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PREFACE.

In preparing this edition of Chauvenet's Geometry

I have endeavored to compel the student to think and

to reason for himself, and I have tried to emphasize the

fact that he should not merely learn to understand and

demonstrate a few set propositions, hut that he should

acquire the power of grasping and proving any simple

geometrical truth that may he set before him ; and this

power, it must be remembered, can never be gained by

memorizing demonstrations. Systematic practice in de-

vising proofs of new propositions is indispensable.

On this account the demonstrations of the main propo-

sitions, which at first are full and complete, are gradually

more and more condensed, until at last they are some-

times reduced to mere hints, by the aid of which the

full proof is to be developed; and numerous additional

theorems and problems are constantly given as exercises

for practice in original work.

A syllabus, containing the axioms, the postulates, and

the captions of the main theorems and corollaries, has

been added to aid student and teacher in reviews and

examinations, and to make the preparation of new proofs

more easy and definite.
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In the order of the propositions I have departed con-

siderably from the larger Chauvenet's Geometry, with

the double object of simplifying the demonstrations

and of giving the student, as soon as possible, the few

theorems which are the tools with which he must most

frequently work in geometrical investigation.

Teachers are strongly advised to require as full and

formal proofs of the corollaries and exercises as of the

main propositions, and to lay much stress upon written

demonstrations, which should be arranged as in the

illustrations given at the end of Book I.

In preparing a written exercise, or in passing a written

examination, the student should have the syllabus before

him, and may then conveniently refer to the propositions

by number. In oral recitation, however, he should quote

the full captions of the theorems on which he bases his

proof.

W. E. BYEELY.
Cambridge, Mass., 1887.
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ELEMENTS OF GEOMETRY.

IKTEODUOTIOK
1. Every person possesses a conception of space indefi-

nitely extended in all directions. Material bodies occupy

finite, or limited, portions of space. The portion of space

which a body occupies can be conceived as abstracted from

the matter of which the body is composed, and is called a

geometrical solid. The material body filling the space is

called a physical solid. A geometrical solid is, therefore,

merely the fornij or figure, of a physical solid. In this work,

since only geometrical solids will be considered, we shall, for

brevity, call them simply solids, and we shall define them

formally, as follows

:

Definition. A solid is a limited or bounded portion of space,

and has length, breadth, and thickness.

2, The boundaries of a solid are surface^.

Definition. A surface is that which hae length and breadth,

but no thickness. 1

If a surface is bounded, its boundaries are lir^es.

If two surfaces intersect, their intersection is a line.

Definition. A line is that which has length, but neither

breadth nor thickness.

9



10 ELEMENTS OF GEOMETRY.

If a line is terminated, it is terminated by points.

If two lines intersect, they intersect in a point.

Definition. A point has position, but neither length, breadth,

nor thickness.

3. If we suppose a point to move in space, its path will

be a line, and it is often convenient to regard a line as the

path, or locus, of a moving point.

If a point starts to move from a given position, it must

move in some definite direction; if it continues to move in

the same direction, its path is a straight line. If the direc-

tion in which the point moves is continually changing, the

path is a curved line.

If a point moves along a line, it is said to describe the

line.

By the direction of a line at any point we mean the direc-

tion in which a point describing the line is moving when it

passes through the point in question.

Definitions. A straight line is a line which -f f

has everywhere the same direction.

A curved line is one no portion of

which, however short, is straight.

A broken line is a line composed of

different successive straight lines.

4. Definitions. A plane surface, or

simply a plane, is a surface such that, if

any two points in it are joined by a

straight line, the line will lie wholly in

the surface.

A curved surface is a surface no portion of which, however

small, is plane.

5. Definitions. A geometrical figure is any combination of

points, lines, surfaces, or solids, formed under given condi-
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tions. Figures formed by points and lines in a plane are

called plane figures. Those formed by straight lines alone

are called rectilinear^ or right-lined^ figures; a straight line

being often called a right line.

6. Definitions. Geometry may be defined as the science of

extension and position. More specifically, it is the science

which treats of the construction of figures under given con-

ditions, of their measurement and of their properties.

Plane geometry treats of plane figures.

The consideration of all other figures belongs to the geom-

etry of space, also called the geometry of three dimensions.

7. Some terms of frequent use in geometry are here de-

fined.

A theorem is a truth requiring demonstration. A lemma

is an auxiliary theorem employed in the demonstration of

another theorem. A problem is a question proposed for solu^

tion. An axiom is a truth assumed as self-evident. A postu-

late (in geometry) assumes the possibility of the solution of

some problem.

Theorems, problems, axioms, and postulates are all called

propositions.

A corollary is an immediate consequence deduced from one

or more propositions. A scholium is a remark upon one or

more propositions, pointing out their use, their connection,

their limitation, or their extension. An hypothesis is a sup-

position, made either in the enunciation of a proposition or

in the course of a demonstration.



PLANE GEOMETRY.

BOOK I

RECTILINEAR FIGURES.

ANGLES.

1. Definition. A jplane angle^ or simply an angle, is the

amount of divergence of two lines which meet in a point or

which would meet if produced (i.e., prolonged).

The point is called the vertex of the angle,

and the two lines the sides of the angle.

From the definition it is clear that the mag-

nitude of an angle is independent of the length of its sides.

An isolated angle may be designated by the letter at its

vertex, as " the angle O;" but when several angles are formed

at the same point by different lines, as OA, OB,

OC, we designate the angle intended by three 5

letters; namely, by one letter on each of its yC^'^^
sides, together with the one at its vertex, q—

-i

which must be written between the other two.

Thus, with these lines there are formed three different angles,

which are distinguished as AOB, BOC, and AOG.

Two angles, such as AOB, BOO, which have the same

vertex and a common side OB between them, are called

adjacent.

12



BOOK I. 13

2. Definitions. Two angles are equal when one can be

superposed upon the other, so that the vertices shall co-

incide and the sides of the first shall fall along the sides of

the second.

Two angles are added by placing them in the same plane

with their vertices together and a side in common, care being

taken that neither of the angles is superposed upon the

other. The angle formed by the exterior sides of the two

angles is their sum.

3. A clear notion of the magnitude of an angle will be

obtained by supposing that one of its sides, as OjB, was at

first coincident with the other side OA^ and

that it has revolved about the point (turning

upon as the leg of a pair of dividers turns

upon its hinge) until it has arrived at the posi-

tion OB. During this revolution the movable side makes

with the fixed side a varying angle, which increases by in-

sensible degrees, that is, continuously ; and the revolving line

is said to describe^ or to generate^ the angle AOB. By con-«

tinning the revolution, an angle of any magnitude may be

generated.

4. Definitions. When one straight line meets another, so as

to make two adjacent angles equal, each of these angles is

called a right angle; and the first line is

said to be perpendicular to the second.

Thus, if ^00 and BOC are equal angles,

each is a right angle, and the line CO is

perpendicular to AB.

Intersecting lines not perpendicular are said to be oblique

to each other.

An acute angle is less than a right angle.

An obtuse angle is greater than a right angle.

2



14 ELEMENTS OF GEOMETRY.

5. Definition. Two straight lines lying in the same plane

and forming no angle with each other—that is, two straight

lines in the same plane which will not meet, however far

produced—are parallel.

TKIANGLES.

6. Definitions. A plane triangle is a portion of a plane

bounded by three intersecting straight lines; as A50. The

sides of the triangle are the portions of the

bounding lines included between the points of

intersection; viz., AB, BC, CA. The angles

of the triangle are the angles formed by the

sides with each other; viz., CAB, ABC, BCA. The three

angular points. A, B, C, which are the vertices of the angles,

are also called the vertices of the triangle.

If a side of a triangle is produced, the angle

which the prolongation makes with the adja-

cent side is called an exterior angle ; as A CD.

A triangle is called scalene (ABC) when no two of its sides

are equal ; isosceles (DEF) when two of its sides are equal

;

equilateral {GUI) when its three sides are equal.

A right triangle is one which has a right angle ; as MNP,
which is right-angled at ]V. The side MP, opposite to the

right angle, is called the hypotenuse.

The base of a triangle is the side upon which it is supposed
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to stand. In general, any side may be assumed as the base

;

but in an isosceles triangle BEF^ whose sides DE and DF
are equal, the third side EF is always called the base.

When any side ^(7 of a triangle has been adopted as the

base, the angle BA G opposite to it is* called

the vertical angle, and its angular point A

the vertex of the triangle. The perpen-

dicular AD let fall from the vertex upon

the base is then called the altitude of the triangle.

7. Definition. Equal figures are figures which can be made

to coincide throughout if one is properly superposed upon

the other.

Eoughly speaking, equal figures are figures of the same

size and of the same shape ; equivalent figures are of the

same size but not of the same shape; and similar figures

are of the same shape but not of the same size.

POSTULATES AND AXIOMS.

8. Postulate I. Through any two given points one straight

line, and only one, can be drawn.

Postulate II. Through a given point one straight line, and

only one, can be drawn having any given direction.

9. Axiom I. A straight line is the shortest line that can

be drawn between two points.

Axiom II. Parallel lines have the same direction.
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PROPOSITION I.—THEOREM.

10. At a given point in a straight line one perpendicular to

the line can be drawn, and but one.

Let be the given point in the line AB.

Suppose a line OD, constantly passing through 0, to

revolve about 0, starting from the position OA and stopping

at the position OB.

The angle which 01) makes with OA will at first be less

than the angle which it makes with OB, and will eventually

become greater than the angle made with

OB. ^ D

Since the angle DOA increases continu- j /
ously (3), the line OB must pass through ]/_... BOA
one position m which the angles DOA and

DOB are equal. Let OC he this position. Then 0(7 is

perpendicular to ^jB by (4).*

There can be no other perpendicular to AB at 0, for if

OD is revolved from the position 0(7 by the slightest amount

in either direction, one of the adjacent angles will be in-

creased at the expense of the other, and they will cease to

be equal.

11. Corollary. Through the vertex of any given angle one

line can be drawn bisecting the angle, and but one.

Suggestion. Suppose a line OD to revolve

about O, as in the proof just given.

* An Arabic numeral alone refers to an article in the same Book ; but

in referring to articles in another Book, the number of the Book is also

given.
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PROPOSITION II.—THEOREM.

12. All right angles are equal.

Let AOG and AIQfC be any two right angles.

Superpose A'CfC upon AOC^

placing the point (J upon the

point and making the line C/A'

fall along the line OA; then will

OC coincide with 00, for other- 5

—

wise we should have two perpen-

diculars to the line AB at the same point 0, which, by Propo-

sition I., is impossible.

The angles A'C/C and AOC are then equal by definition (2).

B' (y

PROPOSITION III.—THEOREM.

13. The two adjacent angles which one straight line makes

with another are together equal to two right angles.

If the two angles are equal, they are right angles by

definition (4), and no proof is necessary.

If they are not equal, as AOD and BOD, still the sum of

AOD and BOB is equal to two right angles.

Let OC be drawn at perpendicular to

AB.

The angle AOD is the sum of the two

angles AOC and COD (2). Adding the

angle BOD, the sum of the two angles

AOD and BOD is the sum of the three angles AOC, COD,

and BOD.

The first of these three is a right angle, and the other two

are together equal to the right angle BOC ; hence the sum

of the angles AOD and BOD is equal to two right angles.
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14. Corollary I. The sum of all

angles having a common vertex^ and

formed on one side of a straight line, ^

is two right angles.

15. Corollary II. The sum of all

the angles that can be formed about

a point in a plane is four right

angles.

EXERCISE.

Theorem.—If a line is perpendicular to a second line, then

reciprocally the second line is perpendicular to the first.

16. Definition. When the sum of two angles is equal to a

right angle, each is called the complement

of the other. Thus, J) 0(7 is the comple-

ment of A ODj and AOD is the complement

of DOC.

When the sum of two angles is equal to b

two right angles, each is called the supple-

ment of the other. Thus, BOD is the supplement of AOD,

and AOD is the supplement of BOD.

It is evident that the complements of equal angles are

equal to each other ; and also that the supplements of equal

angles are equal to each other.
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PROPOSITION IV.—THEOREM

17. If the sum of two adjacent angles is equal to two right

angles^ their exterior sides are in the same straight line.

Let the sum of the adjacent angles AOD^ BOD, be equal

to two right angles ; then OA and OB are

in the same straight line.

For BOD is the supplement of A 02),

and is therefore identical with the angle

which OD makes with the prolongation of ^ (Proposition

TIL).

Therefore OB and the prolongation of AO are the same

line.

18. Every proposition consists of an hypothesis and a con-

clusion. The converse of a proposition is a second proposition

of which the hypothesis and conclusion are respectively the

conclusion and hypothesis of the first. For example, PropO'

sition III. may be enunciated thus

:

Hypothesis—if two adjacent angles have their exterior

sides in the same straight line, then

—

Conclusion—the sum

of these adjacent angles is equal to two right angles.

And Proposition TV. may be enunciated thus

:

Hypothesis—if the sum of two adjacent angles is equal to

two right angles, then

—

Conclusion—these adjacent angles

have their exterior sides in the same straight line.

Each of these propositions is, therefore, the converse of the

other.

A proposition and its converse are, however, not always

both true.
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PROPOSITION v.—THEOREM.

19. If two straight lines intersect each other, the opposite (or

vertical) angles are equal.

B
Let AB and CD intersect in ; then will

the opposite, or vertical, angles AOG and

BOD be equal.

For each of these angles is, by Proposi-

tion III., the supplement of the same angle BOC, and hence,

they are equal (16).

In like manner it can be proved that the opposite angles

AOD and BOC are equal.

EXERCISES.

1. Theorem.— The line which bisects one of two vertical angles

bisects the other.

2. Theorem.— The straight lines which

bisect a pair of adjacent angles formed

by two intersecting straight lines are per-

pendicular to each other.

Suggestion. Prove EOH= FOH.
Q

PROPOSITION VI.—THEOREM.

20. Two triangles are equal when two sides and the included

angle of the one are respectively equal to two sides and the

included angle of the other.

In the triangles ABC, DEF, let AB be equal to DE, BC to

EF, and the included
' AD D

angle B equal to the

included angle E; then

the triangles are equal.

For, superpose the

.X*

B C E F F E

triangle ABC upon the triangle DEF, placing the point B
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upon the point E, and making the side BC fall along the

side EF. Then, since J5(7 is equal to EF by hypothesis, the

point G will fall upon the point F.

Since the angle B is equal to the angle E^ and the side

BG has been made to coincide with the side EF^ BA must

fall along ED^ by definition (2) ; and, as BA is equal to ED^

the point A will fall on the point D.

Since the point G has been proved to coincide with the

point F^ and the point A with the point D, the side GA must

coincide with the side FD^ by Postulate I. (8).

The two triangles have now been proved to coincide

throughout, and are equal, by definition (7).

21. Scholium. When two triangles are equal, the equal

angles are opposite to the equal sides.

PROPOSITION VII.—THEOREM.

22. Two triangles are equal when a side and the two adjacent

angles of the one are respectively equal to a side and the two

adjacent angles of the other.

In the triangles ABG, DEF, let BG be equal to EF, and

let the angles B and G adjacent to BGhe respectively equal

to the angles E and F
adjacent to EF; then

the triangles are equal.

For, superpose the \ \ \ \ ..--''' /..1.^^ ,
B C E F F E

triangle ABG upon the

triangle BEF, placing the point B upon the point E, and

making the side BG fall along the side EF.

Since J5(7 is equal to EF, the point G will fall upon the

point F.

Since the angle B is equal to the angle E, by hypothesis,
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and the side 5(7 has been made to coincide with the side EF^

BA must fall along ED^ and the point A will fall somewhere

on the side ED, or on that side extended.

Since the angle G is equal to the angle P, by hypothesis,

and BC coincides with EF^ CA must fall along FD, and the

point A will fall somewhere on the line FD, or on that line

extended.

Since A has been proved to lie upon ED, and also upon

FD, it must coincide with the only point they have in com-

mon, the point D.

Hence the triangles coincide throughout, and are equal.

PEOPOSITION VIII.—THEOREM.

23. In an isosceles triangle the angles opposite the equal sides

are equal.

Let ^5 and AC he the equal sides of the isosceles triangle

ABC; then the angles B and C are equal.

Through the vertex A draw a line AD, bisect-

ing the angle BAC, and meeting the side BC t

atD. /
In the triangles ABD and ACD the side AB

is equal to the side AChy hypothesis, the side

AD is common, and the included angle BAD is equal to

the included angle CAD by construction. The triangles are

therefore equal, by Proposition YI., and the angle C of the

one is equal to the angle B of the other, by (21).

24. Corollary. The straight line bisecting the vertical angle

of an isosceles triangle bisects the base, and is perpendicular to

the base.

EXERCISE.

Theorem.—An equilateral triangle is also equiangular.
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PROPOSITION IX.—THEOREM.

25. Two triangles are equal when the three sides of the one

are respectively equal to the three sides of the other.

In the triangles ABC, DEF, let AB be equal to BE, AG
to DF, and BG to EF ; then

the triangles are equal. ^
For, suppose the triangle ^^ \ ^^

ABG to be placed so that its ^ ^ \^^

base ^(7 coincides with its equal

EF, but so that the vertex A
falls on the opposite side of EF from X), as at G, and join

D and 6^ by a straight line.

The triangle EBG is isosceles, since the side ED is equal

to the side EG by hypothesis; therefore the angles EBG
and EQD are equal, by Proposition YIII.

The triangle FBG is isosceles, since the side FI) is equal

to the side FG by hypothesis; therefore the angles FDG
and FGD are equal, by Proposition YIII.

If to the equal angles EDG and EGB we add the equal

angles FBG and FGB, the sums will be equal, and we have

the whole angle EBF equal to the whole angle EGF.

The two triangles EBF and EGF have now the side EB
equal to the side EG by hypothesis, the side BF equal to

the side FG by hypothesis, and the included angle EBF
proved equal to the included angle EGF. Hence the tri-

angles are equal, by Proposition YI.

EXERCISE.

Theorem.—A line drawn from the vertex of an isosceles tri-

angle to the middle point of the base is perpendicular to the base,

and bisects the vertical angle.
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PROPOSITION X.—THEOREM.

26. Two right triangles are equal when they have the hypote-

nuse and a side of the one respectively equal to the hypotenuse

and a side of the other.

In the right triangles ABC, A'B'G\ let the hypotenuse AB
be equal to the hypotenuse

A'B', and the side ^C be

equal to the side BC^ ; then

the triangles are equal.

Extend the side BC to D,

making CD equal to BC, and

join A and D ; and extend B'C^ to iX, making C^jy equal to

B'C, and join A' and IT.

The triangle ADC and the triangle ABC having the side

A in common ; the side CD equal to the side CB by con-

struction ; and the included angle ACD equal to the included

angle ACB, since they are adjacent angles and ACB is ^

right angle by hypothesis, are equal, by Proposition YI.

In like manner the triangle A!D^C' may be proved equal

to the triangle MB'C,

The triangles BAD and B'A!D^ having the side AB equal

to the side A!B! by hypothesis; the side BD equal to the

side B'D'^ because they were constructed the doubles oi BG
and B'C'^ which were equal by hypothesis; and the side AD
equal to the side A!D\ since they have been proved to be

equal respectively to the sides AB and A!B' ; are equal to

each other, by Proposition IX., and B is equal to B'.

The triangles ABC and A!B'C' have now been proved to

have two sides and the included angle of the one respectively

equal to two sides and the included angle of the other, and

are equal, by Proposition VI.
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PROPOSITION XI.—THEOREM.

27. If two angles of a triangle are equals the sides opposite to

them are equals and the triangle is isosceles.

Let the angles BAG and BCA of the triangle ABC be

equal, then are the sides AB and BG equal.

For, if AB and BG are not equal, one must

be greater than the other. Suppose AB greater

than BG.

Then cut oif from AB a part AD equal to

BG, and join D and G. Compare now the

triangle ADG with the whole triangle ABG, of which it is a

part.

The two triangles have the side AC in common ; the side

AD equal to the side BG hy construction; and the included

angle A equal to the included angle BGA by hypothesis.

Therefore, by Proposition YI., the triangles ADG and ABG
are equal, which is impossible. Consequently, AB could not

have been greater than BG.

In like manner we can prove that BG cannot be greater

than AB.

Therefore, since neither can be greater than the other, AB
and BG are equal.

EXERCISE.

Theorem.—An equiangular triangle is also equilateral.

^ r n (h
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PKOPOSITION XII.—THEOEEM.

28. If two angles of a triangle are unequal^ the side opposite

the greater angle is greater than the side opposite the less angle.

In the triangle ABC let the angle C be greater than the

angle B ; then AB is greater than A C.

For, suppose the line CD to be drawn, cutting

off from the greater angle a part BCD = B.

Then BDC is an isosceles triangle, by Propo-

sition XI., and DC= DB. But in the triangle

ADC we have ^D + DC > AC, by Axiom I. ; or,

putting DB for its equal DC,AD + DB:>AC;ovAB:>Aa

PROPOSITION XIII.—THEOREM.

29. If two sides of a triangle are unequal, the angle opposite

the greater side is greater than the angle opposite the less side.

In the triangle ABC let the side AB be greater than the

side BC; then will the angle C be greater than

the angle A.

For, if C is not greater than J., it must be

equal to A or less than A.

C cannot be equal to A, for in that case AB ^ ^
and BC would be equal, by Proposition XI.

C cannot be less than J., for in that case AB would be

less than BC, by Proposition XII.

Therefore C is greater than A.



BOOK I. 27

PROPOSITION XIV.—THEOREM.

30. If two triangles have two sides of the one respectively

equal to two sides of the other, and the included angles unequal,

the triangle which has the greater included angle has the greater

third side.

Let ABC and ABB be the two triangles in which the sides

AB, AC are respectively equal to the

sides AB, AD, but the included angle

BAC is greater than the included angle

BAD; then ^Ois greater than BD.

For, suppose the line AE to be drawn,

bisecting the angle CAD and meeting BC
in E; join DE. The triangles AED and AEC are equal, by

Proposition YI., and therefore ED= EC. But in the triangle

BDE we have

BE + ED:> BD, by Axiom I.,

and substituting EC for its equal ED,

BE+ EC> BD, or BC > BD.

PROPOSITION XV.—THEOREM.

31. If two triangles have two sides of the one respectively

equal to two sides of the other, and the third sides unequal, the

triangle which has the greater third side has the greater included

angle.

In the triangles ABC and DEF let AB = DE, AC = DF,

and let 5(7 be greater than EF

;

then will the angle A be greater

than the angle D.

For, if A were equal to D, BC
would be equal to EF, by Proposi-

tion YI. ; and if A were less than

D, BC would be less than EF, by Proposition XIY.
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PEOPOSITION XVI.—THEOEEM.

32. From a given pointy without a straight line^ one perpen-

dicular can be drawn to the line^ and but one.

Let AB be the given line and P the given point.

Take a second line DJS, and at some point F of DE let

a perpendicular be erected (Proposition I.). Superpose this

second figure upon the
p ^

first, placing the line

DF upon the line AB,

and then move the fig-

ure along, keeping DF ^ ^ J J J

always in coincidence

with AB, until the perpendicular FGr passes through P; we

shall then have a perpendicular to AB drawn through P.

Let PC in the figure below be this perpendicular.

No other perpendicular from P can be drawn to the line AB.

For, suppose that a second perpendicular FD could be drawn.

Extend FG to P', making GF' equal to PC, and join J>

andP'.

The two triangles FGF and F'GF have

the side FG equal to the side F'G by con-

struction; the side GF common; and the

included angle FGF equal to the included

angle F'GD, by Proposition III. There-

fore, by Proposition YI., the triangles are

equal, and the angle FDG is equal to the

angle F'FG. But FDG is a right angle by hypothesis;

therefore F'DG must be a right angle, and FD and DF
must lie in the same straight line, by Proposition lY. ; and

we have two straight lines drawn between P and P', which,

by Postulate I., is impossible.
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Since this impossible result follows necessarily from the

assumption that a second perpendicular can be drawn from

P to AB, that assumption must be false.

EXERCISES.

1. Theorem.—A perpendicular let fall from the vertex of an

isosceles triangle upon the base bisects the base and bisects the

vertical angle.

2. Theorem.—Two right triangles are equal when they have

the hypotenuse and an adjacent angle of the one respectively

equal to the hypotenuse and an adjacent angle of the other.

Suggestion. Superpose the second triangle upon the first,

making the given equal angles coincide.

PROPOSITION XVII.—THEOREM.
33. The perpendicular is the shortest line that can be drawn

from a point to a straight line.

Let PC be the perpendicular and PD
any oblique line from the point ^P to the

line AB. Then PC is shorter than PD.

Extend PC to P', making CP' equal to

PC, and join D and P'.

The triangles PCD and P'CD are equal,

by Proposition YI. Therefore P'B = PD.

PP' <^PP + DP', by Axiom I.

Therefore PC, the half of PP', is less than PD, the half

of PJ)P\
EXERCISES.

1. Theorem.— Two oblique lines drawn from a -point to a line,

and meeting the line at equal distances from the foot of the per-

pendicular from the given point, are equal.

2. Theorem.—Two equal oblique lines drawn from a point to

a line meet it at equal distances from the foot of the perpen-

dicular.

3*
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PROPOSITION XVIII.—THEOREM.

34. If a perpendicular is erected at the middle of a straight

linCj then,

1st. Uvery point in the perpendicular is equally distant from

the extremities of the line ;

2d. Every point without the perpendicular is unequally distant

from the extremities of the line.

Let AB be a finite straight line and

CD a perpendicular at its middle point.

1st. Then is any point P on CD equi-

distant from A and B. For, join P and

A and P and J5.

The triangles FCA and FOB are equal,

by Proposition YI. ; therefore FA and FB are equal.

2d. Any point Q without the perpen-

dicular is unequally distant from A and

B. For, Q being on one side or the other

of the perpendicular, one of the lines QA,

QB must cut the perpendicular; let it

be QA and let it cut in P; join FB. The straight line QB

is less than the broken line QFB^ by Axiom I. ; that is,

C^ < §P + FB. But FB = FA ; therefore QB <: QF +
FA, or QB < QA.

35. Definition. A geometric locus is the geometric figure

containing all the points which possess a common property,

and no others.

In this definition, points are understood to have a common

property when they satisfy the same geometrical conditions.

Thus, since all the points in the perpendicular erected at

the middle of a line possess the common property of being

equally distant from the extremities of the line (that is,
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satisfy the condition that they shall be equally distant from

those extremities), and no other points possess this property^

the perpendicular is the locus of these points; so that the

preceding proposition is fully covered by the following brief

statement

:

The perpendicular erected at the middle of a straight line is

the locus of the points which are equally distant from the extrem-

ities of that line,

PROPOSITION XIX.—THEOREM.

36. Uvery point in the bisector of an angle is equally distant

from the sides of the angle ; and every point not in the bisector,

but within the angle, is unequally distant from the sides of the

angle ; that is, the bisector of an angle is the locus of the points

within the angle and equally distant from its sides.

1st. Let AD be the bisector of the angle JBAC, P any

point in it, and PE, PF, the perpendicular

distances of P from AB and AC ; then

PE= PF.

For, the right triangles APE, APF,

having the angles PAE and PAF equal,

and AP common, are equal (32, Exercise

2) ; therefore PE= PF.

2d. Let Q be any point not in the bisector, but within

the angle; then the perpendicular distances QE and QH
are unequal.

For, suppose that one of these distances, as QE, cuts the

bisector in some point P; from P let PF be drawn perpen-

dicular to AC, and join QF. We have QJff <C QF ; also^

§P < §P + PF, or QF<iQP+ PE, or QF< QE ^ there-

fore qe:< QE.
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When the angle BAG is obtuse, the point Q, not in the

bisector, may be so situated that the perpendicular on one

of the sides, as AB, will fall at the

vertex A ; the perpendicular QS is

then less than the oblique line QA.

Or, a point §' may be so situated

that the perpendicular §'^', let fall

on one of the sides, as AB, will meet

that side produced through the vertex A ; this perpendicular

must cut the side AC in. some point, K^ and we then have

EXEBCISE.

Theorem,—The locus of the points equally distant from two

intersecting straight lines is the pair of lines which bisect all

the angles formed by the given lines.

(v. 19, Exercise 2.)

37. Definition. A broken line, as ABCBE^ is called convex

when no one of its component straight

lines, if produced, can enter the space ^

enclosed by the broken line, and the

straight line joining its extremities.

PROPOSITION XX.—THEOREM.

38. A convex broken line is less than any other line which

envelops it and has the same extremities.

Let the convex broken line AFQE have the same extrem-

ities A, E^ as the line ABODE, and be

enveloped by it; that is, wholly in-

cluded within the space bounded by

ABCDE and the straight line AE.

Then AFGE < ABCDE.

For, produce AF and FG to meet the enveloping line in

Ch
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H and K. Imagine ABODE to be the path of a point

moving from A to E. If the straight line AH be substituted

for ABCH, the path AHDE will be shorter than the path

ABODE, the portion HDE being common to both. If,

further, the straight line FK be substituted for FHDK, the

path AFKE will be a still shorter path from A to E. And

if, finally, GE be substituted for GKE, AFGE will be a still

shorter path. Therefore AFGE is less than any enveloping

line.

39. Scholium. The preceding demonstration applies when

the enveloping line is a curve, or any species of line whatever.

/ PROPOSITION XXI.—THEOREM.

40. If two oblique lines drawn from a point to a line meet the

line at unequal distances from the foot of the perpendicular, the

more remote is the greater.

Ist. If the lines lie on the same side of the perpendicular.

Let PO be the perpendicular and FD and FE the two

oblique lines, EO being greater than

DO; then is FE greater than FD.

For, produce FO to P', making OP'

equal to FO, and join P' with D and

with E.

The triangles FDO and F'DO and

the triangles FEO and F^EO are equal,

by Proposition YI. ILence FD= F'D,

and FE = F'E.

FDF' is less than FEF\ by Proposition XX. ; therefore

FE, the half of FEF\ is greater than FD, the half of

FDF\
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2d. If the lines lie on opposite sides of the perpendicular.

Let PC be the perpendicular and FD and PE the oblique

lines, EG being greater than CD.

Lay off CD' equal to CD, and

join P and D'. Then the triangles

PDC and PD'C are equal, by Prop-

osition YI., and PD' =: PD.

But PD' is less than PE, by the

proof given above. Hence its equal PD is less than PE,

PROPOSITION XXII.—THEOREM.

41. Two straight lines perpendicular to the same straight line

are parallel.

Let AB and CD be two lines per-

pendicular to the same line EF;
then are they parallel. For, if AB
and CD are not parallel, they must

meet if produced ; but this is impos-

sible, for in that case we should

have two perpendiculars from their

point of meeting to the same straight line EF, which is

contrary to Proposition XYI.

PROPOSITION XXIII.—THEOREM.

42. Through a given point one line, and only one, can be

drawn parallel to a given line.

Let A be the given point and —
BC the given line.

From A draw AD perpendicular ^

to BC, and through A draw AE
perpendicular to AD. AE and DC, being perpendicular to
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the same line AI), are parallel, by Proposition XXII. No
other line can be drawn through A parallel to BC^ for, by

Axiom II., it would have the same direction as AE^ and

therefore, by Postulate II., it would coincide with AE,

EXERCISES.

1. Theorem.—Lines having the same direction are parallel.

Suggestion. Suppose them to meet ; v. Postulate II.

2. Theorem.—Lines parallel to the same line are parallel to

each other.

43. Definitions. When two straight lines AB, CD, are cut

by a third EF, the eight angles formed

at their points of intersection are

named as follows :

The four angles, 1, 2, 3, 4, without

the two lines, are called exterior angles.

The four angles, 5, 6, 7, 8, within

the two lines, are called interior angles.

Two exterior angles on opposite sides of the secant line

and not adjacent—as 1, 3—or 2, 4—are called alternate-exterior

angles.

Two interior angles on opposite sides of the secant line

and not adjacent—as 5, 7—or 6, 8—are called alternate-interior

angles.

Two angles similarly situated with respect both to the

secant and to the line intersected by it are caUed correspond-

ing angles ; as 1, 5—2, 6—3, 7—4, 8.
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PROPOSITION XXIV.—THEOREM.

44. When two straight lines are cut by a third, if the alter-

nate-interior angles are equal, the two straight lines are parallel.

Let the line AB cut the lines CD and UF, making the

alternate-interior angles CAB and ABF equal ; then are CD
and FF parallel.

Through Gr, the middle

point of AB, draw GS per-

pendicular to CD, and cut-

ting FF in I.

Then the triangles AGH
and BGI, having the side AG equal to the side GB by-

construction, the angle GAH equal to the angle GBI^y
hypothesis, and the angle AGS equal to the angle IGB by-

Proposition Y., are equal, by Proposition YII. Therefore the

angle GIB is equal to the angle GHA. But GHA is a right

angle by construction ; hence GIB is a right angle, and CD
and FF are perpendicular to the same line HI, and are

therefore parallel, by Proposition XXII.

If FBA and BAD are the given equal alternate angles,

their supplements CAB and ABF are equal, and the proof

just given is valid.

If the given alternate-interior angles are right angles, the

lines are parallel, by Proposition XXII.

45. Corollary I. When two straight lines are cut by a third,

if a pair of corresponding angles are equal, the lines are parallel.

Suggestion. Show that in that case a pair of alternate-

interior angles are equal.

46. Corollary II. When two straight lines are cut by a

third, if the sum of two interior angles on the same side of the

secant line is equal to two right angles, the two lines are parallel.
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Suggestion. Show that a pair of alternate-interior angles

are equal.

PEOPOSITION XXV.—THEOKEM.

47. If two parallel lines are cut by a third straight line, the

alternate-interior angles are equal.

Let the parallel lines CI> and EF be cut by the line AB

;

then will the angles CAB and ABF be equal.

For, if they are not equal,

draw through A sl line AG,

making the angles GAB and

ABF equal ; then, by Propo-

sition XXIV., GA and EF
are parallel, and we have

two parallels to the same line EF drawn through the same

point A, which is contrary to Proposition XXIII., and there-

fore impossible. Hence the angles CAB and ABF are equal.

48. Corollary I. If two parallel lines are cut by a third

straight line, any two corresponding angles are equal.

49. Corollary II. If two parallel lines are cut by a third

straight line, the sum of the two interior angles on the same side

of the secant line is equal to two right angles.

EXERCISE.

Theorem.—A line perpendicular to one of two parallel lines is

perpendicular to the other.

/f^^ Off rn^.'^^^

/^ . ay

J^IFOUll^
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PK0P08ITI0N XXVL—THEOREM.

50. The sum of the three angles of any triangle is equal to

two right angles.

Let ABC he any triangle ; then the sum of its three angles

is equal to two right angles.

Produce BGj and through G draw C£J parallel to BA»

Since the line AG meets the parallel
A

lines AB and EG, the alternate-interior

angles AGJ3 and BAG are equal, by

Proposition XXV.
Since the line BD cuts the parallel

lines AB and EG, the corresponding angles EGD and ABG
are equal, by Proposition XXY., Corollary I.

Therefore the sum of the angles of the triangle is equal

to BGA-\- AGE+ EGD, which is two right angles, by Propo-

sition III., Corollary I.

51. C0R01.LARY. If a side of a triangle is eoctended, the exterior

angle is equal to the sum of the two interior opposite angles.

EXERCISE.

Theorem.—If the sides

of an angle are respectively

perpendicular to the sides

of a second angle, the an-

gles are equal, or supple-

mentary.
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POLYGONS.

52. Definitions. A polygon is a portion of a plane bounded

by straight lines ; as ABODE. The bounding

lines are the sides ; their sum is the perimeter

of the polygon. The angles which the adja-

cent sides make with each other are the angles

of the polygon; and the vertices of these

angles are called the vertices of the polygon.

Any line joining two vertices not consecutive is called a

diagonal; as AG.

53. Definitions. Polygons are classed according to the num-

ber of their sides

:

A triangle is a polygon of three sides.

A quadrilateral is a polygon of four sides.

A pentagon has five sides ; a hexagon, six ; a heptagon, seven

;

an octagon, eight ; an enneagon, nine j a decagon^ ten ; a dodec-

agon, twelve ; etc.

An equilateral polygon is one all of whose sides are equal

;

an equiangular polygon, one all of whose angles are equal.

54. Definition. A convex polygon is one no side of which,

when produced, can enter within the space enclosed by the

perimeter; as ABODE in (52). Each of the angles of such

a polygon is less than two right angles.

It is also evident from the definition that the perimeter

of a convex polygon cannot be intersected by a straight line

in more than two points.

A concave polygon is one of which two

or more sides, when produced, will enter

the space enclosed by the perimeter; as

MNOPQ, of which OP and QP, when ^
produced, will enter within the polygon.

The angle OPQ, formed by two adjacent re-entrant sides,



40 ELEMENTS OF GEOMETRY.

is called a re-entrant angle ; and hence a concave polygon is

^OTCLQiimQ^ cdXlQ^ 2i re-entrant polygon.

All the polygons hereafter considered will be understood

to be convex.

PROPOSITION XXVII.—THEOREM.

55, The sum of all the angles of any polygon is equal to twice

as many right angles, less four, as the figure has sides.

Join any point within the polygon to each of the ver-

tices, thus dividing the polygon into as many triangles as it

has sides.

The sum of the angles of these tri-

angles will, by Proposition XXYI.,

be twice as many right angles as the

figure has sides. But the angles of

the triangles form the angles of the

polygon plus the angles at 0, which

are equal to four right angles, by

Proposition III., Corollary II.

EXERCISE.

1. Theorem.—If each side of a polygon is extended, the sum

of the exterior angles is four right angles.

Suggestion. The sum of all the an-

gles, exterior and interior, is obvi-

ously twice as many right angles as

the figure has sides.
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QUADRILATERALS.

56. Definitions. Quadrilaterals are divided into classes, as

follows

:

Ist. The trapezium (J.), which has no two

of its sides parallel.

2d. The trapezoid (jB), which has two

sides parallel. The parallel sides are called

the hases^ and the perpendicular distance /^ ^
\ \

between them the altitude of the trapezoid.

3d. The parallelogram ( (7), which is bounded v r\

by two pairs of parallel sides. \ j \
The side upon which a parallelogram is

supposed to stand and the opposite side are called its lower

and upper bases. The perpendicular distance between the

bases is the altitude.

57. Definitions. Parallelograms are divided into species, as

follows

:

1st. The rhomboid (a), whose adjacent 's*

sides are not equal and whose angles are \
not right angles.

2d. The rhombus^ or lozenge (&), whose sides

are all equal.

3d. The rectangle (c), whose angles are all

equal, and therefore right angles.

4th. The square (d), whose sides are all equal and

whose angles are all equal.

The square is at once a rhombus and a rectangle.
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PROPOSITION XXVIII.—THEOREM.

58. Two parallelograms are equal when two adjacent sides

and the included angle of the one are equal to two adjacent sides

and the included angle of the other.

AD == A'jy, and the angle BAD I j ^/ j
= ^'J.'i/; then these parallelo- ^ ^ ^' ^

grams are equal.

For they may evidently be applied the one to the other, so

as to coincide throughout, (v. Proposition XXIII.)

59. Corollary. Two rectangles

are equal when they have equal bases

and equal altitudes.

PROPOSITION XXIX.—THEOREM.

60. The opposite sides of a parallelogram are equal and the

opposite angles are equal.

Suggestion. Draw a diagonal AC. ACB J^
^

and CAD are equal, by Proposition XXY.

CAB and AGD are equal, by Proposition

XXY.
Hence the triangles ABC and ADC are equal, by Propo-

sition YII.
EXERCISES.

1. Theorem.—If one angle of a parallelogram is a right angle,

all the angles are right angles, and the figure is a rectangle.

2. Theorem.—If two angles

have the sides of one respectively

parallel to the sides of the other,

they are equal, or supplementary.

3. Theorem.— Two parallel

lines are everywhere equidistant.

v.
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PROPOSITION XXX.—THEOREM.

61. If two opposite sides of a quadrilateral are equal and

parallel, the figure is a parallelogram.

Suggestion. Let AD be equal and parallel i^ ^

to BC. Draw a diagonal AC. / \
The triangles ABC and ABO are equal, £

by Proposition YI. Therefore the angles

BAG and ACD are equal, and AB and CD are parallel, by

Proposition XXIY.

PROPOSITION XXXI.—THEOREM.

62. If the opposite sides of a quadrilateral are equals the

figure is a parallelogram.

Suggestion. Draw a diagonal, and prove the two triangles

equal.

PROPOSITION XXXII.—THEOREM.

63. The diagonals of a parallelogram bisect each other.

A D
Suggestion. The triangles AED and BEC

are equal, by Proposition YII.

EXERCISES.

1. Theorem.— The diagonals of a rectangle are equal.

2. Theorem.— The diagonals of a rhombus are perpendicular

to each other.

3. Theorem.—If the diagonals of a quadrilateral bisect each

other, the figure is a parallelogram.

4. Theorem.—If the diagonals of a parallelogram are equal,

the figure is a rectangle.

5. Theorem.—If the diagonals of a parallelogram are perpen-

dicular to each other, the figure is a rhombus.
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ARRANGEMENT OF WRITTEN EXERCISES.

64. In writing out a demonstration, brevity of statement

and clearness of arrangement should be carefully studied,

and symbols and abbreviations may bo used with profit.

The following list is recommended

:

SYMBOLS AND ABBREVIATIONS.

. •
. therefore. Bef. definition.

= equal to. Fost postulate.

O equivalent to. Ax. axiom.

> greater than. Prop. proposition.

<; less than. Cor. corollary.

II
parallel to. Hyp. hypothesis.

J_ perpendicular to. Cons. construction.

/_ angle. Adj. adjacent.

^ angles. Inc. included.

rt. /_ right angle. Alt.-int. alternate-interior.

l\ triangle. Sup. supplementary.

l^ triangles. Comp. complementary.

rt. I\ right triangle. Q.E.B,, quod erat demonstran-

/ / parallelogram. dum (= which was

/ * / parallelograms. to be proved).

O circle.

circles.
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65. In arranging a written demonstration, it is well to

begin each statement on a separate line, giving the reason

for the statement at the end of the line, if it can be written

briefly, or in parenthesis immediately below the line, if it

cannot be written briefly. The following examples of demon-

strations prepared as written exercises, or for a written

examination, will serve as illustrations.

(1) PROPOSITION XII.—THEOREM.

If two angles of a triangle are unequal^ the side opposite the

greater angle is greater than the side opposite the less angle.

In A ABC, let it be given that Z_ACBy /^B,

we are to prove AB > J. (7.

Draw CDj cutting off from /^ACB si part

/ BCD = /_B.

Then in /\ BCD we have

/ BCD = l^B. Cons.

BD = CD, Prop. XL
and BD + DA = CD ^ DA.
But AC<:CD-^DA. Ax. I.

AC<iBD ^DA,
^^^ AC<:^AB, Q. E. D.



46 ELEMENTS OF GEOMETRY.

(2) PROPOSITION XXIV.—THEOREM.

When two straight lines are cut by a third, if the alternate*

interior angles are equal, the two straight lines are parallel.

Let AB cut CD and EF in the points A and B, making

/^BAG= /^ABF,

we are to prove CD
\\
to EF.

Through G, the middle point of AB, draw HI ]_ to CD.

Then in the A ^^^ and BGI
we have

and

But

Aa^BG, Cons.

/_GAH= /_ GBI, Hyp.

/_AGH= /_^BGI. Prop. Y.

/\AGII=: ^BGI, Prop. YII.

/_ GIB = /_ GHA
'

(homologous angles of = A).

/ G^^isar^. /. Cons.

/_GIBiBSirt. /_,

Him ]_to EF.

J?7is_|_to CD. Cons.

CDand j^i^are||. Prop. XXII.

Q. E.D.

and

But

If the given equal ^ are ABE and BAD,

we have / ABE= /_ BAD, Hyp.

/ ABE + / ABF =2rt. /^, Prop. III.

/ BAD -{- Z,S^0=2rt. ^. Prop. III.

/^ABF= /_BAC,

and the proof given above applies.
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If the given equal alt.-int. /^ are rt. ^ the two given lines

are I to the third line and are
||,
by Proposition XXII.

(3) PEOPOSITION XXVI. COEOLLARY.

If one side of a triangle is extended^ the exterior angle is equal

to the sum of the two interior opposite angles.

B

In the /^ ABC let the side AC he extended,

we are to prove ^ BCD ^ /_A -\- /_B.

We have the sum of the adj. ^
BCD -{-BGA = 2rt. ^. Prop. III.

But /_A + /^B+ /^BCA = 2rt. ^. Prop. XXYL
/^BCD== /_A-\- /^B. Q. E. B.

(4) EXERCISE 3, PAGE 43.—THEOREM.

If the diagonals of a quadrilateral bisect each otherj the figure

is a parallelogram.

..--'.B**.

In the quadrilateral ABCD^ let the diagonals AD and BG
bisect each other.

iWe are to prove ABCD a / "] ,
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In the ^ AEB and CED
we have GE= EB, Hyp.

ED = AE, Hyp.

/ CED = /_ AEB. Prop. Y.

A ^^^ = A C'^A I'rop. YI.

and OD = A^
(homologous sides of equal ^^

and /_EDC= Z_EAB
(homologous /» of equal /^).

But JE^DCand jEAJ5are alt.-int. ^.
CD is

II
to AB, Prop. XXIY.

and since CD = AB, Proved above.

^^CD is a O- ^^^P- ^^^'

Q. E. D.
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k
1. The straight line AJEJ which bisects the angle

exterior to the vertical angle of an isosceles tri-

angle ABCis parallel to the base BC,

2. If from a variable point in the base of an isos-

1/ celes triangle parallels to the sides are drawn, a

parallelogram is formed whose perimeter is constant.

3. The sum of the four lines drawn to the vertices of a quadri-

f^ lateral from any point except the intersection of the diagonals, is

greater than the sum of the diagonals.

^ 4. The lines drawn from the extremities of the base of an isos-

celes triangle to the middle points of the opposite sides are equal.

J

6. The perpendiculars from the extremities of the base of an
•^ isosceles triangle upon the opposite sides are equal.

6. The bisectors of the base angles of an isosceles triangle are

equal.

7. A perpendicular let fall from one end of the base of an isos-

celes triangle upon the opposite side makes with the base an
angle equal to one-half the vertical angle.

8. If the vertical angle of an isosceles triangle is one-half as

great as an angle at the base, a line bisecting a base angle will

divide the given triangle into two isosceles triangles.

