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PREFACE.

For the engineering student, pursuing the study of Applied Mechan-
ics as part of his professional training, and not as additional mathe-
mathical culture, not only is a thoroughly systematic, clear, and
consistent treatment of the subject quite essential, but one which pre-

sents the quantities and conceptions involved in as practical and con-

crete a form as possible, with all the aids of the printer's and engraver's
arts ;

and especially one which, besides showing the derivation of

formulae from principles, illustrates, inculcates, and lays stress on
correct numerical substitution and the consistent and proper use of

units of measurement; for without this no reliable results can be

reached, and the principal ot ject of these formulae is frustrated.

With these requirements in view, and aided by the experience of ten

years in teaching the Mechanics of Engineering at this institution, the

writer has been led to prepare the present work, in which attention is

called to the following features :

The diagrams are very numerous (about one to every page ; an appeal
to the eye is often worth a page of verbal description).

The symbols for distances, angles, forces, etc., used in the algebraic
work are, as far as possible, inserted directly in the diagrams, render-

ing the latter full and explicit, and thus saving time and mental effort

to the student. In problems in Dynamics three kinds of arrows are

used to distinguish forces, velocities, and accelerations, respectively,

and thus to prevent confusion of ideas.

Illustrations and examples of a practical nature, both algebraic and

numerical, are of frequent occurrence.

Formulae are divided into two classes ; those (homogeneous) admit*

ting of the use of any system of units whatever for measurements of

force, space, mass, and time, in numerical substitution; and those

which are true for specified units only. Attention is repeatedly di-

rected to the matter of correct numerical substitution, especially in

Dynamics, where time and mass, as well as force and space, are among
the quantities considered. The importance, in this connection, of

frequent mention of the quality of the various kinds of quantity em-

ployed, is also recognized, and a corresponding phraseology adopted.

The definition of force (3) is made to include and illustrate Newton's

law of action and reaction, the misconception of which leads to such

lengthy discussions in technical journals every few years.

In the matter of "Centrifugal force," the artificial method, so com-

monly adopted, of regarding a particle moving uniformly in a circle

as in equilibrium, i. e., acted on by a balanced system of forces, one of

which is the "
Centrifugal force," has been avoided, as being at vari-

ance with a system of Mechanics founded on Newton's laws, according

to the first of which a particle moving in any other than a straight line

cannot be in. equilibrium. In such a system of Mechanics nothing can
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be recognized as a force which is not a definite pull, push, pressure,

rub, attraction or repulsion, of one body upon, or against, another.

It is true that the artificial nature of the method referred to is in

some text-books fully explained in the context, (in Goodeve's Steam

Engine, for instance, in treating the governor ball,) but is too often not

mentioned at all, so that the student risks being led into error in

attempting kindred problems by what would then seem to him correct;

methods.

The general theorem of Work and Energy in machines is developed

gradually by definite and limited steps, in preference to giving a single

demonstration which, from its generality, might be too vague and ab-

struse to be readily grasped by the student.

In the use of the Calculus, (in the elements of which the student is

supposed to have had the training usually given in technical schools by
the end of the second year) the integral sign is always used to indicate

summation (except on p. 357) while the name of anti-derivative of a

given function (of one variable) hasbeen adopted for that function whose

derivative, or differential co-efficient, is the given function (see 253. )

The signs -\
and

||
are used for perpendicular and parallel, respect-

ively.

In Torsion and Flexure of Beams, the well worn and simple theories

of Navier have been thought sufficient for establishing practical for-

mulae for safe loads and deflections of beams and shafts ; and promi
aence has been given to the methods of designing the cross-sections

and riveting of built-beams and plate-girders, forming the basis of the

tables and rules usually given in the pocket-books of our iron and steel

inanufacturers.

The analytical treatment of the continuous girder is not presented in

the general case, preference being given to the graphic method by
Mohr, as greatly superior in simplicity, directness, and interest. For
similar reasons the graphics of the arch of masonry is to be preferred to

the analytical chapter on Linear Arches, whose insertion is chiefly a

concession to the mathematical student, as are also 119, 1985 234, 235,

264, 265, 266, 284, 287, 291, and 297.

The graphics of curved beams or arch ribs is made to precede that of

the straight girder, since the treatment of the latter as a particular case

of the former is then a comparatively simple matter. Hence Prof.

Eddy's methods *
(inserted by his kind permission) for the arch rib of

hinged ends, and also that of fixed ends, are presented as special geo-
metrical devices, instead of being based on Prof. Eddy's general theorem

(involving a straight girder of the same section and mode of support).

Acknowledgment is also due Prof. Burr and Prof. Robinson, for

their cordial consent to the use of certain items and passages from
their works; (see 206, 212, 220, and 297.)

* See \>p. 14 and 25 of " Researches in Graphical Statics." by Prof. H. T. Eddy,.
C.E., Ph. D.; published by D. Van Nostrand, New York, 1878 : reprinted from Van Nos-
trand's Magazine for 1877.
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Advantage has been taken of the results of the most recent experimental

investigations in Hydraulics in assigning values of the numerous coeffi-

cients necessary in this science. The researches of Messrs. Fteley and
Stearns in 1880 and of M. Bazin in 1887 on the flow of water over weirs,

and of Mr. Clemens Herschel in testing his invention the " Venturi Water-

meter," are instances in point; as also some late experiments on the

transmission of compressed air and of natural gas, and Mr. Freeman's

extensive investigations in the Hydraulics of Fire-streams and resistance

of Fire-hose, p. 832. (See Transac. Am. Soc. Civ. Eng. for Nov. 1889.)

In dealing with fluid tension care has been taken to use the absolute

pressure and not simply the excess over atmospheric, thus avoiding the

occurrence oftthe term
"
negative pressure;" this precaution being specially

necessary in the treatment of gaseous fluids.

Though space has forbidden dealing at any great length with the action of

fluid motors, sufficient matter is given in treating of the mode of working
of steam, gas, and hot-air engines, air-compressors, and pumping-engines,

together with numerical examples, to be of considerable advantage, it is

thought, to students not making a specialty of mechanical engineering.

Special acknowledgment is due to Col. J. T. Fanning, the well-known

author of "
Hydraulic and Water-supply Engineering," for his consent to

the use of an abridgment of the table of coefficients for friction of water

in pipes, given in that work; and to Prof. C. L. Crandall, of this univer-

sity, for permission to incorporate the chapter on Retaining-Walls.

References to original research In the Hydraulic Laboratory of the

Civil Engineering Department at this institution will be found on pp. 694

and 729.

CORNELL UNIVERSITY, ITHACA, N. Y.,

January, 1890.

NOTE. Additional matter involving many examples and forming an

appendix to the present work, but too bulky to be incorporated with it,

was issued in a separate volume in 1892 and entitled
" Notes and Examples

in Mechanics." A second edition, revised and enlarged, was published in

1897.

ITHACA, N Y., May, 1900.
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MECHANICS OF

PEELIMINAEY CHAPTEE.

1. Mechanics treats of the mutual actions and relative mo-

tions of material bodies, solid, liquid, and gaseous; and by
Mechanics of Engineering is meant a presentment of those

principles of pure mechanics, and their applications, which are

of special service in engineering problems.

2. Kinds of Quantity. Mechanics involves the following
fundamental kinds of quantity : Space, of one, two, or three

dimensions, i.e., length, surface, or volume, respectively ; time,

which needs no definition here; force and mass, as defined be-

low; and abstract numbers, whose values are independent of

arbitrary units, as. for example, a ratio.

3. Force. A force is one of a pair of equal, opposite, and

simultaneous actions between two bodies, by which the state*

of their motions is altered or a change of form in the bodies

themselves is effected. Pressure, attraction, repulsion, and

traction are instances in point. Muscular sensation conveys

the idea of force, while a spring-balance gives an absolute

measure of it. a beam-balance only a relative measure. In

accordance with Newton's third law of motion, that action and

reaction are equal, opposite, and simultaneous, forces always

occur in pairs; thus, if a pressure of 4:0 Ibs. exists between

bodies A and B, if A is considered 'by itself (i.e., "free"),

apart from all other bodies whose actions upon it are called

forces, among these forces will be one of 40 Ibs. directed from

B toward A. Similarly, if B is under consideration, a force

* The state of motion of a small body under the action of no force, or of

balanced forces, is either absolute rest, or uniform motion in a right line.

If the motion is different from this, the fact is due to the action of an un-

balanced force ( 54).



2 MECHANICS OF ENGINEERING.

of 4:0 Ibs. directed from A toward B takes its place among the

forces acting on B. This is the interpretation of Newton's

third law.

In conceiving of a force as applied at a certain point of a

body it is useful to imagine one end of an imponderable spiral

spring in a state of compression (or tension) as attached at the

given point, the axis of the spring having the given direction

of the force.

4. Mass is the quantity of matter in a body. The masses of

several bodies being proportional to their weights at the same

locality on the earth's surface, in physics the weight is taken

as the mass, but in practical engineering another mode is used

for measuring it (as explained in a subsequent chapter), viz.:

the mass of a body is equal to its weight divided by the ac-

.celeration of gravity in the locality where the
1

weight is taken,

or, symbolically, M = G -f- g. This quotient is a constant

quantity, as it should be, since the mass of a body is invariable

wherever the body be carried.

5. Derived Quantities. All kinds of quantity besides the

fundamental ones just mentioned are compounds of the latter,

formed by multiplication or division, such as velocity, accele-

ration, momentum, work, energy, moment, power, and force-

distribution. Some of these are merely names given for

convenience to certain combinations of factors which come

together not in dealing with first principles, but as a result of

common algebraic transformations.

6. Homogeneous Equations are those of such a form that they
are true for any arbitrary system of units, and in which all

terms combined by algebraic addition are of the same kind.
it

Thus, the equation s = ~ (in which g = the acceleration of

gravity and t the time of vertical fall of a body in vacuo,

from rest) will give the distance fallen through, $, whatever

units be adopted for measuring time and distance. But if for
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g we write the numerical value 32.2, which it assumes when
time is measured in seconds and distance in feet, the equation
s 16.1

a
is true for those units alone, and the equation is not

ot homogeneous form. Algebraic combination of homogeneous
equations should always produce homogeneous equations ;

if

not, some error has been made in the algebraic work. If any

equation derived or proposed for practical use is not homogene-
ous, an explicit statement should be made in the context as to

the proper units to be employed.

7. Heaviness. By heaviness of a substance is meant the

weight of a cubic unit of the substance. E.g. the heaviness of

fresh water is 62.5, in case the unit of force is the pound,
and the foot the unit of space; i.e., a cubic foot of fresh

water weighs 62.5 Ibs. In case the substance is not uniform

in composition, the heaviness varies from point to point. If

the weight of a homogeneous body be denoted by #, its volume

by F", and the heaviness of its substance by y, then G = Vy.

WEIGHT IN POUNDS OF A CUBIC .FOOT (i.e., THE HEAVINESS) OP VARIOUS

MATERIALS.

Anthracite, solid 100

broken 57

Brick, common hard 125
"

soft 100

Brick-work, common 112

Concrete 125

Earth, loose 72
"

as mud 102

Granite 164 to 172

Ice 58

Iron, cast 450
"

wrought 480

Masonry, dry rubble. , 138

dressed granite or

limestone 165

Mortar 100

Petroleum 55

Snow 7
" wet 15 to 50

Steel ." . 490

Timber 25 to 60

Water, fresh 62 . 5

sea.. ..64.0

8. Specific Gravity is the ratio of the heaviness of a material

to that of water, and is therefore an abstract number.

9. A Material Point is a solid body, or small particle, whose

dimensions are practically nothing, compared with its range of

motion.
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10. A Rigid Body is a solid, whose distortion or change of

form under any system of forces to be brought upon it in

practice is, for certain purposes, insensible.

11. Equilibrium. When a system of forces applied to a

body produces the same -effect as if no force acted, so far as

the state of motion of the body is concerned, they are said to

be balanced, or to be in equilibrium. [If no force acts on a

material point it remains at rest if already at rest
;
but if

already in motion it continues in motion, and uniformly

(equal spaces in equal times), in a right line in direction

of its original motion. See 54.]

12. Division of the Subject. Statics will treat of bodies at

rest, i.e., of balanced forces or equilibrium ; dynamics, of

bodies in motion
; strength of materials will treat of the effect

of forces in distorting bodies; hydraulics, of the mechanics

of liquids and gases (thus including pneumatics).

13. Parallelogram of Forces. Duchayla's Proof. To fully

determine a force we must have given its amount, its direc-

tion, and its point of application in the body. It is generally

denoted in diagrams by an arrow. It is a matter of experience
that besides the point of application already spoken of any
other may be chosen in the line of action of the force. This

is called the transmissibility of force; i.e., so far as the state of
motion of the body is concerned, a force may be applied any-

where in its line of action.

The Resultant of two forces (called its components) applied

at a point of a body is a single force applied at the same point,

'which will replace them. To prove that this resultant is given
in amount and position by the diagonal of the parallelogram

formed on the two given forces (conceived as laid off to some

scale, so m,any pounds to the inch, say), Duchayla's method

. requires four postulates, viz. : (1) the resultant of two forces

must lie in the same plane with them
; (2) the resultant of two

equal forces must bisect the angle between them
; (3) if one of

the two forces be increased, the angle between the other force

and the resultant will be greater than before; and (4) the trans-

missibility of force, already mentioned. Granting these, we

proceed as follows (Fig. 1) : Given the two forces P and Q =-
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p, _|_ pn (p, and pn
applied at <9. Transmit P" to J.. Draw the parallelogramsOB and AD\ OD will also be a parallelogram. By postulate

(2), since OB is a rhombus, P and P' at <9 may be replaced by
a single force R' acting through B. Transmit R' to B and

replace it by P and P'. Transmit P from B to J., P' from
B to I>. Similarly P and P", at ^L, may be replaced by a

single force R" passing through _Z>
; transmit it there and re-

solve it into P and P" . Pf
is already at D. Hence P and

P' + P", acting at _Z>, are equivalent to P and P' -\- P" act-

ing at 0, in their respective directions. Therefore the result-

ant of P and P' + P" must lie in the line OD, the diagonal
of the parallelogram formed on P and Q = 2P at 0. Similarly

SLfiLfl

FIG. i. FIG. 2.

this may be proved (that the diagonal gives the direction of

the resultant) for any two forces P and mP
;
and for any two

forces nP and mP, m and ?i being any two whole numbers,

i.e., for any two commensurable forces. When the forces are

incommensurable (Fig. 2), P arid Q being the given forces,

we may use a reductio ad dbsurdum, thus : Form the parallelo-

gram OD on P and Q applied at 0. Suppose for an instant

that R the resultant of P and Q does not follow the diagonal

OD, but some other direction, as OD' . Note the intersection

H, and draw HC parallel to DB. Divide P into equal parts,

each less than HD
;
then in laying off parts equal to these from

along OB, a point of division will come at some point F
between C and B. Complete the parallelogram OFEG. The

force Q" = OF is commensurable with P, and hence their
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resultant acts along OE. Now Q is greater than Q"', while R
makes a less angle with P than OE, which is contrary to pos-

tulate (3); therefore R cannot lie outside of the line OD*

Q. E. D.

It still remains to prove that the resultant is represented in

amount, as well as position, by the diagonal. OD (Fig. 3) is

X/R' the direction of R the resultant of P and

/F \N _ . Q ; required its amount. If R' be a force-^t equal and opposite to It it will balance P
\P/1 al)d Q ?

i-e
?
tne resultant of R' and P

p
"""Jj* must lie in the line QO prolonged (besides

being equal to Q). "We can therefore de-

termine R by drawing BA parallel to DO to intersect QO
prolonged in A

;
and then complete the parallelogram on

BA and BO.* Since OFABis a parallelogram R must =BA,
and since OABD is a parallelogram BA=OD\ therefore

and also 72= <9lX Q. E. D.

Corollary. The resultant of three forces applied at the same

point is the diagonal of the parallelepiped formed on the three

forces.

14. Concurrent forces are those whose lines of action intersect

in a common point, while non-concurrent forces are those which

do not so intersect
;
results obtained for a system of concurrent

forces are really derivable, as particular cases, from those per-

taining to a system of non-concurrent forces.

15. Resultant. A single force, the action of which, as re-

gards the state of motion of the body acted on, is equivalent to

that of a number of forces forming a system, is said to be the

Resultant of that system, and may replace the system ;
and con-

versely a force which is equal and opposite to the resultant of

a system will balance that system, or, in other words, when it

is combined with that system there will result a new system in

equilibrium ;
this (ideal) force is called the Anti-resultant.

In general, as will be sesn, a given system of forces can al-

* R must = ~OF; for if R' > or < ~OF, the diagonal formed on R' and P
cannot take the direction of QO prolonged.
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ways De replaced by two single forces, but these two can be

combined into a single resultant only in 'particular cases.

15a. Equivalent Systems are those which may be replaced by
the same set of two single forces or, in other Mords, those

which have the same effect, as to state of motion, upon the

given body.

15b. Formulae. If in Fig. 3 the forces P and Q and the angle a =
P Q are given, we have, for the resultant,

Pz + Q' + 2PQcosa.

(If a is > 90 its cosine is negative.) In general, given any three parts

of either plane triangle D Q, or 1) B, the other three may be obtained

by ordinary trigonometry. Evidently if or = 0, R = P + Q ;
if a =

180, # = P-
;
and if a: = 90, R = V F* + Q"-

15c. Varieties of Forces, Great care should be used in deciding

what may properly be called forces. The latter may be divided into ac-

tions by contact, and actions at a distance. If pressure exists between two

bodies and they are perfectly smooth at the surface of contact, the pressure

(or thrust, or compressive action), of one against the other constitutes a force,

whose direction is normal to the tangent plane at any point of contact (a

matter of experience) ;
while if those surfaces are not smooth there may also

exist mutual tangential actions or friction. (If the bpdies really form a

continuous substance at the surface considered, these tangential actions are

called shearing forces.} Again, when a rod or wire is subjected to tension,

any portion of it is said to exert a pull or tensile force upon the remainder ;

the ability to do this depends on the property of cohesion. The foregoing

are examples of actions by contact.

Actions at a distance are exemplified in the mysterious attractions, or re-

pulsions, observable in the phenomena of gravitation, electricity, and mag-

netism, where the bodies concerned are not necessarily in contact. By the

term weight we shall always mean the force of the earth's attraction on the

body in question, and not the amount of matter in it.

[NOTE. In some common phrases, such as " The tremendous force" of a heavy body in

rapid motion, the word force is not used in a technical sense, but signifies energy (as ex-

plained in Chap. VI.). The mere fact that a hody is in motion, whatever its mass and

velocity, does not imply that it is under the action of any force, necessarily. For instance,

at any point in the path of a cannon ball through the air, the only forces acting on it are

the resistance of the air and the attraction of the earth, the latter having a vertica And

downward direction.]
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CHAPTEK L

STATICS OF A MATERIAL POINT.

16. Composition of Concurrent Forces. A system of forces

acting on a material point is necessarily composed of concurrent

forces.

CASE I. All the forces in One Plane. Let be the

material point, the common point of application of all the

forces
; P^ P etc., the given forces, making

angles or,,
<*

2 , etc., with the axis X. By the

parallelogram of forces P. may be resolved

into and replaced by its components, P1
cos a,

-> -
acting along X> and P

l
sin a

l along Y,
FIG. 4.

Similarly all the remaining forces may be re-

placed by their X and Y components. We have now a new

system, the equivalent of that first given, consisting of a set of

X forces, having the same line of application (axis X), and a

set of Y forces, all acting in the line Y. The resultant of the

X forces being their algebraic sum (denoted by 2X) (since

they have the same line of application) we have

2X= P
l
cos a, + P, cos <+ etc. = 2(P cos a),

and similarly

2Y = P
l
sin a

, + P9
sin

2 + etc. = 2(P sin a).

These two forces, 2X and 2 Y, may be combined by the

parallelogram of forces, giving R |/(^"X)
a + (2Y)* as tne

single resultant of the whole system, and its direction is deter-

2Y
mined by the angle or; thus, tan a =

-^p-;
see Fig. 5. For

equilibrium to exist, R must = 0. which requires, separately^
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=0, and 2Y=0 (for the two squares (2X)* and
can neither of them be negative quantities).

CASE II. The forces having any directions in space,
but all applied at ,<9, the material point. Let P

19 P^
etc., be the given forces, P1 making the angles <*,, /?1? and ya
respectively, with three arbitrary axes, X, Y, and Z (Fig. 6),

at right angles to each other and intersecting at 0, the origin.

Similarly let <*
/?3 , y^ be the angles made by Pz

with these

axes, and. so on for all the forces. By the parallelepiped of

forces, Pl may be replaced by its components.X
l
= P1 cos

flfj, Yl
= Pl cos ftv and Zl Pl cos yl ; and

<"'2Y

FIQ. 7.

similarly for all the forces, so that the entire system is now

replaced by the three forces,

= P, cos or, + P, cos a
t + etc

;

= P, cos A + P2
cos #, + etc;

= P, cos ^ + P, cos /2 + etc
;

and finally by the single resultant

Therefore, for equilibrium we must have separately,

2Z= 0, 2Y= 0, and ^Z^ 0.

position may be determined by its direction cosines, viz.,

cos a = -Q- ;
cos /? = cos =

17. Conditions of Equilibrium. Evidently, in dealing with

a system of concurrent forces, it would be a simple matter to
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replace any two of the forces by their resultant (diagonal
formed on them), then to combine this resultant with a third

force, and so on until all the forces had been combined, the

last resultant being the resultant of the whole system. The

foregoing treatment, however, is useful in showing that for

equilibrium of concurrent forces in a plane only two conditions

are necessary, viz., 2X'= and 2Y = 0; while in space
there are three, 2X= 0, 2Y = 0, and 2Z 0. In Case I.,

then, we have conditions enough for determining two unknown

quantities ;
in Case II., three.

18. Problems involving equilibrium of concurrent forces.

(A rigid body in equilibrium under no more than three forces

may be treated as a material point, since the (two or) three

forces are necessarily concurrent.)*

PROBLEM 1. A body weighing G Ibs. rests on a horizontal

table : required the pressure between it and the table. Fig. 8.

Consider the body free, i.e., conceive all other bodies removed

, (the table in this instance), being replaced by the

i

forces which they exert on the first body. Taking
G the axis ^vertical and positive upward, and not

+X assuming in advance either the amount or direc-

tion of JV, the pressure of the table against the

body, but knowing that 6r, the action of the earth

on the body, is vertical and downward, we have

here a system of concurrent forces in equilibrium, in which

the X and Y components of G are known (being and -

G respectively), while those, jVx and N^ of N are unknown.

Putting 2X =
0, we have N^ + =

; i.e., N has no hori-

zontal component, /. N is vertical. Putting 2Y = 0, we
have N^ G = 0, .*. N? = -\- G ;

or the vertical component
of N) i.e., N itself, is positive (upward in this case), and is

numerically equal to G.

PKOBLEM 2. Fig. 9. A body of weight G (Ibs.) is moving
in a straight line over a rough horizontal table with a uniform

velocity v (feet per second) to the right. The tension in an

oblique cord by which it is pulled is given, and = P (Ibs.),

* Three parallel forces form an exception ;
see 20, 21, etc.
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which remains constant, the cord making a given angle of

elevation, <*,
with the path of the body. Required the vertical

pressure ffl (Ibs.) of the table, and also its

horizontal action F (friction) (Ibs.) against

the body

Referring by anticipation to Newton's first

law of motion, viz., a material point acted

on by no force or by balanced forces is either FIG. 9.

at rest or moving uniformly in a straight line, we see that this

problem is a case of balanced forces, i.e., of equilibrium. Since

there are only two unknown quantities, N and F, we may
determine them by the two equations of Case I., taking the

axes X and Y as before. Here let us leave the direction of

N as well as its amount to be determined by the analysis. As
j^must evidently point toward the left, treat it as negative in

summing the X components ;
the analysis, therefore, can be

expected to give only its numerical value.

2X = gives P cos a F 0. .-. F = P cos a.

2Y= gives AT+P sin aj& = 0. .'. N = G - Pein a.

,'. N is upward or downward according as G is > or < P
sin a. For N to be a downward pressure upon the body would

require the surface of the table to be above it. The ratio of the

friction F to the pressure N which produces it can now be

obtained, and is called the coefficient of friction. It may vary

slightly with the velocity.

This problem may be looked upon as arising from an experi-

ment made to determine the coefficient of friction between the

given surfaces at the given uniform velocity.

19. The Free-Body Method. The foregoing rather labored so-

lutions of very simple problems have been made such to illus-

trate what may be called the free-body method of treating any

problem involving a body acted on by a system of forces. It

consists in conceiving the body isolated from all others which

act on it in any way, those actions being introduced as so many
forces, known or unknown, in amount and position. The sys-

tem of forces thus formed may be made to yield certain equa-

Of THE

UNIVERSITY
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tions, whose character and number depend on circumstances,

such as the behavior of the body, whether the forces are con-

fined to a plane or not, etc., and which are therefore theoreti-

cally available for determining an equal number of unknown

quantities, whether these be forces, masses, spaces, times, or

abstract numbers. Of course in some instances the unknown

quantities may enter these equations with such high powers
that the elimination may be impossible ;

but this is a matter

of algebra, not of mechanics.

(Addendum to 49a of page 49.) Numerical Example. A set of light

screens is set up at intervals of 100 feet apart in the horizontal path of a

cannon-ball, with the object of determining its velocity, and also the rate of

change (or negative acceleration) of that velocity, as due to the resistance

of the air.

By electrical connection the time of passing each screen is noted, and

the intervals of time are given in this diagram for four of the screens,

A, B, C, and D.

100'

..0.0621 sec..

....100'

.0.0632 sec..

100'

..0.0643 sec..

A 1 B 2 C 3 D
. From these data it is required to compute, as nearly as the circumstances

allow, the velocity and acceleration (negative) of the ball at various points

(the ball moves from left to right).

Solution. In passing from A to B the ball has an average velocity of

1610 ft. per second, obtained by dividing the distance of 100 feet by the

time of passage, 0.0621 second. Similarly we find the average velocity
between B and G to be 1582 ft. per second, and that between G and D to

be 1554 ft. per second.

As the velocity is not changing very rapidly, we may claim that the ball

actually possesses the velocity Vi = 1610 ft. per second at the point 1, mid-

way between A and B, or very near that point ; and similarly the velocity

$2 = 1582 ft. per second at point 2, midway between B and G ; and
V3 = 1554 ft. per second at point 3, midway between C and D.

Hence the total gain of velocity from 1 to 2 is 1582-1610 = 28 ft. per
second; and the time in which this gain is made is one half of the )621

second plus one half of the 0.0632 second, i.e., 0.0626 second. Therefore

an approximate value for the average acceleration between points 1 and 2

is found by dividing the 28 ft. per second gain in velocity by the

time 0.0626 second occupied in acquiring the gain. This gives 447 ft.

per second per second average acceleration for portion 1. . .2 of path, and
since screen B lies at the middle of this portion, the actual acceleration of

the ball's motion as it passes the screen B is very nearly equal to this, viz.:

447 ft. per second per second (or
"

ft. per square second ").

By a similar process the student may compute the acceleration at screen

C. Of course the reason why these results are merely approximate is that

the spaces and times concerned, though relatively small , are not infinitesimal.

[A recent English writer calls a unit of velocity a "speed;" and a unit

of acceleration, a "hurry."]
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CHAPTER II.

PARALLEL FORCES AND THE CENTRE OF GRAVITY.

20. Preliminary Remarks. Although by its title this section

should be restricted to a treatment of the equilibrium of forces,

certain propositions involving the composition and resolution

of forces, without reference to the. behavior of the body under

their action, will be found necessary as preliminary to the prin-

cipal object in view.

As a rigid body possesses extension in three dimensions, to

deal with a system of forces acting on it we require three co-

ordinate axes : in other words, the system consists of "
forces

in space," and in general the forces are non-concurrent. In

most problems in statics, however, the forces acting are in one

plane: we accordingly begin by considering non-concurrent

forces in a plane, of which the simplest case is that of two

parallel forces. For the present the body on which the forces

act will not be shown in the figure, but must be understood to

be there (since we have no conception of forces independently
of material bodies). The device will frequently be adopted of

introducing into the given system two opposite and equal forces

acting in the same line : evidently this will not alter the effect

of the given system, as regards the rest or motion of the body.

21. Resultant of two Parallel

Forces.

CASE I. The two forces have

the same direction. Fig. 10.

Let P and Q be the given forces,

and AB a line perpendicular to

them (P and Q are supposed to have

been transferred to the intersections

A and B}. Put in at A and B two equal and opposite
forces 8 and $, combining them with P and Q to form P'
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and Q'. Transfer P' and Q' to their intersection at C, and there

resolve them again into 8 and P, /Sand Q. S and S annul each

other at C\ therefore P and Q, acting along a common line CD,

replace the P and Q first given ; i.e., the resultant of the origi-

nal two forces is a force R P-\- Q, acting parallel to them

through the point D, whose position must now be determined.

The triangle CAD is similar to the triangle shaded by lines,

/. P : 8 ll CD : a?; and CDB being similar to the triangle

shaded by dots, /. 8 : Q :: a x : CD. Combining these, we

:^^-^ and .-. x = - = -
f Now write this

Qcd, and add Re, i.e., Pc-\- Qc,to each member, c being
the distance of (Fig. 10), any point in AB produced, from

A. This will give R(x + c)
= PC -\-Q(a + c),

in which c,

a -f- c, and x -f- c are respectively the lengths of perpendiculars

let fall from upon P, Q, and, their resultant R. Any one of

these products, such as PC, is for convenience (since products of

this form occur so frequently in Mechanics as a result of alge-

braic transformation) called the Moment of the force about the

arbitrary point 0. Hence the resultant of two parallel forces of

the same direction is equal to their sum, acts in their plane, in

a line parallel to them, and at such a distance from any arbi-

trary point in their plane as may be determined by writing

its moment about equal to the sum of the moments of the

two forces about 0. is called a centre of moments, and each

of the perpendiculars a lever-arm.

CASE II. Two parallel forces P and Q of opposite direc-

tions. Fig. 11. By a process similar to the foregoing, we
obtain R = P - Q and (P - Q)x
= Qa, i.e., Rx = Qa. Subtract

each member of the last equation
from Re (i.e.. PcQc], in which c

is the distance, from A, of any arbi-

trary point O in AB produced. This

gives R(c x) = PC Q(a+ c).

But (c x), c, and (a -\- c) are re-

11. spectively the perpendiculars, from

* That is, the resultant of two parallel forces pointing in the same direc-

tion divides the distance between them in the inverse ratio of those forces.



PARALLEL FORCES AND THE CENTRE OF GRAVITY. 15

0, upon P, P, and Q. That is, E(c x) is the moment of It

about <9; PC, that of P about (9; and $(#+ c)> that of Q
about (9. But the moment of Q is subtracted from that of P,
which corresponds with the fact that Q in this figure would

produce a rotation about opposite in direction to that of P.

HavLig in view, then, this imaginary rotation, we may define

the moment of a force as positive when the indicated direction

about the given point is against the hands of a watch; as nega-
tive when with the hands of a watch.*

Hence, in general, the resultant of any two parallel forces is,

in amount, equal to their algebraic sum, acts in a parallel direc-

tion in the same plane, while its moment, about any arbitrary

point in the plane, is equal to the algebraic sum of the mo-

ments of the two forces about the same point.

Corollary. If each term in the preceding moment equations
be multiplied by the secant of an angle (or, Fig. 12) thus:

n. u, ^

6l"2'
""

FIG. 12. FIG. 13.

(using the notation of Fig. 12), we have Pa sec a = P^
sec a 4- P2

a
a
sec <*, i.e., Pb = Plb, -f- Pa a ,

in which J, 5,,

and 5a
are the oblique distances of the three lines of action

from any point in their plane, and lie on the same straight

line
;
P is the resultant of the parallel forces P, and P,.

22. Resultant of any System of Parallel Forces in Space.

Let Pj, P,, fv etc., be the forces of the system, and x^ y^

%v x y z etc
-5
tne co-ordinates of their points of application

as referred to an arbitrary set of three co-ordinate axes X, Y^
and Z, perpendicular to each other. Each force is here re-

* These two directions of rotation are often called counter clockwise, and

clockwise, respectively.
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stricted to a definite point of application in its line of action

(with reference to establishing more directly the fundamental

equations for the co-ordinates of the centre of gravity of a

body). The resultant P' of any two of the forces, as

PI and PV is = P
l -\- P^ and may be applied at (7, the in-

tersection of its own line of action with a line BD joining

the points of application of P
l
and P its components.

Produce the latter line to A, where it pierces the plane XYy

and let # 5', and &2 , respectively, be the distances of B, C
y

D, from A }
then from the corollary of the last article we have

but from similar triangles

V : 5, : 5, ::
'

: *, : zt, .: P'z' =

Now combine P\ applied at (7, with P^ applied at E, calling

their resultanjt P" and its vertical co-ordinate z
h
',
and we obtain

P"z" = P'z' + PA , i.e., P"z" == PA
also

Proceeding thus until all the forces have been considered, we
shall have

finally,
for the resultant of the whole system,

and for the vertical co-ordinate of its point of application,

which we may write z,

Rz = P,e>+ PA+ PA+ etc
;

-_ .. .,---_
P, + P,+ P,+ ....

' 2P
nd similarly for the other co-ordinates.

-
* =

In these equations, in the general case, such products as P&,
etc., cannot strictly be called moments. The point whose co
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orciinates are the x, y, and 3, just obtained, is called the Centre

of Parallel Forces, and its position is independent of the (com-

mon) direction of the forces concerned.

Example. If the parallel forces are contained in one plane,

and the axis l^be assumed parallel to the direction of the

forces, then each product like P
l
x

l
will be a moment, as de-

fined in 21
;
and it will be noticed in the accompanying nu-

merical example, Fig. 14, that a detailed substitution in the

equation P
3 P |Y f^ p*

having regard to the proper sign of each

force and .of each abscissa, gives the same ^FIG. 14.

result as if each product Px were first obtained numerically,
and a sign affixed to the product considered as a moment
about the point 0. Let P

l
= 1 lb.; P3

= + 2 Ibs.; P3
=

+ 3 Ibs.; P. = - 6 Ibs.; x, = + 1 ft.; x, = + 3 ft.; x, = - 2

ft.; and #
4
= 1 ft. Required the amount and position of the

resultant R. In amount R = 2P =-1 + 2+ 3 6^ 2

Ibs.; i.e., it is a downward force of 2 Ibs. As to its position,

Rx= 2(Px) gives (
- 2> = (

-
1) X (+ lj + 2 X 3 +

3 x (- 2) + (-6) X (- 1)
= - 1 + 6 - 6 + 6. Now from

the figure, by inspection, it is evident that the moment of P
l

about is negative (with the hands of a watch), and is numer-

ically = 1, i.e., its moment = 1
; similarly, by inspection,

that of P9
is seen to be positive, that of P3 negative, that of

P
4 positive; which agree with the results just found, that

( 2) a? = 1 + 6 6 + 6 = + 5 ft. Ibs. (Since a moment
is a product of a force (Ibs.) by a length (ft.),

it may be called

so many foot-pounds.) Next, solving for x, we obtain

x = (+ 5) -r- ( 2)
= 2.5 ft.; i.e., the resultant of the given

forces is a downward force of 2 Ibs. acting in a vertical line

"2.5 ft. to the left of the origin. Hence, if the body in question

be a horizontal rod whose weight has been already included in

the statement of forces, a support placed 2.5 ft. to the left of

and capable of resisting at least 2 Ibs. downward pressure

will preserve equilibrium ;
and the pressure which it exerts
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against the rod must be an upward force, P^ of 2 Ibs., i e. the

equal and opposite of the resultant of P
1?
P9 ,
P8 ,

P
4

.

Fig. 15 shows the rod as a free body in equilibrium under

the live forces. P5
= + 2 Ibs. = the reaction of the support.

I i Of course P
5
is one of a pair of equal

f
3 4

!

i
1

2 and opposite forces
;
the other one

C j
is the pressure of the rod against the

F|t 2.S-
.....io support, and would take its place among

FIG. is. the forces acting on the support.

23. Centre of Gravity. Among the forces acting on any

rigid body at the surface of the earth is the so-called attraction

of the latter (i.e., gravitation), as shown by a spring-balance,

which indicates the weight of the body hung upon it. The

weights of the different particles of any rigid body constitute a

system, of parallel forces (practically so, though actually slightly

convergent). The point of application of the resultant of these

forces is called the centre of gravity of the body, and may also

be considered the centre of mass, the body being of very small

dimensions compared with the earth's radius.

If
a?, y, and z denote the co-ordinates of the centre of gravity

of a body referred to three co-ordinate axes, the equations

derived for them in 22 are directly applicable, with slight

changes in notation.

Denote the weight of any particle
* of the body by dG> its

volume by dV,\)j yita heaviness (rate of weight, see 7) and

its co-ordinates by aj, y, and 0; then, using the integral sign as

indicating a summation of like terms for all the particles of the

body, we have, for heterogeneous bodies,

-_fyxdV. -
_fyydV_.

- _fr*dV. m'

fydV' y "
fydV'

~
fydV

while, if the body is homogeneous, y is the same for all its ele-

ments, and being therefore placed outside the sign of summa-

tion, is cancelled out, leaving for homogeneous bodies ( V de-

noting the total volume)

= J
~- . . (2)

* Any subdivision of the body may be adopted for use of equations (1)
and (2), etc.; but it must be remembered that the x (or y, or 2) in each term
of the summations, or integrals, is the co-ordinate of the center of gravity of
the subdivision employed.
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Corollary. It is also evident that if a homogeneous body is

for convenience considered as made up of several finite parts,
whose volumes are Fn Fa , etc., and whose gravity co-ordinates

are x y ^ ;
a?

a , ya , z^ ; etc., we may write

+ v, + (3)

If the body is heterogeneous, put 6r, (weights), etc., instead

of "Fj, etc., in equation (3).

If the body is an infinitely thin homogeneous shell of uni-

form thickness = A, then d V= hdF(dFdenoting an element,
and F the whole area of one surface) and equations (2) become,
after cancellation,

- fxdF - fydF - fzdF
/y,
- /._ . n, - / ? 9 - /_ / A\

F ' y- p > p w

Similarly, for a homogeneous wire of constant small cross-

section (i.e.. a geometrical line, having weight), its length

being s, and an element of length ds, we obtain

It is often convenient to find the centre of gravity of a thin

plate by experiment, balancing it on a needle-point; other

shapes are not so easily dealt with.

24. Symmetry. Considerations of symmetry of form often

determine the centre of gravity of homogeneous solids without

analysis, or limit it to a certain line or plane. Thus the centre

of gravity of a sphere, or any regular polyedron, is at its centre

of figure ;
of a right cylinder, in the middle of its axis

;
of a

thin plate of the form of a circle or regular polygon, in the

centre of figure ;
of a straight wire of uniform cross-section, in

the middle of its length.

Again, if a homogeneous body is symmetrical about a plane,

the centre of gravity must lie in that plane, called a plane of
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gravity ;
if about a line, in that line called a line of gravity ;

if about a point, in that point.

25. By considering certain modes of subdivision of a homo-

geneous body, lines or planes of gravity are often made appar-
ent. E.g., a line joining the middle of the bases of a trape-

zoidal plate is a line of gravity, since it bisects all the strips

of uniform width determined by drawing parallels to the

bases; similarly, a line joining the apex of a triangular plate to

the middle of the opposite side is a line of gravity. Other

cases can easily be suggested by the student.

26. Problems. (1) Kequired the position of the centre of

gravity of a fine homogeneous wire of the

l~dyf
ormof a' circular arc, AB, Fig. 16. Take
the origin at the centre of the circle, and

the axis X bisecting the wire. Let the

length of the wire, s, 2
t ;

ds = ele-

ment of arc. We need determine only the

x, since evidently y = 0. Equations (5),

//vayy o

23, are applicable here, i.e., x = .

s

From similar triangles we have

rdy
ds : dy :: r : a?; /. as = -

f--9X

+ ar - ra
.-. x = / dy TT , i.e.,

= chord X radius ~ length of
^S

lt/y - _ a ZS
l

wire. For a semicircular wire, this reduces to x = %r -4- n.

,PROBLEM 2. Centre of gravity of trapezoidal (and trian-

gular] thin plates, homogeneous, etc. Prolong the non-parallel

sides of the trapezoid to intersect at 0, which take as an origin,

making the axis X perpendicular to the bases b and
>,.

We
may here use equations (4), 23, and may take a vertical strip

for our element of area, dF, in determining a?; for each point

of such a strip has the same x. Now dF (y -f- y')dx, and
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from similar triangles y + y' = j x. Now F, -(bh bji^

can be written , (A
2

Aj
8

),
and x = -= becomes

fii _f

I 7 // II? C\ 7 3 I

=
LAt/h ;.

. j,-
:

2. A .^
"~^ =

3 A2 - A/

for the trapezoid.

For a triangle A, = 0, and we have x=
g A;

that is, the

centre of gravity of a triangle is one third the altitude from the

base. The centre of gravity is finally determined by knowing

FIG. 17. FIG. 18.

that a line joining the middles of b and 5, is a line of gravity;

or joining O and the middle of b in the case of a triangle.

PROBLEM 3. Sector of a circle. Thin plate, etc. Let the

notation, axes, etc., be as in Fig. 18. Angle of sector = 2ar;

x = ? Using polar co-ordinates, the element of area dF (a

small rectangle)
= pdcp . dp, and its x p cos (p ;

hence the

total area =

i.e., F= r*a. From equations (4), 23, we have

x =

= i/yv* cos 9



22 MECHANICS OF ENGINEERING.

(Note on double integration. The quantity

cos cp J p* dp \dcp,

is that portion of the summation / / cos cpp*dpdcp which

belongs to a single elementary sector (triangle), since all its

elements (rectangles), from centre to circumference, have the

same cp and dcp.)

That is,

- 1 r
3

/*+* r* F+ a 2 r sin a
* =

^-3 7_ a
cos cpdcp = ^-a [sin p

= 3--^ ;

4 r sin ft

or, putting p = 2a = total angle of sector, x = -^ -g

- 4r
For a semicircular plate this reduces to x = $.

O7t

[Note. In numerical substitution the arcs a and ft used

above (unless sin or cos is prefixed) are understood to be ex-

pressed in circular measure (ar-measure) ; e.g., for a quad-

rant, ft
=
|
= 1.5707*+ ; for 30, ft

= ^ ; or, in general, if ft

180 n
~\

in degrees = ,
then p in ^r-measure = -.

\ PROBLEM 4. Sector of a flat ring ;
thin

\ plate, etc. Treatment similar to that of

Problem 3, the difference being that the

C,

\. Result,

ha.

instead of
Fie. 19.

- 4 r* r,
3

sin /?
x = -.

* "Radians."
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PROBLEM 5. Segment of a circle; thin plate, etc. Fig. 20,

Since each rectangular element of any ver-

tical strip has the same #, we may take the

strip as dF in finding a?,
and use y as the

half-height of the strip. dF %ydx, and

from similar triangles x : y : : ( dy) : dx,

i.e., xdx = ydy. Hence from eq. (4),

23,

_ Zjay^dy _ _2_ R 3, __ 2 a\^

but a = the half-chord, hence, finally, x =

PROBLEM 6. Trapezoid ; thin plate, etc.,

by the method in the corollary of 23
; equa-

tions (3). Eequired the distance x from the

base AB. Join DB, thus dividing the trape-
zoid ABCD into two triangles ADB = F,
and DEC' = FV whose gravity a?'s are, re-

spectively, x, = -JA and #
2
= |A. Also, F,

and T^
7

(area of trape-
. Eq. (3) of 23 gives

hence, substituting,^,+
zoid) =
Fx= F

l
x

l

Fi. 21.

= Ift^ +

~_ ^
(fti + 2J,]

The line joining the middles of 5j and J3
is a line of gravity, and

is divided in such a ratio by the centre of gravity that the fol-

lowing construction for finding the latter holds good : Prolong
each base, in opposite directions, an amount equal to the other

base; join the two points thus found: the intersection with

the other line of gravity is the centre of gravity of the trape-

zoid. Thus, Fig/ 21, with BE^ bt
and*DF= join FE,

etc.
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PROBLEM Y. Homogeneous oblique cone or pyramid.
Take the origin at the vertex, and the axis X perpendicular to

the base (or bases, if a frustum). In finding x we may put

d V= volume of any lamina parallel to YZ< F being the base

of such a lamina, each point of the lamina having the same x.

