\quad B D^{2} . A R^{2}+A D^{2} . B S^{2}=A B^{2} . D U^{z}$;
and thercfore \&c.
265. The two following reciprocal properties, again of every tetrastigm inscribed and of every tetragram exscribed to a circle, result readily from those of Cor. 10°, Art. 62, and of 4°, Cor. 2°, Art. 179, combined with those of Cors. 3° and 6°, Art. 235, viz.-
a. The four segments intercepted on any arbitrary line, by any circle and by the three angles of connection of any inscribed tetrastigm, have a common segment of harmonic section, real or imaginary.
a^{\prime}. The four angles subtended at any arbitrary point, by any circle and by the three chords of intersection of any exscribed tetragram, have a common angle of harmonic section, real or imaginary.

To prove a. If L and L^{\prime}, M and $M I^{\prime}, N$ and N^{\prime} be the three pairs of opposite connectors of the tetrastigm; X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime} their three pairs of intersections with the line; and P and Q the two intersections of the latter with the circle; then since, by the property, Cor. 10°, Art. 62,

$$
\begin{aligned}
& P L \cdot P L^{\prime}=P M \cdot P M^{\prime}=P N \cdot P N^{\prime} \\
& Q L \cdot Q L^{\prime}=Q M \cdot Q M^{\prime}=Q N \cdot Q N^{\prime} ;
\end{aligned}
$$

and, since evidently, by pairs of similar triangles,

$$
\begin{aligned}
& \frac{P L}{Q L}=\frac{P X}{Q X}, \quad \frac{P M}{Q M}=\frac{P Y}{Q Y}, \quad \frac{P N}{Q N}=\frac{P Z}{Q Z} \\
& \frac{P L^{\prime}}{Q L^{\prime}}=\frac{P X^{\prime}}{Q X^{\prime}}, \quad \overline{P M^{\prime}}=\frac{P Y^{\prime}}{Q Y^{\prime}}, \quad \frac{P N^{\prime}}{Q N^{\prime}}=\frac{P Z^{\prime}}{Q Z^{\prime}},
\end{aligned}
$$

therefore, at once, by division,

$$
\frac{P X \cdot P X^{\prime}}{Q X \cdot Q X^{\prime \prime}}=\frac{P Y \cdot P Y^{\prime}}{Q Y \cdot Q Y^{\prime \prime}}=\frac{P Z \cdot P Z^{\prime}}{Q Z \cdot Q Z^{\prime}}
$$

and therefore \&c.; the three segments $X X^{\prime}, Y Y^{\prime}, Z Z^{\prime}$ having consequently, by (235, Cor. 3°), a common segment of harmonic section, real or imaginary, with the seginent $P Q$.

To prove a^{\prime}. If P and P^{\prime}, Q and Q^{\prime}, R and R^{\prime} be the three pairs of opposite intersections of the tetragram; U and U^{\prime}, V^{\prime} and V^{\prime}, W and W^{\prime} their three pains of connectors with the point; and L and M the two tangents from the latter to the circle; then since, by the property 4°, Cor. 2°, Art. 179,

$$
\frac{P L \cdot P^{\prime} L}{P M \cdot P^{\prime} M}=\frac{Q L \cdot Q^{\prime} L}{Q M \cdot Q^{\prime} M}=\frac{R L \cdot R^{\prime} L}{R \cdot M \cdot R M}
$$

and since, ovidently, by (6t),

$$
\begin{array}{lll}
\frac{P L}{P M}=\frac{\sin L U}{\sin M U^{\prime}}, & \frac{Q L}{Q M}=\frac{\sin L V^{\prime}}{\sin M V^{\prime}}, & \frac{R I}{R M}=\frac{\sin L W^{\circ}}{\sin M W^{\prime}}, \\
P^{\prime} L \\
P^{\prime} M & \sin L U^{\prime}, & Q^{\prime} L \\
\sin M U^{\prime}, & \frac{\sin L V^{\prime}}{Q^{\prime} M}=\frac{I K^{\prime} L}{\sin M V^{\prime},} \quad I K M & =\frac{\sin L W^{\prime}}{\sin M W^{\prime}},
\end{array}
$$

therefore, at once, by substitution,

$$
\frac{\sin L U \cdot \sin L U^{\prime}}{\sin M U \cdot \sin M U^{\prime}}=\frac{\sin L V \cdot \sin L V^{\prime}}{\sin M V^{\prime} \cdot \sin M V^{\prime}}=\frac{\sin L H \cdot \sin L W^{\prime \prime}}{\sin M W \cdot \sin M W^{\prime}},
$$

and therefore \&e. ; the three angles $U U^{\prime}, I^{\prime} V^{\prime}$, $U^{\prime \prime} W^{\prime \prime}$ having consequently, by (235 , Cor, 6°), a common angle of harmonic section, real or imaginary; with the angle I.M.

The above reciprocal properties evidently verify, for the particular cases of tetrastigms inscribed and of tetragrams exscribed to circles, the general properties established for all tetrastigns and tetragrams in Cor. 3°, Art. 245.

Cor. 1. The extremitics of the common segment of harmonic section, in the former case, being conjugate points, by (245, Cor. $1^{\circ}, b^{\prime}$), with respect to the tetrastigm, and, by ($259, a$), with respect to the circle; and the sides of the common augle of harmonic section, in the latter case, being coujugate lines, by (245, Cor. $1^{\circ}, b$), with respect to the tetragram, and, by ($259, a^{\prime}$), with respect to the circle; hence, from the above, it appears that-
a. Every two conjugate points with respecte to any tetrastigm inscribed to a circle are conjingate points with respect to the circle.
a^{\prime}. Every two conjugate lines with respect to any tetragram exscribed to a circle are conjugate lines with respect to the circle.

Cor. 2. Since, for every two points conjugates at once with respect to a circle and to any inscribed tetrastigm, the four polars of either, with respect to the circle and to the three angles of
connection of the tetrastign, pass through the other (174, and 245, Cor. $5^{\circ}, f^{\prime}$) ; and since, for every two lines conjugates at onco with respect to a circlo and to any exscribed tetragram, the four poles of cither, with respect to the eircle and to the three chords of intersection of the tetragram, lie on the other (174, and 245 , Cor. $5^{\circ}, f$); hence also, from the above, it appears that-
a. The four polars of any point, with respect to any circle and to the three angles of connection of any inscribed tetrastigm, are concurrent.
a. The four poles of any line, with respect to any circle and to the three chords of intersection of any exscribed tetragram, are collinear.

Cor. 3°. The centre of any circle and the line at infinity being pole and polar to each other with respect to the circle; it appears, from the latter properties, for the particular cases when the point in a is the centre of the circle and when the line in a^{\prime} is the line at infinity, that-
a. The three polars of the centre of a circle, with respect to the three angles of connection of any inscribed tetrastigm, are concurrent with the line at infinity.
a^{\prime}. The three poles of the line at infinity, with respect to the three chords of intersection of any tetragram exscribed to a circle, are collinear with the centre of the circle.

Tho pole of any segment with respect to the line at infinity being the middle point of the segment $\left(216,3^{\circ}\right)$; the latter property a^{\prime} may be stated, otherwise thus, as follows-

In cvery tetrastigm determined by four tangents to a circle, the three middle points of the three chords of intersection of the figure are collinear with the centre of the circle.

This property the reader may very easily verify, à priori, for himself.

Cor. 4°. Again, every point at infinity and the diameter of any circle perpendicular to its direction being pole and polar to each other with respect to the circle; it appears also, from the same properties, for the particular cases where the point in a is at infinity and where the line in a^{\prime} passes through the centre of the circle, that-
a. The three polars of any point at infinity, with respect to the three angles of connection of any tetrastigm insoribed to a circle, are concurrent with the diameter of the circle perpendioular to the direction of the point.
a'. The three poles of any diameter of a circle, with respect to the three chords of intersection of any tetragram exscribed to the circle, are collinear with the point at infinity in the direction perpendicular to the diameter.

Cor. 5°. Again, every point on a circle and the tangent at it to the circle being pole and polar to each other with respect to the circle; it appears also, from the same properties, for the particular cases when the point in a is on the circle and when the line in a^{\prime} touches the circle, that-
a. The three polars of any point on a circle, with respect to the three angles of connection of any inseribed tetrastigm, are concurrent with the tangent at the proint.
a^{\prime}. The three poles of any tangent to a circle, with respect to the thres chords of intersection of any exscribed tetragram, are collinear with the point of contact of the tanjent.

Con. 6°. In the particular cases, of the original properties of the present article, when the arbitrary line in a is the line at infinity and when the arbitrary point in a^{a} is the centre of tho circle; since, by ($260,1^{\circ}, a^{\prime}$), every two points harmonic conjugates with respect to the two circular points at intinity subtend right angles at all points not at intinity, and since, by $\left(216,3^{\circ}\right)$, the sides of all right angles are the bisectors of all angles they cut harmonically; it appears, consequently, from them, for those particular cases, that-
a. In cevery tetrastigm inscribed to a circle, the three segments intercepted by the three angles of connection on the line at infinity subtend at every point three angles having a common pair of bisectors.
a^{\prime}. In every tetragram exsoribed to a circle, the three angles subtended by the three chords of intersection at the centre of the circle have a common pair of bisectors.

These properties, like those of Cor. 3°, the reader may easily verify, ì priori, for himself.
266. The two following reciprocal propertics, analogous to those of Art. 246, are cvident from those of Art. 259, viz.-
a. If on a variable line L, turning round a fixed point O, and intersecting a fixed circle A_{0}^{-}at two variable points X_{1} and X_{2}, a variable point P be taken so as to satisfy the relation

$$
\frac{P X_{1}}{O X_{1}}+\frac{P X_{2}}{O X_{2}}=0
$$

the point P moves on a fixed line 1 ; the polar, viz., of the point O with respect to the circle.
a^{\prime}. If through a variable point P, moving on a fixed line I, and subtending a fixed circle A_{0} by two variable tangents U_{1} and U_{2}, a variable line be drawn so as to satisfy the relation

$$
\frac{\sin L U_{1}}{\sin I U_{1}}+\frac{\sin L U_{2}}{\sin I U_{2}}=0
$$

the line L turns round a fixed point O; the pole, viz., of the line I with respect to the circle.

For, in the case of a, the two points O and P, being harmonic conjugates with respect to the two X_{1} and $X_{2}(214)$, are conjugate points with respect to the circle (259), and therefore $\& c .\left(175,1^{\circ}\right)$; and, in the case of a^{\prime}, the two lines I and L, being harmonic conjugates with respect to the two U_{1} and U_{3} (214), are conjugate lines with respect to the circle (259), and therefore \&e. $\left(175,1^{\circ}\right)$.
267. The two reciprocal properties of the preceding article, respecting a single circle, are evidently particular cases of the two following, respecting a system of any number of circles; which are analogous to those of Art. 248 respecting a system of any number of lines, and with the establishment of which we shall conclude the present long Chapter.
a. If on a variable line L, turning round a fixed point O, and intersecting any system of fixed circles A_{0}, B_{0}, C_{0}, \&cc. at a system of pairs of variable points X_{1} and X_{2}, Y_{1} and Y_{2}, Z_{1} and Z_{2}, dec., a variable point P be taken so as to satisfy the relation
a. $\left(\frac{P X_{1}}{O X_{1}}+\frac{P X_{2}}{O X_{8}}\right)+b \cdot\left(\frac{P Y_{1}}{O Y_{1}}+\frac{P Y_{2}}{O Y_{2}}\right)+c \cdot\left(\frac{P Z_{1}}{O Z_{1}}+\frac{P Z_{2}}{O Z_{2}}\right)+\& c .=0$,
a, b, c, dec. being any system of finite multiples, positive or negative; the point P moves on a fixed line 1 , termed the polar of the point O with respect to the system of circles A_{0}, B_{0}, C_{0}, $d c$. for the system of multiples a, b, c, $d . c$.
a^{\prime}. If through a variable point P, moving on a fixed line I, and subtending any system of fixed circles A_{0}, B_{0}, C_{0}, dec. by a system of pairs of variable tangents U_{1} and U_{3}, V_{1} and V_{3}, W_{1} and W_{z}, dec., a variable line L be dranen so as to satisfy the relation

$$
\begin{aligned}
a \cdot\left(\frac{\sin L U_{3}}{\sin I U_{1}}+\frac{\sin L U_{3}}{\sin I U_{8}}\right)+b \cdot & \left(\frac{\sin L V_{2}}{\sin I V_{1}}+\frac{\sin L V_{8}}{\sin I V_{2}}\right) \\
& +c \cdot\left(\frac{\sin L W_{3}}{\sin I W_{1}}+\frac{\sin L W_{3}}{\sin I W_{8}}\right)+\Uparrow c .=0
\end{aligned}
$$

a, b, c, dec. being any system of finite multiples, positive or negative; the line L turns round a fixed point O, termed the pole of the line I with respect to the system of circles A_{0}, B_{0}, C_{0}, dec. for the system of multiples a, b, c, dcc.

To prove a. If $X, Y, Z, d e$. be the several points of intersection of the variable line L with the several polars A, B, C, \&c. of the fixed point O with respect to the several fixed circles $A_{0}, B_{0}, C_{0}, \mathbb{N} \cdot$; then since, from the harmonicism of the several systems of four points $O X X_{1} I_{3}, O Y Y_{1} Y_{3}, O Z Z_{1} Z_{3}$, \&ic., whatever be the position of P on their common axis, by $(220, a)$,

$$
\begin{aligned}
& \frac{P X_{1}}{O X_{1}}+\frac{P X_{2}}{O X_{2}}=2 \cdot \frac{P X}{O X^{\prime}} \\
& \frac{P Y_{1}}{O Y_{1}}+\frac{P Y_{3}}{O Y_{8}}=2 \cdot \frac{P Y}{O Y^{\prime}} \\
& \frac{P Z_{1}}{O Z_{1}}+\frac{P Z_{2}}{U Z_{3}}=2 \cdot \frac{P Z}{O Z}, \& \mathrm{c},
\end{aligned}
$$

which, multiplied horizontally by $a, b, c, \& c$., and added rertically, give the equality

$$
\Sigma\left\{a \cdot\left(\frac{P X_{1}}{O X_{1}}+\frac{P X_{2}}{O X_{s}}\right)\right\}=2 . \Sigma\left(a \cdot \frac{P X}{O X}\right)
$$

from which it follows that when either equivalent $=0$, so is the other also; but when the latter equivalent $=0$, then, by $(248, a)$, the point P lies on the polar of the proint O with respect to the system of lines A, B, C, dec. for the system of multiples $a, b, c, c \in c . ;$ and therefore $\& \in$.

To prove a^{\prime}. If $U, V, W, \& \in$ be the several lines of connection of the variable point P with the several poles A, B, O, \&c. of the fixed line I with respect to the several fixed circles
$A_{0}, B_{0}, C_{0}, \& \in . ;$ then since, from the harmonicism of the several systems of four lines $I U U_{1} U_{2}, I V V_{1} V_{2}, I W W_{1} W_{2}, \& c$., whatever be the direction of L through their common vertex, by (220, a^{\prime}),

$$
\begin{aligned}
& \frac{\sin L U_{1}}{\sin I U_{1}}+\frac{\sin L U_{2}}{\sin I \bar{U}_{2}}=2 \cdot \frac{\sin L U}{\sin I U} \\
& \frac{\sin L V_{1}}{\sin I V_{1}}+\frac{\sin L V_{2}}{\sin I V_{2}}=2 \cdot \frac{\sin L V}{\sin I V} \\
& \frac{\sin L W_{1}}{\sin I W_{1}}+\frac{\sin L W_{2}}{\sin I W_{2}}=2 \cdot \frac{\sin L W}{\sin I W}, \& c .
\end{aligned}
$$

which, multiplied horizontally by $a, b, c, \& c$., and added vertically, give the equality

$$
\Sigma\left\{a \cdot\left(\frac{\sin L U_{1}}{\sin I U_{1}}+\frac{\sin L U_{2}}{\sin I U_{2}}\right)\right\}=2 . \Sigma\left(a \cdot \frac{\sin L U}{\sin I U}\right)
$$

from which it follows that when either equivalent $=0$, so is the other also; but when the latter equivalent $=0$, then, by (248, a^{\prime}), the line L passes through the pole of the line I with respect to the system of points $A, B, C, \& i c$. for the system of multiples a, b, c, dec.; and therefore \&c.

The above very general properties are not reciprocals in the same sense as those of Art. 248, to which they are analogous; each, to an arbitrary circle, reciprocating, not into the other, but into the corresponding property of the figures of more general forms into which circles reciprocate for all positions of the centre of reciprocation not coinciding with their own (172).

Cor. It being evident from the above demonstrations, that-
a. The polar of any point, with respect to any system of circles, for any system of multiples, is the same as if the several circles were all removed, and replaced by the several polars of the point with respect to themselves.
a^{\prime}. The pole of any line, with respect to any system of circles, for any system of multiples, is the same as if the several circles were all removed, and replaced by the several poles of the line with respect to themselves.

All questions concerning tho polars of points or the poles of lines, with respect to systems of circles, for systems of
multiples, may therefore, in all cases, be regarded as reduced to the corresponding questions in which the several circles are replaced by lines in the former case and by points in the latter case, the main points connected with which have been already very fully discussed in Arts. 246 to 251 at the close of the preceding Clapter.

CHAPTER XVI.

THEORY OF ANHARMONIC SECTION.

268. When a line, or angle, $A B$, is cut at two points, or by two lines, C and D, each ratio of ratios of the two pairs of segments, or of the sines of the two pairs of segments, into which it divided, is termed an anharmonic ratio of the section of the line, or angle, by the two points, or lines.

Thus, if $A C: B C$, or $\sin A C: \sin B C,=m$, and $A D: B D$, or $\sin A D: \sin B D,=n$, the two ratios $m: n$ and $n: m$ are what are termed anharmonic ratios of the section of the line, or angle, $A B$, by the two points, or lines, C and D; for any line or angle, $A B$, every two points or lines of section, C and D, determine therefore two different anharmonic ratios, reciprocals of each other.

The name "anharmonic" was given to this simple function of the section of a line or angle by Chasles, who was the first to perceive its utility and to apply it extensively in geometry; because that in the particular case when m and n are equal in magnitude and opposite in sign, the section of the line or angle becomes what from ancient times had been familiarly known as "harmonic," and which from its special importance has been treated of separately in Chapter xill.
269. The two anharmonic ratios of the section of a line or angle $A B$ by any two points or lines of section C and D, like every other pair of magnitudes reciprocals to each other, have of course always the same sign, positive if C and D be both external or both internal, and negative if one be external and the other internal to $A B$; but the positions, absolute or relative, of C and D, being quite arbitrary, either may have any absolute magnitude from 0 to ∞, and the other the reciprocal of the same from \approx to 0 .

When either auharmonic ratio $=0$, the other $=\infty$; and, conversely, when either $=\infty$, the other $=0$; in both those extreme cases it is evident that one or other of the two points or lines of section, C and D, coincides with one or other of the two extremities of the line or angle, A and B.

When either anharmonic ratio $= \pm 1$, the other also $= \pm 1$; these are the only two cases in which the two anhannonic ratios of the section of a line or angle are equal, +1 and -1 being the only two numbers which aro equal to their reciprocals; in the latter case the section of the line or angle is, as already noticed, hannonic; and in the former case it is evident that either the two points or lines of section, C and D, or the two extremities of the line or angle, A and B, coincide with each other.

For the three purticular calues of cither anharmonic ratio of the section of a line or angle $A B$ by tuco prints or lines C and D, $0, \propto$, and +1 , some two of the four points or lines A, B, C, D, therefore, coincide. For every other value of either, however, they are all four distinet from each other.
270. When for one of the two points or lines of section, D) suppose, the two simple ratios for the single section each $=1$, that is, when D is tho point or line of external bisection of the segment or angle $A B$; then, whatever be the position of the other point or line of section O, the two anharmonic ratios for the double section by C and D combined, become in that case the theo simple ratios for the single section by C alone. This particular case is deserving of special attention, not only on account of its comparative simplicity, but because, as we shall presently see, cvery other cuse of anharmonic section of a line or angle, whatever be the positions of the tico points or lines of section, may be reduced to it.
271. When two segments, or angles, or a segment and an angle, $A B$ and $A^{\prime} B^{\prime}$, are cut in equal anharmonic ratios by two pairs of sectors, C and D, C^{\prime} and D^{\prime}, they aro said to bo cut equianharmonically ; and so, also, is the same segment, or angle, $A B$, when cut in equal anharmonic ratios by two different pairs of sectors, C and D, C^{\prime} and D^{\prime}. A more general definition of the relation of equianharmonicism will be given further on.

Two pairs of lines, L and M, L^{\prime} and M^{\prime}, are said sometimes to intersect, and sometimes to divide, two segments, $A B$ and $A^{\prime} B^{\prime}$, equianharmonically, when their pairs of intersections with their axes divide them equianharmonically; and, two pairs of points, P and Q, P^{\prime} and Q^{\prime}, are said sometimes to subtend, and sometimes to divide, two angles, $A B$ and $A^{\prime} B^{\prime}$, equianharmonically, when their pairs of connectors with their vertices divide them equianharmonically. These modes of expression are frequently employed for shortness in the applications of the theory of auharmonic section.
272. When a segment or angle $A B$ is cut equianharmonically by the two pairs of sectors C and D, C^{\prime} and D^{\prime}, it is also cut equianharmonically by the two pairs C and C^{\prime}, D and D^{\prime}; and conversely.

For since, by hypothesis,
$\frac{A C}{B C}: \frac{A D}{B D}=\frac{A C^{\prime}}{B C^{\prime}}: \frac{A D^{\prime}}{B D^{\prime}}$, or, $\frac{\sin A C}{\sin B C}: \frac{\sin A D}{\sin B D}=\frac{\sin A C^{\prime}}{\sin B C^{\prime}}: \frac{\sin A D^{\prime}}{\sin B D^{\prime}} ;$
Therefore, at once, by alternation,
$\frac{A C}{B C}: \frac{A C^{\prime}}{B C^{\prime}}=\frac{A D}{B D}: \frac{A D^{\prime}}{B D^{\prime}}$, or, $\frac{\sin A C}{\sin B C}: \frac{\sin A C^{\prime}}{\sin B C^{\prime}}=\frac{\sin A D}{\sin B D}: \frac{\sin A D^{\prime}}{\sin B D^{\prime}} ;$
and therefore \&c.
In exactly the same manner it may be shown, in accordance with the mode of expression noticed at the close of the preceding article, that when a segment $A B$ is divided equianharmonically by the two pairs of lines L and M, L^{\prime} and M^{\prime}, it is also divided equianharmonically by the two pairs L and L ', M and $M I^{\prime}$; and that when an angle $A B$ is subtended equianharmonically by the two pairs of points P and Q, P^{\prime} and Q^{\prime}, it is also subtended equianharmonically by the two pairs P and P^{\prime}, Q and Q^{\prime}. For since, in the two cases, respectively,

$$
\frac{A L}{B L}: \frac{A M}{B M}=\frac{A L^{\prime}}{B L^{\prime}}: \frac{A M^{\prime}}{B M^{\prime}}, \text { and, } \frac{A P}{B P}: \frac{A Q}{B Q}=\frac{A P^{\prime}}{B P^{\prime}}: \frac{A Q^{\prime}}{B Q^{\prime}} ;
$$

therefore, at once, by alternation, in the two, respectively,

$$
\frac{A L}{B L}: \frac{A L^{\prime}}{B L^{\prime}}=\frac{A M}{B M}: \frac{A M^{\prime}}{B M I^{\prime}} \text {, and, } \frac{A P}{B P}: \frac{A P^{\prime}}{B P^{\prime}}=\frac{A Q}{B Q}: \frac{A Q^{\prime}}{B Q^{\prime}} \text {; }
$$

and therefore \&c.

The following is an obvious corollary from the above:
When a segment or angle $A B$ is cut harmonically by the two segments or angles $X Y$ and $X^{\prime} Y^{\prime}$, it is cut equianharnonically by the two NX^{\prime} and $Y Y^{\prime}$. And also every twoo lines L and M and their tico poles P and Q reith respect to any segment $A B$, or any treo points P and Q and their two polars L and M vith respect to any angle $A B$, divide the segment or anglo equianharmonically.
273. The theo anharmonic ratios of the section of any segment or angle $A B$ by any two points or lines C and D are the same in mugnitude and sign as those of the section of the segment or angle $C D$ by the theo points or lines A and B.

For, by simple alternation,
$\frac{A C}{B C}: \frac{A D}{B D}=\frac{C A}{D A}: \frac{C B}{D B} ;$ or, $\frac{\sin A C}{\sin B C}: \frac{\sin A D}{\sin B D}=\frac{\sin C A}{\sin D A}: \frac{\sin C B}{\sin D B}$, and
$\frac{A D}{B D}: \frac{A C}{B C}=\frac{C B}{D B}: \frac{C A}{D A}$, or, $\frac{\sin A D}{\sin B D}: \frac{\sin A C}{\sin B C}=\frac{\sin C B}{\sin D B^{\prime}}: \frac{\sin C A}{\sin D A}$,
and therefore \&c.
Of this general property of anharmonic section, from which it appears that every two segments having a common axis, or angles having a common vertex, $A B$ and $C D$, cut cach other equianharmonically, the property of harmonic section proved in Art. 218 is obviously a particular casc.

In the same manner exactly it may be shown, in accordance with the mode of expression noticed at the close of Art. 271, that the tico arharmonic ratios of the section of any segment or angle $A B$ by any two lines or points C and D are the same in magnitude and sign as those of the angle or segment $C D$ by the theo points or lines A and B.

For, since in either case, by simple alternation,

$$
\frac{A C}{B C}: \frac{A D}{B D}=\frac{C A}{D A}: \frac{C B}{D B}, \text { and }, \frac{A D}{B D}: \frac{A C}{B C}=\frac{C B}{D B}: \frac{C A}{D A},
$$

therefore ©.c. This important property of anharmonic section, from which it appears that every segment and angle, $A B$ and $C D$, honocver circumstanced as to magnitude or position, divide
each other equianharmonically, will be presently considered under another form.

The sign common to the two reciprocal equianharmonic ratios determined by the mutual section of two segments or angles, or of a segment and angle, $A B$ and $C D$, depends of course on the relative positions of their respective extremities, A and B, C and D; being obviously negative when those of one alternate with those of the other in the order of their occurrence, and positive when they do not.
274. As four points on a common axis or rays through a common vertex A, B, C, D determine, whatever be their order and disposition, six different segments or angles corresponding to each other two and two in three sets of opposite pairs $B C$ and $A D, C A$ and $B D, A B$ and $C D$; and as, by the preceding, the two segments or angles constituting each pair of opposites cut each other in the same two anharmonic ratios, reciprocals of each other; it follows, therefore, that four points on a common axis or rays through a common vertex determine in general six different anharmonic ratios, in pairs reciprocals of each other.

These three pairs of reciprocal ratios corresponding to the three pairs of opposite segments or angles $B C$ and $A D, C A$ and $B D, A B$ and $C D$, are respectively as follows :

For four points on a common axis,

$$
\begin{aligned}
& \frac{B A}{C A}: \frac{B D}{C D} \text { and } \frac{C A}{B A}: \frac{C D}{B D}, \text { or, } \frac{B A \cdot C D}{C A \cdot B D} \text { and } \frac{C A \cdot B D}{B A \cdot C D}, \ldots \text { (1). } \\
& \frac{C B}{A B}: \frac{C D}{A D} \text { and } \frac{A B}{C B}: \frac{A D}{C D} \text {, or, } \frac{C B \cdot A D}{A B \cdot C D} \text { and } \frac{A B \cdot C D}{C B \cdot A D}, \ldots \text { (2). } \\
& \frac{A C}{B C}: \frac{A D}{B D} \text { and } \frac{B C}{A C}: \frac{B D}{A D} \text {, or, } \frac{A C \cdot B D}{B C \cdot A D} \text { and } \frac{B C \cdot A D}{A C \cdot B D}, \ldots \text { (3). }
\end{aligned}
$$

For four rays through a common vertex,

$$
\begin{align*}
& \frac{\sin B A}{\sin C A}: \frac{\sin B D}{\sin C D} \text { and } \frac{\sin C A}{\sin B A}: \frac{\sin C D}{\sin B D}, \\
& \frac{\sin B A \cdot \sin C D}{\sin C A \cdot \sin B D} \text { and } \frac{\sin C A \cdot \sin B D}{\sin B A \cdot \sin C D},
\end{align*}
$$

or,

$$
\frac{\sin C B}{\sin A B}: \frac{\sin C D}{\sin A D} \text { and } \frac{\sin A B}{\sin C B B}: \frac{\sin A D}{\sin C D},
$$

or, $\frac{\frac{\sin C B \cdot \sin A D}{\sin A B \cdot \sin C D} \text { and } \frac{\sin A B \cdot \sin C D}{\sin C B \cdot \sin A D}, \ldots \ldots \ldots\left(2^{\prime}\right) \text {. }}{\frac{\sin A C}{\sin B C}: \frac{\sin A D}{\sin B D} \text { and } \frac{\sin B C}{\sin A C} \cdot \frac{\sin B D}{\sin A D},}$| $\frac{\sin A C \cdot \sin B D}{\sin B C \cdot \sin A D}$ and $\frac{\sin B C \cdot \sin A D}{\sin A C \cdot \sin B D} ; \ldots \ldots(3)^{\circ}$. |
| :--- |

which may, for convenience, be represented in cither case by the abridged notation P and $\frac{1}{P}, Q$ and $\frac{1}{Q}, R$ and $\frac{1}{R}$ respectively; and which, as is evident from mere inspection of their values, are connected in either case by the relations

$$
P \cdot Q \cdot R=-1 \text { and } \frac{1}{P} \cdot \frac{1}{Q} \cdot \frac{1}{1 R}=-1 .
$$

275. In the case of points on a common axis, if any one of the four, D suppose, be at infinity, the six simple ratios $B D: C D$ and $C D: B D, C D: A D$ and $A D: C D, A D: B D$ and $B D: A D$, into which that point enters, are all $=1$; and the six anharmonic ratios for the entire four A, B, C, D) become consequently the six simple ratios for the remaining three A, B, C; which, in the order above given in the general case, viz., for $B C$ cut at A, for $C A$ cut at B, and for $A B$ cut at C, are renpectively as follows,

$$
\frac{B A}{C A} \text { and } \frac{C A}{B A}, \frac{C B}{A B} \text { and } \frac{A B}{C B}, \frac{A C}{B C} \text { and } \frac{B C}{A C}
$$

and which are evidently connected by the same relations as in the general case.

To this comparatively simple case it will appear in the sequel that every other case of auharmonic ratio, whether of points or rays, whatever be the order or disposition of either, may be reduced.
276. Whatever be the order and disposition of four points or rays constituting a row or pencil, A, B, C, D, it is evident that of the three pairs of reciprocal anhurmonic ratios they determine two are alvays positive and the third alcays negative; the negative corresponding to the pair of opposite segments or angles they determine whose extremities alternate with each
other in the order of their succession, and the two positive to the two pairs whose extremities do not so alternate. Hence, as seen above, for three of them P, Q, R, and for their three reciprocals, the product of any three of them of different pairs is always negative.

When three points or rays of an anharmonic system, any one of its six anharmonic ratios, and the order in which the four constituents enter in the formation of the ratio are given, the fourth point or ray is of course implicitly given also; its determination depending only on the section of a given segment or angle into two parts whose lengths or sines shall have a given magnitude and sign.
277. The six anharmonic ratios P and $\frac{1}{P}, Q$ and $\frac{1}{Q}, R$ and $\frac{1}{R}$ determined by the same row of four points or pencil of four rays A, B, C, D are connected two and two by the three relations

$$
R+\frac{1}{Q}=1, \quad P+\frac{1}{R}=1, \quad Q+\frac{1}{P}=1
$$

whatever be the order and disposition of the constituents of either.
For, since for every system of four points A, B, C, D on a common axis, whatever be their order and disposition (82),

$$
\begin{equation*}
B C \cdot A D+C A \cdot B D+A B \cdot C D=0 . \tag{a}
\end{equation*}
$$

and, since for every system of four rays A, B, C, D through a common vertex, whatever be their order and disposition (82, Cor. 3°),

$$
\sin B C \cdot \sin A D+\sin C A \cdot \sin B D+\sin A B \cdot \sin C D=0 \ldots\left(a^{\prime}\right)
$$

therefore, dividing each successively by each of its three components, the three relations above given result at once in each case.

In the particular case of points on a common axis, when one of the four D is at infinity, since then $P=B A: C A$, $Q=C B: A B, R=A C: B C$, the above relations are evident to mere inspection; and to this comparatively simple case, as already stated, all others may be reduced.

From the above relations, combined with those already given, it appears that the six anharmonic ratios of the same row or pencil of four points or rays, though in general all different, are never independent of each other, but that, on the contrary, whatever be the order and disposition of the constituent points
or rays, they are always so connected with each other that any one of the entire sic determines the remuining five; so that if any one of them be given or known, all the others may be regarded as implicitly given or known with it.

Thus, supposing P known, then, from tho above, $Q=\frac{P-1}{P}$ and $R=\frac{1}{1-P}$; and the three P, Q, R thus known, so of course are their three reciprocals, which are the remaining three ratios.

As an example, let $P=-1$, that is, let the row or peneil form an harmonie system (213); then $Q=2$ and $l R=\frac{1}{9}$. Hence, when four points or rays form an harmonic row or pencil, and when therefore one pair of their reciprocal anharmonic ratios $=-1$, the other two pairs are 2 and $\frac{1}{6}$, and $\frac{1}{\frac{1}{2}}$ and 2 respectively; the same results obtained in a different manner in Art. 219.
278. When tue rouss of four points or pereils of four rays, or a row of fuur points and a pencil of four rays, A, B, C, D and $A^{\prime}, B, C^{\prime}, D^{\prime}$, are such that a single anharmonic ratio is the same for both syntens, the entire sic anharmonic ratios are the same for both systenns.

For, denoting by P and $\frac{1}{P}, Q$ and $\frac{1}{Q}, R$ and $\frac{1}{R_{6}}$ the six for the system A, B, C, D, and by P^{ν} and $\frac{1}{\Gamma^{\nu}}, Q^{\prime}$ and $\frac{1}{Q^{\prime}}$, R and $\frac{1}{\Pi}$ the six for the system $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$; sinee, by the preceding article,

$$
Q=\frac{P-1}{P}, \quad Q=\frac{P^{P}-1}{P^{\nu}}, \quad R=\frac{1}{1-P}, \quad R=\frac{1}{1-P^{\nu}}
$$

when $P=P$, then $Q=Q^{\prime}$ and $R=R$, and therefore \&c. the reciprocals of equal magnitudes being of course equal.

Two rows of four points or pencils of four rays, or a row of four points and a pencil of four rays, thus related to each other that the six anharmonic matios are the same for both systems, are said to be equianharmonic (271) ; and the pairs of constituents, A and A^{\prime}, B^{\prime} and B^{\prime}, C and C^{\prime}, D and D^{\prime}, which enter similarly into the several pairs of equal ratios, are said to be corresponeling or homologous pairs.

In every case of equianharmonicism between two systems of four constituents, A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, which correspond two and two in pairs, A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and D^{\prime}, when three pairs of corresponding constituents and one constituent of the fourth pair are given, the second constituent of the fourth pair is of course implicitly given also. Various constructions for determining it will be given further on.

Cor. 1°. Since for every two equianharmonic systems of four constituents A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, by the above, $P=P^{\prime}, Q=Q^{\prime}, R=R^{\prime}$, therefore for the same, by (277),

$$
\begin{array}{ll}
R+\frac{1}{Q^{\prime}}=1, & P+\frac{1}{R^{\prime}}=1, \quad Q+\frac{1}{P^{\prime}}=1 \\
R^{\prime}+\frac{1}{Q}=1, \quad P^{\prime}+\frac{1}{R}=1, \quad Q^{\prime}+\frac{1}{P}=1
\end{array}
$$

relations often of much use in establishing the circumstance of equianharmonicism between two systems of four constituents when the simpler relations $P=P^{\prime}, Q=Q^{\prime}, R=R^{\prime}$ are not as readily applicable.

Cor. 2°. Since two or more magnitudes of any kind when equal to the same magnitude are equal to each other, it follows evidently, from the nature of equianharmonicism, as above explained, that when two or more systems of four constituents $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$; $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, D^{\prime \prime} ; A^{\prime \prime \prime}, B^{\prime \prime \prime}, C^{\prime \prime \prime}, D^{\prime \prime \prime} ;$ \&c. are equianharmonic with the same system A, B, C, D, they are equianharmonic with each other.
279. Dr. Salmon has employed the following very convenient notation for expressing the equiauharmonicism of two or more systems of four constituents $A, B, C, D ; A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$; $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, D^{\prime \prime} ;$ \&c. viz.

$$
\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}=\left\{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}\right\}=\& c
$$

where the symbol $\{A B C D\}$ is regarded as the general representative of the entire six anharmonic ratios for the system A, $B, C, D ;\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$ as that of the entire six for the system $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime} ;\left\{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}\right\}$ as that of the entire six for the system $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, D^{\prime \prime} ; \& \cdot c$ and where the letters representing correaponding constituents are invariably written in the same
order in all; so that the corresponding groups of ratios, which alone are equal in the several systens, may be evident to inspection, without the trouble of seeking for, or the danger of mistaking them. We shall employ the same notation generally in the comparison of equianharmonic systems.

And in the same manner as the notation $\{A B C D\}$ is to be regarded as the general symbolical representative of the entire six aularmonic ratios of the system of four constituents A, B, C, I, the precaution respecting similarity of order being invariably observed in all cases of comparison with other syatems, so the expression "anharmonic ratio of four points or rays" when used, as it constant! is, in the singular number, is to be regarded as the general nominul representative of the entire sis for the system; the same precaution respecting similarity of order being invariably attended to in all cases of comparison between two or more systems.

As the symbol $\{A B C D\}$ is employed to denote, in the sense above explained, the anharmonic ratio of the system of four points A, B, C, D when collinear, or of the system of four lines A, B, C, D when concurrent; so, for shortness, the symbol $\{O . A B C D\}$ is employed to represent, in the same sense, the anharmonic ratio of the pencil of four lines by which the system of four points A, B, C, D, whether collinear or not, connects with the rertex O, or of the row of four points at which the system of four lines A, B, C, D, whether concurrent or not, intersects with the axis ().
250. Any order of the four constituents of an anharmonic system of points or rays, A, B, C, D suppose, may be altered in three different reays, viz. into B, A, D, C, or C, D, A, B, or D, C, B, A, vithout affecting, either in magnitude or sigm, any of the six anharmonic ratios of the system corresponding to that order.

To prove this, or, which is the same thing, to shew that always

$$
\{A B C D\}=\{B A D C\}=\{C D A B\}=\{D C B A\}
$$

it will only bo necessary (278) to establish its truth for any one of the six ratios for the first order, compared with the three that correspond to it in the other three.

Taking then arbitrarily any one for the first, $\frac{B A \cdot C D}{C A \cdot B D}$ suppose, for the case of points, or its analogue $\frac{\sin B A \cdot \sin C D}{\sin C A \cdot \sin B D}$ for the case of rays, and placing beside it its three correspondents in the other three; we have, for the whole four, the system

$$
\frac{B A \cdot C D}{C A \cdot B D}, \frac{A B \cdot D C}{D B \cdot A C}, \frac{D C \cdot A B}{A C \cdot D B}, \frac{C D \cdot B A}{B D \cdot C A},
$$

in the case of points, or the analogous system $\frac{\sin B A \cdot \sin C D}{\sin C A \cdot \sin B D}, \frac{\sin A B \cdot \sin D C}{\sin D B \cdot \sin A C}, \frac{\sin D C \cdot \sin A B}{\sin A C \cdot \sin D B}, \frac{\sin C D \cdot \sin B A}{\sin B D \cdot \sin C A}$ in the ease of rays; which on mere inspection are seen, in either case, to be equal both in magnitude and sign.

In comparing together the preceding, or any other four equivalent orders; it appears that, to go from any order to an equivalent order, any two of the four constituents may be interchanged provided the remaining two be interchanged also. Hence the following simple rule for the formation from any given order of its three equivalents, viz. every interchange of two constituents is to be accompanied by the interchange of the other tovo; this is Chasles' rule, the reason of which is evident from the obvious signification of tho double interchange as regards the three pairs of opposite segments or angles determined by the four points or rays of the system.

Cor. Since, from the above, for any row of four points or pencil of four rays A, B, C, D,

$$
\{A B C D\}=\{B A D C\}=\{C D A B\}=\{D C B A\} \ldots(a)
$$

and since again, for any other row of four points or pencil of four rays $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$,

$$
\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}=\left\{B^{\prime} A^{\prime} D^{\prime} C^{\prime}\right\}=\left\{C^{\prime} D^{\prime} A^{\prime} B^{\prime}\right\}=\left\{D^{\prime} C^{\prime} B^{\prime} A^{\prime}\right\} \ldots\left(a^{\prime}\right) ;
$$

it follows therefore that the equality of any one of the four equivalents of group a to any one of the four of group a^{\prime}, whether the two compared correspond to each other or not, is sufficient to establish the equianharmonicism of the two systems, if so related to each other. This is an important consideration of which frequent use is made in the applications of the theory of anharmonic section.
281. There is onc, and but one, case in which one pair of constituents of an anharmonic row or pencil, when all four distinct from each other, may be interchanged, without requiring the simultaneous interchange of the other pair in order to preserve the anharmonic equivalence of the changed to the original order; vis. when the system is harmonic, and when the interchanged constituents are conjugates.

For, if a system A, B, C, D be such that

$$
\{A B C D\}=\{A B D C\},
$$

then, according as it consists of points or rays,

$$
\frac{A C}{B C}: \frac{A D}{B D}=\frac{A D}{B D}: \frac{A C}{B C}, \text { or, } \frac{\sin A C}{\sin B C}: \frac{\sin A D}{\sin B D}=\frac{\sin A D}{\sin B D}: \frac{\sin A C}{\sin B C} \text {, }
$$

and therefore, as the case may be,

$$
\frac{A C}{B C}: \frac{A D}{B D}, \text { or } \frac{\sin A C}{\sin B C}: \frac{\sin A D}{\sin B B D},= \pm 1 ;
$$

but, for the positive sign the two prints or rays O and D coincide (269), and, for the negative sign they are harmonic conjugates with respect to the two A and B (213); and therefore ic.

Of all criterin of the mutual harmonic section of two segments or angles $A B$ and $C D(218)^{\circ}$, the above relation $\{A B C D]=\{A B D C\}$ is probably the most universally applicable, especially in the higher departments of geometry. Several examples of its npplication will be given in the sequel; and it will appear that, in some of tho cases of harmonic section established in the two preceding chapters, it might, under a different order of treatment, have replaced with adrantage the criteria employed.
252. When two systems of any common number of constituents, both of points, or looth of rays, or one of points and one of rays, A, B, C, D, E, F, G, dr. and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime \prime}, G^{\prime}$, Sc. which corresprond in pairs, A and A^{\prime}, B and B^{\prime}, C and $C^{\prime \prime}$, D and D, E and E, F and F, G and G, \&c. are such that any three pairs of corresponding constituents, A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, form equianharmonic systems with every other pair, D and D^{\prime}, E and $E^{\prime \prime}, F$ and $F^{\prime \prime}, G$ and G^{\prime}, (sc. then also 1°, cvery two of the former and every two of the latter; 2°, every one
of the former and every three of the latter; 3°, every four of the latter, form equianharmonic systems.

To prove 1°, or to shew that, when $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$ and $\{A B C E\}=\left\{A^{\prime} B^{\prime} C^{\prime} E^{\prime \prime}\right\}$, then $\{B C D E\}=\left\{B^{\prime} C^{\prime} D^{\prime} E^{\prime}\right\}$ and $\{C A D E\}=\left\{C^{\prime} A^{\prime} D^{\prime} E^{\prime}\right\}$ and $\{A B D E\}=\left\{A^{\prime} B^{\prime} D^{\prime} E^{\prime \prime}\right\}$.

Since, by hypothesis, $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$, therefore

$$
\frac{B A}{C A}: \frac{B D}{C D} \text { or } \frac{\sin B A}{\sin C A}: \frac{\sin B D}{\sin C D}=\frac{B^{\prime} A^{\prime}}{C^{\prime} A^{\prime}}: \frac{B^{\prime} D^{\prime}}{C^{\prime} D^{\prime}} \text { or } \frac{\sin B^{\prime} A^{\prime}}{\sin C^{\prime} A^{\prime}}: \frac{\sin B^{\prime} D^{\prime}}{\sin C^{\prime} D^{\prime}},
$$

and since, by hypothesis, $\{A B C E\}=\left\{A^{\prime} B^{\prime} C^{\prime} E^{\prime \prime}\right\}$, therefore $\frac{B A}{C A}: \frac{B E}{C E}$ or $\frac{\sin B A}{\sin C A}: \frac{\sin B E}{\sin C E}=\frac{B^{\prime} A^{\prime}}{C^{\prime} A^{\prime}}: \frac{B^{\prime} E^{\prime}}{C^{\prime} E^{\prime}}$ or $\frac{\sin B^{\prime} A^{\prime}}{\sin C^{\prime} A^{\prime}}: \frac{\sin B^{\prime} E^{\prime}}{\sin C^{\prime} E^{\prime}}$, therefore, at once, by division of ratios,

$$
\frac{B D}{C D}: \frac{B E}{C E} \text { or } \frac{\sin B D}{\sin C D}: \frac{\sin B E}{\sin C E}=\frac{B^{\prime} D^{\prime}}{C^{\prime} D^{\prime}}: \frac{B^{\prime} E^{\prime \prime}}{C^{\prime} E^{\prime \prime}} \text { or } \frac{\sin B^{\prime} D^{\prime}}{\sin C^{\prime} D^{\prime}}: \frac{\sin B^{\prime} E^{\prime}}{\sin C^{\prime} E^{\prime \prime}},
$$

and therefore $\{B C D E\}=\left\{B^{\prime} C^{\prime} D^{\prime} E^{\prime \prime}\right\}$; and similarly

$$
\{C A D E\}=\left\{C^{\prime} A^{\prime} D^{\prime} E^{\prime \prime}\right\} \text { and }\{A B D E\}=\left\{A^{\prime} B^{\prime} D^{\prime} E^{\prime \prime}\right\} ;
$$

and therefore \&c.
To prove 2°, or to sliew that,
when $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$ and $\{A B C E\}=\left\{A^{\prime} B^{\prime} C^{\prime} E^{\prime \prime}\right\}$
and

$$
\{A B C F\}=\left\{A^{\prime} B^{\prime} C^{\prime} F^{\prime \prime}\right\}
$$

then $\quad\{A D E F\}=\left\{A^{\prime} D^{\prime} E^{\prime} F^{\prime \prime}\right\}$ and $\{B D E F\}=\left\{B^{\prime} D^{\prime} E^{\prime} F^{\prime \prime}\right\}$
and $\quad\{C D E F\}=\left\{C^{\prime} D^{\prime} E^{\prime \prime} F^{\prime \prime}\right\}$.
Since, by hypothesis,

$$
\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\} \text { and }\{A B C E\}=\left\{A^{\prime} B^{\prime} C^{\prime} E^{\prime \prime}\right\}
$$

and therefore by 1°,

$$
\{\Lambda B C F\}=\left\{A^{\prime} B^{\prime} C^{\prime} F^{\prime \prime}\right\}
$$

$$
\{A B D E\}=\left\{A^{\prime} B^{\prime} D^{\prime} E^{\prime \prime}\right\} \text { and }\{A B D F\}=\left\{A^{\prime} B^{\prime} D^{\prime} F^{\prime \prime}\right\}
$$

and therefore, by tho same,

$$
\{A D E F\}=\left\{A^{\prime} D^{\prime} E^{\prime} F^{v}\right\} ;
$$

and similarly

$$
\{B D E F\}=\left\{B^{\prime} D^{\prime} E^{\prime \prime} F^{\prime \prime}\right\} \text { and }\{C D E F\}=\left\{C^{\prime} D^{\prime} E F^{\prime \prime}\right\}
$$

and therefore $\mathcal{A c}$.

To prove 3°, or to shew that,
when $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$ and $\{A B C E\}=\left\{A^{\prime} B^{\prime} C^{\prime} E^{\prime}\right\}$
and $\{A B C F\}=\left\{A^{\prime} B^{\prime} C^{\prime} F^{*}\right\}$ and $\{A B C G\}=\left\{A^{\prime} B^{\prime} C^{\prime} G^{\prime}\right\}$, then $\{D E F G\}=\left\{D^{\prime} E F^{\prime} G^{\prime}\right\}$.

Since, by lypothesis,

$$
\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\} \text { and }\{A B C E\}=\left\{A^{\prime} B^{\prime} C^{\prime} E^{\prime}\right\}
$$

and $\{A B C F\}=\left\{A^{\prime} B^{\prime} C^{\prime} F^{\prime}\right\}$ and $\{A B C G\}=\left\{A^{\prime} B^{\prime} C^{\prime} G^{\prime}\right\}$,
therefore, by 2°,

$$
\left\{A D E F^{\prime}\right\}=\left\{A^{\prime} D^{\prime} E^{\prime} F^{*}\right\} \text { and }\{A D E G\}=\left\{A^{\prime} D^{\prime} E^{\prime} G^{\prime}\right\}
$$

and therefore, by 1°,

$$
\left\{D E F G_{1}=\left\{D^{\prime} E^{\prime} F^{*} G^{\prime}\right\} ;\right.
$$

and therefore \&e.
Two systems of any common number of constituents, A, B, C, D, E, F, G^{\prime}, \&c. and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime}, G^{\prime}$, Ne., thus corresponding in pairs, A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, dc., and thus related to each other that every four pains of corresponding constituents form equianharmonic syatems, have been termed by Chasles homographic, and will bo treated of at length under that denomination in another chapter. They occur very frequently in the applications of the theory of anharmonic section, and the relation between them may, when necessary, be represented by the obvious extension of Dr. Salmon's notation for simple equianharmonicisun between two systems of four (279), viz.:

$$
\left\{A B C D E F G, \delta c_{.}\right\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime} G^{\prime}, \& \mathcal{c}^{\prime}\right\} ;
$$

the same precaution respecting order among the representatives of corresponding constituents, so essential in the simpler, being, of course, not less indispensable in the more general case. See Art. 279.

Cur. 1°. If, while three pairs of corresponding constituents, A and A^{\prime}, B and B^{\prime}, C^{\prime} and C^{\prime}, of two equianharmonic systems, both of points, or both of rays, or one of points and one of rays, A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, are supposed to remain fixed, the fourth pair, D and D^{\prime}, be conceived to vary, preserving always, however, the equianharmonicism of tho two systems; then, every two positions of the variable pair may be con-
ceived to take the places of D and D^{\prime}, E and $E^{\prime \prime}$, every three positions those of D and D^{\prime}, E and E^{\prime}, F and $F^{\prime \prime}$, and every four positions those of D and D^{\prime}, E and $E^{\prime \prime}, F$ and $F^{\prime \prime}, G$ and $G^{\prime \prime}$, in the preceding; hence, from the above, it appears that-

When a variable pair of constituents, points, or rays, or a point and ray, D and D^{\prime}, form in every position equianharmonic systems with three fixed pairs, A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, then-

1. Every two positions of D form, with $B C$, with $C A$, and with $A B$, systems equianharmonic with those formed by the two corresponding positions of D^{\prime}, with $B^{\prime} C^{\prime}$, with $C^{\prime} A^{\prime}$, and with $A^{\prime} B^{\prime}$.
2°. Every three positions of D form, with A, with B, and with C, systems equianharmonic with those formed by the three corresponding positions of D^{\prime}, with A^{\prime}, with B^{\prime}, and with C^{\prime}.
2. Every four positions of D form a system equianharmonic with the four corresponding positions of D^{\prime}.

Cor. 2°. Since, during the variation of D and D^{\prime}, in the above, the relation $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$ is constantly preserved with A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, therefore throughout the entire variation
$\frac{A D}{B D}: \frac{A C}{B C}$ or $\frac{\sin A D}{\sin B D}: \frac{\sin A C}{\sin B C}=\frac{A^{\prime} D^{\prime}}{B^{\prime} D^{\prime}}: \frac{A^{\prime} C^{\prime}}{B^{\prime} C^{\prime}}$ or $\frac{\sin A^{\prime} D^{\prime}}{\sin B^{\prime} D^{\prime}}: \frac{\sin A^{\prime} C^{\prime}}{\sin B^{\prime} C^{\prime}}$, and therefore, by alternation,
$\frac{A D}{B D}$ or $\frac{\sin A D}{\sin B D}: \frac{A^{\prime} D^{\prime}}{B^{\prime} D^{\prime}}$ or $\frac{\sin A^{\prime} D^{\prime}}{\sin B^{\prime} D^{\prime}}=\frac{A C}{B C}$ or $\frac{\sin A C}{\sin B C}: \frac{A^{\prime} C^{\prime}}{B^{\prime} C^{\prime}}$ or $\frac{\sin A^{\prime} C^{\prime}}{\sin B^{\prime} C^{\prime \prime}}$ $=$ a constant ratio, A, B, C and $A^{\prime}, B^{\prime}: C^{\prime}$ being fixed; hence it appears that-

When twoo fixed segments or angles, or a fixed segment and a fixed angle, $A B$ and $A^{\prime} B^{\prime}$, are cut by two variable sectors, D and D^{\prime}, so that, throughout their variation, $\frac{A D}{\overline{B D}}$ or $\frac{\sin A D}{\sin B D}: \frac{A^{\prime} D^{\prime}}{B^{\prime} D^{\prime}}$ or $\frac{\sin A^{\prime} B^{\prime}}{\sin A^{\prime} D^{\prime}}$ in any constant ratio, then-

1. Every hoo positions of D form with A and B a system equianharmonic with that formed by the two corresponding positions of D^{\prime} vilh A^{\prime} and B^{\prime}.
2°. Every three positions of D form with A and with B systems equianharmonic with those formed by the three corresponding positions of D^{\prime} with A^{\prime} and with B^{\prime}.
3.. Every four positions of D form a system equianharmonic with the four corresponding positions of D^{\prime}.

Con. 3°. In the particular case, of these latter properties, when the two segments or angles $A B$ and $A^{\prime} B B^{\prime}$ coincide, so as to form but a single segment or angle $A B$, the constant ratio $\frac{A D}{B D}: \frac{A^{\prime} D^{\prime}}{\left.B^{\prime} D\right)^{\prime}}$ or $\frac{\sin A D}{\sin B D}: \frac{\sin A^{\prime} I^{\prime} y^{\prime}}{\sin B^{\prime} D^{\prime}}$ becomes then (since $A=A^{\prime}$ and $B=B^{\prime}$) the anharmonic ratio of the section of the segment or angle $A B$ by the two points or lines of section D and $D^{\prime}(268)$; hence it appears that-

If a fixed segment or angle $A B$ be owt in any constant anharmonic ratio by a euriable pair of ectors D and D; then-
1°. Every tueo prasitions of D and the theo correpponding pasitions of D^{\prime} form equianharmonic systens with A and 13 .
2.. Eivery thirem positions of D) and the three correapoonding positions of D' form equinharmonic systems with A and with 13 .
3°. Every four positions of D and the four corresponding positions of D^{\prime} ' form equiunharmbwic syitems.

Cor. 4°. In the particular case, of theso latter propertics, when the constant anharmonic ratio of the section $=-1$, that is, when the section of the fixed segment or angle $A B$ by the variable pair of sectors D) and D^{\prime} is constantly harmonic (213); siuce then, and then ouly, $\left\{A B D D D^{\prime}\right\}=\left\{A B D^{\prime} D\right\}$ in every position of D) and $D^{\prime}(281)$, that is, since then, and then only, the two points or lines of section are interclangeable in every position without violating the constant anharmonic ratio of their section of the fixed segtuent or angle $A B$; hence it appears that -

When a fired segment or anglo $A B$ is cut harmonically by a variable pair of conjugates D and D, then-

1. Every lico prositions of D and the theo corresponding positions of D^{\prime} determine four constitucnts, every wo of shich and their two conjuyates form equianharmonic systems with A and B.
2. Every three pasitions of D aml the three corresponding pasitions of D^{\prime} determine six constituents, every three of which and their three conjugutes form equianharmonic systems with A and with B.
3. Every four pasitions of D and the four corresponding
positions of D^{\prime} determine eight constituents, every four of which and their four conjugates form equianharmonic systems.

Cor. 5°. When, in these latter properties, the two conjugates D and D^{\prime} coincide, in one of their positions, with the two D^{\prime} and D, in another of their positions; the properties themselves become evidently modified as follows-

1. Every position of D and the corresponding position of D^{\prime} determine two constituents, which taken in both orders form equianharmonic systems with A and B.
2°. Every two positions of D and the two corresponding positions of D^{\prime} determine four constituents, every three of which and their three conjugates form equianharmonic systems with A and with B.
3°. Every three positions of D and the three corresponding positions of D^{\prime} determine six constituents, every four of which and their four conjugates form equianharmonic systems.
N.B. To the principles established in this article the important modern theories, of Homographic Division, of Double Points and Rays in Homographic Division, and of Involution, may all be referred; as will appear in the sequel in the chapters in which they are severally discussed.
2. When two triads of points on a common axis or rays through a common vertex, A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$, which correspond in pairs, A and A^{\prime}, B and B^{\prime}, C and $C^{\prime \prime}$, are such that any two systems determined by four of the six constituents and their four correspondents are equianharmonic, then every two systems determined by four of them and their four correspondents are equianharmonic.

For, in either case, the relation

$$
\left\{B C A A^{\prime}\right\}=\left\{B^{\prime} C^{\prime} A^{\prime} A\right\}, \ldots \ldots \ldots \ldots \ldots\left(1^{\circ}\right),
$$

gives at once, by (272) and (280), the two equivalent relations

$$
\left\{B^{\prime} C A A^{\prime}\right\}=\left\{B C^{\prime} A^{\prime} A\right\} \text { and }\left\{B C^{\prime \prime} A A^{\prime}\right\}=\left\{B^{\prime} C A^{\prime} A\right\} ; \ldots\left(1^{\prime}\right) ;
$$

the first of which, combined with the original, gives, by virtue of the general property 1° of the preceding article, the relation

$$
\left\{C A B B^{\prime}\right\}=\left\{C^{\prime} A^{\prime} B^{\prime} B\right\}
$$

and with it, by (272) and (2S0), the two equivalent relations

$$
\left\{C^{\prime} A B B^{\prime}\right\}=\left\{C A^{\prime} B^{\prime} B\right\} \text { and }\left\{C A^{\prime} B B^{\prime}\right\}=\left\{C^{\prime} A B^{\prime} B\right\} ; \ldots\left(2^{\prime}\right) ;
$$

and the second of which, combined with the original, gives, by virtue of the same general property, the relation

$$
\left\{A B C C^{\prime}\right\}=\left\{A^{\prime} B^{\prime} C^{\prime} C\right\}, \ldots \ldots \ldots \ldots \ldots\left(3^{\circ}\right)
$$

and with it, by (272) and (290), the two equivalent relations

$$
\left\{A^{\prime} B C C^{\prime}\right\}=\left\{A B^{\prime} C^{\prime} C\right\} \text { and }\left\{A B^{\prime} C C^{\prime}\right\}=\left\{A^{\prime} B C^{\prime} C\right\} ; \ldots\left(3^{\prime}\right) ;
$$

and, each of the six cases of anharmonic equivalence $\left(1^{\circ}\right),\left(2^{\circ}\right)$, $\left(3^{\circ}\right)$ and $\left(1^{\prime}\right),\left(2^{\prime}\right),\left(3^{\prime}\right)$ thus involving the remaining five, therefore \&e.

Cons. 1. That, for every twoo triads related as above to each other, the thrie sigments or angles, $A A^{\prime}, B B^{\prime}, C C^{\prime \prime}$, determined tiy the thrce pairs of corresponding constituencs, A and A^{\prime}, B and B^{\prime}, C and C ', hasve a common angment or angle MN of harmonic arction, real or imaginary, (sec 3", Cur. 5°, of the preceding article), may be easily shewn as follows: If $M N^{\circ}$ be the common segment or angle of harmonic section, real or imaginary, of any two of them, $A A^{\prime}$ and $B B^{\prime}$ suppone, then since, by 2°, Cor. 5°, of the preceding article,

$$
\begin{aligned}
& \left\{M B A A^{\prime}\right\}=\left\{M B^{\prime} A^{\prime} A, \text { or, }\left\{M A B B^{\prime}\right\}=\left\{M A^{\prime} B^{\prime} B\right\},\right. \\
& \left\{N B A . I^{\prime}\right\}=\left\{N B^{\prime} A^{\prime} A\right\}, \text { or, }\left\{N A B B^{\prime}\right\}=\left\{N A^{\prime} B^{\prime} B\right\} ;
\end{aligned}
$$

and since, by relations $\left(1^{\circ}\right)$ and $\left(1^{\prime}\right)$, or $\left(2^{\circ}\right)$ and $\left(2^{\circ}\right)$, of the above,

$$
\begin{aligned}
& \left\{C B A A^{\prime}\right\}=\left\{C^{\prime} B^{\prime} A^{\prime} A\right\}, \text { or, }\left\{C A B B^{\prime}\right\}=\left\{C^{\prime} A^{\prime} B^{\prime} B\right\} \\
& \left\{C^{\prime} B A A^{\prime}\right\}=\left\{C B^{\prime} A^{\prime} A\right\}, \text { or, }\left\{C^{\prime} A B B^{\prime}\right\}=\left\{C A^{\prime} B^{\prime} B\right\} ;
\end{aligned}
$$

therefore, at once, in either case, by virtue of the general property (3°) of the preceding article,

$$
\left\{M N C C^{\prime}\right\}=\left\{M N^{\prime} C\right\}
$$

and therefore \&c. ; $M N$ thus cutting $C C^{\prime}$ also harmonically (281).
COR. 2. That every three lines through a point determine with the three perpendiculars to them through the point a system of six rays related as above to euch other, is evident from the circumstance that every two pencils deternined by four of the
six constituent rays and their four perpendiculars are similar, and therefore equianharmonic (278). And the general property of Cor. 1° is obviously verified for this particular case by that established on other principles in Art. 260, viz., that all right angles, having a common vertex, have a common imaginary angle of harmonic section, viz., that subtended at their common vertex by the two cyclic points at infinity.
N.B. The property of the present article has been made by Chasles the basis of the modern theory of Involution, and, as such, has been discussed by him at considerable length in his Chapter on that subject.
284. When troo equianharmonic systems of points on a common axis or rays through a common vertex, A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, are such that any two of their corresponding constituents may be interchanged without violating their relation of equianharmonicism, then every two of their corresponding constituents may be interchanged without violating their relation of equianharmonicism.

For, in either case, the two relations

$$
\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\} \text { and }\left\{A^{\prime} B C D\right\}=\left\{A B^{\prime} C^{\prime} D^{\prime}\right\}
$$

give, by virtue of the general property 1° of Art. 282, the three

$$
\begin{aligned}
\left\{A A^{\prime} C D\right\}= & \left\{A^{\prime} A C^{\prime} D^{\prime}\right\},\left\{A A^{\prime} D B\right\}=\left\{A^{\prime} A D^{\prime} B^{\prime}\right\} \\
& \left\{A A^{\prime} B C\right\}=\left\{A^{\prime} A B^{\prime} C^{\prime}\right\}
\end{aligned}
$$

and with them consequently, by (272) and (280), the equivalent three

$$
\begin{aligned}
\left\{A A^{\prime} C D^{\prime}\right\}= & \left\{A^{\prime} A C^{\prime} D\right\}, \quad\left\{A A^{\prime} D B^{\prime}\right\}=\left\{A^{\prime} A D^{\prime} B\right\} \\
& \left\{A A^{\prime} B C^{\prime}\right\}=\left\{A^{\prime} A B^{\prime} C\right\}
\end{aligned}
$$

of which, the first terms of the second, third, and first, combined respectively with the second terms of the third, first, and second, give, by virtue of the same general property 1° of Art. 282, the three

$$
\begin{aligned}
\left\{A B^{\prime} C D\right\}= & \left\{A^{\prime} B C^{\prime} D^{\prime}\right\}, \quad\left\{A B C^{\prime} D\right\}=\left\{A^{\prime} B^{\prime} C D^{\prime}\right\} \\
& \left\{A B C D^{\prime}\right\}=\left\{A^{\prime} B^{\prime} C^{\prime} D\right\}
\end{aligned}
$$

in each of which, since again, for the same reason, the original
pair of constituents A and A^{\prime} may be interchanged, thus giving the three

$$
\begin{aligned}
\left\{A^{\prime} B^{\prime} C D_{\}}=\right. & \left\{A B C^{\prime} D^{\prime}\right\},\left\{A^{\prime} B C^{\prime} D\right\}=\left\{A B^{\prime} C D\right\}, \\
& \left\{A^{\prime} B C D D^{\prime}\right\}=\left\{\Lambda B^{\prime} C^{\prime} D\right\}
\end{aligned}
$$

and so exhausting the entire number of different combinations of four and their four correspondents that could be formed from the four pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and $C^{\prime \prime}, D$ and D^{\prime}; therefore dic.

Cor. 1. That, for every syst m of eight collinear or concurrent constituents, corresponding in jairs, telich are thus reluted to each other that every tueo systrms determined by four of them and their four correspondents are equianharmonic, the four segments or anyles, $\left.A .1^{\prime}, B B^{\prime}, C C^{\prime}, D D\right)^{\prime}$, determinel by the four pairs of corresponding constituents, A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and D', hure a common segment or angle MN of harmonic section, real or imaginary, (see 3°, Cor. 4, Art. 252), may be shewn in precisely the sane manmer as for the particular case established in the corollary of the preceding article. If $M N$ be the common segment or angle of harmonic section, real or imaginary; of any two of them, $A A^{\prime}$ and $B B^{\prime}$, then since, by 2°, Cor. 5°, Art. 252,

$$
\begin{aligned}
& \left\{M B A A^{\prime}\right\}=\left\{M B^{\prime} A^{\prime} k, \text { or, }\left\{M A B B^{\prime}\right\}=\left\{M A^{\prime} B^{\prime} B\right\}\right. \\
& \left\{N B A A^{\prime}\right\}=\left\{N B ^ { \prime } A ^ { \prime } \left\{\mid, \text { or, }\left\{N A B B^{\prime}\right\}=\left\{N^{\prime} A^{\prime} B^{\prime} B\right\} ;\right.\right.
\end{aligned}
$$

and since, as shewn above,

$$
\begin{aligned}
& \left\{C B A A^{\prime}\right\}=\left\{C^{\prime} B^{\prime} A^{\prime} B\right\}, \text { or, }\left\{C A B B^{\prime}\right\}=\left\{C^{\prime} A^{\prime} B^{\prime} B\right\} \\
& \left\{C^{\prime} B A A^{\prime}\right\}=\left\{C B^{\prime} A^{\prime} B\right\}, \text { or, }\left\{C^{\prime} A B B^{\prime}\right\}=\left\{C A^{\prime} B^{\prime} B\right\}
\end{aligned}
$$

with relations exactly similar in which C and $C^{\prime \prime}$ are replaced $b_{y} D$ and D^{\prime}; therefore at once, in either case, by virtue of the general property 3° of Art. 232,

$$
\left\{M N C C^{\prime}\right\}=\left\{M N C^{\prime} C\right\}, \text { and },\left\{M N D D^{\prime}\right\}=\left\{M D^{\prime} D\right\}
$$

and therefore \&c.; $M N$ thus cutting $C C^{\prime}$ aud $D D^{\prime}$ also harmonically (231).

COR. 2'. That every four lines through a point determine with the four perpendiculars to them through the point a system of eight rays related as above to each other, is evident (as in Cor. 2° of the preceding article) from the consideration that every two pencils determined by four of the eight constituent
rays and their four perpendiculars are similar, and therefore equianharmonic (278). And (as in that same corollary) the general property of Cor. 1° is obviously verified for their particular case by that established on other principles in Art. 260, respecting the harmonic section of every right angle by the two imaginary lines connecting its vertex with the two cyclic points at infinity.

Co1. 3°. That, as above stated, the property of the preceding is a particular case of that of the present article, appears at once by supposing the fourth pair of corresponding constituents, D and D^{\prime}, in the above, to coincide, successively, with the first, second, and third pairs, A and A^{\prime}, B and B^{\prime}, C and C^{\prime}; its unaccented taking the places of their accented constituents, and conversely; as the three groups of relations 1° and $1^{\prime}, 2^{\circ}$ and 2^{\prime}, 3° and 3^{\prime} of the preceding would then result evidently from those of the present article, therefore \&c.
N.B. The property of this article is also of considerable importance in the Theory of Involution, under which head it will again be referred to in a subsequent chapter.
285. Every pencil of four rays determines a row of four points equianharmonic with itself on every axis; and, conversely, every row of four points determines a pencil of four rays equianharmonic with itself at every vertex.

Let, in either case, O be the vertex of the pencil, and A, B, C, D the four points of the row; then since, by (65),

$$
\frac{B A}{C A}=\frac{B O}{C O} \cdot \frac{\sin B O A}{\sin C O A}, \text { and, } \frac{B D}{C D}=\frac{B O}{C O} \cdot \frac{\sin B O D}{\sin C O D},
$$

therefore, at once, by division of ratios,

$$
\begin{equation*}
\frac{B A}{C A}: \frac{B D}{C D}=\frac{\sin B O A}{\sin C O A}: \frac{\sin B O D}{\sin C O D} \tag{1}
\end{equation*}
$$

and similarly $\frac{C B}{A B}: \frac{C D}{A D}=\frac{\sin C O B}{\sin A O B}: \frac{\sin C O D}{\sin A O D}$
and finally $\frac{A C}{B C}: \frac{A D}{B D}=\frac{\sin A O C}{\sin B O C}: \frac{\sin A O D}{\sin B O D}$
and therefore \&e. (268).

As for the corresponding property of harmonic section, proved in Art. 221, which is manifestly a particular case of the above, there is one case, and one only, in which the above demonstration fails, viz., when the vertex O of the pencil is at an infinite distance; but in that case, as noticed befure in the article referred to, the four rays of the pencil being parallel (16), the property is evident without any demonstration (Euc. vi. 10).

Of all properties of anharnonic section, the above, which sheics that all anharmonic rutios tehether of rows of points or pencils of rays are p reserved unchanyed in perspective (130), is much the most important ; as an abstract proposition, like its particular case already referred to, it was known to the Ancients, but it was only in modern and comparatively recent times that its importance was perceived; it is to it indeed mainly that the theory of anharmonic section owes its utility and power as an instrument of investigation and proof in modern geometry. See Art. 221.

Cons. 1. When one of the four points of the row, D suppose, is at iutinity, that is, when the axis of the row is parallel to the corresponding ray OD of the pencil, or conversely (16); since then the three ratios $B D: C D, C D: A D, A D: B D$ and their three reciprocals are all $=1$, and since, therefore, the six anharmonic ratios of the row are the three simple ratios $B A: C A$, $C B: A B, A C: B C$ and their three reciprocals (275); hence, from the above-

The six anharmonic ratios of any pencil of four rays are equal to the six simple ratios of the three segments, taken in pairs, intercepted by any threo of them on any axis parallel to the fourth.

Cor. 2°. As every row of four points determines six segments, and every pencil of four rays deternines six angles, corresponding two and two in opposite pairs (274), the general property itself, as in fact it was proved above, may be stated otherwise thus, as follows-

Every two angles having a common vertex and the two segments they intercept on any axis, and conversely, every two segments having a common axis and the theo angles they subtend at any vertex, cut each other equianharmonically.

Cor. 3°. When, in Cor. 2°, the common axis of the segments is parallel to a side of one of the angles, it follows evidently, from Cor. 1°, that-

For every two angles having a common vertex, every chord of either parallel to a side of the other is cut by the second side of the latter in the two anharmonic ratios of their mutual section.
N.B. Of this latter property that of Art. 224 is evidently a particular case.
286. Among the immediato consequences from the general property of the preceding article may be noticed the following:
1°. The same pencil of four rays determines equianharmonic rows of four points on all axes; and, the same row of four points determines equianharmonic pencils of four rays at all vertices.

For, the several rows, in the former case, are all equianharmonic with the pencil, and therefore with each other; and the several pencils, in the latter case, are all equianharmonic with the row, and therefore with each other.
2°. Every two rows of four points or pencils of four rays in perspective with each other are equianharmonic.

For, the two rows, in the former case, subtend the centre of perspective by the same pencil of four rays; and, the two pencils, in the latter case, intersect the axis of perspective at the same row of four points; and therefore \&c.
3°. Every twoo rows of four points or pencils of four rays in perspective with the same row or pencil are equianharmonic.

For, they are both equianharmonic with the row or pencil with which they are both in perspective, and therefore with each other.
4°. Every two rows of three points in perspective with each other form equianharmonic systems with the intersection of their axes; and, every two pencils of three rays in perspective with each other form equianharmonic systems with the connector of their vertices.

For, the two rows, in the former case, combined each with the intersection of their axes, subtend the centro of perspective by the same pencil of four rays; and, the two pencils, in the latter case, combined each with the connector of their vertices, intersect the axis of perspective at the same row of four points; and therefore \&e.
5°. A ficed pencil of four rays determines on a variable line, moving according to any lave, a variable now of four points having a constant anharmonic ratio; and, a fixed pore of four points determines at a variable point, moving according to any lane, a variable pencil of four rays having a constant anharmonic ratio.

For, the variable row, in the former case, is equianharnouic in every position with the fixed determining pencil; and, the variable pencil, in the latter case, is equianharmonic in every position with the fixed determining row; and therefore \&e.
6. A fixed pencil of three mays determines, on a variable line turning round a fuxed point, a carinble rovo of thrce points furming with the fixed point a system having a constant anharmonic ratio; and, a fixed row of three points determines, at a variable point moving on a fixed line, a variable pencil of three lines forming soith the fixed line a system having a constant anharmonic ratio.

For, the variable row, in the former case, combined with the fixed point, is equianharmonic in every position with the fixed pencil, combined with the line common to its vertex and the fixed point; and, the variable pencil, in the latter ease, combined with the fixed line, is equianlarmonic in every position with the fixed row, combined with the peint common to its axis and the fixed line; and therefore dic.
N.B. Of the above inferences, 4° is evidently a particular case of 2°, and 6° is evidently a particular case of 3°.
287. The same general property supplies obvious solutions of the two following reciprocal problems, to which, as will appear in the sequel, several others in the theory of auhamnonic section may be reduced, viz.-
a. Through a given point to dravo the line velose intersections with thrce given lines, which are not concurrent, shall determine, with the given point, a systern of four points having, in a given assigned order, a given anharmonic ratio.
a^{\prime}. On a given line to find the point echose connectors with three given points, which are not collinear, shall determine, with the given line, a system of four rays having, in a given assigned order, a given anharmonic ratio.

For, if, in the former case, O (fig. α) be the given point; X, Y, Z the three intersections of the required with the three given lines; and A, B, C the three vertices of the triangle determined by the latter; then since, by the general property of Art. 285, the three pencils of four rays A. XYZO, B.XYZO, $C . X Y Z O$, which have each three rass given, are all equianharmonic with the row of four points $X Y Z O$; and since, by hypothesis, the anharmonic ratio of the latter is given; therefore the anharmonic ratios of the former, and with them their fourth rays $A X, B Y, C Z$ are given; and therefore \&c. And, if, in the latter case, O (fig. α^{\prime}) be the given line; X, Y, Z the three connectors of the required with the three given points; and A, B, C the three sides of the triangle determined by the latter; then since, by the general property of Art. 285, the three rows of four points A.XYZO, B.XYZO, C.XYZO, which have each three points given, are all equianharmonic with the pencil of four rays $X Y Z O$; and since, by hypothesis, the anharmonic ratio of the latter is given; therefore the anharmonic ratios of the former, and with them their fourth points $A X, B Y, C Z$, are given; and therefore \&c.

These two reciprocal solutions may be briefly summed up in one as follows: Since, in both cases alike, by the general property of Art. 285, the three systems A.XYZO, B. XYZO, $C . X Y Z O$, which have each three constituents given, are equianharmonic with the system $X Y Z O$, whose anharmonic ratio is, by hypothesis, given ; therefore their fourth constituents $A X$, $B Y, C Z$ are implicitly given; and therefore \&c.
N.B. The preceding problems are manifestly indeterminate or impossible, the former when the three given lines are concurrent, and the latter when the three given points are collinear; for, by 6° of the preceding article, the anharmonic ratio of the
system $X Y Z O$ is then consteme, whatever be the direction of its axis in the former case, or the position of its vertex in the latter case; and therefore © \&e. (59).

2S5. The two following reciprocal inferences from the same general property are, evidently, the converses of the two embodied, in a single statement, in 2°, Art. 256, viz. -
a. When tho equianharmonic roves of points on diffirent axes A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ are such that three of their puirs of corresponding points A and A^{\prime}, B and B^{\prime}, C and C^{\prime} connect by lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ pessing through a common point O, the fourth pair D and D^{\prime} comect also by a line $D D^{\prime}$ pussing through the same point 0 .
a'. When tuo equiunharmonic pencils of rays through different vertices A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ are such that three of their pairs of corresponding rays A and A^{\prime}, B and B^{\prime}, C and C^{\prime} intersect at points $A A^{\prime}, B B^{\prime}, C C^{\prime}$ lying on a common live O, the fourth puir D and D^{\prime} intersect also at a point $D D^{\prime}$ lying on the same line 0 .

For, in the former case (figs. α and β), the two rows of points A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ being, by hypothesis, equianharmonic, so therefore (295) are the two pencils of rays $O A, O B, O C, O D$, and $O A^{\prime}, O B^{\prime}, O C^{\prime}, O D^{\prime}$; but three pairs of corresponding rays of those two equianharmonic pencils $O A$ and $O A^{\prime}, O B$ and $O B^{\prime}, O C$ and $O C^{\prime}$ coincide; therefore the fourth pair $O D$ and $O D^{\prime}$ coincide also; and therefore \&e. And, in the latter case (figs. α^{\prime} and β^{\prime}), the two pencils of rays A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ being, by hypothesis, equian-

harmonic, so therefore (285) are the two rows of points $O A, O B$, $O C, O D$, and $O A^{\prime}, O B^{\prime}, O C^{\prime}, O D^{\prime}$; but three pairs of corresponding points of those two equianharmonic rows $O A$ and $O A^{\prime}$, $O B$ and $O B^{\prime}, O C$ and $O C^{\prime}$ coincide; therefore the fourth pair $O D$ and $O D^{\prime}$ coincide also ; and therefore \&c.

Tho above reciprocal properties may be briefly summed up in one as follows-

When, of two equianharmonic rows of four points or pencils of four rays A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, three pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime} are in perspective (130), the fourth pair D and D^{\prime} are in perspective voith them.

And so also may the reciprocal demonstrations above given of them, as follows-

Since, in both cases, by hypothesis, $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$; therefore, in both cases, by (285), $\{O \cdot A B C D\}=\left\{O \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$, O being the centre (or axis) of perspective of A and A^{\prime}, B and B^{\prime}, C and $C^{\prime \prime}$; but, in both cases, by hypothesis, $O A=O A^{\prime}$, $O B=O B^{\prime}, O C=O C^{\prime}$; therefore, in both cases, $O D=O D^{\prime}$; and therefore \&c.
259. The two following, again, are very important particular cases of those of the preceding article; and are, also, evidently, the converses of the two combined, in a single statement, in 4, Art. 286, viz.-
a. When two equianharmonic rows of points on different axes B, C, D, E and $B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}$ are such that a pair of their corresponding points E and E^{*} coincide at the intersection of the axes, the remaining three pairs B and B^{\prime}, C and C^{\prime}, D and D^{\prime}
connect by three lines $B B^{\prime}, C C^{\prime}, D D^{\prime}$ passing through a common point 0 .
a^{\prime}. When two equianharmonic pencils of rays through different vertices B, C, D, E and $B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}$ are such that a puir of their corresponding rays E and $E^{\prime \prime}$ coincide along the connector of the vertices, the remaining thrce pairs B and B^{\prime}, C and $C^{\prime \prime}$, D and D^{\prime} intersect at three points $B B^{\prime}, C C^{\prime}, D D^{\prime}$ lying on a common line 0 .

For, if, in the former case, (figz. α and β of the preceding article), O be the intersection of any two of them $131 B^{\prime}$ and $C C^{\prime}$; then, the two rows of points B, C, D, E and $B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime \prime}$ being, by hypothesis, equianharmonic, so therefore (2S5) are the two pencils of rays $O B, O C, O D, O E$ and $O B^{\prime}, O C^{\prime \prime}, O D, O E^{\prime \prime}$; but three pairs of their corresponding mys $O B$ and $O B$ ', $O C$ and $O C^{\prime}, O E$ and $O E^{\prime}$ coincide; therefore the fourth pair $O D$ and $O D^{\prime}$ coincide also; and therefore se. And if, in the latter case, (figs. α^{\prime} and β^{\prime} of the preceding article), O be the comector of any two of them $B B B^{\prime}$ and $C C^{\prime}$; then, the two pencils of rays B, C, D, E and $B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime \prime}$ being, by hypothesis, equianharmonic, so therefore (285) are the two rows of points OB, OC, $O D, O E$ and $O B^{\prime}, O C^{\prime}, O D^{\prime}, O E^{\prime \prime}$; but threo pairs of their corresponding points $O B$ and $O B^{\prime}, O C$ and $O C^{\prime}, O E$ and $O E^{\prime}$ coincide; therefore the fourth pair $O D$ and $O D$ coincide also; and therefore \&c.

Like those of the preceding article, of which they aro important particular cases, the above reciprocal properties may be briefly summed up in one, as follows-

When, of too equianhurmonic roves of four proints or pencils of four rays B, C, D, E^{\prime} and $B^{\prime}, C^{\prime}, D, E^{\prime \prime}$, one pair of corresponding constituents E and $E^{\prime \prime}$ coincide, the remaining three pairs B and B^{\prime}, C and C^{\prime}, D and D^{\prime} are in perspective.

And so, like those of the same, may the reciprocal demonstrations above given of them, as follows-

Since, in both cases, by hypothesis, $\{B C D E\}=\left\{B^{\prime} C^{\prime} D^{\prime} E^{\prime \prime}\right\}$; therefore, in both cases, by (285), $\{0 . B O D E\}=\left\{0 . B^{\prime} C^{\prime} D^{\prime} E^{\prime \prime}\right\}$, O being the point (or line) common to the two lines (or points) $B B^{\prime}$ and $C C^{\prime}$; but, in both eases, by hypothesis, $O B=O B^{\prime}$, $O C=O C^{\prime}, O E=O E^{\prime}$; therefore, in both cases, $O D=O D^{\prime}$; and therefore dec.
290. The two following, again, are useful inferences from the important reciprocal properties of the preceding article, viz.-
a. Every two equianharmonio rows of points on different axes A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ determine two pencils of rays in perspective at any two vertices O and O^{\prime} lying on the line of connection AA' of any of their four pairs of corresponding points A. and A^{\prime}.
a^{\prime}. Every two equianharmonic pencils of rays through different vertices A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ determine two rows of points in perspective on any two axes O and O^{\prime} passing through the point of intersection $A A^{\prime}$ of any of their four pairs of corresponding rays A and A^{\prime}.

For, in the former case, the two rows of points A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ (fig. a) being, by hypothesis, equianharmonic, so therefore (285) are the two pencils of rays $O A, O B, O C, O D$ and $O^{\prime} A^{\prime}, O^{\prime} B^{\prime}, O^{\prime} C^{\prime}, O^{\prime} D^{\prime}$; but, for the two vertices O and O^{\prime}, the pair of corresponding rays $O A$ and $O^{\prime} A^{\prime}$, by hypothesis, coincide; therefore (289, a^{\prime}) the three remaining pairs $O B$ and $O^{\prime} B^{\prime}, O C$ and $O^{\prime} C^{\prime}, O D$ and $O^{\prime} D^{\prime}$, intersect at three points Q, R, S, lying on a common line I; and therefore \&c. And, in the latter case, the two pencils of rays A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ (fig. a') being, by hypothesis, equianharmonic, so therefore (285) are the two rows of points $O A, O B, O C, O D$ and $O^{\prime} A^{\prime}, O^{\prime} B^{\prime}, O^{\prime} C^{\prime}, O^{\prime} D^{\prime}$; but, for the two axes O and O^{\prime}, the pair of corresponding points $O A$ and $O^{\prime} A^{\prime}$, by hypothesis, coincide ; therefore $(289, a)$ the three remaining pairs $O B$ and $O^{\prime} B^{\prime}, O C$ and $O^{\prime} C^{\prime}, O D$ and $O^{\prime} D^{\prime}$ connect by three lines Q, R, S passing through a common point I; and therefore \&c.
Λs, in the two preceding articles, these two reciprocal demonstrations may be briefly summed up in one as follows-

Since, in both eases, $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$; therefore, in both, $\{0 . A B C D\}=\left\{O^{\prime} . A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\} ;$ but, in both cases, $O A$ and $O^{\prime} A^{\prime}$ coincide ; therefore, in both, the two systems $O B, O C, O D$ and $O^{\prime} B^{\prime}, O^{\prime} C^{\prime}, O^{\prime} D^{\prime}$ are in perspective; and therefore \&e.
N.B. In the above reciprocal properties, the two points (or lines) O and O^{\prime} might, of course, coincide respectively with the two A ' and A; the properties themselves as above stated, and their demonstrations as above given, would remain unchanged; but the axis (or centre) of perspective I of the two pencils (or rows) $O . A B C D$ and $O^{\prime} . A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ would then have certain important relations with respect to the two determining rows (or pencils) A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, which will be considered at length in another chapter.
291. The two reciprocal properties of the preceding article supply ready solutions, by linear construetious ouly, without the aid of the circle, of the two following reciprocal problems, viz.
a. Given three pairs of corresponding constiturnts A and A^{\prime}, B and B^{\prime}, C and $C^{\prime \prime}$ of theo equianharmonic systems of points A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime \prime}, D^{\prime}$ on different anose, and the fourth point D of either syatemt ; warmine the fourth point D ' of the other system.
a^{\prime}. Given three pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C ' of tuo equianharmonic systems of rays A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ through dificrent vertices, and the fourth ray D of either system; to determine the fourth ray D ' of the other system.