9. If two isosceles triangles have the sides of one equal to the

sides of the other, and the base of one double the altitude of the

*/ other, the two triangles are of the same size.

c d 5 49
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10. If from a variable point P in the base of an
isosceles triangle ABC^ perpendiculars, PM^ PN^
to the sides are drawn, the sum of PM and PN
is constant, and equal to the perpendicular from
C upon AB.
Suggestion, The triangles PNC and PEC are

equal, by Proposition VII.

y

11. The line joining the feet of perpendiculars let fall from the

extremities of the base of an isosceles triangle upon the opposite

sides is parallel to the base.

12. If BE bisects the angle ^ of a triangle

ABC^ and CE bisects the exterior angle ACD^
the angle E is equal to one-half the angle A,

13. The medial line to any side of a triangle is less

than the half sum of the other two sides.

Definition. A line joining a vertex of a triangle

with the middle point of the opposite side is called

a medial line.

V

14. If from two points, A and -B, on the

same side of a straight line JfiV, straight

lines, APj BPy are drawn to a point P in

that line, making with it equal angles APM
and BPN^ the sum of the lines AP and BP
is less than the sum of any other two lines,

AQ and BQ^ drawn from A and B to any
other point Q in MN.

/ 16. If the medial line from the vertex of a triangle to the base^ is equal to one-half the base, the vertical angle is a right angle.

^ 16. The altitude of a triangle divides the vertical angle into

two parts, whose difference is equal to the difference of the base

angles of the triangle.
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17. The perpendicular erected at the middle point

^ of one side of a triangle meets the longer of the

other two sides.

18. Lines drawn from a point within

a triangle to the extremities of the base

include an angle greater than the verti-

cal angle of the triangle, (v. Proposi-

tion XXVI., Corollary.)

19. The sum of the angles at the vertices of

a five-pointed star (pentagram) is equal to

two right angles.

20. The three perpendiculars erected at the
middle points of the sides of a triangle meet
in the same point.

Suggestion. The point of intersection of

EH and FK is equidistant from the three

vertices, and therefore must lie on DQ
(Proposition XVIII.).

21. The three bisectors of the three an-
gles of a triangle meet in the same point.

Suggestion. The point of intersection of

BE and CF is equidistant from the three
sides, and therefore must lie on AD
(Proposition XIX.).

22. The bisectors of two external angles of a triangle and the
bisector of the remaining internal angle meet in a point.

23. If from the diagonal BD of a square ABCD,
BE is cut off equal to BC, and EF is drawn per-
pendicular to BDy then DE=EF= FG,
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24. In a trapezoid, the straight line joining A

the middle points of the non-parallel sides is /
parallel to the bases, and is equal to one-half y"^

their sum. L
Suggestion. Draw HO parallel to AB^ and -B

extend ^Z). DOF= Offi^CProposition VII.),

and EFHB is a parallelogram, by Proposition XXX.

D Q

I
H

25. If the sides of a trapezoid which are
"^ not parallel are equal, the base angles are

equal and the diagonals are equal.

A E

26. If through the four vertices of a quadrilateral lines are
^ drawn parallel to the diagonals, they will form a parallelogram
twice as large as the quadrilateral.

C27. The three perpendiculars from

^ the vertices of a triangle to the op-

posite sides meet in the same point.

Suggestion. Draw through the

three vertices lines parallel to the

opposite sides of the triangle. By
the aid of the three parallelograms

ABCB', ABA'C, and ACBG', prove

that the sides ofA'B^C are bisected

by -4, -B, and C, See now Exercise 20.

28. If a straight line drawn parallel to the base

^ of a triangle bisects one of the sides, it also bisects

the other side ; and the portion of it intercepted

between the two sides is equal to one-half the base.

Suggestion. Draw DF parallel to A C. See now
Proposition VII. and Proposition XXIX.

y 29. The straight line joining the middle points of two sides of

a triangle is parallel to the third side. {v. Exercise 28.)

*

vT 30. The three straight lines joining the middle points of the

sides of a triangle divide the triangle into four equal triangles.

^ 31. In any right triangle, the straight line ^

,
drawn from the vertex of the right angle to the

"^ middle of the hypotenuse is equal to one-half

the hypotenuse, (v. Exercise 28.) b
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/^ 32. The straight lines joining the middle
points of the adjacent sides of any quadrilat-

eral form a parallelogram whose perimeter is

equal to the sum of the diagonals of the quad-
rilateral (Exercise 29).

33. If E and -Pare the middle points of the

/ opposite sides, AD, BC, of a parallelogram
ABCD, the straight lines BE, DF, trisect the
diagonal AC (Exercise 28).

/^ 34. The four bisectors of the angles

of a quadrilateral form a second quad-
rilateral, the opposite angles of which
are supplementary.

If the first quadrilateral is a paral-

lelogram, the second is a rectangle.

If the first is a rectangle, the second
is a square.

36. The point of intersection of the diagonals of a parallelogram
bisects every straight line drawn through it and terminated by
the sides of the parallelogram.

36. If from each vertex of a parallelogram
the same given distance is laid ofi" on a side

of the parallelogram, care being taken that

no two distances are laid off on the same
side, the points thus obtained will be the
vertices of a new parallelogram.

37. If from two opposite vertices of a par-

allelogram equal distances are laid off on
the sides adjacent to those vertices, the
points thus obtained will be the vertices

of a parallelogram.

B c

K:v
1

A A'

D

£::--)
7

A A'

38. The three medial lines of a triangle

m.eet in the same point.

Suggestion. Let O be the point of inter-

section of AD and BE, and H and O the
middle points of OB and OA. Hence prove
OD = ^AD and OE = ^BE. In like man-
ner the point of intersection of AD and CE ^
can be shown to cut off one-third of AD.

5*
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89. The intersection of the straight

lines which join the middle points of

opposite sides of any quadrilateral is

the middle point of the straight line

which joins the middle points of the

diagonals (Exercise 29).
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SYLLABUS TO BOOK L

POSTULATES, AXIOMS, AND THEOKEMS.

POSTULATE I.

Through any two given points one straight line, and only one, can

be drawn.
POSTULATE II.

Through a given point one straight line, and only one, can be drawn

having any given direction.

AXIOM I.

A straight line is the shortest line that can be drawn between two

points.

AXIOM IL

Parallel lines have the same direction.

PROPOSITION I.

At a given point in a straight line one perpendicular to the line can

be drawn, and but one.

Corollary. Through the vertex of any given angle one straight line

can be drawn bisecting the angle, and but one.

PROPOSITION IL

All right angles are equal.

PROPOSITION III. ^
The two adjacent angles which one straight line makes with another

are together equal to two right angles.

Corollary I. The sum of all the angles having a common vertex, and

formed on one side of a straight line, is two right angles.

Corollary IL The sum of all the angles that can be formed about a

point in a plane is four right angles.

PROPOSITION IV.

If the sum of two adjacent angles is two right angles, their exterior

sides are in the same straight line.

i
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PKOPOSITION V.

If two straight lines intersect each other, the opposite (or .
*

angles are equal.

PKOPOSITION VI.

Two triangles are equal when two sides and the included ang^v w; ihtt

one are respectively equal to two sides and the included angk of the

other.

PROPOSITION VII

Two triangles are equal when a side and the two adjacent angles «)f the

one are respectively equal to a side and the two adjacent angh "

tlin

other.

~-^. PROPOSITION VIII.

In an isosceles triangle the angles opposite the equal sides are equal.

Corollary. The straight line bisecting the vertical angle of an isosceles

triangle bisects the base, and is perpendicular to the base.

PROPOSITION IX.

Two triangles are equal when the three sides of the one are respectively

equal to the three sides of the other.

PROPOSITION X.

Two right triangles are equal when they have the hypotenus : •.

side of the one respectively equal to the hypotenuse and a sid(

other.

PROPOSITION XI.

If two angles of a triangle are equal, the sides opposite to tt

equal, and the triangle is isosceles.

PROPOSITION XII.

If two angles of a triangle are unequal, the side opposite the

angle is greater than the side opposite the less angle.

PROPOSITION XIII.

If two sides of a triangle are unequal, the angle opposite the

side is greater than the angle opposite the less side.

PROPOSITION XIV.

If two triangles have two sides of the one respectively equal ' wo

sides of the other, and the included angles unequal, the triangle

has the greater included angle has the greater third side.

71
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PROPOSITION XV.
"^

If two triangles have two sides of the one respectively equal to two

sides of the other, and the third sides unequal, the triangle which has the

greater third side has the greater included angle.

PROPOSITION XVI.

From a given point, without a straight line, one perpendicular can be

3ut one.

PROPOSITION XVII.

The perpendicular is the shortest line that can be drawn from a point

to a straight line.

PROPOSITION XVIII.

If a perpendicular is erected at the middle of a straight line, then

ever}^ point on the perpendicular is equally distant from the extremities

of the line ; and every point not on the perpendicular is unequally

distant from the extremities of the line.

PROPOSITION XIX.

Every point in the bisector of an angle is equally distant from the

sides of the angle ; and every point not in the bisector, but within the

angle, is unequally distant from the sides of the angle; that is, the

bisector of an angle is the locus of the points within the angle and

equally distant from its sides.

PROPOSITION XX.

A convex broken line is less than any other line which envelops it

and has the same extremities.

PROPOSITION XXI.

If two oblique lines drawn from a point to a line meet the line at

unequal distances from the foot of the perpendicular, the more remote

is the greater.

PROPOSITION XXII.

Two straight lines perpendicular to the same straight line are parallel.

PROPOSITION XXIII.

Through a given point one line, and only one, can be drawn parallel

to a given line.

f
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THE CIRCLE.

1. Definitions, A circle is a portion of a plane bounded t)y

a curve, all the points of which are equally distant from a

point within it called the centre.

The curve which bounds the circle is

called its circumference.

Any straight line drawn from the cen-

tre to the circumference is called a

radius.

Any straight line drawn through the

centre and terminated each way by the circumference is

called a diameter.

In the figure, is the centre, and the curve ABCEA is

the circumference of the circle; the circle is the space in-

cluded within the circumference; OA, OBy OC, are radii;

-4.0(7 is a diameter.

By the definition of a circle, all its radii are equal; also

all its diameters are equal, each being double the radius.

If one extremity, 0, of a line OA is fixed, while the line

revolves in a plane, the other extremity, J., will describe a

circumference, whose radii are all equal to OA.

2. Definitions. An arc of a circle is any portion of its cir-

cumference ; as DEF.

A chord is any straight line joining two points of the cir-

cumference; as DF. The arc DFF is said to be subtended

by its chord DF.
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PROPOSITION XV.
"^

If two triangles have two sides of the one respectively equal to two

sides of the other, and the third sides unequal, the triangle which has the

greater third side has the greater included angle.

PROPOSITION XVI.

From a given point, without a straight line, one perpendicular can be

drawn to the line, and but one.

PROPOSITION XVII.

The perpendicular is the shortest line that can be drawn from a point

to a straight line.

PROPOSITION XVIII.

If a perpendicular is erected at the middle of a straight line, then

ever}'- point on the perpendicular is equally distant from the extremities

of the line ; and every point not on the perpendicular is unequally

distant from the extremities of the line.

PROPOSITION XIX.

Every point in the bisector of an angle is equally distant from the

sides of the angle ; and every point not in the bisector, but within the

angle, is unequally distant from the sides of the angle; that is, the

bisector of an angle is the locus of the points within the angle and

equally distant from its sides.

PROPOSITION XX.

A convex broken line is less than any other line which envelops it

and has the same extremities.

PROPOSITION XXI.

If two oblique lines drawn from a point to a line meet the line at

unequal distances from the foot of the perpendicular, the more remote

is the greater.

PROPOSITION XXII.

Two straight lines perpendicular to the same straight line are parallel.

PROPOSITION XXIII.

Through a given point one line, and only one, can be drawn parallel

to a given line.

(
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THE CIRCLE.

1. Definitions. A circle is a portion of a plane bounded Dy

a curve, all the points of which are equally distant from a

point within it called the centre.

The curve which bounds the circle is

called its circumference.

Any straight line drawn from the cen-

tre to the circumference is called a

radius.

Any straight line drawn through the

centre and terminated each way by the circumference is

called a diameter.

In the figure, is the centre, and the curve ABCEA is

the circumference of the circle; the circle is the space in-

cluded within the circumference; OA^ OB, OC, are radii;

J. 0(7 is a diameter.

By the definition of a circle, all its radii are equal; also

all its diameters are equal, each being double the radius.

If one extremity, 0, of a line OA is fixed, while the line

revolves in a plane, the other extremity. A, will describe a

circumference, whose radii are all equal to OA.

2. Definitions. An arc of a circle is any portion of its cir-

cumference ; as DEF.

A chord is any straight line joining two points of the cir-

cumference ; as DF. The arc DEF is said to be subtended

by its chord DF.

55
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Every chord subtends two arcs, which together make up

the whole circumference. Thus, DF subtends both the arc

DBF and the arc DGBAF. When an

arc and its chord are spoken of, the arc

less than a semi-circumference, as DFF,

is always understood, unless otherwise

stated.

A segment is a portion of the circle

included between an arc and its chord;

thus, by the segment DFF is meant the space included

between the arc BF and its chord.

A sector is the space included between an arc and the two

radii drawn to its extremities ; as A OB.

3. From the definition of a circle it follows that every

point within the circle is at a distance from the centre which

is less than the radius ; and every point without the circle is

at a distance from the centre which is greater than the

radius. Hence the locus of all the points in a plane which

are at a given distance from a given point is the circumference

of a circle described with the given point as a centre and with

the given distance as a radius.

4. Postulate. A circumference may be described with any

point as centre and any distance as radius.

PEOPOSITION I.—THEOREM.

5. Two circles are equal when the radius of the one is equal

to the radius of the other. \

Let the second circle be superposed upon the first, so that

its centre falls upon the centre of the first ; then will the two

circumferences coincide throughout.
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For, if any point of either circumference falls outside of

the other circle, the line joining it with the common centre

must cross the circumference of that circle.

The whole line will be a radius of one circle, the portion

of it within the other circle will be a radius of that other

circle, and we shall have two unequal radii, which is con-

trary to our hypothesis.

PROPOSITION II.—THEOREM.

6. Every diameter bisects the circle and its circumference.

Let AMBN be a circle whose centre is

; then any diameter AOB bisects the

circle and its circumference.

For, if the figure ANB be turned

about AB as an axis and superposed

upon the figure AMB^ the curve ANB
will coincide with the curve AMB, since

all the points of both are equally distant from the centre.

(v. Proof of Proposition I.) The two figures then coincide

throughout, and are therefore equal in all respects. There-

fore AB divides both the circle and its circumference into

equal parts.

7. Definitions. A segment equal to one-half the circle, as the

segment AMB, is called a semicircle. An arc equal to half

a circumference, as the arc AMB, is called a semi-circum-

ference.
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PROPOSITION III.—THEOREM.

8. In equal circles^ or in the same circle^ equal angles at the

centre intercept equal arcs on the circumference.

Let 0, 0\ be the centres of equal circles, and AOB, A'O'B',

equal angles at these centres ; then

the intercepted arcs AB^ A'B', are

equal.

For the angle 0' may be super-

posed upon, and made to coincide

with, its equal 0. The extrem-

ities of the arc A'B' will then fall on the extremities of the

arc ABj and the arcs must coincide throughout and be equal,

since the radii are equal, (y. Proof of Proposition I.)

9. Corollary. Conversely, in the same circle, or in equal

circles, equal arcs subtend equal angles at the centre.

10. Definition. A fourth part of a cir-

cumference is called a quadrant. It is

evident from the preceding theorem that

a right angle at the centre intercepts a

quadrant on the circumference.

Thus, two perpendicular diameters,

AOC, BCD, divide the circumference

into four quadrants, AB, BC, CD, DA.

PROPOSITION IV.—THEOREM.

11. In equal circles, or in the same circle, equal arcs are sub-

tended by equal chords.

Let 0, 0', be the centres of equal circles, and AB, A!B\

equal arcs ; then the chords AB, A!B', are equal.
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For, drawing the radii to the extremities of the arcs, the

angles and 0' are equal (Propo- ^ ^

sition III., Corollary), and conse- /^\~/^

quently the triangles AOB, A'0'B\ [
V

are equal (Proposition YI., Book

I.). Therefore AB = A'B',

If the arcs are in the same circle the demonstration is

similar.

12. Corollary. Conversely, in equal circles, or in the same

circle, equal chords subtend equal arcs,

EXERCISES.

1. Theorem.—A diameter is greater than

any other chord.

2. Theorem.— The shortest line that can be

drawn from a point within a circle to the cir-

cumference is a portion of the diameter drawn

through the point.

PROPOSITION v.—THEOREM.

13. In equal circles, or in the same circle, the greater of twfr

unequal arcs is subtended by the greater chord, the arcs being

each less than a semi-circumference.

Let the arc AC he greater than the arc AB ; then the chord

AC iQ greater than the chord AB.

Superpose the arc AB upon the

arc AC, placing centre upon cen-

tre and A upon A; B must fall

between A and C, since AB is less
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than AC. Draw now the radii OA, 0J5, 0(7. In the triangles

AOG and AOB the angle AOG is

obviously greater than the angle

AOB; therefore, by Proposition

XIV., Book I., the chord Aa is

greater than the chord AB.

14. Corollary. Conversely, in

equal circles, or in the same circle, the greater of two unequal

chords subtends the greater arc.

Suggestion, v. Proposition XY., Book I.

PROPOSITION VI.—THEOREM.

15. The diameter perpendicular to a chord bisects the chord

and the arcs subtended by it.

The triangles ACQ, BCO, are equal, by Proposition X.,

Book I. Therefore AC=CB.
The triangles AOD, BOB, are equal, by

Proposition VI., Book I. Therefore AD=
BD, and hence, by Proposition IV., Corol-

lary, the arc AD is equal to the arc BD.

In the same way we can prove the arc

AD' equal to the arc BD'. ^

16. Corollary I. The perpendicular

erected at the middle point of a chord passes through the centre

of the circle, (v. Proposition XVIII., Book I.)

17. Corollary II. When two circumferences intersect, the

straight line joining their centres bi-

sects their common chord at right

angles.

Suggestion. Erect a perpendicular

at the middle point of the common

chord, (v. Corollary I.)

1

/ /
1
1 /

^*''J
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EXERCISE.

Theorem.—The locus of the middle points of a set of parallel

chords is the diameter perpendicular to the chords.

PROPOSITION VII.—THEOREM.

18. In the same circle, or in equal circles, equal chords are

equally distant from the centre ; and of two unequal chords, the

less is at the greater distance from the centre.

1st. Let AB, CD, be equal chords; OE, OF, the perpen-

diculars which measure their distances

from the centre ; then OE= OF. ^ ^^
For, since the perpendiculars bisect f ^L^-'^^'^x

the chords, ^^= (7i^; hence (Propo- ^LrCT^T^. I

sition X., Book I.) the right triangles I
...--"'''/V /

AOE and COF are equal, and OE z= ^V-v^ y^
OF. M>%^

2d. Let CG, AB, be unequal chords
;

OE, OH, their distances from the centre ; and let CG be less

than ^5; then OlfyOE.
For, since chord AB > chord CG, we have arc AB > arc

CG ; so that if from C we draw the chord CD = AB, its

subtended arc CD, being equal to the arc AB, will be greater

than the arc CG. Therefore the perpendicular OS will

intersect the chord CD in some point I. Drawing the per-

pendicular OF to CD, we have, by the first part of the

demonstration, OF = OE. But OH > 01, and 01> OF
(Proposition XYIL, Book I.) ; still more, then, is OS> OF,

or OS^OE.
If the chords be taken in two equal circles, the demonstra-

tion is the same.
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19. Corollary. Conversely^ in the same circle^ or in equal

circles^ chords equally distant from the centre are equal ; and

of two chords unequally distant from the centre, that is the

greater whose distance from the centre is the less.

EXERCISE.

Theorem.—The least chord that can be

drawn in a circle through a given point is

the chord perpendicular to the diameter

through the point

Suggestion, v. Proposition XYII., Book I.

TANGENTS AND SECANTS.

20. Definitions. A tangent is an indefinite straight line

which has but one point in common

with the circumference; as ACB.

The common point, C, is called the

point of contact, or the point of tan-

gency. The circumference is also

said to be tangent to the line AB
at the point C,

A secant is a straight line which

meets the circumference in two points ; as JEF.

Two circumferences are tangent to each other when they

are both tangent to the same straight line

at the same point.

21. Definition. A rectilinear figure is said

to be circumscribed about a circle when all

its sides are tangents to the circumference.

In the same case, the circle is said to be

inscribed in the figure.
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PROPOSITION VIII.—THEOREM.

22. A straight line cannot intersect a circumference in more

than two points.

For, if the line could intersect the circumference in three

points, the radii drawn to these points would meet the line

at unequal distances from the perpendicular let fall from the

centre of the circle upon the line, and would be unequal, by

Proposition XXL, Book I.

PROPOSITION IX.—THEOREM.

23. A straight line tangent to a circle is perpendicular to the

radius drawn to the point of contact.

For any other point of the tangent, 2)^/

as D, must lie outside of the circle, and ^y\\ X
therefore the line OD^ joining it with a^^ \1 \

the centre, must be greater than the I q
]

radius 0(7, drawn to the point of con- V /
tact. ^

OCiSj then, the shortest line that can

be drawn from to the tangent AB, and is therefore perpen-

dicular to AB, by Proposition XYII., Book I.

24. Corollary I. A perpendicular to a tangent line drawn
through the point of contact must pass through the centre of the

circle.

25. Corollary II. If two circumferences are tangent to each

other, their centres and their point of contact lie in the same
straight line.

Suggestion. Through their point of contact draw a line

perpendicular to the tangent at that point, (v. Corollary I.)
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PROPOSITION X.—THEOREM.

26. When two tangents to the same circle intersect, the dis-

tances from their j)oint of intersection to their points of contact

are equal.

Eor the right triangles OAP and

OBP (Proposition IX.) are equal,

by Proposition X., Book I.

EXERCISES.

1. Theorem.—In any circumscribed quadrilateral, the sum of

two opposite sides is equal to the sum of the other two opposite sides,

2. Theorem.—If two circumferences are tangent, and from any

point, P, of the tangent at their point of contact, tangents are

drawn to the two circles, the points of contact of these tangents

are equally distant from P.

PROPOSITION XI.—THEOREM.

27. Two parallels intercept equal arcs on a circumference.

We may have three cases

:

1st. When the parallels AB, CI), are

both secants, then the intercepted arcs

A G and BB are equal. For, let OM be

the radius drawn perpendicular to the

parallels. By Proposition YI., the point

M is at once the middle of the arc AMB
and of the arc CMD, and hence we have

AM= BM and CM= DM,

whence, by subtraction,

AM— CM= BM— DM,

AG= BD.
that is,
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2d. When one of the parallels is a secant, as AB, and the

other is a tangent, as EF at Jf, then the intercepted arcs

AM and BM are equal. For the radius OM drawn to the

point of contact is perpendicular to the tangent (Proposition

IX.), and consequently perpendicular also to its parallel AB ;

therefore, by Proposition YI., AM= BM.

3d. When both the parallels are tangents, as JSF at Mj

and GH at iV, then the intercepted arcs MAN" and MBN
are equal. For, drawing any secant AB parallel to the tan-

gents, we have, by the second case,

AM= BM and AN= BM,

whence, by addition,

AM+A]Sr=BM+BW,
that is,

MAN=MBJSr;

and each of the intercepted arcs in this case is a semi-circum-

ference.

MEASURE OF ANGLES.

As the measurement of magnitude is one of the principal

objects of geometry, it will be proper to premise here some

principles in regard to the measurement of quantity in

general.

28. Definition. To measure sl quantity of any kind is to find

how many times it contains another quantity of the same
kind, called the unit.

Thus, to measure a line is to find the number expressing

how many times it contains another line, called the unit of

length, or the linear unit.

The number which expresses how many times a quantity

contains the unit is called the numerical measure of that

quantity.
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29. Definition. The ratio of two quantities is the quotient

arising from dividing one by the oth-er : thus, the ratio of A

to B is ~.

To find the ratio of one quantity to another is, then, to

find how many times the first contains the second; there-

fore it is the same thing as to measure the first by the

second taken as the unit (28). It is implied in the defini-

tion of ratio that the quantities compared are of the same

kind.

Hence, also, instead of the definition (28), we may say that

to measure a quantity is to find its ratio to the unit.

The ratio of two quantities is the same as the ratio of their

numerical measures. Thus, if P denotes the unit, and if P
is contained m times in A and n times in B^ then

A mP m
B~~nP~ n

30. Definition. Two quantities are commensurable when there

is some third quantity of the same kind which is contained

a whole number of times in each. This third quantity is

called the common measure of the proposed quantities.

Thus, the two lines A and B are commensurable if there

is some line, (7, which is contained a

whole number of times in each, as, ^' '
^ '

' ' ' '

for example, 7 times in J., and 4 times £<—•—«—«—

«

in B. 0'—

«

The ratio of two commensurable

quantities can, therefore, be exactly expressed by a number,

whole or fractional (as in the preceding example by -), and

is called a commensurable ratio.
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31. Definition. Two quantities are incommensurable when

they have no common measure. The ratio of two such

quantities is called an incommensurable ratio.

If A and B are two incommensurable quantities, their ratio

is still expressed by -

.

32. Problem. To find the greatest common measure of two

quantities. The well-known arithmetical process may be ex-

tended to quantities of all kinds. Thus, suppose AB and CD
are two straight lines whose common measure is required.

Their greatest common measure can-

not be greater than the less line CD. ^' ' '

J"^
Therefore let CD be applied to AB as Cr—T-pD

many times as possible, suppose three

times, with a remainder EB less than CD. Any common

measure of AB and CD must also be a common measure of

CD and EB ; for it will be contained a whole number of

times in CD, and in AE^ which is a multiple of OD, and

therefore to measure AB it must also measure the part

EB. Hence the greatest common measure of AB and CD
must also be the greatest common measure of CD and EB,

This greatest common measure of CD and EB cannot be

greater than the less line EB ; therefore let EB be applied

as many times as possible to CD, suppose twice, with a

remainder FD. Then, by the same reasoning, the greatest

common measure of CD and EB^ and consequently also

that of AB and CD, is the greatest common measure of

EB and FD. Therefore let FD be applied to EB as many

times as possible: suppose it is contained exactly twice in

EB without remainder; the process is then completed, and

we have found FD as the required greatest common meas-

ure.
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The measure of each lin-e, referred to FD as the unit, will

then be as follows : we have

EB = 2FD,

CD = 2EB +FD = 4FD + FD = 6FD,

AB = SCD + EB= WFD + 2FD = 17FD.

The proposed lines are therefore numerically expressed, in

terms of the unit FD, by the numbers 17 and 5 j and their

.. . 17
ratio IS -—

.

5

33. When the preceding process is applied to two quanti-

ties and no remainder can be found which is exactly con-

tained in a preceding remainder, however far the process bo

contmued, the two quantities have no common measure ; that

is, they are incommensurable, and their ratio cannot be exactly

expressed by any number, whole or fractional.

34. As the student often has difficulty in realizing the

possibility of an incommensurable ratio, and imagines that if

two lines are given it must be possible to take a divisor so

small that it will go exactly into each of them, it seems

worth while to consider at some length an important exam-

ple,—namely, the ratio of the diagonal of a square to one of

the sides.

Let the method of (32) be applied

to finding the common measure of the

diagonal and a side of the square

ABCD.

AO 18 clearly less than twice AB

;

i.e., than AB -^ BC. Lay off on J. (7

AB\ equal to AB. Our problem is now
reduced to finding a common measure of B'C and AB, or its

equal, CB.
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Erect at B' a perpendicular B'A' to AC. A'B\ B'C, and

A'B are all equal (y. Exercise 23, Book I.). If, then, we

lay off CB" equal to CB\ B'G goes into BC twice, with a

remainder B"A'^ by which we must proceed to divide B'C.

But A'B'C is half a square, precisely similar to ABC^ and in

performing the division of B'C, or its equal, A'B'^ by A'B"^

we are merely repeating, on a smaller scale, the process just

performed in dividing BC loy B'C This will lead us to

another repetition, on a still smaller scale, and so on indefi-

nitely, and we shall never reach an exact division. The

diagonal and the side of a square have then no common

divisor, and are absolutely incommensurable.

35. Although an incommensurable ratio cannot be exactly

expressed by a number, a number can be found by the fol-

lowing method that will approximately express it, and the

approximation may be made as close as we choose.

Suppose that - denotes the ratio of two incommensurable

quantities, A and B. Let B be divided into n equal parts,

n being some number taken at pleasure ; and then let A be

divided by one of these parts. Suppose A is found to con-

tain this divisor m times, with a remainder, which, of course,

is less than the divisor; then - is an approximation to the

value of - , and an approximation that may be made as close

as we please by taking a sufficiently great value of n.

For, if X is the magnitude of one of the parts into which

B is divided, we have

B = nXj while A^ mx and < (m -|- l)x.

Hence

^>^and<(^^+^)^:
B nx nx
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that is,

^ Hes between ^ and ^ + 1

;

B n n n

and by increasing n we may make -, which is the difference

A

between two numbers, one less and one greater than -, as

small as we choose, and may thus make the less number -
n

A
as close an approximation to the value of - as we please.

As a numerical example, take the ratio of the diagonal of

a square to one of the sides (34). If the side is divided into

three equal parts, the diagonal will contain one of these parts

four times, with a remainder less than the divisor. - is then
o

an approximation, though a very rough one, to the value of

4 5
the ratio in question, which must lie between - and -.

o o

If the side is divided into five equal parts, the diagonal

7
will contain seven of them, and - is a closer approximation.

5

141 1414
and are still closer approximations.

100 1000
^^

36. Definition. A proportion is an equation between two

itios. ']

equation

A A!
ratios. Thus, if the ratio - is equal to the ratio — , the

4= ^
B B'

is a proportion. It may be read, " Eatio of ^ to jB equals

ratio of A' to 5'," or, "J. is to B as A' is to B'r



BOOK II. 71

A proportion is often written as follows

:

where the notation A : B is equivalent to A -i- B. When
thus written, A and B' are called the extremes^ B and A' the

means, and B' is called a fourth proportional to A, B and A' ;

the first terms, A and A\ of the ratios are called the ante-

cedents ; the second terms, B and B\ the consequents.

When the means are equal, as in the proportion

A:B = B:C,

the middle term B is called a mean proportional between A
and Cj and C is called a 3f/^^r^ proportional to ^ and j5.

37. In cases where it is necessary to prove the equality of

incommensurable ratios, it is usually best to employ what is

called the method of limits.

. 38. Definitions. A variable quantity, or simply a variable, is

a quantity whose value is supposed to change.

A constant quantity, or simply a constant, is a quantity

whose value is fixed.

The value of a variable may be changed at pleasure, in

which case it is called an independent variable ; or it may be

changed by changing at pleasure the value of some other

variable or variables on which it depends, and in this case it

is called a dependent variable.

39. Definition. If, by changing in some specified way the

variable on which it depends, we can make a dependent vari-

able approach as near as we please to some given constant, but

can never make the values of the variable and the constant

exactly coincide ; or, in other words, if we can make the dif-

ference between the variable and the constant as small as we
please, but cannot make it absolutely zero, the constant is called

the limit of the variable under the circumstances specified.
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40. For example, consider the fraction -, where n is sup-
n

posed to be an independent variable,

—

Le.^ one whose value

may be changed arbitrarily and to any extent,—the fraction

- is then a dependent variable. By increasing n at pleasure, _

may be made to approach as near as we please to the value

zero, but can never be made exactly equal to zero.

We say, therefore, that zero is the limit of -, as n is indefi-
n

nitely increased.

Again, the numerical approximation to the value of an

incommensurable ratio (v. 35) is a dependent variable^ depend-

ing upon the arbitrarily chosen number, n, of equal parts

into which the denominator of the ratio is divided, and it

has been shown to differ from the actual value of the ratio

by an amount less than -. By increasing n at pleasure we

can make this difference as small as we please, but can never

make it absolutely zero, for in that case we should have

found a common measure of the incommensurable numerator

and denominator of the given ratio.

The actual value of an incommensurable ratio is, then, the

limit approached by the approximation described in (35), as

n is indefinitely increased.

41. The usefulness of the method of limits flows entirely

from the following fundamental theorem, the truth of which

is almost axiomatic.

Theorem.—If two variables dependent upon the same variable

are so related that they are always equals no matter what value

is given to the variable on which they depend^ and if as the inde-

pendent variable is changed in some specified way, each ofthem

approaches a limit, the two limits must be absolutely equal.

For, in considering two variables that are and that always



BOOK II. 73

remain equal to each other, we are dealing with a single vary-

ing value,

—

i.e., their common value,—and it is clear that a

single variable cannot be made to approach as near as we

please to two diiferent constant values at the same time, as

if it is once brought between the two values in question,

afterward, in approaching nearer to one, it must inevitably

recede from the other.

The student should study this demonstration in connection

with that of Proposition XII., which follows.

PROPOSITION XII.—THEOREM.
42. In the same circle, or in equal circles, two angles at the

centre are in the same ratio as their intercepted arcs.

Let AOB and AGO be two angles at the centre of the same

circle, or at the centres of

equal circles; AB and AC,

their intercepted arcs ; then

AOB ^AB
AOC AC' o

1st. Suppose the arcs to have a common measure, x, which

is contained m times in AB and n times in AC Then AB =t

mx and AC= nx, and
AB rnx m
AC nx n

Apply the measure x to the arcs AB and AC, and draw radii

to the points of division. The angle AOB is thus divided

into m parts, and the angle AOC into n parts, all of which

are equal, by Proposition III., Corollary. Call any one of these

smaller angles y ; then JLO^ = my and AOC == ny, and

AOB rny m
AOC ny n'

Therefore A^ = ^,
AOC AC'

or (v. 36) AOB : AOC =z AB : AC.
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2d. If the arcs are incommensurable, suppose the arc AG
to be divided into any arbitrarily chosen number, w, of equal

parts, and let one of the parts

be applied as many times as

possible to the arc AB ; let B'

be the last point of division,

and draw the radius OB'.

By construction, the arcs AB'

and AG are commensurable. Therefore, by the proof above,

AOB' ^ A^
AOG AG'

If, now, we change n the number of parts into which AG
is divided, AB' and AOB' will change, and consequently

AOB' , AB' .|| , AOB' . AB' ..

AOG ""^ AG ^^^^ '^"^^'- AOG ^^^ AG "'' '^'^ ^""^-

bles depending upon the same variable, n.

By increasing n at pleasure we can make each of the

equal parts into which AC is divided as small as we please,

and consequently the remainder B'B, which is necessarily

less than one of these parts, can be made as small as we

please. It cannot, however, be made zero, for the arcs AB
and AG are incommensurable, by hypothesis.

It is clear, then, that if n is indefinitely increased, AB' will

have AB for its limitj and A OB' will have AOB for its limit

Hence

-j^^ IS the limit of -j^,
and

41 is the limit of 41?',
AG AG

as n is indefinitely increased.
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A OB' AB'As the two variables and —— , both depending upon
-4.C/0 Aiy

n, are always equal, no matter what the value of w, and each

approaches a limit as n is indefinitely increased, the two

limits in question are absolutely equal (41). Hence

AOB ^AB
AOG AG'

PROPOSITION XIII.—THEOREM.

43. The numerical measure of an angle at the centre of a

circle is the same as the numerical measure of its intercepted arc^

if the adopted unit of angle is the angle at the centre which

intercepts the adopted unit of arc.

Let AOB be an angle at the centre

0, and AB its intercepted arc. Let

-10(7 be the angle which is adopted as

the unit of angle, and let its intercepted

arc AC he the arc which is adopted as

the unit of arc. By Proposition XII., we have

AOB ^AB
AOO AC'

But the first of these ratios is the measure (28) of the angle

AOB referred to the unit AOC; and the second ratio is the

measure of the arc J.J5 referred to the unit AC. Therefore,

with the adopted units, the numerical measure of the angle

AOB is the same as that of the arc AB.

44. Scholium I. This theorem, being of frequent applica-

tion, is usually more briefly, though less accurately, expressed

t>y saying that an angle at the centre is measured by its inter-
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cepted arc. In this conventional statement of the theorem,

the condition that the adopted units of angle and arc cor-

respond to each other is understood ; and the expression " is

measured by" is used for " has the same numerical measure

as."

45. Scholium II. The right angle is, "by its nature, the most

simple unit of angle ; nevertheless custom has sanctioned a

different unit.

The unit of angle generally adopted is an angle equal to

^ part of a right angle, called a degree, and denoted by the

symbol °. The corresponding unit of arc is ^^^ part of a

quadrant (10), and is also called a degree.

A right angle and a quadrant are therefore both expressed

by 90°. Two right angles and a semi-circumference are both

expressed by 180°. Four right angles and a whole circum-

ference are both expressed by 360°.

The degree (either of angle or arc) is subdivided into

minutes and seconds, denoted by the symbols ' and "
: a minute

being -^ part of a degree, and a second being -^ part of a

minute. Fractional parts of a degree less than one second

are expressed by decimal parts of a second.

An angle, or an arc, of any magnitude is, then, numeri-

cally expressed by the unit degree and its subdivisions.

Thus, for example, an angle equal to ^ of a right angle, as

well as its intercepted arc, will be expressed by 12° 51'

25''.714

46. Definition. When the sum of two arcs is a quadrant

(that is, 90°), each is called the complement of the other.

When the sum of two arcs is a semi-circumference (that

is, 180°), each is called the supplement of the other. See (I.,

16).
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47. Definitions. An inscribed angle is one whose vertex is

on the circumference and whose sides are

chords ; as BA C.

In general, any rectilinear figure, as

ABCj is said to be inscribed in a circle

when its angular points are on the circum*

ference; and the circle is then said to be

circumscribed about the figure.

An angle is said to be inscribed in a segment when its vertex

is in the arc of the segment, and its sides pass through the

extremities of the subtending chord. Thus, the angle BAG
is inscribed in the segment BAG.

PROPOSITION XIV.—THEOREM.

48. An inscribed angle is measured by one-half its intercepted

arc.

There may be three cases

:

1st. Let one of the sides AB of the inscribed angle BAG
be a diameter; then the measure of the

angle BAG is one-half the arc BG.

For, draw the radius OG. Then, AOG
being an isosceles triangle, the angles OAG
and OGA are equal (I., Proposition YIII.).

The angle BOG, an exterior angle of the

triangle AOG, is equal to the sum of the

interior angles OAG and OGA (I., Proposition XXYI., Cor-

ollary), and therefore double either of them. But the an-

gle BOG, at the centre, is measured by the arc BG (44)

;

therefore the angle OAG is measured by one-half the arc

BG.

7*
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2d. Let the centre of the circle fall within the inscribed

angle BAG; then the measure of the angle BAC is one-half

of the arc BC.

For, draw the diameter AD. The meas-

ure of the angle BAB is, by the first case,

one-half the arc BD ; and the measure of

the angle GAD is one-half the arc GD

;

therefore the measure of the sum of the

angles BAD and GAD is one-half the sum

of the arcs BD and GD ; that is, the measure of the angle

BAG is one-half the arc BG.

3d. Let the centre of the circle fall without the inscribed

angle BAG ; then the measure of the angle

BAG is one-half the arc BG.

For, draw the diameter AD. The meas-

ure of the angle BAD is, by the first case,

one-half the arc BD ; and the measure of

the angle GAD is one-half the arc GD ;

therefore the measure of the difference of

the angles BAD and GAD is one-half the

difference of the arcs BD and GD ; that is, the measure of

the angle BAG is one-half the arc BG.

49. Corollary. An angle inscribed in a

semicircle is a right angle.

EXERCISE.

Theorem.— The opposite angles of an inscribed quadrilateral

are supplements of each other.

c D



BOOK II. 79

PROPOSITION XV.—THEOREM.

50. An angle formed hy a tangent and a chord is measured

by one-half the intercepted arc.

Let the angle BAC be formed by

the tangent AB and the chord AC;
then it is measured by one-half the

intercepted arc AMC.
For, draw the diameter AD. The

angle BAD, being a right angle (Prop-

osition IX.), is measured by one-half

the semi-circumference AMJD ; and the angle CAD is meas-

ured by one-half the arc CD; therefore the angle BAC,

which is the difference of the angles BAD and CAD, is

measured by one-half the difference of AMD and CD ; that

is, by one-half the arc AMC.
Also, the angle B'AC is measured by one-half the inter-

cepted arc ANC. For, it is the sum of the right angle B'AD
and the angle CAD, and is measured by one-half the sum

of the semi-circumference AND and the arc CD ; that is, by

one-half the arc ANC.

EXERCISE.

Prove Proposition XY. by the aid of

this figure, OE being a radius perpendic-

ular to A C.

Suggestion. Complements of the same

angle are equal.
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PROPOSITION XVI.—THEOREM.

51. An angle formed by two chords^ intersecting within the

circumference^ is measured by one-half the sum of the arcs inter-

cepted between its sides and between the sides of its vertical angle.

Let the angle AEC be formed by the chords AB, CD, in-

tersecting within the circumference ; then

will it be measured by one-half the sum

of the arcs AG and BD^ intercepted be-

tween the sides of AEG and the sides of

its vertical angle BED,

For, join AD. The angle AEG is equal

to the sum of the angles EDA and EAD, and these angles

are measured by one-half of AG and one-half of BD, re-

spectively ; therefore the angle AEG is measured by one-half

the sum of the arcs AG and BD.

EXERCISE.

Prove Proposition XYI. by the aid of this

figure, DF being draT\jn parallel to AB. (v.

Proposition XI.)

PROPOSITION XVII.—THEOREM.

52. An angle formed by two secants, intersecting without the

circumference, is measured by one-half the difference of the inter-

cepted arcs.

Let the angle BAG be formed by the se-

cants AB and AG; then will it be measured

by one-half the difference of the arcs BG
and DE.

For, join GD. The angle BDG is equal

to the sum of the angles DAG and AGD

;

therefore the angle A is equal to the differ-
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ence of the angles BDC and ACD. But these angles are

measured by, one-half of BG and one-half of JDE respec-

tively; hence.the angle A is measured by one-half the differ-

ence of BG aad DB,

EXERCISE.

Prove Proposition XYII. by the aid of Proposition XI.,

drawing a suitable figure.

PROPOSITION XVIII.-THEOEEM.

53. An angle formed by a tangent and a secant is measured

by half the difference of the intercepted arcs.

For the angle A is equal to BDG minus

ABD, by I., Proposition XXYI., Corollary.

54. Corollary. An angle formed by two

tangents is measured by half the difference of

the intercepted arcs.

EXERCISE.

1. Prove Proposition XYIII. and its Corollary by the aid

of Proposition XI.

2. Theorem.—If through the point of contact of two tangent

circles, two secants are drawn, the

chords joining the points where the

secants cut the circles are parallel.

Suggestion. FED = CEa,

. •
. DBE = GAE.

Consider, also, the case where

the given circles are internally

tangent.
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PROBLEMS OF CONSTRUCTION.

Heretofore our figures have been assumed to be constructed

under certain conditions, although methods of constructing

them have not been given. Indeed, the precise construction

of the figures was not necessary, inasmuch as they were only

required as aids in following the demonstration of principles.

We now proceed, first, to apply these principles in the solu-

tion of the simple problems necessary for the construction

of the plane figures already treated of, and then to apply

these simple problems in the solution of more complex ones.

All the constructions of elementary geometry are effected

solely by the straight line and the circumference, these being

the only lines treated of in the elements ; and these lines are

practically drawrij or described, by the aid of the ruler and

compasses, with the use of which the student is supposed to

be familiar.

PROPOSITION XIX.—PROBLEM.

65. To bisect a given straight line.

Let AB be the given straight Kne.

"With the points A and B as centres, and with a radius

greater than the half of AB, describe arcs

Dintersecting in the two points D and E.

Through these points draw the straight line

DJS, which bisects AB at the point G. For,

J) and B being equally distant from A and

B, the straight line DE is perpendicular to

AB at its middle point (I., Proposition ^
XYIII.).

-iB

"jk"
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PROPOSITION XX.—PROBLEM.

56. At a given point in a given straight line, to erect a perpen-

dicular to that line.

Let AB be the given line and G the given
.^ ..^

point.

Take two points, D and B, in the line

and at equal distances from C. With D J"d o Fb
and E as centres, and a radius greater than

DCov GEj describe two arcs intersecting in F. Then CF is

the required perpendicular (I., Proposition XYIII.).

57. Another solution. Take any point

O, without the given line, as a centre.

from O to C, describe a circumference

and with a radius equal to the distance ^y

intersecting J.jB in G and in a second **• -''

point D. Draw the diameter DOE^
and join EG. Then EG will be the required perpendicular

;

for the angle EGD^ inscribed in a semicircle, is a right angle

(Proposition XIY., Corollary).

This construction is often preferable to the preceding, es-

pecially when the given point G is at, or near, one extremity

of the given line, and it is not convenient to produce the line

through that extremity. The point O must evidently be so

chosen as not to lie in the required perpendicular.

,t7l?I?B
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PROPOSITION XXI.—PROBLEM.

58. From a given point without a given straight line, to lei

fall a perpendicular to that line.

o
Let AB be the given line and G the

given point.

With C as a centre, and with a radius a—"-^^—I

—

r^rr-—b

sufficiently great, describe an arc in-

tersecting AB in D and E. With D
and E as centres, and a radius greater

than the half of DE^ describe two arcs intersecting in F.

The line CF is the required perpendicular (I., Proposition

XYIII.).

59. Another solution. With any point in the line AB as a

centre, and with the radius 0(7, describe

an arc GDE intersecting AB in D.

With i) as a centre, and a radius equal

to the distance DC, describe an arc in- ^

tersecting the arc CDE in E. The line /%

CE is the required perpendicular. For,

the point I) is the middle of the arc CJDE^ and the radius

OD drawn to this point is perpendicular to the chord CE
(Proposition YI.).

li)

PROPOSITION XXII.-PROBLEM.

60. To bisect a given arc or a given angle.

Ist. Let AB be a given arc.

Bisect its chord AB by a perpendicular, as

in (55). This perpendicular also bisects the

arc (Proposition YI.).
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2d. Let BAC be a given angle. With

^ as a centre, and with any radius, de-

scribe an arc intersecting the sides of the

angle in D and E, With D and E as

centres, and with equal radii, describe

arcs intersecting in F. The straight line

AF bisects the arc DE^ and consequently also the angle

BAG,

61. Scholium. By the same construction, each of the halves

of an arc, or an angle, may be bisected ; and thus, by succes-

sive bisections, an arc, or an angle, may be divided into 4, 8,

16, 32, etc., equal parts.

PROPOSITION XXIII.—PROBLEM.

62. At a given point in a given straight line, to construct an

angle equal to a given angle.