Hence, (equations (2), 23),

V=fdV=/Fdx;
r

but

_^;

and

q 14 74
For a frustum, a? = . -^ A ;

while for a pyramid, A,, be-
4 Aa Aj

Q

ing = 0, x = jA. Hence the centre of gravity of a pyramid

is one fourth the altitude from the base. It also lies in the line

joining the vertex to the centre of gravity
of the base.

PROBLEM 8. If the heaviness of the ma-

terial of the atjove cone or pyramid varied

directly as
a?, y^ being its heaviness at the

Flo. 22. base F we would use equations (1), 23,
*

putting y = j* x
;
and finally, for the frustum,

fit

_ 4 A,
6

-A,
6

x = =-.
5 A,

4

-A,
4 '

and for a complete cone a? = -? At .

27. The Centrobarie Method. If an elementary area dF be

revolved about an axis in its plane, through an angle a < 2,T,
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Fio. 23.

the distance from the axis being = x, the volume generated is

dV = axdF, and the total volume generated by all the

of a finite plane figure whose plane con-

tains the axis and which lies entirely on one

side of the axis, will be V = fd V =
afxdF. Bat from 23, otfxdF= aFw\
ax being the length of path described by
the centre of gravity of the plane figure,

we may write : The volume of a solid of revolution generated

~by a plane figure, lying on one side of the axis, equals the

area of the figure multiplied ~by the length of curve described

by the centre of gravity of the figure.

A corresponding statement may be made for the surface

generated by the revolution of a line. The arc a. must be ex-

pressed in n measure in numerical work.

27a. Centre of Gravity of any duadrilateral. Fig. 230.

Construction' ABGD being any quad-
rilateral. Draw the diagonals. On the

long segment DK of DB lay off DE =
BK, the shorter, to determine E\ simi-

larly, determine N on the other diagonal,

by making GN = AK. Bisect EK in H
and KN \\\ M. The intersection of EM
and Nil is the centre of gravity, C.

Proof. H being the middle of DB, and AH and EG
having been joined, / the centre of gravity of the triangle

ABD is found on AH, by making HI= \AH\ similarly, by

making HL = %HG, L is the centre of gravity of triangle

BDG. .

'

. IL is parallel to AG and is a gravity-line of the

whole figure ;
and the centre of gravity C may be found on it

if we can make CL : CI :: area ABD : area BDG
( 21).

But since these triangles have a common base DB, their areas

are proportional to the slant heights (equally inclined to DB)
AK and KG, i.e., to GN and NA. Hence HN, which di-

vides IL in the required ratio, contains C, and is .'. a gravity-

line. By similar reasoning, using the other diagonal, AG, and

FIG. 23.
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the two triangles into which it divides the whole figure, we

may prove EM. to be a gravity-line also, llence the construc-

tion is proved.

27b. EXAMPLES.- 1. Required the volume of a sphere by
the centrobaric method.

A sphere may be generated by a semicircle revolving about

its diameter through an arc a = %TT. The length of the path
4/*

described by its centre of gravity is = 2?r
^ (see Prob. 3,

26), while the area of the semicircle is %?rr\ Hence by 27,

4r 4:

Volume generated %n . 77- . %7tr* = ^ nr*.
O7t O

2. Required the position of the centre of gravity of the sector

of a flat ring in which r
l
= 21 feet, r^ = 20 feet, and ft 80

(see Fig. 19, and 26, Prob. 4).

ft
sin = sin 40 = 0.64279, and /3 in circular measure =

a

rrrp:
7t = n = 1.3962.* By using r

l
and r^ in feet, x will be

lou y

. ft
fin

2 4 12610.64279

obtained in feet.

*" Radians.'
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CHAPTER III.

STATICS OF A RIGID BODY.

28. Couples. On account of the peculiar properties and

utility of a system of two equal forces acting in parallel lines

and in opposite directions, it is specially

considered, and called a Couple. The

arm of a couple is the perpendicular

distance between the forces
;
its moment,

the product of this arm, by one of the

forces. The axis of a couple is an

imaginary line drawn perpendicular to

its plane on that side from which the rotation appears positive

(against the hands of a watch). (An ideal rotation is meant,

suggested by the position of the arrows
; any actual rotation

of the rigid body is a subject for future consideration.) In

dealing with two or more couples the lengths of their axes are

made proportional to their moments; in fact, by selecting a

proper scale, numerically equal to these moments. E.g., in Fig.

24, the moments of the two couples there shown are Pa and

Qb', their axes p and q so laid oil that Pa : Qb '.'. p \ q, and

that the ideal rotation may appear positive, viewed from the

outer end of the axis.

29. No singleforee can balance a couple. For suppose the

couple P, P, could be balanced by a force JR', then this, acting

Pf at some point C, ought to hold the couple

OJ.~ &*<- -- in equilibrium. Draw CO through 0, the

JT 7p f}j
centre of symmetry of the couple, and

FI. as. make OD = OC. At D put in two op-

posite and equal forces, S and T, equal and parallel to Rf
.

The supposed equilibrium is undisturbed. But if R', Pr
and
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P are in equilibrium, so ought (by symmetry about 0) S, P,
and P to be in equilibrium, and they may be removed without

disturbing equilibrium. But we have left T&ud R'
,
which are

evidently not in equilibrium; /. the proposition is proved by
this reductio ad absurdum. Conversely a couple has no single

resultant.

30. A couplemay he transferred anywhere in its own plane.

First, it may be turned through any angle a, about any

pi point of its arm, or of its arm produced.

G^r J Let (P, P')be a couple, G any point of its

fp' arm (produced), and a any angle. Make

_ . v ^ GC = GA, CD = AB, and put in at <7,

^
\

2 \
(

|
P

1
and P3 equal to P (or P'\ opposite to

0\ PI
-- :

-j\''7
each other and perpendicular to GC\ and

:

' R Ps
and PI similarly at D. Now apply and

FIG. 26. combine P and P
l
at 6>, P' and P4

at 0';

then evidently^ and Rr
neutralize each other, leaving P3

and

P, equivalent to the original couple (P, P'}. The arm'

CD = AB. Secondly, if G be at infinity, and a = 0, the

same proof applies, i.e., a couple may be moved parallel to

itself in its own plane. Therefore, by a combination of the

two transferrals, the proposition is established for any trans-

ferral in the plane.

31. A couple may ~be replaced ~by another of equal moment
in a parallel plane. Let (P, P') be a couple. Let CD, in a

parallel plane, be parallel to AB. At D put in a pair of equal

and opposite forces, Ss
and #4 , parallel to P and each = =P.

ED

Similarly at
(7, Sl

and x9, parallel to P and each = ==P.

But, from similar triangles,

AE _ BE
ED ~~ '
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[NOTE. The above values are so chosen that the intersection point E
may be the point of application of (P -j- ), the resultant of P and &,;
and also of (P-j-/S3 ), the resultant of Pand S9 , as follows from 21; thus

(Fig. 28), R, the resultant of the two parallel forces Pand #,, is = P-+-S3 ,

and its moment about any centre of moments, as E, its own point of ap-

plication, should equal the (algebraic) sum of the moments of its com-
AW

ponents about E\ i.e., R X zero = P . AE S3 . DE\ .-., == . P.]DE

R4

! i
FIG. 27. FIG. 28.

Replacing P' and
, by (P

f + ),
and P and S

9 by

(P -)- $,), the latter resultants cancel each other at
.Z^, leaving

the couple (& S4)
with an arm CD, equivalent to the original

couple P, Px
with an arm AB. But, since 8^ = = . P =

j D ^

^=^ . P, we have S
l X S5 = PyjAB\ that is, their moments

are equal.

32. Transferral and Transformation of Couples. In view of

the foregoing, we may state, in general, that a couple acting on

a rigid body may be transferred to any position in any parallel

plane, and may have the values of its forces and arm changed
in any way so long as its moment is kept unchanged, and still

have the same effect on the rigid body (as to rest or motion,

not in distorting it).

Corollaries. A couple may be replaced by another in any

position so long as their axes are equal and parallel and simi-

larly situated with respect to their planes.

A couple can be balanced only by another couple whose axis

is equal and parallel to that of the first, and dissimilarly situ-

ated. For example, Fig. 29, Pa being = Qb, the rigid body
AB (here supposed without weight) is in equilibrium in each
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case shown. By "reduction of a couple to a certain arm a"

is meant that for the original couple whose arm is a'
',
with

forces each = P', a new couple is substituted whose arm shall

be = a, and the value of whose forces P and P must be com-

puted from the condition

Pa = PV, i.e., P = P'a' -5- a.

FIG. 29. FIG. 30.

33. Composition of Couples. Let (P, P') and (Q, Q
f

]
be two

couples in different planes reduced to the same arm AB =
a,

which is a portion of the line of intersection of their planes.

That is, whatever the original values of the individual forces

and arms of the two couples were, they have been transferred

and replaced in accordance with 32, so that P. AB, the

moment of the first couple, and the direction of its axis, p,
have remained unchanged ; similarly for the other couple.

Combining P with Q and P' with Q', we have a resultant

couple (R, Rf

)
whose arm is also AB. The axes p and q of

the component couples are proportional to P . AB and Q . AB,
i.e., to P and Q, and. contain the same angle as P and Q.

Therefore the parallelogram p . . . q is similar to the parallelo-

gram P . . . Q ;
whence p \ q \ r : :P : Q \ R, or p : q : r : :

Pa : Qa : Ra. Also r is evidently perpendicular to the plane
of the resultant couple (R, R'\ whose moment is Ra. Hence

r, the diagonal of the parallelogram on p and q, is the axis of

the resultant couple. To combine two couples, therefore, we
have only to combine their axes, as if they were forces, by a

parallelogram, the diagonal being the axis of the resultant

couple; the plane of this couple will be perpendicular to the
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axis just found, and its moment bears the same relation to the

moments of the component couples as the diagonal axis to the

two component axes. Thus, if two couples, of moments POL

and Qb, lie in planes perpendicular to each other, their result-

ant couple has a moment EG = \/(paf -\- (Qb)''-

If three couples in different planes are to be combined, the

axis of their resultant couple is the diagonal of the parallele-

piped formed on the axes, laid off to the same scale &\\& point-

ing in the proper directions, the proper direction of an axis

being away from the plane of its couple, on the side from

which the couple appears of positive rotation.

34. If several couples lie in the same plane their axes are

parallel and the axis of the resultant couple is their algebraic

sum
;
and a similar relation holds for the moments : thus, in

Fig. 24, the resultant of the two couples has a moment = Qb
Pa, which shows us that a convenient way of combining

couples, when all in one plane, is to call the moments positive

or negative, according as the ideal rotations are against, or with,

the hands of a watch, as seen from the same side of the plane ;

the sign of the algebraic sum will then show the ideal rotation

of the resultant couple.

35. Composition of Non-concurrent Forces in a Plane. Let

PV P< etc., be the forces of the system ;
& ylt a?,, ya, etc., the

x,

FIG. 31.

co-ordinates of their points of application ;
and <* <* . . . etc.,

their angles with the axis X. Replace Pl by its components

X^ and T"n parallel to the arbitrary axes of reference. At the

origin put in two forces, opposite to each other and equal and

parallel to X^ ; similarly forYr (Of course X
l
= P

l
cos a and

Y
l
= P

l
sin a.) We now have P

1 replaced by two forces X^
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and Y
l
at the origin, and two couples, in the same plane, whose

moments are respectively X
ly l

and + Y
t
x and are there-

fore (34) equivalent to a single couple, in the same plane with

a moment = (Y.x, X,y : ).

Treating all the remaining forces in the same way, the whole

system of forces is replaced by

the force 2(Z) X^ + X, + ... at the origin, along the axis X;

the force 2( Y) = Y,+ Y* + at the origin, along the axis Y\

and the couple whose mom. G = 2 ( Yx Xy\ which may be

called the couple G (see Fig. 32), and may be placed anywhere
in the plane. Now 2(X) and 2( Y) may be combined into a

force JK
; i.e.,

23 = 4/(^X)
2 + 2 YJ1

and its direction-cosine is cos a = T

Since, then, the whole system reduces to C and It, we must

have for equilibrium R = 0, and G
; i.e., for equilibrium

2X= 0, 2Y= 0, and 2(Yx-Xy) = 0. . eq. (1)

If R alone = 0, the system reduces to a couple whose mo-

ment is G = 2( Yx Xy) ;
and if G alone = the system re-

duces to a single force R, applied at the origin. If, in general,

neither It nor G = 0, the system is still equivalent to a single

force, but not applied at the origin (as could hardly be ex-

pected, since the origin is arbitrary) ;
as follows (see Fig. 33) :

Replace the couple O by one of equal moment, G, with each

force = R. Its arm will therefore be
-p.

Move this couple

in the plane so that one of its forces R may cancel the R al-

ready at the origin, thus leaving a single resultant R for the

whole system, applied in a line at a perpendicular distance,

=
-r> ,

from the origin, and making an angle a whose cosine =o =

axis X.D

36. More convenient form for the equations of equilibrium
of non-concurrent forces in a plane. In (I.), Fig. 34, being
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any point and a its perpendicular distance from a force P;
put in at two equal and opposite forces P and P' = and

||

to P, and we have P replaced by an equal single force P' at

O, and a couple whose moment is -f- Pa. (II.) shows a simi-

lar construction, dealing with the JTand T" components of P,
to that in (II.) P is replaced by single forces X' and Y' at

.- /I:..,B

FIG. 33. FIG.

(and they are equivalent to a resultant P', at <9, as in
(I.), and

two couples whose moments are + Yx and Xy.
Hence, being the same point in both cases, the couple Pa

is equivalent to the two last mentioned, and, their axes being

parallel, we must have Pa = Yx Xy Equations (1),

35, for equilibrium, may now be written

2X - 0, 2 Y = 0, and 2(Pa) = 0. . . (2)

In problems involving the equilibrium of non-concurrent

forces in a plane, we have three independent conditions, or

equations, and can determine at most three unknown quantities.

For practical solution, then, the rigid body having been made

free (by conceiving the actions of all other bodies as repre-

sented by forces), and being in equilibrium (which it must be

if at rest), we apply equations (2) literally ; i.e., assuming an

origin and two axes, equate the sum of the X components of

all the forces to zero; similarly for the ^components; and

then for the "moment-equation," having dropped a perpen-
dicular from the origin upon each force, write the algebraic

sum of the products (moments) obtained by multiplying each

force by its perpendicular, or " lever-arm" equal to zero, call-

ing each product -f- or according as the ideal rotation ap-

pears against, or with, the hands of a watch, as seen from the

same side of the plane. (The converse convention would do as

well.)
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Sometimes it is convenient to use three moment equations,

taking a new origin each time, and then the 2X'= and 2Y
= are superfluous, as they would not be independent equa-

tions.

37. Problems involving Non-concurrent Forces in a Plane.

Remarks. The weight of a rigid body is a vertical force

through its centre of gravity, downwards.

If the surface of contact of two bodies is smooth the action

(pressure, or force) of one on the other is perpendicular to the

surface at the point of contact. If a cord must be imagined

cut, to make a body free, its tension must be inserted in the

line of the cord, and in such a direction as to keep taut the

small portion still fastened to the body. In case the pin of

a hinge must be removed, to make the body free, its pressure

against the ring being unknown in direction and amount, it is

most convenient to represent it by its unknown components X
and Y

9
in known directions. In the following problems there

is supposed to be no friction. If the line of action of an un-

known force is known, but not its direction (forward or back

ward), assume a direction for it and adhere to it in all the three

equations, and if the assumption is correct the value of the

force, after elimination, will be positive ;
if incorrect, negative.

Problem 1. Fig. 35. Given an oblique rigid rod, with two

loads 6^ (its own weight) and #, ; required the reaction of the

smooth vertical wall at A, and the direction and amount of the

np Am<7<2-pressure at 0. The reaction at A
'I must be horizontal

;
call it X'. The pres-

sure at 0, being unknown in direction, will

have both its X and Y components un-

known. The three unknowns, then, are

X
, X', and Y

,
while 6^, a , ,,

and

A are known. The figure shows the rod
FI&. 85.

ag a j?ree ijojiy^ a]i the forces acting on it

have been put in, and, since the rod is at rest, constitute a sys-

tem of non-concurrent forces in a plane, ready for the condi-

tions of equilibrium. Taking origin and axes as in the figure.
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= gives +X - X' =
;
2Y= gives + Y - G

k

-
a
=

;
while 2(Pa) = 0, about 0, gives + X'h

G
l
a

l <?X = 0. (The moments of X and Y about

are, each, = zero.) By elimination we obtain Y9
= 6r

l -{-

#
3 ;
X = X' ==

C

[<?,, + 6*X] -T- A; while the pressure at

= T
2

-f- J7*, and makes with the horizontal an angle
whose tan = Y -~ X^

[N.B. A special solution for this problem consists in this, that the result-

ant of the two known forces GI and O-t intersects the line of X' in a point
which is easily found by 21. The hinge-pressure must pass through this

point, since three forces in equilibrium must be concurrent.]

We might vary this problem by limiting X1

to a safe value,

depending on the stability of the wall, and making h an un-

known. The three unknowns would then be JT
, Y^ and A.

Problem 2. Given two rods with loads, three hinges (or

"pin-joints"), and all dimensions: required the three hinge-

Fio. 36. FIG. 87.

pressures; i.e., there are six unknowns, viz., three .5Tand three

Y components. We obtain three equations from each of the

two free bodies in Fig. 37. The student may fill out the de-

tails. Notice the application of the principle of action arid

reaction at B (see 3).

Problem 3. A Warren bridge-truss rests on the horizontal

smooth abutment-surfaces in Fig. 38. It is composed of equal-

isosceles triangles ;
no piece is

continuous beyond a joint, each

of which is &pin connection. All

loads are considered as acting at

the joints, so that each piece will

be subjected to a simple tension

or compression.

Fio. 38-
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First, required the reactions of the supports Vl
and Fa

these and the loads are called the external forces.

about = gives (the whole truss is the free body)

Pt . 4 P, . f* P, . f* = 0;

while 2(Pa) about K= gives

- V, . Za + P, . 4* + P$a + P,fa = 0;
.'. V, = i[5Pt + 3P

a + PJ ;

and Fa
- 4[P, + 3P

a + 5PJ.

Secondly, required the stress (thrust or pull, compression or

tension) in each of the pieces A, B, and (7cut by the imaginary
line DE. The stresses in the pieces are called 'W^m^/ forces.

These appear in a system of forces acting on a free body only
when a portion of the truss or frame is conceived separated

from t 1 -Tiainder in such a way as to expose an internal

of one r more pieces. Consider as a free body the por-

Jn the lei c of DE (that on the right would serve as well,

ip p but the pulls or thrusts in A, B, and
A C would be found to act in directions

opposite to those they have on the

other portion ;
see 3). Fig. 39. The

arrows (forces) A, B, and C are not

pointed yet. They, with F15
P

lt and

Pa ,
form a system in equilibrium.

2(P<i) about O = gives

(Ah)
-

Therefore the moment (Ah) = i[4:Ft
3P

t PJ, which

is positive, since (from above) 4 F
t

is > 3P, +P3
. Hence

^L must point to the left, i.e., is a thirst or compression, and is

-PJ.

Similarly, taki moments about O^ ti e intersection of ^1

and ^, we have nation in which the only unknown is (7,

viz, (Gh)~ F,f* + >,a = 0. .-. (CK) = |*p F,
-

2P,],
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a positive moment, since 3 V
l
is >2P, ;

.-. C

37

point te the

right, i.e., is a tension, and = ^[3 Vl 2PJ.

Finally, to obtain B, put 2(vert. comps.) = 0; i.e. (JJcos cp)

+ F,
- P, - P, = 0. .: cos 9 = P, + P3

- V
i ; but

(see foregoing value of
"Pi) we may write

F, - (P, + PJ - (iPt + iPJ + *P,.

/. J? cos cp will be + (upward) or (downward), and B will

be compression or tension, as \PZ
is < or >

B - [P,+ P, - FJ - cos 9> =

Problem 4. Given the weight #, of rod, the weight O-M
and all the geometrical elements (the student will assume a

W\|P,

FIG. 40. Fio. 41.

convenient notation); required the tension Li the cord, and the

amount and direction of pressure on hinge-pin.

Problem 5. Roof-truss
; pin-connection ;

all loads at joints;

wind-pressures W and TF, normal to OA
; required the three

reactions or supporting forces (of the two horizontal surfaces

and one vertical surface), and the

stress in each piece. All geomet-
rical elements are given ;

also P,
Pa Pa W (Fig. 40).

38. Composition of Non-concur-

rent Forces in Space. Let P^ P^
etc., be the given forces, and

a?,,

2,, xn y^ z etc., their points of ap-

plication referred to an arbitrary

origin and axes
;
a

l9 /?n y^ etc., FIG. 42.

the angles made by their lines of application with X^.Y* and Z.
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Considering the first force JP,, replace it by its three com-

ponents parallel to the axes, Xl
= P

l
cos or,; Yl P^ cos ft^\

and Z, = PI cos y l (Pl
itself is not shown in the figure). At

0, and also at A, put a pair of equal and opposite forces,

each equal and parallel to Z,; Zl
is now replaced by a single

force Zi acting upward at the origin, and two couples, one

in a plane parallel to YZ and having a moment = Z
lyl (as

we see it looking toward O from a remote point on the axis

-f- X), the other in a plane parallel to XZ and having a mo-

ment = -f- ZjOJj (seen from a remote point on the axis -\- Y).

Similarly at and C put in pairs of forces equal and parallel

to JTj, and we have X^ at B^ replaced by the single force X^
at the origin, and the couples, one in a plane parallel to XY

l

and having a moment -|- X^y^ seen from a remote point on

the axis -\- Z, the other in a plane parallel to XZ, and of a

moment = X^^ seen from a remote point on the axis -\-Y,
and finally, by a similar device, Yl

at B is replaced by a force

Y
l
at the origin and two couples, parallel to the planes XY

and yZ, and having' moments Y& and + Yfa respective-

ly. (In Fig. 42 the single forces at the origin are broken

lines, while the two forces constituting any one of the six

couples may be recognized as being

equal and parallel, of opposite di-

rections, and both continuous, or

both dotted.) We have, therefore,

replaced the force JP, by three

forces X^ yj, Z at <9, and six

couples (shown more clearly in

Fig. 43; the couples have been

transferred to symmetrical posi-

tions). Combining each two couples-

FlQ 43 whose axes are parallel to JT, y,
or Z, they can be reduced to three, viz.,

one with an X axis and a moment = Y
l
z

l

one with a !Faxis and a moment = Z
l
x

l

one with a Z axis and a moment X
ly l
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Dealing with each of the other forces P^ Pn etc., in the same

manner, the whole system may finally be replaced by three

forces 2X, ^ Y, and 2Z, at the origin and three couples
whose moments are, respectively,

L = 2(Yz Ziy) with its axis parallel. to JT;M = 2(Zx Xz) with its axis parallel to Y\
N = ^(Xy Yx) with its axis parallel to Z.

The " axes" of these couples, being parallel to the respective

co-ordinate axes JT, Y, and Z, and proportional to the mo-

ments Z, Mj and jV, respectively, the axis of their resultant

(7, whose moment is G, must be the diagonal of a parallelo-

pipedon constructed on the three component axes (propor-

tional to) Z, M, and & Therefore, O =
while the resultant of 2X, 2 Y, and 2Z is

E = V(2X? + (2 Y)*

acting at the origin. If oc, /?, and y are the direction-angles^X 2 Y ~S7
of ^, we have cos a =

-^-,
cos ft = -^-,

and cos y = -^ ;

while if A-, >w,
and v are those of the axis of the couple (7, we
L M N

have cos A =
^,

cos /* =
-^,

and cos Y =
-g.

For equilibrium we have both (7 = and It = 0; i.e.,

separately, m? conditions, viz.,

J2X= 0, 2 T = 0, ^Z=0 ;
and Z=0, Jf=0, ^T=0 . (1)

Now, noting that ^"^ = 0, 2T =
0, and ^(Xy Tx) =

are the conditions for equilibrium of the system of non-concur-

rent forces which would be formed by projecting each force of

our actual system upon the plane XY, and similar relations

for the planes YZ and XZ, we may restate equations (1) in

another form, more serviceable in practical problems, viz. :

Uote. If a system of non-concurrent forces in space is in

equilibrium, the plane systemsformed ly projecting the given

system upon each ofthree arbitrary co-ordinateplanes will each

ue in equilibrium. But we cau obtain only six independent
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equations in any case, available for six unknowns. If E alone

= 0, we have the system equivalent to a couple (7, whose

moment = G
;

if G alone = 0, the system has a single re-

sultant R applied at the origin. In general, neither R nor G
being 0, we cannot further combine R and (as was done

with non-concurrent forces in a plane) to produce a single re-

sultant unless R and C are in the same plane; i.e., when the

angle between R and the axis of C is = 90. Call that angle
6. If, then, cos 6 = cos a cos A

-|- cos ft cos jn -\- cos y cos *

is = = cos 90, we may combine R and C to produce 2

single resultant for the whole system ; acting in a plane con-

taining It and parallel to the plane of 7 in a direction parallel

to j, at a perpendicular distance c =* -& from the origin and

= R in intensity. The condition that a system of forces in

space have a single resultant is, therefore, substituting the

previously derived values of the cosines, (2^) . L -\- (2 Y) . M
+ (2Z-) . N = 0.

This includes the cases when R is zero and when the system
reduces to a couple.

To return to the general case, R and C not being in the

same plane, the composition of forces in space cannot b(

further simplified. Still we can give any value we please to

P, one of the forces of the couple (7, calculate the correspond-
C1 '

ing arm a =
-p,

then transfer C until one of the .P's has the

same point of application as R, and combine them by the

parallelogram of forces. We thus have the whole system

equivalent to two forces, viz., the second P, and the resultant

of R and the first P. These two forces are not in the same

plane, and therefore cannot be replaced by a single resultant.

39. Problem. (Non-concurrent forces in space.) Given all

geometrical elements (including , /?, y, angles of P), also the

weight of Q, and weight of apparatus G ;
A being a hinge whose

pin is in the axis I7
,

a ball-and-socket joint : required the

amount of P (Ibs.) to preserve equilibrium, also the pressures
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(amount ant* direction) at A and
;
no friction. Eeplace P

by its X, Z, and Z components. The pressure at A will have

FIG. 44.

Z and.X components ;
that at (9, X, Y, and Z components.

The body is now free, and there are six unknowns.

^X, ^Y, and -S'Zgive, respectively,

P cos or + X, + XQ
=

;

P cos /? + JT =
;
and Z, + Z Q G - P cos y = 0.

As for moment-equations (see note in last paragraph), project-

ing the system upon YZ and putting 2(Pa) about (9 = 0,

we have

-Z,l+Qd+ Ge + (P co& y)b + (P cos /3)c
= 0;

projecting it upon XZ, and putting 2(Pa) about (9 = 0, we

have Qr (P cos a)c (P cos ;/)#
=

;

projecting on XY, moments about give

X,l + (P cos )&
- (P cos /?> = 0.

From these six equations we may obtain the six unknownSy

P, X^ 7^ Z , JT,, and Zr If for any one of these a negative
result is obtained, it shows that its direction in Fig. 4.4. should

be reversed.



42 MECHANICS OF ENGINEERING.

CHAPTER IT.

STATICS OF FLEXIBLE CORDS.

40. Postulate and Principles. The cords are perfectly flexi-

ble and inextensible. All problems will be restricted to one

plane. Solutions of problems are based on three principles,

viz.:

PRIN. I. The strain on a cord at any point can act only

along the cord, or along the tangent if it be curved.

PRIN. II. We may apply to flexible cords in equilibrium all

the conditions for the equilibrium of rigid bodies
; since, if the

system of cords became rigid, it would still, with greater rea-

son, be in equilibrium.

PRIN. III. The conditions of equilibrium cannot be applied,

of course, unless the system can be considered a free body^
which is allowable only when we conceive to be .put in, at the

points of support or fastening, the reactions (upon the cord)

of those points and the supports removed. These reactions

having been put in, then consider the case in Fig. 45 in one

plane. If we take any point, p, on the cord as a centre

of moments, knowing that the resultant R, of the forces P^
P and JP8 ,

situated on one side of p, must act along the cord

R if> & through p (by Prin. 1), therefore

n we have P
l
a

l JP^at P
3
a

3

= E X zero = 0, and (equally

That is, in a system of cords in

Fia 45. equilibrium in aplane, ifa centre

of moments be taken on the cord, the algebraic sum of the ?no-
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ments of thoseforces situated on one side (either'] of thispoint
will equal zero.

41. The Pulley. A cord in equilibrium over a pulley whose

axle is smooth has the same tension on both sides
; for, Fig. 46,

C;

\ A

'

P

FIG. 46. FIG. 47.

considering the pulley and its portion of cord free 2(Pa) =
about the centre of axle gives P'r Pr, i.e., P' P = ten-

sion in the cord. Hence the pressure R at the axle bisects

the angle a, and therefore if a weighted pulley rides upon a

cord ABC, Fig. 47, its position of equilibrium, B, may be

found by cutting the vertical through A by an arc of radius

CD length of cord, and centre at <7, and drawing a horizon-

tal through the middle of AD to cut CD in B. A smooth

ring would serve as well as the pulley ;
this would be a slip-

knot.

42. If three cords meet at a fixed knot, and are in equilib-

rium, the tension in any one is the equal and

opposite of the resultant of those in the other

two.

43. Tackle. If a cord is continuous over a

number of sheaves in blocks forming a tackle,

neglecting the weight of the cord and blocks and

friction of any sort, we may easily find the ratio

between the cord-tension P and the weight to be

sustained. E.g., Fig. 48, regarding all the straight

cords as vertical and considering the block B
free, we have, Fig. 49 (from 2T= 0), 4P G

S7

= 0, .*. P = -. The stress on the support C will = 5P.
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44. Weights Suspended by Fixed Knots. Given all the geo-
metrical elements in Fig. 50, and

H |o x OIie weight, 6^,;" required the re-

maining weights and the forces

ZT
,
F

,
Hn and Vw at the points

of support, that equilibrium may
obtain. Jf and F are the hori-

zontal and vertical components of

FIG. 50. the tension in the cord at
';

similarly Hn and F^, those at n. There are n -f- 2 unknowns.

From Prin. II we have 2Z = 0, and 2T= 0; i.e., H Hn

= 0, and [G, -f G, + ...]- [ F + Fw] = 0. While from

Prin. III., taking the successive knots, 1, 2, etc., as centres of

moments, we have

= 0,

f, + G&* ~ = 0,

etc., for n knots.

-Thus we have n -\- 2 independent equations, a sufficient

number, and they are all of the first degree (with reference to

the unknowns), and easily solved. As a special solution, we
maj> by 42, resolve 6r

a
in the directions of the first and sec-

ond cord-segments, and obtain their tensions by a parallelogram
of forces

;
then at the second knot, knowing the tension in the

second segment, we may find that in the third and ra in like

manner, and so on. Of course HQ and F are components of

the tension in the first segment, Hn and Vn of that in the

last.

45. The converse of the problem in 44, viz., given the

weights Gr^ etc., xn and yn,
the lengths 0, 5, c, etc.; required

HQ, F ,
JTni Fn,

and the co-ordinates x^ y^ a?
2 , ya , etc., of the

fixed knots when equilibrium exists, contains 2n + 2 un-

knowns. Statics furnishes n -f- 2 equations (already given in

44) ;
while geometry gives the other n equations, one for

each cord-segment, viz., x* -\- y* = a3

; (a?, x^f -f- (y, y,)
3

t>*
;

etc.
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!Y

However, most of these %n-\-% equations are of the second

degree ;
hence in the general case they cannot be solved.

46. Loaded Cord as Parabola, If the weights are equal and

infinitely small, and are intended to be uniformly spaced

along the horizontal, when equilib-

rium obtains, the cord having no

weight, it will form a parabola. Let

q weight of loads per horizontal

linear unit, be the vertex of the -^t

curve in which the cord hangs, and

m any point. We may consider

the portion Om as a free body, if

the reactions of the contiguous portions of the cord are put in,

HQ and T, and these (from Prin. I.) must act along the tangents

to the curve at and m, respectively ; i.e., HQ is horizontal,

and T makes some angle cp (whose tangent = -/-, etc.) with

the axis X. Applying Prin. II.,

= gives T cos <p -HQ =0', i.e., T~ =

2Y= gives Tsin cp qx = ; i.e., 1 = qx.

(1)

(2)

//7/

Dividing (2) by (1), member by member, we have ~ =^ ;

/. dy = -~xdx, the differential equation of the curve
;

"o

y = -jj
I xdx = -.-; or x* = y, the equation of a

parabola whose vertex is at and axis vertical.

NOTE. The same result, -/- = r̂ , mav be obtained by considering that
ax 7/0

we have here (Prin. II.) a free rigid body acted on

by three forces, T, Ho, and R qx, acting verti-

cally through the middle of the abscissa x\ the

resultant of HQ and R must be equal and oppo-

site to I7

, Fig. 52. . '. tan <p =
-^,

or
J-
= ~.

Evidently also the tangent-line bisects the ab-

scissa x.
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FIG. 53.

47. Problem under 46. [Case of a suspension-bridge in

which the suspension-rods are vertical, -the weight of roadway
is uniform per horizontal foot, and large compared with that

of the cable and rods. Here the roadway is the only load : it

is generally furnished with a stiffening truss to avoid deforma-

tion under passing loads.] Given the span 26. Fig. 53,

Yi
v,f 71 the deflection = a, and the rate of loading

= q Ibs. per horizontal foot
; required the

tension in the cable at 0, also at m
;
and

*^e len tn ^ ca le needed. From the

equation of the parabola qx* ^HQy, put-

ting x = b and y = a, we have HQ
=

qb*
-- %a = the tension

at 0. From 2Y = we have V
l
=

qb, while 2X= gives

H, = # ;
>. the tension atm = VH? + V?= ~[_qb i/S^+Fj.

aft

The semi-length, Om ,
of cable (from p. 88, Todhunter's In^

tegral Calculus) is (letting n denote HQ
-=-

2<?,
= tf ~-

4a)

Om = tfna + a* + n . loge [( V~a-\- 4
/
^T+"a) -T- Vn].

48. The Catenary.* A flexible, inextensible cord or chain, of

uniform weight per unit of length, hung at two points, and

supporting its own weight alone, forms a curve called the

catenary. Let the tension HQ at the lowest point or vertex be

represented (for algebraic convenience) by the weight of an

imaginary length, 'c, of similar cord weighing q Ibs. per unit

of length, i.e., HQ qc ;
an actual portion of the cord, of

length s, weighs qs Ibs. Fig. 54 shows asfree and in equilib-

rium a portion of the curve of any
lengta s

i reckoning from the

vertex. Required the equation of

the curve. The load is uniformly

spaced along the curve, and not
'x

horizontally, as in' 46 and 47.H

2T= Ogives 2 = while

= gives T~ =
qc. Hence, by division, cdy = sdx, and

squaring, = s*dx* (1)

For the " transformed catenary," see p. 395.
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Put dy
1 = ds* dx*, and we have, after solving for dx

cds /> ds r

and x =c . loge [(*+ V~s* + c*) -r- c], ... (2)

a relation between the horizontal abscissa and length of curve.

Again, in eq. (1) put dx* = ds* dy*, and solve for dy.

sds 1
This glves dy =, _ =

^
. A__| Therefore

+ <T^ + *')
= *(*' + % and finally

y = VT^F?-^ (3)

Clearing of radicals and solving for c, we have

c = (s*-y*) + 2y...... (4)

Example. A 40-foot chain weighs 240 Ibs., and is so hung
from two points at the same level that the deflection is 10

feet. Here, for s = 20 ft., y = 10
;
hence eq. (4) gives the

parameter, c = (400 100) -f- 20 = 15 feet, q = 240 -r- 40

6 Ibs. per foot. /. the tension at the middle is HQ = qc
= 6 X 15 = 90 Ibs.; while the greatest tension is at either

support and = tW+T20s = 150 Ibs.

Knowing c = 15 feet, and putting s = 20 feet = half

length of chain, we may compute the corresponding value of

x from eq. (2); this will be the half-span [loge m 2.30258

X (common log m)]. To derive s in terms of a?, transform

eq. (2) in the sense in which n = loge m may be transformed

into w = m, clear of radicals, and solve for 5, which gives
*

Again, eliminate s fro/n (2) by substitution from (3), trans-

form as above, clear of radicals, and solve for y + c
9
whence

* e here denotes 2.71828, the base of the natural system of logarithms.
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which is the equation of a catenary with axes as in Fig. 54.

If the horizontal axis be taken a distance = c below the ver-

tex, the new ordinate y' = y -|- c, while x remains the same;
the last equation is simplified.

If the span and length of chain are given, or if the span
and deflection are given, c can be determined from (5) or (6)

only by successive assumptions and approximations.

48a. Addendum to 55. Mass. In PHYSICS, the fundamental units are

those of

SPACE, involving a unit of length (and thence of area and volume) ;

TIME,
" a unit of time, usually the second ;

MASS,
" a unit of mass, which (by Government decree) may be the

quantity of matter in a specified piece of platinum, or specified volume of water,
etc. (a beam-balance being used to determine equal quantities of mass) ; while

FORCE involves a derived unit, being measured by its effect in accelerating
the velocity of a moving mass, since it is proportional both to the mass and the
acceleration. The unit force (called absolute unit) is the force necessary to pro-
duce unit acceleration in a unit of mass; so that to produce an acceleration =p in

a mass = m requires a force = F= mp, and the force thus obtained is in absolute
units. This is called the dynamic measure of a force.

JSxample. In the C.G.S. system of units, required the constant force necessary
to cause a mass of 400 grams to gain 200 velocity units in 2 sec ; i.e., p = 100
centims. per sec., per sec. From F= mp we have

F= 400 x 100 = 40000 abs. units of force (or dynes, in C.G.S. system).

In the ft.-lb.-sec. system the absolute unit is called &poundal.

In MECHANICS or ENGINEERING, however, it is more convenient to regard the
fundamental units to be those of

SPACE, as ft., metre, etc., area and volume corresponding ;

TIME, as seconds, hours, etc. ;

Force, as Ibs., grams, kilograms, tons, etc., indicated by a spring balance;
while for

MASS we assume a derived unit, a mode of measuring it being developed as
follows:

If by experiment (block on smooth table, for instance) we find that a constant
force P (Ibs., tons, kilos.) will maintain an acceleration = p in the rectilinear
motion (in line of force) of a body whose weight (by previous trial with a spring
balance) is G (Ibs., tons, or other unit); and if in a second experiment, by allow-

ing the force O to act on the same body in vacuo, a free vertical fall with accelera-
tion = g is the result, we find that the proportion (Newton's 2d Law) P:O:\p:g
is verified. This may be written P= . p, and may then be read: Force = mass

X acceleration, if we call the quotient G + g the MASS of the body whose weight
(by spring balance) is = G at a locality where the acceleration of gravity = g ; for
this quotient will be the same at all localities on the earth's surface.

Example (same as above). If a body whose weight O = 400 grams (force) is to
have its velocity increased, in 2 sec., from 300 centims. per sec. to 500 centims.

per sec., at a uniform rate, we must provide a constant force

400 40000P=
98l

X 10 =
~98T

= 4 '77 Srams; or -040 kilos -

This is called the gravitation measure of a force. Hence it is evident that to re-

duce absolute units (called dynes and poundals) in the C.G.S. and ft.-lb.-sec.

systems, respectively) to ordinary practical units of force (Ibs., tons, kilos., etc.,
of a spring balance), we divide by the value of g proper to the system of units em-

ployed; and vice versd.



PART II.-DYNAMICS.

CHAPTEE I.

RECTILINEAR MOTION OF A MATERIAL POINT,

49. Uniform Motion implies that the moving point passes
over equal distances in equal times; variable motion, that un-.

equal distances are passed over in equal times. In uniform

motion the distance passed over in a unit of time, as one sec-

ond, is called the velocity (= v), which may also be obtained

by dividing the length of any portion (= s) of the path by
the time (= t) taken to describe that portion, however small or

great ;
in variable motion, however, the velocity varies from

point to point, its value at any point being expressed as the

quotient of ds (an infinitely 'small distance containing the

given point) by dt (the infinitely small portion of time in

which ds is described).

49#. By acceleration is meant the rate at which the velocity

of a variable motion is changing at any point, and may be a

uniform acceleration, in which case it equals the total change
of velocity between any two points, however far apart, divided

by the time of passage ;
or a variable acceleration, having a

different value at every point, this value then being obtained

by dividing the velocity-increment, dv, or gain of velocity

in passing from the given point to one infinitely near to it, by

dt, the time occupied in acquiring the gain.* (Acceleration

must be understood in an algebraic sense, a negative accelera-

tion implying a decreasing velocity, or else that the velocity in

a negative direction is increasing.) The foregoing applies to

motion in a path or line of any form whatever, the distances

mentioned being portions of the path, and therefore measured

along the path.

* See addendum on p. 12.



50 MECHANICS OF ENGINEERING.

50. Eectilinear Motion, or motion in a straight line. The

general relations of the quantities involved may be thus stated

(see Fig. 55) : Let v = velocity of the body at any instant
;

~8 Q _____s____ d8 _da _
+S tlien <h> = gain of velocity

~~| T\ ? in an instant of time dt. Let

dt^dt\ 1 t = time elapsed since the

body left a given fixed point,

which will be taken as an origin, 0. Let s = distance (+ or

)
of the body, at any instant, from the origin O\ then ds =

distance traversed in a time dt. Letp = acceleration = rate

at which v is increasing at any instant. All these may be

variable
;
and t is taken as the independent variable, i.e., time

is conceived to elapse by equal small increments, each = dt
;

hence two consecutive ds's will not in general be equal, their

difference being called d?s. Evidently d*t is = zero, i.e., dt is

constant.

Since -,- = number of instants in one second, the velocity at
(tt

any instant (i.e., the distance which would be described at that

1 ds
rate in one second) is v = ds .

-
;

.'. v = -. . . . . (I.)

! / (ds\ c

Similarly, p = dv . -^-, and I since dv = d(^J
=

~d

dv

Eliminating dt, we have also vdv pds. .... .(III.)

These are the fundamental differential formulae of rectilinear

motion (for curvilinear motion we have these and some in ad-

dition) as far as kinematics, i.e., as far as space and time, is

concerned. The consideration of the mass of the material

point and the forces acting upon it will give still another rela-

tion (see 55).

51. Rectilinear Motion due to Gravity. If a material point

fall freely in vacuo, no initial direction other than vertical

having been given to its motion, many experiments have
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shown that this is a uniformly accelerated rectilinear motion

in a vertical line having an acceleration (called the accelera-

tion of gravity) equal to 32.2 feet per square second,* or 9.81

metres per square second
; i.e., the velocity increases at this

constant rate in a downward direction, or decreases in an up-
ward direction.

[NOTE. By
"
square second "

it is meant to lay stress on the fact that an

acceleration (being = d*s -*- dP) is in quality equal to one dimension of

length divided by two dimensions of time. E.g., if instead of using the

foot and second as units of space and time we use the foot and the minute,

g will = 32.2 X 3600; whereas a velocity of say six feet per second would
= 6 X 60 feet per minute. The value of g 32.2 implies the units foot

and second, and is sufficiently exact for practical purposes.]

52. Free Fall in Vacuo. Fig. 56. Let the body start at

with an initial downward velocity = c. The accelera- _s
tion is constant and = -f- g. Reckoning both time and

distance (-J- down wards) from 0, required the values of
j

the variables s and v after any time t. From eq. (II.),
c

50, we have + g = dv -=- dt
;

.'. dv = gdt, in which the
v

s

two variables are separated. I i

v ~ c =rr* rv

dv
ffJo

dt
>

i<e
->

\_

v

v = or

gt ;
and finally, v = c+ gt........ (1)

FIG. 5*

(Notice the correspondence of the limits in the foregoing

operation ;
when t = 0, v = + c.)

From eq. (I.), 50, v = ds -=- dt
;

/. substituting from (1),

ds = (G -f- gt)dt, in which the two variables s and t are sepa-

rated.

or s= ct+%gt\ , . . v * .-. (2)

Again, eq. (III.), 50, vdv = yds, in which the variables v

and s are already separated.

.-. fjvdv
=

gjs'ds ;
or
|J^

3 =

* =
-W--

---
*
Or, 32.2 " feet per second per second."
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If the initial velocity = zero, i.e., if the body falls from rest,

eq. (3) gives s=^udv= tftyfa* [From the frequent re-

v*
currence of these forms, especially in hydraulics, ^-is

called the
t/

"height due to the velocity v," i.e., the vertical height through
which the body must fall from rest to acquire the velocity v

;

while, conversely, y%gh js called the velocity due to the height
or head A.]