For, in the fonner case, from any two points O and O, taken arbitrarily on the line of comection $A A^{\prime}$ of any one of the three given pairs of corresponding points A and A^{\prime} (fig. a of preceding Art.), drawing the two pairs of lines $O B$ and $O^{\prime} B^{\prime}$, $O C$ and $O^{\prime} C^{\prime}$ intersecting at the two points Q and R; and from the point of intersection S of the two lines $Q R$ and $O D$ drawing the line $S O^{\prime}$; the latter line, by property (a) of the preceding article, intersects with the axis L^{\prime} of the system $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ at the required point D^{\prime}. And, in the latter case,
on any two lines O and O^{\prime}, drawn arbitrarily through the point of intersection $A A^{\prime}$ of any one of the three given pairs of corresponding rays A and A^{\prime} (fig. α^{\prime} of preceding Art.), taking the two pairs of points $O B$ and $O^{\prime} B^{\prime}, O C$ and $O^{\prime} C^{\prime}$ comnecting by the two lines Q and R; and on the line of connection S of the two points $Q R$ and $O D$ taking the point $S O^{\prime}$; the latter point, by property (a^{\prime}) of the preceding article, connects with the vertex L^{\prime} of the system $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ by the required ray D^{\prime}.

These two reciprocal constructions may be briefly summed up in one as follows: The two given points or rays A and Λ^{\prime} give the line or point $A A^{\prime}$; on or through which are taken or drawn arbitrarily the two points or lines O and O^{\prime}; which, with the two given pairs of points or lines B and B^{\prime}, C and C^{\prime}, give the two pairs of lines or points $O B$ and $O^{\prime} B^{\prime}, O C$ and $O^{\prime} C^{\prime}$; which give the two points or lines Q and R; which give the line or point $Q R$; which, with the line or point $O D$, gives the point or line S; which, with the point or line O^{\prime}, gives the line $S O^{\prime}$; which, with the axis or vertex L^{\prime} of the system $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, gives the required fourth point or ray D^{\prime}.
N.B. As noticed at the close of the preceding article, the two assumed points or lines O and O^{\prime}, in the two preceding reciprocal constructions, might be taken to coincide with the given two A^{\prime} and A respectively; but no simplification worth mentioning would be obtained by so taking them.

In the particular case when the three given pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime} are in perspective (130), either constituent of the remaining pair D and D^{\prime} is given immediately with the other, being, by (288), in perspective with it to the same centre or axis.
292. Every row of four points is equianharmonic with the pencil of four rays determined by their four polars with respect to any circle; and, conversely, every pencil of four rays is equianharmonic with the row of four points determined by their four poles with respect to any circle (166, Cor. 1°).

For, in either case, the pencil determined by the four rays being similar to that subtended by the four points at the centre of the circle $\left(171,2^{\circ}\right)$; and the latter pencil, by virtue of the general property of Art. 285, being equianharmonic with the
row determined by the four points; therefore \&e. The property of harmonic section established in Art. 223 is evidently a particular case of this.

In the applications of the theory of anharmonic section, the above property, from which it appears that all anharmonic ratios, zehether of roues of points or pencils of rays, are preserved unchanged in reciprocation (172), ranks next in inportance to that of Art. 285, from which, as above demonstrated, like its particular case already referred to, it is indeed an inference. By virtue of it all anharmonic properties of geometrical figures are in fact double, every anharmonic property of any figure being accompunied by a corresponding anharmonic property of its reciprocal figure to any circle (172), the establishment of cither of rehich involves that of the other without the necessity of any further demonstration (173). As, in the applications of the theory of harmonic section given in Chapters XIV. and XV., the principal anharmonic propertics of figures consisting only of points and lines, and also of figures involving circles so far as their reciprocals are properties involving no higher figures (173), will be given in the next and following chaptens, arranged for tho most part in reciprocal pairs, placed in immediate connection with each other, and marked by corresponding lettera, accented and unacceuted, so as to keep the circumstance of this duality, which forms such a remarkable feature in modern geometry, continually present before tho reader, and furnish him at the samo time with numerous additional examples by which to excrcise and perfect himself in the reciprocating process doscribed in Art. 172, and already exemplified at some length in the chapters referred to. The five articles immediately preceding the present furnish obrious examples of this mode of arrangement; and, until the closing chapter, where it would be inadmissible for the reason mentioned in Art. 173, the same will be adhered to as systematically as possible throughout the remainder of the work.

CHAPTER XVII.

ANHARMONIC PROPERTIES OF THE POINT AND LINE.

293. In the applications of the theory of anharmonic section to the geometry of the Point and Line, the two following properties, reciprocals of each other, present themselves so frequently that we shall commence this chapter on the subject with their statement and proof.

If A, B, C be any three points lying on a line (or lines passing through a point) 0 , and $A^{\prime}, B^{\prime}, C^{\prime}$ any three others lying on another line (or passing through another point) O^{\prime}; the three intersections (or connectors) $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ of the three pairs of connectors (or intersections) $B C^{\prime}$ and $B^{\prime} C, C A^{\prime}$ and $C^{\prime} A, A B^{\prime}$ and $A^{\prime} B$ lie on a third line (or pass through a third point) $O^{\prime \prime}$; which determines with O and O^{\prime} a triangle $O O^{\prime} O^{\prime \prime}$, whose opposite vertices (or sides) $I, I^{\prime}, I^{\prime \prime}$ are connected with the three collinear (or concurrent) triads $A, B, C ; A^{\prime}, B^{\prime}, C^{\prime} ; A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ by the three groups of equianharmonic relations

$$
\left.\begin{array}{l}
\left\{B C I^{\prime} I^{\prime \prime}\right\}=\left\{B^{\prime} C^{\prime} I^{\prime \prime} I\right\}=\left\{B^{\prime \prime} C^{\prime \prime} I I\right\} \\
\left\{C A I^{\prime} I^{\prime \prime}\right\}=\left\{C^{\prime} A^{\prime} I^{\prime} I\right\}=\left\{C^{\prime \prime} A^{\prime \prime} I I^{\prime}\right\} \tag{1}\\
\left\{A B I^{\prime} I^{\prime \prime}\right\}=\left\{A^{\prime} B^{\prime} I^{\prime \prime} I\right\}=\left\{A^{\prime \prime} B^{\prime \prime} I I^{\prime}\right\}
\end{array}\right\}
$$

and, as a consequence from them, also by the two

$$
\left.\begin{array}{l}
\left\{A B C I^{\prime}\right\}=\left\{A^{\prime} B^{\prime} C^{\prime} I^{\prime \prime}\right\}=\left\{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} I\right\} \\
\left\{A B C I^{\prime \prime}\right\}=\left\{A^{\prime} B^{\prime} C^{\prime} I\right\}=\left\{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} I^{\prime}\right\}
\end{array}\right\} \ldots \text { (2). }
$$

For, if $O^{\prime \prime}$ be the line of connection (fig. α) (or the point of intersection (fig. α^{\prime})) of some two, $A^{\prime \prime}$ and $B^{\prime \prime}$ suppose, of the three points (or lines) $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$; and $I, I^{\prime}, I^{\prime \prime}$ the three opposite vertices (or sides) of the triangle determined by the three lines (or points) $O, O^{\prime}, O^{\prime \prime}$; then, since the two triads of points (or lines) B, C, I^{\prime} and $C^{\prime}, B^{\prime}, l$ are in perspective, therefore, by $\left(236,4^{\circ}\right)$

$$
\left\{B C I^{\prime} I^{\prime \prime}\right\}=\left\{C^{\prime} B^{\prime} I I^{\prime \prime}\right\}=\left\{B^{\prime} C^{\prime} I^{\prime \prime} I\right\}(280) ;
$$

and, since the two triads of points (or lines) C, A, I and A^{\prime}, C^{\prime}, I are in perspective, therefore, by the same,

$$
\left\{C A I^{\prime} I^{\prime \prime}\right\}=\left\{A^{\prime} C^{\prime} I I^{\prime \prime}\right\}=\left\{C^{\prime} A^{\prime} I^{\prime \prime} I\right\}(280) ;
$$

therefore, by the general property (1°), Art. (282),

$$
\left\{A B I^{\prime} I^{\prime \prime}\right\}=\left\{A^{\prime} B^{\prime} I^{\prime \prime} I\right\}=\left\{B^{\prime} A^{\prime} I^{\prime \prime}\right\}(2 s 0) ;
$$

and therefore, by (259), the two triads of points (or lines) A, B, I^{\prime} and $B^{\prime}, A^{\prime}, I$ are in perspective; which proves tho first parts of both properties, in which, as is evident from the figures and mode of establiahment, any two of the three collinear (or concurrent) triads $A, B, C ; A^{\prime}, B^{\prime}, C ; A^{\prime \prime}, B^{\prime \prime}, C^{n}$ may be regarded as the original pair, and the third as that derived from them by the construction involved in the corresponding statement, whichever it be.

To prove the second parta of both properties ; since, in either case, as shown above for the two original triads A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$,

$$
\begin{aligned}
\left\{B C I^{\prime} I^{\prime \prime}\right\}= & \left\{B^{\prime} C^{\prime} I^{\prime \prime}\right],\left\{C A I^{\prime} \Gamma^{\prime \prime}\right\}=\left\{C^{\prime} A^{\prime} I^{\prime \prime} I\right\} \\
& \left\{A B I^{\prime} I^{\prime \prime}\right\}=\left\{A^{\prime} B^{\prime} I^{\prime \prime} I\right\} ;
\end{aligned}
$$

therefore, by cyelic interchange between each and the derived triad $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$,

$$
\begin{aligned}
& \left\{B C I^{\prime} I^{\prime \prime}\right\}=\left\{B^{\prime} C^{\prime} I^{\prime \prime} I\right\}=\left\{B^{\prime \prime} C^{\prime \prime} I I^{\prime}\right\} \\
& \left\{C A I^{\prime} I^{\prime \prime}\right\}=\left\{C^{\prime} A^{\prime} I^{\prime \prime} I\right\}=\left\{C^{\prime \prime} A^{\prime \prime} I^{\prime}\right\}, \\
& \left\{A B I^{\prime} I^{\prime \prime}\right\}=\left\{A^{\prime} B^{\prime} I^{\prime \prime} I\right\}=\left\{A^{\prime \prime} B^{\prime \prime} I I^{\prime}\right\} ;
\end{aligned}
$$

which are the relations (1) as above stated; and, as from them the relations (2) follow immediately in virtue of the general property (2°), Art. (2s2), therefore \&c.

In the particular case when any two of the three triads, A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ suppose, are in perspective ; it is evident, from (240), that the line of collinearity (or point of concurrence) $O^{\prime \prime}$ of the third $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ is the polar of their centre (or the pole of their axis) of perspective, with respect to the angle (or segment) $O O^{\prime}$ determined by their two lines of collinearity (or points of concurrence) O and $O^{\prime}(217)$. In that case the three lines (or points) $O, O^{\prime}, O^{\prime \prime}$ being concurrent (or collinear), and the three points (or lines) $I, I^{\prime}, I^{\prime \prime}$ consequently coincident, therefore, by relations (2) above,

$$
\{A B C I\}=\left\{A^{\prime} B^{\prime} C^{\prime} \Pi\right\}=\left\{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} I\right\}
$$

and therefore, by (289), the three triads $A, B, C ; A^{\prime}, B^{\prime}, C^{\prime}$; $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are two and two in perspective. Hence-

When, of three collinear (or concurrent) triads A, B, C; $A^{\prime}, B^{\prime}, C^{\prime} ; A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ connected cyclically as above, any two are in perspective, then every two are in perspective; and the axis (or vertex) of each is the polar of the centre (or the pote of the axis) of perspective of the other two, with respect to the angle (or segment) determined by their axes (or vertices).
294. Among the numerous inferences from the two reciprocal properties of the preceding article, the following, in pairs reciprocals of each other, are deserving of attention.
1°. The three pairs of points (or lines) A and A^{\prime}, B and B^{\prime}, C and C^{\prime} may be regarded as determining three segments (or angles) $A A^{\prime}, B B^{\prime}, C C^{\prime}$, which, taken in pairs, have a common centre (or axis) of perspective $I^{\prime \prime}$, and of which, taken in pairs, the three points (or lines) $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are the remaining three centres (or axes) of perspective; and similarly for the three pairs A^{\prime} and $A^{\prime \prime}, B^{\prime}$ and $B^{\prime \prime}, C^{\prime}$ and $C^{\prime \prime}$, and for the three $\Lambda^{\prime \prime}$ and $A, B^{\prime \prime}$ and $B, C^{\prime \prime}$ and C; hence, generally, from the first parts of the two reciprocal properties in question-
a. When, of three segments taken in pairs, thrce of the six centres of perspective coincide, the remaining three are collinear.
a^{\prime}. When, of three angles taken in pairs, three of the six axes of perspective coincide, the remaining three are concurrent.
2°. The two triads of points (or lines) A, B, C and $A^{\prime}, B^{\prime} C^{\prime \prime}$ may be regarded as the two sets of three alternate vertices (or sides) of a hexagon $A B^{\prime} C A^{\prime} B C^{\prime}$, of which A and A^{\prime},
B and B^{\prime}, C and $C^{\prime \prime}$ are the three pairs of opposite vertices (or sides), and $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime \prime}$ the three intersections (or connectors) of the three pairs of opposite sides (or vertices) $B C^{\prime}$ and $B^{\prime} C$, $C A^{\prime}$ and $C^{\prime} A, A B^{\prime}$ and $A^{\prime} B$; and similarly for the two triads $A^{\prime}, B^{\prime \prime}, C^{\prime \prime}$ and $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$, and for the two $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ and A, B, C; hence, generally, from the same again-
a. When, of a hexagon, both trials of alternate vertices are collinear, the three intersections of oppasite sides are collinear.
a'. When, of a hexagon, both triuls of alternate sides are concurrent, the three connectors of oppasite tertices are concurrent.
3°. The three triads of points (or lines) $A, B, C ; A^{\prime}, B^{\prime}, C^{\prime}$; $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime \prime}$ may be regarded as determining six different cycles of three triangles, each inscribed to one and exscribed to the other of the remaining two, viz. -
$B A^{\prime} C, B^{\prime} A^{\prime \prime} C^{\prime}, B^{\prime \prime} A C^{\prime \prime}$ and $B A^{\prime \prime} C, B B^{\prime} C^{\prime}, B^{\prime \prime} A^{\prime} C^{\prime \prime}$,
$C B^{\prime} A, C^{\prime \prime} B^{\prime \prime} A^{\prime}, C^{\prime \prime} B A^{\prime \prime}$ and $C B^{\prime \prime} A, C^{\prime} B A^{\prime}, C^{\prime \prime} B^{\prime} A^{\prime \prime}$,
$A C^{\prime} B, A^{\prime} C^{\prime \prime} B^{\prime \prime}, A^{\prime \prime} C B^{\prime \prime}$ and $A C^{\prime \prime} B, A^{\prime} C B^{\prime}, A^{\prime \prime} C^{\prime} B^{\prime \prime}$, for each of which the three points (or lines) $I, I, I^{\prime \prime}$ are the jrints of intersection (or lines of connection) of the three pairs of corresponding sides (or vertices) O^{\prime} and $O^{\prime \prime}, O^{\prime \prime}$ and O, O and O^{\prime} respectively; and similarly for the remaining pairs of corresponding sides (or vertices); hence, generally; from relations (1) and (2) of the preceding article, respectively -

In every cycle of three triangles each inscribed to one and exscribed to the other of the reataining two.
a. The sides and opposite vertices of ench divide equianharmonically the correspondiny sides of that to rhich it is inscribal.
a'. The vertices and opposite sides of each divide equianharmonicully the corresponding angles of that to schich it is exscribed.
b. The pairs of corresponding sides of every theo intersect equianharmonicully the corresponding sides of the third.
b. The pairs of rorresponding vertices of every theo subtend equianharmonically the corresponding angles of the third.
4°. When, for the system of three triangles constituting any one of the six cycles, $B A^{\prime} C, I^{\prime} A^{\prime \prime} C^{\prime \prime}, B^{\prime \prime} A C^{\prime \prime}$ suppose, in the preceding, the equianharmonic section in properties (a) and $\left(a^{\prime}\right)$ is harmonic; since then, by the two reciprocal properties (a) and (a^{\prime}) of Art. (243), the three triangles constituting the
cycle aro two and two in perspective, and conversely; and since always, by the first parts of the two reciprocal properties of the preceding article, the three triads of points of intersection (or lines of connexion) of
$B A^{\prime}$ and $B^{\prime} A^{\prime \prime}, C A^{\prime}$ and $C^{\prime} A^{\prime \prime}, B^{\prime} B^{\prime \prime}$ and $C^{\prime} C^{\prime \prime \prime}$,
$B^{\prime} A^{\prime \prime}$ and $B^{\prime \prime} A, C^{\prime} A^{\prime \prime}$ and $C^{\prime \prime} A, B^{\prime \prime} B$ and $C^{\prime \prime} C$,
$B^{\prime \prime} A$ and $B A^{\prime}, C^{\prime \prime} A$ and $C A^{\prime}, B B^{\prime}$ and $C C^{\prime}$,
are collinear (or concurrent) ; hence generally, as noticed in Cors. (11°) and (13°), Art. (261)-

In a cycle of three triangles each inscribed to one and exscribed to the other of the remaining two.
a. When any two of the three are in perspective, every two of the three are in perspective.
b. For each triangle, its centre of perspective with that to which it is inscribed lies on its axis of perspective with that to which it is exscribed, and reciprocally, its axis of perspective with that to which it is exscribed passes through its centre of perspective with that to which it is inscribed.
5°. In the two triads of points (or lines) A, B, C and $\Lambda^{\prime}, B^{\prime}, C^{\prime}$, if, while the three constituents A, B, C of either and any two A^{\prime} and B^{\prime} of the other are supposed to remain fixed, the third constituent C^{\prime} of the latter be conceived to vary, causing of course the simultancous variation of the two constituents $A^{\prime \prime}$ and $B^{\prime \prime}$ of the third triad $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$; since then, in every position of the variable triangle $A^{\prime \prime} C^{\prime} B^{\prime \prime}$, the three vertices (or sides) lie on the three fixed lines (or pass through the three fixed points) $B^{\prime} C, A^{\prime} B^{\prime}, C A^{\prime}$, while the three sides (or vertices) pass through the three fixed points (or lie on the three fixed lines) $A, C^{\prime \prime}, B$; hence again, generally, from the first parts of the reciprocal properties of the preceding article-
a. When, of a variable triangle whose three vertices move on fixed lines, two of the sides turn round the corresponding vertices of any fixed triangle exscribed to that determined by the lines, the third turns round its third vertex.
a^{\prime}. When, of a variable triangle whose three sides turn round fixed points, tico of the vertices move on the corresponding sides of any fuxed eriangle inscribed to that determined ly the points, the third moves on its third side.
6°. When the two fixed triangles, in the two reciprocal properties a and a^{\prime} of the preceling (5°), are in perspective; since then, by property a of $\left(4^{\circ}\right)$, the variable triangle, in every position, is in perspective with both; and since also, by property b) of the same, its centre of perspective with that to which it is exseribed lies, in every prosition, on the axis of perspective of the two, while its axis of perspective with that to which it is inscribed passes, in every position, through the centre of perapective of the two; hence, generally, from those properties combined, it appeans that-

In a cycle of three triungles, each insecribed to one and exscribed to the other of the remaining two and in gerspective with loth; if, while two of the three are supprased to remain fixed, the third lie conceived to vary, then-
a. The centre of perspective, of the urriable with the fixed triangle to velich it is exscrited, moves on the axis of perspective of the fuo fired triangles.
a'. The axis of perspective, of the rariabln with the firmd triangle to which it is inscrilwl, turns round the centre of gerspretive of the tuco fised triangles.
7°. Since, in every cycle of three triangles ench inscribed to one and exscribed to the other of the remaining two; by virtue of the two reciprocal properties a and a^{\prime} of $\left(3^{\circ}\right)$, or of either of them combined with the general property of A rt. 285 , the opposite vertices and sides of each divide in the same auharmonic ratios, the corresponding sides of that to which it is inscribod, and the corresponding angles of that to which it is exscribed; which three sets of equal aulharmonic ratios are of counse fixed when two of the three triangles of the cyele are fixed, however the third may vary; hence, generally, from those properties combined with those of (5°), it appears that-

In any cycle of three triangles, each inscribed to one and exscribed to the other of the remaining tweo; if, white tweo of the three are supposed to remain fired, the third be conceived to vary, then of the latter with respect to the theo former-
a. The opposile verlices and sides divide in the same constant anharmonic ratios, the corresponding sides of that to rehich it is inscribed, and the corresponding angles of that to telich it is exscribed.
b. The opposite sides and angles are divided in the same constant anharmonic ratios, the former by the corresponding vertices and sides of that to which it is exscribed, and the latter by the corresponding sides and vertices of that to which it is inscribed.
8°. Since again, by virtue of the same two reciprocal properties, or of either of them combined with that of Art. 285, the opposite vertices and sides of every two triangles, cither inscribed to a third and exscribed to a fourth exscribed to the third, or exscribed to a third and inscribed to a fourth inscribed to the third, divide, in equal anharmonic ratios, the corresponding sides of that to which they are inscribed, and the corresponding angles of that to which they are exscribed; while their sides and angles are divided in the same equal anharmonic ratios, the former by the corresponding vertices and sides of that to which they are exseribed, and the latter by the corresponding sides and vertices of that to which they are inscribed; hence, again, from the same, conversely, as may also be easily shewn directly, it appears that-
a. When, of two triangles inscribed to a third, the opposite vertices and sides divide in any equal anharmonic ratios the corresponding sides of the third; the intersections of their pairs of corresponding sides determine a fourth triangle, inscribed to each of themselves and exscribed to the third, whose opposite sides and vertices dievide in the same equal anharmonic ratios their pairs of corresponding sides and the corresponding angles of the third.
a^{\prime}. When of two triangles exscribed to a third, the opposite sides and vertices divide in any equal anharmonic ratios the corresponding angles of the third; the connectors of their pairs of corresponding vertices determine a fourth triangle, exscribed to each of themselves and inscribed to the third, whose opposite vertices and sides divide in the same equal anharmonic ratios their pairs of corresponding angles and the corresponding sides of the third.
9°. In the particular case when, in the two reciprocal properties a and a° of the preceding $\left(8^{\circ}\right)$, the three sets of equal anharmonic ratios are all harmonic; since then, by (243), tho several pairs of corresponding triangles are in perspective, and
conversely; hence from those properties combined with those of the latter article, it appears that-
a. When teoo triangles are each inseribed to a third and in perspective with it : the intersections of their puirs of corresponding silks determine a fourth triangle, inscribed to cuch of themselees, ressoribal to the third, and in perspective with all three.
a. When tuso triungls are each exscribed to a chird and in perspective with, it ; the connecturs of their puirs of corresponding nrtic a det rmine a fourth triangle, exscribed to each of themselees, inscrived to the third, and in perspecties with all three.
10^{1}. Since, when two triangles are each inscribed or exscribed to a third, the sides of the third are the comnectors of their pairs of corrcspouling vertices in the former case, and the vertices of the third the intersections of their pairs of corresponding sides in the latter case; it appeans, consequently, from the two separate parts of cither of the two reciprocal, and also converse, propertios of the preceding (3°), that-
a. Of theo triungles tehasm certices and sices correszond in pairs: when the connectors of their pairs of cormoponding vertices determine a common execritwal triangle in grapective with hoth, the intersections of their pairs of corresponding sides iletermine a common inscribed triangle in perspective with both; and conversely."

- The above is evidently a particular case of the following:

Of teoo Iriungles whose certices and siles correspond in pairs; when the connectors of their pairs of corresponling vertices determine a common exseribed triangle in perspective with either, the intersections of their pairs of corresponding silfes determine a common inseribed triangle in perppectice veith the other: and conversely.

Which may be proved readily, from the general relations a and b^{\prime} of Art. 131, as follows:

If $X, Y ; \%$ be the three vertices of one of the original triangles; X, Y^{\prime}, Z those of the other; A, B, C those of the common exseribed triangte determined by the three connectors; and $\mathcal{A}^{\prime}, B^{\prime}, C^{\prime \prime}$ those of the common inscribed triangle determined by the three intersections; sinee then ahoays, in virtue of relation a of the article in question,

$$
\frac{B X}{C X} \cdot \frac{C Y}{A Y} \cdot \frac{A Z}{B Z}=\frac{I^{n} A^{\prime}}{Z A} \cdot \frac{Z^{\prime} H}{X H} \cdot \frac{X^{\prime} C}{Y^{\prime} C} \cdot \ldots \ldots \ldots \text { (1) }
$$

and

$$
\begin{equation*}
\frac{B X^{\top}}{C \Lambda^{\prime}} \cdot \frac{C I^{7}}{A X^{n}} \cdot \frac{A Z^{\prime}}{B Z^{\prime}}=\frac{X \cdot 1^{\prime}}{Z \cdot A^{\prime}} \cdot \frac{Z B}{X B^{\prime}} \cdot \frac{X C}{Y C} \tag{2}
\end{equation*}
$$

b. Of the two derived thus each in perspective with both the original triangles; that exscribed to the original two is inscribed to the other of themselves, that inscribed to the original two is exscribed to the other of themselves, and they are also in perspective with each other.
295. The two following propertics, reciprocals of each other, form, as explained in Art. 140, the basis of the theory of perspective in modern geometry; and establish, at the same time, the equianharmonic relations connecting the several pairs of corresponding points and lines of every two figures in perspective with their centre and axis of perspective (141).

If A, B, C be any three points on three concurrent lines (or lines through three collinear points); $A^{\prime}, B^{\prime}, C^{\prime \prime}$ any three other. points on the same lines (or lines through the same points); and X, Y, Z the three intersections (or connectors) of the three pairs of connectors (o intersections) $B C$ and $B^{\prime} C^{\prime}, C A$ and $C^{\prime} A^{\prime}, A B$ and $A^{\prime} B^{\prime}$; the three points (or lines) X, Y, Z are collinear (or concurrent); and their line of collinearity (or point of concurrence) I intersects with the three lines (or connects with the three points) $A A^{\prime}, B B^{\prime}, C C^{\prime}$ at three points (or by three lines) U, V, W which, with their point of concurrence (or line of collinearity) O, determine the group of equianharmonic relations

$$
\left\{A A^{\prime} O U\right\}=\left\{B B^{\prime} O V\right\}=\left\{C C^{\prime} O W\right\}
$$

For, if I be the line of connection (fig. α) (or the point of intersection (tig. a^{\prime})) of any two, X and Y suppose, of the three points (or lines) X, Y, Z; and U, V, W its three points of intersection (or lines of connection) with the three lines (or points) $A A^{\prime}, B B^{\prime}, C C^{\prime}$; then, since the two triads of points (or lines) B, B^{\prime}, V and C, C^{\prime}, W are in perspective, therefore, by $\left(256,4^{\circ}\right)$, $\left\{B B^{\prime} O V\right\}=\left\{C C^{\prime} O W\right\} ;$ and, since the two triads of points (or lines) O, C^{\prime}, W and A, A^{\prime}, U are in perspective, therefore, by the same, $\left\{C C^{\prime} O W\right\}=\left\{A A^{\prime} O U\right\}$; from which, since imme-

[^6]
diately, $\left\{A A^{\prime} O U\right\}=\left\{B B^{\prime} O V\right\}$, therefore, by (ass), the two triads of points (or lines) A, A^{\prime}, U and B, B^{\prime}, V are in perspective; and therefore dec., the second parts of both properties having been established in the demonstrations of the first.

Cor. 1°. If $X^{\prime \prime}, \Sigma^{\prime \prime}, Z^{\prime}$ be the three intersections (or consectors) of the three pairs of connectors (or intersections) $B^{\prime} C^{\prime}$ and $B^{\prime} O, C A^{\prime}$ and $C^{\prime} A, A B^{\prime}$ and $A^{\prime} B$; it may, of course, be shewn, in precisely the same manner, that the three triads of points (or lines) $\Gamma^{\prime \prime}, Z^{\prime}, \Gamma ; Z^{\prime}, X^{\prime \prime}, Y ; X^{\prime}, Y^{\prime}, Z$ are also collinear (or concurrent); their three lines of collinearity (or points of concurrence) determining, with that of the triad X, Y, Z, a tetragram (or tetrastigm), of which the three pairs of corresponding points (or lines) X and $\mathcal{X}^{\prime \prime}, Y$ and $Y^{\prime \prime}, Z$ and $Z^{\prime \prime}$ are the three pairs of opposite intersections (or connectors); and each line (or point) determining, by its intersections (or connectors) with the original three, a group of equianharmonic relations similar to the above, and differing only in the interchange of the constituents of the corresponding reversed pair of the three A and A^{\prime}, B and B^{\prime}, C^{\prime} and C^{\prime} in the equivalent which contains them.

Con. 2. In the particular ease when the three equianharmonic systems of points (or rays) $A, A^{\prime}, O, U ; B, B^{\prime}, O, V$; $C, C \prime, O, W$ are harmonic, that is, when the three segments (or angles) $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are cut harmonically by the three $O U, O \mathrm{~F}, O \mathrm{~W}$; sine then (281),

$$
\begin{gathered}
\left\{A A^{\prime} O U\right\}=\left\{A^{\prime} A O U\right\},\left\{B B^{\prime} O V^{\prime}\right\}=\left\{B^{\prime} B O I^{\prime}\right\}, \\
\left\{C^{\prime} O I^{\prime}\right\}=\left\{C^{\prime} C O H\right\}^{\prime},
\end{gathered}
$$

therefore the three points (or lines) U, V, W are the same for the three lines of collinearity (or points of concurrence) of the three triads $Y^{\prime}, Z^{\prime}, X ; Z, X^{\prime}, Y ; X^{\prime}, Y^{\prime}, Z^{\prime}$ as for that of the triad X, Y, Z; and therefore the whole six points (or lines) X and $X^{\prime \prime}$, Y and $Y^{\prime \prime}, Z$ and Z^{\prime} lie on the same line (or pass through the same point) I; which, in that case, is consequently, the common polar of the point (or the common pole of the line) O with respect at once to the six angles (or segments) determined by the six pairs of opposite connectors (or intersections) $B C$ and $B^{\prime} C^{\prime}, B C^{\prime}$ and $B^{\prime} C ; C A$ and $C^{\prime} A^{\prime}, C A^{\prime}$ and $C^{\prime} A ; A B$ and $A^{\prime} B^{\prime}$, $A B^{\prime}$ and $A^{\prime} B(217)$; a property which is also evident from the two reciprocal properties 5° and 6° of Art. 222.

The three pairs of points (or tangents) A and A^{\prime}, B and B^{\prime}, C and C^{\prime} determined by any circle on any three concurrent lines (or at any three collinear points) $O U, O V, O W$ furnish an obvious and important example of the particular case in question. For, the three pairs of points (or lines) X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime} lying on the polar (or passing through the pole) I of the point of concurrence (or line of collinearity) O with respect to the circle (261); and the three A and A^{\prime}, B and B^{\prime}, C and C^{\prime} being consequently pairs of harmonic conjugates with respect to the three O and U, O and V, O and W respectively (259); therefore \&e.

Cor. 3°. In the same case it is evident also, from the general property of Art. 285, that, of the six points (or lines) A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, every two conjugates connect (or intersect) with the remaining four equianharmonically; for since, by the general property in question,

$$
\begin{aligned}
& \left\{A \cdot B B^{\prime} C C^{\prime}\right\}=\left\{Z Z^{\prime} Y Y^{\prime}\right\}=\left\{A^{\prime} \cdot B B^{\prime} C C^{\prime}\right\} \ldots \ldots\left(1^{\circ}\right), \\
& \left\{B \cdot C C^{\prime} A A^{\prime}\right\}=\left\{X X^{\prime} Z Z^{\prime}\right\}=\left\{B^{\prime} \cdot C C^{\prime} A A^{\prime}\right\} \ldots .\left(2^{\circ}\right), \\
& \left\{C \cdot A A^{\prime} B B^{\prime}\right\}=\left\{Y Y^{\prime} X X^{\prime \prime}\right\}=\left\{C^{\prime} \cdot A A^{\prime} B B^{\prime}\right\} \ldots \ldots\left(3^{\circ}\right),
\end{aligned}
$$

therefore \&c. That, in the same case, the same property is true of every two of the six points (or lines) A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, whether conjugates or not, might be shewn without difficulty; but a more general property, which will include it as a particular case, will form the subject of a subsequent article of the present chapter.

Cors. 4°. That the triad of points (or rays) U, V, W determines with the triad X, Y, Z in the general case, and therefore also with each of the three triads $Y^{\prime \prime}, Z, X^{\prime} ; Z^{\prime}, \mathcal{N}^{\prime \prime}, Y$; $X^{\prime \prime}, Y^{\prime \prime}, Z$ in the partieular case considered in the two preceding corollaries, a system of six constituents corresponding two and two in opposite pairs, every four of which are equiauharmonic with their four opposites (283), may bo easily shewn as follows: The three pencils of four rays (or rows of four points)
O.UVWX, O.UVWY, O.UVW\%,
(see figures) being in perspective with the three
A.UZYX, В.ZIXY, C. YXHZ,
on the three lines (or at the three points) $B C, C A, A B$ respeetively, or with the three

$$
A^{\prime} . U Z Y X, B \cdot Z \Gamma X Y, C \text { CXHZ, }
$$

on the three lines (or at the three points) $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}, A^{\prime} B^{\prime}$ respectively; therefore, from either set of perspectives, by the general property of Art. 2 k 3 ,

$$
\begin{aligned}
& \{U V W X\}=\{U \% 1 \% X \mid=\{X Y Z \mid \text { (2s0) } \ldots \ldots \text { (1), } \\
& \{U V W Y\}=\{Z V I Y \mid=\{X Y Z V)(2,4) \ldots \ldots \text { (2), } \\
& \{U V W Z\}=\{\Gamma X W \%=\{11 \% W\}(250) \ldots \ldots(3) \text {, }
\end{aligned}
$$

and therefore \&e. (233). That the two triads X, I, Z and $X^{\prime \prime}, Y^{\prime \prime}, Z^{\prime \prime}$ when collinear (or concurrent), Cors. $2^{\prime \prime}$ and 3°, are connected by the samo relation, might bo shewn, without difficulty, either from the above or independently; but another more general property, under which it will come as a particular case, will form the subject of another subsequent article of the present chapter.

Con. 5°. If E and E°, F^{\prime} and F^{\prime}, G and G^{\prime} be the three pairs of intersections (or connectors), with the three pairs of connectors (or intersections) $B C$ and $B^{\prime} C^{\prime}, C A$ and $C^{\prime} A^{\prime}, A B$ and $A^{\prime} B^{\prime}$ respectively, of any line passing through (or point lying ou) O; and K its intersection (or connector) with I; it may be easily shown, from the general property of Art. 285 , that the three quartets of points or lines $E, E^{\prime \prime}, O, K ; F, F^{\prime}, O, K$; G, G^{\prime}, O, K are equiauharnnonic with each other aud with the
three $A, A^{\prime}, O, U ; B, B^{\prime}, O, V ; C, C^{\prime}, O, W$. For since in either case, by the property in question,

$$
\begin{aligned}
& \left\{E E^{\prime \prime} O K\right\}=\left\{B B^{\prime} O V\right\}=\left\{C C^{\prime} O W\right\} \ldots \ldots \ldots(1), \\
& \left\{F F^{\prime} O K\right\}=\left\{C C^{\prime} O W\right\}=\left\{A A^{\prime} O U\right\} \ldots \ldots \ldots(2), \\
& \left\{G G^{\prime} O K\right\}=\left\{A A^{\prime} O U\right\}=\left\{B B^{\prime} O V\right\} \ldots \ldots \ldots(3),
\end{aligned}
$$

therefore \&e. Three similar triads of equianharmonic quartets, result, of course, on the successive interchanges (as in Cor. 1°) of A and A^{\prime}, B and B^{\prime}, C and C^{\prime} in the constructions determining E and $E^{\prime \prime}, F$ and F^{\prime}, G and $G^{\prime \prime}$ as above given; all of which, in common with the original triad, are evidently alike harmonic in the particular case considered in Cor. 2°. The three pairs of points (or tangents) A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, determined by any circle on any three concurrent lines (or at any three collinear points) $O U, O V, O W$, furnish, as observed at the close of that corollary, an important example of a case in which they are all thus harmonic.

Cor. 6°. In the same case it follows immediately; from the general property $\left(2^{\circ}\right)$ of Art. 282, that the two triads of points (or lines) E, F, G and $E^{\prime \prime}, F^{\prime}, G^{\prime}$ of the preceding corollary (5°) determine equianharmonie systems, both with the point (or line) O, and with the point (or line) K. For since, by the property in question, the two equianharmonic relations of the preceding corollary, viz. :

$$
\left\{E E^{\prime} O K\right\}=\left\{F F^{\prime} O K\right\}=\left\{G G^{\prime} O K\right\} \ldots \ldots \ldots \ldots \ldots . .(1),
$$

give immediately the two

$$
\{E F G O\}=\left\{E^{\prime} F^{\prime} G^{\prime} O\right\} \text { and }\{E F G K\}=\left\{E^{\prime} F^{\prime} G^{\prime} K\right\} \ldots(2),
$$

therefore \&c. When, as for the three pairs of points (or tangents) A and A^{\prime}, B and B^{\prime}, C and C^{\prime} determined by any circle on any three concurrent lines (or at any three collinear points) $O U, O V, O W$, the threo equianharmonic systems in (1) are all harmonic; it follows also, from (3°, Cor. 5°) of the same articlo (282), that the same two triads E, F, G and $E^{\prime}, F^{\prime \prime}, G^{\prime}$ deternine in three opposite pairs E and E^{\prime}, F^{\prime} and F^{\prime}, G and G^{\prime} a system of six collinear (or concurrent) constituents, every four of which are equianharmonic with their four opposites (283).
296. Among the various inferences from the two reciprocal propertics of the preceding article, the following, in pairs reciprocals of each other, are deserving of attention.
1°. The three pairs of points (or lines) A and A^{\prime}, B and B^{\prime}, C and $C^{\prime \prime}$, may be regarded as determining three segments (or angles) $A A^{\prime}, B B^{\prime}, C C^{\prime}$; whose axes (or vertices) are concurrent (or collinear), and of which, taken in pairs, the three points (or lines) X, Y, Z are three of the six centres (or axes) of perspective, every two of which become changed into their opposites by the interchange of extremities of one of the two determining segments (or angles), those of the other remaining unchanged; hence, generally, from the two propertice in question, as shewn in part on other primeiples in Art. 146, it appears that-
a. When the axes of three sigments ure concurrent, the six centres of perspective of the thirce pairs they determine lic, threo and thrce, on four linis; each of thich, with the point of concurrence of the axes, dicites the three sogments equianharmonicully.
a. When the verlices of three angles are collinear, the six axis of perspective of the three pairs they d tormine pases, three and three, through four points; each of which, with the live of collinearity of the vertices, diviles the three angles equianharmonically.
2°. The two triads of points (or lines) A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ may be regarded as determining two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$; the connectors (or intersections) $A A^{\prime}, B B^{\prime}, C C^{\prime}$ of whose pairs of corresponding vertices (or sides) A and A^{\prime}, B and B°, C and C^{n} are concurrent (or collinear); and so may also the three pairs of triads B, C, A^{\prime} and $B^{\prime}, C^{\prime}, A ; C, A, B^{\prime}$ and $C^{\prime}, A^{\prime}, B$; A, B, C^{\prime} and $A^{\prime}, B^{\prime}, C$ resulting from them by the three different interchanges of corresponding constituents. Henco again trom the same, and from the obvious inference from them contained in Cor. 5° of the preceding article, it appears generally, as shewn in part on other principles in Art. 140, that-

For two triangles whose verlicas and sides correspond in pairs-
a. When the connectors of the three pairs of corresponding urtices are concurrent, the intersections of the three pairs of correspondiny sides are collinear; and, reciprocally, when the intersections of the three l mirs of correspomiding sides ave collinear,
the connectors of the three pairs of corresponding vertices are concurrent.*
b. When thus related to each other, the line of collinearity and the point of concurrence divide equianharmonically, at once the three segments determined by the three pairs of corresponding vertices, and the three angles determined by the three pairs of corresponding sides.
c. In the same case, more generally, the same point and line divide equianharmonically, at once all segments determined by their pairs of corresponding sides on lines passing through the former, and all angles determined by their pairs of corresponding vertices at points lying on the latter.

When two triangles, related as above to each other, are either both inseribed or both exscribed to the same circle; they furnish, see Cor. 2° of the preceding article, an important example of the particular ease in which the several equianharmonic sections in the two latter properties b and c are all harmonic. Hence, since, by 3°, Cor. 5°, Art. 282, every three pairs of points or lines, harmonic conjugates with respect to the same pair, determine a system of six collinear or concurrent constituents every four of which are equianharmonic with their four conjugates, it follows from the above (c), that-

When two triangles either both inscribed or both exscribed to the same circle are in perspective.
a. Every line passing through their centre of perspective intersects with their three pairs of corresponding sides at six points,

[^7]in opposite pairs, every four of thhich are equianharmonic xith their four opposites.
a'. Every point lying on their axis of perspective connects with their three puirs of corresponding vertices by six lines, in opposite pairs, every four of schich are equianharmonic teith their four opposites.
3°. If, in the preceding (2°), while the point (or line) O, one of the two triangles $A B C$, and two I and Y° of the three points (or lines) X, Y, ζ, are supposed to remain fixed, tho other triangle $A^{\prime} B^{\prime} C^{\prime}$ be conceived to vary consistently with the restriction of the tixity of \bar{X} and $Y_{\text {; then, }}$ in every position of the variable triangle, since, by the first parts of the same properties, the third point (or line) Z is also tixed, being the point of intersection (or line of comection) of the two fixed lines (or points) 113 and $X 1$, and since, by the two reciprocal properties Cor. 4° of the same article, the three proints (or lines) \mathcal{X}, Y, Z determine with the three $U, V^{\prime}, I^{\prime}$ a systen of six collinear (or concurrent) constitnents, corroponding two and two in oppotite pain U and $X_{2} 1^{\circ}$ and $Y_{1} W^{\circ}$ and $\%$, every four of which are equianharmonic with their four opponites; hence, generally,-
a. When, of a variable triungle vellase thone vertics move on three fired concurrent linea, tuco of the sides turnal round tico fixed points, the thind turns round a third fixad point collineur with the other lico.
a'. H"hen, of a eviriable triungle vehose theree sids turn round three ficed collinear proints, hoo of the vertices more on tho fixed lines, the third moves on a third fixed line concurrent with the other tuco.
b. The three fived points, and the three intersections of their line of collineurity with the three fixed lines, in the former case, determine, in thrse opposite pairs, a row of six points cevery four of thich are equiunharmonic with their four opposites.
l '. The three fixed lines, and the three connectors of their point of concurrence with the three fixed points, in the lutter caste, determine, in three opposite puirs, a pencil of six rays crery four of which are equianharmonic with their four opposites.
4°. Any two pairs of corresponding vertices (or sides) A and A^{\prime}, B and B^{\prime} of the two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$, in
the same $\left(2^{\circ}\right)$, may be regarded as the four points of a tetrastigin (or the four lines of a tetragram); and the two pairs of opposite sides (or vertices) $B C$ and $B^{\prime} C^{\prime}, C A$ and $C^{\prime} A^{\prime}$ as the four lines of an exscribed tetragram (or the four points of an inseribed tetrastigm); hence, again, from the first parts of the same propertics, it appears (see note to $2^{\circ}, a$, of the present article) that-
a. For a tetrastigm inscribed to a tetragram, when the intersection of a pair of opposite connectors of the former is collinear with a pair of opposite intersections of the latter, the intersections of the remaining two pairs of opposite comnectors of the former are collinear each with one of the two remaining pairs of opposite intersections of the latter.
a^{\prime}. For a tetragram exscribed to a tetrastigm, when the connector of a pair of opposite intersections of the former is concurrent with a pair of opposite connectors of the latter, the connectors of the remaining two pairs of opposite interscetions of the former are concurrent each with one of the two remaining pairs of opposite connectors of the latter.
297. As, from property a of inference 2° of the preceding article, it was shewn without difficulty in Art. 141 that the same property is true generally of every two figures in perspective with each other; so, from propertics b and c of the same, it follows immediately, that, generally-.

For cvery two figures in perspective with cach other, the centre and axis of perspective divide equianharmonically, at once all segments determined by pairs of corresponding points, and all angles determined by pairs of corresponding lines.

And the same appears at once, at priori, from the consideration that the property being, by virtue of the general property of Art. 285, evidently true for every two is therefore true for all such segments or angles.

This constant anlaarmonic ratio of section is termed, with respect to the figures, their anharmonic ratio of perspective; and from the circumstance of its constancy in all cases of perspective, it follows that, for figures whose centre or axis of perspective is at infinity, all segments determined by pairs of corresponding points are cut in the same ratio by the one not at infinity (270).

A property already, it will be remembered, established on other principles in Arts. 142 and 143.

In the particular case, when, for two figures in perspective, the anharmonic ratio of perspective $=-1$; all segments determined by pairs of corresponding points, and all angles defermined by pairs of correspouding lines, are cut hamonically, by the centre and axis of perspective; the figures themselves are said to be in harmonic perspective; and when either their centre or axis of perspective is at infinity, all segments determined by pairs of corresponding points are bisected internally by the one not at infinity.

Etery theo figures inscribed, or axscribed, to the same circle furnish, vehen in perspectice, an obvious and important example of tuo figures rehose anhurmonic ratio of perspective $=-1$. For, their centre and axis of perspective being then (16i) pole and polar to each other with respect to the circle to which they are both inscribed or exscribed, and consequently (259) dividing harmonically at once all segments determined by their pairs of corresponding points, and all angles determined by their pairs of corresponding lines, therefore \&. When, in their ense, either the centre or axis of perspective is at infinity, the internal bisection of all segments determined by their pairs of corresponding points by the one not at infinity is evident from 3° and 5°, Art. 165.

Con. As two circles, however circumstanced as to magnitude and position, are always doubly in penspective with respect to each centre of penspective (207); the line at infinity and their radical axis being the axes of their two perspectives for both (206); it appears consequently, from the above, that-

For two circles, hovever circumstanced as to magnitude and position-
a. The line at infinity and each centre of pergpective divide in the same constant anharmonic ratio, at once all segments determined by pairs of homologous points, and all angles determined ly pairs of homologous lines, ecith respect to that centre of perspective.
b. The radical axis and each centre of perspective divide in the same constant anharmomic ratio, at once all segments
determined by pairs of antihomologous points, and all angles determined by pairs of antihomologous lines, with respect to that centre of perspective.

Since, for any two circles, the line at infinity and the radical axis bisect externally and internally the two segments, real or inaginary, intercepted between the two pairs of at once homologous and antihomologous points determined by the two common tangents through each centre of perspective (182); while the centre of perspective itself divides them in the positive or negative ratio of the similitude of the cireles according as it is external or internal (198); it follows, consequently (268), that the two constant anharmonic ratios of perspective, both in a and b separately for the two centres of perspective, and also in a and b combined for each centre of perspective, are equal in magnitude and opposite in sign; the absolute value common to the whole four being the constant ratio of similitude of the circles.
298. Since, for every two figures reciprocal polars to each other with respect to a circle (170), there correspond: 1°. To every point or line of either, a line or point of the other (170). 2°. 'Io every connector of two points or intersection of two lines of either, the intersection of the two corresponding lines or the connector of the two corresponding points of the other (167). 3°. To every collinear system of points or concurrent system of lines of either, the concurrent system of corresponding lines or the collinear system of corresponding points of the other (166, Cor. 1°). 4°. To every anharmonic row of four points or pencil of four rays of either, the equianharmonic pencil of four corresponding rays or row of four corresponding points of the other (292). Hence, from the general property of the preceding article combined with those of Art. 141, the following important properties of figures in perspective, as regards reciprocation to an arbitrary circle (172) -
a. Every two figures in perspective with each other reciprocate to any circle into two figures in perspective with each other.
l. The centre of perspective of either pair of figures and the axis of perspective of the other pair are pole and polar to each other with respect to the circle.
c. The anharmonic ratios of perspectice of the tuo pairs, original and reciprocal, are equal.

These properties are evident from the considerations, respectively: a. That, as in the original figures all pairs of corresponding points connect concurrently and all pairs of corresponding lines intersect collinearly, so in the reciprocal figures all pairs of corresponding lines interseel collinearly and all pairs of corresponding points comect concurrently; b. That the point of concurrence and the line of collinearity for the original figures are the pole and polar reapectively of the line of collinearity and the point of concurrence for the reciprocal figures; and, c. That all auharmonic matios whether of rows or pencils are preserved unchanged in reciprocation to any arbitrary circle.

Cons. Since, with respect to any circle, the polar of its centre is the line at infinity, and the pole of any line passing through its centre is the point at infinity in the direction perpendicular to the line ($16.5,3^{\circ}, 5^{\prime}$) ; it followe, consequently, from the above, for the particular cases when the centre of the reciprocating circle is (1) at the centre, and (2 2^{2}) on the axis, of perspective of the original figures, that-

1. Eiery tuco figures in perapective reith rach other reciprocute, to an!y circle shuse entre is at their centre of jerappective, into two similar and similarly (or oppositely) placed figures, shose ratio of similitule is equal to their anharmonic ratio of perspective (seo Art. 142).

2․ Every two figures in perspuctive with each other reciprocate, to any circle vhose ontre is on their uxis of perspective, into theo figures consisting of pairs of points connecting by parallel lines all cut by the same line in their anharmonic ratio of perspective (sce Art. 143).

In the particular case when the auharmonic ratio of perspective of the original figures $=-1$; the lines connecting the several pairs of corresponding points of the two reciprocal figures are all bisected internally, by their centre of perspective in the case of 1°, and by their axis of perspective in the case of 2°.

As all anharmonic ratios whether of rows or pencils are preserved unchanged in reciprocation (293); it follows, consequently, from these latter properties 1° and 2°, that all anharmonic
properties of pairs of figures in either of the two particular cases of perspective in which the axis or the centre of perspective is at infinity are true generally of all pairs of figures in perspective with each other.
299. The two following properties, reciprocals of each other, are in the theory of anharmonic what those of Art. 236 are in that of harmonic section.
a. In every tetrastigm, the thrce pairs of opposite connectors intersect with every line at thrce pairs of opposite points, every four of which are equianharmonic with their four opposites.
a^{\prime}. In every tetragram, the three pairs of opposite intersections connect with every paint by three pairs of opposite rays, every four of which are equianharmonic with their four opposites.

For, if A, B, C, D be the four points constituting the tetrastigm (fig. α), or the four lines constituting the tetragram (fig. α^{\prime}); $B C$ and $A D, C A$ and $B D, A B$ and $C D$ the three pairs of opposite connectors (or intersections) of the figure; X and X^{\prime}, Y^{\prime} and Y^{\prime}, Z and Z^{\prime} their three pairs of opposite intersections (or connectors) with any arbitrary line (or point) O; and U, V, W the three points of intersection (or chords of connection) of the figure ; then-
1°. The two rows of four points (or pencils of fonr rays) Y, Z, X, X^{\prime} and $Z^{\prime}, Y^{\prime}, X, X^{\prime}$ being in perspective, at the points (or on the lines) A and D, with the row (or pencil) C, B, X, U; and the two $Y^{\prime}, Z, X^{\prime}, X$ and $Z^{\prime}, Y, X^{\prime}, X$ being so, at the points (or on the lines) B and C, with the row (or pencil) $D, A, X^{\prime \prime}, U$; therefore, by $\left(286,3^{\circ}\right)$,
and $\quad\left\{Y^{\prime} Z X^{\prime} X\right\}=\left\{Z^{\prime} Y X^{\prime} X^{\prime}\right\}=\left\{Y Z^{\prime} X X^{\prime}\right\} \quad(280), \quad\{\ldots(a)$.
2°. The two rows of four points (or pencils of four rays) Z, X, Y, Y^{\prime} and $X^{\prime \prime}, Z^{\prime}, I^{\prime}, \Gamma^{\prime \prime}$ being in perspective, at the points (or on the lines) B and D, with the row (or pencil) A, C, Y, Y; and the two $Z^{\prime}, I^{\prime}, Y^{\prime \prime}, Y$ and $X^{\prime}, Z, Y^{\prime}, Y$ being so, at the points (or on the lines) C and A, with the row (or pencil) $D, B, \Gamma^{\prime \prime}, \Gamma$; therefore, by the same,
and

$$
\left.\begin{array}{l}
\left\{Z X Y Y^{\prime \prime}\right\}=\left\{X^{\prime} Z^{\prime} Y Y^{\prime \prime}\right\}=\left\{Z^{\prime} X^{\prime \prime} Y^{\prime \prime} \mid\right\}(280), \\
\left\{Z^{\prime} X Y^{\prime \prime} Y^{\prime}\right\}=\left\{X^{\prime} Z Y^{\prime \prime} Y\right\}=\left\{Z \Lambda^{\prime} Y Y^{\prime}\right\}(2 s 0),
\end{array}\right\} \cdots \text { (b). }
$$

3°. The two rows of four points (or pencils of four rays) X, Y, Z, Z^{\prime} and $Y^{\prime \prime}, X^{\prime \prime}, Z, Z^{\prime}$ being in perspective, at the points (or on the lines) C and D, with the row (or pencil) B, A, Z, W; and the two $I^{\prime \prime}, Y, Z, Z$ and $Y^{\prime \prime}, X, Z, Z$ being so, at the points (or on the lines) A and B, with the row (or pencil) $D, C, Z \prime, W$; therefore, by the same,

$$
\text { na } \quad \begin{align*}
& \{X Y Z Z\}=\left\{I^{\prime \prime} X^{\prime \prime} Z^{\prime} Z^{\prime}\right\}=\left\{X^{\prime} Y^{\prime} Z^{\prime} Z\right\}(2 s 0), \\
& \text { and } \quad\left\{X^{\prime} Y Z^{\prime} Z\right\}=\left\{Y^{\prime \prime} X Z^{\prime} Z\right\}=\left\{X^{\prime} Z Z^{\prime}\right\} \quad(2 s 0), \tag{c}
\end{align*}
$$

and therefore \&ec. (283).
Con. 1. In the particular caso when the line (or point) O passes through (or lies on) any two of the three points of intersection (or lines of comnection) U, V, W of the figure; since then, $X=X^{\prime \prime}=U$ if it pass through (or lie on) $U ; Y^{\prime}=I^{\prime \prime}=V$ if it pass through (or lio on) $V^{\prime} ; Z=Z=W$ if it pass through (or lie on) $W^{\text {; }}$ therefore, from $1^{\circ}, 2^{\circ}, 3^{\circ}$, respectively, of the above-
1°. If it pass through (or lio on) V and W, then

$$
\left\{V W X X^{\prime}\right\}=\left\{V W X^{\prime} X\right\} \ldots \ldots \ldots \ldots \ldots\left(l^{\circ}\right)
$$

2. If it pass through (or lie on) W and U, then

$$
\left\{W U Y Y^{\prime \prime}\right\}=\left\{W U Y^{\prime \prime} Y\right\} \ldots \ldots \ldots \ldots \ldots\left(2^{\circ}\right) .
$$

3°. If it pass through (or lie on) U and V, then

$$
\{U V Z Z\}=\{U V Z Z\} \ldots \ldots \ldots \ldots \ldots \ldots\left(3^{\circ}\right),
$$

and therefore (281), as established before on other principles in (236) -
a. In every tetrastigm, the three pairs of opposite connectors divide harmonically, each the segment determined thy the intersections of the remaining two (107).
a^{\prime}. In every tetragram, the three pairs of opposite intersections divide harmonically, each the angle determined by the connectors of the remaining two (107).

Cor. 2°. In the particular cases when the line (or point) O is at infinity; the six intersections, in the former case, being the six points at infinity in the directions of the six connectors of the tetrastigm, and the six connectors, in the latter case, being the six parallels in the direction of O through the six intersections of the tetragram; while, in every case, every four of the former are equianharmonic with the pencil they determine at any point, and every four of the latter with the row they determine on any line. Hence, from the general properties applied to those cases, it appears that-
a. The six parallels through any point, to the six connectors of any tetrastigm, determine at the point, in three opposite pairs, a pencil of six rays every four of which are equianharmonic with their four opposites.
a^{\prime}. The six perpendiculars to any line, through the six intersections of amy tetragram, determine on the line, in three opposite pairs, a row of six points every four of which are equianharmonic with their four opposites.
N.B. The six parallels, in the former case, and the six perpendiculars, in the latter case, might.evidently be turned in the same direction of rotation through any common angle, without affecting in either case the above relations between them.

Cor. 3°. As the three segments (or angles) determined by three pairs of opposite constituents every four of which are equianharmonic with their four opposites, have in all cases a common segment (or angle) of harmonic section, real or imaginary (283, Cor. 1°); it follows consequently from the above, as shewn already on other principles in (245, Cor. 3°), that-
a. The three segments intercepted on any line, by the three pairs of opposite connectors of any tetrastigm, have a common segment of harmonic section, real or imaginary.
a^{\prime}. The tiree angles subtended at any point, by the three pairs of opposite intersections of any tetragram, have a common angle of harmonic section, real or imaginary.

Cor. 4°. As any three A, B, C of the four points (or lines) A, B, C, D constituting the tetrastigm (or tetragram) may be regarded as the three vertices (or sides) of a triangle $A B C$, and the fourth D as the point of concurrence (or line of collinearity) of any three concurrent lines through its three vertices (or cullinear points on its three sides) ; the two reciprocal properties of the present article, respecting the tetrastigm and tetragram, may consequently be regarded as anharmonic properties of the triangle, and stated accordingly as follows-
a. The three sides of any triangle, and any three concurrent lines through the three vertices, intersict with every line at six points, correxponding two and two in opposite peirs, every four of thich are equicmharmonic with the ir four opposites.
a.' The three vertices of any triungle, and any thrce collinear proints on the three sites, connect with every point by six lines, correspomiling tiro und two in opposite pairs, every four of rehich are equiamharmonic seith their four opprosites.

Con. 5°. In the particular cases of the latter properties, when the fourth point (or line) I) is at infinity; then, since, in the former case, the three lines of comection $A D, B D, C D$ are parallel, and since, in the latter case, the three points of intersection $A D, B D, C D$ are the three at infinity in the directions of the three sides of the triangle; hence, from those properties applied to these particular cases, it appears that-
a. The three intersuctions with any line of the three sides of any triangle determine, with the three projections on the line of the three vertices of the triangle, a system of six points, corresponding two and two in opposite pairs, every four of echich are equiunharmonic with their four opposites.
$a^{\text {. T The three connectors with any point of the three vertices }}$ of any triangle determine, with the three parallels through the point to the three sides of the triangle, asystem of six rays, corresponding theo and two in opposite pairs, every four of which are equianharmonic with their four opposites.

Cor. 6°. In the particular case when the arbitrary point in property a^{\prime} of the preceding corollary $\left(5^{\circ}\right)$ is the polar centre of the triangle (168) ; since, then, each connector and the corresponding parallel are perpendiculans to each other, it follows
consequently, from that property applied to this particular case, as is a priori evident $\left(283\right.$, Cor. $\left.2^{\circ}\right)$, that-

Every three lines through a point. determine, with the three perpendiculars to them through the point, a system of six rays, corresponding two and two in opposite pairs, every four of which are equianharmonic with their four opposites.

Cor. 7°. Since from the original property a^{\prime} of the present article, combined with that of the preceding corollary $\left(6^{\circ}\right)$, it follows that-when, of the three angles subtended at a point by the three chords of intersection of any tetragram, two are right, the third is right also ; hence, from the familiar property (Euc. III. 31), that the vertices of all right angles subtending a common segment lie on the eircle of which the segment is a diameter, it appears, as proved already more generally on other principles in Art. 189, Cor. 1°, that-

The three circles on the three chords of intersection of any tetragram as diameters pass each through the two points of intersection of the other two; and have, therefore, all three, a common pair of points, real or imaginary.
300. The two reciprocal properties of the preceding article supply obvious solutions, by linear constructions only without the aid of the circle, of the two following reciprocal problems, viz. -

Of troo triads of collinear points (or concurrent lines), which correspond two and two in opposite pairs, and every four of which are equianharmomic with their four opposites; given either triad and any two constituents of the other, to determine the third constituent of the latter.

Thus, in the figures (α) and (α^{\prime}) of that article, given the triad of points (or rays) X, Y, Z, and any two constituents X^{\prime} and Y^{\prime} of the other $X^{\prime}, Y^{\prime}, Z$, to determine the third constituent Z ' of the latter. In the former case, through the three given points X, Y, Z (fig. a) drawing arbitrarily any three nonconcurrent lines; the three opposite vertices A, B, C of the triangle they determine, by property a of the preceding article, connect with their three opposites $X^{\prime}, Y^{\prime}, Z^{\prime}$ by three concurrent lines $A X^{\prime}, B Y^{\prime}, C Z$, two of which $A X^{\prime}$ and $B Y^{\prime}$ being given determine the point of concurrence D, and therc-
fore the third $C Z^{\prime}$, which intersects with the line O at the required point Z^{\prime}. And, in the latter case, on the three given lines X, Y, Z (fig. a^{\prime}) taking arbitrarily any three non-collinear points; the three opposite sides A, B, C of the triangle they determine, by property a^{\prime} of the preceding article, intersect with their three opposites $X^{\prime \prime}, Y^{\prime \prime \prime}, Z^{\prime \prime}$ at three collinear points $A \mathrm{~K}^{\prime}, B Y^{\prime \prime}, C Z$, two of which $A \mathrm{I}^{\prime}$ and $B \Gamma^{\prime \prime}$ being given determine the line of collinearity D, and therefore the third $C Z$, which comnects with the point O by the required line Z '.
301. Of all anharmonic properties of figures of points and lines, the two following, reciprocals of each other, lead to the greatest number of consequences in the theory of conic sections, viz. -
a. When, of six points, any four connect equianharmonically with the remaining theo, then every four connect equibuharmunically with the remaining two.
a'. When, of six lines, any four int-rect equianharmonically with the romaining teoo, then cevry four intersect equianharmonically with the remaining tico.

Let A, B, C, D, E, F be the six points (fig. a) or the six lines (fig. a^{\prime}); when any four of them C, D, E, F comnect (or intersect) equiauharmonically with the remaining two A and B, then any other four of them A, B, E, F connect (or intersect) equianharmonically with the remaining two C and D. For, O being the line of connection (or the proint of intersection) of the two points (or lines) E and F which are common to the two systems of four A, B, E, F and C, D, E, F for which the relation is given and to be proved respectively, if X and $X^{\prime \prime}$, Y^{\prime} and $I^{\prime \prime}, Z$ and Z^{\prime} be the three pairs of opposite intersections
(or connectors) of O with the three pairs of opposite connectors (or intersections) $B C$ and $A D, C A$ and $B D, A B$ and $C D$ of the tetrastigm (or tetragram) determined by the four A, B, C, D which are not common to the two systems; then since, by liypothesis, $\{A . C D E F\}=\{B . C D E F\}$, and since, consequently, by (285), $\left\{Y^{\prime} X^{\prime} E F^{\prime}\right\}=\left\{X Y^{\prime} E F\right\}$, therefore, by (272), $\{Y X E F\}=$ $\left\{X^{\prime} Y^{\prime \prime} E F^{\prime}\right\}$, and consequently, by (285), $\left\{C \cdot A B E F^{\prime}\right\}=\{D \cdot A B E F\} ;$ and therefore \&c.

The above demonstration, though apparently establishing the property only for the six cases in which the quartet for which the relation is given has but two constituents in common with that for which it is to be proved, in reality establishes it for the cight cases in which the two quartets have three constituents in common as well; for establishing it, as shewn above, for every quartet having but two constituents in common with that for which it is given, it consequently establishes it at the same time for every quartet having but two constituents in common with each of the latter; and therefore \&c.

Two collinear triads of points on different axes (or concurrent triads of lines through different vertices) (293) furnish an obvious, but very particular, example of a system of six points (or lines) every four of which connect (or intersect) equianharmonically, with the remaining two. Every system of six points on (or tangents to) the same circle, as will be shewn at the opening of the next chapter, also comes under the same head, and possesses, in consequence, every property of the more general system depending only on the existence of the aforesaid equianharmonic relations between its constituent points (or lines).

Cor. 1°. As the three pairs of points (or lines) A and B, O and D, E and F (or any other three pairs into which the six may be resolved) may be regarded as determining three segments (or angles) $A B, C D, E F$, the extremities of some, and therefore of every, two of which connect (or intersect) with those of the third equianharmonically; the above reciprocal properties may, consequently, be stated (as indeed they were proved) in the following equivalent, but less general, forms, viz.
a. When, of three segments, the extremities of any two comeet equianharmonically with those of the third, then the extremities of every thoo comnect equianhurmonically with those of the third.
a^{\prime}. When, of three anglos, the sides of any two intersect equianharmonically with those of the third, then the sites of every two intersect equianharmonically with those of the third.

Cor. 2°. As, in the tetrastigm (or tetragram) determined by the four points (or lines) A, B, C, D (or by any other four of the six), the three pairs of equianharmonic relations, for tho three pairs of opposite seguents (or angles) $B C$ and $A D$, $C A$ and $B D, A B$ and $C D$, with each other, and with the segment (or angle) $E F$ determined by the remaining two E and I, viz.-

$$
\begin{aligned}
& \{A . C B E F\}=\{D . C B E F\} \text { and }\{B \cdot D A E F\}=\{C . D A E F\} \ldots\left(1^{\circ}\right), \\
& \{B \cdot A C E F\}=\{D \cdot A C E F\} \text { and }\{C \cdot D B E F\}=\{A . D B E F\} \ldots\left(2^{\circ}\right), \\
& \{C \cdot B A E F\}=\{D . B A E F\} \text { and }\left\{A . D C E F^{\prime}\right\}=\{B \cdot D C E F\} \ldots\left(3^{\circ}\right),
\end{aligned}
$$

and the three corresponding pairs for the three pains of segments (or angles) $X^{\prime} Y^{\prime}$ and $X^{\prime \prime} Y^{\prime \prime}, I Z$ and $Y^{\prime \prime} Z^{\prime \prime}, Z X$ and $Z^{\prime \prime} X^{\prime \prime}$ they determine on the line (or at the point) $E F F$, viz. -

$$
\begin{aligned}
& \left\{Y^{\prime} Z E F\right\}=\left\{Y^{\prime} Z{ }^{\prime} F^{\prime} \mathcal{F}^{\prime}\right\} \text { and }\left\{Y^{\prime \prime} Z E F\right\}=\{Y Z F E\} \ldots \ldots\left(I^{\prime}\right) \text {, } \\
& \{Z X E F\}=\left\{Z X^{\prime} F E\right\} \text { and }\left\{Z^{\prime} X E F\right\}=\left\{Z X^{\prime} F E\right\} \ldots \ldots\left(2^{\prime}\right) \text {, }
\end{aligned}
$$ by virtue of (285) and (280), mutually involve each other; hence, sec (299) and (234), it appears generally that -

a. Every tuco points, which comnect equianharmonicully with the four points of any tetrastigm, form, with the six determinad on their line of connection by the six connectors of the tetrastigm, a system of cight points, in four opposite puirs, cetry four of ichich are equitmharmonic with their four opposites; and, conversely, every two points, which form such a system with the six determined on their line of comnection by the six comnectors of any tetrastigm, connect equianhurmonically with the four points of the tetrastigm.
a. Eivery two lines, which intersect equianharmonically with the four lines of any tetragram, form, with the six determinell at their point of intersection by the six intersections of the tetragram, a system of eight rays, in four opposite pairs, every four of which aro equiunharmonic with their four opposites; and, concersely,
every two lines, which form such a system with the six determined at their point of intersection by the six intersections of any tetragram, intersect equianharmonically with the four lines of the tetragram.

Cor. 3°. As an example of the criterion of the above relation of equianharmonicism for a system of six points or lincs supplied by the second parts of the two reciprocal properties a and a^{\prime} of the preceding corollary (Cor. 3°) ; suppose the two triangles $A B C$ and $D E F$ employed in its establishment were both self-reciprocal with respect to the same circle (168); since then evidently, by (167), the several pairs of points (or lines) X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime}, E and F would be pairs of conjugates with respect to the circle (174), and consequently pairs of harmonic conjugates with respect to the two points (or tangents), real or imaginary, determined with the circle by the line or point $E F$ (259); therefore, by (3°, Cor. 4°, Art. 282), they would satisfy the criterion expressed in the two properties; and therefore-

For every two self reciprocal triangles with respect to the same circle, every four of the six vertices connect, and every four of the six sides intersect, equianharmonically with the remaining two.
302. Reserving for the next chapter the principal consequences resulting, in the geometry of the circle, from the circumstance of every six concyclic points or tangents being connected by the equianharmonic rolations of the preceding article; we shall conclude the present with the two following reciprocal properties of such systems in general, and with a few of the many consequences to which they lead in the geometry of the point and line.
a. In a hexagon, when the intersections of the three pairs of opposite sides are collinear, every four of the six vertices connect equianharmonically with the remaining two; aind, conversely, when any four of the six vertices connect equianharmonically with the remaining two, the intersections of the three pairs of opposite sides are collinear.
a^{\prime}. In a hexagon, when the connectors of the three pairs of opposite vertices are concurrent, every four of the six sides intersect equianharmonically with the remaining two; and, conversely, ochen amy four of the six sides intersect equianharmonically with
the remaining teo, the conncctors of the three pairs of opposite ortioss are concurrent.

For, if X^{\prime} and $X^{\prime \prime}, Y$ and $Y^{\prime \prime}, Z$ and Z^{\prime} be the three pairs of opposite vertices (fig. a), or sides (fig. α), of the hexagon; A and A^{\prime}, B and B^{\prime}, C and $C^{\prime \prime}$ the three pairs of corresponding vertices (or sides) of the two triangles determined by its two triads of alternate sides (or vertices) ; and U, V, W the three points of intersection (or lines of comection) of its three pairs

of opposite sides (or vertices) ; then since, by the general property of Ar. (255), the three pairs of equiauharnonic relations

$$
\begin{align*}
& \text { (1), } \\
& {\left[Z . Y^{\prime \prime} Z^{\prime} X^{\prime} Y\right]=\left\{X^{\circ}, Y^{\prime \prime} Z^{\prime} \Lambda^{\prime} Y\right\} \text { and }\left\{Z^{\prime} . Y^{\prime} Z Y^{\prime \prime}\right\}=\left\{X^{\prime}, Y Z X^{\prime \prime}\right\}} \\
& \left\{X^{\prime} \cdot Z^{\prime} X^{\prime} I^{\prime \prime} Z\right\}=\left\{Y^{\prime} Z^{\prime} X^{\prime} Y^{\prime \prime} Z\right\} \text { and }\left\{X^{\prime} . Z X^{\prime} Y^{\prime} Z^{\prime}\right\}=\left\{Y^{\prime} . Z X Y^{\prime} Z^{\prime}\right\}
\end{align*}
$$

and the three corresponding pairs
$\left\{W^{\prime} Y^{\prime \prime} B X\right\}=\left\{V^{\prime} C^{\prime} Z^{\prime} X\right\}$ and $\left\{W^{\prime} Y^{\prime} B^{\prime} X^{\prime}\right\}=\left\{V^{\prime} C Z S^{\prime}\right\} \ldots\left(1^{\prime}\right)$,
$\left\{U Z^{\prime} C Y\right\}=\left\{W A^{\prime} \Gamma^{\prime} Y^{\prime}\right\}$ and $\left\{U Z C^{\prime} I^{\prime \prime}\right\}=\left\{W A X^{\prime}\right\} \ldots\left(2^{\prime}\right)$,
$\left\{V^{\prime} X^{\prime} A Z\right\}=\left\{U B^{\prime} Y^{\prime} Z\right\}$ and $\left\{V X^{\prime} Z^{\prime}\right\}=\left\{U B Y^{\prime} Z^{\prime}\right\} \ldots\left(3^{\prime}\right)$,
mutually involve each other; and since, by ($286,4^{\circ}$), the latter are all involved in, while, by (253), any one of them involves, the collinearity (or concurrence) of the three points (or lines) $U, \mathrm{~V}, \mathrm{~W}$; therefore \&e.

The hexagons originally considered in the celebrated theorems of Pascal and Brianchon established on other principles in

Art. 148, coming under the second parts of the above reciprocal properties a and a^{\prime} respectively; the names "Pascal hexagon" and "Brianchon hexagon" aro in consequence applied generally, the former to all hexagons whose pairs of opposite sides intersect collinearly, and the latter to all whose pairs of opposite vertices connect concurrently; the line of collinearity in the former case, and the point of concurrence in the latter case being termed respectively the "Pascal line" and "Brianchon point" of the hexagon. For the same reason the names "Pascal hexastigm" and "Brianchon hexagram" are applied generally, the former to all systems of six points, every four of which connect equianharmonically with the remaining two, and the latter to all systems of six lines, every four of which intersect equianharmonically with the remaining two; all hexagons determined by such systems being, by virtue of the same properties, Pascal and Brianchon hexagons in the two cases respectively.

Since for every two triangles in perspective, the three pairs of corresponding sides intersect collinearly on the axis of perspective, and the three pairs of corresponding vertices comnect concurrently through the centre of perspective (140); it follows consequently, from the above, that for every two triangles in perspective; the four hexagons of which their pairs of corresponding are pairs of opposite sides are Pascal hexagons, of which their axis of perspective is the common Pascal line; and the four of which their pairs of corresponding are pairs of opposite vertices are Brianchon hexagons, of which their centre of perspective is the common Brianchon point.

The same hexagon might be at once a Pascal and a Brianchon hexagon, and when such would of course in its double capacity combine the properties of both; every hexagon at once inscribed to one circle and exscribed to another circle furnishes an example of a hexagon of this nature.
303. From the two reciprocal properties of the preceding article, combined with the fundamental two of Art. 140 respecting triangles in perspective, the following consequences, in pairs reciprocals of each other, may be readily inferred, viz.-
a. The intersections of the six pairs of alternate sides of a

Pascal hexagon, taken in consecutive order, determine a Brianchon hexagon.
a. The connectors of the six pairs of allernate vertices of a Briunchon hexagon, taken in consccutive order, determine a Pascal liexugon.

For, if (figures of last article) X and $X^{\prime \prime}, Y^{\prime}$ and $Y^{\prime \prime}, Z$ and $Z^{\prime \prime}$ be the three pairs of opposite vertices (or sides) of the origimal hexngon, and A and A^{\prime}, B and B^{\prime}, C and C^{\prime} those of the derived hexagon; then since, by liypothesis, the three pairs of corresponding sides (or vertices) $B C$ and $B^{\prime} C^{\prime}, C A$ and $C^{\prime} A^{\prime}$, $A B$ and $A^{\prime} B^{\prime}$ of the two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ intersect collinearly (or connect concurrently), therefore, by (140), their three pairs of corresponding vertices (or sides) A and A^{\prime}, B and B^{\prime}, C and C^{\prime} comect concurrently (or intersect collinearly); and therefore \&\&c.
b. When the vertices of thrce angles are collinear, the tacelve renaining intersections of their six detromining lines may be dicided, in four dificont ways, into theo groups of six, determining one a Pascal and the other a Brianchon hexagm.
b. When the aovs of thres segments are concurrent, the ficelve remaining connctors of their six dermining points may be divited, in four different waya, into teoo grougs of six, determining one a Brianchon and the other a Pascal hexayon.

For, the four hexagons, of which the three pairs of lines (or points) determining the three angles (or segments) are the three pairs of opposito sides (or vertices), being, by the preceding article, Pascal (or Brianchon) hexagons; and, the four hexagons deternined by the intensections (or connectors) of their pairs of alternate sides (or vertices) being, by the two properties a and a^{\prime} just proved, Brianchon (or Paseal) hexagons; therefore \&.c.

In the figures of the preceding article, the three collinear points (or concurrent lines) U, V°, W^{+}being the three vertices (or axes) of the three determining angles (or segments), the four sets of two complementary groups of six points (or lines)

$$
\begin{aligned}
& X, B^{\prime}, C ; X^{\prime}, B, C^{\prime} \text { and } A, Y^{\prime}, Z ; A^{\prime}, Y, Z^{\prime} \ldots \ldots \text { (1), } \\
& Y, C^{\prime}, A ; I^{\prime \prime}, C, A^{\prime} \text { and } B, Z, X^{\prime} ; B^{\prime}, Z, X^{\prime} \ldots \ldots . \text { (2), } \\
& Z, A^{\prime}, B ; Z^{\prime}, A, B^{\prime} \text { and } C, X^{\prime}, Y ; C^{\prime}, X, Y^{\prime \prime} \ldots \ldots \text { (3), } \\
& X, Y, Z ; X^{\prime}, Y^{\prime}, Z^{\prime} \text { and } A, B, C ; A^{\prime}, B^{\prime}, C^{\prime} \ldots \ldots . \text { (4), }
\end{aligned}
$$

are those determining the four Pascal and Brianchon (or Brianchon and Pascal) hexagons in the four cases respectively.
c. Of the sixty hexagons determined by the same Pascal hexastigm, the sixty Pascal lines pass three and three through twenty points.
c^{\prime}. Of the sixty hexagons determined by the same Brianchon hexagram, the sixty Brianchon points lie three and three on twenty lines.

For, of the four hexagons, of which the two triads of points (or lines) X, Y, Z and $X^{\prime}, Y^{\prime}, Z^{\prime}$, in the figures of the last article, are the two triads of alternate vertices (or sides), viz.:

$$
X Y^{\prime} Y X^{\prime} Z Z^{\prime}, Y Z^{\prime} Z Y^{\prime} X X^{\prime}, Z X^{\prime} X Z^{\prime} Y Y^{\prime}, X Z^{\prime} Y X^{\prime} Z Y^{\prime}
$$

while the Pascal line (or Brianchon point) of the fourth is the line (or point) $U V W$, those of the three first are the three lines (or points) $A A^{\prime}, B B^{\prime} C C^{\prime \prime}$ respectively, which, by the preceding a and a^{\prime}, or by the general property of triangles in perspective (140), are concurrent (or collinear); and, the same being of course true for every other similarly circumstanced three of the entire sixty, therefore, \&c.

The above theorem c (and with it of course its reciprocal c^{\prime}) is due to M. Steiner, who was the first to direct the attention of geometers to the complete figure determined by a system of six points (or lines), every four of which connect (or intersect) equianharmonically with the remaining two. The subject has since, from time to time, engaged the attention of different eminent geometers, including M. Plücker, Dr. Salmon, Professor Cayley, and Mr. Kirkman, by whom several other properties of the same nature have been discovered; of the principal of which, an abstract will be found in Dr. Salmon's Conic Sections, Ed. 4, note 1, page 357, and further details in Mr. Kirkman's published paper, Cambridge and Dublin Mathematical Journal, Vol. v., p. 185.
d. For each of the fifteen triads of non-conterminous segments determined by the same Pascal hexastigm, the six centres of perspective of the three pairs they determine lic three and three on forr lines.
d^{\prime}. For each of the fifteen triads of non-conterminous angles determined by the same Pascal hexagram, the six axes of perspec-
tive of the three pairs they determine pass three and three through four points.

For if $X \mathrm{X}^{\prime \prime}, Y^{\prime \prime}, Z Z^{\prime \prime}$ (same figures) be any triad of nonconterminous segments (or angles) determined by the six points (or lines) of the hexastigm (or hexagram); $U, V, I I$ the three intersections (or connectors) of the three pairs of connectors (or intersections) $\Gamma^{\prime \prime} Z^{\prime}$ and $\Gamma^{\prime \prime} Z, Z N^{\prime \prime}$ and $Z^{\prime} X, X Y^{\prime \prime}$ and $X^{\prime \prime} Y^{\prime \prime}$; and $U^{\prime}, V^{\prime}, W^{\prime}$ those of the three pairs $I^{\prime} Z$ and $Y^{\prime} Z^{\prime}, Z X$ and $Z^{\prime} X^{\prime}$, $X Y$ and $X^{\prime \prime} Y^{\prime \prime}$; then, in the four hexagons $Y X Z Y^{\prime \prime} X^{\prime \prime} Z^{\prime}$, $Z Y X Z Y^{\prime \prime} \mathrm{N}^{\prime \prime}, ~ \Gamma Z Y^{\prime} Z^{\prime} \Gamma^{\prime \prime}, \Gamma Z \Gamma^{\prime \prime} Z^{\prime \prime}$, the four triads of points (or lines) $V^{\prime \prime} W^{\prime \prime \prime} U ; W^{\prime \prime} U^{\prime \prime}, V ; U^{\prime}, V^{\prime \prime}, W ; U, V, W$, being the four triads of intersections (or connectors) of pairs of opposite sides (or vertices), are collinear (or concurrent); and the same being of course true for each of the remaining fourteen triads of non-conterninous segments (or angles) determined by the hexastigm (or hexagram), therefore, \&c.
304. The two following reciprocal criteria that six points lying in pairs on the three sides of a triangle should determine a Pascal hexastigm, and that six lines passing in pairs through tho threo vertiocs of a triaugle should determine a Brianchon hexngram, result immediately from the two of Art. 147 for the penspective of two triangles; viz.-

When three puirs of points (or lines) X and $\mathrm{X}^{\prime}, \Gamma$ and $Y^{\prime \prime}$, Z and Z ', lying on the three sidhs (or passing through the threo vertices) BC, CA, AB of a triangle schose three opposite verticns (or sides) are A, B, C, dutermine a Puscal hexastigm (or Briunchon hexagram), thry sativfy-
a. In the former case the general relation

$$
\frac{B X \cdot B X^{\prime \prime}}{C X . C N^{\prime \prime}} \cdot \frac{C Y \cdot C Y^{\prime \prime}}{A Y \cdot A Y^{\prime \prime}} \cdot \frac{A Z . A Z^{\prime}}{B Z . B Z^{\prime}}=+1
$$

a^{\prime}. In the latter case the reciprocal relution

$$
\frac{\sin B X \cdot \sin B X^{\prime}}{\sin C X^{\prime} \cdot \sin C N^{\prime}} \frac{\sin C Y \cdot \sin C Y^{\prime \prime}}{\sin A Y \cdot \sin A Y^{\prime \prime}} \frac{\sin A Z \cdot \sin A Z^{\prime}}{\sin B Z \cdot \sin B Z^{\prime}}=+1
$$

and, conversely, when of the above theo reciprocal relations they satisfy the one corresponding to their case, they determine a Pascal liexnstigm (or Brianchon hexayram).

For, of those two reciprocal relations, that corresponding to
the case being, by (147), the criterion that the triangle determined, by the three lines (or points) $X X^{\prime}, Y Y^{\prime}, Z Z^{\prime}$, or the triangle $A B C$, should be in perspective with each of the eight triangles determined by the eight triads of points (or lines) $Y Z^{\prime}, Z X^{\prime}, X Y^{\prime}$; $I Z^{\prime}, Z X, X^{\prime} Y^{\prime} ; Y Z, Z^{\prime} X, X^{\prime} Y^{\prime} ; Y Z, Z^{\prime} X^{\prime}, X Y^{\prime} ; Y^{\prime} Z, Z Z^{\prime} X$, $X^{\prime} Y^{\prime} ; Y^{\prime} Z, Z^{\prime} X^{\prime}, X Y ; Y^{\prime} Z^{\prime}, Z X^{\prime}, X Y ; Y^{\prime} Z^{\prime}, Z X, X^{\prime} Y$; and, conversely, being, by the same, fulfilled when it is in perspective with any one of them; therefore, \&c. (302).

Cor. 1°. Since, for the same triangle, by (65); every three pairs of points on the three sides which satisfy relation (a) connect with the opposite vertices by three pairs of lines satisfying relation (a^{\prime}); while, conversely, every three pairs of lines through the three vertices which satisfy relation (a^{\prime}) intersect with the opposite sides at three pairs of points satisfying relation (a) ; hence, from the above, it appears, generally, that -

When three pairs of points on the three sides of a triangle determine a Pascal hexastigm, their three pairs of connectors with the opposite vertices determine a Brianchon hexagram ; and, conversely, when three pairs of lines through the three vertices of a triangle determine a Brianchon hexagram, their three pairs of intersections with the opposite sides determine a Pascal hexastigm.

Cor. 2°. Since, for any triangle, by (134); every two triads of points X, Y, Z, and $X^{\prime}, Y^{\prime}, Z^{\prime}$ on the three sides $B C, C A, A B$, which are both either collinear or concurrently connectant with the opposite vertices, satisfy relation (a); while, reciprocally, every two triads of lines X, Y, Z and $X^{\prime}, Y^{\prime}, Z^{\prime}$ through the three vertices $B C, C A, A B$, which are both either concurrent or collinearly intersectant with the opposite sides, satisfy relation $\left(a^{\prime}\right)$; hence, again, from the above, it appears that-

When two triads of points on the three sides of a triangle are both either collinear or concurrently connectant with the opposite vertices they determine a Pascal hexastigm; and, reciprocally, when two triads of lines through the three vertices of a triangle are both either concurrent or collinearly intersectant with the opposite sides they determine a Brianchon hexagram.

Cor. 3°. Since again, conversely, for any triangle, by the same, if, of two triads of points X, Y, Z and $X^{\prime}, Y^{\prime}, Z^{\prime}$ on the three sides $B C, C A, A B$ which satisfy relation (a), one be either
collinear or concurrently connectant with the opposite vertices, so is the other also; while, reciprocally, if, of two triads of lines X, Y, Z and $X^{\prime \prime}, I^{\prime \prime}, Z^{\prime}$ through the three vertices $B C, C A, A B$ which satisfy relation (${ }^{\prime}$), one be either concurrent or collinearly intersectant with the opposite sides, so is the other also; hence also, from the above, it appears, conversely, that-

Of tuco triusts of proints on the three sides of a triangle tolich determine a Pascal hexastigm, if one be either collinear or concurrently connectant with the oppparite certices, so is the other also: and, reciprocally, of tico triads of lines through the three vertices of a triangle, which determine a Brianchon hexagram, if ono be either concurrent or collinearly intersmetunt with the oppossite sides, so is the other also.
N.B. - Of the reciprocal properties of this corollary, those established, on other considerations, in Examples $9^{\circ}, 10^{\circ}, 11^{\circ}, 12^{\circ}$, Art 137, are evidently particular cases.

Coks. 4°. Since, by the two reciprocal relations (z) and $\left(\alpha^{\prime}\right)$ of Art. 245 , every three pains of points (or lines) \mathcal{X} and $\mathcal{X}^{\prime \prime}, Y^{\circ}$ and Y^{\prime}, Z and Z^{\prime}, harmonic conjugates with respect to the threo chords of intersection (or angles of connection) of any tetragram (or tetrastigm), divide the three sides (or angles) $B C, C A, A B$ of the triangle determined by the axes (or vertices) of the three chords (or angles) so as to satisfy the above relations (a) and (a^{\prime}) respectively; hence, again, from the abore, it appears generally that-
a. Every three puirs of points, harmonic conjugutes with respect to the three chords of intersection of a ktragram, determine a Puscal hexastigm.
a'. Every three pairs of lines, harmonic conjugates seith respect to the three angles of connection of a tetrastigm, determine a Brianchon hexagram.
N.B.-Of the two reciprocal properties of this corollary, the two (a) and (b) of the article referred to in their proof (245) are evidently particular cases.