Let J. be the given point in the straight

line AB, and the given angle.

With as a centre, and with any radius,

describe an arc MJS^ terminated by the sides

of the angle. With A as a centre, and with

the same radius, OM, describe an indefi-

nite arc BC. With ^ as a centre, and with

a radius equal to the chord of MJ^, de-

scribe an arc intersecting the indefinite arc BC in D. Join

AI). Then the angle BAD is equal to the angle 0. For

the chords of the arcs MN and BD are equal; therefore

these arcs are equal, and consequently also the angles

and A.
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PROPOSITION XXIV.—PROBLEM.

63. Through a given point, to draw a parallel to a given

straight line.

Let A be the given point, and JBC ^

the given line. ,\

From any point B in BO draw the a/.—\ jp

straight line BAD through A. At the

point A, by the preceding problem, b
' ^

construct the angle DAE equal to the

angle ABC. Then AB is parallel to BC (I., Proposition

XXIY., Corollary L).

64, Scholium. This problem is, in practice, more accurately

solved by the aid of a triangle, con-

structed of wood or metal. This

triangle has one right angle, and its

acute angles are usually made equal

to 30° and 60°.

Let A be the given point, and

BG the given line. Place the tri-

angle, BJFD, with one of its sides

in coincidence with the given line

BO. Then place the straight edge of a ruler, MN, against

the side EF of the triangle. Now, keeping the ruler firmly

fixed, slide the triangle along its edge until the side ED
passes through the given point A. Trace the line EAD along

the edge ED of the triangle ; then it is evident that this line

will be parallel to BG.

EXERCISE.

Prohlem. Two angles of a triangle being given, to find the

third, (v. I., Proposition XXYI., and I., Proposition III., Cor-

ollary I.)



BOOK II. ^7

PROPOSITION XXV.—PROBLEM.

65. Two sides of a triangle and their included angle being

given, to construct the triangle.

y &

Let 6 and c be the given sides, and Xj^

A their included angle.

Draw an indefinite line AE, and

construct the angle EAF=^A. On

AE take AC= b, and on AF take

AB = c; join BC. Then ABC is

the triangle required ; for it is formed with the data.

With the data, two sides and the included angle, only one

triangle can be constructed ; that is, all triangles constructed

with these data are equal, and thus only repetitions of the

same triangle (I., Proposition YL).

66. Scholium. It is evident that one triangle is always pos-

sible, whatever may be the magnitude of the proposed sides

and their included angle.

PROPOSITION XXVL—PROBLEM.

67. One side and two angles of a triangle being given, to

construct the triangle.

Two angles of the triangle being given, ^^ ^^^^

the third angle can be found; and we c

shall therefore always have given the

two angles adjacent to the given side.

Let, then, c be the given side, A and B
the angles adjacent to it.

Draw a line AB = c ; at J. make an angle BAD = A, and

at B an angle ABE= B. The lines AD and BE intersecting

in (7, we have ABC as the required triangle.

With these data but one triangle can be constructed (I.,

Proposition YIL).
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68. Scholium. If the two given angles are together equal

to or greater than two right angles, the problem is impos-

sible ; that is, no triangle can be constructed with the data

;

for the lines AD and BG will not intersect on that side of

AB on which the angles have been constructed.

PROPOSITION XXVII.—PROBLEM.

69. The three sides of a triangle being given, to construct the

triangle,

a

Let a, bj and c be the three given sides. 6. .

Draw BC= a; with (7 as a centre and *

a radius equal to b describe an arc ; with

.B as a centre and a radius equal to c de-

scribe a second arc intersecting the first

in A. Then ABC is the required triangle.

With these data but one triangle can be constructed (I.,

Proposition IX.).

70. Scholium. The problem is impossible when one of the

given sides is equal to or greater than the sum of the other

two (I., Axiom I.).

PROPOSITION XXVIII.—PROBLEM.

7L Two sides of a triangle and the angle opposite to one of

them being given, to construct the triangle.

i a

1st. When the given angle A is

acute, and the given side a, oppo- r/

site to it in the triangle, is less than VwiXo
the other sjiven side c. X 7 I \

Construct an angle DAE= A. ^ ^,' '^z, ^
In one of its sides, as AD, take

AB = c; with J5 as a centre and a radius equal to a, describe
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an arc which (since a <^ c) will intersect AE in two points, C"

and C", on the same side of A. Join BC and BG", Then

either ABC or ABC" is the required triangle, since each is

formed with the data ; and the problem has two solutions.

There will, however, be but one solution, even with these

data, when the side a is so much less than the side c as to be

just equal to the perpendicular from B upon AE. For then

the arc described from -S as a centre, and with the radius a,

will touch AE m2i single point, (7, and the required triangle

will be ABG^ right angled at C.

2d. When the given angle A is

either acute, right, or obtuse, and

the side a opposite to it is greater

than the other given side c.

The same construction being "^(""a' ^^^
made as in the first case, the arc

described with j5 as a centre, and with a radius equal to a,

will intersect AE in only one point, C, on the same side of A.

Then ABC will be the triangle required, and will be the only-

possible triangle with the data.

The second point of intersection, C", will fall in EA pro-

duced, and the triangle ABC thus formed will not contain

the given angle.

72. Scholium. The problem is impossible when the given

angle A is acute and the proposed side opposite to it is less

than the perpendicular from B upon AE; for then the arc

described from B will not intersect AE.

The problem is also impossible when the given angle is

right, or obtuse, if the given side opposite to the angle is less

than the other given side ; for either the arc described from

B would not intersect AEj or it would intersect it only when
produced through A.
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EXERCISE.

Problem.— The adjacent sides of a parallelogram and their

included angle being given, to construct the parallelogram.

PROPOSITION XXIX.—PROBLEM.

73. To find the centre of a given circumference, or of a given

arc.

Take any three points, A, B, and (7, in

the given circumference or arc, and join

them by chords AB, BC. The perpen-

diculars erected at the middle points of

these chords will intersect in the required

centre (Proposition YI., Corollary I.).

74. Scholium I. Only one solution is possible ; for, since the

centre is equidistant from B and (7, it must lie in the perpen-

dicular erected at the middle point of BC (I., Proposition

XYIII.), and since it is equidistant from A and B, it must lie

in the perpendicular erected at the middle point of AB ; and

these perpendiculars can have but one point in common.

75. Scholium IL The same construction serves to describe

a circumference which shall pass through three given points,

Aj B, C; or to circumscribe a circle about a given triangle,

ABC; that is, to describe a circumference in which the given

triangle shall be inscribed (47).

76. Scholium III. It follows from Scholium 1. that three

points not in the same straight line will determine a circum-

ference,

—

i.e, through three points not in the same straight

line one circumference, and only one, can be drawn.

Hence two circumferences cannot intersect in more than

two points; for if they had three points in common they

would coincide throughout.



BOOK II. 91

PROPOSITION XXX.—PROBLEM.

77, At a given point in a given circumference^ to draw a tan-

gent to the circumference.

Let A be the given point in the given

circumference. Draw the radius OA^ and

at A draw BAC perpendicular to OA

;

BG will be the required tangent (Propo-

sition IX.).

If the centre of the circumference is

not given, it may first be found by the

preceding problem, or we may proceed

more directly as follows : take two points,

D and E^ equidistant from A ; draw the

chord DE^ and through A draw BAC
parallel to BE. Since A is the middle

point of the arc BE^ the radius drawn

to A will be perpendicular to BE (Proposition YI.), and con-

sequently also to BG ; therefore jBC is a tangent at A,

PROPOSITION XXXI.—PROBLEM.

78. Through a given point without a given circle^ to draw a

tangent to the circle.

Let be the centre of the given circle

and P the given point.

Upon OP, as a diameter, describe a cir-

cumference intersecting the circumference

of the given circle in two points, A and A'.

Draw PA and PA\ both of which will be

tangent to the given circle. For, drawing

the radii OA and OA', the angles OAP and OA'P are right
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angles (Proposition XIY., Corollary) ; therefore PA and PA^

are tangents (Proposition IX.).

In practice, this problem is accurately-

solved by placing the straight edge of a

ruler through the given point and tangent

to the given circumference, and then tracing

the tangent by the straight edge. The pre-

cise point of tangency is then determined

by drawing a perpendicular to the tangent

from the centre.

79. Scholium, This problem always admits of two solutions.

EXERCISE.

Problem.— To draw a

common tangent to two

given circles.

Suggestion. For an ex-

terior common tangent, in

the larger circle draw a

concentric circle whose

radius is the difference of the

radii of the given circles. For

an interior common tangent,

about one of the circles draw

a concentric circle whose ra-

dius is the sum of the radii of

the given circles.



BOOK II. 93

PROPOSITION XXXII.—PROBLEM.

80. To inscribe a circle in a given triangle.

Let ABC be the given triangle. Bisect any two of its

angles, as B and (7, by straight lines meet-

ing in 0. From the point let fall per-

pendiculars OX), OE^ OF, upon the three

sides of the triangle ; these perpendiculars

will be equal to each other (I., Proposi-

tion XIX.). Hence the circumference of

a circle, described with the centre 0, and

a radius = OD, will pass through the three points D, E, F,

will be tangent to the three sides of the triangle at these

points (Proposition IX.), and will therefore be inscribed in

the triangle.

EXERCISE.

Problem.— Upon a given straight line, to describe a segment

which shall contain a given angle.

Suggestion. Through one end of the given

line AB draw a line BC, making with it

the given angle. The two lines will be

one a chord and the other a tangent.

Hence the centre of the circle can be

found.



EXERCISES ON BOOK II.

THEOREMS.

1. If two circumferences are tangent in-

ternally, and the radius of the larger is the

diameter of the smaller, then any chord of

the larger drawn from the point of contact

is bisected by the circumference of the

smaller {v. Proposition XIV., Corollary, and
Proposition VI.).

2. If two equal chords intersect within a circle, the segments
of one are respectively equal to the segments of the other. What
is the corresponding theorem for the case where the chords meet
when produced?

3. A circumference described on the hypotenuse of a right tri-

angle as a diameter passes through the vertex of the right angle.

(v. Proposition XIV., Corollary.)

4. The circles described on two sides of a triangle as diameters

intersect on the third side.

Suggestion, Drop a perpendicular from the opposite vertex upon
the third side.

5. The perpendiculars from the angles upon the opposite sides

of a triangle are the bisectors of the angles of the triangle formed

by joining the feet of the perpendiculars.

Suggestion. On the three sides of the given triangle as diam-

eters describe circumferences, {v. Exercise 3, Proposition XIV.,
and I., Proposition XXVI.).

6. If a circle is circumscribed about an equilateral triangle, the

perpendicular from its centre upon a side of the triangle is equal

to one-half of the radius.

94
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7. The portions of any straight line which

are intercepted between the circumferences

of two concentric circles are equal.

8. Two circles are tangent internally

at P, and a chord AB of the larger circle

touches the smaller at C; prove that PC
bisects the angle APB.
Suggestion. CPQ = BCP, BPQ =

BAP, BCP—BAP = APC (I., Propo-

sition XXVI., Corollary).

9. If a triangle ABC is formed by the intersection of three

tangents to a circumference, two of

which, A3f and AN, are fixed, while

the third, BC, touches the circumfer-

ence at a variable point P, prove that

the perimeter of the triangle ^^C is

constant, and equal to AM -\- AN, or

2AN (Proposition X.).

Also, prove that the angle P0(7 is

constant.

10. If through one of the points of intersection of two circum-

ferences a diameter of each circle is drawn, the straight line

which joins the extremities of these diameters passes through the

other point of intersection, and is parallel to the line joining the

centres.

Suggestion. Draw the common chord and the line joining the
centres, (v. Proposition VI., Corollary II., and Exercise 29,

Book I.)

11. The difference between the hy-
potenuse of a right triangle and the
sum of the other two sides is equal to

the diameter 'of the inscribed circle.

I
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12. A circle can be entirely sur-

rounded by six circles having the

same radius with it.

13. The bisectors of the vertical angles of all triangles having

the same base and equal vertical angles have a point in common.
Suggestion, The triangles may all be inscribed in the same

circle.

14. If the hypotenuse of a right triangle is double one of the

sides, the acute angles of the triangle are 30° and 60° respectively.

15. If, from a point whose distance from the centre of a given

circle is equal to a diameter, tangents are drawn to the circle,

they will make with each other an angle of 60°.

LOCI.

16. Find the locus of the centre of a circumference which passes

through two given points, (v. I., Proposition XVIII.)

17. Find the locus of the centre of a circumference which is

tangent to two given straight lines, {v. I., Proposition XIX.)

18. Find the locus of the centre of a circumference which is

tangent to a given straight line at a given point of that line, or

to a given circumference at a given point of that circumference.

19. Find the locus of the centre of a circumference passing

through a given point and having a given radius.

20. Find the locus of the centre of a circumference tangent to

a given straight line and having a given radius.

21. Find the locus of the centre of a circumference of given

radius, tangent externally or internally to a given circumference.
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22. A straight line MN, ofgiven length,

is placed with its extremities on two
given perpendicular lines ^^, CD; find

the locus of its middle point P (Exercise

31, Book I.).

23. A straight line of given length is inscribed in a given circle;

find the locus of its middle point, {v. Proposition VII.)

24. A straight line is drawn through a
given point A^ intersecting a given circum-
ference in B and C; find the locus of the

middle point, P, of the intercepted chord
BC.
Note the special case in which the point

A is on the given circumference.

25. From any point ^ in a given circumference, a straight line

-4P of fixed length is drawn parallel to a given line MN; find

the locus of the extremity P, {v. I., Proposition XXX.)

26. From one extremity -4 of a fixed

diameter ABy any chord AC is drawn,

and at (7 a tangent CD. From P, a per-

pendicular BD to the tangent is drawn,

meeting AC in P, Find the locus of P.

Suggestion. (Draw radius OC. v. I.,

Exercise 28.)

27. The base BC of a triangle is given, and
the medial line BE, from jB, is of a given

length. Find the locus of the vertex A.
Suggestion. Draw AO parallel to EB. Since

BO=BC, O is a fixed point; and since AO
= 2BEy OA is a constant distance.
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PROBLEMS.
The most useful general precept that can be given, to aid the

student in his search for the solution of a problem, is the follow-

ing : Suppose the problem solved, and construct a figure accord-

ingly ; study the properties of this figure, drawing auxiliary lines

when necessary, and endeavor to discover the dependence of the

problem upon previously solved problems. This is an analysis

of the problem. The reverse process, or synthesis^ then furnishes

a construction of the problem. In the analysis, the student's in-

genuity will be exercised especially in drawing useful auxiliary

lines ; in the synthesis, he will often find room for invention in

combining in the most simple form the several steps suggested by
the analysis.

The analysis frequently leads to the solution of a problem by
the intersection of loci. The solution may turn upon the deter-

mination of the position of a particular point. By one condition

of the problem it may appear that this required point is neces-

sarily one of the points of a certain line ; this line is a locus of

the point satisfying that condition. A second condition of the

problem may furnish a second locus of the point ; and the point

is then fully determined, being the intersection of the two loci.

Some of the following problems are accompanied by an analysis

to illustrate the process.

28. To determine a point whose distances from two given inter-

secting straight lines, AB^
A^B\ are given. •.... c

Analysis. The locus of

all the points which are at

a given distance from AB
consists of two parallels to

ABy CE, and DF, each at

the given distance from
AB, The locus of all the

points at a given distance from A^B^ consists of two parallels,

C^E^ and D^F^^ each at the given distance from A^B\ The re-

quired point must be in both loci, and therefore in their inter-

section. There are in this case four intersections of the loci, and
the problem has four solutions.

Construction. At any point of AB, as A, erect a perpendicular

CD, and make AC= AD = the given distance fromAB ; through
O and 2) draw parallels to AB. In the same manner, draw par-

allels to A^B^ at the given distance A^C = A'D\ The intersec-
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tion of the four parallels determines the four points P^, Pj? P^^ ^4»
each of which satisfies the conditions.

29. Given two perpendiculars, AB and CD,
intersecting in O, to construct a square, one

of whose angles shall coincide with one of

the right angles at O, and the vertex of the

opposite angle of the square shall lie on a

given straight line EF, (Two solutions.)

30. In a given straight line, to find a point equally distant from
two given points without the line.

31. To construct a square, given its diagonal.

32. Through a given point P within a given angle, to draw a
straight line, terminated by the sides of the anglfe, which shall

be bisected at P. {v. Exercise 28, Book I.)

33. Given two straight lines which caimot be produced to their

intersection, to draw a third which would pass through their

intersection and bisect their contained angle.

Suggestion. Find two points equidistant from the two lines.

(v. I., Proposition XIX.)
34. Given the middle point of a chord in a given circle, to draw

the chord.

36. To draw a tangent to a given circle which shall be parallel

to a given straight line.

36. To draw a tangent to a given circle, such that its segment
intercepted between the point of contact and a given straight

line shall have a given length.

Suggestion. The tangent, the radius drawn to the point of con-

tact, and a line drawn from the centre to the end of the tangent

form a right triangle, two of whose sides are known. A simple

construction gives the hypotenuse.

In general there are four solutions. Show when there will be

but two ; also, when no solution is possible.

37. Through a given point within or without a given circle, to

draw a straight line, intersecting the circumference, so that the

intercepted chord shall have a given length. (Two solutions.)

{v. Exercise 23 and Section 78.)

38. Construct an angle of 60°, one of 120°, one of 30°, one of 150°,

one of 45°, and one of 135°.
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39. Construct a triangle, given the base, the angle opposite to

the base, and the altitude.

Analysis. Suppose BAC to be the re- ^ s^^

quired triangle. The side BC being fixed ^ 7^^. ^\\ ^
in position and magnitude, the vertex A is // ^X; 1

1

to be determined. One locus of A is an k.^^ '^-vV

arc of a segment, described upon AB, con- ^ ^

taining the given angle. Another locus

of J. is a straight line MN drawn parallel to ^(7, at a distance

from it equal to the given altitude. Hence the position of A will

be found by the intersection of these two loci, both of which are

readily constructed.

Limitation. If the given altitude were greater than the perpen-
dicular distance from the middle of ^C to the arc BAC, the arc

would not intersect the line MN, and there would be no solution

possible.

The limits of the data within which the solution of any prob-
lem is possible should always be determined.

40. Construct a triangle, given the base, the medial line to the

base, and the angle opposite to the base.

41. With a given radius, describe a circumference, 1st, tangent

to two given straight lines ; 2d, tangent to a given straight line

and to a given circumference ; 3d, tangent to two given circum-

ferences ; 4th, passing through a given point and tangent to a
given straight line ; 5th, passing through a given point and tan-

gent to a given circumference ; 6th, having its centre on a given

straight line, or a given circumference, and tangent to a given

straight line, or to a given circumference. (Exercises 19, 20, 21.)

42. Describe a circumference, 1st, tangent to two given straight

lines, and touching one of them at a given point (Exercises 17,

18) ; 2d, tangent to a given circumference at a given point and
tangent to a given straight line ; 3d, tangent to a given straight

line at a given point and tangent to a given circumference (Exer-

cise 18) ; 4th, passing through a given point and tangent to a

given straight line at a given point ; 5th, passing through a given

point and tangent to a given circumference at a given point.

43. Draw a straight line equally distant from three given points.

When will there be but three solutions, and when an indefinite

number of solutions ?

44. Inscribe a straight line of given length between two given

circumferences, and parallel to a given straight line. {v. Exer-

cise 25.)
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PROPORTIONAL LINES. SIMILAR FIGURES.

THEORY OF PROPORTION.

1. Definition. One quantity is said to be proportional to

another when the ratio of any two values, A and JB, of the

first, is equal to the ratio of the two corresponding values

A' and 5', of the second ; so that the four values form the

proportion (II., 36)

A:B=A':B%
or

B B''

This definition presupposes two quantities, each of which

can have various values, so related to each other that each

value of one corresponds to a value of the other. An exam-

ple occurs in the case of an angle at the centre of a circle

and its intercepted arc. The angle may vary, and with it

also the arc ; but to each value of the angle there corresponds

a certain value of the arc. It has been proved (II., Proposi-

tion XII.) that the ratio of any two values of the angle is

equal to the ratio of the two corresponding values of the

arc ; and, in accordance with the definition just given, this

proposition would be briefly expressed as follows :
" The angle

at the centre of a circle is proportional to its intercepted arc."

2. Definition. One quantity is said to be reciprocally propor-

tional to another when the ratio of two values, A and B^ of

the first, is equal to the reciprocal of the ratio of the two
«* 101
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corresponding values, A' and B\ of the second, so that the

four values form the proportion

A\B=B':A\
or

A^B^ ^. _^ ^
B A' ' B''

For example, if the product p of two numbers, x and y, is

given, so that we have

xy=p, ^

then X and y may each have an indefinite number of values,

but as X increases y diminishes. If, now, A and B are two

values of rr, while A' and B' are the two corresponding values

of ?/, we must have

A XA'= p,

BX B'= p,

whence, by dividing one of these equations by the other,

B^ B'~ '

and therefore

A _ J_ ^ ^'
.

B A^ A"
B'

that is, two numbers whose product is constant are reciprocally

proportional.

3. Let the quantities in each of the couplets of the pro-

portion

j = §,ovA:B = A':B', [1]

be measured by a unit of their own kind, and thus expressed
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by numbers (II., 28) ; let a and h denote the numerical meas-

ures of A and B, a' and h' those of A' and B' ; then (II., 29)

A^a
A!. =9l

B 6' B' b"

and the proportion [1] may oe replaced by the numerical pro-

portion

4. Conversely, if the numerical measures a, 6, a', h\ of four

quantities, A^ J5, A\ B', are in proportion, these quantities

themselves are in proportion, provided that A and B are

quantities of the same kind, and J.' and B' are quantities of

the same kind (though not necessarily of the same kind as A
and B) ; that is, if we have

a\h = a' :h\

we may, under these conditions, infer the proportion

A:B = A' :B'.

5. Let us now consider the numerical proportion

a\h = a' :h\

Writing it in the form

and multiplying both members of this equality by hh\ we

obtain

ah'= a'b,

whence the theorem : the product of the extremes of a (numer-

icaT) proportion is equal to the product of the means.

4ii»tt.
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Corollary. If the means are equal, as in the proportion

a : b = b : Cj we have b^ = ac, whence b = j/ac; that is, a

mean proportional (II., 36) between two numbers is equal to the

square root of their product.

6. Conversely, if the product of two numbers is equal to the

product of two others, either two may be made the extremes, and

the other two the means, of a proportion. For, if we have given

ab' = a^bj

then, dividing by bb', we obtain

^ = ^'ora:b = a':b\
b b

Corollary. The terms of a proportion may be written in

any order which will make the product of the extremes

equal to the product of the means. Thus, any one of the

following proportions may be inferred from the given equal-

ity ab'= a'b

:

a :b =a' :b\

a :a'=b :6',

b :a=b' :a'.

b :b' = a :a',

U '. a'=b '.a, etc.

Also, any one of these proportions may be inferred from any

other.

7. Definitions. When we have given the proportion

a-.b = a' :b',

and infer the proportion

a: a' =b :¥,

the second proportion is said to be deduced by alternation.

When we infer the proportion

b : a = b' '. a',

this proportion is said to be deduced by inversion.
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8. It is important to observe that when we speak of the

products of the extremes and means of a proportion, it is

implied that at least two of the terms are numbers. If, for

example, the terms of the proportion

A:B=A': B'

are all lines^ no meaning can be directly attached to the

products ^ X ^'j ^ X A\ since in a product the multiplier

at least must be a number.

But if we have a proportion such as

A \ B = m : n^

in which m and n are numbers, while A and B are any two

quantities of the same kind, then we may infer the equality

nA = mB.

Nevertheless, we shall, for the sake of brevity, often speak

of the product of two lineSj meaning thereby the product of the

numbers which represent those lines when they are measured hy a

common unit

9. If A and B are any two quantities of the same kind,

and m any number whole or fractional, we have, identically,

mA A

,

mB~ B'

that is, equimultiples of two quantities are in the same ratio as

the quantities themselves.

Similarly, if we have the proportion

A:B = A':B%

and if m and n are any two numbers, we can infer the pro-

portions

mA : mB = nA' : nB\

mA : nB = mA' : nB\
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10. Composition and Division. If we have given the pro-

A A'
portion - = — , we have, by alternation,

B B'

A' B''

Let r be the common value of these two ratios ; then

4, = r,and|=r,

and
A = rA', and B == rB\

Adding the second equation to the first, we have

A + B^KA'+B'),
or

A_±B_ ^ A^B_
A' + B' A' B''

The proportions ^^±|-, = A, and ^,i|, = | are said to

be formed from the given proportion

A:B^=A':B\hj composition.

If we subtract the equation B = rB' from A = rA!^ we have

A—B = r(^Al— B'),

whence, as above,
A —B ^A
A'— B' A"

and
A —B ^B
A'— B' B"

two proportions which are said to be formed from the given

proportion
A : B = A' : B^hj division.

11. Definition. A continued proportion is a series of equal

ratios, as

A:B=zA' :B'=:A" : B"= A'" : B"' = etc.

i
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12. Let r denote the common value of the ratio in the

continued proportion of the preceding article ; that is, let

B B' B" B"'

then we have

A=::Br, A'=B'r, A"= B'^r, A"'= B'^'r, etc.,

and, adding these equations,

A-{.A' + A''+ A'" + etc. = (B-{-B' + B" + B'" + etc.) r,

whence

^ + ^^+^"+^"^+etc. ^^^A^A^^^^^,
BJ^B'^B^'^ B"' + etc. B B'

that is, the sum of any number of the antecedents of a continued

proportion is to the sum of the corresponding consequents as any

antecedent is to its consequent.

In this theorem the quantities J., 5, (7, etc., must all be

quantities of the same kind.

If, instead of a continued proportion, we have an ordinary

proportion, the theorem just proved obviously holds good.

13. If we have any number of proportions, as

a '. h =^ c '. dj

a'-.h' = c' : d\

a" :
6" = c" : d'\ etc.

;

then, writing them in the form

a c a! c^ a" c"

h~ d' h'~d" W~dr' '

and multiplying these equations together, we have

aa' a" . .

.

c d d' . .

.

hh'h'' ...~ dd'd'\.:
or

aaW ...'.hh'h" ... = cdd'...:dd'd"...]

that is, if the corresponding terms of two or more proportions

are multiplied together, the products are in proportion.
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If the corresponding terms of the several proportions are

equal, that is, ii a z= a'= a", b = b'= V'^ etc., then the mul-

tiplication of two or more proportions gives

that is, if four numbers are in jprojportion^ like powers of these

numbers are in proportion.

PEOPOETIONAL LI:N^ES.

PROPOSITION I.—THEOREM.

14. A parallel to the base of a triangle divides the other two

sides proportionally.

Let DE be a parallel to the base, BC, of the triangle ABC;

then
AB:AD=AC :AE. ^

1st. Suppose the lines J.J5, AD, to have # i^

a common measure which is contained m
times in AB and n times in AD. Then / [S

I ^^u'

AB_m L A
AD n ^ ^o
Apply this measure to AB, and through

the points of division draw lines parallel to the base BC o^

the triangle ; then through the points of intersection of these

lines with A G draw lines parallel to AB. The small triangles

thus formed are all equal, by Propositions XXIX. and YII.,

Book I. Hence the m parts into which ACiQ divided are all

equal, and, as AE contains n of these parts,

AC^m
AE n'

Therefore
AB ^ AC
AD AE
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2d. IfAB and AD are incommensurable, let AD be divided

into any arbitrarily chosen number n of

equal parts, and let AB be divided by one ^

of these parts. Let B' be the last point of A
division, 5'5 beinff of course less than the di- / \

visor. Through B' draw B'C parallel to DE, / \ ~

Since AB' and AD are commensurable, / \

A W A C I \= ——-, and this holds true no matter i//-— -\c"

AD AE t \

what value may be given to n. By taking

a sufficiently great value for /i, we can make B' come as near

''is we please to B ; but we cannot make B' and B coincide,

since no divisor of AD can divide AB without remainder.

AB' ACAB' and AC, and consequently and , are then
^ ^ AD AE'

variables dependent upon the same variable, n; and, as we

have seen above, they are equal, no matter what value is

given to n. If n is indefinitely increased,

and

Therefore, by the fundamental theorem in the Doctrine of

Limits (41, Book II.), these limits are equal, and therefore

AB ^ AC
AD~ AE' \

Compare this reasoning with that in II., 42. \

EXERCISE. \

Show that in Proposition I. AD : DB = AE : EC Q>. 10),

and also that

AB ^AD ^ DB
AC AE EC'

10

AB'
AD

has the limit
AB
AD'

AC
AE

has the limit
AC
AE
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PKOPOSITION II.—THEOREM.

15. Conversely, if a straight line divides two sides of a tri-

angle proportionally, it is parallel to the third side.

Let DE divide the sides AB, AC, of the tri-

angle ABC, proportionally; then DE is par-

allel to BC
For, if DE is not parallel to BC, let some

other line DE', drawn through D, be parallel

to BC. Then, by Proposition I.,

AB:AD=AC:AE'.

But, by hypothesis, we have

AB:AD = AC:AE.
Hence

AC^

AE'
AG
AJEf

whence it follows that AE'= AE, which is impossible unless

DE' coincides with DE. Therefore DE is parallel to BC.

EXERCISE.

1. Theorem.—The line bisecting the vertical angle of a triangle

divides the base into segments proportional to the adjacent sides

of the triangle.

Suggestion. Through B draw

a line parallel to the bisector

and extend the side CA to meet

it. The triangle EAB is isos-

celes. .'.AE= AB. CE and

CB are divided proportionally (Proposition I.). Hence CD :

DB = CA : AB.

2. Prove the converse of Exercise I. (v. Proposition II.)
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SIMILAR POLYGONS.

16. Definitions. Two polygons are similar when they are

mutually equiangular and have their homologous sides pro-

portional.

In similar polygons, any points, angles, or lines, similarly

situated in each, are called homologous.

The ratio of a side of one polygon to its homologous side

in the other is called the ratio of similitude of the polygons.

PROPOSITION III.—THEOREM.

17. Two triangles are similar when they are mutually equi-

angular.

Let ABC, A'B'C, be mutually ^
equiangular triangles, in which y^i -4'

A=A', B = B\ C= C; then / / ^f
these triangles are similar. / / / /

For, superpose the triangle b c b! c
A'B'C upon the triangle ABC,

making the angle A' coincide with its equal, the angle A, and

let B' fall at h and C at e. Since the angle Abe is equal to

B, he is parallel to BC (I., Proposition XXIY., Corollary I.),

and we have (Proposition I.)

AB:Ah=AC '.Ac,

or
AB\A'B'=^AC'.A'C'.

If, now, we superpose A'B'C upon ABC, making B' co-

incide with B, we may prove, in the same manner, that

AB'.A'B'=BC'.B'C';

and, combining these proportions,

AB ^ AC_ ^ BC_
PJ-,

A'B' A'C B'C '- ^

Therefore the homologous sides are proportional, and the tri-

angles are similar (16).
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18. Scholium I. The homologous sides lie opposite to equal

angles.

19. Scholium II. The ratio of similitude (16) of the two

similar triangles is any one of the equal ratios in the con-

tinued proportion [1].

EXERCISE.

Theorem.—The altitudes of two similar triangles are to each

other in the ratio of similitude of the triangles.

PROPOSITION IV.—THEOREM.

20. Two triangles are similar when an angle of the one is

equal to an angle of the other, and the sides including these

angles are proportional.

In the triangles ABC, A'B'C, ^ ^'

let A = A', and yf /j
AB AC , .X / X /
A'B' A'C' / Bf G'

then these triangles are similar. ^ ^

For, place the angle A' upon its

equal angle A ; let B' fall at h, and C at c. Then, by the

hypothesis,^ AB^AC
Ah Ac

Therefore he is parallel to BC (Proposition II.), and the tri-

angle Ahc is similar to ABC (Proposition III.). But Ahc is

equal to A'B'C; therefore A'B'C is also similar to ABC.
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PROPOSITION v.—THEOREM.

21. Two triangles are similar when their homologous sides are

propoj'tional.

In the triangles ABC, A'B'C, let

AB_^AG_^BG_, ry.

A'B A'C B'G" •-
'

then these triangles are similar. ^
^'

For, take Ah == A!B', and Ac ' /I /I
= ^'(7', and join .6 and c. /^ / / /

Abe is similar to ABC, by Prop- y^' J n c
osition lY. Therefore b o

AB BO AB BC
-, or

Ab be ' A'B' be

But, by hypothesis,

AB ^ BC
A'B' B'C'

Hence

The triangle A!B'G' is then equal to Abe, by I., Proposition

IX., and is consequently similar to ABC.

PROPOSITION VI.—THEOREM.

22. If two polygons are composed of the same number of tri-

angles similar each to each and similarly placed, the polygons

are similar.

Let the polygon ABCD, /"^^^•^^^^ /t^^^
etc., be composed of the tri- ^/:;.'.. \^ A'k::y.. \n
angles J.5 (7,A CD, etc.; and \ " '"^^^ V---^'^'

let the polygon A'B'C'D\ V-^-^""''^

etc., be composed of the

triangles A'B'C\ A'C'D\ etc., similar to ABC, ACD, etc.,

2^ 10*
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respectively, and similarly placed; then the polygons are

similar.

1st. The polygons are

mutually equiangular. For,

the homologous angles of

the similar triangles are

equal ; and any two corre-

sponding angles of the poly-

gons are either homologous angles of two similar triangles,

or sums of homologous angles of two or more similar trian-

gles. Thus, B = B\; BCD = BCA -f ACD = B'C'A' +
A'C'D'=B'C'D' ; etc.

2d. Their homologous sides are proportional. For, from

the similar triangles, we have

AB ^ BG ^ AC ^ CD ^ AD ^ DE ^
A'B' B'C A'C CD' A'D' D'E' ^

^'

Therefore the polygons fulfil the two conditions of similarity

(16). \y—
PEOPOSITION VII.—THEOREM.

23. Conversely, two similar polygons may be decomposed into

the same number of triangles similar each to each and similarly

placed.

Let ABCD, etc., A'B'C'D', etc., be two similar polygons.

From two homologous ver-

tices, A and A', let diag-

onals be drawn in each

polygon; then the poly-

gons will be decomposed

as required.

For, 1st. We have, by the definition of similar polygons,

AB BC
Angle B = B\ and

A'B' B'C
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therefore the triangles J.5(7and A^B'C are similar (Proposi-

tion lY.).

2d. Since ABC and A!B'G' are similar, the angles BGA and

B'C'A! are equal; subtracting these equals from the equals

BCD and B'C'I)\ respectively, there remain the equals ACJ)

and A' CD', Also, from the similarity of the triangles ABC
and A'B'C, and from that of the polygons, we have

AC BC CD
A'C B'C CD''

therefore the triangles ACD and A'CD' are similar (Propo-

sition lY.).

Thus, successively, each triangle of one polygon may be

shown to be similar to the triangle similarly situated in the

other.

PKOPOSITION VIII.—THEOREM.

24. The 'perimeters of two similar polygons are in the same

ratio as any two homologous sides.

For we have (see preceding figures)

^^ ^^ ^^ etc.;
A'B' B'C CD'

whence (12)

AB -{- BC + CD -{- etc. ^ AB ^ BC
A'B' + B'C+ CD' + etc. A'B' B'C

etc.

w .1^^
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PROPOSITION IX.—THEOREM.

25. If a perpendicular is drawn from the vertex of the right

angle to the hypotenuse of a right triangle

:

1st. The two triangles thus formed are similar to each other

and to the whole triangle

;

2d. The perpendicular is a mean proportional between the seg-

ments of the hypotenuse ;

3d. Each side about the right angle is a mean proportional

between the hypotenuse and the adjacent segment.

Let G be the right angle of the triangle

ABC, and CD the perpendicular to the

hypotenuse; then,

1st. The triangles ACD and CBD are

similar to each other and to ABC. For the triangles ACD
and ABC have the angle A common, and the right angles

ADCj ACBj equal; therefore they are mutually equiangular,

and consequently similar (Proposition III.). For a like

reason CBD is similar to ABCj and consequently also to

ACD.

2d. The perpendicular CD is a mean proportional between

the segments AD and DB. For the similar triangles ACD,

CBD, give
AD:CD = CD : BD.

3d. The side J. (7 is a mean proportional between the hy-

potenuse AB and the adjacent segment AD. For the similar

triangles, ACD, ABC, give

AB:AC = AC:AD.

In the same way the triangles CBD and ABC give

AB:BC= BC :BD.
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26. Scholium. If the lengths of the lines in the figure

above are expressed in terms of the same unit, the results

just obtained may be written (5, Corollary)

Vlf=ABX I>B,

TO'= AB X AD,

'mJ' = AB X BD.

27. Corollary. If from any point in the circumference of a

circle a perpendicular is let fall upon a diameter, the perpen-

dicular is a mean proportional between the segments of the diam-

eter.

Suggestion. Draw the chords AC and CB,

(v. 11., Proposition XIY., Corollary.)

'< ' PROPOSITION X.—THEOREM.

28. The square of the length of the hypotenuse of a right

triangle is the sum of the squares of the lengths of the other two

sides, the three lengths being expressed in terms of the same unit.

Let ABC be right angled at C; then

Xg'= TO' + BU'.

For, by Proposition IX., we have

TU'= AB X AD, and 277'= AB X BD,

the sum of which is

AJ]' + 'mj'=.AB X {AD ^ BD) = AB X AB = A^.

29. Scholium I. By this theorem, if the numerical measures

of two sides of a right triangle are given, that of the third

is found. For example, if ^(7= 3, BO = 4; then AB =
1/ [3^ + 4^ = 5.

If the hypotenuse, AB, and one side, AC, are given, we
have BC^ = TB''— X0\' thus, if there are given AB = b,

AC = 3, then we find BO = ^^[5^ — 3'] = 4.
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30. Scholium II. If J. is the diagonal of a square ABCD,

we have, by the preceding theorem,

whence

and, extracting the square root,

AC
-j£ = \/^= 1.41421 + ad inf.

Since the square root of 2 is an incommensurable number, it

follows that the diagonal of a square is incommensurable with

its side. (v. II., 34.)

31. Definition. The projection of a point

A upon an indefinite straight line XY is

the foot P of the perpendicular let fall

from the point upon the line.

The projection of a finite straight line AB upon the line XY
is the distance FQ between the projections of the extremities

oi AB.

If one extremity B of the line AB is in
A

the line- XY^ the distance from B to P (the

projection of A) is the projection of AB on

XY; for the point B is in this case its own

projectioik

PM,
EXERCISES.

1. Theorem.—In any triangle, the square of the side opposite

to an acute angle is equal to the sum of the squares of the other

two sides diminished by twice the product of one of these sides

^dnd the projection of the other upon that side.
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PCy, Fig. 1, or

YiQ. 2.

Suggestion. Let (7 be the acute angle in question in Fig. 1

or Fig 2.

A Fig. 1.

== XF' + (5(7

-^'^ XF' + (PC
== 2T^ + TO' + :BT' - 2BC X Pc;

= Xa' + IB^C — 2BC X PC,

2. Theorem.—J/i an obtuse angled triangle,

the square of the side opposite to the obtuse

angle is equal to the sum of the squares of the

other two sides, increased by twice the product

of one of these sides and the projection of the

other upon that side.

PROPOSITION XI.—THEOREM.

32. If two chords intersect within a circle, their segments are

reciprocally proportional.

For the triangles APB' and A'PB are mu-

tually equiangular (II., Proposition XIY.),

and therefore similar (Proposition III.).

Hence
AP : A'P = PB' : PB.

33. Scholium. If the lengths of the lines in

question are expressed in terms of the same unit, the result

above can be written

APXPB= A'P X PB',

and the proposition may be stated : if through a fixed point

within a circle any chord is drawn, the product of the lengths of

its segments is the same whatever its direction.
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EXERCISE.

Theorem.—Either segment of the least chord

that can he drawn through a fixed point is a

mean proportional between the segments of any

other chord drawn through that point, (v.

II., 19, Exercise.)

PROPOSITION XII.—THEOREM.

34. If two secants intersect without a circle, the whole secants

and their external segments are reciprocally proportional.

For the triangles PAB^ and PA'B are mu-

tually equiangular (II., Proposition XIY.),

and therefore similar. Consequently

PB : PB' = PA' : PA.

35. Corollary. If a tangent and a secant

intersect, the tangent is a mean proportional

between the whole secant and its external seg-

ment.

Suggestion. Show that the triangles PAT
and PTB are similar.

36. Scholium. If the lengths of the lines

are expressed in terms of the same unit,

the result of (34) can be written PB X PA
= PB' X PA\ and Proposition XII. can be stated : if through

a fixed point without a circle a secant is drawn, the product of

the lengths of the whole secant and its external segment has the

same value in whatever direction the secant is drawn.
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EXERCISE.

Theorem.—If from any point on the common chord of two

intersecting circles^ produced^ tangents are drawn to the two

circles^ the lengths of these tangents are equal.

PEOBLEMS OF CONSTEUCTIOK

PROPOSITION XIII.—PROBLEM.

37. To divide a given straight line into any given number of

equal parts.

Let AB be the given line. Through A draw

an indefinite line AX^ upon which lay off the

given number of equal distances, each distance

being of any convenient length ; through M the

last point of division on AX draw MB^ and

through the other points of division of AX
draw parallels to MB^ which will divide AB
into the required number of equal parts. This

follows from the first part of the proof of Proposition I.

PROPOSITION XIV.—PROBLEM.

38. To divide a given straight line into parts proportional to

two given straight lines.

Let it be required to divide AB
into parts proportional toM and N,

From A draw the indefinite line AX^

upon which lay off AG=M and CD
= N. Join BB^ and through G draw

GE parallel to DB. Then we shall

have AE :JEB=AC:GD, by Propo-

sition I.

I
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EXERCISE.

Problem.— To divide a given straight line

into parts proportional to given straight

lines. ...•'5

M N

PROPOSITION XV.—PROBLEM.

39. To find a fourth proportional to three given straight lines.

Let it be required to find a fourth pro-

portional to M, JV, and P. Draw the in-

definite lines AJT, AY, making an angle

with each other. Upon AJC lay off AB
= M, AD= N; and upon ^ Ylay off ^(7

= P; join BG, and draw BE parallel to

BC ; then AEi^ the required fourth pro-

portional.

For we have (Proposition I.)

AB : AD=AG: AE, orM : W= P : AE.

EXERCISE.

Prohlem.-

lines.

To find a third proportional to tvx) given straight

PROPOSITION XVI.—PROBLEM.

40. To find a mean proportional between two given straight

lines.
n

Let it be required to find a mean pro-

portional between M and N. Upon an

indefinite line lay ofl AB=M,BG= JSF;

upon AG describe a semi-circumference,

and at B erect a perpendicular, BD, to

AG. Then BD is the required mean proportional (Proposi-

tion IX., Corollary).
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41. Definition. When a given straight line is divided into

two segments such that one of the segments is a mean pro-

portional between the given line and the other segment, it is

said to be divided in extreme and mean ratio.

Thus, AB is divided in extreme and mean ratio ^
H—

I

at C,ii AB\AC=:AG : CB.

PROPOSITION XVII.—PROBLEM.

42. To divide a given straight line in extreme and mean ratio.

Let AB be the given straight line. At B erect the per-

pendicular BO equal to one-half of AB. With the centre

and radius OB^ describe a circumference,

and through A and draw AO cutting

the circumference first in D and a second

time in D'. Upon AB lay ofl AG == AD.

Then AB is divided at C in extreme and

mean ratio.

For we have (Proposition XIL, Corollary)
^

^J •
^^^

AD' :AB=AB:AD or AC, [1]

whence, by division (10),

AD'— AB:AB = AB — AC:Aa,

or, since DD'=20B = AB, and therefore AD'— AB = AD^
— DD'= AD=AC,

AO:AB = CB:AC,

and, by inversion (7),

AB:AC= AC:CB;

that is, AB is divided at C in extreme and mean ratia
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PROPOSITION XVIII.—PROBLEM.

43. On a given straight line^ to construct a polygon similar to

a given polygon.

Let it be required to construct upon A'B' a polygon similar

to ABCDEF,
DivideABCDEFmio tri-

angles by diagonals drawn

from A. Make the angles

B'A'C and A'B'C equal

to BAG and ABC respec-

tively; then the triangle

A'B'C will be similar to ABC (Proposition III.).

same manner construct the triangle A'D'C similar to ADC,

A'WD' similar to AED, and A'E'F' similar to AEF. Then

AIB'C'D'E'F' is the required polygon (Proposition YL).

In the



EXERCISES ON BOOK III.

(1

THEOREMS.
1. If two straight lines are intersected by any number of par-

allel lines, the corresponding segments of the two lines are pro-

portional, {v. Proposition I.)

2. The diagonals of a trapezoid divide each other into segments

which are proportional.

3. In a triangle any two sides are reciprocally proportional to

the perpendiculars let fall upon them from the opposite vertices.

4. The perpendiculars from two vertices of a triangle upon the

opposite sides divide each other into segments which are recipro*

cally proportional.

6. If the three sides of a triangle are respectively perpendicular

to the three sides of a second triangle, the triangles are similar.

6. If ABC and A^BO are two triangles Laving
a common base BC and their vertices in a line

AA^ parallel to the base, and if any parallel to

the base cuts the sides AB and ^C in Z> and jE7,

and the sides A^B and A^C in D^ and E^^ then
DE=^J)'E' (Proposition III.).
""7. If two sides of a triangle are divided propor-

tionally, the straight lines drawn from correspond-

ing points of section to the opposite angles intersect

on the line joining the vertex of the third angle

and the middle of the third side.

Suggestion. Draw the line ADE through the in-

tersection of B^C and BC^. B'E'D and CED are

similar

;

similar

BC ^
B'C
Hence

EC
B'E'
DC
B'D

DC
B'D
BC

B'DC^ and BDC are

^ AB^C^ and ABC are similar

AB
AB''
EC

B'C
AB'E' and ABE are similar

;

BE

AB
AB'

BE
B'E'

B'E' B'E'
and BE= EC,

11* 125
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8. The difference of the squares of two sides of any triangle is

equal to the difference of the squares of the projections of these

j--^ sides on the third side (Proposition X.).

^
^ 9. J[f from any point in the plane df a polj[gon\peitoendiculars
^"^^ -^alfe^rawn to all the sides, the two siiml of\the^qu\res of the

alternate segments of the sides are equkl. ^

^

iW

\J 10. If through a point P in the circum-

ference of a circle two chords are drawn,

the chords and the segments cut from them
by a line parallel to the tangent at P are re-

ciprocally proportional.