By eliminating g between (1) and (3), we may derive another

formula between three variables, s, v, and
, viz.,

s = ftc _|_ vy (4)

53. Upward Throw. If the initial velocity were in an up-

ward direction in Fig. 56 we might call it c, and introduce it

with a negative sign in equations (1) to (4), just derived
;
but

for variety let us call the upward direction -(-, in which case

an upward initial velocity would = -|- <?,
while the acceleration

=
g, constant, as before. (The motion is supposed confined

within such a small range that g does not sensibly vary.) Fig.

57. Fromp dv -r- dt we have dv = gdt and
! A

v /w m
_gjc yjo

From v = ds -r- dt, ds cdt gtdt,

I

-^S vdv =pds gives Je
vdv = gJQ ds, whence

%(v* <?')
=

gs, or finally, s

And by eliminating g from (l)a and (3)a,

FIG. 57.

<?
2

v9

%(v* c')
=

gs, or finally, s =
^ (3)0

The following is now easily verified from these equations :

the body passes the origin again (s
= 0) with a velocity = <?,

after a lapse of time = %c -r- g. The body comes to rest (for

* In Hydraulics h is used instead of s.
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an instant) (put v = 0) after a time = o -j- ^, and at a distance

s = c* -~
Zg (

u
height due to velocity <?") from 0. For t >

c -T- g, v is negative, showing a downward motion
;

for t >
2c -7- g, s is negative, i.e., the body is below the starting-point
while the rate of change of v is constant and = g at all

points.

54. Newton's Laws. As showing the relations existing in

general between the motion of a material point and the actions

(forces) of other bodies upon it, experience furnishes the fol-

lowing three laws or statements as a basis for dynamics :

(1) A material point under no forces, or under balanced

forces, remains in a state of rest or of uniform motion in a

right line. (This property is often called Inertia^

(2) If the forces acting on a material point are unbalanced,

an acceleration of motion is produced, proportional to the re-

sultant force and in its direction.

(3) Every action (force) of one body on another is always

accompanied by an equal, opposite, and simultaneous reaction,

(This was interpreted in 3.)

As all bodies are made up of material points, the results ob-

tained in Dynamics of a Material Point serve as a basis for the

Dynamics of a Rigid Body, of Liquids, and of Gases.

55. Mass.* If a body is to continue moving in a right line,

the resultant force P at all instants must be directed along that

line (otherwise it would have a component deflecting the body
from its straight course).

In accordance with Newton's second law, denoting by^> the

acceleration produced by the resultant force (ft being the

body's weight), we must have the proportion P : G : : p : g ;

i.e.,

Eq. IY. and (I.), (II.), (III.) of 50 are the fundamental

equations of Dynamics. Since the quotient G -f- g is invaria-

* See Addendum on p. 48.
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ble, wherever the body be moved on the earth's surface (G and

g changing in the same ratio), it will be used as the measure

of the mass _flfor quantity of matter in the body. In this way
it will frequently happen that the quantities G- and g will ap-

pear in problems where the weight of the body, i.e., the force

of the earth's attraction upon it, and the acceleration of gravity
have no direct connection witli the circumstances. No name
will be given to the unit of mass, it being always understood

that the fraction G -f- g will be put forM before any numeri-

cal substitution is made. From (IY.) we have, in words,

( accelerating force = mass X acceleration/

\ also, acceleration -

accelerating force -f- mass.

56. Uniformly Accelerated Motion. If the resultant force is

constant as time elapses, the acceleration must be constant (from

eq. (IY.), since of course Jkf is constant) and = P -r- M. The
motion therefore will be uniformly accelerated, and we have

only to substitute -\-p (constant) for g in eqs. (1) to (4) of

52 for the equations of this motion, the initial velocity being
= c (in the line of the force).

. . . (1) ;
s ct

If the force is in a negative direction, the acceleration will

be negative, and may be called a retardation' the initial veloc-

ity should be made negative if its direction requires it.

57. Examples of Unif. Ace. Motion. Example 1. Fig. 58.

A small block whose weight is
-J-

Ib. has already described a

S
c

P M v B
distance Ao = 48 inches over a

A SMOOTH -3z. !T!fa^
~j

smooth portion of a horizontal

FIG. 58. table in two seconds
;
at it en*

counters a rough portion, and a consequent constant friction of

2 oz. Required the distance described beyond 0, and the time

occupied in coming to rest. Since we shall use 32.2 for
<?,

times must be in seconds, and distances in feet
;
as to the unit
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uf force, as that is still arbitrary, say ounces. Since AO was

smooth, it must have been described with a uniform motion

(the resistance of the air being neglected); hence with a veloc-

ity
= 4 ft. ^ 2 sec. = 2 ft. per sec. The initial velocity for

the retarded motion, then, is c = -\- 2 at 0. At any point be-

yond the acceleration = force -f- mass =
( 2 oz.) -r- (8 oz.

-^ 32.2) = 8.05 ft. per square second, i.e., p = 8.05 =
constant

;
hence the motion is uniformly accelerated (retarded

here), and we may use the formulae of 56 with c = -\- 2,^> =
8.05. At the end of the motion v must be zero, and the

corresponding values of s and t may be found by putting v =
in equations (3) and (1), and solving for s and t respectively :

thus from (3),*
= i(-4)-r- ( 8.05), i.e.,

= 0.248 +, which

must be feet
;
while from (1), t = ( 2) -r- ( 8.05) = 0.248 -f,

which must be seconds.

Example 2. (Algebraic.) Fig. 59. The two massesM
l
=

G
1

-r- g and M= G -r- g are connected by a flexible, inexten-

sible cord. Table smooth. Required the acceleration common
to the two rectilinear motions, and the tension in the string S,

FIG. 59. FIG. 60.

there being no friction under G none at the pulley, and no

mass in the latter or in the cord. At any instant of the mo-

tion consider #, free (Fig. 60), N' being the pressure of the

table against 6> Since the motion is in a horizontal right line

2(vert. compons.) 0, i.e., -ZV G
l
= 0, which determines N.

S, the only horizontal force (and resultant of all the forces)
=

M^j i.e.,

O /7 ,_ f-t\

At the same instant of the motion consider G free (Fig. 61);

the tension in the cord is the same value as above = 8. The

accelerating force is G S, and

.-. = mass X ace., or G 8 = (G -s- g)p. . (2)
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1

s
From equations (1) and (2) we obtain p = (Gg) -~

(G 4- 6r
a)
= a constant; hence each motion is uniformly

accelerated, and we may employ equations (1) to (4) of

*,
H-" 56 to find the velocity and distance from the starting-

points, at the end of any assigned time t, or vice versa.
'

The initial velocity must be known, and may be zero.

Also, from (1) and (2) of this article,

8 = (GG,} + (G + G,} = constant.

Example 3. A body of 2f (short) tons weight is acted on

during -J minute by a constant force P. It had previously de-

scribed 316-f yards in- 180 seconds under no force'; and subse-

quently, under no force, describes 9900 inches in ^ of an hour.

Required the value of P. Ans. P = 22.1 Ibs.

Example 4. A mass of 1 ton weight, having an initial

velocity of 48 inches per second, is acted on for J minute by a

force of 400 avoirdupois ounces. Kequired the final velocity.

Ans. 10.037 ft. per sec.

Example 5. Initial velocity, 60 feet pei second
; mass weighs

0.30 of a ton. A resistance of 112 Ibs. retards it for -^ of

a minute. Required the distance passed over during this time.

Ans. 286.8 feet.

Example 6. Required the time in which a force of 600 avoir-

dupois ounces will increase the velocity of a mass weighing 1-J

tons from 480 feet per minute to 240 inches per second.

Ans. 30 seconds.

Example 7. What distance is passed over by a mass of (0.6)

tons weight during the overcoming of a constant resistance

(friction), if its velocity, initially 144 inches per sec., is reduced

to zero in 8 seconds. Required, also, the friction.

Ans. 48 ft. and 55 Ibs.

Example 8. Before the action of a force (value required) a

body of 11 tons had described uniformly 950 ft. in 12 minutes.

Afterwards it describes 1650 feet uniformly in 180 seconds.

The force acts 30 seconds. P ? Ans. P 178 Ibs.
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58. Graphic Representations. Unif. Ace. Motion. With the

initial velocity = 0, the equations of 56 become

v = ptj (1) s ==
%ptf, (2)

s = v9
-r- 2p, . . . (3) and 5 = %vt (4)

Eqs. (1), (2), and (3) contain each two variables, which may
graphically be laid off to scale as co-ordinates and thus give a

curve corresponding to the equation. Thus, Fig. 62, in
(I.), we

have a right line representing eq. (I.) ;
in

(II.), a parabola with

axis parallel to s, and vertex at the origin for eq. (2) ;
also a

parabola similarly situated for eq. (3). Eq. (4) contains three

variables, #, v, and t. This relation can be shown in
(I.),

s be-

ing represented by the area of the shaded triangle = %vt.

(II.) and (III.) have this advantage, that the axis OS may be

made the actual path of the body. [Let the student determine

how the origin shall be moved in each case to meet the supposi-

tion of an initial velocity = -f- c .or <?.]

59. Variably Accelerated Motions. We here restate the equa-
tions

ds /T . dv tfs
v =

dl 0.);j> = -g8rj
. . (II.);vdv=pdS .. (III.);

and resultant force

which are the only ones for general use in rectilinear motion.

PROBLEM 1. In pulling a mass M along a smooth, horizon-

tal table, by a horizontal cord, the tension is so varied that

,? = 4 8

(not a homogeneous equation ; the units are, say, the

foot and second). Required by what law the tension varies.
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ds d(t*)From (I.) v = = = 12*
;
from (IL), p =

;
and (IY.) the tension P Mp = 24J/fc, i.e., varies

directly as the time.

PROBLEM 2.
" Harmonic Motion," Fig. 63. A small block

FIG. 63

on a smooth horizontal table is attached to two horizontal

elastic cords (arid they to pegs) in such a way that when the

block is at 0, each cord is straight but not tense
;
in any other

position, as m, one cord is tense, the other slack. The cords

are alike in every respect, and, as with springs, the tension

varies directly with the elongation (= s in figure). If for an

elongation s
l
the tension is jTl9 then for any elongation s it is

T = T^ -T- sr The acceleration at any point m, then, is

p = (T -=- M) = (7> -T- Ms,\ which for brevity put

p = as, a being a constant. Required the equations of

motion, the initial velocity being = -(- c, at 0. From eq. (III.)

vdv = asds
;

/. / vdv = a I sds>

ie., i(v
a - c

3

)
= -

%as* ; or, tf = c* - as\ . (1)

From (I.),
dt = ds--v\ hence from (1),

or

t = == = i Psin
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Inverting (2), we have s = (c -^ Va) sin (t Va), ... (3)

Again, by differentiating (3), see (I.), v c cos (t Va) (4)

Differentiating (4), see (II.), p = c Va sin (t Va). . . (5)

These are the relations required, but the peculiar property
of the motion is made apparent by inquiring the time of pass-

ing from to a state of rest
; i.e., put v = in equation (4),

we obtain t = \n -T- Va, or
J-TT -r- Va, or f7t -+- Va, and so on,

while the corresponding values of s (from equation (3)), are

-f- (o -7- Va), (c -r- Va), -\- (c -f- Va), arid so on. This shows

that the body vibrates equally on both sides of in a cycle or

period whose duration = 2?r -f- Va, and is independent of the

initial velocity given it at 0. Each time it passes the

velocity is either -|- c, or c, the acceleration = 0, and the

time since the start is = mt -$- Va, in which n is any whole

number. At the extreme point p = =p c Va, from eq. (5).

If then a different amplitude be given to the oscillation by

changing c, the duration of the period is still the same, i.e.,

the vibration is isochronal. The motion of an ordinary pen-

dulum is nearly, that of a cycloidal pendulum exactly, harmonic.

If the crank-pin of a reciprocating engine moved uniformly

in its circular path, the piston would have a harmonic motion

if the connecting-rod were infinitely long, or if the design in

FIG. 64.

Fig. 64 were used. (Let the student prove this from eq. (3).)

Let 2/1 = length of stroke, and o = the uniform velocity of the

crank-pin, and M = mass of the piston and rod AB. Then

the velocity of M at mid-stroke must = <?,
at the dead-points,

zero; its acceleration at mid-stroke zero; at the dead-points

the ace. c Va, and s = r = c -r- Va (from eq. (3)) ;
.'. Va

= c + r, and the ace. at a dead point (the maximum ace.)
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FIG. 65.

= c
a

-T- r. Hence on account of the acceleration (or retarda-

tion) of JJ^in the neighborhood of a dead-point a pressure will

be exerted on the crank-pin, equal to mass X ace. = Me* -f- r

at those points, independently of the force transmitted due to

steam-pressure on the piston -head, and makes the resultant

pressure on the pin at C smaller, and atD larger than it would

be if the "inertia" of the piston and rod were not thus taken

into account. We may prove this also by the free-body method,

considering ABfree immediately after passing the dead-point

G Q ; (7, neglecting all friction. See Fig.
65. The forces acting are : G, the

weight ; J, the pressures of the

guides ; P, the known effective steam-

pressure on piston-head ;
and P', the .unknown pressure of

crank-pin on side of slot. There is no change of motion ver-

tically ;
.-. N'+N G = 0, and the resultant force is P Pf

= mass X accel. = Me* -~-
r, hence P' = P Me* -=- r.

Similarly at the other dead-point we would obtain P' = P +
Me* -T- r. In high-speed engines with heavy pistons, etc.,

Me* -T- / is no small item. [The upper half-revol., alone, IB

here considered.]

PROBLEM 3. Supposing the earth at rest and the resistance

of the air to be null, a body is given an initial upward vertical

velocity c. Required the velocity at any distance s from

the centre of the earth, whose attraction varies in-

versely as the square of the distance s.

See Fig. 66. The attraction on the body at the

surface of the earth where s = r, the radius, is its

weight G ;
at any point m it will be P = G(r* -r- s

2

),

while its mass = G -r- g.

Hence the acceleration at ra =_> = ( P) -r- M
=

g(r* -T- s*). Take equation III., vdv = pds,
and we have

+s

Fio. 66.

vdv = - or = -
gr - -

,

(1)
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Evidently v decreases, as it should. Now inquire how small

a value c may have that the body shall never return; i.e.,

that v shall not = until s = co. Put v = and s = oo in

(1) and eolve for c
;
and we have

c = = 2 X 32.2 X 21000000,

= about 36800 ft. per sec. or nearly 7 miles per sec. Con-

versely, if a body be allowed to fall, from rest, toward the

earth, the velocity with which it would strike the surface

would be less than seven miles per second through whatever

distance it may have fallen.

If a body were allowed to fall through a straight opening in

the earth passing through the centre, the motion would be har-

monic, since the attraction and consequent acceleration now

vary directly with the distance from the centre. See Prob. 2.

This supposes the earth homogeneous.
PROBLEM 4. Steam working expansively and raising a weight,

Fig. 67. A piston works without

friction in a vertical cylinder. Let

8 = total steam-pressure on the

underside of the piston ;
the weight

G, of the mass G -s- g (which in-

cludes the piston itself) and an

atmospheric pressure = A, con-

stitute a constant back-pressure.

Through the portion OB = s,, of FIO. 67.

the stroke, S is constant = /S,, while beyond -#, boiler com-

munication being
" cut off," S diminishes with Boyle's law, i.e.,

in this case, for any point above Bt we have, neglecting the

"clearance",F being the cross-section of the cylinder,

Full length of stroke = ON = sn. Given, then, the forces

S
l
and Ay the distances s

t
and sw and the velocities at and

nt ^Vboth = (i.e.,
the massM= (r-^-gisto start from rest at

O. and to come to rest at N\ required the proper weight G to
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fulfil these conditions, S varying as already stated. The accel-

eration at any point will be

p=[S-A-0] + M. . . . . (1)

Hence (eq. III.) Mvdv = [S A 6P]d8, and .-. for the

whole stroke

_S-A -
F\d8\ i.e.,

/>i f*Siids / Sn /*Sn= S, / ds + tfA /
- - A I ds - G I ds,

V/O
* 1

t/sl S Jo t/0

or SA
[l
+ log. J]

-^+ *n. ... (2)

Since S = S, = constant, from to j, and variable, =
$X -r-

,
from ^ to ^y, we have had to write the summation

in two parts.

From (2), G becomes known, and /. Jfalso (= G -+ g}.

Required, further, the time occupied in this upward stroke.

From to B (the point of cut-off) the motion is uniformly

accelerated, since p is constant (S being = 8^ in eq. (1) ),

with the initial velocity zero; hence', from eq. (3), 56,

the velocity at B = v, 1/2 [^ A~ F\s l
-r- Jf is known

;

/. the time t
l
= 2^ -r- v

l
becomes known (eq. (4), 56) of de-

scribing OB. At any point beyond B the velocity v may be ob-

tained thus : From (III.) vdv = pds, and eq. (1) we have,

summing between B and any point above,

This gives the relation between the two variables v and s

anywhere between B and W\ if we solve for v and insert its

value in dt = ds -f- v, we shall have dt a function of s and

ds, which is not integrable. Hence we may resort to approxi-
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mate methods for the time from B to N. Divide the spaceBN into an uneven number of equal parts, say five; the dis-

tances of the points of division from will be s
1?

s
a ,
s
8 ,

s
4 ,

s

and sn . For these values of s compute (from above equation)

^ (already known), v v v4 ,
VM and vn (known to be zero). To

the first four spaces apply Simpson's Rule, and we have the

time from B to the end of 9

r
6

, r ds
\

t = /
-

;

LI /,-
approx. = 12

while regarding the motion from 5 to ^V as uniformly retarded

(approximately) with initial velocity = v
6 and the final = zero,

we have (eq. (4), 56),

t = 2s - s -s- v.
c

By adding the three times now found we have the whole time

of ascent. In Fig. 67 the dotted curve on the left shows by
horizontal ordinates the variation in the velocity as the distance

s increases
; similarly on the right are ordinates showing the

variation of S. The point E, where the velocity is a maximum
vm, may be found by putting p = 0, i.e., for S = A -f- G,

the acelerating force being 0, see eq. (1). Below E the ac-

celerating force, and consequently the acceleration, is positive ;

above, negative (i.e.,
the back-pressure exceeds the steam-

pressure). The horizontal ordinates between the line HE'KL
and the right line RI'are proportional to the accelerating force.

If by condensation of the steam a vacuum is produced be-

low the piston on its arrival at N", the accelerating force is

downward and = A -f- G. [Let the student determine how
the detail of this problem would be changed, if the cylinder

were horizontal instead of vertical.]

60. Direct Central Impact. Suppose two massesM
l
and J/,

to be moving in the same right line so that their distance apart

continually diminishes, and that when the collision or impact
takes place the line of action of the mutual pressure coincides

with the line joining their centres of gravity, or centres of
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mass, as they may be called in this connection. This is called

a direct central impact, and the motion of each mass is varia-

bly accelerated and rectilinear during their contact, the only
force being the pressure of the other body. The whole mass

of each body will be considered concentrated in the centre of

mass, on the supposition that all its particles undergo simul-

taneously the same change of motion in parallel directions.

(This is not strictly true
;
the effect of the pressure being

gradually felt, and transmitted in vibrations. These vibrations

endure to some extent after the impact.) When the centres

of mass cease to approach each other the pressure between the

bodies is a maximum and the bodies have a common velocity ;

after this, if any capacity for restitution of form (elasticity)

exists in either body, the pressure still continues, but dimin-

ishes in value gradually to zero, when contact ceases and the

bodies separate with different velocities. Reckoning the time

from the first instant of contact, let t' = duration of the first

period, just mentioned
;
t" that of the first -f- the second (resti-

tution). Fig. 68. Let M
l
and J/~

2
be the masses, and at any

J?j_
| ^~|.Jk> instant during the contact let ^ and 0,

be simultaneous values of the velocities

of the mass-centres respectively (reckon-
Fl - M -

ing velocities positive toward the right),

and P the pressure (variable). At any instant the acceleration

of Jfcf,
is p l

= (P -T- -3/j), while at the same instant that of

My
is PI = + (P -r- -3Q ; M^ being retarded, J/"

a accelerated,

in velocity. Hence (eq. II., p = dv -r- dt) we have

M
1
dv

1
=-Pdt:

>
and M

tdv, = + Pdt. . . (!)

Summing all similar terms for the first period of the impact,

we have (calling the velocities before impact <?,
and <?3 ,

and the

common velocity at instant of maximum pressure C)

f -c
1)
= -

t

t

pdt; (2)

-*,) =
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The two integrals are identical, numerically, term by term,
since the pressure which at any instant accelerates J/, is nu-

merically equal to that which retards J/~
t ; hence, though we do

not know how P varies with the time, we can eliminate the

definite integral between (2) and (3) and solve for C. If

the impact is inelastic (i.e.,
no power of restitution in either

body, either on account of their total inelasticity or damaging
effect of the pressure at the surfaces of contact), they continue

to move with this common velocity, which is therefore their

final velocity. Solving, we have

.

Next, supposing that the impact is partially elastic, that the

bodies are of the same material, and that the summation

/ Pdt for the second period of the impact bears a ratio, 0,

/vPdt, already used, a ratio peculiar to the material,

if the impact is not too severe, we have, summing equations

(1) for the second period (letting Vl
and Fa

= the velocities

after impact),

Jf, fj'dv,
= -

'pdt, i.e, J/,( F,- C) = - eJ*Pdt ; (5)

M, dv, = + pdt, i.e., M,( V,- G) = + ePdt. (6)

e is called the coefficient of restitution.

Having determined the value ofJ Pdt from (2) and (3) in

terms of the masses and initial velocities, substitute it and that

of (7, from (4), in (5), and we have (for the final velocities)

F, = [MlCl+ Mj>- etffa-cj] -r- [IT,+ JQ; CO

and similarly

F, = [^,c, + J(fA+^(c,-^)]-[-^+ ^]. (8)

For e = 0, i.e., for inelastic impact, F,= F,= C in eq. (4) ;
for
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e= 1, or elastic impact, (7) and (8) become somewhat simpli-

fied.

To determine e experimentally, let a ball (J/i) of the sub-

stance fall upon a very large slab (J/"a) of the same substance,

noting both the height of fall h and the height of rebound H
v
.

Considering Mt
as oo, with

eq. (7) gives

Let the student prove the following from equations (2), (3),

(5), and (6):

(a) For any direct central impact whatever,

[The product of a mass by its velocity being sometimes

called its momentum, this result may be stated thus :

In any direct central impact the sum of the momenta before

impact is equal to that after impact (or at any instant during

impact). This principle is called the Conservation of Momen-
tum. The present is only a particular case of a more general

proposition.

It can be proved that O, eq. (4), is the velocity of the centre

of gravity of the two masses before impact ;
the conservation

of momentum, then, asserts that this velocity is unchanged by
the impact, i.e., by the mutual actions of the two bodies.]

(b) The loss of velocity of Mr and the gain of velocity of

J/
a ,

are twice as great when the impact is elastic as when in-

elastic.

(c)
If e = 1, and M, = M then V

l
= + c,, and F2

= c,.

Example. Let Ml and M* be perfectly elastic, having weights = 4 and

6 Ibs. respectively, and let Ci = 10 ft. per sec. and c2 = 6 ft. per sec.

(i. e., before impact Jf2 is moving in a direction contrary to that of MI).

By substituting in eqs. (7) and (8), with e = 1, Jtfi = 4 -s- g, and Jf2 = 5 -f- g,

we have

F, = .1

1~4
x 10 + 5 x (- 6)

- 5
(lO

- (- 6))]=
- 7.7 ft. per sec.

Fa = if~4 x 10 + 5 x (- 6) + 4
(lO

- (- 6))]=
+ 8.2 ft. per sec.

as the velocities after impact. Notice their directions,-as indicated by their

signs
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CHAPTER II.

"VIRTUAL VELOCITIES."

61. Definitions. If a material point is moving in a direction

not coincident with that of the resultant force acting (as in

curvilinear motion in the next chapter), and any element of its

path, ds, projected upon this force;* the length of this projec-

tion, du, Fig. 69, is called the "VIRTUAL VELOCITY" of the

force, since du -r- dt may be considered the veloc-

ity of the force at this instant, just as ds -r- dt i

that of the point. The product of the force by
its du will be called its virtual moment, reckoned

-j- or according as the direction from to D is
IG' 6 '

the same as that of the force or opposite.

62. Prop. I. The virtual moment of a force equals the

algebraic sum of those of its components. Fig. YO. Take the

direction of ds as an axis JT; let jP
J
and P^

^ be components of P';
& a and a their

angles with X. Then ( 16) P cos a =
-A cos ^1+^2 cos aa-

Hence P(ds cos a)=
P^(ds cos

<*,) + PJ(ds cos a^). But ds cos a
= the projection of ds upon P, i.e.,

= du
;

FIG. 70. cog

P^duy If in Fig. 70 <x
l
were > 90, evidently we would

have Pdu = P^du^ + P^du^ i.e., P^du^ would then be

negative, and OD
J
would fall behind 0\ hence the definition

of -f- and in 61. For any number of components the

proof would be similar, and is equally applicable whether they
are in one plane or not.

63. Prop. II. The sum of the virtual moments equals zero,

for concurrentforces in equilibrium.

* We should rather say
"
projected on the line of action of the force;"

but the phrase used may be allowed, for brevity.
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(If the forces are balanced, the material point is moving in

a straight line if moving at all.) The resultant force is zero.

Hence, from 62, PjLu^ -\- P$u^+ etc. = 0, having proper

regard to sign, i.e., 2(Pdu) = 0.

64. Prop. III. The sum of the virtual moments equals zero

for any small displacement or motion of a rigid ~body in equi-

librium under non-concurrentforces in a plane; all points of

the body moving parallel to this plane. (Although the kinds

of motion of a given rigid body which are consistent with

balanced non-concurrent forces have not yet been investigated,

we may imagine any slight motion for the sake of the alge-

braic relations between the different du's and forces.)

First, let the motion be a translation, all

points of the body describing equal parallel

lengths = ds. TakeX parallel to ds
;

let <*
1T

$r etc., be the angles of the forces with Z
Then ( 35) 2(P cos *) = ; .-. ds2(Pcos a)

;
but ds cos a

l
= du

l ;
ds cos a

t
= du9 ;

etc.
;

.-. 2(Pdu) = 0. Q. E. D.

Secondly, let the motion be a rotation

FIO. 71.
through a small angle d6 in the plane of the

forces about any point in that plane, Fig. 72. With as a pole

let p, be the radius-vector of the point of application of P,, and

0j its lever-arm from 0\ similarly for the

other forces. In the rotation each point of

application describes a small arc, ds^ ds^

etc., proportional to /> /o2 , etc., since ds
1

^
ftlde, ds, = P,d0, etc. From 36, ^

P^+ etc.
;
but from similar triangles

'

ds
l

: du
l

:: P! :
j ;

/. a
1
= pjLu^ -r- ds

t

= du, -T- dO
; similarly a^ = du^ + dV, etc.

Pence we must have [P^d^+ Pzdu9 + . . .]
~ dO = 0, i.e.,

2(Pdu) = 0. Q. E. D.

Now since any slight displacement or motion of a body may
be conceived to be accomplished by a small translation fol-

lowed by a rotation through a small angle, and since the fore-
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going deals only with projections of paths, the proposition is

established and is called the Principle of Virtual Velocities.

[A similar proof may be used for any slight motion what-

ever in space when a system of non-concurrent forces is bal-

anced.] Evidently if the path (ds) of a point of application is

perpendicular to the force, the virtual velocity (du\ and con-

sequently the virtual moment (Pdu) of the force are zero.

Hence we may frequently make the displacement of such a

character in a problem that one or more of the forces may be

excluded from the summation of virtual moments.

65. Connecting-Rod by Virtual Velocities. Let the effective

steam-pressure P be the means, through the connecting-rod
and crank (i.e., two links), of raising the weight G very slowly;

neglect friction and the weight of the links themselves. Cdn-

sider AB as free (see (o) in Fig. 73), BC also, at (c); let the

()
FIG. 73.

"small displacements" of both be simultaneous small portions

of their ordinary motion in the apparatus. A has moved to A
l

through dx
;
B to B^ through ds, a small arc

;
C has not

moved. The forces acting on AB are P (steam-pressure), N
(vertical reaction of guide), and N' and T (the tangential and

normal components of the crank-pin pressure). Those on BC
are N' and T (reversed), the weight G, and the oblique pressure

of bearing P' . The motion being slow (or rather the accelera-

tion being small), each of these two systems will be considered as

balanced. Now put 2(Pdu) = for AB, and we have

Pdx _|_ & x + N' X - Tds = 0. . . (1)

For the simultaneous and corresponding motion of

2(Pdu) = irives
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N* X -f Tds - Gdh + P' X =
0, . . (2)

dh being the vertical projection of (7's motion.

From (1) and (2) we have, easily, Pdx Gdh = 0, . (3)

which is the same as we might have

obtained by putting 2(Pdu) = Ofor
the two links together, regarded col-

lectively as a free body, and describ-

74-

ing a small portion of the motion

they really have in the mechanism, viz., (Fig. 74,)

Pdx + Nx 0- Gdh-\-P' X = 0. . . (4)

We may therefore announce the

66. Generality of the Principle of Virtual Velocities. If any
mechanism of flexible inextensihle cords, or of rigid bodies

jointed together, or both, at rest^ or in motion with very small

accelerations, he consideredfree collectively (or any portion of

it\ and all the external forces put in then (Disregarding

mutualfrictions) for a small portion of its prescribed motion,

2(Pdu) must = 0, in which the du, or virtual velocity, of
each force, P, is the projection of the path of the point of

application upon the force (the product, Pdu, being -\- or

according to 61).

67. Example. In the problem of 65, having given the

weight G, required the proper steam-pressure (effective) P to

hold G in equilibrium, or to raise it uniformly, if already in

motion, for a given position of the links. That is. Fig. 75,

given a, r, c, a, and ft, re-

quired the ratio dh : dx
; for,

from equation (3), 65, P
= G(dh : dx). The projec-

tions of dx and ds upon AB dx A,

will be equal, since AB = FlGK 75 -

A^B^, and makes an (infinitely) small angle with A^B^, i.e.,

dx cos a = ds cos (ft a). Also, dh = (c : r)ds sin ft.
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Eliminating ds, we have,

dh _ c sin fi cos OL c sin fi cos a
dx

~~
r cos (ft a)

'

^ cos (/? a)'

68. When the acceleration of the parts of the mechanism is

not practically zero, 2(Pdu) will not == 0, but a function of

the masses and velocities to be explained in the chapter on

Work, Energy, and Power. If friction occurs at moving joints,

enough
" free bodies" should be considered that no free body

extend beyond such a joint ;
it will be found that this friction

cannot be eliminated in the way in which T and N' were, in

65.

69. Additional Problems
;
to be solved by

"
virtual velocities."

PROBLEM 1. Find relations between the forces acting on a

straight lever in equilibrium ; also, on a bent lever.

PROBLEM 2. When an ordinary copying-press is in equilib-

rium, find the relation between the force applied horizontally

and tangential ly at the circumference of the wheel, and the

vertical resistance under the screw-shaft.

Solution. Considering free the rigid body consisting of the wheel and
screw-shaft, let R be the resistance at the point of the shaft (pointing

along the axis of the shaft), and Pthe required horizontal tangential force

at edge of wheel. Let radius of wheel be r. Besides R and P there are

also acting on this body certain pressures, or "
supporting forces," consist-

ing of the reactions of the collars, and reactions of the threads of nut against
the threads of screw. Denote by s the "pitch

"
of the screw, i.e., the dis-

tance the shaft would advance for a full turn of the wheel. Then if we
imagine the wheel to turn through a small angle dQ, the corresponding

advance, ds, of the shaft would be ^ , from the proportion s : ds :: 2n : dQ.
alt

The path of the point of application of P would be a small portion of

a helix, the projection of which on the line of P is rdQ, while ds projects

in its full length on the line of the force R. In the case of each of the

other forces, however, the path of the point of application is perpendicular
to the line of the force (which is normal to the rubbing surfaces, friction

being disregarded). Hence, substituting in 2(Pdu) = 0, we have

+ P.rdO-R. ds + + = 0;
whence
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CHAPTER III.

CURVILINEAR MOTION OF A MATERIAL POINT.

[Motion in a plane, only, will be considered in this chapter.]

70. Parallelogram of Motions. It is convenient to regard
the curvilinear motion of a point in a plane as compounded, or

made up, of two independent rectilinear motions parallel

respectively to two co-ordinate axes X. and Y, as may be ex-

plained thus : Fig. 76. Consider the

drawing-board CD as fixed, and let the

head of a T-square move from A
toward B along the edge according to

any law whatever, while a pencil moves

fromM toward Q along the blade. The

result is a curved line on the board, whose

form depends on the character of the

two JTand Y component motions, as they may be called. If

FIG. 76.

in a time
tf,

the T'-square head has moved an ^distance

and the pencil simultaneously a Y distance = MP, by com-

pleting the parallelogram on these lines, we obtain 7?, the

position of the point on the board at the end of the time t
v
.

Similarly, at the end of the time / we find the point at JK '.

71. Parallelogram of Velocities. Let the X and Emotions
be uniform, required the resulting motion. Fig. 77. Let cx

and cy be the constant uniform JTand Y velocities. Then in

any time, t, we have x = cxt and y =
Cyt\ whence we have, eliminating t,

as -j- y = c,,,
~ cv

= constant, i.e., x is

proportional to y, i.e., the path is a 0^'

straight line. Laying off OA = cm V-

andAB = cv,
B is a point of the path,

and OB is the distance described by the point in the first

FIQ. 77.
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second. Since by similar triangles OR : x : : OB : c^ we
have also OR OB . t

;
hence the resultant motion is uniform,

and its velocity, OB = c, is the diagonal of the parallelogram

formed on the two component velocities.

Corollary. If the resultant motion is curved, the direction

and velocity of the motion at any point will be given by the

diagonal formed on the component velocities at that instant.

The direction of motion is, of course, a tangent to the curve.

72. Uniformly Accelerated X and Y Motions. The initial

velocities of hoth ~being zero. Required the resultant motion.

Fig. 78. From 56, eq. (2) (both cx andctf

being = 0), we have x -<zpxt* and y =
ipy \ whence x -^ y = px^py constant,

and the resultant motion is in a straight

line. Conceive lines laid off from on IK

and Y to represent^ and^, to scale,. and

form a parallelogram on them. From similar triangles (OR
being the distance described in the resultant motion in any

time t\~OR\x\\ ~OB \px ;.'. OlT= $OJBf. Hence, from the.

form of this last equation, the resultant motion is uniformly

accelerated, and its acceleration is OB = p, (on the same scale

This might be called the parallelogram of accelerations, but

is really a parallelogram of forces, if we consider that a free

material point, initially at rest at (9, and acted on simulta-

neously by constant forces Px and Py (so that px = Px -^ M
and py Pv -r- M\ must begin a uniformly accelerated recti-

linear motion in the direction of the resultant force, having no

initial velocity in any direction.

73. In general, considering the point hitherto spoken of as a

free material point, under the action of one or more forces, in

view of the foregoing, and of Newton's second law, given the

initial velocity in amount and direction, the starting-point,

the initial amounts and directions of the acting forces and the
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laws of their variation if they are not constant, we can resolve

them into a single X and a single Y force at any instant,

determine theX and Emotions independently, and afterwards

the resultant motion. The resultant force is never in the direc-

tion of the tangent to the path (except at a point of inflection).

The relations which its amount and direction at any instant

bear to the velocity, the rate of change of that velocity, and

the radius of curvature of the path will appear in the next

paragraph.

74. General Equations for the curvilinear motion of a ma-

terial point in a plane. The motion will be considered result-

ing from the composition of

\ independent X and Y motions,
"

^ JTand Y being perpendicular to

each other. Fig. 79. In two

consecutive equal times (each
= dt\ let dx and dx' = small

spaces due to the X motion
;

and dy and CK'= dy' ,
due to

the Y motion. Then ds and

ds
f
are two consecutive elements

FIG. 79. of the curvilinear motion. Pro-

long ds, making BE ds\ then EF = d*x, CF= d*y, and

CO = d*s (EO being perpendicular to BE). Also draw CL

perpendicular to BG and call CL d*n. Call the velocity of

the X motion vm its acceleration px ;
those of the Y motion,

vy and py . Then,

dx dy dvx _ d*x , _ dv
vV* =

df'> Vy =
~dt'>

Px = ~dt^ dtf* Py = ~di

For the velocity along the curve (i.e., tangent)
= ds ~ dt, we shall have, since ds* = dx* + dy*,

fds\ (dx'V* = -T7- =
I -T7

Hence v is the diagonal formed on vx and vv (as in 71).

Let pt
= the acceleration of v, i.e., the tangential acceleration,
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then pt
=. d*s -~

dtf, and, since d*s = the sum of the projec-
tions of JST^and CF on EC, i.e., d?s d*x cos a

-\- d*y sin a,

we have

3S = ~J# cos a ~r ~jf*
sm a

9
1 -e

-j Pt =Px cos a -{-pyBin a. (2)

By Normal Acceleration we mean the rate of change of the

velocity in the direction of the normal. In describing the ele-

ment AB = ds, no progress has been made in the direction of

the normal BII i.e., there is no velocity \\\ the direction of the

normal; but in describing BG (on account of the new direc-

tion of path) the point has progressed a distance CL (call it

d?ri)
in the direction of the old normal BH (though none in

that of the new normal CI). Hence, just as the tang. ace.

ds' ds d*s CL zero d*n= -75 =
-TTJ, so the normal accel. = -73 = -j-f.

(tu Civ Cut Cvt

It now remains to express this normal acceleration (=pn) in

terms of the X and Y accelerations. From the figure, CL
= CM- ML, i.e.,

dFn = d?y cos a d?x sin a {since EF = d?x\ ;

*

~7~a
~

77"? C S & "TT SHI (X.

Hence pn =py cos a px sin a. . . . . . (3)

The norm. ace. may also be expressed in terms of the tang,

velocity v, and the radius of curvature r, as follows :

da' = rda, or da = da' -4- r
;

also d?n = ds'dot, = ds
f*

r,

d'n (dsV 1 tf

i.e., -rr, = l-rr -, or #M = r W
If now, Fig. 80, we resolve the forces X = Mpx and T

= Mpy ,
which at this instant account for the

X and Y accelerations (M = mass of the

*** material point), into components along the

tangent and normal to the curved path, we

shall' have, as their equivalent, a tangential

teTw,
force

T= Mpx cos a -\- Mpv sin a,
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and a normal force

N= Mpy cos a Mpx sin a.

But [see equations (2), (3), and (4)] we may also write

Cl *?) Oj

T=Mpt
= M

Tt ;
and N = Mpn = M~. . (5)

Hence, if a free material point is moving in a curvedpath,
the sum of the tangential components of the actingforces must

equal (the mass) X tang, accel.; that ofthe normal components,
= (the mass) X normal accel. = (mass) X (square of veloc. in

path) -r- (rad. curv.).

It is evident, therefore, that the resultant force (= diagonal

on T andN or on ^Tand Y, Fig. 80) does not act along the tan-

gent at any point, but toward the concave side of the path ;
un-

less r = oo.

Radius of curvature. From the line above eq. (4) ^we

have d*n = ds" -r- r\ hence (line above eq. (3)), ds
f*

-7-r

d?y cos a d*x sin a
;
but cos a dx -f- ds, and sin a = dy -r- ds,

i.e., = ax'a
\ -^ \

= ax a (tan <*),

fds"ds\ r/dx\*dt3M

d tan
-.3 . I ... a

or.

which is equally true if, for vx and tan a, we put vy and

tan (90 a), respectively.

Change in the velocity square. Since the tangential accelera-

dv . , dv
tion -3- =pt )

we have
ds-j- =ptds\ i.e.,

-j-dv=ptds, or vdv=ptds and /. - =Jptds. (T)

having integrated between any initial point of the curve where
v = c, and any other point where v = v. This is nothing
more than equation (III.), of 50.
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75. Normal Acceleration. Second Method. Fig. 81. Let

C be the centre of curvature and OD 2r. Let OB' be a

portion of the oscillatory parabola (vertex at
^jv.

; any oscillatory curve will serve). When \\
ds is described, the distance passed over in

the direction of the normal is AB
;
for 2<&,

It would be AB' = AB (i.e., as the

square of OB'\ property of a parabola),

and so on. Hence the motion along the normal is uniformly
accelerated with initial velocity = 0, since the distance AB^
varies as the square of the time (considering the motion along
the curve of uniform velocity, so that the distance OB is di-

rectly as the time). Ifpn denote the accel. of this uniformly
accelerated motion, its initial velocity being = 0, we have (eq.

2, 56) AB = \pndt\ i.e., ^n = 2JJ? -7- df.__But from the

similar triangles ODB and GAB we have, AB :ds::ds:2r,
hence 2AB = ds* -r- r, .'. pn = ds* -r- rdf =v*~-r.

76. Uniform Circular Motion. Centripetal Force. The ve-

locity being constant, j^ must be= 0, and .*. T(or^Tif there

are several forces) must = 0. The resultant of all the forces,

therefore, must be a normal force = (Me* -=-
r) = a con-

stant (eq. 5, Y4). This is called the "
deviating force,"

or "
centripetal force ;" without it the body would continue

in a straight line. Since forces always occur in pairs ( 3),

a| "centrifugal force," equal and opposite to the "centri-

petal" (one being the reaction of the other), will be found

among the forces acting on the body to whose constraint the

deviation of the first body from its natural straight course is

due. For example, the attraction of. the earth on the moon
acts as a centripetal or deviating force on the latter, while the

equal and opposite force acting on the earth may be called

Cvx the centrifugal. If a small block moving on a
^ smooth horizontal table is gradually turned from

its straight courseAB by a fixed circular guide,

tangent to AB at B, the pressure of the guide

against the block is the centripetal force J/b'-r- r

FIG. 82. directed toward the centre of curvature, while

>
CENTRIP. It-
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FIG. 83.

the centrifugal force J/b
2

-f- r is the pressure of the block

against the guide, directed away from that centre. The cen-

trifugal force, then, is never found among the forces acting on

the body whose circular motion we are dealing with.

The Conical Pendulum, or governor-ball. Fig. 83. If a

material point of mass == M= G -r- g, suspended on a cord of

length = I,
is to maintain a uniform cir-

cular motion in a horizontal plane, with a

given radius r, under the action of gravity
and the cord, required the velocity c to be

given it. At B we have the body free.

The only forces acting are G and the cord-

tension P. The sum of their normal com-

ponents, i.e., 21V, must = Me* -5- /*, i.e., P sin a = Me* -f- r
;

but, since 2 (vert, comps.) = 0, P cos a = G. Hence

rtan a = Gc*-- gr\ .*. c= Vgrt&n a. Let u = number of

revolutions per unit of time, then u-=.c-^- %7tr = Vg -r- 2?r Vh
;

i.e., is inversely proportional to the (vertical projection)* of

the cord-length. The time of one revolution is = 1 -j- u.

Elevation of the outer rail on railroad curves (considera-

tions of traction disregarded). Consider a single car as a

material point, and free, having a given p
\

velocity = c. P is the rail-pressure \ u

against the wheels. So long as the car ~r ^ \

follows the track the resultant R of P
and G must point toward the centre of

curvature and have a value = J^b
2

-j- r.

But 7? G tan a, whence tan a c
2 -=-

gr.

If therefore the ties are, placed at this

angle a with the horizontal, the pressure

will come upon the tread and not on the flanges of the wheels
;

in other words, the car will not leave the track. (This is really

the same problem as the preceding.)

Apparent weight of a body at the equator. This is less than

the true weight or attraction of the earth, on account of the

uniform circular motion of the body with the earth in its

diurnal rotation. If the body hangs from a spring-balance.

FIG. 84.



CURVILINEAR MOTION OF A MATERIAL POINT. 79

whose indication is G Ibs. (apparent weight), while the true

attraction is G' Ibs., we have G' G = Me* -=- r. For M
we may use G -r- g (apparent values); for r about 20,000,000

ft.; for c, 25,000 miles in 24 hrs., reduced to feet per second.

It results from this that G is < G' by -^^G' nearly, and

(since 17
3 = 289) hence if the earth revolved on its axis seven-

teen times as fast as at present, G would = 0, i.e., bodies

would apparently have no weight, the earth's attraction on

them being just equal to the necessary centripetal or deviating
force necessary to keep the body in its orbit.