Cor. 5°. Assuming, as will be shown in the next chapter, that when five of the six points (or lines) determining a Pascal hexastign (or Brianchon hexagram) are points on (or tangents to) a common circle, the sixth also is a point on (or tangent to)
the same circle; it follows evidently, from the two reciprocal properties a and a^{\prime} of the preceding corollary (4°), that-
a. Every circle, dividing two of the three chords of intersection of a tetragram harmonically, divides the third also harmonically.
a^{\prime}. Every circle, subtending two of the three angles of connection of a tetrastigm harmonically, subtends the third also harmonically.

Properties, the first of which, it will be remembered, was proved before, on other principles, in Art. 228, Cor. 6°.

CHAPTER XVIII.

ANILARMONIC PROPERTIES OF THE CIRCLE:

305. Among the various anharmonic properties of the circle, the two following, reciprocals of each other, are those to which the designation is most commonly applied; and they obviously include, as particular eases, the two already given in Art. 252 at the commencement of Chapter XV ., viz. :
a. Every system of four points on a circle determines equianharmonic pencils of rays at every tiro, and therefore at all, points on the circle.
a'. Every system of four tangents to a circle determines equianharmonic rows of points on every tenno, and therefore on all, tangents to the circle.

For, in the former case, if A, B, O, D bo any four points on

a circle; then since, for every two points E and F on the circle, the two pencils of four rays $E . A B C D$ and $F . A B C D$ are similar $\left(25,1^{\circ}\right)$, therefore \&c. And, in the latter ease, if $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ be any four tangents to a circle; then since, for every two tangents $E^{\prime \prime}$ and F^{v} to the circle, the two rows of four points VoL. H .
$E^{\prime} . A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and $F^{\prime \prime} . A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ determine similar pencils at the centre O of the circle ($25,2^{\circ}$), therefore \&e. (285).

Since, by virtue of the above reciprocal properties, every six points A, B, C, D, E, F on a circle form a system of six points, every four of which connect equianharmonically with the remaining two, and every six tangents $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime \prime}$ to a circle form a system of six lines, every four of which intersect equianharmonically with the remaining two; all anharmonic properties, consequently, which are true, in general, of any system of six points or lines thus related to each other (301), are true, in particular, of every system of six points on or tangents to the same circle. See Arts. 301 to 304.

Again, since, under the process of reciprocation to an arbitrary circle (172), all systems of points and tangents of the original become transformed into systems of tangents and points of the reciprocal figure (159), and all anharmonic rows and pencils of the original into equianharmonic pencils and rows of the reciprocal figure (292); it follows, consequently, that the above reciprocal properties, with all the consequences to which they lead in the geometry of the circle, are truc, more generally, not only of the circle, but also of every figure into which the circle can become transformed by reciprocation; either in the original involving the other in the reciprocal figure, and conversely. See Art. 173.
306. If, in the preceding, while the four points A, B, C, D and one of the two E, F, or the four tangents $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ and one of the two $E^{\prime \prime}, F^{\prime \prime}$, are supposed to remain fixed, the remaining point, or tangent, be conceived to vary, and, in the course of its variation, to go round the entire circle ; since then, in every position of the variable point, or tangent,

$$
\{E \cdot A B C D\}=\{F \cdot A B C D\}, \text { or, }\left\{E^{\prime} \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}=\left\{F^{\prime \prime} \cdot A^{\prime} B^{\prime} C^{\prime} D\right\}
$$

the two reciprocal properties of the preceding article may consequently be stated as follows:
a. Every system of four fixed points on a circle determines, at a variable fifth point on the circle, a variable pencil of four rays having a constant anharmonic ratio.
$a^{\text {a }}$. Every system of four fixed tangents to a circle determines,
on a variable fifth tangent to the circle, a variable row of four points having a constant anharmonic ratio.

When the variable point, or tangent, in the course of its variation, coincides with one of the four fixed points, or tangents; the corresponding ray of the variable pencil, or point of the variable row, becomes then the tangent at the fixed point (19), or the point of contact of the fixed tangent (20); but the entire pencil, or row, has still the same constant anharmonic ratio as for every other position of the variable point, or tangent. See Art. $25{ }^{5}$.

This constant anharmonic ratio is commonly termed that of the four fixed points on the circle, in tho former case, and that of the four fixed tangents to the circle, in the latter caso; it being, of course, always implicitly understood to mean, as above explained, that of the pencil determined by the four at any fifth point on the circle, in the former case, and that of the row determined by the four on any fifth tangent to the circle, in the latter case. See Art. 279.

For the same reasons stated in the concluding paragraph of the preceding article, the above reciprocal properties are true generally, not ouly of the circle, but also of every figure into which tho circle can become transformed by reciprocation; either in the original involving the other in the reciprocal figure, and conversely.
307. The pencil of four rays determined by any system of four points on a circle at any fifth point on the circle, and the row of four points determined by the corresqunding system of four tangents to the circle on any figh tangent to the circle, are equianharmonic.

For, if A, B, C, D be any four points on a circle, and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ the four corresponding tangents to the circlo; E any fifth point on the circle, and $E^{\prime \prime}$ any fifth tangent to tho circle ; then since, for all positions of E and $E^{\prime \prime}$, by $\left(25,1^{\circ}\right.$ and $\left.2^{\circ}\right)$, the pencil of four rays $E . A B C D$ is similar to that determined by the row of four points $E^{\prime} . A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ at the centre of the circle, therefore \&c. (285).

In the particular case when the fifth tangent E^{\prime} is that corresponding to the fifth point E; the four points $E^{\prime \prime} . A^{\prime} B^{\prime} C^{\prime} D^{\prime}$
are the four poles, with respect to the circle, of the four points $E . A B C D\left(165,6^{\circ}\right)$; and their equianharmonicism follows, as a particular case, from the general property of Art. 292.

The above anharmonic equivalence is generally represented, for shortness, by Dr. Salmon's Notation, Art. 279, viz.-

$$
\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\} ;
$$

it being, of course, always understood that the two equivalents refer, respectively, to the pencil determined by the four points A, B, C, D at any fifth point on the circle, and to the row determined by the four corresponding tangents $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ on any fifth tangent to the circle.

Again, for the reasons stated in the concluding paragraph of Art. 305, the above property is true generally, not only of the circle, but also of every figure into which the circle can become transformed by reciprocation.
308. The six anharmonic ratios P and $\frac{1}{P}, Q$ and $\frac{1}{Q}, R$ and $\frac{1}{l}$ of the pencil determined by any four points A, B, C, D on a circle at any fifth point E on the circle, or by the four corresponding tangents $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ on any fifth tangent $E^{\prime \prime}$ to the circle (307), may be expressed in terms of the six chords connecting the four points two and two, exactly as for four points on a line (274), viz. -

$$
\begin{aligned}
& \frac{B A}{C A}: \frac{B D}{C D} \text { and } \frac{C A}{B A}: \frac{C D}{B D}, \text { or, } \frac{B A \cdot C D}{C A \cdot B D} \text { and } \frac{C A \cdot B D}{B A \cdot C D} \cdots \ldots \text { (1), } \\
& \frac{C B}{A B}: \frac{C D}{A D} \text { and } \frac{A B}{C B}: \frac{A D}{C D} \text {, or, } \frac{C B \cdot A D}{A B \cdot C D} \text { and } \frac{A B \cdot C D}{C B \cdot A D} \ldots \ldots \text { (2), } \\
& \frac{A C}{B C}: \frac{A D}{B D} \text { and } \frac{B \bar{C}}{A C}: \frac{B D}{A D} \text {, or, } \frac{A C \cdot B D}{B C \cdot A D} \text { and } \frac{B C \cdot A D}{A C \cdot B D} \ldots \ldots \text { (3). }
\end{aligned}
$$

For, in the three pairs of reciprocal ratios (1), (2), (3), dividing each chord involved by the diameter of the circle, and substituting for the resulting quotient the sine of the angle subtended by that chord at any point E on the circle (62) ; the three pairs of corresponding anharmonic ratios of the pencil E.ABCD determined by the four points A, B, C, D at the point E, viz.-

$$
\begin{aligned}
& \frac{\sin B E A}{\sin C E A}: \frac{\sin B E D}{\sin C E D} \text { and } \frac{\sin C E A}{\sin B E A}: \frac{\sin C E D}{\sin B E D} \ldots \ldots\left(1^{\prime}\right), \\
& \frac{\sin C E B}{\sin A E B B}: \frac{\sin C E D}{\sin A E D} \text { and } \frac{\sin A E B}{\sin C E B}: \frac{\sin A E D}{\sin C E D} \ldots \ldots\left(2^{\prime}\right), \\
& \frac{\sin A E C}{\sin B E C}: \frac{\sin A E D}{\sin B E D} \text { and } \frac{\sin B E C}{\sin A E C}: \frac{\sin B E D}{\sin A E D} \ldots \ldots\left(3^{\prime}\right),
\end{aligned}
$$

or their three corresponding equivalents (see (1^{\prime}), (2^{\prime}), (3^{\prime}) (Art. 274), are the immediate result; and therefore ©.
309. I'wo different systems of four points on, or tangents to, the same circle, or two different circles, A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, which correspond in pairs A to A^{\prime}, B to B^{\prime}, C to C^{\prime}, D to D^{\prime}, are said to be equianharmonic, when tho pencils of four rays, or the rows of four points, they determine at all points on, or on all tangents to, their circle, or circles, are equianharmonic. With the same understanding, as to menning, as in the particular case considered in Art. 307, all such cases of anharnonic equivalence may in general be represented, for shortuess, by Dr. Salmon's Notation (279), viz.-

$$
\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D\right\} ;
$$

the several pairs of corresponding constituents being, of course, invariably written in the same order in the two equivalents, in every case of its employment.
'Two simitar systems of four points on the same circle, or on two different circles, as determining similar pencils of four raya at all points on their circle, or circles, furnish the most obvious as well as the simplest example of two equianharmonic systems of concyclic points; and the two systems of corresponding tangents to the circle, or circles, furnish the most obvious as well as the simplest example of two equianharmonie systems of concyclic tangents, in the sense above defined. Thus, for two circles, every two systems determined by four points or tangents of either, and by the four homologous joints or tangents of the other with respect to either centre of similitude of the two (198), as being evidently similar, are equiauharmonic in that sense. For the samo circle, it is evident, from 2°, Art. 286, that every two systems of four points which deternine pencils in perspeclive at any two points on the circle, and every two systems
of four tangents which determine rows in perspective on any two tangents to the circle, are equianharmonic in the same sense.
310. As, in Art. 290, for two equianharmonic rows of four points on different axes, or for two equianharmonic pencils of four rays through different vertices; so, for two concyclic systems of four points, or tangents, equianharmonic in the sense of the preceding article, it is evident, from the two reciprocal properties (a) and (a^{\prime}) of Art. 289, that-
a. Every two equianharmonic systens of four points on the same circle determine two pencils of rays in perspective, either at any point of the other, and the latter at the corresponding point of the former.
a^{\prime}. Every two equianharmonic systems of four tangents to the same circle determine two rows of points in perspective, either on any tangent of the other, and the latter on the corresponding tangent of the former.

For, if A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ be the two systems of points, or tangents; then, each pair of pencils or rows

$$
\begin{aligned}
& \text { A. } A^{\prime} B^{\prime} C^{\prime} D^{\prime} \text { and } A^{\prime} . A B C D, B \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime} \text { and } B^{\prime} . A B C D, \\
& C \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime} \text { and } C^{\prime} \cdot A B C D, D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime} \text { and } D^{\prime} . A B C D,
\end{aligned}
$$

being equianharmonic, and having a common ray or point, therefore \&c. (289).

Cor. As, in Art. 291, for two equianharmonic rows of four points on different axes, or pencils of four rays through different vertices; so, for two concyclic systems of four points, or tangents, equianharmonic in the sense in question, the above reciprocal properties supply ready solutions, by linear constructions only, without the aid of a second circle, of the two following reciprocal problems, viz.
a. Given three pairs of corresponding constituents of two equianharmonic systems of points on the same circle, and the fourth point of either system, to determine the fourth point of the other system.
$a^{\text {a }}$. Given three pairs of corresponding constituents of two equianharmonic systems of tangents to the same circle, and the fourth langent of cither system, to determine the fourth tangent of the other systom.

The two reciprocal constructions given in the article referred to (291), modified in the manner mentioned in the note at its elose, apply, word for word and letter for letter, to theso problems also.
311. The two following reciprocal cases of aularmonio equivalence, between concyelic systems of points and tangents, result immediately from the fundamental properties of Art. 305, and lead to several remarkable consequences in the modern geometry of the circle, viz.

If A, B, C, D be any four points on (or tangents to) the same circle, and X, Y, Z the three points of intersection (or lines of connection) of the three pairs of connectors (or intersections) BC and $A D, C A$ and $B D, A B$ and $C D$ (figs. a and a^{\prime}); then (sec Art. 272).
1°. Fur every pair of concyclic points (or tangents) E and F which connect through (or intersect on) I;

$$
\{A B E F\}=\{C D E F\} \text { and }\{A C E F\}=\{B D E F\} \ldots(a) ;
$$

2°. For every pair G and $I I$ which connect dirough (or intersect on) Y,

$$
\{B C G H\}=[A D G H\} \text { and }\{B A G H\}=\{C D G H\} \ldots(b) ;
$$

3°. For every pair K^{-}and L which connect through (or intersect on) Z,

$$
\{C A K L\}=\{B D K L\} \text { and }\{C B K L\}=\{A D K L\} \ldots(c) ;
$$

and, conversely, all prairs of concyclic points (or tangents) which fulfil either, and therffore the other (272), of any of the three preceding pairs of equianlarmonic relations, connect through (or intersect on) the corresponding one of the thrce points (or lincs) X, Y, Z.

For, by the two converse pairs of reciprocal properties (256, 4°) and (289), the collinearity (or concurrence) of the three points (or lines) E, F, and X, in the first case, involves, and is involved in either of, the two equianharmonic relations

$$
\{B \cdot A C E F\}=\{A \cdot B D E F\} \text { and }\{C \cdot A B E F\}=\{A \cdot O D E F\} ;
$$

that of the three G, H, and Y, in the second case, involves, and is involved in either of, the two

$$
\{C \cdot B A G H\}=\{B \cdot C D G H\} \text { and }\{A \cdot B C G H\}=\{B \cdot A D G H\} ;
$$

and that of the three K, L, and Z, in the third case, involves, and is involved in either of, the two

$$
\{A \cdot C B K L\}=\{C \cdot A D K L\} \text { and }\{B . C A K L\}=\{C . B D K L\}
$$

and thercfore \&c. (305).
Cor. 1°. The three points (or lines) X, Y, Z in the above, taken in pairs Y and Z, Z and X, X and Y, being the three pairs of centres (or axes) of perspective of the three pairs of inscribed chords (or exscribed angles) $B C$ and $A D, C A$ and $B D$, $A B$ and $C D$ determined by the four concyclic points (or tangents) A, B, C, D; it follows consequently, from the three pairs of equianharmonic relations $(a),(b),(c)$, that-
a. Every two points on a circle, which connect through either. centre of perspective of any two inscribed chords, divide equianharmonically the two arcs of the circle intercepted by the chords; and, conversely, every two points on a circle, which divide equianharmonically any two arcs of the circle, connect through one or other of the two centres of perspective of the two inscribed chords determined by the arcs.
$a^{\text {. }}$. Every two tangents to a circle, which intersect on cither axis of perspective of any two exscribed angles, divide equianharmonically the two arcs of the circle intercepted by the angles; and, conversely, every two tangents to a circle, which divide equianharmonically any two arcs of the circle, intersect on one or other of the two axes of perspective of the two exscribed angles determined by the arcs.

Cor. 2°. In the particular caso where the two ares of the circle, intercepted between two of the four points (or tangents),
B and C suppose, and between the remaining two A and D, are equal ; since then, evidently, one of the two centres of perspective Z (fig. α) of the two inseribed chords they determine is at an infinite distance, while one of the two axes of perspective Z (fig. x^{\prime}) of the two exscribed angles they determine passes through the centro of the circle; and since, consequently, the two circular points at infinity (260) connect through the former, while the two tangents from the centre of the circle intersect on the latter; hence, from the fint parts of the above, it appeans that-
a. Etery two, and therefore all, equal ares of the same circle are cut equianharmonically by the too circular points at infinity.
a'. Eiery theo, and thercfore all, equal ares of the same circle are cut equianharmonically by the fieo central tangents to the circle.

Cor. 3°. In the particular case when, of the four points (or tangents) A, B, C, D, any two, B and C suppose, and also the remaining two, A and D, coincile ; and when, consequently (19 and 20), the point for line) \bar{X} is the intersection of the terminal tangents (or the comector of the terminal points) of the are of the circle $A B$ intercepted between the two pains of coincident points (or tangents) $B=C$ and $A=D$; since then, for every pair of concyelic points (or tangents) E and F which connect through (or intersect on) \boldsymbol{X}, by either relation (a) of the above, $\{A B E F\}=\{B A E F\}$; and since, by (281), every pair of concyelic points or tangents E and F which fulfil the latter relation are harmonic conjugates to each other with respect to the two A and B; hence also, from the above, as already established on other principles in Art. 257 , it appears that-
a. Every two points on a circle, which connect through the intersection of any theo tangents to the circle, divide harmonically the arc of the circle intercepted by the tangents; and, conversely, every two points on a circle, which divide any are of the circle harmonically, comnect through the intersection of the terminal tangents of the arc.
a. Every tueo tangents to a circle, thich intersect on the connector of any theo proints on the circle, divide harmonically the are of the circle interepped by the points; and, conversely,
every two tangents to a circle, which divide any arc of the circle harmonically, intersect on the connector of the terminal points of the arc.

Cor. 4. When, in the general case, the two points (or tangents) E and F connect through (or intersect on) not only X but also Y, or the two G and $I I$ connect through (or intersect on) not only Y but also Z, or the two K and L connect through (or intersect on) not only Z but also X; since then, by the first and second of the general relations (a) and (b), (b) and (c), (c) and (a), respectively, combined-

$$
\begin{aligned}
& \{A B E F\}=\{B A E F\} \text { and }\{C D E F\}=\{D C E F\} \\
& \{B C G H\}=\{C B G H\} \text { and }\{A D G H\}=\{D A G H\} \\
& \{C A K L\}=\{A C K L\} \text { and }\{B D K L\}=\{D B K L\}
\end{aligned}
$$

and since, consequently, by (281), the several systems of four constituents are all harmonic; hence again, from the above, as already shewn on other principles in Art. 261, it appears that-
a. The two points on a circle, which are collinear with the two centres of perspective of any two inscribed chords, divide harmonically the two arcs of the circle intercepted by the chords; and, conversely, the two points on a circle, which divide harmonically the two arcs of the circle intercepted by any two inscribed chords, are collinear with the two centres of perspective of the chords.
a^{\prime}. The two tangents to a circle, which are concurrent with the two axes of perspective of any two exscribed angles, divide harmonically the two arcs of the circle intercepted by the angles; and, conversely, the two tangents to a circle, which divide harmonically the two arcs of the circle intercepted by any two cxscribed angles, are concurrent with the two axes of perspective of the angles.

Cor. 5°. Since, in the same case (see figures), by virtue of the general property of Art. 285-
$\{E F X Y\}=\{D \cdot E F A B\}=\{C \cdot E F B A\}=\{B \cdot E F C D\}=\{A \cdot E F D C\}$, $\{E F Y X\}=\{C \cdot E F A B\}=\{D \cdot E F B A\}=\{A \cdot E F C D\}=\{B \cdot E F D C\}$, with similar groups of relations for the system G, H, Y, Z, and
for the system K, L, Z, X, (which, it will be observed, prove directly the harmonic relations of the preceding corollary); it follows consequently, by (306), that-
$\{E F X Y\}=\{E F Y X\},\{G H Y Z\}=\{G H Z Y\},\{K L Z X\}=\{K L X Z\} ;$ and therefore, by (281), as established already on other considerations in Art. 261, that-
a. The twe centres of perspective of any two chords inscriled to a circle divide harmonically the segment, real or imaginary, intercepted betwoen the two collinear proints on the circle.
a^{\prime}. The teo axes of perspective of any twoo angles exsocribed to a circle divide harmonically the angle, real or imaginary, intercepted beticcen the tho concurrent tangents to the circle.

Con. 6°. In the particular case when tho four points (or tangents) A, B, C, D are in pairs, A and B, C and D) suppose, diametrically opposite to each other; since then, evidently, tho two centres of perspective Z and \boldsymbol{X} (fig. a) of the two inscribed chords $A B$ and $C D$, and with them of course all collinear points, are at intinity, while the two axes of perspective Z and I^{\prime} (fig. α^{\prime}) of the two exscribed angles $A B$ and $C D$, and with them of course all concurrent lines, pass through the centre of the circlo; hence, from Cor. 4°, as established already on other considerations in Art. 260, it appears that-
a. Fvery two, and therefore all, semicircular arcs of the same circle are cut harmonically by the fteo circular points at infinity.
a^{\prime}. Every theo, and therefore all, semicircular arcs of the samo circle are cut harmonically by the two central tangents to the circle.

Cor. 7°. The two reciprocal properties of Cor. 1° supply obvious solutions of the three following pairs of reciprocal problems, viz.-
a. To draso a line, 1°. passing through a given point and determining two points on a given circle dividing thoo given arcs of the circle equianharmonically; 2°. touching one given circle and determining tico points on another given circle dividing two given arcs of the latter circle equianharmonically; 3°. determining tico points on each of two given circles dividing two given arcs of cach circlo equianharmonically.
a^{\prime}. To find a point, 1°. lying on a given line and determining two tangents to a given cirçle dividing two given ares of the circle
equianharmonically; 2°. lying on one given circle and determining two tungents to another given circle dividing two given arcs of the latter circle equianharmonically; 3°. determining two tangents to each of two given circles dividing two given arcs of each circle equianharmonically.

Since, by the corollary in question (Cor. 1°), every two points on (or tangents to) a circle, which comect through either centre of perspective of the two inscribed chords (or intersect on either axis of perspective of the two exscribed angles) determined by any two arcs of the circle, divide those ares equianharmonically; it follows, consequently, that, of the above pairs of reciprocal problems, the first of each group admits of two, and the second and third of each admit of four, different solutions, the two points (or tangents) corresponding to any or all of which may, according to circumstances, be as often imaginary as real.

Cor. 8°. Since (156) every circle, whose chord of intersection with either of two orthogonal circles passes through the centre of the other, is orthogonal to the latter; while, conversely, every circle orthogonal to one of two orthogonal circles determines a chord of the other passing through the centre of the former; it follows consequently, from the first and second parts of property (a) of the same corollary (Cor. 1°) respectively, that-

Every circle orthogonal to either of two orthogonal circles cuts equianharmonically every two arcs of the other intercepted between two diameters of the former; and, conversely, every circle cutting any two arcs of another circle equianharmonically is orthogonal to one or other of the two circles orthogonal to the latter, and to each other, $176,1^{\circ}$, whose centres are the two centres of perspective of the chords of the arcs.

Cor. 9°. Since ($187,2^{\circ}$) a variable circle, whose chords of intersection, real or imaginary, with two fixed circles pass through two fixed points, deseribes the coaxal system orthogonal to the pair of circles concentric with the points and orthogonal to the circles; it follows evidently, from the second part of the general property of the preceding corollary, that-
1°. A variable circle, passing through a fixed point and
cutting twoo fired arcs of a fixed circle equianharmonically, passes also through the inverse of the proint with respect to one or other of the thoo circles orthoyonal to the fixal circle and concentric with the tro centres of perepective of the chords of its arcs.
2. A verriuble circh, culting two fircel arcs of cach of theo fixed circles equianharmonically, descriles one or other of the four coaxal systems orthogonal to a circle of each pair orthogonal to one of the fixul circles and concentric with the two centres of perspective of the chorels of its arcs.

Cus. 10°. Since (155 , Cor. 4) a circle may be deseribed, 1. pasing through two given points and cutting a given circlo orthogonally; 2. passing through a given point and cutting two given circles orthogronally; 3°. cutting three given circles orthogonally; the first part of the same general property (that of Cor. 8°) supplies obviously the two, four, and eight solutions, respectively, of the three following problems, viz. -

To descrite a circt, 1°. passing through two given points and cutting theo giern ares of a given circle equianharmomioally; 2°. passing through a given point and cutting theo given arces of each of two gien circles equiunharmonically; 3°. euthing two given ares of each of three gien circles equianharmonically.
312. Since every two similar angles, however circumstanced as to position, absolute or relative, intercept equal ares on every circle passing through their two vertices, and since every circle, whatever be its magnitude or position, passes through the two circular points at infinity (260); it follows consequently, from relations (a) of Cors. 2° and 6° of the preceding article, that-

Every teo, and thervfore all, similar angles, hovever circumstanced as to position, absolute or relative, are cut equianharmonically, and if right angles harmonically, by the lines connecting their errtices with the tuo circular points at infinity; the salue of the common anharmonic ratio of their section depending on their common form, and being $=-1$ vehen that form is rectungular.

This remarkable result, which for the farticular case of right angles has, it will be remembered, been already established on other principles in Art. 260, is of considerable importance in the higher departments of modern geometry; as bringing at once under the operation of all processes of geometrical trans-
formation, such as reciprocation, projection, \&c., under which anharmonic ratios remain unchanged, all propertics of geometrical figures involving similar angles; and shewing, in general, what such properties become by transformation when the angles themselves, as they generally do, lose by change of form their character of similarity under the process of transformation.
313. From the two reciprocal properties of Art. 311 the two following, also reciprocal, propertics respecting concyclic triads of points and tangents in perspective may be immediately inferred, viz.-

When two systems of three points on (or tangents to) the same circle A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$, which correspond two and two in opposite pairs A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, are in perspective, every pair of systems determined by four of the six constituents and their four opposites are equianharmonic ; and, conversely, when they are such that any pair of systems determined by four of the six constituents and their four opposites are equianharmonic, they are in perspective.

For, if O be the point of concurrence (fig. α), or the line of collinearity (fig. α^{\prime}), of two of the three lines of connection (or points of intersection) $A A^{\prime}, B B^{\prime}, C C^{\prime}$ of the three pairs of opposite constituents A and A^{\prime}, B and B^{\prime}, C and $C^{\prime \prime}$; then since, by the two reciprocal properties of the article in question (311), the concurrence (or collinearity) with them of the third involves both, and is involved in either of, the two equianharmonic relations,
1°. If $B B^{\prime}$ and $C C^{\prime}$ be the two, and $A A^{\prime}$ the third, $\left.\begin{array}{l}\left\{B C A A^{\prime}\right\}=\left\{C^{\prime} B^{\prime} A A^{\prime}\right\}=\left\{B^{\prime} C^{\prime} A^{\prime} A\right\},(2 s 0) \\ \left\{B C^{\prime} A A^{\prime}\right\}=\left\{C B^{\prime} A A^{\prime}\right\}=\left\{B^{\prime} C A^{\prime} A\right\},(2 s 0)\end{array}\right\} \ldots(a) ;$
2°. If $C C^{\prime}$ and $A A^{\prime}$ be the two, and $B B^{\prime}$ the third,
and
$\left.\left\{C A B B^{\prime}\right\}=\left\{A^{\prime} C^{\prime} B B^{\prime}\right\}=\left\{C^{\prime} A^{\prime} B^{\prime} B\right\},(2 s 0)\right\} \ldots(b) ;$
3°. If $A A^{\prime}$ and $B B^{\circ}$ be the two, and $C C^{\prime}$ the third, $\left.\left\{A B C C^{\prime}\right\}=\left\{B^{\prime} A^{\prime} C C^{\prime}\right\}=\left\{A^{\prime} B^{\prime} C^{\prime} C\right\},(2 s 0)\right\}$
$\left.\left\{A B^{\prime} C C^{\prime}\right\}=\left\{B A^{\prime} C C^{\prime}\right\}=\left\{A^{\prime} B C^{\prime} C\right\},(250)\right\} \cdots(c) ;$
therefore \&c. (283).
Otherwise thus: Since, when the two triads are in perspectire, their three pairs of opposite constituents A and A ', B and B^{\prime}, C and C^{n} divide harmonically the are $M N$, real or imaginary, intercepted between the two tangents to the circle from the centre of perspective (or the two intersections with the circle of the axis of perspective) O (257), therefore, by 3°, Cor. 5, Art. 282, every four of the six constituents and their four opposites form equianharmonic systems. And since, conversely, when any four of the six constituents and their four opposites form equianharmonic systems, the three pairs of opposite contituents divide harmonically a common are $M N$, real or imaginary (Cor. 1°, Art. 283), therefore, (by 257), the two triads are in perspective. This latter demonstration, though perhaps on the whole simpler, yet, as involving the contingent elements M and N, is consequently leas general than the former in which all the elements involved are permanent (21).

In the particular cases when, in the first parts of the above reciprocal properties, the centre of perspective O, in the former case, is the centre of the circle, and the axis of perspectivo O, in the latter case, is the line at infinity; the three pains of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and $C^{\prime \prime}$ being then diametrically opposite pairs with respect to the circle, the two properties are evident, is priori, from the obvious similarity and consequent equianharmonicism of every two systems determined by four of them and their four opposites. See Cor. 2°, Art. 283, from which also, Euc. 111. 31, the properties evidently follow in the same cases.

Cor. 1°. It follows, indirectly, from both parts of the above propertics combined, that when a system of six points on (or tangents to) the same circle, which correspond two and two in opposite pairs A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, is such that any two systems determined by four of the six constituents and their four opposites are equianharmonic, then every two systems determined by four of them and their four opposites are equianharmonic. For, by the second parts of the above properties, the equianharmonicism of any oue of the six pairs of conjugate groups of four into which the system may be divided involves the perspective of the two conjugate triads A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ of which it consists, and consequently, by the first parts of the same properties, the equianharmonicism of the remaining five. This property, it will be remembered, was proved directly for collinear points and concurrent lines, and with them, implicitly, for concyclic points and tangents, in Art. 283, and the above indirect verification of it for the latter may of course be regarded as extending to the former also.

Cor. 2°. The first parts of the above reciprocal properties supply obvious solutions of the two reciprocal problems, of two triads of concyclic points (or tangents) A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$, which correspond two and two in opposite pairs, and every four of which are equianharmonic with their four opposites; given any two pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, and either constituent C of the third pair C and C^{\prime}, to determine the second constituent C^{\prime} of that pair. For, the two lines of connection (or points of intersection) $A A^{\prime}$ and $B B^{\prime}$ of the two given pairs A and A^{\prime}, B and B^{\prime} determine, by their point of intersection (or line of connection), the centre (or axis) of perspective O of the two triads, and with it, consequently, the conjugate C^{\prime} to the given constituent C. of the third pair C and $C^{\prime \prime}$.
314. From the two reciprocal properties of the preceding article, respecting concyelic triads of points or tangents in perspective, it may bo readily inferred, for concyclic quartets of points or tangents in perspective, that, more generally-

When two systems of four points on (or tangents to) the same circle A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, which correspond two and
tico in opposile pairs A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and D^{\prime}, are in perspectice, ceery pair of systems diftermined liy four of the eight constituints and their four opposites are equiamharmonic; and, contersely, when two equianharmonic systems of four points on (or tangrats to) the same circle A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime \prime}, D^{\prime}$ are such that a pair of their corresponding constituents may be interchanged without violating their relation of equiankarmonicism, they are in perspective.

For, from the general property (1°) Art. 2s2, see figures of preceding article.
1°. Any two of the three equianharmonic relations

$$
\begin{aligned}
\left\{C D A A^{\prime}\right\}= & \left\{C^{\prime} D^{\prime} A^{\prime} A\right\},\left\{D B A A^{\prime}\right\}=\left\{D^{\prime} B^{\prime} A^{\prime} A\right\} \\
& \left\{B C A A^{\prime}\right\}=\left\{B^{\prime} C^{\prime} A^{\prime} A\right\}
\end{aligned}
$$

involve and are involved in the two

$$
\{B(I) A\}=\left\{B^{\prime} C^{\prime} D^{\prime} A^{\prime}\right\} \text { and }\left\{B C D_{A} A^{\prime}\right\}=\left\{B^{\prime} C^{\prime} D^{\prime} A\right\} \ldots(a) ;
$$

2°. Any two of the three equianlarmonic relationa

$$
\begin{aligned}
\left\{D A B B^{\prime}\right\}= & \left(\left.\right|^{\prime} A^{\prime} B^{\prime} B\right\},\left\{A C B B^{\prime}\right\}=\left\{A^{\circ} C^{\prime} B B^{\prime} B\right\} \\
& {\left.\left[C D B B^{\prime}\right\}=\left\{C^{\prime} \mid\right) B B^{\prime} B\right\} }
\end{aligned}
$$

involve and are involved in the two

$$
\{C D A B\}=\left\{C^{\prime} D^{\prime} A^{\prime} B^{\prime}\right\} \text { and }\{C D A B\}=\left\{C^{\prime} B^{\prime} A^{\prime} B\right\} \ldots(() ;
$$

3°. Any two of the three equianharmonic relations

$$
\begin{aligned}
\left\{A B C^{\prime} C^{\prime}\right\}= & \left\{A^{\prime} B^{\prime} C^{\prime} C\right\},\left\{B D C C^{\prime}\right\}=\left\{B \|^{\circ} C^{\prime} C\right\} \\
& \left\{D A C C^{\prime}\right\}=\left\{I^{\prime} A^{\prime} C^{\prime} C^{\prime}\right\},
\end{aligned}
$$

involve and are involsed in the two

$$
\{D A B C\}=\left\{D^{\prime} A^{\prime} B^{\prime} C^{\prime}\right\} \text { and }\left\{D A B C^{\prime}\right\}=\left\{D^{\prime} A^{\prime} B^{\prime} C\right\} \ldots(c)_{i}
$$

4°. Any two of the three equiaularmonic relations

$$
\begin{aligned}
\left\{B C D D^{\prime}\right\}= & \left\{B^{\prime} C^{\prime} D^{\prime} D^{\prime},\left\{C A D D^{\prime}\right\}=\left\{C^{\prime} A^{\prime} D^{\prime} D\right\}\right. \\
& \left\{A B D D^{\prime}\right\}=\left\{A^{\prime} B^{\prime} D^{\prime} D\right\}
\end{aligned}
$$

involse and are involved in the two

$$
\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\} \text { and }\left\{A B C D^{\prime}\right\}=\left\{A^{\prime} B^{\prime} C^{\prime} D\right\} \ldots(d) ;
$$

and, as three similar quartets of equianharmonic relations result evidently from the interchange; firstly, of B and B^{\prime} in 1°, of C and C^{\prime} in 2°, of D and D^{\prime} in 3°, and of A and A^{\prime} in 4°; secondly, of C and C^{\prime} in 1°, of D and D^{\prime} in 2°, of A and A^{\prime} in VOL. 11.
3°, and of B and B^{\prime} in 4°; and thirdly, of D and D^{\prime} in 1°, of A and A^{\prime} in 2°, of B and B^{\prime} in 3°, and of C and C^{\prime} in 4°; therefore \&c.

Otherwise thus, as for the properties of the preceding article, which are included in the above as particular cases. Since (same figures) when the two quartets are in perspective, their four pairs of opposite constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and D^{\prime} divide harmonically the are $M N$, real or imaginary, intercepted between the two tangents to the circle from the centre of perspective (or the two intersections with the circle of the axis of perspective) O (257); therefore, by 3°, Cor. 4°, Art. 282, every four of the eight constituents and their four opposites form equianharmonic systems; and since, conversely, when the two quartets are equianharmonic, and preserve their equianharmonicism on the interchanges of a pair of their corresponding constituents, the four pairs of corresponding constituents divide harmonically a common arc $M N$, real or imaginary, (Cor. 1°, Art. 284) ; therefore, by (257), the two quartets are in perspective. This latter demonstration has the same adrantages and disadvantages, compared with the former, as for the propertics of the preceding article.

In the particular cases when, in the first parts of the above reciprocal properties, the centre of perspective O, in the former case, is the centre of the circle, and the axis of perspective O, in the latter ease, is the line at infinity; the four pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and D^{\prime} being then diametrically opposite pairs with respect to the circle, the two properties are evident, à priori, from the obvious similarity, and consequent equianharmonicism, of every two systems determined by four of them and their four opposites. See Cor. 20, Art. 284, from which also, Euc. Mir. 31, the properties evidently follow in the sane cases.

Cor. 1°. It follows, indirectly, from both parts of the above properties combined, that when two equianharmonic systems of four points on (or tangents to) the same circle A, B, C, D and $A^{\prime}, I 3^{\prime}, C^{\prime}, D^{\prime}$ are such that a pair of their corresponding constituents may be interchangrd without violating their relation of equianharmonicism, then every pair of their corresponding con'stituents may be interchanged without violating their relation of
equianharmonicism. For, by the second parts of the above properties, the possibility of a single such interchange involves the perspective of the systems, and consequently, by the first parts of the same properties, the possibility of every such interchange. This property also, like that of the corollary of the preceding article, it will be remembered, was proved directly for collinear points and concurrent lines, and therefore implicitly for concyclic points and tangents, in Art. 254, and the above may be regarded is an indirect verification of it for the former as well as for the latter.

Cor. 2. The first parts of the above reciprocal properties supply obvious solutions of the two reciprocal problems; of theo quartets of concyclic points (or tangents) A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, which correspond two and theo in opprosite pairs, and every four of which are equianharmonic reith their four opposites; given any two pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, and any two non-correqponding constituents of the remaining tieo pairs, to determine the remaining twoo constituents of those pairs. For, the two lines of connection (or points of intersection) $A A^{\prime}$ and $B B^{\prime}$ of the two given pairs of corresponding constituents A and A^{\prime}, B and B^{\prime} determine, by their point of intersection (or line of comection), the centre (or axis) of perspective O of the two quartets, and with it, conscquently, the two correspondents to the two given non-corresponding constituents of the remaining two pairs.
315. The two reciprocal properties of the preceding article are sometines enunciated as follows:

When three pairs of points on (or tangents 10) the same circle A and A^{\prime}, B and B^{\prime}, C and C^{\prime} determine theo triads in perspective A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$; cvery fourth pair D and D^{\prime} determines with them two quartets A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ which if in perspectice are equianharmonic, and which if equianharmonic are in perspective.

And the following reciprocal demonstrations, based on the two reciprocal properties a and a^{\prime} of Art. 261, are sometimes given of them. If O be the centre (fig. a), or the axis (fig. a^{\prime}), of perspective of the two triads A, B, C and $A^{\prime}, B^{\prime}, C^{\prime} ; 1$ its polar (fig. α), or its pole (fig. a^{\prime}), with respect to the circle;

E and $E^{\prime \prime}$ any fifth pair of points (or tangents) connecting through (or intersecting on) $O ; P, Q, R, S$ the four points of intersection (or lines of connection) of the four pairs of lines of connection (or points of intersection) $E A$ and $E^{\prime \prime} A^{\prime}, E B$ and $E^{\prime} B^{\prime}$, $E C$ and $E^{\prime} C^{\prime}, E D$ and $E^{\prime} D^{\prime}$; and $P^{\prime}, Q^{\prime}, R^{\prime}, S^{\prime}$ the four for the four pairs $E A^{\prime}$ and $E^{\prime} A, E B^{\prime}$ and $E^{\prime} B, E C^{\prime}$ and $E^{\prime} C, E D^{\prime}$ and $E^{\prime} D$; then since, by the properties in question, (a and a^{\prime}, Art. 261), the two triads of points (or lines) P, Q, R and $P^{\prime}, Q^{\prime}, R^{\prime}$ lic on the line (or pass through the point) I; and since on the collinearity (or concurrence) of the two S and $S^{\prime \prime}$ -with them depends, at once, the circumstance of the two points (or tangents) D and D^{\prime} connecting through (or intersecting on) O (a and a^{\prime}, Art. 261), and the circumstance of the two pairs -of pencils (or rows) $E, A B C D$ and $E^{\prime} . A^{\prime} B^{\prime} C^{\prime} D^{\prime}, E . A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and $E^{\prime \prime} . A B C D$, that is, of the two quartets of points (or tangents) A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ being equianharmonic (a and a^{\prime}, Art. 288); therefore \&c.

Cor. 1°. Since, when two systems of any common number of points on (or tangents to) the same circlo $A, B, C, D, \& c$. and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, Sec. which correspond in pairs A and A^{\prime},
B and B^{\prime}, C^{\prime} and C^{\prime}, D and D^{\prime}, \mathbb{C}^{\prime}. are in perspective, any pair, or any number of pairs, of their corresponding constituents may evidently be interchanged without viulating their relation of perspective; therefore, in the equianharmonic relation $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$, which comnects, as above shewn, every two quartets A, B, C, D and $A^{\prime}, B^{\prime}, G^{\prime}, D^{\prime}$ in perspective, the accented and unaccented constitnents may be interchanged at pleasure without violating the relation of equianharmonicism; thins, for the eight different combinations of four and their four correspondents that could be formed from the four pains of corresponding constituents A and A^{\prime}, B and B°, C and C^{\prime}, D and If (314), giving rise (see figures), as observed in Arts. 254 and 31.4, to the eight following different cases of anharmonic equivalence, viz. -

$$
\begin{aligned}
& \{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}=\{P Q R S\}=\left\{P^{\prime} Q^{\prime} I S^{\prime}\right\}, \\
& \left\{A^{\prime} B C D\right\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}=\left\{P^{\prime} Q R S\right\}=\left\{I^{\prime} Q^{\prime} I^{\prime} S^{\prime}\right\}, \\
& \left\{A B^{\prime} C D\right\}=\left\{A^{\prime} B C^{\prime} D^{\prime}\right\}=\left\{P Q^{\prime} B S\right\}=\left\{P^{\prime} Q R^{\prime} S^{\prime}\right\}, \\
& \{A B C D\}=\left\{A^{\prime} B^{\prime} C D^{\prime}\right\}=\left\{P^{\prime} Q R^{\prime} S\right\}=\left\{P^{\prime} Q^{\prime} R S^{\prime}\right\}, \\
& \left\{A B C J^{\prime}\right\}=\left\{A^{\prime} B^{\prime} C^{\prime} D\right\}=\left\{P Q R S^{\prime}\right\}=\left\{P^{\prime} Q Q^{\prime} S\right\}, \\
& \left\{A^{\prime} B B^{\prime} C D=\left\{A B C^{\prime} D^{\prime}\right\}=\left\{I^{\prime} Q^{\prime} R S\right\}=\left\{P Q I S^{\prime}\right\},\right. \\
& \left\{A^{\prime} B C D\right\}=\left\{A B^{\prime} C D^{\prime} \mid=\left\{I^{\prime} Q I I^{\prime}\right\}=\left\{P^{\prime} Q^{\prime} S^{\prime}\right\},\right. \\
& \left\{A^{\prime} B C D^{\prime}\right\}=\left\{A B^{\prime} C^{\prime} D \mid=\left\{P^{\prime} Q R S^{\prime}\right\}=\left\{P^{\prime} Q R S\right\} ;\right.
\end{aligned}
$$

fur noue of which, howerer, is it to be supposed, as is sometimes erroneously done by beginners, that the anharmonicism is that of the pencil (or row) deternined, at the centre (or on the axis) of perspective O, by the four lines of connection (or points of intersection) $A A^{\prime}, B B^{\prime}, C G^{\prime}, D D^{\prime}$, whose concurrence (or collinearity) constitutes the common perspective of them all.

Cor. 2. If, while, of two concyclic quartets of points or tangentz in perspective A, B, C, D and $I^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, three pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime} are supplosed to remain fixed, the fourth pair D and D^{\prime} be conceised to vary; and, in the course of their variation, to coincide successively; firstly, D with A^{\prime} and D^{\prime} with A; secondly, D with B^{\prime} and D^{\prime} with B; thirdly, D with C^{\prime} and D^{\prime} with C; since then, for every position of D and D, by the
above, $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$, therefore for the particular positions in question (see figures) -

$$
\begin{aligned}
& \left\{B C A A^{\prime}\right\}=\left\{B^{\prime} C^{\prime} A^{\prime} A\right\}=\left\{Q R P P^{\prime}\right\}=\left\{Q^{\prime} R^{\prime} P^{\prime} P\right\} \ldots\left(1^{\circ},\right. \\
& \left\{C A B B^{\prime}\right\}=\left\{C^{\prime} A^{\prime} B^{\prime} B\right\}=\left\{R P Q Q^{\prime}\right\}=\left\{R^{\prime} P^{\prime} Q^{\prime} Q\right\} \ldots\left(2^{\circ}\right) \\
& \left\{A B C C^{\prime}\right\}=\left\{A^{\prime} B^{\prime} C^{\prime} C\right\}=\left\{P Q R R^{\prime}\right\}=\left\{P^{\prime} Q^{\prime} R^{\prime} R\right\} \ldots\left(3^{\circ}\right)
\end{aligned}
$$

and from them, by the interchange, as explained in Cor. 1°, of B and B^{\prime} in $\left(1^{\circ}\right)$, of C and C^{\prime} in $\left(2^{\circ}\right)$, and of A and A^{\prime} in $\left(3^{\circ}\right)$,

$$
\begin{aligned}
& \left\{B^{\prime} C A A^{\prime}\right\}=\left\{B C^{\prime} A^{\prime} A\right\}=\left\{Q^{\prime} R P P^{\prime}\right\}=\left\{Q R^{\prime} P^{\prime} P\right\} \ldots\left(1^{\prime}\right) \\
& \left\{C^{\prime} A B B^{\prime}\right\}=\left\{C A^{\prime} B^{\prime} B\right\}=\left\{R^{\prime} P Q Q^{\prime}\right\}=\left\{R P^{\prime} Q^{\prime} Q\right\} \ldots\left(2^{\prime}\right), \\
& \left\{A^{\prime} B C C^{\prime}\right\}=\left\{A B^{\prime} C^{\prime} C\right\}=\left\{P^{\prime} Q R R^{\prime}\right\}=\left\{P Q^{\prime} R^{\prime} R\right\} \ldots\left(3^{\prime}\right)
\end{aligned}
$$

and, converscly, if, for two concyclic triads of points or tangents A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$, any of the six preceding relations (1°) or $\left(1^{\prime}\right),\left(2^{\circ}\right)$ or $\left(2^{\prime}\right),\left(3^{\circ}\right)$ or ($\left.3^{\prime}\right)$ exist, since then the necessary perspective of the repeated with each unrepeated pair of corresponding constituents involves, by the above, the perspective of the triads; therefore, sce Cor. 3°, Art. 284, the two reciprocal properties respecting concyelic triads in perspective, established on other considerations in Art. 313, are particular cases of those respecting concyclic quartets in perspective, established by their aid in the subsequent article.
316. From the general property of the preceding article, that every two quartets of points or tangents of the same circle in perspective are equianharmonic, combined with the circumstance of the evident equianharmonicism of every two similar quartets of points or tangents, either of the same or of different circles (309); it follows immediately that-

For any two circles, every two systems determined by four points or tangents of either, and by the four antihomologous points or tangents of the other with respect to either centre of perspective of the two (198), are equianharmonic.

For, the system for either circle being similar to the hologous system for the other with respect to either centre of perspective of the two, and the latter being in perspective with the corresponding antihomologous system for the same circle (198), therefore \&c.

The above property may obviously be stated otherwise (206), as follows-

For any two circles, every theo pairs of antihomologous arce, with respect to either contre of perspectice, divide each other equianharmorically.

Con. 1. As every circle, intersecting two others at any equal or supplemental angles, intercepts on them a pair of antihomologous ares with respect to their external or internal centro of perspective, according as the angles of intersection are equal or supplemental (211); hence, from the above, it appears that -
a. Every circle intersecting two others at any equal, or supplemental, angles divides equionharmonically all pairs of their antihomolojous ares with reeprect to their external, or internal, centre of perspective.
b. When two circhs each interseet two olhers at any equal or supplemental angles, the puirs of arce they intereept on them divile euch other equinnharmonically.
c. IVhen tuou cincless intersent two othors, one at any angles and the other ut the same or tho supplemental anyles, their pairs of arce intercipted by them divide each other equiemhurmonionlly.
d. When tuoo circles interrect two others, both at the same equal or supplemental angles, the priirs of arcs they intercipt on thent, end th ir pxirs of ares intercepteed by them, both divide each ofler equiunharmonically.

Cor. 2°. Since every circle orthogonal to two others intersects the two at once at equal and at supplemental angles, and since, of the entire system of circles orthogonal to the same two, one, viz. their common diameter, is a line; it follows, consequently, from a and d of the preceding (Cor. 1°), that-
a. Etery circle orthogonal to theo others divides equianharmonically all pairs of their antihomoloyous arcs with respect to cilher of their centres of perspoctive.
b. Eiecry wo circles determine on every circle orthogonal to them both a syst m equianharmonic with that they determine on their common diameter.
c. When tioo circles are orthogonal to tico others, both pairs
detcrinine equianharmonic systems, each on the circles of the other and on their own common diameter.

Cor. 3°. If, in property c of Cor. 1°, one of the two intersecting circles be conceived to vary while the other and the two intersected circles remain fixed; since then, by virtue of the general property (1,93, Cor. 8°), the variable circle intersecting two fixed circles at two constant angles intersects at a third constant angle every third fixed circle coaxal with them, it follows consequently, from that property, that-

When a variable circle intersects any two fixed circles at any two constant angles; a. its arc intercepted by either is cut in a constant anharmonic ratio by the other; b. its arcs intercepted by both are cut in constant anharmonic ratios by all fixed circles coaxal with both.
317. The two following reciprocal properties, respecting any two coneyclic triads of points and tangents, are in the modern geometry of the circle what those of Art. (293) are in that of the point and line, and lead to as many and important consequences in the applications of the theory of anharmonic section.

If A, B, C be any three points on (or tangents to) a circle, $A^{\prime}, B^{\prime}, C^{\prime}$ any other three points on (or tangents to) the same circle, and X, I, Z the three intersections (or connectors) of the three pairs of connectors (or intersections) $B C^{\prime}$ and $B^{\prime} C, C A^{\prime}$ and $C^{\prime} A, A B^{\prime}$ and $A^{\prime} B$; the three points (or lines) X, Y, Z are collinear (or concurrent); and their line of collinearity (or point of concurrence) determines with the circle two points (or tangents) M and N connected with the two original triads A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ by the three groups of equianharmonic relations

$$
\left.\begin{array}{rl}
\left\{\begin{array}{l}
\{B C M N\}
\end{array}\right. \\
\{C A M N\} & \left\{B^{\prime} C^{\prime} M N\right\} \\
\{A B M N\} & =\left\{A^{\prime} A^{\prime} B^{\prime} M N\right\}
\end{array}\right\} \ldots \ldots \ldots \ldots(1),
$$

For, if M and N be the two points, fig. (α), (or tangents, fig. $\left(\alpha^{\prime}\right)$, determined with the circle by the line of connection
(or point of intersection) I of any two, \bar{I} and Γ suppose, of the three points (or lines) X, Y, Z; thess since the two triads of

concyclic points (or tangents) B, C, M and $C^{\prime}, B^{\prime}, N$ are in perspective, therefore, by the first parts of the two reciprocal [roperties of Art. 311,

$$
\left\{B C M N^{\circ}\right\}=\left\{B^{\prime} C^{\prime} M N \mid \text { and }\left\{B B^{\prime} M N\right\}=\left\{C^{\prime} C M\right\} \ldots(a) ;\right.
$$

and since the two rinds C, A, M and $A^{\prime}, C^{\prime \prime}, N$ are in perppeclive, therefore, by the ease,

$$
\left\{C A M N | = | C ^ { \prime } A M A | \text { and } | C C ^ { \prime } M N \left|=\left|A A A^{\prime} M N\right| \ldots(B) ;\right.\right.
$$

therefore, by the general property (1) Art. 262, or directly as regards the second equivalents,

$$
|A B M N|=\left|A B^{\prime} M N\right| \text { and }|A A M N|=|B B M N| \ldots(r) ;
$$

and therefore, by the secund parts of the two reciprocal properties of Art. 311, the two triads A, B, M and $\beta^{\prime}, A^{\prime}, N$ are in perspective; which proves the first parts of the above reciprocal properties, and with them the two groups of equianharmonic relations (1) and (2), from cither of which the group (3) follows immediately by virtue of the general property 2°, Cor. 3°, Art. 282.

Con. 1°. If $\mathrm{X}^{\prime \prime}, I^{\prime \prime}, Z^{\prime}$ be the three intersections (or consectors) of the three pairs of connectors (or intersections) $B C$ and $B^{\prime} C^{\prime}, C^{\prime} A$ and $C^{\prime} A^{\prime}, A B$ and $A^{\prime} B^{\prime}$; it may, of course, be shewn, in precisely the same manner, that the three triads of points (or lines) $Y^{\prime \prime}, Z^{\prime \prime}, X ; Z^{\prime}, X^{\prime \prime}, Y^{\prime} ; X^{\prime \prime}, Y^{\prime \prime}, Z$ are also collinear (or concurrent); their three lines of collinearity (or points of concurrence) determining, with that of the triad \boldsymbol{X}, Y, Z, a tetragram (or tetrastigm), of which the three pairs of "corresponding points (or lines) I^{\prime} and $X^{\prime \prime}, Y^{\text {and }} Y^{\prime \prime} . Z$ and Z^{\prime}
are the three pairs of opposite intersections (or connectors); and each line (or point) determining two points on (or tangents to) the circle connected with the original six by three groups of equianharmonic relations similar to the above, and differing only in the interchange of the constituents of the two corresponding reversed pairs of the three A and A^{\prime}, B and B^{\prime}, C and C^{\prime} in the several equivalents which contain them.

Cor. 2°. In the particular case when the three equianharmonic systems of points (or tangents) $A, A^{\prime}, N /, N ; B, B^{\prime}$, $M, N ; C, C^{\prime}, M, N$ of group (2) are harmonic, that is, when the three intercepted ares $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are cut harmonically by the intercepted are $M N$; since then (281) $\left\{A A^{\prime} M N\right\}=\left\{A^{\prime} A M N\right\}$, $\left\{B B^{\prime} M N\right\}=\left\{B^{\prime} B M N\right\},\left\{C C^{\prime} M N\right\}=\left\{C^{\prime} C^{\prime} M N\right\}$, therefore the two points (or tangents) M and N are the same for the three lines of collinearity (or points of concurrence) of the three triads Y^{\prime}, $Z^{\prime}, X ; Z^{\prime}, X^{\prime}, Y ; X^{\prime}, Y^{\prime}, Z$, as for that of the triad X, Y, Z; and therefore the whole six points (or lines) X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime} lie on the same line (or pass through the same point) I. In this case it is evident, from (257), that the three lines of connection (or points of intersection) $A A^{\prime}, B B^{\prime}, C C^{\prime}$ of the three pairs of corresponding points (or tangents) A and A^{\prime}, B and B^{\prime}, C and C^{\prime} are concurreut (or collinear), and that the line (or point) I is the polar of their point of concurrence (or the pole of their line of collinearity) O with respect to the circle; a property, the converse of which, for two concyclic triads of points (or tangents) in perspective, is evident from Art. 261.

Cor. 3°. In the same case it is easily seen that, as the three pairs of concyelic points (or tangents) A and A^{\prime}, B and B^{\prime}, C and C^{\prime} divide harmonically the are of the circle $M N$ intercepted between the two points (or tangents) M and N, so the three pairs of collinear points (or concurrent lines) X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime} divide harmonically the segment (or angle) $M N$ intercepted between them. For, since, by the general property of Art. 285,

$$
\begin{aligned}
& \left\{M N X X^{\prime}\right\}=\left\{C^{\prime} . M N B B^{\prime}\right\} \text { or }\left\{B^{\prime} \cdot M N C C^{\prime}\right\}, \\
& \left\{M N Y Y^{\prime}\right\}=\left\{A^{\prime} . M N C C^{\prime}\right\} \text { or }\left\{C^{\prime} \cdot M N A A^{\prime}\right\} \\
& \left\{M N Z Z^{\prime}\right\}=\left\{B^{\prime} . M N A A^{\prime}\right\} \text { or }\left\{A^{\prime} . M N B B^{\prime}\right\}
\end{aligned}
$$

and since, by hypothesis, the three concyclic systems of points (or tangents) $M, N, A, A^{\prime} ; M, N, B, B^{\prime} ; M, N, C, C^{\prime}$ are harmonic; therefore the three collinear (or concurrent) systems of points (or lines) $M, N, X, X^{\prime} ; M, N, Y, Y^{\prime \prime} ; M, N, Z, Z^{\prime}$ are harmonic, and therefore $\& \cdot \mathrm{c}$. The couverse of this property, for two concyelic triads of points (or tangents) in perspective, is evident from Cor. 5°, Art. 252.

Cur. 4. That, in the same case, the three pairs of collinear points (or concurrent lines) X^{\prime} and $X^{\prime \prime}, Y$ and Y^{\prime}, Z and Z^{\prime} constitute a syatem of six constituents, corresponding two and two in opposite pains, every four of which are equianharmonic with their four opposites, follows also immediately from the preceding Cor. 3°. For, the three intereepted segments (or angles) $X X^{\prime \prime}, Y^{\prime \prime}, Z Z$ having a common segment (or angle) of harmunic section, real or inagimary, $\mathrm{M} N$, therefore dic. The conserse of this property also, fur two concyclic triads of points (or tangents) in perpectise, is, like the preceding, evident from Cor. 5°, Art. 252.
315. From the two reciprocal properties of the preceding article, the following inferences, in paiss reciprocals of each other, may be shown in precisely tho same manner as the corresponding inferences of Art . (298) from those of its preceding article (293).
1°. The three pains of concyclic points (or taugents) A and A^{\prime}, B^{\prime} and B^{\prime}, C and C^{\prime} may be regarded as determining three chords (or angles) $A A^{\prime}, B B^{\prime}, C C^{\prime}$ inscribed (or exscribed) to the circle to which they belong, of which, taken in pairs, the threo points (or lines) X, Y, Z are three of the six centres (or axes) of perspective; every two of which evidently become changed into their two opposites by the interchange of extremities of one of the two determining chords (or angles), those of the other remaining unchanged; henee, generally, from the first parts, and from the equiantarmonic relations (1) of the second parts, of the two reciprocal properties in question.
a. For every three chords inscribed to the same circle, tuken in pairs, the six centres of perspective lio three and three on four lines; each of thich determines two points on the cirche which divide equianharmonically the three ares intercepted by the chords.
a^{\prime}. For every three angles exscribed to the same circle, taken in pairs, the six axes of perspective pass thrce and three through four points; each of which determines two tangents to the circle which divide equianharmonically the three arcs intercepted by the angles.

In the particular case when the directions of the three chords (or the vertices of the three angles) $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent (or collinear); the six centres (or axes) of perspective of the three pairs they determine, being then, by Art. 261, all collinear with the polar of their point of concurrence (or concurrent with the pole of their line of collinearity) with respect to the circle, the four lines (or points) of the general case then coincide; and the two points or tangents they determine with the circle, by Art. 257, divide harmonically the three ares intercepted by the chords (or angles).
2°. The two concyclic triads of points (or tangents) A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ may be regarded as the two triads of alternate vertices (or sides) of a hexagon $A B^{\prime} C A^{\prime} B C^{\prime}$ inscribed (or exscribed) to the circle to which they belong, of which A and A^{\prime}, B and B^{\prime}, C and C^{\prime} are the three pairs of opposite vertices (or sides), and X, Y, Z the three intersections (or connectors) of the three pairs of opposite sides (or vertices) $B C^{\prime}$ and $B^{\prime} C$, $C A^{\prime}$ and $C^{\prime} A, A B^{\prime}$ and $A^{\prime} B$; hence, generally, from the first parts, and from the equianharmonic relations (2) and (3) of the second parts of the same, respectively-
a. In every hexagon inseribed to a circle, the three intersections of opposite sides are collinear ; and their line of collincarity determines two points on the circle which form equianharmonic systems, separately with the two triads of alternate, and conjointly with the three pairs of opposite, vertices of the hexagon.
a^{\prime}. In every hexagon exscribed to a circle, the three connectors of opposite vertices are concurrent ; and their point of concurrence determines two tangents to the circle which form equianharmonic systems, separately with the two triads of alternate, and conjointly with the three pairs of opposite, sides of the hexagon.

By virtue of the fundamental property of triangles in perspective (140), the first parts of these latter properties are evidently identical with the celebrated theorems of Pascal and Brianchon, established already, on other considerations, in Art. 148, and generalized subsequently, on principles independent
of the circumstance as to whether the two points (or tangents) M and N are imaginary or real, in Art. 302.
3°. In the two concyclic triads of points (or tangents) A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$, if, while the three constituents A, B, C of either and any two A^{\prime} and B^{\prime} of the other are supposed to remain tixed, the thind constituent C^{\prime} of the latter be conceived to vary, causing of course the simultancous variation of the two constituents X and Y of the collinear (or concurrent) triad $X, I ; Z$; since then, of the variable triangle $X^{\circ} Y^{\prime}$, the three sides (or vertices) turn round the three fixed points (or move on the three fixed lines) A, B, Z, and the two vertices (or sides) X and Y move on the two fixed lines for turn round the two fixed points) $C B^{\prime}$ and $C A$ ', while the third vertex (or side) C^{\prime} describes (or envelopes) the circle to which the concyclic points (or tangents) belong; hence, convensely-
a. When, of a evriuble triangle whose sidels turn round fixed points, tieo of the evrlive mirve on firml liver whoe intersections wibh euch other, and with the morropombling sites of the fired triangle des ravinad by the points, form with the opppasite vertices of that triungle a concyclie symtem of points; ther third vertex deacriles the circle determined by the five points.
a. When, of a enriable eriangle veliose vertices more on fixed lines, tien of the sides lurn round fined points shose connectors with each other, and with the corresponding vertioes of the fixed triangle dterminel by the lines, form sith the oppasite sides of that triungle a ouncyelic syntrm of tanyents; the third side envelopes the circle ditermined by the fies kangents.

The locus and envelupe of these latter properties, as well as those of 5°, Art. 291, are evidently particular cases of the more general "locus of the third vertex of a variable triangle whose remaining vertices move on fixed lines while its three sides turn round fixed points" and "envelope of the third side of a variable triangle whose remaining sides turn round fixed points while its three rertices move on fixed lines;" which, in general, by reciprocation of the above to an arbitrary circle, are easily seen to be the more general figures into which the circle becomes transformed by reciprocation (173).
4°. In the two concyelic triads of points (or taugents) A, B, C^{\prime} and $A^{\prime}, B^{\prime}, C^{\prime}$, if, while two pairs of corresponding con-
stituents A and A^{\prime}, B and B^{\prime} are supposed to remain fixed, the third pair be conceived to vary, causing of course the simultaneous variation of the two non-corresponding constituents X and Y of the collinear (or concurrent) triad X, Y, Z; since then, in every position of the variable tetragram (or tetrastigm) determined by the four lines (or points) $A C^{\prime}$ and $A^{\prime} C, B C^{\prime}$ and $B^{\prime} C$ turning round the four fixed points (or moving on the four fixed tangents) A and A^{\prime}, B and B^{\prime}, the pair of opposite intersections (or connectors) C and C^{\prime} lie on (or touch) the circle to which the concyelic triads belong, while the remaining two pairs connect through (or intersect on) the two centres (or axes) of perspective of the two inscribed chords (or exscribed angles) $A B$ and $A^{\prime} B^{\prime}$; hence, generally-
a. When, of a variable tetragram whose four lines turn round four fixed concyclic points, a pair of opposite intersections describe the circle determined by the points, the two remaining pairs connect through the intersections of the two corresponding pairs of opposite connectors of the points.
b. When, of a variable tetrastigm whose four points move on four fixed concyclic tangents, a pair of opposite connectors envelope the circle determined by the tangents, the two remaining pairs intersect on the connectors of the two corresponding pairs of opposite intersections of the tangents.
319. The two groups of equianharmonic relations (a) and (a^{\prime}) of the same article (317) supply obvious and rapid solutions of the two following pairs of reciprocal problems, than which, as will appear in the sequel, none, perhaps, are of more importance in the applications of the theory of anharmonic section, viz.-

Given two concyclic triads of points (or tangents) A, B, C and $A^{\prime}, B^{\prime}, C^{\prime \prime}$ whose constituents correspond in pairs A and A^{\prime}, B and B^{\prime}, C and C^{\prime}; to determine the two concyclic points (or tangents) M and N which form equianharmonic systems; 1°, separately with the two triads; 2°, conjointly with their three pairs of corresponding constituents.

For, constructing the hexagon $A B^{\prime} C A^{\prime} B C^{\prime}$ (see figures of Art. 317) of which the two given triads of points (or tangents) A, B, C and $A^{\prime}, B^{\prime}, C^{\prime}$ are the two triads of alternate vertices (or sides), and their three pairs of corresponding constituents
A and A^{\prime}, B and B^{\prime}, C and C^{\prime} the three pairs of opposite vertices (or sides); that is, the hexagon determined by the two lines of connection (or points of intersection) of each constituent A, B, C of either triad with the two non-corresponding constituents B^{\prime} and $C^{\prime \prime}, C^{\prime}$ and A^{\prime}, A^{\prime} and B^{\prime} of the other triad; then, by the relations in question, the line of collinearity (or point of concurrence) of the three intersections of its opprosito sides for the three connectors of its opposite vertices) X, Y, Z determines with the circle the two points (or tangents) M and N, real or imaginary, which (see 2°, of the preceding article) solve at once the two problems.

In the particular case when the three lines of connection (or points of intersection) $A A^{\prime}, B B^{\prime}, C C^{\prime \prime}$ of the three pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime} are concurrent (or collinear), that is, when the two given triads of points (or tangents) are in perspective; then, as already noticed in Cor. 2', of Art. 317, the polar of their point of concurrenco (or the pole of their line of collinearitg) with reapect to the circle is the line (or point) which determines with the latter the two points (or tangents) M and N, real or inaginarg, which solvo at once the two problems.
320. The two following recipmeal propertien, respecting the two triangles determined by any two concyclic triads of points or tangents in perspective, follow also from the same, or from the reciprocal theorems of Pascal and Brianchon, Arts. (148) and (302), with which, as shewn in the preceding $318,2^{\circ}$, their first parts are virtually identical, viz. -
a. W'hen turo trinngles inseribed to the same circle are in perspectice, the three lines of connection of the wrtions of cither with any point on the circle intersect with the corresponding sides of the other at three points collinear with each other and with the centre of perspective.
a^{\prime}. When theo triangles exscribed to the same circlo are in perspective, the three points of intersection of the sides of either teith any tungent to the circle conneet with the corresponding vertices of the other by three lines concurrent with each other and with the axis of perspective.

For, if A, B, C^{\prime} and $A^{\prime}, B^{\prime}, C^{\prime}$ be the two triads of rertices
(or sides) of the tivo triangles, O their centre (or axis) of perspective, D any arbitrary point on (or tangent to) the circle, and X, Y, Z the three points of intersection (or lines of connection) of the three lines (or points) $D A^{\prime}, D B^{\prime}, D C^{\prime}$ with the three $B C, C A, A B$ respectively; then since, in the three Pascal (or Brianchon) hexagons whose vertices (or sides) in consecutive order are respectively $D B^{\prime} B A C C^{\prime}, D C^{\prime} C B A A^{\prime}, D A^{\prime} A C B B^{\prime}$, the three triads of points (or lines) YOZ, $Z O X, X O Y$ are those determining their three Pascal lines (or Brianchon points) respectively, therefore \&c.-
N.B. In the particular case when, in the first of the above pair of reciprocal properties (a), the centre of perspective O of the two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$ is the centre of the circle; the three lines $D A^{\prime}, D B^{\prime}, D C^{\prime}$ being then perpendiculars to the three $D A, D B, D C$ (Euc. III. 31), the property consequently becomes that established on other principles in Ex. 6°, Art. 137.

If D^{\prime} be the point (or tangent) corresponding to D in the same perspective with the two inscribed (or exscribed) triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$; and $X^{\prime}, Y^{\prime}, Z^{\prime}$ the three points of intersection (or lines of connection) of the three lines (or points) $D^{\prime} A$, $D^{\prime} B, D^{\prime} C$ with the three $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}, A^{\prime} B^{\prime}$ respectively; it is easy to shew, in the same manner precisely as above, that the three points (or lines) $X^{\prime}, Y^{\prime}, Z^{\prime}$, which by the above are collinear (or concurrent) with each other and with the point (or line) O, are also collinear (or concurrent) with the three X, Y, Z, with which they consequently (313) determine, in three opposite pairs X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime}, a system of six constituents, every four of which are equianharmonic with their four opposites. For, in the three Pascal (or Brianchon) hexagons whose vertices (or sides) in consecutive order are respectively $B^{\prime} D D^{\prime} C A A^{\prime}, C^{\prime} D D^{\prime} A B B^{\prime}$, $A^{\prime} D D^{\prime} B C C^{\prime}$, the three triads of points (or lines) $Y O Z^{\prime}, Z O X^{\prime}$, $X O Y^{\prime}$ being those determining their three Pascal lines (or Brianchon points) respectively, therefore \&c.

In the same case, it is easy to shew also that the two triads of collinear points (or concurvent lines) X, Y, Z and $X^{\prime}, Y^{\prime}, Z^{\prime}$ dehrmine equianharmonic systems with the centre (or axis) of perspective O. For, since, by (285), $\{X Y Z O\}=\left\{D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$ and $\left\{X^{\prime} Y^{\prime} Z^{\prime} O\right\}=\left\{D^{\prime} . A B C D\right\}$, and since, by $(314),\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$ $=\{A B C D\}$, therefore $\{N Y Z O\}=\left\{X^{\prime} Y^{\prime} Z^{\prime} O\right\}$; and therefore \&c.

This property is evidently a particular case of that established on other principles for any two triangles in perspective in Art. 295, Cor. 6°.

By reciprocation to an arbitrary circle, the above, as well as all the other pairs of reciprocal properties established in this chapter, with all the consequences to which they lead in the geonietry of the circle, are seen at once to be true, not ouly of circles, but generally of all figures into which circles become transformed by reciprocation; all such, as noticed in the opening article (305), possessing alike the two fundamental anharnonic properties a and a^{\prime} of that articlo, from which, as has been seen, all the othens established in the chapter have been successively inferred.

- CHAPTER XIX.

THEORY OF HOMOGRAPHIC DIVISION.

321. Two rows of points or pencils of rays, or a row of points and a pencil of rays, $A, B, C, D, E, F, \& c$. and A^{\prime}, B^{\prime}, $C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime \prime}, \& c$. whose constituents correspond in pairs A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and D^{\prime}, E and $E^{\prime \prime}, F$ and $F^{\prime \prime}$, \&c. are said to be homographic (282) when every four constituents of one and the four corresponding constituents of the other are equianharmonic (278). Every two similar rows of points or pencils of rays (268); every row of points and pencil of rays determined by it, or pencil of rays and row of points determined by it (285) ; every row of points and pencil of rays reciprocal to each other with respect to any circle (292); are evidently thus related to each other.

In accordance with the above definition of homography between two rows of points or pencils of rays, or a row of points and a pencil of rays, whose constituents correspond in pairs ; two variable points or lines, or a variable point and line, dividing two fixed segments or angles, or a fixed segment and angle, so that every four positions of one and the four corresponding positions of the other are equianharmonic, are said to divide homographically the two segments or angles, or the segment and angle; the two systems of constituents determined by their several pairs of corresponding positions being, as above defined, homographic. Hence the meaning and origin of the name homographic division as applied, by Chasles, to this the process by which homographic systems are most frequently gencrated in modern geometry.
322. Two systems of points on or tangents to, or a system of points on and a system of tangents to, the same circle, or two
different circles, A, B, C, D, E, F, S'c. and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}$, F^{*}, \&c. whose constitueuts correspond in pairs A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and D^{\prime}, E and E^{\prime}, F and F^{\prime}, \mathcal{C}. are also said to be homographic under the same circumstances as rows of points and pencils of rays; riz., when every four constituents of one and the four corresponding constituents of the other are equianharnonic (309). Every two similar systems of points on or tangents to the same circle or two different circles (305); every system of points on and the corresponding system of tangents to the same circle (30i); every two systems of points on or tangents to the same circle in perspective with each other to any centre or axis (315) ; are evidently thus related to each other.

It will appear in the sequel that homographic syatems of points on, or of tangents to, the same circle posses not unfrequently comparative facilities of management in the general case when the radius of the circle is finite, which are altogether lost in the two extreme cases when it is either evanescent or infinite; and when, consequently, the two systems of points are collinear in the one ease, and the two systems of tangents concurrent in the other.
323. As two or more magnitudes of any kind when equal to a common magnitude are equal to each other; it is evident, from the conditions of homography as stated in the two preceding articles (see Cor. 2°, Art. 278), that telien tweo or more systems of any sprecies are homographic with a common system, they are homegraphic with each other; and their seteral pairs or groups of constituents tehich correspond to the same constituent of the common system correspond to each other. All rows of points or pencils of rays in perspective with the same row or pencil (285); all rows or points or pencils of rays reciprocals to the same pencil or row with respect to different circles (292); all pencils of rays determined by the same system of points on a circle at different points on the circle, and all rows of points determined by the same system of tangents to a circle on different tangents to the circle (305); all systems of points determined by the same pencil of rays on different circles passing through its vertex, and all systems of tangents determined by the same row of points
to different circles touching its axis (309); are thus homographic with each other.

And as, again, two or more magnitudes of any kind when equal, not all as above to a common magnitude, but each instead to a different one of as many equal magnitudes, are also equal to each other; it follows consequently, as evidently, from the same conditions, that when two or more systems of any species are homographic each with a different one of as many homographic systems, they are homographic with each other ; and their several pairs or groups of constituents which correspond to corresponding pairs or groups of the homographic systems correspond to each other. All rows of points or pencils of rays determined by homographic pencils of rays or rows of points (285); all rows of points or pencils of rays in perspective with homographic rows or pencils (285) ; all rows of points or pencils of rays reciprocals to homographic pencils of rays or rows of points with respect to circles (292); all systems of points determined by homographic pencils of rays on circles passing through their vertices, or systems of tangents determined by homographic rows of points to circles touching their axes (305); all systems of points on or tangents to common circles in perspective with homographic systems of points on or tangents to the same circles (315); are thus homographic with each other.
324. The relation of homography between two or more systems of any species, whose constituents correspond in pairs or groups $A, A^{\prime}, A^{\prime \prime}, \& c . ; B, B^{\prime}, B^{\prime \prime}, \& c . ; C, C^{\prime \prime}, C^{\prime \prime}, \& c . ;$ $D, D^{\prime}, D^{\prime \prime}, \& c . ; E, E^{\prime \prime}, E^{\prime \prime}, \& c . ; F, F^{\prime \prime}, F^{\prime \prime}$, \&c.; \&c., may bo always symbolically represented, as observed in Art. 282, by the obvious extension of Dr. Salmon's very convenient notation for the equianharmonicism of any groups of their corresponding quartets, viz.-
$\left\{A B C D E F \&{ }^{\text {c. }}.\right\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime \prime} \& c.\right\}=\left\{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime} E^{\prime \prime} F^{\prime \prime} \& c.\right\}$ $=\& c$. The essential precaution, respecting uniformity of order among the corresponding constituents in the several groups, being of course invariably attended to in every case of its employment (see 279.)
325. The following are some fundamental examples of eases of homographic division, grouped in reciprocal pairs, in all of which the relation of homography between the generated systems appears from the nature of the law connecting the several pairs, or groups, of corresponding constituents, which is given in each.

Ex. a. Two variulle points on a fixed line or circle, cither separated by a constant interval, or hacing a fised middle point, determine two homographic systems of points on the line or circle.

Ex. a. Twoo cariable tungrnts to a fised pnint or cirde, cither inclined at a cowstant angle, or haring a fised middle tengrwt, delerwine two howngraphic systams of tangents to tho point or circle.

For, in each of the eight cases alike, the iwo generated syitems are evidently similar, and thetefore homographic by the simplest eriterion of the relation (321).

Ex. b. A varinble line, interseding a fied circle at any constant angle, determines tue homograplic systems of points on ecery concentric circle.

Jix. b. A variable point, aublending a fised circle at any constant angle, determines two hamagraphic systems of tangents to eeery concentric circle.

Here again, in both cases alike, the two generated sytums are evidently similar, and therefore, os in the preceding examples, homographic by the simplest criterion of the relation (321).

Ex. C. A variable line, encoloping afired circle, delrmines hamographic systems of points on all fred tangents to the circle.

Ixx. e. A nariable poinf, doseribing afsed circle, dotermines homographic sjotems of rays at all fisod β ints on the circle.

For, all the pencils in the latter cave being similar ($25,1 \%$, and all the rows in the former case determining similar pencils at the centre of the circle (20, 20); therefore \&c. (25j).

Ex. d. A rariaWle line, turning rownd a flsed point, determines homographic systems of points, on all fised lines, and on all fised eireles passing through the point.

Ex. d. A variable poinh, mocing on a fixed line, determines homographic systems of tangents, to all fired points, and to all firsod circles touching the line.

For, all the generated systems being, in each case, homographic with the determining peucil or fow (253 and SU6); therefore \&ec. (323).

Ex. e. Tieo curiable lines, turning roumd a fired point, and either inclined at a constant anglo or hacing a fired middlo line, determine homographic systems of points, on all fised liwes, and on all fired cireles passing through the point.

I:x. 'd. Tico cariable points, moxing on a fized line, and eilher separated by a constant intercul or huting a fised middle poinh, determino homographic systeme of tangents, to all fixed points, und to all fixed circles touching the line.

For, in both cases of each, as in the preceding examples, all the generated systems being homographic with their determining pencils or rows (285 and 306); and the latter, by examples a and a^{\prime}, being homographic with each other; therefore \&c. (323).

Ex.f. A variable line, turning round a fixed point, determines two homographic systems of points on any fixed circle.

Ex. f^{\prime}. A variable point, moving on a fixed line, determines two homographic systems of tangents to any fixcd circle.

For, in both cases alike, every two quartets of corresponding constituents of the two generated systems are equianharmonic (315, a and a^{\prime}); and therefore \&c. (321).

Ex. g. A variable line, turning round either centre of perspective of tro fixed circles (207), determines four homographic systems of points on the two circles.

Ex. g'. A variable point, moving on either axis of perspective of then fixed circles (207), determines four homographic systems of tangents to the two circles.

For, in both cases, each system for either circle being homologous or antihomologous (198 and 204), and therefore homographic (316), with one of the two for the other circle; and the two for the same circle being homographic, by the preceding examples f and f^{\prime}; therefore \&c. (323).

Ex. h. Two variable points on a fixed line or circle, dividing harmonically a fixed segment of the line or arc of the circle, determine two homographic systems of points on the line or circle.

Ex. h^{\prime}. Two variable tangents to a fixed point or circle, dividing harmonically a fixed angle at the point or arc of the circle, determine two homographic systems of tangents to the point or circle.

For, in the latter cases of both, the two systems, being in perspective (257), are consequently, as in examples f and f^{\prime}, homographic by (315, a and a^{\prime}); and they evidently involve the former (309); which however follow at once directly from (3°, Cor. 4°, Art. 282).

Ex. i. Two variable points on a fixed line or circle, dividing equianharmonically two fixed segments of the line or arcs of the circle, determine two homographic systems of points on the line or circle.

Ex. i^{\prime}. Two variable tangents to a fixed point or circle, dividing equianharmonically tioo fixed angles at the point or ares of the circle, determine two homographic systems of tangents to the point or circle.

For, in the latter cases of both again, the two systems, being in perspective (313), are consequently, as in the preceding examples, homographic by ($315, a$ and a^{\prime}); and they also evidently involve the former (309); which however are reduced at once to those of the preceding examples by ($28: 3$, Cor. 1°), from which it appears that any two sectors C and C^{\prime}, which cut $A I^{\prime}$ and $B A^{\prime}$ equianharmonically, are harmonic conjugates with respect to the two $M \mathcal{A}$ and N which cut $A A^{\prime}$ and $B B^{\prime}$ harmonically; and therefore $\mathbb{\&} \cdot \mathrm{c}$.

Ex. j. Two variable lines, dividing a fixed angle harmonically, or two fixed angles having a common verlex equianharmonically, determine homo-
graphic systems of points, on all fixed lines, and on all fired circles passmg through the verter of the angle or angles.

Ex.j. Tivo variable points, dividing a fired segment harmonically, or two fired segments having a common aris equianharmonically, determine homographic systems of tangents, to all fired puints, and to all fired circles touching the axis of the segmens or segments.

For, in both cases of each, as in examples e and e°, all the generated systems are homographic with their determining pencils or rows (285 and 206); and the latter, by examples h and h, or i and i, are homographie with each other; and therefore \&c. (323).

Ex. 1. When, of a variable polygon of any onder inseribed to a fixed circle, all the sides but ane turn round fired points, or enrelope fired circles concentrie with the original; the arveral evrtices determine so many homographic systems of points on the circle.

Ex. A.' When, of a wariable polygon of any onder esseribent to a fired circle, all the vertices but one move on fixed lines, or describe fired circles concentric with the original; the eeveral sides determine so many homographic systems of tangents to the circle.

These follow itrm diately as corotlaries from examples f and f, or b and b; the two extremities of every restrieted (and therefore (323) of the single unrestrieted) side, in the former case, and the two sides of every restrited (and therefore (323) of the single unrestrited) angle, in the latter care, tetermining homographic sjstemr; and therefare 太C.

Eix. l. When, of a sariable polygon of any onder all nehose wertices move on fixed lines, all the sides but one turn round firnd points, or envelope fired circles touching the paire of lines on which their extromittes move: the several vertices deternine no many homagraphic aystems of points on the sevral lines.

Ex. 7. When, of a mariable polygon of any onder all whowe sides turn round fired points, all the angles but one move on fired lines, or describe fired circles passing through the pairs of points round which their ex. tremities turn; the several sides determine no many homagraphic aystems of rays at the seceral points.

These follow immediately as corollaries from examples d and d^{\prime}, or c and c^{\prime}; by rirtue of which the demonstrations just given for the two preceding examples k and k, without modification of any kind, apply word for word to them also. The first parts of both are evidently included in those of the two following, under which they come respectively as particular cases; viz-

Ex.m. When, of a mariable polygon of any order all whose vertices move on fired lines, all the sides but one subtend at fired points angles, of constant magnitudes, or having fired middle lines, or dividing harmonically fired angles, or dividing equianharmonically pairs of fixed angles, as the points: the sceeral vertices determine no many homayraphic ayslems of points on the several lines.

Ex. m. When, of a variuble polygon of any order all whose sides turn round fired points, all the angles but one intercept on fired lines segmente,
of constant magnitudes, or having fixed middle points, or dividing harmonically fixed segments, or dividing equianharmonically pairs of fixed segments, on the lines; the several sides determine so many homographic systems of rays at the several points.

These follow immediately as corollaries from examples e and e^{\prime}, or j and j^{\prime}; by virtue of which the same demonstrations again, without modifioation of any kind, apply to them also. That all four cases of beth properties are included in a single reoiprocal pair, under which they come alike as particular cases, will appear further on in the present chapter.

Ex. n. When, of a figure of any nature, variable in magnitude and position but invoriable in form, three points fixed relatively to it move on fuxed lines; all points fixed relatively to it move on fixed lines, and determine homographic systems of points on the several lines.

Ex. n^{\prime}. When, of a figure of any nature, variable in magnitude and position but invariable in form, three lines fixed relatively to it turn round fixed points; all lines fixed relatively to it turn round fixed points, and determine homographic systems of rays at the several points.

The first parts of these properties have been already established in Art. 56; from which as it appears also, from the invariability of one point fixed relatively to the figure in either case, that the several points determine similar rows on their several lines in the former oase, and that (as is otherwise evident from their necessarily revolving simultaneously through equal angles) the several lines determine similar pencils at their several points in the latter case; therefore \&ic.

Ex. a. If the three vertices of a variable triangle of constant species move on fixed lines, their mean centres, for all triads of constant multiples (86), move on fixed lines, and determine homographic systems of points on the several lines.

Ex. a^{\prime}. If the three sides of a variable triangle of constant species turn round fixed points, their central axes, for all triads of constant multiples (120), turn round fixed points, and determine homographic systems of rays at the several points.

Those properties are evidently particular cases of the preceding examples; the mean centres of the three vertices, and the central axes of the three sides, of a triangle of given speojes, being evidently fixed relatively to the figure for all systems of fixed multiples ; and therefore \&o. They have been given merely with prospective reference to the more general properties into which they become transformed by a process to be explained in another chapter.
326. The several examples of the preceding article have been given, as stated at its commencement, grouped in pairs, one concerning systems of points and the other concerning bystems of lines, and each reciprocating to an arbitrary circle
either into the other or into some more general property involving the other. Those of the present article again, though all concerning systems of points only, and those deternined by variable circles, are also given gronped in pairs connected by a different and not leas interesting law, which will furm the subject of another chapter.

Ex. a. A variable circle, passing through two fised points, determines tuco homographic systems of points on any fised line (or cirele.)

For, in the former case, the pencil determined by either syatem at cither point is similas to that deteruined by the other syotem at the other point (Euc. In. 21, 22); and therefore de. by Art 323. And, in the latter case the two syatems are in perspective at a eentre on the line containing the points (32); and therefore \&c. by Ex. fof the proceding article.

Ex.b. A rariable circle, coazal with two fised points, determines two Aomographic systeme of points on any fised line (or civelo).

For, in the former case, tho pencils determined by the two systems at either point are similat (192, Cor. 4); and therefore de. by Art. 323. And, in the latter case, an in the preceding example, the two asotems are in perspective at a centro on the axis of reflexion of the pointer (187, 2\%); and therefore se., by Ex. f of tho preceding article. This example and the preceding combined express evidently a common properiy of a varisble cirele of any coaxal agstem (184).

Ex. e. A mriable circle, pasving through feoo fised pointt, determines heo tomographic cydems of poinss on any luo fised lines (or cireles) passing rach through one or both throwgh either of the points.