Suggestion, Prove PAB and Pba similar.

-^ -41
11. If three circles int^fSect, their three

common chords pass through the same
point, {v. Proposition XI.)

12. If two tangents are drawn to a circle

at the extremities of a diameter, the por-

tion of any third tangent intercepted be-

tween them is divided at its point of con-

tact into segments w^hose product is equal

to the square of the radius.

Suggestion. Prove AOB a right triangle.

13. The perpendicular from any point of a cir-

cumference upon a chord is a mean proportional

between the perpendiculars from the same point

upon the tangents drawn at the extremities of

the chord.

Suggestion. PBD and PAE are similar ; .
•

.

PB^PD
PA PE PCE and PAD are similar

PA
PC

PD
PE'

Hence^ =
PA

PA
PO'
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14. If two circles touch each other, secants drawn through their

point of contact and terminating in the two circumferences are

divided proportionally at the point of contact, {v. II., 54, Exer-
cise 2.) ^ - '

^

15. If two circles are tangent exter-

nally, the portion of their common
tangent included between the points

of contact is a mean proportional be-

tween the diameters of the circles.

Suggestion. Show that OBO^ is a right

triangle.

16. If a fixed circumference is cut by any circumference which
passes through two fixed points, the com-
mon chord passes through a fixed point.

Suggestion. PA . PB = PC. PD = PT^
by Proposition XII. and Corollary. Join P
with (7^, and show that PC^ will cut both
circles at the same distance from P, and
will be their common chord. "^ ''-::.-.-.-...-=''£ ^

^f :z X

LOCI.

17. From a fixed point O, a straight line OA is

drawn to any point in a given straight line JJfJV,

and divided at P in a given ratio m : n (ie, so

that OP:PA='m:n); find the locus of P. (v.

Proposition II.)

A'

18. From a fixed point O, a straight line

OA is drawn to any i:)oint in a given cir-

cumference, and divided at P in a given

ratio ; find the locus of P.

Suggestion. PC is a fixed length.

19. Find the locus of a point whose distances from two given

straight lines are in a given ratio. (The locus consists of two
straight lines.)

^^r
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yy- 20. Find the locus of the points which divide the various chords

of a given circle into segments whose product is equal to a given

constant, k'^ (33, Exercise).

21. Find the locus of a point the sum of whose distances from

two given straight lines is equal to a given constant, k. {v, I.,

Exercise 10.)

22. Find the locus of a point the difference of whose distances

from two given straight lines is equal to a given constant, k.

Suggestion, Reduce it to I., Proposition XIX., by drawing a

third line parallel to the more distant of the given lines at a

distance from it equal to k,

^^ PROBLEMS.
23. To divide a given straight line into three segments. A, B,

and C, such that A and B shall be in the ratio of two given

straight lines M and iV, and B and C shall be in the ratio of two
other given straight lines P and Q.

24. Through a given point, to draw a straight line so that the

portion of it intercepted between two given straight lines shall

be divided at the point in a given ratio.

Suggestion. Through the point draw a line parallel to one of

the given lines, {v. II., Exercise 32.)

25. Through a given point, to draw a straight line so that the

distances from two other given points to this line shall be in a
given ratio.

Suggestion. Divide the line joining the two other given pointe

26. To determine a point whose distances from three given in-

deiinite straight lines shall be proportional to three given straight

lines. (Exercise 19.)

4LJ' A

'h^sq
27. In a given triangle ABC, to inscribe a

square DEFQ. (Exercises 6 and II., 29.)

FG
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^ 28. Griven two circumferences inter-

secmng in -4, to draw through A a

i l^ant, JSACj such that AB shall be

TO AO in Si given ratio.

Suggestion. Divide 00^ in the given

ratio, (v. Exercise 1.)

29. To aescribe a circumference passing through two given

points A and B and tangent to a
given circumference O.

Analysis. Suppose ATB is the re-

guired circumference tangent to the

given circumference at T, and ACDB
any circumference passing through A
and B and cutting the given circum-

ference in C and D. The common
chords AB and CD^ and the common
tangent at T^ all pass through a com-
mon point P (Exercise 16) ; from
which a simple construction may be inferred. There are two
solutions given by the two tangents that can be drawn from P.

<| 30. To describe a circumference passing through two given
^ points and tangent to a given straight line. (Two solutions.)

{v. Proposition XII., Corollary.)

31. To describe a circumference passing through a given point

and tangent to two given straight lines, {v. Exercise 13.)

\y

-'lY,'//.

<^>^xjeJ?i
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COMPARISON AND MEASUREMENT OP THE
SURFACES OP RECTILINEAR PIGURES.

1. Definition. The area of a surface is its numerical meas-

ure, referred to some other surface as the unit ; in other words,

it is the ratio of the surface to the unit of surface (II., 29).

The unit of surface is called the superficial unit. The most

convenient superficial unit is the square whose side is the

linear unit.

2. Definition. Equivalent figures are those whose areas are

equal.

PROPOSITION I.—THEOREM.

3. Parallelograms having equal bases and equal altitudes are

equivalent.

Let ABCD and AJECF be two

parallelograms having equal bases

and equal altitudes. ^ ^

Superpose the second upon the

first, making the equal bases coincide. Since the altitudes

are equal, the upper bases will lie in the same straight line.

The triangles ABE and CDF are equal (I., Proposition YL).

If the triangle CDF is taken from the whole figure, ABFC,
the first parallelogram ABCD is left; if the equal triangle

ABE is taken from the same figure, the second parallelogram

AECF is left. The magnitudes of the two parallelograms

are therefore equal, and the parallelograms are equivalent.

4. Corollary. Any parallelogram is equivalent to a rectangle

having the same base and the same altitude.

130
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PROPOSITION II.—THEOREM.

5. Two rectangles having equal altitudes are to each other as

their bases.

D O D F

I.

Let ABCD and AEFD be two

rectangles having equal altitudes

;

then are they to each other as

AB : AE.

1. Suppose the bases have a common measure which is

contained m times in AB and n times in AK Then we have

AB
AE

Apply this measure to the two bases, and through the points

of division draw perpendiculars to the bases. The two rec-

tangles are thus divided into smaller rectangles, all of which

are equal, by I., Proposition XXYIIL, Corollary, and of

which ABCD contains m and AEFD contains n. Then

ABOD m

and consequently
AEFD

ABCD ^

AEFD~

n

AB
AE'

c c

2. If the bases are incommensurable, divide AE in any

arbitrarily chosen number n of

equal parts, and apply one of

these parts to AB. Let B' be the

last point of division, B'B being

of course less than the divisor.

Since AB' and AE are commensurable, we have =
AEFD

AB'

£f B

AE ,
and this holds, no matter what the value of n. If, now,
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C O

n is increased at pleasure, we can make J5'J5, and consequently

B'BGG'j as small as we please, but

cannot make them absolutely zero.

Hence, as n is indefinitely in-

creased, AB' has AB for its limit,

AB'C'D has ABGD for its Hmit,

Bf B

has . for its limit.

and
AEFD

AB'

AEFD

, „ has —— for its limit.AE AE

Therefore, by II., Theorem^ Doctrine of Limits,

ABCD AB
AEFD ^. (^v. IL, 42, and III., 14.)

6. Corollary. Two rectangles having equal bases are to each

other as their altitudes.

Note. In these propositions, by " rectangle" is to be under-

stood " surface of the rectangle."

v^Vfiv^jfi^^-^
V PBOPOSITION III.—THEOKEM.

7. Any two rectangles are to each other as the products of their

bases by their altitudes.

Let B and i2' be two rec-

tangles, k and k their bases,

h and h' their altitudes ; then

B kXh
J<fXh''

For, let >S^ be a third rectan-

gle, having the same base k
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as the rectangle -B, and the same altitude h! as the rectangle

R' ; then we have, by Proposition II., Corollary, and Propo-

sition II.,

S h" R' k"

and multiplying these ratios, we find

R' Ji'X h''

8. Scholium. It must be remembered that by the product

of two lines is to be understood the product of the numbers

which represent them when they are measured by the linear

unit (III., 8).

PEOPOSITION IV.—THEOREM.

9. The area of a rectangle is equal to the product of its base

and altitude.

Let R be any rectangle, k its base,

and h its altitude numerically ex-

pressed in terms of the linear unit

;

and let Q be the square whose side

is the linear unit ; then, by Proposition III.,

R _k X h

Q IX 1
= k X h.

RBut since Q is the unit of surface, - = the numerical meas-

ure, or area, of the rectangle, R, (1) ; therefore

Area of R = k X h.

12
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10. Scholium I. When the base and altitude are exactly

divisible by the linear unit, this proposition is rendered evi-

dent by dividing the rectangle into squares

each equal to the superficial unit. Thus, if

the base contains 7 linear units and the alti-

tude 5, the rectangle can obviously be divided

into 35 squares each equal to the superficial

unit ; that is, its area = 5x7. The propo-

sition, as above demonstrated, is, however, more general,

and includes also the cases in which either the base or the

altitude, or both, are incommensurable with the unit of

length.

11. Scholium II. The area of a square, being the product

of two equal sides, is the second power of a side. Hence it is

that in arithmetic and algebra the expression " square of a

number" has been adopted to signify "second power of a

number."

We may also here observe that many writers employ the

expression "rectangle of two lines" in the sense of "product

of two lines," because the rectangle constructed upon two

lines is measured by the product of the numerical measures

of the lines.

PROPOSITION v.—THEOREM.

12. The area of a parallelogram is equal to the product of its

base and altitude.

For, by Proposition I., the parallelogram is equivalent to a

rectangle having the same base and the same altitude.
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PROPOSITION VI.—THEOREM.

13. The area of a triangle is equal to half the product of its

base and altitude.

Let ABC be a triangle, k the numerical
f-

--^

measure of its base BC^h that of its alti- •'' ^^^^"^^^/ •*

tude AB^ and 8 its area \ then B^~h o""d

S=ikXh.

For, through A draw AE parallel to CB, and through B draw

B£J parallel to CA. The triangle ABC is one-half the paral-

lelogram AEBC (I., Proposition IX.); but the area of the

parallelogram = k y^ h ; therefore, for the triangle, we have

S=lk X h.

/ 14. Corollary I. A triangle is equivalent to one-half of any

i^parallelogram having the same base and the same altitude.

J 15, Corollary II. Triangles having equal bases and equal

\laltitudes are equivalent.

16. CoROLLA'feY III. Triangles having equal altitudes are to

each other as their bases ; and triangles having equal bases are

to each other as their altitudes.

X PROPOSITION VII.—THEOREM.
/

17. The area of a trapezoid is equal to the product of its alti^

tude by half the sum of its parallel bases.

Let ABCD be a trapezoid ; MN= h, its

altitude ; AD = a, BC = b, its parallel

bases ; and let S denote its area ; then

S=i(^a + b)X h.
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A M

For, draw the diagonal AC. The altitude of each of the

triangles ABC and ABC is equal to h, and

their bases are respectively a and b ; the

area of the first is ^ a y^ h^ that of the

second is ^ 6 X ^ ; and the trapezoid being

the sum of the two triangles, we have b n o

S=iaXh-]-ibXh = i(a + b)Xh.

18. Scholium. The area of any polygon may be found by

finding the areas of the several triangles into which it may
be decomposed by drawing diagonals from any vertex.

The following method, however, is usually preferred, espe-

cially in surveying. Draw the longest

diagonal AD of the proposed polygon

ABCDEF; and upon AD let fall the

perpendiculars BM^ CW, UP, FQ.

The polygon is thus decomposed into

right triangles and right trapezoids,

and by measuring the lengths of the

perpendiculars and also of the distances AM, MN^ ND, AQ,

QP, PD, the bases and altitudes of these triangles and trape-

zoids are known. Hence their areas can be computed by the

preceding theorems, and the sum of these areas will be the

area of the polygon.

i PROPOSITION VIII.—THEOREM.
'

19. Similar triangles are to each other as the squares of their

homologous sides.

Let ABC, A'B'C, be similar tri-

angles; then

ABC ^ ZB^
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Let AD and A'D' be the altitudes ; then

137

ABC _ ^AD X BC _ 4^ BC
A'B'C ^A'D' X B'C A'D' '^ B'C

But the triangles ABB and A'D'B' are similar (III., Propo

sition III.) ] therefore

AB AB
A'D' A'B"

and from the similarity of ABC and A'B'G\

BC AB

hence

and we have

B'C A'B"

AB BC ^ TB''

A'B' ^ B'G' A^''

ABC ^ X5'

EXERCISE.

\ I

^ Theorem.— Ti^o triangles having an angle of the one equal to

an angle of the other are to each other as the products of the ^

sides including the equal angles. L^

Suggestion. Let ABE and ABC be the two

triangles. Draw BE^ and compare the two

triangles with AEB. (v. Proposition YI.,

Corollary III.)

12»
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PROPOSITION IX.—THEOREM.

20. Similar polygons are to each other as the squares of their

homologous sides.

Let ABCDEF, A'B'CD'E'F', be two similar polygons,

and denote their surfaces

by /Sand >S"; then b ^ ^ c' •

For, let the polygons be p

decomposed into homolo-

gous similar triangles (III., Proposition YII.). The ratio of

the surfaces of any pair of homologous triangles, as ABC and

A'B'C, ACD and A'CD', etc., will be the square of the ratio

of two homologous sides of the polygons (Proposition YIII.)

;

therefore we shall have

ABO ACD ADE AEF Tff
A'B'C A'CD' A'D'E' A'E'F' Z^'

Therefore, by addition of antecedents and consequents (III.,

12).

ABC + ACD + ADE + AEF ^S^ Z^
A'B'C + A'CD' + A'D'E' + A'E'F' S' ATB"^'

PROPOSITION X.—THEOREM.

21. The square described upon the hypotenuse of a right tri-

angle is equivalent to the sum of the squares described on the

other two sides.
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Let the triangle ABC be right angled at C; then the
square AIT, described upon the

hypotenuse, is equal in area to

the sum of the squares AF and
£D, described on the other two
sides.

For, from C draw CP perpen-

dicular to AB and produce it to

meet KH in Z. Join CK, BG.
Since ACF and ACB are right

angles, CF and CB are in the

same straight line (I., Proposition

lY.)
;
and for a similar reason AG and CD are in the same

straight line.

In the triangles OAK, GAB, we have AK equal to AB,
being sides of the same square; AC equal to AG, for the
same reason; and the angles CAK, GAB, equal, being each
equal to the sum of the angle GAB and a right angle; there-
fore these triangles are equal (L, Proposition VI.).
The triangle CAK and the rectangle AL have the same

base AK; and since the vertex C is upon LP produced, they
also have the same altitude; therefore the triangle CAK is
equivalent to one-half the rectangle AL (Proposition VI
Corollary I.).

'

The triangle GAB and the square AF have the same base
AG; and smce the vertex B is upon FG produced, they also
have the same altitude

; therefore the triangle GAB is equiva-
lent to one-half the square AF (Proposition VI., Corollary I

)

But the triangles CAK, GAB, have been shown to be equal •

therefore the rectangle AL is equivalent to the square AF
In the same way it is proved that the rectangle BL is

equivalent to the square BD.
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Therefore the square AH^ which is the sum of the rec-

tangles AL and BL, is equivalent

to the sum of the squares AF and

BD.

22. Scholium. This theorem is

ascribed to Pythagoras (born

about 600 B.C.), and is commonly

called the Pythagorean Theorem.

The preceding demonstration of

it is that which was given by

Euclid, in his Elements (about

300 B.C.).

It is important to observe that we may deduce the same

result from the numerical relation XS^ ==:AC^ -\- ^FU^ already

established in III., Proposition X. For, since the measure

of the area of a square is the second power of the number

which represents its side, it follows directly from this numer-

ical relation that the area of which AB^ is the measure is

equal to the sum of the areas of which AC and BTf are the

measures.

EXERCISES.

1. Theorem.—If the three sides of a right triangle be taken as

the homologous sides of three similar polygons. constructed upon

them, then the polygon constructed upon the hypotenuse is equiva-

lent to the sum of the polygons constructed upon the other two

sides, (v. Proposition IX.)

2. Theorem.— The squares on the sides of a right triangle are

proportional to the segments into which the hypotenuse is divided

by a perpendicular let fall from the vertex of the right angle,

(v. Figure, Proposition X.)
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PEOBLEMS OF C0:N^STEUCTI0K.

PROPOSITION XI.—PROBLEM.

23. To construct a triangle equivalent to 4: given polygon.

Let ABCDEF be the given polygon.

' Take any three consecutive vertices,

as J., 5, (7, and draw the diagonal AC'

Through B draw BP parallel to AO
Wk meeting DC produced in P; join AP.

The triangles APG, ABC, have the

same base AG ; and since their vertices,

P and 5, lie on the same straight line BP parallel to AG^

they also have the same altitude ; therefore they are equiva-

lent. Therefore the pentagon APDEF is equivalent to the

hexagon ABGDEF. Now, taking any three consecutive ver-

tices of this pentagon, we shall, by a precisely similar con-

struction, find a quadrilateral of the same area ; and, finally,

by a similar operation upon the quadrilateral we shall find a

triangle of the same area.

Thus, whatever the number of the sides of the given poly-

gon, a series of successive steps, each step reducing the num-

ber of sides by one, will give a series of polygons of equal

areas, terminating in a triangle.

PROPOSITION XII.—PROBLEM.

24. To construct a square equivalent to a given parallelogram

or to a given triangle. ^ ^

1st. Let J. (7 be a given parallelogram, k its \ ^i \

base, and h its altitude.

Find a mean proportional x between h and
j

y

k, by III., 40. The square constructed upon

X will be equivalent to the parallelogram, since x^= h y^ k.
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n

2d. Let ABC be a given triangle, a its base, and h its

altitude.
A

Find a mean proportional x between a

and ih; the square constructed upon x

will be equivalent to the triangle, since ^ a u

= a X i h = i ah. I 1

25. Scholium. By means of this problem

and the preceding, a square can be found equivalent to any-

given polygon.

Pi-

PEOPOSITION XIII.-PROBLEM.

26. To construct a square equivalent to the sum of two or more

given squares, or to the difference of two given squares.

1st. Let m, w, ^, q, be the sides of given

squares.

Draw AB = m, and BC = n, perpendic-

ular to each other at B; join AC. Then

(Proposition X.) ZU^^ m^ -\- n\

Draw CD = p perpendicular to A (7, and

join AD. Then AJf = TU' + p' = m' +
n^ + _p^

Draw DB = q perpendicular to AD, and

join AK Then TE^ = Jlf -\- q' = m,'

+

n^ _|_ p^ _|_ ^2 Therefore the square con-

structed upon AE will be equivalent to the sum of the

squares constructed upon m, 7i, p, q.

In this manner may the areas of any number of given

squares be added.

2d. Construct a right angle ABC, and lay

off BA = n. With the centre A and a radius

= m, describe an arc cutting BCinC. Then
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:ro' = zu^ - zs' m' therefore the square con-

M

structed upon BC will be equivalent to the difference of the
squares constructed upon m and n.

EXERCISE.

Prohlem.^Upon a given straight line, to construct a rectangle
equivalent to a given rectangle.

\
PBOPOSITION XIV.-PROBLEM.

27. To construct a rectangle, having given its area and the
sum of two adjacent sides.

Let MN be equal to the given sum of
the adjacent sides of the required rec- ^ .^

tangle
;
and let the given area be that of i,,..^.^::C:r\9

the square whose side is AB. '' ^ —^^;--—

Upon MJSr as a diameter describe a
semicircle. AtM erect MP = AB per-
pendicular to MN, and draw PQ parallel to MN, intersecting
he circumference in Q. From Q let fall QR perpendicular

to MN; then MR and RN are the base and altitude of the

PROPOSITION XV.-PEOBLEM.
28. To find two straight lines in the ratio of the areas of two

given polygons, •

Let squares be found equal in area to o
the given polygons respectively (23 and /T^v.
24). Upon the sides of the right angle '^ [ ^_j,
ACB, take CA and CB equal to the sides
of these squares, join AB, and let fall CD perpendicular to

B N



144 ELEMENTS OF GEOMETRY.

AB. Then, by (III., 26), we have lU' = AD X AB, VF^

= JDB X AS- Hence

IV ^ AD
.

VB' DB'

therefore AD and DB are in the ratio of the areas of the

given polygons.

EXERCISE.

Problem.—To find a square which shall he to a given square

in the ratio of two given straight lines, (y. 28.)

PROPOSITION XVli—PROBLEM.X)^

Q/n
29. To construct a polygon similar to a given polygon P and

equivalent to a given polygon Q.

Find M and iV, the sides of

squares respectively equal in area

to P and (23 and 24).

I
^ 1 I

^ 1

Let a be any side of P, and find

a fourth proportional a' to Mj i^T, \ p' |

and a; upon a', as a homologous ^

—

-f
—

'

side to a, construct the polygon P'

similar to P; this will be the required polygon. For, by

construction,

M_a
jsr a"

therefore, taking the letters P, Q, and P', to den0te the areas

of the polygons,

P^3P^a^
Q W' a''

'
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But, the polygons P and P' being similar, we have, by

(Proposition IX,),

P' a'^

'

and comparing these equations, we have P' = Q.

Therefore the polygon P' is similar to the polygon P and

equivalent to the polygon Q, as required.

EXERCISE.

Problem.—To construct a polygon similar to a given polygon^

and whose area shall he in a given rhtio to that of the given

polygon, (v. 28, Exercise, an^III., 43.) ^

J #
G k ^^^

i.^

IS

D
f



EXERCISES ON BOOK IV.

THEOREMS.
^r ^ 1. Two' triangles are equivalent if they have two sides of the

(^r'^^iiAM) one respectively equal to two sides of the other, and the included

At angle of the one equal to the supplement of the included angle

of the other.
-—^^Vz. The two opposite triangles formed by joining any point in

the interior of a parallelogram4o its four vertices are together

equivalent to one-half the parallelogram.

3. The triangle formed by joining the middle point of one of

the non-parallel sides of a trapezoid to the extremities of the

opposite side is equivalent to one-half the trapezoid, {v, I., Ex-
ercise 24.)

4. The figure formed by joining consecutively the four middle
points of the sides of any quadrilateral is equivalent to one-half

the quadrilateral, (v. I., Exercise 32.)

„ V. 6. If in a rectangle ABCD we draw
the diagonal AC^ inscribe a circle in the

triangle ABC^ and from its centre draw
OE and Oi^ perpendicular to AD and
DC respectively, the rectangle OD will

be equivalent to one-half the rectangle

ABCD.

C 6. The area of a triangle is equal to

one-half the product of its perimeter by
the radius of the inscribed circle.

^

7. The area of a rhonabus is one-half the product of the diag-

onals.

.\,w^j'«'
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- '" 8. The straight line joining the middle points of the parallel

sides of a trapezoid divides it into two equivalent figures.

(4:'j ^. Any line drawn through the point of intersection of the diag-

onals of a parallelogram divides it into two equal quadrilaterals.

10. In an isosceles right triangle either leg is a mean propor-

tional between the hypotenuse and the perpendicular upon it

from the vertex of the right angle.

11. If two triangles have an angle in common, and have equal
areas, the sides about the equal angles are reciprocally propor-

V tional.

. .Ivt \'^' The perimeter of a triangle is to a side as the perpendicular

fronythe opposite vertex is to the radius of the inscribed circle.

!
: (v.yExercise 6.)

f yi3. Two quadrilaterals are equivalent when the diagonals of ,

V one are respectively equal and parallel to the diagonals of the I

^o^her.

^ 14. The sum of the perpendiculars from any point within an
equilateral convex polygon upon the sides is constant.

y^ Suggestion. Join the point with the vertices of the polygon.

^
15. The lines joining two opposite vertices of a parallelogram

^ with the middle points of the sides form a parallelogram whose
^^^area is one-third the a^ea of the given parallelogram.

A ^.^ 16. The sum of the squares on the segments of twoj)erpendic-
ular chords in a circle is equivalent to the square on the diameter.

17. Let ABC be any triangle, and
"^ upon the sides AB, AC, construct

parallelograms AD, AF, of any mag-
nitude or form. Let their exterior

*^ sides DE, FG, meet in M; join MA,
^ and upon BC construct a parallelo-

gram BK, whose side BH is equal

and parallel to MA, Then the par-

allelogram BK is equivalent to the

sum of the parallelograms AD and
AF, {v. Proposition I.)

From this deduce the Pythagorean Theorem.

«y^^ V 18. Prove, geometrically, that th^ square described upon the

sum of two straight lines is equivalent to the sum of the squares

described on the two lines plits twice their rectangle.

Note. By the "rectangle of two lines" is here meant the rec-

tangle of which the two lines are the adjacent sides.

QV' 19. Prove, geometrically, that the square described upon the

difference of two straight lines is equivalent to the sum of the

squares described on the two lines minus twice their rectangle.
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V
20. Prove, geometrically, that the rectangle of the sum and the

difference of two straight lines is equivalent to the difference of
the squares of those lines.

PROBLEMS.

.4

V

u

21. To construct a triangle, given its angles and its area (eq

to that of a given square).

Suggestion. Construct any triangle having the given angles.

The problem then reduces to (29).

22. Given any triangle, to construct an isosceles triangle of the

same area, whose vertical angle is an angle of the given triangle.

{v. 19, Exercise.)

23. Given any triangle, to construct an equilateral triangle of

he same area. {v. Exercise 21.)

24. Bisect a given triangle by a parallel to one of its sides, (v.

Proposition VIII. and 28.)

25. Bisect a triangle by a straight line drawn through a given

point in one of its sides, (v. 19, Exercise.)

26. Inscribe a rectangle of a given area in a given circle.

Suggestion. Draw a diagonal of the rectangle. The problem

can then be reduced to inscribing in the given circle a right

;riangle of given area.

27. Given three points, A, B^ and (7, to find a fourth point P,

such that the areas of the triangles APB, APC, BPG, shall be

equal. (Four solutions.) (v. III., Exercise 19.)

h

\
;^*(..«'
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REGULAR POLYGONS. MEASUREMENT ®P THE
CIRCLE.

1. Definition. A regular polygon is a polygon which is at

once equilateral and equiangular.

The equilateral triangle and the square are simple exam-

ples of regular polygons. The following theorem establishes

the possibility of regular polygons of any number of sides.

PROPOSITION I.—THEOREM.

2. If the circumference of a circle be divided into any number

of equal parts, the chords joining the successive points of division

form a regular polygon inscribed in the circle ; and the tangents

drawn at the points of division form a regular polygon circum^

scribed about the circle.

Let the circumference be divided into

the equal arcs AB, BC, GD^ etc. ; then,

1st, drawing the chords AB, BC, CD,

etc., ABGD, etc., is a regular inscribed

polygon. For its sides are equal, being

chords of equal arcs ; and its angles are

equal, being inscribed in equal segments.

2d. Drawing tangents at A, B, C, etc., the polygon GHK^
etc., is a regular circumscribed polygon. For, in the triangles

AGB, BHC, CKD, etc., we have AB = BC = CD, etc., and

the angles GAB, GBA, HBC, HOB, etc., are equal, since each
13* 149



150 ELEMENTS OF GEOMETRY.

is formed by a tangent and chord and is measured by half

of one of the equal parts of the circum-

ference (II., Proposition XY.) ; therefore

these triangles are all isosceles and equal

to each other. Hence we have the an-

gles a = H= K, etc., and AG = GB
=.BH = HG = CK, etc., from which,

by the addition of equals, it follows that

GH= HK, etc.

3. Corollary I. If the vertices of a regular inscribed poly-

gon are joined with the middle points of the arcs subtended by the

sides of the polygon, the joining lines will form a regular inscribed

polygon of double the number of sides.

4. Corollary II. If at the middle points of the arcs joining

adjacent points of contact of the sides of a regular circumscribed

polygon tangents are drawn, a regular circumscribed polygon of

double the number of sides will be formed.

5. Scholium. It is evident that the area of an inscribed

polygon is less than that of the inscribed polygon of double

the number of sides ; and the area of a circumscribed polygon

is greater than that of the circumscribed polygon of double

the number of sides.

EXERCISE.

Theorem.—If a regular polygon is inscribed in a circle, the

tangents drawn at the middle points of

the arcs subtended by the sides of the

inscribed polygon form a circumscribed

regular polygon, whose sides are par-

allel to the sides of the inscribed poly-

gon, and whose vertices lie on the radii

drawn to the vertices of the inscribed

polygon.

c

A'{

""~--^A

e/7 \ /\
V\f

V"^'-^ ^^\/

u
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PROPOSITION II.—THEOREM.

6. A circle may be circumscribed about any regular polygon

;

and a circle may also be inscribed in it.

Let ABCD ... be a regular polygon.

Through A' and B\ the middle points

of AB and BG^ draw perpendiculars,

and connect 0, their point of intersec-

tion, with all the vertices of the poly-

gon and with the middle points of all

the sides.

The triangles OA'B and OB'B are equal, by I., Proposition

X. OB'B and OB'G are equal, by I., Proposition YI. The

angle OBB' is one-half of ABG ; .
•

. 005' is one-half of the

equal angle BGD. Hence the triangles OB'G and OGG' are

equal, by I., Proposition YI. By continuing this process we

may prove all the small triangles equal. 0, then, is equidis-

tant from all the vertices, and therefore with as a centre a

circle may be circumscribed about the polygon. is also

equidistant from all the sides, and therefore with as a

centre a circle may be inscribed in the polygon.

7. Definitions. The centre of a regular polygon is the common

centre, 0, of the circumscribed and in-

scribed circles.

The radius of a regular polygon is

the radius, OJ., of the circumscribed

circle.

The apothem is the radius, O-ff, of

the inscribed circle.

The angle at the centre is the angle, AOB, formed by radii

drawn to the extremities of any side.

^oAvv̂
E
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8. The angle at the centre is equal to four right angles

divided by the number of sides of the

polygon.

9. Since the angle ABC is equal to

twice ABO, or to ABO + BAO, it fol-

lows that the angle ABC of the poly-

gon is the supplement of the angle at

the centre.

PROPOSITION in.—THEOREM.

10. Begular 'polygons of the same number of sides are similar,

Ijet ABCI)JE,A'B'C'iyE\

be regular polygons of the

same number of sides ; then

they are similar.

For, 1st, they ape mutu-

ally equiangular, since the

magnitude of an angle of

either polygon depends only on the number of the sides (8

and 9), which is the same in both.

2d. The homologous sides are proportional, since the ratio

AB : A'B' is the same as the ratio BG : B'C, or CD : CD',

etc.

Therefore the polygons fulfil the two conditions of simi-

larity.

11. Corollary. The perimeters of regular polygons of the

same number of sides are to each other as the radii of the cir-

cumscribed circles, or as the radii of the inscribed circles ; and

their areas are to each other as the squares of these radii, (y,

III., Proposition YIII., and lY., Proposition IX.)



BOOK V. 153

PROPOSITION IV.—THEOREM.

12. The area of a regular polygon is equal to half the product

of its perimeter and apothem.

For straight lines drawn from the centre to the vertices

of the polygon divide it into equal triangles whose bases are

the sides of the polygon and whose common altitude is the

apothem. The area of one of these triangles is equal to

half the product of its base and altitude ; therefore the sum

of their areas, or the area of the polygon, is half the product

of the sum of the bases by the common altitude; that is,

half the product of the perimeter and apothem.

EXERCISE.

Theorem.— The area of any polygon circumscribed about a

circle is half the product of its perimeter by the radius of the

circle.

PROPOSITION v.—THEOREM.

13. An arc of a circle is less than any line which envelops it

and has the same extremities.

Let AKB be an arc of a circle, AB its

chord ; and let ALB, AMB, etc., be any

lines enveloping it and terminating at A
and B.

Of all the lines AKB, ALB, AMB, etc.,

which can be drawn (each including between itself and the

chord AB the segment, or area, AKB), there must be at least

one minimum or shortest line, since all the lines are obviously

not equal. Now, no one of the lines ALB, AMB, etc., envel-

oping AKB, can be such a minimum ; for, drawing a tangent

CKL to the arc AKB, the ImeAGJCLB is less than ACLDB

;
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therefore ALB is not the minimum ; and in the same way it

is shown that no other enveloping line can

be the minimum. Therefore the arc AKB
is the minimum.

14. Corollary. The circumference of a

circle is less than the perimeter of any poly-

gon circumscribed about it.

15. Scholium. The demonstration is applicable when AKB
is any convex curve whatever.

PKOPOSITION VI.—THEOREM.

16. If the number of sides of a regular polygon inscribed in a

circle be increased indefinitely, the apothem of the polygon will

approach the radius of the circle as its limit.

Let AB be a side of a regular polygon in-

scribed in the circle whose radius is OA;

and let OD be its apothem.

Whatever the number of sides of the poly-

gon OB < OA, by I., Proposition XYII.

OA < AD + OD (I., Axiom I.) • .. OA — OD <, AD, and

consequently OA — OD <^ AB.

The perimeter of the polygon is manifestly less than the

circumference of the circle. If n is the number of sides of

the polygon, AB is less than one-nth of the circumference.

Therefore, by taking a sufficiently great value of n, we can

make AB, and consequently OA — OD, as small as we please.

Since OA — OD can be made as small as we please by

increasing the number of sides of the polygon, but cannot be

made absolutely zero, OA is the limit of OD, as the number

of sides of the polygon is indefinitely increased (II., 39).
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PROPOSITION VII.—THEOREM.

17. The circumference of a circle is the limit which the perim-

eters of regular inscribed and circumscribed polygons approach

when the number of their sides is increased indefinitely ; and the

area of the circle is the limit of the areas of these polygons.

Let AB and CD be sides of a regular in-

scribed and a similar circumscribed polygon

(v. Proposition I., Exercise) ; let r denote the

apothem OE, R the radius OF^ p the perim-

eter of the inscribed polygon, P the perim-

eter of the circumscribed polygon. Then we

have (Proposition III., Corollary)

whence, by division (III., 10),

P— p __ R — r

R
or P

Now, we have seen in Proposition YI. that by increasing

the number of sides of the polygons the diiference R — r may
P

be decreased at pleasure ; consequently, since —- does not in-
R

P
crease, —- X (-^ — r), or P — p, may be decreased at pleasure.

R
But P being always greater, and p always less, than the cir-

cumference of the circle, the difference between this circum-

ference and either P or ^ is less than the difference P -~ p^

and consequently may be made as small as we please by

increasing the number of sides of the polygons, and sinco it

obviously cannot be made absolutely zero, the circumference

is the common limit of P and p, as the number of sides of

the polygons is indefinitely increased.

IjiisaL.



156 ELEMENTS OF GEOMETRY.

Again, let s and S denote the areas of two similar inscribed

and circumscribed polygons. The difference

between the triangles COD and AOB is the

trapezoid CABD, the measure of which is

^ (CD + AB) X ^^; therefore the difference

between the areas of the polygons is

C F D

±\^ ^\/«

N^^

consequently,

S-s<PXiB-r).

Now, by increasing the number of sides of the polygons the

quantity P X {^ — 0) ^^^ consequently also S— 5, may be

decreased at pleasure. But S being always greater, and 5

always less, than the area of the circle, the difference between

the area of the circle and either S ov s is less than the differ-

ence S— 5, and consequently may also be made as small as

we please by increasing the number of sides of the polygons,

and since it obviously cannot be made absolutely zero, the

area of the circle is the common limit of S and 5, as the

number of sides of the polygons is indefinitely increased.

PROPOSITION VIII.—THEOREM.

18. The circumferences of two circles are to each other as their

radii, and their areas are to each other as the squares of their

radii.

Let B and B' be the radii

of the circles, C and 0' their

circumferences, S and S' their

areas.

Inscribe in the two circles

similar regular polygons of any

arbitrarily chosen number, n, of sides ; let P and P' denote
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the perimeters, A and A' the areas, of these polygons ; then,

the polygons being similar, we have (Proposition III., Corol-

lary)

P ^ ^ A^ R^

P' J2" A' B'^'

no matter what the value of n. ^
' Up

As we change n, P and -- X P' change, but remain always

equal to each other.

As n is indefinitely increased, P approaches the limit 0, and

7? 7?

^^ X P' approaches the limit ^^ X C". Therefore, by II.,

Theorem of Limits, these limits are equal, and we have

c= |xo',

or

^ = ?L
C B!'

In the same way we may prove

K = ^
S' It''

19. Corollary I. The circumferences of circles are to each

other as their diameters, and their areas are to each other as the

squares of their diameters.

Suggestion. D= 2P, if D is the diameter and R the ra-

dius.

14
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20. Corollary II. The ratio of the circumference of a circle

to its diameter is constant ; that is, it is the same for all circles.

O 2R
For, from — = ——, we have at once

2B 2B''

This constant ratio is usually denoted by tt, so that for any

circle whose diameter is 2R and circumference G we have

2R '

21. Scholium. The ratio r is incommensurable (as can be

proved by the higher mathematics), and can therefore bo

expressed in numbers only approximately. The letter tt,

however, is used to symbolize its exact value.

22. Definitions. Similar arcs are

those which subtend equal angles

at the centres of the circles to

which they belong.

Similar sectors are sectors whose /
bounding radii include equal angles. ^ /^'^^^ . Z^^-^^Ce^

EXERCISE.

Theorem.—Similar arcs are to each other as their radii, and

similar sectors are to each other as the squares of their radii.

Suggestion. The arcs are like parts of their respective cir-

cumferences, and the sectors like parts of their circles.
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PROPOSITION IX.—THEOREM.

23. The area of a circle is equal to half the product of its

circumference by its radius.

Let the area of any regular polygon cir-

cumscribed about the circle be denoted by

A, its perimeter by P, and its apothem,

which is equal to the radius of the circle, by

B ; and let S be the area and C the circum-

ference of the circle. Then A= ^F y^ R
(Proposition IY.)j ^^ matter what the number of sides of

the polygon. If we change the number of sides of the

polygon, A and iP X -K change, but remain always equal to

each other.

As the number of sides is indefinitely increased, A ap-

proaches the limit S^ and ^P X ^ the limit ^C X R- There-

fore, by II., Theorem of Limits, these limits are equal, and

we have

>Sf=^(7xP. [1]

24. Corollary. The area of a circle is equal to the square

of its radius multiplied by the constant number tz.

Suggestion. If we substitute for C in [1] its value 27zR

(20), we have

EXERCISE.

Theorem.— The area of a sector is equal to half the product

of its arc by the radius.

Suggestion. Compare the sector with the whole circle.
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PEOBLEMS OF COIS^STEUCTIOK AND COMPUTA-
TIOK

PKOPOSITION X.—PROBLEM.

25. To inscribe a square in a given circle.

B

Draw any two diameters A C, BJ), per-

pendicular to each other, and join their

extremities by the chords ABj BC, CD,

DA; then ABCD is an inscribed square.

26. Corollary. To circumscribe a square about a circle,

draw tangents at the extremities of two perpendicular diam-

eters AC, BD.

27. Scholium. In the right triangle ABO we have AB'=
'UA' + 'UB'=2'UA\ whence AB =OA.y^, by which the

side of the inscribed square can be computed, the radius

being given.

PROPOSITION XI.—PROBLEM.

28. To inscribe a regular hexagon in a given circle.

Suppose the problem solved, and let

ABCDEF be a regular inscribed hexa-

gon.

Draw the radii OA and OB. The

angle AOB is measured by \ of the cir-

cumference, and therefore contains 60°.

OAB and OBA are therefore together equal to 180° — 60°,

or 120° ; and, since they are equal, each is 60°, and the tri-

angle OAB is equilateral, and th^gfor^the side of the in-

scribed regular hexagon is equal to thfe radius of the circle.
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Consequently, to inscribe a regular hexagon, apply the

radius to the circle six times as a chord.

29. Corollary. To inscribe an equilateral triangle^ join the

alternate vertices of the regular hexagon.

30. Scholium. Since OB bisects the arc ABC, it bisects the

chord AG Bit right angles ; and since in the isosceles triangle

A OB, AH is perpendicular to the base, it bisects the base,

and
OII=WB = WA;

that is, the apothem of an inscribed regular triangle is equal

to one-half the radius.

In the right triangle AHO, AH^ = WC — OTT' = TJA^ —
{lOAy=^lUA\2^n^

whence AC =^ OA-^/S, by which the side of the inscribed tri-

angle can be computed from the radius.

The apothem of the regular inscribed hexagon is equal to

OA
2

AS 1/5-

PROPOSITION XII.—PROBLEM.

31. To inscribe a regular decagon in a given circle.

Suppose the problem solved, and let

ABC .,. . . Jv be a regular inscribed deca-

gon.

Join AFj BGr ; since each of these

lines bisects the circumference, they are

diameters and intersect in the centre 0.

Draw BK intersecting OA in M.

The angle AMB is measured by half

the sum of the arcs KF and AB (II., Proposition XYI.),

—

I 14*



t'X^

ELEMENTS OF GEOMETRY.

that is, )by two divi^ns of the circumference ; the inscribed

angle^ikHJ^ is measured by half the arc

BF^—that is, also, by two divisions;

therefore AMB is an isosceles triangle,

and MB = AB.

Again, the inscribed angle MBO is

measured by half the arc KG,—^that is,

by one division ; and the angle MOB at

the centre has the safne measure ; there-

fore 0MB is an isosceles triangle, and OM= MB = AB.

The inscribed angle MBA, being measured by half the arc

AK,—that is, by one division,—is equal to the angle AOB.

Therefore the isosceles triangles AMB and AOB are mutually

equiangular and similar, and give the proportion

whence

OA'.AB^AB: AM;

OA XAM= A^=(m\-

that is, the radius OA is divided in extreme and mean ratio

at Jf (III., 41) ; and the greater segment OJf is equal to the

side AB of the inscribed regular decagon.

Consequently, to inscribe a regular decagon, divide the

radius in extreme and mean ratio (III., 42), and apply the

greater segment ten times as a chord.

o

32. Corollary. To inscribe a regular

pentagon
J
join the alternate vertices of

the regular inscribed decagon.
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PROPOSITION XIII.—PROBLEM.

33. To inscribe a regular pentedecagon in a given circle.

Suppose AB is the side of a f
regular inscribed pentedecagon, ^n*-- - -y^
or that the arc AB is ^ of the ^'^^===*==>.-^i^i;:i^^^'''^

circumference.

JSTow, the fraction J^. == i._ -i^
; therefore the arc AB is the

difference between \ and -^ of the circumference. Hence,

if we inscribe the chord AG equal to the side of the regular

inscribed hexagon, and then CB equal to that of the regular

inscribed decagon, the chord AB will be the side of the

regular inscribed pentedecagon required.

34. Scholium. Any regular inscribed polygon being given,

a regular inscribed polygon of double the number of sides

can be formed by bisecting the arcs subtended by its sides

and drawing the chords of the semi-arcs (Proposition I., Cor-

ollary I.). Also, any regular inscribed polygon being given^

a regular circumscribed polygon of the same number of sides

can be formed (Proposition I.). Therefore, by means of the

inscribed square, we can inscribe and circumscribe, succes-

sively, regular polygons of 8, 16, 32, etc., sides ; by means of

the hexagon, those of 12, 24, 48, etc., sides ; by means of the

decagon, those of 20, 40, 80, etc., sides ; and, finally, by means

of the pentedecagon, those of 30, 60, 120, etc., sides.

Until the beginning of the present century, it was sup-

posed that these were the only polygons that could be con-

structed by elementary geometry ; that is, by the use of the

straight line and circle only. Gaxjss, however, in his Disqui-

sitiones Arithmeticce^ Lipsise, 1801, proved that it is possible,

by the use of the straight line and circle only, to construct

regular polygons of 17 sides, of 257 sides, and in general of
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any number oF'sT^Fg which can be^ expressed by 2" + !> ^

being an integer, provided that 2" + 1 is a prime number.

I^ROPOSITION XIV.—PROBLEM.

35. Given the perimeters of a regular inscribed and a similar

• circumscribed polygon, to compute the perimeters of the regular

inscribed and circumscribed polygons of double the number of

sides.

Let AB he a side of the given

inscribed polygon, and CD a side

of the similar circumscribed poly-

gon, tangent to the arc AB Sit its

middle point B. Join AE, and at

A and B draw the tangents AF
and BG ; then AE is a side of the

regular inscribed polygon of double the number of sides, and

FG is a side of the circumscribed polygon of double the

number of sides.

Denote the perimeters of the given inscribed and circum-

scribed polygons by p and P, respectively ; and the perimeters

of the required inscribed and circumscribed polygons of

double the number of sides byy and P', respectively.

Since 0(7 is the radius of the circle circumscribed about

the polygon whose perimeter is P, we have (Proposition III.,

Corollary)

?=oc^^qc
p OA OE'

and since OF bisects the angle COE, we have (III., 15, Ex-

ercise)

OC^CF,
OE FE'

therefore

P^CF
p FE'
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whence, by composition,

P + p ^ CF-\-FE^ CE
• 2p 2FE Fa'

I^ow, FG is a side of the polygon whose perimeter is P', and

is contained as many times in F' as GE is contained in P;

hence (III., 9)
CE P
FG F"

and therefore

P+P P^

whence
2p F'

F + p
m

Again, the right triangles AES and EFW are similar, since

their acute angles EAS and FEJ}^ are equal, and give

AH^EN
AE EF

Since AH and AE are contained the same number of times

in p and p\ respectively, we have

AH^p ,

AE ^'

and since EN and EF are contained the same number of

times in »' and P', respectively, we have

^^ EW^p^,
EF P"

therefore we have

p'=y^^lxrT\ ^2^
Therefore, from the given perimeters p and P we compute

P' by the equation [1], and then with p and P' we compute

p' by the equation r2"|.

whence
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PROPOSITION XV.—PROBLEM.

36. To compute the ratio of the circumference of a circle to its

diameter^ approximately.

Method op Perimeters.—In this method, we take the

diameter of the circle as given and compute the perimeters

of some inscribed and a similar circumscribed regular poly-

gon. We then compute the perimeters of inscribed and cir-

cumscribed regular polygons of double the number of sides,

by Proposition XIY. Taking the last-found perimeters as

given, we compute the perimeters of polygons of double the

number of sides by the same method ; and so on. Each com-

putation gives us, of course, a pair of values between which

the value of the circumference must lie. As we continue the

process, these values will come nearer and nearer to the

actual value of the circumference (Proposition YII.), and we

may thus obtain as close an approximation to that value as

we please.

Taking, then, the diameter of the circle as given = 1, let

us begin by inscribing and circumscribing a square. The"

perimeter of the inscribed square = 4 X ? X i/^= 2y^ (27)

;

J that of the circumscribed square = 4 ; therefore, putting

p = 2^2 =t 2.8284271, S r I '^ '

} we find, by Proposition X., for the perimeters of the circum-

scribed and inscribed regular octagons.