Centripetal force at any latitude. If the earth were a ho-

mogeneous liquid, and at rest, its form would be spherical ;
but

when revolving uniformly about the polar diameter, its form
of relative equilibrium (i.e., no motion of the particles relatively
to each other) is nearly ellipsoidal, the polar diameter being an

axis of symmetry.
Lines of attraction on bodies at its surface do not intersect

in a common point, and the centripetal force requisite to keep

a suspended body in its orbit (a small circle of the ellipsoid),

at any latitude ft is the resultant, -Z\T, of the attraction or true

weight G' directed (nearly) toward the centre, and of G the

tension of the string. Fig. 85. G = the apparent weight, in-

dicated by a spring-balance and MA is its
_ ,^G

line of action (plumb-line) normal to the
/<?^~ """P^*^

ocean surface. Evidently the apparent /
weight, and consequently g, are less than (~

the true values, since N must be perpen-

dicular to the polar axis, while the true

values themselves, varying inversely as

the square of MC, decrease toward the equator, hence the ap-

parent values decrease still more rapidly as the latitude dimin*

ishes. The following equation gives the apparent g tor any
latitude /3, very nearly (units, foot and second):

g = 32.1808 - 0.0821 cos 2/3.

(The value 32.2 is accurate enough for practical purposes.',

Since the earth's axis is really not at rest, but moving about
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the sun, and also about the centre of gravity of the moon and

earth, the form of the ocean surface is periodically varied, i.e.,

the phenomena of the tides are produced.

77. Cycloidal Pendulum. This consists of a material point
at the extremity of an imponderable, flexible, and inextensible

cord of length = I, confined to the arc of a cycloid in a ver-

tical plane by the cycloidal evolutes shown in Fig. 86. Let

the oscillation begin (from rest) at J., a height = h above

*he vertex. On reaching any lower point, as E (height == &

above 0\ the point has acquired some velocity v
9
which is at

this instant increasing at some rate = pt . Now consider the

point free, Fig. 87; the forces acting are P the cord-tension,

normal to path, and G the weight, at an angle cp with the

path. From 74, eq. (5), 2T = Mpt gives

G cos cp + P cos 90 (G -r- g)pt \ .\pt g cos (p

Hence (eq. (7), 74), vdv ptds gives

<vdv = g cos cpds ;
but ds cos <p = dz

;
/. vd/v = gdz.

Summing between A and B, we have

or v =

the same as if it had fallen freely from rest through the height

h _^ 2. (This result evidently applies to any form of path

when^ besides the weight G, there is but one other force, and

that always normal to the path.}

From 'SN = Mv* -=- n, we have P G sin <p
= Mv* -r-r^
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whence P, the cord-tension at any point, may be found (here

TI the radius of curvature at any point = length of straight

portion of the cord).

To find the time of passing from A to 0, a half-oscillation,

substitute the above value of va
in v = ds -~

dt, putting ds*

= dx* + dz\ and we have df = (dx* + da*)
~

\Zg(h s)~].

To find dx in terms of dz, differentiate the equation of the

curve, which in this position is

x = r ver. sin." 1

(2 -r- r) -\- V%rz z*
;

whence

rdz (r z]dz _ (%r z)

VZrz z* V2rz z* .' VZrz

(r = radius of the generating circle). Substituting, we have

_
hz-z*'

r* F (* d* /rvh
i F

.-. t = \ /
- I ._ = \ / -\ ver. sin.- 1 -rj= n\ / -.

LA V gJ* Vhz-z* V g L tA \g
Hence the whole oscillation occupie^ a time = n VI -r- g

(since I = 4r). This is independent of A, i.e., the oscillations

are isochronal. This might have been proved by showing that

pt is proportional to OB measured along the curve / i.e., that

the motion is harmonic. ( 59, Prob. 2.)

78. Simple Circular Pendulum. If the material point oscil-

lates in the arc of a circle, Fig. 88, proceeding
as in the preceding problem, we have finally,

fs^- ^ j

after integration by series, as the time of a full \
yf

oscillation
,

j x v.\B/ H

,r. fir. i A 9 A'. -i '~dr -*-*

*\J
=
*VffL^8 '

1 + 256 17
'

.?**

Hence for a small A the time is nearly 7t VI -^ g, and the os-
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cillations nearly isochronal. (For the Compound Pendulum,
see 117.)

79. Change in the Velocity Square. From eq. (7), 74, we
have %(v* c

2

) -=fptds. But, from similar triangles, du be-

ing the projection of any ds of the path upon the resultant

force R at that instant, Rdu = Tds (or, Prin. of Yirt. Yels.

62, Rdu = Tds+NX 0). T and Nwe the tangential and

normal components of R. Fig. 89. Hence, finally,

Mv* \Me* =fRdu, (a)

for all elements of the curve between any two points. In .gen-

eneral R is different in amount and direc-

t,v tion for each ds of the path, but du is the

x, distance through which R acts, in its own
FIG. 89. direction, while the body describes any ds

;

Rdu is called the work done by R when ds is described by the

body. The above equation is read : The difference between the

initial andfinal kinetic energy of a body = the work done lyy

the resultantforce in that portion of the path.

(These phrases will be further spoken' of in Chap. YI.)

Application of equation (a) to a planet in its orbit about

the sun. Fig. 90. Here the only force at any instant is the at

traction of the sun R = C -=- u* (see Prob. 3, 59),

where C is a constant and u the variable radius hs.

vector. As u diminishes, v increases, therefore

dv and du have contrary signs ;
hence equation | tf^V

(a) gives (c being the velocity at some initial
"

point 0)

~V<te-l;.fc
>|

1 -1

i

|_^"
' '

J,
which is independ-

ent of the direction of the initial velocity c.

NOTE. If u were = infinity, the last member of equation (5) would re-

duce to C lt and is numerically the quantity called potential in the

theory of electricity.
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Application of eq. (a) to a projectile in vacuo. <?, the.

body's weight, is the only force acting, and

therefore = R, whileM= G -f- g* There-

fore equation (a) gives

ff *

*. v. = Vc* + 2<72/ a ,
which is independent of FlG 91

the angle, <*, of projection.

Application of equation (a) to a body sliding, withoutfric*

tion, on a fixed curved guide in a vertical plane ;
initial velo-

city = c at 0. Since there is some pressure at each point be-

tween the body and the guide, to consider the body free in

space, we must consider the guide removed and that the body
describes the given curve as a re-

sult of the action of the two forces,

its weight 6r, and the pressure P,
of the guide against the body. G
is constant, while P varies from

point to point, though always (since

there is no friction) normal to curve.

At any point, R being the resultant

of G and P, project ds upon R, thus obtaining du; on #,
thus obtaining dy ;

on P, thus obtaining zero. But by the

principle of virtual velocities (see 62) we have Rdu = Gdy
-f- P X zero = Gdy, which substituted in eq. (a) gives

and therefore depends only on the vertical distance fallen

through and the initial velocity, i.e., is independent of the

form of the guide.
As to the value of P, the mutual pressure between the guide

and body at any point, since ^N must equal Mv* ~ r, r being
the variable radius of curvature, we have, as in 77,

P G sin cp
= Mv* H- r

;
.-. P = #[sin g>+ (v*

~
gr)].

As, in general, <p and r are different from point to point of
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the path, P is not constant. (The student will explain how P
may be negative on parts of the curve, and. the meaning of

this circumstance.)

80. Projectiles in Vacuo. A ball is projected into the air

Y (whose resistance is neglected, hence the

phrase in vacuo) at an angle = a
Q
with the

horizontal
; required its path ; assuming it

confined to a vertical plane. Resolve the

motion into independent horizontal (X)
and vertical (Y) motions, 6r, the weight,

the only force acting, being correspondingly replaced by its

horizontal component zero, and its vertical component
= 6r. Similarly the initial velocity along X'= cx = c cos #

,

along Y, cy
= csin or . The JT acceleration =px -h M

= 0, i.e., the X motion is uniform, the velocity vx remains

= cx = c cos a at all points, hence, reckoning the time from 0,

at the end of any time t we have

x = c(cos a
)t (1)

In the Y motion,pv
=

( @) -r- M=
g, i.e., it is uniformly

retarded, the initial velocity being cy
= c sin a

; hence, after

any time
,
the Y velocity will be (see 56) vy = c sin a

gt,

while the distance

Between (1) and (2) we may eliminate
tf,
and obtain as the

equation of the trajectory or path

gx*
y = x tan a. T ^ 5 .

2<r cos <x

For brevity put e* = %gh, h being the ideal height due to the

velocity c, i.e., c
2

-f- 2</ (see 53
;

if the ball were directed ver-

tically upward, a height h = c* -r- 2<7 would be actually at-

tained, of being = 90), and we have

y = x tan a --j 5 (3)4A cos a

This is easily shown to be the equation of a parabola, with its

axis vertical.
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The horizontal range. Fig. 94. Putting y = in equa-
tion (3), we obtain

r x -\
x tan a. Tl 5 =0. Y c
L 4A cos

2
tf J JL

which is satisfied both by x =
(i.e., at the

origin), and by x = 4A cos or sin <* . Hence
the horizontal range for a given c and a is Fl - 94-

xr = 4A cos a
Q
sin a = 2A sin 2a .

For a = 45 this is a maximum
(<? remaining the same),

being then = 2A. Also, since sin 2<* = sin (180 2<*
)
=

sin 2(90 ar
c),

therefore any two complementary angles of

projection give the same horizontal range.

Greatest height of ascent ; that is, the value of y maximum,
= ym . Fig. 94. Differentiate (3), obtaining

dy_ x__
dx 2A cos

2
of

'

which, put = 0, gives a? = 2A sin a cos or
,
and this value of

x in (3) gives ym h sin
2 a

c
.

(Let the student obtain this more simply by considering the

T motion separately.)

To strike a given point ; c being given and a required.

Let x' and y' be the co-ordinates of the given point, and or/

the unknown angle of projection. Substitute these in equa-
tion (3), h being known = c

2 -=-
2^, and we have

y' = xf
tan &' -rj 5 7. Put cos

2

<*/ = ^ : 57,4A cos
2

.' 1 + tan
2

or/'

and solve for tan or/, whence

tan or' = 2A 1/4A* - a/
a - 4% r

-5- x' . .

Evidently, if the quantity under the radical in (4) is negative,

tan or/ is imaginary, i.e., the given point is out of range with

the given velocity of projection c = V2ghj if positive, tan a '

has two values, i.e., two trajectories may be passed through
the point ;

while if it is zero, tan or/ has but one value.

The envelope, for all possible trajectories having the same
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FIG. 95.

initial velocity c (and hence the same'A); i.e., the curve tan-

gent to them all, has but one point of contact with any one of

them; hence each point of the envelope, Fig. 95, must have

co-ordinates satisfying the con-

dition, 4A
2

a/
2

4:hy'
=

;
i.e.

(see equation (4) ),
that there is

but one trajectory belonging to it.

Hence, dropping primes, the

equation of the envelope is 4A2

a?
2

4Ay = 0. Now take 0" as a

new origin, a new horizontal axis X"
,
and reckon y" positive

downwards
; i.e., substitute x = x" and y = h y" . The

equation now becomes a?
//a

hy" ; evidently the equation of

a parabola whose axis is vertical, whose vertex is at O'
1

',
and

whose parameter = 4A = double the maximum horizontal

range. is therefore its focus.

The range on an inclined plane. Fig, 96. Let OC be

the trace of the inclined plane ;
its equation y

is y = x tan /?, which, combined with the

equation of the trajectory (eq. 3), will give

the co-ordinates of their intersection C.

That is, substitute y = x tan ft in (3) and

solve for a?, which will be the abscissa ajn of C. This gives

sin acn sin sin (a ft)

cos CK
O
cos ft

'

sin

= tan a tan ft =j 7 o

4A cos cos a
Q

cos

.*. x
l
= 4Acos tf sift ( fi) -r- cos /?, and the range

which =
a?, -^ cos /?, is = (4A -r- cos

2

/?) cos or
c
sin (<* /?). (5)

The maximum range on a given inclined plane, /?, c (and

.'. A), remaining constant, while or
c varies. That is, required

the value of a which renders OC a maximum. Differential

ing (5) with respect to <*
, putting this derivative 0, we have

[4A -r- cos
a

ft] [cos a cos (at ft)
sin a sin (<r /5)]

=
;

whence cos [> + (a, /?)]
= 0; i.e., 2 /? = 90; or,

a = 45 -f- |y5, for a maximum range. By substitution this

maximum becomes known.

The velocity at any point of the path is v = Vvx
*

-j- vv
* =
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r c
2

2ctg sin <*
Q -\-y*t* (see the first part of this 80) ;

while

the time of passage from to any point whose abscissa is x is

t = x -r- c cos ^
;
obtained from equation (1). E.g., to reach

the point B, Fig. 94, we pat x = &r = 4A sin a cos a, and ob-

-f- ^. This will give the velocity at ^ =tain tr = 2c sin

t
7? = G.

81. Actual Path of Projectiles. Small jets of water, so long as

they remain unbroken, give close approximations to parabolic

paths, as also any small dense object, e.g., a ball of metal, hav-

ing a moderate initial velocity. The course of a cannon-ball,

however, with a velocity of 1200 to 1400 feet per second is

much affected by the resistance of the air, the descending
branch of the curve being much steeper than the ascending;
see Fig. 96$. The equation of this curve has not yet been

determined, but only the expression for the slope (i.e.,

dy : dx) at any point. See Professor Bart-

lett's Mechanics, 151 (in which the body
is a sphere having no motion of rotation).

Swift rotation about an axis, as well as an

unsymmetrical form with reference to the

direction of motion, alters the trajectory

still further, and may deviate it from a vertical plane.

presence of wind would occasion increased irregularity.

Johnson's Encyclopaedia, article
"
Gunnery."

fi ...--T-

FIG. 96a.

The
See

82. Special Problem (imaginary ;
from Weisbach's Mechan-

ics. The equations are not homogeneous). Suppose a ma-

terial point, mass = J^, to start

from the point 0, Fig. 97, with

a velocity = 9 feet per second

along the Y axis, being sub-

jected thereafter to a constant

attractive X force, of a value X
= 1%M, and to a variable Y
force increasing with the time

(in seconds, reckoned from O),

.

y x

Fio. 97.
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viz., Y=SMt. Eequired the path, etc. For the X motion
we havepx = X~ M= 12, and hence

and

/Vx s*t s>t

I dvx = / pxdt = 12 / ^ ; i.e., ^ = 12*:
t'o t/o

/*
^.f

s>t

[

J^
dx

=J^
vxdt ; i.e., x ---- 12^ ^ = 6*

a
. . (1)

/^y

/^^

6^yu=8 / &ft:
9 i/

i.e., vv+ 9 = 4*
3

,
and J dy = f vydt;

r* r*
.-. y 4 / z?<^ 9 / ^*, or y = 4*

8
9*. . . (2)

e/o t/

Eliminate t between (1) and (2), and we have, as the equa-
tion of the path.

which indicates a curve of the third order.

The velocity at any point is (see 74, eq. (1) )

v = vx
* + vv

* = 4 3 + 9...... (4)

length of curve measured from will be (since ?) =

The ^6, tan or, at any point =vy -irvx = (4f 9) -f- 12,

6? tan a 4^ + 9

radius of curvature at any point (74, eq. (6)), sub-

stituting ^ = 12, a)so from (4) and (6), is

, . . (7)

and the normal acceleration = v* -i- r (eq. (4), 74), becomes

from (4) and (7) pn = 12 (ft. per square second), a constant.

Hence the centripetal or deviating force at any point, i.e., the
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the forces X and I
7
,
is the same at all points, and =

From equation (3) it is evident that the curve is symmetrical
about the axis X. Negative values of t and s would apply to

points on the dotted portion in Fig. 97, since the body may be

considered as having started at any point whatever, so long as

all the variables have their proper values for that point.

(Let the student determine how the conditions of this motion

could be approximated to experimentally.)

83/ Relative and Absolute Velocities. Fig. 98. Let J^Tbe a

material point having a uniform motion of velocity vt along a

straight groove cut in the deck of a steamer, which itself has

a uniform motion of translation, of velocity v over the bed of

a river. In one second M ad-

vances a distance v9 along the

groove, which simultaneously has

moved a distance v
1

AB with

the vessel. The absolute path of

M during the second is evidently FIG. 98.

w (the diagonal formed on v
l
and v^, which may therefore be

called the absolute velocity of the body (considering the bed

of the river as fixed) ;
while v9 is its relative velocity, i.e., rela-

tive to the vessel. If the motion of the vessel is not one of

translation, the construction still holds good for an instant of

time, but v
1
is then the velocity of that point of the deck over

which M is passing at this instant, and v9
is M's velocity rela-

tively to that point alone.

Conversely, if M be moving over the deck with a given

absolute velocity = w, V
T being that of the vessel, the relative

velocity ^ may be found by resolving w into two components,
one of which shall be v

t ;
the other will be vy

If w is the absolute velocity and direction of the wind, the

vane on the mast-head will be parallel to MT, i.e., to v9
the

relative velocity ;
while if the vessel be rolling and the mast-

head therefore describing a sinuous path, the direction of the

vane varies periodically.
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Evidently the effect of the wind on the sails, if any, will

depend on vt the relative, and not directly on w the absolute,

velocity. Similarly, if w is the velocity of a jet of water, and

v
l
that of a water-wheel channel, which the water is to enter

without sudden deviation, or impact, the channel-partition

should be made tangent to vt
and not to w.

Again, the aberration of light of the stars depends on the

same construction
;
v

1
is the absolute velocity of a locality of the

earth's surface (being practically equal to that of the centre) ;

w is the absolute direction and velocity of the light from a

certain star. To see the star, a telescope must be directed

along MT, i.e., parallel to vt
the relative velocity ; just as in

the case of the moving vessel, the groove must have the direc-

tion MT, if the moving material point, having an absolute

velocity w, is to pass down the groove without touching its

sides. Since the velocity of light = 192,000 miles per second

= w, and that of the eartli in its orbit = 19 miles per second

= Vv the angle of aberration SMT, Fig. 98, will not exceed

20 seconds of arc
;
while it is zero when w and v

1
are parallel.

Returning to the wind and sail-boat,* it will be seen from

Fig. 98 that when v
1
= or even > w, it is still possible for v^

to be of such an amount and direction as to give, on a sail

properly placed, a small wind-pressure, having a small fore-and

aft component, which in the case of an ice-boat may exceed

the small fore-and-aft resistance of such a craft, and thus v
l
will

be still further increased
; i.e., an ice-boat may sometimes travel

faster than the wind which drives it. This has often been

proved experimentally on the Hudson liiver.

* See 571 for the mechanics of the sail-boat.
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CHAPTEK IY.

MOMENT OF INERTIA.

[NOTE. For the propriety of this term and its use in Mechanics, see

114, 216, and 229 ;
for the present we deal only with the geometrical

nature of these two kinds of quantity.]

85. Plane Figures. Just as in dealing with the centre of

gravity of a plane figure ( 23), we had occasion to sum the

seriesfzdF, z being the distance of any element of area, dF,
from an axis

;
so in subsequent chapters it will be necessary to

know the value of the seriesfz*dF for plane figures of various

shapes referred to various axes. This summation fz*dF of

the products arising from multiplying each elementary area of

the figure by the square of its distance from an axis is called

the moment of inertia of the plane figure with respect to the

axis in question its symbol will be 7. If the axis is perpen-

.dicular to the plane of the figure, it may be named the polar
mom. of inertia

( 94) ;
if the axis lies in the plane, the rec-

tangular mom. of inertia
( 90-93). Since the 7 of a plane

figure evidently consists of four dimensions of length, it may
always be resolved into two factors, thus I= Fl, in which

F= total area of the figure, while & = 1/7 -f- F, is called the

radius of gyration, because if all the elements of area were

situated at the same radial distance, &, from the axis, the

moment of inertia would still be the same, viz.,

7=JTtdF= WfdF= F~k\

86. Rigid Bodies. Similarly, in dealing with the rotary

motion of a rigid body, we shall need the sum of the series

>fffdM< meaning the summation of the products arising from

multiplying the mass dM oi each elementary volume dV of a
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rigid body by the square of its distance from a specified axis.

This will be called the moment of inertia of the lody with

respect to the particular axis mentioned (often indicated by a

subscript), and will be denoted by /. As before, it can often

be conveniently written JST^
a

,
in which 3f is the whole mass,

and k its "radius of gyration" for the axis used, k being

= VI'-r- M. If the body is homogeneous, the heaviness, y, of

all its particles will be the same, and we may write

i=/fttur= (r * g)ftfdv= (y
-

g) m.
87. If the body is a homogeneous plate of an infinitely small

thickness = r, and of area = F, we have I = (y -j- g)fp*d V
= (y -r- g)rfp*dF\ i.e.,

= (y
-~

g) X thickness X mom. iner-

tia of the plane figure.

88. Two Parallel Axes. Reduction Formula. Fig. 99. Let

Z and Z' be two parallel axes. Then Iz
=fp*d-M,8LndIz,= tfp'*dM. But d being
the distance between the axes, so that <z

a

-]- 5
a= ?

3

,
we have p'

a= (x &)
a

+(y &)
a

=fp*dM+ tffdM- ZafxdM
-ZbfydM. . (1)

But/pWJf= Iz,fdM= M, and from the

theory of the centre of gravity (see 23, eq. (1), knowing that

dM=yd V-r-g, and /. that [fyd V~\ -j- g=M) we have/a%Of
= M.X SLudJydM = -3/y 5

hence (1) becomes

in which a and 5 are the x and / of the axis Z'\ x and y refer

to the centre of gravity of the body. If Z is a gravity-axis

(call it
<?),

both x and y = 0, and (2) becomes

2Z, = lg -\-Mcl?. ... or kz>* kg -{-d*. . . (3)

It is therefore evident that the mom. of inertia about a grav-

ity-axis is smaller than about any other parallel axis.

Eq. (3) includes the particular case of a plane figure, by

FIG. 99.
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writing area instead of mass, i.e., when Z (now g) is a gravity-
axis,

f,,=Ig + Fd*
(4)

89. Other Reduction Formulae; for Plane Figures. (The axes

here mentioned lie in the plane of the figure.) For two sets

of rectangular axes, having the same origin, the following holds

good. Fig. 100. Since

Ix =f!fdF, and IT =/afdF9

we have Ix+ IY =f(a? + y*)dF.

Similarly, Iv+ Iv =f(v* + u*)dF.

But since the a? and y of any dFliwe the same hypothennse as

the u and v, we have tf+ u* = a?
a+ y

2

; .-. fx+JY ~

FIG. 100. FIG. lOOa.

Let XT)e an axis of symmetry then, given Ix and IT (0 is

anywhere on X\ required 7^, U being an axis through and

making any angle a with X.

lu= tfv*dl<
J=

tf(y cos a x sin otfdF; i.e.,

In= cos
a

afy*dF 2 sin a cos afxydF-\- sin
a

afx*dF.

But since the area is symmetrical about JT, in summing up the

products xydF, for every term x( + y)dF, there is also a term

a?( y)<F to cancel it
;
which givesfxydF= 0. Hence

Jn= cos
3 alx -f- sin

a
or/r.

The student may easily prove that if two distances a and J

be set off from on ^ and Y respectively, made inversely

proportional to VIx and VlY,
and an ellipse described on a and

1) as semi-axes ; then the moments of inertia of the figure about
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any axes through O are inversely proportional to the squares
of the corresponding semi-diameters of this ellipse ;

called

therefore the Ellipse of Inertia. It follows therefore that the

moments of inertia about all gravity-axes of a circle, or a

regular polygon, are equal ;
since their ellipse of inertia must

be a circle. Even if the plane figure is not symmetrical, an
"
ellipse of inertia" can be located at any point, arid has the

properties already mentioned
;

its axes are called the principal
axes for that point.

90. The Rectangle. First, about its Fig. 101. Since

dz

all points of a strip parallel to the base
'""* have the same co-ordinate, z, we may take

dz the area of such a strip for dF= bdz;

j*
Jo

FIG. 101. FIG. 102.

Secondly, about a gravity-axis parallel to base.

dF= Uz .-. Ig =

Thirdly, about any other axis in its plane. Use the results

already obtained in connection with the reduction-formulae of

88, 89.

90a. The Triangle. First, about an axis through the vertex

and parallel to the base
; i.e., lv . ....&..... ....^ .&.. ^ ^

in Fig. 103. Here the length 1 V
y. ~y ~]j-fcV~~ /

of the strip is variable
;

call it y. ^
\

j
/

Y"*---"/y--a
From similar triangles \\ / \ / %h

_^ ^ y ...\L.. [ y
y = (b -T- Tl)Z ; FIG. 103. FIG. 104.

.-. I = =
fz*ydz

= (&-=-

Secondly, about g, a gravity-axis parallel to the base. Fig.

104. From 88, eq. (4), we have, since F= %bh and

d = A I = IV
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Thirdly, Fig. 104, about the base ; IB = ?

(4), IB = Ig+ Fd\ with d = %h ;
hence

From 88, eq.

91. The Circle. About any diameter, as g, Fig. 105. Polar

co-ordinates, lg
= fz*dF. Here we take<fJT== area of an ele-

mentary rectangle = pdcp .dp, while z = psin ^.

f
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formed by shifting one of them parallel to B, until it touches

the other
; i.e., IB of CE+ IB of FD = #A' ( 90). Hence

the IB of the T shape in Fig. 106 will be = IB of rectangle

AD IB of rect. CE IB of rect. FD.

That is, IB of T = t[M' - &A']. . ( 90). . . (1)

About the gravity-axis, g, Fig. 106. To find the distance d
from the base to the centre of gravity, we may make use of

eq. (3) of 23, writing areas instead of volumes, or, experi-

mentally, having cut the given shape out of sheet-metal or

card-board, we may balance it on a knife-edge. Supposing d
to be known by some such method, we have, from eq. (4) of

88, since the area F=bh JA> Ig = IB Fd1

;

-O-

The double-^ (on), and the box forms of Fig. 106&, if
- -"& * *> -

symmetrical about the gravity-

axis g, have moments of inertia

alike in form. Here the grav-

ity-axis (parallel to base) of the

compound figure is also a grav-

FIG. io6a. ity axis (parallel to base) of each

of the two component rectangles, of dimensions b and A, b
l
and

A
t , respectively.

Hence by algebraic addition we have ( 90), for either com-

pound figure,

(If there is no axis of symmetry parallel to the base we must

proceed as in dealing with the T-form.) Similarly for the ring,

FIG. 107. FIG. 108.

Fig. 107, or space between two concentric circumferences, we

have, about any diameter or g ( 91),
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The rhombus about a gravity-axis, g, perpendicular to a

diagonal, Fig. 108. This axis divides the figure into two

equal triangles, symmetrically placed, hence the Ig of the

rhombus equals double the moment of inertia of one triangle

about its base
;
hence (

.... (5)

(The result is the same, if either vertex, or both, be shifted

any distance parallel to AB.)
For practice, the student may derive results for the trapezoid ;

for the forms in Fig. 106, when the inner corners are rounded

into equal quadrants of circles; for the double-T, when the

lower flanges are shorter than the upper; for the regular

polygons, etc.

93. If the plane figure be bounded, wholly or partially, by

curves, it may be subdivided into an infinite number of strips,

and the moments of inertia of these (referred to the desired

axis) added by integration, if the equations of the curves are

known ; if not, Simpson's Rule, for a finite even number of

strips, of equal width, may be employed for an approximate
result. If these strips are parallel to the axis, the 1 of any one

strip its length X its width X square of distance from axis;

while if perpendicular to, and terminating in, the axis, its

I J- its width X cube of its length (see 90).

A graphic method of determining the moment of inertia of

any irregular figure will be given in a subsequent chapter.

94. Polar Moment of Inertia of Plane Figures ( 85). Since

the axis is now perpendicular to the plane of the figure, inter-

secting it in a point, 0, the distances of the ele-

ments of area will all radiate from this point,

and would better be denoted by p instead of z
;

hence, Fig. 109,yp
2
^7^is the polar moment of

inertia of any plane figure about a specified

point ;
this may be denoted by Ip . But /o

a
FIO. 109.

= a?
a

-f- y
3

,
for each dF\ hence

= I 7.
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i.e., the polar moment of inertia about any given point in

the plane equals the sum of the rectangular moments of iner-

tia about any two axes of the plane figure, which intersect at

right angles in the given point. We have therefore for the

circle about its centre

For a ring of radii T\ and 7\,

For the rectangle about its centre,

For the square, this reduces to

(See 90 and 91.)

95. Slender, Prismatic, Homogeneous Rod. Returning to the

moment of inertia qf rigid bodies, or solids, we begin with that

of a material line, as it might be called, about

an axis through its extremity making some an-

gle a with the rod. Let I = length of the rod,

.2^ its cross-section (very small, the result being

strictly true only when F =
0). Subdivide

FIG. no. the rod into an infinite number of small prisms,
each having F as a base, and an altitude ds. Let y = the

heaviness of the material
;
then the mass of an elementary

prism, or dM, =-(y -r- g)Fds, while its distance from the axis

Z is p = s sin a. Hence the moment of inertia of the rod

with respect to Z as an axis is

Iz = p*dM= (y -f-

But yFl -r- g = mass of rod and I sin a = a, the distance of

the further extremity from the axis
;
hence Iz \Ma? and

the radius of gyration, or
Ic, is found by writing ^Ma'

2= Mk*
;

.-. tf = i^8

,
or Tc = V%a (see 86). If a = 90. a = I.

96. Thin Plates. Axis in the Plate. Let the plates be homo-

geneous and of small constant thickness T. If the surface of
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the plate be = F, and its heaviness y, then its mass = yFr ~-
g.

From 87 we have for the plate, about any axis,

/ (y -T- g)t X mom. of inertia of the plane figureformed by
the shape of the plate............. (1)

Rectangular plate. Gravity-axisparallel to base. Dimen-
sions b and h. From eq. (1) and 90 we have

If=(y *- fr A^ s = (rMr -5- g)tf?= ^Mh"; .: If = ^h'.

Similarly, if the base is the axis, IB = -JJ/A
2

,
/. tf = -JA

3
.

Triangular plate. Axis through vertex parallel to base.

From eq. (1) and 90#, dimensions being b and A,

Circular plate, with any diameter as axis. From eq. (1)
and 91 we have

97. Plates or Right Prisms of any Thickness (or Altitude).

Axis Perpendicular to Surface (or Base). As before, the solid is

homogeneous, i.e., of constant heaviness y\
| z

let the altitude = A. Consider an elementary

prism, Fig. Ill, whose length is parallel to the

axis of reference Z. Its altitude = A = that

of the whole solid
;
its base = dF= an element f

of T^the area of the base of solid
;
and each

*

point of it has the same p. Hence we may FIG. m.

take its mass, = yJidF~ g, as the dMin summing the series

= (yh -f- g) X polar mom. of inertia of base. . . (2)

By the use of eq. (2) and the results in 94 we obtain the

following:
Circular plate, or right circular cylinder, about the geo-

metrical axis, r = radius, A = altitude.

f. = (yh - 0*w = (yk* * gW = *^; ' *" = &
Right parallelopiped or rectangular plate. Fig. 112,

Ig = (Yh +
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For a hollow cylinder, about its geometric axis,

FIG. 112. FIG. 113.

98. Circular Wire. Fig. 113 (perspective). Let Z be a

gravity-axis perpendicular to the plane of the wire
;
X and Y

lie in this plane, intersecting at right angles in the centre 0.

The wire is homogeneous and of constant (small) cross-section.

Since, referred to Z, each dM has the same p = /*, we have

7^ =ffdM= Mr\ Now 7^ must equal 7r,
and

( 94) 'their

sum = 7Z,

/. Ix,
or 7r,

= JJff*, and &x
3

,
or &F

2 = Jr
8

.

99. Homogeneous Solid Cylinder, about a diameter of its base.

Fig. 114. Ix = ? Divide the cylinder into an infinite num-

ber of laminae, or thin plates, parallel to the

base. Each is some distance z from X, of

thickness dz, and of radius r (constant). In
^ each draw a gravity-axis (of its own) parallel to

FIG. ii4. X. We may now obtain the Ix of the whole

cylinder by adding the 7x's of all the laminae. The Ig of any
one lamina (96, circular plate) = its mass Xi^

2

;
hence its

/x (eq- (3), 88) = its Ig+ (its mass) X s
2
. Hence for the

whole cylinder

= /

i.e., 7X=
100. Let the student prove (1) that if Fig. 114 represent

any right prism, and kF denote the radius of gyration of any
one lamina, referred to its gravity-axis parallel to X, then the

Ix of whole prism = M(kf -\- Aa

) ;
and (2) that the moment



MOMENT OF INEKTIA. 101

of inertia of the cylinder about a gravity-axis parallel to the

baseis =

101. Homogeneous Right Cone. Fig. 115. First, about an

axis V, through the vertex and parallel to the base. As before,

divide into laminae parallel to the base. Each is a

circular thin plate, but its radius, a?,
is not = r, but,

from proportion, is x = (r -;- h)z.

The /of any lamina referred to its own gravity-

axis parallel to Fis (96) = (its mass) X i#
a

,
and

its Iv (eq. (3), 88) is .'. = its mass X i#
8 + FIG. 115.

its mass X *

Hence for the whole cone,

Secondly, about a gravity-axis parallel to the "base. From

cq. (3), 88, with d = %h (see Prob. 7, 2(5),
and the result

just obtained, we have /= M-/$[r* -f" i^*]-

Thirdly, about its geometric axis, Z. Fig. 116. Since the

axis is perpendicular to each circular lamina through the centre,

its/z (97)is
= its mass X J(rad.)

a = (yntfdz -r- g)^*?.

Now x = (r -i- h)z, and hence for the whole cone

I = r> H- K z'dz = r'h

FIG. 116. FIG. 118.

102. Homogeneous Right Pyramid of Rectangular Base.

About its geometrical axis. Proceeding as in the last para-
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graph, we derive Iz MfacP, in which d is the diagonal of the

base.

103. Homogeneous Sphere. About any diameter. Fig. 118.

Iz ? Divide into laminae perpendicular to Z. By 97, and

noting that a?
2 = r* z*, we have finally, for the whole sphere,,

For a segment, of one or two bases, put proper limits for z.

in the foregoing, instead of + r and r.

104. Other Cases. Parabolic plate, Fig. 119, homogeneous
and of (any) constant thickness, about

an axis through 0, the middle of the

chord, and perpendicular to the plate,

This is

FIG. 119. FIG. 120. /= Jf|(J
9 + fA').

The area of the segment is %hs.

For an elliptic plate, Fig. 120, homogeneous and of any
constant thickness, semi-axes a and 5, we have about an axis

through 0, normal to surface I = M^jf -\-
a

] ;
while for a

very small constant thickness

and I

The area of the ellipse
= nab.

Considering Figs. 119 and 120 as plane figures, let the

student determine their polar and rectangular moments of

inertia about various axes.

(For still other cases, see p. 518 of Rankine's Applied

Mechanics, and pp. 593 and 594 of Coxe's Weisbach.)

105. Numerical Substitution. The moments of inertia of

plane figures involve dimensions of length alone, and will be

utilized in the problems involving flexure and torsion of beams,

where the inch is the most convenient linear unit. E.g., the
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polar moment of inertia of a circle of two inches radius about

its centre is \7tr* 25.13 -|- biquadratic, or four-dimension,

inches, as it may be called. Since this quantity contains four

dimensions of length, the use of the foot instead of the inch

would diminish its numerical value in the ratio of the fourth

power of twelve to unity.

The moment of inertia of a rigid "body, or solid, however,
= Ml = (G- -r- g)k*, in which G, the weight, is expressed in

units offorce, g involves both time and space (length), while &a

involves length (two dimensions). Hence in any homogeneous
formula in which the / of a solid occurs, we must be careful to

employ units consistently ; e.g., if in substituting G ~ g forM
(as will always be done numerically) we put g = 32.2, we
should use the second as unit of time, and the foot as linear

unit.

106. Example. Eequired the moment of inertia, about the

axis of rotation, of a pulley consisting of a rim, four parallelo-

pipedical arms, and a cylindrical hub which may be considered

solid, being filled by a portion of the shaft.

Fig. 121. Call the weight of the hub G,

its radius r\ similarly, for the rim, G^
and 7*

2 ;
the weight of one arm being = ?,.

The total / will be the sum of the /'s of

the component parts, referred to the same

axis, viz. : Those of the hub and rim will

be (G + gfr? and ?,
- ff^r'+ r.'),

respectively ( 97), while if the arms are Fl - 121 -

not very thick compared with their length, we have for them

( 95 and 88)

as an approximation (obtained by reduction from the axis at

the extremity of an arm to a parallel gravity-axis, then to the

required axis, then multiplying by four). In most fly-wheels,

the rim is proportionally so heavy, besides being the farthest

removed from the axis of rotation, that the moment of inertia

of the other parts may be for practical purposes neglected.
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107. Ellipsoid of Inertia. The moments of inertia about

all axes passing through any given point of any rigid body
whatever may be proved to be inversely proportional to the

squares of the diameters which they intercept in an imaginary

ellipsoid, whose centre is the given point, and whose position

in the body depends on the distribution of its mass and the

location of the given point. The three axes which contain the

three principal diameters of the ellipsoid are called the Princi-

pal Axes of the "body for the given point. This is called the

ellipsoid of inertia. (Compare 89.) Hence the moments of

inertia of any homogeneous regular polyedron about all gravity-

axes are equal, since then the ellipsoid becomes a sphere. It

can also be proved that for any rigid body, if the co-ordinate

axes X, Y, and Z, are taken coincident with the three principal

axes at any point, we shall have

=0; and
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CHAPTEE Y.

DYNAMICS OF A RIGID BODY.

108. General Method. Among the possible motions of a

rigid body the most important for practical purposes (and for-

tunately the most simple to treat) are : a motion of translation,

in which the particles move in parallel right lines with equal

accelerations and velocities at any given instant; and rotation

about a fixed axis, in which the particles describe circles in

parallel planes with velocities and accelerations proportional

(at any given instant) to their distances from the axis. Other

motions will be mentioned later. To determine relations, or

equations, between the elements of the motion, the mass and

form of the body, and the forces acting (which do not neces-

sarily form an unbalanced system), the most direct method to

be employed is that of two equivalent systems of forces ( 15),

one consisting of the actual forces acting on the body, con-

sidered free, the other imaginary, consisting of the infinite

number of forces which, applied to the separate material points

composing the body, would account for their individual mo-

tions, as if they were an assemblage of particles without mutual

actions or coherence. If the body were at rest, then considered

free, and the forces referred to three co-ordinate axes, they
would constitute a balanced system, for which the six summa-

tions ^X, ^Y, *2Z, ^(mom.)x, 2(mom.) Ti
and ^(mom.)z,

would each =
;
but in most cases of motion some or all of

these sums are equal (at any given instant), not to zero, but to

the corresponding summation of the imaginary equivalent

system, i.e., to expressions involving the masses of the particles

(or material points), their distribution in the body, and the
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elements of the motion. That is, we obtain six equations by
putting the ^2X si the actual system equal to the 2X of the

imaginary, and so on
;
for a definite instant of time (since some

of the quantities may be variable).

109. Translation. Fig. 122. At a given instant all the par-
ticles have the same velocity = v, in parallel right lines (par-

allel to the axis JT, say), and the

same acceleration p. Required
the ^>X. of the acting forces,

^M
shown at

(I.). (II.) shows the

imaginary equivalent system, con-

sisting of a force = mass X ace.

= dMp applied parallel to JTto

each particle, since such a force

would be necessary (from eq. (IY.)

55) to account for the accelerated rectilinear motion of the

particle, independently of the others. Putting (2X )I=(2X)II,

we have
v'

(2X)I =fpdM=pfdM^Mp: . . . (Y.)

It is evident that the resultant of system (II.) must be paral-

lel toX; hence* that of (I.), which = (-2X)7 and may be de-

noted by 7?, must also be parallel to X\ let a = perpendicular
distance from R to the plane YX\ a will be parallel to Z.

Now put [^(mom.^Jj = [J(mpni.F)]xn (Y is an axis perj^n^f ^/~
dicular to paper through 0) and we have Ra = fdMpz^
= pfdMz = pMz (88), i.e., a z. A similar result

may be proved as regards y. Hence, if a rigid body has a

motion of translation, the resultant force must act in a line

through the centre of gravity (here more properly called the

centre of mass), and parallel to the direction of motion. Or,

practically, in dealing with a rigid body having a motion of

translation, we may consider it concentrated at its centre of

mass. If the velocity of translation is uniform, R = ^M X
= 0, i.e., the forces are balanced.

* The forces of system (I. ) cannot form a couple ; since those of system (II. )

do not reduce to a couple, all pointing one way.
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110. Rotation about a Fixed Axis. First, as to the elements

of space and time involved. Fig. 123. Let be the axis of

rotation (perpendicular to paper), OY a fixed

line of reference, and OA a convenient line of

the rotating body, passing through the axis and

perpendicular to it, accompanying the body in

its angular motion, which is the same as that of

OA.. Just as in linear motion we dealt with Fl - 123-

linear space ($),
linear velocity (V), and linear acceleration (p),

so here we distinguish at any instant
;

a, the angular space between Y and OA
;

GO ,
,
the angular velocity, or rate at which a is changing ;

and

= -TT = -3-5-, the angular acceleration, or rate at which GO

is changing.
These are all reckoned in jr-measure and may be + or

,

according to their direction against or with the hands of a

watch.

(Let the student interpret the following cases : (1) at a cer-

tain instant GO is +, and 6
; (2) GO is

,
and 6 -J-; (3) a is

,
GO and 9 both +; (4)

a
-J-,

GO and 6 both .) For rotary

motion we have therefore, in general,

da dao
" =

-&>
..... 0^) 6 =dt=-

and .-. oodGo = Bda
;

corresponding to eqs. (I.), (II.), and (III.) in 50, for rectilinear

motion.

Hence, for uniform rotary motion, GO being constant and

6 = 0, we have a = cot, t being reckoned from the instant

when a = 0.

For uniformly accelerated rotary motion 6 is constant, and



108 MECHANICS OF ENGINEERING.

if <s? denote the initial angular velocity (when a and t =3 0),

we may derive, precisely as in 56,

GO = H + 6t
;

. . (1)
= atf + *6tf ;

. . (2)

a = (3) and = *(. + )*

If in any problem in rotary motion 6, GO, and <* have been

determined for any instant, the corresponding linear values for

any point of the body whose radial distance from the axis is p,

will be s= ap (= distance described by the point measured

along its circular path from its initial position), v = oop = its

velocity, and pt
= 6p its tangential acceleration, at the instant

in question.

Examples. (1) What value of G?, the angular velocity, is

implied in the statement that a pulley is revolving at the rate

of 100 revolutions per minute ?

100 revolutions per minute is at the rate of 2?r X 100

= 628.32 (^-measure units) of angular space per minute

= 10.472 per second ;/.( = 628.32 per minute or 10.472

per second.

(2) A grindstone whose initial speed of rotation is 90 revo-

lutions per minute is brought to rest in 30 seconds, the an-

gular retardation (or negative angular acceleration) being con-

stant
; required the angular acceleration, 0, and the angular

space a described. Use the second as unit of time.

oo
v
=

27r|~-
= 9.4248 per second

;
/. from eq. (1)

- -.IL^L = _ 9^24 -s- 30 = 0.3141 (^-measure units)
t

per
"
square second." The angular space, from eq. (2) is

a = a>f+ 0ff = 30 X 9.42 4(0.314)900 = 141.3

(jr-measure units), i.e., the stone has made 22.4 revolutions in

coming to rest and a point 2 ft. from the axis has described a

distance s = ap 141.3 X 2 = 282.6 ft. in its circular path.

111. Rotation. Preliminary Problem. Axis Fixed. For

clearness in subsequent .matter we now consider the following
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simple case. Fig. 124 shows a rigid body, consisting of a

drum, an axle, a projecting arm, all

of which are imponderable, and a

single material point, whose weight
is G and mass M. An imponderable
flexible cord, in which the tension is

kept constant and = P, unwinds

from the drum. The axle coincides

with the vertical axis Z, while the cord
'

Fl<3> 124>

is always parallel to Y. Initially (i.e., when t = 0) Jflies at

rest in the plane ZY. Required its position at the end of any
time t (i.e., at any instant) and also the reactions of the bearings
at and 0^ supposing no vertical pressure to exist at 0^ and

that P and M are at the same level. No friction. At any in-

stant the eight unknowns, a, GO, 0, JT , Y^ZW JL,, and Y^ may
be found from the six equations formed by putting ^X, etc.,

of the system of forces in Fig. 124, equal, respectively, to the

2X, etc., of the imaginary equivalent system in Fig. 125, and

two others to be mentioned subsequently. Since, at this in-

stant, the velocity'of M must be v = cop and its tangential ac-

celeration pt
= Op, its circular motion

could be produced, considering it free (eq.