For, in either ense of the former, the two aystems are evidently similar to that determined by the centre of the rariable circle on the fixed line it describes ; and therefore \&ce (323). And, in elther came of the latter, the pencils determined by the two systems at the fixod point or points through which their containing circles pass, are evidently orthogonal, and therefore similar, to those determined at the centers of those circles by the centre of the variathe circle; and both systems being consequently, is in the formes ease, homographic with the row determined by the centre of the common generating circle, therefore \&c. (323).

Ex. d. Tivo variable circles, passing through two fised points, and either intersecting at a constant angle or making equal (or supplemental) angles with a fised circlo passing through the points, determine two homagraphio systems of points on any fixed line (or circle) passing throwgh either point.

For, in either ouse of the former, the two systens being evidently similar to those determined by the respective centers of their generating circles on the common axis they describe; and the latter being homographic, by lix.e of the preceding article; therefore \&\&. (323). And, in either case of the latter, the pencits determined by the two systems at the fixed point through which their containing circle passes, being
evidently orthogonal, and therefore similar, to those determined at the centre of that circle by the respective centres of their generating circles; and the two rows determined by the latter on the common axis they describe being, as in the former case, homographic; therefore \&c. (323).

Ex. e. A variable circle, passing through a fixed point, and intersecting a fixed line (or circle) at right angles, determines two homographic systems of points on the line (or circle).

For, in either case, the variable circle passing also in every position through a second fixed point, the inverse of the original with respect to the fixed line or circle (156), the property, in either case, is consequently evident from Ex. a. of the present article.

Ex. f. A variable circle, passing through a foxed point, and intersecting a fixed line (or circle) at any constant angle, determines two homographic systems of points on the line (or circle).

For, in the former case, the two variable lines, determined by the two variable points of intersection with the fixed point, intersect at the constant angle of intersection ($22,2^{\circ}$); and therefore \&c. by Ex. e. of the preceding article. And, in either case, the two variable circles, determined by the two variable points of intersection with the original fixed point and with any second arbitrarily assumed on the fixed line or circle, intersect at the constant angle of intersection; and therefore \&c., by Ex. d. of the present article. It is assumed in the latter proof that, of the four circles which pass each through a different triad of the same four points, the angle of intersection of any two is equal or supplemental to that of the remaining two; a property the reader may very easily prove for himself.

Ex. g. A variable circle, intersecting two fixed lines (or circles) at right angles, determines four homographic systems of points on the two lines (or circles).

For, in the former case, the centre of the variable circle being evidently fixed at the intersection of the lines, the four generated systems are consequently similar and equal; and therefore \&c. And, in the latter case, its centre describing the radical axis of the circles (182, Cor. 5°), its four radii to its four points of intersection with them, determine, by Ex. g^{\prime} of the preceding article, four homographic systems of tangents to them; and therefore \&e. (322).

Ex. h. A variable circle, intersecting two fixed lines (or circles) at any two constant angles, determines four homographic systems of points on the tuc lines (or circles).

For, in the former case, the four systems are obviously similar to that determined by the centre of the generating circle on the line on which it evidently moves ; and therefore \&c. (321). And, in either case, if U and V be the two variable points of intersection with one line or circle, X and Y those with the other, and P any fixed point arbitrarily assumed on either; then, the two angles of interscetion, and therefore their difference and their sum, being constant, the two variable circles UPI and VPY pass through a second fixed point Q, and the two $U P Y$ and $V P X$ through a second
fixed point R, both on the other; therefore, by Eix. e of the present article, the iwo systems determined by the two variable points U and V^{-}are homographic, respectively, with the two determined by the two X and Y in consequence of the two fixed points P and Q, and with the two determined by the two $J^{\prime \prime}$ and \boldsymbol{X} in consequence of the two P and \boldsymbol{N}_{8} and therefore $\mathbb{N} \cdot$. It is assumed in the latter proof that a rariable circle, passing thromgh two fired points on two fired lines or circles, intersects tho latter at angles whow difference or sum is comstant, and that when the lines or cireles, with the sum or difference of the angles are given, the point on cither determines that on the other. Of these, however, the former can present no difticulty to the reader, and the latter in but an obrious inference froms it.

Ex. i. A rariable circle, interseeting two fised lines (or circles) at constant angles, determines in homayraphie sgstems of points on eny w lines passing through the point (or circles passing through the two points) of intersectinn of the two.

For, a variable circle, intersecting two rays of a pencil, or circles of a coaxal system, at comatant anglea, intervects, evidently in the former case, and by ($\{43$, Cor. 8%) in the latter ease, all rayy of the pencil, or circles of the cystem, at constant angles; and therefore \&e by the preecding Fix. h. In the particular cascs when the original two, or any two of the angles of intersection are right angles; then, evidently in the former case, and by (193, Cor. 3°) in the latter case, all the angles of intersection are right angles; and the property is consequently evident frum the comparatively simple case of IEx. g.

Rx. j. A nariable circle, passing throngh a fised poins, and interacting two fised lines (or circles) at equal or anpplensental angles, deterwines four homagraphic aystems of points on the two lines (or cireles).

For, the rariable circle paming, evidently in the former case, and by (211, Cor. $6^{\circ}, a$) in the latter cave, through a second fised point, the reflesion of the original (50) with respect to the corresponding bisector, external or internal, of the angle determined by the lines, or the antihomologue of the original (203) with respect to the corresponding eentre of penpective, extermal or intermal, of the circles, determines consequently, by Nx. a. of the present asticle, two homographic systems on each line or circle separately; and the systems on ditferent lines or circles being in pain, evidently similar and equal in the former case, and, by (203), antihomologous with respeet to the corresponding centre of perspective in the latter case; therefore \&e., by (321), and Fix. g. of the precerling article.

Ex. A. A cariable circle, intersecting three fixell lines (or circles) at equal or at any innariable combination of equal and supplemental angles, determines sis homographic systems of points on the three lines (or circles).

For, the variable circle determining, evidently in the former case, and by (211, Cor. $6, b$) in the latter case, a system concentric with the corresponding circle of the four that touch the three lines, or coaxal with the eorresponding pair of conjugates of the eight that touch the four circles, determines consequently, evidently in the former case, and by Ex. b. of the
present article in the latter case, six similar and equal systems on the three lines, or two homographic systems on each circle separately; and as also, in the latter case by (211), it determines on each pair of circles two systems of antihomologous points with respect to their external or internal centre of porspective according as its angles of intersection with them are equal or supplemental, the two systems it determines on each circle are consequently, by Ex. g of the preceding article, homographic each with one of the two it determines on each of the remaining two; and therefore \&c.
327. When a variable pair of corresponding constituents of any common or different species, D and D^{\prime}, are connected in every position with three fixed pairs, A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, by the constant relation $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$; they determine two homographic systems, of which A and A^{\prime}, B and B^{\prime}, C and C^{\prime} are three pairs of corresponding constituents.

For, as shewn in Art. 282, Cor. 1°, every four positions of D and the four corresponding positions of D^{\prime} are equianharmonic; and when, in the course of their variation, D coincides with any of the three A, B, C, then D^{\prime} coincides with the corresponding one of the three $A^{\prime}, B^{\prime}, C^{\prime}$; and therefore \&c. (321).

It follows immediately from the above that, as regards two homographic systems of any common or different species, any three pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime} may be entirely arbitrary ; but that once given, or taken, or known in any manner, they determine completely the systems, and with them, of course, all particulars directly or indirectly connected with them. For, the relation $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$, necessary to the homography of the systems (321), determines, when A and A^{\prime}, B and B^{\prime}, C and C^{\prime} are known, the constituent D^{\prime} or D of either system corresponding to any given or assumed fourth constituent D or D^{\prime} of the other; and, by the above, the two systems determined by the simultaneous variation of D and D^{\prime}, in accordance with that relation, are homographic, and have A and A^{\prime}, B and B^{\prime}, C and C^{\prime} for three of their pairs of corresponding constituents.

Since, conversely, for any two homographic systems of auy common or different species, if A and A^{\prime}, B and B^{\prime}, C and C^{\prime} be any three pairs of corresponding constituents, then for every other pair D and D^{\prime}, by (321), $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$; the criterion of bomography furnished by the above is consequently
perfectly general, and applicable to every ease, without exception, of the generation of two homographic systems of any common or different species by the simultaneous variation of a pair of connected constituents D and D.
328. When a variable puir of corresponding constituents of any two collinear or concurrent systems, or of a collinear and a concurrent system, C and C^{\prime}, are connected in every pasition rith tro fixed pairs, A and A ', B and B ', by the constant relation

$$
\left(\frac{A C}{B C} \text { or } \frac{\sin A C}{\sin B C}\right):\left(\frac{A^{\prime} C^{\prime}}{B^{\prime} C^{\prime}} \text { or } \frac{\sin A^{\prime} C^{\prime}}{\sin B^{\prime} C^{\prime}}\right)
$$

in any constant ratio, prositive or negative; they determine tuco homographic systems, of which A and A^{\prime}, B and B^{\prime} are tero pairs of corresponding constituents.

For, as shewn in Art. 282, Cor. 2', if any one position C and $C^{\prime \prime}$ of the variable pair be regarded as fixed; then, since for every other position D and D^{\prime}, by division of ratios,
or

$$
\begin{aligned}
\left(\frac{A C}{B C}: \frac{A D}{B D}\right) \text { or } & \left(\frac{\sin A C}{\sin B C}: \frac{\sin A D}{\sin B D}\right)=\left(\frac{A^{\prime} C^{\prime}}{B^{\prime} C^{\prime}}: \frac{A^{\prime} D^{\prime}}{B D}\right) \\
& \left(\frac{\sin A^{\prime} C^{\prime}}{\sin B^{\prime} C^{\prime \prime}}: \frac{\sin A^{\prime} D D^{\prime}}{\sin B^{\prime} D^{\prime}}\right),
\end{aligned}
$$

therefore, as in the preceding article, $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$; and therefore \&i.

Conversely, for any two homographic systems, both collinear or concurrent, or one collinear and one concurrent; if A and A ', B and B^{\prime} be any thoo pairs of corresponding constituents, then, for every other pair C^{\prime} and C^{\prime}, the ratio

$$
\left(\frac{A C}{B C} \text { or } \frac{\sin A C}{\sin B C}\right):\left(\frac{A^{\prime} C^{\prime}}{B^{\prime} C^{\prime \prime}} \text { or } \frac{\sin A^{\prime} C^{\prime}}{\sin B^{\prime} C^{\prime}}\right)
$$

is constant, both in magnitude and sign.
For, since for every other two pairs C and C^{\prime}, D and D^{\prime}, by the homograply of the systems, $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D\right\}$, and since, consequently,
or

$$
\begin{aligned}
&\left(\frac{A C}{B C}: \frac{A D}{B D}\right) \text { or }\left(\frac{\sin A C}{\sin B C}: \frac{\sin A D}{\sin B D}\right)=\left(\begin{array}{l}
A^{\prime} C^{\prime} \\
B^{\prime} C^{\prime \prime}
\end{array} \frac{A^{\prime} D^{\prime}}{B^{\prime} D^{\prime}}\right) \\
&\left(\frac{\sin A^{\prime} C^{\prime}}{\sin B^{\prime} C^{\prime \prime}}: \frac{\sin A^{\prime} D^{\prime}}{\sin B^{\prime} D^{\prime}}\right) ;
\end{aligned}
$$

therefore at once, by alteruation,

$$
\begin{aligned}
& \left(\frac{A C}{B C} \text { or } \frac{\sin A C}{\sin B C}\right):\left(\frac{A^{\prime} C^{\prime}}{B^{\prime} C^{\prime}} \text { or } \frac{\sin A^{\prime} C^{\prime}}{\sin B^{\prime} C^{\prime}}\right) \\
= & \left(\frac{A D}{B D} \text { or } \frac{\sin A D}{\sin B D}\right):\left(\frac{A^{\prime} D^{\prime}}{B^{\prime} D^{\prime}} \text { or } \frac{\sin A^{\prime} D^{\prime}}{\sin B^{\prime} D^{\prime}}\right) ;
\end{aligned}
$$

and therefore \&c.
It follows evidently, from this latter property, that the criterion of homography furnished by the above is, as regards collinear and concurrent systems, as general as that of the preceding article; and applies, equally with it, to every case, without exception, of the generation of two homographic systems of either species by the simultaneous variation of a pair of connected constituents C and C^{\prime}.

Cor. From the first part of the above general property, it follows, immediately, that-

When two variable lines or points, or a variable line and point, I and I, are connected in every position with two fixed pairs of points or lines, or with a fixed pair of points and a fixed pair of lines, A and B, A^{\prime} and B^{\prime}, by the constant relation

$$
\left(\frac{A I}{B I}: \frac{A^{\prime} I^{\prime}}{\overline{B^{\prime} I^{\prime}}}\right) \text { or its equivalent }\left(\frac{A I}{A^{\prime} I^{\prime}}: \frac{B I}{B^{\prime} I^{\prime}}\right)
$$

in any constant ratio, positive or negative; they divide the two segments or angles, or the segment and angle, $A B$ and $A^{\prime} B^{\prime}$, homographically; and the two pairs of corresponding constituents in the two ratios, A and A^{\prime}, B and B^{\prime}, are two pairs of corresponding constituents in the two divisions.

For, if C and C^{\prime} be the two points of intersection or lines of connection, or the point of intersection and line of comnection, of I and I^{\prime} with $A B$ and $A^{\prime} B^{\prime}$; then, since, according to the case, evidently,

$$
\left(\frac{A C}{B C} \text { or } \frac{\sin A C}{\sin B C}\right)=\frac{A I}{B I} \text { and }\left(\frac{A^{\prime} C^{\prime}}{B^{\prime} C^{\prime}} \text { or } \frac{\sin A^{\prime} C^{\prime \prime}}{\sin B^{\prime} C^{\prime \prime}}\right)=\frac{A^{\prime} I^{\prime}}{\overline{B^{\prime} I^{\prime}} ; ~}
$$

therefore $\mathcal{\&}$. These properties are useful in the modern theories of homographic and of correlative transformation, as will appear in the sequel in the chapters in which they are respectively discussed.
329. Two variable sectors, C and C^{\prime}, dividing a fixed segment or angle, $A B$, in any constant anharmonic ratio, positive or
regative, determine two homographic systems of points or rays; of which the two extremities, A and B, of the fixed segment or angle constitute each a pair of corresponding constituents coinciding with each other.

For, as in the more general property of the preceding article (under the first part of which, as observed in Art. 252, Cor. 3°, this manifestly comes as a particular case), if any one position C and C^{\prime} of the variable pair be regarded as fixed; then since for every other position D and D^{\prime}, by hypothesis, $\left\{A B C C^{\prime}\right\}=\{A B D D\}$, therefure, by (272), $\{A B C D\}=\left\{A B C^{\circ} D\right\}$, and therefore, by $(327), D)$ and D^{\prime} determine two homographic systems, of which $A\left(=A^{\prime}\right)$ and $B\left(=B^{\prime}\right)$ constitute each a pair of corresponding constituents coinciding with each other; as it is evident d̀ priori they ought, two variable magnitudes of any kind having a constant ratio to each other (268), whatever be its magnitude or sign, provided only it be finite, necessarily vanishing, becoming infinite, and changing sign together.

Conversely, For any two homographic rous of points or pencils of rays huving a common axis or vertax, if $A=A^{\circ}$ and $B=B^{\prime}$ be two puirs of correspronding constituents which coincide with each other; then, for every other pair C and C^{\prime} of their corresponding constituents, tho anharmonic ratio of action of the intercepted segment or angle $A B$ is constant both in magnitule and sign.

For, since, for every other two pairs C and C, D and D^{\prime}, by the homography of the systems and the hypothesis that A^{\prime} and B^{\prime} coineide with A and B respectively, $\{A B C D]=\left\{A B C^{\prime} D\right\}$; therefore, at once, by (272), $\left\{A B C C^{\prime \prime}\right\}=\left\{A B D D^{\prime}\right\}$; and therefore \&c.

It will be shewn in the next chapter that, for every two homographic rows of points or pencils of rays having a common axis or vertex, there exist always two pairs of corresponding points or rays, real or imaginary, which thus coincide with each other, and which have been termed in consequence, by Chasles, the double points or rays of the system.s. Their properties and uses are among the most interesting and important in the whole theory of homographic division, and will form the entire subject of the chapter.
330. Tico variable points B and B^{\prime} on theo fixed lines, the ratio of chose distances from theo fixed points A and A^{\prime} on the
lines is constant both in magnitude and sign, determine two homographic systems, of which A and A^{\prime}, and the two points at infinity on the lines, are two pairs of corresponding constituents.

For, the systems being similar are therefore homographic; and, whatever be the magnitude and sign of the ratio, provided only it be finite, the two variable distances $A B$ and $A^{\prime} B^{\prime}$ vanish and become infinite together; and thercfore \&c.

Conversely, when two homographic rows of points are such that the two points at infinity on their axes, ∞ and ∞ ', are corresponding constituents of the systems, they are similar.

For, if A and A^{\prime}, B and B^{\prime}, C and C^{\prime} be any other three pairs of their corresponding constituents, then since, by hypothesis, $\{A B C \infty\}=\left\{A^{\prime} B^{\prime} C^{\prime} \infty \infty^{\prime}\right\}$, therefore (275)

$$
B C: C A: A B=B^{\prime} C^{\prime}: C^{\prime} A^{\prime}: A^{\prime} B^{\prime}
$$

and therefore \&c.
The criterion of similitude between two homographic rows of points on any axes, supplied by the second part of the above, viz. the correspondence of the point at infinity of one to the point at infinity of the other, is in all cases very readily applicable; depending, as there shewn, on the circumstance of similitude only, and being independent, as shewn in the first part, of tho magnitude and sign of the ratio of similitude, provided only it be finite.

Cor. In the particular case when the two points A and A^{\prime} coincide at the intersection I of the lines; the species of the variable triangle $B I B^{\prime}$ being then evidently constant, it follows consequently from the first part of the above, (as is otherwise evident) that a variable line, determining with two fixed lines a triangle of constant species, divides the lines homographically; the common point and the point at infinity corresponding in each division to the common point and the point at infinity in the other.
331. Two variable points C and C^{\prime} on two fixed lines, the rectangle under whose distances form two fixed points A and B^{\prime} on the lines is constant both in magnitude and sign, determine two homographic systems; of which A and B^{\prime} correspond to the points at infinity on the lines.

For, if any one position C and C^{\prime} of the variable pair be
regarded as fixed, then since, for every other position D and D^{\prime}, by hypothesis, $A C \cdot B^{\prime} C^{\prime}=A D \cdot B^{\prime} D^{\prime}$, and since consequently $C A: D A=D^{\prime} B^{\prime}: C^{\prime} B^{\prime}$, therefore, by (275),

$$
\{C D A \infty\}=\left\{D^{\prime} C^{\prime} B^{\prime} \infty^{\prime}\right\}=\left\{C^{\prime} D^{\prime} \infty^{\prime} B^{\prime}\right\}(2 s 0),
$$

and therefore, by (327), D and D^{\prime} determine two homographic systems, of which A and ∞^{\prime}, ∞ and B^{\prime} are two pairs of corresponding constituents; as it is evident is priori they ought, one side of a variable rectangle of any constant area, whatever be its magnitude or sign, provided only it bo finite, necessarily vanikhing as the other becomes infinite, and conversely.

Convensely, for any tue homographic rove of points on any axus, if A and B^{\prime} ' be their points corresponding to thase at infinity on the axes, then, for every pair C and $C^{\prime \prime}$ of their corresponding constituents, the rectangle $A C . B^{\prime} C^{\prime}$ is constant both in magnitude and sign.

For, since, for every two pairs C and O^{\prime}, D and D^{\prime}, by tho homography of the systems and the hypothesis as to A and B^{\prime},

$$
\{C D A \infty\}=\left\{C^{\prime} D^{\prime} \infty^{\prime} B^{\prime}\right\}=\left\{D^{\prime} C^{\prime} B^{\prime} \infty^{\prime}\right\}(250),
$$

therefore, by $(275), C A: D A=D B^{\prime}: C^{\prime \prime} B^{\prime}$; from which, since of course immediately $A C . B^{\prime} C^{\prime}=A D \cdot B^{\prime} D^{\prime}$, therefore $\mathbb{S} \cdot \mathrm{c}$.

In the exceptional case of two similar rows, the two points A and B^{\prime} being then at infinity (330), the constant rectangle $A C^{\prime} . B^{\prime} C^{\prime}$ becomes accordingly infinite, and the second part of the above consequently useless; in every other case however it is finite, and the property itself is one of the most useful in tho eutire theory of homographic division.

Con. In the particular case when the two points A and B^{\prime} coincide at the intersection I of the lines; the area of the variable triangle $C 1 C^{\prime \prime}$ being then evidently constant, it follows consequently from the finst part of the above that a variable line, determining with two fixed lines a triangle of constant area, divides the lines homographically; the common point corresponding in each division to the point at infinity in the other.
332. The general property of tho preceding article, applied to the particular case of homographic division considered in the first part of Art. 329, gives immediately the general property of a fixed segment $A B$ cut in any constant anharmonic ratio by a
variable pair of sectors, corresponding to that given in Art. 225 for the particular case of harmonic section; viz.-

For a fixed segment $A B$, cut in any constant anharmonic ratio by a variable pair of sectors C and C^{\prime}; if P and Q be its two points of section in the ratio and its reciprocal, the rectangle $P C . Q C^{\prime}$ is constant both in magnitude and sign, and equal to the rectangle $P A . Q A$, or to the rectangle $P B . Q B$.

For, the two variable sectors determining two homographic systems, of which each extremity of the fixed segment constitutes a pair of corresponding constituents coinciding with each other (329) ; and of which the two points corresponding to that at infinity on the common axis (regarded as belonging first to one and then to the other system) divide the segment, one in the constant ratio and the other in its reciprocal (275) ; therefore \&c. by the general property of the preceding article (331).

In the particular case when the constant anharmonic ratio of the section $=-1$, that is, when the section is constantly harmonic (268); the two points P and Q coincide at the middle point of the segment ($216,3^{\circ}$), and the property, as observed above, becomes that established on other principles in Art. 225.
333. To the same particular, but important, case of homographic division considered in the first part of Art. 329, several others are reducible. The following are a few examples, grouped in reciprocal pairs, of cases coming under this head:

[^8]to the extremities of any fired segment whose asis bwehos the cinds, deteruive homographic systems for all pairs of constant mulsiples.

These follow precisely as in the two preceding examples; the variable point and line dividing, in every position, the fixed angle in the former case, and the fixed segment in the latter case, in two constant anharmanio ration, equal in magnitude and opposite in sign to the two reciprocal ration of the mattiples; and therefore A.c. (323).
Ix. e. If a cariable point more on a fired line, its polar, with rospeet in the sides of any fised triengle, dicides the sides hamographically for all triads of convtant mulliples (2 : $9, a$).

Fx. é. If a nariable line furn rownd a fired point, its pole wish respeet bs the certices of any fised triangle, divides the anyles hmmegraphically for all triads of constant mullipules ($2 \sqrt{5}, \sigma^{\prime}$).

Por, whatever be the valuer of the three multiples; the variable point, in the former eace, and the intersection of its polar with any side of the triangle, divide the opposite angle (230, a); and sthe rariable live, in the latter cawn, and the connector of its pole with any vertex of the triangle, divide the opponite side $\left(200, \omega^{\prime}\right)$; in two conment anharmonio ratios, equal in magnitude and opposite in sign to the two reciprocal ration of the eerreaponding puir of multiples (265): therefore, in both eanes, the three divisions, being homographie with that determined by the wriable point or line, are homographic with each other (353$)_{\text {s }}$ and therefose Sc. Tho same ovidently follows also from examples a and e', by virtue of the gensral property 250, Cor. 1.

I'x. d. If a cariable poive describs a fised circle, its polar, with resped to the sides of ary fised triangle inseribed to the circle, dicides the sules homographically for all briads of constans mulliples.

ISx. d". If a eariable line enrelope a fised cirrelo, its pole, with respert to the certices of any fised triangle esseribad til the circle, dicides the angles h-mographically for all triads of cowatand multijples.

These follow preciscly as in the two preceding examples; tho three divisions being, for the reason just given in their case, homographic with that deternined by the variable point or line, and therefore with each other. It will be proved further on (as shewn in (201, Cor. 18, a and \&) for the particular case when the threo multiples are all equal in magnitude and sign) that, for all trinds of tinite multiples, the polar in the former case turns round a fixed point, and the pole in the latter case moves on a fixed line; and that, consequently, the three divinions, in loth eases, are not only homographic but in perspective to a common centre or exis.

13s.e. A variable line, intersecting with any four fised lines at fowr points hacing any constunt anharmonic ratio, determines fowr homographic systems of points on the fowr lines.

Fix. A rariable point, connecting with any four fised points by four rays hacing any constant anharmonic ratio, determines four homagraphic systems of rays at the four points.

For, the two intersections (or connectorn) of the variable line (or point),
with any two of the four fixed lines (or points), conneet (or intersect) with the vertex (or axis) of the fixed angle (or segment) determined by the remaining two, by two variable lines (or at two variable points) which dividing, by hypothesis, that angle (or segment) in a constant anharmonic ratio (28 j), deternine consequently two homographic systems of rays (or points); and therefore \&e. (323). The general properties of homographic rows and pencils, converse to these reciprocal examples, will be given further on.

Ex. f. A variable line, intersecting with any three fixed lines at three points the ratios of whose three intercepted segments are constant, determines three homographic systems of points on the three lines.

Ex. f^{\prime}. A variable point, connecting woith any three fixed points by three lines the ratios of whose three intercepts on any fixed line are constant, determines three homographic systems of rays at the three points.

These are obviously particular cases of the two preceding examples; the variable line, in the former case, intersecting with the three fixed lines, and with the line at infinity, at a system of four points having a constant anharmonic ratio (275); and the variable point, in the latter case, connecting with the three fixed points, and with the point at infinity in the direction of the fixed line, by a system of four rays having a constant anharmonic ratio (285 , Cor. 1°); and therefore $\& \mathrm{cc}$. The first of these examples is obviously a particular case also of that established on other principles in Ex. n, Art. 325.

Ex. g. A variable line, determining in every position an equianharmonic hexagram with any five fixed lines (301), determines five homographic systerns of points on the five lines.

Ex. g^{\prime}. A variable point determining in every position an equiunharmonio hexastiym with any five fixed points (301), determines five homographic systems of rays at the five points.

For, the variable line (or point), determining in every position with every four of the fixed lines (or points) a system of four points (or rays) equianharmonic with that determined with them by the fifth (301), determines with them, consequently, a system of four points (or rays) having a constant anharmonic ratio; and therefore \&c. by examples e and e^{\prime}. The general properties of homographic rows and pencils, converse to these reciprocal examples, will also be given further on.

Ex. h. When, of a variable polygon of any order all whose vertices move on fixed lines, all the sides but one subtend, at fixed points, angles dividing fired angles at the points in constant anharmonic ratios; the several vertices determine so many homographic systems of points on the several lines.

Ex. h^{n}. When, of a variable polygon of any order all whose sides turn round fixed points, all the angles but one intercept, on fixed lines, segments dividing fixed segments on the lines in constant anharmonic ratios; the several sides determine so many homographic systems of rays at the several points

These follow as immediate cosollaries from the same, precisely as their particular cases in examples m and m^{\prime} of Art. 325 from the properties on which they depend; the two exiremities of every restricted (and therefore (323) of the single unrestricted) side, in the former case, and the two sides of every restricted (and therefore (323) of the singlo unrestricted) angle, in the latter case, determining, by the abore, homographic systems; and therefore \&ic. These latter properties evidently include as particular cases all thove of the examples referred 10 ; and, as any or all of the fixed angles or segments may be imaginary as well as real, they are consequently thernselves the most gencral of their class, and include a varicty of other particular cases besides.
334. From the two pains of reciprocal properties (2ss, a and a^{\prime}) and ($315, a$ and a^{\prime}), the following reciprocal criteria of the relation of perspective between two homographic systems evidently result immediately, viz.-
a. When, of teo hommgraphic rows of points on diffirent axes, or systems of points on the sume circle, any theo trinds of curresponding constituents are in perspectice, the systems thenselves are in perspective.
a. When, of hoo homographic pencils of rays through different verfices, or systems of tungents to the same circle, any tieo triuds of corresponding constituents are in perspection, the systems themselves are in perapective.

For, in each of the four cases, all fourth pairs of corresponding constitueuts of the two systens, forming, by hypothesis, equianharmonic quartets with the two triads in perspective, are consequently, by tho properties referred to, in perspective with them; and therefore \&\&.

From the nature of the relation of perspective between two systems of points or lines (130), it is of course evident, conversely, that when two homographic rows of points on different axes or systems of points on the same circle are in perspective, every line through their centre of perspective determines with the axes or circle a pair of corresponding points of the sybtems; and, that when two homographic pencils of rays through different vertices or systems of tangents to the same circle aro in perspective, every point on their axis of perspective determines with the vertices or circle a pair of corresponding lines of the aystems.
335. The two following reciprocal criteria of the relation of perspective between two homographic rows of points on different axes, or pencils of rays through different vertices, are generally much more readily applicable than those of the preceding article; of which however their second parts are but particular cases; viz.-
a. When two homographic rows of points on different axes are in perspective, the intersection of the axes constitutes a pair of corresponding constituents coinciding with each other ; and, conversely, when, of two homographic rows of points on different axes, a pair of corresponding constituents coincide at the intersection of the axes, the systems are in perspective.
a^{\prime}. When two homographic pencils of rays through different vertices are in perspective, the connector of the vertices constitutes a pair of corresponding constituents coinciding with each other; and, conversely, when, of two homographic pencils of rays through different vertices, a pair of corresponding constituents coincide along the connector of the vertices, the systems are in perspective.

For, as regards the first parts of both; as every line through the centre of perspective, in the former case, intersects with the axes at a pair of corresponding points of the rows, the particular line through the intersection of the axes does so like the rest; and, as every point on the axis of perspective, in the latter case, connects with the vertices by a pair of corresponding rays of the pencils, the particular point on the connector of the vertices does so like the rest: and therefore \&c. And, as regards the second parts of both; as, in either case, the coincident pair determines, with any other two pairs of corresponding constituents of the systems, two triads of corresponding constituents in perspective ; therefore, as in the preceding article, or by the two reciprocal properties (289, a and a^{\prime}), the systems themselves are in perspective.

COR. 1. From the above reciprocal properties it is evident, that-
a. When two homographic rows of points on different axes are in perspective, either axis may be turned round its point of intorsection with the other, without its rovo, supposed to be carried with but not to move along it, ceasing, in any position, to be in perspective with the other.
a^{\prime}. When turo homographic pencils of rays through difitent vertices are in perspective, either vertex may be moved ulong its line of comnection with the other, without its guacil, surgpased to be carrial with but not to turn round it, cwasing, in any position, to be in perspective with the other.

For, the two systems being, by hypothesis, originally in perspective, their single common point or ray, by the first parts of the above, constitutes a pair of corresponding constituents coinciding with each other; and this coincidence not being affected by the supposed movement in either case, therefore, by the second parts of the same, they continue in perspective notwithstanding its taking place.

Cors. 2. From the same again it is also evident that-
a. Any fico homagraphic rower of points, gitem in every particular, except pasition, may be plaosl, relatively to cuch other, in an infinite number of ecays, so as to be in Imrapeetive with each otlier.
a'. Any teo homagraphic penciln of may, given in cevry particular, excopt prasition, may be placed, relutively to each other, in an infinite number of weays, so as to be in perapective with each other.

For, by bringing any pair of corresponding coustituents to coincide in either case, the systems, whatever be the angle bee tween their axes in tho furmer case, or the interval hetween their vertices in the latter case, will, by the second parts of the above, be in perspective with each other; and shereforo de.
336. The two reciprocal properties of the preceding article supply, as there observed, very obvious, and in general very readily applicable, criteria for determining veluther woo homographic roues of points on diffirent asces or pacils of rays through diffirent vertices, the luo connecting whose seseral pairs of corresqonding constifuents is given, are in perspective or not. For, the point or ray corresponding, in either system, to the intersection of the axes or the connector of the vertices, regarded as belonging to the other system, being determined by the given law of connection ; the systems, by virtue of the criteria, are or are not in perspectivo according as the correspondent so detelmined does or does not coincide with the original point or ray.

The following are a few examples, grouped in reciprocal pairs, of the application of these criteria:

Abstract

Ex. a. Two vertices of a variable triangle \boldsymbol{A} and B move on two fixed lines L and M, the two opposite sides E and F turn round two fixed points P and Q, and the third side G turns round a third fixed point R; required the condition that the third vertex C should move on a third fixed line N.

Ex. a'. Two sides of a variable triangle \boldsymbol{E} and \boldsymbol{F} turn round two fixed points P and Q, the two opposite vertices A and B move on two fixed lines L and M, and the third vertex C moves on a third fixed line N; required the condition that the third side G should turn round a third fixed point R.

In the former case, the two rows determined by A and B on L and M being in all cases homographic ($32 \bar{j}$, Ex. d), in order that the two homographic pencils (323) they determine at Q and P respectively should be in perspective, a pair of their corresponding positions should be collinear with those points, which could be the case only when the latter are collinear either with R or with the intersection of L and M. And, in the latter case, the two pencils determined by E and F at P and Q being in all cases homographic (325, Ex. d^{\prime}), in order that the two homographic rows (323) they determine on M and L respectively should be in perspective, a pair of their corresponding positions should be concurrent with those lines; which could be the case only when the latter are concurrent either with N or with the connector of P and Q. See the pairs of reciprocal propertics $\left(296,3^{\circ}\right)$ and $\left(294,5^{\circ}\right)$ where, on other principles, the perspectives were shewn to exist in those cases respectively.

Ex. b. Two vertices of a variable triangle A and B move on two fixed lines L and M, the two opposite sides E and F turn round two fixed points P and Q, and the third side G envelopes a fixed circle touching L and M; required the condition that the third vertex C should move on a third fixed line N.

Ex. b^{\prime}. Two sides of a variable triangle E and F turn round two fixed points P and Q, the two opposite vertices A and B move on two fixed lines L and M, and the third vertex C describes a fixed circle passing through P and Q : required the condition that the third side G should turn round a third fixed point \boldsymbol{R}.

In the former case, as in Ex. a, the two rows determined by A and B on L and M being in all cases homographic (32j, Ex. c), in order that the two homographic pencils (323) they determine at Q and P respectively should be in perspective, a pair of their corresponding positions should be collinear with those points, which could be the case only when the latter connect by a tangent to the circle. And, in the latter case, as in Ex. a^{\prime}, the two pencils determined by E and \boldsymbol{F} at P and Q being in all cases homographic (325, Ex. c^{\prime}), in order that the two homographic rows (323) they determine on M and L respectively should be in perspective, a pair of their corresponding positions should be concurrent with those lines; which could be the case only when the latter intersect at a point on the circle. That
the perspectives exist in those cases, the reader can find no difficulty in shewing independently.

Ex.c. If u variable point P move on a fired line I, required the condition that its polar L, ecith respect to the thrce sides of a fired triangle, for any triad of constant multiples, should turn round a fired point.
Ix. c. If a variable line L turn round a fired point O, required the condition that its pole P, with respeet to the three vertices of a fired triangle, for any triud of constant mulfiples, should move on a fired line.

In the former case, if A, B, C be the three vertices of the triangle, and $X, V, \%$ the threo intersections of L with its opposite sides $J i, F, G$ respectively; then, the anharmonic ration of the three pencils A. $/ 1$ CP' \mathcal{K}°, IS. C.AP1, C..ABPZ being in all caces constant $(230, a)$, and the three rows determined by X, I, Z on E, F, G reapectively being, consequent! ${ }^{\prime}$, in all cases homographic with that determined hy P on $I(\$: y)$, and therefore with each other (323); in orider that they should be in persjeetire, a pair of corresponding positions should coincide, of Σ° and $\%$ at \mathcal{A}, or of $\%$ and X at B, or of X and Y at C consequently, of $B Y^{\circ}$ and $C Z$ with 13.1 and $C . A$, or of $C \%$ and $A X$ with $C B$ and $A B$, or of $A X$ and $I S Y$ with $A C$ and $B C$; and consequently ($3: 9$) of $B P$, and $C P$ with B.A and C.t, or of $C P$ and $A P^{\prime}$ with $C \prime \prime$ and $A B$, or of $A P$ and $B P$ with $A C$ and $B C$; which could be the case only when a position of P coinciles with, and when consequently 1 passes through, one of the three poists $\mathcal{A}, \boldsymbol{B}, C$ And, in the latter case, if E, F, G bo the three sides of the triangle, and $U, V,{ }^{\prime}$ the three connectors of P with its opprosite vertices A, H, C'respectively; then, the anharmonic ration of the three rows E.FGL,U,F:GEL, ${ }^{\circ}$, G. EFYL.II being in all canes constant $(2 / 0, \omega)$, and the three pencils deterained by $U, V, I N$ at A, B, C respectively being, consequently, in all cases homographic with that determined by L, at O (399), and therefore with each other ($3: 3$) ; in onder that they should be in peripective, a pair of corresponding positioss should coincide, of V^{\prime} and W° along $F ;$ or of W^{F} and U along F, or of U and F along G; conequenty, of $F^{\prime} V$ and $G W$ with $F E$ and $G E$, or of $G W^{\circ}$ and $E U$ with $G F$ and $E F$, or of $E U$ and $F V^{F}$ with $E G$ and $F G$; and consequenty (329), of $F L$ and $G L$ with $F E$ and GEF, or of GL and EL, with GF and FBF, or of ELL and FL, with EG and $F G$; which could be the case only when a ponition of L coincides with, and when consequently O lies on, one of the three lines $E, F ; G$. That, in the former case, when I passes through any vertex A of the trangile, then $I_{\text {, turns round a fixed point I }}$ on the oppooite side $H C$, and that, in the latter case, when O lies on any side E of the triangle, then P moves on a fixed line U through the opposite vertex $F^{\prime} G$, is evident from the constancy of the anharmonic ratio, of the pencil A.BCP X in the former case $(250, a)$, and of the row $E . F G L, U$ in the latter case ($2311, a)$.

Ex. d. If a variable point P describe a fired circle, its polar L, with respect to the three sides of any fired inseribed triangle, for any triad of constant multiples, furns round a fired point O; the pole, vis., with respect to the three eertices of the triangle, of its axis of perspective I with the corresponding exscribed triangle, for the reciprocal triad of multiples.

Ex. d. If a variable line L envelope a fixed circle, its pole P, with respect to the three vertices of any fixed exscribed triangle, for any triad of constant multiples, moves on a fixed line I; the polar, viz., with respect to the three sides of the triangle, of its centre of perspective O with the corresponding inscribed triangle, for the reeiprocal triad of multiples.

For, in the former case (employing the reasoning and notation of Ex. c) the three rows determined by X, Y, Z on E, F, G respectively, are homographic with the system determined by P on the circle, and therefore with each other; and they are always in perspective, because that, as P in the course of its revolution passes successively through every point on the circle, Y and Z coincide with it and with each other as it passes through A, Z and X with it and with each other as it passes through B, X and Y^{\prime} with it and with each other as it passes through C; and therefore \&c. And, in the latter case (employing the reasoning and notation of Ex. c^{\prime}) the three pencils determined by U, V, W at A, B, C respectively, are homographic with the system determined by L to the circle, and therefore with each other; and they are always in perspective, because that, as L in the course of its revolution passes successively through every tangent to the circle, V and W coincide with it and with each other as it passes through E, W and U with it and with each other as it passes through F, U and V with it and with each other as it passes through G; and therefore \&c. That the common centre of perspective O in the former case, and the common axis of perspective I in the latter case, are the particular point and line stated in the above enunciations respectively; is evident from the general relations of Art. 251, by taking the three particular positions of L corresponding to the three passages of P through A, B, and C in the former case, and the three of P corresponding to the three of L through E, F, and G in the latter case. And from the properties themselves, thus or in any other manner obtained, inferences exactly analogous to those of Cor. 14°, Art. 261, for the particular cases there established on other principles, may of course be drawn in precisely the same manner.
337. From the same criteria of perspective between homographic rows and pencils, combined with the reciprocal propertics of Arts. 293 and 317 respecting arbitrary pairs of corresponding triads, the four following general properties of homographic systems, in pairs reciprocals of each other, may be readily inferred; viz.-
a. For any two homographic rows of points on different axes, or systems of points on the same circle; all pairs of corresponding connectors of pairs of non-corresponding constituents (such as $A B^{\prime}$ and $A^{\prime} B, A C^{\prime}$ and $A^{\prime} C, B C^{\prime}$ and $B^{\prime} C$, dc.) intersect on the same fixed line O; termed the directive axis of the systems.
a'. For any tueo homographic pencils of rays through different verlices, or systems of tungents to the sume circle; all pairs of corresponding intersections of pairs of nun-corresponding constituents (such us $A B^{\prime}$ and $A^{\prime} B, A C^{\prime}$ and $A^{\prime} C, B C^{\prime}$ and $B^{\prime} C$, (fce.) connect through the same fixed point O; trimed the directive centre of the systems.

For, firstly, since, for each separato pair of corresponding constituents A and A^{\prime}, the two homographic pencils (or rows) $A \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime \prime} F^{\prime \prime}$ \&. and $A^{\prime} \cdot A B C D E F$ \&ic., they determine with the opposite systems, being, by the criteria of Art. 334, in perspective; therefore, for each separate pair A and A^{\prime}, the several points of intersection (or lines of connection) of $A B^{\prime}$ and $A^{\prime} B, A C^{\prime}$ and $A^{\prime} C^{\prime}, A D^{\prime}$ and $A^{\prime} D, \mathcal{A} c$., are collinear (or concurrent). And, secondly, since for every three pairs A and A ', B and B^{\prime}, C and O^{\prime}, the three points of intersection (or lines of comnexion) of B^{\prime} and $B^{\prime} C$, of $C A^{\prime}$ and $C^{\prime} A$, and of $A B^{\prime}$ and $A^{\prime} B$, being, by the general properties of Arts. 293 and 317 , collinear (or concurrent) ; therefure, for every three A and A^{\prime}, B and $I B^{\prime}$, C and C^{\prime}, the three axes (or centres) of perspective of the three pairs of homographic pencils (or rows) $A \cdot A^{\prime} B^{\prime} C^{\prime} I^{\prime} E^{\prime \prime} V^{\prime \prime}$ Nc. and $A^{\prime} . A B C D E F \& c, B . A^{\prime} B^{\prime} C^{\prime} J^{\prime} I^{\prime} F^{\circ}$ \&c. and $B^{\prime} A B C D F F$ \&e., $\left.C . A^{\prime} B^{\prime} C^{\prime} 1\right)^{\prime} E E^{\prime \prime} F^{\prime}$ \&c. and $C^{\prime \prime} . A B C^{\prime} D E F$ \&e., coincide. And, as their coincidence for any the arbirary pairs involves evidently their coincidence for all pairs, therefore \&ic.

Given, in any of the four rases, three prirs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and '" of the tuco systems, to determine the line (or point) O. The three given pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and O^{\prime} give at once tho three pairs of corresponding connectors (or intersections) of pairs of non-corresponding constiluents $B C^{\prime \prime}$ and $B^{\prime} C$, $O A^{\prime}$ and $C^{\prime} A, A B^{\prime}$ and $A^{\prime} B$; any two of whose three collinear points of intersection (or concurrent lines of comexion) determine, by the above, the required line (or point) 0 .

By aid of the line (or point) O, thus determined from three pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime} of the systems, any number of other pairs D and D^{\prime}, E and $E^{\prime \prime}$, F and F^{*} may be obtained at pleasure. For, in the former case, two variable lines turning round A and A^{\prime}, or B and B^{\prime}, or C and C^{\prime}, and intersecting in every position on O, determine
successively all other pairs D and D^{\prime}, E and E^{\prime}, F and $F^{\prime \prime}, \& \mathrm{c}$. ; and, in the latter case, two variable points, moving on A and A^{\prime}, or B and B^{\prime}, or C and C^{\prime}, and connecting in every position through O, determine successively all other pairs D and D^{\prime}, E and $E^{\prime \prime}$, F and $F^{*}, \&$ c. ; (see Arts. 291, Note, and 310, Cor.). Hence the name directive as applied, in either case, to O; the line or point so designated being the axis or centre that directs the moment of the two variable lines or points which, giving in every position a pair of corresponding constituents, thus by their variation generate the systems.

If M and N be the two points (or lines) of the systems which lie on (or pass through) O, and I the point (or ray) common to the axes (or vertices) in the case of the two rows (or pencils) ; then since, in their case, by relations (2) Art. 293,

$$
\{A B C M\}=\left\{A^{\prime} B^{\prime} C^{\prime} I\right\} \text { and }\left\{A^{\prime} B^{\prime} C^{\prime} N\right\}=\{A B C I\} ;
$$

and since, in the case of the two concyclic systems of points (or tangents), by relations (3) Art. 317,

$$
\{A B C M\}=\left\{A^{\prime} B^{\prime} C^{\prime} M\right\} \text { and }\{A B C N\}=\left\{A^{\prime} B^{\prime} C^{\prime} N\right\} ;
$$

the two points or lines M and N are, therefore, in the former case, the two constituents of the two systems corresponding to the point (or ray) I common to their axes (or vertices); and, in the latter case, the two double points (or lines), as they are termed, of the systems, that is, the two points on (or tangents to) their common circle at each of which a pair of their corresponding constituents coincide (see Art. 329).

When, in any of the four cases, the two systems are in perspective; their directive axis (or centre) O is then evidently (240 and 261) the polar of the centre (or the pole of the axis) of perspective, with respect to the angle (or segment) determined by the two axes (or vertices) in the case of the two rows (or pencils), or with respect to the common circle in the case of the two concyclic systems of points (or tangents). In the former case, therefore, the two points (or rays) M and N coincide, as they ought (334), with the point (or ray) l common to the two axes (or vertices).
338. Again, from the same criteria of perspective, combined with the particular case of homographic division considered in

Art. 329, and with the reciprocal properties of Arts. 240 and 261 respecting poles and polars to angles or segments and to circles, the four following general properties of homographic systems, in pairs reciprocals of each other, may as readily be inferred; viz.-
a. A variable line, determining teo homographic rones of points on difficent axes, or systems of points on a common circlo-

1. Intersects with any four pasilions of itself at a quartet of points equiunharmonic with the two corresponding quartets of the generated systems.
2. Determines on all positions of itself roves of points homographic with each other and with the original systems.
a'. A variable point, determining two homographic pencils of rays at different vertices, or systions of tangents to a common circle -
3. Commets weith any four pasitions of ilself by a quartet of rays equiunharmonic with the two corresponding quartets of the generateal systems.
4. Determines at all positions of iterlf prencils of rays homographic seith each other and with the original systerms.

For, in the former case, if A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and D^{\prime} be the four pairs of corresponding constituents determined on the axes (fig. α) or circle (fig. β) by any four positions

$A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$ of the variable line ; E and $E^{\prime \prime}$ the fifth pair corresponding to any fifth positions $E E^{\prime \prime} ; A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, D^{\prime \prime}$ the four intersections of the four positions with the fifth; I the intersection of the axes (fig. a) or of the tangents at E and $E^{\prime \prime}$ to the circle (fig. β); and P, Q, R, S the four intersections of the four pairs of connectors $E A^{\prime}$ and $E^{\prime} A, E B^{\prime}$ and $E^{\prime \prime} B$,
$E C^{\prime}$ and $E^{\prime} C, E D^{\prime}$ and $E^{\prime} D$; which, by the preceding article, are collinear, and lie on the directive axis O of the systems; then, since, by Arts. 240 and 261, the four lines $I P, I Q, I R, I S$ are the four polars of the four points $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, D^{\prime \prime}$ with respect to the axes (fig. α) or circle (fig. β); and since, consequently, in either ease, the four pairs of lines $I A^{\prime \prime}$ and $I P$, $I B^{\prime \prime}$ and $I Q, I C^{\prime \prime}$ and $I R, I D^{\prime \prime}$ and $I S$ are pairs of harmonic conjugates with respect to the two $I E$ and $I E^{\prime \prime}$; therefore, in either case, by Art. 329, $\left\{I . A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}\right\}=\{I . P Q R S\}$; and therefore, in cither, by Art. 285,

$$
\left\{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}\right\}=\{\Gamma \dot{Q} R S\}=\{A B C D\}=\left\{A^{\prime} \dot{B}^{\prime} C^{\prime} D^{\prime}\right\}
$$

which being true for the intersections of every four with all fifth positions of the variable line, therefore \&c. And, in the latter case, if A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and D^{\prime} be the

four pairs of corresponding constituents determined at the vertices (fig. α^{\prime}) or to the circle (fig. β^{\prime}) by any four positions $A A^{\prime}$, $B B^{\prime}, C C^{\prime}, D D^{\prime}$ of the variable point; E and $E^{\prime \prime}$ the fifth pair corresponding to any fifth position $E E^{\prime} ; A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, D^{\prime \prime}$ the four connectors (not drawn in the figures) of the four positions with the fifth; I the connector of the vertices (fig. α^{\prime}) or of the points of contact of E and E^{\prime} with the circle (fig. β^{\prime}); and P, Q, R, S the four connectors of the four pairs of intersections $E A^{\prime}$ and $E^{\prime \prime} A, E B^{\prime}$ and $E^{\prime \prime} B, E C^{\prime}$ and $E^{\prime \prime} C, E D^{\prime}$ and $E^{\prime \prime} D$, which, by the preceding article, are concurrent, and pass through
the directive centre O of the systems; then, since, by Arts. 240 and 261 , the four points $I P, I Q, I 1 R, I S$ are the four poles of the four lines $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, D^{\prime \prime}$ with respect to the rertices (fig. a^{\prime}) or circle (fig. β); and since, consequently, in either case, the four pairs of points $I A^{\prime \prime}$ and $I P, I B^{\prime \prime}$ and $1 Q, 1 C^{\prime \prime}$ and $1 I, 1 D^{\prime \prime}$ and $1 S$ are pains of harmonic conjugates with respect to the two $I E$ and $L E$ '; therefore, in either case, by Art. 329,

$$
\left\{I . A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime}\right\}=\{I . P Q R S\} ;
$$

and therefore, in cither, by Art. 2S5,

$$
\left\{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}\right\}=\{P Q R S\}=\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}
$$

which being true for the connectors of every four with all fith positions of the variable point, therefore \&c.

The above reciprocal demonstrations (which it may be observed would be simplified for the concyclic syntems in both cases by the general property of Art. 292) may be briefly summed up in one as follows. Since, in all four enses alike, by Arts. 210 and $261, I A^{\prime \prime}$ and $I P, I B^{\prime \prime}$ and $I Q, I C^{\prime \prime}$ and $I B, I D^{\prime \prime}$ and $I S$ are pairs of harmonic conjugates with respect to $I E$ and $I E$; ; therefore, in all four alike, by Art. 329,

$$
\left\{I . A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime}\right\}=\{1 . P Q R S\}
$$

and therefore, in all alike, by Art. 255 ,

$$
\left\{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}\right)=\{P Q R S\}=\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime \prime}\right\}
$$

which, for all alike, establishes at once the two properties in question.

Cor. 1°. It follows of courso immediately, from tho first parts of the above reciprocal properties, that when a evarioble line, which does not turn round a fured point, determines homographic rooss on any tico fixud lines, it coinciles, once in the course of its entire variution, with cach of tho lines; and, reciprocally, that ichen a variable point, which does not move on a firnd line, determines homographic pencils at any two fixed proints, it coincids, once in the course of its entire variation, with each of the points. Which are also crident, ì priori, from the consideration that, when the variable line (or point) passes, in the course of its variation, through the intersection of the fixed lines (or over the connector of the fixed points), if the corresponding constituents of the two homographic systems do not then coincide, as they do
not when the systems are not in perspective (334), it must itself necessarily coincide with one or other fixed line (or point).

Cor. 2°. It follows also immediately, from the same, that a variable line, determining homographic rows of points on any two fixed lines, intersects with every four fixed positions of itself at a variable quartet of points having a constant anharmonic ratio, and determines with cevery five positions of itself an equianharmonic hexagram (301); and, reciprocally, that a variable point, determining homographic pencils of rays at any two fixed points, connects with every four fixed positions of itself by a variable quartet of rays having a constant anharmonic ratio, and detrmines with every five positions of itself an equianharmonic hexastigm (301). These are the general properties of homographic rows and pencils, whose converses were given in examples e and e^{\prime}, g and g^{\prime} of Art. 333.
339. As every two homographic pencils of rays through any vertices determine on every axis two homographic rows of points whose constituents at infinity correspond to those of the determining pencils to whose directions the axis is parallel (16); it follows, from the criterion of similitude between homographic rows given in Art. 330, that-

When two homographic pencils of rays through any vertices have a pair of corresponding constituents whose directions are parallel; they determine on every axis parallel to those directions two similar rows; whose ratio of similitude, evidently constant both in magnitude and sign when the two constituents coincide, varies when they do not with every position of the axis; changes sign, passing through 0 , as it passes in either direction through the vertex of the pencil of antecedents; again changes sign, passing through ∞, as it passes in either direction through the vertex of the pencil of consequents; and passes without change of sign through every intermediate absolute magnitude, in continuous increase from 0 to ∞ during its passage in either direction from the former to the latter, and in continuous decrease from ∞ to 0 during its passage in either direction from the latter to the former.

Given the parallel pair of corresponding constituents, I and I^{\prime}, and any other two pairs, A and A^{\prime}, B and B^{\prime}, of the two pencils, the particular axis L parallel to I and I^{\prime} for which the ratio of similitude shall have any given value, positive or negative,
may be readily determined as follows: Denoting by O and O^{\prime} the vertices of the two pencils, by X and $\Lambda^{\prime \prime}, Y$ and $Y^{\prime \prime}$ the four intersections of L with A and A^{\prime}, B and B^{\prime} respectively, and by Z its intersection with the line $O 0^{\circ}$; then, the ratios of $O Z$ and $O^{\prime} Z$ to XY and $\mathrm{X}^{\prime} \mathrm{Y}^{\prime \prime}$ respectively being evidently given with the direction of L, when the ratio of $X Y^{\prime}$ to $X^{\prime \prime} Y^{\prime \prime}$, which is that of the similitude of the systems, is also given, that of $0 Z: O^{\prime} Z$, and with it of course the position of Z, is consequently given; und thercfore \&e. The particular cases when the given ratio has, as of counse it may have, the particular values ± 1 (and when consequently the several segments intercepted on L by the several pairs of corresponding rays A and A^{\prime}, B and B^{\prime}, C and $C^{\prime \prime}$, I) and I", Ne. of the two peucils, have a common maguitude or middle point) differ in no respeet from the general case when it has any value positive or negative.

Since, for every two homographic pencils of rays through any vertices, there exist, as will be shewn in the next chapter, two pairs of corresponding constitnents, real or imaginary, whose directions are parallel; it follows consequently, from tho above, that-

For cevry lico homographic pencils of rays through any verlices, there exist theo directions, real or imaginary, on all lines prerullel to eithar of ehich they determine similur rous of points; ant, of the teoo systems of parallels determined by those directions, tico particular lines on each of which thrir several pairs of corresponding rays intercept equal segments, and two others on each of which the several intercepted seyments have a common middle point.

In the particular case when the two pencils are in perspective, it is evident, from Art. 334, or independently, that the two directions in question are parallel, one to the comector of their vertices and the other to their axis of perspective; on the former of which lines the several pairs of corresponding mys intercept evidently a common segment, and on the latter of which the several segments they intercept are of course all evancscent.
340. As, from the general property of Art. 330, it was shewn, at the elose of the preceding article, that-
a. For cvery tico homographic pencils of rays through different vol. II.
vertices, there exist two lines, real or imaginary, on each of echich the several pairs of corresponding rays intercept equal segments; and also two others, real or imaginary, for each of which the several intercepted segments have a common middle point.

So, from the general property of Art. 331, it may be shewn that, reciprocally-
a^{\prime}. For every two hornographic rows of points on different axes, there exist two points, always real, at each of which the several pairs of corresponding points subtend equal angles ; and also two others, sometimes imaginary, for cach of which the several subtended angles have a common middle ray.

For, if I (figs. α and β) be the intersection of the axes; P and Q the points of their rows whose correspondents are at infinity; A and A^{\prime} a variable pair of corresponding points of the systems; and E and F the two fixed points, real or imaginary, for which the two rectangles $P E . Q E$ and $P F . Q F$ are equal to the constant rectangle $P A . Q A^{\prime}$ (331), and for which the two pairs of angles $I P E$ and IQE, IPF and IQF, measured in opposite directions of rotation (fig. α) and in the same direction of rotation (fig. β),

are equal; then, since, from the evident similarity in either case of the two pairs of triangles $A P E$ and $E Q A^{\prime}, A P F$ and $F Q A^{\prime}$ in every position of Λ and A^{\prime}, the two pairs of angles $P A E$ and $Q E A^{\prime}, P A F$ and $Q F A^{\prime}$ (or the two pairs PEA and $Q A^{\prime} E, P F A$ and $Q A^{\prime} F$) are always equal ; therefore, as A and A^{\prime} vary, the two pairs of lines $E A$ and $E A^{\prime}, F A$ and $F A^{\prime}$ revolve always through equal angles, in the same direction of rotation (fig. α), and in opposite directions of rotation
(fig. B), round the two fixed points E and F; and therefore \&e. *

Of the two (evidently similar and equal) triangles $P E Q$ and $P P^{\circ} Q$, whose two vertices E and F are the two points involved in the above properties, and which combined form evidently a parallelogram in the former case (fig. a) ; the common base $P Q$, the rectangle under the sides, and the difference (fig. a) or sum (fig. B) of the hase angles, being known, the triangles are consequently completely determined; and, while evidently always real in the former case, are imaginary in the latter when the rectangle $P E . Q E$ or $P F . Q F$ is greater than for any point on the known circle $P I Q$, which in that case evidently pnsses always throngh E : and F. In tho particular case when the two rows are in peropective, like the analogous case in the preceding article, it is evident, from Art. 334, or independently, that, of the two points E and F in the former property, one coincides with the intersection of the axes and the other with the centre of perspective; the constant angle for the former being evidently the fixed angle between the axes, and for the latter being of counse evanescent.

Cor. 1°. The three pairs of lines $E A$ and $F A, E A A^{\prime}$ and $F A^{\prime}$, $E I$ and $F I$, in (fig. a), being evidently equally inclined to the lisectors of the three corresponding angles of the triangle $A 1 A^{\prime}$; and the three rectangles under the three pairs of perpendiculars from E nnd F upon the three sides of that triangle being consequently equal in magnitude and sign; hence, from the above, it appears that-
a. When a variable line intersects with tueo ficent lines homographically, the rectangle under its distunces from the two fixed proints, ut which the several pairs of corresponding intersections subtend constunt angles, is constant both in magnitule and sign.

And from the amalogous property of the preceding article, respecting homographic pencils of rays, it may be shewn that reciprocally-
a'. When a variable point connects with tuso fixed points homographically, the rectangle under its distances from the tuou

[^9]fixed lines, on which the several pairs of corresponding comnectors intercept constant segments, is constant both in magnitude and sign.

For, if O and O^{\prime} be the two fixed points ; P any position of the variable point; $O E$ and $O^{\prime} E^{\prime \prime}, O F^{\prime}$ and $O^{\prime} F^{\prime \prime}$ the two pairs of corresponding rays, of the two homographic pencils, whose directions are parallel; L and M the two parallels to them, intersecting at I, on each of which the several pairs of corresponding rays intercept constant segments, and on which consequently $P O$ and $P O^{\prime}$ intercept segments $A A^{\prime}$ and
 $B B^{\prime}$ which are equal to $E E^{\prime \prime}$ and $F F^{\prime \prime}$ respectively; then, $P X$ and $P Y$ being parallels through P to L and M, since, by pairs of similar triangles,

$$
A X: P X=O F: B F \text { and } A^{\prime} X: P X=O^{\prime} F^{\prime \prime}: B^{\prime} F^{\prime \prime}
$$

and since $A X-A^{\prime} X=O F-O^{\prime} F^{\prime \prime}$, and $B F=B^{\prime} F^{\prime \prime}$, therefore $A X=O F$ and $A^{\prime} X=O^{\prime} F^{\prime \prime}$; from which, since $A P=O B$ and $A^{\prime} P=O^{\prime} B^{\prime}$, therefore
$P X . P Y=O E . O F=O^{\prime} E^{\prime} . O^{\prime} F^{\prime \prime}$, or, $P L . P M=O L . O M=O^{\prime} L . O^{\prime} M$; and therefore \&c.

Cor. 2°. Since, by ($338, a$ and $a^{\prime}, 2^{\circ}$), a variable line (or point), intersecting (or connecting) homographically with two fixed lines (or points), intersects (or connects) homographically with all positions of itself; it follows, consequently, from the two reciprocal properties a and a^{\prime} of the preceding, Cor. 1°, that-
a. A variable line, the rectangle under whose distances from $t 100$ fixed points is constant in magnitude and sign, intersects homographically with all positions of itself.
a^{\prime}. A variable point, the rectangle under whose distances from two fixed lines is constant in magnitude and sign, connects homographically with all positions of itself.

Cor. 3°. If X and Y be the feet of the perpendiculars from E and F on $A A^{\prime}$ in (fig. x), Z the intersection with $A A^{\prime}$ of the position $B B^{\prime}$ which intersects it at right angles, and O the middle point of $E F$; then since (49)

$$
O X^{2}=O Y^{2}=E X \cdot F Y+\left(\frac{1}{2} E F\right)^{2}
$$

and since (Euc. 1. 48, and 11. 5, 6),

$$
O Z^{1}=2 E X \cdot F Y+\left(\frac{1}{3} E F\right)^{3} ;
$$

it follows again, consequently, from a Cor. 1°, that-
When a variable line intersects homographically with theo fixed lines-
a. In every position, the fiet of the tho perpematiculurs on it, from the two fixed points for which their rectanyle is constunt, lis on a fixed circle; whose centre bisects the intereal beticeen the points, and the square of ichose radius $=$ the constant rectungle + the square of the semi-intertal.
b. Every two of its prositions which intersect at right angles intersect on another fixad circle; concentric with the furmer, the square of ichose radius $=$ twice the same constunt rectangle + the squure of the same semi-intereal.
N.B. The several properties of homographic divisions contained in this and the two preceding articles are of very faniliar occurrence in the 'Theory of Conic Sections, where alone indeed the subject has scope for the full and adequate developement due to its inpportance.

CHAP'TER XX.

ON THE DOUBLE POINTS AND LINES OF HOMOGRAPHIC SYSTEMS.

341. When the axes of two homographic rows of points or the vertices of two homographic pencils of rays coincide, there exist always two pairs of corresponding constituents, real or imaginary, whose positions coincide, and which accordingly have been termed by Chasles the double points or rays of the systems (329).

Assuming for the present the existence of such points or rays, the following properties are evident from their mere definition.
1°. No more than two double points or rays could exist unless the systems altogether coincided. For, since, for every four pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and D^{\prime}, the systems being homographic, $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$, if $A=A^{\prime}$, and $B=B^{\prime}$, and $C=C^{\prime}$, then necessarily $D=D^{\prime}$; and, as for the same reason $E=E^{\prime \prime}, F=F^{\prime}, G=G^{\prime}, H=H^{\prime}$, \&c., therefore \&c.
2°. Every three pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime} are connected with the two double points or rays $M\left(=M^{\prime}\right)$ and $N\left(=N^{\prime}\right)$ taken separately by the relutions $\{A B C M\}=\left\{A^{\prime} B^{\prime} C^{\prime} M\right\}$ and $\{A B C N\}=\left\{A^{\prime} B^{\prime} C^{\prime} N\right\}$; and every two pairs A and A^{\prime}, B and B^{\prime} with both combined by the relation $\{M N A B\}=\left\{M N A^{\prime} B^{\prime}\right\}$. These relations, which are evident from the homography of the systems and the hypothesis respecting M and N, are characteristic of the double points or rays, and sufficient in all cases to identify and distinguish them.
3°. Each double point or ray being of course equivalent to a pair of corresponding coustituents, and three pairs of cor-
responding constituents being sufficient to determine any two homographic systems (327); one double point or ray with two pairs of corresponding constituents, or both double points or rays with a single pair of corresponding constituents, are therefore sufficient to determine two homographic rows or pencils whose axes or vertices coincide.
4°. For the same reason, three pairs of corresponding constituents, given, taken, or known in any manner, being sufficient in all cases to determine every thing connected with the two homographic systems to which they belong (32i), are therefore sufficient to determine the two double points or rays of two homographic rows or pencils whose axes or vertices coincide. (Sce Art. 348).
5°. As two homographic rows of points on any axis determine two homographic pencils of rays at any vertex, and conversely, the two double points of one correspond always to the two donble mys of the other, and conversely.
312. Every two corresponding constituents of fico homographic rous or pencils, those axes or vertices coincide, divile in the same einstant anharmonic ratio the segment or angle determinal liy the tco double points or rays of the rystems.

For, since, for every two pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, by 2° of the preceding article,

$$
\{M N A B\}=\left\{M N A^{\prime} B^{\prime}\right\}
$$

therefore, by (272),

$$
\left\{M N A A^{\prime}\right\}=\left\{M N B B^{\prime}\right\} ;
$$

and, since, for the samo reason,

$$
\left\{M N B B^{\prime}\right\}=\left\{M N C C^{\prime}\right\}, \quad\left\{M N C C^{\prime}\right\}=\left\{M N D D^{\prime}\right\}
$$

\&c. ; therefore \&ic.
The particular case when the constant anharmonic ratio of section $=-1$, that is, when the several pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and I^{\prime}, \&ंc. divide harmonically the segment or angle $M N$, will be considered in comnexion with the Theory of Involution in the next Chapter.
313. Every two constituents of the theo systems, corresponding to the same point on the common axis or ray through the common
vertex, divide in the square of the above constant anharmonic ratio the segment or angle determined by the two double points or rays of the systems.

For, every point on the common axis or ray through the common vertex belonging of course indifferently to both systems, if P be the correspondent of any point or ray I regarded as belonging to one system, and Q the correspondent of the same point or ray I regarded as belonging to the other system, then since, by the preceding article,

$$
\left(\frac{M P}{N P}: \frac{M I}{N I}\right) \text { or }\left(\frac{\sin M P}{\sin N P}: \frac{\sin M I}{\sin N I}\right)=\text { const. } \ldots \ldots . . \text { (1), }
$$

and

$$
\begin{equation*}
\left(\frac{M I}{N I}: \frac{M Q}{N Q}\right) \text { or }\left(\frac{\sin M I}{\sin N I}: \frac{\sin M Q}{\sin N Q}\right)=\text { eonst. } \tag{2}
\end{equation*}
$$

therefore at once, by composition of ratios,

$$
\left(\frac{M P}{\overline{N P}}: \frac{M Q}{N Q}\right) \text { or }\left(\frac{\sin M P}{\sin N P}: \frac{\sin M Q}{\sin N Q}\right)=\text { const }^{2} . \ldots \ldots \text { (3), }
$$

and therefore \&c. (268).
The particular case where this constant anharmonic ratio of section $=1$, that is, when the two constituents of the two systems corresponding to the same point on their common axis or ray through their common vertex always coincide, will also be considered in reference to the Theory of Involution in the next Chapter.

Cor. 1°. When, in the above, the point or line I is either point or line of bisection, external or internal, of the segment or angle $M N$, then-

The segment or angle $P Q$ has the same points or lines of bisection as the segment or angle $M N$.

For, since, in that case, $(M I: N I)$ or $(\sin M I: \sin N I)= \pm 1$, therefore, in the samo case, by (1) and (2) above, $(M P: N P) \cdot(M Q: N Q)$ or $(\sin M P: \sin N P) \cdot(\sin M Q: \sin N Q)=+1$; and therefore \&c.

Cor. 2°. The point of external bisection of every segment of a line being the point at infinity on the line, it follows inmediately, from the preceding Cor. 1°, that-

In the case of two homograpilic rows of points on a common
axin, the segment $M N$ intercepted beticeen the tuco double points is concentric with the segment $P Q$ intercepted between the thoo constituents of the systoms corresponding to the point at infinity on the uxis.

A consequence which, by virtue of the general property of Art. 331, may also be proved otherwise as fullows: Since, for every two pairs of corresponding constituents A and A^{\prime}, B and B^{\prime} of the systems, by the property in question, PA.QA $A^{\prime}=P B . Q B^{\prime}$, when $A=A^{\prime}=M$, and $B=B^{\prime}=N$, then $P M \cdot Q M=P N \cdot Q N$; and therefore \&c. (Euc. II. 5, 6).

Cors. 3°. If, in the above, the point or line I be conceived to vary, causing of course the simultancous variation of the two P and Q, then-

The tivo points or rays P and Q idtermine theo homographic rocs or prencils having the same double points or rays M and N with the original systems.

This follows immediately from relation (3) by virtue of the gencral property of Art. 329 ; and the same is evident also from the consideration that the systems determined by P and Q are both homographic with that deternined by I, with which, combined separately, they constitute in fact the original systems.
N.B. From the general, or any derived, property of either this or the preceding article, it is evident that every two homographic rows of proints or pencils of rays, whose axes or vertices coincide, are symmetrically disposed on opposite sides of each point or line of bisection, external and internal, of the segment or angle $M N$ determined by the two double points or mys M and N of the systems ; which two points or lines of bisection, always real, are therefore the theo points or lines of symmetry of the systems.
344. Of teo homographic roves of points on a common axis; tchen one double point is at infinity, the rows are similar, and have the other double point for their centre of similitude; and, achen both double points are at infinity, the rows are similar, similarly placed, and equal.

For, since, by (342), whatever be the positions of the two double points, $\left\{M N A A^{\prime}\right\}=\left\{M N B B^{\prime}\right\}=\left\{M N C C^{\prime}\right\}=\left\{M N D D^{\prime}\right\}=\& \mathrm{c}$.
$=$ a constant; when one of them N is at infinity, then, for the other M, by (275),

$$
M A: M A^{\prime}=M B: M B^{\prime}=M C: M C^{\prime}=M D: M D^{\prime}=\& .
$$

$=a$ constant ; and when the other of them M is also at infinity, then, by (15), the constant $=+1$; and therefore \& c. (41). In the particular case when the constant $=-1$, then

$$
M A=-M A^{\prime}, M B=-M B^{\prime}, M C=-M C^{\prime}, M D=-M D^{\prime}, \& \mathrm{c}
$$

and the systems, as in the preceding ease, are similar and equal, but are oppositely, in place of similarity, placed on the axis (33). In this case, also, the several segments $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$, \&c., intercepted between the several pairs of corresponding constituents of the rows, are evidently concentric, being all bisected internally by the double point M not at infinity.

The converse of the above, viz., that, when two homographic rows of points on a common axis are similar, then, whatever be the magnitude and sign of their ratio of similitude, provided only it be finite, one double point is their centre of similitude and the other the point at infinity on their axis, is evident from the constancy of the ratio $M A: M A^{\prime}$, from which it follows at once that the two variable distances $M A$ and $M A^{\prime}$ become necessarily evanescent and infinite together.

In the solitary and exceptional case of entire coincidence between two similar, similarly placed, and equal rows of points on a common axis, every point on the axis is of course indifferently a double point. (Sce 341, 1°).
345. From the general property of the preceding article, the two following results may be immediately inferred, viz.-
1°. Any two homographic rows of points on a common axis, whose double points are reul, may be regarded as the perspective, t any arbitrary centre, of two similar rows on a common axis depending in direction on the position of the centre.
2°. Any two homographic rows of points on a common axis, whose double points coincide, may be regarded as the perspectice, to any arbitrary centre, of the two similar, similarly placed, and equal roves on a common axis depending in direction on the position of the centre.

For, as the two homographic rows of points on the common axis determine in all cases two homographic pencils of rays at
every vertex, whose double rays correspond to the double points on the axis $\left(341,5^{\circ}\right)$; any axis parallel to the direction of either double ray if they be distinet, or to the common direction of the two if they coincide, would intersect the pencils in two homographic rows of points, having one double point at infinity in the former case, and both double points at infinity in the latter case; and therefure © © . (344).
346. The two following general properties of two homographic rows or pencils, whose double points or rays are maginary, have been given by Chasles, viz.-

1'. Any two homographic roves of puints on a common axix, celowe double points are imatiginary, may bo regardal as generuend by the recolution of a evrriable anyle of constunt magnitude round one or other of two fixed vertices, reflexions of each other with rerpmed to the axis.
2. Any tico homographic pencils of rays Ulrough a common mertex, tcham doublo rays are inaginary, may be regarded as the perapeotive to any arbirrary aris of a pencil generatel by the nowlution of a cariable aigle of comstans magnitude round a fircod vertex.

T'o prove the first of these properties (which evidently involves the second), it is only necessary to shew that, under the circumstances of the case, a real point E (and with it, of counse, its reflexion F ' with respect to the axis) can always be found, at which some three of the segments $A A^{\prime}, B B^{\prime}, C C^{\prime}$ intercepted between pairs of cornoponding prints shall subtend equal angles; for, if three of them subtend equal angles at any point, it follows necessarily, from the homography of the rows, that they mut all subtend equal angles at the same print. And that two such points, retlexions of each other with repect to the axis, exist always in this case, is evident from Art. 161 ; for, the three circles, loci of points at which the three pains of segments $B B^{\prime}$ and $C C^{\prime}, C C^{\prime}$ and $A A^{\prime}, A A^{\prime}$ nud $B B^{\prime}$ subtend equal angles, are then (see the article in question) all real, and intersect at two real points E and F, which (the centres of the three circles being all on the axis) are of course reflexions of each other with respect to the axis.

The second property follows at once, as above observed, from
the first; for, as the two homographic pencils, whose double rays are by hypothesis imaginary, intersect with every axis in two homographic rows whose double points are imaginary; and, as there always exist, by the above 1°, two real points E and F, with respect to each of which the latter may be regarded as generated by the revolution of a variable angle of constant magnitude revolving round it as a fixed vertex; therefore \&c.
347. The entire preceding theory applies of course, in its main features, as well to two homographic systems of points on a common circle or of tangents to a common circle (322), as to two systems of points on a common axis or of rays through a common vertex; and every two such systems have accordingly, for every as well as for either limiting magnitude of the common circle, two pairs of corresponding constituents, real or imaginary, whose positions coincide, and which are therefore termed the double points or tangents of the systems.

That every two corresponding constituents A and A^{\prime} of the systems divide in the same constant anharmonic ratio the are of the common circle intercepted between the two double points or tangents M and N; that every two constituents P and Q of the systems corresponding to the same point or tangent I divide in the square of the same constant auharmonic ratio the same intercepted are ; that, as I varies, P and Q determine two homographic systems having the same double points or tangents with the original systems; that when I is equidistant from or equiinclined to M and N then is it also equidistant from or equiinclined to P and Q; and that the systems themselves are always symmetrically disposed on opposite sides of each of the two points or tangents equidistant from or equi-inclined to M and N, which two points or tangents are therefore the two points or lines of symmetry of the systems; appear all in precisely the same manner as for the two extreme states of the circle in Arts. 342 and 343.

As every two homographic systems of points on a common circle determine two homographic pencils of rays at any point on the circle, and conversely; and as every two homographic systems of tangents to a common circle determine two homographic rows of points on any tangent to the circle, and con-
versely; it is evident that the double points of one correspond always to the double rays of the other, and conversely, in the former case; and that the double tangents of one correspond always to the double points of the other, and conversely, in the latter case.
348. Given thrce pairs of corresponding constipuents, A and A', B and B^{\prime}, C and C^{\prime}, of tico homugraphic systems, of points on a common axis, or of rays through a common virtex, or of prints on a common circh, or of tingents to a common circle; to construct the tuco double points or lines, M and N, of the syst ms.

1. In the case of points on a common circle. Drawing any two of the three pairs of correpponding connectors of pairs of non-corresponding constituents, $B C^{\prime \prime}$ and $13^{\prime} C^{\circ}, C A^{\prime}$ and $C^{\prime \prime} A$, $A B^{\prime}$ and $A^{\prime} B$, (see fig. $x, A r t .317$); the line of connection $X^{\prime} Y$ of their two points of intersection \mathcal{X}° and 1° (which by $33 \bar{i}, 1$, is the directire axis of the systems) will paes through the intersection Z of the thind pair (317), and will deternine on the circle two points M and S, real or imaginary, which satisfy (317) the equianharmonic relations of 2°, Art. 311 , and which are consequently the two double points of the systems.
2°. In the case of tangents to a common circle. Taking any two of the three pairs of corresponding intensections of pains of non-corresponding constituents, $B C^{\prime}$ and $B^{\prime} C, C A^{\prime}$ and $C^{\prime} A$, $A B^{\prime}$ and $A^{\prime} B B_{\text {, (sce fig. }} 2^{\prime}, A \mathrm{rt} .31 \mathrm{i}$) ; the point of intersection $X Y$ of their two lines of comection X and Y (which, by $337, a^{\prime}$, is the directive centre of the systems) will lie on the connector Z of the third pair (317), and will determine to the circle two tangents M and N, real or imaginary, which satisfy (31i) the equianharmonic relations of 2°, Art. 341 , and which are consequently the two double lines of the systems.
3°. In the ease of rays through a common vertex. Describing arbitrarily any circle passing through the common vertex, and taking on it its three pairs of second intersections with the three pairs of rays; the two double points, found by 1°, of the two homographic systems determined by the latter on the circle will commet with the common vertex by the required double rays (347).
4°. In the case of points on a common axis. Describing arbitrarily any circle touching the common axis, and drawing to it its three pairs of secoud tangents through the three pairs of points; the two double lines, found by 2°, of the two homographic systems determined by the latter to the circle will intersect with the common axis at the required double points (347).

These several constructions are all perfectly general, and applicable with equal facility to every variets of disposition of the three given pairs of corresponding constituents. Various direct constructions may also be given for the extreme cases of collinear and concurrent systems (4° and 3°) without reducing them, as above, to the gencral cases of concyclic systems (2° and 1°); but the above, though indirect, are on the whole the simplest of which they are susceptible.
349. The fullowing construction for determining directly the two double points, in the case of collinear systems on a common axis, has been given by Chasles.

Assuming arbitrarily any point O not on the common axis, and describing through it any two of the three pairs of corresponding circles passing through pairs of non-corresponding constituents, $B O C^{\prime}$ and $B^{\prime} O C, C O A^{\prime}$ and $C^{\prime} O A, A O B^{\prime}$ and $A^{\prime} O B$, which intersect again respectively at three second points P, Q, R; the circle passing through O, and through the second intersections P and Q of the two described pairs, will pass through the second intersection R of the third pair, and will intersect with the common axis at the two double points M and N of the systems.

For, since the three circles $B O C^{\prime}, B^{\prime} O C$, and $M O N$ pass through the two common points O and P, therefore, by similar pencils at O and $P,\left\{M N B B^{\prime}\right\}=\left\{M N C C^{\prime}\right\}$; and since the three $C O A^{\prime}, C^{\prime} O A$, and $M O N$ pass through the two common points O and Q, therefore, by similar peneils at O and $Q,\left\{M N C C^{\prime}\right\}=\left\{M N A A^{\prime}\right\} ;$ consequently at once $\left\{M N A A^{\prime}\right\}$ $=\left\{M N / B B^{\prime}\right\}$; and therefore, by similar pencils at O and R, the three circles $A O B^{\prime}, A^{\prime} O B$, and $M O N^{\prime}$ pass through the two common points O and R; and since, as just shewn,

$$
\left\{M N A A^{\prime}\right\}=\left\{M N B B^{\prime}\right\}=\left\{M N C C^{\prime}\right\}
$$

therefore (342) M and N are the two double points of the systems.
N.B. It will appear in the sequel that this construction is the transformation, by inversion from any point on the circle, of that given in 1° of the preceding article for coneyclic systems on a common circle.
350. The following again, derived from the general property of Art. 332, is another construction for the direct determination of the two double points in the same case of collinear systems on a common axis.

Tnking the two points P and Q corresponding in the two syatems to the point at infinity on the common axis, and dividing their intercepted interval $P Q$ at the two points M and I for which the two rectangles PM.QM and PN.QN are each equal in magnitude and sign to the common value of the three equal rectangles PA.QA', PIB.QB', I'C.QC' (332); the two points of section M and N are evidently the required double points. See also Cor. 2°, Art. 313.

In any case of the construction of the double points or lines of two homographic systems by means of three pains of curresponding constituents ; if the two constituents A and A^{\prime} of any pair happened to coincide, the point or line $A\left(=A^{\prime}\right)$ would itself be one of the required double points or lines, and the general construction for the other would be much simplified; and if, moreover, the two B and B^{\prime} of either remaining pair happened also to coincide, the point or line $B\left(=B^{\prime}\right)$ would itself be the other, and all construction would be dispensed with. In this last case, the third pair C and C^{\prime} would furnish the value of the constant anharmonic ratio $\left\{A B C C_{i}^{\prime \prime}\right\}$ distinctive of the particular pair of homographic systems deternined by the three pairs of corresponding constituents (342).
351. The general constructions 1° and 2° of Art. 349, for the double points and lines in the cases of concyclic systems of points and tangents, lead each to a remarkable result when applied to the particular cane of similar and similarly ranged systems separated from each other by an interval of any finito maguitude.

For, in that ease, the several arcs $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$, \&c., intercepted between the several pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and $D^{\prime}, \& c .$, being all equal and cyelically co-directional, the three points (or lines) A, Y, Z, and with them of course the two M and N, determined by the construction in question (1° or 2°, Art. 348), consequently (sce Art. 312) lie on the line at infinity (or pass through the centre of the circle); which in that case is aecordingly the directive axis (or centre) of the systems (337, a or $\left.a^{\prime}\right)$. Hence the remarkable results, that-
a. Every two similar and similarly ranged systems of points on a common circle have the same two (imaginary) double points, whatever be their interval of separation from each other; viz. the fuxed two lying on the line at infinity $\left(260,2^{\circ}, b\right)$.
a^{\prime}. Every two similar and similarly ranged systems of tangents to a common circle have the same two (imaginary) double lines, vhatever be their interval of separation from each other; viz. the fixed two passing through the centre of the circle $\left(260,2^{\circ}, b^{\prime}\right)$.

In the special case when the interval of separation between the systems is nothing, that is, when the systems altogether coincide; since then $A=A^{\prime}, B=B^{\prime}, C=C^{\prime}, D=D^{\prime}, \& c$., the three points (or lines) X, Y, Z, and with them of course the two M and N, determined by the same constructions, become, as they ought, indeterminate; every point on (or tangent to) the common circle being then of course indifferently a double point (or line) of the systems.
352. As the two homographic systems of rays, generated by the sides of a variable angle of any invariable form revolving round a fixed vertex, determine two similar and similarly ranged systems of points on any circle passing through the fixed rertex, the double points of which correspond to the double rays of the determining pencils; hence, from property a of the preceding article, the remarkable result, that-

Every two homographic pencils of rays, determined by the sides of a variable angle of invariable form revolving round a fixed vertex, have the same (imaginary) double rays, whatever be the furm of the angle; the connectors, viz. of the fixed vertex with the tion fixed circular points at infinity.

A result from which it follows at once, by Art. 342, as shewn already on other principles in Art. 312, that the sides of a variable angle of invariable form revolving round a fixed vertex divide in a constant anharmonic ratio the angle subtended at the fixed vertex by the two fixed circular points at infinity; the value of the anharmonic ratio of section depending of course on the particular figure of the angle. A property which, established independently as in the article referred to or otherwise, involves evidently the above conversely, by virtue of Art. 329.
353. There is probably in the entire range of modern geometry no problem to some case or other of which a greater number and variety of others, admitting of two solutions, are reducible than that of the construction of the double points or lines of two homographic systems by means of three pairs of corresponding constituents; somo connected directly with the subject of homographic division, but far the greater number having no apparent connexion with it. Of the former class, the following are a few, the applications of which are extremely numerous and varied.

Ex. 1. Giren three pairs of corresponding constiluents A and \mathcal{A}^{\prime}, IB and B, C and C^{\prime} of twe homographic sydtems of points on a common line or circle, or of tangents to a common point or circle: to determine the pair Mand M'for which AM $= \pm \boldsymbol{A}^{\prime} \mathrm{M}^{\prime}$.

Taking the three points or lines $A^{\prime \prime}, 15, C^{\prime \prime}$ connected with the given point or line A by the relations $A A^{\prime \prime}=0, A B^{\prime \prime}= \pm A^{\prime} B^{\prime}, A C^{\prime \prime \prime}= \pm A^{\circ} C^{\prime \prime}$; and constructing the second double point or line $M=M^{\prime \prime}$ of the two homographic nystems determined by the three pairs of corresponding constituentes A and $A^{\prime \prime}, B$ and $B^{\prime \prime}, C$ and $C^{\prime \prime \prime}$; the point or line M is that which in the system $A, B, C, \& \in$. is conneeted with its correspondent M ' in the system $A^{\prime}, B^{\prime}, C^{\prime}, \&{ }^{\prime}$, by the required relation $A M= \pm A^{\prime} M$:

For, since, by construction, $A^{\prime \prime} B^{\prime \prime}= \pm A^{\prime} B^{\prime}$ and $A^{\prime \prime} C^{\prime \prime}= \pm A^{\prime} C^{\prime}$, the two homographic aystems $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$, sce, and $A^{\prime}, B^{\prime}, C^{\prime}$, Nc, are similar, and tieir ratio of similitude $= \pm 1$; therefore $A^{\prime \prime} M^{\prime \prime}$ or $A^{\prime} M= \pm A^{\prime} M^{\prime}$; and therefore \&c.
N.B. In the case of points on a conmon axis, the more general problem "Given three pairs of corresponding constituents A and A, B and B ", C and C^{\prime}, to determine the pair M and M^{\prime} for which the ratio $A M: \mathcal{A}^{\prime} M^{\prime}$ shall have any given magnitude and sign," may evidently be solved in precisely the same manner.

I:x. 2. Given three pairs of corresponding constituents A and A^{\prime}, 13 and $13^{\prime}, C$ and C^{\prime} of tioo homographic systems of points on a common line or circle, or of tangents to a common point or circle; to determine the two pairs M and M^{\prime}, N and $N^{\prime \prime}$ whose intercepted segments or angles MN', $N N^{\prime \prime}$ shall have a given magnitude and sign.

Taking the three points or lines $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ connected with the given three A, B, C by the common relation $A A^{\prime \prime}=B B^{\prime \prime}=C C^{\prime \prime}=$ the given segment or angle; constructing then the two double points or lines $M^{\prime}=M^{\prime \prime}$ and $N^{\prime \prime}=N^{\prime \prime}$ of the two homographic systems determined by the three pairs of corresponding constituents A^{\prime} and $A^{\prime \prime}, B^{\prime}$ and $B^{\prime \prime}, C^{\prime}$ and $C^{\prime \prime}$; and taking finally the two points or lines M and N^{\prime} connected with the two M^{\prime} and $N^{\prime \prime}$ by the common relation $M M^{\prime}=N N^{\prime}=$ the given segment or angle; the two pairs of constituents M and M^{\prime}, N and N^{\prime}, are those required.