P' = ^P^^= 3.3187085,

p' = yp xP'= 3.0614675.
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Then, taking these as given quantities, we put

P= 3.3137085, p = 3.0614675,

and find by the same formulae for the polygons of 16 sides

P' == 3.1825979, / = 3.1214452.

Continuing this process, the results will be found as in the

following

TABLE.*

Number Perimeter of Perimeter of
of sides. circumscribed polygon. inscribed polygon.

4 4.0000000 2.8284271
8 3.3137085 3.0614675
16 3.182.5979 3.1214452
32 3.1517249 3.1365485
64 3.1441184 3.1403312

128 3.1422236 3.1412773
256 3.1417504 3.1415138
512 3.1416321 3.1415729
1024 3.1416025 3.1415877
2048 3.1415951 3.1415914
4096 3.1415933 3.1415923
8192 3.1415928 3.1415926

From the last two numbers of this table we learn that the

circumference of the circle whose diameter is unity is less

than 3.1415928 and greater than 3.1415926 ; and since, when

the diameter = 1, we have (7 == tt (20), it follows that

TT = 3.1415927

within a unit of the seventh decimal place.

* The computations have been carried out with ten decimal places in

order to insure the accuracy of the seventh place, as given in the table.



168 ELEMENTS OF GEOMETRY.

37. Scholium. Archimedes (bom 287 b.c.) was the first to

assign an approximate value of ;:. By a method similar to

that above, he proved that its value is between 3^ and 3^J,

or, in decimals, between 3.1428 and 3.1408; he therefore as-

signed its value correctly within a unit of the third decimal

place. The number 3^, or %^^ usually cited as Archimedes'

value of Tz (although it is but one of the two limits assigned

by him), is often used as a sufficient approximation in rough

computations.

Metius (a.d. 1640) found the much more accurate value

1^, which correctly represents even the sixth decimal place.

It is easily remembered by observing that the denominator

and numerator written consecutively, thus, 113 1 355, present

the first three odd numbers each written twice.

More recently, the value has been found to a very great

number of decimals, by the aid of series demonstrated by

the Differential Calculus. Clausen and Dase, of Germany

(about A.D. 1846), computing independently of each other,

carried out the value to two hundred decimal places, and

their results agree to the last figure. The mutual verifica-

tion thus obtained stamps their results as thus far the best

established value to the two-hundredth place. (See Schu-

macher's Astronomische Nachrichten, No. 589.) Other com-

puters have carried the value to over five hundred places,

but it does not appear that their results have been verified.

The value to fifteen decimal places is

TT = 3.141592653589793.

For the greater number of practical applications, the value

t: = 3.1416 is sufficiently accurate. *~—

-



(^ IP

EXERCISES ON BOOK V.

THEOREMS.
^1. An equilateral polygon inscribed in a circle is regular.

^ 2. An equilateral polygon circumscribed about a circle is reg-

ular if the number of its sides is odd.

^ 3. An equiangular polygon inscribed in a circle is regular if the

number of its sides is odd.

\ 4. An equiangular polygon circumscribed about a circle is reg-

ular.

\i 6. The area of the regular inscribed triangle is one-half the area

of the regular inscribed hexagon.

/ 6. The area of the regular inscribed hexagon is three-fourths of

that of the regular circumscribed hexagon.

I
7. The area of the regular inscribed hexagon is a mean propor-

tional between the areas of the inscribed and circumscribed equi-

lateral triangles.

(L \ 8. A plane surface may be entirely covered (as in the construc-

tion of a pavement) by equal regular polygons of either three,

four, or six sides.

9. A plane surface may be entirely covered by a combination

of squares and regular octagons having the same side, or by
dodecagons and equilateral triangles having the same side.

10. If squares be described on the sides of a regular hexagon,

and their adjacent external vertices be joined, a regular dodeca-

gon will be formed.

11. The diagonals of a regular pentagon form a regular pentagon.

12. The diagonals joining alternate vertices of a regular hexagon
enclose a regular hexagon one-third as large as the original hex-

agon. . \

15 169
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13. The area of the regular inscribed octagon is equal to the

product of the side of the inscribed square by the diameter.

Suggestion. A quarter of the octagon is the sum of two triangles

having as a common base the side of the inscribed square, and
having the radius as the sum of their altitudes.

14. The area of a regular inscribed

dodecagon is equal to three times the

square of the radius.

15. Prove the correctness of the following

construction

:

If AB and CD are two perpendicular

diameters in a circle, and E the middle
point of the radius 0(7, and if EFis taken

equal to EA^ then OF is equal to the side

of the regular inscribed decagon, and AF
is equal to the side of the regular inscribed

pentagon, {v. III., 42.)

16. From any point within a regular polygon of n sides, per-

pendiculars are drawn to the several sides
;
prove that the sum

of thea^ perpendiculars is equal to n times the apothem.
Suggestion. Join the point with the vertices of the polygon, and

obtain an expression for the area in terms of the perpendiculars :

then see Proposition IV.

17. The side of the regular inscribed triangle is equal to the
hypotenuse of a right triangle of which the sides of the inscribed

square and of the regular inscribed hexagon are the sides, {v.

IV., Proposition X.)

18. If a is the side of a regular decagon inscribed in a circle

whose radius is i?,

u a = | (1/5-1).

B
Suggestion. By (31), - =

a H a



BOOK V. 171-

19. If a = the side of a regular polygon inscribed in a circle

whose radius is i?, and a'= the side of the

regular inscribed polygon of double the

number of sides, then

a^2 =r{2R — VU^
a

0,

Suggestion. ABC and ADO are similar.

Hence ^ =^ and ^UfVbut 37)^

= {2RY — a'\

c

7 a"

\ '''

20. If a = the side of a regular pentagon inscribed in a circle

whose radius is i?, then

R.

21. If a = the side of a regular octagon inscribed in a circle

whose radius is B^ then

a = BV2 — y±

22. If a = the side of a regular dodecagon inscribed in a circle

whose radius is i2, then

=ri2l/2-l/5.

23. The side of the regular inscribed pentagon is equal to the

hypotenuse of a right triangle whose sides are the radius and the

side of the regular inscribed decagon.

24. The area of a ring bounded by two concentric circumfer-

ences is equal to the area of a circle having for its diameter a
chord of the outer circumference tangent to the inner circumfer-

ence.

25. If on the legs of a right triangle,

as diameters, semicircles are described

external to the triangle, and from the
whole figure a semicircle on the hypot-
enuse is subtracted, the remainder is

equivalent to the given triangle.

I^*r%.r
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26. If on the two segments into which a diameter of a given

circle is divided by any point, as diameters,

semi-circumferences are described lying on op-

posite sides of the given diameter, the sum of

their lengths is equal to the length of a semi-

circumference of the given circle, and a line

which they form divides the circle into two
parts whose areas are to each other as the seg-

ments of the given diameter.

27. If a diameter of a given circle

is divided into n equal parts, and
through each point of division a
curved line of the sort described in

the last problem is drawn, these lines

will divide the circle into n equivar

lent parts.

28. If a circle rolls around the

circumference of a circle of twice

its radius, the two circles being

always tangent internally, the

locus of a fixed point on the cir-

cumference of the rolling circle

is a diameter of the fixed circle.

^^vsIfUA-^ygasguareis subdivided into n^

equal squares, nbSngany^^i^vm^number, and
in each of these smaller squares a circle is in-

scribed, the sum of their areas is equal to the

area of the circle inscribed in the original

square.



MISCELLANEOUS EXERCISES

PLANE GEOMETRY.

THEOREMS.
1. The sum of the three straight lines drawn from

any point within a triangle to the three vertices is

less than the sum and greater than the half sum
of the three sides of the triangle.

2. If one of the acute angles of a right triangle is double the

other, the hypotenuse is double the shortest side.

3. If from any point within an equilateral

triangle perpendiculars to the three sides are

drawn, the sum of these lines is constant, and
equal to the perpendicular from any vertex

upon the opposite side.

4. Lines drawn from one vertex of a
parallelogram to the middle points of the
opposite sides trisect a diagonal.

6. The bisectors of the angles con-
tained by the opposite sides (produced)
of an inscribed quadrilateral intersect

at right angles.

15*
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6. If AOB is any given angle at the

centre of a circle, and if BC can be

drawn meeting AO produced in C, and
the circumference in Z>, so that CD shall

be equal to the radius of the circle, then

the angle C will be equal to one-third the

angle AOB.
Note, There is no method known of drawing J5(7, under these

conditions, and with the use of straight lines and circles only,

AOB being any given angle ; so that the trisection of an angle^ in

general, is a problem that cannot be solved by elementary geom-
*try.

7. If through P, one of the points

of intersection of two circumfer-

ences, any two secants, APB^ CPD^
are drawn, the straight lines, AC,
DB, joining the extremities of the

secants, make a constant angle PJ,

equal to the angle 3fPN formed by
the tangents at P.

8. If a figure is moved in a plane, it may be brought from one

position to any other by revolving it about a certain fixed point

;

that is, by causing each point of the figure to move in the circum-

ference of a circle whose centre is the fixed point.

9. If a square DEFO is inscribed in a right triangle ABC, so

that a side DE coincides with the hypotenuse BC (the vertices F
and O being in the sides AC and AB), then the side DE is a

mean proportional between the segments BD and EC of the

hypotenuse.

10. If the middle points of the sides of a triangle are joined by
straight lines, the medial lines of the triangle thus formed are

the medial line^ of the original triangle, and the perpendiculars

from, the vertices upon the opposite sides are the perpendiculars

at the middle poihts of the sides of the original triangle.

11. If O is the centre of the circle circumscribed about a triangle

ABC, and P is the intersection of the perpendiculars from the

angles upon the opposite sides, the perpendicular from O upon
the side JSC is equal to one-half the distance AP.
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12. In any triangle, the centre of the circumscribed circle, the

intersection of the medial lines, and the intersection of the per-

pendiculars from the angles upon the opposite sides, are in the

same straight line ; and the distance of the first point from the

second is one-half the distance of the second from the third.

13. If two circles intersect in the points A and B, and through

A any secant CAD is drawn terminated by the circumferences at

C and i), the straight lines BC and BD are to each other as the

diameters of the circles.

14. If through the middle point of each diagonal of any quad-

rilateral a parallel is drawn to the other diagonal, and from the

intersection of these parallels straight lines are drawn to the

middle points of the four sides, these straight lines divide the

quadrilateral into four equivalent parts.

15. If three straight lines Aa, Bb, Ce^

drawn from the vertices of a triangle ABC
to the opposite sides, pass through a com-
mon point O within the triangle, then

Oa , Ob ,0g ^.
Aa"^ Bb~^ Cc

16. If from any point O within a tri-

angle ABC any three straight lines, Oa,

Ob, Oc, are drawn to the three sides, and
through the vertices of the triangle three

straight lines, Aa^, Bb\ Co', are drawn
parallel respectively to Oa, Ob, Oc, then

Oa ^^\\ Q^ —I
Aa^ T Bb' "^

Cc'

17. The area of a circle is a mean proportional between the

areas of any two similar polygons, one of which is circumscribed

about the circle and the other isoperimetrical with the circle.

{Galileo^8 Theorem.)

18. Two diagonals of a regular pentagon, not drawn from a

common vertex, divide each other in extreme and mean ratio.
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LOCL

19. The angle ACB is any inscribed an-

gle in a given segment of a circle ; ^C is

produced to P, making CP equal to GB

;

find the locus of P.

20. The hypotenuse of a right triangle is given in magnitude

and position ; find the locus of the centre of the inscribed circle.

21. The base BC of a triangle ABC is given in position and
magnitude, and the vertical angle J. is of a given magnitude

;

find the locus of the centre of the inscribed circle.

22. From a given point O, any straight line OA
is drawn to a given straight line MN^ and OP is

drawn making a given angle with OA^ and such

that OP is to OA in a given ratio ; find the locus

of P.

With the same construction, if OP is so taken

that the product OP. OA is equal to a given con-

stant ; find the locus of P.

23. From a given point O, any straight

line OA is drawn to a given circumfer-

ence, and OP is drawn making a given
angle with OA, and such that OP is to

OA in a given ratio ; find the locus of P.
With the same construction, if OP is

so taken that the product OP. OA is

equal to a given constant ; find the locus of P.

24. One vertex of a triangle whose angles are given is fixed,

while the second vertex moves on the circumference of a given
circle ; what is the locus of the third vertex ?

25. Through A, one of the points of intersection of two given
circles, any secant is drawn cutting the two circumferences in the
points B and C; find the locus of the middle point of BG.

A
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PROBLEMS.
26. Describe a circle through two given points which lie outside

a given line, the centre of the circle to be in that line. Show
when no solution is possible.

27. In a given circle, inscribe a chord of a given length which
produced shall be tangent to another given circle.

28. Through P, one of the points of intersection of two circum-

ferences, draw a straight line, terminated by the circumferences,

which shall be bisected in P.

29. Through one of the points of intersection of two circum-
ferences draw a straight line, terminated by the circumferences,

which shall have a given length.

30. In a given triangle ABC, to inscribe

a parallelogram DEFO, such that the adja-

cent sides DE and DO shall be in a given

ratio and contain a given angle.

31. Construct a triangle, given its base, the ratio of the other

two sides, and one angle.

32. To determine a point in a given arc of a circle, such that

the chords drawn from it to the extremities of the arc shall have
a given ratio.

33. To find a point within a given triangle, such that the three

straight lines drawn from it to the vertices of the triangle shall

make three equal angles with each other.

34. Inscribe a trapezoid in a given circle, knowing its area and
the common length of its inclined sides.

35. To construct a triangle, given one angle, the side opposite

to that angle, and the area (equal to that of a given square).

36. Divide a given circle into a given number of equivalent
parts, by concentric circumferences.

Also, divide it into a given number of parts proportional to

given lines, by concentric circumferences.



178 ELEMENTS OF GEOMETRY.

37. A circle being given, to find a given number of circles whose
radii shall be proportional to given lines, and the sum of whose
areas shall be equal to the area of the given circle.

38. In a given equilateral triangle, inscribe three equal circles

tangent to each other and to the sides of the triangle.

Determine the radius of these circles in terms of the side of the

triangle.

39. In a given circle, inscribe three equal circles tangent to each

other and to the given circle.

Determine the radius of these circles in terms of the radius of

the given circle.



NUMERICAL EXAMPLES.

Note.—The following approximate values are close enough for

ordinary purposes : tt = 2^2^ ^2 = ||, |/8 = |f, /S = ff. Radius

of earth = 3960 miles.

\^' 40. The vertical angle of an isosceles triangle is 36°, and the

length of the base is 2 feet ; find the base angles, the length of

the bisector of a base angle, and the length of a side of the given

triangle. Ans. TZ°, 2 feet, (1 + V5) feet.

I
41. One angle of a triangle is 60°, the including sides are 8 feet

and 8 feet ; find the area and the third side.

Ans. 61/3 square feet, 7 feet.

.^ ' V 42. The three sides of a triangle are 9 inches, 10 inches, and 17

Lo inches, its area is 36 square inches ; find the area of the inscribed

^^ circle. Ans. 47r.

"^ (/ 43. The adjacent sides of a parallelogram are 12 feet and 14 feet,

the area is 120 square feet ; find the long diagonal.

Ans. 24 feet.

44. The area of a right triangle is 6 square feet, the length of

the hypotenuse is 5 feet ; find the other sides.

Ans. 3 feet, 4 feet.

45. ©btain a formula connecting the length of a chord ^, its

distance from the centre c?, and the radius r.

Ans. - = r^ — cP,
4

46. Obtain a formula for the length ^ of a common tangent to

two circles, given tlie radii r, r'', and the distance between the

centres d. Ans. {r — r^y 4-^ = ^2 for external tangent.

[r -f r^f + ^= c^ for internal tangent.

47. Through what angle does the hour-hand of a clock move in

1 hour? in 1 minute? Through what angle does the minute-
hand move in 1 minute ?

What angle do the hands of a clock make with each other at

ten minutes past three ? at quarter of six ? Ans. 35°, 97° 30^.

/ 179
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48. Two secants cut each other without a circle, the intercepted

arcs are 12° and 48°
; what is the angle between the secants ?

Two chords intersect within the circle, a pair of opposite inter-

cepted arcs are 12° and 48°
; what is the angle between the chords ?

49. Tw^o tangents make with each other an angle of 60° ; re-

quired the lengths of the arcs into which their points of contact

divide the circle, given radius equals 7 inches.

Ans. 14| inches, 29^ inches.

60. A swimmer whose eye is at the surface of the water can
just see the top of a stake a mile distant ; the stake proves to be

8 inches out of water ; required the radius of the earth.

Am. 3960 miles.

61. A passenger standing on the deck of a steamer about to

start observes that his eye is on a level with the top of the wharf,

which he knows to be 12 feet high ; when they have steamed 8^

miles the wharf disappears below the horizon ; required the radius

of the earth. Ans. 3974 miles.

62. How many miles is the light of a light-house 150 feet high
visible at sea ? A7is. 15.

63. On approaching Portland from the sea, Mount Washington
is first visible 12 miles from shore ; Portland is 85 miles from
Mount Washington ; required the height of the mountain.

Ans. 6270 feet.

64. The latitude of Leipsic is 51° 21^ that of Venice 45° 26^ and

Venice is due south of Leipsic ; how many miles are they apart?

Use 4000 miles as the earth's radius. Ans. 413 miles.

66. The latitude of the Peak of Teneriffe is about 30° N. ; the

rising sun shines on its summit on the 21st of March 9 minutes

before it shines on its base ; required the height of the mountain.

Ans. About 12,000 feet.

66. A quarter-mile running-track 10 feet wide, with straight

parallel sides and semicircular ends, is to be laid out in a rectan-

gular field 220 feet wide. How long must the field be in order

that a runner, keeping in the middle of the track, may have one-

quarter of a mile to cover? how much can he gain by keeping

close to the inner edge of the track ? what is the area of the field ?

of the portion encircled by the track? of the track itself?

Ans. 550 feet ; 31f feet ; 121,000 square feet ; 97,428^ square feet

;

13,200 square feet.

67. The fly-wheel of an engine is connected by a belt with a

smaller wheel driving the machinery of a mill. The radius of the
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fly-wheel is 7 feet ; of the small wheel, 21 inches. How many
revolutions does the small wheel make to one of the fly-wheel ?

The distance between the centres of the two wheels is 10^ feet.

What is the length of the connecting band ?

Ans. 51 feet 2 inches.

58. If from each vertex of a regular polygon as a centre, with
a radius equal to one-half the side, an arc is described outward
from side to side of the polygon, an ornamental figure much
used in architecture is formed. Such a figure formed on a polygon
of numerous sides is often used as a rose-window.

The figure bounded by three arcs is called a trefoil ; by four

arcs, a quatre-foil ; by five arcs, a cinque-foil.

Find the area of a tre-

foil, given the distance be-

tween the centres of adja-

cent arcs equal to 21 inches.

Ans. 7.338 square feet.

69. A rose-window
of six lobes is to be

placed in a circular

space 42 feet in diam-
eter. How many
square feet of glass

will it contain ?

Ans. 1123.8 square

feet.



SYLLABUS OF PLANE GEOMETRY.

POSTULATES, AXIOMS, AISTD THEOKEMS.

BOOK I.

Postulate I.

Through any two points one straight line, and only one, can

be drawn.
Postulate II.

Through a given point one straight line, and only one, can be

drawn having any given direction.

Axiom I.

A straight line is the shortest line that can be drawn between
two points.

Axiom II.

Parallel lines have the same direction.

Proposition I.

At a given point in a straight line one perpendicular to the line

can be drawn, and but one.

Corollary. Tiirough tlie vertex of any given angle one straight

line can be drawn bisecting the angle, and but one.

Proposition II.

All right angles are equal. ' -^

Proposition III.

The two adjacent angles which one straight line makes with
another are together equal to two right angles.

Corollary I. The sum of all the angles having a common ver-

tex, and formed on one side of a straight line, is two right angles.

Corollary II. The sum of all the angles that can be formed
about a point in a plane is four right angles.

182
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Proposition IV.

If the sum of two adjacent angles is two right angles, their

exterior sides are in the same straight line.

Proposition V.

If two straight lines intersect each other, the opposite (or ver-

tical) angles are eq^ual.

Proposition VI.

Two triangles are equal when two sides and the included angle

of the one are respectively equal to- two sides and the included

angle of the other.

Proposition VII.

Two triangles are equal when a side and the two adjacent

angles of the one are respectively equal to a side and the two
adjacent angles of the other.

Proposition VIII.

In an isosceles triangle the angles opposite the equal sides are

equal.

Corollary. The straight line bisecting the vertical angle of an
isosceles triangle bisects the base, and is perpendicular to the base.

Proposition IX.

Two triangles are equal when the three sides of the one are

respectively equal to the three sides of the other.

Proposition X.

Two right triangles are equal when they have the hypotenuse

and a side of the one respectively equal to the hypotenuse and a
side of the other.

Proposition XI.

If two angles of a triangle are equal, the sides opposite to them
are equal, and the triangle is isosceles.

Proposition XII.

If two angles of a triangle are unequal, the side opposite the

greater angle is greater than the side opposite the less angle.
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Proposition XIII.

If two sides of a triangle are unequal, the angle opposite the

greater side is greater than the angle opposite the less side.

Proposition XIV.

If two triangles have two sides of the one respectively equal to

two sides of the other, and the included angles unequal, the tri-

angle which has the greater included angle has the greater third

side.

Proposition XV.

If two triangles have two sides of the one respectively equal to

two sides of the other, and the third sides unequal, the triangle

which has the greater third side has the greater included angle.

Proposition XVI.

From a given point without a straight line one perpendicular

can be drawn to the line, and but one.

Proposition XVII.

The perpendicular is the shortest hne that can be drawn from

a point to a straight line.

Proposition XVIII.

If a perpendicular is erected at the middle of a straight line,

then every point on the perpendicular is equally distant from the

extremities of the line, and every point not on the perpendicular

is unequally distant from the extremities of the line.

Proposition XIX.

Every point in the bisector of an angle is equally distant from

the sides of the angle ; and every point not in the bisector is un-

equally distant from the sides of the angle ; that is, the bisector

of an angle is the locus of the points within the angle and equally

distant from its sides.

Proposition XX,

A convex broken line is less than any ether line which envelops

it and has the same extremities.
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Proposition XXI.

If two oblique lines drawn from a point to a line meet the line

at unequal distances from the foot of the perpendicular, the more
remote is the greater.

Proposition XXII.

Two straight lines perpendicular to the same straight line are

parallel.

Proposition XXIII.

Through a given point one line, and only one, can be .drawn

parallel to a given line.

Proposition XXIV.

When two straight lines are cut by a third, if the alternate-

interior angles are equal, the two straight lines are parallel.

Corollary I. When two straight lines are cut by a third, if a
pair of corresponding angles are equal, the lines are parallel.

Corollary II. When two straight lines are cut by a third, if the

sum of two interior angles on the same side of the secant line is

equal to two right angles, the two lines are parallel.

Proposition XXV.

If two parallel lines are cut by a third straight line, the alter-

nate-interior angles are equal.

Corollary I. If two parallel lines are cut by a third straight

line, any two corresponding angles are equal.

Corollary II. If two parallel lines are cut by a third straight

line, the sum of the two interior angles on the same side of the
secant line is equal to two right angles.

Proposition XXVI.

The sum of the three angles of any triangle is equal to two
right angles.

Corollary. If one side of a triangle is extended, the exterior

angle is equal to the sum of the two interior opposite angles.

Proposition XXVII.

The sum of all the angles of any convex polygon is equal to

twice as many right angles, less four, as the figure has sides.

16*
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Proposition XXVIII.

Two parallelograms are equal when two adjacent sides and the

included angle of the one are equal to two adjacent sides and the

included angle of the other.

Corollary. Two rectangles are equal when they have equal

bases and equal altitudes.

Proposition XXIX.

The opposite sides of a parallelogram are equal, and the oppo-

site angles are equal.

Proposition XXX. '

If two opposite sides of a quadrilateral are equal and parallel,

the figure is a parallelogram.

Proposition XXXI.

If the opposite sides of a quadrilateral are equal, the figure is a
parallelogram.

Proposition XXXII.

The diagonals of a parallelogram bisect each other.

BOOK II.

PROPOSITIONS.

Postulate.

A circumference may be described with any point as centre and
any distance as radius.

Proposition I.

Two circles are equal when the radius of the one is equal to the

radius of the other.
Proposition II.

Every diameter bisects the circle and its circumference.

Proposition III.

In equal circles, or in the same circle, equal angles at the centre

intercept equal arcs on the circumference.

Corollary. Conversely, in the same circle, or in equal circles,

equal arcs subtend equal angles at the centre.
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Proposition IV.

In equal circles, or in the same circle, equal arcs are subtended

by equal chords.

Corollary. Conversely, in equal circles, or in the same circle,

equal chords subtend equal arcs.

Proposition V.

In equal circles, or in the same circle, the greater of two un-

equal arcs is subtended by the greater chord, the arcs being each

less than a semi-circumference.

Corollary. Conversely, in equal circles, or in the same circle

the greater of two unequal chords subtends the greater arc.

Proposition VI.

The diameter perpendicular to a chord bisects the chord and
the arcs subtended by it.

Corollary I. The perpendicular erected at the middle point of

a chord passes through the centre of the circle.

Corollary II. When two circumferences intersect, the straight

line joining their centres bisects their common chord at right

angles.

Proposition VII.

In the same circle, or in equal circles, equal chords are equally

distant from the centre ; and of two unequal chords the less is at

the greater distance from the centre.

Corollary. Conversely, in the same circle, or in equal circles,

chords equally distant from the centre are equal ; and of two
chords unequally distant from the centre, that is the greater

whose distance from the centre is the less.

Proposition VIII.

A straight line cannot intersect a circle in more than two points.

Proposition IX.

A straight line tangent to a circle is perpendicular to the radius

drawn to the point of contact.

Corollary I. A perpendicular to a tangent line drawn through

the point of c(mtact must pass through the centre of the circle.

Corollary II. If two circumferences are tangent to each other,

their centres and their point of contact lie in the same straight

line.

V^



188 ELEMENTS OF GEOMETRY.

Proposition X.

When two tangents to the same circle intersect, the distances

from their point of intersection to their points of contact are

equal.

Proposition XI.

Two parallels intercept equal arcs on a circumference.

Doctrine of Limits.—Theorem.
If two variables dependent upon the same variable are so re-

lated that they are always equal, no matter what value is given

to the variable on which they depend, and if, as the independent

variable is changed in some specified way, each of them ap-

proaches a limit, the two Umits must be absolutely equal.

Proposition XII.

In the same circle, or in equal circles, two angles at the centre

are in the same ratio as their intercepted arcs.

Proposition XIII.

The numerical measure of an angle at the centre of a circle is

the same as the numerical measure of its intercepted arc, if the

unit of angle is the angle at the centre which intercepts the

adopted unit of arc.

Proposition XIV.

An inscribed angle is measured by one-half its intercepted arc.

Corollary. An angle inscribed in a semicircle is a right angle.

Proposition XV.

An angle formed by a tangent and a chord is measured by one-

half the intercepted arc.

Proposition XVI.

An angle formed by two chords intersecting within the circum-
ference is measured by one-half the sum of the arcs intercepted

between its sides and between the sides of its vertical angle.

Proposition XVII.

An angle formed by two secants intersecting without the cir-

cumference is measured by one-half the difference of the inter-

cepted arcs.
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Proposition XVIII.

An angle formed by a tangent and a secant is measured by one-

half the difference of the intercepted arcs.

Corollary. An angle formed by two tangents is measured by
one-half the difference of the intercepted arcs.

BOOK III.

THEOREMS.

Proposition I.

A parallel to the base of a triangle divides the other two sides

proportionally.
Proposition II.

If a straight line divides two sides of a triangle proportionally,

it is parallel to the third side.

Proposition III.

Two triangles are similar when they are mutually equiangular.

Proposition IV.

Two triangles are similar when an angle in the one is equal to

an angle in the other, and the sides including these angles are

proportional.
Proposition V.

Two triangles are similar when their homologous sides are

proportional.
Proposition VI.

If two polygons are composed of the same number of triangles,

similar each to each and similarly placed, the polygons are

similar.

Proposition VII.

Two similar polygons may be decomposed into the same num-
ber of triangles, similar each to each and. similarly placed.

Proposition VIII.

The perimeters of two similar polygons are in the same ratio as

any two homologous sides.
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Proposition IX.

If a perpendicular is drawn from the vertex of the right angle

to the hypotenuse of a right triangle :

1st. The two triangles thus formed are similar to each othei

and to the whole triangle
;

2d. The perpendicular is a mean proportional between the seg^

ments of tlie hypotenuse
;

3d. Each side about the right angle is a mean proportional be-

tween the whole hypotenuse and the adjacent segment.

Corollary. If from any point in the circumference of a circle a

perpendicular is let fall upon a diameter, the perpendicular is a

mean proportional between the segments of the diameter.

Proposition X.

The square of the length of the hypotenuse of a right triangle

is the sum of the squares of the lengths of the other two sides,

the three lengths being expressed in terms of the same unit.

Proposition XI.

If two chords intersect within a circle, their segments are re-

ciprocally proportional.

Proposition XII.

If two secants intersect without a circle, the whole secants and
their external segments are reciprocally proportional.

Corollary. If a tangent and a secant intersect, the tangent is a

mean proportional between the whole secant and its external

segment.

BOOK lY.

THEOREMS.

Proposition I.

Parallelograms having equal bases and equal altitudes are

equivalent.

Corollary. Any parallelogram is equivalent to a rectangle

having the same base and the same altitude.
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Proposition II.

Two rectangles having equal altitudes are to each other as their

bases.

Corollary. Two rectangles having equal bases are to each other

as their altitudes.

Proposition III.

Any two rectangles are to each other as the products of their

bases by their altitudes.

Proposition IV.

The area of a rectangle is equal to the product of its base and
altitude.

Proposition V.

The area of a parallelogram is equal to the product of its base

and altitude.

Proposition VI.

The area of a triangle is equal to half the product of its base

and altitude.

Corollary I. A triangle is equivalent to one-half of any paral-

lelogram having the same base and the same altitude.

Corollary II. Triangles having equal bases and equal altitudes

are equivalent.

Corollary III. Triangles having equal altitudes are to each

other as their bases, and triangles having equal bases are to each

other as their altitudes.

Proposition VII.

The area of a trapezoid is equal to the product of its altitude by
half the sum of its parallel bases.

Proposition VIII.

Similar triangles are to each other as the squares of their homol-
ogous sides.

Proposition IX.

Similar polygons are to each other as the squares of their homol-
ogous sides.

Proposition X.

The square described upon the hypotenuse of a right triangle

is equivalent to the sum of the squares described on the other

two sides.
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BOOK V.

THEOREMS.

Proposition I.

If the circumference of a circle be divided into any number of
equal parts, the chords joining the successive points of division

form a regular polygon inscribed in the circle ; and the tangents
drawn at the points of division form a regular polygon circum-
scribed about the circle.

Corollary I. If the vertices of a regular inscribed polygon are

joined with the middle points of the arcs subtended by the sides

of the polygon, the joining Unes will form a regular inscribed

polygon of double the number of sides.

Corollary II. If at the middle points of the arcs joining ad-
jacent points of contact of the sides of a regular circumscribed
polygon tangents are drawn, a regular circumscribed polygon
of double the number of sides will be formed.

Proposition II.

A circle may be circumscribed about any regular polygon, and
a circle may also be inscribed in it.

Proposition III.

Regular polygons of the same number of sides are similar.

Corollary. The perimeters of regular polygons of the same
number of sides are to each other as the radii of the circumscribed

circles, or as the radii of the inscribed circles ; and their areas are

to each other as the squares of these radii.

Proposition IV.

The area of a regular polygon is equal to half the product of

Its perimeter and apothem.

Proposition V.

An arc of a circle is less than any line which envelops it and
has the same extremities.

Corollary, The circumference of a circle is less than the perim-

eter of any polygon circumscribed about it.
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Proposition VI.

If the number of sides of a regular polygon inscribed in a circle

be increased indefinitely, the apothem of the polygon will ap-

proach the radius of the circle as its limit.

Proposition VII.

The circumference of a circle is the Umit which the perimeters

of regular inscribed and circumscribed polygons approach when
the number of their sides is increased indefinitely ; and the area

of the circle is the limit of the areas of these polygons.

Proposition VIII.

The circumferences of two circles are to each other as their

radii, and their areas are to each other as the squares of their

radii.

Corollary I. The circumferences of circles are to each other as

their diameters, and their areas are to each other as the squares

of their diameters.

Corollary II. The ratio of the circumference of a circle to its

diameter is constant.

Proposition IX.

The area of a circle is equal to half the product of its circum-

ference by its radius.

Corollary. The area of a circle is equal to the square of its

radius multiplied by the constant number tt.



GEOMETRY OE SPACE.

In Plane Geometry we have considered merely figures com-

posed of lines and points, all of which are supposed to lie in

the same plane (v. Introduction, 5 and 6), and in the proposi-

tions and definitions of the preceding five books it has been

tacitly assumed that the figures in question are plane figures.

In many of the propositions and definitions this limitation is

essential to the truth of the proposition ; for example. Propo-

sitions I. and XXII., Book I., and Definition 20, Book II. In

others the demonstration given is inconclusive without the

limitation in question, although the proposition is true even

when the limitation is removed; for example. Exercise 1,

Proposition XXIII., Book I. While in propositions concern-

ing equal polygons, which depend for their proof directly or

indirectly upon a superposition of one polygon upon the

other, the limitation is obviously of no importance; for ex-

ample. Propositions YI., YII., and IX., Book I. It is, then,

important, when we use the theorems of Plane Geometry in

proving theorems of the Geometry of Space, to satisfy our-

selves that they are still true in the figures with which we are

concerned.
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BOOK YI
THE PLANE. POLYBDRAL ANGLES.

1. Definition. A plane has already been defined as a surface

such that the straight line joining any two points in it lies

wholly in the surface.
JIT

Thus, the surface ikfiV" is a plane, if, A /

and B being any two points in it, the /—4- ?-

straight line AB lies wholly in the sur-

face.

The plane is understood to be indefinite in extent, so that,

however far the straight line is produced, all its points lie

in the plane. But to represent a plane in a diagram, we

are obliged to take a limited portion of it, and we usually

represent it by a parallelogram supposed to lie in the plane.

2. Definition. A plane is said to be determined by given lines

or points when one plane, and only one, can be drawn con-

taining the given lines or points.

PKOPOSITION I.—THEOREM.

K^^Through any given straight line a plane may be passed

;

hut the line will not determine the plane.

Let AB be a given straight line.

A straight line may be drawn in

any plane, and the position of that

plane may be changed until the

line drawn in it is brought into coincidence with AB. We
shall then have a plane passed through AB ; and this plane

195
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may be turned upon AB as an axis, and made to occupy-

as many different positions as we

choose, and as in each of these

positions it is a plane through AB,

we may have as many planes as lL

we choose through AB ; conse-

quently AB does not determine (2) a plane.

PBOPOSITION II.—THEOKEM.

/ 4. ^ plane is determined^ 1st, by a straight line and a point

/ without that line ; 2d, by two intersecting straight lines ; 3d, by

7 three points not in the same straight line ; 4th, by two parallel

! straight lines.

Ist. Through a given line AB a

plane may be passed, and may then / <?
^

be turned upon AB as an axis, until

it contains a given point G. If it is

then turned by the smallest amount

in either direction, it ceases to contain C. Therefore on©

plane, and only one, can be drawn containing a given line

and a given point without that line.

2d. Through one of the lines ABj and a point C of the

other, one plane, and only one, can be

drawn. This plane will contain AG
(1), and no other plane through AB
will.

3d. If three points. A, Bj 0, are

given, any plane containing them

must contain one of them and the line joining the other two

(1) J
and one, and only one, such plane can be drawn.
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4th. Two parallels, AB, CD, lie in the same plane, by Defi-

nition (I., 5) ; there is, then, one plane

containing them. There is only one,

for through AB and a point B of

CD only one plane can be passed. ^ J ^

^fo) Corollary. The intersection of

two planes is a straight line. For if two points of the in-

tersection be joined by a straight line, that line must lie in

both planes^ by (1) ; and no point outside of this line can be

common to the two planes, by Proposition II. ; therefore the

straight line in question is the line of intersection of the two

planes. ^

PERPENDICULARS AND OBLIQUE LINES TO PLANES.

6. Definition. A straight line is perpendicular to a plane

when it is perpendicular to every straight line drawn in the

plane through its foot ; that is, through the point in which it

meets the plane.

In the same case, the plane is said to be perpendicular to

the line.

PROPOSITION III.—THEOREM.

Cy From a given point without a plane, one perpendicular to

the plane can he drawn, and hut one ; and the perpendicular is

the shortest line that can he drawn from the point to the plane.

Let A be the given point, and JOT the

plane. Consider the various lines that can

be drawn from A to MN. These lines are

obviously not all of the same length ; there

must, then, be among them either one

minimum line, or a set of equal shortest

lines. There cannot be a set of equal

shortest lines. For, suppose that AB and AB' are two such

17*

. y
^

^^p
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- J -

^^p

lines. Join BB'. Then, since AB and AB'' Sire equal lines

drawn from A to BB\ they cannot be per-

pendicular to BB' (I., 'Proposition XYI.),

and consequently they are longer than the

perpendicular AC from A to BB\ by 1.,

Proposition XYII., which is contrary to

the hypothesis that they were shorter

than any other lines that could be drawn ^

from A to J/iV. There is therefore one,

and but one, minimum line from A to the plane/ Let AP be

that minimum line ; then AP is perpendicular to any straight

line BF drawn in the plane through its foot P. For, in the

plane of the lines AP and JEF, ^P is the shortest line that

can be drawn from A to any point in FF, since it is the

shortest line that can be drawn from J. to any point in the

plane MN; therefore AP is perpendicular to FF (I., Propo-

sition XYII.). Thus AP is perpendicular to any^ that is, to

every, straight line drawn in the plane through its foot, and

is therefore perpendicular to the plane.

There can be no other perpendicular from A to the plane

MN; for, if there were, both lines would be perpe-ndicular

to the line joining the points where they met the plane, and

we should have two perpendiculars from a point to a line,

which is contrary to I., Proposition XYI.

vj) Corollary. At a given point in a planej one perpendicular

can be erected to the plane, and but one.

Let ilOTbe the plane and P
the point.

Let Jif'iV' be any other

plane, A' any point without it,

and A'P' the perpendicular

from A' to this plane. Suppose the plane Al'N^ to be applied
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to the plane MN with the point P' upon P, and let AP be

the position then occupied by the perpendicular A'P'. We
then have one perpendicular, J.P, to the plane MN^ erected

at P. There can be no other : for let PB be another perpen-

dicular at P. Then AP and PB are both perpendicular to

PC, the line of intersection of MN with the plane deter-

mined by the two lines AP and BP^ at the same point, and

lie in the same plane with^ P(7, ^and this is contrary to I.,
j

j

Proposition I.(^ ^lr^li' ^x^::..--^rar^)
9. Scholium. By the distance of a point from a plane is

meant the shortest distance; hence it is the perpendicular

distance from the point to the plane.

EXERCISES.

1. Theorem.— Oblique lines drawn from a point to a plane,

and meeting the plane at equal distances from the foot of the

perpendicular, are equal i and of two oblique lines meeting the

plane at unequal distances from the foot of the perpendicular

the more remote is the greater.

2. Theorem.—Equal oblique lines

from a point to a plane meet the

plane at equal distances from the foot

of the perpendicxdar ; and of two un-

equal oblique lines the greater meets

the plane at the greater distance from

the foot of the perpendicular.
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PROPOSITION IV.—THEOREM.

(^O) If a straight line is perpendicular to each of two straight

lines at their point of intersection^ it is perpendicular to the plane

of those lines.

Let AP be perpendicular to PB and

P(7, at their intersection P ; then AP is

perpendicular to the plane MN which

contains those lines.

For, let PD be any other straight

line drawn through P in the plane MN.
Draw any straight line BDG intersect-

ing PB, PC, PD, in J5, (7, D; produce W
AP to A', making PA'= PA, and join a^

A and A' to each of the points B, C, D,

Since BP is perpendicular to AA', at its middle point, we

have BA = BA' (I., Proposition XYIII.), and for a like

reason CA = GA' ; therefore the triangles ABC, A'BC, are

equal (I., Proposition IX.), and the angle ABD is equal to

the angle A'BD. The triangles ABD and A'BD are equal

(I., Proposition YI.), and AD = A'D. Hence the triangles

APD and A'PD are equal (I., Proposition IX.). Therefore

the adjacent angles APD and A'PD are equal, and PD is

perpendicular to AP. AP, then, is perpendicular to any^

that is, to every, line passing, through its foot in the plane

MNp and is consequently perpendicular to the plane.

\l|t Corollary I. At a given point of g, straight line one

plane can he drawn perpendicular to the line, and hut one.

Let AP be the line, and P the point. Through AP pass

two planes, and in each of these planes draw through P a

line perpendicular to AP. The plane determined by these
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two lines is perpendicular to AF at P, by Proposition

No other perpendicular plane can

be drawn through P, for, if it could,

a plane containing AF would inter-

sect the two perpendicular planes

in lines which would lie in the same

plane with J.P, and be perpendic-

ular to AF at the same point, ^
"

* ^ 4^**v -^"^
which is contrary to I., Proposi-(

\ yj^^-^tj^ ok.^^v^"'^'

tion I. * ^-^'H
*

X QS^ Corollary II. Through a given point without a straight

line one plane can he drawn perpendicular to the line, and but

one.

In the plane determined by the point and the line draw a

perpendicular from the point to the line, and through the

foot of this perpendicular draw, in any second plane passing

through the given line, a second perpendicular to the line.

The plane of these two perpendiculars is obviously a plane

passing through the given point and perpendicular to the

given line.

No second perpendicular plane can be drawn through thtj

given point, for the plane determined by the line and the

point would cut the two perpendicular planes in lines which

would be two perpendicular lines from the given point to the

given line, which is contrary to I.. Proposition XYL . , ,

EXERCISES.

1. Theorem.—All the perpendiculars that can be drawn to a-

straight line at the same point lie in a plane perpendicular to the

line at the point.
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2. Theorem.—If from the foot of a

perpendicular to a plane a straight line

is drawn at right angles to any line of

the plane, and its intersection with that

line is joined to any point of the perpen-

dicular, this last line will be perpendic-

ular to the line of the plane.

PARALLEL STRAIGHT LINES AND PLANES.

13. Definitions. A straight line is parallel to a plane when it

cannot meet the plane, though both be indefinitely produced.

In the same case, the plane is said to be parallel to the line.

Two planes are parallel when they do not meet, both being

indefinite in extent.

Jy. PROPOSITION v.—THEOREM.

(14) Two lines in space having the same direction are par-

allel.

Let AB and CD be two lines having

. the same direction. Through AB and any

point E of CD pass a plane, and in this ^ e d

plane draw through E a line parallel to

y'^^.y^ '^^' This line will have the same direction as AB (I.,

'^^^^/^^jSp^iom II.), and consequently the same direction as CD, and

^>-^^ must therefore coincide with CD, by I., Postulate 11. Hence,- ^

AB and CD are parallel, (f
"^^

T''- ff • ^
^•' f'^-^. tT^l^

15. Corollary. Two lines paraltet to the seme lirie are par-

allel to each other. For they have the same direction.

^..^^ PROPOSITION VI.—THEOREM.

<ISJ If two straight lines are parallel, every plane passed

through one of them and not coincident with the plane of the

parallels is parallel to the other.
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31

Let AB and CD be parallel lines, and MW any plane passed

through CD ; then the line AB and

the plane MN are parallel.

For the parallels AB, CD, are in

the same plane, A CDB, which in-

tersects the plane MN in the line

CD; and since AB cannot leave

this plane, if it meets MN at all it must meet it in some

point common to the two planes; that^i^, in some point of

CD, which is contrary to the hypothesis that AB and CD
are parallel.

17. Corollary I. Through any given straight line a plane

can be passed parallel to any other given straight line.

Let UK and AB be the two given

lines. In the plane determined by AB
and any point S of UK let HL be

drawn parallel to AB ; then the plane

MNj determined by SK and HL, is par-

allel to AB, by Proposition YI.

18. Corollary II. Through any given point a plane can Ir*

passed parallel to any two given straight lines in space.

Let be the given point, and AB
and CD the given straight lines. In

the plane determined by the given

point and the line AB let a 06 be

drawn through parallel to AB

;

and in the plane determined by the

point and the line CD let cOd be

drawn through parallel to CD;
then the plane determined by the lines ab and cd is parallel

to each of the lines AB and CD, by Proposition VI.
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EXERCISE.

Theorem.—If a straight line and a plane are parallel^ the

intersection of the plane and a plane passed through the given

line is parallel to the given line. (v. Figure of Proposition VI.)

PROPOSITION VII.—THEOREM.

(10} Planes perpendicular to the same straight line are parallel

to each other.

The planes MW, PQ, perpendicular to the jn

same straight line AB, cannot meet ; for, if /

they met, we should have through a point L
of their intersection two planes perpendic-

ular to the same straight line, which is im- ^
possible (Proposition IV., Corollary II.); /

therefore these planes are parallel.
;^

I q \(\

PROPOSITION VIII.—THEOREM.

^2J The intersections of two parallel planes with any third

plane are parallel.

LetMW and PQ be parallel planes, r y\ y

and AD any plane intersecting them \ /^^ '\ \

in the lines AB and CD; then AB A \~

and CD are parallel. p \ \i)

For the lines AB and CD cannot \ \ / \
meet, since the planes in which they ^ ^ ^

are situated cannot meet, and they

are lines in the same plane AD ; therefore they are parallel.

EXERCISE.

Theorem.—Parallel lines intercepted between parallel planes

are equal.
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PROPOSITION IX.—THEOREM.

21. A straight line perpendicular to one of two parallel planes

is perpendicular to the other.

LetMW and FQ be parallel planes, and let

the straight line AB be perpendicular to PQ;

then it will also be perpendicular to MN.
For through A draw any straight line AG

in the plane JOT, pass a plane through AB
and AC, and let BD be the intersection of

this plane with PQ. Then AC and BD are

parallel (Proposition YIII.) ; but AB is per-

pendicular to BD (6), and consequently also to AC; there-

fore AB, being perpendicular to any line AC which it meets

in the plane JfiV", is perpendicular to the plane JOT.

22. Corollary. Through any given point one plane can be

passed parallel to a given plane, and but one.