(5), 74), by a tangential force T= mass

X Pt = M6p, and a normal centripetal

force N=Mv* -7- p=M(oop)* ^ ptfMp.
~~FIG. 125. Hence the system in Fig. 125 is equivalent

to that of Fig. 124, and from putting the ^ (mom.)z of one

= that of the other, we derive

Pa = Tp ; i.e., Pa = QMp\ .... (1)

whence becomes known, and is evidently constant, since P,

a, M, and p are such. .'. the angular motion is uniformly ac-

celerated, and from eqs. (1) and (2), 110, GO and a become

known
;

i.e., GO = Bt, . . . (2) and a = 6t* (3)

Putting (2Z of 124) = (2Z of 125). gives

Z. - G = ; i.e.. Z = (4)
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Proceeding similarly with the ^J5T of each system,

X -f-Xv
= Tcos OL JVsin a = 6Mp cos a afMp&m or, (5)

and with the 2Y of each,

P + Y + Y, = - Tsm a-JVcosa=- OMpsiu a

oo*Mp cos ex
; (6)

while with the 2 (mom^j- we have, conceiving all the forces in

each system projected on the plane ZI^(see 38), and noting
that y = p cos a and x = p sin ar,

+ Op cos a+ YJ + P = - (6Mp sin *)&-(< Jf/o cosa)5,(Y)

and with the ^ (mom.)F,

#/> sin or X,l = (OMp cos a)l + (oo*Mp sin a)J. . (8)

From (Y) we may find Yj> from (8), JT,; then X and J^
from (5) and (6). It will be noted that as the motion proceeds
6 remains constant

;
GO increases with the time, a with the

square of the time
;
ZQ

is constant, = G
;
while X.^ Y09 -Xj,

and Y
l
have variable values dependent on p cos a and p sin #,

i.e., on the co-ordinates y and x of the moving material point.

112. Particular Supposition in the Preceding Problem with

Numerical Substitution. Suppose we have given (using the

foot-pound-second system of units in which g = 32.2) G = 64.4

Ibs., whence

M = (Q + g)
= 2; P = 41bs., Z = 4ft., 5 = 2 ft, a = 2 ft,

and p 4 ft.; and that J/ is just passing through the plane

ZJf, i.e., that =
-JTT. We obtain, first, the angular accelera-

tion, eq. (1),

6 = Pa-+ Mp =S + 3Z= 0.25 = J.

From eqs. (2) and (3) we have the instant mentioned (not-

ing that when a was = 0, t was = 0)

o>
a = 2# = Jw = 0.7854 +,

while (2) gives, for the time of describing the quadrant,

t = GO -i- 6 = 3.544. . . . seconds.

Since at this instant cos a and sin a 1, we have, from

(7),

-f 0+r,X4 + 4x2^ -JX2X4X2; .-. T> - 3 Ibs.
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The minus sign shows it should point in a direction contrary
to that in which it is drawn in Fig. 124. Eq. (8) gives

-64.4 X ^-Xl X 4=-0-hi7TX2x4x2;.-.X1
= - 67.54 Ibs.

And similarly, knowing YI and X^ we have from (5) and (6),

. Z = + 61.26 Ibs., and Y = - 3.00 Ibs.

The resultant of X, and Y also that of JT
,
Y

,
and Z

,
caii

now be found by the parallelogram (and parallelopipedon) of

forces, both in amount and position, noting carefully the direc-

tions of the components. These resultants are the actions of

the supports upon the ends of the axle
; jfyeir equals and

opposites would be the actions or pressures of the axle against

the supports, at the instant considered (when M is passing

through the plane ZX\ i.e., with A = \7t). (At the same in-

stant, suppose the string to break ; what would be the effect on

the eight quantities mentioned?)

113. Centre of Percussion of a Rod suspended from one End.

Fig. 126. The rod is initially at rest (see (I.)
in figure), is straight,

homogeneous, and of constant

(small) cross-section. Neglect its

weight. A horizontal force or

pressure, jP, due to a blow (and

varying in amount during the p

blow), now acts upon it from the

left, perpendicularly to the axis,

Z, of suspension. An accelerated

rotary motion begins about the fixed axis Z. (II.) shows the rod

free, at a certain instant, with the reactions X and Y put in

at O . (III.) shows an imaginary system which would produce
the same effect at this instant, and consisting of a dT= dMOp,
and adN= <*?dMf> applied to eachdM9 the rod being composed
of an infinite number of dM's, each at some distance p from
the axis. Considering that the rotation has just ~begun, <&, the

angular velocity is as yet small, and will be neglected. Ke-

quired Y the horizontal reaction of the support at in term?

of P. By putting 2Yu = 2Yin,
we have

P - Y =fdT= 6/pdM= 8M~p.

(n.)

FIG. 126.

(in.)
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/. Yo = P BMp ; p is the distance of the centre of gravity

from the axis (KB. J'pdM = M~p is only true when all the

p's are parallel to each other). But the. value of the angular
acceleration 6 at this instant depends on P and , for 2 (mom.)^
in (II.)

= 2 (mom.)z in (III.), whence Pa = 8fp*dM=z OIZ,

where Iz is the moment of inertia of the rod about Z, and from

95 = \Ml\ Now p = il ; hence, finally,

If now Y is = 0, i.e., if there is to be no shock

the rod and axis, we need only apply P at a point whose dis-

tance a = \l from the axis
;
for then Y = 0. This point is

called the centre of percussion for the given rod and axis. It

and the point of suspension are interchangeable (see 118).

(Lay a pencil on a table; tap it at a point distant one third of

the length from one end
;
it will begin to rotate about a vertical

axis through the farther end. Tap it at one end
;
it will begin

to rotate about a vertical axis through the point first mentioned.

Such an axis of rotation is called an axis of instantaneous rota-

tion^ and is different for each point of impact just as the

point of contact of a wheel and rail is the one point of the

wheel which is momentarily at rest, and about which, therefore,

all the others are turning for the instant. Tap the pencil at

its centre of gravity, and a motion of translation begins ;
see

109.)

114. Rotation. Axis Fixed. General- Formulae. Consider

I

FIG. 127. FIG. 128.

Jug now a rigid body of any shape whatever, let Fig. 127 indi*

cate the system of forces acting at any given instant^ Z being
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the fixed axis of rotation, GO and 6 the angular velocity and

angular acceleration, at the given instant. X and Y are two

axes, at right angles to each other and to Z, fixed in space. At
this instant each dM of the body has a definite

a?, y, and <p

(see Fig. 128), which will change, and also a p, and z, which will

not change, as the motion progresses, and is pursuing a circu-

lar path with a velocity = cop and a tangential acceleration

= dp. Hence, if to each dM of the body (see Fig. 128) we

imagine a tangential force dT dMOp and a normal force

= dM(copf -T- p = Go*dMp to be applied (eq. (5), 74), and

these alone, we have a system comprising an infinite number of

forces, all parallel to XY, and equivalent to the actual system
in Fig. 127. Let ^X, etc., represent the sums (six) for Fig.

127, whatever they may be in any particular case, while for

128 we shall write the corresponding sums in detail. Noting
that

fdN cos (p
= affdMp cos (p

= offdMy = G?My,($ 88);

that/<1ZV sin cp = cffdMp sin (p = ctffdMx = a?Mx',

and similarly, that fdT cos cp
= OfdMp cos cp = 6My, and

/^jTsin <p = 6Mx\ while in the moment sums (the moment
of dT cos cp about Y, for example, being dT cos cp . z

OdMp (cos cp)2= 8dMy2) the sum of the moms. r of all the

(dTcos 0>)'s
= - 8/dMyz)

fdTcos cpz = 6fdMyz,fdN sin cpz = affdMxz, etc.,

we have, since the systems are equivalent,

. . . . (IX.)

. . . . (X.)
= 0; (XL)

2 moms.x = - OfdMxz - tffdMyz ;
. (XII.)

2 moms. r = - OfdMyz+ tffdMxz ;
. (XIII.)

2 moms.z = e/dMp* = 6IZ. . . (XIV.)

These hold good for any instant. As the motion proceeds x

and y change, as also the sums fdMxz and fdMyz. If the

body, however, is homogeneous, and symmetrical about the

plane XY, fdMxz and fdMyz would always = zero
;
since

9
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the z of any dMdoes not change, and for every term dMy(-\-z),
there would be a term dMy( z) to cancel it

; similarly for

fdMxz. The eq. (XIY.), 2 (moms, about axis of rotat.)
=

fdTp OfdMp* = (angular accel.) X (mom. of inertia of

body about axis of rotat.), shows how the sum/^J/p
2
arises in

problems of this chapter. That a force dT= dM6p should

be necessary to account for the acceleration (tangential) Op of

the mass dM, is due to the so-called inertia of the mass ( 54) 5

and its moment dTp, or BdMp*, might, with some reason, be

called the moment of'inertia of the dM, "Ai\&fOdMp*= OfdMp*
that of the whole body. But custom has restricted the name

to the sumfdMp*, which, being without the 0, has no term to

suggest the idea of inertia. For want of a better the name is

still retained, however, and is generally denoted by /. (See

86, etc.)

115. Example of the Preceding. A homogeneous right par-

allelopiped is mounted on a vertical

axle (no friction), as in figure. is

at its centre of gravity, hence both

x and y are zero. Let its heaviness

be 7, its dimensions A, J,, and b (see

97). XY is a plane of symmetry,
hence both fdMxz and fdMyz are

zero at all times (see above). The

tension P in the (iriextensible) cord

is caused by the hanging weight Pt

(but is not = PV unless the rotation is uniform). The figure

shows both rigid bodies free. P
1
will have a motion of trans-

lation
;
the parallelepiped, one of rotation about a fixed axis.

No masses are considered except Pt

-=-
</,

and bhb
}y -f- g. The

Iz = Mkz of the latter = its mass X TV(^,
a + V}, 97. At

any instant, the cord being taut, if p = linear acceleration of

P^ we have

FIG. 129.

p da

From (XIY.), Pa = 6IZ ;
.'. P = 8IZ -:- a. .

eq. (a)

. (1)
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For the free mass P
l + g we have (109) Pl p =

mass X ace.,

Equate these two values of P and solve for 6, whence

All the terms here are constant, hence is constant
;
there-

fore the rotary motion is uniformly accelerated, as also the

translation of Pr The formulae of 56, and (1), (2), (3), and

(4) of 110, are applicable. The tension P is also constant
;

see eq. (1). As for the five unknown reactions (components)
at

1
and the bearings, we shall find that they too are con-

stant ;
for

from (IX.) we have X
l +Xa

=
; (4)

from (X.) we have P+ Y, + Z, = ; (5)

from (XL) we have Z
a
- G =

; (6)

from (XII.) we have P . AO+Yl
. ~0\0- Y, . U^O = ; (7)

from (XIII.) we have - X, . ~0fl +X2 . 0^0 = 0. (8)

Numerical substitution in the above problem. Let the par.

allelopiped be of wrought-iron ; let P, = 48 Ibs.; a = 6 in. =
ft.; b = 3 in. = ft. (see Fig. 112) ; ^ 2 ft. 3 in. = ft.;

and h = 4 in. = ft. Also iet Ofi O^O = 18 in. = f ft.,

and A.O = 3 in. = J ft. Selecting the foot-pound-second

system of units, in which g = 32.2, the linear dimensions must

be used in feet, the heaviness, y, of the iron must be used in

Ibs. per cubicfoot, i.e., y = 480 (see 7), and all forces in Ibs.,

times in seconds.

The weight of the iron will be G = Vy = Hbjiy = % . f . $
X 480 = 90 Ibs.; its mass = 90 -j- 32.2 = 2.79

;
and its mo-

ment of inertia about Z = Iz = Mk* = M-fa(b?+ b
9

)
= 2.79

X 0.426 = 1.191. (That is, the radius of gyration, kz ,
=

1/0.426 = 0.653 ft.; or the moment of inertia, or any result

depending solely upon it, is just the same as if the mass were

concentrated in a thin shell, or a line, or a point, at a distance

of 0.653 feet from the axis.) We can now compute the an-

gular acceleration, 6, from eq. (3) ;
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48 Xj 24

"1.191 + (48 -i- 32.2) X i
~

1.191 + 0.372
"

^-measure units per
"
square second." The linear acceleration

of P
l is^>

= da = 7.68 feet per square second for the uniform.,

ly accelerated translation.

Nothing has yet been said of the velocities and initial condi-

tions of the motions
;
for what we have derived so far applies

to any point of time. Suppose, then, that the angular velocity

co = zero when the time, t =
;
and correspondingly the ve-

locity, v = ooa, of translation of P^ be also = when t = 0.

At the end of any time
tf,

GO = 6t ( 56 and 110) and v = pt
= Oat

;
also the angular space, a = 6^

a

,
described by the par-

allelopiped during the time
tf,
and the linear space s = %pf

= %6at\ through which the weight P^ has sunk vertically.

For example, during the first second the parallelepiped has ro-

tated through an angle a = \Qf = X 15.36x1 = 7.68 units,

jr-measure, i.e., (7.68 -f- 2?r)
= 1.22 revolutions, while P

l
has

Bunk through s = %6af = 3.84 ft., vertically.

The tension in the cord, from (2), is

p = 48(1 - 15.36 X 4 -*- g)
= 48(1

-
0.24) = 36.48 Ibs.

The pressures at the bearings will be as follows, at any in-

stant : from (4) and (8), X^ and X
3
must individually be zero

;

from (6) Z, = = Vy = W Ibs.; while from (5) and (7), Yl

e= 21.28 Ibs., and Yt = 15.20 Ibs., and should point in a

direction opposite to that in which they were assumed in Fig.

129 (see last lines of 39).

116. Torsion Balance. A Variably Accel. Rotary Motion.

Axis Fixed. A homogeneous solid having an axis of symmetry
is suspended by an elastic prism,

or filament (whose mass may be

neglected), so that the latter is

vertical and coincident with the

axis of symmetry, and is not only

supported, but prevented from

turning at its upper extremity.
FIG. 130. If the solid is turned about its

axis away from its position of rest and set free, the torsional
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elasticity of the rod or filament, which is fixed in the solid,

causes an oscillatory rotary motion. Required the duration of

an oscillation. Fig. 130.

Take the axis Y at the middle of the oscillation (the original

position of rest). Keckon the time from the instant of passing
this position. Let the initial angular velocity = GO

O
. As the

motion progresses GD diminishes, i.e., 6 is negative.

To consider the body free, conceive the rod cut close to the

body (in which it is firmly inserted), and in the section thus

exposed put in the vertical tension P r

,
and also the horizontal

forces forming a couple to which at any instant the twisting
action (of the portion of rod removed upon the part left in the

free body) is known to be due. Call the moment of this couple

Qb (known as the moment of torsion) ;
it is variable, being

directly proportional to the angle a
; hence, if by experiment

it is found to be = Qlb l
when a is =

<*,, for any value of .a it

will be Qb = (Q& -r- a^a = Ca, in which C is the constant

factor.

At any instant, therefore, the forces acting are G, P'
r
and

those equivalent to the couple whose moment = Qb = Cot.

(No lateral support is required ;
the student would find the X^

YV Xv and Y9
of Fig. 129 to be individually zero, if put in

;

remembering that here, x and y both = 0, as also fdMwz and

fdMyz ;
and that the forces of the couple will not be repre-

sented in any of the six summations of 114, except in

2 moms.z)

From eq. (XIV.), 114, we have - Qb, i.e.,
- O, = 6IZ,

from which

6 (G -f- Iz)a, or, for short, 6 = Bot. . . (1)

Since B is constant, and there is an initial (angular) velocity
= GO

O ,
and since the variables 6, GO, and a, in angular motion

correspond precisely to those (p, v, and s) of rectilinear motion,
it is evident that the present is a case of harmonic motion,

already discussed in Problem 2 of 59. Applying the results

there obtained, since B of eq. (1) corresponds to the a of that

problem, we find that the oscillations are isochronal, i.e., theii
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durations are the same whatever the amplitude (provided the

elasticity of the rod is not impaired), and that the duration of

one oscillation (from one extreme position to the other) is

t' = TT -i- VlT, or finally,

t' =it V<*JZ -h Q&. ...... (2)

117. The Compound Pendulum is any rigid body allowed to

oscillate without friction under the action of gravity when
mounted on a horizontal axis. Fig. 131 shows the

body free, in any position during the progress of

the oscillation, C is the centre of gravity; let GO
XK\ = s. From (XIV.), 114, we have 2 (mom. about

fixed axis)

= angul. ace, X mom. of inertia.

.*. Gs sin a = 6IM
and 6 = Gs sin a -j- / = Mgs sin a -j- Mk\,

i.e., 6 = gs sin a -f- &
a...... (1)

Hence 6 is variable, proportional to sin a. Let us see what

the length I = OK, of a simple circular pendulum, must be, to

have at this instant (i.e., for this value of a) the same angular

acceleration as the rigid body. The linear (tangential) accelera-

tions of K, the extremity of the required simple pendulum
would be ( 77)pt

= g sin or, and hence its angular accelera-

tion* would = g sin a -f- 1. Writing this equal to in eq.

(1), we obtain

l = k? + 8........ (2)

But this is independent of a ;
therefore the length of the sim-

ple pendulum having an angular acceleration equal to that of

the oscillating body is the same in all positions of the latter,

and if the two begin to oscillate simultaneously from a position

of rest at any given angle a
1
with the vertical, they will keep

abreast of each other during the whole motion, and hence have

* Most easily obtained by considering that if the body shrinks into a mere

point at K, and thus becomes a simple pendulum, we have both k and *

equal to I
;
which in (1) gives 6 = g sin a + l.
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the same duration of oscillation
;
which is /. ,for small ampli-

tudes ( 78),

tf = n VI -r- g = n Vic? -*- gs, . . . . (3)

K is called the centre of oscillation corresponding to the given
centre of suspension 0, and is identical with the centre ofper-
cussion (113).

Example. Required the time of oscillation of a cast-iron

cylinder, whose diameter is 2 in. and length 10 in., if the axis

of suspension is taken 4 in. above its centre. If we use 32.2

for
<?,

all linear dimensions should be in feet and times in

seconds. From 100, we have

From eq. (3), 88,

7 = 7 + Ms* = M[^ . \o/+ i] =M X 0.170;

.-. &o

a = 0.170 sq. ft.; .-. tf= 7t V0.170 -f- (32.2xi) = 0.395 sec.

118. The Centres of Oscillation and Suspension are Inter-

changeable. (Strictly speaking, these centres are points in the

line through the centre of gravity perpendicular to the axis of

suspension.) Refer the centre of oscillation K to the centre

of gravity, thus (Fig. 132, at (I.) )
:

~-
--

Now invert the body and suspend it at K\
required CK^ or *a ,

to find the centre of f~""/ 01

oscillation corresponding to K as centre of I /

suspension. By analogy from (1) we have
Si]7...JK

s
2
= ]CG -r- 8

1 ;
but from (1), k^ -=-, = .*.

s
z s: in other words, K^ is identical with (I.) (H.)

'). Hence the proposition is proved.
FlGK 132>

Advantage may be taken of this to determine the length Z
y the theoretical simple pendulum vibrating seconds, and thus

inally the acceleration of gravity from formula (3), 117, viz.,
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when if = 1.0 and I (now = Z) has been determined experi-

mentally, we have

g (in ft. per sq. second) = L (in ft.) X ^ a
. . . (2)

This most accurate method of determining g at any locality

requires the use of a bar of metal, furnished with a sliding

weight for shifting the centre of gravity, and with two project-

ing blocks provided with knife-edges. These blocks can also

be shifted and clamped. By suspending the bar by one knife-

- edge on a proper support, the duration of an oscillation is com-

puted by counting the total number in as long a period of

time as possible; it is then reversed and suspended on the

other with like observations. By shifting the blocks between

successive experiments, the duration of the oscillation in one

position is made the same as in the other, i.e., the distance be-

twee-n the knife-edges is the length, I, of the simple pendulum
vibrating in the computed time (if the knife-edges are not equi-
distant from the centre of gravity), and is carefully measured.

The I and t' of eq. (3), 117, being thus known, g may be com-

puted. Professor Bartlett gives as the length of the simple

pendulum vibrating seconds at any latitude (3

Z(in feet) = 3.26058 0.008318 cos 2/?.

119. Isochronal Axes of Suspension. In any compound

pendulum,for any axis of suspension, there are always three

others, parallel to it in the same gravity-plane, for which the

oscillations are made in the same time as for the first. For

any assigned time of oscillation t', eq. (3), 117, compute the

corresponding distance CO = s of O from (7;

i.e., from t'* =

we have s = (gt'*-z-%7r*) |/(^Y
4

^-4;7r
4

) &c
s
. . . (1)

Hence for a given if, there are two positions for the axis

parallel to any axis through C, in any gravity-plane, on both

sides; i.e., four parallel axes of suspension, in any gravity-

plane, giving equal times of vibration
;
for two of these axes

Mgs Mgs
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we must reverse the body. E.g., if a slender, homogeneous,
prismatic rod be marked off into thirds, the (small) vibrations

will be of the same duration, if the centre of suspension is

taken at either extremity, or at either point of division.

Example. Required the positions of the axes of suspension,

parallel to the base, of a right cone of brass, whose altitude is

six inches, radius of base, 1.20 inches, and weight per cubic inch
is 0.304: Ibs., so that the time of oscillation may be a half-

second. (N.B. For variety, use the inch-pound-second system
of units, first consulting 51.)

120, The Fly-Wheel in Fig. 133 at any instant experiences
a pressure P' against its crank-pin from the connecting-rod
and a resisting pressure P" from the teeth of a spur-wheel with

FIG 133.

which it gears. Its weight G acts through C (nearly), and
there are pressures at the bearings, but these latter and G have

no moments about the axis C (perpendicular to paper). The

figure shows it free, P" being assumed constant (in practice
this depends on the resistances met by the machines which D
drives, and the fluctuation of velocity of their moving parts).

jP', and therefore T its tangential component, are variable,

depending on the effective steam-pressure on the piston at any

instant, on the obliquity of the connecting-rod, and in high-

speed engines on the masses and motions of the piston and con-

necting-rod. Let r = radius of crank-pin circle, and a the

perpendicular from C on P". From eq. (XIV.), 114, we
have

Tr - P"a = 61^ .-. 8=(Tr- P"a] -*- 7C,
. (1
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as the angular acceleration at any instant
; substituting which in

the general equation (VIII.), 110, we obtain

Ictodao = Trda - P"ada (2)

From (1) it is evident that if at any position of the crank-pin

the variable Tr is equal to the constant P"a, is zero, and

consequently the angular velocity GO is either a maximum or a

minimum. Suppose this is known to be the case both at m
and n

; i.e., suppose T, which was zero at the dead-point A,
has been gradually increasing, till at ?i, Tr = P"a\ and there-

after increases still further, then begins to diminish, until at m
Tr again P"a, and continues to diminish toward the dead-

point 13. The angular velocity 00, whatever it may have been

on passing the dead-point A, diminishes, since 6 is negative,

from A to n, where it is &)n,
a minimum

;
increases from n to

m, where it reaches a maximum value, &)m . n and m being-

known points, and supposing con known, let us inquire what

oom will be. From eq. (2) we have

/wm n,m ,*m

Ic vdG,= / Trda-P" ada. . . (3)
t/ n t/n t/n

But rda = ds = an element of the path of the crank-pin, and

also the " virtual velocity" of the force T, and ada = ds"
,
an

element of the path of a point in the pitch-circle of the fly-

wheel, the small space through which P" is overcome in dt.

Hence (3) becomes

-/ciOm
2 -

<*>n) =fTds - P" X linear arc ~EF. (4)

Tds we might, by a knowledge of the vary-

ing steam-pressure, the varying obliquity of the connecting-rod,

etc., determine T for a number of points equally spaced along
the curve nm, and obtain an approximate value of this sum by

Simpson's Rule
;
but a simpler method is possible by noting

(see eq. (1), 65) that each term Tds of this sum the corre-

sponding term Pdx in the series / Pdx, in which P = the
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effective steam-pressure on the piston in the cylinder at any in-

stant, dx the small distance described by the piston while the

crank-pin describes any ds, and n' and m' the positions of the

piston (or of cross-head, as in Fig. 133) when the crank-pin is

at n and m respectively. (4) may now be written

xWl/

*<(<* -
G*n) =Jn/

Pdx - P" X linear arc EF, (5)

from which oom may be found as proposed. More generally, it

is available, alone (or with other equations), to determine any
one (or more, according to the number of equations) unknown

quantity. This problem, in rotary motion, is analogous to that

in 59 (Prob. 4) for rectilinear motion. Friction and the in-

ertia of piston and connecting-rod have been neglected. As
to the time of describing the arc nm, from equations similar to

(5), we may determine values of GO for points along nm, divid-

ing it into an even number of equal parts, calling them c^, G?
S ,

etc., and then employ Simpson's Rule for an approximate value
r~m nim, $a

of the sum t=Jn
~

(from eq. (VI.), 110); e.g., with

four parts, we would have

rm 1 I" 1 4 2 4 1 ~|
t = TTT (angle n0m, TT-meas.) I

1
1 1- .(6)U 12 v

?|^.^ !^T%T:fkT- flM^'
121. Numerical Example. Fly-Wheel. (See Fig. 133 and

the equations of 120.) Suppose the engine is non-condensing
and non-expansive (i.e., that P is constant), and that

P = 55001bs., 7- = 6 in. =4 ft., a = 2 ft.,

and also that the wheel is to make 120 revolutions per minute,

i.e., that its mean angular velocity is to be

GO' J^- X 2nr, i.e., GO' = TC
" radians" per sec.

First, required the amount of the resistance P" (constant)

that there shall be no permanent change of speed, i.e., that the

angular velocity shall have the same value at the end of a com-

plete revolution as at the beginning. Since an equation of the

form of eq. (5) holds good for any range of the motion, let
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that range be a complete revolution, and we shall have zero as

the left-hand member
; fPdx = P X 2 f t. = 5500 Ibs. X 2 ft.,

or 11,000 foot-pounds (as it may be called); while P" is un-

known, and instead of lin. arc EF we have a whole circumfer-

ence of 2 ft. radius, i.e., 4?r ft.;

/. = 11,000
- P" X 4 X 3.1416; whence P" = 875 Ibs.

Secondly, required the proper mass to be given to the fly-

wheel of 2 ft. radius that in the forward stroke (i.e., while the

crank-pin is describing its upper semicircle) the max. angular

velocity oom shall exceed the minimum oon by only -J^G/, assum-

ing (which is nearly true) that %(com + Gon) = <&'. There be

ing now three unknowns, we require three equations, which

are, including eq. (5) of 120, viz.:

- P" X linear arc EF\ (5)

i(^m+ <)= *>'= 4;r
; (7) and com - a>n = ^GO' = far. (8)

The points n and m are found most easily and with sufficient

accuracy by a graphic process. Laying off the dimensions to

scale, by trial such positions of the crank-pin are found that

T) the tangential component of the thrust P' produced in the

connecting-rod by the steam-pressureP (which may be resolved

into two components, along the connecting-rod and a normal

to itself) is =(a -r- r)P", i.e., is = 3500 Ibs. These points will

be n and m (arid two others on the lower semicircle). The

positions of the piston n' and m', corresponding to n and m of

the crank-pin, are also found graphically in an obvious manner.

We thus determine the angle nCm to be 100, so that linear

arc EF= -H^ X 2 ft. = i$-7t ft., while

r'
/
m/ _

Pdx = 5500 Ibs. X / da> = 5500X*'*'=5500X 0.77 ft.,
t/ra'

n'wf being scaled from the draft.

Now substitute from (7) and (8) in (5), and we have, with

Tc-c= 2 ft. (which assumes that the mass of the fly-wheel is con-

centrated in the rim),
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(G -4- g) X 4 X 47r x f* = 5500 X C.77 - 875 X *>

which being solved for (9 (with ^ = 32.2
;
since we have used

the foot and second), gives G = 600.7 Ibs.

The points of max. and min. angular velocity on the back-

stroke may be found similarly, and their values for the fly-

wheel as now determined
; they will differ but slightly from

the oom and oon of the forward stroke. Professor Cotterill says
that the rim of a fly-wheel should never have a max. velocity

> 80 ft. per sec.; and that if made in segments, not more than

40 to 50 feet per second. In the present example we have for

the forward stroke, from eqs. (7) and (8), oom= 13.2 (^r-measure

units) per second; i.e., the corresponding velocity of the wheel-

rim is vm = Goma = 26.4 feet per second.

122. Angular Velocity Constant. Fixed Axis. If GO is con-

stant, the angular acceleration, 6, must be = zero at all times,

which requires 2 (mom.) about the axis of

rotation to be = (eq. (XIV.), 114). An
instance of this occurs when the only forces

acting are the reactions at the bearings on

the axis, and the body's weight, parallel to

or intersecting the axis
; the values of these

reactions are now to be determined for dif-

ferent forms of bodies, in various positions FIG. 134.

relatively to the axis. (The opposites and equals of these reac-

tions, i.e., the forces with which the axis acts upon the bearings,

are sometimes stated to be due to the "
centrifugalforces" or

"
centrifugal action." of the revolving body.)
Take the axis of rotation for Z, then, with = 0, the equa-

tions of 114 reduce to

.... (IXa.)

.... (X0.)

=
; (XI0.)

2 moms.x = tffdMyz ;
. . . (Xllff.)

2 moms. F = + offdMxz ;
. . . (Xllla.)

2 moms.* = (XIV0.)
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For greater convenience, let us suppose the axes X and 7
(since their position is arbitrary so long as they are perpen-
dicular to each other and to Z) to revolve with the body in its

uniform rotation.

122a. If a homogeneous body have a plane of symmetry
and rotate uniformly about any axis Zperpendicular to that

plane (intersecting it at 0], then the acting forces are equiva-

lent to a singleforce, = crfMp, applied
at and acting in a gravity-line, but

directed away from the centre of

gravity. It is evident that such a

force P = K?Mp, applied as stated
FIG - 135 -

(see Fig. 135), will satisfy all six con-

ditions expressed in the foregoing equations, taking X through

the centre of gravity, so that x = p. For, from (IX&.)? P must

= GifMp, while in each of the other summations the left-

hand member will be zero, since P lies in the axis of X', and

as their right-hand members will also be zero for the present

body (y
=

;
and each of the snmsfdMyz andfdMxz is zero,

since for each term dMy( -f- z) there is another dMy( z)

to cancel it
;
and similarly, forfdMxz), they also are satisfied

;

Q.E.D.* Hence a single point of support at will suffice to

maintain the uniform motion of the body, and the pressure

against it will be equal and opposite to P.
First Example. Fig. 136. Supposing (for greater safety)

that the uniform rotation of 210 revolutions

per minute of each segment of a fly-wheel is

maintained solely by the tension in the cor-

responding arm, P ; required the value ofP
if the segment and arm together weigh -^ of

a ton, and the distance of their centre of FlG -

gravity from the axis is ~p
= 20 in., i.e.,

= | ft. With thefoot-

ton-second system of units, with g = 32.2, we have

P = oo\Mp = [^ X 27T]
3 X [-A- *- 32 -2] X I = 0.83 tons,.

or 1660 Ibs.

* That is, neglecting gravity.
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Second Example. Fig. 137. Suppose the uniform rotation

of the same fly-wheel depends solely on the tension in the rim,

required its amount. The figure shows the half- ^7
rim free, with the two equal tensions, P', put in at ^

the surfaces exposed. Here it is assumed that the I _ c

arms exert no tension on the rim. From 122$ we

have 2P' = afMp, where Jf is the mass of the half-
|

rim, and p its gravity co-ordinate, which may be ob- FIG. 137.

tained approximately by 26, Problem 1, considering the rim

as a circular wire, viz., p = %r -i- TT.

Let M= (180 Jbs.) -^ g, with r = 2 ft. We have then

P' = i(22)'(180
~

32.2X4
--

*) = 1718.0 Ibs.

(In reality neither the arms nor the rirn sustain the tensions

just computed ;
in treating the arms we have supposed no duty

done by the rim, and vice versa. The actual stresses are less,

and depend on the yielding of the parts. Then, too, we have

supposed the wheel to take no part in the transmission of mo-

tion by belting or gearing, which would cause a bending of the

arms, and have neglected its weight.)

122b. If a homogeneous body have a line of symmetry and

rotate uniformly about an axis parallel to it (0 being thefoot

of the perpendicularfrom the centre of gravity on the axis),

then the acting forces are equivalent to a single force P^

= (x?Mp, applied at and acting in a gravity-line away
from the centre of gravity.

Taking the axis X through the

centre of gravity, Z being the

axis of rotation, Fig. 138, while

Z' is the line of symmetry, pass

an auxiliary plane Z
'

Y' parallel

to ZY. Then the sum fdMxz

may be written fdM(p + x')z

which = pfdMz -J~ fdMx'z.
FlG - 138- RutfdMz Mz 0, since ~z

= 0, and every term dM(-\- x
f

)z is cancelled by a numerically
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equal term dM( x r

)z of opposite sign. HencefdMxz = 0.

K\sofdMyz = 0, since each positive product is annulled by an

equal negative one (from symmetry about Z'). Since, also,

y = 0, all six conditions in 122 are satisfied. Q. E. D.

If the homogeneous body is any solid of revolution whose

geometrical axis is parallel to the axis of rotation, the forego-

ing is directly applicable.

122c. If a homogeneous body revolve uniformly about any
axis lying in a plane of symmetry, the actingforces are equiv-

alent to a singleforce P = crfMp, acting parallel to the grav-

ity-line which is perpendicular to the axis (Z), and away
from the centre of gravity, its distancefrom any origin in

the axis Z being [fdMxz] -r- Mp (the plane ZX being a

gravity-plane). Fig. 139. From the position of the body we

have p = x, and y = ;
hence if a

value a?Mp be given to P and it be

made to act through Z and parallel to

X, and away from the centre of gravity,

all the conditions of 122 are satisfied

except (XII0.)" and (XIII0.). But

symmetry about the plane XZ makes

fdMyz = 0, and satisfies (X1I#.), and

by placing P at a distance a =fdMxz -r- Mp from along Z
we satisfy (Xllla.)- Q. E. D.

Example. A slender, homogeneous, prismatic rod, of length

=
I, is to have a uniform motion, about a ver- Q.

tical axis passing through one extremity,

maintained by a cord-connection with a fixed p

point in this axis. Fig. 140. Given GO, (p, I, f

(JcT
= %l cos (p),

and F the cross-section of the ^

rod, let s = the distance from to any dM \

of the rod, dM being = Fyds -r- g. The x

of any dM= s cos <p ;
its z = s . sin cp ;

.-.fdMxz = (Fy -r- g) sin cp cos
(pj

s*ds

-r- g)V sin cp cos cp
= \MZ* sin <p cos

FIG. 139.

Fio. 140.
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Hence a, =fdMxz -~ Mp, is = fZ sin cp, and the line of ac-

tion of P (
= <#'Mp GO* (Fyl ~ g) \l cos

cp) is therefore

higher up than the middle of the rod. Find the intersection

I) of G and the horizontal drawn through Z at distance a from
0. Determine P' by completing the parallelogram GP', at-

taching the cord so as to make it coincide with P'; for this will

satisfy the condition of maintaining the motion, when once be-

gun, viz., that the acting forces G, 'and the cord-tension P'
9

shall be equivalent to a force P = afMp, applied horizontally

through Z at a distance a from 0.

123, Free Axes. Uniform Rotation. Referring again to 122
and Fig. 134, let us inquire under what circumstances the

lateral forces, JTn Y^ JT , YQ ,
with which the bearings press

the axis, to maintain the motion, are individually zero, i.e., that

the hearings are not needed^ and may therefore he removed

(except a smooth horizontal plane to sustain the body's weight),

leaving the motion undisturbed like that of a top "asleep."
For this, not only must 2X and 2 Y both be zero, but also

(since otherwise X
l
and JT might form a couple, or Y

l
and Y

%

similarly) 2 (moms.)z and 2 (moms.) F must each = zero. The

necessary peculiar distribution of the body's mass about the

axis of rotation, then, must be as follows (see the equations of

First, x and y each = 0, i.e., the axis must he a gravity-axis.

Secondly,fdMyz = 0, and/$Jfe = 0, the origin being any-
where on Z, the axis of rotation.

An axis (Z) (of a body) fulfilling these conditions is called

a Free Axis, and since, if either one of the three Principal Axes

for the centre of gravity (see 107) be made an axis of rotation

(the other two being taken for X and Y), the conditions

x = 0, y = 0, fdMxz = 0, and fdMyz = 0, are all satisfied,

it follows that every rigid lody has at least three free axes,

which are the Principal Axes of Inertia of the centre of

gravity at right angles to each other.

In the case of homogeneous bodies free axes can often be

determined by inspection : e.g., any diameter of a sphere ; any
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FIG. 141.

transverse diameter of a right circular cylinder through its

centre of gravity, as well as its geometrical axis
;
the geomet-

rical axis of any solid of revolution
;

etc.

124. Rotation about an Axis which has a Motion of Translation.

Take only the particular case where the moving axis is a

gravity-axis. At any instant, let the

velocity and acceleration of the axis be v

andp ;
the angular velocity and accelera-

p^- /,
j'tf

> tion about that axis, GO and 0. Then, since

T "'f\. * >i>jp the actual motion of a dM\\\ any dt is

compounded of its motion of rotation

about the gravity-axis and the motion of

translation in common with that axis,

we may, in forming the imaginary equiva-
lent system in Fig. 141, consider each dM as subjected to the

simultaneous action of dP = dMp parallel to X, of the tan-

gential dT= dM6p, arid of the normal dN =- dM(oopf -=- p
= (*?dMp. Take ^Tin the direction of translation, Z (perpen-

dicular to paper through 0) is the moving gravity-axis ;
Y

perpendicular to both. At any instant we shaft have, then, the

following conditions for the acting forces (remembering that

p sin cp
= y,fdMy My =

; etc.) :

2X =fdP fdTsin cp fdtf cos <p
= Mp\ . (1)

2Y=fdTcos cp fdNsm (p
=

;
. .. (2)

2 moms.z =fdTp -fdPy = OfdMp* = 6IZ = 6Mkz\ (3)

and three other equations not needed in the foliowing example.

Example. A homogeneous solid of revolution rolls (with-

out slipping) down a rough inclined

plane. Investigate the motion. Con-

sidering the body free, the acting forces

are O (known) and N and jP, the un-

known normal and tangential compo-
nents of the action of the plane on the

roller. If slipping occurs, then P is the

gliding friction due to the pressure N( 156); here, however, it is

FlG - 14S -
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less by hypothesis (perfect rolling). At any instant the four

unknowns are found by the equations

2X, i.e., G sin ft
- P, = (G -T- g)p ;

. (1)

2J-,i.e., cos/?- JV
J
=

; .... (2)

^ moms.z, i.e., Pa, = BMkj ; . . (3)

while on account of the perfect rolling,

Oa=p .' . . . (4)

Solving, we have, for the acceleration of translation,

p = g sin ft -T- [1 + (kz
* ~ a8

)].

(If the body slid without friction,p would = g sin
ft.) Hence

for a cylinder ( 97), ~kz being = Ja*, we have^? = %g sin fi-

and for a sphere ( 103) j?
= ^ sin /?.

(If the plane is so steep or so smooth that both rolling and

slipping occur, then 6a no longer = p, but the ratio of P toN
is known from experiments on sliding friction

;
hence there are

still four equations.)

The motion of translation being thus found to be uniformly

accelerated, we may use the equations of 56 for finding dis-

tance, time, etc.

Query. How may we distinguish two spheres by allowing
them to roll down the same inclined plane, if one of them is

silver and solid, while the other is of gold, but silvered and

hollow, so as to be the same as the first in diameter, weight,
and appearance?

125. Parallel-Rod of a Locomotive. When the locomotive

moves uniformly, each dJff of the rod between the two (or

three) driving-wheels rotates with

uniform velocity about a centre of its

own on the line BD, Fig. 143,andwith

a velocity v* and radius r common ^^
to all, and likewise has a horizontal

( j.\
; :

uniform motion of translation. Hence (ii.)"

if we inquire what are the reactionsP Fl - 14a

* This velocity is that which the dM has relatively to theframe of the

locomotive, in a circular path. E.g., if the locomotive (frame; has a velocity

of 60 miles per hour and the radius r is one-third of the radius of the driver,

then v is 20 miles per hour.
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of its supports, as induced solely ~by its weight and motion,

when in its lowest position (independently of any thrust along

the rod), we put 2Y of (I.)
= 2Y of (II.) (II. shows the

imaginary equivalent system), and obtain

2P - G =fdN =fdM* -r- r = (v* H- r}fdM = Mv* + r.

Example. Let the velocity of translation = 50 miles per

hour, the radius* of the pins be 18 in. = f ft., and = half that

of the driving-wheels, while the weight of the rod is 200 Ibs.

With g = 32.2, we must use the foot and second, and obtain

v = i[50 X 5280 -r- 3600] ft. per second = 36.6;

while M= 200 -f- 32.2 = 200 X .0310 = 6.20
;

and finally P = 4[200 + 6.2(36.6)
3
-7- f] = 2868.3 Ibs.,

or nearly 1J tons, about thirty times that due to the weight
alone.

126. So far in this chapter the motion has been prescribed,

and the necessary conditions determined, to be fulfilled by the

acting forces at any instant. Problems of a converse nature,

i.e., where the initial state of the body and the acting forces

are given while the resulting motion is required, are of much

greater complexity, but of rare occurrence in practice. The
reader is referred to Rankine's Applied Mechanics. A treat-

ment of the Gyroscope will be found in the American Journal

of Science for 1857, and in the article of that name in Johnson's

Cyclopaedia. ,

'

Worthington's "Dynamics of Rotation"

(London, 1892) is a valuable practical book.

*
Or, rather, the radius of the circular path of the pin- centre,

velocity in this path is 25 miles per hour.



WORK, ENEKGY, AND POWER.

CHAPTER VI.

WORK, ENERGY, AND POWER.

127. Remark. These quantities as defined and developed
in this chapter, though compounded of the fundamental ideas

of matter, force, space, and time, enter into theorems of such

wide application and practical use as to more than justify their

consideration as separate kinds of quantity.

128. Work in a Uniform Translation. Definition of Work.
Let Fig. 144 represent a rigid body having a motion of trans-

lation parallel to X, acted on by a

system of forces P
1?
P

a , R^ and R^
which remain constant.*

(Let s be any distance described by
the body during its motion

;Jthen
2X

must be zero ( 109), i.e., noting that

J, and 7?
4
have negative X com-

ponents (the supplements of their Fl - 144 -

angles with ^3Tare used),

P, cos a
1 + PI cos ^

2 9 cos c*
9

7?4 cos at
=

;

or, multiplying by s and transposing, we have (noting that

s cos a
l
= s

l
the projection of s on P,, that s cos a^ = s

a ,
the

projection of s on P
a ,
and so on),

PA .+ PA = #A + -ffA- .... (a)

The projections 5,, s
2 , etc., may be called the distances de-

scribed in their respective directions by the forces Pn P9 , etc.;

P, and P
2 having moved forward, since s, and s^ fall infront

of the initial position of their points of application ;
J?

3
and J?

4

backward, since s
3
and s4

fall behind the initial positions in

their case. (By forward and backward we refer to the direc-

* Constant in direction as well as amount.
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tion of each force in turn.) The name Work is given to the

product of a force by the distance described in the direction

of the force ~by the point of application. If the force moves

forward (see above), it is called a working-force, and is said to

do the work (e.g., ^P^j) expressed by this product; while if

backward, it is called a resistance, and is then said to have the

work (e.g., 7?
3
s
8),

done upon it, in overcoming it through the

distance mentioned (it might also be said to have done nega-
tive work).

Eq. (a) above, then, proves the theorem that : In a uniform
translation, the working forces do an amount of work which

is entirely applied to overcoming the resistances.

129. Unit of Work. Since the work of a force is a product
of force by distance, it may logically be expressed as so many
foot-pounds, inch-pounds, kilogram-meters, according to the

system of units employed. The ordinary English unit is the

foot-pound, or ft.-lb. It is of the same quality as a force-

moment.

130. Power. Work as already defined does not depend on

the time occupied, i.e., the work P
l
s

l
is the same whether per-

formed in a long or short time; but the element of time is of

so great importance in all the applications of dynamics, as well

as in such practical commercial matters as water-supply, con-

sumption of fuel, fatigue of animals, etc., that the rate of work

is a consideration both of interest and necessity.

Power is the rate at which work is done, and one of its

units is one foot-pound per second in English practice ;
a larger

one will be mentioned presently.

The power exerted by a workingforce, or expended upon a

resistance, may be expressed symbolically as

L = P,s, -r- t,
or R^s^

-
t,

in which t is the time occupied in doing the work P
1
s

l
or 7?