For, since, by construction, $A A^{\prime \prime}=B B^{\prime \prime}=C C^{\prime \prime}=\lambda M M^{\prime \prime}=N N^{\prime \prime}=$ the given segment or angle, therefore $\{A B C J \Gamma N\}=\left\{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} M^{\prime \prime} N^{\prime \prime}\right\}$; and since again, by construction, $M^{\prime}=\lambda \Gamma^{\prime \prime}$ and $N^{\prime}=N^{\prime \prime}$ are the two double points or lines of the two homographic systems $A^{\prime}, B^{\prime}, C^{\prime \prime}$, \&c. and $\mathcal{A}^{\prime \prime}$, $B^{\prime \prime}, C^{\prime \prime}$, \&c., therefore $\left\{A^{\prime} B^{\prime} C^{\prime} M^{\prime} N^{\prime}\right\}=\left\{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} M^{\prime \prime} N^{\prime \prime}\right\}$; consequently therefore $\{A B C D C N\}=\left\{A^{\prime} B^{\prime} C^{\prime} M^{\prime} N^{\prime}\right\}$; or, the two pairs of constituents M and M^{\prime}, N^{\prime} and N^{\prime}, which by construction intercept the required segment or angle, are pairs of corresponding constituents of the two homographic systems $A, B, C, \& c$. and $A^{\prime}, B^{\prime}, C^{\prime}, \& c . ;$ and therefore \&c.
N.B. The constructions in the present and preceding examples are both based on the obvious consideration that when two homographic systems of points, rays, or tangents have a common axis, vertex, or circle, a movement of either along the common axis, or round the common vertex or circle, the other remaining fixed, would alter (increase or diminish as the case might be) the distances between the several pairs of corresponding constituents by the amount of the movement; so that those correspondents which coincided before would be scparated after by that amount, and conversely.

Ex. 3°. Given three pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime} of two homographic systems of points on a common line or circle, or of tangents to a common point or circle: to determine the two pairs M and M^{\prime}, N and N^{\prime} cohose intercepted segments or angles $M M^{\prime}, N N^{\prime}$ shall have a given middle point or line 0 .

Taking the three points or lines $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ connected with the giren three A, B, C by the common relation $O A^{\prime \prime}=-O A, O B^{\prime \prime}=-O B$, $O C^{\prime \prime}=-O C$; constructing then the two double points or lines $M L^{\prime}=M^{\prime \prime}$ and $N^{\prime}=N^{\prime \prime}$ of the two homographic systems determined by the three pairs of corresponding constituents A^{\prime} and $A^{\prime \prime}, B^{\prime}$ and $B^{\prime \prime}, C^{\prime}$ and $C^{\prime \prime}$; and taking finally the two points or lines M and N connected with the two M^{\prime} and $N^{\prime \prime}$ by the common relation $O M=-O M^{\prime}, O N=-O N^{\prime}$; the two pairs of constituents M and M^{\prime}, N and N^{\prime} are those required.

For, since, hy construction, $A A^{\prime \prime}, B B^{\prime \prime}, C C^{\prime \prime}, M^{\prime \prime}, N N^{\prime \prime}$ are all
bisected by O, therefore $\{A B C M N\}=\left\{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} M^{\prime \prime} N^{\prime \prime}\right\}$; and since again, by construction, $M^{\prime}=M^{\prime \prime}$ and $N^{\prime \prime}=N^{\prime \prime \prime}$ are the two double points or lines of the two homographic systems $A^{\prime}, B^{\prime \prime}, C^{\prime \prime}, \& \cdot c$ and $A^{\prime \prime}, B^{\prime \prime}, C C^{\prime \prime}$, \&c., therefore $\left\{A^{\prime} B^{\prime} C^{\prime} M^{\prime} N^{\prime \prime}\right\}=\left\{\mathcal{A}^{\prime \prime} \mathcal{B}^{\prime \prime} C^{\prime \prime} M^{\prime \prime} N^{\prime \prime \prime}\right\}$; consequently therefore $\left\{A^{\prime} B C M N\right\}=\left\{A^{\prime} B^{\prime} C^{\prime} M M^{\prime} N^{\prime \prime}\right\}$; or, the two pairs of constituents M and M^{\prime}, N^{\prime} and N^{\prime}, which by construction lave the required middle point or line O, are pairs of corresponding constituents of the two homographic systems A, B, C^{\prime}, \&c. and $A^{\prime}, B^{\prime}, C^{\prime \prime}, \& \cdot c$; and therefore S.c.
N.B. The problems of the present and preceding examples are manifently equivalent to the following, viz: "Giren three pairs of eorresponding constituents A and $\mathcal{A}^{\prime}, B_{3}$ and B^{\prime}, C and C^{\prime} of two homographic systems of points on a common line or circle, or of tangents to a common point or circle; to determine the two jairs M and M^{\prime}, N^{\prime} and $N^{\prime \prime}$, for which the sum or ditference $P M \pm P M, J^{\prime} N+J^{\prime} N^{\prime}, P$ being a given point or tangent, shall have a given magnitude and sign."

Ex. 4°. Given threo pairs of corrroponding comstituents A and A^{\prime}, N and $3^{\prime}, C$ and C^{\prime} of teno homographic systems of points on a comulion line or circle, or of tangents to a common point or circle: lo determine tho two pairs M and M^{\prime}, N and V^{\prime} which shall furm with twe giren points or tangents I' and Q a system haring a given anharmonic ratio.

Taking the three proints or lines $A^{\prime \prime}, J^{\prime \prime}, C^{\prime \prime}$ corneeted with the given three A, B, C by the common relation $\left[P^{\prime} Q A . A^{7}\right\}=\left\{P Q B B^{2}\right\}=\left\{P Q C C^{\prime}\right\}$ - the given anharmonic ratio; constructing then the two double pointe or lines $M^{\prime}=M^{\prime \prime}$ and $N^{\prime \prime}-N^{\prime \prime}$ of the two homographio syoterss determined by the three pairs of corresponding comatituente A^{\prime} and $\mathcal{A}^{\prime \prime}, B^{\prime}$ and $B^{\prime \prime}$, C^{\prime} and $C^{\prime \prime}$; and taking finally the two points or lines M and N connected with the two M^{\prime} and N^{\prime} by the common relation $\left\{P^{\prime} Q M M{ }^{\prime}\right\}=\left\{P Q N N^{\prime}\right\}$ - the given anharmonic ratio; the two pairs of constituents M and M ', N and N^{\prime} are those required.

For, since, by construction, $\left\{P Q A A^{\prime \prime}\right\}=\left\{P^{P} Q 133^{\prime \prime}\right\}=\left\{P^{\prime} Q C^{\prime \prime}\right\}-\left\{P Q M M M^{\prime \prime}\right\}$ - $\left|I^{\prime} Q N N^{\prime \prime \prime}\right|=$ the given anharmonic ratio, therefore (329) $\{A B C . M N\}$ - $\left\{A^{\prime \prime} \|^{\prime \prime} C^{\prime \prime} M^{\prime \prime} V^{\prime \prime \prime}\right\}_{;}$and, since again, by construction, $M^{\prime}=M^{\prime \prime}$ and $N^{\prime \prime}=N^{\prime \prime}$ are the two double points or lines of the two homographie systems $A^{\prime}, B^{\prime}, C^{\prime \prime}, \& c$ and $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, \delta c$ therefore $\left\{A^{\prime} B^{\prime} C^{\prime} M^{\prime} N^{\prime \prime}\right\}$ - $\left\{A^{\prime \prime} \mathcal{B}^{\prime} C^{\prime \prime} M^{\prime \prime} N^{\prime \prime \prime}\right\}$; consequently therefore $\{A B C M N\}=\left\{-A^{\prime} X^{\prime} C^{\prime} M^{\prime} N^{\prime \prime}\right\}$; or, the two pairs of constituents M and $M \prime, N$ and $\mathcal{N}^{\prime \prime}$, which by construction form with P and Q the given anharmonic ratio, are pairs of eorresponding constituents of the two homographic systems A, M, C, sic. and $A^{\prime}, B B^{\prime}, C^{\prime}, \& C^{\prime}$; and therefore \&.C.

Ex. 3°. Given three pairs of eorresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime} of one pair of homographic systems of points on a common line or circle, or of tangents to a common point or circle; and also threo pairs l^{\prime} and $P^{\prime \prime}, ~ Q$ and $Q^{\prime \prime}, R$ and $K^{\prime \prime}$ of another pair of homographic systoms of proints on the same line or circle, or of tangents to the zame point
-or circlo: to determine the two pairs M and M^{\prime} or $M^{\prime \prime}, N$ and N^{\prime} or $N^{\prime \prime}$ common to both pairs of systems.

Taking the three points or lines $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ connected with the given three A, B, C by the relations $\{P Q R A\}=\left\{P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime} A^{\prime \prime}\right\},\{P Q R B\}$ $=\left\{P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime} B^{\prime \prime}\right\},\{P Q R C\}=\left\{P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime} C^{\prime \prime \prime}\right\}$; constructing then the two double points or lines $M^{\prime}=M^{\prime \prime}$ and $N^{\prime}=N^{\prime \prime}$ of the two homographic systems determined by the three pairs of corresponding constituents A^{\prime} and $\mathcal{A}^{\prime \prime}$, B^{\prime} and $B^{\prime \prime}, C^{\prime}$ and $C^{\prime \prime}$; and taking finally the two points or lines ir and N connected with the two $M^{\prime}=M^{\prime \prime}$ and $N^{\prime}=N^{\prime \prime}$ by the relations $\{A B C M\}=\left\{A^{\prime} B^{\prime} C^{\prime} M^{\prime}\right\}=\left\{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} M^{\prime \prime}\right\}$ and $\{A B C N\}=\left\{A^{\prime} B^{\prime} C^{\prime} N^{\prime}\right\}$ $=\left\{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} N^{\prime \prime}\right\}$; the two pairs of constituents M and M^{\prime} or $M^{\prime \prime}, N$ and N^{\prime} or $N^{\prime \prime}$ are those required.

For, since, by virtue of the preceding relations, $\{A B C M N\}$ $=\left\{A^{\prime} B^{\prime} C^{\prime} M^{\prime} N^{\prime}\right\}$, and also (327) $\{P Q R M N\}=\left\{P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime} M^{\prime \prime} N^{\prime \prime}\right\}$; and since by construction $M^{\prime}=M^{\prime \prime}$ and $N^{\prime}=N^{\prime \prime}$; therefore M and M^{\prime} or $M^{\prime \prime}, N$ and N^{\prime} or $N^{\prime \prime}$ are pairs of corresponding constituents of both pairs of homographic systems; and therefore \&c.
N.B. This latter problem evidently comprehends the three preceding as particular cases; and with them a variety of others of the same nature corresponding to the variety of other ways in which homographic systems may be generated. See the various articles of the preceding chapter in which the principal of them are given.

Ex. 6°. Given three pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime} of two homographic systems of points on a common circle, or of tangents to a common circle; to determine the two pairs M and M^{\prime}, N and N^{\prime}.
a. Whose lines of connexion, in the former case, shall pass through a given point P.
a^{\prime}. Whose points of intersection, in the latter case, shall lie on a given line L.

In the former case. Taking the three second intersections $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ with the circle of the three lines $P A, P B, P C$; constructing then the two double points $M^{\prime}=M^{\prime \prime}$ and $N^{\prime}=N^{\prime \prime}$ of the two homographic systems determined by the three pairs of corresponding constituents A^{\prime} and $A^{\prime \prime}, B^{\prime}$ and $B^{\prime \prime}$, C^{\prime} and $C^{\prime \prime}$; and taking finally the two second intersections M and N with the circle of the two lines $P M^{\prime}$ and $P N^{\prime}$; the two pairs of points M and M^{\prime}, N and N^{\prime} are those required.

In the latter case. Drawing the three second tangents $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ to the circle through the three points $L A, L B, L C$; constructing then the two double tangents $M^{\prime}=M^{\prime \prime}$ and $N^{\prime}=N^{\prime \prime}$ of the two homographic systems detcrmined by the three pairs of corresponding constituents A^{\prime} and $A^{\prime \prime}$, B^{\prime} and $B^{\prime \prime}, C^{\prime}$ and $C^{\prime \prime}$; and drawing finally the two second tangents M and N to the circle through the two points $L M^{\prime}$ and $L N^{\prime}$; the two pairs of tangents M and M^{\prime}, N^{\prime} and N^{\prime} are those required.

For, in both cases, since, by construction, $\left\{\mathcal{A}^{\prime} B^{\prime} C^{\prime} M^{\prime} N^{\prime \prime}\right\}$ - $\left\{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} M^{\prime \prime} \Lambda^{\prime \prime \prime}\right\}$, and since, by (31S, a and $\left.a^{\circ}\right),\left\{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} M^{\prime \prime} N^{\prime \prime}\right\}$ $=\{A B C M N\}$; therefore $\{A B C M N\}=\left\{A^{\prime} B^{\prime} C^{\prime} M^{\prime} N^{\prime}\right\}$; and therefore $\mathbb{S c}$.

Ex. 7°. Given three pairs of corresponding constituents A and \mathcal{A}^{\prime}, B and B^{\prime}, C and C^{\prime} of two homographic systems of points on any faco ases, or of rays through any two vertices: to determine the two gairs M and M^{\prime}, N and $N^{\prime \prime}$.
a. Whuse lines of connezion, in the former case, shall pass through a given point, or louch a given circle tangent to the two ares.
a. Whose points of intersection, in the latter ease, shall lis on a given line, or on a gicen circle passing through the twoo certices.

Here, evidently, the three given pairs of eorresponding constituents determine; in the former case, the corresponding three of two homographic systems of rays through the given point, or of tangents to the given circle, whose double lines intersect with the given axes at the required pairs of constituents; and, in the latter case, the corresponding three of two homographio systems of points on the given line, or circle, whose double points conneet with the given vertices by the required pairs of constituents.
N.B. In the case of the latter property a°; the two rays, constituting each required pair of corresponding constituents, being parallel when the given line is at infinity (16), and intervecting at a given angle for every given circle passing through the two vertices (Fiuc. IIt. 21, 29); the two solutions, real or imsginary, (see Art. 339) of the problem "Giren three pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime} of twa homographic systems of rays through different verticen, to determine tha two pairs M and M^{\prime}, N^{\prime} and N^{\prime} whose directions are parallel, or, more generally, interseet at any given angle," are consequently given by it for every form of the angle.

Ex. 8. Given three pairs of corresponding comstituents A and \mathcal{A}^{\prime}, B and B^{\prime}, C and C^{\prime} of two homographic systems of points on any twoo ases, or of rays through any two rertices: to determine the two pairs M and M ', N and N^{\prime}.
a. Whose lines of connection with a given point P, in the former ease, shall, 1°, coincide: 2°, contuin a given angle: 3°, make equal angles with a gicen line through the point : 4°, divide in a given anharmonic ratio a given angle at the point.
 shall, 1°, coincide: 2°, intercept a giren segment: 3°, make equal segments with a giren point on the line: 4°, divide in a given onharmonic ratio a given segment of the line.

Here, in the former case; the required pairs of connectors $P M$ and $P M, P N$ and $P^{\prime} N^{\prime}$ are evidently, with respect to the two bomographio pencils of rays determined at P by the three given pairs of connectors $P .1$ and $P A^{\prime}, P B$ and $P B^{\prime}, P C$ and $P^{\prime} C^{\prime}$; in 1°, the double rays; in 2°,
the pairs containing the given angle; in 3°, the pairs equally inclined to the given line ; in 4°, the pairs dividing in the given anharmonic ratio the given angle. And, in the latter case; the required pairs of intersections LM and $L M^{\prime}, L N$ and $L N^{\prime}$ are evidently, with respect to the two homographic rows of points determined on L by the three given pairs of intersections $L A$ and $L A^{\prime}, L B$ and $L B^{\prime}, L C$ and $L C^{\prime}$; in 1°, the double points; in 2°, the pairs intercepting the given segment; in 3°, the pairs equidistant from the given point; in 4°, the pairs dividing in the given anharmonic ratio the given segment. In both cases, consequently, while the solution of problem 1° is reduced at once to the corresponding ease of Art. 348, those of problems $2^{\circ}, 3^{\circ}, 4^{\circ}$ are reduced to those of examples $2^{\circ}, 3^{\circ}, 4^{\circ}$ of the present article.
N.B. The above reciprocal solutions would all manifestly remain unchanged, if the point P were replaced by a circle touching the two axes, in the former case, and the line L by a circle containing the two vertices, in the latter case.

Ex. 9°. Given two triads of corresponding constituents $A, A^{\prime}, A^{\prime \prime}$ and $B, B^{\prime}, B^{\prime \prime}$ of three homographic systems of points on a common line or circle, or of tangents to a common point or circle; to determine the three systems which shall have a pair of triple points or lines $M=M^{\prime}=M^{\prime \prime}$ and $N=N^{\prime}=N^{\prime \prime}$; with the positions of the two triple points or lines M and N.

Constructing the two double points or lines M and N of the two homographic systems determined by the three pairs of corresponding constituents A and B, A^{\prime} and $B^{\prime}, A^{\prime \prime}$ and $B^{\prime \prime}$; the two points or lines $M K$ and N are those required; and the position of either, as supplying a third triad of corresponding constituents in addition to the given two, determines, of course, the required systems (327).

For, since, by (342), $\{M N A B\}=\left\{M N A^{\prime} B^{\prime}\right\}=\left\{M N A^{\prime \prime} B^{\prime \prime}\right\}$; therefore \&c.

Cor. 1°. The following property of two conjugate triads of homographic systems of points on a common line or circle, or of tangents to a common point or circle, follows immediately from the above.

If the three systems determined by the three triads of corresponding constituents $A, A^{\prime}, A^{\prime \prime} ; B, B^{\prime}, B^{\prime \prime} ; C, C^{\prime}, C^{\prime \prime}$ have a pair of triple points or lines M and N; the three determined by the three triuds A, B, C; $A^{\prime}, B^{\prime}, C^{\prime \prime} ; A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ have also a pair of triple points or lines; and the triple points or lines are the same for both triads.

For, as the relations

$$
\begin{equation*}
\{M N A B C\}=\left\{M N A^{\prime} B^{\prime} C^{\prime}\right\}=\left\{M N A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}\right\} \tag{1}
\end{equation*}
$$

involve reciprocally, by (272), the relations

$$
\begin{equation*}
\left\{M N A A^{\prime} A^{\prime \prime}\right\}=\left\{M N B B^{\prime} B^{\prime \prime}\right\}=\left\{M N C C^{\prime} C^{\prime \prime}\right\} \tag{2}
\end{equation*}
$$

and conversely; therefore \&c.
Cor. 20. The comparison of both groups of relations (1) and (2) of the
preceding (Cor. 1°) gires immediately (2S2) the three following groups of relations among the nine constituent points or lines themselres, viz. -

$$
\begin{aligned}
& \left\{A^{\prime} A^{\prime \prime} B C\right\}=\left\{A^{\prime \prime} A B^{\prime} C^{\prime}\right\}-\left(A \cdot A^{\prime} B^{\prime \prime} C^{\prime \prime}\right\} \ldots \ldots .(1), \\
& \left\{B^{\prime} B^{\prime \prime} C A\right\}=\left\{B^{\prime \prime} B C^{\prime} A^{\prime}\right\}=\left\{B B^{\prime} C^{\prime \prime} A^{\prime \prime}\right\} \ldots \ldots . .(2), \\
& \left\{C^{\prime} C^{\prime \prime} A B\right\}=\left\{C^{\prime \prime} C A^{\prime} B^{\prime}\right\}=\left\{C C^{\prime} A^{\prime \prime} B^{\prime \prime}\right\} \ldots \ldots . .(3)
\end{aligned}
$$

which are therefore the conditions, necessary and sufficient, that either (and therefore the other) of the two triads of homographic systems, determined by the two conjugate triads of corresponding constituents, should have a pair of triplo points or lines.

Ex. 10, a. Given tue triads of corresponding constiluents $A, A^{\prime}, A^{\prime}$ and $B, B^{\prime}, B^{\prime \prime}$ of three homographic roses of points on any thiree ases, and one of the three lines L which interwed with the three ases at a triad of corresponding points $I^{\prime}, J^{\prime \prime}, J^{\prime \prime \prime}$; lo determine the other tweo M and \mathcal{N}^{\prime} which intersect weith them also at triads of correoponding points $Q, Q^{\prime}, Q^{\prime \prime}$ and $R, K^{\prime}, R^{\prime \prime}$.

Ex. $10^{\circ} . a^{\prime}$. Given two briads of corresponding consfifuents $\mathrm{A}, \mathrm{A}, \mathrm{A}^{\text {" }}$ and $1 B, 13^{\circ}, B^{"}$ of three homographic pencils of rays through any three vertices, and one of the three points P weill cownect with the three vertices by a triad of corresponding rays L., $L_{i}^{\prime}, L^{\prime \prime} ;$ to determine the other two Q and R which connect with them also by triads of corresponding rays $M, M^{\prime}, M^{\prime \prime}$ and $N^{\prime}, N^{\prime \prime}, N^{*}$;

In the former case. Taking the tro triade of pointe $X_{i}, X^{\prime}, X^{\sim}$ and $I^{\prime}, \Sigma^{\prime \prime}, \Sigma^{\prime \prime \prime}$ at which the sides of the two triaggles $A \cdot f^{\prime} A^{\prime \prime}$ and $B B \cdot B^{\prime \prime}$ intersect with the given line L_{0}; and constructing the two double points E and F of the two homographic rows determined on I, by the three pairs of corresponding concritaents \boldsymbol{X}^{\prime} and $\boldsymbol{Y}_{0}, \boldsymbol{X}^{\prime \prime}$ and $\boldsymbol{Y}^{\prime \prime}, \boldsymbol{X}^{\prime \prime}$ and \boldsymbol{Y}^{-m}; tho required lines M and A pass ithrough P and F° reopectively, and may therefore be determined by the first case of I.x. $7^{\circ}, a$.

For, if E and F be the two points at which M and V intersect with $L_{\text {; }}$ then since, hy the first case of ($335, a$),

$$
\begin{aligned}
& \left\{Y^{\prime} F^{\prime} \mathcal{X}^{\prime} I^{\circ}\right\}=\left\{Q^{\prime} B^{\prime} A^{\prime} B^{\prime}\right\}=\left\{Q^{\prime \prime} R^{\prime} A^{\prime \prime} B^{\prime \prime}\right\} \ldots \ldots . . .(1) \text {, } \\
& \left\{E F I^{\prime \prime} \mathcal{I}^{\prime \prime}\right\}=\left\{Q^{\prime \prime} \mathbb{R}^{\prime \prime} A^{\prime \prime} J^{\prime \prime}\right\}=\{Q R A B\} \ldots \ldots . . .(2) \text {, }
\end{aligned}
$$

 \&c. (342).

In the latter casc. Taking the tro triads of lines $\boldsymbol{X}, \boldsymbol{X}^{\prime}, \boldsymbol{N}^{\circ}$ " and $I^{\circ}, \Sigma^{\prime \prime}, \Sigma^{\prime \prime \prime}$ by which the vertices of the two triangles $A_{1}, A^{\prime}, A^{\prime \prime}$ and $B, B^{\prime}, B^{\prime \prime}$ connect with the given point $P_{\text {; a }}$ and conatructing the swo double rays E and F of the two homographic pencils determined at P^{\prime} by the three pairs of corresponding constituents X^{\prime} sind Y_{i}, X^{\prime} and $Y^{\prime}, X^{\prime \prime}$ and $Y^{\prime \prime \prime}$; the required points Q and $I t$ lic on I^{\prime} and F^{\prime} respectively, and may therefore to deterained by the first case of Lix. $\overline{7}, \pi$.

For, if E and F be the two lines by which Q and R connect with P; then since, by the first case of $\left(338, a^{\prime}\right)$,

$$
\begin{aligned}
& \{E F X Y\}=\left\{M^{\prime} N^{\prime} A^{\prime} B^{\prime}\right\}=\left\{M^{\prime \prime} N^{\prime \prime} A^{\prime \prime} B^{\prime \prime}\right\} \ldots \ldots . .\left(1^{\prime}\right), \\
& \left\{E F X^{\prime} Y^{\prime}\right\}=\left\{M^{\prime \prime} N^{\prime \prime} A^{\prime \prime} B^{\prime \prime}\right\}=\{M N A B \quad\} \ldots \ldots \cdot\left(2^{\prime}\right), \\
& \left\{E F X^{\prime \prime} Y^{\prime}\right\}=\{M N A B \quad\}=\left\{M^{\prime} N^{\prime} A^{\prime} B^{\prime}\right\} \ldots \ldots .\left(3^{\prime}\right) ;
\end{aligned}
$$

therefore at once $\{E F X Y\}=\left\{E F X^{\prime} Y^{\prime}\right\}=\left\{E F X^{\prime \prime} Y^{\prime \prime}\right\}$; and therefore \&c. (342).

Cor. 1°. If $C, C^{\prime}, C^{\prime \prime}$ be any third triad of corresponding constituents of the three systems, in either case; and $Z, Z^{\prime}, Z^{\prime \prime}$ the three points or lines at which the three sides or by which the three vertices of the triangle $C, C^{\prime}, C^{\prime \prime}$ intersect with the line L or connect with the point P; then since, in either case, for the same reason as above,

$$
\{E F X Y Z\}=\left\{E F X^{\prime} Y^{\prime} Z^{\prime}\right\}=\left\{E F X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}\right\},
$$

and similarly for all triads; therefore the three rows or pencils X, Y, Z, \&c.; $X^{\prime}, Y^{\prime}, Z^{\prime}, \& c . ; X^{\prime \prime}, Y^{\prime \prime}, Z^{\prime \prime}$, \&c. are homographic, and have E and F for triple points or rays. Hence the following general properties of the three lines L, M, N in the former case, and of the three points P, Q, R in the latter case.
a. The sides of the system of triangles formed by the several triads of corresponding points determine on each line, in the former case, three homographic rows having a pair of triple points; and the triple points on each line are its intersections with the other two.
a^{\prime}. The vertices of the systems of triangles formed by the several triads of corresponding rays determine at each point, in the latter case, three homographic pencils having a pair of triple rays; and the triple rays at each point are its connectors with the other two.
N.B. That, in both cases, the three triads of systems are homographic with each other and with the systems of the original triad, follows also immediately from the first parts of ($338, b$ and b^{\prime}); and that for each triad the points or lines in question are triple, is evident also from the obvious consideration, that, of a triangle, when the three vertices are collinear, the three sides intersect with every line at a triad of coincident points, and, when the three sides are concurrent, the three vertices connect with every point by a trlad of coincident lines.

Cor. 2^{3}. From the reciprocal properties of the preceding corollary it follows immediately, by virtue of $\left(341,1^{\circ}\right)$, that-

For three homographic rows of points on different axes, or pencils of rays through different vertices, no more than three triads of corresponding constituents could be collinear in the former case, or concurrent in the lntter case, unless all triads of corresponding constituents were collinear in the former case, or concurrent in the latter case.

For, if four collinear or concurrent triads existed, then, of the four lines of collinearity or points of concurrence, every three, by the properties in question, would intersect of connect with the fourth at three triple points or by three triple rays of the three homographic rows or pencils determined on or at it by the sides or vertices of the system of triangles formed by the several other triads; which three homographic rows or pencils should therefore (311,19 entirely coimcide; and therefore \&e.
N.13. Hetween the three lines L, M, N and the three axes of the rows in the former case, or between the three points I, Q, M, and the three vertices of the pencils in the latter case, no relation of connexion necessarily existo ; both triads in either case may be given or taken arbitrarily; and give rise in all cases to two conjugato triads of homographio rows or pencils, determined; in the former caso, by the three triads of corresponding constituents $P_{0}, I^{\prime}, I^{m} ; Q, Q^{\prime}, Q^{\prime} ; K_{0}, M^{\prime}, I^{\prime}$ on the three axes, and by the three $P, Q, H_{;} I^{\prime}, Q^{\prime}, \mathcal{K}^{\prime} ; Y^{\prime \prime}, Q^{\prime \prime}, \mathbb{K}^{\prime \prime}$ on the three lines; and, in the latter case, by the three triads of corresponding constituents $L, L, I, I_{0}{ }^{\prime \prime}$; $M, M ; M M^{\prime \prime} ; N^{\prime \prime}, N^{\prime \prime}$ at the three vertices, and by the three I, M, N; $I_{i}, M^{\prime}, \mathcal{N}^{\prime \prime} ; K^{\prime \prime}, M^{\prime \prime}, N^{\prime \prime}$ at the three pnints; between which there exist several interesting relations of connexion, though the two triads of lines or points which determine them are entirely arbitrary.

When, of six lines or pointe given or taken arbitrasily, any (and therefore every) four intersect or connect equinnharmonically with the resmaining two (301, a and a'); then (335) of the three bomographic rows or peneils determined by any three of them on or at the remaining three, all triads of corresponding constituents are collinear or coocurrent; and, convernely, when, of three homographic rows or peacils girea or taken arbitrarily, any four (and therefore all) trinds of corresponding constituents are collineas or concurrent (Cor. 20 above); then (335), of the three axes and any three lines of collinearity, or of the three vertices and any three point of concurrence, every four of the six intersect or conneet equianharmonically with the remaining two.

Fx. 11°. a. Given two triads of corresponding constituents $A, A^{\prime}, A^{\prime \prime}$ and B, B, B^{n} of three homographic systems, one A, B, C, tive. of points on an aris, and tuco $A^{\prime}, B^{\prime}, C^{\prime}$, g'c. and $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$, g'c. of points on a circle : and one of three lines L which determine a collinear triad $P, I^{\prime \prime}, J^{\prime \prime \prime}$; to construct the other two M and N which determine collinear triads $Q, Q^{\prime}, Q^{\prime \prime}$ and $R, R^{\prime}, \boldsymbol{I r}^{\prime \prime}$.

Ex. $11^{\circ}, a^{\prime}$. Given two triads of corresponding constiluents $\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}$ and $B, B, B^{\prime \prime}$ of three homographic systems, one A, B, C, dee of rays through a vertex, and twoo $\mathcal{A}^{\prime}, B^{\prime}, C^{\prime}$, s.e. and $\mathcal{A}^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$, de. of tangents to a circle; and one of the three points P which determine a concurrent triad $L, L^{\prime}, L^{\prime \prime}$; to construet the other two R and S which determine concurrent triads $M, M^{\prime}, M^{\prime \prime}$ and $N, N^{\prime \prime}, N^{\prime \prime}$.

Here, since in the former case, by the second case of $(338, a)$, the several
lines of connexion $A^{\prime} A^{\prime \prime}, B^{\prime} B^{\prime \prime}, C^{\prime} C^{\prime \prime}$, \&c. of the several pairs of corresponding points on the circle determine on any two of themselves $I^{\prime} H^{\prime \prime}$ and $K^{\prime \prime} K^{\prime \prime \prime}$ two collinear systems $A_{i}, B_{i}, C_{i}, \& c .$, and $A_{u}, B_{u, \prime} C_{w}$, \&c., homographic with the two concyclic systems $A^{\prime} B^{\prime}, C^{\prime}, \&$ c.., and $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, \& . c$. and therefore with the collinear system $A, B, C, \&-$.; and, since in the latter case, by the second case of $\left(338, a^{\prime}\right)$, the several points of intersection $A^{\prime} A^{\prime \prime}, B^{\prime} B^{\prime \prime}, C^{\prime} C^{\prime \prime}$, \mathbb{E}. of the several pairs of corresponding tangents to the circle determine at any two of themselves $H^{\prime} I^{\prime \prime}$ and $K^{\prime} K^{\prime \prime}$ two concurrent systems $A_{n}, B_{n}, C_{0}, \& \in$. , and $A_{\mu,}, B_{n}, C_{n}, \& \in$. , homographic with the two concyclic systems $A^{\prime}, B^{\prime}, C^{\prime}, \& c$. , and $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, \& c$. , and therefore with the concurrent system $A, B, C, \& C$. ; the two reciprocal problems of the present are consequently reducible at once to those of the preceding example; and the various inferences there drawn are accordingly applicable here also.
354. In all the examples of the preceding article, the two homographic systems, whose double points or lines were the object of enquiry, direct or indirect, were supposed to have been given by means of three pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime}; which, in all cases, as shewn in Art. 327, implicitly determine the systems, and all particulars connected with them. In the applications of the theory, however, it is the law connecting the several pairs of corresponding constituents, whatever it be, and not the actual triad of constituents themselves, which is generally given; and, should the law of connexion not be such as to furnish the required double points or lines directly by a simpler construction, a certain preliminary process is consequently necessary before the particular construction corresponding to the case, as already described, can be applied.

This preliminary process is however uniformly the same in all cases, and consists simply in taking arbitrarily any threc constituents A, B, C of either system, and constructing their three correspondents $A^{\prime}, B^{\prime}, C^{\prime}$ of the other, in accordance with the given law of connexion, whatever it be. The three pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime} necessary and sufficient to determine the two homographic systems, whose double points or lines give the two solutions of the proposed problem, are thus obtained; and the subsequent process is that already described and exemplified at some length in the preceding article.
355. If, in the performance of the preliminary process described in the preceding article, two of the three coincilences $A=A^{\prime}, B=B^{\prime}, C=C^{\prime}$ should happen to result, the required double points or lines, and therefore the two solutions of the proposed problem, would of course be obtained without the necessity of any further construction. In the performance of the preliminary process, therefore, each arbitrary assumption of a point or line A of either system, from which to construct the corresponding point or line A^{\prime} of the other system by application of the given law of connection between then, may be regarded as an attemple to solve the proposed problem by the methal of trial; which would be succesvful if $A^{\prime}=A$; but which of course results generally in a failure, of which $A A^{\prime}$ represents the amount of error both in magnitude and sign. And it is by a simple and uniform process, based on tho data resulting from three such attempts and their failures, that, as in the method of fulse pasition in Arithmetic, tho true solutions of the proposed problem are by this methot eventually obtaired.
3.56. With a few examples of problems solvod by the above method of trial, and coming under the second class (353) of those reducible to the determination of the double points or lines of two homographic systeus, wo shall conclude the present chapter.

Ex. 1°. To divide a given segment or angle EF in a given anharmonic ratio, by a regment or angle $M M^{\prime}$, or $\mathcal{N} \aleph^{\prime \prime}$, of given magnitude, or having a given point or line of bisection.

Assuming arbitrarily any three points on the axis of the segment or rays through the vertex of the angle A, B, C; and constructing the three $A^{\prime}, I^{\prime}, C^{\prime}$ for which $\left\{E F, A A^{\prime}\right\}=\left\{E F^{\prime} T H H^{\prime}\right\}-\left\{E F^{\prime} C C^{\prime}\right\}$ - the given anharmonic ratio, and also the three $A^{\prime \prime}, \bar{B}^{\prime \prime}, C^{\prime \prime}$ for which the three segments or angles $A A^{\prime \prime}, B B^{\prime}, C C^{\prime \prime}$ have the given magnitudo or bisector; if, having proceeded so far, two of tho three coincidences $A^{\prime}=A^{\prime \prime}, \boldsymbol{B}^{\prime}=\boldsymbol{B}^{\prime \prime}, C^{\prime}=C^{\prime \prime}$ happen to result, the problem is solved; if not, the two syrtems of points or rays $A^{\prime}, B^{\prime}, C^{\prime}, \&\left(\mathbb{C}\right.$. and $A^{\prime \prime}, H^{\prime \prime}, C^{\prime \prime}, \mathcal{A}$., being both homographic with the system $A, B, C, \& . c .(329)$, and therefore with each other (323), the two double points or rays $M^{\prime}=M^{\prime \prime}$ and $N^{\prime \prime}=N^{\prime \prime \prime}$ of the two former, with their two correspondents M and N in the latter, give the two segments or angles MM' and N'N' which satisfy its two condition.
N.B. Of the above problems (which evidently include as particular cases those of 1° and 2°, Cor. 3°, Art. 227) the first may obviously be stated otherwise as follows: "To place two segments or angles of given magnitude so as to cut each other in a given anharmonic ratio."

Ex. 23. To divide two given segments or angles EF and GII, having a common axis or vertex, in two given anharmonic ratios, by a common segment or angle $M M^{\prime}$, or $N N^{\prime}$.

Assuming arbitrarily any three points on the axis or rays through the vertex A, B, C; and constructing the three $A^{\prime}, B^{\prime}, C^{\prime}$ for which $\left\{E F A A^{\prime}\right\}$ $=\left\{E F B B^{\prime}\right\}=\left\{E F C C^{\prime}\right\}=$ the given anharmonic ratio for $E F$, and also the three $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ for which $\left\{G I I A A^{\prime \prime}\right\}=\left\{G H B B^{\prime \prime}\right\}=\left\{G H C C^{\prime \prime}\right\}=$ the given anharmonic ratio for $G M$; if, having proceeded so far, two of the three coincidences $A^{\prime}=A^{\prime \prime}, B^{\prime}=B^{\prime \prime}, C^{\prime}=C^{\prime \prime}$ happen to result, the problem is solved; if not, the two systems of points or rays $A^{\prime}, B^{\prime}, C^{\prime}$, \&e. and ${ }^{\prime \prime} \mathcal{A}^{\prime \prime}, \mathcal{B}^{\prime \prime}, C^{\prime \prime}$, \&c. being homographic with the system $A, B, C, \& c$. (329), and therefore with each other (323), the two double points or rays $M^{\prime}=M I^{\prime \prime}$ and $N^{\prime}=N^{\prime \prime}$ of the two former, with their two correspondents M and N in the latter, give the two segments or angles $M M^{\prime}$ and $N N^{\prime}$ which satisfy its two conditions.
N.B. To the first of the above problems (which evidently include those of Art. 230 as particular cases) the following, by virtue of the general property of Art. 332, may obviously be reduced: "Given four points P, Q, R, S on a common axis, to determine the two M and M^{\prime}, or N and $N^{\prime \prime}$, on the axis, for which the two rectangles $P M . Q M^{\prime}$ and $R M . S M^{\prime}$, or $P N . Q N^{\prime}$ and $R N . S N^{\prime}$, shall be given in magnitude and sign."

Ex. 3°. Given two points on or tangents to a circle E and F, to divide their intercepted arc $E F$ in a given anharmonic ratio by two others M and M^{\prime}, or \boldsymbol{N} and \boldsymbol{N}^{\prime};
a. Connecting, in the former case, through a given point P.
a^{\prime}. Intersecting, in the latter case, on a given line L.
Assuming arbitrarily any three points on or tangents to the circle A, B, C; and constructing the three $A^{\prime}, B^{\prime}, C^{\prime}$ for which $\left\{E F A A^{\prime}\right\}$ $=\left\{E F B B^{\prime}\right\}=\left\{E F C^{\prime}\right\}=$ the given anharmonic ratio, and also the three $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ which connect with A, B, C in the former case through the given point P, or intersect with A, B, C in the latter case on the giren line L; if, having proceeded so far, two of the three coincidences $A^{\prime}=A^{\prime \prime}$, $J^{\prime}=B^{\prime \prime}, C^{\prime}=C^{\prime \prime}$ happen to result, the problem is solved; if not, the two systems of points or tangents $A^{\prime}, B^{\prime}, C^{\prime}, \& . c$ and $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$, \&c. being both homographic with the system $A, B, C, \& c .(329$ and 315), and therefore with each other (323), the two double points or tangents $M^{\prime}=M^{\prime \prime}$ and $N^{\prime}=N^{\prime \prime}$ of the two former, with their two correspondents M and N in the latter, give the two pairs of points or tangents M and M^{\prime}, \boldsymbol{N} and \boldsymbol{N}^{\prime} which fulfil both required conditions.
N.B. To the above problems (which evidently include those of Cor. 4°, Art. 237, as particular cases) the following, by sirtue of the general property of Art. 257, may obviously be reduced; viz. "To divide two given arcs of two given circles, one harmonically, and the other in any given anharmonic ratio, by four collinear points on, or by four concurrent tangents to, the circles."

Ex. 4', a. On two given lines L and \mathcal{L} ' to find two points M and $M^{\prime \prime}$, or \mathcal{N} and N^{\prime}, whose lines of connection with each of two given points P and $P^{\prime \prime}$ shall; 1 , contain a given angle; ${ }^{\circ}$, make equal angles with a given line through the point; 3^{3}, divide in a given anharmonic ratio a given anyle at the point.

Ex. 4. $a^{\text {. }}$. Through two given puints P and P to drawo two lines M and M^{\prime}, or V^{\prime} and $N^{\prime \prime}$, whose proints of intersection with each of two giren lines L and L^{\prime} ' shall; 1°, intercept a given argment; 2^{3}, make equal segments with a given point on the live; 3^{3}, divide in a given anharmonic ratio a given segment of the line.

In the former case; taking arbitrarily; on either line L, any three points $A, B, C_{;}$and constructing, on the other I_{i}^{\prime}, the three $A^{\prime}, \mathcal{H}, C^{\prime \prime}$ for which the three angles $A I^{\prime} A^{\prime}, \mathcal{I} I^{\prime} H^{\prime}, C P^{\prime} C^{\prime}$ fulkil the requirod condition for the point P^{\prime}, and also the three $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ for which the three $A I^{\prime \prime} A^{\prime \prime}$, $13 P^{\prime} 13^{\prime \prime}, C P^{\prime} C^{\prime \prime}$ fulal that for the point P '. And, in the latter case; drawing asbitrarily, through either point P, any three rays A, B, C; and constructing, through the other P°, the three $\mathcal{A}^{\prime}, B^{\prime}, C^{\prime}$ for which the three
 and also the three $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ for which the three $A L^{\prime} A^{\prime \prime}, B I I^{\prime} B^{\prime}, C L^{\circ} C^{\prime \prime}$ fulfil that for the line L.. If, in either ense, having proceeded so fer, two of the three coincidences $\mathcal{A}^{\prime}=\mathcal{A}^{\prime \prime}, B^{\prime}=B^{\prime \prime}, C^{\prime}=C^{\prime \prime}$ happen to result; the problem is solved; if not, the two systems of points of rays $\mathcal{A}^{\prime}, B^{\prime}, C^{\prime}$, S.c. anll $\mathcal{A}^{\prime \prime}, \|^{\prime \prime}, C^{\prime \prime}$, \&c. being homographic with the syatem $\boldsymbol{A}, \boldsymbol{B}, C$, Ne. (sce Ex. 8 of preceding Art), and therefore with each other (323), the two double pointe or rays $M^{\prime}-M^{\prime \prime}$ and $N^{\prime}-N^{\prime \prime}$ of the two former, with their two correspondents M and \mathcal{N} in the latter, are the two pairs of points or rays M and M^{\prime}, N^{\prime} and N^{\prime} which fulfil the required conditions.

Ex. 5. a. Through a gieen point P to draw a line intersecting with finur given lines $L_{10}, L_{0}, L_{3} L_{1}$ at a system of four points $M_{1}, M_{5}, M_{3}, M_{4}$, or $\boldsymbol{N}_{1}, \boldsymbol{N}_{2}, \boldsymbol{N}_{2}, \boldsymbol{N}_{11}$ having a given anharmonic ratio.
I.x. $5^{\circ}, a^{\prime}$. On a given line I, to find a point connecting with four given points $I_{1}, P_{3}, P_{3}, P_{1}$ by a system of four rays $M_{3}, M_{6}, M_{2}, M_{6}$, or $\mathbf{N}_{10}, \boldsymbol{N}_{2}, \mathbf{N}_{2}, \boldsymbol{N}_{1}$ husring a given anharmonic ratio.

In the former case. Taking arbitrarily ay three points A_{1}, B_{1}, C_{1} an any one of the four given lines L_{1}; and drawing through them the three lines intersecting with the remaining three I_{3}, L_{y}, L_{4} at the threotriads of points $A_{3}, A_{3}, A_{1} ; B_{2}, H_{3}, B_{1} ; C_{3}, C_{3}, C$ determining with A_{1}, B_{1}, C_{1} the given anbarmonic ratio $(28 \%, a)$; if, having procceded so far, two of the three lines so drawn happen to pass through the given point P, the problem
is solved ; if not, the four systems of points $A_{1}, B_{1}, C_{1}, \& e$. ; $A_{2}, B_{2}, C_{2}, \& e$. ; $A_{3}, B_{3}, C_{3}, \& \cdot c$; $A_{1}, B_{4}, C_{4}, \& c$., on the four given lines $L_{1}, L_{2}, L_{3}, L_{4}$, being homographic (333, Ex. e), the two double rays of the two homographic pencils determined by any two of them at P are the two lines that solve it.

In the latter case. Drawing arbitrarily any three rays A_{1}, B_{1}, C_{1} through any one of the four given points $P_{1} ;$ and taking on them the three points connecting with the remaining three P_{2}, P_{3}, P_{4} by the three triads of rays $A_{3}, A_{3}, A_{4} ; B_{2}, B_{3}, B_{1} ; C_{2}, C_{3}, C_{4}$ determining with A_{1}, B_{1}, C_{1} the given anharmonic ratio (287, a^{\prime}); if, having proceeded so far, two of the three points so taken happen to lie on the given line L, the problem is solved; if not, the four systems of rays A_{1}, B_{1}, C_{1}, \&.c.; A_{2}, B_{2}, C_{3}, \&e. ; A_{3}, B_{3}, C_{3}, \& c.; A_{4}, B_{4}, C_{4}, \&e., through the four given points $P_{1}, P_{2}, P_{3}, P_{4}$, being homographic (333, Ex. e^{\prime}), the two double points of the two homographic rows determined by any two of them on L are the two points that solve it.

Cor. 1°. Regarding the four lines in a, or the four points, in a^{\prime}, as grouped in two pairs determining two angles in the former case, or two segments in the latter case; the above reeiprocal problems may be stated otherwise as follows :
a. Through a given point to drawo a line the segnents intercepted on which by two given angles shall divide each other in a given anharmonic ratio.
a^{\prime}. On a given line to find a point the angles subtended at wolich by two given segments shall divide each other in a given anharmonic ratio.

Cor. 2°. If any one of the four lines, in a, or of the four points, in a^{\prime}, be at infinity; the problems for the remaining three (See Cor. 3°, Art. 285) become modified as follows:
a. Through a given point to drazo a line intersecting with three given lines at three points the ratios of whose three intercepted segments shall be given.
a. On a given line to find a point connecting roith three given points by three lines the ratios of the three segments intercepted by which on a second given line shall be given.
N.B. Of these latter problems the first (a) is obviously a very particular case of that proposed, with others, for solution, on other principles, in 3°, Cor. 1°, Art. 56.

Ex. 6°. a. To draw a line intersecting woith six given lines $L_{1}, L_{2}, L_{3}, L_{4}$, $L_{0} L_{0}$ (or five if any two coincide) so that four points of intersection $M M_{1}, M M_{2}$, M_{1}, M_{4}, or $N_{1}, N_{4}, N_{3}, N_{4}$, shall have one given anharmonic ratio, and four more $M_{1}, M_{4}, M_{0}, M_{4}$ or $N_{1}, N_{2}, N_{0}, N_{0}$, another given anharmonic ratio.

Ex. 6°. a'. To find a point connecting with six given points P_{1}, P_{2}, P_{3}, P_{6}, P_{s}, P_{0} (or fiee if any theo coincide) so that four rays of connexion M_{1}, M_{2}, M_{y}, M_{4}, or $N_{1}, N_{y}, N_{2}, N_{4}$, shall have one given anharnonic ratio, and four more $M_{1}, M_{8}, M_{5}, M_{6}$ or $N_{1}, N_{2}, N_{3}, N_{5}$, another given anharmonic ratio.

In the former case. Taking arbitrarily any three points A_{1}, B_{1}, C_{1} on L_{1}; and drawing through thera the three lines intersecting with L_{5}, L_{3}, I_{4} at the three triads of points $A_{y}, A_{y}, A_{1} ; B_{2}, B_{y}, B_{1} ; C_{3}, C_{2}, C_{1}$ determining with A_{1}, B_{1}, C_{1} the first given antarmonic ratio, end also the three interseeting with I_{2}, L_{v}, I_{0} at the three triads of points $A_{5}, A_{8}, A_{0} ; I_{r}, B_{v}, H_{0}$; $C^{\prime \prime}{ }_{2}, C_{s}, C_{0}^{\prime}$ determining with $A_{1}, B_{1}, C_{\text {, the second given anharnonic ratio }}$ ($2 s 7, a$) ; if, having proceeded so far, two of the three coiveidences $A_{3}=A_{3}$, $H_{3}=B_{i}^{\prime}, C_{1}=C_{i}^{\prime \prime}$ happen to result, the problem is solved; if not, the two systems of points $A_{3} B_{0}, C_{3}$ dic. and $A_{3}, B_{3} ; C_{i}$, de. on I_{3} being both homographic with the agstems A_{1}, B_{1}, C_{1}, , c. on $L_{1}(333, \mathrm{Ex} .0$), and therefore with each other (323), the two double points $M_{3}=M_{2}^{\prime}$ and $N_{2}=N_{;}$of the two former connect with their two correspondents M_{1} and N_{1} in the latter by the two lines which solve it

In the latter case. Drawing arbitrarily any three rays A_{1}, B_{1}, C_{1} through P_{1}; and taking on thers the three pointe connecting with $P_{5} P_{3}$,
 ing with $A_{1}, B_{1}, C_{\text {, }}$ the first given anharmonic ratio, and also the three connecting with P_{5}, P_{0}, P_{0}, by the three triads of rage $A_{3}, A_{5}, A_{0} ; B_{3}, B_{2}$ $B_{0}, C_{3}^{\prime}, C_{6}, C_{6}$ deternining with A_{1}, B_{1}, C_{3} the second given anharmonio ratio ($287, n$); if, hating proceded to fir, two of the three eoincidences, $A_{3}=A_{i}^{\prime}, B_{3}=B_{3}, C_{5}=C_{3}$ happen to result, tho problem is solved; if not, the two aystems of rays $\mathcal{A}_{y}, l_{3}, C_{v}$ de. and $\mathcal{A}_{0}, B_{i}, C_{i}$, de. through P_{5} being both homographic with the systems $\mathcal{A}_{1}, l_{1}, C_{1}$, \&c. through P_{1} (333, Iix.e $)_{\text {) }}$, and therefore with each other (323), the two double reys $M_{i}=M_{1}$ and $N_{0}^{\prime}=\mathcal{N}^{\prime}$; of the two former intersect with thetr two correspondonts M_{1} and N_{1} in the latier at the two points which solve it

Cor. 1°. liegarding the six lines, in a, or the six points, in a', as grouped in three pairs determining three anglee in the former case or three segments in the latter case; the above reciprocel problems, like those of the preeeding example, may be stated otherwise as follows:
a. To drave a line the segments intercepted on tehich by three given angles shall dieide each other two and two in giren anharmonic ratios.
a. To find a point the angless subbended at shich by throe given segments shall diride each other troo and tiro in given anharmonic ratios.

Con. 2. If any two of the four lines, in a, or of the four points, in a^{\prime}, which do not enter into both anharmonic ratios, coincide at infinity; the problems for the rennaining four (see Cor. 3°, Art. 283) become modified as follows:-
a. To drase a line theo of those intersections with four given lines shall divide in given ratios its segment intercepted by the remaining two.
a. To find a point theo of whase connectors with four given points shall diride in given ratios the segment intercepted on a given line by the rennaining $t 100$.
N.B. Of these latter problems, the first (a), it will be remembered, was already proposed for solution, on other principles, at the elose of Art 55.

Ex. 70. a. To a given circle to inscribe a polygon of any order, whose several sides shall pass through given points, or any or all of them touch instead given circles concentric with the original.

Ex. 7°. u^{\prime}. To a given circle to exscribe a polygon of any order, whose several vertices shall lie on given lines, or any or all of them lie instead on gicen circles concentric with the original.

In the former case. Taking arbitrarily any three points A_{1}, B_{1}, C_{1} on the given circle; and constructing successively the several triads of inscribed chords $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2} ; A_{2} A_{3}, B_{2} B_{3}, C_{8} C_{3} ; A_{3} A_{4}, B_{3} B_{4}, C_{3} C_{4} ;$ \&c.; $A_{n} A_{n+1}, B_{n} B_{n+1}, C_{n} C_{n+1}$ passing through (or touching) the several given points (or concentric circles) corresponding respectively to the several successive sides of the polygon; if, having proceeded so far, two of the three coincidences $A_{n+1}=A_{1}, B_{n+2}=B_{1}, C_{n+1}=C_{1}$ happen to result, the problem is solved; if not, the several systems of points A_{1}, B_{1}, C_{1}, \&c.; $A_{2}, B_{2}, C_{2}, \& c . ; A_{3}, B_{3}, C_{3}$, \&c., \&c.; $A_{n+1}, B_{n+1}, C_{n+1}, \& c$. , being all homographic (315), the two double points $M_{1}=M_{n+1}$ and $N_{1}=N_{n+1}$ of the first and last give the first vertices of the two polygons that solve it.

In the latter case. Drawing arbitrarily any three tangents A_{1}, B_{1}, C_{1} to the given circle; and constructing successively the several triads of exscribed angles $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2} ; A_{2} A_{3}, B_{2} B_{3}, C_{2} C_{3} ; A_{3} A_{4}, B_{3} B_{4}, C_{3} C_{4} ; \quad$ \&c.; $A_{n} A_{n+1}, B_{n} B_{n+1}, C_{n} C_{n+1}$ having their vertices on the several given lines (or concentric circles) corresponding respectively to the several successive vertices of the polygon; if, having proceeded so far, two of the three coincidences $A_{n+1}=A_{1}, B_{n+1}=B_{1}, C_{n+1}=C_{1}$ happen to result, the problem is solved ; if not, the several systems of tangents $A_{1}, B_{1}, C_{1}, \& . c . ; A_{2}, B_{s}, C_{2}$, \&c.; A_{3}, B_{3}, C_{3}, \&c., \&c.; $A_{n+1}, B_{n+1}, C_{n+1}$, \&c. being all homographic (315), the two double lines $M_{1}=M_{n+1}$ and $N_{1}=N_{n+1}$ of the first and last give the first sides of the two polygous that solve it.
N.B. Of the above reciprocal problems, those of Art. 263, solved there on other principles, are evidently particular cases.

Ex. 8°. a. To a given circle to inscribe a polygon of any order, whose several sides shall aivide in given anharmonic ratios given arcs of the circle.

Ex. 8°. a^{\prime}. To a given circle to exscribe a polygon of any order, whose several angles shall divide in given anharmonic ratios given arcs of the circle.

In the former case. Taking arbitrarily any three points A_{1}, B_{1}, C_{1} on the given circle; and constructing successively the several triads of inscribed chords $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{8} ; A_{2} A_{3}, B_{2} B_{3}, C_{8} C_{3} ; A_{3} A_{4}, B_{3} B_{4}, C_{3} C_{4}$; \&ic. $A_{n} A_{m+l}, B_{n} B_{n+l}, C_{n} C_{n+1}$ dividing in the several given anharmonic ratios the several given ares of the circle corresponding respectively to the several successive sides of the polygon; if, having proceeded so far, two of the three coincidences $A_{m+1}=A_{1}, B_{n+1}=B_{1}, C_{n+1}=C_{1}$ happen to result, the problem is solved; if not, the several systems of points $A_{1}, B_{1}, C_{1}, \& c$; A_{2}, B_{2}, C_{3}, \&c. ; A_{3}, B_{3}, C_{3}, \&c. ; $A_{n+1}, B_{n+1}, C_{n+1}$, \&c. being all homographic (3:29), the two double points $M_{1}=M_{m+1}$ and $N_{1}=N_{n+1}$ of the first and last give the first vertices of the two polygons that solve it.

In the latter casc. Drawing arbitrarily any three tangents A_{1}, B_{3}, C_{1} to the given circle; and constructing succensively the several triads of exscribed angles $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{3} ; \mathcal{A}_{3} \mathcal{A}_{3}, B_{1} B_{5}, C_{3} C_{3} ; A_{3} \mathcal{A}_{4}, B_{3} B_{4}, C_{3} C_{4}$ \&c. ; $A_{0} A_{\text {aot }} B_{0} B_{\text {wol }}, C_{0} C_{\mathrm{col}}$ dividing in the several given anharmonic ratios the several given ares of the circle corresponding respectively to the several successive angles of the polygon; if, having proceeded so far, two of the three coincidences $A_{-a t}=A_{1}, B_{m-1}=B_{1}, C_{\mathrm{ej1}}=C_{1}$ happen to result, the problem is solved; if not, the several systems of tangents $A_{1}, B_{1}, C_{1}, \mathbb{N}$. ; $A_{20} B_{21} C_{30}$ \&.c. ; $A_{3} B_{y} C_{30}$ \&.c.; $A_{\text {ant }}, B_{\text {mol, }} C_{2,10}$ \&.c. being all homographic (3:9). the two double lines $M_{1}=M_{m 1}$ and $N_{1}=N_{\infty-1}$ of the first and last give the first sides of the two polygons that solvo it
N.13. That the above reciprocal problems involve, as particular casce, those of the preceding example, is erident from Arts 237° and 311 , Cor. 3°.

Ex. 0^{3}.a. To constrwet a polygon of any order, whase several rertices shall lie on giren lines, and whow seveml sides shall pass through given points, or any or all of them touch instead giren eircles tangent to the gairs of lines on which the adjacent vertices lie.

Ex. 0°. a^{\prime}. To construet a polygon of any order, whose several sides shall gass through given points, and schose seecral rertives shall lis on given lines, or any or all of them lie instead on giren circles passing through tho pairs of points through which the adjacent sides pass.

In the former casc. On any one of the given lines I_{n} taking arbitrarily any three pointo $\mathcal{A}_{1}, \boldsymbol{R}_{1}, C_{1}$: and on the several others $I_{20} I_{5}, I_{0}$, \&.c. L_{0}, taken in the order of the several suceessive rertices of the polygon, and finally on the origisal L_{1} itself, constructing succosively the several
 $A_{m, 1}, J_{0,10} C_{m, 1}$ for which the seremal triads of connectors $A_{1} A_{0} B_{1} H_{3}$, $C_{1} C_{3} ; A_{5} A_{3}, B_{3} B_{3}, C_{3} C_{31} \quad A_{3} \mathcal{A}_{6} \quad B_{3} B_{1}, \quad C_{3} C_{9} ;$ \& c. $\quad A_{0} A_{0,10} B_{0} B_{m, 1}$, C.C.ol pass through (or touch) the several given points (or circles) corresponding respectively to the several successive sides of the polygon; if, having proceeded no far, two of the three coincidences $\boldsymbol{A}_{m o l}=\boldsymbol{A}_{1}, \boldsymbol{B}_{m=1}=\boldsymbol{B}_{1}$, $C_{\text {oit }}=C_{1}$ happen to result, the problems is solved; if not, the several systems
 $C_{\text {oll }}$. Sc. being all homographic (2S5 or 315), the two double points $M_{1}=M_{m=1}$ and $N_{1}=\mathcal{N}_{m=1}$ of the first and last give the rertices on L_{1} of the two polygons that solvo it.

In the latter casc. Through any one of the giren points P_{1} drawing arbitrarily any three lines A_{1}, B_{1}, C_{1}; and through the several others P_{30}, P_{3}, P_{8} \&c. P_{8} taken in the order of the several successive sides of the polygon, and finally through the original P_{1} itself, constructing successively the several triads of lines $\mathcal{A}_{3}, H_{3}, C_{2} ; A_{3}, H_{3}, C_{5} ; \mathcal{A}_{10}, H_{10}, C_{01}$ \&c.; $A_{n}, B_{01} C_{n}$ and $A_{\text {mol }}, B_{m, 1}, C_{m, 1}$ for which tho sereral triads of intersections $A_{1} A_{2}, B_{3} B_{9}, C_{1} C_{2} ; A_{9} A_{30}, B_{2} B_{2}, C_{3} C_{3} ; A_{8} A_{4}, B_{3} B_{0}, C_{3} C_{10} \& C_{0} ; A_{0} A_{0017}$ $B_{n} B_{m 10} C_{s} C_{\text {wis }}$ lie on the several given lines (or cireles) corresponding respectively to the several successive vertices of the polygon; if, having
vol. II.
procceded so far, two of the three coincidences $A_{n+1}=A_{1}, B_{\mathrm{s}+1}=B_{1}, C_{n+1}=C_{2}$ happen to result, the problem is solved; if not, the several systems of rays A_{1}, B_{1}, C_{1}, \&.c. ; A_{3}, B_{2}, C_{2}, \&c.; A_{3}, B_{3}, C_{3}, \&c. \&c.; $A_{n+1}, B_{n+1}, C_{n+1}$, \&c. being all homographic (285 or 315), the two double lines $M M_{1}=M I_{n+1}$ and $N_{1}=N_{n+1}$ of the first and last give the sides through P_{1} of the two polygons that solve it.
N.B. Of the above reciprocal problems, the first parts may evidently be stated in the common equivalent form; viz. "given two polygons of any common order, to construct a third at once inscribed to one and exscribed to the other of them."

Ex. 10°. a. To construct a polygon of any order, whose several certices shall lie on given lines, and whose several sides shall subtend angles at given points; 1°, of given magnitudes; 2°, having given lines of bisection through the points; 3°, dividing in given anharmonic ratios given angles at the points.

Ex. 10°. a^{\prime}. To construct a polygon of any order, whose several sides shall pass through given points, and whose several angles shall intercept segments on given lines; 1°, of given magnitudes; 2°, having given points of bisection on the lines: 3°, dividing in giren anharmonic ratios given segments of the lines.

In the former case. On any one of the given lines L_{1} taking arbitrarily any three points A_{1}, B_{1}, C_{1}; and on the several others $L_{2}, L_{3}, L_{4}, \& c . L_{n}$ taken in the order of the several successive vertices of the polygon, and finally on the original L_{1} itself, constructing successively the several triads of points $A_{2}, B_{3}, C_{3} ; A_{3}, B_{3}, C_{3} ; A_{4}, B_{4}, C_{4}, \& c_{.} ; A_{n}, B_{n}, C_{n} ;$ and A_{n+1}, B_{n+1}, C_{n+1} for which the several triads of segments $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$; $A_{2} A_{3}, B_{2} B_{3}, C_{2} C_{3} ; A_{3} A_{4}, B_{3} B_{4}, C_{3} C_{2}, \& c . ; A_{n} A_{n+1}, B_{n} B_{n+1}, C_{n} C_{n+1}$ subtend at the several given points, corresponding respectively to the several successive sides of the polygon, angles fulfilling the required conditions 1° or 2° or 3° : if, having proceeded so far, two of the three coincidences $A_{n+1}=A_{l}$, $B_{n+1}=B_{1}, C_{n+1}=C_{1}$ happen to result, the problem is solved; if not, the several systems of points $A_{1}, B_{1}, C_{1}, \& . c . ; A_{2}, B_{2}, C_{2}, \&$. c.; A_{3}, B_{3}, C_{3}, \&c., \&c.; $A_{n+1}, B_{m, 1}, C_{m+1}, \& c$. being all homographic (329), the two double points $M_{1}=M_{n+1}$ and $N_{1}=N_{n+1}$ of the first and last give the vertices on L_{1} of the two polygons that solve it.

In the latter case. Through any one of the given points P_{1} drawing arbitrarily any three lines $\mathcal{A}_{1}, B_{1}, C_{1}$; and through the several others $P_{3}, P_{3}, P_{6}, \& c . P_{n}$ taken in the order of the several successive sides of the polygon, and finally through the original P_{1} itself, constructing successively the several triads of lines $A_{3}, B_{2}, C_{3} ; A_{3}, B_{3}, C_{3} ; A_{4}, B_{3}, C_{4}, \delta \in$ c. ; A_{n}, B_{n}, C_{n}; and $A_{n+1}, B_{n+1}, C_{n+1}$, for which the several triads of angles $A_{1} A_{2}, B_{1} B_{2}$, $C_{1} C_{3} ; A_{2} A_{3}, B_{1} B_{3}, C_{2} C_{3} ; A_{3} A_{4}, B_{3} B_{4}, C_{3} C_{4}$, \& $C_{0} ; A_{n} A_{n+1}, B_{n} B_{n+1}, C_{n} C_{n+1}$, intercept on the several given lines, corresponding respectively to the several successive angles of the polygon, segments fulfilling the required condiLions 1° or 2° or 3°; if, having proceeded so far, two of the three coincidences
$A_{n+1}=A_{1}, B_{\mathrm{sin}}=B_{1}, C_{0+1}=C_{1}$ happen to result, the problem is solved; if not, the several systems of rays A_{1}, B_{3}, C_{1}, \&c.; $A_{2}, B_{2}, C_{2 n}$ \&.c.; A_{3}, B_{2}, $C_{刃}$ \&.c. \&e.; $A_{0.0}, B_{0.1}, C_{m-1}$, \&c. being all homographic (329), the two double lines $M_{1}=M_{0,1}$ and $N_{1}=N_{0,1}$ of the first and last give the sides through P_{1} of the two polygons that solve it.
N.B. The above reciprocal constructions would evidently remain unaltered, if any line in the former case, or any point in the latter case, were replaced by a circle, containing in the former case the two points, or touching in the latter case the two lines, between which it lies in the order of the several successive rertices or sides of the polygon.

CHAPTER XXI.

on the relation of involution between HOMOGRAPHIC SYSTEMS.

357. When the axes of two homographic rows of points or the vertices of two homographic pencils of rays coincide, every point on the common axis or ray through the common vertex belongs of course indifferently to both systems, and has in general two different correspondents, one as belonging to one system, and the other as belonging to the other system; it sometimes happens, however, that these two correspondents always coincide, as appears from the following fundamental theorem:

When two homographic rows of points on a common axis, or pencils of rays through a common vertex, are such that any one point on the axis, or ray through the vertex, has the same correspondent to whichever system it be regarded as belonging, then every point on the axis, or ray through the vertex, possesses the same property.

Let $A, B, C, D, E, F, \& c$. and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime \prime}, \& c$. be the two systems; and let any one point or ray P, denoted by A or B^{\prime} according to its system, have in both cases the same correspondent Q, denoted by A^{\prime} or B according to its system; then every other point or ray R, denoted by C or D^{\prime} according to its system, has in both cases the same correspondent S, denoted by C^{\prime} or D according to its system.

For, the two systems being homographic, $\{A B C D\}=$ $\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\} ;$ but, by hypothesis, $A=B^{\prime}=P, B=A^{\prime}=Q$, $C=D^{\prime}=R$, therefore $\{P Q R D\}=\left\{Q P C^{\prime} R\right\}=\left\{P Q R C^{\prime}\right\}(280)$; therefore, at once, $D=C^{\prime}=S$; and therefore \&c.

The same theorem may also be stated in the somewhat different, but obviously equivalent form, as follows:

For two homographic rows of points on a common axis, or pencils of rays through a common vertex, the interchangeability of
a single pair of corresponding constituents incolves that of every puir. (See Art. 284).

35S. Two homographic rows of points on a common axis, or pencils of rays through a common vertex, related as above to each other, that every point on the common axis, or ray throngh the common vertex, has the same correspondent to whichever systen it be regarded as belonging, are said to be in imolution with each other. In the same case, their common axis or vertex is termed the axis or vertex of the involution; their two double points or rays (341) are termed the double points or rays of the involution; and their several pairs of corresponding constituents, from their property of interchangeability, are terned conjugate points or rays of the involution.

Every two conjugato groups of two homographic rows or pencils in involution are said also to be in involution with each other, provided they contain at least three points or rays each; that number of pairs of corresponding constituents of any two homographic systems being requisite (327) to determine tho systems. Hence, two triads of corresponding points or rays, having a common axis or verter, are aaid to be in involution, when the two homographic rows or pencils they determine are in involution with each other.
359. Two pairs of corresponding constituents are sufficient to determine two homographic rows of points on a common axis, or pencils of mys through a common vertex, when in involution with each other. For, the relation of involution berween the two systems requiring (357) that every pair of corresponding constituents should be interchangeable, the interchange of the two constituents of either pair, when two are giren or known, would supply the third pair necessary and sufficient to deternine the systems (327).

From the nature of the relation of involution between two homographic rows or pencils (357), it is evident (255) that every two rows in involution on any axis determine two pencils in involution at every vertex, and, conversely, that every two pencils in involution at any vertex deternine two rows in involution on every axis.
360. The fundamental theorem of Art. 357 applies, of course, as well to two homographic systems of points on a common circle, or of tangents to a common circle, as to two rows of points on a common axis, or pencils of rays through a common vertex; and two such systems accordingly, or any two conjugate groups of two such systems, containing at least three constituents each, are also said to be in involution with each other under the same circumstances exactly as if the circle were a line in the former case or a point in the latter case.

It is evident that systems of points in involution on any circle determine pencils of rays in involution at every point on the circle; and, conversely, that pencils of rays in involution at any vertex determine systems of points in involution on every circle passing through the vertex. Also, that systems of tangents in involution to any circle determine rows of points in involution on every tangent to the circle; and, conversely, that rows of points in involution on any axis determine systems of tangents in involution to every circle touching the axis.
361. The following are a few fundamental examples of two homographic systems in involution with each other; from which it will be seen that the relation, when existing between two systems otherwise known to be homographic, is generally apparent of itself when the law connecting the several pairs of corresponding constituents in the generation of the systems is given or known.

Ex. 1^{10}. A fixed segment or angle is cut harmonically by a variable pair of conjugates; the two homographic rows or pencils determined by the twoo points or lines of section (329) are in involution.

For, each point or line of section has in every position the other for its correspondent to whichever system it be regarded as belonging; and therefore \&c. (358).

Ex. 2°. A variable segment or angle has a fixed pair of points or lines of bisection; the two similar and therefore homographic rows or pencils determined by its two bounding points or lines are in involution.

For, each bounding point or line has in every position the other for its correspondent to whicherer system it be regarded as belonging; and therefore \&c. (358).

Ex. 3°. Two eariable points on a fixed line have a constant product of distancee from a fixed point on the line; the two homographic rove they determine on the line (331) are in involution.

For, each variable point has in every position the other for its correspondent to whichever system it be regarded as belonging; and therefore \&.c. (358).

Ex. 4. Tivo cariable lines through a fired point intersect constantly at right angles; the two similar and therefore homagraphic pencits they determine at the point are in incolution.

For, each variable line has in everg position the other for its correspondent to whichever syatem it be regarded as belonging; and therefore Sic. (355).

Ex. 5^{3}. Tico variable points on a fired circle commect constantly through a fised point : the two homographic systems they determine on the circle (315) are in incolution.

For, each variable point has in every position the other for its correspondent to whichever system it be regarded as belonging; and therefore \&.c. (358).

1x. 6°. Tweo cariable langents to a fired circle intersect constantly on a fired line: the teo homographic systems they deternine to the circlo (315) are in incolution.

For, each variable tangent has in every position the other for its correspondent to whichever system it bo regarded as belonging; and therefore Sic. (35S).
N.B. To the first of the abore examples, which the reader will readily perceive involves the remaining five, it will appear in the sequel that every case of involution between two homographie syntems, of points on a common line or circle, or of tangents to a cormmon point or circle, may be reduced.
362. The following additional exauples of homographic systems in involution, all reducible to some or other of the preceding, and all of the same class with them, the law connecting the several pairs of corresponding constituents in their generation being given in all, are left as exercises to the reader.

Ex. 1°. A variable circle, passing through two fixed points, determines two syatems of points in involution on any fixed line or circle.

Ex. 2°. A variable circle, coaxal with two fixed points, determines two systems of points in involution on any fixed line or circle.

Ex. 3°. A variable circle, of any coaxal system, determines two syatems of points in involution on any fixed line or circle.

Ex. 4°. A variable circle, passing through a fixed point and intersecting a fixed line or circle at right angles, determines two systems of points in involution on the line or circle.

Ex. 8°. A variable circle, intersecting two fixed lines or circles (or a fixed line and circle) at right angles, determines two syatems of points in involution on each line or circle.

Ex. 6°. A rariable circle, passing through a fixed point and intersecting
two fixed circles at equal (or supplemental) angles, determines two systems of points in involution on each circle.

Ex. 7°. A variable circle, intersecting three fixed circles at equal (or at any invariable combination of equal and supplemental) angles, determines two systems of points in involution on each circle.

Ex. 8°. A variable circle, having a fixed pole and polar, determines two systems; a. of points in involution on every line through the pole; a^{\prime}. of rays in involution at every point on the polar.

Ex. 9°. Any number of circles, having a common pair of conjugate points or lines (174), determine two systems; a. in the former case, of points in involution on the connector of the pointa; a^{\prime}. in the latter case, of rays in involation at the intersection of the lines.

Ex. 10°. Any number of circles, orthogonal to a common circle, determine two rows of points in involution on every diameter of the circle (156).

Ex. 11°. Any number of circles, intersecting two common circles at equal (or supplemental) angles, determine two rows of points in involution on every line passing through the external (or internal) centre of perspective of the circles (211, Cor. 1°.)

Ex. 12. Any number of circles, intersecting two common circles at angles whose cosines have any constant ratio, determine two rows of points in involution on every line dividing the interval between their centres in the compound ratio of their radii and of the cosines of the angles. ($193, \mathrm{Cor} .1^{\circ}$.)

[^10]363. Any two homographic systems of points on a common line or circle, or of tangents to a common point or circle, may, if not already in involution, be brought into the particular relative position constituting that relation, by the absolute movement of either, or both, on the common line or circle in the former case, or round the common point or circle in the latter case.

For, taking arbitrarily any pair of corresponding constituents A and A^{\prime} of the two systems, and determining, by Ex. 1°, Art. 353, the pair B and B^{\prime} for which $A B=-A^{\prime} B^{\prime}$; a movement of either or both of the systems which would bring A to coincide with B^{\prime} and B to coincide with A^{\prime} would then, by the fundamental theorem of Art. 357, place them in involution
with each other; and that without altering the relative directions of succession of the several constituents of one and of the corresponding constituents of the other.

Since, by the example in question (Ex. 1°, Art. 353), for each pair of corresponding constituents A and A^{\prime} of the original systems, there exists, not only a pair B and B^{\prime} for which $A B=-A^{\prime} B^{\prime}$, but also a pair C and $C^{\prime \prime}$ for which $A C=+A^{\prime} C^{\prime}$; a movement of either or both of the systems which would bring A to coincide with $C^{\prime \prime}$ and C^{\prime} to coincide with A^{\prime} would aleo, by the same theorem of Art. 357, place them in involution with each other; but, of course, not without altering the direction of succession of the several constituents of one of them, that of the corresponding constituents of the other remaining unchanged.

Hence, For ctery theo homagraphic systems of points on a common line or circle, or of tangents to a common point or circle, there exist theo different relative positions of intolution with each other; the relatice directions of sucoussion of the several constituents of one and of the corresponding constituents of the other being opprosites in the two pravitions.

36-1. For every theo homographic systems in incolution scith each other, every three pairn of corrsponding constitwents desermine a system of six points or linss, ecery four of which are equiunharmonic with the ir four corruspondents (sec Art. 283).

For, every point on the common line or circle, or tangent to the common point or circle, having the same correspondent to whichever system it be regarded as belonging (358), every two conjugate quartets determined by any three pairs of their corresponding constituents (283) are consequently conjugate quartets of the two systems, and as such are of course equianharmonic, the systems being homographic.

Conversely, When, of teo homagraphic systems of points on a common line or circle, or of tangents to a common point or circle, any two conjugate quartete determinal by any three pairs of their corresponding constituents are equianharmonic, the two systems are in involution with each other.

For, one of the three pairs of corresponding constituents being necessarily common to the two conjugate guartets (see

Art. 283), the equianharmonicism of the latter involves consequently the interchangeability of the former, and with it therefore, by the fundamental theorem of Art. 357, the involution of the systems.

COR. 1°. As three pairs of corresponding constituents, of points on a common line or circle, or of tangents to a common point or circle, determine six different pairs of conjugate quartets (283), it follows, indirectly, from the abore converse properties combined, that the anharmonic equivalence of any one of the six pairs involves the anharmonic equivalence of each of the remaining five. It was upon this property as basis (which it will be remembered was proved directly for collinear and concurrent systems in Art. 283, and otherwise indirectly for concyclic systems in Art. 313, Cor. 1°) that M. Chasles originally founded the whole theory of Involution; because that by means of it the relation is generally perceived to exist in cases (many of considerable interest which he was himself the first to investigate) where but three pairs of conjugates are given.

Cor. 2°. It is evident also from the same properties that when any number of pairs of corresponding constituents, of points on a common line or circle, or of tangents to a common point or circle, form each an involution with the same two pairs, they form involutions three and three with each other; or, to express the same thing differently, when a variable pair of corresponding constituents, of points on a common line or circle, or of tangents to a common point or circle, form in every position an involution with two fixed pairs, they determine two homographic systems in involution with each other.
365. The following are a few fundamental examples, grouped in reciprocal pairs, of cases of three pairs of corresponding constituents satisfying the criterion of the preceding article, and therefore in involution with each other. They were among the first originally given by Chasles, and have been shown to satisfy the criterion in the articles referred to with their statements respectively :

Ex. a. The three pairs of opposite connectors of every tetrastigna determine on every line a system of six points in involution (299, a).

Ex. a'. The three pairs of opposite intersections of every tetragram determine at every point a system of six rays in involution (299, a^{\prime}),

Ex. b. The six parallels through any point to the three pairs of opposite connectors of any tetrastigm form a system of six rays in involution (299, Cor. $2^{2}, a$.

Ex. $\ell^{\text {. }}$. The six projections on any line of the three pairs of opposite intersections of any tetragram form a system of six points in involution (209, Cor. 20, a^{\prime}).

Ex. e. The three sides of any triangle, and any three concurrent lines through the three vertices, determine on every line a system of six points in involution (299, Cor. $4^{\circ}, a$).

Ex.c. The three vertices of any triangle, and any three collinear points on the three sides, determine at every point a system of six rays in involution (200, Cor. $4^{\circ}, a^{\prime}$).

Ex. d. The three intersections with any line of the three sides of any triangle determine, with the three projections on the line of the three vertices of the triangle, a system of six points in involution (299, Cor. $8^{\circ}, a$).

Ex. ©. The three connectors with any point of the three vertices of any triangle determine, with the three parallels through the point to the three sides of the triangle, a syotem of six reys in involution (299, Cor. $5^{\circ}, \alpha^{\circ}$).

Ex. e. Every circle, and any two of the three pairs of opposite connectors of any inscribed tetratigm, determine on every thine a aystem of alx points in involution (301, Cor. 20, a.).
Ix. \%. Every circle, and any two of the three pairs of opposite intersec tions of any exseribed tetragram, subtend at every point a system of aix rays in involution (301, Cor. 2゚, a°).

Ex. f. Every three pains of points on a circle which connect by coneurrent lines form a system of six points in involution (313.).

Ex. f^{\prime}. Every three pairs of tangents to a cirelo which intersect at collinear points form a system of six cangents in involution (313.).

Fx. g. Every three pairs of points on a line or circle, harmonio conjugates to each other with respect to the same two points on the line or cirele, form a systems of six points in involution (252, Cor. $8^{\circ}, 5^{\circ}$).

Ex. g^{\prime}. Every three pairs of cangents to a point or circle, harmonic conjugates to each other with respect to the same two tangents to the point or cirele, form a system of six tangents in involution (2s2, Cor. $3^{2}, 3^{2}$).).
366. To the preceding fundamental cases of involution between three pairs of corresponding constituents, several others, involving like them but three pairs of conjugates, are reducible; the following are some examples, grouped in reciprocal pairs, the reductions of which are left as exercises to the reader.

Fix. a. When the directions of three segments are coneurrent, the six centres of perspective of their three groups of two determine at every point a syatem of six rays in involution (295, Cor. 1°).

Ex. $a^{\text {. When the vertices of three angles are collinear, the six axes of }}$ perspective of their three groups of two determine on every line a system of six points in involution (295, Cor. 1°.).

Ex. b. When the extremities of three segments form an equianharmonic hexastigm, the six centres of perspective of their three groups of two determine at every point a system of six rays in involution ($303, d$.).

Ex. b^{\prime}. When the sides of three angles form an equianharmonic hexagram, the six axes of perspective of their three groups of two determine on every line a system of six points in involution (303, d^{\prime}.).

Ex.c. When three segments combine the characteristics of examples a and b, the six centres of perspective of their three groups of two are collinear and in involution (295, Cor. 4°.).

Ex. c^{\prime}. When three angles combine the characteristics of examples a^{\prime} and b^{\prime}, the six axes of perspective of their three groups of two are concurrent and in involution (295, Cor. 4°.).

Ex. d. The six centres of perspective, of any three chords inscribed to a circle taken in pairs, determine at every point a system of six rays in involution (317, Cor. 1°.).

Ex. d^{\prime}. The six axes of perspective, of any three angles exscribed to a circle taken in pairs, determine on every line a system of six points in involution (317, Cor. 1°.).

Ex. e. When the directions of three chords inscribed to a circle are concurrent, the six centers of perspective of their three groups of two are collinear and in involution (317, Cor. 4°.).
: Ex. e^{\prime}. When the vertices of three angles exscribed to a circle are collinear, the six axes of perspective of their three groups of two are concurrent and in involution (317, Cor. 4°.).

Ex.f. When two triangles either inscribed or exscribed to the same circle are in perspective, their three pairs of corresponding sides determine six points in involution on every line through the centre of perspective (320).

Ex. f^{\prime}. When two triangles either exscribed or inscribed to the same circle are in perspective, their three pairs of corresponding vertices determine six rays in involution at every point on the axis of perspective (320).

Ex. g. When four circles pass through a common point, the six axes of perspective through the point of their six groups of two form a system of six rays in involution. (See Ex. a^{\prime} of preceding Art.)

Ex. g^{\prime}. When four circles touch a common line, the six centres of perspective on the line of their six groups of two form a system of six points in involution. (See Ex. a of preceding Art.)

Ex. h. Every two circles and their two centres of perspective subtend at every point a system of six rays in involution.

Ex. h^{\prime}. Every two circles and their two axes of perspective determine on every line a system of six points in involution.
N.B. In the reduction of these two last examples to examples ef and e of the preceding article respectively, it is to be remembered, with respect to any two circles, that the two centres of perspective are a pair of opposite
intersections of the tetragram exscribed to both determined by their four common tangents, and that the two axes of perspective are a pair of opposite connectors of the tetrastigm inscribed to both determined by their four common points. (See Art. 20i.)
367. When taco homographic roves of points on a common axis, or pencils of rays through a common vertex, are in invlution; every three pairs of corresponding constituents Λ and A^{\prime}, B and B^{\prime}, C and $C^{\prime \prime}$ are comnected.
a. In the former case, by the symmetrical relation

$$
\frac{B A^{\prime}}{C A^{\prime}} \cdot \frac{C B^{\prime}}{A B} \cdot \frac{A C^{\prime}}{B C^{\prime \prime}}=1
$$

or, which is the same thing, by the equiralent relation

$$
B C^{\prime} \cdot C A^{\prime} \cdot A B^{\prime}+1 B^{\prime} C \cdot C^{\prime} A \cdot A^{\prime} B=0 ;
$$

a. In the latler case, by the corresponding relation

$$
\frac{\sin B A^{\prime}}{\sin C A^{\prime}} \cdot \frac{\sin C B^{\prime}}{\sin A B^{\prime}} \cdot \frac{\sin A C^{\circ}}{\sin B C^{\prime}}=1
$$

or, which is the same thing, by the equiralent relation

$$
\sin B C^{\prime} \cdot \sin C A^{\prime} \cdot \sin A B^{\prime}+\sin B^{\prime} C \cdot \sin C^{\prime} A \cdot \sin A^{\prime} B=0 ;
$$

every constituent being interchangeable with its conjugate in each (35i). And, conversely, when of tum homogruphio roves of points on a common axis, or pencils of ruys through a common vertex, any thrce pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime} are connected by relation (a) in the former case, or by relation (a') in the latter case; the tico systems are in involution.

For, taking any four of the six points or rays, $B, C, A^{\prime}, C^{\prime}$ suppose, and equating any one of their six anharmonic ratios,
$B A^{\prime} . C C^{\prime} \div C A^{\prime} . B C^{\prime}$ or $\sin B A^{\prime} \cdot \sin C C^{\prime} \div \sin C A^{\prime} \cdot \sin B C^{\prime}$
suppose, to the corresponding anharmonic ratio

$$
B^{\prime} A \cdot C^{\prime} C \div C^{\prime} A \cdot B^{\prime} C \text { or } \sin B^{\prime} A \cdot \sin C^{\prime} C \div \sin C^{\prime} A \cdot \sin B^{\prime} C
$$

of their four correspondents $B^{\prime}, C^{\prime}, A, C(364)$, the relation a or a^{\prime} immediately results; from which again, conversely, the anharmonic equivalence of the two conjugate quartets $B, C, A^{\prime}, C^{\prime}$ and $B^{\prime}, C^{\prime}, A, C$ (or, from its symmetry, of each of the three pairs of conjugate quartets $B, C, A^{\prime}, C^{\prime}$ and $B^{\prime}, C^{\prime}, A, C$; $C, A, B^{\prime}, A^{\prime}$ and $C^{\prime}, A^{\prime}, B, A ; A, B, C^{\prime}, B^{\prime}$ and $\left.A^{\prime}, B^{\prime}, C, B\right)$ reciprocally results; and therefore $\mathbb{\&} \mathrm{C} .(364)$.

The above relation, a or a^{\prime} as the case may be, (or any of the three others of similar form resulting from it by the three interchanges (357) of the three involved pairs of conjugates) being characteristic of the involution of the three pairs of collinear points or concurrent rays A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, is termed accordingly their equation of involution; and, geometrically interpreted, it expresses, in a form at once concise and symmetrical, the anharmonic equivalence (364) of every two conjugate quartets of their six constituent points or rays.
368. The following are a few examples of the application of the preceding relation as a critcrion of involution between three pairs of collinear points or concurrent rays; in some of which the equianharmonic relations of Art. 364, previously established on other principles, may be regarded as thus verified at the same time :

Ex. 1^{10}. The three intersections with any line of the three sides of any triangle determine, with the three projections on the line of the thres vertices of the triangle, a system of six points in involution (Ex. d, Art. 365).