Suggestion. Drop a perpendicular line from the point to the

plane, and then pass a plane through the point perpendicular

to this line.

PROPOSITION X.—THEOREM.

23. If two angles, not in the same plane, have their sides

respectively parallel and lying in the same direction, they are

BQual and their planes are parallel.

Let BAC, B'A'C, be two angles lying

in the planes MN, M'N' ; and let AB,

AC, be parallel respectively to A'B',

A!C', and in the same directions.

1st. The angles BAC and B'A!C' are

equal. Take the distances A!B' and AB
equal, and A!C' and AC equal, and join

BC and B'C . Draw now the lines AA',

BB', and Cp'. The quadrilaterals AB' and AC are parallel-

is
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ograms, by I., Proposition XXX. Therefore BB' and CC
are equal and parallel to AA'. They are

then equal and parallel to each other

(Proposition Y., Corollary), and BC is a

parallelogram. Hence BC = B'C\ and

the triangles A5(7and A'B'C are equal,

by I., Proposition IX. Consequently

the angles BAG dmd. B'A'C are equal.

2d. The planes MN and M'N' are

parallel. For MN is parallel to A'B'

and A'C\ by Proposition YI., and therefore, since if it met

M'N' the line of intersection would have to cut one or the

other of the intersecting lines A!B'^ A!G\ it is parallel to

M'W,

. ?. 1r

M

i^ A'W
N

PROPOSITION XI.—THEOREM.

Yf one of two parallel lines is perpendicular to a plane,

the other is also perpendicular to that plarie.

Let AB^ A'B\ be parallel lines, and

let AB be perpendicular to the plane

MN; then A'B^ is also perpendicular

to MN.
For, let A and A' be the intersections

of these lines with the plane ; through

A' draw any line A'C in the plane MN, and through A draw

AG parallel to A'G' and in the same direction. The angles

BAG, B'A'G', are equal (Proposition X.) ; but BAG m 2i right

angle, since BA is perpendicular to the plane; hence B'A'G'

is a right angle ; that is, B'A' is perpendicular to any line

A'G' drawn through its foot in the plane MN, and is conse-

quently perpendicular to the plane.
q

vi^..

V(" »*\- V ,'
•-'^•

\ -^V^-.c.I3t>v^5r-v

X^

<^
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25. Corollary. Two straight lines perpendicular to the same

plane are parallel to each other,

EXERCISE.

Theorem.— Two parallel planes are everywhere equally distant,

BIEDRAL ANGLES.—ANGLE OF A LINE AND PLANE,
ETC.

26. Definition. When two planes meet and are terminated

by their common intersection, they form a diedral angle.

Thus, the planes AE, AF^ meeting in AB^ and

terminated by AB^ form a diedral angle.

The planes AE^ AF, are called the faceSy and

the line AB the edge, of the diedral angle.

A diedral angle may be named by four letters,

one in each face and two on its edge, the two

on the edge being written between the other two ; thus, the

angle in the figure may be named DABC.

When there is but one diedral angle formed at the same?

edge, it may be nariied by two letters on its edge ,- thus, in

the preceding figure, the diedral angle DABC may be named

the diedral angle AB.

27. Definition. The angle CAD formed hj two straight lines

AC, AD, drawn, one in each face of the diedral angle, per-

pendicular to its edge AB at the same point, is called the

plane angle of the diedral angle.

EXERCISES.

1. Theorem.—All plane angles of the same diedral angle are

equal, (v. Proposition X.)

2. Theorem.—If a plane is drawn perpendicidar to the edge

uj a diedral angle, its intersections with the faces of the diedral

angle form the plane angle of the diedral angle.
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Br

c
D'

Ff

28. A diedral angle DABG may be conceived to be gener-

ated by a plane, at first coincident with a fixed plane AE,
revolving upon the line A^ as an axis until it comes into the

position AF. In this revolution a straight line CA, perpen-

dicular to AB, generates the plane angle CAD.

29. Definition. Two diedral angles are equal when they

can be placed so that their faces shall coincide.

Thus, the diedral angles CABD,
G'A'B'D', are equal, if, when the

edge A'B' is applied to the edge

AB and the face A'F' to the face

AF^ the face A'E' also coincides

with the face AE.

Since the faces continue to co-

incide when produced indefinitely, it is apparent that the

magnitude of the diedral angle does not depend upon the

extent of its faces, but only upon their relative position.

30. Definition. Two diedral angles GABD, DABEj which

have a common edge AB and a common plane

BD between them, are called adjacent.

Two diedral angles are added together by

placing them adjacent to each other. Thus, the

diedral angle GABE is the sum of the two diedral

angles GABD and DABE.

E'

,,^

31. Definition. Two planes are perpen-

dicular when the plane angle of the di-

edral angle which they form is a right

angle. The diedral angle is then called

a right diedral angle.

M

/
cA

VI
N
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1/

B'

C

F'

PROPOSITION XII.—THEOREM.

(^ Two diedral angles are equal if their plane angles are

equal.

Let the plane angles CAD and

C'A'D' of the diedral angles CABD,

C'A'B'D', be equal; then are the

diedral angles equal.

For, superpose C'A'B'iy upon

CABD, making the plane angle

C'A'D' coincide with its equal CAD ; then the planes of

these angles will coincide (Proposition II.). A'B' and AB^

being now perpendicular to the same plane at the same point,

must coincide (Proposition III., Corollary) ; and, finally, the

planes B'C and 50 will coincide, and B'D' and BD (Propo-

sition 11.) . Therefore the diedral angles are equal.

PROPOSITION XIII.—THEOREM.

331 Two diedral angles are in the same ratio as. their

angles.

Let CABD and GEFH be two '

diedral angles; and let CAD and

GEH be their plane angles.

Suppose the plane angles have

a common measure, contained m
times in CAD and n times in

GEH; we have, then,

CAD ^m
GEH n

plane

H
V-

~

1 1 II
1 III
1 ill
1 1 1

1

1 1 II

F

a

- -1

V
^^^^ -ij

Apply this measure to CAD and GEH^ and through the

lines of division and the edges of the given diedral angles

o 18*
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pass planes, thus dividing CABD into m and GEFII into n

smaller diedral angles. Each of

these small diedral angles has one

of the parts into which CAD is

divided, or one of the parts into

which GEH is divided, as its

plane angle, because AB is per-

pendicular to the plane of CAD,

and EF to the plane of GEH, by

Proposition lY. These small diedral angles are, then, all

equal, by Proposition XII., and we have

?Fr::rl
"

^^-\ \i

Therefore

CABD ^m
GEFH n'

CABD ^ CAD
GEFH GEH'

The proof is extended to the case where the given planej

angles are incommensurable, by the method exemplified in

the proof of II., Proposition XII., of III., Proposition I., and

of IV., Proposition II.

34. Scholium. Since the diedral angle is proportional to its

plane angle (that is, varies proportionally with it), the plane

angle is taken as the measure of the diedral angle, just as an

arc is taken as the measure of a plane angle. Thus, a diedral

angle will be expressed by 45° if its plane angle is expressed

by 45°, etc.

PROPOSITION XIV.—THEOREM.

V^Sa If a straight line is perpendicular to a plane, every plane

passed through the line is also perpendicular to that plane.
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Let AB be perpendicular to the plane MJSf; then any plane

PQ, passed through AB, is also perpendic-

ular to JfiV.

For, at B draw BC^ in the plane MWj
perpendicular to the intersection BQ. Since

AB is perpendicular to the plane 3IW, it is

perpendicular to BQ and BG; therefore

the angle ABC is the plane angle of the

diedral angle formed by the planes PQ and MN; and since

the angle ABC is a right angle, the planes are perpendicular

to each other.

PROPOSITION XV.-THEOBEM.

(^g) If two planes are perpendicular to each other, a straight

line drawn in one of them, perpendicular to their intersection, is

perpendicular to the other.

Let the planes PQ and JfZV be perpendic-

ular to each other ; and at any point B of

their intersection BQ let BA be drawn, in

the plane PQ, perpendicular to BQ; then

BA is perpendicular to the plane 3fN.

For, drawing BC, in the plane MW, per-

pendicular to BQ, the angle ABC is a right angle, since it is

the plane angle? of the right diedral angle formed by the two

planes ; therefore AB, perpendicular to the two straight lines

BQ, BC, is perpendicular to their plane MW (Proposition

IV.).

37. Corollary I. If two planes are perpendicular to each

other, a straight line drawn through any point of their intersec-

tion perpendicular to one of the planes will lie in the other, (v.

Proposition III., Corollary.)
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38. Corollary II. If two planes are perpendicular^ a straight

line let fall from any point of one plane perpendicular to the

other will lie in the first plane, (v. Proposition III.)

PROPOSITION XVI.—THEOREM.

39. If two intersecting planes are each perpendicular to a

third plane, their intersection is also perpendicular to that plane.

Let the planes PQ, BS, intersecting in

the line AB, be perpendicular to the plane

MN ; then AB is perpendicular to the

plane M]Sf.

For, if from any point A of AB a per-

pendicular be drawn to MNj this perpen-

dicular will lie in each of the planes PQ
and BS (Proposition XY., Corollary II.),

and must therefore be their intersection AB.

EE3

PROPOSITION XVII.—THEOREM.

fwi Through any given straight line a plane can be passed

perpendicular to any given plane.

Let AB be the given straight line, and

MW the given plane. From any point A
of AB let AC he drawn perpendicular to

MN, and through AB and A C pass a plane

AD. This plane is perpendicular to MN
(Proposition XIY.).

Moreover, since, by Proposition XY., Corollary IL, any

plane passed through AB perpendicular to MN must contain

the perpendicular A C, the plane AD is the only plane per-

pendicular to MN that can be passed through AB, unless AB
is itself perpendicular to MN, in which case every plai^

through AB is perpendicular to MN. ^

a
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EXERCISE.

Theorem.—The locus of the

points equally distant from

two given -planes is ttie plane

bisecting the diedral angle be-

tween the given planes, (v.

I., Proposition XIX.)

41. Definitions. The projection of a

point A upon a plane MN is the foot a

of the perpendicular let fall from A
upon the plane.

The projection of a line ABODE .

.

.

upon a plane MN is the line abcde . .

.

containing the projections of all the

points of the line ABODE . . . upon the

plane.

PROPOSITION XVIII.—THEOREM.

(42^ The projection of a straight line upon a plane is a straight

line.

Let AB be the given straight line,

and MI^ the given plane. The plane

Ab, passed through AB perpendicular

to' the plane MN, contains all the per-

pendiculars let fall from points of AB
upon MN (Proposition XY., Corollary /V ^ i^u\t i *^

II.); therefore these perpendiculars all t^t^^ .
^^^'^a-y.^AJ

meet the plane MN in the intersection ab of the perpeiidic-
i ,

V^

ular plane with MN. The projection of AB upon the plane

MN is, consequently, the straight line ab.



214 ELEMENTS OF GEOMETRY.

43. Scholium. The plane Ah is called the projecting plane of

the straight line AB upon the plane MN.

PKOPOSITION XIX.—THEOREM.

44. The acute angle which a straight line makes with its own

projection upon a plane is the least angle which it makes with

any line of that plane.

Let Ba be the projection of the straight

line BA upon the plane MN, the point B
being the point of intersection of the line

BA with the plane ; let BC be any other

straight line drawn through B in the

plane; then the angle ABa is less than

the angle ABC.

For, take BG= Ba, and join AC. In the triangles ABa,

ABC, we have AB common, and Ba = BC; but Aa <i AC,

since the perpendicular is less than any oblique line ; therefore

the angle ABa is less than the angle ABC(1., Proposition XY.).

45. Definition. The acute angle which a straight line makes

with its own projection upon a plane is called the inclination

of the line to the plane, or the angle of the line and plane.

46. Definition. Two straight lines AB,

CD, not in the same plane, are regarded

as making an angle with each other which

is equal to the angle between two straight

lines Ob, Od, drawn through any point O

in space, parallel respectively to the two

lines and in the same directions.

47. From the preceding definition, it follows that when a

straight line is perpendicular to a plane, it is perpendicular to all

the lines of the plane, whether the lines pass through its foot

or not.
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POLYEDRAL ANGLES.

48. Definition. When three or more planes meet in a com-

mon point, they form a polyedral angle.

Thus the figure S-ABCD, formed by the

planes ASB, BSC, CSD, DSA, meeting in

the common point S^ is a polyedral angle.

The point S is the vertex of the angle

;

the intersections of the planes SA^ SB,

etc., are its edges; the portions of the

planes included between the edges are its faces ; the angles

ASB^ BSG, etc., formed by the edges, are its face angles.

A triedral angle is a polyedral angle having but three faces,

which is the least number of faces that can form a polyedral

angle.

49. In a polyedral angle every pair of adjacent edges form

a face angle, and every pair of adjacent faces form a diedral

angle. These face angles and diedral angles are the parts of

the polyedral angle.

50. Definition. Two polyedral angles are equal when their

faces and edges can be made to coincide, if one angle is suit-

ably superposed upon the other.

Of course it follows that corresponding parts of two equal

polyedral angles are equal.

51. Definition. Two polyedral angles are symmetrical if the

parts of one are respectively equal to the parts of the other

;

but the corresponding parts succeed each other in the two

angles in inverse order. When two polyedral angles are

(symmetrical, it is impossible to superpose one upon the other

in such a way as to bring corresponding parts together. One

figure is, so to speak, right-handed and the other left-handed.
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52. Definition. A polyedral angle S-ABCD is convex, when

any section, ABCD, made by a plane cutting all its faces, is

a convex polygon (I., 54).

PROPOSITION XX.—THEOREM.

)-The sum of any two face angles of a triedral angle is

greater than the third.

The theorem requires proof only when the third angle

considered is greater than each of the others.

Let S-ABC be a triedral angle in which

the face angle ASC is greater than either

ASB or BSC; then ASB + BSG > ASC.

For in the face ASC draw SD making the

angle ASD equal to ASB, and through any

point D of SB draw any straight line ADC
cutting SA and SG; take SB = SD, and join AByBG.

The triangles ASD and ASB are equal, by the construction

(I., Proposition YI.), whence AD = AB. Now, in the tri-

angle ABC, we have

AB + BC>AG,

and, subtracting the equals AB and AD,

BC > DC;

therefore, in the triangles BSC and DSC, we have the angle

BSC > DSC (I., Proposition XY.), and adding the equal

angles ASB and ASD, we have ASB + BSC >-ASC.
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PROPOSITION XXI.—THEOREM.

[5^ The sum of the face angles of any convex polyedral angle

is less than four right angles.

Let the polyedral angle S be cut by a plane, making the

section ABCDE^ by hypothesis, a convex

polygon. From any point within this

polygon draw OA, OB, OC, OB, OK
The sum of the angles of the triangles

ASB, BSC, etc., which have the common
vertex S, is equal to the sum of the an-

gles of the same number of triangles

A OB, BOO, etc., which have the common
vertex 0. But in the triedral angles formed at A, B, 0, etc.,

by the faces of the polyedral angle and the plane of the

polygon, we have (Proposition XX.)

SAB + SAB > EAB,

SBA + SBC> ABC, etc.
j

hence, taking the sum of all these inequalities, it follows that

the sum of the angles at the bases of the triangles whose
vertex is S is greater than the sum of the angles at the

bases of the triangles whose vertex is 0; therefore the sum
of the angles at >S^ is less than the sum of the angles at 0;
that is, less than four right angles.

r>
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*>C?

PROPOSITION XXII.-THEOREM.

55. If two triedral angles have the three face angles of the one

respectively equal to the three face angles of the other^ the cor-

responding diedral angles are equal.

In the triedral angles S and s, let ASB = ash, ASC = asc,

and BSC = bsc ; then the diedral angle SA is equal to the

diedral angle sa.

\

.^ On the edges of these angles take the six equal distances

SA, SB, SC, sa, sb, sc, and draw AB, BC, AC, ah, he, ac. The

isosceles triangles SAB and sab are equal, having an equal

angle included by equal sides, hence AB = ah ; and for the

same reason, BG = hc, AC = ac ; therefore the triangles

ABC and abc are equal.

At any point D in SA, draw DE in the face ASB and DF
in the face ASC, perpendicular to SA; these lines meet AB
and AC, respectively, for, the triangles ASB and ASC being

isosceles, the angles SAB and SAC are acute; let E and F
be the points of meeting, and join EF. Now on sa take sd

= SB, and repeat the same construction in the triedral

angle s.

The triangles ADE and ade are equal, since AB = ad, and

the angles at A and B are equal to the angles at a and d;

hence AE= ae and BE= de. In the same manner we have
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AF= of and DF = df. Therefore the triangles AEF and

aef are equal (I., Proposition YI.)j and we have FF = ef.

Finally, the triangles FDF and edf, being mutually equilat-

eral, are equal; therefore the angle FDF, which measures

the diedral angle SA, is equal to the angle edf, which meas-

ures the diedral angle sa, and the diedral angles SA and sa

are equal (Proposition XII.). In the same manner it may
be proved that the diedral angles SB and SO are equal to

the diedral angles sb and sc, respectively.

Scholium. It follows that the polyedral angles >S^ and s are

either equal or symmetrical. Both cases are represented in

the figure.



EXERCISES ON BOOK YI.

THEOREMS.
1. If a straight line AB is parallel to a plane JfJV, any plane

perpendicular to the line AB is perpendicular to the plane 3lJS\

(v. Proposition VI., Exercise.)

2. If a plane is passed through one of the diagonals of a paral-

lelogram, the perpendiculars to this plane from the extremities

of the other diagonal are equal.

3. If the intersections'of a number of planes are parallel, all the
perpendiculars to these planes, drawn from a common point in

space, lie in one plane.

Suggestion. Through the common point pass a plane perpen-

dicular to one of the intersections, {v. Proposition XV., Corol-

lary II.)

4. If the projections of a number of points on a plane are in a

straight line, these points are in one plane.

5. If each of the projections of a line AB upon two intersecting

planes is a straight line, the line AB is a straight line.

6. Two straight lines not in the same plane being given : 1st, a

common perpendicular to the two lines can be drawn ; 2d, the

common perpendicular is the short- .

est distance between the two lines. o e d

Suggestion. Let AB and CD be

the two given lines. Pass through

AB a plane MN parallel to CX>, and
through AB and CD pass planes

perpendicular to MN. Their inter-

section Co is the required common
perpendicular. CD and cd are par-

allel, by 18, Exercise. N
2d. Any other line BF joining

AB and CD is greater than JEIT, the perpendicular from B to cd
(Proposition XV.), and therefore greater than Cc.
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7. If two straight lines are intersected by

three parallel planes, their corresponding

segments are proportional, {v. Proposition

VIII.)

8. A plane passed through the middle point of the common
perpendicular to two straight lines in space, and parallel to both

these lines, bisects every straight line joining a point of one of

these Hues to a point of the other, {v. Exercise 7.)

9. In any triedral angle, the three planes bisecting the three

diedral angles intersect in the same straight line. {v. 40, Exer-

cise.)

10. In any triedral angle, the three planes

passed through the edges and the bisectors

of the opposite face angles respectively in-

tersect in the same straight line.

Suggestion. Lay off equal distances SAj

SB, SC, on the three edges, and pass a plane

through Aj B, C. The intersections of the

three planes in question with ABCsive the

medial lines ofABC, and have a common intersection, and the line

joining this common intersection with S lies in the three planes.

11. In any triedral angle, the three planes passed through the

bisectors of the face angles, and perpendicular to these faces

respectively, intersect in the same straight line.

Suggestion. Use the same construction as in Exercise 10. Then
the intersections of the three planes with ABC are perpendicular

to the sides of ABC at their middle points, and have a common
intersection.

12. In any triedral angle, the three planes

passed through the edges, perpendicular to

the opposite faces respectively, intersect in

the same straight line.

Suggestion. At any point A of one of the

edges, draw a plane ABC perpendicular to

the edge SA. The intersections of the three

planes with ABC are the perpendiculars

from the vertices of ABC^ upon the oppo-

site sides, and have a common intersection, {v. Proposition XVI.)
19*
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LOCI.
13. Find the locus of the points in space which are equally

distant from two given points.

14. Locus of the points which are equally distant from two
given straight lines in the same plane.

15. Locus of the points which are equally distant from three

given points.

16. Locus of the points which are equally distant from three

given planes, {v. 40, Exercise.)

17. Locus of the points which are equally distant from three

given straight lines in the same plane.

\ 18. Locus of the points which are equally distant from the three

edges of a triedral angle (Exercise 11).

19. Locus of the points in a given plane which are equally dis-

tant from two given points out of the plane.

20. Locus of the points which are equally distant from two
given planes, and at the same time equally distant from two
given points.

PROBLEMS.
In the solution of problems in space, we assume,—1st, that a

plane can be drawn passing through three given points (or two in-

tersecting straight lines) and its intersections with given straight

lines or planes determined; and, 2d, that a perpendicular to a
given plane can be drawn at a given point in the plane, or from
a given point without it. The actual graphic construction of the

solutions belongs to Descriptive Geometry.

21. Through a given straight line, to pass a plane perpendicular

to a given plane, (v. Proposition XVII.)
22. Through a given point, to pass a plane perpendicular to a

given straight line.

Suggestion. If the given point is in the given line, pass two
planes through the given line, and draw in each of them, through

the given point, a line perpendicular to the given line. The plane

determined by these lines is the perpendicular plane required.

{v. Proposition IV.)

If the given point is not in the given line, pass a plane through
it and the given line, and in this plane, through the given point,

draw a line parallel to the given line. A plane through the given

point, perpendicular to this second line, is the plane required, (v.

Proposition XI.)
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23. Through a given point, to pass a plane parallel to a given

plane, (v. Proposition IX., Corollary.)

24. To determine that point in a given straight line which is

equidistant from two given points not in the same plane with

the given line. (v. Exercise 13.)

25. To find a point in a plane which shall be equidistant from

three given points in space.

26. Through a given point in space, to draw a straight line

which shall cut two given straight lines not in the same plane.

Suggestion. Pass a plane through the given point and through

one of the given lines ; the line through the given point and the

point where the plane cuts the second given line is the solution

required.

27. Through a given point, to draw a straight line which shall

meet a given straight line and the circumference of a given circle

not in the same plane. (Two solutions in general.)

28. In a given plane and through a given point of the plane, to

draw a straight line which shall be perpendicular to a given line

in space.

Suggestion. Draw a plane through the given point and perpen-

dicular to the given line. Its intersection with the given plane is

the solution required.

29. Through a given point ^ in a plane, to draw a straight line

AT in that plane, which shall be at a given distance PT from a

given point P without the plane.

Suggestion. Drop a perpendicular from P to the plane, and with

the foot of this perpendicular as a centre, and with a radius equal

to a side of a right triangle whose hypotenuse is PT, and whose
other side is the length of the perpendicular, describe a circum-

ference in the plane. A tangent from A to this circumference is

the solution required, {v. 12, Exercise 2.)

30. Through a given point A, to draw to a given plane M a

straight line which shall be parallel to a given plane N and of a
given length.
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POLYBDRONS.

1. Definition. A polyedron is a geometrical solid bounded

by planes.

The bounding planes, by their mutual intersections, limit

each other, and determine the faces (which are polygons),

the edgeSj and the vertices of the polyedron. A diagonal of a

polyedron is a straight line joining^any two of its vertices

not in the same face.

The least number of planes that can form a polyedral

angle is three ; but the space within the angle is indefinite in

extent, and it requires a fourth plane to enclose a finite por-

tion of space, or to form a solid ; hence the least number of

planes that can form a polyedron is four.

2. Definition. A polyedron of four faces is called a tetra-

edron ; one of six faces, a hexaedron ; one of eight faces, an

octaedron ; one of twelve faces, a dodecaedron ; one of twenty

faces, an icosaedron.

3. Definition. A polyedron is convex when the section

formed by any plane intersecting it is a convex polygon.

All the polyedrons treated of in this work will be under-

stood to be convex.

4. Definition. The volume of any polyedron is the numer-

ical measure of its magnitude, referred to some other poly-

edron as the unit. The polyedron adopted as the unit is

called the unit of volume.

To measure the volume of a polyedron is, then, to find its

ratio to the unit of volume.

224
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The most convenient unit of volume is the cube whose

edge is the linear unit.

5. Definition. Equivalent solids are those which have equal

volumes.

PEISMS AND PARALLEL0PIPED8.

6. Definitions. A prism is a polyedron two of whose oppo-

site faces, called hases^ are in parallel planes,

and whose lateral edges (that is, the edges

intersecting the bases) are all parallel to the

same line.

From this definition werreadily deduce the

following consequences :

1st. Any two lateral edges of a prism are

parallel (VI., Proposition Y., Corollary).

2d. All the lateral faces of a prism are parallelograms (YI.,

Proposition YIII.). Hence all the lateral edges are equal.

3d. The bases of a prism are equal polygons (YI., Proposi-

tion X.).

The lateral faces of' a prism constitute its lateral or convex

surface.

The altitude of a prism is the perpendicular distance be-

tween the planes of its bases (YI., Proposition IX.)

A triangular prism is one whose base is a triangle ; a quad-

rangular prism, one whose base is a quadrilateral ; etc.

7. Definitions. A right prism is one whose lateral

edges are perpendicular to the planes of its faces

(YI., Proposition XI.)

In a right prism, any lateral edge is equal to

the altitude.

The lateral faces of a right prism are perpen-

dicular to the bases (YI., Proposition XIY.)
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An oblique prism is one whose lateral edges are oblique to

the planes of its bases.

In an oblique prism, a lateral edge is greater than the altitude.

8. Definition. A regular prism is a right prism whose bases

are regular polygons.

8. Definition. Ifaprism,A5CZ)jE^-JF;

is intersected by a plane GK, not

pj^rallel to its base, the portion of

the prism included between the base

and this plane, namely, \A5 (7D.&-

QHIKLy is called a truncated prism.

10. Definition. A right section of a prism is the section made

by a plane passed through the prism perpendicular to one of

its lateral edges.

A right section is perpendicular to all the lateral edges

(YI., Proposition XI.) and to all the lateral faces (YI., Propo-

sition XIY.) of the prism.

11. Definition. A parallelopiped is a prism

whose bases are parallelograms. It is there-

fore a polyedron all of whose faces are par-

allelograms.

From this definition and YI., Proposi-

tion X., it is evident that any two oppo-

site faces of a parallelopiped are equal parallelograms.

12. Definition. A right parallelopiped is a par-

allelopiped whose lateral edges are perpendic-

ular to the planes of its bases. Hence, by YI.,

6, its lateral faces are rectangles ; but its bases

may be either rhomboids or rectangles.
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A rectangular parallelopiped is a right parallelepiped whose

bases are rectangles. Hence it is a parallelopiped all of

whose faces are rectangles.

13. Definition. A cube is a rectangular parallelo-

piped whose edges are all equal. Hence its faces

are all squares.

PROPOSITION I.—THEOREM.

14. The sections of a prism made by parallel planes are equal

polygons.

For the portion of the prism in-

cluded between the two sections is a

new prism (6). Therefore its bases,

which are the sections in question,

are equal.

15. Corollary. Any section of a

prism made by a plane parallel to the

base is equal to the base.

EXERCISE.

Theorem.—In a rectangular parallelopiped, the four diagonals

are equal to each other ; and the square of a diagonal is equal

to the sum of the squares of the three edges which meet at a

common vertex.
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PROPOSITION II.—THEOREM.
16. The lateral area of a prism is equal to the product of the

perimeter of a right section of the prism by a lateral edge.

Let AD' be a prism, and GHIKL a

right section of it; then the area of

the convex surface of the prism is equal

to the perimeter GHIKL multiplied by

a lateral edge AA'.

For, the sides of the section GHIKL^
being perpendicular to the lateral edges

AA', BB' (YI., 6), etc., are the altitudes

of the parallelograms which form the

convex surface of the prism, if we take as the bases of these

parallelograms the lateral edges AA\ BB\ etc., which are all

equal (6). Hence the area of the sum of these parallelo-

grams is

GH X AA' -\-HIX BB' + etc.

= {GH-\-HI+ etc.) X AA'.

17. Corollary. The lateral area of a right prism is equal

to the product of the perimeter of its base by its altitude.

PROPOSITION III.—THEOREM.
18. Two prisma are equal, if three faces including a triedral

angle of the one are respectively equal to three faces similarly

'placed including a triedral angle of the other,—

Let the triedral angles A
and a ofthe prisms ABCDE-
A\ abcde-a', be contained by-

equal faces similarly placed,

namely, ABCDE equal to

abcde, AB' equal to ab', and

AE' equal to aef ; then the

prisms are equal.
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For, superpose the second prism upon the first, making the

base ahcde coincide with the equal base ABCDE. Since the

diedral angles ah and AB are equal and ae and AE are equal

(YI., Proposition XXII.), the plane ah' will coincide with the

plane AB'^ and the plane ae' with the plane AE', Hence the

intersection aa' will fall along the intersection AA', As the

faces ah' and AB' are equal, and have now been suitably

superposed, they must coincide throughout^ and a'h' will

coincide with A'B'. For the same reason,^ a'e' will coincide

with A'E'. Consequently, the plane determined by a'h' and

aV, namely, the plane of the upper base of the second prism,

will coincide with the plane of the upper base of the first

prism. Any lateral edge, as eef^ will fall along the corre-

sponding lateral edge EE'^ for they are now parallel to the

same line AA'^ and have a point e of one coinciding with a

point E of the other. They have thus the same direction

^ and a point in common, and must coincide throughout^ by I.,

Postulate II.

Since all the lateral edges of the second prism coincide

with the corresponding lateral edges of the first,, the planes

of all the corresponding lateral faces must coincide. There-

fore, as all the corresponding faces of the two prisms coincide

(the bases included), the prisms are equal.

19. Corollary I. Two truncated prisms are equal, if three

faces including a triedral angle of the one are respectively equal

to three faces similarly placed including a triedral angle of the

other. For the preceding demonstration applies whether the

planes A'B'C'D'E' and a'h'c'dle are parallel or inclined to the

lower bases.

20. Corollary II. Two right prisms are equals if they have

equal bases and equal altitudes.

20
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/
In the case of right prisms, it is not necessary to add the

condition that the faces shall be

similarly placed ; for if the two

right prisms ABC-A! ^ dbc-a\ can-

not be made to coincide by placing

the base ABC upon the equal base

ahc ; yetj by inverting one of the

prisms and applying the base

ABC to the base a'6V, they will

coincide.

PROPOSITION IV.—THEOREM.

V 21. Any oblique prism is equivalent to a right prism whose

base is a right section of the oblique prism, and whose altitude is

equal to a lateral edge of the oblique prism.

JjQtABCDE-A^hG the oblique prism.

At any point F in the edge AA\ pass

a plane perpendicular to AA' and

forming the right section FGHIK.
Produce AA' to F\ making FF' z=

AA\ and through F' pass a second

plane perpendicular to the edge AA',

intersecting all the faces of the prism

produced, and forming another right

section F'G'H'I'K' parallel and equal

to the first. The prism FGHIK-F' is a right prism whose

base is the right section and whose altitude FF' is equal to

the lateral edge of the oblique prism.

The solid ABCDE-F is a truncated prism which is easily

shown to be equal to the truncated prism A'B'C'D'E'-F'

(Proposition III., Corollary I.). Taking the first away from

the whole solid ABCDE-F', there remains the right prism

;
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taking the second away from the same solid, there remains

the oblique prism ; therefore the right prism and the oblique

prism have the same volume ; that is, they are equivalent.

^V^..^^ PROPOSITION v.—THEOREM.

26. Any parallelopiped is equivalent to a rectangular parallel-

opiped of the same altitude and an equivalent base.

Let ABGD^A' be

any oblique parallel-

opiped whose base is

ABCD
J
and altitude

B'O.

Produce the edges

AB,A'B',I)C,D'C';

in AB produced

take FG = AB, and

through F and G
pass planes FF'FI, GG'H'H, perpendicular to the produced

edges ; then the given parallelopiped and the right parallelo-

piped FF'FI-H are equivalent, by Proposition lY.

Produce, now, the edges of this second parallelopiped ZF,

FF\HG, H'G'; in IF produced take NK^IF, and through

.N and K pass planes KLL'K' smd NMM'N' perpendicular

to the produced edges. Then the second parallelopiped and

the parallelopiped NMM'W-K are equivalent, by Proposi-

tion lY. Consequently, the given parallelopiped and the

parallelopiped NMM'N'-K are equivalent. The last-named

parallelopiped is a right parallelopiped, by construction, since

the face KLL'K' was drawn perpendicular to the lateral

edges. Moreover, as the planes KL' and KN' are perpendic-

ular, the first to KI, the second to AG, they are perpendicular

to the plane AHK, by YI., Proposition XIY., and their inter-
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section KK' is perpendicular to AHK(Y1.^ Proposition XYI.)>

and therefore to KL
(YL, 6). Hence the ^ ^' '' ^'

base KLL'K' is a

rectangle, and the

par allelopiped
Xii'X'-iV^is a rec-

tangular parallelopi-

ped. If, now, we

take KIjMN as its

base, its altitude is

equal to that of the given parallelopiped, since the planes

AUK and A'H'K' are parallel; and its base is equivalent

to ABGD^ since each of them is equivalent to FGHI (lY.,

Proposition I.).

^ PROPOSITION VI.—THEOREM.

23. The plane passed through two diagonally opposite edges

of a parallelopiped divides it into two equivalent triangular

prisms.

Let ABCD-A' be any parallelopi-

ped ; the plane A CCA', passed through

its opposite edges AA' and CC, divides

it into two equivalent triangular prisms

ABC-A' and ADC-A\
Let FGHI be any right section of

the parallelopiped, made by a plane

perpendicular to the edge A A'. The

intersection, FH, of this plane with the plane AC is the

diagonal of the parallelogram FGHI, and divides that par-

allelogram into two equal triangles, FGH and FIH. The

oblique prism ABG-A' is equivalent to a right prism whose
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base is the triangle FGH and whose altitude is AA' (Propo-

sition lY.); and the oblique prism ADC-A' is equivalent to

a right prism whose base is the triangle FIH and whose alti-

tude is AA\ The two right prisms are equal (Proposition

III., Corollary II.) ; therefore the oblique prisms, which are

respectively equivalent to them, are equivalent to each other.

i- PKOPOSITION VII.—THEOREM.

24. Tioo rectangular parallelopipeds having equal bases are to

each other as their altitudes.

Let P and Q be two rectangular

parallelopipeds having equal bases,

and let AB and CD be their alti-

tudes.

Ist. Suppose the altitudes have

a common measure, which is con-

tained m times in AB and n times

in CD. Then we have

AB ^m
CD~ n'

Apply this measure to AB and CJ), and through the poinds

of division draw planes perpendicular to AB and CD. P
will thus be divided into m, and Q into n, smaller parallelo-

pipeds, all of which will be equal, by Proposition I., Corol-

lary, and Proposition III., Corollary II. Hence

p

\ N
\

!\

\ K

\ I\

\ \

Therefore

P
Q

m
n'

P^AB
i Q CD'

The proof may be extended to the case where the altitudes

are incommensurable, by the method exemplified in the proof
20*

^/
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J

of II., Proposition XII., of III., Proposition I., and of lY.,

Proposition II.

^'25. Scholium, The three edges of a rectangular parallelo-

$ piped which meet at a common vertex are called its dimen-

sionsj and the preceding theorem may be expressed as follows

:

Two rectangular parallelopipeds which have two dimensions

in common are to each other as their third dimensions.

f PROPOSITION VIII.—THEOREM.

^6. T.0 rectangular parallelopi,e,s Kaun, e.ual aUitudes

are to each other as their bases.

Let a, b, and c be the three dimen-

sions of the rectangular parallelo-

piped P; m, w, and c those of the

rectangular parallelopiped Q; the

dimension c, or the altitude, being

common.

Construct B, sl third rectangular

parallelopiped, having the dimensions

m, b, and c.

If a and m are taken as the alti-

tudes of P and JR, their bases are

equal, and, by Proposition YII.,

P^ a

1^ m*

If b and n are taken as the altitudes of R and §, theii

bases are equal, and, by Proposition VII.,

R^b, .

Q n'

and, multiplying these ratios together,

P^ a X b '

Q m X n

p

F^

Q

rA
1

J

A
\

n'



BOOK vir.

awRft

235

But a y^ b is the area of the base of P, awFm X w is the

area of the base of Q; therefore P and Q are in the ratio

of their bases.

27. Scholium. This proposition may also be expressed as

follows

:

Two rectangular parallelopipeds which have one dimension in

common, are to each other as the products of the other two

dimensions.

PROPOSITION IX.—THEOREM.

28. Any two rectangular parallelopipeds are to each other as

the products of their three dimensions.

Let a, by and c be the three dimen-

sions of the rectangular parallelo-

piped P; m, n, and p those of the

rectangular parallelopiped Q.

Construct P, a third rectangular

parallelopiped, having the dimen-

sions a, 6, and p. By Proposition

YII. we have

p \ K

C 1

L._P_ !

P
P

c

and by Proposition YIII.,

P _ axb
,

Q m Xn'

and, multiplying these ratios together,

P axb X c

Q mXnXp

\ K

V
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PROPOSITION X.—THEOREM. /4^
The volume of a rectangular parallelopiped is equal to the

product of its three dimensions, the unit of volume being the cube

whose edge is the linear unit.

Let a, b, c, be the three dimen-

sions of the rectangular parallelo-

piped P; and let Q be the cube

whose edge is the linear unit. The

three dimensions of Q are each

equal to unity, and we have, by

the preceding proposition,

p

\ K

i

p
Q

ax b X c

1 X 1 X 1
= aXbXc.

P.,Now, Q being takeA as the unit of volume, - is the numer-

ical measure, or volume of P, in terms of this unit (4);

therefore the volume of P is equal to the product ^ X ^ X <^-

30. Scholium I. Since the product a X b represents the

base, when c is called the altitude, of the parallelopiped, this

proposition may also be expressed as follows

:

The volume of a rectangular parallelopiped is equal to the

product of its base by its altitude.

31. Scholium II. When the three dimen-

sions of the parallelopiped are each ex-

actly divisible by the linear unit, the truth

of the proposition is rendered evident by

dividing the solid into cubes, each of which

is equal to the unit of volume. Thus, if

the three edges which meet at a common

vertex A are, respectively, equal to 3, 4, and 5 times the linear

unit, these edges may be divided respectively into 3, 4, and 5

t\
^ "^^^

V. ^ v. ^
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equal parts, and then planes passed through the several points

of division at right angles to these edges will divide the solid

into cubes, each equal to the unit cube, the number of which

is evidently 3x4x5-
But the more general demonstration, above given, includes

also the cases in which one of the dimensions, or two of

them, or all three, are incommensurable with the linear unit.

32. Scholium III. If the three dimensions of a rectangular

parallelopiped are each equal to <2, the solid is a cube whose

edge is a, and its volume is a X <^ X <^ = <^' ; or, the volume

of a cube is the third power of its edge. Hence it is that in

arithmetic and algebra the expression " cube of a number"

has been adopted to signify the " third power of a number."

PROPOSITION XI.—THEOREM.

33. The volume of any parallelopiped is equal to the product

of the area of its base by its altitude.

For, by Proposition Y., the volume of any parallelopiped is

equal to that of a rectangular parallelopiped having an equiv-

alent base and the same altitude (30).

PROPOSITION XII.—THEOREM. '

34. The volume of a triangular prism is equal to the product

of its base by its altitude.

Let ABC-A' be a triangular prism.

In the plane of the base complete the

parallelogram ABGD, and then through

D draw a line DD' parallel to AA\ and

through DD' and CO', and DD' and

AA\ pass planes, thus constructing the

n/
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parallelopiped ABCD-D'. The given prism is half of the

parallelepiped, by Proposition YI., and

it has the same altitude.

The volume of the parallelopiped is

equal to its base BD multiplied by its

altitude (Proposition XI.) ; therefore

the volume of the triangular prism is

equal to its base ABC, the half of BD,
multiplied by its altitude.

. 35. Corollary. The volume of any prism is equal to the

product of its base by its altitude.

Let ABCDE-A' be any prism. It may
be divided into triangular prisms by planes

passed through a lateral edge AA' and the

several diagonals of its base. The volume

of the given prism is the sum of the vol-

umes of the triangular prisms, or the sum

of their bases multiplied by their common ''-

altitude, which is the base ABODE of the given prism multi-

plied by its altitude.

PYKAMIDS.

36. Definitions. A pyramid is a polyedron bounded by a

polygon and triangular faces formed by

the intersections of planes passed through b

the sides of the polygon and a common

point out of its plane ; as S-ABGDE.

The polygon, ABODE, is the base of

the pyramid; the point, S, in which the

triangular faces meet, is its vertex; the

triangular faces taken together constitute

its lateral, or convex, surface; the area of
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this surface is the lateral area; the lines SA^ SB^ etc., in

which the lateral faces intersect, are its lateral edges. The

altitude of the pyramid is the perpendicular distance SO from

the vertex to the base.

A triangular pyramid is one whose base is a triangle; a

quadrangular pyramid, one whose base is a quadrilateral ; etc.

A triangular pyramid, having but four faces (all of which

are triangles), is a tetraedron ; and any one of its faces may

be taken as its base.

37. Definitions. A regular pyramid is one whose base is a

regular polygon, and whose vertex is in the

perpendicular to the base erected at the centre A

of the polygon. This perpendicular is called

the axis of the regular pyramid.

From this definition it can be readily shown

that the lateral edges of a regular pyramid are /

all equal, and hence that the lateral faces are /''

equal isosceles triangles, ^"^L^^
The slant height of a regular pyramid is the

perpendicular from the vertex to the base of any one of its

lateral faces. It is the common altitude of all the lateral

faces.

38. Definitions. A truncated pyramid is the portion of a

pyramid included between its base and a plane cutting all its

lateral edges.

When the cutting plane is parallel to the base, the trun-

cated pyramid is called a frustum of a pyramid. The altitude

of a frustum is the perpendicular distance between its bases.

In a frustum of a regular pyramid, the lateral faces are

equal trapezoids; and the perpendicular distance between

the parallel sides of any one of these trapezoids is the slant

height of the frustum.
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V PEOPOSITION XIII.—THEOREM.

39. If a pyramid is cut by a plane parallel to its base : 1st,

the edges and the altitude are divided proportionally ; 2d, the

section is a polygon similar to the base.

Let the pyramid S-ABCDE, whose alti-

tude is SOj be cut by the plane abode par-

allel to the base, intersecting the lateral

edges in the points a, 6, c, d^ e, and the alti-

tude in ; then

1st. The edges and the altitude are dir

voided proportionally.

Pass a plane through the altitude SO
and any lateral edge SA, cutting the base

in AO and the section in ao. By YI.,

Proposition YIII., _,ab, be, cd, . . . ao are parallel respectively

to AB, BC, CD, ...AO. Therefore, by III., Proposition I.,

8a Sb Sc Sd So

SA SB SG SD" ' SO'

2d. The section abode and the base are similar. For they

are mutually equiangular, by YI., Proposition X., and by

similar triangles we have

ab Sa be Sb cd Sc

AB ~'SA' BC~ 'SB' CD ~ SC
whence

ab

AB
bc_

BC
cd

CD

and the homologous sides of the polygons are proportional.

Therefore the section and the base are similar.
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40. Corollary 1. If a pyramid is cut by a plane parallel to

its base, the area of the section is to the area of the base as the

square of its distance from the vertex is to the square of the

altitude of the pyramid.

For

abcde ^ a^
^^ jy^ Proposition IX.

;

ABODE Z3^' -^
'

"^

but

ab
,

Sa So

AB~~ SA~ SO
Therefore

abcde So

ABCDE SO'

41. Corollary II. If two pyramids have equal altitudes and

equivalent bases, sections made by planes parallel to their bases

and at equal distances from their vertices are equivalent.

PROPOSITION XIV.—THEOREM.

42. The lateral area of a regular pyramid is equal to the

product of the perimeter of its base by one-half its slant

height.

For, let S-ABCDE be a regular pyr-

amid ; the lateral faces SAB, SBC, etc.,

being equal isosceles triangles, whose

bases are the sides of the regular poly-

gon ABCDE and whose common alti-

tude is the slant height SH, the sum

of their areas, or the lateral area of

the pyramid, is equal to the sum of

AB, BC, etc., multiplied by \SH.

L g 21

V
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43. Corollary. The lateral area of the frustum of a regular

pyramid is equal to the half sum of the perimeters of its bases

multiplied by the slant height of the frustum.

PROPOSITION XV.—THEOREM.

44. If the altitude of any given triangular pyramid is divided

into equal parts, and through the points of division planes are

passed parallel to the base of the pyramid, and on the sections

made by these planes as upper bases prisms are described having

their edges parallel to an edge of the pyramid and their altitudes

equal to one of the equal parts into which the altitude of the

pyramid is divided, the total volume of these prisms will approach

the volume of the pyramid as its limit as the number of parts

into which the altitude of the pyramid is divided is indefinitely

increased.

Let S-ABC be the given trian-

gular pyramid, whose altitude is

A T. Divide the altitude A T into

any number of equal parts Ax,

xy, etc., and denote one of these

parts by h. Through the points

of division x, y, etc., pass planes

parallel to the base, cutting from

the pyramid the sections DBF,
GUI, etc. Upon the triangles

DEF, GHI, etc., as upper bases, construct prisms whose

lateral edges are parallel to SA, and whose altitudes are each

equal to h. This is effected by passing planes through EF,

HI, etc., parallel to SA. There will thus be formed a series

of prisms DEF-A, GSI-Dj^tc, inscribed in the pyramid.

/(^ rror^ tWIvI^A
'
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Again, upon the triangles ABC^ DEF, GHI^ etc., as lower

bases, construct prisms whose lateral edges are parallel to

SAj and whose altitudes are each equal to h. This also is

effected by passing planes through BG, JSF, HI^ etc., parallel

to SA. There will thus be formed a series of prisms ABC-D,

DEF-G, etc., which may be said to be circumscribed about

the pyramid.

The total volume of the inscribed prisms is obviously less

and the total volume of the circumscribed prisms is obviously

greater than the volume of the pyramid.

Each inscribed prism is equivalent to the circumscribed

prism immediately above it, since they have the same base

and equal altitudes. Consequently, the difference between

the total volume of the inscribed prisms and the total volume

of the circumscribed prisms is the volume of the lowest cir-

cumscribed prism ABC-D, and therefore the difference be-

tween the total volume of the inscribed prisms and the

volume of thp pyramid is less than the volume of ABC-D.