3s,

(see Fig. 144) ;
or if v

l
is the component in the direction of

the force P
l
of the velocity~v of the body, we may also write

L = P
}v, (b)
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131. Example. Fig. 145, shows as a free ~body a sledge
which is being drawn uniformly up
a rough inclined plane by a cord

parallel to the plane. Required the

total power exerted (and expended),
if the tension in the cord is JP

l
= 100 ^^\^^^\^^ (WEIGHT)

Ibs., the weight of sledge R^ = 160
'

FIG. 145.

Ibs., ft = 30, and the sledge moves J240 ft. each minute. 2?
and Jt4 are the normal and parallel (i.e., 7?

4
=

friction) com-

ponents of the reaction of the plane on the sledge. From eq.

(1), 128, the work done while the sledge advances through
s = 240 ft. may be obtained either from the working forces,

which in this case are represented by PY alone, or from the

resistances R^ and J?
4
. Take the former method first. Pro-

jecting s upon PI we have s
l
= s.

Hence PA or 100 Ibs. X 240 ft. = 24,000 ft.-lbs.

of work done in 60 seconds. That is, thepower exerted by the

workingforces is

L = P^ -T- t = 400 ft.-lbs. per second.

As to the other method, we notice that J?3 and J?
4
are resist-

ances, since the projections s
3
= s sin ft, and s

4
=

*, would fall

back of their points of application in the initial position, while

N is neutral, i.e., is neither a working force nor a resistance,

since the projection of s upon it is zero.

From 2X = we have 7?4 R* sin ft + Pl
= 0,

and from 2Y = ( 109) N ft* cos ft =0;
whence R^ the friction = 20 Ibs., and N = 138.5 Ibs. Also,

since s* s sin ft
= 240 X 4 = 120 ft., and s

t
=

s,
= 240 ft.,

we have for the work done upon the resistances (i.e., in over-

coming them) in 60 seconds

fi^ _|_ ^A = 160 X 120 + 20 X 240 = 24,000 ft.-lbs.,

and the power expended in overcoming resistances,

L = 24,000 -f- 60 = 400 ft.-lbs. per second,

as already derived. Or, in words the power exerted by tho
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tension in the co^-d is expended entirely in raising the weight
a vertical height of 2 feet, and overcoming the friction through
a distance of 4 feet along the plane, every second

;
the motion

l>eing a uniform translation.

132. Horse-Power. As an average, a horse can exerts a trac-

tive effort or pull of 100 Ibs., at a uniform pace of 4ft. per sec-

ond, for ten hours a day without too great fatigue. This gives
a power of 400 ft.-lbs. per second

;
but Boulton & Watt in

rating their engines, and experimenting with the strong dray-
horses of London, fixed upon 550 ft.-lbs. per second, or 33,000
ft.-lbs. per minute, as a convenient large unit of power. (The
French horse-power, or cheval-vapeur, is slightly less than the

English, being 75_kilogrammeters- per second, or 32,550 ft.-lbs.

per minute.) This value for the horse-power is in common
use. In the example in 131, then, the power of 400 ft.-lbs,

per second exerted in raising the weight and overcoming fric-

tion may be expressed as (400-^-550 =) T
8
T of a horse-power. A

man can work at a rate equal to about -^ of a horse-powex ,

with proper intervals for eating and sleeping.

133. Kinetic Energy. Retarded Translation. In a retarded

translation of a rigid body whose mass M, suppose there

are no working-forces, and that the resistances are constant and

their resultant is R. (E.g., Fig. 146 shows such a case
;
a

sledge, having an initial velocity c and slid-

)V ing on a rough horizontal plane, is gradu-

ally retarded by the friction R.} R is par-

allel to the direction of translation ( 109)
and the acceleration is p = R -i- M ;

hence from vdv =pds we have

fvdv = -
(1 -f- M)fRds (1)

But the projection of each da of the motion upon R is = ds

itself
;

i.e.
( 128), Rds is the work done upon R, in overcom

ing it through the small distance ds, and fRds is -the sum of

all such amounts of work throughout any definite portion of

the motion. Let the range of motion be between the points
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where the velocity = c, and where it = zero (i.e., the mass

has come to rest) With these limits in eq. (1) (0 and s' be-

ing the corresponding limits for s), we have

**'. r*ds.
2

That is, in giving up all its velocity c the 'body has "been able

to do the work/fids (this, if R remains constant, reduces to

Me*
Us'} or its equal ~o~. If> then, by energy we designate the

ability toperform work, we give the name kinetic energy of

a moving body to the product of its mass l)y half the square

of its velocity (~o~); i-e., energy due to motion^ (The anti-

quated term vis viva was once applied to the form Mv*.)

134. Work and Kinetic Energy in any Translation. Let P
be the resultant of the working forces at any instant, R that

of the resistances
; they ( 109) will both M

act in a gravity-line* parallel to the di- <-

rection of translation. The acceleration O
___^<U _

at any instant is p = (^2X -r- M) Fia . 147.

= (P It)
~ M\ hence from vdv = pds we have

Mvdv = Pds Eds. . . ... (1)

Integrating between any two points of the motion as O and 0'

where the velocities are V and v f

,
we have after transposition

Mv

p
x

/^=
But P being the resultant of P,, P etc., and R that of

R^ RV etc., we may prove, as in 62, that if du^ du^ etc., be

the respective projections of any ds upon P^ Pv etc., while

dw^ dWv etc., are those upon R^ R etc., then

.... and

and (d) may be rewritten

* That is, a line passing through the centre of gravity.
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or, in words : In any translation, a portion of the work done

by the working forces is applied in overcoming the resistances

while the remainder equals the change in the kinetic energy of
the body.

It will be noted that the bracket in (e) depends only on the

initial and final velocities, and not upon any intermediate

values
; hence, if the initial state is one of rest, and also the

final, the total change in kinetic energy is zero, and the work

of the working forces has been entirely expended in the work

of overcoming the resistances
;
but at intermediate stages the

former exceeds the work so far needed to overcome resistances,

and this excess is said to be stored in the moving mass
;
and as

the velocity gradually becomes zero, this stored energy becomes

available for aiding the working forces (which of themselves

are then insufficient) in overcoming the resistances, and is then

said to be restored. (The function of a fly-wheel might be

stated in similar terms, but as that involves rotary motion it

will be deferred.)

Work applied in increasing the kinetic energy of a body is

sometimes called
" work of inertia," as also the work done by

a moving body in overcoming resistances, and thereby losing

speed.

135. Example of Steam-Hammer. Let us apply eq. (e) to

determine the velocity v' attained by a steam-hammer at the

lower end of its stroke (the initial velocity being = 0), just

before delivering its blow upon a forging, supposing that

the steam-pressure JP9
at all stages of the downward stroke is

given by an indicator. Fig. 148. Weight of moving mass

is 322 Ibs.; /. Jlf= 10 (foot-pound-second system), I = 1 foot.

The workingforces at any instant are P
l
= G = 322 Ibs.; P2 ,

which is variable, but whose values at the seven equally spaced
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points a, I, c, d, e, /, g, are 800, 900, 900, 800, 600, 500, 450

Ibs., respectively. R
l
the exhaust-pressure (16

Ibs. per sq. inch X 20 sq. inches piston-area) =
320 Ibs., is the only resistance, and is constant.

Hence from eq. (e), since here the projections

diii, etc., of any ds upon the respective forces

are equal to each other and = ds,

(i) F
The term fP^ds can be obtained approximately

by Simpson's Rule, using the above values for

six equal divisions, which gives

TV[800+ 4(900 + 800 + 500)

+ 2(900 + 600) +450]
= 725 ft.-lbs. of work. Hence, making all the substitutions,

FIG. 148.

we have, since / ds = 1 ft.,
I/O

322 X 1 + 725 = 320 X 1 + %Mv"\ .-. $Mvn = 727 ft.-lbs.

of energy to be expended in the forging. (Energy is evi-

dently expressed in the same kind of unit as work.) We may
then say that the forging receives a blow of 727 ft.-lbs.

energy. The pressure actually felt at the surface of the ham-

mer varies from instant to instant during the compression of

the forging and the gradual stopping of the hammer, and

depends on the readiness with which the hot metal yields.

If the mean resistance encountered is Rm ,
and the depth of

compression s", we would have (neglecting the force of gravity,

and noting that now the initial velocity is v', and the final

zero), from eq. (<?),

iW = Rms" ; i.e., Rm = [727 -;- s" (ft.)] Ibs.

E.g., if
" = | of an inch = ^ of a foot, Rm = 43620 Ibs.,

and the maximum value of R would probably be about double

this near the end of the impact. If the anvil also sinks during
the impact a distance s'", we must substitute s'" + s" instead

of s"
;
this will give a smaller value for Rm .



140 MECHANICS OF ENGINEERING.

By mean value for R is meant [eq. (c)] that value, Rm,
which

satisfies the relation

Rms
f = / Rds.

A

This may be called more explicitly a space-average, to dis-

tinguish it from a time-average, which might appear in some

problems, viz,, a value Rtm,
to satisfy the relation (if being the

duration of the impact)

RtJ =/*
'

Bdt,

and is different from Rm .

From %Mv'* = 727 ft.-lbs., we have v' = 12.06 ft. per sec.,

whereas for a free fall it would have been .2x1 = 8.03.

(This example is virtually of the same kind as Prob. 4, 59,

differing chiefly in phraseology.)

136. Pile-Driving.* The safe load to be placed upon a pile

after the driving is finished is generally taken as a fraction (from

J to
-J-)

of the resistance of the earth to the passage of the pile as

indicated by the effect of the last few blows of the ram, in ac-

cordance with the following approximate theory : Toward the

end of the driving the resistance R encountered by
the pile is nearly constant, and is assumed to be that

met by the ram at the head of the pile; the distance

s' through which the head of the pile sinks as an

effect of the last blow is observed. If G, then, is

the weight of the ram, = Mg, and h the height of

free fall, the velocity due to A, on striking the pile,

is c = V%gh ( 52), and we have, from eq. (c),

?

a

, i.e., Gh, = = Rs' (1)

(R being considered constant) ;
hence R = Gh -=-

and the safe load (for ordinary wooden piles),

P = from to i of Gh + s' (2)

Maj. Sanders recommends $ from experiments made at Fort

* See also p. 87 of the author's Notes and Examples in Mechanics.
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Delaware in 1851; Molesworth, ;
General Barnard, -J-,

from

extensive experiments made in Holland.

Of course from eq. (2), given JP
9
we can compute s'.

(Owing to the uncertainty as to how much of the resistance

R is due to friction of the soil on the sides of the pile, and

how much to the inertia of the soil around the shoe, the more

elaborate theories of Weisbach and Rankine seem of little

practical account.)

137. Example. In preparing the foundation of a bridge-pier
it is found that each pile (placing them 4 ft. apart) must bear

safely a load of 72 tons. If the ram weighs one ton, and falls

12 ft., what should be the effect of the last blow on each pile?

Using the foot-ton-second system of units, and Molesworth

factor
-J-, eq. (2) gives

s' = -J(l X 12 -r- 72) = Jy of a foot = J of an inch.

That is, the pile should be driven until it sinks only J inch

Binder each of the last few blows.

138. Kinetic Energy Lost in Inelastic Direct Central Impact.

Referring to 60, and using the same notation as there given,
we find that if the united kinetic energy possessed by two in-

elastic bodies after their impact, viz., %M^C* + JJ/2 6
1
' a

,
Shav-

ing the value (Ml
c

l + J/X) -=- (-3/J + -^4), be deducted from

the amount before impact, viz., ^M^c* + \M$*, the loss of
kinetic energy during impact of two inelastic bodies is

*

An equal amount of energy is also lost by partially elastic

bodies during the first period of the impact, but is partly re-

gained in the second. If the bodies were perfectly elastic, we
would find it wholly regained and the resultant loss zero, from

the equations of 60
;

but this is not quite the reality, on

account of internal vibrations.

The Tcvnetic energy still remaining in two inelastic bodies

after impact (they move together as one mass) is

* See Eng, News, July, 1888, pp. 33 and 34.



142 MECHANICS OF ENGINEERING.

(
M

l + MI) C\ or, after inserting the value of

O = (M.c, + Jf
a
c
a) -T- (Ml + JQ, we have

-2

M

Example 1. The weight G
l
= M,g falls freely

through a height A, impinging upon a weight Gt

= M.$, which was initially at rest. After their (in-

elastic) impact they move on together with the com-

bined kinetic energy just given in (2), which, since

c^ and <?3 ,
the velocities before impact, are respectively

V%gh and 0, may be reduced to a simpler form.

This energy is soon absorbed in overcoming the

flange-pressure R, which is proportional (so long as

i^j
8 the elasticity of the rod is not impaired) to the

elongation s, as with an ordinary spring. If from

FIG. 150. previous experiment it is known that a force 7?

produces an elongation s
,
then the variable R = (J? -^- s )s.

Neglecting the weight of the two bodies as a working force,

we now have, from eq. (d),

*' *+<>- aS?

*.

When s = /, i.e., when the masses are (momentarily) at rest

in the lowest position, the flange-pressure or tensile stress in the

rod is a maximum, E' = (E^ ~ s
)s'',

whence s' = It's,
-~ R\ ;

and (3) may be written

2

R>\_ M?gh
'

~ ~ '

Eq. (3) gives the final elongation of the rod, and (5) the greatest

tensile force upon it, provided the elasticity of the rod is not
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impaired. The form 7?Y in (4) may be looked upon as a direct

integration of / Rds, viz., the mean resistance
(i-/?') multi-

plied by the whole distance (s
1

) gives the work done in over-

coming the variable R through the successive <&'s.

If the elongation is considerable, the working-forces Gl
and

GI cannot be neglected, and would appear in the term -f- (G l

+ G^s' in the right-hand members of (3
s

), (4), and (5). The

upper end of the rod is firmly fixed, and the rod itself is of

small mass compared with M
l
and MY

Example 2. Two cars, Fig. 151, are connected by an elastic

chain on a horizontal track. Velocities before impact (i.e.,

before the stretching of the chain be-

gins, by means of which they are

brought to a common velocity at the
"

instant of greatest tension 12', and FIG. 151.

elongation s' of the chain) are c
l
= <?

t ,
and

a
= 0.

During the stretching, i.e., the first period of the impact, the

kinetic energy lost by the masses has been expended in stretch-

ing the chain, i.e., in doing the work j72Y ;
hence we may

write (the elasticity of the chain not being impaired) (see eq. (1) )

in which the different symbols have the same meaning as in

Example 1, in which the rod corresponds to the chain of this

example.
In this case the mutual accommodation of velocities is due

to the presence of the chain, whose stretching corresponds to

the compression (of the parts in contact) in an ordinary impact.

In numerical substitution. 32.2 for g requires the use of the

units foot and second for space and time, while the unit of

force may be anything convenient.

139. Work and Energy in Rotary Motion. Axis Fixed.

The rigid body being considered free, let an axis through

perpendicular to the paper be the axis of rotation, and resolve

all forces not intersecting the axis into components parallel
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and perpendicular to the axis, and the latter again into com

ponents tangent and normal to the circular path of the point
of application. These tangential com.

ponents are evidently the only ones

of the three sets mentioned which

have moments about the axis, those

having moments of the same sign as

GO (the angular velocity at any instant)

being called working forces, T^, T^
etc. ; those of opposite sign, resist-

ances, T^, T^, etc.; for when in time

dt the point of application B^, of T^, describes the small arc

ds
l
= a^da, whose projection on T^ is ds

19
this projection

falls ahead (i.e., in direction of force) of the position of the

point at the beginning of dt, while the reverse is true for Tf+
From eq. (XIY.), 114, we have for 8 (angul. accel.)

(9 =

FIG. 152.

which substituted in coda) = Oda (from 110) gives (remem-

bering that a
t
da = d8v etc.), after integration and transposition,

f etc.

etc.
, (2)

where and n refer to any two (initial and final) positions of

the rotating body. Eq. (4), 120, is an example of this.

Now \&nl -kGOnfdMp* = f^dM(c>}npf , which, since conp
is the actual velocity of any dM\it this (final) instant, is nothing
more than the sum of the amounts of kinetic energy possessed

at this instant by all the particles of the body; a similar state-

ment may be made for -J-^
2
/.

Eq. (2) therefore may be put into words as follows:

Between any two positions of a rigid body rotating about a

fixed axis, the work done by the workingforces is partly used

in overcoming the resistances, and the remainder in changing
the kinetic energy of the individual particles. If in any case
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tins remainder is negative, the final kinetic energy is less than

the initial, i.e., the work done by the working forces is less than

that necessary to overcome the resistances through their respec-

tive spaces, and the deficiency is made up by the restoring of

some of the initial kinetic energy of the rotating body. A
moving fly-wheel, then, is a reservoir of kinetic energy.

Eq. (2) has already been illustrated numerically in 121,

where the additional relation was utilized (for a connecting-rod
and piston of small mass), that the work done in the steam-

cylinder is the same as fliat done directly at the crank-pin by
the working-force there.

140. Work of Equivalent Systems the Same. If two plane

systems offorces acting on a rigid body are equivalent (
1 5#),

the aggregate work done ~by either of them during a given slight

displacement or motion of the body parallel to their plane is

the same. By aggregate work is meant what has already been

defined as the sum of the " virtual moments"
(

61 to 64), in

any small displacement of the body, viz., the algebraic sum of

the products, 2 (Pdu\ obtained by multiplying each force by
the projection (du) of the displacement of (or small space

described by) its point of application upon the force. (We
here class resistances as negative working forces.)

Call the systems A and B
; then, if all the forces of B were

reversed in direction and applied to the body along with those

of A
9
the com pound system would be a balanced system, and

hence we should have
( 64), for a small motion parallel to the

plane of the forces,

2(Pdu) = 0, i.e., 2(Pdu) for A - 2(Pdu) for B =
0,

or + 2(Pdu) for A = + 2(Pdu) for B.

But -|-
2 (Pdu) for A is the aggregate work done by the forces

of A during the given motion, and -f- 2(Pdu) for B is a

similar quantity for the forces of B (not reversed) during the

same small motion if B acted alone. Hence the theorem is

proved, and could easily be extended to space of three dimen-

sions.

10
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FlG -

141. Relation of Work and Kinetic Energy for any Extended

Motion of a Rigid Body Parallel to a Plane. (If at any instant

any of the forces acting are not

parallel to the plane mentioned,
their components lying in or

parallel to that plane, will be used

instead, since the other compo-
nents obviously would be neither

working forces nor resistances.)

Fig. 153 shows an initial position,

o, of the body ;
a final, n ;

and any intermediate, as q. The
forces of the system acting may vary in any manner during
the motion.

In this motion each dM describes a curve of its own with

varying velocity v, tangential acceleration pt ,
and radius of

curvature r
;
hence in any position -,

an imaginary system B
(see Fig. 154), equivalent to the actual system A (at q in Fig.

153), would be formed by applying to each dM a

tangential force dT= dMpt,
and a normal force

dN =. dMv* -r- r. By an infinite number of con-

secutive small displacements, the body passes from

o to n. In the small displacement of which q is the

initial position, each dM describes a space ds, and FlGK 154 .

dT does the work dTds dMvdv, while dN does the work-

dN X = 0. Hence the total work done by B in the small

displacement at q would be

' + dM"v"dv" + etc., (1)

including all the dM 's of the body and their respective veloci-

ties at this instant.

But the work at q in Fig. 153 by the actual forces
(i.e., of

system A) during the same small displacement must (by 140)
be equal to that done by B. hence

, + P,du, + etc. = dM'v'dv' + dM"v"dv" + etc. (q)

Now conceive an equation like (q) written out for each of



WORK, ENERGY, AND POWER. 147

the small consecutive displacements between positions o and

n and corresponding terms to be added
;
this will give

etc.

v'dv'+dM"f
n

v"dv" + etc.

n
" a - <") + etc.

The second member may be rewritten so as to give, finally,

"

P.du.+f" P,dut+etc.=2$dMvn')-2$dMv:), (XY.)

or, in words, the work done by the actingforces (treating a re-

sistance as a negative working force) between any two posi-

tions is equal to the gain (or loss) in the aggregate kinetic

energy of the particles of the body between the two positions.

To avoid confusion, 2 has been used instead of the signy in

one member of (XV.), in which vn is the final velocity of any
dM (not the same for all necessarily) and v the initial.

(The same method of proof can be extended to three dimen-

sions.)

Since kinetic energy is always essentially positive, if an ex-

pression for it comes out negative as the solution of a problem,
some impossible conditions have been imposed.

142. Work and Kinetic Energy in a Moving Machine.

Defining a mechanism or machine as a series of rigid bodies

jointed or connected together, so that working-forces applied
to one or more may be the means of overcoming resistances

occurring anywhere in the system, and also of changing the

amount of kinetic energy of the moving masses, let us for

simplicity consider a machine the motions of whose parts are

all parallel to a plane, and let all the forces acting on any one

piece, considered free, at any instant be parallel to the same

plane.

Now consider each piece of the machine, or of any series of

its pieces, as a free body, and write out eq. (XV.) for it be-

tween any two positions (whatever initial and final positions are
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selected for the first piece, those of the others must be corre-

sponding initial and corresponding final positions), and it will

be found, on adding up corresponding members of these equa-

tions, that the terms involving those components of the mutual

pressures (between the pieces considered) which are normal

to the rubbing surfaces at any instant will cancel out, while

their components tangential to the rubbing surfaces (i.e.,/Ho

tion, since if the surfaces are perfectly smooth there can be

no tangential action) will appear in the algebraic addition as

resistances multiplied by the distances rubbed through, meas-

ured on the rubbing surfaces. For example, Fig. 155, where

one rotating piece both presses an$ rubs on another. Let the

normal pressure between them at A be 7?2
= P

z ;
it is a work-

ing force for the body of mass M f>

',
but a resistance for M'

,

hence the separate symbols for the numerically equal forces

(action and reaction).

Similarly, the friction at A is 2?
3
= P

9 ;
a resistance for M',

a working-force for M". (In some cases, of course, friction

may be a resistance for both bodies.) For a small motion, A
describes the small arc AA' about 0' in dealing with M'< but

for M" it describes the arc AA" about 0" , A'A' being

parallel to the surface of contact AD, while AB is perpen-

Fia. 156. FIG. 157.FIG. 155.

dicnlar to A'A". In Figs. 156 and 157 we see M' and M"
free, and their corresponding small rotations indicated. During
these motions the kinetic energy (K. E.) of each mass has

changed by amounts 6?(K. E.)jf/ and d(K. E.)JH/ respectively, and

hence eq. (XV.) gives, for each free body in turn,

P~aa f - = d(K. E.)*'

= d(K. E.V
(1)

(2)
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Now add (1) and (2), member to member, remembering that

jPa
= j?

3
and P3

= 7?
3
= Ft

= friction, and we have

P,aa
r- F9

A 7A / -BT7 = d(K. E.)M,+ d(K. E.)ji", (3)

in which the mutual actions of M1

and M" do not appear,

except the friction, the work done in overcoming which, when

the two bodies are thus considered collectively, is the product

of the friction ~by the distance A'A" of actual rubbing meas-

ured on the rubbing surface. For any number of pieces, then,

consideredfree collectively, the assertion made at the beginning
of this article is true, since any finite motion consists of an

infinite number of small motions to each one of which an equa-

tion like (3) is applicable.

Summing the corresponding terms of all such equations, we
have

This is of the same form as (XV.), but instead of applying to a

single rigid body, deals with any assemblage of rigid parts

forming a machine, or any part of a machine (a similar proof

will apply to three dimensions of space); but it must be remem-

bered that it excludes all the mutual actions* of the pieces con-

sidered except friction, which is to be introduced in the manner

just illustrated. A flexible inextensible cord may be considered

as made up of a great number of short rigid bodies jointed

without friction, and hence may form part of a machine with-

out vitiating the truth of (XVI.).

2(K. E.)n signifies the sum obtained by adding the amounts

of kinetic energy (^dMv^ for each elementary mass) possessed

by all the particles of all the rigid bodies at their final posi-

tions
; 2(K. E.) ,

a similar sum at their initial positions. For

example, the K. E. of a rigid body having a motion of transla-

tion of velocity v, = ^v]fdM= %Mv* ;
that of a rigid body

having an angular velocity OD about a fixed axis Z, = ^<x?Iz

( 139) ;
while, if it, has an ansrnlar velocity & about a gravity-

* These mutual actions consist only of actions by contact (pressure, rub,

etc.). No magnetic or electrical attractions or repulsions are here considered.
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axis Z, which has a velocity vz of translation at right angles to

itself, the (K. E.) at this instant may be proved to be

i.e., is the sum of the amounts due to the two motions sepa-

rately.

143. K. E. of Combined Rotation and Translation. The last

statement may be thus proved. Fig. 158.

At a given instant the velocity of any cO^is

v, the diagonal formed on the velocity vz of

translation, and the rotary velocity cop rela-

tively to the moving gravity-axis Z (per-

pendicular to paper) (see 71),

i.e., v* = vz
*+ (<*P)* Z(p)vz cos cp ;

hence we have K. E., at this instant,

= f%dMv* = &zfdM+ \tffdMtf - covzfdMp cos <?,

but p cos <p = y, and fdMy = My = 0, since Z is a gravity-

axis,

/. K. E. = $Mvz
* +^Iz. Q. E. D.

It is interesting to notice that the K. E. due to rotation, viz.,

^GO^IZ = -|Jf(rf)
3

,
is the same as if the whole mass were con-

centrated in a point, line, or thin shell, at a distance &, the

radius of gyration, from the axis.

144. Example of a Machine in Operation. Fig. 159. Con-

sider the four consecutive moving masses, M', M" ,
Mff>

',
and

M lv
(being the piston ; connecting-rod ; fly-wheel, crank, drum,

and chain
;
and weight on inclined plane) as free, collectively.

Let us apply eq. (XVL), the initial and final positions being
taken when the crank-pin is at its dead-points o and n

; i.e., we
deal with the progress of the pieces made while the crank-pin
describes its upper semicircle. Remembering that the mutual

actions between any two of these four masses can be left out

of account (except friction), the only forces to be put in are

the actions of other bodies on each one of these four, and are
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shown in the figure. The only mutual friction considered will

be at the crank-pin, and if this as an average F"
,
the work

done on it between o and n = F"rtr"
,
where r" = radius of

crank-pin. The work done by Pl
the effective steam-pressure

(let it be constant) during this period is = PJ/ ;
that done in

overcoming^, the friction between piston and cylinder, = FJf ;

that done upon the weight 6r''of connecting-rod is cancelled by
the work done by it in the descent following ;

the work done

FIG. 159.

upon 6r
iv

,
= G^na sin /?, where a = radius of drum

;

upon the friction F^ = Fjta. The pressures N, N r

,
N'1

*, and

N'", and weights G and #'", are neutral, i.e., do no work either

positive or negative. Hence the left-hand member of (XYI.)

becomes, between o and n,

PJ -FJ,' -F"7tr"-G7tasmp -Fjta, . . (1)

provided the respective distances are actually described by
these forces, i.e., if the masses have sufficient initial kinetic

energy to carry the crank-pin beyond the point of minimum

velocity, with the aid of the working force jP
1?
whose effect is

small up to that instant.

As for the total initial kinetic energy, i.e., ^(K. E.) ,
let us

express it in terms of the velocity of crank-pin at o, viz., V9
.

The (K.E.). of M' is nothing ;
that of M"

,
which at this in-

stant is rotating about its right extremity (fixed for the instant)

with angular velocity GO" = V -4- 1", is &"*"; that ofW"
-i&?"

/a/c"', in which a/" = V + r
;
that of Jfiv

(translation)
"

iv
<y

iva
>
in which v iv = (a -5- r) V . SQL. E.)n is expressed
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in a corresponding manner with Vn (final velocity of crank-pin)
instead of VQ . Hence the right-hand member of (XYI.) will

give (putting the radius of gyration of M" about 0" = &",

and that of M" about C = k)

. . (2)

By writing (1)=(2), we have an equation of condition, capa-

ble of solution for any one unknown quantity, to be satisfied

for the extent of motion considered. It is understood that the

chain is always taut, and that its weight and mass are neg-
lected.

145. Numerical Case of the Foregoing. (Foot-pound-second

system of units for space, force, and time; this requires g
= 32.2.)

Suppose the following data :

FEET.
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As to whether the crank-pin actually reaches the dead-point

;i, requires separate investigations to see whether V becomes
zero or negative between o and n (a negative value is inad-

missible, since a reversal of direction implies a different

value for TF"), i.e., whether the proposed extent of motion is

realized
;
and these are made by assigning some other inter-

mediate position m, as a final one, and computing Vm,
remem-

bering that when m is not a dead-point the (K. E.)w of M' is not

zero, and must be expressed in terms of Vm,
and that the

(K. E.)OT of the connecting-rod M''must be obtained from 143.

146. Regulation of Machines. As already illustrated in

several examples ( 121), a fly-wheel of sufficient weight and

radius may prevent too great fluctuation of speed in a single

stroke of an engine ;
but to prevent a permanent change, which

must occur if the work of the working force or forces (such as

the steam-pressure on a piston, or water-impulse in a turbine)
exceeds for several successive strokes or revolutions the work

required to overcome resistances (such as friction, gravity, re-

sistance at the teeth of saws, etc., etc.) through their respective

spaces, automatic governors are employed to diminish the

working force, or the distance through which it acts per stroke,

until the normal speed is restored
;
or vice versa, if the speed

slackens, as when new resistances are temporarily brought into

play. Hence when several successive periods, strokes (or other

cycle), are considered, the kinetic energy of the moving parts

will disappear from eq. (XVI.), leaving it in this form :

work of working-forces = work done upon resistances.

147. Power of Motors. In a mill where the same number of

machines are run continuously at a constant speed proper for

their work, turning out per hour the same number of barrels

of flour, feet of lumber, or other commodity, the motor (e.g.,

a steam-engine, or turbine) works at a constant rate, i.e., de-

velops a definite horse-power (H.P.), which is thus found in

the case of steam-engines (double-acting) :
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H.P. = total mean effective
)

( distance in feet
)

steam-pressure on v X
-j

travelled by pis- V -r- 550,

piston in Ibs. ) ( ton per second. )

i.e., the work (in ft.-lbs) done per second by the working force

divided by 550 (see 132). The total effective pressure at any
instant is the excess of the forward over the back-pressure,

and by its mean value (since steam is usually used expansively)

is meant such a value P' as, multiplied by the length of stroke

I, shall give

P'l =

where P is the variable effective pressure and dx an element

of its path. If u is the number of strokes per second, we may
also write (foot-pound- second system)

H.P. = P'lu -f- 550 =^pdxu -T- 550. (XVII.)

Yery often the number of revolutions jp^r minute, m, of the

crank is given, and then

H.P. = P!

(Ibs.) X 2Z (feet) X m -5- 33,000.

If F= area of piston we may also write Pr = Fp', wherep
f

is the mean effective steam-pressure per unit of area. Evi-

dently, to obtain P' in Ibs., we multiply Fin sq. in. byj/ in

Ibs. per sq. in., or F in sq. ft. by p' in Ibs. per sq. foot
;
the

former is customary, p' in practice is obtained by measure-

ments and computations from "indicator-cards" (see 135, in

which (jPt
12^ corresponds to P of this section) ;

or P'l, i.e.,

/Pdx, may be computed theoretically as in 59, Problem 4.
-

The power as thus found is expended in overcoming the

friction of all moving parts (which is sometimes a large item),
and the resistances peculiar to the kind of work done by the ma-

chines. The work periodically stored in 'the increased kinetic

energy of the moving masses is restored as they periodically

resume their minimum velocities.
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148. Potential Energy. There are other ways in which work

or energy is stored and then restored, as follows :

First. In raising a weight G through a height A, an amount

of work = Oh is done upon G, as a resistance, and if at any

subsequent time the weight is allowed to descend through the

same vertical distance A (the form of path is of no account), G,
now a workingforce, does the work Gh, and thus in aiding the

motor repays, or restores, the Gh expended by the motor in

raising it. If A is the vertical height through which the centre

of gravity rises 'and sinks periodically in the motion of the

machine, the force G may be left out of account in reckoning
the expenditure of the motor's work, and the body when at its

highest point is said to possess an amount Gh of potential

energy, i.e., energy of position, since it is capable of doing the

work Gh in sinking through its vertical range of motion.

Second. So far, all bodies considered have been by express

stipulation rigid, i.e., incapable of changing shape, To see

the effect of a lack of rigidity as affecting the principle of

work and energy in machines,

take the simple case in Fig. 160.

A helical spring at a given in-

stant is acted on at each end by
a force P in an axial direction

(they are equal, supposing the FIG. IGO.

mass of the spring small). As the machine operates of which

it is a member, it moves to a new consecutive position B,

suffering a further elongation dX in its length (if P is increas-

ing). P on the right, a working force, does the work Pdx';
how is this expended ? P on the left has the work Pdx done

upon it, and the mass is too small to absorb kinetic energy or

to bring its weight into consideration. The remainder, Pdx'

Pdx PdX, is expended in stretching the spring an addi-

tional amount dX, and is capable of restoration if the spring

retains its elasticity. Hence the work done in changing the

form of bodies if they are elastic is said to be stored in the

form of potential energy. That is, in the operation of ma-

chines, the name potential energy is also given to the energy
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stored and restored periodically in the changing and regaining
of form of elastic bodies.

149. Other Forms of Energy. Numerous experiments with

various kinds of apparatus have proved that for every 772

(about) ft.-lbs. of work spent in overcoming friction, one British

unit of heat is produced (viz., the quantity of heat necessary to

raise the temperature of one pound of water from 32 to 33

Fahrenheit); while from converse experiments, in which the

amount of heat used in operating a steam-engine was all carefully

estimated, the disappearance of a certain portion of it could only
be accounted for by assuming that it had been converted into

work at the same rate of (about) 772 ft.-lbs. of work to each

unit of heat (or 425 kilogrammetres to each French unit of

heat). This number 77.2, or 425, according to the system of

units employed, is called the Mechanical Equivalent of Heat,
first discovered by Joule and confirmed by Him.*

Heat then is energy, and is supposed to be of the kinetic

form due to the rapid motion or vibration of the molecules of

a substance. A similar agitation among the molecules of the

(hypothetical) ether diffused through space is supposed to pro-

duce the phenomena of light, electricity, and magnetism.
Chemical action being also considered a method of transform-

ing energy (its possible future occurrence as in the case of coal

and oxygen being called potential energy), the well-known

doctrine of the Conservation of Energy, in accordance with

which energy is indestructible, and the doing of work is simply
the conversion of one or more kinds of energy into equivalent

amounts of others, is now one of the accepted hypotheses of

physics.

Work consumed in friction, though practically lost, still re-

mains in the universe as heat, electricity, or some other subtile

form of energy.

150. Power Required for Individual Machines. Dynamome-
ters of Transmission. If a machine is driven by an endless

belt from the main-shaft, A, Fig. 161, being the driving-pulley

* Prof. Rowland's recent experiments result in the value 429 8 kilogram-
metres at a temperature of 5 Cent.
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FIG. 161.

on the machine, the working force which drives the machine,
in other words the "

grip" with which the

belt takes hold of the pulley tangential ly, p"

P P', P and P' being the tensions

in the "
driving" and "

following" sides of

the belt respectively. The belt is supposed ,

not to slip on the pulley. If v is the ve-

locity of the pulley -circumference, the

work expended on the machine per second, i.e., the power, is

L = (P-P f

)v (1)

To measure the force (P P f

\ an apparatus called a Dy-
namometer of Transmission may be placed between the main
shaft and the machine, and the belt made to pass through it in

such a way as to measure the tensions P and P
',
or princi-

pally their difference, without meeting any resistance in so do-

ing ;
that is, the power is transmitted, not absorbed, by the

apparatus. One invention for this purpose (mentioned in the

Journal of the Franklin Institute some years ago) is shown

(in principle] in Fig. 162. A ver-

tical plate carrying four pulleys arid

a scale-pan is first balanced on the

pivot C. The belt being then ad-

justed, as shown, and the power
.turned on, a sufficient weight G is

placed in the scale-pan to balance

FIG. 162. the plate again, for whose equilib-
rium we must have Go = Pa P'a, since the P and Pf on

the right are purposely given no leverage about C. The ve-

locity of belt, 'y, is obtained by a simple counting device.

Hence (P P') and v become known, and .*. L from (1).

Many other forms of transmission-dynamometers are in use,

some applicable whether the machine is driven by belting or

gearing from the main shaft. Emerson's Hydrodynamics de-

scribes his own invention on p. 283, and gives results of meas-

urements with it
; e.g., at Lowell, Mass., the power required

to drive 112 looms, weaving 36-inch sheetings, No. 20 yarn,
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60 threads to the inch, speed 130 picks to the minute, was

found to be 16 H.P., i.e., | H.P. to each loom (p. 335).

151. Dynamometers of Absorption. These are so named
since they furnish in themselves the resistance (friction or a

weight) in the overcoming (or raising) of which the power is

expended or absorbed. Of these the Prony Friction Brake
is the most common, and is used for measuring the power

developed by a given motor (e.g., a steam-engine or turbine)

not absorbed in the friction of the motor itself. Fig. 163

shows one fitted to a vertical pulley driven by the motor. By
tightening the bolt J?, the velocity v of pulley-rim may be

made constant at any desired value (within certain limits) by
the consequent friction, v is measured by a counting appara-

tus, while the friction (or tangential components of action be-

tween pulley and brake), = F, becomes known by noting the

weight G which must be placed in the scale-pan to balance the

arm between the checks
;
then

Fa=Gb, (1)

for the equilibrium of the brake (supposing the weight of

brake and scale-pan previously balanced on C) and the work

done per unit of time, orpower, is

L-Fo (2)

A "
dash-pot

"
is frequently connected with the arm to prevent

sudden oscillations. In case the pulley is horizontal, a bell-

crank lever is added between the arm and the scale-pan, and

then eq. (1) will contain two additional lever-arms.
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152. The Indicator, used with steam and other fluid engines,
is a special kind of dynamometer in which the automatic mo-

tion of a pencil describes a curve

on paper whose ordinates are

proportional to the fluid pres-

sures exerted in the cylinder at

successive points of the stroke.

Thus, .Fig. 164, the back-pres-

sure being constant and = P6 ,
FIG. 164.

the ordinates P
,
P1? etc., represent the effective pressures at

equally spaced points of division. The mean effective pressure

P' (see 147) is, for this figure, by Simpson's /Rule (six equal

spaces),

ZERO LINE

+ 4(P, + P3 + P.) + 2(P, +P4) + PJ.

This gives a near approximation. The power is now found by
147.

153. The theory of Atwood's Machine is most directly ex-

pressed by the principle of work and energy ; i.e., by eq.

(XVI.), 142. Fig. 165. The parts

considered free, collectively, are the

rigid bodies P, Q, G, and four friction-

wheels like GV and the flexible cord,

which does not slip on the upper pul-

ley. There is no slipping at Z>, hence

no sliding friction there. The actions

of external bodies on these eight consist

of the working force P, the resistances

Q and the four JP's (at bearings of fric-

IBS. tion-wheel axles); all others (6r, 46r,,

and the four J2's) are neutral. Since there is no rubbing be-

tween any two of the eight bodies, no mutual actions whatever

will enter the equation. Let P > Q, and /and 1^ be the mo-

ments of inertia of G and #n respectively, about their respec-

tive axes of figure. Let the apparatus start from rest, then

when P has descended through any vertical distance s, and ac-
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quired the velocity v, Q has been drawn up an equal distance

and acquired the same velocity, while the pulley G has ac-

quired an angular velocity GO = v -=-
#, each friction-pulley an

angular velocity oo
l
=.

(r : a)v -7- ar As to the forces, P has

done the work Ps, Q has had the work Qs done upon it, while

each j^has been overcome through the space (r l :,)(? : a)8\
all the other forces are neutral. Hence, from eq. (XVL), 142

(see also 139), we have

Evidently v = Vs X constant, i.e., the motion of P and Q is

uniformly accelerated. If, after the observed spaces has been

described, P is suddenly diminished to such a value P' that

the motion continues with a constant velocity = v, we shall

have, for any further space s',

P's' -Qs f -F- 1- .-s f = Q,
a, a

from which F can be obtained (nearly) ;
while if tf be the ob-

served time of describing ',
v = s' -r- t' becomes known.

Also we may write 1= (G -r- g)%? and 1^ = (Gl
-f- g)k* 9

and

thus finally compute the acceleration of gravity, ^, from our

first equation above.

154. Boat-Rowing. x^ig. 166. During the stroke proper,

let P = mean pressure on one oar-handle
;
hence the pressures

on the foot-rest are 2P, resistances. Let M= mass of boat

and load, v and vn its velocities at beginning and end of stroke.

P
l
=. pressures between oar- blade and water. 12 = mean re-

sistance of water to the boat's passage at this (mean) speed.

These are the only (horizontal) forces to be considered as act-

ing on the boat and two oars, considered free collectively.

During the stroke the boat describes the space s
3
= CD, the

oar-handle the space #
a
= AJB, while the oar-blade slips back-
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ward through the small space (the
"
slip") s, (average).

Hence by eq. (XVI.), 142,

.e.,

or, in words, the product of the oar-handle pressures into the

distance described by them measured on the boat, i.e., the work
done by these pressures relatively to the boat, is entirely ac-

counted for in the work of slip and of liquid-resistance, and in-

FIG. 166.

creasing the kinetic energy of the mass. (The useless work
due to slip is inevitable in all paddle or screw propulsion, as

well as a certain amount lost in machine-friction, not considered

in the present problem.) During the " recover" the velocity
decreases again -to v .

155. Examples. 1. What work is done* on a level track, in

bringing up the velocity of a train weighing 200 tons, from

zero to 30 miles per hour, if the total frictional resistance (at

any velocity, say) is 10 Ibs. per ton, and if the change of speed
is accomplished in a length of 3000 feet ?

(Foot-ton-second system.) 30 miles per hour = 44 ft. per
sec. The mass

= 200 -v- 32.2 = 6.2 ;

.'. the change in kinetic energy,

(= -p/^> _ ij/ x O 8

),

= i(6.2) X 442 = 6001.6 ft.-tons.

* That is, what work is done by the pull, or tension, Pt
in the draw-bar

between the locomotive and the "tender."
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The work done in overcoming friction = 7's, i.e.,

= 200 X 10 X 3000 = 6,000,000 ft.-lbs. = 3000 ft.-tons
;

/. total work = 6001.6 + 3000 = 9001.6 ft.-tons.

(If the track were an up-grade, 1 in 10(5 say, the item of

200 X 30 = 6000 ft.-tons would be added.)

Example 2. Required the rate of work, or power, in Ex-

ample 1. The power is variable, depending on the velocity of

the train at any instant. Assume the motion to be uniformly

accelerated, then the working force is constant
;

call it P.
The acceleration ( 56) will be p=v*-i-2s= 1936-5-6000=0.322
ft. per sq. sec.; and since P F= Mp, we have

P = 1 ton + (200 -r- 32.2) X 0.322 = 3 tons,

which is 6000 -r- 200 = 30 Ibs. per ton of train, of which 20 is

due to its inertia, since when the speed becomes uniform the

work of the engine is expended on friction alone.

Hence when the velocity is 44 ft. per sec., the engine is

working at the rate of Pv = 264,000 ft.-lbs. per sec., i.e., at the

rate of 480 H. P.;

At i of 3000 ft. from the start, at the rate of 240 H. P., half

as much
;

At a uniform speed of 30 miles an hour the power would be

simply 1 X 44 = 44 ft. -tons per sec. = 160 H. P.

Example 3. The resistance offered by still water to the

passage of a certain steamer at 10 knots an hour is 15,000 Ibs.

What power must be developed by its engines, at this uniform

speed, considering no loss in "
slip" nor in friction of ma-

chinery ? Ans. 461 H. P.

Example 4. Same as 3, except that the speed is to be 15

knots (i.e., nautical miles
;
each 6086 feet) an hour, assum-

ing that the resistances are as the square of the speed (approxi-

mately true). Ans. 1556 H, P.

Example 5. Same as 3, except that 12$ of the power is ab-

sorbed in the "
slip" (i.e.,

in pushing aside and backwards the

water acted on by the screw or paddle), and 8$ in friction of

machinery. Ans. 576 H. P.

Example 6. In Example 3, if the crank-shaft makes 60
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revolutions per minute, the crank-pin describing a circle of 18

inches radius, required the average* value of the tangential

component of the thrust (or pull) of the connecting-rod against

the crank-pin. Ans. 26890 Ibs.

Example 7. A solid sphere of cast-iron is rolling up an in-

cline of 30, and at a certain instant its centre has a velocity of

36 inches per second. Neglecting friction of all kinds, how

much further will the ball mount the incline (see 143) ?