For, if P, Q, R be the three vertices of the triangle; A, B, C their three projections on the line; and $A^{\prime}, B^{\prime}, C^{\prime}$ the three intersections of the opposite sides with the same; then, since (Euc. vI. 4.)

$$
\frac{B A^{\prime}}{C A^{\prime}}=\frac{B Q}{C R}, \frac{C B^{\prime}}{A B^{\prime}}=\frac{C R}{A P}, \frac{A C^{\prime}}{B C^{\prime}}=\frac{A P}{B Q},
$$

therefore at once, by composition of ratios,

$$
\frac{B A^{\prime}}{C A^{\prime}} \cdot \frac{C B^{\prime}}{A B^{\prime}} \cdot \frac{A C^{\prime}}{B C^{\prime}}=1 ;
$$

and therefore \&c., by relation (a).
Ex. 2°. The three connectors with any point of the three vertices of any triangle determine, with the three parallels through the point to the three sides of the triangle, a system of six rays in involution (Ex. d^{\prime}, Art. 365.).

For, if A, B, C be the three vertices of the triangle; O the point; and $O A^{\prime}, O B^{\prime}, O C^{\prime}$ the three parallels through it to the opposite sides; then, since (63)

$$
\frac{\sin B O A^{\prime}}{\sin C O A^{\prime}}=\frac{O C}{O B}, \frac{\sin C O B^{\prime}}{\sin A O B^{\prime}}=\frac{O A}{O C}, \frac{\sin A O C^{\prime}}{\sin B O C^{\prime}}=\frac{O B}{O A},
$$

therefore at once, by composition of ratios,

$$
\frac{\sin B O A^{\prime}}{\sin C O A^{\prime}} \cdot \frac{\sin C O B^{\prime}}{\sin A O B^{\prime}} \cdot \frac{\sin A O C^{\prime}}{\sin B O C^{\prime}}=1 ;
$$

and therefore \&.c., by relation (a^{\prime}).

Ex. 3°. The three sides of any triangle, and any three comeurrent lines through the three vertices, determine on owary line a aystem of sis goints in incolution (Ex. c, Art. 365).

For, if $P, Q, I \in$ be the three vestices of the triangle; A, B, C thoir three perspectives on the line from any arbitary point O; and $A^{\prime}, B^{\prime}, C^{\prime}$ the three intersections of the opposite sides with the same; then, since (134, a)

$$
\frac{B A^{\prime}}{C A^{\prime}}=\frac{B Q}{C R}: \frac{O Q}{O R^{\prime}}, \frac{C B^{\circ}}{A B}=\frac{C R}{A B}: \frac{O R}{O P}, \frac{A C^{\prime}}{B C^{\prime}}=\frac{A P}{B Q}: \frac{O P}{O Q},
$$

therefore at once, by composition of satios,

$$
\frac{B .1^{\circ}}{C .1^{\circ}} \cdot \frac{C B^{\circ}}{A B^{\circ}} \cdot \frac{A C^{\prime}}{B C^{\prime \prime}}=1
$$

and therefore \&c., by relation (a).
Ex. 4^{3}. The threo vertices of any triangle, and any threo collinear points on the three sides, determine at every point a system of sis rays in ineolution (Ex. er, Art. 365).

For, if $A, I B, C$ be the three vertices of the triangle: $A^{\prime}, I B, C^{\prime}$ the three collincar points on the opposite sides; and O any arbitrary poink; then, since (6.5)
$\frac{\sin B O A^{\prime}}{\sin C O A^{\prime}}=\frac{B A^{\prime}}{C A^{\prime}}: \frac{B O}{C O}, \frac{\sin C O B^{\circ}}{\sin A O 5^{\prime}}=\frac{C B^{\circ}}{A B^{\prime}}: \frac{C O}{A O^{\prime}} \cdot \frac{\sin A O C^{\circ}}{B O C^{\prime}}=\frac{A C^{\circ}}{B C^{\circ}} \cdot \frac{A O}{B O^{\circ}}$
therefore at once, by composition of satios,

$$
\frac{\sin B O . A^{\circ}}{\sin C O A^{\circ}} \cdot \frac{\sin C O B^{\prime}}{\sin A O 5^{\circ}} \cdot \frac{\sin A O C^{\circ}}{\sin B O C^{\prime}}=\frac{B A^{\circ}}{C A^{\circ}} \cdot \frac{C B^{\circ}}{A 1^{\circ}} \cdot \frac{A C^{\circ}}{B C^{\circ}}
$$

which latter being $=1(131, a)$, therefore \& c., by relation $\left(a^{\circ}\right)$.
Ix. 6°. The six gerpendiculars to eny line through the three vertices, and through any three collinear points on the three sides, of any trianglo determine un the line a syotem of six points in incolution (Ex. b', Art. 365).

For, if P, Q, R bo the three vertices of the triangle; A, B, C their three projections on tho line; $P^{\prime}, Q^{\prime}, I$ the three collinear points on the opponite sides; and $A^{\prime}, B^{\prime}, C^{\prime}$ sheir three projoctions on the line; then, since (Euc. VI. 10.)

$$
\frac{B A^{\prime}}{C A^{\prime}}=\frac{Q P^{\prime}}{R P^{\prime}}, \frac{C B^{\prime}}{A B^{\prime}}=\frac{R Q}{P Q^{\prime}}, \frac{A C}{B C^{\prime}}=\frac{P R}{Q K^{\prime}}
$$

tberefore at once, by composition of ration,

$$
\frac{B A^{\circ}}{C A^{\prime}} \cdot \frac{C B^{\prime}}{A B^{\prime}} \cdot \frac{A C}{B C^{\prime}}=\frac{Q P^{\prime}}{1 R I^{\prime}} \cdot \frac{R Q^{\prime}}{P Q^{\prime}} \cdot \frac{P R^{\prime}}{Q L^{\prime}}
$$

which latter being $=1(134, a)$, therefore \&ic., by relation (a).
Fx. 0°. The six gerpendiculars through any point to the three sidos, and to any three concurrent lines through the three vertices, of any tringle determine at the point a system of six rays in incolution (Ex. b, Axt. 365).

For, if P, Q, R be the three vertices of the triangle; I the point of concurrence of the three lines passing through them; O the point through which the six perpendiculars pass; $O A, O B, O C$ the three of them to the three lines $I P, I Q, I R$; and $O A^{\prime}, O B^{\prime}, O C^{\prime}$ the three of them to the three opposite sides $Q R, R P, P Q$; then since (63)

$$
\frac{\sin B O A^{\prime}}{\sin C O A^{\prime}}=\frac{I R}{I Q}, \frac{\sin C O B^{\prime}}{\sin A O B^{\prime}}=\frac{I P}{I R}, \frac{\sin A O C^{\prime}}{\sin B O C^{\prime}}=\frac{I Q}{I P},
$$

therefore at once, by composition of ratios,

$$
\frac{\sin B O A^{\prime}}{\sin C O A^{\prime}} \cdot \frac{\sin C O B^{\prime}}{\sin A O B^{\prime}} \cdot \frac{\sin A O C^{\prime}}{\sin B O C^{\prime}}=1
$$

and therefore \&c., by relation (a^{\prime}).
Ex. 7°. When three circles of a coaxal system touch the three sides of a triangle at three points which are either collinear or concurrently connectant with the opposite certices: their three centres form, with those of the three circles of the system which pass through the three vertices of the triangle, a system of six points in involution."

For, if P, Q, R be the three vertices of the triangle; $P^{\prime}, Q^{\prime}, R^{\prime}$ the three points of contact on the opposite sides; A, B, C the centres of the three circles passing through P, Q, R; and $A^{\prime}, B^{\prime}, C^{\prime}$ those of the three touching at $P^{\prime}, Q^{\prime}, R^{\prime}$; then since (192, Cor. 1°.)

$$
\frac{P Q^{\prime \prime}}{P R^{\prime 2}}=\frac{A B^{\prime}}{A C^{\prime}}, \quad \frac{Q R^{\prime 2}}{Q P^{\prime 2}}=\frac{B C^{\prime}}{B A^{\prime}}, \quad \frac{R P^{\prime \prime}}{R Q^{\prime 2}}=\frac{C A^{\prime}}{C B^{\prime \prime}},
$$

therefore at once, by composition of ratios,

$$
\frac{P Q^{\prime 2}}{P R^{\prime 2}} \cdot \frac{Q R^{\prime 8}}{Q P^{\prime 2}} \cdot \frac{R P^{\prime 8}}{R Q^{\prime 2}}=\frac{A B^{\prime}}{A C^{\prime}} \cdot \frac{B C^{\prime}}{B A^{\prime}} \cdot \frac{C A^{\prime}}{C B^{\prime}}
$$

the former of which being $=1\left(134, a\right.$ or $\left.b^{\prime}\right)$, therefore \mathcal{S} c., by relation (a).
369. The following additional examples of the application of the same relation, as a criterion of involution between three pairs of collinear points or concurrent rays, are left as exercises to the reader.

Ex. 1^{10}. If a segment or angle $A A^{\prime}$ be cut harmonically by any two pairs of conjugates B and C, B^{\prime} and C^{\prime}; the three pairs of collinear points or concurrent rays A and A^{\prime}, B and B^{\prime}, C^{\prime} and C^{\prime} are in involution.

Ex. 2°. The two pairs of conjugates A and A, B and B^{\prime} of any harmonic system are in involution with the two harmonic conjugates C and C^{\prime} of every collinear point or concurrent ray with respect to themselves.

Ex. 3°. If A, B, C be any threc collinear points or concurrent rays, A^{\prime} any fourth collinear point or concurrent ray, and B^{\prime}, C^{\prime} the two har-

[^11]monic conjugates of A^{\prime} with respect to C and A, A and B respectively; the three pairs A and A^{\prime}, B and B^{\prime}, C and C^{\prime} are in involution.

Ex. 4°. If $A, 13, C$ be any three collinear points or concurrent rays, and $A^{\prime}, I^{\prime}, C^{\prime \prime}$ the three harmonic conjugates of any fourth collinear point or concurrent ray D with respect to $I B$ and C, C and A, A and B respectively ; the three triads of pairs I and $I J^{\prime}, C$ and C°, A and I; C and C^{\prime}, A and $A A^{\prime}$, $I 3$ and I; A and $. A^{\prime}, I B$ and $I Y, C$ and D are each in involution.

Ex. s°. If A, B, C be any three collinear points or concurrent rays, $A^{\prime}, B^{\prime}, C^{\prime \prime}$ any other three collinear or concurrent with them, and $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ the thrce harmonic conjugates of $A^{\prime}, B^{\prime}, C^{\prime}$ with respect to \bar{B} and C, C and A, A and B respectively ; the three triads $A^{\prime}, B^{\prime \prime}, C^{n} ; A^{\prime \prime}, I B, C^{\prime \prime} ; A^{\prime \prime}, B^{\prime \prime}, C^{\circ}$ are eich in involution with the triad A, B, C.
370. Ekery tico conjugate points or lines of teo homographic systems in involution are harmonic conjugates with respect to the tueo double points or lines, real or imaginary, of the systems. (See Art. 342).

For, since, for any three pairs of conjugates A and A^{\prime}, B and B^{\prime}, C and C^{\prime} in involution, $\left\{A B C C^{\prime}\right\}=\left\{A^{\prime} B^{\prime} C^{\prime} C\right\}$ (361); if $A=A^{\prime}=M$ and $B=B^{\prime}=N$, which is the characteristic of the two double points or lines (341), then $\left\{M N^{\prime} C C^{\prime}\right\}=\left\{M N C^{\circ} C\right\}$, whatever be the third pair C and C^{\prime}; and therefore ©f. (251).

This very simple law connecting the several pains of corresponding constituente, in every case of involution between two homographic systems of any common species, would also have followed at once negatively from its converse shewn already (361, Ex. 19) to result directly from tho fundamental detinition of involution (3:5). And, while coufirming the statement in the note at the close of the same article (361), it evidently comprehends in a form at once simple and complete every other law comnected with the subject.
371. The following are immediate consequences from the general property of the preceding article.
1°. In every involution of points on, or langents to, a common circle.
a. The several pairs of conjugate points, in the former case, connect through a common point (25i).
a^{\prime}. The several pairs of conjugate lines, in the latter case, intersect on a common line (257).
6. The two double points, in the former case, lie on the polar of the common point with respect to the circle ($165,6^{\circ}$.).

VOL. II.
b^{\prime}. The two double lines, in the latter case, pass through the pole of the common line with respect to the circle $\left(165,6^{\circ}\right)$.

These properties, which shew in fact that every two homograplic systems of points on or tangents to a common circle in involution are in perspective, and that the two double points or lines lie on the polar of the centre or pass through the pole of the axis of perspective with respect to the circle, would also have followed at once negatively from their converses shewn already (361, Ex. 5° and 6°) to result immediately from the fundamental definition of involution (358) ; or, they would have followed directly from the second part of the general property of Art. 313, by virtue of the equianharmonic relations of Art. 364.
2°. In every involution of points on a common axis.
a. The several circles passing through the several pairs of conjugates, and any common point not on the axis, pass all through a second common point not on the axis $\left(226,2^{\circ}\right.$.).
b. The line connecting the two common points through which they all pass bisects the interval, real or imaginary, between the two double points of the systems (226, 2°.).
c. The rectangle under the distances of the several pairs of conjugat's from the point of bisection is constant, and equal in magnitude and sign to the square of the semi-interval between the double points (225).

From the third of these properties (which, like that from which it results (370), would also have followed at once negatively from its converse shown already (361, Ex. 3°) to result from the fundamental definition of involution), it appears thatFor every twoo homographic rows of points in involution on a common axis, there exists a point (always real and evidently conjugate to that at infinity on the axis), the rectangle under whose distances from the several pairs of conjugates is constant, in magnitude and sign, and equal to the square of the semi-interval, real or imaginary, between thrir two double points. The point possessing this property is termed the centre of the involution; and the involution itself is said to be positive or negative according as the sign of the constant rectangle is positive or negative, or, which is the same thing, according as the two double points of the systems are real or imaginary.

Cor. 1°. The abore properties 1° and 2° supply obvious and rapid solutions; the former of the following problems-

Griven teo pairs of conjugate points or tangents of two homographic systems in involution on a common circle; to determine, a. the centre or axis of perspectice of the systems; b. the tuco double points or tangents, real or imaginary, of the systems; c. the conjugate to any third point or tangent of either system; d. the pair of conjugates having a given middle point or tangent; e. the two pairs of conjugates intercepting a chord or angle of giten magnitude ; f. the two prairs of conjugates iletermining with two given points or tangents a given anharmonic ratio.

Given theo pairs of conjugate points or tangents of each of theo diff rent ineolutions on the same common circle; to determine the pair of conjugatis common to both ineolutions.

And the latter of the corresponding problems-
Given tico pairs of conjugates of theo hamographic noucs of points in incolution on a common cxais; to determine, a. the centre of the involution; b. the teo double points, real or imaginary, of the systons ; c. the conjugate to any third point of either system; d. the pair of conjugates having a given middle point ; e. the two pairs of conjugatis intercepting a segment of given length; f. the two pairs of conjugates dividing a given segment in a given anharmonic ratio.

Given theo pairs of conjugates of each of two different involutions of points on the same common axis; to tetermine the pair of conjugutes common to both involutions.

The corresponding problems for homographic pencils of rays in involution through a common vertex are not included directly in any of the above; but they are evidently reducible immediately to those for the two homographic systems of points determined by the pencils on any circle passing through their common vertex (306), or ou any line not passing through it (285).

Cor. 2. Since, for two homographic systems of points in involution on a common circle, there exists always one, and in general but one, pair of corresponding constituents diametrically opposite to each other, viz. those determined by the diameter of the circle which passes through their centre of perspective; and since when two then all pairs are diametrically opposite, the centre of the circle being in that case the centre of perspective
of the systems. Hence, conceiving an arbitrary circle passing through the common vertex of any two homographic pencils of rays in involution, it follows at once (Euc. III. 31) that-

For two homographic pencils of rays in involution through a common vertex.
a. There exists always one, and in general but one, pair of conjugate rays which intersect at right angles.
b. When two pairs of conjugates intersect at right angles, then all pairs of conjugates intersect at right angles.
N.B. These latter properties, which admit also of easy direct demonstration, are often useful in the higher departments of geometry.
372. The property of the centre $\left(371,2^{\circ}, c\right)$ in the case of two homographic rows of points in involution on a common axis, viz. that the rectangle under its distances from every pair of conjugates is constant in magnitude and sign, follows also immediately from the general property (331) of the two correspondents of the point at infinity of any two homographic rows of points on a common axis.

For, if P and Q be the two correspondents to the point at infinity on the common axis regarded as belonging first to one and then to the other of the two rows; since then always, for every pair of corresponding constituents A and A^{\prime}, by the property in question, the rectangle $l^{\prime} A . Q A^{\prime}$ is constant in magnitude and sign ; therefore, when the rows are in involution, and when consequently (358) $P=Q=O$ (the point at infinity like every other point on the common axis having the same correspondent to whichever system it be regarded as belonging), the rectangle $O A . O A^{\prime}$ is constant in magnitude and sign; and therefore \&c.

This very simple property of involution might have been made the basis of the entire theory; but, as it belongs only to collinear systems of points on a common axis, that actually employed (358), being applicable alike to involutions of all species without exception, has been adopted in preference.
373. The property (363) that any two homographic rows of points on a common axis, may, if not already in involution,
be brought in two different ways into the particular relative position to be so, follows also as an easy consequence from the sane general property (331).

For, if the two correspondents P and Q of the point at infinity on the common axis, regarded as belonging first to one and then to the other system, do not already coincide; they may finst be brought together to a common point O by the absolute moment of one or both of the systems along the common axis, thus giving one position of involution (361, Ex. 3°); and then, when together, the axis may be turned round the point 0 as centre, carrying with it one system but not the other, and brought again to coincide with its original position in the opposite direction, thus giving another and opposite position of involution (361, Ex. 3°).

From this way of regarding the question, it appears that the constant rectangle $O A . O A$ ' is the same in magnitude, hut opposite in sign, in the two positions of involution of the two ruws; hence, the value of that rectangle being of counse the constant by which alone any one involution of points on a common axis differs from any other, all such involutions being evidently similar in figure and difiering only in magnitude, it appears that-

In tho two prositions of incolution of the same tuo homographic rours of points on a common axis, the two constants of involution are alucays equal in magnitude and opposite in sign.
374. The property of the centre supplies in many cases a very simple criterion of the relation of involution between three or more pairs of corresponding points on a common axis; as, for instance, in the three following examples:

Ex. 1°. Every line passing through their radical centre intersects with any three circles at three pairs of points in involution.

For, if A and A^{\prime}, B and B, C and C^{\prime} be the three pairs of intersections, real or imaginary, and 0 the radical centre; then, since (183) O.s. $O A^{\prime}=O B B . O E^{\prime}=O C^{\prime} . O C^{\prime}$, therefore \&c.

Conversely, Every line intersecting with any three circles at three pairs of points in incolution passes through their radical centre.

For, if A and A^{\prime}, B and B^{\prime}, C and C^{\prime} be the three pairs of intersections, and O the centre of their involution; then, since $0.1 . O .1^{\prime}=O B . O B$ $=O C . O C^{\prime}$, therefore \&c. (183).

Ex. 2.. When a number of circles have a common radical centre, every line passing through it intersects with them at as many pairs of points in involution.

For, if A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and $D^{\prime}, \&$ c. be the several pairs of intersections, real or imaginary, and O the common radical centre; then since, as before, $O A \cdot O A^{\prime}=O B \cdot O B^{\prime}=O C \cdot O C^{\prime}=O D \cdot O D^{\prime}=\&$ c. therefore $\& \mathrm{c}$.

Conversely, When a number of circles intersect with a line at as many pairs of points in involution, they have a common radical centre through which the line passes.

For, if A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and $D^{\prime}, \& c$. be the several pairs of intersections, and O the centre of their involution; then, since $O A \cdot O A^{\prime}=O B \cdot O B^{\prime}=O C \cdot O C^{\prime}=O D \cdot O D^{\prime}=$ \&c. therefore \&c.

Ex. 3°. When a number of circles have a common radical axis, every line intersects with them at as many pairs of points in involution.

For, if A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and D^{\prime} be the several pairs of intersections, real or imaginary, with the several circles, and O the intersection with the radical axis; then, since (187, 1°) $O A \cdot O A^{\prime}=O B . O B^{\prime}$ - $O C \cdot O C^{\prime}=O D \cdot O D^{\prime}=\& c$. therefore \&c.

Conversely, When a number of circles intersect with three different lines, which are not concurrent, at as many pairs of points in involution, they have a common radical axis.

For, at the centre of each involution they have a common radical centre; and as the three lines by hypothesis, are not concurrent, two at least of the three centres must necessarily be different ; and therefore \&c. $\left(187,1^{\circ}\right)$.
375. For any two homographic systems of points on a common lino or circle, or of tangents to a common point or circle, from the general properties of Arts. 364 and 370, it may be shown immediately that-
1°. Every two corresponding pairs of non-corresponding constituents A and B^{\prime}, A^{\prime} and B are in involution with the two double points or lines M and N, real or imaginary, of the systems. (See Arts. 349 and 371, 2°, a).

For, since, for every four pairs of corresponding constituents A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and D^{\prime}, by the homography of the systems, $\{A B C D\}=\left\{A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$; if $C=C^{\prime}=M$ and $D=D^{\prime}=N$, which is the characteristic of the two double points or lines (341), then $\{A B M N\}=\left\{A^{\prime} B^{\prime} M N\right\}=\left\{B^{\prime} A^{\prime} N M\right\}$ (280); and therefore \&c. (364).

Or thus, for either case of the circle, to which the others are of course reducible. The three lines of connection (or points of intersection) $A B^{\prime}, A^{\prime} B, M N$ being concurrent (or collinear)
(337); therefore $\{A B M N\}=\left\{B^{\prime} A^{\prime} M . N\right\}(313)$; and therefore d.c. (364).
2. If P_{1} and P_{3} be the tico correspondents of any constituent P, regarded as belonging first to one and then to the other system, and P_{3} the harmonic conjugato of P with respeet to P_{1} and P_{3}; then, as P varies-
a. The tioo systems determined by P_{1} and P_{3} are homographic, and have the same double points or lines with tho original systems.
b. The tweo systems determin d by P and P_{0} are in involution, and huse also tho same double points or lines with tho original syatems.
c. In enry posilion, P and P_{3} are harmonic comjugates with respect to the tweo double points or lines of the ariginal syetens.

Of theso properties; the first (a) is evident from the consideration that the two syatems determined by P_{1} and P_{3} aro homographic with that deternined by P and therefore with each other (323), and that when P 'in the course of its variation coinciles with either double point or lino M or N of the original systems, its two correspondents P_{1} and P_{8} coincido with the same double point or line, and therefore with each other; and the second (b) follows immediately (3i0) from the thind (c, , which may bo proved as follows:

The pair of points or lincs P_{1} and P_{3}, the pair M and N, and the coincident pair P^{\prime} and P, being in involution, by tho preceding 1°, have therefore a common pair of harmonic conjugates (370); ono of which being, of course, the double point or line P, its harnonic conjugate P_{3}, with respect to P_{1} and P_{3} is therefore its barmonic conjugato with respect to $I /$ and N also; and therefure \&e.

Or thus, for either ease of the circle, to which the others aro of course reducible. The three lines of connexion (or points of intersection) $P_{1} P_{v}, P P, M N$ being concurrent (or collinear) (337); and the three lines of connexion (or points of intersection) $P_{1} P_{3}, P P, P_{3} P_{3}$ being also concurrent (or collinear) (257); therefore the three lines of connexion (or points of intersection) $P P, P_{3} P_{3}, M N$ are also concurrent (or collinear); and therefore \&c. (257).
376. The general property of Art. 370 supplies obvious and rapid solutions of the two following pairs of reciprocal problems, viz.-
a. Through a given point to draw a line intersecting two given angles, or circles, so that the point shall be a double point of the involution determined by the two pairs of intersections.
a^{\prime}. On a given line to find a point subtending two given segments, or circles, so that the line shall be a double line of the involution determined by the two pairs of subtenders.

For, since, by the property of that article (370), the two double points (or lines) of the involution in question are harmonic conjugates with respect to the two pairs of intersections (or subtenders), and therefore conjugate points (or lines) with respect to the two angles (or segments) (217), or to the two circles ($259, a$ or a^{\prime}); therefore, the two polars of the given point (or poles of the given line) with respect to the two given angles (or segments) (217), or to the two given circles (174), determine, by their point of intersection (or line of connexion), the second double point (or line) of that involution; and the two double points (or lines) being thus known, their line of connexion (or point of intersection) is of course the required line (or point).
N.B. When, in the former case, the given point has the same polar with respect to the two given angles or circles, and when, in the latter case, the given line has the same pole with respect to the two given segments or circles, the above reciprocal constructions become, as they ought, indeterminate; every line through the given point in the former case, and every point on the given line in the latter case, then evidently satisfying the conditions of the problem.
377. The equianharmonic relations of Art. 364, combined with the general property of Art. 327, reduce also the solutions of the two following reciprocal problems to those of the first parts of the two of Ex. 7°, Art. 353 ; viz.-
a. Through a given point to draw a line intersecting with five given lines, so that any two assigned pairs of the five intersections shall be in involution with the point and fifth.
$a^{\text {. O }}$ O given line to find a point connecting with five given
points, so that any two assigned pairs of the fice connectors shall be in incolution with the line and fifth.

For, denoting by C the given point (or line), by A and A^{\prime}, B and B^{\prime} the two assigned pairs of intersections (or connectors) for any line drawn through (or point taken on) C, by C^{\prime} the conjugate of C in the involution determined by A and A^{\prime}, B and B^{\prime} on (or at) that line (or point), by 0 and O^{\prime} the vertices of the two angles (or axes of the two segments) determined by the two pairs of the given lines (or points) corresponding to A and B, A^{\prime} and B^{\prime} respectively, and by I the fifth given line (or point) on (or through) which C^{\prime} is to lic (or pass) in the required involution; then, whaterer be the position of the line drawn through (or of tho point taken on) C, since $\left\{A B C C^{\prime}\right\}$ $=\left\{B^{\prime} A^{\prime} C C^{\prime \prime}\right\}(364)$, therefore $\left(0 . A B C^{\prime} C^{\prime}\right\}=\left\{U^{\prime} .1 B^{\prime} A^{\prime} C C^{\prime}\right\}(285)$; and since the three pairs of corretponding rays (or points) $O A$ and $O^{\prime} B^{\prime}, O B$ and $O^{\prime} A^{\prime}, O C$ and $O^{\prime} C$ are fixed, therefore the pair $O C^{\prime \prime}$ and $O^{\prime} C^{\prime}$, which vary with the position of that line (or point), determine two homographic systems (327) whore two pairs of corresponding constituents intersecting on (or connecting through) $I\left(353, \mathrm{Ex} . \mathbb{i}^{\prime}\right.$, a^{a} or a) deternine the two positions of C^{\prime} whose comnectors (or intersections) with C give the two solutions of the problem a (or á).
N.B. When the given line (or point) I coincides with one, and the given point (or line) C lics on (or passes through) the other, of the two axes (or centers) of perspective of the two angles (or segments) determined by the two pairs of given lines (or points) corresponding to the two pairs of conjugates A and A^{\prime}, B and B^{\prime} of the involution; the two positions of C^{\prime}, given by the above, become, as they ought to be, indeterminate; every line passing through (or point lying on) C then evidently determining the required involution. (See examples a and a^{\prime}, Arr. 365).

Cor. When, in the former problem, the line I is at infinity; then the point C, being the conjugate of the point at infinity on its axis, is comsequently the centre of the involution deternined on the required line by the iwo pairs of intersections A and A^{\prime}, B and $B^{\prime}(372)$; hence by the above are given the two solutions, real or imaginary, of the problem.

Through a given point to draw a line intersecting two given angles, so that the point shall be the centre of the involution determined by the two pairs of intersections.

When the two given angles are two opposite angles of a parallelogram, and when the given point is on the diagonal not passing through their vertices, this problem is indeterminate for the same reason as in the gencral case; the point being then evidently (Euc. vi. 16) the centre of the involution for every line passing through it.
378. From the two reciprocal properties of Art. 337, respecting the directive axis of two homographic rows of points on different axes, and the directive centre of two homographic pencils of rays through different vertices, the two following reciprocal properties of involution, with respect to such systems, may be immediately inferred; viz.-
a. Every line intersecting two homographic pencils of rays through different vertices in two homographic rows of points in involution passes through their directive centre; and, conversely, every line passing through the directive centre of two homographic pencils of rays through tifferent vertices intersects them in two homographic rows of points in involution.
a^{\prime}. Every point subtending two homographic rows of points on different axes by two homographic pencils of rays in involution lies on their directive axis; and, conversely, every point lying on the directive axis of two homographic rows of points on different axes subtends them by two homographic pencils of rays in involution.

For, if a line intersect (or a point connect) with the two systems of rays (or points) in two homographic rows (or by two homographic pencils) in involution, the two correspondents A^{\prime} and B of every two rays (or points) A and B^{\prime} which intersect on (or connect through) it, must also intersect on (or connect through) it (358), and therefore \&c. (337) ; and, conversely, if a line pass through the directive centre (or a point lie on the directivo axis) of the two systems of rays (or points), the two correspondents A^{\prime} and B of every two rays (or points) A and B^{\prime} which intersect on (or connect through) it, must also intersect on (or connect through) it (337), and therefore \&c. (358).

By virtue of the fundamental theorem of Art. 357 the same results may be arrived at, without the aid of the reciprocal properties of Art. 337, from the consideration that when the puint on the line at which it intersects with the ray common to the two pencils (or the line through the point by which it connects with the point common to the two rows) has the same correspondent to whichever of the two rows of intersection (or pencils of connection) it be regarded as belonging (357), the lime (or point) itself passes through the intersection (or lies ou the connector) of the two correspondents of the common ray (or point); and, conversely, when the line (or point) passes through that intersection (or lies on that comnector), its two rows of intersection (or pencils of connection) with the two systems of rays (or points) have, in that intersection (or connector) and in its own intersection (or connector) with the ray (or point) common to the two systems, a pair of interchangeable correspondents ; and therefore \&ic. (357).

Con. 1°. When, in the former case, the ray common to the two pencils is at infinity; that is, when the pencils consist each of parallel lines; their directive centre being then the conjugate to the point at intinity, and therefore the centre, of the involution they deternine on every line passing through it (33i), it appears consequently, from the above, that-

When two homographic pencils consist each of parallel lines, their directive centre is the centre of the incolution they determine on every line passing through it.

Con. 2. Tho above reciprocal properties supply, in tho general case, obvious and rapid solutions of the following reciprocal problems; viz.-
a. To dravo a tangent to a given point or circle, whaso two triads of intersections with theo given triads of concurrent lines through different vertices shall be in involution with any assigned correspondence of pairs of constituents.
a. To find a point on a given line or circle, those two triads of conncetors with theo given triuds of collincar points on different axes shall be in incolution with any assigned correspondence of pairs of constituents.
379. The two reciprocal properties of Art. 337, supply also solutions of the two following reciprocal problems; viz.-
a. Given three pairs of corresponding constituents of two homographic pencils of rays through different vertices; to describe a circle passing through their two vertices, and determining with them two concyclic triads of points in involution.
$a^{\text {a }}$. Given three pairs of corresponding constituents of two homographic rows of points on different axes; to describe a circle touching their two axes, and determining with them two concyclic triads of tangents in involution.

For, as the two points (or tangents) P and Q, determined with the required circle by any pair of corresponding rays (or points) A and A^{\prime} of the two given triads, must, by the properties in question, connect through the directive centre (or intersect on the directive axis) O of the two systems, which is given with the two triads (337) ; and as, in addition, the direction of their line of connection (or the sum or difference of the distances from A and A^{\prime} of their point of intersection) $P Q$ is given, being manifestly the same for every circle passing through the two vertices (or touching the two axes); the solution of the problem is therefore evident in the former case, and reducible to that of Art. 54 in the latter case; and therefore \&c.
N.B. Since, for every pair of corresponding constituents A and A^{\prime} of the two homographic pencils (or rows), the line (or point) $P Q$ passes through (or lies on) their directive centre (or axis) O, when they determine with the circle two systems in involution (337); it follows, consequently, that the two determined systems, when in involution, are in perspective. A property which, it will be remembered, was proved for every two concyclic systems of points (or tangents) in involution, in 1°, Art. 371.

CHAPTER XXII.

METHODS OF GEOMETRICAL TRANSFORMATION. THEORY OP HOMOGRAPHIC FIGURES.

380. Twu figures of any kind, F and $F^{\prime \prime}$, in which correspond, to every point of either a point of the other, to every lise of either a line of the other, to every connector of two points of either the comnector of the two corresponding points of the other, and to every intersection of two lines of either the intersection of the two corresponding lines of the other, are said to be homographic when every two of their corresponding quartets whether of collinear points or of concurrent lines are equianharmonic. Every two figures in perapective with each other to any centre and axis (141) are evidently thus related to each other ($286,2^{\circ}$).

As two auharnonic quartets of any kind, when each equianlarmonic with a common quartet, are equianhanmonic with ench other; it follows at once, from the above definition, that when two figures of any kind F° and $F^{\circ "}$ are each homagraphic with a common figure F, they are hommgraphic with each other.

3S1. Every two figures F^{\prime} and F^{5} satisfying the four preliminary conditions, whether homographic or not, possess evidently the following propertics in relation to each other.

1. T'o every collinear system of points or concurrent system of lines of eilher, corresponds a collinear system of points or concurrent system of lines of the other.

For, every connector of two points (or intersection of two lines) of either corresponding to the connector of the two corresponding points (or the intersection of the two corresponding lines) of the other, when, for any system of the points (or lines) of either, every two connect by a common line (or intersect at a common point), then, for the corresponding system of the points (or lines) of the other, every two connect by the corresponding line (or intersect at the corresponding point); and therefore, \&c.
2°. To cvery two collinear systems of points or concurrent systems of lines of either in perspective with each other, correspond two collinear systems of points or concurrent systems of lines of the other in perspective with each other.

For, the concurrence (or collinearity) of the several lines of connection (or points of intersection) of the several pairs of corresponding constituents of the two systems, for either, involves, by 1°, a similar concurrence of connectors (or collinearity of intersections) of pairs of corresponding constituents of the two corresponding systems, for the other; and therefore \&c. (130).
3°. To every two figures of the points and lines of cither in perspective with each other, correspond two figures of the points and lines of the other in perspective with each other.

For, the concurrence of the several lines of connection of the several pairs of corresponding points, and the collinearity of the several points of intersection of the several pairs of corresponding lines, of the two figures, for either, involve, by 1°, a similar concurrence of connectors and collinearity of intersections of pairs of corresponding constituents of the two corresponding figures, for the other; and therefore \&c. (141).
4°. To a variable point moving on a fixed line or a variable line turning round a fixed point of either, corresponds a variable point moving on the corresponding fixed line or a variable line turning round the corresponding fixed point of the other.

For, since every two positions of the variable point (or line) connect by the same fixed line (or intersect at the same fixed point) for the former; therefore by 1°, every two positions of the variable point (or line) connect by the corresponding fixed line (or intersect at the corresponding fixed point) for the latter; and therefore \&c.
5°. To a variable point or line of either the ratio of whose distances from two fixed lines or points is constant, corresponds a variable point or line of the other the ratio of whose distances from the two corresponding fixed lines or points is constant.

For, since the variable point (or line) evidently moves on a line concurrent with the two fixed lines (or turns round a point collinear with the two fixed points) for the former ; therefore, by the preceding property 4°, the variable point (or line) mores on a line concurrent with the two corresponding fixed lines (or
turns round a point collinear with the two corresponding fixed points) for the latter; and therefore die.
6°. To a variable polygon of either all whost vertices move on fixed lines and all vehose sides but one thrn round fixed points, or conversely, corresponds a variuble prolygon of the other all whose vertices more on the corresponding fixed lines and all sclose sides but one turn round the corresponding fixed points, or conversely.

For, since, by 4°, to every variable point moving on a fixe 3 line (or variable line tunning round a fixed point) of either, corresponds a variable point moving on the corresponding fixed line (or a variable line turning round the corresponding fixed point) of the other; therefore de.
7°. T'o every harmonic row of four points or pencil of four rays of either, corresponds an harmonic row of four points or pencil of four rays of the other.

For, as every hamonic row (or pencil) may be regarded as deternined by two angles and their two axes of perapective on the connector of their vertices (or by two segments and their two centres of perspective at the intenection of their axes) (241); and, as to the rertices and axes of perspective of any two angles (or the axes and centres of perspective of any two segments) of either corrospond the vertices or axes of perapective of the two corresponding angles (or the axes and centres of pempective of the two corresponding segments) of the other; therefore \&ic.
8°. To every pair of lines or proints conjugute to each other teith respect to any segment or angle of cither, correspond a prair of lines or points conjugate to euch other with respect to the corresponding segment or anglo of the other.

For, as every two lines (or points) conjugate to ench other with respect to any segment (or angle) intersect with the axis of the segment (or comect with the vertex of the angle) at two points (or by two lines) which divide the segment (or angle) harmonically (217); therefore \&cc. by the preceding property 7°.
9. To every point and line gole and polar to each other ecith respict to any triangle of either, correspond a point and line pole and polar to each other teith respeet to the corresponding triangle of the other.

For, as every point, and the intersection of its polar with each
side (or every line, and the connector of its pole with each vertex) of any triangle, are conjugate to each other with respect to the opposite angle (or side) of the triangle (250 , Cor. 2°); therefore \&c. by the preceding property 8°.
10°. To a variable point or line of either determining with four fixed points or lines an harmonic pencil or row, corresponds a variable point or line of the other determining with the four corresponding fixed points or lines an harmonic pencil or row.

For, the harmonicism of the quartet of variable rays (or points), in every position of the variable point (or line) for either, involving, by 7°, the harmonicism of the corresponding quartet of variable rays (or points), in every position of the variable point (or line) for the other; therefore \&c.
11°. To every two equianharmonic rows of four points or pencils of four rays of either, correspond two equianharmonic rows of four points or pencils of four rays of the other.

For, as every two equianharmonic rows of four points (or pencils of four rays) may be regarded as determined; on their respective axes (or at their respective vertices), by two quartets of rays (or points) in perspective with each other (290) ; and, as to every two quartets of rays (or points) in perspective for either correspond two quartets of rays (or points) in perspective for the other (property 2° above); therefore \&c.
12°. To every equianharmonic hexastigm or hexagram of either, corresponds an equianharmonic hexastigm or hexagram of the other.

For, the equianharmonicism of the two pencils of connection (or rows of intersection) of any two with the remaining four of the six points (or lines) for either hexastigm (or hexagram) involving, by the preceding property 11°, the equianharmonicism of the two corresponding pencils (or rows) for the other hexastigm (or hexagram); therefore \&c. (301). The same result follows also from the reciprocal properties of Art. 302, by virtue of the preceding property 1°.
13°. To a variable point or line of either determining with four fixed points or lines a pencil or row having a constant anharmonic ratio, corresponds a variable point or line of the other determining with the four corresponding fixed points or lines a pencil or row having a constant anharmonic ratio.

For, the equianharmonicism of the two quartets of rays (or points), in every two positions of the variable point (or line, for either, involving, by property 11°, the equianharmonicism of the two corresponding quartets of rays (or points), in every two positions of the variable point (or line) for the other; therefure \&ic.

11:. To every two homographic rotes of points or pencils of rays of either, correspond theo homographic roves of pwints or pencils of rays of the other.

For, the equianlarmonicism of every two quartets of corresponding constituents of the two rows (or pencils) for either involving, by property 11°, the equianharmonicism of every two quartets of corresponding constituents of the two corresponding rows (or pencils) for the other; therefore ifc. (321).
15. To tico homagraphic conxal rows or concentric pencils of either in involution with each other, correspond two homographic coaxal rotes or concentric prencils of the other in involution with each other.

For, every interchange of corresponding constituents of the two rows (or pencils) for either involving evidently a corresponding interchange of corresponding constituents of the two corresponding rows (or pencits) for the other; the interchangeability of every pair of corresponding constituents for either involves consequently the interchangeability of every pair of corresponding constituents for the other; and therefore dic. (357). The same result follows also from the general property of Art. 370, by virtue of the preceding property 7°.
16°. To the double points or rays of any turo homographic coaxal roves or concentric pencils of either, correspond the double points or rays of the tico corresponding coaxal rows or concentric pencils of the other.

For, every coincidence of corresponding constituents of the two rows (or pencils) for either involving evidently a corresponding coincidence of corresponding constituents of the two corresponding rows (or pencils) for the other; the two coincidences, real or imaginary, of pairs of corresponding constituents, which constitute the two double points (or rays) for cither, correspond consequently to the two coincidences, real or imaginary, of pairs of corresponding constituents, which constitute the vol.. II.
two double points (or rays) for the other; and therefore \&c. (3.41).
17. To a variable point or line of either connecting or intersecting with two fixed points or lines homograplacally, corresponds a variable point or line of the other connecting or intersecting with the two corresponding fixed points or lines homographically.

For, the equianharmonicism of every two quartets of corresponding connectors (or intersections) of the variable with the two fixed points (or lines), for either, involving, by property 11°, the equianharmonicism of every two quartets of corresponding connectors (or intersections) of the variable with the two corresponding fixed points (or lines), for the other; therefore \&c. (321).
18°. To a variable point or line of either the rectangle under whose distances from two fixed lines or points is constant, corresponds a variable point or line of the other the rectangle under whose distances from two (not necessarily corresponding) fixed lines or points is constant.

For, the variable line (or point) of the former intersecting (or connecting) with every two fixed positions of itself homographically (340, Cor. 2°); and the variable line (or point) of the latter consequently, by the preceding property 17°, intersecting (or connecting) with every two fixed positions of itself homographically ; therefore \&c. $\left(340, \mathrm{Cor} .1^{\circ}\right)$.
19°. To a variable point or line of either whose angle of connection with two fixed points or chord of intersection with two fixed lines intercepts on a fixel line or subtends at a fuxed point a segment or angle of constant magnitude, corresponds a variable point or line of the other whose angle of connection with the two corresponding fixed points or chord of intersection with the two corresponding fixed lines intercepts on a (not necessavily corresponding) fixed line or subtends at a (not necessarily corresponding) fixed point a segment or angle of constant magnitude.

For, the variable line (or point) of the former intersecting (or connecting) with the two fixed lines (or points) homographically (325, a and a^{\prime}); and the variable line (or point) of the latter consequently, by property 17°, intersecting (or comecting) with
the two corresponding fixed lines (or points) homographieally; therefore \&ic. (339 and 340).
20°. For continuous figures, all pairs of corresponding points determine pairs of corresponding tangents, and all pairs of corresponding tungents determine pairs of corresponding points.

For, every connector of two points of either corresponding to the connector of the two corresponding points of the other, and every intersection of two lines of either corresponding to the intersection of the two corresponding lines of the other; and the coincidence of any two points or lines of either involving the coincidence of the two corresponding points or lines of the other; therefore ©c. (19 and 20).
352. From the fundamental definition of Art. 380, the following general property of homographic figures may be readily inferred; viz.

If A and A^{\prime}, B and B^{\prime} be any theo fixed pairs of corrcsponding points (or lines) of any teo homographic figures F and $F^{\prime \prime}$, and I and I' any variable pair of corresponding lines (or points) of the figures; then, for every pravition of I and I ', the ratio

$$
\left(\frac{A I}{B I}: \frac{A^{\prime} I}{B I}\right) \text { or its equivalent }\left(\frac{A I}{A^{\prime} I^{\prime}}: \frac{B I}{B^{\prime} I}\right)
$$

is constant, both in magnitude and sign.
For, if Z and Z^{\prime} be the two wariable points of intersection (or lines of comection) of the two variable lines (or points) I and I^{\prime} with the two fixed lines (or points) $A B$ and $A^{\prime} B^{\prime}$ respectively; then, since, by hypothesis, $\%$ and $\%^{\prime}$ determine two homographic rows (or pencils) of which A and A^{\prime}, B and B^{\prime} are two pains of corresponding constituents (380), therefore, by (325), the ratio

$$
\left(\frac{A Z}{B Z}: \frac{A^{\prime} Z}{B^{\prime} Z^{\prime}}\right) \text { or }\left(\frac{\sin A Z}{\sin B Z}: \frac{\sin A^{\prime} Z^{\prime}}{\sin B^{\prime} Z^{\prime}}\right)
$$

to which, in the corresponding case, the above is manifestly equivalent, is constant both in magnitude and sign; and therefore dic.

Cur. 1°. If A and B^{\prime} be the two lines of the two figures whose two correspondents A^{\prime} and B coincide at infinity; since then, for every two pairs of corresponding points l^{\prime} and l^{\prime},
Q and Q^{\prime} of the figures, the two ratios $P B: Q B$ and $P^{\prime} A^{\prime}: Q^{\prime} A^{\prime}$ each $=1$ (15), and since, for all cases, by the above,

$$
\left.\left(\frac{P A}{P B}: P^{\prime} A^{\prime}\right)=\left(\frac{Q A}{P^{\prime} B^{\prime}}\right): \frac{Q^{\prime} A^{\prime}}{Q B B^{\prime}}\right),
$$

therefore, for the case in question, $P A \cdot P^{\prime} B^{\prime}=Q A \cdot Q^{\prime} B^{\prime}$, and therefore-

For any two homographic figures F and $F^{\prime \prime}$, if A and B^{\prime} be the two lines whose two correspondents A^{\prime} and B coincide at infinity, then, for every pair of corresponding points P and P^{\prime} of the figures, the rectangle $P A \cdot P^{\prime} B^{\prime}$ is constant in magnitude and sign.

Cor. 2°. From the simple relation of the preceding corollary, the following properties of any two homographic figures F and F^{\prime}, with respect to their two lines A and B^{\prime} whose correspondents A^{\prime} aud B coincide at infinity, may be immediately inferred; viz.-

1. Every two corresponding segments $P Q$ and $P^{\prime} Q^{\prime}$ of any two corresponding lines L and L^{\prime} are cut in recipracal ratios by the two lines A and B^{\prime} respectively.

For, since, by the relation, $P A \cdot P^{\prime} B^{\prime}=Q A \cdot Q^{\prime} B^{\prime}$; therefore, at once, $P A: Q A=Q^{\prime} B^{\prime}: P^{\prime} B^{\prime}$; and therefore \&c. (Euc. vi. 4).
2°. For a variable pair of corresponding points P and P^{\prime} on any fixed pair of corresponding lines L and L^{\prime}, if H and K^{\prime} be the intersections of the latter with A and B^{\prime} respectively, the rectangle $H P . K^{\prime \prime} P^{\prime}$ is constant in magnitude and sign.

For, the two ratios $P A: P H$ and $P^{\prime} B^{\prime}: P^{\prime} K^{\prime}$ being both constaut, by hypothesis, and the rectangle $P A . P^{\prime} B^{\prime}$ being constant in magnitude and sign, by the relation; therefore \&c.
3°. For every pair of corresponding points P and P^{\prime}, if L and L^{\prime} be any fixed pair of corresponding lines, the ratio $P L^{y} \div P A: P^{\prime} L^{\prime y} \div P^{\prime} B^{\prime}$ is constant in magnitude and sign.

For, since, by the general property of the present article, the two ratios $P L \div P A: P^{\prime} L^{\prime} \div P^{\prime} A^{\prime}$ and $P L \div P B: P^{\prime} L^{\prime} \div P^{\prime} B^{\prime}$ are constaut in magnitude and sign, and since the ratio $P B: P^{\prime} A^{\prime}=1$; therefore $\mathcal{E c}$.
4°. I' every line L of F parallel to A, corresponds a line L^{\prime} of $F^{\prime \prime}$ parallel to $B^{\prime \prime}$; and conversely.

For, since, for every two pairs of corresponding points P and P^{\prime}, Q and Q^{\prime}, on any pair of corresponding lines L and L^{\prime}, by
$1^{\circ}, P A: Q A=Q^{\prime} B^{\prime}: P^{\prime} B^{\prime}$; consequently when either equivalent $=+1$ so is the other also; and therefore $\& \mathrm{Ec}$. (15).
5°. For every pair of corresponding lines L amd L' parallel to A and B^{\prime} respectively, the rectangle $A L . B^{\prime} L^{\prime}$ is constant in magnitule and sign.

For, since, for any pair of corresponding points P and I^{ν} on L and L^{\prime} respectively, the rectangle $P A . P^{\prime} B^{\prime}$ is constant in magnitude and sign, by the relation; therefore dic.

6'. Eeery weo corresponding lines L and L' parallel to A and B^{\prime} respectively are divited similarly by the several pairs of correxponding points that lic on them.

For, since, for any number of pairs of corresponding points P and I^{\prime}, Q and Q^{\prime}, I and $R^{\prime}, \& \in$ on L and L^{\prime} respectively, if M and M ' be any other pair of corresponding lines not parallel to A and B°, by $3^{\circ}, P M M^{2}-P A: Q . M^{2} \div Q A: R M^{\circ} \div R A$, \&e. $=P^{\prime} M^{n} \div P^{\prime} B^{\prime}: Q^{\prime} M^{n}+Q^{\prime} B^{\prime}: \Gamma^{\prime} M^{n}: \Pi B J$, dec ; and since, by hypotheais, $P A: Q A: R A, N c=P^{\prime} B^{\prime}: Q^{\prime} B^{\prime}: K^{\prime} B^{\prime}, \mathbb{N}=1$; therefore $P M^{3}: Q . M^{2}: M M M^{3}, \mathbb{d}=P^{\prime} M^{n}: Q^{\prime} M^{n}: M^{\prime} M^{n}, \mathbb{N}$. ; and therefore \&c. (Euc. V1. 4).
N.B. Of these several results, the second, fourth, and sixth are also evident à priori from the fundamental definition of Art. 380; the fourth from (16), from the consideration that to every line L of F passing through the point $A B$, corresponds a line I^{\prime} of $F^{\prime \prime}$ passing through the corresponding point $A^{\prime} B^{\prime}$; the sixth form (330), from the consideration that to the point $A B$ on L, corresponds the point $A^{\prime} B^{\prime}$ on L^{\prime}; and the second from (331), from the consideration that to the two points H and $K^{\prime \prime}$ at which L and L^{\prime} intersect with A and B^{\prime} respectively, correspond the two H^{\prime} and K at which $L \dot{\prime}$ and L intersect with A^{\prime} and B respectively.

Cons. 3°. When the figures are such that a pair of their corresponding lines A and A^{\prime} coincido at infinity; then, since for every pair of corresponding points P and $P^{\prime \prime}$ the ratio $P . A: P^{\prime} A^{\prime}=1$, therefore for every other fixed pair of corresponding lines B and B^{\prime}, by the above, the ratio $P B: P^{\prime} B^{\prime}$ is constant in magnitude and sign, however P and P^{\prime} vary, and therefore-

When two homographic figures F^{\prime} and F^{\prime} have a pair of corresponding lines A and A coinciding at infinity, the distance
of a variable point P from any fixed line B, of either F, is to the distance of the corresponding variable point P^{\prime} from the corresponding fixed line B^{\prime}, of the other $F^{\prime \prime}$, in a ratio constant in magnitude and sign.

Cor. 4°. From the general property of the preceding corollary, the following consequences, respecting two homographic figures F and F^{\prime} having a pair of corresponding lines A and A^{\prime} coinciding at infinity, may be readily inferred.
1°. To every two parallel lines L and M of either F, correspond two parallel lines L^{\prime} and M^{\prime} of the other F^{\prime}.

For, since, for every two pairs of corresponding points P and P^{\prime}, Q and Q^{\prime} on either pair of corresponding lines L and L^{\prime}, by the preceding, $P M: P^{\prime} M^{\prime}=Q M: Q^{\prime} M^{\prime}$; consequently, when always $P M=Q M$, then always $P^{\prime} M^{\prime}=Q^{\prime} M^{\prime}$; and therefore \&c.
2°. For every two parallel lines L and M of either F having any fixed direction, and for the two corresponding parallel lines L^{\prime} and M^{\prime} of the other F^{\prime}, the ratio $L M: L^{\prime} M^{\prime}$ is constant in magnitude and sign.

For, since, for a variable pair of corresponding points P and P^{\prime} on either pair of corresponding lines L and L^{\prime}, by the same, the ratio $P M$: $P^{\prime} M^{\prime}$ is then constant in magnitude and sign; therefore \&c.
3°. Every two of their corresponding lines L and L^{\prime} are divided similarly by their several pairs of corresponding points P and P^{\prime}, Q and Q^{\prime}, R and $R^{\prime}, \& c$.

For, if M and M^{\prime} be any other pair of corresponding lines not parallel to L and L^{\prime}, and O and O^{\prime} the two points of intersection $L M$ and $L^{\prime} M^{\prime}$; then since, by the same, $P M: P^{\prime} M^{\prime}=$ $Q M: Q^{\prime} M^{\prime}=R M: R^{\prime} M^{\prime}, \& c$. therefore, by Euc. vi. 4, $P O$: $P^{\prime} O^{\prime}=Q O: Q^{\prime} O^{\prime}=R O: R^{\prime} O^{\prime}, \& c$. ; and therefore \&c.
4°. For every two points P and Q of either F whose line of connection is parallel to any fixed direction L, and for the two corresponding points P^{\prime} and Q^{\prime} of the other $F^{\prime \prime}$, the ratio $P Q: P^{\prime} Q^{\prime}$ is constant in magnitude and sign.

For, if M and $M M^{\prime}$ be a pair of corresponding lines passing through either pair of corresponding points P and P^{\prime} and parallel to any pair of corresponding fixed directions not coinciding with L and L; then, since by the same, the ratio
$M Q: M{ }^{\prime} Q^{\prime}$ is constant in maguitude and sign, therefore, by Euc. vi. 4 , so is also the ratio $I^{\prime} Q: P^{\prime} Q^{\prime}$; and therefore \mathbb{N}.
5°. For every three points I, Q, R of either F, and for the three corresponding points $P^{\prime}, Q^{\prime}, T^{\prime}$ of the other $F^{\prime \prime}$, the area of the triangle $P Q R$ is to the area of the triangle $P ' Q R$ in a contant rutio.

For, if L and L^{\prime} be a pair of correspronding lines passing through any pair P^{\prime} aud P^{\prime} of the correeponding points, and parallel to any fixal pair of corresponding directions of the figures; and S° and S^{\prime} their pair of intersections with the pair of opposite sides $Q R$ and (P I' of the triangles; then since, by the preceding properties 4° and 2^{\prime}, the ratio $I^{\prime} S: I^{\nu} S^{\prime}$ is constant, and the two ratios $Q L$: Qi Li and $M L:$: If I_{j}^{\prime} aro constant and equal, therefore, the difference of the two arens I'QS and PRS, or the area $P Q R(T 5)$, is to the difference of the two areas $I^{\prime} Q^{\prime} S^{\prime}$ and $P^{\prime} K S^{\prime}$, or the area $P^{\prime} Q^{\prime} \Pi^{\prime}(i 3)$, in a constant ratio; and therefure ©ic.
6°. Fior enry syatem of pointe P, Q, R, S, T, dx. of either F, and for the corresponling systom of pointa $P^{\prime}, Q^{\prime}, K^{\prime}, S^{\prime \prime}, T^{\prime \prime}$, de. of the other $F^{\prime \prime}$, the area of entry polygm determined by the former (105) is to that of the corresponding pulygon itherminet by the latter (105) in the sama constant rutio.

For, if PQRST, Ne. and P ('KST', Sce be any pair of corresponding polygons determined by the two systems of points, and O and O^{\prime} any independent pair of corresponding points of the figures; then since, by the preceding property 5°, the seseral triangular areas $P O Q, Q O R, \operatorname{LOS}, S O T \& \mathrm{~S}$. are to the several corresponding areas $I^{\prime} O^{\prime} Q^{\prime}, Q^{\prime} O^{\prime} R^{\prime}, I^{\prime} O^{\prime} S^{\prime \prime}, S O^{\prime} T^{\prime \prime}$ \&c. in the same constant ratio, therefore the sum of the former, or the area of the polygon PQRST, dic. (118) is to the sum of the latter, or the area of the polygon $P^{\prime} Q^{\prime} R^{\prime} S^{\prime} T^{\prime}$ Sc. (118), in the same constant ratio; and therefore \&e.
N.B. Of these several properties, the first and third are also evident ì priori from (16) and (330), from the obvious consideration that when two homographic figures have a pair of corresponding lines coinciding at infinity, then to every point at infinity of either corresponds, by their fundamental definition, a point at infinity of the other.
383. From the same fundamental definition of Art. 380, it follows, precisely in the same manner as the general property of the preceding article, that-

If A and A^{\prime}, B and B^{\prime}, C and C^{\prime} be any three fixed pairs of corresponding points (or lines) of any two homograplic figures F and $F^{\prime \prime}$, and I and I^{\prime} any variable pair of corresponding lines (or points) of the figures; then, for every position of I and I^{\prime}, the three ratios

$$
\left(\frac{B I}{C I}: \frac{B^{\prime} I^{\prime}}{C^{\prime} I^{\prime}}\right),\left(\frac{C I}{A I}: \frac{C^{\prime} I^{\prime}}{A^{\prime} I^{\prime}}\right),\left(\frac{A I}{B I}: \frac{A^{\prime} I^{\prime}}{\overline{B^{\prime} I^{\prime}}}\right)
$$

or their three equivalents

$$
\left(\frac{B I}{B^{\prime} I^{\prime}}: \frac{C I}{C^{\prime} I^{\prime}}\right),\left(\frac{C I}{C^{\prime} I^{\prime}}: \frac{A I}{A^{\prime} I^{\prime}}\right),\left(\frac{A I}{A^{\prime} I^{\prime}}: \frac{B I}{B^{\prime} I^{\prime}}\right),
$$

every two of which manifestly involve the third, are constant, both in magnitude and sign.

For, as in the preceding article, if X and X^{\prime}, Y and Y^{\prime}, Z and Z^{\prime} be the three pairs of intersections (or connectors) of I and I^{\prime} with $B C$ and $B^{\prime} C^{\prime}, C A$ and $C^{\prime} A^{\prime}, A B$ and $A^{\prime} B^{\prime}$ respectively; then since, for the same reason as in the preceding article, the three ratios

$$
\begin{aligned}
& \left(\frac{B X}{C X}: \frac{B^{\prime} X^{\prime}}{C^{\prime} X^{\prime}}\right) \text { or }\left(\frac{\sin B X}{\sin C X}: \frac{\sin B^{\prime} X^{\prime}}{\sin C^{\prime} X^{\prime}}\right) \\
& \left(\frac{C Y}{A Y}: \frac{C^{\prime} Y^{\prime}}{A^{\prime} Y^{\prime}}\right) \text { or }\left(\frac{\sin C Y}{\sin A Y}: \frac{\sin C^{\prime} Y^{\prime}}{\sin A^{\prime} Y^{\prime}}\right) \\
& \left(\frac{A Z}{B Z}: \frac{A^{\prime} Z^{\prime}}{B^{\prime} Z^{\prime}}\right) \text { or }\left(\frac{\sin A Z}{\sin B Z}: \frac{\sin A^{\prime} Z^{\prime}}{\sin B^{\prime} Z^{\prime}}\right)
\end{aligned}
$$

to which, in the corresponding cases, the above are manifestly equivalent, are constant both in magnitude and sign; therefore \&c.

Cor. 1°. The above supplies obvious solutions of the two following problems: Given, of two homographic figures F and $F^{\prime \prime}$, three pairs of corresponding points (or lines) A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, and a pair of corresponding lines (or points) D and D^{\prime}, to determine the line (or point) E of either of them F corresponding to any assumed line (or point) $E^{\prime \prime}$ of the other $F^{\prime \prime}$. For, since, by the above-

$$
\begin{aligned}
& \frac{B E}{C E^{\prime}}: \frac{B^{\prime} E^{\prime \prime}}{C^{\prime} E^{\prime \prime}}=\frac{B D}{C D}: \frac{B^{\prime} D^{\prime}}{C^{\prime} D^{\prime}}, \\
& \frac{C E}{A E}: \frac{C^{\prime} E^{\prime}}{A^{\prime} E^{\prime \prime}}=\frac{C D}{A D}: \frac{C^{\prime} D^{\prime}}{A^{\prime} D^{\prime}} \\
& \frac{A E}{B E^{\prime}}: \frac{A^{\prime} E^{\prime \prime}}{B^{\prime} E^{\prime \prime}}=\frac{A D}{B D}: \frac{A^{\prime} D^{\prime}}{B^{\prime} D^{\prime}}
\end{aligned}
$$

the three ratios $D E: C E, C E: A E, A E: B E$, which manifestly determine the position of the required line (or point) E, are consequently given; and therefore of.

The particular eases where the given line (or point) $E^{\prime \prime}$ is at infinity present no special peculiarity; the three ratios $J^{\prime} E^{\prime \prime}: C^{\prime} E^{\prime \prime}, C^{\prime} E^{\prime \prime}: A^{\prime} E^{\prime \prime}, A^{\prime} E^{\prime}: B^{\prime} E^{\prime \prime}$ being simply all $=1$ in the furner case, and having for valucs $\sin B^{\prime} L^{\prime}: \sin C^{\prime} L^{\prime}$, $\sin C^{\prime} L^{\prime}: \sin A^{\prime} L^{\prime}, \sin A^{\prime} L^{\prime}: \sin B^{\prime} L^{\prime}$ respectively, where L^{\prime} is any line parallel to the direction of $E^{\prime \prime}$, in the latter case.

Con. 2. As three pairs of corresponding points (or lines) A and A^{\prime}, B and B^{\prime}, C and $C^{\prime \prime}$ of two homographic figures F^{\prime} and F^{*} determine ($3 s(0)$ three pairs of corresponding lines (or points) $B C$ and $B^{\prime} C^{\prime}, C A$ and $C^{\prime} A^{\prime}, A B$ and $A^{\prime} B^{\prime}$ of the figures; the solutions of the two problens: Given, of two homayraphic figures F and $F^{\prime \prime}$, four pairs of corresponding points (or lines) A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and D^{\prime}; to determine tho point (or line) E of cilher of them F corresponding to any assumed point (or line) E° of the other F^{\prime}; may consequently be regarded as included in those of the above; the particular cases where the given point (or line) $E^{\prime \prime}$ is at infinity, presenting, as above observed, no exceptional or special peculiarity.

Cor. 3°. It appears also immediately from the above, that wehen, for two homographic figures F and F^{\prime}, three pairs of corresponding points (or lines) A and A^{\prime}, B and B^{\prime}, C and C^{\prime} coincide, the coincielence of any independent pair of corresponding lines (or points) D and D^{\prime} involess the coincidence of every other pair E and $E^{\prime \prime}$, and therefore of the figures themselees F^{\prime} and $F^{\prime \prime}$. For, when, in the three relations of Cor. 1°, which as there shewn result immediately from it, $A=A^{\prime}, B=B^{\prime}, C=C^{\prime}$, if, in addition, $D=D^{\prime}$, then necessarily $E=E^{\prime}$; and therefore \&c.

Cor. 4°. For the same reason as in Cor. 2°, it follows of
courso from the preceding, Cor. 3°, that when, for two homographic figures F^{\prime} and $F^{\prime \prime}$, four independent pairs of corresponding points (or lines) A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and D^{\prime} coincide, then all pairs of corresponding points (or lines) E and $E^{\prime \prime}$, and consequently the figures themselves F and F^{\prime} coincide. Which is also evident à priori from the fundamental characteristic of homographic figures (380) that, for every two corresponding quintets A, B, C, D, E and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime \prime}$ of their points (or lines), the five relations

$$
\begin{aligned}
&\{A \cdot B C D E\}=\left\{A^{\prime} \cdot B^{\prime} C^{\prime} D^{\prime} E^{\prime}\right\},\{B \cdot C D E A\}=\left\{B^{\prime} \cdot C^{\prime} D^{\prime} E^{\prime} A^{\prime}\right\}, \\
&\left\{C \cdot D E A B=\left\{C^{\prime} \cdot D^{\prime} E^{\prime \prime} A^{\prime} B^{\prime}\right\},\{D \cdot E A B C\}=\left\{D^{\prime} \cdot E^{\prime} A^{\prime} B^{\prime} C^{\prime}\right\},\right. \\
&\{E \cdot A B C D\}=\left\{E^{\prime} \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}
\end{aligned}
$$

must in all eases exist together; which, when $A=A^{\prime}, B=B^{\prime}$, $C=C^{\prime}, D=D^{\prime}$, would be manifestly impossible unless also $E=E^{\prime}$; and therefore \&c.
N.B. It will appear in the sequel that, for every pair of homographic figures F and $F^{\prime \prime}$, there exists a unique triangle Δ, whose three elements of either species A, B, C, regarded as belonging to either figure, coincide, as supposed in the two latter corollaries 3° and 4°, with their three correspondents of the same species $A^{\prime}, B^{\prime}, C^{\prime}$ in the other figure. Of the triangle Δ, thus related to the two figures F and $F^{\prime \prime}$, two pairs of opposite elements (vertices and sides) may be imaginary, but the third pair aro always real.
384. On the converso of the property of the preceding Article, the following general construction for the double generation (26) of a pair of homographic figures, by the simultancous variation of a pair of connected points, or lines, has been based by Chasles, the originator of the general theory.

If A and A^{\prime}, B and B^{\prime}, C and C^{\prime} be the three pairs of corresponding sides (or vertices) of any two arbitrary fixed triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, and I and I^{\prime} a pair of variable points (or lines) so connected that, in every position, any two of the three ratios

$$
\left(\frac{B I}{O I}: \frac{B^{\prime} I^{\prime}}{C^{\prime} I^{\prime}}\right),\left(\frac{C I}{A I}: \frac{C^{\prime} I^{\prime}}{A^{\prime} I^{\prime}}\right),\left(\frac{A I}{B I}: \frac{A^{\prime} I^{\prime}}{B^{\prime} I^{\prime}}\right)
$$

or of their three equivalents

$$
\left(\frac{B I}{B^{\prime} I^{\prime}}: \frac{C I}{C} I^{\prime}\right),\left(\frac{C I}{C^{\prime} I}: \frac{A I}{A^{\prime} I}\right),\left(\frac{A I}{A^{\prime} I}: \frac{B I}{B^{\prime} I^{\prime}}\right),
$$

and with then of course the third, are constant in magnitude and sign; the teco verriable points (or lines) I and I' generate two homographic figures F and N^{\prime}, of which A and A^{\prime}, B and B^{\prime}, C^{\prime} and C^{\prime} are three puirs of corresponding lines (or points).

That the two figures F and F° resulting from either modo of generation are thas homographic, follows of course conversely from the property of the preceding article; but it may be easily shewn directly that they fulfil all the conditions of connection of the fundamental definition of Art. 350 ; for-
1°. To cvery point (or line) of either corresponds a point (or line) of the other. This is evident from the law of their generation; every two points (or lines) I and I comnected by the above relations, whether generating pains or not, thus corresponding with respect to them.
2. I'o every line (or point) of either corresponds a line (or point) of the other. For, when a variable point (or line) I of the former is connected, in every position, with the threo fixed lines (or points) A, B, C by a relation of the form

$$
a . A I+b . B I+c . C I=0 \ldots \ldots \ldots \ldots \ldots \ldots . .(a),
$$

where a, b, c are any three constant multiples; then, by virtue of the above relations, the corresponding point (or line) I^{\prime} of the latter is connected with the three fixed lines (or points) A^{\prime}, B^{\prime}, C^{\prime} by a corresponding relation of similar form

$$
a^{\prime} \cdot A^{\prime} Y^{\prime}+b^{\prime} \cdot B^{\prime} T^{\prime}+c^{\prime} \cdot C^{\prime} I^{\prime}=0 \ldots \ldots \ldots \ldots .\left(a^{\prime}\right)
$$

where $a^{\prime}, b^{\prime}, c^{\prime}$ are three other constant multiples whose ratios to a, b, c respectively depend on and are given with those of the same relations; but, by the general property of Art. 120 (or 85), the former relation (α) is the condition that the variable point (or line) I should move on a fixed line (or turn round a fixed point) O, and the latter (a) is the condition that the corresponding point (or line) I ' should move on a corresponding fixed line (or turn round a corresponding fixed point) O^{\prime}; and therefore \&e.
3°. To the connector of any two points (or the intersection of
any tioo lines) of either, corresponds the connector of the two corresponding points (or the intersection of the two corresponding lines) of the other. For, since, to a line passing through any two points (or a point lying on any two lines) of either, corresponds, by the preceding property 2°, a line passing through the two corresponding points (or a point lying on the two corresponding lines) of the other; therefore \&c.
4°. To the intersection of any two lines (or the connector of any two points) of either, corresponds the intersection of the two corresponding lines (or the connector of the two corresponding points) of the other. For, since, to two lines passing through any point (or two points lying on any line) of cither, correspond, by the same property 2°, two lines passing through the corresponding point (or two points lying on the corresponding line) of the - other; therefore \&c.
5. Every two of their corresponding quartets of collinear points (or concurrent lines) are equianharmonic. For, the four connectors (or intersections) of any quartet $I_{1}, I_{2}, I_{3}, I_{4}$ of the points (or lines) of the former, whether collinear (or concurrent) or not, with any vertex (or side) $B C$ or $C A$ or $A B$ of the triangle $A B C$ being (by Cor. Art. 328) equianharmonic with the four connectors (or intersections) of the corresponding quartet $I_{1}^{\prime}, I_{2}^{\prime}$, $I_{3}^{\prime}, I_{4}^{\prime}$ of the points (or lines) of the latter with the corresponding vertex (or side) $B^{\prime} C^{\prime}$ or $C^{\prime} A^{\prime}$ or $A^{\prime} B^{\prime}$ of the triangle $A^{\prime} B^{\prime} C^{\prime}$; therefore \&c. (285).
6. Every two of their corresponding quartets of concurrent lines (or collinear points) are equianharmonic. For, the four intersections (or connectors) of any quartet $O_{3}, O_{2}, O_{3}, O_{4}$ of the lines (or points) of the former, whether concurrent (or collinear) or not, with any fifth live (or point) O_{5} of the figure being (by the preceding properties 4° and 5°) equianharmonic with the four intersections (or connectors) of the corresponding quartet O_{1}^{\prime}, $O_{2}^{\prime}, O_{s}^{\prime}, O_{4}^{\prime}$ of the lines (or points) of the latter with the corresponding fifth line (or point) O_{s}^{\prime} of the figure; therefore de. (285).

That, for either mode of generation, the three pairs of corresponding vertices and sides of the two fixed triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are pairs of corresponding points and lines of the two resulting figures F and F^{*}, is evident from the relations of
generation; from which it follows immediately, in either case, that the evanescence of any one or two of the three distances $A I$, $B I, C I$, for the former, involres necessarily the simultaneous evanescence of the corresponding one or two of the three corresponding distances $A^{\prime} I^{\prime}, B^{\prime} I^{\prime}, C^{\prime} I^{\prime}$, for the latter; and therefore \&c.
N.B. When, of the two arbitrary triangles of construction $A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$ in either of the above modes of generation, the three pairs of corresponding elements A and A^{\prime}, B and B^{\prime}, C and $C^{\prime \prime}$ coincide, the triangle $A B C$ is then, with respect to the two resulting figures $F^{\prime \prime}$ and $F^{\prime \prime}$, that to which allusion was made in the note at the close of the preceding article (383).
385. From the general constructions of the preceding article the following consequences respecting the homographic transformation of figures may be readily inferred, viz.-
1°. Any figure F^{\prime} may be transformed homagraplically into another F^{5}, in elhich any four points (or lines), gien or taken arbitrurily, shall correvpond to any assigmed four points (or lines) of the original figure.

For, of the four given pairs of corresponding points or lines, any three determine the two fixed triangles of construction $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, and the fourth give the values of the three constant ratios of construction

$$
\left(\frac{B I}{C I}: \frac{B^{\prime} I^{\prime}}{C^{\prime} I^{\prime}}\right),\left(\frac{C I}{A I}: \frac{C^{\prime} I^{\prime}}{A^{\prime} I^{\prime}}\right),\left(\frac{A I}{B I}: \frac{A^{\prime} I^{\prime}}{B^{\prime} J^{\prime}}\right) ;
$$

and therefore \&ec. See Cors. 1° and 2°, Art. 283.
The obvious conditions, that when, for either of two homographic figures F^{\prime} and F^{\prime}, three points are collinear or three lines eoncurrent, then, for the other, the three corresponding points must also be collinear or the three corresponding lines concurrent, and that when, for either, four points by their collinearity or four lines by their concurrence form an anharmonic quartet, then, for the other, the four corresponding points by their collinearity or the four corresponding lines by theirconcurrence must form an equianharmonic quartet, are the only restrictions on the perfect generality of the above. The former condition may indeed be violated, but, when it is, it is easy to
see, from the general process of construction, that the figure for which the three points are collinear or the three lines concurrent, when their three correspondents in the other are not, must (except for the fourth point or line of the other) have all its points collinear or all its lines concurrent with the three. For, if, in any position of I and I^{\prime}, any one, $A I$ suppose, of the six distances $A I$ and $\Lambda^{\prime} I^{\prime}, B I$ and $B^{\prime} \Gamma^{\prime}, C I$ and $C^{\prime} \Gamma^{\prime}$ be evanescent when its correspondent $A^{\prime} I^{\prime}$ is not, then, in every position of I and I, from the constancy of the three ratios of construction, either the same distance $A I$, or each of the two moncorresponding distances $B^{\prime} I^{\prime}$ and $C^{\prime} I^{\prime}$ is evanescent; and therefore \&c. See the general remark 2° of Art. 31, an illustration of which is supplied by the above.
2°. In the homographic transformation of any figure F into another $F^{\prime \prime}$, the line (or any point) at infinity, regarded as belonging to either, may be made to correspond to any assigned line (or point), regarded as belonging to the other.

This follows at once from the preceding property 1°; the three ratios of construction

$$
\left(\frac{B I}{C I}: \frac{B^{\prime} I^{\prime}}{C^{\prime} I}\right),\left(\frac{C I}{A I}: \frac{C^{\prime} I^{\prime}}{A^{\prime} I^{\prime}}\right),\left(\frac{A I}{B I}: \frac{A^{\prime} I^{\prime}}{B^{\prime} I^{\prime}}\right)
$$

being given as definitely (sec Cors. 1° and 2°, Art. 383) when one of the two given points or lines I and I^{\prime} is at infinity, as when both are at a finite distance; and therefore \&c.

By virtue of the above general property 1°, combined with its particular case 2°, the tetrastigm or tetragram determined by any four points or lines of F may be transformed liomographically into another of any simpler or more convenient form for $F^{\prime \prime}$; such, for instance, as the four vertices or sides of a parallelogram of any form, or, more generally, the three vertices or sides of a triangle of any form combined with any remarkable or convenient point or line connected with its figure. By this means, the demonstration of a property, or the solution of a problem, when such property or problem admits of homographic transformation, may frequently be much simplified; as, for instance, in the pairs of reciprocal properties a and a^{\prime} of $A \mathrm{rt}$.236, a and a^{\prime} of Art. 245, a^{\prime} and a of Art. 299, the demonstrations of which aro comparatively easy (239) when, in the first case of
each, one of the four lines of the tetragram is at infinity, and when, in the second case of each, one of the four points of the tetrastigm is the polar centre of the triangle determined by the remaining three; prositions into which, if not originally in them, they may at once be thrown by homographic transformation, and so placed in the circumstanees most favourable to their establishment.
3°. In the homographic transformation of any figure F into another F, the correspondents to any assigned five points (or lines) of the original, no three of echich are collinear (or concurrent), may be made to lie on (or touch) a circle, given or tuken arbitrarily.

To prove this, it is only necessary (380) to shew that, for every quintet of points (or lines) A, B, C, D, E, no three of which are collinear (or concurrent), a corresponding quintet of concyclic points (or tangents) $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime \prime}$ may be found on (or to) any given circle, satisfying the five conditions

$$
\begin{aligned}
&\left\{A^{\prime} \cdot B^{\prime} C^{\prime} D^{\prime} E^{\prime \prime}\right\}=\{A \cdot B C D E\},\left\{B^{\prime} \cdot C^{\prime} D^{\prime} I^{\prime} A^{\prime}\right\}=\{B \cdot C D E A\} \\
&\left\{C^{\prime} \cdot D^{\prime} E^{\prime} A^{\prime} B^{\prime}\right\}=\{C \cdot D E A B\},\left\{D^{\prime} \cdot E^{\prime} A^{\prime} B^{\prime} C^{\prime}\right\}=\{D \cdot E A B C\}, \\
&\left\{E^{\prime} \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}=\{E \cdot A B C D\} ;
\end{aligned}
$$

which will manifestly be the case if any collinear (or concurrent) quintet $A^{\prime \prime}, B^{\prime \prime}, O^{\prime \prime}, D^{\prime \prime}, E^{\prime \prime \prime}$, can be found satisfying the fivo corresponding conditions

$$
\begin{aligned}
\left.\left\{B^{\prime \prime} C^{\prime \prime} D\right)^{\prime \prime} E^{\prime \prime \prime}\right\} & =\{A . B C D E\},\left\{C^{\prime \prime} D^{\prime \prime} E^{\prime \prime \prime} A^{\prime \prime}\right\}=\{B \cdot C D E A\}, \\
\left\{D^{\prime \prime} E^{\prime \prime} A^{\prime \prime} B^{\prime \prime}\right\} & =\{C \cdot D E A B\},\left\{E^{\prime \prime} A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}\right\}=\{D \cdot E A B C\}, \\
& \left\{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}\right\}=\left\{E^{\prime} . A B C D\right\} ;
\end{aligned}
$$

inasmuch as their five comuecton (or intersections) with any arbitrary point on (or tangent to) the circle, will of course determine, by their five second intersections with (or tangents to) the circle, a concyclic quintet of points (or tangents) $A^{\prime}, B^{\prime}, C^{\prime}$, D^{\prime}, E^{\prime} satisfying the required conditions. And that every two D and E of the five points (or lines) A, B, C, D, E determine such a collinear (or concurrent) quintet with the three intersections (or connectors) of their line of commection (or point of intersection) $D E$ with the three sides (or vertices) $B C, C A, A B$ of the triangle determined by the remaining three A, B, C; may be readily shown as follows'

Denoting by X, Y, Z the three intersections (or connectors)
of the three lines (or points) $B C, C A, A B$ with the line (or point) $D E$; then since, immediately, by the general property of Art. 285, $\{Z Y D E\}=\{A \cdot B C D E\}, \quad\{X Z D E\}=\{B \cdot C A D E\}$, $\{Y X D E\}=\{C . A B D E\} ;$ and since, from the perspective of $A \cdot X Y Z D$ or $B \cdot X Y Z D$ or $C . X Y Z D$ with $D . A B C E$, and of A. $X Y Z E$ or B.XYZE or C.XYZE with E.ABCD, by 4°, Art. 286, $\{X Y Z D\}=\{D . A B C E\}$ and $\{X Y Z E\}=\{E . A B C D\} ;$ therefore \&c.

It follows immediately, from this latter property, that every figure, locus of a variable point every six of whose positions form an equianharmonic hexastign $(301, a)$, or envelope of a variable line every six of whose positions form an equianharmonic hexagram (301, a^{\prime}), may be transformed homographically into a circle; for, if transformed, by the above, so that the correspondents to any five of its points (or tangents) shall lie on (or touch) a circle, the correspondent of every sixth point (or tangent) must, by virtue of its connection with the five, lie on (or touch) the same circle (305); and therefore \&e. Thus: 1°. Every figure, locus of a variable point determining in every position an equianharmonic hexastigm with five fixed points, or envelope of a variable line determining in every position an equianharmonic hexagram with five fixed lines ($301, a$ and a^{\prime}) $; 2^{\circ}$. Every figure, locus of a variable point connecting with four fixed points by four lines, or envelope of a variable line intersecting with four fixed lines at four points, having any constant anharmonic ratio ($333, e$ and e^{\prime}); 3°. Every figure, locus of a variable point connecting homographically with two fixed points, or envelope of a variable line intersecting homographically with two fixed. lines (338, Cor. 2°) ; 4°. Every figure, locus of a variable point the rectangle under whose distances form two fixed lines, or envelope of a variable line the rectangle under whose distances form two fixed points, is constant in magnitude and sign (340 , Cor. $2^{\circ}, a$ and a^{\prime}); may be transformed homographically into a circle; and all their properties admitting of homographic transformation, such as their harmonic and anharmonic properties, consequently inferred from the comparatively simple and familiar properties of the circle. See Chapters Xv. and xvirr.; all the properties of which, not involving the magnitudes of angles, are consequently true, not only of the circle, but of all the figures above enumerated also.

It follows also, from the same property, that five points (or tangents), given or taken arbitrarily, completely determine any figure homographic to a circle; for, if transformed, by the above, so that the correspondents of the five points (or tangents) shall lie on (or touch) a circle, all the other points (or tangents) of the figure are then implicitly given, as the correspondents to the several other points (or tangents) of the circlo; and therefure © $\left\{\begin{array}{c}\text { c. }\end{array}\right.$

Given five points (or tangents) A, B, C, D, E of a figure homographic to a circle, the five corresponding tangents (or points) $A A, B B, C C, D D, E E$ of the figure are given implicilly with them; for, since, for the five corresponding points (or tangents) $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime \prime}$ of the circle, by (306), $\left\{A^{\prime} . A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}\right)=$ $\left\{B^{\prime} \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}\right\}=\left\{C^{\prime} . A^{\prime} B^{\prime} C^{\prime} D^{\prime} B^{\prime \prime}\right\}=\left\{D^{\prime} . A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}\right\}=$ $\left\{E^{\prime} \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}\right\}$, therefore, for the five given points (or tangents) A, B, C, D, E of the figure, by (380) and $\left(381,20^{\circ}\right),\{A . A B C D E\}$ $=\{B \cdot A B C D E\}=\{C \cdot A B C D E\}=\{D \cdot A B C D E\}=\{E . A B C D E\} ;$ and, since, of each of these five latter bomographic pencils (or rows), four rays (or points) are actually given, therefore, of each, the fifth ray (or point) is implicitly given; and therefure \&ec.

3S6. Of the numerous properties of the interesting and important class of figures into which the circle may be transformed homographically, the few following, derived on the preceding principles from those of tho circle, may bo taken as so many examples illustrative of the utility of the process of homographic transformation in modern geometry.

Ex. 1°. No figure homographic to a circle could have either three collinear points or three concurrent tangents.

For, if, of a figure homographic to a circle, three points were collinear, or three tangents concurrent, then, of the circle itself, by ($351,1^{\circ}$), the three corresponding points should be collinear, or the three corresponding rangents concurrent; and therefore \&.C.
N.B. The only execption to this fundamental property occurs in the cases noticed in connection with property 1° of the preceding article (380), when the figure is in one or other limiting state of its general form, and has either an infinite number of collinear points lying on one or other of two definite lines, or an infinite number of concurrent tangents passing through one or other of two definite points. See the general remark 2° of Art. 31; of which the above and all similar exceprional cases supply so many illustrations.

Ex. 2°. No figure homographic to a circle could have either three points at infinity or three parallel tangents.

This is manifestly a particular case of the general property of the preceding article; all points at infinity being collinear, and all parallel lines concurrent (136); and therefore \&ic.
N.B. As, in the process of homographic transformation of nne figure into another, the correspondent to any line of the original may be thrown to infinity in the transformed figure, (See 2° of the preceding article), a circle will consequently be transformed homographically into a figure having two distinct, coincident, or imaginary points at infinity, according as the line echose correspondent is throton to infinity in the transformation intersects it at two distinct, coincident, or inaginary points (21). Since, in the particular case of coincidence, the original and transformed lines are tangents to the original and transformed figures (19), a circle may consequently be transformed homographicully into a figure having a tangent at infinity, by mercly throcing to infinity, in the transformation, the correspondent to any tangent to itself. The transformed figure possesses in this latter case, as will be seen in the sequel, some special properties peculiar to the case.

Ex. 3°. In every figure komographic to a circle, ceery three points (or tangents) and the three corresponding tangents (or points) determine two triangles in perspective (140).

For, both properties, by examples 3° and 4° of Art. 137, being true of the circle itself, are consequently, by properties 1° and 20° of Art. 381, true of every figure homographic to it; and therefore \&c.
N.B. The consequences resulting from this general property applied to the particular cases, when two of the three points are at infinity, the third being arbitrary, and when one of the three tangents is at infinity, the remaining two being arbitrary, are left as exercises to the reader.

- Cor. The above, in the general case, supplies obvious solutions of the two following problems: given, of a figure homographic to a circle, any three points (or tangents) and two of the three corresponding tangents (or points), to delcrmine the third corresponding tangent (or point).

Ex. 4°. In every figure homographic to a circle, every six points (or tangents) determine an equianharmonic hexastigm (or hexngram) (301).

For, both properties, by a and a^{\prime} of $\Lambda r t .305$, being true of the circle itself, are consequently by 12° of Art. 381 , true of every figure homographic to it; and thercfore \&c.
N.B. By virtue of this general property, every system of six points on (or tangents to) any figure homographic to a circle possesses all the properties of a system of six points (or lines) determining an equianharmonic hexnstigm (or hexagram). Sce Arts. 301 to 304.

Cor. If, in the above, while any fire of the six points (or tangents) are supposed to remain fixed, the sixth be conceived to rary, and in the course of its rariation to cnincide successively with each of the fire that remain
fixed; the theorems of Pascal and Brianchon (302, a and a^{\prime}) applied to the five cases of coincidence, supply ready solutions by linear constructions only, without the aid of the circle, of the two following problems: gieen of a figure hamographic to a circle, any fire points (ar tangents), to determine the fice corresponding tangents (or points). For, of the three collinear intersections of pairs of opposite sides (or concurrent connectors of pairs of opposite vertices) of any one of the sixty hexagons determined by the six points (or tangents), in the general position of the variable point (or tangent), that corresponding to the opposite side (or vertex) of the pentagon they determine in any position of coincidence, gives at once the line of connection (or point of intersection) of the two coincident points (or lines), that is (19 and 20) the tangent (or point) corresponding to that position; and therefore $\& \cdot \mathrm{C}$. See also 3^{\prime} of the preceding article.

Ex. 8°. In every figure homagraphic to a circle, a variake point (or tangent) determines teith ecery four fixed points (or langents) a cariable quarlet of rays (or points) having a constant anharmonic ratio.

For, both properties, by a and a of Art. $30 B$, being true of the circle itself, are consequently, by 13° of Art. 351 , true of every figure homographic to it ; and therefore \&.c.

Cor. 1°. From the first part of the above, applied to the particular case When two of the four fixed points are the two, real or imaginary, at which, the figure intersects infinity (see Ex. 2°, sote): it appears at once, as shown already in Art. 312 for the particular case of the circle, that-

In ecery figure homagraphic to a circle, the angle cownecling a rariable with any two fised points of the figure is cut in a constant enharmowic ratio ly the angle connecting it with tho $\$ w 0$ points, real or imaginary, at which the figwre intercects infinity.