"By increasing at pleasure the number of parts into which

the altitude AT is divided, we can make the volume of

ABC-D as small as we please, since we diminish its altitude

at pleasure without changing its base. Therefore we can

make the difference between the total volume of the in-

scribed prisms and the volume of the pyramid as small as

we please ; but, as we have seen above, we cannot make it

absolutely zero. Hence the volume of the pyramid is the

limit of the total volume of the inscribed prisms, as the

number of parts into which the altitude AT ia divided is

indefinitely increased.
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PROPOSITION XVI.—THEOREM.

45. Two triangular pyramids having equivalent bases and

equal altitudes are equivalent.

Let S-ABC and 8'-A'B^C' be two triangular pyramids

G A!

having equivalent bases ABC^ A'B'C'^ in the same plane, and

a common altitude A T.

Divide the altitude AT into any arbitrarily chosen number

n of equal parts, Ax^ xy^ yz^ etc., and through the points of

division pass planes parallel to the plane of the bases, inter-

secting the two pyramids. In the pyramid S-ABG inscribe

a series of prisms whose upper bases are the sections BEF,
GHIj etc., and in the pyramid S'-A'B'C inscribe a series of

prisms whose upper bases are the sections D'B'F'., G'HT,
etc. Since the corresponding sections are equivalent (Propo-

sition XIII., Corollary II.), the corresponding prisms, having

equivalent bases and equal altitudes, are equivalent; there-

fore the sum of the prisms inscribed in the pyramid S-ABG
is equivalent to the sum of the prisms inscribed in the

pyramid S'-A'B'C; that is, if we denote the total volumes

of the two series of prisms by V and F', we have
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no matter what the value of n. If we vary w, V and F'

obviously vary.

If n is indefinitely increased, V has the volume of the pyr-

amid S-ABG, and F' the volume of the pyramid S'-A'B'C,

as its limit (Proposition XY.). Therefore, by III., Theorem

of Limits, these volumes are equal.

PROPOSITION XVII.—THEOREM.

i|fp A triangular pyramid is one-third of a triangular prism

of the same base and altitude.

Let S-ABC be a triangular pyramid. Through A and C

draw the lines AE and CD parallel to BS,

Through AE and CD, which are parallel, by

VI., Proposition V., Corollary, pass a plane, and

through S pass a second plane parallel to ABC.

The prism ABC-E has the same base and alti-

tude as the given pyramid, and we are to prove

that the pyramid is one-third of the prism.

Taking away the pyramid S-ABC from the

prism, there remains a quadrangular pyramid whose base is

the parallelogram ACDE and vertex S. The plane SEC^

passed through SE and SC^ divides this pjrramid into two

triangular pyramids, S-AEC and S-ECD, which are equiva-

lent to each other, since their triangular bases AEC and ECD
are the halves of the parallelogram A CDEj and their common

altitude is the perpendicular from S upon the plane ACDE
(Proposition XVI.). The pyramid S-ECD may be regarded

as having ESD as its base and its vertex at C; therefore it

is equivalent to the pyramid S-ABC, which has an equivalent

base and the same altitude. Therefore the three pyramids

into which the prism is divided are equivalent to each other,

and the given pyramid is one-third of the prism.

21* ;
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47. Corollary. The volume of a triangular pyramid is equal

to one-third of the product of its base by its altitude.

^^^ PEOPOSITION XVIII.—THEOREM.

48. The volume of any pyramid is equal to one-third of the

product of its base by its altitude.

For any pyramid, S-ABCDB, may be di-

vided into triangular pyramids by passing

planes through an edge SA and the diagonals

ABj ACj etc., of its base. The bases of these

pyramids are the triangles which compose

the base of the given pyramid, and their

common altitude is the altitude SO of the

given pyramid. The volume of the given ^

pyramid is equal to the sum of the volumes of the triangular

pyramids, which is one-third of the sum of their bases multi-

plied by their common altitude, or one-third of the product

of the base ABODE by tte altitude SO.

49. Scholium. The volume of any polyedron may be found

by dividing it into pyramids, and computing the volumes of

these pyramids separately. The division may be effected by

taking a point within the polyedron and joining it with all

the vertices. The polyedron will then be decomposed into

pyramids whose bases will be the faces of the polyedron, and

whose common vertex will be the point taken within it.

PROPOSITION XIX.—THEOREM.

60. A frustum of a triangular pyramid is equivalent to the

sum of three pyramids whose common altitude is the altitude of

the frustum, and whose bases are the lower base, the upper base,

and a mean proportional between the bases, of the frustum.
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Let ABC-D be a frustum of a triangular pyramid, the

plane DEF being parallel to the base ABC.

Through the vertices A, B, and ^ J'

C pass a plane ^-E^C, and through //y^\/ \

the vertices E, D, and pass a /y^ ' \y^\ \

plane ^DC, dividing the frustum /^ I/ /'
a\

into three pyramids. ^C^^/i'J!jf---j53^^'^

The first of these, ABG-E, has ^^^l^""'^'^
for its base the lower base of the (^^^

frustum, and for its altitude the altitude of the frustum ; the

second, DEF-C, has for its base the upper base of the frus-

tum, and for its altitude the altitude of the frustum. It

remains to show that the third, ACD-E, is equivalent to a

pyramid having for its altitude the altitude of the frustum,

and for its base a mean proportional between the bases of

the frustum.

Through E in the plane ABED draw a line EEf parallel to

AD, and through E', D, and C pass a plane. EE' is parallel

to the plane ACFD, by YI., Proposition YI. Therefore the

pyramids ACD-E and ACD-E' are equivalent, since they

have the same base and equal altitudes. If we take D as

the vertex and AE'C as the base of ACD-E' , it has for its

altitude the altitude of the frustum.

Through F in the plane ACFD draw FF' parallel to AD,

AE'F'-D is a prism, and consequently its bases DEF and

AE'F' are equal^ and E'F' is parallel to EFy and therefore

to 5a
AE'F' ^ AF'
AE'C AC'

since the triangles AE'F' and AE'C have the same altitude.

AE'C AE' n ..= -j^-, for the same reason.
AJjC ab
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AF' AE'
AG AB

by III., Proposition I.

Therefore

DEF^ AE'C
AE'C ABC'

and the base of the pyramid AE'C-D is a mean proportional

between the bases of the frustum.

^1. Corollary. A frustum of any pyramid is equivalent to

the sum of three pyramids whose common altitude is the altitude

of the frustum, and whose bases are the lower base, the upper

base, and a mean proportional between the bases, of the frustum.

Suggestion, Let ABCDE-F be a frustum of any pyramid

S-ABCDE. Construct a triangular pyramid, S'-A'B'C,

having the same altitude as S-ABCDE, and a base A'B'C

equivalent to ABODE and in the same plane with it. Let

the plane of the upper base of the given frustum be pro-

duced to cut the triangular pyramid in F'G'T. The upper

bases of the frustums are equivalent, by Proposition XIII.)
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Corollary II., and the frustums themselves are equivalent,

since the pyramids are equivalent and the pyramids above

the frustums are equivalent.

"^ PROPOSITION XX.—THEOREM.

52. A truncated triangular prism is equivalent to the sum of

three pyramids whose common base is the base of the prism^ and

whose vertices are the three vertices of the inclined section.

F
Let ABC-BEF be a truncated tri-

angular prism whose base is ABC and

inclined section BEF.

Pass the planes AEC and DEC,

dividing the truncated prism into the

three pyramids E-ABC, E-ACI), and

E-CBF.

The first of these pyramids, E-ABC^ has the base ABC
and the vertex E.

The second pyramid, E-A CD, is equivalent to the pyramid

B-ACB ; for they have the same base ACB, and the same

altitude, since their vertices E and B are in the line EB
parallel to this base. But the pyramid B-ACB is the same

as B-ABC ; that is, it has the base ABC and the vertex B.

The third pyramid, E-CBF, is equivalent to the pyramid

B-ACF ; for they have equivalent bases CBF and ACF in

the same plane, and also the same altitude, since their ver-

tices E and B are in the line EB parallel to that plane. But

the pyramid B-ACF is the same as F-ABC; that is, it has

the base ABC and the vertex F.

Therefore the truncated prism is equivalent to three pyra-

mids whose common base is ABC and whose vertices are E^

D, and F,
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THE KEGULAR POLYEDRONS.

53. Definition. A regular polyedron is one whose faces are

all equal regular polygons and whose polyedral angles are all

equal to each other.

PROPOSITION XXI.—THEOREM.

64.. Only five regular (convex^ polyedrons are possible.

(^The faces of a regular polyedron must be regular polygons,

\

and at least three faces are necessary to form a polyedral \

angle ; moreover, the sum of the face angles of a polyedral /

angle must be less than four right angles )(YI., Proposition

XXI.).

1st. The simplest regular polygon is the equilateral tri-

angle, and, since each angle of an equilat-

eral triangle is an angle of 60°, three equi-

lateral triangles «an be combined to form

a polyedral angle. It is probable, then,

that a regular polyedron can be formed

bounded by equilateral triangles and hav-

ing three at each vertex.

There is such a regular polyedron. It

has four faces, and is called the regular

tetraedron.

Since four angles of 60° are less than four right angles,

four equilateral triangles can be combined to form a polyedral
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angle. It is probable, then, that a regu-

lar polyedron can be formed bounded by-

equilateral triangles and having four at

each vertex.

There is such a regular polyedron.

It has eight faces, and is called the regu-

lar octaedron.

Since five angles of 60° are less than four right angles,

five equilateral triangles can be combined

to form a polyedral angle. It is probable, then, that a reg-

ular polyedron can be formed bounded by

equilateral triangles and having five at each

vertex.

There is such a regular polyedron. It

has twenty faces, and is called the regular

icosaedron.

No regular polyedrons bounded by equi-

lateral triangles and having more than five at a vertex are

possible. For six or more angles of 60° cannot form a poly-

edral angle.

2d. The next regular polygon to the equilateral triangle,

in order of simplicity, is the square, each of whose angles is

a right angle.

Three right angles can be combined to form

a polyedral angle. It is probable, then, that a

regular polyedron can be formed bounded by

squares and having three at each vertex.

There is such a regular polyedron. It has

six faces, and is called the cuhe^ or the regular hexaedron.

No regular polyedrons bounded by squares and having

more than three at a vertex are possible. For four or more

right angles cannot form a polyedral angle.
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3d. The next regular polygon is the regular pentagon, each

of whose angles contains 108° (I., Proposition XXYII.).

Three angles of 108° each can be combined to form a poly-

edral angle. It is probable, then, that a

regular polyedron can be formed bounded

by regular pentagons and having three

at each vertex.

There is such a regular polyedron.

It has twelve faces, and is called the

regular dodecaedron.

!No regular polyedrons bounded by

regular pentagons and having more than three at a vertex

are possible. For four or more angles of 108° cannot be

combined to form a polyedral angle.

4th. Each angle of the regular hexagon contains 120°. No
regular polyedron can be formed bounded by hexagons. For

three or more angles of 120° cannot be combined to form a

polyedral angle.

No regular polyedron can be formed bounded by reg-

ular polygons of more than six sides. For it follows, from

I., 55, Exercise, that the greater the number of sides in a

regular polygon the greater the magnitude of its angles, and

since, as we have seen, the angles of a hexagon are too great

to allow the existence of a polyedral angle whose plane faces

are regular hexagons, those of any regular polygon of more

than six sides will be too great.

Therefore the only possible regular polyedrons are the five

we have figured.

55. Scholium I. It must be observed that we have not

attempted to prove that the five regular polyedrons are pos-

sible. This can be done by showing how to construct them

;

but the investigation is difficult and tedious.
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56. Scholium II. The student may derive some aid in com-

prehending the preceding discussion of the regular polyedrons

by constructing models of them, which he can do in a very

simple manner, and at the same time with great accuracy, as

follows.

Draw on card-board the following diagrams ; cut them out

entire, and at the lines separating adjacent polygons cut the

card-board half through ; the figures will then readily bend

into the form of the respective surfaces, and can be retained

in that form by gluing the edges. V

Tetraedron.
Hexaedron,

Octaedron.

V
Dodccaedron.

Tcosaedron.



EXERCISES ON BOOK VIL

THEOREMS.
1. The volume of a triangular prism is equal to the product of

the area of a lateral face by one-half the perpendicular distance

of that face from the opposite edge.

2. The lateral surface of a pyramid is greater than the base.

Suggestion. Join the projection of the vertex on the base with

the corners of the base.

3. At any point in the base of a regular pyramid a perpendic-

ular to the base is erected which intersects the several lateral faces

of the pyramid, or these faces produced. Prove that the sum of

the distances of the points of intersection from the base is con-

stant.

Suggestion. The distances in question are proportional to the

distances of the foot of the perpendicular from the sides of the

base, and these distances have a constant sum. {v. V., Exer-

cise 16.)

4. Two tetraedrons which have
a triedral angle of the one equal

to a triedral angle of the other,

are to each other as the products

of the three edges of the equal

triedral angles, {v. IV., 19, Ex-
ercise.)

6. In a tetraedron, the planes passed through the three lateral

edges and the middle points of the edges of the base intersect in

a straight line.

254
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Suggestion. The intersections of the planes with the base are

medial lines of the base. Therefore they intersect in the line

joining the vertex with the point of intersection of the medial

lines of the base.

6. The lines joining each vertex of a tetraedron with the point

of intersection of the medial lines of the opposite face all meet in

a point, which divides each line in the ratio 1 : 4.

Note. This point is the centre of gravity

of the tetraedron.

Suggestion. If AF and DG are two of /

the lines in question,, they must intersect, /
since they both lie in the plane passed / g
through AD and the middle point E of ^V/
the opposite edge. Moreover, since EF M
= lED and EG = lEA (I., Exercise 38),

GFis, parallel toAD and is equal to ^AD. C

Whence HF = iHA and GH = iHD.
The lines through C and B will also each cut off \ of AF, Hence
the four lines have a common intersection.

7. The straight lines joining the middle points of the opposite

edges of a tetraedron all pass through the centre of gravity of

the tetraedron, and are bisected by the centre of gravity, {v. III.,

Exercise 7.) ^
8. The plane which bisects a diedral angle of a ie^raedron

divides the opposite edge into segments which are proportional

to the areas of the adjacent faces.

Suggestion. Consider the volumes of the two parts into which
the tetraedron is divided.

9. If a, 6, e, d, are the perpendiculars from the vertices of a
tetraedron upon the opposite faces, and a\ 6'', g\ d^, the perpen-

diculars from any point within the tetraedron upon the same
faces respectively, then

abed
Suggestion. Join the point in question with the vertices of the

tetraedron, and compare the volumes of the four tetraedrons thus

obtained with the volume of the given tetraedron.
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10. The altitude of a regular tetraedron is equal to the sum of

the four perpendiculars let fall from any point within it upon the

four faces.

11. Any lateral face of a prism is less than the sum of the other

lateral faces, {v. Proposition II.)

PROBLEMS.
12. Given three indefinite straight lines in space which do not

intersect, to construct a parallelopiped which shall have three of

its edges on these lines, {v. VI., Exercise 8.)

13. Within a given tetraedron, to find a point such that planes

passed through this point and the edges of the tetraedron shall

divido^lie tetraedron into four equivalent tetraedrons. {v. Exer-

cise 6.)

'



BOOK YIIL
THE THREE ROUND BODIES.

1. Op the various solids bounded by curved surfaces, but

three are treated of in Elementary Geometry,—namely, the

cylinder^ the cone^ and the sphere^ which are called the three

ROUND BODIES.

THE CYLINDER.

2. Definitions. A cylindrical surface is a curved surface gen-

erated by a moving straight line which continually touches a

given curve, and in all of its positions is parallel to a given

fixed straight line not in the plane of the curve.

Thus, if the straight line Aa moves so as continually to

touch the given curve ABCD, and so

that in any of its positions, as ^6,

Cc, Dd, etc., it is parallel to a given

fixed straight line 3im, the surface

ABCDdcba is a cylindrical surface.

If the moving line is of indefinite

length, a surface of indefinite extent

is generated.

The moving line is -called the generatrix ; the curve which

it touches is called the directrix. Any straight line in the

surface, as Bb^ which represents one of the positions of the

generatrix, is called an element of the surface.

To draw an element through any given point of a cylin-

drical surface, it is sufficient to draw a line through the point

parallel to the given fixed straight line, or parallel to ap

element (I., Postulate II.).

r . 22* 257
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In this general definition of a cylindrical surface, the direc-

trix may be any curve whatever. Hereafter we shall assume

it to be a closed curve, and usually a

circle, as this is the only curve whose

properties are treated of in element-

ary geometry.

3. Definition. The solid Ad bounded

by a cylindrical surface and two par-

.

allel planes, ABD and ahd^ is called

a cylinder ; its plane surfaces ABD,

abd, are called its bases; the curved surface is sometimes

called its lateral surface; and the perpendicular distance

between its bases is its altitude.

The elements of a cylinder are all equal.

A cylinder whose base is a circle is called a circular cylinder.

4. Definition. A right cylinder is one whose

elements are perpendicular to its base.

5. Definition. A right cylinder with a circular

base, as ABCa, is called a cylinder of revolution,

because it may be generated by the revolution

of a rectangle A Ooa about one of its sides, Oo,

as an axis ; the side Aa generating the curved ^

surface, and the sides OA and oa generating

the bases. The fixed side Oo is the axis of the cylinder.

The radius of the base is called the radius of the cylinder.

m\-

PROPOSITION I.—THEOREM.

6. Every section of a cylinder made by a plane passing through

an element is a parallelogram.

Let Bb be an element of the cylinder Ac ; then the section

BbdD, made by a plane passed through Bb, is a parallelogram.
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The line Dd in which the cutting plane intersects the

curved surface a second time is an ele-

ment. For, if through any point D of

this intersection a straight line is drawn

parallel to Bh^ this line, by the definition

of a cylindrical surface, is an element of

the surface, and it must also lie in the

plane Bd ; therefore this element, being

common to both surfaces, is their intersection.

The lines BD and hd are parallel (VI., Proposition YIII.),

and the elements Bh and Dd are parallel ; therefore Bd is a

parallelogram.

7. Corollary. Every section of a right cylinder made by a

plane perpendicular to its base is a rectangle.

PROPOSITION II.—THEOREM.

8. The bases of a cylinder are equal.

Let BD be the straight line joining two points of the

perimeter of the lower base, and let a

plane passing through BD and the ele-

ment Bb cut the upper base in the line

bd ; then BD = bd (Proposition I.).

Let A be any third point in the perim-

eter of the lower base, and Aa the corre-

sponding element. Through the parallels

Aa and Bb pass a plane, and through Aa *^

and Dd pass a plane. Then AB = ab and AD = ad (Propo-

sition I.) ; and the triangles ABD^ abdj are equal. Therefore,

if the upper base be applied to the lower base with the line

bd in coincidence with its equal BD^ the triangles will co-

incide and the point a will fall upon A ; that is, any point a

of the upper base will fall on the perimeter of the lower base,
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and consequently the perimeters will coincide throughout.

Therefore the bases are equal.

9. Corollary I. Any two parallel sec- »w/.^^ /

tions of a cylindrical surface are equal. /-^^^^^i^V

For these sections are the bases of a A>-^^- /
cylinder. / .../^/'^

10. Corollary II. All the sections of a circular cylinder

parallel to its bases are equal circles; and the straight line

joining the centres of the bases passes through the centres of all

the parallel sections. This line is called the axis of the cylinder.

Suggestion. In the base draw two diameters, and through

these diameters and elements of the cylinder pass planes.

They will cut all the sections in diameters, and their line of

intersections will pass through all the centres.

11. Definition. A tangent plane to a cylinder is a plane which

passes through an element of the curved surface without cut-

ting the surface. The element through which it passes is

called the element of contact

THE CONE.

12. Definition. A conical surface is a curved surface gener

ated by a moving straight line which continually touches a

given curve, and passes through a given fixed point not in

the plane of the curve.

Thus, if the straight line SA moves so as continually to

touch the given curve ABGD, and in all its positions, SB, SC,

SBj etc., passes through the given fixed point aS, the surface

S-ABCD is a conical surface.
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The moving line is called the generatrix ; the curve which

it touches is- called the directrix.

Any straight line in the surface, as

SBj which represents one of the posi-

tions of the generatrix, is called an

element of the surface. The point S
is called the vertex.

The straight line joining any point

of a conical surface with the vertex

is obviously an element.

If the generatrix is of indefinite

length, as ASa^ the whole surface generated consists of two

symmetrical portions, each of indefinite extent, lying on

opposite sides of the vertex, as S-ABGD and S-abcd, which

are called nappes ; one the upper, the other the lower, nappe.

13. Definition. The solid S-ABCD, bounded by a conical

surface and a plane ABD cutting the surface, is called a cone

;

its plane surface ABD is its base, the point ;S^ is its vertex, and

the perpendicular distance SO from the vertex to the base is

its altitude.

A cone whose base is a circle is called a circular cone. The

straight line drawn from the vertex of a circular cone to the

centre of its base is the axis of the cone.

14. Definition. A right circular cone is a cir-

cular cone whose axis is perpendicular to its

base, as S-ABCD.

The right circular cone is also called a cone

of revolution, because it may be generated by

the revolution of a right triangle, SA 0, about

one of its perpendicular sides, SO, as an axis

;

the hypotenuse SA generating the curved surface, and the

remaining perpendicular side OA generating the base.
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PROPOSITION III.—THEOREM.

15. Every section of a cone made by a plane passing through

its vertex is a triangle.

Let the cone S-ABCD be cut by a

plane SBC^ which passes through the

vertex S and cuts the base in the straight

line BC ; then the section SBC is a tri-

angle; that is, the intersections SB and

SG with the curved surface are straight

lines.

For the straight lines joining S with B and C are elements

of the surface, by the definition of a cone, and they also lie

in the cutting plane ; therefore they coincide with the inter-

sections of that plane with the curved surface ; and BG^ being

the intersection of two planes, is a straight line.

PROPOSITION IV.—THEOREM.

16. If the base of a cone is a circle^ every section made ty a

plane parallel to the base is a circle.

Let the section abc, of the circular

cone S-ABGj be parallel to the base.

Let be the centre of the base, and

let be the point in which the axis SO
cuts the plane of the parallel section.

Through SO and any number of ele-

ments SAj SBj etc., pass planes cutting

the base in the radii OA^ OB, etc., and

the parallel section in the straight lines oa, ob, etc.

is parallel to OA, and ob to OB, we have

Since oa

ofi So „„j ob So „i^ ^ oa ob
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But OA = OB, therefore oa = oh ; hence all the straight

lines drawn from o to the perimeter of the section are equal,

and the section is a circle.

17. Corollary. The axis of a circular cone passes through

the centres of all the sections parallel to the base,

18. Definition. A tangent plane to a cone is a plane which

passes through an element of the curved surface without

cutting this surface. The element through which it passes

is called the element of contact.
Cv//^^^'^^^

THE SPHERE.

19. Definition. A sphere is a solid bounded by a surface all

the points of which are equally distant from a point within,

called the centre.

A sphere may be generated by the revolu-

tion of a semicircle ABC about its diameter

J. (7 as an axis ; for the surface generated

by the curve ABC will have all its points

equally distant from the centre 0.

A radius of the sphere is any straight

line drawn from the centre to the surface.

A diameter is any straight line drawn through the centre and

terminated both ways by the surface.

Since all the radii are equal and every diameter is double

the radius, all the diameters are equal.

20. Definition. It will be shown that every section of a

sphere made by a plane is a circle ; and, as the greatest pos--

sible section is one made by a plane passing through the

centre, such a section is called a great circle. Any section

made by a plane which does not pass through the centre is

called a small circle.
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21. Definition. The poles of a circle of the sphere are the

extremities of the diameter of the sphere which is perpen-

dicular to the plane of the circle j and this diameter is called

the axis of the circle.

PROPOSITION v.—THEOREM.

22. Every section of a sphere made by a plane is a circle.

1st. If the -plane passes through

the centre of the sphere, the lines .^-^^---^

joining points on the perimeter of aJifs//.V}liyss^\c

the section with the centre of the / ^^^vHI]^?'^ \

sphere are radii of the sphere, and ^F;---—--^------^

are therefore all equal. Consequently \
j J

it is a circle with its centre at 0. X,^^ I ^^/
2d. If the plane does not pass ^

through the centre of the sphere, as

abcj draw a diameter EOD pei*pendicular to the section and

meeting it at o. If points a, b, c, of the perimeter are joined

with 0, and also with 0, the triangles aeO, boO, coO, are all

equal (I., Proposition X.). Therefore ao, bo, co, etc., are all

equal, and the section is a circle with its centre at o.

23. Corollary I. The axis of a circle on a sphere passes

through the centre of a .circle.

24. Corollary II. All great circles of the same sphere are

equal.

25. Corollary III. Every great circle divides the sphere into

two equal parts.

Suggestion. Superpose one part upon the other, (v. II.,

Proposition II.)
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26. Corollary IY. Any two great circles on the same sphere

bisect each other ; for the common inter-

section AB of their planes passes through

the centre of the sphere and is a diame-

ter of each circle.

27. Corollary Y. An arc of a great

circle may he drawn through any two given

points of the surface of the sphere^ and,

unless the points are the opposite eoctremities

of a diameter, only one such arc can he drawn; for the two

points, together with the centre 0, determine the plane of a

great circle whose circumference passes through the points.

If, however, the two given points are the extremities A
and 5 of a diameter of the sphere, the position of the circle

is not determined, for the points J., 0, and B, being in the

same straight line, will not determine a plane (YI., Proposi-

tion I.).

28. Corollary YI. An arc of a circle may he drawn through

any three given points on the surface of the sphere; for the

three points determine a plane which cuts the sphere in a

circle.

EXEBCISE.

Theorem.—The greater the distance of the plane of a small

hsircle
from the centre of the sphere, the less the circle.

li 23
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PROPOSITION VI.—THEOREM.

29. All the points in the circumference of a circle of the sphere

J,-
are equally distant from either of its poles.

Let abed be any circle'of the sphere,
..-s^^^--^

and PP' the diameter of the sphere „/^'Wt'^'—^\j
perpendicular to its plane; then, by I %.

the definition (21), P and P' are the ^^^
poles of the circle ahcd^ and, by Prop- \

\^

osition Y., Corollary I., FT' passes \
through 0, the centre of ahcd. Join ^1^

P with any points, a, 6, c, on the cir-

cumference of the circle. Then Pa, P6, Pc, are equal, since

the triangles Poa, Tob^ Poc^ are equal, by I., Proposition VI.

Hence all the points of the circumference abed are equally

distant from the pole P. For the same reason, they are

equally distant from the pole P'.

30. Corollary I. All the arcs of great circles drawn from a

pole of a circle to points in its circumference are equal, since

their chords are equal chords in equal circles.

By the distance of two points on the surface of a sphere

is usually understood the arc of a great circle joining the two

points. The arc of a great circle drawn from any point of a

given circle abc, to one of its poles, as the arc Pa, is called

the polar distance of the given circle, and the distance from

the nearest pole, is usually understood.

31. Corollary II. The polar distance of a great circle is a

quadrant ; thus, PA, PB, etc., P'A, P'B, etc., polar distances

of the great circle ABCD, are quadrants ; for they are the

measures of the right angles A OP, BOP, AOP', BOP', etc.,

whose vertices are at the centre of the great circles PAP'j

PBP', etc.
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In connection with the sphere, by a quadrant is usually to

be understood a quadrant of a great circle.

32. Corollary III. If a point on the surface of a sphere is

at a quadrant's distance from each of two given points of the

surface which are not opposite extremities of a diameter, it is the

pole of the great circle passing through them.

Suggestion. Let P be at a quadrant's distance from B and

C; then FOB and POC are right angles, and FO is perpen-

dicular to the plane ABCD.

33. Scholium. By means of poles, arcs of circles may be

drawn upon the surface of a sphere with the same ease as

upon a plane surface. Thus, by revolving the arc Fa about

the pole P, its extremity a will describe the small circle abd ;

and by revolving the quadrant FA about the pole P, the

extremity A will describe the great circle ABD.

If two points, B and (7, are given on the surface, and it is

required to draw the arc ^C, of a great circle, between them,

it will be necessary first to find the pole P of this circle ; for

which purpose, take B and G as poles, and at a quadrant's

distance describe two arcs on the surface intersecting in P.

The arc BC can then be described with a pair of compasses,

placing one foot of the compasses on P and tracing the arc

with the other foot. The opening of the compasses (distance

between their feet) must in this case be equal to the chord

of a quadrant ; and to obtain this it is necessary to know the

radius of the sphere.

34. Definition. A plane is tangent to a sphere when it has

but one point in common with the surface of the sphere,

35. Definition. Two spheres are tangent to each other when

their surfaces have but one point in common.
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PROPOSITION VII.—THEOREM.

36. A plane tangent to a sphere is perpendicular to the radius

drawn to the point of contact.

For any other line drawn from

the centre of the sphere to the

plane must reach beyond the sur-

face of the sphere, and therefore

must be greater than the radius.

The radius is, then, the shortest

line that can be drawn from the

centre of the sphere to the plane,

and is consequently perpendicular to the plane (YI., Proposi-

tion III.).

37. Corollary. Conversely, a plane perpendicular to a

radius of a sphere at its extremity is tangent to the sphere.

38. Scholium. Any straight line A T, drawn in the tangent

plane through the point of contact, is tangent to the sphere.

Any two straight lines, AT, A T\ tangent to the sphere at

the same point A, determine the tangent plane at that point.

PROPOSITION VIII.—THEOREM.

39. The intersection of two spheres is a circle whose plane is

perpendicular to the straight line joining the centres of the

spheres, and whose centre is in that line.

Through the centres and (7 of

the two spheres let any plane be

passed, cutting the spheres in great

circles which intersect each other in

the points A and B ; the chord AB
is bisected at G by the line 0(7 at

right angles (II., Proposition YI., Corollary II.). If we now
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revolve the plane of these two circles about the line 0(7, the

circles will generate the two spheres, and the point A will

describe the line of intersection of their surfaces. Moreover,

since the line AC will, during this revolution, remain perpen-

dicular to 0(7, it will generate a circle whose plane is per-

pendicular to 0(y, and whose centre is C.

SPHERICAL ANGLES.

40. Definition. The angle of two curves passing through the

same point is the angle formed by the two tangents to the

curves at that point.

This definition is applicable to any two intersecting curves

in space, whether drawn in the same plane or upon a surface

of any kind.

, PROPOSITION IX.—THEOREM.

M. The angle of two arcs of great circles is equal to the angle

of their planes^ and is measured by the arc of a great circle

described from its vertex as a pole and included between its sides

(produced if necessary).

Let AB and AB' be two arcs of >^ j,

great circles, AT and A T' the tan- / i \^V~-^
gents to these arcs at A^ and the / j W \b

centre of the sphere. TA and T'A ^L^ 4*r~"f3)^
lie in the planes of their arcs, and \^^~~"^

\ I /
are perpendicular to the radius OA X^^ ! J/
drawn to their point of contact. ^

They form, then, the plane angle

measuring the diedral angle formed by the planes of the arcs

;

but, by (40), the angle which they form is equal to the angle

of the two arcs.
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Now let CO' be the arc of a great circle described from A
as a pole aiid intersecting the arcs

AB^ AB' (produced if necessary),

in G and C. The radii OG and

OG' are perpendicular to J.0, since

the arcs AG, AG', are quadrants

(Proposition YI., Corollary II.);

therefore the angle GOG' is a plane

angle of the diedral angle A 0, and

is equal to TAT', or to BAB', and it is obviously measured

by the arc GG'.

42. Corollary. All arcs of great circles drawn through the

pole of a given great circle are perpendicular to its circumfer-

ence ; for their planes are perpendicular to its plane (YI.,

Proposition XIY.).

SPHERICAL POLYGONS.

43. Definition. A spherical polygon is a portion of the sur-

face of a sphere bounded by three or more arcs of great

circles, as ABGD.

Since the planes of all great circles pass

through the centre of the sphere, the planes

of the sides of a spherical polygon form, at

the centre 0, a polyedral angle of which

the edges are the radii drawn to the ver-

tices of the polygon, the face angles are

angles at the centre measured by the sides of the polygon,

and the diedral angles are equal to the angles of the polygon

(Proposition IX.).

Since in a polyedral angle each face angle is assumed to be

less than two right angles, each side of a spherical polygon

will be assumed to be less than a semi-circumference.
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A spherical polygon is convex when its corresponding poly-

edral angle at the centre is convex (VI., 52).

A diagonal of a spherical polygon is an arc of a great circle

joining any two vertices not consecutive.

44. Definition. A spherical triangle is a spherical polygon

of three sides. It is called right angled^ isosceles^ or equilat-

eral^ in the same cases as a plane triangle.

45. In consequence of the relation established between

polyedral angles and spherical polygons (43), it follows that

from any property of polyedral angles we may infer an anal-

ogous property of spherical polygons.

Eeciprocally, from any property of spherical polygons we

may infer an analogous property of polyedral angles.

The latter is in almost all cases the more simple mode of

procedure, inasmuch as the comparison of figures drawn on

the surface of a sphere is nearly if not quite as simple as the

comparison of plane figures.

46. Arcs of great circles on the same sphere can be super-

posed and made to coincide just as straight lines are super-

posed and made to coincide. We have merely to place one

point of the first arc on some given point of the second, and,

keeping this point fixed, to turn the first arc about it as a

pivot, until some second point in the arc not diametrically

opposite the fixed point falls on the second arc. The two

arcs must then coincide throughout, by Proposition Y., Corol-

lary Y.

Equal angles formed by arcs of great circles on the surface

of the same sphere can be superposed and made to coincide

just as equal plane angles are superposed and made to co-

incide ; that is, if the vertex of the first angle is placed upon

the vertex of the second, and one side of the first placed

upon the corresponding side of the second, the other side of
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the first will coincide with the other side of the second. For,

if the two given angles are equal, their diedral angles are

equal (Proposition IX.). If the vertices of the angles co-

incide, the edges of the diedral angles coincide ; if a side of

the first angle is placed on a side of the second, one face of

the first diedral angle coincides with one face of the second.

The remaining faces of the diedral angles must then coincide,

and consequently the remaining sides of the given angles

coincide.

47. Definition. Two spherical triangles are symmetrical if

all the parts of one are respectively equal to the parts of the

other, but the corresponding parts are arranged in opposite

orders in the two triangles.

Two symmetrical triangles, as ABC^ ABC'j

in the figure cannot be made to coincide;

for, to bring the vertex C upon the corre-

sponding vertex C, the second triangle would

have to be turned over, and the two convex

surfaces would thus be brought together.

48;^here is, however, one exception to the

last remark,—namely, the case of symmetrical isosceles trian-

gles, Por, if ABC is an isosceles

spherical triangle and AB= AC,

then, in its symmetrical triangle,

we have A'B' = A!C\ and con-

sequently AB = A'C, AG =
A'B\ and, since the angles A and

A' are equal, if AB be placed on A'G\ AG will fall on its

equal A'B\ and the two triangles will coincide through-

out.

49. Definition. If from the vertices of a spherical triangle

as poles, arcs of great circles are described, these arcs form



/}l\ /4
BOOK VIII. 273

by their intersection a second triangle, which is called the

polar triangle of the first.

Thus, if Aj B, and C are the poles of the

arcs of great circles, B'C'j A'C\ and A'B\

respectively, A'B'C is the polar triangle of

ABC.

Since all great circles, when completed,

intersect each other in two points, the arcs

jB'C", A'C, A'B\ if produced, will form three

other triangles ; but the triangle which is taken as the polar

triangle is that whose vertex A\ homologous to A, lies on

the same side of the arc BC as the vertex A; and so of the

other vertices.

PROPOSITION X.—THEOREM.

50y^f the first of two spherical triangles is the polar triangle

of the second, then, reciprocally, the second is the polar triangle

of the first.

Let A'B'C be the polar triangle of ABC;

then is ABC the polar triangle of A'B'C,

For, since A is the pole of the arc B'C,

the point 5' is at a quadrant's distance from

A ; and, since C is the pole of the arc A'B',

the point ^' is at a quadrant's distance from

C ; therefore B' is the pole of the arc AC
(Proposition YI., Corollary III.). In the same manner it is

shown that A' is the pole of the arc BC, and C" the pole of

the arc AB. Moreover, A and A' are on the same side of

B'C\ B and B' on the same side of A'C, C and C on the

same side of A'B' ; therefore ABC is the polar triangle of

A'B'C.
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PROPOSITION XI.—THEOREM.

5lX/« t.o polar triangles, ea^U anyle of one is measure, l>y

the supplement of the side lying opposite to it in the other.

Let ABC and A'B'C be two polar tri-

angles.

Let the sides AB and AC, produced if

necessary, meet the side B'C in the points h

and c. The vertex A being the pole of the

arc he, the angle A is measured by the arc he

(Proposition IX.).

Now, B ' being the pole of the arc Ac, and

C the pole of the arc Ah^ the arcs B'c and G'h are quadrants

;

hence we have

B'C -\- he =^B'c -\- C'h = Si semi-circumference.

Therefore he, which measures the angle A, is the supplement

of the side B'G\

In the same manner it can be shown that each angle of

either triangle is measured by the supplement of the side

lying opposite to it in the other triangle.

.52. Scholium. Let the angles of the trian-

gle ABC be denoted by A, B, and C, and let

the sides opposite to them, namely, BC, AC,

and AB, be denoted by a, h, and c, respec-

tively. Let the corresponding angles and

sides of the polar triangle be denoted by A',

B', C, a', h', and c\ Also let both angles and

sides be expressed in degrees. Then the preceding theorem

gives the following relations

:

A +a'=B -\-h':=^C +c'^ 180°.

A' +a :=:^B' -\rh =C' + c = 180°.
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PROPOSITION XII.—THEOREM.

53. Two triangles on the same sphere are either equal or sym-

metrical, when two sides and the included angle of one are re-

spectively equal to txoo sides and the included angle of the other.

In the triangles ^50 and DEF, let the

angle A be equal to the angle D, the side

AB equal to the side DE, and the side

A G equal to the side DF.

1st. When the parts of the two trian-

gles are in the same order, ABC can be

applied to DEF^ as in the corresponding

case of plane triangles (I., Proposition

VI.), and the two triangles will coincide ; therefore they are

equal.

2d. When the parts of the two

triangles are in inverse order, let

DE'F be the symmetrical triangle

of BEF, and therefore having its

angles and sides equal, respectively,

to those of DEF. Then, in the

triangles ABC and DE'F, we shall

have the angle BAC equal to the

angle E'DF, the side AB to the side DE', and the side

AG to the side DF, and these parts arranged in the same

order in the two triangles ; therefore the triangle ABG is

equal to the triangle DE'F, and consequently symmetrical

with DEF,

54. Scholium. In this proposition, and in the propositions

which follow, the two triangles may be supposed on the same

sphere, or on two equal spheres.
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PKOPOSITION XIII.—THEOREM.

55. Two triangles on the same sphere are either equal or sym-

metrical^ when a side and two adjacent angles of one are equal

respectively to a side and two adjacent angles of the other.

Let the triangles ABC
and BEF have the side a

equal to the side d^ and the c' / "^ X6'

angles B^ C, equal respec-

tively to the angles E, F

;

then are the triangles equal.

Construct the polar tri-

angles of ABC and DEF. We have h'= e', c'= /', and A' ==

D\ by Proposition XI. Then A'B'C and D'E'F' are equal

or symmetrical, by Proposition XII. Therefore their polar

triangles ABC, DEF, are equal or symmetrical.

58. Scholium. The proposition might be proved by direct

superposition, as in I., Proposition YII.

PROPOSITION XIV.—THEOREM.

57. Two triangles on the same sphere are either equal or sym-

metrical, when the three sides of one are respectively equal to the

three sides of the other.

For if their vertices are joined with the centre of the

sphere, the triedral angles thus formed have the three face

angles of the one respectively equal to the three face angles

ofthe other, and consequently, by VI., Proposition XXII., their

corresponding diedral angles are equal. The given triangles

are, then, mutually equilateral and mutually equiangular, and

are equal or symmetrical.

i
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58. Scholium. The proposition can be proved as in I., Prop-

osition IX.

PROPOSITION XV.—THEOREM.

59. If two triangles on the same sphere are mutually equi-

angular, they are also mutually equilateral, and are either equal

or symmetrical. .

Let the spherical trian-
'^'"'^ ^^^^^

glesM and JV be mutually

equiangular.

Let M' be the polar tri-

angle of M, and iV' the polar triangle of iV. Since M and

N are mutually equiangular, their polar triangles M' and iV'

are mutually equilateral (Proposition XL); therefore, by

Proposition XIY., the triangles M^ and N' are mutually equi-

angular. But M' and iV' being mutually equiangular, their

polar triangles M and iV are mutually equilateral. Conse-

quently, M and N are either equal or symmetrical.

60. Scholium. It may seem to the student that the pre-

ceding property destroys the analogy which subsists be^^een

plane and spherical triangles, since two mutually equiangular

plane triangles are not necessarily mutually equilateral. But

in the case of spherical triangles the equality of the sides

follows from that of the angles only upon the condition that

the triangles are constructed upon the same sphere or on

equal spheres ; if they are constructed on spheres of diiferent

radii, the homologous sides of two mutually equiangular tri-

angles will no longer be equal, but will be proportional to the

radii of the sphere ; the two triangles will then be similar, as

in thje case of plane triangles.

24
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EXERCISES.

1. Theorem.—In an isosceles spherical triangle the angles

opposite the equal sides are equal.

2. Theorem.— The arc drawn from the vertex of an isosceles

spherical triayigle to the middle point of the base is perpendicular

to the base, and bisects the vertical angle.

3. Theorem.—If two angles of a spherical triangle are equal,

the triangle is isosceles.

PROPOSITION XVI.-^THEOREM.

61. Any side of a spherical triangle is less than the sum of

the other two.

Let ABC be a spherical triangle;

then any. side, as AC, is less than the

sum of the other two, AB and BC. /

For, in the corresponding triedral /

angle formed at the centre of the /^'l-"''''

sphere, we have the angle AOC less o**'

than the sum of the angles AOB and

BOC (VI., Proposition XX.) ; and since the sides of the tri-

angle measure these angles, respectively, we have AC <^ AB
+ BC.

EXERCISES.

1. Theorem.—If two angles of a spherical triangle are un-

equal, the side opposite the greater angle is greater than the side

opposite the less angle, (v. I., Proposition XII.)

2. Theorem.—If two sides of a spherical triangle are unequal,

the angle opposite the greater side is greater than the angle oppo-

site the less side. (v. L, Proposition XIII.)



BOOK VIIT. 279

PEOPOSITION XVII.—THEOEEM.

62. The sum of the sides of a convex spherical polygon is less

than the circumference of a great circle.

For the sum of the face angles of the corresponding poly-

edral angle at the centre of the sphere is less than four right

angles (YI., Proposition XXI.).

PEOPOSITION XVIII.—THEOEEM.

^ 63. The sum of the angles of a spherical triangle is greater

than two, and less than six, right angles.

For, denoting the angles of a spherical tri-

angle by A, B, C, and the sides respectively

opposite to them in its polar triangle by a', ^<

h', d, we have (Proposition XI.)

A = 180° — o!, J?=: 180° — 6', 0= 180° —c',

the sum of which is

A^ B -^C ^ 540° — {a! + 6' + c').

But a' ^y -\- c' <i 360° (Proposition XYII.) ; therefore A +
B -\- G ^ 180° ; that is, the sum of the three angles is

greater than two right angles. Also, since each angle is

less than two right angles, their sum is less than six right

angles.

64. Scholium. A spherical triangle may have two or even

three right angles
j also two or even three obtuse angles.
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PROPOSITION XIX.-THEOEEM.

65. Two symmetrical spherical triangles are equivalent.

Let ABG and A'B'C be symmetrical spherical triangles.

Let P be the pole of the

small circle passing through

A, B, and C (Proposition

Y., Corollary YI.). Then

the arcs PA, PB, PC, are

equal (Proposition YL, Cor-

ollary I.), and divide ABG
into three isosceles trian-

gles.

Through A' and B' in the triangle A'B'C draw arcs mak-

ing with A'B' angles equal respectively to PAB and PBA,

and join P\ their point of intersection, with G'. The isos-

celes triangle PAB is equal to the triangle P'A'B\ by Propo-

sition XIII. and (48). The isosceles triangle PBG is equal

to the triangle P'B'G\ by Proposition XII. and (48). The

isosceles triangle PGA is equal to the triangle P'G'A\ by

Proposition XIY. and (48). Hence ABG and A'B'C' are

equivalent.

If the pole P should fall

without the triangle ABG, the

triangle would be equivalent

to the sum of two of the isos-

celes triangles diminished by

the third ; but, as the same

thing would occur for the sym-

metrical triangle, the conclu-

sion would be the same.

\p pv— -/--
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66. Definition. If a spherical triangle ABC
has two right angles, B and (7, it is called a

hi-rectangular triangle ; and, since the sides AB
and J. (7 must each pass through the pole of BO
(Proposition IX., Corollary), the vertex A is

that pole, and therefore AB and AC are quadrants.

67. Definition. A lune is a portion of the sur-

face of a sphere included between two semi-

circumferences of great circles ; as AMBNA.
The two angles of a lune are equal, since

each is equal to the diedral angle formed by

the planes of the arcs of the lune ; and the

lune is equal to the sum of two equal bi-rectan-

gular triangles, each of which has the angle of the lune for its

third angle.

EXERCISE.

Theorem.—Two lunes on the same sphere or on equal spheres

re equal if their angles are equal.

PROPOSITION XX.—THEOREM.
^

68. If two arcs of great circles intersect on the surface of a

hemisphere^ the sum of the opposite spherical triangles which they

form is equivalent to a lune whose angle is the angle between the

arcs in question.

Let the arcs ACA', BCB\ intersect

on the surface of the hemisphere

ABA'B'C. Then will the triangles

ABG^ AIB'C^ be together equivalent

to a lune whose angle is A GB.

For, continue the arcs ACA\ BCB\
until they intersect in C A'C= AC,

B'C ^^ BCy and A'B'= AB, since they subtend equal angles.
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The triangles A'B'C and ABC are

then equal or symmetrical, by Propo-

sition XIY., and are in either case

equivalent (Proposition XIX.). There-

fore ABC and A'B'C are together

equivalent to A'B'C + A'B'C; that

is, to the lune CA'C'B\

MEASUEEMENT OF THE SUEFACES OF SPHEEICAL
FIGUEES.

69. Definition. A degree of spherical surface, or, more briefly,

u spherical degree, is -^ of the surface of a hemisphere. It

is a convenient unit in measuring the surfaces of spherical

figures. Like the degree of arcs, it is not a unit of absolute

magnitude, but depends upon the size of the sphere on which

the figures are drawn.

It may be conveniently conceived as a bi-rectangular spher-

ical triangle whose third angle is an angle of one degree.