Ans. 0.390 ft.

Example 8. In Fig. 163, with 5 = 4 ft. and a = 16 inches,

it is found in one experiment that the friction which keeps the

speed of the pulley at 120 revolutions per minute is balanced

by a weight G = 160 Ibs. Kequired the power thus measured.

Ans. 14.6 H. P.

Although in Examples 1 to 6 the steam cylinder is itself in

motion, the work per stroke is still = mean effective steam-

pressure on piston X length of stroke, for this is the final form

to which the separate amounts of work done by, or upon, the

two cylinder heads and the two sides of the piston will re-

duce, when added algebraically. See 154.

* By
"
average value" is meant such a value, Tm ,

as multiplied into the

length of path described by the crank-pin per unit of time shall give the

power exerted.
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CHAPTER YII.

FRICTION.

156. Sliding Friction. When the surfaces of contact of two

bodies are perfectly smooth, the direction of the pressure or pair

of forces between them is normal to these surfaces, i.e., to their

tangent-plane ;
but when they are rough, and

moving one on the other, the forces or ac-

tions between them incline away from the

normal, each on the side opposite to the di-

rection of the (relative) motion of the body
on which it acts. Thus, Fig. 167, a block

FIG. 167. whose weight is G, is drawn on a rough
horizontal table by a horizontal cord, the tension in which is

P. On account of the roughness of one or both bodies the ac-

tion of the table upon the block is a force jP,, inclined to the

normal (which is vertical in this case) at an angle = q> away
from the direction of the relative velocity v. This angle q> is

called the angle offriction, while the tangential component of

jP, is called the friction = F. The normal component N,
which in this case is equal and opposite to G the weight of the

body, is called the normal pressure.

Obviously F= jVtan <p,
and denoting tan q> by/*, we have

F=fN. (1)

/"is called the coefficient offriction, and may also be defined

as the ratio of the friction F to the normal pressure N which

produces it.
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In Fig. 167, if the motion is accelerated (ace.
= p), we have

(eq. (IV.), 55) P F'= Mp ;
if uniform, P F=0', from

which equations (see also (I))/
1

may be computed. In the

latter case/" may be found to be different with different veloci-

ties (the surfaces retaining the same character of course), and

then a uniformly accelerated motion is impossible unless P
F were constant.

As for the lower block or table, forces the equals and op-

posites ofN andF (or a single force equal and opposite to P^
are comprised in the system of. forces acting upon it.

As to whether F is a working force or a resistance, when

either of the two bodies is considered free, depends on the cir-

cumstances of its motion. For example, in friction-gearing

the "tangential action between the two pulleys is a resistance

for one, a working force for the other.

If the force P, Fig. 167, is just sufficient to start the body,

or is just on the point of starting it (this will be called impending

motion), F\& called the friction of rest. If the body is at rest

and P is not sufficient to start it, the tangential component will

then be < the friction of rest, viz., just
= P. AsP increases,

this component continually equals it in value, and P
1 acquires

a direction more and more inclined from the normal, until the

instant of impending motion, when the tangential component

=fJV= the friction of rest. When motion is once in prog-

ress, the friction, called then the friction of motion, =fJW,
in which/* is not necessarily the same as in the friction of rest.

157. Laws of Sliding Friction.* Experiment has demon-

strated the following relations approximately, for two given

rubbing surfaces : (bee 175.)

(1) The coefficient,/
1

,
is independent of the normal pressure

N.

(2) The coefficient,/, for friction of motion, is the same at

all velocities.

(3) The coefficient, /, for 'friction of rest (i.e., impending

motion) is usually greater than that for friction of motion

( probably on account of adhesion).

* These "laws" apply, with only a rude approximation, to dry surfaces

(except 5) under moderate pressures and at low velocities. See pp. 167,

168, uiid 192. Also see Eng. News, May 1895, p. 322, for experiments on

wood.
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(4) The coefficient, jf,
is independent of the extent of rub-

bing surface.

(5) The interposition of an unguent (such as oil, lard, tallow,

etc.) diminishes the friction very considerably.

158. Experiments on Sliding Friction. These may be made
with simple apparatus. If a block of weight G, Fig. 168,

be placed on an inclined plane of uniformly rough surface,

and the latter be gradually more and more inclined from the

horizontal until the block begins to move, the value of ft at

FIG. 168. FIG. 169.

this instant = ^>, and tan (p=f= coefficient of friction of

rest. For from ^2X = we have F, i.e., fN, = G sin ft\

from 2Y= 0, N= G cos ft ;
whence tan ft =/, .-. ft must

= 9-

Suppose ft so great that the motion is accelerated, the body

starting from rest at 0, Fig. 169. It will be found that the

distance x varies as the square of the time, hence
( 56) the

motion is uniformly accelerated (along the axis X). (Notice
fin the figure that G is no longer equal and opposite to jP,, the

resultant of ^and F^ as in Fig. 168.)

2Y 0, which gives N G cos ft = ;

2X = Mp, which gives G sin /3fJ^= (G + g)p\

while (from 56) p=2x+ f.

Hence, by elimination, x and the corresponding time t having
been observed, we have for the coefficient of friction of motion

/ = tan ft
gt* cos ft'
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In view of (3), 157, it is evident that if a value ftm has been

found experimentally for ft such that the block, once started ly

hand, preserves a uniform motion down the plane, then, since

tan ftm =f for friction of motion, ftm may be less than the ft

in Fig. 168, for friction of rest.

159. Another apparatus consists of a horizontal plane, a pul-

ley, cord, and two weights, as shown in Fig. 59. The masses

of the cord and pulley being small and hence neglected, the

analysis of the problem when G is so large as to cause an ac-

celerated motion is the same as in that example [(2) in 57],

except in Fig. 60, where the frictional resistance/LZV should be

put in pointing toward the left. N still = Ga and /.

8 -/&>=(&, + fa; .
,,'.' . . (1)

while for the other free body in Fig. 61 we have, as before,

G-S=(G + g}p.. . V . , . (2)

From (1) and (2), 8 the cord-tension can be eliminated, and

solving for
/?, writing it equal to 2s ~ t\ s and t being the ob-

served distance described '(from rest) and corresponding time,
we have finally for friction of motion

If G, Fig. 59, is made just sufficient to start the block, or

sledge, GU we have for the friction of rest

I /-. .:.....<

160. Results of Experiments on Sliding Friction. Professor

Thurston in his article on Friction (which the student will do

well to read) in Johnson's Cyclopaedia gives the following

epitome of results from General Morin's experiments (made
for the French Government in 1833) (low velocities and

pressures) :
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TABLE FOR FRICTION OF MOTION.

No.
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generated by revolving 00 about ON, the block A will not

slip on B, and the tangential resistance of B is simply P sin

/3 ;
but if ft is > q>, this tangential resistance being onlyfN

and < P sin /?, .A will begin to slip, with an acceleration.

162. Problems in Sliding Friction. In the following prob-

lems/* is supposed known at points where rubbing occurs, or

is impending. As to the pressure N to which the friction is

due, it is generally to be considered unknown until determined

by the conditions of the problem. Sometimes it may be an

advantage ^o deal with the single unknown force P (resultant

of NandifN) acting in a line making the known angle <p with

the normal (on the side away from the motion).
PROBLEM 1. Required the value of the weight P, Fig. 171,

the slightest addition to which will cause motion of the hori-

zontal rod OB, resting on rough planes at 45. The weight
G of the rod may be applied at the

middle. Consider the rod free
;
at

each point of contact there is an un-

known JW and a friction due to it

fN\ the tension in the cord will be

= P, since there is no acceleration

and no friction at pulley. Notice FIG. m.

the direction of the frictions, both opposing the impending
motion. [The student should not rush to the conclusion that

.TV and NI are equal, and are the same as would be produced by
the components of G if the latter were transferred to A and

resolved along AO and AB
;
but should await the legitimate

results deduced by algebra, from the equations of condition

for the equilibrium of a system of forces in a plane. Few

problems in Mechanics are so simple as to admit of an 'imme-

diate mental solution on inspection ;
and guess-work should be

carefully avoided.]

Taking an origin and two axes as in figure, we have (eqs.

(2), 36), denoting the sine of 45 by m,

N-P = 0;. . (1)

____ fNa + Na - Gb = 0. . . (3)



170 MECHANICS OF ENGINEERING.

The three unknowns P, JV, and N
l
can now be found.

Divide (3) by a, remembering that J : a = m, and solve for

N\ substitute it in (2) and N
l
also becomes known

;
while P

is then found from (1) and is

P = /V2
G.

PROBLEM 2. Fig. 172. A rod, centre of gravity at middle,

leans against a rough wall, and rests on an equally rough floor;

how small may the angle a become before it

~- P2 sliPs Let a = the half-length. The figure

Fr
~ shows the rod free, and following the sugges-

tion of 162, a single unknown force P
l

making a known angle q> (whose tan =
tf)

with the normal DE, is put in at D, leaning

away from the direction of the impending

motion, instead of an N and fN\ similarly
FIG. ITS. PI acts at C. The present system consisting

of but three forces, the most direct method of finding ,
with-

out introducing the other two unknowns P
l
and P3

at all, is

to use the principle that if three forces balance, their lines

of action must intersect in a point. That is, Pt
must inter-

sect the vertical containing G, the weight, in the same point

as P,, viz., A.

Now EA, and also BC^ = a cos
,

.*. ED = a cos a cot <p and AB = a cos a tan (p.

But DF, which = 20 sin a, = DE' AB
;

.'. 2# sin a = a cos a [cot cp tan cp]. . . (1)

Dividing by cos
,
and noting that tan q> =f= 1 -f- cot 99,

we obtain for the required value of a

and finally, tan a = cot

after some trigonometrical reduction. That is, a is the com-

plement of double the angle of friction.
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PROBLEM 3. Fig. 173. Given the resistance Q, acting

parallel to the fixed guide C* the angle <*, and the (equal) co-

efficients of friction at the rubbing surfaces, required the

FIG. 173. FIG. 174.

amount of the horizontal force JP, at the head of the block A
(or wedge\ to overcome Q and the frictions. D is fixed, and

ab is perpendicular to cd. Here we have four unknowns, viz.,

P, and the three pressures N, N and Nm between the blocks.

Consider A and B as free bodies, separately (see Fig. 174), re-

membering Newton's law of action and reaction. The fullO
values (e.g.,/W) of the frictions are put in, since we suppose
a slow uniform motion taking place.

For A, 2X= and 2Y= give

r
l

NCOS a -f/ZTsin a P sin a =
;

. . (1)

^^sin a +fJVGosa P cos a = 0. . . (2)

For B, ^Xand 2T give

Q Ni +/-# =
;
.... (3) and N

t fN^ = 0. ... (4)

Solve (4) for N^ and substitute in (3), whence

-/')=# : (5)

Solve (2) for N, substitute the result in (1), as also the value

of -ZV^ from (5), and the resulting equation contains but one un-

known, P. Solving for J3
, putting for brevity

sn a m and cos a a =

we have

or

P =
(n . cos a -\- m . sin or)(l / a

)'
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Numerical Example of Problem 3. If Q = 120 Ibs., /
= 0.20 (an abstract number, and /. the same in any system of

units), while a = 14, whose sine = 0.240 and cosine .970,

then

m = 0.2 X.97 + 0.24 = 0.43 and n = .97 .2X-24-= 0.92,

whence P = 0.64$ = 76.8 Ibs.

While the wedge moves 2 inches P does the work (or exerts

an energy) of 2 X 76.80 = 153.6 in.-lbs. = 12.8 ft.-lbs.

For a distance of 2 inches described by the wedge horizon-

tally, the block JS (and /. the resistance Q) has been moved

through a distance = 2 X sin 14 = 0.48 in. along the guide

<7, and hence the work of 120 X 0.48 = 57.6 in.-lbs. has been

done upon Q. Therefore for the supposed portion of the

motion 153.6 57.6 96.0 in.-lbs. of work has been lost in

friction (converted into heat).

It is noticeable in eq. (6), that -if /"should = 1.00, P = oc
;

and that if a .= 90. P = Q. and there is no friction (the

weights of the blocks have been neglected).

PROBLEM 4. Numerical. With what minimum pressure

P should the pulley A be held against B. which it drives by
f

i fl .x i-i A
"
frictional gearing," to transmit 2 H.P.;

4
;
js\~ ) if a 45, f for impending (relative)

.. N motion, i.e., for impending slipping =
FIG. 175. 0.40, and the velocity of the pulley-rim

is 9 ft. per second ?

The limit-value of the tangential
"
grip"

T = %fN= 2 X 0.40 X P sin 45,
2 H. P. = 2 X 550 = 1100 ft.-lbs. per second.

Putting T X 9 ft. = 1100, we have*

2 X 0.40 X I/? X P X 9 = 1100
;

.-. P = 215 Ibs.

PROBLEM 6. A block of weight G lies on a rough plane,

inclined an angle ft from the horizontal
;
find the pull P, mak-

ing an angle a with the first plane, which will maintain a uni-

form motion up the plane.

* In this problem the student should note that, in general, when a is not 45,
we have N = %P -s- cos a (since in such a case the parallelogram of forces is

not a square).
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PROBLEM 7. Same as 6, except that the pull P is to permit
a uniform motion down the plane.

PROBLEM 8. The thrust of a screw-propeller is 15 tons.

The ring against which it is exerted has a mean radius of 8

inches, the shaft makes one revolution per second, and/* = 0.06.

Required the H. P. lost in friction from this cause.

Ans. 13.7 H. P.

163. The Bent-Lever with Friction. Worn Bearing. Fig.

176. Neglect the weight of the lever, and suppose the plumb-
er-block so worn that there is

contact along one element only of

the shaft. Given the amount and

line of action of the resistance 72,

and the line of action of P, re-

quired the amount of the latter for

impending slipping in the direction

of the dotted arrow. As P grad-

ually increases, the shaft of the

lever (or gear-wheel) rolls on its FIG.

bearing until the line of contact has reached some position A,
when rolling ceases and slipping begins. To find A, and the

value of P, note that the total action of the bearing upon the

lever is some force jP,, applied at A and making a known

angle cp (f tan <p) with the normal A C. P
l
must be equal

and opposite to the resultant of the known ft and the unknown

P, and hence graphically (a graphic is much simpler here than

an analytical solution) if we describe about C a circle of radius

= r sin <p, r being the radius of shaft (or gudgeon), and draw

a tangent to it from D, we determine DA as the line of action

of Pr If DG is made = R, to scale, and (redrawn parallel

to D . . . P, P is determined, being = DE, while P, = DF.
If the known force ft is capable of acting as a working force,

by drawing the other tangent DB from D to the "
friction-

circle," we have P = DH, and P
1
= DK^ for impending

rotation in an opposite direction.

If ft and P are the tooth-pressures upon two spur:wheels,

keyed upon the same shaft and nearly in the same plane, the
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same constructions hold good, and for a continuous uniform

motion, since the friction = P
1
sin <p,

the work lost in friction = [P sin

per revolution,

It is to be remarked, that without friction P
l
would pass

through Gj and that the moments of It and P would balance

about C (for rest or uniform rotation) ;
whereas with friction

they balance about the proper tangent-point of the friction-

circle.

Another way of stating this is as follows : So long as the

resultant of P and R falls within the "
dead-angle" BDA^

motion is impossible in either direction.

If the weight of the lever is considered, the resultant of it

and the force R can be substituted for the latter in the fore-

going.

164. Bent-Lever with Friction. Triangular Bearing. Like

the preceding, the gudgeon is much exaggerated in the figure

(177). For impending rotation in

direction of the force jP, the total

actions at A
1
and A 9 must lie in

known directions, making angles = cp

with the respective normals, and in-

clined away from the slipping. Join

the intersections D and L. Since

the resultant of P and R at D must

act along DL to balance that of P
l

and PV having given one force, say
FIG. 177. 7?

5
We easily find P = DE, while

PI and PS = ZJfand LN respectively, LO having been made
= DF, and the parallelogram completed.

(If the direction of impending rotation is reversed, the change
in the construction is obvious.) If P

9
=

0, the case reduces

to that in Fig. 176
;

if the construction gives P9 negative, the

supposed contact at A^ is not realized, and the angle A.
i
CA

l

should be increased, or shifted, until /\ is positive.

As before, P and R may be the tooth- pressures on two
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spur-wheels nearly in the same plane and on the same shaft
;

if so, then, for a uniform rotation,

Work lost in fric. per revol. = \_P^ sin <p -f- Pt
sin <p]%rtr.

165. Axle-Friction. The two foregoing articles are intro-

ductory to the subject of axle -friction. When the bearing 'is

new, or nearly so, the elements of the axle which are in contact

with the bearing are infinite in number, thus giving an infinite

number of unknown forces similar to P
1
and P^ of the last

paragraph, each making an angle q> with its normal. Refined

theories as to the law of distribution of these pressures are of

little use, considering the uncertainties as to the value of

tf( = tan q>) ;
hence for practical purposes axle-friction may be

written

F=fB,
in which f is a coefficient of axle-friction derivable from

experiments with axles, and R the resultant pressure on the

bearing. In some cases R may be partly due to the tightness

of the bolts with which the cap of the bearing is fastened.

As before, the work lost in overcoming axle-friction per
revolution is ^f'R^Ttr, in which r is the radius of the axle.

f, like/
1

,
is an abstract number. As in Fig. 176, a "

friction-

circle," of radius =f'r, may be considered as subtending the
"
dead-angle."

166. Experiments with Axle-Friction. Prominent among
recent experiments have been those

of Professor Thurston (1872-73),
who invented a special instrument

for that purpose, shown (in princi-

ple only) in Fig. 178. By means of

an internal spring, the amount of

whose compression is read on a scale,

a weighted bar or pendulum is caused

to exert pressure on a projecting axle

from which it is suspended. The
i ..

.^_....^i

axle is made to rotate at any desired FIG. ITS.

velocity by some source of power, the axle-friction causing
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the pendulum to remain at rest at some angle of deviation

from the vertical. The figure shows the pendulum free, the

action of gravity upon it being #, that of the axle consisting
of the two pressures,* each= 7?, and of the two frictions (each

being F fR\ due to them. Taking moments about C, we
have for equilibrium

2fr = GFb,
'

in which all the quantities except f are known or observed.

The temperature of the bearing is also noted, with reference

to its effect on the lubricant employed. Thus the instrument

covers a wide range of relations.

General Morin's experiments as interpreted by Weisbach

give the following practical results :

!|-

0.054 for well-sustained

J lubrication;

/ I 0.07 to .08 for ordinary
I lubrication.

By
"
pressure per square inch on the bearing" is commonly

meant the quotient of the total pressure m Ibs. by the area in

square inches obtained by multiplying the width of the axle by
the length of bearing (this length is quite commonly four times

the diameter) ;
call it^>, and the velocity of rubbing infeetper

minute, v. Then, according to Kankine, to prevent overheat-

ing, we should have

p(v+ 20) < 44800 . . . (not homog.).

Still, in marine-engine bearings pv alone often reaches 60,000,

as also in some locomotives (Cotterill). Good practice keeps

P within the limit of 800 (Ibs. per sq. in.) for other metals

than steel (Thurston), for which 1200 is sometimes allowed.

With v = 200 (feet per min.) Professor Thurston found that

for ordinary lubricants p should not exceed values ranging
from 30 to 75 (Ibs. per sq. in.).

The product pv is obviously proportional to the power ex-

pended in wearing the rubbing surfaces, per unit of area.

* The weight G being small compared with the compressive force

the spring, each pressure is practically equal to R.
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167. Friction-Wheels. A single example of their use will

be given, with some approximations to avoid complexity. Fig.
179. G is the weight of a heavy wheel, P1

is a known vertical

resistance (tooth-pressure), and P an

unknown vertical working force,

whose value is to be determined to

maintain a uniform rotation. The

utility of the friction-wheels is also

to be shown. The resultant of P^
6r, and P is a vertical force R, pass-

ing nearly through the centre C of

the main axle which rolls on the four

friction-wheels. R, resolved along ^---.a

CA and CB, produces (nearly) equal FIG. 179.

pressures, each being N= R -f- 2 cos at, at the two axles of

the friction- wheels, which rub against their fixed plumber-
blocks. R = P -f- P1 -\- G and .*. contains the unknown P,
but approximately = G -\- 2P15 i.e., is nearly the same (in this

case) whether friction-wheels are employed or not.

When G makes one revolution, the frictionf'N at each axle

C
l

is overcome through a distance (r l
: a^ %7tr, and

Work lost per revol.
) 1

with ( = 2 f'N
T
^nr = ^ -^

, . . T ,
(

J
a. a, cos

friction-wheels, J

Whereas, if C revolved in a fixed bearing,

Work lost per revol. )

without V =fR%7tr.
friction-wheels, )

Apparently, then, there is a saving of work in the ratio /,:

a
l
cos a, but strictly the H is not quite the same in the two cases

;

for with friction-wheels the force P is less than without, and R
depends on P as well as on the known G and Pv By dimin-

ishing the ratio r
l

: a
l9
and the angle a, the saving is increased.

If a were so large that cos a < r
1

: a^ there would be no saving,
but the reverse.

As to the value of P to maintain uniform rotation, we have

12
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for equilibrium of moments about O
9
with friction-wheels (con>

sidering the large wheel and &x\.efree\

Pi = PA + 27V, ...... (1)

in which T is the tangential action, or "
grip," between one

pair of friction-wheels and the axle C which rolls upon them.

T would not equalfN unless slipping took place or were im-

pending at E, but is known by considering a pair of friction-

wheels free, when 2 (Pa) about O
l gives

which in (1) gives finally

a, cos

Without friction-wheels, we would have

(3)

The last term in (2) is seen to be less than that in (3) (unless

a is too large), in the same ratio as already found for the saving
of work, supposing the J?'s equal.

If P
l
were on the same side of C as jP, it would be of an

opposite direction, and the pressure R would be 'diminished.

Again, if P were horizontal, R would not be vertical, and the

friction-wheel axles would not bear equal pressures. Since P
depends on P^ G, and thefrictions, while the friction depends
on R, and R on P^ G, and P, an exact analysis is quite

complex, and is not warranted by its practical utility.

Example. If an empty vertical water-wheel weighs 25,000

Ibs., required the force P to be applied at its circumference to

maintain a uniform motion, with a = 15 ft., and r = 5 inches.

Here P
l
= 0, and R = G (nearly ; neglecting the influence of

P on R\ i.e., R = 25,000 Ibs.

First, withoutfriction-wheels (adopting the foot-pound-sec-

ond system of units), withy
7 = .07 (abstract number). From

eq. (3) we have

p = o+ 0.07 X 25,000 X (A * 15
)
= 4 .6 Ibs.
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The work lost in friction per revolution is

fRZnr = 0.07 X 25,000 X 2 X 3.14 X TV = 4580 ft.-lbs.

/Secondly, with friction-wheels, in which r
l

: a
l
=

-J
and

cos a = 0.80 (i.e.,
a = 36). From eq. (2)

P = + | . Y X 48.6 = only 12.15 Ibs.,

while the work lost per revolution

= | . X 4580 = 1145 ft.-lbs.

Of course with friction- wheels the wheel is not so steady as

without.

In this example the force P has been simply enough to

overcome friction. In case the wheel is in actual use,P is the

weight of water actually in the buckets at any instant, and does

the work of overcomingPlt
the resistance of the mill machinery,

and also the friction. By placing Pl pointing upward on the

same side of as P, and making 5, nearly ==
&, R will = G

nearly, just as when the wheel is running empty; and the

foregoing numerical results will still hold good for practical

purposes.

168. Friction of Pivots. In the case of a vertical shaft or

axle, and sometimes in other cases, the extremity requires sup-

port against a thrust along the axis of the axle or pivot. If

the end of the pivot is flat and also the surface

against which it rubs, we may consider the

pressure, and therefore the friction, as uniform

over the surface. With a flat circular pivot,

then, Fig. 180, the frictions on a small sector

of the circle form a system of parallel forces

whose resultant is equal to their sum, and is

applied a distance of %r from the centre. Hence the sum of

the moments of all the frictions about the centre =fR%r, in

which R is the axial pressure. Therefore a force P necessary

to overcome the friction with uniform rotation must have a

moment
Pa =/fffr,
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and the work lost in friction per revolution is

(1)

As the pivot and step become worn, the resultant friction*

in the small sectors probably approach the centre
;

for the

greatest wear occurs first near the outer edge, since there the

product^ is greatest (see 166). Hence for \r we may more

reasonably put ^r.

Example. A vertical flat-ended pivot presses its step with

a force of 12 tons, is 6 inches in diameter, and makes 40 revolu-

tions per minute. Required the H. P. absorbed by the friction.

Supposing the pjvot and step new, and f for good lubrication

= 0.07, we have, from eq. (1) (foot-lb.-second) <

Work lost per revolution

= .07 X 24,000 X 6.28 X % . i = 1758.4 ft.-lbs.,

and .'. work per second

= 1758.4 x H = 1172.2 ft.-lbs.,

which -r- 550 gives 2.13 H.P. absorbed in friction. If ordi-

nary axle-friction also occurs its effect must be added.

If the flat-ended pivot is hollow
>,
with radii r, and r^ we may

put ^(r l+ rj instead of the %r of the preceding.
It is obvious that the smaller the lever-arm given to the

resultant friction in each sector of the rubbing surface the

smaller the power lost in friction. Hence pivots should be

made as small as possible, consistently with strength.

For a conical pivot and step, Fig. 181, the resultant friction

in each sector of the conical bearing surface has

a lever-arm = -fr, about the axis A, and a value

> than for a flat-ended pivot ; for, on account

of the wedge-like action of the bodies, the

pressure causing friction is greater. The sum of

the moments of these resultant frictions about

A is the same as if only two elements of the

cone received pressure (each = N = ^R -r- sin a). Hence the
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'moment offriction of the pivot, i.e., the moment of the force

necessary to maintain uniform rotation, is

p* = * sin a 3

and work lost per revolution =
^ sin a

By making r
l
small enough, these values may be made less

than those for a flat-ended pivot of the same diameter = 2r.

In Schiele's "anti-friction" pivots the outline is designed

according to the following theory for securing uniform vertical

wear. Letp the pressure per
horizontal unit of area (i.e.,

= H -r- horizontal projection of

the actual rubbing surface) ;

this is assumed constant. Let

the unit of area be small, for

algebraic simplicity. The fric- FIO . 182.

tion'on the rubbing surface, whose horizontal projection= unity,

is =.fN =.f(p -r- sin a) (see Fig. 182; the horizontal com-

ponent ofp is annulled by a corresponding one opposite). The

work per revolution in producing wear on this area ~ fN%ny.
But the vertical depth of wear per revolution is to be the same

at all parts of the surface
;
and this implies that the same

volume of material is worn away under each horizontal unit of

area. Hence/2T2 Try, i.e.,/. 2 Try, is to be constant for all

values of y ;
and since

as the law of the curve,

and 2?r are constant, we must have,

y
-, i.e., the tangent BC = the same at all points.

sin OL

This curve is called the " tractrix" Schiele's pivots give a

very uniform wear at high speeds. The smoothness of wear

prevents leakage in the case of cocks and faucets.

169. Normal Pressure of Belting. When a perfectly flexible

cord, or belt, is stretched over a smooth cylinder, both at rest,
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the action between them is normal at every point. As to its

\\] s amount, p, per linear unit of arc, the fol-

~~"**'

lowing will determine. Consider a semi-

circle of the cord free, neglecting its weight.

Fig. 183. The forces holding it in equilib-

rium are the tensions at the two ends (these

are equal, manifestly, the cylinder being
smooth

;
for they are the only two forces

'/TT"
1
" "*

having moments about C, and each has the

FIG. 183. same lever-arm), and the normal pressures,

which are infinite in number, but have an intensity, p, per
linear unit, which must be constant along the curve since S is

the same at all points. The normal pressure on a single ele-

ment, ds, of the cord is = pds, and its X component =
pds cos 6 =: prd6 cos 0. Hence 2X= gives

1-jTT

> 6d6 2# = 0, i.e., rp\ sin 6 = 28:
'

*L-*

-- = or =. (1)

170. Belt on Rough Cylinder. Impending Slipping. If fric-

tion is possible between the two bodies, the tension may vary
the arc of contact, so that p also varies, and consequently

FIG. 184.

the friction on an element ds being =fpds =f(S~r- r)ds, also

varies- If slipping is impending, the law of variation of the

tension 8 may be found, as follows : Fig. 184, in which the
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impending slipping is toward the left, shows the cord free.

For any element, ds, of the cord, we have, putting 2 (moms.
about O) = (Fig. 185),

(S+ dS)r = Sr + dFr
; i.e., dF= dS,

or (see above) dS =f(S -f- r)ds.

But ds = rdO
; hence, after transforming,

(i)

In (1) the two variables and /S are separated ; (1) is there-

fore ready for integration.

. (2)

Or, by inversion, S,ef- 8W ....... (3)

e, denoting the Naperian base, = 2.71828 -{-; of course is in

TT-measure.

Since Sn evidently increases very rapidly as a becomes

larger, S remaining the same, we have the explanation of the

well-known fact that a comparatively small tension, $ ,
exerted

by a man, is able to prevent the slipping of a rope around a

pile-head, when the further end is under the great tension Sn
due to the stopping of a moving steamer. For example, with

f= ,
we have (Weisbach)

for a \ turn, or a \n, Sn = 1.69#
;

= i turn, or a = TC, 8n = 2.85# ;

= 1 turn, or a = ZTT, Sn 8.12#
;

= 2 turns, or a = ITT, Sn = 65.94x9
;

= 4 turns, or a = STT, Sn = 4348.56x9 .

If slipping actually occurs, we must use a value of /"for fric-

tion of motion.

Example. A leather belt drives an iron pulley, covering
one half the circumference. What is the limiting value of the
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ratio of /8n (tension on driving-side) to # (tension on follow-

ing side) if the belt is not to slip, taking the low value of

f =. 0.25 for leather on iron ?

We have givenfa. = 0.25 X X = .7854, which by eq. (2) is

the Naperian log. of (Sn : S9)
when slipping occurs. Hence the

common log. of (Sn :
.)
= 0.7854 X 0.43429 = 0.34109

; i.e.,

if

(Si : )
= 2.193, say 2.2,

the belt will (barely) slip (for/= 0.25).

(0.43429 is the modulus of the common system of loga*

rithms, and = 1 : 2.30258. See example in 48.)

At very high speeds the relation^? = S -f- r (in 169) is not

strictly true, since the tensions at the two ends of an element

ds are partly employed in furnishing the necessary deviating
force to keep the element of the cord in its circular path, the

remainder producing normal pressure.

171. Transmission of Power by Belting or Wire Rope. In the

simple design in Fig. 186, it is required to find the motive

weight G, necessary to overcome the given resistance H at a

4
FIG. 186.

uniform velocity = -y,; also the proper stationary tension

weight GQ
to prevent slipping of the belt on its pulleys, and

the amount of power, Z, transmitted.

In other words,

\
**> a

>
r

>
a r" a = * for both

I j5 and/ for b
Given :

d/ for both pulleys ; (

-n j . { L ; #, to furnish L ;
GQ for no slip ;

v the velocity
'

( of G ;
v' that of belt

;
and the tensions in belt.
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Neglecting axle-friction and the rigidity of the belting, the

power transmitted is that required to overcome R through a

distance = v
l every second, i.e.,

L = Rv* (1)

Since (if the belts do not slip)

a : r::v' : v, and

we have v = v,
jand

:/,::

= --v..
a r 1 (2)

Neglecting the mass of the belt, and assuming that each pul-

ley revolves on a gravity-axis, we obtain the following, by con-

sidering the free bodies in Fig. 187 :

CA free)

2 (moms.) = in Afree gives Rr^ = (Sn Sofa ; . (3)

2 (moms.) = inB free gives Gr = (Sn S )a ;
. (4)

r a.
whence we readily find (

Evidently R and G are inversely proportional to their velo-

cities v
l
and v

;
see (2). This ought to be true, since in Fig.

186 G is the only working-force, R the only resistance, and

the motions are uniform
;
hence (from eq. (XVI.), 142)

Gv - Rv, = 0.

2X = 0, for B and truck free, gives

while, for impending slip,

= Sef". (6)
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By elimination between (4), (5), and (6), we obtain

L l

- 1

r ef L̂ l_L ef' + l
~ '

f' - -
'

' ~^~^ ... (7)

L ef
ana Sn = -, . ^ T.......... (8)

Hence G and Sn vary directly as the power transmitted and

inversely as the velocity of the belt. For safety G should be

made > the above value in (7) ; corresponding values of the

two tensions may then be found from (5), and from the rela-

tion (see 150)

(Sn-S )v'
= Z,....... (60)

These new values of the tensions will be found to satisfy the

condition of no slip, viz.,

For leather on iron, e^ 2.2 (see example in 170), as a
* low value. The belt should be made strong enough to with-

stand Sn safely.

As the belt is more tightly stretched, and hence elongated,

on the driving than on the following side, it "creeps" back-

ward on the driving and forward on the driven pulley, so that

the former moves slightly faster than the latter. The loss of

work due to this cause does not exceed 2 per cent with ordinary

belting (Cotterill).

In the foregoing it is evident that the sum of the tensions in

the two sides = GQ , i.e., is the same, whether the power is

being transmitted or not
;
and this is found to be true, both in

theory and by experiment, when a tension-weight is not used,

viz., when an initial tension 8 is produced in the whole belt

before transmitting the power, then after turning on the latter

the sum of the two tensions (driving and following) always
= 2$, since one side elongates as much as the other contracts

;

it being understood that the pulley-axles preserve a constant

distance apart.

172. Rolling Friction. The few experiments which have

been made to determine the resistance offered by a level road-
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way to the uniform motion of a roller or wheel rolling upon it

corroborate approximately the following theory. The word

friction is hardly appropriate in this connection (except when

the roadway is perfectly elastic, as will be seen), but is sanctioned

by usage.

First, let the roadway or track be compressible, but inelastic,

G the weight of the roller and its load, and P the horizontal

force necessary to preserve a uniform motion ^ "NT"?

(both of translation and rotation). The track

(or roller itself) being compressed just in

front, and not reacting symmetrically from

behind, its resultant pressure against the

roller is not at vertically under the centre,

but some small distance, OD =
J, in front. (The successive

crushing of small projecting particles has the same effect.)

Since for this case of motion the forces have the same relations

as if balanced (see 124), we may put 2 moms, about D = 0,

.-.Pr= Gb', or, P =
\Q.

. . . (1)

Coulomb found for

Rollers of lignum-vitse on an oak track, 5 = 0.0189 inches;

Rollers of elm on an oak track, I = 0.0320 inches.

Weisbach's experiments give, for cast-iron wheels 20 inches in

diameter on cast-iron rails,

I = 0.0183 inches
;

and Rittinger, for the same, I = 0.0193 inches.

Pambour gives, for iron railroad wheels 39.4 inches in diameter,

I = 0.0196 to

0.0216 inches.

According to the foregoing theory, P, the "
rolling friction"

(seeeq. (1)), is directly proportional to G, and inversely to the

radius, if b is constant. The experiments of General Morin and

othersconfirm this, while those of Dupuit, Poiree. and Sauvage
indicate it to be proportional directly to G, and inversely to the

square root of the radius.
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Although b is a distance to be expressed in linear units, and

not an abstract number like the /"and f for sliding and axle-

friction, it is sometimes called a "
coefficient of rolling fric-

tion." In eq. (1), J and r should be expressed in the same
unit.

Of course if P is applied at the top of the roller its lever-

arm about D is 2r instead of r, with a corresponding change
in eq. (1).

With ordinary railroad cars the resistance due to axle and

rolling frictions combined is about 8 Ibs. per ton of weight on

a level track. For wagons on macadamized roads 5 = J inch,

but on soft ground from 2 to 3 inches.

Secondly, when the roadway is perfectly elastic. This is

chiefly of theoretic interest, since at first sight no force would

be considered necessary to maintain a uniform rolling motion.

But, as the material of the roadway is compressed under the

roller its surface is first elongated and then recovers its former

state
;
hence some rubbing and consequent sliding friction must

FIG. 189.

occur. Fig. 189 gives an exaggerated view of the circum-

stances, P being the horizontal force applied at the centre

necessary to maintain a uniform motion. The roadway (rub-

ber for instance) is heaped up both in front and behind the

roller, being the point of greatest pressure arid elongation

of the surface. The forces acting are G, P, the normal

pressures, and the frictions due to them, and must form a

balanced system. Hence, since G and P, and also the normal

pressures, pass through (7, the resultant of the frictions must

also pass through C\ therefore the frictions, or tangential

actions, on the roller must be some forward and some backward
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(and not all in one direction, as seems to be asserted on p. 260
of Cotterill's Applied Mechanics, where Professor Reynolds'
explanation is cited). The resultant action of the roadway
upon the roller acts, then, through some point Z>, a distance
OD = b ahead of Oj and in the direction J)C, and we have as

before, with D as a centre of moments,

or P = -
r

If rolling friction is encountered above as

well as below the rollers, Fig. 190, the

student may easily prove, by considering
three separate free bodies, that for uniform

motion

where and b
1
are the respective

"
coefficients of rolling fric-

tion" for the upper and lower contacts.

Example 1. If it is found that a train of cars will move

uniformly down an incline of 1 in 200, gravity being the only

working force, and friction (both rolling and axle) the only

resistance, required the coefficient, y, of axle-friction, the

diameter of all the wheels being 2r = 30 inches, that of the

journals %a = 3 inches, taking ~b = 0.02 inch for the rolling

friction. Let us use equation (XYI.) ( 142), noting that while

the train moves a distance s measured on the incline, its weight

G does the work G
^-^ s, the rolling friction - G (at* the axles)

has been overcome through the distance s, and the axle-friction

(total) through the (relative) distance - s in the journal boxes;

whence, the change in kinetic energy being zero,

15o!>
Gs cancels out, the" ratios l> : r and a : r are = y^-g- and fa

respectively (being ratios or abstract numbers they have the

* That is, the ideal resistance, at centre of axles and || to the incline, equiv-
alent to actual rolling resistance.
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same numerical values, whether the inch or foot is used), anc|

solving, we have

f = 0.05 0.0133 = 0.036.

Example 2. How many pounds of tractive effort per ton

of load would the train in Example 1 require for uniform mo-

tion on a level track? Ans. 10 Ibs.

173. Eailroad Brakes.* During the uniform motion of a

railroad car the tangential action between the track and each

wheel is small. Thus, in Example 1, just cited, if ten cars of

eight wheels each make up the train, each car weighing 20 tons,

the backward tangential action of the rails upon each wheel is

only 25 Ibs. When the brakes are applied to stop the train

this action is much increased, and is the only agency by which

the rails can retard the train, directly or indirectly : directly,

when the pressure of the brakes is so great as to prevent the

wheels from turning, thereby causing them to "skid" (i.e.,

slide) on the rails
; indirectly, when the brake-pressure is of

such a value as still to permit perfect rolling of the wheel, in

which case the rubbing (and heating) occurs between the brake

and wheel, and the tangential action of the rail has a value

equal to or less than the friction of rest. In the first case,

then (skidding), the retarding influence of the rails is il\Qfric-

tion of motion between rail and wheel
;
in the second, a force

which may be made as great as thefriction of rest between rail

and wheel. Hence, aside from the fact that skidding produces

objectionable flat places on the wheel-tread, the brakes are

more effective if so applied that skidding is impending, but

not actually produced ;
for the friction of rest is usually greater

than that of actual slipping ( 160). This has been proved

experimentally in England. The retarding effect of axle and

rolling friction has been neglected in the above theory.

Example 1. A twenty-ton car with an initial velocity of 80

feet per second (nearly a mile a minute) is to be stopped on a

level within 1000 feet
; required the necessary friction on each

of the eight wheels.

Supposing the wheels not to skid, the friction will occur

* See foot-note on p. 168, as to the diminution of the coefficient /with

speed.
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between the brakes and wheels, and is overcome through the

(relative) distance 1000 feet. Eq. (XYL), 142, gives (foot-

Ib.-second system)

0-8^x1000 = 0-1

from whichF ( friction at circumference of each wheel)
= 496 Ibs.

Example 2. Suppose skidding to be impending in the fore-

going, and the coefficient of friction of rest (i.e., impending

slipping) between rail and wheel to be f =z 0.20. In what

distance will the car be stopped ? Am. 496 ft.

Example 3. Suppose the car in Example 1 to be on an up-

grade of 60 feet to the mile. (In applying eq. (XYI.) here,
the weight 20 tons will enter as a resistance.) Ans. 439 Ibs.

Example 4. In Example 3, consider all four resistances,

viz., gravity, rolling friction, and brake and axle frictions, the

distance being 1000 ft., and F the unknown quantity.

(Take the wheel dimensions of p. 189.) Ans. 414 Ibs

174. Estimation of Engine and Machinery Friction. Accord-

ing to Professor Cotterill, 2 convenient way of estimating the

work lost in friction in a steam-engine and machinery driven

by it is the following :

Let pm = mean effective steam-pressure per unit of area of

piston, and conceive this composed of three por-

tions, viz.,

p = the necessary pressure to drive the engine alone un-

loaded, at the proper speed ;

p'm = pressure necessary to overcome the resistance caused

by the useful work of the machines
;

cp'm = pressure necessary t,n overcome the friction of the

machinery, and that of the engine over and above*

its friction when unloaded. This is about 15$ of

p'm (i.e., e = 0.15), except in large engines, and

then rather less.

That is, by formula, F being the piston-area and I the length

of stroke, the work per stroke is thus distributed :

* Recent experiments (1888^ by Prof. Thurston show that this surplus

engine-friction is practically zero
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>

g
is

" from 1 to 1^, or in marine engines 2 Ibs. or more per

square inch."

175. Anomalies in Friction. Experiment has shown consid-

erable deviation under certain circumstances from the laws of

friction, as stated in 157 for sliding friction. At pressures
below J Ib. per sq. inch the coefficient f increases when the

pressure decreases, while above 500 Ibs. (Rennie, with iron and

steel) it increases with the pressure. With high velocities, how-

ever, above 10 ft. per second,f is much smaller as the velocity

increases (Bochet, 1858); (and Galton, 1878).
As for axle-friction, experiments instituted by the Society of

Mechanical Engineers in England (see the London Engineer
for March 7 and 21, 1884) gave values for f less than

-j-J-^

when a " bath" of the lubricant was employed. These values

diminished with increase of pressure, and increased with the

velocity (see below, Hirn's statement).

Professor Cotterill says,
" It cannot be doubted that for

values of pv (see 166) > 5000 the coefficient of friction of

well-lubricated bearings of good construction diminishes with

the pressure, and may be much less than the value at low speeds
as determined by Morin" (p. 259 of his Applied Mechanics).

Professor Thurston's experiments confirmed those of Hirn as

to the following relation : "The friction of lubricated surfaces

is nearly proportional to the square root of the area and pres-

sure." Hirn also maintained that, "in ordinary machinery,
friction varies as the square root of the velocity."

176. Rigidity of Ropes. If a rope or wire cable passes over

a pulley or sheave, a force P is required on one side greater

than the resistance Q on the other for uniform motion, aside

from axle-friction. Since in a given time both P and Q
describe the same space ,

if P is > Q, then Ps\s > Qs, i.e.,

the work done by P is > than that expended upon Q. This

is because some of the work Ps has been expended in bending
the stiff rope or cable, and in overcoming friction between the

strands, both where the rope passes upon and where it leaves
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the pulley. "With hemp ropes, Fig. 191, the material being
nearly inelastic, the energy spent in bending it on at D is

nearly all lost, and energy must also be spent in straightening

Fio. 191.

it at E\ but with a wire rope or cable some of this energy is

restored by the elasticity of the material. The energy spent
in friction or rubbing of strands, however, is lost in both cases.

The figure shows geometrically why P must be > Q for a

uniform motion, for the lever-arm, #, of P is evidently < b

that of Q. If axle-friction is also considered, we must have

r being the radius of the journal.

Experiments with cordage have been made by Prony, Cou-

lomb, Eytelwein, and Weisbach, with considerable variation in

the results and formulae proposed. (See Coxe's translation of

vol. i., Weisbach's Mechanics.)
With pulleys of large diameter the effect of rigidity is very

slight. For instance, Weisbach gives an example of a pulley
five feet in diameter, with which. Q being = 1200 Ibs., P
= 1219. A wire rope f in. in diameter was used. Of this

difference, 19 Ibs., only 5 Ibs. was due to rigidity, the remainder,

14 Ibs., being caused by axle-friction. When a hemp-rope 1.6

inches in diameter was substituted for the wire one, PQ=27
Ibs., of which 12 Ibs. was due to the rigidity. Hence in one

case the loss of work was less than -J of \%. in the other abonr

\%, caused by the rigidity. For very small sheaves and thick

ropes the loss is probably much greater.