Cor. 23. From the second part of the same, applied to the particulas case when, for a figure having a tangent at infinity (see Ex. $\mathbf{2}^{3}$, note), one of the four fixed tangents, whatever be the positions of the remaining three, is the tangent at infinity, it follows at once, by virtue of the general property of Art. 2 Is, that-

When a figure homograplic to a circlo has a langent at infinity, the segment of a cariable intercopted by any teco fired tangents is cut in a constant ratio by ecery third fixed tangent to the figure.

COR. 3°. Since, in the same case, by ArL 55, Cor. $8^{\circ}, b$, the variable circle circumscribing the triangle determised by the variable with any two of the three fixed tangents, in the preceding corollary; passes in every position through a fixed point on the circle circumscribing the triangle determined by the three fixed tangents; it follows consequeatly from the same, by virtue of the property referred to, that

When a figure homographie to a circle has a langent at infinity, the cariable circle circumseribing the triangle determined by a eariable weith any two fixed tangents to the figure, passes through a fixed point.

Cor. 4°. From both parts of the above, applied to the case when, for nny figure, the constant anharmonic ratio of the quartet of rays (or points) determined by the four fixed points (or tangents) with the variable fifth point (or tangent) $=-1$, in which case the four former are said to form an harmonic system, it follows, precisely as shewn for the circle itself in Art. 311, Cor. $3^{\circ}, a$ and a^{\prime}, that-

In every figure homographic to a circle, when four points (or tangents) form an harmonic system, the pair of tangents (or points) corresponding to either pair of conjugates are concurrent (or collinear) with the connector (or intersection) of the other pair.

- Cor. 5°. From the converses of the two preceding properties, shewn with themselves for the circle in the place above referred to, and also on other principles in Art. 257, it follows immediately, as shewn for the circle itself in Art. 258, that-
a. In every figure homographic to a circle, the segment intercepted on a variable by any tion fixed tangents is cut harmonically at the corresponding varinble point and at its intersection with the connector of the twoo corresponding fixed points.
a^{\prime}. In every figure homographic to a circle, the angle subtended at a varialle by any tioo fixed points is cut harmonically by the corresponding cariable tangent and by its connector with the intersection of the two corresponding fixed tangents.

Cor. 6°. From the first of the two preceding properties, applied to the particular case when the two fixed tangents are the two, real or imaginary, whose points of contact are at infinity (see Ex. 2°, note), since then the second point of harmonic section in every position of the variable tangent is at infinity, it follows consequently, by virtue of 3°, Art. 216, that-

In every figure homographic to a circle, the segment intercepted on a variable by the two fixed tangents, real or imaginary, whose points of contact are at infinity, is bisected at its point of contact with the figure.
N.B. With respect to the numerous inferences from the two very fertile properties of the present example, it may be observed generally that, by virtue of them, all the properties established for the circle in Chapters XV. and XVIII. not involving directly the magnitudes of angles, are truc generally of all figures into which circles may be transformed homographically; the circumstance that such figures may have real points at infinity (Ex. 2°, note) giving rise sometimes, as in Cors. $2^{\circ}, 3^{\circ}, 6^{\circ}$ above, to important modifications not occurring, from the absence of that circumstance, in the case of the circle itself.

Ex. 6°. In every figure homographic to a circle, a variable point (or tangent) connects (or intersects) homographically with every two fixed points (or tangents).

For, both properties, by examples c and d of Art. 325, being true of the circle itself, are consequently, by property 14° of Art. 381, true of every figure homographic to it; and therefore \&c.

Cor. 1°. From the second part of the above, applied to the case of a figure having a tangent at infnity (Ex. 2, note), since then, whatever be the positions of the two fised tangents, their two points at infinity are corresponding points of the two homographic divisions determined on them by the variable tangent, it follows consequently, by virtue of the general property of Art. 330, that-

When a figure homographic to a cirele has a tangent at infinity, a sarialle tangent dicides every tweo, and therefore all, fired tangents similarly.

Cor. 2. From the same, applied to the particular case when, for any figure, the two fixed tangents are the two, real or imaginary, whose pointa of contact are at infinity (Ex. 2^{3}, note), since then their common intersection is the point on each correspondiug to that at infinity on the other, it fullows consequently, by virtue of the particular property of Ast. 331, Cor. that-

In every figure homographic to a circle, a coriublo deternnines with the theu fured tangents, real or imaginury, whose points of contact are at infinity, as triungle of constant area.

Cor. 3'. From tho same again, applied to the care when the two fixed tangents, whaterer bo their common absolate direction, are parallel, since then the point on each corresponding to that at infinity on the other is its point of contact with the figure, it follows consequently, by virtue of the general property of Art. 331, then-

In every figure homagraphic to a circle, a pariabla interseets with ecery twe fired tangents, whose directions are parallel, at bueo variable points, the rectangle wnder whose distanees frow their two Msod points of contuet is constant in magnitude and siyn.

COR. 4. Since, for any two fixed tangents, tho point on each corresponding to that at infinity on the other, in their homograptic division hy a variable tangent, is that of its interrection with the eccond fixed tangent parallel to the other (EX. $\mathbf{2}^{3}$), it follows also from the same, by virtue of the same general property of Art. 331, that-

In every figure homographic to a circle, a variable tangent intersects wilh eaeh pair of adjacent sides of any fixed parallelongram esseribed to tho figure, at a pair of eariable points, the rectangle under whose distances from their pair of non-conterminous extremities is constant in magnifude and sign.

Cor. 5°. From the two parts of the above, by virtue of the two general properties a and a^{\prime} of Art. 310, it appeans that-
a. In every figure homographic to a circle, the angle owblended by a sariabte at any two fised points of the figure intercepts segments of constant mugnitude on each of two fised lines, and olso segments having fised middle points on each of two other fised lines.
a: In every fiyure homographic to a circle, the segment iniercepted on a variablo by any treo fised tangents to the figure subtends angles of constant magnitude at each of two fired points, and also angles having fixed middle lines at each of two other fised puints.

Cor. 6°. And, from both parts, again, by virtue of the two gencral properties a and a^{\prime} of Cor. 1° of the same article (310), that-
a. For every figure homographic to a circle, there exist two points (alvays real) the rectangle under whose distances from a variable tangent to the figure is constant in magnitude and sign.
a^{\prime}. For every figure homographic to a circle, there exist two lines (sometimes imaginary) the rectanyle under whose distances from a variable point on the fiyure is constant in magnitude and sign.

From the first of these latter properties it follows, as shewn in Art. 340, Cor. $3^{\circ}, b$, that, in every fugure homographic to a circle, the locus of the intersections of all pairs of rectangular tangents is a circle, which of course opers out into a line in the particular case where the figure has a tangent at infinity.

That the two lines in the second property are the two tangents to the figure whose points of contact are at infinity (Ex. 2°, note), is evident from Cor. 6° of the preceding combined with Cor. 2° of the present article; and the same may also be shewn directly in a variety of ways.

Ex. 7°. When, of any figure homographic to a circle, two variable points (or tangents) connect through (or intersect on) a fixed point (or line), the two corresponding tangents (or points) intersect on (or connect through) a fixed line (or point).

For, both properties, by Cor. 3° of Art. 166, being true of the circle itself, are consequently, by 1° and 20° of Art. 381, true of every figure homographic to it ; and therefore \&c.
N.B. Every point and line related to each other, with respect to any figure homographic to a circle, as in both parts of the above general property, are said, as in the case of the circle itself, to be pole and polar to each wther with respect to the figure; and the entire nomenclature connected with the subject of poles and polars, as employed in Chapter X. with respect to the circle, being extended in the same manner to every figure possessing the corresponding properties, it follows evidently, for the same reason as above, from the nature of those properties as given in that chapter, and from the fundamental relations of homographic figures as stated in articles 380 and 381 , that generally-

In every case of the transformation of a circle into any figure homographic to it, every point and line pole and polar to each other (105), every two points or lines conjugate to each other (174), every two triangles or other figures reciprocal polars to each other (170), every triangle or other figure reciprocal to itself (170), \&c. with respect to the circle, are transformed into correspondents of the same nature similarly related to each other with respect to the figure.

Con. From the second and first parts of the above, applied respectively to the particular cases when the fixed line, or polar, is at infinity, and when the fixed point, or pole, is at infinity in any direction, it follows at once that-
a. In every fiyure homographic to a circle, all puirs of points at which the correspondiny tangents are paralleb connect through as fired point, the pole with respect to the figure of the line at infinity.
a: In every figure homographic to a circle, all pairs of tangents whose chords of contuct are purallel intersect on a fired line, the polar neith reapect to the fiyure of the point at infinity in the direction of the chords.
N.B. The pole of the line at infinity and the several polars passing through it of the several points at infinity, possenses some remarkable propertien with respect to the figure; the prineipal of which will appenr from the general property of the next example, to which we now procecd.

Ex. 8. When, of any figure homographic to a circle, two variable points (or tangents) connect through (or intersect on) a fixed point (or line), the harmonic conjugate acith respect to them of the fired point (or line) moves on (or lurus round) a fired line (or point).

For, both properties, by a and a^{\prime} of Art. 259, being true of the circle itself, are consequently, by 10° and 20° of Art. 381 , true of every figure homographic to it; and therefore ste.

Coll. From the first part of the above, applied to the particular eases when the fixed line, or polar, is at infinity, and when the fixed point, or pole, is at infinity in any direction, it follows immediately, by virtue of 3°, Art. 216, that-
a. In every figure homographic to a circle, every chord of the figure which passes throwigh the pole of the line at infinity is lisected at that point.
a:. In every figure Aomogrupitic to a circte, every chord of the figure whose direction passes through anty point at infinity is blescted by the polar of that point.

By virtue of these two important properties of every figure homographic to a circte, the pole of the line at infinity, as bisecting every chord pasing through it, is teruned the centre of the figure, and the polar of every point at infinity, as bisecting every chord parallel to the direction of the point, is termed a diameter of the ligure. That every diameter passes through the centre, and thus derives its name, is evident, either generalty from tho consiteration that, as its pole lies on the line at infinity, it consequently passes itself through the pole of that line, or particularly, froun the consideration that, as bisecting every chord whose direction passes through its pole, it consequently bisects the particular one which passes through the eentre. In the particular case when the figure has a tangent at infinity (Ex. ${ }^{20}$, note), the pole of the line at infinity being then its point of contact with the figure ($185,4^{\circ}$), the centre consequently is at infinity, and every diameter consequently parallel to its direction.

In every figure not having a tangent at infinity, overy two diameters whose directions passenelh through the pole of the other (17t) are termed conjugate diumeters of the tigure; they, evidently, bisect each all chords parallel to the other, pass each through the points of contact of tho two tangents parallel to the other, and, like all other conjugate lines of the figure
(259), are harmonic conjugates to each other with respect to the two central tangents of the figure, that is $\left(165,6^{\circ}\right)$ to the two tangents, real or imaginary, whose points of contact are at infinity. The two lines bisecting the two pairs of opposite sides of any inscribed parallelogram, as bisecting each a pair of chords parallel to the other, are consequently a pair of conjugate diameters of the figure; and so, for the same reason, by virtue of the property a^{\prime} Cor. 1^{1}, of the preceding example, are the two connceting the two pairs of opposite vertices of any exseribed parallelogram also. In the partieular case when the figure is itself a circle, all pairs of diameters intersecting at right angles are evidently pairs of conjugate diameters, and conversely all pairs of conjugate diameters evidently intersect at right angles.

Of the different pairs of conjugate diameters, all of which, as just observed, divide harmonically the angle, real or imaginary, determined by the two central tangents to the figure, the particular pair which bisect that angle, externally and internally, and which are consequently at right angles to each other, are termed the axes of the figure ; they evidently bisect each all chords perpendicular to itself, and consequently divide each the entire figure into two similar, equal, and symmetrical halves, reflexions of each other with respect to itself (50). For figures having a tangent at infinity (Ex. 2°, note) two axes also exist, but, for such figures, the centre being at infinity, one of the two axes is consequently also at infinity, and but one therefore at a finite distance. For the circle itself, every diameter is evidently an axis.

For a given figure homographic to a circle the centre and axes may be readily determined as follows: drawing any two pairs of parallel chords in different directions, the two connectors of their two pairs of middle points are two diameters of the figure which by their intersection consequently determine the centre ; should the centre thus determined be at infinity, any two parallel chords perpendicular to its direction determine evidently, by their two middle points, the axis not at intinity; and should it not, any circle coneentric with it , and intersceting the figure, determines evidently, by its four intersections (see 50), an inscribed rectangle whose two pairs of opposite sides determine, by their two pairs of middle points, the two axes. In the particular case when the figure is itself a circle, the directions of the axes determined by this latter part of the construction become, as they ought, indeterminate.

Ex. 9°. Every two triangles reciprocal polars to each other with respect to any figure homographic to a circle are in perspective ; and their centre and axis of perspective are pole and polar to each other with respect to the figure.

For, the first part of the property, by 1°, Art. 180, being true of the circle itself, is consequently, by Ex. 7°, note, and 1°, Art. 381, true of erery figure homographio to it; and the second part, by virtue of the general property of Art. 167, being evident alike for circle and figure, thercfore \&c. This general property evidently includes as particular cases those given in Ex. 3° of the present article.

Conversely, every two triangles in perspective are, with their centre and
axis of perspective, reciprocal polars to each other veith respect to a unique figure homographic to a circle, which is implicitly given when the triangles themselves ure given. For, if A and A^{\prime}, B and B^{\prime}, C and C^{\prime} (see figs. a and a^{\prime}, Art. 29j) be the three pairs of corresponding vertices (fig. a), or sides ($\mathrm{fi}_{\mathrm{g}} . a^{\prime}$), of the two triangles; 0 and I their centre and axis (or axis and centre) of persjpective; U, W, W the three points of intersection (or lines of conneetion) of the three lines (or points) $A^{\prime}, B B^{\prime}, C C^{\prime}$ with the line (or point) $I_{i} D$ and D^{\prime}, B and E^{\prime}, F and $F^{\prime \prime}$ their three pairs of intersections (or connectors) with the three pairs of lines (or points) $B C$ and $I^{\prime} C^{\prime \prime}$, $C^{\prime} A$ and $C^{\prime} A^{\prime}, A l B$ and $A^{\prime} H^{\prime}$; and, G and G^{\prime}, H and H^{\prime}, K and $K^{\prime \prime}$ the three pairs of collinenr points (or concurrent lines) which divide harmonieally the three pmirs of segments (or angles) $A I^{\prime}$ and $A^{\prime} D, B E^{\prime}$ and $I^{\prime} E^{\prime}$, $C F^{\prime \prime}$ and $C^{\circ} F^{\prime}(230)$; then, sinee, from the involution of the three triads of segments or angles $A D^{\prime}, A^{\prime} D$, and $O U ; B F^{\prime}, B^{\prime} E$, and $O V ; C F^{\prime}, C^{\prime} F$, and $O W$ (299, a and $\left.a^{\circ}\right)$, and the consequent harmonicism of the three quartets of points (or rays) $G, G^{\circ}, O, U_{i} I_{,} \Pi^{\prime}, O, F ; K, K^{\prime}, O, W$ (370), the six points (or limes) G and G^{\prime}, M and M^{\prime}, K and $K^{\prime \prime}$ determine an equianharmonie hexastigm (or hexagram) (293, Cor. 3%, they are consequently six points on (or tangents to) the same ligure homographic to a circle (Ex. 3) ; which figure being determined by any five of them (3°, Art. 385), and being such that the nise pairs of points (or lines) A and D^{5}, H and E^{\prime}, C and $F^{\prime} ; A^{\prime}$ and D, H and $F, C^{\prime \prime}$ and $F ; O$ and U, O and F^{\prime}, O and W^{-}are pairs of conjugates with respect to it (Ex. 8°), therefore \&e.

Ex. 10^{3}. Every figure homographic to a circle insersects (or oubtends) harmonically the three sides (or angles) of exery triangle self-recipronal with respect to itself; and, conversely, every triangle whose three sides (or angles) are intersected (or subtended) harmonically by any figure homographic to a circle is self-reciprocal with respect to the figure.

For, both properties, by a and a° of Art 250, being true of the circle itself, are consequently, by 10° and 20° of Art. 351 , true of every figure homographic to it; and therefore \&.c.

Given, of a figure homographic to a circle, a self reciprocal triangle $A B C$, and the parition of the centre O, the dircetions of the two central tangents (real or imaginary) and of the two axes (alconys real) may be readily determined as follows: The three lines O.A, OB, OC, connecting the centre with the three rertices, and the three parallels $O A^{\prime}, O I S^{\prime}, O C^{\prime \prime}$ through the centre to the three opposite sides, of the triangle, determining (by Lx. 8°) three pairs of conjugate diameters $O A$ and $O A^{\circ}, O B$ and $O B^{\prime}, O C$ and $O C^{\circ}$ of the figure ; the two double rays (real or imaginary) OM and ON (3i0), and the two rectangular rays (always real) $O I$ and $O I^{\prime}\left(3 i 1, \mathrm{Cor} .2^{\circ}\right.$), of the involution they determine (368, Ex. 2°), are respectively tho wo pairs of lines in question (Ex. 8°). In the particular case when O is the polar eentre of the triangle $A B C(16 S)$, the three pairs of lines $O A$ and $O A^{\prime}, O B$ and $O B$, $O C$ and $O C^{\prime}$ being rectangular, so therefore are all pairs of conjugates of the involution they detcrmine, and the directions of the axes are consequently indeterminate; as they ought, the figure being then a circle (168).

That, in the same case, the figure itself is implicitly given, may also be readily shewn as folloces : If P and P^{\prime}, Q and Q^{\prime}, R and R^{\prime} be its threc pairs of intersections with the three diameters $O A, O B, O C$, and X, Y, Z the three intersections of the latter with the three sides $B C, C A, A B$ of the triangle; then, the three central chords $P P^{\prime}, Q Q^{\prime}, R R^{\prime}$ being all bisected at O, and cut harmonically at the three pairs of points A and X, B and Y, C and Z respectively (Ex. 8°), therefore (225) $O P^{2}=O P^{n}=O A . O X$, $O Q^{2}=O Q^{\prime 2}=O B . O Y, O R^{2}=O R^{\prime 2}=O C . O Z$; relations which give at once the six points P and P^{\prime}, Q and Q^{\prime}, R and R^{\prime}, and therefore the figure itself $\left(380,3^{\circ}\right)$. In the particular case when O is the polar centre of the triangle $A B C$ (168), the three rectangles OA.OX,OB.OY,OC.OZ being equal in magnitude and sign; so therefore are the six semi-diameters $O P$ and $O P^{\prime}, O Q$ and $O Q^{\prime}, O R$ and $O R^{\prime}$; as they ought, the figure being then a circle (168).

More generally, given, of a figure homographic to a circle, a self-reciprocal triangle, and a point and line pole and polar to each other; the two tangents, real or imaginary, to the figure through the former, and the two intersections, real or imayinary, of the figure with the latter, may be readily deternined as follows; If A, B, C be the three vertices (or sides) of the triangle, O and I the point and line (or line and point), and $A^{\prime}, B^{\prime}, C^{\prime}$ the three intersections (or connectors) of the latter with the three opposite sides (or vertices) $B C, C A, A B$ of the triangle; then, the three pairs of lines (or points) $O A$ and $O A^{\prime}$, $O B$ and $O B^{\prime}, O C$ and $O C^{\prime}$ being (174 and Ex. 7°) pairs of conjugates with respect to the figure, the two double rays (or points), real or imaginary, $O M$ and $O N$ of the involution they determine (299) are (370) the two tangents (or points) in question (Ex. 8°), and their two intersections (or connectors) with I, are the two corresponding points (or tangents) (Ex. 7°).

That, in the sume case, the figure itself is implicitly given, may also be readily shewn as follows: If G^{\prime} and G^{\prime}, H and H^{\prime}, K and K^{\prime} be its three pairs of intersections with (or tangents through) the three lincs (or points) $O A, O B, O C ; X, Y, Z$ the three intersections (or connectors) of the later with the three opposite sides $B C, C A, A B$ of the triangle; and U, V, W their three intersections (or connectors) with the line (or point) I; then, the three pairs of points (or tangents) G and G^{\prime}, I and H^{\prime}, K^{\prime} and $K^{\prime \prime}$, dividing, as they do, harmonically the three pairs of segments (or angles) $A X$ and $O U, B Y$ and $O V, C Z$ and $O W$ respectively (Ex. 8°), are consequeutly given (230), and with them of course the figure itself $\left(385,3^{\circ}\right)$.

Ex. 11°. In every tetrastigm (or tetragram) determined by four points on (or tangents to) any figure homographic to a circle, the three intersections (or connectors) of the three pairs of opposite connectors (or intersections) determine a self-reciprocal triangle with respect to the figure.

For, both properties, by a and a^{\prime} of Art. 261, being true of the circle itself, are consequently, by Ex. 7°, note, true of every figure homographic to it; and therefore \&.c.
N.B. By virtue of the abore, all the properties established for the circle.
in the several corollaries of the article referred to in their proof (261), with the applications of them given in the two succeeding articles (262 and 263), are seen at once to hold, without modification of any kind, not only for the circle, but for every figure into which the circle may be trassformed homographically also.

That, for every figure homogrophic to a circle, the sis vertices (or sides) of every taco self reciprocal triangles determine an equianharmonic hexustigm (or heagramn) ; appears, in precisely the same manner as for the circle itself. See Art 301, Cor. 3°.

Ex. 12". In every figure humographic to a circle, if A and A^{\prime}, B and B, C and C ' be the three puirs of opposite connectors (or intersections) of the tetrustigm (or tetrugram) determined by amy fintr fixell points on (or tungents (0) the figure, and I a variable point (or tangent) of the figure; then, in every position of I, the three rectungles $I \mathrm{~A} .1 \mathrm{~A}^{\circ}, I B . I B, I C . I C^{\circ}$ are to each other, tico and froo, in constant rutios.

For, since, by Ex. 6°, the variable point (or tangent) \boldsymbol{I}, in the course of its rariation, divides homographically the three pairs of angles (or segmonts) $I B C^{\prime}$ and $C B^{\prime}, C A A^{\prime}$ and $A C^{\prime}, A B^{\prime}$ and $B . A^{\prime}$, therefore, by Cor. Art. 328, the theree ratios

$$
\left(\frac{I B}{I C^{\circ}}: \frac{I C}{I B}\right),\left(\frac{I C}{1 . A^{\prime}}: \frac{I . A}{1 C^{\prime \prime}}\right),\left(\frac{I A}{I 15^{5}}: \frac{I I B}{1 . A^{\prime}}\right)
$$

are comstant in magnitude and aign; and therefore \&e.
N.IB. That, for the circle itself, the three rectangles, in the former case are all equal, and in the latter caso are proportional to the three O.A. OA, OIS . OIS, OC OC', where O is the sentre of the circle, has been shewn in Cor. 10^{3}, Art. 62 , and in 4 , Cor. 2^{3}, Art. 179 ; from which, of course, the above would have followed also, by virtue of the general relations of construction given in Art. 3SI, but by a procens on the whole less simple and instructive than that aetually employed for their establishment.

Cor. From the above, applied to the particular case when two of the four fixed points (or tangents) coincide with the remaining two, since then, of the six liaes of connection (or points of intersection) of the tetrastigas (or tetragram) they determine, four necesearily coincide, while the remaining two are the two tangents (or points) corresponding to the two coincident pairs of points (or tangents), it follows consequently that-

In every figure homographic to u circle, if A and B be any fuo fixed tangents (or points), C the connector (or intersection) of the two corresponding points (or tangents), and I a variable point (or tangent); then, in every position of I, the rutto $I A, I B: I C^{\prime}$ is constant in magnitude and sign.
N.B. That, for the circle itself, the constant ratio, in the former case $=1$, and in the latter case $=O A \cdot O B: O C^{\prime \prime}$, where O is the centre of the circle, has been shewn in Art. 48, Ex. 0^{3}, and in Art. 179 , Cor. 1°; from which, as above observed for the general properties, those of the corollary
itself would have followed by virtue of the general relations of construction given in Art. 384.

Ex. 13. In every figure homographic to a circle, if A, B, C be the three sides (or vertices) of any fixed triangle inscribed (or exscribed) to the figure, and I a variable point (or tangent) of the figure; then, in every position of I,

$$
\frac{a}{I A}+\frac{b}{I B}+\frac{e}{I C}=0
$$

where a, b, c are three multiples, whose ratios to each other, two and two, are constant in magnitude and sign.

For, if $\mathcal{A}^{\prime}, B^{\prime}, C^{\prime}$ be the three lines of connection (or points of intersection) of the three fixed vertices (or sides) of the triangle $A B C$ with any fourth fixed point on (or tangent to) the figure ; then, in every position of I, since, by the preceding example, the three rectangles $I A . I A^{\prime}, I B . I B^{\prime}$, $I C . I C^{\prime}$ are to each other two and two in constant ratios, and since, by Cor. 6° (or 4°) of Art. 82 , from the concurrence (or collinearity) of $A^{\prime}, B^{\prime}, C^{\prime \prime}$,

$$
a^{\prime} \cdot I A^{\prime}+b^{\prime} \cdot I B^{\prime}+c^{\prime} \cdot I C^{\prime}=0,
$$

where $a^{\prime}, b^{\prime}, c^{\prime}$ are three multiples, whose ratios to each other two and two are constant in magnitude and sign; therefore \&c.
N.B. That, for the circle itself, the three constant maltiples are proportional, in the former case to the three sides a, b, c, and in the latter case to the three differences $s-a, s-b, s-c$ between the semi-perimeter and the three sides, of the triangle $A B C$; may be readily seen from Cor. 3°, Art. 64 , and from Cor. 1°, Art. 179; or the reader may easily prove the same independently for himself.

Ex. 14°. In every figure homographic to a circle, if A, B, C be the three sides (or vertices) of any fixed triangle exscribed (or inscribed) to the figure, and I a variable point (or tangent) of the figure; then, in every position of I,

$$
a \cdot I A^{\frac{b}{2}}+b \cdot I B^{b}+c \cdot I C^{b}=0
$$

where a, b, c are three multiples, whose ratios to each other, two and two, are constant in magnitude and sign.

For, if $A^{\prime}, B^{\prime}, C^{\prime}$ be the three sides (or vertices) of the corresponding fixed triangle inscribed (or exscribed) to the figure; then, in every position of I, since, by Ex. 10°, Cor. the three rectangles $I B . I C, I C . I A, I A . I B$ are to the three squares $I A^{\prime \prime}, I B^{\prime \prime}, I C^{7}$ respectively in constant ratios, and since, by the preceding example,

$$
\frac{a^{\prime}}{I A^{\prime}}+\frac{b^{\prime}}{I B^{\prime}}+\frac{c^{\prime}}{I C^{\prime}}=0
$$

where $a^{\prime}, b^{\prime}, c^{\prime}$ are three multiples, whose ratios to each other tro and two are constant in magnitude and sign ; therefore \&.c.
N.B. That, for the circle itself, the three constant multiples are proportional, in the former case to the three sides $a^{\prime}, b^{\prime}, c^{\prime}$, and in the latter case
to the three differences $s^{\prime}-a^{\prime}, b^{\prime}, \varepsilon^{\prime}-c^{\prime}$ between the semi-perimeter and the three sides, of the triangle $A \cdot E^{\prime} C^{\prime}$, appears at once, by virtue of the above demonstration, from the note to the preceding example; or, as there observed, the reader may easily grove the same independently for himself.

Ex. 15°. In every figure homographic to a circle, if A, B, C be the three vertices (or sides) of any fixed triangle self reciprocal with respeet to the figure, and I a variable tangent (or point) of the figure; then, in every position of I,

$$
a \cdot I A^{2}+b \cdot I E^{2}+c \cdot I C^{\prime}=0
$$

where a, b, c are three multiples, whose ratios to each other, two and swo, are constant in magnitude and sign.

For, if I and $Y^{\text {C }}$ be the two fixed points (or tangents) of the figure which are collinear (or coneursent) with any swo, \mathcal{A} and 13 , of the three vertices (or sides) of the fixed triangle $A B C$, and with which they consequently determine, by Ex. 10°, the harmonic row (or pencil) A, X, X, Y; then, since, by lix. $\%$ the two corresponding fixed tangents (or points) pass through (or lie on) the third vertex (or side) C, therefore, in every prosition of I, by Ex. 122^{3}, Cor. the rectangle $I X, I Y$ is to the square of $I C$ in a constant ratio; and it remaiss only to shew that, in every position of I, the same rectangle is connected with the squares of $I .1$ and $I B$ by a relation of the above form.

The four points (or lines) A, H, N, Y being collinear (or concurrent) therefore, by Cors. 4 and σ of Arh 8%, whatever be the position of the line (or point) I,
$(A B$ or $\sin A B) I N=-(B X$ or $\sin B X) I A+(A X$ or $\sin A X) I B$,
$(A B$ or $\sin A B) I \sum^{*}=-\left(B I^{\circ}\right.$ or $\left.\sin B Y^{\prime}\right) I A+\left(A \Gamma^{\circ}\right.$ or $\left.\sin A Y^{\circ}\right) I B$, from which, multiplying, remembering that, from the harmonicism of the system . $1,13, X^{\circ}, \mathcal{F}^{\circ}$, by relations (1) and (1^{\prime}) Art. 210.
$\left(A N^{\circ}\right.$ or $\left.\sin A X\right) \cdot\left(B Y^{\circ}\right.$ or $\left.\sin B Y^{\circ}\right)+\left(A Y^{\circ}\right.$ or $\left.\sin A Y^{\circ}\right) \cdot\left(B N^{\circ}\right.$ or $\left.\sin B X^{\circ}\right)=0$, it follows, immediately, that
$(A B \text { or } \sin A B)^{\circ} \cdot I X \cdot I Y=(B X$ or $\sin B X) \cdot\left(B Y^{\circ}\right.$ or $\left.\sin B Y\right) \cdot I A^{\prime}$

$$
+(A X \text { or } \sin A X) \cdot(A Y \text { or } \sin A Y) \cdot I B^{\circ}
$$

which being, in either case, of the form in question, therefore \& \&
N.B. For the circle itself, the quantities, to which the three constant multiples a, b, c are proportional, are evidently given for the latter case in the relation of ArL 264, and can from the same, of courne, be at once inferred for the former case by Dr. Salmon's Theorem, given in Art. 179. The reader however can have no difficulty in determining them directly in either case for himself.
387. With the four following general properties of any two homographic figures we shall conclude the present chapter.

1․ For any two homographic figures F and F^{\prime}, the tuco
correspondents I_{1} and I_{3}, in the tioo figures, of a variable point or line I, moving according to any lav, generate two homographic figures G_{1} and G_{3}, in which all pairs of corresponding elements, whether points or lines, which coincide with each other are the same as in the original jigures.

For, the two figures G_{1} and G_{2}, generated by the two variable points (or lines) I_{1} and I_{2}, being each homographic with the figure G, generated by the variable point (or line) I (384), and therefore homographic with each other (380), thercfore \&c. as regards the first part; and since, when any two points (or lines) Λ_{1} and A_{2} of G_{1} and G_{2} coincide, then evidently the point (or line) A of G, to which they correspond in the original figures F and F^{\prime}, coincides with both, therefore \&c. as regards the second part.
N.B. As, for two homographic rows of points or pencils of rays having a common axis or vertex (341), so, for two homographic figures of any kind F and $F^{\prime \prime}$, every point or line at or along which a pair of corresponding elements coincide, is termed a double point or line of the figures. It was shewn in Cor. 4°, Art. 383, that, for two homographic figures of any kind, no more than three independent double points or lines could exist unless the figures altogether coincided; and it will be shewn in the next general property (2°) that, for every two homographic figures, three double elements of each species (two of which however may be and often are imaginary) do always exist, and constitute in fact the three elements of each species (vertices and sides) of the same triangle Δ.
2°. For every two homographic figures F and $F^{\prime \prime}$, however situated, there exists a triangle (unique or indeterminate) Δ; 2chose three elements of either species (sides or vertices) constitute ench a pair of corresponding elements (lines or points) of the figures coinciding with each other.

For, if X_{1}, Y_{1}, Z_{1} and X_{2}, Y_{2}, Z_{8} be the two triads of collinear points (or concurrent lines) corresponding in the two figures to the same arbitrary triad of collinear points (or concurrent lines) X, Y, Z regarded as belonging first to one and then to the other figure; and A, B, C the three lines (or points) which intersect with the three axes (or connect with the three vertices) of the three homographic rows (or pencils) determined
by the three triads of corresponding points (or mys) X_{1}, X, X_{8}; $I_{1}, Y, Y_{2} ; Z_{1}, Z, Z_{8}$ at (or by) three triads of corresponding points (or rays) $U_{1}, U, U_{2} ; V_{1}, V, V_{2} ; W_{1}, W ; W_{2}$ (Ex. 10°, Art. 353); the three lines (or points) A, B, C, as determining three pairs of corresponding lines (or points) of the figures $U_{1} U$ and $U U_{2}, V, V$ and $I^{\prime} V_{2}, W, W$ and $W^{\prime} W_{8}^{\circ}(380)$ which coincido with each other, determine consequently a triangle Δ whose three sides (or vertices), and therefore whose three vertices (or sides) also (350), fulfil tho conditions in question; and therefore \&c.
N.B. The triangle Δ, when none of its elements are known, cannot in general be constructed by elementary geometry; but if one of its sides (or vertices) A be known, the remaining two IS and C, which may be real or imagimary, are given implicitly with them, and may in all cases be determined immediately by the corresponding construction a or a^{\prime} of the problem Ex. 10, of Art. 353, applied to the arbitrary triad of points (or lines) $X, Y, \%$ and the two X_{1}, Y_{1}, Z_{1} and X_{s}, Y_{3}, Z_{1} determinable from them by Cor. 1° of Art. 383.
3. When, fir troo homographic fighres F and 5°, the thrre double lines (or goints) A, B, C are concurrent (or collinear), the fipures themaclies are in perapective; and the print of concurrence (or line of cullinearity) O is their entre (or axin) of perspective.

For, if U and U^{\prime}, V and $V^{\prime \prime}, W^{\prime}$ and $H^{\prime \prime}$ be any three pairs of corresponding points on (or lines through) the three double lines (or points) $A=A^{\prime}, B=B^{\prime}, C=C^{\prime}$; and X and $X^{\prime \prime}, Y^{\prime}$ and $I^{\prime \prime}$, Z and Z ', Sec. any number of other pairs of corresponding points (or lines) of the tigures; then since, by $380, O$ being evidently a double point (or line), $\{0 . \mathrm{CFWXIZ}$ \&c. $\}=$ $\left\{O . U^{\prime} V^{\prime \prime} W^{\prime} \mathrm{X}^{\prime} Y^{\prime \prime} Z^{\prime}\right.$ \&c. $\}$, and since, by hypothesis, $O U=O U^{\prime}$, $O V^{\prime}=O V^{\prime}, O W^{\prime}=O \mathrm{~W}^{\prime \prime}$, therefore (268) $O X=O \mathrm{X}^{\prime}, O Y=O Y^{\prime \prime}$, $O Z=O Z^{\prime}$, \&ec.; and therefore \&c. (141).
N.B. Since, for every two homographic figures F and F, every pair of corresponding lines L and L^{\prime}.parallel to the two particular lines A and B^{\prime} whose two correspondents A^{\prime} and B coincide at infinity are divided similarly by tho several pairs of corresponding points P^{2} and F^{\prime}, Q and Q^{\prime}, R and $I K, S$ and $S^{\prime}, \mathcal{K c}$. that lie on them (6°, Cor. 2°, Art. 382); and since, for every two
figures F and $F^{\prime \prime}$ in perspective with each other, the several lines of connection $P P^{\prime}, Q Q^{\prime}, R R^{\prime}, S S^{\prime}, \& c$. of all pairs of corresponding points P and P^{\prime}, Q and Q^{\prime}, R and R^{\prime}, S and $S^{\prime \prime}, \& c$. are concurrent (141); it follows consequently that when two homographic figures F and F^{\prime} are in perspective, their two lines A and B^{\prime} whose two correspondents A^{\prime} and B coincide at infinity are parallel (Euc. vi. 2). In the particular case when the centre of perspective is at infinity, since then all pairs of corresponding points connect by parallel lines, and since consequently all pairs of corresponding lines however situated are divided similarly by the several pairs of corresponding points that lie on them, the figures themselves consequently have a pair of corresponding lines coinciding at infinity (3°, Cor. 4°, Art. 382).
4. Every two homographic figures F and $F^{\prime \prime}$, which have not a double line at infinity, may be placed, in two pairs of different and opposite positions relatively to each other, so as to be in perspective with each other.

For this the following (always possible and determinate) construction, based on the note to the preceding property 3°, has been given by Chasles. On any pair of corresponding lines L and L^{\prime} of the figures parallel to the two A and B^{\prime} whose two correspondents A^{\prime} and B coincide at infinity ($4^{\circ}, \operatorname{Cor} .2^{\circ}$, Art. 352) taking arbitrarily any two pairs of corresponding points P and P^{\prime}, Q and Q^{\prime}; drawing through them (by Ex. 1°, Art. 353) either of the two pairs (always real) of corresponding lines $P O$ and $P^{\prime} O^{\prime}, Q O$ and $Q^{\prime} O^{\prime}$ for which the two pairs of angles $O P Q$ and $O^{\prime} P^{\prime} Q^{\prime}, O Q P$ and $O^{\prime} Q^{\prime} P^{\prime}$ are equal in absolute magnitude, and for which consequently the pair of corresponding triangles $P O Q$ and $P^{\prime} O^{\prime} Q^{\prime}$ are similar; and placing the figures, in either case, in either of the two opposite positions, relatively to each other, in which the pair of corresponding points O and O^{\prime}, and the two pairs of corresponding lines $O P$ and $O^{\prime} P^{\prime}, O Q$ and $O^{\prime} Q^{\prime}$ shall coincide; the four resulting positions thus obtained are positions of perspective.

For, since, in each, for all pairs of corresponding points P and P^{\prime}, Q and Q, R and R^{\prime}, S and S^{\prime}, \&c. on the pair of (then parallel) corresponding lines L and L^{\prime} (by 6°, Cor. 2°, Art. 382) $P Q: P^{\prime} Q^{\prime}=P R: P^{\prime} R^{\prime}=P S: P^{\prime} S^{\prime}=\& c$. thereforo (by Euc. Vr. 4) their several lines of connection $P P^{\prime}, Q Q^{\prime}, R R^{\prime}$,
$S S^{\prime}$, \&.c. all concur to the double point $O=O^{\prime}$; and thereforo \&c. See note to the preceding property 3°.

In the particular case when the two figures F and F^{*} have a double line at infinity, the above construction of Chasles' becomes, as observed by himself, and as it ought, indeterminate; the figures having then, in faet, not two (alicays real), but ans infinite number (real or imaginary), of pairs of oppasite positions of perspective reith each otker. This is evident in the case of two similar figures, for which, when both right or left, all pairs of sinnilar and opposite positions (33) are positions of perspective, the double line at infinity being for all alike the common axis of perspective (142); and, for any other two figures of the same class, it appears readily from the consideration that, if any two pairs of corresponding points P and P^{\prime}, Q and Q, not at infinity, can bo found for which in absolute magnitude $P Q=P Q^{\prime}$, the placing of the figures in either of the two positions in which P shall coincide with P, and Q with Q^{\prime}, will place them in a position of perspective, by virtuo of the general property 3° of the present article; the point at infinity on the double line $P Q$ being then, by hypothesis, a third double proint on that linc. And that, for every pair of corresponding points P and P of the figures, four different second pairs Q and Q ', on two pairs of corresponding lines (real or imaginary) passing through P^{\prime} and P^{\prime}, can be found satisfying the required condition, may be readily shown as follows:

Drawing arbitrarily any two particular pairs of corresponding lines L and L^{\prime}, M and M^{\prime} through any particular pair of corresponding points P and I^{y}; then, since, for every other pair of corresponding points Q and Q, the two ratios $Q L: Q I ;$ and Q.M: $Q^{\prime} M^{\prime}$ are given in magnitule and sign (Cor. 3°, Art. 382), if, in addition, the ratio $P Q: P^{\prime} Q^{\prime}$ be also given in abeolute magnitude (as it is in the case in question), the two pairs of corresponding directions (real or inaginary) of the two lines $P Q$ and $P^{\prime} Q^{\prime}$ (which when superposed, as above described, constitute the axis of perspective of the figures) are manifestly given with it ; and therefore $\mathcal{\&} \mathrm{c}$.
N.B. In every case when two homographic figures of any kind are brought by any means into any position of perspective with each other, it is evident, from the general property of vol. 11.

Art. 141, that, if cither figure be turned through two right angles, either in its plane round the centre or with its plane round the axis of perspective, the other remaining unmoved, it will be in perspective, in its new as well as in its original position, with the other. From this, combined with the property, above established in the general case, that two homographic figures have in general but four different relative positions of perspective with each other, it follows indirectly that if, in any position of perspective of any two homographic figures F and $F^{\prime \prime}$, either figure receive both the above movements in succession, the other the while remaining unmoved, its ultimate position as regards the other is independent of the order in which the movements take place. A property of figures in perspective which the reader may easily verify directly for himself.

CHAPTER XXII.

METHODS OF GEOMETRICAL TRANSFORMATION. THEORY OF CORRELATIVE FIGUBPS.

388. Two figures of any kind, F and F, in which correspond, to every point of either a line of the other, to every line of either a point of the other, to every connector of two points of either the intersection of the two corresponding lines of the other, and to every intersection of two lines of either the connector of the two corresponding points of the other, are said to be correlative when every quartet of collinear points or concurrent lines of either and the corresponding quartet of concurrent lines or collinear points of the other are equianharmonic. Erery two figures reciprocal polars to each other with respect to any circle (170) are evidently thas related to each other (292).

As two anharmonic quartets of any kind, when each equianharmonic with a common quartet, are equianharmonic with each other; it follows at once, from the above definition, that when teo figures of any kind F° and $F^{\prime \prime}$ are euch correlative with a common figure F, they are homographic with each other. (Sce Art. 380).
389. Every two figures F and F^{*} satisfying the four preliminary conditions, whether correlative or not, possess evidently the following properties in relation to each other.

1. I's evrry collinear system of points or concurrent system of lines of either, corresponds a concurrent system of lines or collinear system of points of the other.

For, every connector of two points (or intersection of two lines) of either corresponding to the intersection of the two corresponding lines (or the connector of the two corresponding points) of the other; when, for any system of the points (or lines) of either, every two connect by a common line (or inter-
seet at a common point), then, for the corresponding system of the lines (or points) of the other, every two intersect at the corresponding point (or connect by the corresponding line); and therefore \&c.
2°. To every two collinear systems of points or concurrent systems of lines of either in perspective with each other, correspond two concurrent systems of lines or collinear systems of points of the other in perspective with each other.

For, the concurrence (or collinearity) of the several lines of connection (or points of intersection) of the several pairs of corresponding coustituents of the two systems, for either, involves, by 1°, the collinearity (or concurrence) of the several points of intersection (or lines of connection) of the several pairs of corresponding constituents of the two corresponding systems, for the other ; and therefore \&c. (130).
3°. To every two figures of the points and lines of either in perspective with each other, correspond two figures of the lines and points of the other in perspective with each other.

For, the concurrence of the several lines of connection of the several pairs of corresponding points, and the collinearity of the several points of intersection of the several pairs of corresponding lines, of the two figures, for cither, involve, by 1°, the collinearity of the several points of intersection of the several pairs of corresponding lines, and the concurrence of the sereral lines of connection of the several pairs of corresponding points, of the two corresponding figures, for the other; and therefore \&c. (141).
4°. To a variable point moving on a fixed line or a variable line turning round a fixed point of either, corresponds a variable line turning round the corresponding fixed point or a variable point moving on the corresponding fixed line of the other.

For, since every two positions of the variable point (or line) connect by the same fixed line (or intersect at the same fixed point) for the former; therefore, by 1°, every two positions of the variable line (or point) intersect at the corresponding fixed point (or connect by the corresponding fixed line) for the latter ; and therefore $\mathbb{d c}$.
5°. To a variable point or line of cither the ratio of whose Histances from tho ficed lines or points is constant, corresponds a
variable line or point of the other the ratio of whose distances from the two corresponding ficed points or lines is constant.

For, since the variable point (or line) evidently moves on a line concurrent with the two fixed lines (or turns round a point collinear with the two fixed points) for the former; therefore, by the preceding property 4°, the variable line (or point) turns round a point collinear with the two corresponding fixed points (or moves on a line concurrent with the two corresponding fixed lines) for the latter; and therefore sic.

6i. To a variable polygon of cither all whose vertices move on ficed lines and all whose sides lut one turn round fixed proints, or conversily, corresponds a vuriable polygon of the other wll whase siles turn round the corresponding fixed points and all whose vertices but one moce on the corresponding fixed lines, or conversely.

For, since, by 4°, to every variable point moving on a fixed line (or variable line turning round a fixed point) of either, corresponds a variable line turning round the corresponding fixed point (or a variable point moving on the corresponding fixed line) of the other; therefore \&e.
7. To cevery harmonic row of four points or pencil of four rays of cither, corresponds an harmonic pencil of four rays or row of four points of the other.

For, as every harmonic row (or pencil) may be regarded as determined by two angles and their two axes of perspective on the connector of their vertices (or by two segments and their two centres of perspective at the intersection of their axes) (241) ; and as, to the vertices and axes of perspective of any two angles (or the axes and centres of perspective of any two segments) of either, correspond the axes and centres of perspective of the two corresponding segments (or the vertices and axes of perspective of the two corresponding angles) of the other; therefore \&e.
8°. To every pair of lines or points conjugate to cach other with respect to any segment or angle of cither, correspond a pair of points or lines conjugate to each other with respect to the corresponding angle or segment of the other.

For, as every two lines (or points) conjugate to each other with respect to any segment (or angle) intersect with the axis
of the segment (or connect with the vertex of the angle) at two points (or by two lines) which divide the segment (or angle) harmonically (217); therefore \&c. by the preceding property 7°.
9°. To every point and line pole and polar to each other with respect to any triangle of either, correspond a line and point polar and pole to each other with respect to the corresponding triangle of the other.

For, as every point and the intersection of its polar with each side (or every line and the connector of its pole with each vertex) of any triangle are conjugate to each other with respect to the opposite angle (or side) of the triangle (250, Cor. 2°); therefore \&c. by the preceding property 8°.
10°. To a variable point or line of either determining with four fuxed points or lines an harmonic pencil or row, corresponds a variable line or point of the other determining with the four corresponding fixed lines or points an harmonic row or pencil.

For, the harmonicism of the quartet of variable rays (or points) in every position of the variable point (or line), for either, involving, by 7°, the harmonicism of the corresponding quartet of variable points (or rays) in every position of the variable line (or point), for the other; therefore \&c.
11. To every two equianharmonic rows of four points or pencils of four rays of either, correspond two equianharmonic pencils of four rays or rows of four points of the other.

For, as every two equianharmonic rows of four points (or pencils of four rays) may be regarded as determined, on their respective axes (or at their respective vertices), by two quartets of rays (or points) in perspective with each other (290) ; and as, to every two quartets of rays (or points) in perspective, for either, correspond two quartets of points (or rays) in perspective, for the other (property 2° above); therefore \&c.
12°. To every equianharmonic hexastigm or hexagram of either, corresponds an equianharmonic hexagram or hexastigm of the other.

For, the equianharmonicism of the two pencils of connection (or rows of intersection) of any two with the remaining four of the six points (or lines) of the hexastign (or hexagram) for the former, involving, by the preceding property 11°, the equianharmonicism of the two corresponding rows (or pencils) of the cor-
responding hexagram (or hexastigm) for the latter; therefore \&c. (301). The same result follows also from the reciprocal properties of Art. 302, by virtue of the preceding property 1°.
13°. To a variable point or line of either determining with four fixed points or lines a pencil or row having a constant anharmonic ratio, corresponds a varialle line or point of the other determining with the four corresponding fixed lines or points a row or pencil having a constant anharmonic ratio.

For, the equianharmonicism of the two quartets of mys (or points), in every two positions of the variable point (or line), for the former, involving, by 11°, the equianharmonicism of the two corresponding quartets of points (or rays), in every two positions of the variable line (or point), for the latter; therefore \&ic.
14°. To every two homographic roves of points or pencils of rays of either, correspond two homographic pencils of rays or roves of points of the other.

For, the equianharmonicism of every two quartets of corresponding constituents of the two rows (or pencils), for the former, involving, by 11°, the equianharnonicism of every two quartets of corresponding constituents of the two corresponding pencils (or rows), for the latter; therefore i.c. (321).
15. To twe homagraphic coaxal rouss or concentric pencils of either in involution with each other, correspond two homographic concentric pencils or coaxal rows of the other in involution with cach other.

For, every interchange of corresponding constituents of the two syatems, for either, involving evidently a corresponding interchange of corresponding constituents of the two corresponding systems, for tho other; the interchangeability of every pair of corresponding constituents, for either, involves consequently tho interchangeability of every pair of corresponding constituents, for the other; and therefore $\mathbb{\& c}$. (357). The same result follows also from the general property of Art. 370 , by virtue of the preceding property i°.
16°. To the double points or rays of any two homographic coaxal rotes or concentric pencils of either, correspond the double rays or points of the fico corresponding concentric pencils or coaxal roces of the other.

For, every coincidence of corresponding constituents of the
two systems, for cither, involving, evidently, a corresponding coincidence of corresponding constituents of the two corresponding systems, for the other; the two coincidences, real or imaginary, of pairs of corresponding constituents, which constitute the two double points (or rays) for the former, correspond, consequently, to the two coincidences, real or imaginary, of pairs of corresponding constituents, which constituto the two double rass (or points) for the latter; and therefore \&c. (341).
17°. To a variable point or line of either connecting or intersecting with two fixed points or lines homograplically, corresponds a variable line or point of the other intersecting or connecting with the two corresponding fixed lines or points homograplically.

For, the equianharmonicism of every two quartets of corresponding connectors (or intersections) of the variable with the two fixed points (or lines), for the former, involving, by 11°, the equianharmonicism of every two quartets of corresponding intersections (or connectors) of the variable with the two corresponding fixed lines (or points), for the latter; therefore \&c. (321).
18. To a variable point or line of either the rectangle under whose distances from two fixed lines or points is constant, corresponds a variable line or point of the other the rectangle under whose distances from two (not necessarily corresponding) fixed points or lines is constant.

For, the variable point (or line) of the former connecting (or intersecting) with every two fixed positions of itself homographically (340, Cor. 2°) ; and the variable line (or point) of the latter consequently, by the preceding property 17°, intersecting or connecting with every two fixed positions of itself homographically ; therefore \&c. (340, Cor. 1°).
19°. To a variable point or line of either whose angle of connection with two fixed points or chord of intersection with two fixed lines intercepts on a fixed line or subtends at a fixed point a segment or angle of constant magnitude, corresponds a variablo line or point of the other whose chord of intersection with the two corresponding fixed lines or angle of connection with the two corresponding fixed points subtends at a (not necessarily corresponding) fixed point or intercepts on a (not necessarily corresponding) fixed line an angle or segment of constant magnitude.

For, the variable point (or line) of the former connecting (or intersecting) with the two fixed points (or lines) homographically ($325, a$ and a^{\prime}); and the variable line (or point) of the latter consequently, by 17°, intersecting (or comnecting) with the two correspouding fixed lines (or points) homographically; therefore Sic. (339 and 340).
20. For continuous figures, the tangent at any point of cither corresponds to the point of contact of the corresponding tangent to the other, and the point of contact of any tangent to cither corresponds to the tangent at the corresponding point of the other.

For, every connector of two points of either corresponding to the intersection of the two corresponding lines of the other, and every intersection of two lines of either corresponding to the connector of the two corresponding points of the other; and the coincidence of any two points or lines of either involving the coincidence of the two corresponding lines or points of the other; therefure ©.c. (19 and 20).
390. From the fundamental definition of Art. 389, the fullowing general property of any two correlative figures F^{\prime} and F^{*} may be readily inferred; viz.-

If A and B be any two fured proints (or lines) of either figure, A^{\prime} and B^{\prime} the two corrcsponding lines (or points) of the other, I uny variuble line (or point) of the former, and I' the corresponding point (or line) of the luster ; then, for every position of I and I ', the ratio

$$
\left(\frac{A I}{B I}: \frac{A^{\prime} I^{\prime}}{B I^{\prime}}\right) \text { or its equivalent }\left(\frac{A I}{A^{\prime} I^{\prime}}: \frac{B I}{B I}\right)
$$

is constant, both in magnitude and sign.
For, if Z be the variable point of intersection (or line of connection) of the variable line (or point) I with the fixed line (or point) $A B$, and Z^{\prime} the variable line of comection (or point of intersection) of the variable point (or line) I^{\prime} with the fixed point (or line) $A^{\prime} B^{\prime}$; then, since, by hypothesis, Z and Z^{\prime} determine a homographic row and pencil (or pencil and row) of which A and A^{\prime}, B and B^{\prime} are two pairs of corresponding constituents (358), therefore, by (328), the ratio

$$
\left(\frac{A Z}{B Z}: \frac{\sin A^{\prime} Z^{\prime}}{\sin B^{\prime} Z^{\prime}}\right) \text { or }\left(\frac{\sin A Z}{\sin B Z^{\prime}}: \frac{A^{\prime} Z^{\prime}}{B^{\prime} Z^{\prime}}\right),
$$

to which, in the corresponding case, the above is manifestly equivalent, is constant both in magnitude and sign; and therefore \&c.
391. From the same fundamental definition, it follows, precisely in the same manner as the general property of the preceding article, that, for any two correlative figures F and $F^{\prime \prime}$,

If A, B, C be any three fixed points (or lines) of either figure, $A^{\prime}, B^{\prime}, C^{\prime}$ the thrce corresponding lines (or points) of the other, I any variable line (or point) of the former, and I^{\prime} the corresponding point (or line) of the latter; then, for every position of I and I^{\prime}, the three ratios

$$
\left(\frac{B I}{C I}: \frac{B^{\prime} I^{\prime}}{C^{\prime} I^{\prime}}\right),\left(\frac{C I}{A I}: \frac{C^{\prime} I^{\prime}}{A^{\prime} I^{\prime}}\right),\left(\frac{A I}{B I}: \frac{A^{\prime} I^{\prime}}{B^{\prime} I^{\prime}}\right)
$$

or their three equivalents

$$
\left(\frac{B I}{B^{\prime} I^{\prime}}: \frac{C I}{C^{\prime} I^{\prime}}\right),\left(\frac{C I}{C^{\prime} I^{\prime}}: \frac{A I}{A^{\prime} I^{\prime}}\right),\left(\frac{A I}{A^{\prime} I^{\prime}}: \frac{B I}{B^{\prime} I^{\prime}}\right),
$$

any two of which manifestly involve the third, are constant, both in magnitude and sign.

For, as in the preceding article, if X, Y, Z be the three intersections (or connectors) of I with $B C, C A, A B$ respectively, and $X^{\prime}, Y^{\prime}, Z^{\prime}$ the three connectors (or intersections) of l^{\prime} with $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}, A^{\prime} B^{\prime}$ respectively; then, since, for the same reason as in the preceding article, the three ratios

$$
\begin{aligned}
& \left(\frac{B X}{C X}: \frac{\sin B^{\prime} X^{\prime}}{\sin C^{\prime} X^{\prime \prime}}\right) \text { or }\left(\frac{\sin B X}{\sin C X}: \frac{B^{\prime} X^{\prime}}{C^{\prime} X^{\prime}}\right) \\
& \left(\frac{C Y}{A Y}: \frac{\sin C^{\prime} Y^{\prime}}{\sin A^{\prime} Y^{\prime}}\right) \text { or }\left(\frac{\sin C Y}{\sin A Y}: \frac{C^{\prime} Y^{\prime}}{A^{\prime} Y^{\prime}}\right), \\
& \left(\frac{A Z}{B Z}: \frac{\sin A^{\prime} Z^{\prime}}{\sin B^{\prime} Z^{\prime}}\right) \text { or }\left(\frac{\sin A Z}{\sin B Z}: \frac{A^{\prime} Z^{\prime}}{B^{\prime} Z^{\prime}}\right),
\end{aligned}
$$

to which, in the corresponding cases, the above are manifestly equivalent, are constant both in magnitude and sign; therefore ©c.

Cor. 1°. The above supplies obvious solutions of the two following problems: given, of cither of two correlative figures F, three points (or lines) A, B, C and a line (or point) D, and, of the
other F^{\prime}, the three corresponding lines (or points) $A^{\prime}, B^{\prime}, C^{\prime}$ and the corresponding point (or line) D^{\prime}; to det rmine the line (or point) E of the former F corresponding to any assumed point (or line) $E^{\prime \prime}$ of the latter F. For, since, by the above,

$$
\begin{aligned}
& \frac{B E}{O E}: \frac{B^{\prime} E^{\prime}}{C^{\prime} E^{\prime}}=\frac{B D}{C D}: \frac{B^{\prime} D^{\prime}}{C^{\prime} D^{\prime}} \\
& \frac{C E}{A E}: \frac{C^{\prime} E^{\prime \prime}}{A^{\prime} E^{\prime \prime}}=\frac{C D}{A D}: \frac{C^{\prime} D^{\prime}}{A^{\prime} D^{\prime}} \\
& \frac{A E}{B E}: \frac{A^{\prime} E^{\prime}}{B^{\prime} E^{\prime \prime}}=\frac{A D}{B D}: A^{\prime} D^{\prime} \\
& B^{\prime} D^{\prime},
\end{aligned}
$$

the three ratios $B E: C E, C E: A E, A E: B E$, which manifestly determine the position of the required line (or point) E, are consequently given; and therefure \&ic.

As already observed for homographic figures (Cor. 1°, Art.383), the particular cases where the given point (or line) $E^{\prime \prime}$ is at infinity present no special peculiarity; the three ratios $B^{\prime} E^{\prime}: C^{\prime} E^{\prime \prime}$, $C^{\prime \prime} E^{\prime \prime}: A^{\prime} E^{\prime \prime}, A^{\prime} E^{\prime \prime}: B^{\prime} E^{\prime \prime}$ laving the values $\sin B^{\prime} L^{\prime}: \sin C^{\prime} L^{\prime}$, $\sin C^{\prime \prime} L^{\prime}: \sin A^{\prime} L^{\prime}$, $\sin A^{\prime} L^{\prime}: \sin B^{\prime} L^{\prime}$ respectively, where L^{\prime} is any line parallel to the direction of E, in the former case, and being simply all $=1$, in the latter case.

Con. 2. As three points (or lines) A, B, C of cither of two correlative figures F, and the three corresponding lines (or points) $A^{\prime}, B^{\prime}, C^{\prime}$ of the other F^{\prime}, deternine (38s) three lines (or points) $B C, C A, A B$ of the former, and the three corresponding points (or lines) $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}, A^{\prime} B^{\prime}$ of the latter; the solutions of the two problems: given, of either of two correlutive figures F, four points (or lines) A, B, C, D, and, of the other $F^{\prime \prime}$, the four corresponding lines (or points) $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$; to determine the point (or line) E of the former F corresponding to any assumed line (or point) $E^{\prime \prime}$ of the lutter F°; may consequently be regarded as included in those of the above; the particular cases where the given line (or point) E^{\prime} is at infinity, presenting, as above observed, no exceptional or special peculiarity.

Cor. 3°. It appears also inmediately from the above, that zhen, for two correlative figures F^{\prime} and F^{*}, thrce points (or lines) A, B, C of cither F are interchangeable with the three corresponding lines (or points) $A^{\prime}, B^{\prime}, C^{\prime}$ of the other F^{\prime}, the interchange-
ability of any independent line (or point) D of the former with the corresponding point (or line) D^{\prime} of the latter involves the interchangeability of every other line (or point) E of the former with the corresponding point (or line) E^{\prime} of the latter. For, when, in the three relations of Cor. 1°, which as there shewn result immediately from it, Λ and A^{\prime}, B and B^{\prime}, C and C^{\prime} are interchangeable, if, in addition, D and D^{\prime} are interchangeable, then necessarily, E and E^{\prime} are interchangeable; and therefore \&e.

Cor. 4°. For the same reason as in Cor. 2°, it follows of course from the preceding, Cor. 3°, that when, for two correlative figures F and $F^{\prime \prime}$, four independent points (or lines) A, B, C, D of either F are irterchangeable with the four corresponding lines (or points) $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ of the other $F^{\prime \prime}$, then every point (or line) E of the former is interchangeable with the corresponding line (or point) E^{\prime} of the latter. Which is also evident à priori from the fundamental characteristic of correlative figures (388) that, for every quintet A, B, C, D, E of the points (or lines) of either F and the corresponding quintet $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}$ of the lines (or points) of the other $F^{\prime \prime}$, the five relations $\{A \cdot B C D E\}=$ $\left\{A^{\prime} \cdot B^{\prime} C^{\prime} D^{\prime} E^{\prime}\right\}, \quad\{B \cdot C D E A\}=\left\{B^{\prime} . C^{\prime} D^{\prime} E^{\prime \prime} A^{\prime}\right\}, \quad\{C \cdot D E A B\}=$ $\left\{C^{\prime} \cdot D^{\prime} E^{\prime \prime} A^{\prime} B^{\prime}\right\},\{D!E A B C\}=\left\{D^{\prime} \cdot E^{\prime} A^{\prime} B^{\prime} C^{\prime}\right\},\{E \cdot A B C D\}=$ $\left\{E^{\prime} \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right\}$ must in all cases exist together; which, when A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, D and D^{\prime} are interchangeable, would be manifestly impossible unless also E and $E^{\prime \prime}$ were interchangeable; and therefore \&c.
N.B. It will appear in the sequel that, for every pair of correlative figures F and F^{\prime}, there exists a unique pair of corresponding triangles Δ and Δ^{\prime}, for which the three elements of either species A, B, C of either, regarded as belonging to either figure, correspond interchangeably, as supposed in the two latter corollaries 3° and 4°, to the three of the other species $A^{\prime}, B^{\prime}, C^{r}$ of the other, regarded as belonging to the other figure; and of which, as in the corresponding property of homographic figures (Note, Art. 383), though two pairs of corresponding elements may be imaginary, the third pair are always real. When the two triangles Δ and Δ^{\prime}, thus related to the two fignares F and $F^{\prime \prime}$, coincide, that is when the three pairs of interchangeable elements A and Λ^{\prime}, B and B^{\prime}, C and C^{\prime} which determine them are the three pairs of opposite elements (vertices and sides) of the same
triangle Δ; then, as will appear also in the sequel, all pairs of corresponding elements D and D^{\prime}, E and $E^{\prime}, \mathbb{\&}$. of the figures are interchangeable as well.
392. On the converse of the property of the preceding article, the following general construction for the double generation (26) of a pair of correlative figures, by the simultaneous variation of a connected point and line, or line and point, has been based by Chaslez, the originator of the general theory.

If A, B, C be the three sides (or vertices) and $A^{\prime}, B^{\prime}, C^{\prime}$ the three corresyonding vertices (or sides) of any thoo arbitrary fixed triungles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, and I and I^{\prime} a variable point and line (or line and point) so connected that, in erery position, any theo of the three ratios

$$
\left(\frac{B I}{C I}: \frac{1 B^{\prime} I^{\prime}}{C^{\prime} I^{\prime}}\right),\left(\frac{C I}{A I}: \frac{C^{\prime} \Gamma}{A^{\prime} I^{\prime}}\right),\left(\frac{A I}{B I}: \frac{A^{\prime} \Gamma}{B B^{\prime} I_{1}^{\prime}}\right),
$$

or of their three equivalents

$$
\left(\frac{B I}{B^{\prime} I^{\prime}}: \frac{C I}{C^{\prime} I^{\prime}}\right),\left(\begin{array}{l}
C I \\
C^{\prime} I^{\prime}
\end{array} \frac{A I}{A^{\prime} I^{\prime}}\right),\left(\frac{A I}{A^{\prime} I^{\prime}}: \frac{B I}{B^{\prime} I^{\prime}}\right),
$$

and wide them of courne the third, are constant in magnitude and sign; the variable point and line (or line and pwint) I and I' generate theo correlative figures F^{\prime} and $F^{\prime \prime}$, in which A and A^{\prime}, B and B^{\prime}, C and C^{\prime} correspond in pairs as line and point for point and line).
'That the two figures F and $F^{\prime \prime}$ resulting from either mode of generation aro thus correlative, follows of course conversely from the property of the preceding article; but, as in the corresponding case of homographic figures (Art. 384), it may bo easily shewn directly that they fulfil all the conditions of connection of the fundamental definition of Art. 388 ; for-
1°. Tu every point (or line) of the former corresponds a line (or point) of the latter. This is evident from the law of their generation; every point and line (or line and point) I and I^{\prime} connected by the above relations, whether generating pairs or not, thus corresponding with respect to them.
2°. To ceery line (or point) of the former corresponds a point (ar lime) of the lathr. For, when a variable point (or line) I of
the former is connected, in every position, with the three fixed lines (or points) A, B, C by a relation of the form

$$
a \cdot A I+b \cdot B I+c \cdot C I=0
$$

where a, b, c are any three constant multiples, then, by virtue of the above relations, the corresponding line (or point) I^{\prime} of the latter is connected, in every position, with the three fixed points (or lines) $A^{\prime}, B^{\prime}, C^{\prime}$ by a corresponding relation of similar form

$$
a^{\prime} \cdot A^{\prime} I^{\prime}+b^{\prime} \cdot B^{\prime} I^{\prime}+c^{\prime} \cdot C^{\prime} \Gamma^{\prime}=0 \ldots \ldots \ldots \ldots .\left(a^{\prime}\right)
$$

where $a^{\prime}, b^{\prime}, c^{\prime}$ are three other constant multiples whose ratios to a, b, c respectively depend on and are given with those of the same relations; but, by the gencral properties of Arts. 120 and 85 , the former relation (a) is the condition that the variable point (or line) I should move on a fixed line (or turn round a fixed point) O, and the latter (α^{\prime}) is the condition that the corrcsponding line (or point) I^{\prime} should turn round a corresponding fixed point (or move on a corresponding fixed line) O^{\prime}; and therefore \&c.
3°, To the connector of any two points (or the intersection of any two lines) of the former corresponds the intersection of the tico corresponding lines (or the connector of the two corresponding points) of the latter. For, since, to a line passing through any two points (or a point lying on any two lines) of the former corresponds, by the preceding property 2°, a point lying on the two corresponding lines (or a line passing through the two corresponding points) of the latter; therefore \&e.
4°. To the intersection of any two lines (or the connector of any two points) of the former corresponds the connector of the two corresponding points (or the intersection of the two corresponding lines) of the latter. For, since, to two lines passing through any point (or two points lying on any line) of the former, correspond, by the same property 2°, two points lying on the corresponding line (or two lines passing through the corresponding point) of the latter; therefore \&c.
5°. Every quartet of collinear points (or concurrent lines) of the former is equianharmonic with the corresponding quartet of concurrent lines (or collinear points) of the latter. For, the four connectors (or intersections) of any quartet $I_{1}, I_{2}, I_{3}, I_{4}$ of the
points (or lines) of the former, whether collinear (or concurrent) or not, with any vertex (or side) $B C$ or $C A$ or $A B$ of the triangle $A B C$ being (by Cor. Art. 323) equianharmonic with the four intersections (or connectors) of the corresponding quartet $I_{1}^{\prime}, I_{2}^{\prime}$, $I_{3}^{\prime}, I_{6}^{\prime}$ of the lines (or points) of the latter with the corresponding side (or vertex) $B^{\prime} C^{\prime}$ or $C^{\prime} A^{\prime}$ or $A^{\prime} B^{\prime}$ of the triangle $A^{\prime} B^{\prime} C^{\prime}$; therefore dic. (285).
6°. Every quartet of concurrent lines (or collinear points) of the furmer is equianharmonic with the corresponding quartet of collinear points (or concurrent lines) of the latter. For, the four intersections (or comectors) of any quartet $O_{1}, O_{2}, O_{3}, O_{0}$ of the lines (or points) of the former, whether concurrent (or collinear) or not, with any fifth line (or point) O_{3} of the figure, being (by the preceding properties 4° and 5°) equianharmonic with the four connectors (or intersections) of the corresponding quartet $O_{1}^{\prime}, O_{8}^{\prime}, O_{3}^{\prime}, O_{4}^{\prime}$ of tho points (or lines) of the latter with the corresponding fifth point (or line) O_{3}^{\prime} of the figure; therefore \&c. (235).

That, for either modo of generation, the three vertices and sides of one correspond respectively to the three corresponding sides and vertices of the other of the two fixed triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, as point and line and as line and point, in the two resulting figures $F^{\text {and }} F^{*}$, is crident from the relations of generation; from which, as in the corresponding case of homographic figures (Art. 384), it follows immediately, in cither case, that the evanescence of any one or two of the three distances $A I, B I, C I$, for the former, involves necessarily the simultaneous evanescence of the corresponding one or two of the three corresponding distances $A^{\prime} I^{\prime}, B^{\prime} I^{\prime}, C^{\prime} I^{\prime}$, for the latter; and therefore ic.
N.B. When, of the two arbitrary triangles of construction $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ in either of the above modes of generation, the three pairs of corresponding elements A and A^{\prime}, B and B^{\prime}, C and C^{\prime} are the three pairs of opposite elements (rertices and sides) of a common triangle Δ; the triangle Δ is then, with respect to the two resulting figures F and F^{*}, that to which allusion was made in the note at the close of the preceding article (391).
393. From the general constructions of the preceding article the following consequences respecting the correlative transformation of figures may be immediately inferred, viz.-
1°. Any figure F may be transformed correlatively into another F^{*}, in wohich any four lines (or points), given or taken arbitrarily, shall correspond to any assigned four points (or lines) of the original figure.

For, of the four given pairs of corresponding points and lines or lines and points, any three determine the two fixed triangles of construction $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, and the fourth gives the values of the three constant ratios of construction

$$
\left(\frac{B I}{C I}: \frac{B^{\prime} I^{\prime}}{C^{\prime} I^{\prime}}\right),\left(\frac{C I}{A I}: \frac{C^{\prime} I^{\prime}}{A^{\prime} I^{\prime}}\right),\left(\frac{A I}{B I}: \frac{A^{\prime} I^{\prime}}{B^{\prime} I^{\prime}}\right) ;
$$

and therefore \&c. See Cors. 1° and 2°, Art. 391.
The obvious conditions, that when, for cither of two correlative figures F and $F^{\prime \prime}$, three points are collinear or three lines concurrent, then, for the other, the three corresponding lines must be concurrent or the three corresponding points collinear, and that when, for either, four points by their collinearity or four lines by their concurrence form an anharmonic quartet, then, for the other, the four corresponding lines by their concurrence or the four corresponding points by their collinearity must form an equianharmonic quartet, are the only restrictions on the perfect generality of the above. The former condition may indeed be violated, but, when it is, as in the corresponding case for homographic figures $\left(385,1^{\circ}\right)$, it is easy to see, from the general process of construction, that the figure for which the three points are collinear, or the three lines concurrent, when their three correspondents in the other are not concurrent, or collinear, must (except for the fourth line or point of the other) have all its points collinear, or all its lines concurrent, with the three. For, if, in any position of I and I, any one, $A I$ suppose, of the six distances $A I$ and $A^{\prime} I^{\prime}, B I$ and $B^{\prime} I^{\prime}, C I$ and $C^{\prime} I^{\prime}$ be evanescent when its correspondent $A^{\prime} I^{\prime}$ is not, then in every position of I and l^{\prime}, from the constancy of the three ratios of construction, either the same distance $A I$, or each of the two non-corresponding distances $B^{\prime} I^{\prime}$ and $C^{\prime} I^{\prime}$, is evanescent; and therefore \&e. Sce the general remark 2° of Art. 31, an illustration of which,
as in the corresponding case of homographic figures above referred to, is supplied by the above.
2°. In the correlative transformation of any figure F into another I^{*}, the line (or any point) at infinity, regarded as belonging to cither, may be made to correspond to any assigned point (or line), regarded as belonging to the other.

This follows at ouce from the preceding property 1°; the three ratios of construction

$$
\left(\frac{B I}{C I}: \frac{B^{\prime} I^{\prime}}{C^{\prime} I^{\prime}}\right),\left(\frac{C I}{A I}: \frac{C^{\prime} I}{A^{\prime} I^{\prime}}\right),\left(\frac{A I}{B I}: \frac{A^{\prime} I^{\prime}}{B^{\prime} I^{\prime}}\right)
$$

being given as definitely (sec Cors. 1° and 2°, Art. 391) when, of the given point and line, or line and point, I and I^{\prime}, one is at infinity, as when both are at a finite distance; and therefore sic.
$13 y$ virtue of the above general property 1°, combined with its particular case 2°, the tetrastigm or tetragram determined by any four points or lines of F may be transformed correlatively into a tetragram or tetrastigm of any arbitrary or convenient form for $\mathrm{I}^{\prime \prime}$; such for instance (seo 2°, Ars. 385) as the four sides or vertices of a parallelogram of any form, or, more generally, the three sides or vertices of a triangle of any form, combined with any remarkable or convenient line or point connected with its figure. By this means, as in the corresponding case for homographic figures ($2^{\circ}, \Delta \mathrm{rt} .385$), the demonstration of a property, or the solution of a problem, when such property or problem admits of correlative trausformation, may frequently be much simplified; as, for instance, in the three pairs of reciprocal properties there referred to ($2^{\circ}, A \mathrm{rt} .385^{\circ}$), whose direct demonstrations aro comparatively easy under the circumstances there stated, and which under any other circumstances may be transformed correlatively, each into the other, and brought by the transformation under the circumstances most favourable to their establishment.
3°. In the correlative transformation of any figure F into another I^{*}, the correspondents to any assigned five points (or lines) of the original, no thrce of which are collinear (or concurrent), may be mude to touch (or lie on) a circle, given or taken arbitrarily.
l'rom this property, which may be proved in precisely the same manner as the corresponding property of homographic figures
given in 3°, Art. 385 , it follows immediately that every figure, locus of a varialle point every six of whose positions form an equianharmonic hexastigm (301, a), or envelope of a variable line every six of whose positions form an equianharmonic hexagram (301, a^{\prime}), may be transformed correlatively into a circle ; for, if transformed, by the above, so that the correspondents to any five of its points (or tangents) shall touch (or lie on) a circle, the correspondent to every sixth point (or tangent) must, by virtue of its connection with the five, touch (or lic on) the same circle (305); and therefore \&c. Thus, the four classes of loci and envelopes enumerated in the article above referred to ($385,3^{\circ}$), may be transformed, not only homographically, as there shewn, but also correlatively, into circles, and all their properties admitting of correlativo transformation, such as their harmonic and anharmonic properties, consequently inferred from the comparatively simple and familiar properties of the circle. See chapters XV. and xviri.; all the properties of which, not involving the magnitudes of angles, are consequently true not only of circles, but of the several classes of figures there enumerated also.

It follows also from the same, as in the corresponding case for homographic figures $\left(385,3^{\circ}\right)$, that five points (or tangents), given or taken arbitrarily, completely determine any figure correlative to a circle; for, if transformed, by the above, so that the correspondents of the five points (or tangents) shall touch (or lie on) a circle, all the other points (or tangents) of the figure are then implicitly given as the correspondents to the several other tangents (or points) of the circle; and therefore \&c.

Given five points (or tangents) A, B, C, D, E of a figure correlative to a circle, the five corresponding tangents (or points), $A A, B B, C C, D D, E E$ of the figure are given implicitly with them; for, since, for the five corresponding tangents (or points) $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}$ of the circle, by $(306),\left\{A^{\prime} . A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}\right\}$ $=\left\{B^{\prime} . A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}\right\}=\left\{C^{\prime} . A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}\right\}=\left\{D^{\prime} . A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime \prime}\right\}=$ $\left\{E^{\prime} \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}\right\}$, therefore, for the five given points (or tangents) A, B, C, D, E of the figure, by (388) and $\left(389,20^{\circ}\right),\{A . A B C D E\}$ $=\{B \cdot A B C D E\}=\{C \cdot A B C D E\}=\{D \cdot A B C D E\}=\{E \cdot A B C D E\}$; and since, of each of these five latter homographic pencils (or rows), four rays (or points) are actually given, therefore, of each, the fifth ray (or point) is implicitly given; and therefore \&c.
394. Of the numerous properties of the interesting and important class of figures into which tho circle may be transformed correlatively, the few following, derived on the preceding principles from those of the circle, and identical with those already derived from the same by homographic transformation in Art. 386, may be taken as so many examples illustrative of the utility of the process of correlative trausformation in modern geometry.

Ex. 1°. No figure correlatice to a circlo could have either three collinear points or three coneurrent tangents.

For, if, of a figure correlative to a circle, either three points were collinear or three tangents concurrent, then, of the circle itself, by $\left(359,1^{\circ}\right)$ the threo corresponding tangents should be concurrent, or the three corresponding points collinear ; and therefore \&C.
N.B. As in the corresponding property of figures homographic to the circle (356, Ex. 1%, the only exception to this fundamental property occurs in the cases noticed in connection with property 1° of the preceding artide (393), where the figure is in one or other limiting state of its geacral form, and has either an infnite number of collinear points lying on one or other of two definite lines, or an infinite number of concurrent tangents passing through one or other of two definite points. See the general remark ${ }^{\circ}$ of Art. 31 ; of which the above and all similar exceptional cases supply so many illustrations.

Ex. 20. No figure correlatice to a circle could hace cither three points at infinity or throe parallel tangents.

This, as in the corresponding property of figures homographic to the circle ($386,1 \mathrm{Ex} .2^{2}$), is manifestly a particular case of the general property of the preceding article; all points at infinity being collinear and all paralled lines concurrent (136); and therefore \&c.
N.B. As, in the process of correlative transformation of one figure into annther, the line correaponding to any point of the original may be thrown to infinity in the transformed figure (see 2°, of the preceding article), a circle will consequently bo transformed correlatively into a figure hacing two distinet, coincident, or imaginary points at infinity, according as the point whose correspondent is throren to infinity in the transformation subtends it by tuco distinct, coincident, or imaginary tangents (21). Since, in the jarticular case of coincidence, the original point and correspondent line are a point on and a tangent to the original and transformed figures respectively (20), a circle may consequently bo transformed correlatirely into a figure hacing a tangent at infinity, by merely throving to infinity in the transformation the correspondent to any point on itself. As in the corresponding case of figures homographic to the circle, the transformed figure possesses in this latter case, as will be seen in the sequel, some special properties peculiar to the case.

Ex. 3°. In every figure correlative to a eircle, every three points (or tangents) and the thrce corresponding tangents (or points) determine tico triangles in perspectice (140).

For, each property, by examples 3° and 4° of Art. 137, being true of the circle itself, the other consequently, by properties 1° and 20° of Art. 389 , is true of every figure correlative to it; and therefore \&c. (For consequences, see same Ex. Art. 386).

Ex. 4°. In every figure correlutive to a circle, every six points (or tangents) determine an equianharmonic hexastigm (or hexagram) (301).

For, each property, by a and a^{\prime} of Art. 30j, being true of the circle itself, the other consequentls, by 12° of Art. 389 , is true of every figure correlative to it; and therefore \&c. (For consequences, see same Ex. Art. 386.$)$

Ex. 5°. In every figure correlatice to a circle, a cariable point (or tangent) determines with every four fixed points (or tangents) a variable quartet of rays (or points) having a constant anharmonic ratio.

For, each property, by a and a^{\prime} of Art. 306, being true of the circle itself, the other consequently, by 13° of Art. 389, is true of every figure correlative to it; and therefore \&ic. (For consequences, see same Ex. Art. 386).

Ex. 6°. In exery figure correlative to a circle, a variable point (or tangent) connects (or intersects) homographically with every two fixed points (or tangents).

For, each property, by examples c and c^{\prime} of Art. 325, being true of the circle itself, the other consequently, by property 14° of Art. 389 , is true of every figure correlative to it ; and therefore $\mathbb{\&} \mathrm{c}$. (For consequences, see samo Ex. Art. 3S6.)

Ex. 7°. When, of any figure correlative to a circle, tico variable points (or tangents) connect through (or intersect on) a fixed point (or line), the two correspunding tangents (or points) intersect on (or connect through) a fixed line (or point).

For, each property, by Cor. 3° of Art. 166, being true of the circle itself, the other consequently, by 1° and 20° of Art. 389, is true of every figure correlative to it; and therefore \&ic. (For consequences and resulting definitions, see same Ex. Art. 386).

Ex. 8°. When, of any figure correlutice to a circle, two cariable points (or tanigents) connect through (or intersect on) a fixed point (or line), the harmonic conjugate with respect to them of the fixed point (or line) moves on (or turns round) a fixed line (or point).

For, each property, by a and a^{\prime} of Art. 259, being true of the circle itself, the other consequently, by 10° and 20° of Art. 389, is true of every figure correlative to it; and therefore \&ic. (For consequences and resulting definitions, see same Ex. Art. 386).

Ex. \Im°. Eiecry tico triangles reciprocnl polars to each other with resprect to any fyure correlatice to a circle are in perspective; and their centre and axis of persprectice are pole und polar to each other with respect to the figure.

For, the first part of the property, by $1^{\circ} \mathrm{Art}$ 180, being true of the circle itself, is consequently; by 1° Art. 389, true of every figure correlative to it; and the second part, by ristue of the general property of Art. 167, being evident alike for circle and figure; therefore \&ic. (For consequences, see same lix. Art. 286).

Ex. 10'. Fivery figure correlative to a circle intersects (or sublends) harmonically the three sides (or angles) of every triangle self-reciprocul with respect to itself: and conrersely, every triangle whase three sides (or angles) are intersected (or subbended) harmonically by any figure correlative to a circle is self-reciprocal with respect to the figure.
lor, each property, by a and a° of Ar. 259, being true of the circle itself, the other consequently, by 10° and 20° of Art. 359, is true of every tigure correlative to it; and therefore $\mathbb{S} \mathrm{c}$. (For consequences, see same Ex. Art. 386).

Ex. 11. In ecery tetrastigin (or telragram) determined ly four puints on (or tangents to) any figure correlatise to a circle, the three intersections (or connectors) of the three pairs of opposild connectors (or intersections) determine a self-reciprocal trianglo scith respect to the figure.

For, each property, by a and a° of Art. 261, being true of the circle itself, the other consequently, by IX. $\%^{\circ}$, is true of every figure enrrelative to it; and therefore \&ic. (For consequences, see Arts. 261, 262, 263).

Ex. 12°. In every figure correlative to a circle, if A and A^{\prime}, B and I_{0}, C and C ' be the three pairs of opposil' connedors (or interactions) of the tetrastigm (or tetragram) determinal by any faur fizod paints on (or tangents to) the fuyure, and I a rariuble point (or tangent) of the figure: then, in every position of I, the three rectangles IA.IA', IB. IBS, IC. IC' are to each other, tnoo and twe, in constant ratios.

These propertics follow from I.x. 6°, precisoly in the same manner as for figures homographie to the circle in the corresponding example of Art. 356, and lead precisely to the same consequences; see note and corollary to that example in tho article referred to.

Ex. 13°. In every figure correlative to a circle, if A, B, C be the three silies (or verlices) of any fixed triangle inseribed (or exseribed) to the fyyure, end I a variable point (or tangont) of the figure: then, in every position of I,

$$
a \cdot I B \cdot I C+b \cdot I C \cdot I A+a \cdot I B \cdot I C=0,
$$

where a, b, c are three mulliples, whose ratios to each other, theo and two, aro constant in magnitude and sign.

These properties follow from those of the preceding example $\left(12^{\circ}\right)$, precisely as for figures homographic to the circle in the corresponding example of Art. 386 ; and the three multiples a, b, c have for the circle itself the same values given for those figures in the note to that example.

Ex. 14°. In every figure correlative to a circle, if A, B, C be the three sites (or verlices) of any fixed triangle exscribed (or inseribed) to the figure,
and I a variable point (or tangent) of the figure; then, in every position of I,

$$
a \cdot I A^{\frac{1}{2}}+b \cdot I B^{\frac{1}{2}}+c \cdot I C^{2}=0
$$

where a, b, c are three multiples, whose ratios to each other, two and two, are constant in magnitude and sign.

These properties follow from those of the preceding example $\left(13^{\circ}\right)$, precisely as for figures homographic to the circle in the corresponding example of Art. 386; and the three multiples a, b, c have for the circle itself the same values given for those figures in the note to that example.

Ex. 15°. In every figure correlative to a circle, if A, B, C be the three vertices (or sides) of any fixed triangle self-reciprocal with respect to the figure, and I a variable tangent (or point) of the figure; then, in every position of I,

$$
a \cdot I A^{2}+b \cdot I B^{2}+c \cdot I C^{2}=0
$$

where a, b, c are three multiples, whose ratios to each other, two and two, are constant in magnitude and sign.

These properties follow from examples 10° and 12°, precisely in the same manner as for figures homographic to the circle in the corresponding example of Art. 386; and the three multiples a, b, c have for the circle itself the same values as for those figures. (See note to the example in question.)
N.B. From the properties of figures correlative to a circle given in the examples of the present article, compared with those of figures homographic to a circle given in the corresponding examples of Art. 386, the reader will at once perceive the complete identity existing between both classes of figures; and can consequently, in investigating their properties from those of the circle, employ in every case whichever mode of transformation appears best adapted to the case.
395. With the four following general properties of any two correlative figures we shall conclude the present chapter:
1°. For any two correlative figures F and $F^{\prime \prime}$, the two correspondents I_{1} and I_{2}, in the two figures, of a variable line or point I, moving according to any law, generate two homographic figures G_{1} and G_{2}, in which all pairs of corresponding elements, whether points or lines, which coincide with each other, have the same correspondents in the tivo original figures.

For, the two figures G_{1} and G_{2} generated by the two variable points (or lines) I_{a} and I_{s} being each correlative with the figure G_{r} generated by the variable line (or point) I (392), and thereforo homographic with each other (388), therefore \&\&c. as regards the first part; and since, when any two points (or lines) Λ_{1} and A_{2} of G_{1} and G_{2} coincide, then evidently the line (or point) A of G, to which they correspond, corresponds in the two original
figures F and F to the point (or line) of coincidence, therefore \&ic. as regards the second part.
2. For every pair of correlative figures F and F, hovever situated, there exists a pair of corresponding triangles (unique or indeterminate) Δ and Δ^{\prime}, for which the three elements of either species (vertices or sides) of either are interchangeable, as regards the figures, with the thres corresponding elements of the other species (sides or vertices) of the other.