PEOPOSITION XXI.—THEOEEM.

70. A lune is to the surface of the sphere as the angle of the

lune is to four right angles.

Let AWBMA be a lune, and let

MNP be the great circle whose poles

are the extremities of the diameter

AB.

Since the angle of the lune is meas-

ured by the arc MW, the angle of the

lune is to four right angles as the arc

MN is to the whole circumference MNPM.
Ist. Suppose that MN and the circumference have a com-
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mon measure which is contained m times in MN and n times

in MNPM. Then
MN _ m

MNPM~~ n

Apply the measure to the circumference, and through the

points of division and the axis AB pass planes; they will

divide the whole surface of the sphere into n equal lunes (67,

Exercise), of which the given lune ANBMA will contain m.

Therefore
ANBMA _m

surface of sphere w'
and we have

ANBMA MN-
surface of sphere MNFM'

2d. We can extend the proof to the case where MN and

MNPM are incommensurable by our usual method, (v. YII.,

Proposition YII.)

71. Corollary. The area of a lune is expressed by twice its

angle, the angular unit being the degree, and the unit of surface

the spherical degree.

For, by (69), the area of the surface of the sphere is 720

spherical degrees. We have, then, if S is the area and A
the angle of the lune,

S ^ A ,

720 360

'

whence
S=2A.

72. Scholium. If the angle A contains a whole number of

degrees, and each of the parts of the arc MN in the figure

above is one degree, each of the small lunes is made up of

two spherical degrees, and the lune AMBN obviously con-

tains twice as many spherical degrees as the arc MN contains

degrees of arc.
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A- PROPOSITION XXII.—THEOREM.

73. The area of a spherical triangle is equal to the excess of

the sum of its angles over two right angles.

For, let ABC be a spherical triangle.

Complete the great circle ABA^B', and

produce the arcs AC and BC to meet

this circle in A' and B\

We have, by the figure,

ABC + A'BC = lune A,

ABC + AB'C=luneB,

and, by Proposition XX.,

ABC + A'B'C = lune C.

The sum of the first members of these equations is equal to

twice the triangle ABC, plus the four triangles ABC, A'BC,

AB'C, A'B'C, which compose the surface of the hemisphere,

whose area is 360 spherical degrees.

Therefore, denoting the area of the triangle ABC by T,

we have (Proposition XXI., Corollary)

2T + 360° = 2A-\-2B + 2(7,

T + 180° = A + B-^ C,

T = A-i- B + C— 180°.

74. Scholium. The excess of the sum of the angles of a

spherical triangle over two right angles is sometimes called

its spherical excess.

EXERCISE.

Theorem.— The area of a spherical polygon

is measured by the sum of its angles minus

the product of two right angles multiplied by

the number of sides of the polygon less two.
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75. Scholium. It must not be forgotten that Propositions

XXI. and XXII. merely enable us to express our areas in

spherical degrees ; that is, in terms of yj^ of the surface of

the whole sphere. If the area is required in terms of the

ordinary unit of surface (lY., 1), the area of the surface of

the sphere must first be given in terms of the unit in question.

SHORTEST LINE ON THE SURFACE OF A SPHERE
BETWEEN TWO POINTS.

PROPOSITION XXIII.—THEOREM.

76. The shortest line that can be drawn on the surface of a

sphere between two points is the arc of a great circle^ not greater

than a semi-circumference, joining the two points.

Let AB be an arc of a great circle, less

than a semi-circumference, joining any

two points A and B of the surface of a

sphere ; and let C be any arbitrary point

taken in that arc. Then we say that

the shortest line from A to B, on the sur-

face of the sphere, must pass through C.

From A and B as poles, with the polar distances AC and

BCj describe circumferences on the surface ', these circumfer-

ences touch at C and lie wholly without each other. For,

let Mhe any point other than C in the circumference whose

pole is A, and draw the arcs of great circles AM, BM, form-

ing the spherical triangle AMB. We have, by Proposition

XYI., AM + BM > AB, and subtracting from the two

members of this mequality the equal arcs AM and AC, wq

have BM > BC; therefore ikf lies without the circumference

whose pole is B.

^
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Now let AFGB be any line from A to 5, on the surface of

the sphere, which does not pass through the point C, and

which therefore cuts the two circumfer-

ences in different points, one in F^ the

other in G. Then a shorter line can be

drawn from A to B^ passing through G.

For, whatever may be the nature of the

line AF^ an equal line can be drawn from

Ato C; since, ifAC and AF be conceived

to be drawn on two equal spheres having

a common diameter passing through A, and therefor" having

their surfaces in coincidence, and if one of these spfh^res be

turned upon the common diameter as an axis, the point A
will be fixed and the point F will come into coincidence with

C; the surfaces of the two spheres continuing to coincide,

the line AF will then lie on the common surface between A

and C. For the same reason, a line can be drawn from B to

0, equal to BG. Therefore a line can be drawn from A to B,

through G, equal to the sum ofAF and BG, and consequently

less than AFGB. The shortest line from A to B therefore

passes through C; that is, through any, or every, point in

AB. Consequently it must be the arc AB itself.



EXERCISES ON BOOK VIII.

THEOREMS.
1. A SPHERE can be circumscribed about any tetraedron.

Suggestion. The locus of the points

equally distant from A, B^ and C is the

perpendicular EM erected at the centre

of the circle circumscribed about ABC
(VI., Exercise 15.) The locus of the

points equally distant from B^ C, and D
is tne perpendicular FN^ and both EM
and FN lie in the plane perpendicular to

BC Sit its middle point, since that plane

contains all the points equally distant

from B and C. EM and FN therefore

intersect, and O, their point of intersec-

tion, is equally distant from the four ver-

tices of the tetraedron. There is only one such point. Therefore

only one sphere can be circumscribed about a tetraedron.

2. The perpendiculars erected at the centres of the four faces

of a tetraedron meet in a point.

3. A sphere can be inscribed in any tetra-

edron.

Suggestion, The locus of the points equally

distant from two faces of the tetraedron is

the plane bisecting the diedral angle be-

tween them.

4. The planes bisecting the six diedral angles of a tetraedron

intersect in a point.

287
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LOCI.

6. Locus of the points in space which are at a given distance

from a given straight line.

6. Locus of the points which are at the distance a from a point

Ay and at the distance b from a point B.

7. Locus of the centres of the spheres which are tangent to

three given planes.

8. Locus of the centres of the sections of a given sphere made
by planes passing through a given straight line.

Suggestion. Pass a plane through the centre of the sphere per-

pendicular to the given straight line. Then see II., Exercise 24.

9. Locus of the centres of the sections of a given sphere made
by planes passing through a given point.

PROBLEMS.
10. Through a given point on the surface of a sphere, to pass a

plane tangent to the sphere, (v. Proposition VII., Corollary.)

11. Through a given straight line without a sphere, to pass a

plane tangent to the sphere.

Suggestion. Through the centre of the sphere pass a plane per-

pendicular to the given line. In this plane, from its point of

intersection with the line, draw a line tangent to the circle in

which the plane cuts the sphere. A plane through the tangent

line and the given line is the tangent plane required. (Two solu-

tions.)

12. Through a given point without a sphere, to pass a plane

tangent to the sphere.

13. To cut a given sphere by a plane passing through a given

straight line so that the section shall have a given radius.

SuggeMion. Pass a plane through the centre of the sphere per-

pendicular to the given line. Then v. II., Exercise 37.
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14. To construct a spherical surface with a given radius—Ist,
passing through three given points ; 2d, passing through two
given points and tangent to a given plane, or to a given sphere

;

3d, passing through a given point and tangent to two given planes,

or to two given spheres, or to a given plane and a given sphere

;

4th, tangent to three given planes, or to three given spheres, or to

two given planes and a given sphere, or to a given plane and
two given spheres.

15. Through a given point on the surface of a sphere, to draw a

great circle tangent to a given small circle.

Suggestion, With the pole of the small circle as a pole, and with
a polar distance equal to the polar distance of the small circle

plus a quadrant, describe a second small circle. With the given

point as a pole describe a great circle. A point of intersection of

this great circle with the second small circle will be the pole of

the great circle required.

16. To draw a great circle tangent to two given small circles.

17. At a given point in a great circle, to driaw an arc of a great

circle which shall make a given angle with the first.

b
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MEASUREMENT OP THE THREE ROUND BODIES.

THE CYLINDER.

1. Definition. The area of the convex, or lateral, surface

of a cylinder is called its lateral area.

2. Definition. A prism is inscribed

in a cylinder when its base is inscribed

in the base of the cylinder and its

lateral edges are elements of the cyl-

inder. It follows that the upper base

of the prism is inscribed in the upper

base of the cylinder.

To inscribe, then, a prism of any

given number of lateral faces in a cylinder, we have merely to

inscribe in the base a polygon of the given number of sides,

and through the vertices of the polygon to draw elements

of the cylinder. Planes passed through adjacent elements

will form the lateral faces of the prism which is obviously

wholly contained in the cylinder.

3. Definition. A prism is circum-

scribed about a cylinder when its

base is circumscribed about the

base of the cylinder and its lateral

edges are parallel to elements of

the cylinder.

It follows that its lateral faces

are tangent to the lateral faces of

the cylinder (YIII., 11) ; for any

face, as AB'y contains the element bb\ since it contains the

290
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parallel line AA^ and the point b (YI., Proposition II.), and,

by YIII., Proposition I., it cannot cut the surface of the cyl-

inder again jinless AB cuts the base again ; and that its upper

base is circumscribed about the upper base of the cylinder.

The cylinder is obviously wholly contained in the prism.

4. Definition. A right section of a

cylinder is a section made by a plane

perpendicular to its elements ; asabcdef.

The intersection of the same plane

with an inscribed or circumscribed

prism is a right section of the prism.

5. Definition. Similar cylinders of revolution are those which

are generated by similar rectangles revolving about homolo-

gous sides.

PKOPOSITION I.—THEOREM.

6. If a prism whose base is a regular polygon be inscribed

in or circumscribed about a given cylinder^ its volume will ap-

proach the volume of the cylinder as its limit, and its lateral sur-

face will approach the lateral surface of the cylinder as its limit

as the number of sides of its base is indefinitely increased.

For, if we could make the base

of the prism exactly coincide with

the base of the cylinder, the prism

and the cylinder would coincide

throughout, and their volumes

would be equal and their lateral

surfaces equal.

But, by increasing the number

of sides of the base of the prism.
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we can make it come as near as we please to coinciding with

the base of the cylinder (Y., Propo-

sition YII.) ; we can then make

the prism and cylinder fail of co-

incidence by as small an amount

as we choose. Consequently, by

increasing at pleasure the number

of sides of the base of the circum-

scribed or inscribed prism, we can

make the difference between the

volumes of prism and cylinder,

and between the lateral surfaces

of prism and cylinder, as small as we choose, but cannot make

it absolutely zero.

7. Scholium. The proposition just proved is true when the

base of the prism is not a regular polygon ; but it is only for

the case of the regular polygon that a rigorous proof has

been given in Book V.

PEOPOSITION II.—THEOREM.

8. The lateral area of a cylinder is equal to the product of

the perimeter of a right section of the cylinder by an element of

the surface.

Let ABCBEF be the base and AA'

any element of a cylinder, and let the

curve abcdef be any right section of

the surface. Denote the perimeter of

the right section by P, the element

AA' by E^ and the lateral area of the

cylinder by S.

Inscribe in the cylinder a prism

ABCDEFA' of any arbitrarily chosen
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number n of faces. The right section, abcdef, of this prism

will be a polygon inscribed in the right section of the cylin-

der formed by the same plane (4). Denote the lateral area

of the prism by s, and the perimeter of its right section by

p ; then, the lateral edge of the prism being equal to E, we

have (VII., Proposition II.)

s = pX E,

no matter what the value of n. If n is indefinitely increased,

s approaches the limit JS (Proposition I.), and p X E, the

limit P X E. Therefore, by III., Theorem of Limits,

S = P X E.

9. Corollary I. The lateral area of a cylinder of revolution

is equal to the product of the circumference of its base by its

altitude.

This may be formulated,

Uif R is the radius of the base and H the altitude

10. Corollary II. The lateral ^
^

areas of similar cylinders of revo-

lution are to each other as the

squares of their altitudes, or as the

squares of the radii of their bases.

S _ 2t.R.H

s
Suggestion.

R H
r

' h

by (5).

^
r*

jff»= -- = -—, smce - =
27:r.h

R H

25*

h<^
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PBOPOSITION III.—THEOREM.
,

11. The volume of a cylinder is equal to the product of its

base by its altitude.

Let the volume of the cylinder be

denoted by F, its base by B, and its

altitude by S. Let the volume of an

inscribed prism be denoted by F', and

its base by J5'; its altitude will also be

-H, and we shall have (VII., Proposi-

tion XIL, Corollary)

no matter what the number of faces of the prism.

If the number of faces of the prism is indefinitely in-

creased, F' has the limit F, and ^' X -S" the limit B X S,

Therefore

v = bxb:.

12. Corollary I. For a cylinder of revolution this proposition

may be formulated^ V= izB^.H. (Y., Proposition IX., Corol-

lary.)

13. Corollary II. The volumes of similar cylinders of revo-

lution are to each other as the cubes of their altitudes^ or as the

cubes of their radii.

THE CONE.

14. Definition. The area of the convex, or lateral, surface

of a cone is called its lateral area.
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15. Definition. A pyramid is inscribed

in a cone when its base is inscribed in

the base of the cone and its vertex

coincides with the vertex of the cone.

It follows that the lateral edges of

the pyramid are elements of the cone.

An inscribed pyramid is wholly con-

tained within the cone.

16. Definition. A pyramid is circum-

scribed about a cone when its base is circumscribed about the

base of the cone and its vertex co-

incides with the vertex of the cone.

Any lateral face, as SAB^ of the

pyramid is tangent to the cone ; for,

since it passes through a and S^ it

contains the element Sa^ and it can-

not cut the convex surface again

without cutting the perimeter of

the base again (YIII., Proposition

111.).

The cone is then wholly contained within the pyramid.

17. Definition. A truncated cone is

the portion of a cone included be-

tween its base and a plane cutting

its convex surface.

When the cutting plane is par-

allel to the base, the truncated cone

is called a frustum of a cone; as

ABCD-abcd. The altitude of a frus-

tum is the perpendicular distance

Tt between its bases.

If a pyramid is inscribed in the cone, the cutting plane
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determines a truncated pyramid inscribed in the truncated

cone ; and if a pyramid is circumscribed about the cone, the

cutting plane determines a truncated pyramid circumscribed

about the truncated cone.

18. Definition. In a cone of revolution

all the elements are equal, and any ele-

ment is called the slant height of the

cone.

In a cone of revolution the portion

of an element included between the par-

allel bases of a frustum, as Aa^ or Bh^ is

called the slant height of the frustum.

19. Definition. Similar cones of revolu-

tion are those which are generated by similar right triangles

revolving about homologous sides.

PROPOSITION IV.—THEOREM.

20. If a 'pyramid he inscribed in or circumscribed about a

given cone, its volume will approach the volume of the cone as its

limit, and its lateral surface will approach the convex surface

of the cone as a limit, as the number of faces of the pyramid is

indefinitely increased.

The demonstration is precisely the same as that of Propo-

sition I., substituting cone for cylinder and pyramids for

prisms.

21. Corollary. A frustum of a cone is the limit of the in-

scribed and circumscribed frustums of pyramids, the number of

whose faces is indefinitely increased.
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PROPOSITION v.—THEOREM.

22. The lateral area of a cone of revolution is equal to the

product of the circumference of its base by half its slant height.

Suggestion. Circumscribe a regular

pyramid about the cone, and then sup-

pose the number of its faces to be

indefinitely increased, (y. YII., Prop-

osition XIY.)

23. CoROLLAEY I. Thc proposition

may be formulated, S = tcRI/, where

E is the radius of the base and L the

slant height.

24. Corollary II. The lateral areas

of similar cones of revolution are to each other as the squares

of their slant heights, or as the squares of their altitudes, or as

the squares of the radii of their bases.

^^u:;^ PROPOSITION VI.—THEOREM.

25. The lateral area of a frustum of a cone of revolution is

equal to the half sum of the circumferences of its bases multi*

plied by its slant height.

Suggestion. Circumscribe the frus-

tum of a regular pyramid about the

frustum of the cone (17), and sup-

pose the number of its faces indefi-

nitely increased, (y. YII., Proposi-

tion XIY., Corollary.)

26. Corollary I. The proposition

may be formulated, S = t:{B -\- r)L,

if R and r are the radii of the bases

and L is the slant height.
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27. Corollary II. The lateral area of a frustum of a cone

of revolution is equal to the circumfer-

ence of a section equidistant from its ]

bases multiplied by its slant height. jji

Suggestion, IKz= ^(om + OM). (v.

Exercise 24, Book I.)

PROPOSITION VII.—THEOREM.

28. The volume of any cone is equal to one-third of the product

of its base by its altitude.

Suggestion. Inscribe a pyramid in

the cone, and suppose the number of

its faces to be indefinitely increased.

(v. VII., Proposition XVIII.)

29. Corollary I. For a cone of

revolution, the proposition may be for-

mulated, V = InW^.H.

30. Corollary II. Similar cones of

revolution are to each other as the cubes of their altitudes, or as

the cubes of the radii of their bases.

exercise.

Theorem.—A frustum of any cone is

equivalent to the sum of three cones whose

common altitude is the altitude of the frus-

tum, and whose bases are the lower base,

the upper base, and a mean proportional

between the bases of the frustum, (v. VII., Proposition XIX.,

Corollary.)
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THE SPHERE.

31. Definition. A spherical segment is a portion of a sphere

included between two parallel planes.

The sections of the sphere made by the parallel planes are

the bases of the segment ; the distance between the planes is

the altitude of the segment.

Let the sphere be generated by the revo-

lution of the semicircle EBF about the axis

EF; and let Aa and Bb be two parallels,

perpendicular to the axis. The solid gener-

ated by the figure ABba is a spherical seg-

ment ; the circles generated by Aa and Bb

are its bases ; and ab is its altitude.

If two parallels Aa and TE are taken, one

of which is a tangent at E^ the solid generated by the figure

EAa is a spherical segment having but one base, which is the

section generated by Aa. The segment is still included be-

tween two parallel planes, one of which is the tangent plane

at E, generated by the line ET.

32. Definition. A zone is a portion of the surface of a

sphere included between two parallel planes.

The circumferences of the sections of the sphere made by

the parallel planes are the bases of the zone ; the distance

between the planes is its altitude.

A zone is the curved surface of a spherical segment.

In the revolution of the semicircle EBF about EFy an arc

AB generates a zone ; the points A and B generate the bases

of the zone ; and the altitude of the zone is ab.

An arc, EA, one extremity of which is in the axis, gener-

ates a zone of one base, which is the circumference described

by the extremity A.
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33. Definition. When a semicircle revolves about its diam-

eter, the solid generated by any sector of the semicircle is

called a spherical sector.

Thus, when the semicircle EBF revolves

about EFj the circular sector COD generates

a spherical sector.

The spherical sector is bounded by three

curved surfaces; namely, the two conical

surfaces generated by the radii 00 and OD,

and the zone generated by the arc CD. This

zone is called the base of the spherical sector.

OD may, however, coincide with OF, in which case the

spherical sector is bounded by a conical surface and a zone

of one base.

-Again, 00 may be perpendicular to OF, in which case the

spherical sector is bounded by a plane, a conical surface, and

a zone.

V PROPOSITION VIII.—LEMMA.

34. The area of the surface generated by a straight line re-

volving about an axis in its plane, is equal to the projection of

the line on the axis multiplied by the circumference of the circle

whose radius is the perpendicular erected at the middle of the

line and terminated by the axis.

Let AB be the straight line revolving

about the axis J^Y; ab its projection on

the axis ; 01 the perpendicular to it, at its

middle point 7, terminating in the axis;

then area AB = ab X circ. 01.

For, draw IK perpendicular and AH
parallel to the axis. The area generated
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by AB is that of the frustum of a cone ; hence (Proposition
"

VI., Corollary II.)

area AB = AB X circ. IK.

The triangles ABH and lOK are sinxjlar, being mutually

equiangular, and we have rCj-^] /

but

an4

AH^IK ab_^IK,
AB or AB OV

circ^ = ^(Y., Proposition YIIL),

ah circ. IK
AB^ circ.OI'

ah X circ. 01 = AB X circ. IK.au ;x^ cue. ui = jljd ;<, circ. in.. q
Therefore _^--^

~~^
Jp V'-'x

area AB = ah X circ. 01 AN \ '

'

If AB meets XY^ the surface generated is a conical sur-

face ; but the proposition still holds, as may be easily proved.

(v. Proposition Y.)

If AB is parallel to the axis, the result is the same. (y.

Proposition II., Corollary I.)

PEOPOSITION IX.—THEOREM. ^
35. The area of a zone is equal to the product of its altitude

by the circumference of a great circle.

E
Let the sphere be generated by the revo- ^^.^^

lution of the semicircle EBF about the axis /(i

EF; and let the arc AD generate the zone b/^-—X^

whose area is required. I

Jj^t the arc AD be divided into any num- ^V'

ber of equal parts. AB^ BG, CD, and draw ^^—
the chords AB, BC, etc. These chords are

26
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all equal, since they subtend equal ares ; and the perpendic-

ulars at their middle points all pass through

the centre of the semicircle, and are equal

(II., Proposition YII.).

Let abj he, etc., be the projections of these

chords on the axis. Then, by Proposition

YIII.,

area AB = ab X cire. 01,

area BC == be X cire. 01,

area CD =z ed X cire. 01.

Hence the sum of these areas, which is the area generated

by the broken line ABCD, is equal to

(ab + 6c + cd) X cire. 01;

that is, to ad X cire. 01.

Calling the area generated by the broken inscribed line, 8y

we have
S= ad X cire. 01,

no matter what the number of the equal parts into which the

arc AD is divided. If, now, we increase the number of parts

indefinitely, 01 will approach the radius of the sphere, and

cire. 01 the circumference of a great circle as its limit, and

S will approach the surface of the zone as its limit. There*

fore

surfaee of zone = ad X cireumferenee of great eirele.

36. Corollary. The proposition may be formulated,

S = 2tzR.H,

where R is the radius of the sphere and II Ihe altitude of

the zone.

A'- cJ-r K'J+
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PEOPOSITION X.—THEOREM.

^ Sfr. The area of the surface of a sphere is equal to the product

of its diameter by the circumference of a great circle%

This follows directly from Proposition IX., since the sur«

face of the whole sphere may be regarded as a zone whose

altitude is the diameter of the sphere.

38. Corollary I. This may be formulated^

S = 27:B X2R = 4:nR\

._ Hence the surface of a sphere is equivalent to four great circles. '

39. Corollary II. The surfaces of two spheres are to each

other as the squares of their diameters^ or as the squares of their

radii.

40. Scholium. The area of a spherical degree on a sphere

whose radius is R is -^ (^IH., 69), and, by the aid of this

value, we may readily reduce the area of a spherical polygon

to ordinary square measure.
.

PROPOSITION XI.—THEOREM.

41. The volume of a sphere is equal to the area of its surface

multiplied by one-third of its radius.

Circumscribe a polyedron about

the sphere. This may be done by

taking at pleasure points on the sur-

face of the sphere, and drawing

tangent planes at these points. The

circumscribed polyedron wholly con-

tains the sphere, and is greater than

the sphere. Join all the vertices of the polyedron with the

centre of the sphere, and pass planes through the edges of

the polyedron and these lines, thus dividing the polyedron
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into pyramids, each of which has its vertex at the centre of

the sphere, and has a face of the poly-

edron as its base, and has, therefore,

the radius of the sphere for its alti-

tude (YIII., Proposition YII.). The

volume of any one of these pyramids ^ J^ \pJh
is then one-third of the product of a

face of the polyedron by the radius

of the sphere, and the sum of the

volumes of the pyramids, or the whole volume of the poly-

edron, is one-third of the product of the sum of the faces

of the polyedron by the radius of its sphere ; that is, one-third

of the product of the whole surface of the polyedron by the

radius of the sphere. Representing the surface of the poly-

edron by s, and its volume by u, we have

V = IBs,

and this equation holds no matter what the number of the

faces of the polyedron.

If, now, we increase the number of faces of the polyedron

by drawing additional tangent planes to the sphere, we de-

crease the volume v, for each new tangent plane cuts off a

corner of the polyedron. We may carry on indefinitely this

process of shaving down the polyedron, and may thus make

the difference between its volume and the volume of the

sphere as small as we please ; but we cannot make the two

volumes absolutely coincide. As the two volumes approach

coincidence, the two surfaces also approach coincidence. If,

now, S is the surface and V the volume of the sphere, S is the

limit of s and Y the limit of v, as the number of faces of the

circumscribed polyedron is indefinitely increased. Therefore,

by III., Theorem of Limits,
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42. Corollary I. The result of this proposition may be for-

mulatedj

F = p'

43. Corollary II. The volumes of two spheres are to each

other as the cubes of their radii, or as the cubes of their diameters.

PROPOSITION XII.—THEOREM.

44. The volume of a spherical sector is equal to the area of

the zone which forms its base multiplied by one-third the radius

of the sphere.

The proof is analogous to the proof of Proposition XI.

The form of the circumscribed polyedron is, however, some-

what more complicated, as it will be bounded by a surface

made up of plane faces tangent to the zone of the spherical

sector, and by two pyramidal faces tangent to, or inscribed in,

the two conical surfaces of the spherical sector.

45. Definition. A spherical pyramid is a
f. ^^

solid bounded by a spherical polygon and y^\ /\
the planes of the sides of the polygon ; as ^ \ /\,'''

0-ABCD. The centre of the sphere is the \ // \ /

vertex of the pyramid j the spherical poly- • '^~ Y
gon is its base.

EXERCISE.

Theorem.— The volume of a spherical pyramid is equal to the

area of its base multiplied by one-third of the radius of the

sphere.

u 26*
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y PROPOSITION XIII.—PROBLEM.

46. To find the volume of a spherical segment.

Any spherical segment may be obtained from a spherical

sector by adding to it, or subtracting from it, cones having as

bases the bases of the segment.

For example, let us consider a segment of

two bases which does not contain the centre

of the sphere. The segment generated by

the revolution of ABGD about OC may be '

obtained by taking the cone generated by

OAD from the sum of the cone generated by

OBG and the spherical sector generated by OAB.

Call OC /, ODp, DC h, AD r, BC r', and OA E, and the

volume of the segment F. Then we have the simple relations

h

r' + p'

P —Pi
K*, r'^ + p"" B\

The area of the zone of the segment is 27ri2.^ (Proposition

IX., Corollary). Hence , ^ ^^/{

V= ^T:hB^ + i7r/r"-— Upr" (Proposition XII., and Proposi-

^

- .T^~--^:;r2r:^^^ tion YII., Corollayg I.),

y = !;:(/-"^ + %^^^i§^'^i- i^p(^ -%^
V= (/- p)7:R'- UG" -^ p% [1]

a convenient formula when the distances of the bases of the

segment from the centre of the sphere are given.

Another convenient formula can be obtained by introducing

in [1] A, r, and / in place of j? and p'. We have

F=(/-;>)|[3iJ' (y + /j' + i'0]-
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Now

Hence

and

2/i> + ;>'-

,;^it+Jt^\

= f(iP- /'+ iJ'- r") - 1= 3JP- Kr"+ /^ - 1',

and we have

[2]

This formula is convenient when the areas of the bases of

the segment are given, and it may be put into words as

follows

:

The volume of a spherical segment is equal to the half sum

of its bases multiplied by its altitude plus the volume of a sphere

of which that altitude is the diameter, .

V^ \̂
-.^^;



EXERCISES ON BOOK IX.

X

THEOREMS.
1. Give a strict proof of Proposition I. and Proposition IV. for

the volumes of cylinder and cone, by showing that the difference

between the volumes of the inscribed and circumscribed figures

can be decreased at pleasure.

2. Assuming that if a solid has a plane face the area of that face

is less than the rest of the surface of the solid, prove, first, that

if two convex solids have a plane face in common, and one solid

is wholly included by the other, its surface is less than that of the

other {v. V., 13), and then give a strict proof of Proposition I. and
Proposition IV. for the surfaces of cylinder and cone.

8. The volumes of a cone of revolution, a sphere, and a cylinder

of revolution are proportional to the numbers 1, 2, 3 if the bases

of the cone and cylinder are each equal to a great circle of the

sphere, and their altitudes are each equal to a diameter of the
sphere.

4. An equilateral cylinder (of revolution) is one a section of

which through the axis is a square. An equilateral cone (of

revolution) is one a section of which through the axis is an equi-

lateral triangle. These definitions premised, prove the following

theorems

:

I. The total area of the equilateral cylinder inscribed in a
sphere is a mean proportional between the area of the sphere and
the total area of the inscribed equilateral cone. The same is true

of the volumes of these three bodies.

II. The total area of the equilateral cylinder circumscribed
about a sphere is a mean proportional between the area of the
sphere and the total area of the circumscribed equilateral cone.

The same is true of the volumes of these three bodies.

5. If h is the altitude of a segment of one base in a sphere whose
radius is r, the volume of the segment is equal to Trh'^H — ^h),

6. The volumes of polyedrons circumscribed about the same
sphere are proportional to their surfaces.

308 .
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MISCELLANEOUS EXERCISES
ON THE

GEOMETKY OF SPACE.

1. A PERPENDICULAR let fall from the middle point of a line

upon any plane not cutting the line is equal to one-half the sum
of the perpendiculars let fall from the ends of the line upon the

same plane.

2. The perpendicular let fall from the point of intersection of

the medial lines of a given triangle upon any plane not cutting

the triangle is equal to one-third the sum of the perpendiculars

from the vertices of the triangle upon the same plane.

3. The perpendicular from the centre of gravity of a tetraedron

upon any plane not cutting the tetraedron is equal to one-fourth

the sum of the perpendiculars from the vertices of the tetraedron

upon the same plane.

4. The volume of a truncated triangular prism is equal to the

product of the area of its lower base by the perpendicular upon
the lower base let fall from the intersection of the medial lines of

the upper base.

6. The volume of a truncated parallelopiped is equal to the

product of the area of its lower base by the perpendicular from
the centre of the upper base upon the lower base.

6. If ABCD is any tetraedron, and O any point within it, and
if the straight lines AO^ BO^ CO^ DO, are produced to meet the

faces in the points a, 6, c, d, respectively, then

Aa'^ Bb~^ Cc "^ Dd
809
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/7. If the three face angles of the vertical triedral angle of a
tetraedron are right angles, and the lengths of the lateral edges

are represented by a, 6, and c, and of the altitude by p, then

8. If the three face angles of the vertical triedral angle of a

tetraedron are right angles, the square of the area of the base is

equal to the sum of the squares of the areas of the lateral faces.

9. The perpendicular from the middle point of the diagonal of

a rectangular parallelepiped upon a lateral edge bisects the edge,

and is equal to one-half of the projection of the diagonal upon
the base.

10. A straight line of a given length moves so that its extremi-

ties are constantly upon two given perpendicular but non-inter-

secting straight lines : what is the locus of the middle point of the

moving line ?

PROBLEMS.
11. To cut a given polyedral angle of four fac^s by a plane so

that the section shall be a parallelogram.

^\ 12. To cut a cube by a plane so that the section shall be a regular

hexagon.

13. To find the ratio of the volumes generated by a rectangle

revolving successively about its two adjacent sides.



SYLLABUS OP PROPOSITIONS
IN

SOLID GEOMETRY.

BOOK VI.

THEOREMS.

Proposition I.

Through any given straight line a plane may be passed, but

the line will not determine the plane.

Proposition II.

A plane is determined, 1st, by a straight line and a point with-

out that line ; 2d, by two intersecting straight lines ; 3d, by three

points not in the same straight line ; 4th, by two parallel straight

lines.

Corollary, The intersection of two planes is a straight line.

Proposition III.

From a given point without a plane one perpendicular to the

plane can be drawn, and but one ; and the perpendicular is the

shortest line that can be drawn from the point to the plane.

Corollary. At a given point in a plane one perpendicular can be

erected to the plane, and but one.

Proposition IV.

If a straight line is perpendicular to each of two straight lines

at their point of intersection, it is perpendicular to the plane of

those lines.

Corollary I. At a given point of a straight line, one plane can
be drawn perpendicular to the line, and but one.

Corollary II. Through a given point without a straight line,

one plane can be drawn perpendicular to the line, and but one.

311
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Proposition V.

Two lines in space having the same direction are parallel.

Corollary, Two lines parallel to the same line are parallel to

each other.

Proposition VI.

If two straight lines are parallel, every plane passed through
one of them and not coincident with the plane of the parallels is

parallel to the other.

Corollary I. Through any given straight line a plane can be
passed parallel to any other given straight line.

Corollary II. Through any given point a plane can be passed
parallel to any two given straight lines in space.

Proposition VII.

Planes perpendicular to the same straight line are parallel to

each other.

Proposition VIII.

The intersections of two parallel planes with any third plane
are parallel.

Proposition IX.

A straight line perpendicular to one of two parallel planes is

perpendicular to the other.

Corollary. Through any given point one plane can be passed

parallel to a given plane, and but one.

Proposition X.

If two angles, not in the same plane, have their sides respec-

tively parallel and lying in the same direction, they are equal
and their planes are parallel.

Proposition XI.

If one of two parallel lines is perpendicular to a plane, the
other is also perpendicular to that plane.

Corollary. Two straight lines perpendicular to the same plane
are parallel to each other.

Proposition XII.

Two diedral angles are equal if their plane angles are equal.

Proposition XIII.

Two diedral angles are in the same ratio as their plane angles.
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Proposition XIV.

If a straight line is perpendicular to a plane, every plane passed

through the line is perpendicular to the plane.

Proposition XV.

If two planes are perpendicular to each other, a straight line

drawn in one of them, perpendicular to their intersection, is

perpendicular to the other.

Corollary I. If two planes are perpendicular to each other, a
straight line drawn through any point of their intersection per-

pendicular to one of the planes will lie in the other.

Corollary II. If two planes are perpendicular, a straight line

let fall from any point of one plane perpendicular to the other

will lie in the first plane.

Proposition XVI.

If two intersecting planes are each perpendicular to a third

plane, their intersection is also perpendicular to that plane.

Proposition XVII.

Through any given straight line a plane can be passed perpen-

dicular to any given plane.

Proposition XVIII.

The projection of a straight line upon a plane is a straight line.

Proposition XIX.

The acute angle which a straight line makes with its own pro-

jection upon a plane is the least angle it makes with any line of

that plane.
Proposition XX.

The sum of any two face angles of a triedral angle is greater

than the third.

Proposition XXI.

The sum of the face angles of any convex polyedral angle is

less than four right angles.

Proposition XXII.

If two triedral angles have the three face angles of the one re-

spectively equal to the three face angles of the other, the corre-

sponding diedral angles are equal.

27
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BOOK VII.

THEOREMS.
Proposition I.

The sections of a prism made by parallel planes are equal poly-

gons.

Corollary. Any section of a prism made by a plane parallel to

the base is equal to the base.

Proposition II.

The lateral area of a prism is equal to the product of the perim-

eter of a right section of the prism by a lateral edge.

Corollary. The lateral area of a right prism is equal to the

product of the perimeter of its base by its altitude.

Proposition III.

Two prisms are equal, if three faces including a triedral angle

of the one are respectively equal to three faces similarly placed

including a triedral angle of the other.

Corollary I. Two truncated prisms are equal, if three faces in-

cluding a triedral angle of the one are respectively equal to three

faces similarly placed including a triedral angle of the other.

Corollary II. Two ri^ht prisms are equal if they have equal

bases and equal altitudes.

Proposition IV.

Any oblique prism is equivalent to a right prism whose base is

a right section of the oblique prism, and whose altitude is equal

to a lateral edge of the oblique prism.

Proposition V.

Any parallelopiped is equivalent to a rectangular parallelopiped

of the same altitude and an equivalent base.

Proposition VI.

The plane passed through two diagonally opposite edges of a

parallelopii^ed divides it into two equivalent triangular prisms.

Proposition VII.

Two rectangular parallelepipeds having equal bases are to each

other as their altitudes.
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Proposition VIII.

Two rectangular parallelepipeds having equal altitudes are to

each other as their bases.

Proposition IX.

Any two rectangular parallelopipeds are to each other as the

products of their three dimensions.

Proposition X.

The volume of a rectangular parallelopiped is equal to tne

product of its three dimensions, the unit of volume being the

cube whose edge is the linear unit.

Proposition XI.

The volume of any parallelopiped is equal to the product of the

area of its base by its altitude.

Proposition XII.

The volume of a triangular prism is equal to the product of its

base by its altitude.

Corollary. The volume of any prism is equal to the product of

its base by its altitude.

Proposition XIII.

If a pyramid is cut by a plane parallel to its base, 1st, the edges

and the altitude are divided proportionally ; 2d, the section is a

polygon similar to the base.

Corollary I. If a pyramid is cut by a plane parallel to its base,

the area of the section is to the area of the base as the square of

its distance from the vertex is to the square of the altitude of the

pyramid.

Corollary II. If two pyramids have equal altitudes and equiva-

lent bases, sections made by planes parallel to their bases and at

equal distances from their vertices are equivalent.

Proposition XIV.

The lateral area of a regular pyramid is equal to the product of

the perimeter of its base by half its slant height.

Corollary. The lateral area of the frustum of a regular pyra-

mid is equal to the half sum of the perimeters of its bases multi-

plied by the slant height of the frustum.
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Proposition XV.

If the altitude of any given triangular pyramid is divided into

equal parts, and through the points of division planes are passed
parallel to the base of the pyramid, and on the sections made by
these planes as upper bases prisms are described having their

edges parallel to an edge of the pyramid and their altitudes equal

to one of the equal parts into which the altitude of the pyramid
is divided, the total volume of these prisms will approach the
volume of the pyramid as its limit as the number of parts into

which the altitude of the pyramid is divided is indefinitely

increased.
Proposition XVI.

Two triangular pyramids having equivalent bases and equal
altitudes are equivalent.

Proposition XVII.

A triangular pyramid is one-third of a triangular prism of the
same base and altitude.

Corollary. The volume of a triangular pyramid is equal to one-

third of the product of its base by its altitude.

Proposition XVIII.

The volume of any pyramid is equal to one-third of the product
of its base by its altitude.

Proposition XIX.

A frustum of a triangular pyramid is equivalent to the sum of

three pyramids whose common altitude is the altitude of the frus-

tum, and whose bases are the lower base, the upper base, and a

mean proportional between the bases of the frustum.

Corollary. A frustum of any pyramid is equivalent to the sum
of three pyramids whose common altitude is the altitude of the

frustum, and whose bases are the lower base, the upper base, and
a mean proportional between the bases of the frustum.

Proposition XX.

A truncated triangular prism is equivalent to the sum of three

pyramids whose common base is the base of the prism and whose
vertices are the three vertices of the inclined section.

Proposition XXI.

Only five regular (convex) polyedrons are possible.
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BOOK Till.

THEOREMS.
Proposition I.

Every section of a cylinder made by a plane passing through

an element is a parallelogram.

Corollary. Every section of a right cylinder made by a plane

perpendicular to its base is a rectangle.

Proposition II.

The bases of a cylinder are equal.

Corollary I. Any two parallel sections of a cylindrical surface

are equal.

Corollary II. All the sections of a circular cylinder parallel to

its bases are equal circles, and the straight line joining the centres

of the bases passes through the centres of all the parallel sections.

Proposition III.

Every section of a cone made by a plane passing through its

vertex is a triangle.

Proposition IV.

If the base of a cone is a circle, every section made by a plane

parallel to the base is a circle.

Corollary. The axis of a circular cone passes through the centres

of all the sections parallel to the base.

Proposition V.

Every section of a sphere made by a plane is a circle.

Corollary I. The axis of a circle on a sphere passes through

the centre of the circle.

Corollary II. All great circles of the same sphere are equal.

Corollary III. Every great circle divides the sphere into two
equal parts.

Corollary IV. Any two great circles on the same sphere bisect

each other.

Corollary V. An arc of a great circle may be drawn through any
two given points on the surface of a sphere, and, unless the points

are the opposite extremities of a diameter, only one such arc can

be drawn.
Corollary VI. An arc of a circle may be drawn through any

three given points on the surface of a sphere.

27*
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Proposition VI.

All the points in the circumference of a circle on a sphere are

equally distant from either of its poles.

Corollary I. All the arcs of great circles drawn from a pole of a
circle to points in its circumference are equal.

Corollary II. The polar distance of a great circle is a quadrant.
Corollary III. If a point on the surface of a sphere is at a quad-

rant's distance from each of two given points of the surface,

which are not opposite extremities of a diameter, it is the pole

of the great circle passing through them.

Proposition VII.

A plane tangent to a sphere is perpendicular to the radius

drawn to the point of contact.

Corollary. A plane perpendicular to a radius of a sphere at its

extremity is tangent to the sphere.

Proposition VIII.

The intersection of two spheres is a circle whose plane is per-^

pendicular to the straight line joining their centres, and whose
centre is in that line.

Proposition IX.

The angle of two arcs of great circles is equal to the angle of

their planes, and is measured by the arc of a great circle described

from its vertex as a pole and included between its sides (produced

if necessary).

Corollary. All arcs of great circles drawn through the pole of a
given great circle are perpendicular to its circumference.

Proposition X.

If the first of two spherical triangles is the polar triangle of the

second, then, reciprocally, the second is the polar triangle of the

first.

Proposition XI.

In two polar triangles, each angle of one is measured by the

supplement of the side lying opposite to it in the other.

Proposition XII.

Two triangles on the same sphere are either equal or symmet-
rical when two sides and the included angle of one are respectively

equal to two sides and the included angle of the other.
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Proposition XIII.

Two triangles on the same sphere are either equal or symmet-
rical when a side and the two adjacent angles of one are respec-

tively equal to a side and the two adjacent angles of the other.

Proposition XIV.

Two triangles on the same sphere are either equal or symmet-
rical when the three sides of one are respectively equal to the

three sides of the other.

Proposition XV.

If two triangles on the same sphere are mutually equiangular,

they are mutually equilateral, and are either equal or symmet-
rical.

Proposition XVI.

Any side of a spherical triangle is less than the sum of the

other two.

Proposition XVII.

The sum of the sides of a convex spherical polygon is less than

the circumference of a great circle.

Proposition XVIII.

The sum of the angles of a spherical triangle is greater than

two, and less than six, right angles.

Proposition XIX.

Two symmetrical spherical triangles are equivalent.

Proposition XX.

If two arcs of great circles intersect on the surface of a hemi-
sphere, the sum of the opposite spherical triangles which they

form is equivalent to a lune whose angle is the angle between the

arcs in question.

Proposition XXI.

A lune is to the surface of the sphere as the angle of the lune is

to four right angles.

Corollary. The area of a lune is expressed by twice its angle,

the angular unit being the degree, and the unit of surface the

spherical degree.
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Proposition XXII.

The area of a spherical triangle is equal to the excess of the

sum of its angles over two right angles.

Proposition XXIII.

The shortest line that can be drawn on the surface of a sphere

between two points is the arc of a great circle, not greater than a
semi-circumference, joining the two points.

BOOK IX.

THEOREMS.
Proposition I.

If a prism whose base is a regular polygon be inscribed in or

circumscribed about a given cylinder, its volume will approach
the volume of the cylinder as its limit, and its lateral surface will

approach the lateral surface of the cylinder as its limit as the

number of sides of its base is indefinitely increased.

Proposition II.

The lateral area of a cylinder is equal to the product of the
perimeter of a right section of the cylinder by an element of the

surface.

Corollary I. The lateral area of a cylinder of revolution is equal
to the product of the circumference of its base by its altitude.

This may be formulated,

Corollary II. The lateral areas of similar cylinders of revolu-

tion are to each other as the squares of their altitudes, or as the
squares of the radii of their bases.

Proposition III.

The volume of a cylinder is equal to the product of its base by
its altitude.

Corollary I. For a cylinder of revolution this may be formu-
lated,

Corollary II. The volumes of similar cylinders of revolution

are to each other as the cubes of their altitudes, or as the cubes
of their radii.
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Proposition IV.

If a pyramid be inscribed in or circumscribed about a given

cone, its volume will approach the volume of the cone as its limit,

and its lateral surface will approach the convex surface of the

cone as its limit as the number of faces of the pyramid is indefi-

nitely increased.

Corollary, A frustum of a cone is the limit of the inscribed and
circumscribed frustums of pyramids, the number of whose faces

is indefinitely increased.

Proposition V.

The lateral area of a cone of revolution is equal to the product

of the circumference of its base by half its slant height.

Corollary I. This proposition may be formulated,

S = ^RL.

Corollary II. The lateral areas of similar cones of revolution

are to each other as the squares of their slant heights, or as the

squares of their altitudes, or as the squares of the radii of their

bases.

Proposition VI.

The lateral area of a frustum of a cone of revolution is equal to

the half sum of the circumferences of its bases multiplied by its

slant height.

Corollary I. This proposition may be formulated,

S=Tr{R-{.r)L.

Corollary II. The lateral area of a frustum of a cone of revolu-

tion is equal to the circumference of a section equidistant from its

bases multiplied by its slant height.

Proposition VII.

The volume of any cone is equal to one-third the product of its

base by its altitude.

Corollary I. For a cone of revolution this proposition may be
formulated,

V= ITER'S.

Corollary II. Similar cones of revolution are to each other aa

the cubes of their altitudes, or as the cubes of the radii of their
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Proposition VIII.

The area of the surface generated by a straight line revolving

about an axis in its plane is equal to the projection of the line

on the axis multiplied by the circumference of the circle whose
radius is the perpendicular erected at the middle of the line and
terminated by the axis.

Proposition IX.

The area of a zone is equal to the product of its altitude by the

circumference of a great circle.

Corollary. This proposition may be formulated,

Proposition X.

The area of the surface of a sphere is equal to the product of^

its diameter by the circumference of a great circle.

Corollary I. This may be formulated,

S = 27ri2 X2B = ^TzB^,-

Hence the surface of a sphere is equivalent to four great circles.

Corollary II. The surfaces of two spheres are to each other aa

the squares of their diameters, or as the squares of their radii.

Proposition XI.

The volume of a sphere is equal to the area of its surface multi-

plied by one-third of its radius.

Corollary I. This proposition may be formulated,

Corollary II. The volumes of two spheres are to each other as

the cubes of their radii, or as the cubes of their diameters.

Proposition XII.

The volume of a spherical sector is equal to the area of the zone

which forms its base multiplied by one-third the radius of the

sphere.
^__
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