This follows from the preceding property 1°, by virtue of the general property 2° of Art. 387 ; for, since, by the preceding property 1°, the two correspondents I_{1} and I_{8} of a variable point (or line) I, moving according to any law, generate two homographic figures G_{1} and G_{8}, of which every double element of cither species (point or line) has the same correspondent in the two original figures F and $F^{\prime \prime}$; and, since, for the two generated figures G_{1} and G_{8}, there exists, by the general property 2° of Art. 387, a (unique or indeterminate) triangle Δ^{\prime}, whose three elements of both species (vertices and sides) are double elements of those figures; therefore, for the two original figures F and F^{\prime}, there exist two corresponding triangles Δ and Δ^{\prime}, whose six pairs of corresponding elements of opposite species (of which two are always real though the remaining four may be imaginary) are pairs of interchangeable correspondents with respect to them; and therefore \&ic.
3°. When, for two correlative figures F and F^{*}, the thoo corresponding triangles Δ and Δ^{\prime} determined by the six pairs of interchangeable elements coincuite, thicn all pairs of corresponding clements are alike interchangeable; and the figures themselves are reciprocal polurs to each other with respect to the figure homographic to a circle tchose centre is the correspondent in both to the line at infinity, and with respect to which the triangle of coincidence is self-reciprocal.

To prove the first part. If A, B, C be the three vertices (or sides) of the triangle of coincidence, with which the three opposite sides (or vertices) $B C, C A, A B$ are, by liypothesis, interchangeable as pairs of corresponding elements of the two figures; I any arbitrary line (or point); I_{2} and I_{9} the two points (or lines) corresponding to I in the two figures; X, Y, Z the
three intersections (or connectors) of I with $B C, C A, A B$ respectively; and U_{1} and U_{2}, V_{1} and V_{2}, W_{1} and W_{2} the three pairs of intersections (or connectors) of the three pairs of lines (or points) $A I_{1}$ and $A I_{2}, B I_{1}$ and $B I_{2}, C I_{1}$ and $C I_{2}$ with the same three lines (or points) $B C, C A, A B$ respectively; then, since, by the fundamental definition of correlative figures (388),

$$
\begin{aligned}
& \left\{B C X U_{1}\right\}=\left\{A \cdot C B U_{2} X\right\}=\left\{B C X U_{2}\right\}(285 \text { and 280), } \\
& \left\{C A Y V_{1}\right\}=\left\{B \cdot A C V_{2} Y\right\}=\left\{C A Y V_{2}\right\}(285 \text { and 280), } \\
& \left\{A B Z W_{1}\right\}=\left\{C \cdot B A W_{2} Z\right\}=\left\{A B Z W_{2}\right\}(285 \text { and } 280),
\end{aligned}
$$

therefore, at once, the three pairs of points (or lines) U_{1} and U_{2}, V_{1} and V_{2}, W_{1} and W_{2}, and with them consequently the pair I_{1} and I_{2}, coincide ; and therefore \&c.

To prove the second part. If O be the point (or line) corresponding, by the first part, to the line (or point) I, in the two figures; U, V, W the three intersections (or connectors) of the three lines (or points) $A O, B O, C O$ with the three $B C, C A$, $A B$ respectively; and G and G^{\prime}, H and H^{\prime}, K and K^{\prime} the three pairs of points (or lines) which divide harmonically the three pairs of segments (or angles) $U X$ and $B C, V Y$ and $C A, W Z$ and $A B$ respectively, and which consequently, as I and O vary, are, by the above relations, the three pairs of double points (or rays) of the three involutions (357) determined by the three variable pairs of points (or rays) U and X, V and Y, W and Z on (or at) the three lines (or points) $B C, C A, A B$ respectively; then, since, in every position of I and O, the three pairs of points (or lines) U and X, V and Y, W and Z are pairs of conjugate points (or lines) with respect to the figure homographic to a circle determined by the three pairs of fixed points (or tangents) G and G^{\prime}, H and H^{\prime}, K and $K^{\prime}\left(386\right.$, Exs. 4° and $\left.10^{\circ}\right)$, and since consequently the line and point (or point and line) I and O themselves are in every position polar and pole (or pole and polar) to each other with respect to that figure; therefore \&c. the pole of the line at infinity with respect to any figure homographic to a circle being the centre of the figure ($386, \mathrm{Ex} .8^{\circ}, \mathrm{Cor}$.), and every triangle whose three sides (or vertices) are intersected (or subtended) harnonically by any such figure being self-reciprocal with respect to the figure (386, Ex. 10°).
4°. Every 100 correlative figures F and F may be placed, in tico different positions relatively to each other, so that every pair of corresponding elements shall be interchangeable between them; and so as consequently (by the preceding property 3°) to be reciprocal polars to each other with respect to a figure homographic to a circle.

For this the following (always possible and determinate) construction, based on the preceding property 3°, has been given by Chasles: Taking the two points O and P which correspond in F and F respectively to the line at infinity I, and which it is evident must both be either at a finite or at an infinite distance (388); drawing through either of them O any three arbitrary lines U, V, W intersecting with I at three points $I, I ; Z$, and through the other P the three lines $X^{\prime \prime}, Y^{\prime \prime}, Z^{\prime}$ which correspond in F^{*} to the three points X, Y, Z in F, and which intersect with I at three points $U^{\prime \prime}, V^{\prime \prime}, W^{\prime}$ corresponding in F^{v} to the three lines U, V, W in F; and placing the figures in either of the two positions, relatively to each other, in which the two points O and P shall coincide, and in which the two homographic systems (388) determined by three pairs of corresponding rays U and X^{\prime}, V and $Y^{\prime \prime}, W$ and Z^{\prime} shall be in involution (363); in each of the two resulting positions thus obtained the two figures F and $l^{\prime \prime}$ are related to each other as required.

For, in each of the three triangles $U^{\prime} O N, V^{\prime} O Y, W^{\prime} O Z$, the three pairs of opposite elements U and U^{\prime}, X and X^{\prime}, I and $O ; V$ and V^{\prime}, Y and $I^{\prime \prime}, I$ and O; W and $W^{\prime \prime}, Z$ and Z^{\prime}, I and O; respectively, are evidently interchangeable as pairs of corresponding elements of the figures (357); and therefore \&e. by the preceding property 3°. This construction of Chasles is manifestly as readily applicable when the two points O and P are at infinity as when they are at a finito distance.
N.B. Since, as regards the two different positions of involution of the same two homographic pencils of rays, the two doublo rays of the systems are always real for one and imaginary for the other (370 and 373) ; and, since, when the point O is at a finite distance, the two double rays of the involution determined by the three pairs of conjugate diameters U and $J^{\prime \prime}$,
V and Y^{\prime}, W and Z^{\prime} are the two central tangents of the figure with respect to which F and F^{v} are reciprocal polars to each other (386, Ex. 8°, Cor.); it follows consequently, as regards the two different positions of F and F^{n} given by the above construction, that, when the point O is not at infinity, the two central tangents, and thereforo the two points at infinity, of that figure, are always real for one and imaginary for the other.

CHAPTER XXIV.

METHODS OF GEOMETRICAL TRANSFORMATION. timeory of inverse figures.

396. Every two figures, F and F^{*}, which, however generated, are resolvable into pairs of corresponding points, P aud P^{ν}, Q and Q, R and π^{\prime}, S and $S^{\prime}, \mathcal{S c}$. inverse to each other (149) with respect to a common circle, K, real or imaginary, are said to be inverse to each other with respect to that circle. Every two conceutric circles, real or imagimary, are evidently thus related to each other with respect to the concentric circle, real or imaginary, the square of whose radius is equal in magnitude and sign to the rectangle under their radii (149).
397. The two figures F and F, thus inverso to each other with respect to a common circle K, might be two different parts of the same continuous figure. The two parts with which a line or circle, for instance, is divided by any circlo intersecting it at right angles ($22^{\circ}, 1^{\circ}$ and 1^{\prime}) are evidently thus related to each other with respect to that circle (149 and 136).
398. The same two figures F and $F^{\prime \prime}$ might, by different modes of resolution into pairs of corresponding points, be inverse to each other with respect to more than one circle. Every two circles, for instance, being resolvable, however circumstanced as to magnitude and position, into pairs of antihomologous points (198) inverse to each other with respect to either of their two circles of antisimilitude (201), are consequently thus related to each other with respect to each of those circles.
399. Any figure, F, may be transformed into another, $F^{\prime \prime}$, inverse to it with respect to any arbitrary circle K, real or imaginary, by simply chauging all its points, P, Q, R, S, dic.
into their inverses, $P^{\prime}, Q^{\prime}, R^{\prime}, S^{\prime}, \& c$ with respect to that circle (149). This simple (and, as regards the geometry of the circle, fertile) process of transformation is termed inversion; the circle, K, finite, evanescent, or infinite, with respect to which it is performed, is termed the circle of inversion; its centre, O, which is always real, the centre of inversion ; and its radius, $O R$, which may be real or imaginary, the radius of inversion.
400. As regards the process of inversion generally, the three following particulars, though obvious, are deserving of attention:
1°. In the extreme case when the circle of inversion is a point ; as then the inverse with respect to it of every point, not coinciding with itself, coincides evidently with it (149), it follows, consequently, that the inverse of every figure with respect to a point not lying on itself is cvanescent and coincides with the point.
2°. In the other extreme case when the circle of inversion is a line; as then the inverse of every point with respect to it is the reflexion of the point with respect to it (150), it follows, consequently, that the inverse of every figure with respect to a line is the reflexion of the figure with respect to the line (50).
3°. In every case, as every point and its inverse with respect to any circlo are reciprocally inverse to each other with respect to the circle (151), it follows, consequently, that every figure and its inverse with respect to any circle are reciprocally inverse to each other with respect to that circle (396).
401. Every figure F, and its inverse $F^{\prime \prime}$ with respect to any circle K, possess evidently, in relation to each other and to the circle, the following general properties:
1°. Every two of their corresponding points P and P^{\prime} connect through the centre of inversion 0 .

For, P and P^{\prime} being, by hypothesis, inverse points with respect to the circle of inversion K (399); therefore \&e. (149).
2°. Every two pairs of their corresponding points P and P^{\prime}, Q and Q^{\prime} are concyclic.

For, P^{\prime} and P^{\prime}, Q and Q^{\prime} being both, by hypothesis, inverse pairs with respect to the same circle K; therefore \&c. (155).
3°. At every two of their corresponding points P and P^{\prime}, the
two tangents T and ' T ' determine an isosceles triangle with the line of comnection $P P^{\prime}$.

For, since, for cvery two pairs of corresponding points P and P^{ν}, Q and Q, by the preceding property 2°, the two angles $O P^{\prime} Q$ and $O Q P^{\prime}$ are always equal (Euc. 115. 21, 22), therefore, when $P^{\prime}=Q$ and $P^{\prime}=Q^{\prime}$, and when consequently $P Q$ and $P^{\prime} Q^{\prime}$ are the two tangents T and $T^{\prime \prime}(19)$, those two angles are equal; and therefore \&c.
4°. Every line passing lirough the centre of inversion O rehich intersects either F^{\prime} at any point P intersects the other F^{*} at the corresponding point P^{\prime}.

For, every line passing through the centre O of any circlo K, and containing any point P, contains also the inverse point P^{\prime} with respeet to the circle (149); and therefore ©.c.
5°. Eierry line passing through the centre of inversion O rehich touches either F' at any point P touches the other F° at the corresporeling point P^{Y}.

For, since every line passing through O which intersects F at any two points P and Q intersects, by the preceling property $4^{\circ}, F^{\circ}$ at the two corresponding points I^{\prime} and Q^{\prime}; and since when tho two points P^{\prime} and Q coincide their two inverses I^{\prime} and Q with respect to the circlo K coincide also; therefore sic. (19).
6. Necery line passing through the centre of inversion O intersects thein at equal angless at cach pair of corresponding intersections P and P.

For, since, by the preceding property 3°, the two tangents T and $T^{\prime \prime}$ at every pair of their corresponding points P and P^{ν} deternine an isosceles triangle with the line $P P^{\nu}$; therefore \&c. (22).
7°. Every circle passing through any pair of inverse points I^{\prime} and P^{\prime} with respeet to the circle of inversion K^{-}thich intersects either F at any point Q intersects the other F^{*} at the corresponding point Q.

For, every two pairs of inverse points P and P, Q and Q^{\prime} with respect to any circle K being in all cases concyelic (152); therefore \&.c.
8. Every circle passing through any pair of inverse points P and P ' acth respect to the circle of inversion K which touches
cither F at any point Q touches the other $F^{\prime \prime}$ at the corresponding point Q^{\prime}.

For, since every circlo passing through P and P^{\prime} which intersects F at any two points Q and R intersects, by the preceding property $7^{\circ}, F^{*}$ at the two corresponding points Q^{\prime} and R^{\prime}; and since when the two points Q and R coincide their two inverses Q^{\prime} and R^{\prime} with respect to the circle K coincide also; therefore \&c. (19).
9°. Every circle passing through amy pair of inverse points P and P^{\prime} with respect to the circle of inversion K intersects them at equal angles at each pair of corresponding intersections Q and Q^{\prime}.

For, since: by the preceding property 3°, the two tangents T and $T^{\prime \prime}$ to the figures at every pair of their corresponding points Q and Q^{\prime} determine an isoseeles triangle with the line $Q Q^{\prime}$; and since, evidently, the two tangents S and S^{\prime} at Q and Q^{\prime} to every circle passing through them do the same; therefore \&c. (22).
10°. Every point of intersection P of either F with the circle of inversion K is a corresponding point of intersection P^{\prime} of the other F^{*} with the same circle K.

For, every two of their corresponding points P and P^{\prime} being, by hypothesis, inverse points with respect to the circle K (399), when either P is on that circle the other P^{\prime} necessarily coincides with it (149); and therefore \&c.
11. Every point of contact P of either F with the circle of inversion K is a corresponding point of contact of the other $F^{\prime \prime}$ with the same circle K.

For, since every two points of intersection P and Q of either F with the circle K are, by the preceding property 10°, corresponding points of intersection P^{\prime} and Q^{\prime} of the other F^{\prime} with the same circle K, the same is of course the case when P and Q coincide; and therefore dic. (19).
12. Every angle of intersection of either F with the circle of inversion K is equal to the corresponding angle of intersection of the other $F^{\prime \prime}$ with the same circle K.

For, since, by the preceding property 3°, the two tangents T and T at their common point of intersection $P=P^{\prime}$ with the cirele K^{-}make equal angles with the corresponding radius of
inversion $O P$, and since the tangent to the circle itself at the same point is perpendicular to the same radius; therefore \&c. (22).
13°. When either F has a point P at infinity, the other F^{*} passes thirough the centre of inversion O, and conversely.

For, since, for every pair of their corresponding points P and P, the rectangle $O P . O P^{\prime}$ is constant in magnitude and sign, therefore when $O P=\infty$ then $O P^{\prime}=0$, and conversely; and therefore \&ic.
14. When either F has a point P at infinity, the tangent T to the other F^{v} at the centre of incersion 0 passes through it, and conversely.

For, since, as in the preceding, when $O P=\infty$ then $O P^{\prime}=0$, and convensely, and since when $O P^{y}=0$ the line $O P^{\prime}$ is the tangent T^{\prime} to $l^{\prime \prime}$ at O (19); therefure \&c.
402. Every two figures E and F, and their two inverses F^{n} and $F^{\prime \prime}$ with respect to any common circle K, also possess evidently, in relation to each other and to the circle, the following general properties:
1°. To cvery point of intersection P of eithor pair E and F^{\prime} corresponds an inverse point of intersection I of the other pair $1 E^{\prime \prime}$ and $F^{\prime \prime}$.

For, the point P being, by hypothesis, common to the two figures E^{\prime} and F, its inverse P^{\prime} with respect to any circle h^{\prime} is, consequently, common to their two inverses $E^{\prime \prime}$ and $F^{\prime \prime}$ with respect to the same circle $K(399)$; and therefore \&c.
2°. To every point of contact P of either pair E and F corresponds an inverse point of contact P^{\prime} of the other pair $E^{\prime \prime}$ and $F^{\prime \prime}$.

For, since, to every two points P and Q common to E and F correspond, by the preceding property 1°, two inverse points P^{ν} and Q^{\prime} common to E^{\prime} and $F^{\prime \prime}$; and since when P and Q coincide then P^{\prime} and Q^{\prime} coincido also (149) ; therefore \&c. (19).
3°. Every angle of intersection of cither pair E and F is equal to the corresponding angle of intersection of the other pair $E E^{\prime \prime}$ and F.

For, since, at every pair of corresponding intersections P^{\prime} and P^{\prime}, of E and $F, E^{\prime \prime}$ and $I^{\prime \prime}$, respectively, the two pairs of corresponding tangents S and S^{\prime}, T and T^{\prime}, to E and E^{\prime}, F and
$F^{\prime \prime}$, respectively, determine, by property 3° of the preceding article, two isosceles triangles with the common base $P P^{\prime}$; therefore \&c. (22).
4°. When either pair E and F have a common point P at infinity, the other pair $E^{\prime \prime}$ and $F^{\prime \prime}$ have a common tangent $T^{\prime \prime}$ at the centre of inversion O whose direction passes through P, and conversely.

For, since, by hypothesis, $O P=\infty$ for both figures E and F, therefore, (sce propertics 13° and 14° of preceding Art.) $O P^{\prime}=0$ for both figures E^{\prime} and $F^{\prime \prime}$, which latter therefore both pass through the point O and there touch the line $O P$; and therefore \&c.
N.B. Of all properties of inverse figures, the preceding 3°, which shews that all angles preserve their magnitudes, or more properly speaking their forms (24), under the process of inversion, is the most important connected with the subject of the present chapter.
403. The figures inverse to a line or circle with respect to any arbitrary circle of inversion, real or imaginary, are, under different circumstances of magnitude and relative position, respectively as follows:
1°. The figure inverse to a line or circle with respect to any circle of evanescent radius, whose centre is not a point on itself, is evanescent and coincides with the centre of inversion $\left(400,1^{\circ}\right)$.
2°. The figure inverse to a line or circle with respect to any circle of infinite radius, which is not itself at infinity, is the reflexion of the line or circle with respect to the line into which the part of the circle of inversion not at infinity then opens out $\left(400,2^{\circ}\right.$.)
3°. The figure inverse to a line or circle with respect to any circle, finite, evanescent, or infinite, which it intersects at right angles, is the line or circle itself (397).
4°. The figure inverse to a line with respect to any circle of finite radius, real or imaginary, whose centre is not a point on itself, is a circle passing through the centre of inversion and coaxal with itself and the circle of inversion (184).
$5{ }^{\circ}$. The figure inverse to a circle with respect to any circle of finite radius, real or imaginary, whose centre is a point on itself, is a line, the radical axis of itself and the circle of inversion (181).
6. The figure inverse to a circle with respect to any circle of finite radius, real or imaginary, which it neither passes through the centre of, nor intersects at right angles, is another circle, in perspective with itself from the centre of inversion, and coaxal teith itself and the circle of inversion (199).

Of these several cases, thus stated together for convenience of reference, the three first have been already given in the previous articles referred to in their statements, and the last, which comprehends the preceding two (and indeed all the others) as prarticular cases, has been virtually established in its entire generality in Art. 199; from their importance however in the applications of the theory of inversion, we subjoin the ordinary independent proofs of the fourth and fifth, and repeat again that of the sixth with new figures adapted more particularly to the subject of the chapter.

To prove 4*. If O (figs. α and α°) be the centre of inversion,

L the line, A the foot of the perpendicular upon it from O, and A^{\prime} the inverse of A with respect to the circle of inversion K; the cirele on $O A^{\prime}$ as diameter is the required inverse of L.

For, drawing any line through O intersecting L at P and the circle in question at P^{\prime}, and joining $A^{\prime} P^{\nu}$; then, since, by similar right-angled triangles $A O P$ and $P^{\prime} O A^{\prime}$, the two rectangles $O P . O P^{\prime}$ and $O A . O A^{\prime}$ are always equal in magnitude and sign, therefore \&ic. (149).

The diameter $M L N$ of the circle of inversion perpendicular to L being bisected at O and cut harmonically at A and A^{\prime} (225), therefore (231, Cor. 3°) the two rectangles $A A^{\prime} . A O$ and $A M . A N$ are always equal in magnitude and sign, and therefore (181) the line L, is always the radical axis of its inverse and the circle of inversion. A property which, when (as in fig. α^{\prime}) it inter-
FOL. It.
sects the latter at real points, is evident à priori from the ${ }^{*}$ general property 10° of Art. 401.

To prove 5°. If O (same figures) be the centre of inversion, A^{\prime} the diametrically opposite point of the circle passing through it, and A the inverse of A^{\prime} with respect to the circle of inversion K; the line L passing through A perpendicular to $A A^{\prime}$ is the inverse required.

For, since (as in the preceding case), for every line passing through O and intersecting the circle and L at P^{\prime} and P respectively, the two rectangles $O P . O P^{\prime}$ and $O A . O A^{\prime}$ are always equal in magnitude and sign; therefore \&c. (149).

That, in all eases in which the original circle passes, as above, through the centre of inversion O, the line L inverse to it is the radical axis of itself and the circle of inversion K, appears of course in precisely the same manner as for the preceding property 4°.

To prove 6°. If O (figs. β and β^{\prime}, γ and γ^{\prime}) be the centre

of inversion, C that of the circle whose inverse is required, A and B the extremities of its diameter passing through O, and A^{\prime} and B^{\prime} the two inverses of A and B with respect to the circle
of inversion K; the circle on $A^{\prime} B^{\prime}$ as diameter is the inverse required.

For, O being, lyy virtue of the relation $O A . O A^{\prime}=O B . O B^{\circ}$ (149), one of the two centres of perspective (the external in figs. β and β^{\prime}, the internal in figs. γ and γ^{\prime}) of the two circles on $A B$ and $A^{\prime} B^{\prime}$ as diameters (199), and every line passing through it consequently intersecting them at two pairs of antihomologous points P and P^{\prime}, Q and Q^{\prime} with respect to it, for which the four rectangles $O P . O I^{\nu}, O Q . O Q, O A . O A$, $O B . O B B^{\prime}$ are all equal in magnitude and sign (198); therefore \&.c. (149).

The diameter $M N$ of the circle of inversion passing through the centres C and C^{\prime} of the original and inverse circles being cut harmonically by ench pair of inverse points A and A^{\prime}, B and $B^{\prime}(225)$, the three circles on $A B, A^{\circ} B^{\prime}$, and $M N$ as diameters, that is the original and inverse circles and the circle of inversion, are consequently alwags conalal (229). A property which, when (as in figs. β^{\prime} and γ^{\prime}) the former and latter intersect at real points, is evident is priori from the general property 10° of Art. 101.
N.B. The several figures (α and α^{\prime}, β and β^{\prime}, γ and γ ') given with the above proofs, though applicable as they stand only to the ense in which the circle of invension K^{-}is real, may be adapted immediately to that in which it is imaginary, by simply furning in each the inverse figure round the centre of inversion O through two right angles into the opposite position, the original figure remaining unchanged; the changed and original figures will then be inverse to each other with respect not to the real circle \boldsymbol{F} but to the concentric imagimary circle K^{n} the negative square of whose radius is equal in absolute magnitude to the positive square of the radius of $K^{\prime}(149)$.

From a comparison of the two figures β and β^{\prime} with the two γ and γ^{\prime}, both in their original and changed positions, it is evident that, while, for a real circle of inversion K, the centre of inversion O is the external or the internal centre of perspective of the original and inverse circles according as it is external or internal to both, the reverse exactly is the case for an imaginary circle of inversion $K^{\prime \prime}$, the centre of iuversion 0 being then their internal or external centre of perspective according as
it is external or internal to both. The consideration of this difference is important whenever it is necessary, as it sometimes is, to compare as to magnitude, in accordance with the convention of Art. 23, the angles of intersection of two known circles and of their two inverses with respect to a known circle of inversion, real or imaginary.
404. The centre and radius of the circle inverse to a given line or circle with respect to a given circle of inversion K, real or imaginary, may be found immediately, on the principles just stated, as follows:

In the case of the line. If O (figs. α and α^{\prime} of preceding article) be the centre and $O R$ the radius of inversion, L the line, A the foot of the perpendicular $O A$ on it from O, A^{\prime} the inverse of A with respect to K, and C^{\prime} the middle point of $O A^{\prime}$, which, by. 4° of the preceding article, is the centre of the circle inverse to L; then, since $O A . O A^{\prime}=O R^{2}(149)$, and since $O A^{\prime}=2 O C^{\prime}$, therefore $O C^{\prime}=O R^{2} \div 2 O A=O R^{2} \div 2 O L$; which is consequently the formula by which to calculate in numbers the position of the centre C^{\prime} and the magnitude of the radius $O C^{\prime}$ of the circle inverse to L with respect to K.

In the case of the circle. If, as before, O and $O R$ (figs. β and β^{\prime}, γ and γ^{\prime} of the preceding article) be the centre and radius of inversion, r and r^{\prime} the radii of the original and inverse circles, d and d^{\prime} the distances $O C$ and $O C^{\prime}$ of their centres C and C^{\prime} from O, and t and t^{\prime} the lengths (real or imaginary) of the tangents $O S$ and $O S^{\prime}$, or $O T$ and $O T^{\prime}$, to them from O; then since, O being one of their two centres of similitude (199), $d^{\prime} \div d=r^{\prime} \div r=t^{\prime} \div t=t^{\prime} t \div t^{2}=O R^{2} \div\left(d^{2}-r^{2}\right)$, therefore

$$
d^{\prime}=\left(\frac{O R^{z}}{d^{2}-r^{2}}\right) \cdot d, \text { and, } r^{\prime}=\left(\frac{O R^{2}}{d^{2}-r^{2}}\right) \cdot r ;
$$

which are consequently the formulæ by which to calculate in numbers the position of the centre C^{\prime} and the length of the radius r^{\prime} of the iuserse circle, when, with the circle of inversion K, the centre C and radius r of the original circle are given.

The same formulæ may also be obtained casily without the aid of the two tangents t and t^{\prime} which aro as often imaginary (figs. γ and γ^{\prime}) as real (figs. β and β^{\prime}); for if P and P^{\prime}, Q and Q^{\prime},
be the two pairs of inverse points at which any line passing through O intersects the original and inverse circles; then since (199) $d^{\prime} \div d=r^{\prime} \div r=O P^{\prime} \div O Q$ or $O Q^{\prime} \div O P=\left(O P . O P^{\prime}\right.$ or $\left.O Q . O Q^{\prime}\right) \div O P . O Q=O R^{2} \div\left(d^{2}-r^{2}\right)$, therefore $\mathbb{\&}$.
405. The centre of the circle inverse to a given line or circle with respect to a given circle of inversion K, real or imaginary, is given also in every case by the general property, that-

The incerse of the centre of inversion with respect to any line or circh inverts into the centre of the circle interse to the line or circle.

For, if O and $O R$ (same figures and notation as before) be the centre and radius of inversion, I the inverse of O with respect to the original line or circle, and $C^{\prime \prime}$ the centro of the inverse circle or line; then, since, in the ease of the line (figs. α and $\left.a^{\prime}\right), O I=20 A(150)$, therefore $O C^{\prime} . O I=O A^{\prime} . O A=O R^{3}$, and therefore de. (1:49); and, since, in the case of the circle (figs. β and $\beta^{\prime}, \gamma^{\prime}$ and γ^{\prime}), $O C . O I=O P . O Q$ (149), therefore (199) $O C^{\prime} . O I=O P^{\prime} . O P^{\prime}$ or $O Q . O Q^{\prime}=O R^{\circ}$; and therefore \&ec. (149).

Con. 1. If I^{\prime} (same figures) be the inverse of O with respect to the inverse circle or line; then, since, for precisely the same reasons as above, $O C . O I^{\prime}=O E^{n}$, therefore reciprocally-

The centre of any circle inverts into the inverse of the centre of intersion with respect to the inverse circle.

Corr. 2. The two perpendiculars at the two points I and I^{\prime} to the line $I I^{\prime}$ (same figures) being (165) the two polars of the point O with respect to the original and inverse circles, and inverting with respect to K into the two circles on the two intervals $O C^{\prime}$ and $O C$ as diameters (4°, Art. 403); it follows consequently that-

The polar with respect to any circle of the centre of inversion inverts into the circle whose diameter is the interval betwoen that point and the centre of the inverse circle.

The circle on the interval beticeen the centres of inversion and of any circle as diameter inverts into the polar of the contre of inversion with respect to the inverse circle.
N.B. A different, and more general, proof of these useful properties, on a principle eommon to the line and circle indifferently, will be presently given.
406. As regards the effect of inversion on the several anharmonic ratios of collinear and concyelic quartets of points (274 and 308), it may be easily shewn that in all cases-

Every four points on any line or circle and the four corresponding points on its inverse with respect to any circle of inversion, real or imaginary, are equianharmonic.

For, of the two inverse figures, when one is a line, and the other consequently a circle passing through the centre of inversion (4° and 5°, Art. 403), the two quartets are then equianharmonic with the common pencil they determine at that point (285 and 306), and therefore with each other; and when both are circles, and neither consequently passing through the centre of inversion, the two quartets are then antihomologous with respect to the centre of perspective of the circles which coincides with that point ($403,6^{\circ}$), and therefore \&c. (316). In the particular case of a line or circle intersecting the circle of inversion at right angles, and consequently inverting into itself ($403,3^{\circ}$), all pairs of corresponding points are then harmonic conjugates with respect to the two points of intersection (149 and 257), and therefore \&c. (282, Cor. 4°).
N.B. Next to the gencral property 3° of Art. 402, the above, from which it appears that all anharmonic ratios of collinear and concyclic quartets of points are preserved unchanged in inversion, is the most important connected with the subject of the present chapter.
407. As regards the general property of intersecting figures and their inverses, just adverted to in the note at the close of the preceding article, when applied to the case of intersecting circles and their inverses, it may be stated, in accordance with the convention of Art. 23, more definitely as follows:

When tuo circles intersect, their angle of intersection is equal or supplemental to that of their two inverses with respect to any circle of inversion, real or imaginary, according as the centre of inversion is external or internal to both, or cxternal to one and internal to the other.

For, the centre of inversion being the external or the internal centre of perspective of both pairs of inverse circles in the former case, and the external of one pair and the internal of the other
pair in the latter case (403, note); and every circle passing through either pair of inverse points of intersection ($402,1^{\circ}$) consequently intersecting both pairs at equal or at supplemental angles in the former case, and one pair at equal and the other pair at supplemental angles in the latter case (211); therefore sc.
N.B. It follows of course from the above that, though, in accordance with the general property 3° of Art. 402 , the angle of intersection of two circles undergoes, as a figure, no change of form under the process of inversion, yet, in accordance with the convention of Art. 23, it may, and often does, as a magnitude, chauge into its supplement under that process (21). In the applications of the theory of inversion to the geonetry of the circle, this circumstance must of course, when necessary, bo always attended to. The two cases of contuct, external and internal, come of course under it as particular cases (23); and in but one case alone, that of orthoyonal intersection, which presents no ambiguity, cau the precaution ever bo entirely dispensed with.
405. Between the squares of the common tangents and the rectangles under the radii of any two intersecting circles and of their two inverses with respect to any circle of inversion, real or imaginary, the following metric relation results immediately from the general property of the preceding article, combined with that of Euc. II. 12, 13; viz.

When weo circles intersect, the squares (disregarding signs) of their tuo common tangents are to the restangle under their radii, as the squares (disregarding signs) of the tue common tangents are to the rectangle under the radii of their two inverses with respect to any circle of inversion, real or imaginary; squares having similar or opposite signs corresponeling in the theo proportions, according as the angles of intersection of the two pairs of circles, original and inverse, are equal or supplemental.*

- The above, established gencrally for any two circles and their two inverses to any circle of inversion, has been applied with considerable success by Mr. Casey to the investigation of some interesting properties of circles, which, but for the length to which the present volume has extended, would have been noticed here. The samo geometer has also obtained by inrersion an indirect but general proof of the first part of Dr. Hart's

For if a, b, c be the three sides of the triangle determined by the two radii to either point of intersection and by the interval between the centres of the original pair of circles, and $a^{\prime}, b^{\prime}, c^{\prime}$ those of the corresponding triangle for the inverse pair; then, since, by the general property of the preceding article, the two angles of those triangles opposite to c and c^{\prime} are either equal or supplemental, therefore, by Euc. II. 12 and 13, the two differences of squares $c^{2}-(a-b)^{2}$ and $(a+b)^{2}-c^{2}$, which (disregarding signs) are the squares of the two common tangents to the original pair, are to the two corresponding or non-corresponding differences of squares $c^{\prime 2}-\left(a^{\prime}-b^{\prime}\right)^{2}$ and $\left(a^{\prime}+b^{\prime}\right)^{x}-c^{\prime 2}$, which (disregarding signs) are the squares of the two common tangents to the inverse pair, as the rectangle $a b$, which is that under the radii of the original pair, is to the rectangle $a^{\prime} b^{\prime}$, which is that under the radii of the inverse pair; and therefore \&c.
N.B. In the two extreme cases of real intersection, viz. contact, external and internal, the above ratios have in magnitude and sign the extreme values +4 and 0,0 and -4 respectively; and in the mean case of real intersection, viz. orthogonal, they have in magnitude and sign the two intermediate mean values +2 and -2 . The property however being true generally for every two circles and their two inverses to any circle of inversion, they may, for imaginary intersection, have in magnitude and sign, any value from 0 to $\pm \propto$, according as the distance between their centres is greater than the sum or less than the difference of their radii.
409. Intersecting circles possess also the following evident. properties with respect to inversion :
1°. When two circles intersect, every circle passing through their tho points of intersection inverts into a circle passing through the two points of intersection of their two inverse circles.

Theorem, respecting the eight circles of contact of three arbitrary circles,
stated at the close of Art. 212. His paper on the latter subjeet in the
Quarterly Journal of Pure and Applied Mathematics (Vol. v. page 318)
had been in fact published when that artiele was written, but the author was
unaware at the time that any demonstration, direct or indirect, had been
obtained of it by Elementary Geometry.

For, since, to every circle of any figure corresponds a circle of the inverse figure (403,6), and since to every point of intersection of any two figures corresponds an inverse point of intersection of the two inverse figures ($402,1^{\circ}$); therefore \&e.
2°. When two circles intersect, the circle passing through the two points of intersection and through the centre of inversion inverts into the radical axis of the tico inverse circles.

For, that circle, passing through the centre of inversion, inverts into a line ($403,5^{\circ}$), and, passing through the two points of intersection of the two original circles, the line into which it inverts passes through the two points of intersection of the two inverse circles ($402,1^{\circ}$) ; and therefore \&e.
3. Every two intersecting circles and their two circles of intersion (398) invert, to every circle, into two intersecting circles and their tuco circles of inversion (398).

For, since, for the two original circles, the two circles of antisimilitude, or inversion (398), pass through the two points, and bisect, one externally and the other internally, the two angles, of intersection (201); therefore, for the two circles inverse to the two former, the two circles inverse to the two latter pass through the two points ($402,1^{\circ}$), and bisect, one externally and the other internally, the two angles ($402,3^{\circ}$), of intersection; and therefore \&c. (201).
4°. Every two intersecting circles invert into equal circles to every circle having its centre on either of their two circles of inversion, external or internal.

For, that circle of inversion of the original circles then inverting into the radical axis of the two inverse circles (2° above), and two intersecting circles being evidently equal when their radical axis bisects their two angles of intersection $\left(3^{\circ}\right.$ above) ; therefore ©ic.
55. Every two intersecting circles invert into circles vehose radii have a constant ratio to every circle having its centre on the same circle passing through their teco points of intersection.

For, the latter circle inverting to every such circle into the radical axis of the two inverse circles (2° above), and the radii of any two intersecting circles being evidently in the inverso ratio of the sines of the segments into which their radical axis divides, externally or internally, their two angles of intersection; thercfore \&c. $\left(402,3^{\circ}\right)$.
N.B. It will be presently shewn that the several properties above given are all general, and truc, with obvious modifications, of any two circles whether intersecting or not.
410. If C be a circle of any radius, finite or infinitely great or small, and $C^{\prime \prime}$ its inverse with respect to any arbitrary circle of inversion K, of which the centre is O; then always-
1°. Every circle D orthogonal to C inverts into a circle D^{\prime} orthogonal to C^{\prime}.
2°. Every two points P and Q inverse to each other with respect to C invert into two points P^{\prime} and Q^{\prime} inverse to each other with respect to C^{\prime}.
3. Every diameter of C inverts into a circle through O orthogonal to C^{\prime}; and, conversely, every circle through O orthogonal to C inverts into a diameter of C^{\prime}.
4°. The centre of C inverts into the inverse of O with respect to C^{\prime}; and, conversely, the inverse of O with respect to C inverts into the centre of $C^{\prime \prime}$.

Of these very useful properties as regards inversion; the first follows immediately from the general property (407) that the angle of intersection of any two circles is equal or supplemental to that of their two inverses with respect to any circle of inversion K; the second from the first, from the consideration that as every circlo D passing through P and Q intersects C at right angles (156), therefore, by 1°, every circle D^{\prime} passing through P^{\prime} and Q^{\prime} intersects C^{\prime} at right angles, and therefore \&c. (156); the third also from the first, of which it is evidently a particular case, from the consideration that, by virtue of it, every line orthogonal to C inverts into a circle through O orthogonal to $C^{\prime}\left(403,4^{\circ}\right)$, and that, conversely, every circlo through O orthogonal to C inverts into a line orthogonal to $C^{\prime}\left(403,5^{\circ}\right)$; and the fourth ; cither from the second, of which it is evidently a particular case, from the consideration that, by virtue of it, when P is at infinity then Q and P^{\prime} are the centres of C and K respectively ($149,3^{\circ}$) and Q^{\prime} consequently the inverse of the latter with respect to C^{\prime}, and when conversely P^{\prime} is at infinity then Q^{\prime} and P are the centers of C^{\prime} and K respectively ($149,3^{\circ}$) and Q consequently the inverse of the latter with respect to C; or from tho third, more readily perhaps, from the consideration
that, by virtue of it, every line passing through the centre of C $\left(22,1^{\circ}\right)$ inverts into a circle passing through O and through its inverse with respect to $C^{\prime}(156)$, and, conversely, every circle passing through O and through its inverse with respect to C (156) inverts into a line passing through the centre of $C^{\prime}\left(22,1^{\circ}\right)$; and therefore $\mathbb{N} \mathrm{c} .\left(402,1^{\circ}\right)$. See also Art. 405 , where this last property was established on other principles for the line and circle separately.

Cun. 1°. From properties 1° and 3° of the above, the following consequences are at once evident, riz.-
a. Every circle orthogonal to two circles inverts, to every circle, into a circle orthogonal to the theo itterse circles.
b. The purticular circle orthogonal to tuo circles, which passes through the centre of inversion, inverts into the line orthogonal, to the theo inverse circles.
c. The line orthoyonal to tero circles interts into the perticular circle orthoyonal to the luco inverse circles tehich passes through the antre of intersion.
d. The circle orthogonal to three circles interts, to every circle, intu the circle orthogonal to the three inerse circles.
c. The circle orthogonal to three circles interts, to every circle through ichase centro it prasses, into a line orthogonal to the three interse circles.
f. Eiery system of circles having a common orthononal circle inverts, to every circle, into a system having a common orthoyonal circle.
g. And, to every circle having its centre on the common orthogonal circle, into a system huving a common orthoyonal line.
h. Every system of circles having a common puair of orthogonal circles inverts, to cvery circle, into a system liaving a common pair of orthoyonal circles.
i. And, to cevery circle having its centre at either point of intersection of the common orthogonal pair, into a system having a common pair of orthoyonal lincs.

Con. 2°. From properties 2° and 4° of the above, the following also are at once evident, viz.:
a. Every tico non-intersecting circles and their common pair of inverse points invert, to every circle, into the non-intersecting circles and their common pair of inverse points.
2. Every two non-intersecting circles invert, to every circle having its centre at either of their common pair of inverse points, into tooo circles having a common centre, the inverse of the other.
c. Every tivo circles having a common centre invert, to every circle, into two non-intersecting circles whose common pair of inverse points are the centre of inversion and the inverse of the common centre.
d. Every system of circles having a common pair of inverse points inverts, to every circle, into a system having a common pair of inverse points, inverse to the original pair.
e. Every system of circles having a common pair of inverse points inverts, to every circle having its centre at either point, into a system having a common centre, the inverse of the other.
f. Every system of circles having a common centre inverts, to every circle, into a system having a common pair of inverse points, the centre of inversion and the inverse of the common contre.
411. Every two figures E and F, inverse to each other with respect to any line or circle C, being composed of pairs of points P and Q, R and $S, \& c$. inverse to each other with respect to the line or circle C (396); it follows, consequently, from the general property 2° of the preceding article, that-

Every two figures E and F, inverse to each other with respect to any line or circle C, invert -
a. To every circle whose centre is not on the line or circle, into two figures inverse to each other with respect to the inverse circle.
b. To every circle whose centre is on the line or circle, into two figures reflexions of each other with respect to the inverse line.

Cor. Every two circles, however circumstanced as to magnitude and position, being figures inverse to each other with respect to each of their two circles of antisimilitude (398); it follows, consequently, from the above, as established already on other principles for tho particular case of intersecting circles in 3° and 4° of Art. 409 , that-
a. Every two circles and their two circles of inversion invert, $t o$ every circle, into two circles and their two circles of inversion.
6. Every two circles invert into equal circles to every circle having its centre on either of their two circles of inversion.
412. Coaxal circles (184) possess, with respect to inversion, the following among other important properties, viz. -
1°. Every system of coaxal circles of the common points species inverts, from either common point as centre, into a system of concurrent lines, whose vertex is the inverse of the other common point.
2°. Every system of coaxal circles of the limiting points species inverts, from cither limiting point as centre, into a system of concentric circles, whose centre is the inverse of the other limiting point.
3°. Every system of coaxal circles of cither species, those common or limiting points coincide, inverts, from the point of coincidence as centre, into a system of parallel lines, tchose direction is that of their common tangent at the point.
4°. Livery system of coaxal circles of cither species inverts, from every centre, into a conxal system of the same species, whose common or limiting points, distinct or coincident, are the inverses of those of the original system.

Firstly, for a system having real common points M and N, distinct or coincident. Since, by hypothesis, the component figures of the system are all circles passing through M and N, therefore, by ($403,6^{\circ}$ and 5°), those of the inverse system, for every centre O not coinciding with either M or N, are all circles passing through M^{\prime} and N^{\prime} the inverses, distinct or coincident, of M and N, and, for each ceutre O coinciding with either M or N, are all lines passing through the inverse $N^{\prime \prime}$ or M^{\prime} of the other N or M; and therefore \&ec. as regards 1° and the first part of 4°. And, since, when M and N coincide at O, then M^{\prime} and N^{\prime} coimcide at infinity on the line $M N\left(401,14^{\circ}\right)$; therefore $\mathcal{S c}$. as regards the first part of 3°.

Secondly, for a system having real limiting points E and F, distinct or coincident. Since, by hypothesis, the component figures of the system are all circles intersecting at right angles every circle passing through E and $F^{\prime}\left(188,5^{\circ}\right)$, therefore, by $\left(403,6^{\circ}\right.$ and 5°, and 407) those of the inverse system, for every centre O not coinciding with either E or F, are all circles intersecting at right angles every circle passing through $E^{\prime \prime}$ and F^{*} the inverses, distinct or coincident, of E and F, and, for each centre O coinciding with either E or F, are all circles intersecting at right
angles every line passing through the inverse $F^{\prime \prime}$ or $E^{\prime \prime}$ of the other F or E; and therefore \&c. as regards 2° and the second part of 4°. And, since, when E and F coincide at O, then $E^{\prime \prime}$ and $F^{\prime \prime}$ coincide at infinity on the line $E F\left(401,14^{\circ}\right)$; therefore © \mathbb{C}. as regards the secoud part of 3°.

In every case, the particular circles of the original and orthogonal systems (185) which pass through the centre of inversion O invert evidently into the radical and central axes of the inverse system. For, as passing both through the centre of inversion, they invert both into lines (403, 5°), of which one (the former) is a particular circle of the inverse system, and the other (the latter) intersects all its circles at right angles (407); and therefore \&c.

And, conversely, for the same reason, the radical and central axes of the original system invert respectively, in all cases, into the particular circles of the inverse system and of its orthogonal system which pass through the centre of inversion.
N.B. That the two parts of property 3° above are in fact identical, and express a common property which appears at once from ($403,5^{\circ}$), is evident à priori from (184), the coaxal system consisting in both cases of circles having a common tangent at a common point. The consideration that a system of lines passing through a common point at infiuity in any direction, and a system of circles having a common centre at infinity in the perpendicular direction, are in fact identical (16 and 18) explains à posteriori the reason why properties so different as 1° and 2° above lead to the common result they do in the particular case of 3°.
413. From properties 1° and 2° of the preceding article, including of course their common particular case 3°, it follows of course, conversely, that-

1. Every system of lines passing through a common point (whether at a finite distance or at infinity) inverts, from any centre, into a system of coaxal circles of the common points species; the centre of inversion and the inverse of the common point being the two common points of the inverse system.
2°. Every system of circles having a common centre (whether at a finite distance or at infinity) inverts, from any centre, into a
system of conxal circles of the limiting points species; the centre of intersion and the inverse of the common centre being the troo limiting points of the inverse system.

Both of which are also evident directly; the first from the consideration that every line of the system inverts into a circle passing through the centre of inversion and through the inverse of the common point $\left(403,4^{\circ}\right)$; and the second from the consideration that, as every line passing through the common centre intersects every circle of the system at right angles, therefore every circle passing through the centre of inversion and through the inverse of the common centre ($403,4^{\circ}$) intersects every circle of the inverse system at right angles (407), and therefore \&e. ($183,5^{\circ}$).
414. By virtne of the results established in the two preceding articles, every property of coaxal circles, involving only considerations of contact, or intersection at constant angles, with lines or circles, or anharmonic equivalence of quartets of points, or homographic division by lines or circles, which (406 and 407) undergo no change in the process of inversion, may be reduced, according to the nature of the system, to one or other of tho comparatively simple cases of concurrent lines or concentric circles (including of course the common case of parallel lines), for which it is sometimes evident to mere perception. Thus for instance, the two general properties, established directly on other principles in (193, Cor. 8°) and in (326, Exss. h and i), that "a variable circle intersecting any theo fixed circles at any theo constant angles intersects at constant angles all circles of the system coaxal vith them, touches two particular circles of the system, and cuts a third at right angles;" and that "a variable circle intersecting any tuo fixed circles at any luco constant angles ditermines four homographic systems of points on the circles themseleve, und, g enerally, $2 n$ homographic systems of points on every n circles of the system coaxcul with them ;" are both evident to mere perception for the particular cases of a system of concurrent lines and of a systen of concentric circles, to one or other of which every other ease, by virtue of the preceding properties, may be reduced by inversion.
415. Every problem again connected with a system of coaxal circles, not involving other than similar considerations, may, by virtue of the same results, be reduced, according to the nature of the system, to the corresponding problem for a system of concurrent lines or of concentric circles; for which, as might naturally be expected, the solution, if not evident to mere inspection, is generally simpler than for the original system. Thus for instance the two following problems, "To describe a circle of a coaxal system; 1°, intersecting a given circle at a given angle; 2°, dividing a given arc of a given circle in a given anharmonic ratio ;" are reducible to one or other pair, as the case may be, of the corresponding simpler problems: "to dravo a line passing through a given point, or to describe a circle having a given centre, and fulfilling the required condition (1° or 2°) for the inverse circle or arc $; "$ the solutions of which, for condition 1° are evident in either case, and for condition 2° have been given, actually in the former case and virtually in the latter case, in Ex. 3°, a, Art. 356. And the solution of every such problem, once obtained, after inversion, for the corresponding simplified form, gives of course, by inversion back again, the solution of the original in its general form.
416. Coaxal circles possess also, with respect to inversion, the following important property, particular cases of which have been already established on other principles in Art. 409, viz.-

Every two circles invert into two whose radii have a constant ratio from every point on any third circle coaxal with themselves.

For, if O and k be the centre and radius of inversion, A and B the centres of the two original circles, a and b their two radii, u and v the two tangents to them from O, a^{\prime} and b^{\prime} the radii of the two inverse circles, and Z the centre of the coaxal circle on which O lies; then, since (404) $a^{\prime}=\frac{k^{2}}{u^{2}} a$ and $b^{\prime}=\frac{k^{2}}{v^{2}} b$, therefore $\frac{a^{\prime}}{b^{\prime}}=\frac{a}{b} \cdot \frac{v^{2}}{u^{4}}=\frac{a}{b} \cdot \frac{B Z}{A Z}\left(192\right.$, Cor. $\left.1^{\circ}\right)$, which being of course constant when Z is fixed, whatever be the position of O on the coaxal circle of which it is the centre, therefore \&ic.

Cor. 1°. As the radius of a circle may have either sign indifferently, it appears from the above that, for every pair of
original circles, two different coasal circles loci of O correspond to each particular value of the constant ratio of the inverse radii ; that, when the ratio is given, their two centres Z and Z^{\prime} are given by the relations $\frac{A Z}{\overline{B Z}}= \pm \frac{a}{b} \cdot \frac{b^{\prime}}{a^{\prime}}$ and $\frac{A Z^{\prime}}{B Z^{\prime}}=\mp \frac{a}{b} \cdot \frac{z^{\prime}}{a^{\prime}}$; and, as already shewn on other m^{2} inciples in $\left(409,5^{\circ}\right)$, that, when the original circles intersect, they divide their angles of intersection, externally and internally, into parts whose sines are in the inverse of the ratio.

Cun. 2°. In the particular case when $\frac{A Z}{B Z}= \pm \frac{a}{b}$ and $\frac{A Z}{B Z^{\prime}}=\mp^{a} \frac{a}{b}$, that is, when Z and Z^{\prime} are the two centres of perspective of the two original circles (195); then $a^{\prime}=b^{\prime}$, and therefore, as already shewn on other principles in (411, Cor. b).

Every thoo circles invert into equal circles from crery point on either of the theo conxal circles echose centres are their two centres of perspective.

Corr. 3°. If A, B, C be any three given circles, and X° and $X^{\prime \prime}$, Y° and Y^{\prime}, Z and Z^{\prime} the three pairs of circles coaxal with B and C, C and A, A and B respectively for whose several points, as centres of inversion, the three pairs of radii b^{\prime} and c^{\prime}, c^{\prime} and a^{\prime}, a^{\prime} and Z^{\prime} of the three corresponding pairs of inverse circles l^{\prime} and C^{\prime}, $C^{\prime \prime}$ and A^{\prime}, A^{\prime} and B^{\prime} have the three pairs of ratios determined by any three given lines taken two and two ; since then (the compound of the three ratios being necessarily $=1$) the six centres of the three pairs of circles X and $\lambda^{\prime \prime}, Y$ and $Y^{\prime \prime}, Z$ and Z^{\prime} (determinable, when the three ratios $a^{\prime}: b^{\prime}: c^{\prime}$ are given, by the general relations of Cor. 1°) lie three and three on four lines (which when $a^{\prime}=b^{\prime}=c^{\prime}$ are, by Cor. 2°, the four axes of similitude (197) of the three original circles A, B, C), the six circles themselves pass consequently three and three through four pairs of conjugate points P and P^{\prime}, Q and Q^{\prime}, R and π, S and S^{\prime} reflexions of each other with respect to the four lines, and real or imaginary according to circumstances (190). IIence, from Cor. 1°, it appears that there exist in general eight different points, corresponding to each other two and two in four conjugate pairs, real or imaginary according to circumstances, and detrrminable in cecry case by the intersections thrce and thrce of six determinable VOL. II.
circles, for which thrse given circles invert into circles whose radii are proportional to three given lines.

Cor 4°. By rirtue of the preceding, many probloms involving only contacts, or intersections at angles of prescribed forms, which undergo no change by inversion (407), may be transformed from one system of three circles to another, the relative magnitudes of whose radii may be more convenient for their solutions, and the solutions thus obtained then transformed back again by inversion to the original system. Thus, for instance, the two solutions, real or imaginary, of the particular problem, "To deseribe a circle having contacts of the same species with three given circles, or, nore generally, intersecting thrce given circles at combinations of the same affection of three given angles and their three supplements;" are evident, respectively, for three equal circles, and for three whose radii are inversely as the cosines of the throe corresponding angles, the radical centre of the three being then, in either case, the common centre of the required pair of circles (2, Cor. 1°, Art. 183). And, since to such a system every given system of three may be transformed by inversion from any one of eight different centres, corresponding two and two in four conjugate pairs, real or imaginary, according to circumstances (Cor. 3°), the four pairs of conjugate solutions, real or imaginary, of the general problem, "To describe a circle touching thrce given circles, or, more gencrally, intersecting with three given circles at three angles of given forms;" may consequently be obtained by four different inversions of the three given circles from any four, no two of which are conjugates, of the aforesaid eight centres, and by the four inversions back again of the four pairs of solutions thus obtained for their four corresponding triads of inverse circles.
417. In the applications of the theory of inversion, the distances, absolute and relative, between the inverses of pairs of points have occasionally to be considered. The following are the principal relations to be used in such cases:

If A, B, C, D, E, de. be any number of points, and A^{\prime}, B^{\prime}, $C^{\prime \prime}, D^{\prime}, E^{\prime}$, tcc. their several inverses with respect to any centre and radius of inversion O and $O R$; then-

1. For ceery twoo points A, B, and their theo inverses A^{\prime}, B^{\prime},

$$
A^{\prime} B^{\prime}: A B=O R^{2}: O A \cdot O B
$$

2°. For every three points A, B, C, and their three inverses $A^{\prime}, B^{\prime}, C^{\prime}$,

$$
B^{\prime} C^{\prime}: C^{\prime} A^{\prime}: A^{\prime} B^{\prime}=O A \cdot B C: O B \cdot C A: O C \cdot A B .
$$

\because. For every four points A, B, C, D, and their four incerses $A^{\prime}, D^{\prime}, C^{\prime \prime}, D^{\prime}$,
$B^{\prime} C^{\prime} . A^{\prime} D^{\prime}: C^{\prime} A^{\prime} . B^{\prime} D^{\prime}: A^{\prime} B^{\prime} . C^{\prime} D^{\prime}=B C . A D: C A \cdot B D: A B . C D$.
Of these relations, the secoud and third are both evident from the first, which may be easily proved as follows: Since $O A$. $O A^{\prime}=O B . O B^{\prime}=O R^{2}$, the two triangles $A O B$ and $B A^{\prime} O A^{\prime}$ are similar; therefore $A^{\prime} B^{\prime}: A B=O . A^{\prime}: O B=O A . O A^{\prime}: O A . O B$ $=I^{n}: O A . O B ;$ and therefore $\& C$.

Cor. 1. It is evident, from the first of the preceding relations, that, for a given radius of inversion, the abowlute distanco $A^{\prime} B^{\prime}$ between the inverses of any two points A and B varies directly as the distance $A B$ and inversely as the rectangle $O A . O B$; from the second, that, for any radius of inversion, the ratin $A^{\prime} C^{\prime}: B^{\prime} C^{\prime}$ of the distances of the inverses of any two points A and B from that of any third C varies directly as tho ratio $A C: B C$ and invensely as the ratio $O A: O B$; and from the third, that, for any centre and radius of inversion, the three rectangles $B^{\prime} C^{\prime} . A^{\prime} D^{\prime}, C^{\prime} A^{\prime} . B^{\prime} D^{\prime}, A^{\prime} B^{\prime} . C^{\prime} D^{\prime}$ for the four inverses $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ of any four points A, B, C, D are proportional to, and connected consequently by every linear relation comecting, the three corresponding rectangles $B C . A D, C A . B D, A B . C D$ for the four points themselves.

Cor. 2°. Any three points A, B, C being given, it is evident, from 2°. that, when the ratio $A^{\prime} C^{\prime}: B^{\prime} C^{\prime \prime}$ is given, then O lies on a given circle coaxal with A and $B(152)$, that, viz. for every point of which $O A: O B=A C \div B C: A^{\prime} C^{\prime \prime} \div 1 B^{\prime} C^{\prime}$ (158); and that, when the three ratios $B^{\prime} C^{\prime \prime}: C^{\prime} A^{\prime}: A^{\prime} B^{\prime}$, and with them of course the species of the triangle $A^{\prime} B^{\prime} C^{\prime}$, are given, then O is one or other of the two points common to the three given circles coaxal with B and C, C and A, A and B respectively (152), and with each other (190), for each point common
to which
$O A: O B: O C=B^{\prime} C^{\prime} \div B C: C^{\prime} A^{\prime} \div C A: A^{\prime} B^{\prime} \div A B(158)$.
Con. 3°. When, for four points A, B, C, D, one of the three rectangles $B C . A D, C A . B D, A B . C D$ is equal in absolute value to the sum of the other two, it is evident, from 3°, that, for the four inverse points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, the corresponding rectangle is equal in absolute value to the sum of the other two ; hence ($\$ 2$), schen four points are either collinear or concyclic, their four inverses with respect to any circle of inversion are also cither concyclic or collinear. A property verifying indirectly the results established in $4^{\circ}, 5^{\circ}, 6^{\circ}$ of Art. 403.
418. From the principles of inversion established in the preceding articles, it is evident that every property in the geometry of the line and circle, involving only the equality or constancy of angles of intersection or of anharmonic quartets of points collinear or concyclic, may be transformed by inversion into another of the same character in which any circle will be changed into a line, or circle having any required centre or radius; any two circles into two lines, two concentric circles, two equal circles, or two circles whose radii shall have any required ratio to each other; or any three circles into three others, the distances of whose centres or the magnitudes of whose radii shall have any required ratios two and two to each other; and thus its establishment may be, and often is, rendered much simpler than in the original form. Thus, for instance, the properties (established in 326, Ex. f, and 193, Cor. 4°) that " a variable circle passing through a fixed point and intersecting a fuxed circle at a constant angle divides the latter homographically and envelopes another coaxal with it and the point" become transformed by inversion, from the point as centre, into the selfevident properties that " a variable line intersecting a fixed circle at a constant angle divides the circle homographically and envelopes a concentric circle;" the propertics (established in 326, Ex. h, and $143, \mathrm{Cor} .6^{\circ}$) that "a variable circle intersecting tico fixed circles at two constant angles divides both homographically and envelopes tico others coaxal with both" become transformed by inversion, from either point common to both circles when they intersect, or from either point inverse to both when they do not,
into the self-cvident properties that "a variable circle intersecting troo fixed lines, or concentric circles, at tuo constant angles divides both homographically and envelopes theo others concurrent, or concentric, with both ;" and the two properties (established in 326 , Ex. k, and 211 , Cor. 6°, b) that "a variable circle intersecting three fixced circles at equal (or ut any invariable combination of equal and supplemental) angles divides all three homegraphically and "hermines "coaxal system" become transformed by inversion, from either of the corresponding pair of conjugates of the eight points into which the three circles invert into three of equal radii (416, Cor. 3°), into the self-evident properties that "a variable circle intersecting thire fixend circles of equal radii at equal angles dieuds all three homayraphically and ditermines a concentric system." And similarly for all properties of the same nature; any of which, when seen or proved to be truo in their transformed, may always, by virtue of the general properties of Arts. 406 and 407 , be regarded as established in their original forms.
419. Every problem too, in the geometry of the line and circle, involving only considerations of the same nature, may be transiormed in the same manner by inversion into another of the same character, in which, while all other essential elements remain unchanged, any one, two, or three, of the circles involved shall be modified in any of the ways above enumernted; and its solution thus rendered, in many cases, much simpler than in its original form. Thus, for instance, the problem" To elescribe a circle passing through tico given points and inters-cting a given circle at a given angle" becomes transformed by inversion, from either point as centre, into the very simple problem "to dravo a line passing through a gieen point und intersecting a given circle at a given ungle" ; the more general problem " 10 dscribe a circle passing through a given point and intersecting two gieen circles at tuo gieen angles" becomes transformed by inversion, from the point as centre, into the also very simple problem "to drase a line intersecting theo given circles at theo gien angles;" and the still more general problem "to describe a circle intersecting three gien circles at three given angles," becomes transformed by inversion, from either point common to any two of the circles when
they intersect, or from either point inverse to any two of them when they do not, into one or other of the two comparatively simple problems: "to deseribe a circle intersecting two given lines, or concentric circles, at two given angles, and a third given circle at a third given angle;" (see also, as regards the latter problem, the different mode of solution by inversion given in Cor. 4°, Art. 416). And similarly for all problems of the same nature ; their solutions, whether obvious or comparatively simple, in their modified forms, giving of course in all cases, by inversion back again, their solutions in their original forms.
420. Every property again of the same class, relating to the intersection or contact of figures, simple or compound, by lines or circles, gives evidently, by inversion from an arbitrary centre, a corresponding but more general property of the same character, in which while all the other essential features remain unaltered, all the lines, fixed or variable, are changed into circles prassing through a common point, the centre of inversion $\left(403,4^{\circ}\right)$. Of this use of inversion, as an instrument for the evolution of such more general properties from others well known and familiar, we shall terminate this chapter with some examples; in which the original and inverse properties are placed side by side in parallel columns, for convenience of comparison; and in all of which the reader is recommended to attempt the process of inversion himself, and to draw, if necessary, the requisite figures, before looking at the results.

Ex. 1^{10}. A variable line turning round a fixed point determines two homographic divisions on every two fixed lines.

Ex. 2°. A variable line turning round a fixed point determines twohomographic divisions in involution onevery fixed circle.

Ex. 3°. A variable line dividing a fixed are of a fixed circle harmonically turns round a fixed point, the intersection of the two lines touching the circle at the extremities of the are.

A variable circle passing through two fixed points determines two homographic divisions on every two fixed circles passing through either point.

A variable circle passing through two fixed points determines two homographic divisions in involution on every fixed circle.

A variable circle passing through a fixed point and dividing a fixed arc of a fixed circle harmonically passes through another fixed point, the second intersection of the two circles through the point which touch the circle at the extremities of the arc.

Ex. 4°. A variable line dividing two fixed ares of the same fixed circle equianharmonically turns round one or other of two fixed points, the intersections of the two pairs of lines connecting the extremities of one arc with those of the other.

Fx. $\mathbf{5}^{3}$. A rariable line intersecting a fixed circlo at right angles passes in every positions through a fixed point, the centre of the circle.

Ex. ϵ°. A variable line intersecting a fixed circle at any constant angle eavelopes another fixed circle, concentric with the firsL.

Ex. T. A variable line intersecting a fixed circle at any constant angle intersects at constant angles all fixed circles eancentric with the first.
Lix. 8°. A variable lime intersecting a fixed circle at any constant angle determines two similar systems of points on the circle.

Ex. 9°. A rariable live intersecting a fixed circle at any constant angle determines two similar syaterns of points on every fixed circle concentric with the first.

Ex. 10°. A variable circle intersecting two fixed lines at right angles determines by its rariation a system concentric with the intersection of the lines.

Ex. 11°. A variable circle intersecting two fixed lines (or coneentric circles) at two constant angles envelopes two other fix:d lines (or circles) concurrent (or concentric) with the two first.

A variable circle passing through a fixed point and dividing two fixed ares of the same fixed circle equiauharmonically passes through one or other of two other fixed points, the second intersections of the two pairs of circles passing through the point and connecting the extremities of one are with those of the other.

A variable circle passing through a fixed point and intersecting a fired circle at right angles passes in every positiou through a second fixed point, the inverse of the first with respect to the circle.

A variable circle passing through a fixed point and intersecting a fired circle at any constant angle envelopes another fixed circle, coaxal with the poins and first.

A variable circle passing through a fxed poist and intersecting a fixed circle at any conetant angle intersects at constant angles all fired circles coaxal with the point and first.

A variable circle passing throngh a fixed point and intersecting a fixed circle as any conalant angle determines two bomographic systems of points on the circle.

A variable circle passiag through a fixed point and intersecting a fixed circle at any constane angle determines iwo bomographic syatems of points on every fixed circle coaxal with the point and Grst

A variable circle intessecting two fixed intersceting circles at right angles determines by its variation a sybtem coaxal with the two intersections of the circles.

A variable circle interseeting any iwo fixed intersecting (os nom-intersecting) circles at any two constant aggles envelopes two other fixed intersecting (or non-intersecting) circlea coaxal, in eitber case, with the two first.

Ex. 12. A variable circle intersecting two fixed lines (or concentric circles) at two constantangles intersectsat constant angles all fixed lines (or circles) concurrent (or concentric) with the two.

Ex. 13°. A variable circle intersecting two fixed lines (or concentric circles) at two constant angles determines four similar systems of points on the two lines (or circles).

Ex. 14°. Λ variable circle intersecting two fixed lines (or concentric circles) at two constant angles divides similarly all lines (or circles) concurrent (or concentric) with the two.

Ex. 15°. When a variable circle intersects, in every position, two fixed lines (or concentric circles) at two constant angles, its centre describes a concurrent line (or concentric circle.)

Ex. 16°. A variable line intersecting any two fixed circles at equal (or supplemental) angles passes, in every position, through the centre of their external (or internal) circle of inversion.

Ex. 17°. A variable line intersecting any two fixed circles at equal (or supplemental) angles determines four homographic divisions on the two circles.

Ex. 18°. A variable line intersecting two fixed cireles at two pairs of collinear points harmonically conjugate to each other divides every two positions of itself homographically.

A variable circle intersecting any two fixed intersecting (or non-intersecting) circles at any two constant angles intersects, in either case, at constant angles all fixed circles coasal with the two.

A variable circle intersecting any two fixed intersecting (or non-intersecting) circles at any two constant angles determines, in either case, four homographic systems of points on the two circles.

A variable circle intersecting any two fixed intersecting (or non-intersecting) circles at any two constant angles divides, in either case, homographically all circles coaxal with the two.

When a variable circle intersects, in every position, any two fixed intersecting (or non-intersecting) circles at two constant angles, the inverse with respect to it of either point common (or inverse) to both describes, in either case, a coaxal circle.

A variable circle passing through a fixed point and intersecting any two fixed circles at equal (or supplemental) angles passes, in every position, through the inverse of the point with respect to their external (or internal) circle of inversion.

A variable circle passing through a fixed point and intersecting any two fixed circles at equal (or supplemental) angles determines four homographic divisions on the two circles.

A variable circle passing through a fixed point and intersecting two fixed cireles at two pairs of concyclic points harmonically conjugate to each other divides every two positions of itself homographically.

Ex. 19^{3}. In the particular case when the two fixed circles intersect at right angles, the variable line passes, in every position, through one or other of their two centres.

Ex. 20°. When a variable cirele intersects in every position two fixed circles at right angles, its centre describes their radical axis.

Ex. 21°. In every system of three circles, the threo radical axes of their three groups of two pass through a common point, the centre of their common orthogonal circle.

Ex. 22". A variable line intersecting three fixed circles at three pairs of collinear points in involution turns round a fixed point, the centre of their common orthogonal circle.

Ex. 23°. In tho particular case when the three fixed circles are coaxal, every line, however situated, intersects them at three pairs of collinear points in involution.

Ex. 24°. A variable line intersecting four fixed lines at fous collinear points having a constant anharmonic ratio divides the four lines and all orther positions of itself homographically.

Ex. 20°. A variable line dividing any two fixed lines homographically divides all fixed positions of itself homographically, and determines withevery four of them a collinear quartet of points having a constaut anharmonic ratio.

In the particular case when the two fixed circles intersect at right angles, the variable circle passes, in every position, through one or other of the two inverses of the fixed point with respect to them.

When a variable circle intersects in every position two fixed circles at right angles, the inverse of any fixed point with respect to it describes their coaxal circle parsing through the point.

In erery syatem of three circles, every three circles coaxal with their three groups of two which pass through a common point pass through a second common point, the inverse of the first with respect to their common orthogonal circle.

A variable circle passing through a fixed poiut and intersecting three fixad circles at three paire of concyelic poines in involusion pasees through a second fixed point, the inverse of the first with respect to their coummon arthogonal circle.

In the particular caso when the threo fixed circles aro coaxal, every circle, however circumstanced as to magnitude and position, intersects them at threo pairs of concyclic proints in involution.

A variable circle passing through a fixed point and intersecting four fixed circles passing through the point at four concyclic points having a constant anharmonic ratio divides the four circles and all other positions of itself homographically.

A variable circle passing through a fixed point and dividing any two fixed circles passing through the point homographically divides all fixed positions of itself homographically, and determines with every four of them a concyclic quartet of points having a constant anharmonic ratio.

Ex. 26°. A rariable line enveloping a fixed circle divides all fixed tangents to the circle homographically, and determines with every four of them a collinear quartet of points having a constant anharmonic ratio.

Ex. 27°. Every two lines touching a circle make equal angles with the line passing through their point of intersec tion and through the centre of the touched circle.

Ex. 28°. Every two lines touching a circle make equal angles with the concentrie circle passing through their point of intersection.

Ex. 29°. Two variable lines touching a fixed circle and intersecting on a second concentric with the first intersect at a constant angle ; and conversely.

Ex. 30°. In the same case the line passing through their two points of contact envelopes a third fixed circle concentric with the other two.

Ex. 31°. The angle between the lines connecting any two points on a circle with the centre is double the angle between the lines connecting the same points with any third point on the circle.

Iix. 32°. Two variable lines intersecting on a fixed circle and turning each round one of two fixed points on the circle intersect at a constant angle.

Ex. 33°. In the particular case when the two fixed points are collinear with the centre of the fixed circle, the constantangle of intersection is a right angle.

A variable circle passing through a fixed point and eveloping a fixed circle divides all fixed circles passing through the point and touching the circle homographieally, and determines with every four of them a concyclic quartet of points having a constant anharmonic ratio.

Every two circles touching a circle make equal angles with the circle passing through their two points of intersection and through the inverse of either with respect to the touched circle.

Every two cireles tonching a circle make equal angles with the cirele passing through either of their two points of intersection and coaxal with the other and the circle.

Two variable circles passing through a fixed point, touching a fixed circle, and intersecting on a second fixed circle coaxal with the point and first, intersect at a constant angle ; and conversely.

In the same case the circle passing through the point and through their two points of contact envelopes a third fixed circle coaxal with the other twa.

The angle between the circles connecting any two points on a circle with any pair of inverse points is double the angle between the circles connecting the same points with either inverse point and with any third point on the circle.

Two variable circles intersecting at a fixed point and on a fixed circle, and passing each through one of two fixed points on the circle, intersect at a constant angle.

In the particular ease when the two latter fixed points are concyclic with the first and its inverse with respect to the fixed circle, the constant angle of intersection is a right angle.

Ex. 34°. When two variable lines intersecting on a fixed circle intersect at a constant angle, the line passing through their other two intersections with the circle envelopes a second fixed cirele concentrie with the first.

Ex. 35°. In the partienlar ease when the constant angle of iutersection is a right angle, the envelope is cranestent, and the enveloping line passes in every position through the centre of the fixed circle.

Ex. 36°. The circle passing through the imn points of contaet and through the point of intersection of any two lines touching a circle passes throngh the eentre of the touched eirele.

Ex. 37°. The same circle intersects at right angles the line passing through the eentre and through the point of intersection.

Ex. 35. The two lines conneeting the centreof a cirele, with the two points at which a variable intersects with tro fixed tangents to the circle, intersect at a constant angle, equal to half that determined by the fixed tangents.

Ex. 39°. In the particular case Then the two fixed tangents are parallel, the constant angle of intersection is a right angle.

Ex. 40°. When tro variable points on a fixed circle connect in every position by a line passing through a fixed point, the two tangents at them intersect in every position on the fixed line passing through the points of contact of the two fixed tangents through the point.

When two variable circles intersecting at a fixed point and on a fixed circle intersect at a constant angle, the circle passing through the point and through their other two intersections with the circle envelopes a second fixed circle coaxal with the point and first.

In the partieular case when the conatant angle of intersection is a right angle, the envelope is evaneseent, and the enveloping circle passes in every position through the iuverse of the fised point with respect to the fixed eirele.

The eircle passing through the two points of contaet and throngh either point of intersection of any two circles toaching a circle passes through the inverse of the other point of intersection with respect to the touched circle.

The same circle interseets at right angles the circle passing through the same inverse, and through the two points of intersection.

The two circles connecting any two inverse points with respect to a circle, with the two points at which a variable intersects with two fixed tangent circles through either point to the cirele, intersect at a constant angle, equal to half that determined by the fixed tangent circles.

In the particular case when the two fixed tangent circles through the point touch at the point, the constant angle of intersection is a right angle.

When two variable points on a fixed circle connect in every position by a circle passing through two fxed points, the two tangent circles at them which pass through either point intersect in every position on the fixed circle passing through that point and through the points of contact of the two fixed tangent circles through both points.

Ex. 41°. In the same case, the point on the rariable line of connection, harmonically conjugate to the fixed with respect to the two variable points, describes, in tho course of its variation, the same fixed line on which the two variable tangents intersect in every position.

Ex. 42°. In every system of two circles, the two pairs of conjugate lines touching both, intersect on, make equal angles with, and are reflexions of each other with respect to, the line cutting both circles at right angles.

Ex. 43°. In the same case, the two intersections of the two pairs of conjugate lines divide harmonically the segment of the orthogonal line intercepted between the centres of the circles.

Ex. 44°. In every system of three circles, the six pairs of conjugate tangent lines to their three groups of two determine six points of intersection which lie three and three on four lines.

Ex. 40°. When four lines touch two circles at four points lying on a line, the two touching one circle intersect with the two touching the other circle at four points lying on a third circle coaxal with the other two.

Ex. 46°. In every trianglo formed by three lines, the three lines which pass through the vertices and intersect perpendicularly with the opposite sides pass through a common point.

Ex. 47°. In every triangle found by three lines, the three pairs of lines which bisect exter-

In the same case, the point on the variable circle of connection, harmonically conjugate to either of the two fixed with respect to the two variable points, describes, in the course of its variation, the same fixed circle on which the two variable tangent circles through the same fixed point intersect in every position.

In every system of two circles, the two pairs of conjugate circles touching both which pass through any common point, intersect on, make equal (or supplemental) angles with, and are inverses of each other with respect to, the circle through the point cutting both circles at right angles.

In the same case, the two second intersections of the two pairs of conjugate circles divide harmonically the arc of the orthogonal circle intercepted between the inverses of the point with respect to the original circles.

In every system of three circles, the six pairs of conjugate tangent circles to their three groups of two which pass through any common point determine six points of intersection which lie three and three on four circles passing through the point.

When four circles passing through a common point touch two circles at four points lying on a circle passing through the point, the two touching one circle intersect with the two touching the other circle at four points lying on a third circle coaxal with the other two.

In every triangle formed by three circles passing through a common point, the three circles through the point which pass through the vertices and intersect perpendicularly with the opposite sides pass through a second common point.

In every triangle formed by three circles passing through a common point, the three pairs of cireles through the point which
nally and internally the three angles pass three and three through four points and intersect with the opposite sides at three pairs of points which lie three and three on four lines.

Ex. 48°. In every triangle formed by three lines inuching a common circle, the three lines which connect the points of contact with the opposite vertices are concurrent, and the three which connect them witheach other two and two intersect with the third sides at three collinear points.

Ex. 49°. In every triangle formed by three lines intersecting two and two on a common circle, the three lines which touch the circle at the vertices intersect with the opposite sides at three collinear points, and with each other two and two at three points which connect with the third vertices by three coneurrent lines.

Ex. 50°. In every triangle formed by three lines, when three lines through the vertices intersect either with each other concurrently or with the opposite sides collinearily, their three reflexions with respect to the three lines which bisect, internally or externally, the correaponding angles fulfil the same condition.

Ex. 51°. In every triangle formed by three lines, when three lines through the vertices intersect either with each other concurrently or with the opposite sides collinearily, the three lines harmonically conjugate to them with respect to the corresponding angles fulfil the opposite condition.
bisec: externally and internally the threo angles pass three and three through four points, and intersect with the opposite sides at three pairs of points which lie three and three on four circles passing through the common point.

In every triangle formed by three circles passing through a common pointand touching a common circle, the three circles through the point which connect the points of contact with the opposite vertices are coaxal, and the three through the point which connect them with each other two and two intersect with the third sides at three points concyclic with the proine.

In every triangle formed by three circles passing through a common point and intersecting two and two on a common circle, the three circles through the point which touch the circle at the vertices intersect with the opposite sides at three points concyclic with the point, and with each other two and two at three points which connect with the third vertices and with the point by three coasal circles.

In every triangle formed by three circles passing through a common point, when three circles through the pmint and vertices intersect either with each other concurrently or with the opposite sides concyclically with the point, their three inverses with respect to the three circles through the point which bisect, internally or externally, the corresponding angles fulfit the same condition.

In every triangle formed by three circles passing through a common point, when three circles through the point and vertices intersect cither with each other concurrently or with the opposito sides concyclically with the point, the three circles through the point harmonically conjugate to them with respect io the corresponding angles fulfil the opposite condition.

Ex. 3°. In every triangle formed by three lines, when three points on the sides connect either with each other collinearly or with the opposite vertices concurrenty, their three harmonic conjugates with respect to the corresponding sides fulfil the opposite condition.

Ex. 53^{3}. In every triangle formed by three lines, the three sides and every three concurrent lines through the vertices intersect with every line at three triads of collinear points in involution; and, the three vertices and every three collinear points on the sides connect with every point by two triads of concurrent lines in involution.

Ex. 54°. In every quadrilateral formed by four lines, the four circles circumscribing the four triangles determined by their four triads are concurrent.

Ex. 5^{5}. In every quadrilateral formed by four lines, the three circles passing through the three pairs of opposite vertices, and intersecting at right angles their three lines of connection, are coaral.

Ex. 56°. In every quadrilateral formed by four lines, the three pairs of opposite vertices divide harmonically the three sides of the triangle determined by their three lines of connection.

Ex. 57°. In every quadrilateral formed by four lines touching a common circle, the two lines connecting pairs of opposite vertices and the two connecting points of contact of

In every triangle formed by three cireles passing through a common point, when three points on the sides connect either with each other and the point concyclically or with the opposite rertices and the point concurrently, their three harmonic conjagates with respect to the corresponding sides fulfil the opposite condition.

In every triangle formed by three circles passing through a common point, the three sides and every three coaxal circles through the point and vertices intersect with every circle through the point at two triads of concyclic points in involution: and, the three vertices and every three points on the sides concyclic with the point connect through the latter with every point by two triads of coaxal circles in involution.

In every qquadrilateral formed by four circles passing through a common point, the four circles circumscribing the four triangles determined by their four triads are concurrent.

In every quadrilateral formed by four circles passing through a common point, the three circles passing through the three pairs of opposite vertices, and intersecting at right angles their three circles of connection with the point, are coaxal.

In every quadrilateral formed by four circles passing through a common point, the three pairs of opposite vertices divide harmonically the three sides of the triangle determined by their three circles of connection with the point.

In every quadrilateral formed by four circles passing through a common point and louching a common circle, the two circles through the point which conuect pairs of opposite vertices and the two which connect points of contact
pairs of opposite sides are concurrent, and harmonically conjugate to each other.

Ex. $5 S^{\circ}$. In every quadrilateral formed by four lines intersecting two and two on a common circle, the two intersections of pairs of opposite sides, and the two of pairs of lines touching the circle at pairs of opposite vertices are collinear, and harmonically conjugate to each other.

Ex. 69 . In every hexagon formed by six lines touching a common circle, the three lines connecting the three pairs of opposite vertices are concurrent, and the two concurrent with them which touch the circle divide equianharmonically its three ares intercepted by the tiree pairs of opposite sides.

Ex. 60°. In every hexagon formed by six lines intersecting two and two on a common circle, the three points of intersection of the three pairs of opposite sides are collinear, and the two collinear with them on the circle divide equianharmonically its three ares intercepted by the three pairs of opposite rertices.

Ex. 61°. In a rariable polygon of any order formed by any number of rariable lines touching different fixed circles of a concentric system, if all the vertices but one describe fixed circles of the system the remaining one describes a fixed circle of the system; and all the vertices and sides alike divide their several circles similarly.
of pairs of opposite sides are coaxal, and harmonically conjugate to each other.

In every quadriaterm formed by four circles passing through a common point and intersecting two and two on a common circle, the two intersections of pairs of opposite sides and the two of pairs of circles through the point touching the circle at pairs of opposite rertices are concyelic with the point, and harmonically conjugate to each other.

In every hexagon formed by six circles passing through a common print and touching a common circle, the three circles connecting the three psirs of opposite vertices with the point are coaxal, and the two coaxal with them which touch the circle divide equianharmonically its three ares intercepted by the three pairs of opposite sides.

In every hexagon formed by six circles passing through a common point and interrecting two and two on a common eircle, the three pointa of intersection of the three pairs of opposite sides are concyclic with the point, and the two concyclic with them on the circle divide equianharmonically its three ares intercepted by the thrce pairs of opposite vertices.

In a variable polygon of any order formed by any number. of rariable circles passing through a fixed point and touching different fixed circles of a system coaxal with the point, if all the vertices but one describe fixed circles of the system the remaining one describes a fixed circle of the system; and all the vertices and sides alike divido their sereral circles homographically.

Ex. 62°. In a variable polygon of any order formed by any number of variable lines intersecting two and two on different fixed circles of a concentric system, if all the sides but one envelope fixed circles of the system, the remaining one envelopes a fixed circle of the system; and all the sides and vertices alike divide their several circles similarly.

Ex. 63°. In a variable polygon of any order formed by any number of variable lines intersecting two and two on the same fixed circle of any coaxal system, if all the sides but one envelope fixed circles of the system, the remaining one envelopes a fixed circle of the system.

In a variable polygon of any order formed by any number of variable circles passing through a fixed point and intersecting two and two on different fixed circles of a system coaxal with the point, if all the sides but one onvelope fixed circles of the system, the remaining one envelopes a fixed circle of the system; and all the sides and rertices alike divide their several circles homographically.

In a variable polygon of any order formed by any number of variable circles passing through a fixed point and intersecting two and two on the same fixed circle of any coaxal system, if all the sides but one envelope fixed circles of the system, the remaining one envelopes a fixed circle of the system.

The above examples might easily be multiplied to almost any extent, but they are abundantly sufficient, both in number and variety, to illustrate the use and fertility of the process of inversion on the modern geometry of the circle.

- Printed by W. Metcalfe, Green Street, Cambridge.
.
0.r5
0.r5

$\frac{1}{8}$
\square

[^0]: - In the statement of the above property given in the text an omistion oceurs which tho reader is requested to supply an follows:-for the words "of the corresponding orgments" subultute "of the sines of the corresponding angments." As the property is very srequently referred to in the wequal she omiston should be supplied before paesing on to the subsequent Articles.

[^1]: 24. In ctery case of the comparison of two or more angles regarded an magnitudes (2) it is to be remenbered: 1°. That
[^2]: - See Galbraith and Haughton's Manual of Euclid, Book IV., Appendix.

[^3]: - 189. If X, Y, Z be any three collinear points on the three sides $B C, C A, A B$ of any triangle $A B C$.
 1°. The three circles on the three connectors $\Lambda X, B Y, C Z$, as diuneters, are coaxal.

[^4]: END OF YOL. I.

[^5]: 200 Have alwaya the same Sign, but any absolute Values from 0 to ∞. Common Peculiarity of the Section for the particular values $0, \infty$, and +1

[^6]: consequently, when either equivalent of either relation $=-1$, the other also $=-1$; tbat is, in virtue of relation b^{\prime} of the same, when $X^{\prime} Y^{\prime} Z$ and $A B C$ are in perspective, then $X^{\prime} Y^{\prime} Z^{\prime}$ and $A^{\prime} B^{\prime} C^{\prime}$ are in perspective, and conversely, by (1); and when $X^{\prime} Y^{\prime} Z^{\prime}$ and $A B C$ are in perspective, then $X Y Z$ and $A^{\prime} H C^{\prime}$ are in perapective, and conversely, by (2) ; and therefore \&c.

[^7]: - This important property, which, as stated in Art. 140, is the basis of the theory of perspective in the geometry of plane figures, may be established, even more readily than either by the above or by the method employed in that article, as follows:

 If $A B C$ and $A^{\prime} B C^{\prime \prime}$ (fig. a, Art. 295) be the two triangles; then in the quadrilateral $C^{\prime} C^{\prime} X Y$ determined by any two pairs of their corresponding sides $B C^{\prime}$ and $B^{\prime} C^{\prime}, C A$ and $C A^{\prime}$, to which that determined by the two pairs of opposite vertices A and A^{\prime}, B and B^{\prime} is inscribed, the relation

 $$
 A C \cdot B X \cdot B^{\prime} C^{\prime} \cdot A^{\prime} Y=A^{\prime} C^{\prime} \cdot B^{\prime} X \cdot B C \cdot A Y,
 $$

 by virtue of the general relation a of Art. 134, being at once the criterion, that the two lines $A A^{\prime}$ and $B B^{\prime}$ should intersect at the same point O on the diagonal $C C^{\prime}$, and that the two $A B$ and $A^{\prime} B^{\prime}$ should intersect at the same point Z on the diagonal $X Y$, therefore \&c.

[^8]: Ex. a. A variable point moving on a fixed line, and its polar with respect to the sides of any fixed angle, determine homographic systems for all pairs of constant multiples $(247, a)$.
 Ex. a^{\prime}. A variable line turning round a fixed point, and its pole with respect to the extremities of any fixed segment, determine homographic systems for all pairs of constant multiples (247, a^{\prime}).

 For, by $\left(247, \operatorname{Cor} .4^{\circ}\right)$, whatever be the values of the tro multiples, the yariable point and line divide, in every position, the fixed angle in the former case, and the fixed segment in the latter case, in two constant anharmonic ratios, equal in magnitude and opposite in sign to the two reciprocal ratios of the multiples (268) ; and therefore \&c. (323).

 Ex. b. A variable point describing a fixed circle, and its polar with respect to the sides of any fixed angle whose vertex lies on the circle, determine homographic systems for all pairs of constant multiples.

 Ex. b'. A variuble line enveloping a fixed circle, and its pole with respect.

[^9]: - The above demonstration was communicated to the author by Mr. Casey.

[^10]: N.B. In the first eight of the above examples, the relation of homography betwcen the two systems has been already established in Art. 320, and in the remaining four it follows at once from examples 1° and 4° of the preceding article, by virtue of the properties referred to in their statements; the additional relation of involution between them appears in all from the same consideration (358) that, of every pair of constituents determined by the same circle, each has the other for its correspondent to whichever aystem it be regarded as belonging.

[^11]: - This property was communicated to the Author by Mr. Casey.