13
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177, Miscellaneous Examples. Example 1. The end of a

shaft 12 inches in diameter and making 50 revolutions per min-

ute exerts against its bearing an axial pressure of 10 tons and

a lateral pressure of 40 tons. With f=ff = 0.05, required

the H. P. lost in friction. Ans. 22.2 H. F.

Example 2. A leather belt passes over a vertical pulley,

covering half its circumference. One end is held by a spring

balance, which reads 10 Ibs. while the other end sustains a

weight of 20 Ibs., the pulley making 100 revolutions per min-

ute. Required the coefficient of friction, and the H.P. spent

in overcoming the friction. Also suppose the pulley turned

in the other direction, the weight remaining the same. The
diameter of the pulley is 18 inches. , (f= 0.22

;
? '

(0.142 and .284 H. P.

Example 3. A grindstone with a radius of gyration = 12"

inches has been revolving at 120 revolutions per minute, and

at a given instant is left to the influence of gravity and axle

friction. The axles are 1-J- inches in diameter, and the wheel

makes 160 revolutions in coming to rest. Required the coeffi-

cient of axle-friction. Ans.
c/'= 0.389.

Example 4. A board A, weight 2 Ibs., rests horizontally on

another B\ coefficient of friction of rest between them being

f = 0.30. B is now moved horizontally with a uniformly
accelerated motion, the acceleration being = 15 feet per

"
square

second ;" will A keep company with it, or not \ Ans.
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STRENGTH OF MATERIALS.
[OR MECHANICS OF MATERIALS].

CHAPTEE I.

ELEMENTARY STRESSES AND STRAINS.

178. Deformation of Solid Bodies. In the preceding por-
tions of this work, what was called technically a "

rigid

body," was supposed incapable of changing its form, i.e.,

the positions of its particles relatively to each other, under

the action of any forces to be brought upon it. This sup-

position was made because the change of form which must

actually occur does not appreciably alter the distances,

angles, etc., measured in any one body, among most of

the pieces of a properly designed structure or machine.

To show how the individual pieces of such constructions

should be designed to, avoid undesirable deformation or

injury is the object of this division of Mechanics of En-

gineering, viz., the Strength of Materials.

D

FIG. 192. 178.

As perhaps tue simplest instance of the deformation or

distortion of a solid, let us consider the case of a prismatic
rod in a state of tension, Fig. 192 (link of a surveyor's
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chain, e.g.). The pull at each end is P, and the body is

said to be under a tension of P (Ibs., tons, or other unit),

not 2P. Let ABGD be the end view of an elementary

parallelepiped, originally of square section and with faces

at 45 with the axis of the prism. It is now deformed, the

four faces perpendicular to the paper being longer* than

before, while the angles BAD and BCD, originally right

angles, are now smaller by a certain amount d, ABC and

ADC larger by an equal amount d. The element is said

to be in a state of strain, viz.: the elongation of its edges

(parallel to paper) is called a tensile strain, while the alter-

ation in the angles between its faces is called a shearing

strain, or angular distortion (sometimes also called a slid-

ing, or tangential, strain, since BG has been made to slide,

relatively to AD, and thereby caused the change of angle).

[This use of the word strain, to signify change of form and

not the force producing it, is of recent adoption among
many, though not all, technical writers.]

179. Strains. Two Kinds Only. Just as a curved line may
be considered to be made up of small straight-line ele-

ments, so the substance of any solid body may be consid-

ered to be made up of small contiguous parallelepipeds,
whose angles are each 90 before the body is subjected to

the action of forces, but which are not necessarily cubes.

A line of such elements forming an elementary prism is

spmetimes called a,f,bre, but this does not necessarily imply
a fibrous nature in the material in question. The system
of imaginary cutting surfaces by which the body is thus

subdivided need not consist entirely of planes ;
in the sub-

ject of Torsion, for instance, the parallelopipedical ele-

ments considered lie in concentric cylindrical shells, cut

both by transverse and radial planes.

Since these elements are taken so small that the only

possible changes of form in any one of them, as induced

by a system of external forces acting on the body, are

* When a is nearly (or 90) BG and AD (or AB and DC) are shorter

than before, on account of lateral contraction; see 193.
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elongations or contractions of its edges, and alteration of

its angles, there are but two kinds of strain, elongation

(contraction, if negative) and shearing.

180. Distributed Forces or Stresses. In the matter preced-

ing this chapter it has sufficed for practical purposes to

consider a force as applied at a point of a body, but in

reality it must be distributed over a definite area
; for

otherwise the material would be subjected to an infinite

force per unit of area. (Forces like gravity, magnetic at-

traction, etc., we have already treated as distributed over

the mass of a body, but reference is now had particularly
to the pressure of one body against another, or the action

of one portion of the body on the remainder.) For in-

stance, sufficient surface must be provided between the

end of a loaded beam and the pier on which it rests to

avoid injury to either. Again, too small a wire must not

be used to sustain a given load, or the tension per unit

of area of its cross section becomes sufficient to rupture
it.

Stress is distributedforce, and its intensity at any point
of the area is

. . a)

where dF is a small area containing the point and dP the

force coming upon that area. If equal dP's (all parallel)
act on equal dF'soi a plane surface, the stress is said to

be of uniform intensity, which is then

(2)

where P=- total force and F the total area over which it

acts. The steam pressure on a piston is an example of

stress of uniform intensity,
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For example, if a force P== 28800 Ibs, is uniformly dis-

tributed over a plane area of F= 72 sq. inches, or ^ of a

sq. foot, the intensity of the stress is

72

(or p = 28800-^=57600 Ibs. per sq. foot, or ^=14400-:'

2^=28.8 tons per sq. ft., etc.).

181. Stresses on an Element; of Two Kinds Only. When a

solid body of any material is in equilibrium under a sys-
tem of forces which do not rupture it, not only is its shape
altered (i.e. its elements are strained), and stresses pro-
duced on those planes on which the forces act, but other

stresses also are induced on some or all internal surfaces

which separate element from element, (over and above the

forces with which the elements may have acted on each

other before the application of the external stresses or
"
applied forces "). So long as the whole solid is the "free

body
"
under consideration, these internal stresses, being

the forces with which the portion on one side of an imag-

inary cutting plane acts on the portion on the other side,

do not appear in any equation of equilibrium (for if intro-

duced they would cancel out); but if we consider free a

portion only, some or all of whose bounding surfaces are

cutting planes of the original body, the stresses existing
on these planes are brought into the equations of equilib-
rium.

Similarly, if a single element of the body is treated by
itself, the stresses on all six of its faces, together with its

weight, form a balanced system of forces, the body being

supposed at rest.

i

!K

FIG. 193.
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As an example of internal stress, consider again the case
of a rod in tension ; Fig. 193 shows the whole rod (or eye-
bar) free, the forces P being the pressures of the pins in

the eyes, and causing external stress (compression here)
on the surfaces of contact. Conceive a right section made
through US, far enough from the eye, (7, that we may con-

sider the internal stress to be uniform * in this section, and
consider the portion MSG as a free body, in Fig. 194. The
stresses on US, now one of the bounding surfaces of the
free body, must be parallel to P, i.e., normal to US;
(otherwise they would have components perpendicular to

P, which is precluded by the necessity of 2Y being = 0,

and the supposition of uniformity.) Let F = the sec-

FIG. 194.

PIG. 195.

tional area US, and p = the stress per unit of area ; then

IX= gives P= Fp, i.e., p= ? . . (2)F
The state of internal stress, then, is such that on planes

perpendicular to the axis of the bar the stress is tensile and
normal (to those planes). Since if a section were made

oblique to the axis of the bar, the stress would still be

parallel to the axis for reasons as above, it is evident that

on an oblique section, the stress has components both nor-

mal and tangential to the section, the normal component
being a tension.

* As will be shown later
( 295) the Hue of the two P's in Fig. 193 must

pass through the centre of gravity of the cross-section RS (plane figure) of

the bar. for the stress to be uniform over the section.
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The presence of the tangential or shearing stress in ob-

lique sections is rendered evident by considering that if an

oblique dove-tail joint were cut in the rod, Fig. 195, the

shearing stress on its surfaces may be sufficient to over-

come friction and cause sliding along the oblique plane.
If a short prismatic block is under the com

pressive^
ac-

tion of two forces, each =P and applied centrally in one~

base, we may show that the state of internal stress is the

same as that of the rod under tension, except that the nor-

mal stresses are of contrary sign, i.e., compressive instead

of tensile, and that the shearing stresses (or tendency to

slide) on oblique planes are opposite in direction to those

in the rod.

Since the resultant stress on a given internal plane of a

body is fully represented, by its normal and tangential

components, we are therefore justified in considering but

two kinds of internal stress, normal or direct, and tangen-

tial or shearing.

182. Stress on Oblique Section of Rod in Tension. Consider

free a small cubic element whose

edge =a in length; it has two

faces parallel to the paper, being
taken near the middle of the rod

in Fig. 192. Let the angle which

the face AB, Fig. 196, makes with

the axis of the rod be = a. This

angle, for our present purpose, is

considered to remain the same
while the two forces P are acting,

as before their action. The re-

sultant stress on the face AB hav-

ing an intensity p=P-F, (see eq.

2) per unit of transverse section

of rod, is = p (a sin a) a. Hence

its component normal to AB is

pa
2 sin2 a

; and the tangential or shearing component along

PIG. 197.
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sin a cos a. Dividing by the area, a2
, we have

the following :

For a rod in simple tension we have, on a plane making
an angle, a, with the axis :

a Normal Stress =p sin2 a per unit of area . . (1)

and a Shearing Stress =p sin a cos a per unit of area . (2)
" Unit of area

"
here refers to the oblique plane in ques-

tion, while p denotes the normal stress per unit of area of

a transverse section, i.e., when =90, Fig. 194.

The stresses on CD are the same in value as on AB9

while for BG and AD we substitute 90 a for . Fig.
197 shows these normal and shearing stresses, and also,

much exaggerated, the strains or change of form of the

element (see Fig. 192).

182a. Relation between Stress and Strain. Experiment
shows that so long as the stresses are of such moderate

value that the piece recovers its original form completely
when the external forces which induce the stresses are re-

moved, the following is true and is known as Hooke's Law
(stress proportional to strain). As the forces P in Fig.
193 (rod in tension) are gradually increased, the elonga-

tion, or additional length, of RK increases in the same
ratio as the normal stress, p, on the sections US and KN^
per unit of area [ 191].

As for the distorting effect of shearing stresses, consider

in Fig. 197 that since

p sin a cos a = p cos (90 ) sin (90 a)

the shearing stress per unit of area is of equal value on aU

four of thefaces (perpendicular to paper) in the elementary
block, and is evidently accountable for the shearing strain,

i.e., for the angular distortion, or difference, 3, between
90 and the present value of each of the four angles. Ac-

cording to Hooke's Law then, as P increases within
limit mentioned above, 3 varies proportionally to

p sin a cos a, i.e. to the stress.
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182b. Example. Supposing the rod in question were of

a kind of wood in which a shearing stress of 200 Ibs. per

sq. inch along the grain, or a normal stress of 400 Ibs. per

sq. inch, perpendicular to a fibre-plane will produce rup-

ture, required the value of a the angle which the grain
must make with the axis that, as P increases, the danger
of rupture from each source may be the same. This re-

quires that 200:400::jp sin a cos a:p sin2#, i.e. tan. a must

=2.000.-.=63^. If the cross section of the rod is 2 sq.

inches, the force P at each end necessary to produce rup-
ture of either kind, when =63^, is found by putting

p sin a cos a= 200.\p =500.0 Ibs. per sq. inch. Whence, since

p=P+-F, P=1000 Ibs. (Units, inch and pound.)

183. Elasticity is the name given to the property which

most materials have, to a certain extent, of regaining their

original form when the external forces are removed. If

the state of stress exceeds a certain stage, called the Elastic

Limit, the recovery of original form on the part of the ele-

ments is only partial, the permanent deformation being
called the Set.

Although theoretically the elastic limit is a perfectly defi-

nite stage of stress, experimentally it is somewhat indefi-

nite, and is generally considered to be reached when the

permanent set becomes well marked as the stresses are in-

creased and the test piece is given ample time for recovery
in the intervals of rest.

The Safe Limit of stress, taken well within the elastio

limit, determines the working strength or safe load of the

piece under consideration. E.g., the tables of safe loads

of the rolled wrought iron beams, for floors, of the New

Jersey Steel and Iron Co., at Trenton, are computed on

the theory that the greatest normal stress (tension or com-

pression) occurring on any internal plane shall not exceed

12,000 Ibs. per sq. inch
;
nor the greatest shearing stress

4,000 Ibs. per sq. inch. (See 270a on p. 319.)
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The tntimate Limit is reached when rupture occurs.

184, The Modulus of Elasticity (sometimes called co-efficient

of elasticity) is the number obtained by dividing the stress

per unit of area by the corresponding relative strain.

Thus, a rod of wrought iron y2 sq. inch sectional area

being subjected to a tension of 2^ tons =5,000 Ibs., it is

found that a length which was six feet before tension is

= 6.002 ft. during tension. The relative longitudinal strain

or elongation is then= (0.002)4-6=1 : 3,000 and the corres-

ponding stress (being the normal stress on a transverse

plane) has an intensity of

pt=P~F= 5,000-^- ^=10,000 Ibs., per sq. inch.

Hence by definition the modulus of elasticity is (for ten-

sion)

-r 3-^=30,000,000^8. per sq. inch, (the3

sub-script "t" refers to tension).

It will be noticed that since e is an abstract number, Et

is of the same quality as pt , i.e., Ibs. per sq. inch, or one di-

mension of force divided by two dimensions of length.

(In the subject of strength of materials the inch is the

most convenient English linear unit, when the pound is

the unit of force
; sometimes the foot and ton are used to-

gether.)

The foregoing would be called the modulus of elasticity

of ivrought iron in tension in the direction of the fibre, as

given by the experiment quoted. But by Hooke's Law p
and e vary together, for a given direction in a given ma-

terial, hence within the elastic limit E is constant for a given
direction in a given material. Experiment confirms this

approximately.

Similarly, the modulus of elasticity for compression E(,
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t

in a given direction in a given material may be determined

by experiments on short blocks, or on rods confined lat-

erally to prevent flexure.

As to the modulus of elasticity for shearing, E^ we
divide the shearing stress per unit of area in the given
direction by d (in TT measure) the corresponding angular
.strain or distortion

;
e g., for an angular distortion of 0.10

or d = .00174, and a shearing stress of 15,660 Ibs. per sq.

inch, we have E =^ = 9,000,000 Ibs. per sq. inch.

Unless otherwise specified, by modulus of elasticity will

be meant a value derived from experiments conducted

within the elastic limit, and this, whether for normal stress

or for shearing, is approximately constant for a given di-

rection in a given substance.*

185. Isotropes. This name is given to materials which
are homogenous as regards their elastic properties. In

such a material the moduli of elasticity are individually
the same for all directions. E.g., a rod of rubber cut out

of a large mass will exhibit the same elastic behavior when

subjected to tension, whatever its original position in the

mass. Fibrous materials like wood and wrought iron are

not isotropic ; the direction of grain in the former must

always be considered. The "
piling

" and welding of nu-

merous small pieces of iron prevent the resultant forging
from being isotropic.

186. Resilience refers to the potential energy stored in a

body held under external forces in a state of stress which

does not pass the elastic limit. On its release from con-

straint, by virtue of its elasticity it can perform a certain

amount of work called the resilience, depending in amount

upon the circumstances of each case and the nature of the

material. See 148.

187. General Properties of Materials. In view of some defi-

nitions already made we may say that a material is ductile

* The moduli, or "co-efficients," of elasticity as used by physicists are well explained
in Stewart and Gee's Practical Physics, Vol. I., pp. 164, etc. Their "co-efficient of

rigidity" is our Es .
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when the ultimate limit is far removed from the elastic

limit ; that it is brittle like glass and cast iron, when those

limits are near together. A small modulus of elasticity
means that a comparatively small force is necessary to

produce a given change of form, and vice versa, but implies
little or nothing concerning the stress or strain at the

elastic limit ; thus Weisbach gives E^ Ibs. per sq. inch for

wrought iron = 28,000,000= double the E<. for cast iron

while the compressive stresses at the elastic limit are the

same for both materials (nearly).

188. General Problem of Internal Stress. This, as treated

in the mathematical Theory of Elasticity, developed by
Lame, Clapeyron and Poisson, may be stated as follows :

Given the original form of a body when free from stress,

and certain co-efficients depending on its elastic proper-
ties ; required the new position, the altered shape, and the in-

tensity of the stress on each of the six faces, of every element

of the body, when a given balanced system offorces is applied

to the body.

Solutions, by this theory, of certain problems of the na-

ture just given involve elaborate, intricate, and bulky

analysis ;
but for practical purposes Navier's theories

(1838) and others of more recent date, are sufficiently exact,

when their moduli are properly determined by experiments

covering a wide range of cases and materials. These will

be given in the present work, and are comparatively sim-

ple. In some cases graphic will be preferred to analytic

methods as more simple and direct, and indeed for some

problems they are the only methods yet discovered for ob-

taining solutions. Again, experiment is relied on almost

exclusively in dealing with bodies of certain forms under

peculiar systems of forces, empirical formulae being based

on the experiments made
; e.g., the collapsing of boilei

flues, and in some degree the flexure of long columns.
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189. Classification of Cases, Although in almost any case

whatever of the deformation of a solid body by a balanced

system of forces acting on it, normal and shearing stresses

are both developed in every element which is affected at

all (according to the plane section considered,) still, cases

where the body is prismatic, and the external system con-

sists of two equal and opposite forces, one at each end of

the piece and directed away from each other, are commonly
called cases of Tension; (Fig. 192); if the piece is a short

prism with the same two terminal forces directed toward

each other, the case is said to be one of Compression ;
a case

similar to the last, but where the prism is quite long

(" long column "), is a case of Flexure or bending, as are also

most cases where the "
applied forces

"
(i.e., the external

forces), are not directed along the axis of the piece. Rivet-

ed joints and "
pin-connections

"
present cases of Shearing;

a twisted shaft one of Torsion. When the gravity forces

due to the weights of the elements are also considered, a

combination of two or more of the foregoing general cases

may occur.

In each case, as treated, the principal objects aimed at

are, so to design the piece or its loading that the greatest

stress, in whatever element it may occur, shall not exceed

a safe value
;
and sometimes, furthermore, to prevent too

great deformation on the part of the piece. The first ob-

ject is to provide sufficient strength; the second sufficient

stiffness.

190, Temperature Stresses. If a piece is under such con-

straint that it is not free to change its form with changes
of temperature, external forces are induced, the stresses

produced by which axe called temperature stresses.
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TENSION.

191. Hooke's Law by Experiment. As a typical experiment
in the tension of a long rod of ductile metal such as

wrought iron and the mild steels, the following table is quot-

ed from Prof. Cotterill's
"
Applied Mechanics." The experi-

ment is old, made by Hodgkinson for an English Kailway
Commission, but well adapted to the purpose. From the

great length of the rod, which was of wrought iron and

0.517 in. in diameter, the portion whose elongation was

observed being 49 ft. 2 in. long, the small increase in length
below the elastic limit was readily measured. The succes-

sive loads were of such a value that the tensile stress

p=P~T-F, or normal stress per sq. in. in the transverse

section, was made to increase by equal increments of 2657.5

Ibs. per sq. in., its initial value. After each application of

load the elongation was measured, and after the removal

of the load, the permanent set, if any.

Table of elongations of a wrought iron rod, of a lengtt=49 ft. 2 in.

p
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Referring now to Fig. 198, the notation is evident. P
is the total load in any experiment, F the cross section of

the rod ;
hence the normal stress on the transverse section

is p=P+F. When the loads are increased by equal in-

crements, the corresponding increments of the elongation
J should also be equal if Hooke's law is true. It will be

noticed in the table that this is very nearly true up to the

8th loading, i.e., that AX, the difference between two con-

secutive values of ^, is nearly constant. In other words the

proposition holds good :

if P and Pi are any two loads below the 8th, and >l and Ji

the corresponding elongations.
The permanent set is just perceptible at the 3d load, and

increases rapidly after the 8th, as also the increment of

elongation. Hence at the 8th load, which produces a ten-

sile stress on the cross section of p= 8x2667.5= 21340.0

Ibs. per sq. inch, the elastic limit is reached.

As to the state of stress of the individual elements, if

we conceive such sub-division
of the rod that four edges of

each element are parallel to the

axis of the rod, we find that it

is in equilibrium between two

normal stresses on its end faces

(Fig. 199) of a value =pdF=
(P-^F)dF where dF is the hor-

izontal section of the element.

If dx was the original length,

and dA the elongation produced by pdFt
we shall have,

since all the cfo's of the length are equally elongated at the

same time,

FIG. 19&

^
dx T
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where 1= total (original) length. But dX-r-dx is the rela-

tive elongation e, and by definition
( 184) the Modulus of

Elasticityfor Tension, E^

a)

Eq. (1) enables us to solve problems involving the elonga-
tion of a prism under tension, so long as the elastic limit

is not surpassed.
The values of E^ computed from experiments like those

just cited should be the same for any load under the elas-

tic limit, if Hooke's law were accurately obeyed, but in

reality they differ somewhat, especially if the material

lacks homogeneity. In the present instance (see Table)
we have from the

2d Exper. ^=^-4-6=28,680,000 Ibs. per sq. in.

5th " #t
= "

=28,009,000
8th " Et

= "
=27,848,000

"

If similar computations were made beyond the elastic

limit, i.e., beyond the 8th Exper., the result would be much

smaller, showing the material to be yielding much more

readily.

192, Strain Diagrams. If we plot the stresses per sq. inch

(p) as ordinates of a curve, and the corresponding relative

elongations (e) as abscissas, we obtain a useful graphic re-

presentation of the results of experiment.

Thus, the table of experiments just cited being utilized

in this way, we obtain on paper a series of points through
which a smooth curve may be drawn, viz. : OBC Fig. 200,

foi wrought iron. Any convenient scales may be used for

p and e
; and experiments having been made on other

metals in tension and the results plotted to the samt> scales
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as before for p and e, we have the means of comparing their

tensile properties. Fig. 200 shows two other curves, rep-

resenting (roughly) the average behavior of steel and cast

iron. At the respective elastic limits J5, B ',
and B", it will

be noticed that the curve for wrought iron makes a sudden

turn from the vertical, while those of the others curve away
more gradually ; that the curve for steel lies nearer the

vertical axis than the others, which indicates a higher
value for Et ; and that the ordinates BA' t B'A' t and B'A *

(respectively 21,000, 9,000, and 30,000 Ibs. per sq. inch) in-

Pie. 200.

dicate the tensile stress at the elastic limit. These latter

quantities will be called the moduli of tenacity at elastic

limit for the respective materials. [On a true scale the

point C would be much further to the right than here

shown. Only one half of the curve for steel is given, for

want of space.]
Within the elastic limit the curves are nearly straight

(proving Hooke's law) and if a, a', and a" are the angles
made by these straight portions with the axis of X (i.e.,

of e), we shall have

(Et for w. iron) :
(J5?t o. iron) : '(E, steel) : : tan a : tan a' : tan

"
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as a graphic relation between their moduli of elasticity

/since
e

Beyond the elastic limit HLQ wrought iron rod shows large
increments of elongation for small increments of stress,

i.e., the curve becomes nearly parallel to the horizontal

axis, until rupture occurs at a stress of 53,000 Ibs. per sq.

inch of original sectional area (afc rupture this area is some-

what reduced, especially in the immediate neighborhood
of the section of rupture ;

see next article) and after a rel-

ative elongation e= about 0.30, or 30%. (The preceding
table shows only a portion of the results.) The curve

for steel shows a much higher breaking stress (100,000
Ibs. per sq. in.) than the wrought iron, but the total

elongation is smaller, e=- about 10%. This is an average
curve ; tool steels give an elongation at rupture of about

4 to 5%, while soft steels resemble wrought iron in their

ductility, giving an extreme elongation of from 10 to 20%.
Their breaking stresses range from 70,000 to 150,000 Ibs.

or more per sq. inch. Cast iron
t being comparatively brit-

tle, reaches at rupture an elongation of only 3 or 4 tenths

of one per cent., the rupturing stress being about 18,000

Ibs. per sq. inch. The elastic limit is rather ill defined in

the case of this metal
;
and the proportion of carbon and

the mode of manufacture have much influence on its be-

havior under test.

193. Lateral Contraction. In the stretching of prisms of

nearly all kinds of material, accompanying the elongation
of length is found also a diminution of width whose rela-

tive amount in the case of the three metals just treated ia

about y or ^ of the relative elongation (within elastic

limit). Thus, in the third experiment in the table of 191,

this relative lateral contraction or decrease of diameter

*=
Y^ to y of e, i.e., about 0.00008. In the case of cast

iron and hard steels contraction is not noticeable ex-
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oept by very delicate measurements, both within and with-

out the elastic limit ; but the more ductile metals, as

wrought iron and the soft steels, when stretched beyond
the elastic limit show this feature of their deformation
in a very marked degree. Fig. 201 shows by dotted lines

the original contour of a wrought iron rod, while the con-

tinuous lines indicate that at rupture. At the cross section

of rupture, whose position is determined by some
local weakness, the drawing out is peculiarly

pronounced.
The contraction of area thus produced is some-

times as great as 50 or 60% at the fracture.

194. "Flow of Solids." When the change in re-

lative position of the elements of a solid is ex-

treme, as occurs in the making of lead pipe,

drawing of wire, the stretching of a rod of duc-

tile metal as in the preceding article, we have
Pie. 201. instances of what is called the Flow of Solids, in-

teresting experiments on which have been made by
Tresca,

195. Moduli of Tenacity. The tensile stress per square
inch (of original sectional area) required to rupture a

prism of a given material will be denoted by T and called

the modulus of ultimate tenacity ; similarly, the modulus of

safe tenacity, or greatest safe tensile stress on an element,

by T' ;
while the tensile stress at elastic limit may be

called T". The ratio of T to T '

is not fixed in practice
but depends upon circumstances (from ^ to %).

Hence, if a prism of any material sustains a total pull
or load P, and has a sectional area=F, we have

P=FT for the ultimate or breaking load. \

P'=FT' " " safe load. > . . (2)

P'=FT"" " load at elastic limit. )

*

Of course T' should always be less than T".
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196. Resilience of a Stretched Prism. Fig. 202. In the

gradual stretching of a prism, fixed at one extremity, the

value of the tensile force P at the other necessarily de-

pends on the elongation ^ at each stage of the lengthening,

according to the relation [eq. (1) of 191.]

within the elastic limit. (If we place a weight G on the

flanges of the unstretched prism and then leave

it to the action of gravity and the elastic action

of the prism, the weight begins to sink, meeting
an increasing pressure P, proportional to A, from

the flanges). Suppose the stretching to continue

until P reaches some value P" (at elastic limit

|A say), and A a value A". Then the work done so

far is

27= mean force X space =j P" X" . . (4)

But from (2) P =FT ,
and (see 184 and 191)

.-. (4) becomes U=*/2 T e". Fl=tf T" s" V . . (5)

where V is the volume of the prism. The quantity y% T"e"9

or work done in stretching to the elastic limit a cubic

inch (or other unit of volume) of the given material, Weis-
bach calls the Modulus of Resilience for tension. From (5)

it appears that the amounts of work done in stretching to

the elastic limit prisms of the same material but of differ-

ent dimensions are proportional to their volumes simply.
The quantity ^T"e" is graphically represented by the

area of one of the triangles such as OAB, OA"B" in Fig.
200

; for (in the curve for wrought iron for instance) tht^

modulus of tenacity at elastic limit is represented by A'B,
and e" (i.e., e for elastic limit) by OA'. The remainder of



214 MECHANICS OP ENGINEERING.

the area OBG included between the curve and the hori-

zontal axis, i.e., from B to (7, represents the work done in

stretching a cubic unit from the elastic limit to the point
of rupture, for each vertical strip having an altitude =p
and a width = de, has an area =pde, i.e., the work done by
the stress p on one face of a cubic unit through the dis-

tance de, or increment of elongation.

If a weight or load = G be "
suddenly "applied to stretch

the prism, i.e., placed on the flanges, barely touching

them, and then allowed to fall, when it comes to rest again
it has fallen through a height ^ l? and experiences at this

instant some pressure P: from the flanges; PI=? The
work GX l has been entirely expended in stretching the

prism, none in changing the kinetic energy of G, which

=0 at both beginning and end of the distance ^,

Since Pi=26r, i.e., is > G, the weight does not remain in

this position but is pulled upward by the elasticity of the

prism. In fact, the motion is harmonic (see 59 and

138). Theoretically, the elastic limit not being passed, the

oscillations should continue indefinitely.

Hence a load G "
suddenly applied

"
occasions double the

tension it would if compelled to sink gradually by a sup-

port underneath, which is not removed until the tension is

just = G, oscillation being thus prevented.
If the weight G sinks through a height =h before strik-

ing the flanges, Fig. 202, we shall have similarly, within

slastic limit, if ^= greatest elongation, (the mass of rod

being small compared with that of G).

G(h+* l)=}4P1
l

l .... (6)

If the elastic limit is to be just reached we have from eqs.

(5) and (6), neglecting ^ compared with h,

"F . . . (7)
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an equation of condition that the prism shall not be in-

jured.

Example. If a steel prism have a sectional area of \

gq. inch and a length 1=10 ft. =120 inches, what is the

greatest allowable height of fall of a weight of 200 Ibs.;

that the final tensile stress induced may not exceed T"
30,000 Ibs. per sq. inch, if e" =.002 ? From (7), using the

inch and pound, we have

197, Stretching of a Prism by Its Own Weight. In the case

of a very long prism such as a mining-

pump rod, its weight must be taken into

account as well as that of the terminal

load P ,
see Fig. 203. At (a.) the prism

is shown in its unstrained condition
; at

(b) strained by the load Pl
and its own

weight. Let the cross section be =F, the

heaviness of the prism =f. Then the rela-

tive extension of any element at a distance

L -

FIG. 203.

x from o is
*

dx FEt

(1)

[See eq. (1) 191) ; since P^+Fyx is the load hanging upon
the cross section at that locality. Equal dx'a, therefore,
are unequally elongated, x varying from to I. The total

elongation is

=~ Cl

FEJo FEt

. Gl

Le., A= the amount due to Plt plus an extension which

half the weight of the prism would produce, hung at the

lower extremity.

Pl
* in A = put dX for A, dx for I, and (Pl + yFx) for P.
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The foregoing relates to the deformation of the piece,

and is therefore a problem of stiffness. As to the strength

of the prism, the relative elongation e=dX-r-dx [see eq. (1)],

which is variable, must nowhere exceed a safe value e'=

T'+EL (from eq. (1) 191, putting P=FT ,
and ;=/).

Now the greatest value of the ratio dX : dx, by inspecting

eq. (1), is seen to be at the upper end where xl. The

proper cross section F, for a given load Plt is thus found.

Putting *ave f = - (2)

198. Solid of Uniform Strength in Tension, or hanging body

of minimum material supporting its own

weight and a terminal load PL
. Let it be a

solid of revolution. If every cross-section

F at a distance =x from the lower extrem-

ity, bears its safe load FT', every element

of the body is doing full duty, and its form

p, is the most economical of material.

The lowest section must have an area
. 204. p^=p^rji^ sjnce p^ js its safe loado

204. Consider any horizontal lamina
;

its weight is

(f= heaviness of the material, supposed homogenous), and

its lower base F must have PI+ 6r for its safe load, i.e.

in which G denotes the weight of the portion of the solid

below F. Similarly for the upper base F+dF, we have

. . (2)

By subtraction we obtain

e.
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in which the two variables x and F are separated. By in>

tegration we now have

(4)

from which .F may be computed for any value of x.

The weight of the portion below any F is found from (1)

and (4) ; i.e.

while the total extension A will be

....... (6)

the relative elongation dX-^dx being the same for every dx
and bearing the same ratio to e" (at elastic limit), as T'

does to T".

199. Tensile Stresses Induced by Temperature. If the two
ends of a prism are immovably fixed, when under no strain

and at a temperature t, and the temperature is then low-

ered to a value t', the body suffers a tension proportional
to the fall in temperature (within elastic limit). If for a

rise or fall of 1 Fahr. (or Cent.) a unit of length of the

material would change in length by an amount
YJ (called

the co-efficient of expansion) a length =1 would be con-

tracted an amount X=r
l l(t-t'} during the given fall of tem-

perature if one end were free. Hence, if this contraction
is prevented by fixing both ends, the rod must be under a

tension P, equal in value to the force which would be
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necessary to produce the elongation /, just stated, under

ordinary circumstances at the lower temperature.
From eq. (1) 191, therefore, we have for this tension

due to fall of temperature

P=

For 1 Cent, we may write

For Cast iron y
= .0000111 ;

"
Wrought iron = .0000120

;

" Steel = .0000108 to .0000114 ;

Copper rj
= .0000172 ;

Zinc 7
= .0000300.

COMPRESSION OF SHORT BLOCKS.

200, Short and Long Columns. In a prism in tension, its

own weight being neglected, all the elements between tht

localities of application of the pair of external forces pro-

ducing the stretching are in the same state of stress, if the

external forces act axially (excepting the few elements in the

immediate neighborhood of the forces; these suffering
local stresses dependent on the manner of application of

the external forces), and the prism may be of any length
without vitiating this statement. But if the two external

forces are directed toward each other the intervening ele-

ments will not all be in the same state of compressive
stress unless the prism is comparatively short (or unless

numerous points of lateral support are provided). A long

prism will buckle out sideways, thus even inducing tensile

stress, in some cases, in the elements on the convex side.

Hence the distinction between short blocks and long

columns. Under compression the former yield by crush-

ing or splitting, while the latter give way by flexure (i.e.

bending). Long columns, then will be treated separately
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in ft subsequent chapter. In the present section the blocks

treated being about three or four times as long as wide,
all the elements will be considered as being under equal

compressive stresses at the same time.

201. Notation for Compression. By using a subscript c,

we may write

Ec
= Modulus of Elasticity;* i.e. the quotient of the

compressive stress per unit of area divided by the relative

shortening ;
also

C= Modulus of crushing ;
i.e. the force per unit of sec-

tional area necessary to rupture the block by crushing ;

C'= Modulus of safe compression, a safe compressive
stress per unit of area

;
and

C"= Modulus of compression at elastic limit.

For the absolute and relative shortening in length we

may still use A and e, respectively, and within the elastic

limit may write equations similar to those for tension, F
being the sectional area of the block and P one of the ter-

minal forces, while p = compressive stress per unit of area

of F, viz.:

within the elastic limit.

Also for a short block

Crushing force =FC \

Compressive force at elastic limit =FC" > . (2
1

/

Safe compressive force FC'

202. Remarks on Crushing. As in 182 for a tensile

stress, so for a compressive stress we may prove th-at a

*[NOTE. It must be remembered that the modulus of elasticity,
whether for normal or shearing stresses, is a number indicative of stiff-

ness, not of strength, and has no relation to the elastic limit (except
that experiments to determine it must not pass that limit).]
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shearing stress =p sin a cos a is produced on planes at an

angle a with the axis of the short block, p being the com-

pression per unit of area of transverse section. Accord-

ingly it- is found that short blocks of many comparatively
brittle materials yield by shearing on planes making an

angle of about 45 with the axis, the expression p sin a

cos a reaching a maximum, for a=45
;
that is, wedge-

shaped pieces are forced out from the sides. Hence the

necessity of making the block three or four times as long
as wide, since otherwise the friction on the ends would
cause the piece to show a greater resistance by hindering
this lateral motion. Crushing by splitting into pieces

parallel to the axis sometimes occurs.

Blocks of ductile material, however, yield by swelling

out, or bulging, laterally, resembling plastic bodies some-

what in this respect.

The elastic limit is more difficult to locate than in ten-

sion, but seems to have a position corresponding to that

in tension, in the case of wrought iron and steel. With
cast iron, however, the relative compression at elastic

limit is about double the relative extension (at elastic

limit in tension), but the force producing it is also double.

For all three metals it is found that Ec=Et quite nearly,

so that the single symbol E may be used for both.

EXAMPLES IN TENSIONAND COMPRESSION.

203. Tables for Tension and Compression. The round num-
bers of the following tables are to be taken as rude averages

only, for use in the numerical examples following. (The

scope and design of the present work admit of nothing
more. For abundant detail of the results of the more im-

portant experiments of late years, the student is referred

to the recent works* of Profs. Thurston, Burr, Lanza, and

Wood). Another column might have been added giving
the Modulus of Kesilience in each case, viz.: y2 e"T"

rp2\
(which also =__

}
; see 196. e is an abstract num-

2x /

* Other valuable and recent works (1897 and later) are "Materials of

Construction," by Prof. J. B. Johnson, Unwin's "
Testing of Materials,"

and Martens' work of same title.
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ber, and =^-f-Z, while Elt T", and T are given in pounds
per square inch:

TABLE OF THE MODULI, ETC., OF MATERIALS IN TENSION,
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204, Examples. No. 1. A bar of tool steel, of sectional

area =0.097 sq. inches, is ruptured by a tensile force of

14,000 Ibs. A portion of its length, originally y2 a foot,

is now found to have a length of 0.532 ft. Required T,

and e at rupture. Using the inch and pound as units (as

in the foregoing tables) we have r=li|?=144326 Ibs. per

sq. in.; (eq. (2) 195) ;
while

e=(0.532 0.5)xl2-4-(0.50xl2)=0.064.

EXAMPLE 2. Tensile test of a bar of "
Hay Steel

"
for

the Glasgow Bridge, Missouri. The portion measured was

originally 3.21 ft. long and 2.09 in. X 1.10 in. in section.

At the elastic limit P was 124,200 Ibs., and the elongation
was 0.064 ins. Required Ett T", and e" (for elastic limit).

t"= = =.00165 at elastic limit.
i O..21 X 12

^"=124,200-^(2.09 x 1.10)= 54,000 Ibs. per sq. in.

lbs -

Nearly the same result for Et would probably have been

obtained for values of p and e below the elastic limit.

The Modulus of Resilience of the above steel (see 196)

would be y2 e" T"= 44.82 inch-pounds of work per cubic

inch of metal, so that the whole work expended in stretch-

ing to the elastic limit the portion above cited is

U= y2 e" T" 7=3968. inch -lbs.

An equal amount of work will be done by the rod in re-

covering its original length.

EXAMPLE 3. A hard steel rod of ^ sq. in. section and

20 ft. long is under no stress at a temperature of 130"
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Cent., and is provided with flanges so that the slightest

tjontraction of length will tend to bring two walls nearer

together. If the resistance to this motion is 10 tons how
low must the temperature fall to cause any motion ? ^ be-

ing =.0000110 (Cent, scale). From 199 we have, ex-

pressing P in Ibs. and F in sq. inches, sinceEt
= 40,000,000

Ibs. per sq. inch,

10X2,000= 40,000,000 X # X(130-f) x 0.000011 ; whence

^=39.0 Centigrade.

EXAMPLE 4. If the ends of an iron beam bearing 5 tons

at its middle rest upon stone piers, required the necessary

bearing surface at each pier, putting G
1 for stone =200

Ibs. per sq. inch. 25 sq. in., Ans.

EXAMPLE 5. How long must a wrought iron wire* be,

supported vertically at its upper end, to break with ita

own weight ? 216,000 inches, Ans.

EXAMPLE 6. One voussoir (or block) of an arch-ring

presses its neighbor with a force of 50 tons, the joint hav-

ing a surface of 5 sq. feet ; required the compression per

sq. inch. 138.8 Ibs. per sq. in., Ans.

205. Factor of Safety. When, as in the case of stone, the
value of the stress at the elastic limit is of very uncertain
determination by experiment, it is customary to refer the
value of the safe stress to that of the ultimate by making
it the w'th portion of the latter, n is called a factor of

safety, and should be taken large enough to make the safe

stress come within the elastic limit. For stone, n should
not be less than 10, i.e. C'^C+n', (see Ex. 6, just given).

206. Practical Notes. It was discovered independently by
'Commander Beardslee and Prof. Thurston, in 1873, that

if wrought iron rods were strained considerably beyond
the elastic limit and allowed to remain free from stress

* Take T = 60,000 Ibs. per square inch.
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for at least one day thereafter, a second test would show

higher limits both elastic and ultimate.

When articles of cast iron are imbedded in oxide of iron

and subjected to a red heat for some days, the metal loses

most of its carbon, and is thus nearly converted into

wrought iron, lacking, however, the property of welding.

Being malleable, it is called malleable cast iron.

Chrome steel (iron and chromium) and tungsten steel pos-
sess peculiar hardness, fitting them for cutting tools, rock

drills, picks, etc.

Byfatigue of metals we understand the fact, recently dis-

covered by Wohler in experiments made for the Prussian

Government, that rupture may be produced by causing the

stress on the elements to vary repeatedly between two

limiting values, the highest of which may be considerably
below T (or (7), the number of repetitions necessary to

produce rupture being dependent both on the range of

variation and the higher value.

For example, in the case of Phoenix iron in tension,

rupture was produced by causing the stress to vary from

) to 52,800 Ibs. per sq. inch, 800 times
; also, from tc

14,000 Ibs. per sq. inch 240,853 times ; while 4,000,000 va-

riations between 26,400 and 48,400 per sq. inch did not

cause rupture. Many other experiments were made and

the following conclusions drawn (among others):

Unlimited repetitions of variations of stress (Ibs. per

0q. in.) between the limits given below will not injure the

metal (Prof. Burr's Materials of Engineering).

Wrought iron I
From 17>600 ComP' to 17'6 Tension'

1

( to 33,000

f From 30,800 Comp. to 30,800 Tension,

Axle Cast SteelJ " to 52,800

(
" 38500 Tens, to 88,000

"

(See p, 832 for an addendum to this paragraph.)
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207. Eivets, The angular distortion called shearing
strain in the elements of a body, is specially to be provided
for in the case of rivets joining two or more plates. This

distortion is shown, in Figs. 205 and 206, in the elements

near "he plane of contact of the plates, much exaggerated*

- lT

FIG. 205. FIG. 206.

In Fig. 205 (a lap-joint) the rivet is said to be in single

shear
;

in Fig. 206 in double shear. If P is just great

enough to shear off the rivet, the modulus of ultimate shear-

ing, which may be called S, (being the shearing force per
unit of section when rupture occurs) is

(1)

in which F= the cross section of the rivet, its diameter

being =d. For safety a value S'= % to ^ of S should

be taken for metal, in order to be within the elastic limit.

As the width of the plate is diminished by the rivet

hole the remaining sectional area of the plate should be

ample to sustain the tension P, or 2P, (according to the

plate considered, see Fig. 206), P being the safe shearing
force for the rivet. Also the thickness t of the plate
should be such that the side of the hole shall be secure^

against crushing ;
P must not be > C'td, Fig. 205.

Again, the distance a, Fig. 205, should be such as to

prevent the tearing or shearing out of the part of the

plate between the rivet and edge of the plate.
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For economy of material the seam or joint should be

no more liable to rupture by one than by another, of the

FIG. 207.

four modes just mentioned. The relations which must
then subsist will be illustrated in the case of the " butt-

joint
"
with two cover-plates, Fig. 207. Let the dimen-

sions be denoted as in the figure and the total tensile force

on the joint be = Q. Each rivet (see also Fig. 206) is ex-

posed in each of two of its sections to a shear of /2 Q,

hence for safety against shearing of rivets we put

(1)

Along one row of rivets in the main plate the sectional

area for resisting tension is reduced to (b 3d)tlt hence for

safety against rupture of that plate by the tension Q, we

put

(2)

Equations (1) and (2) suffice to determine d for the rivets

and #! for the main plates, Q and b being given; but the

values thus obtained should also be examined with refer-

ence to the compression in the side of the rivet hole, i.e.,

y6 Q must not be > C't
L
d. [The distance a, Fig. 205, to the

edge of the plate is recommended by different authorities

to be from d to 3d.]

Similarly, for the cover-plate we must have

. . . (3)
<

and }2Q not > C'td.
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If the rivets do not fit their holes closely, a large margin
should be allowed in practice. Again, in boiler work, the

pitch, or distance between centers of two consecutive rivets

may need to be smaller, to make the joint steam-tight, than
would be required for strength alone.

208. Shearing Distortion. The change of form in an ele-

ment due to shearing is an angular deformation and will

be measured in 7r-measure. This angular change or dif-

ference between the value of the corner angle during strain

and I^TT, its value before strain, will be called 3, and is

proportional (within elastic limit) to the shearing stress

per unit of area, J9S , existing on all the four faces whose

angles with each other have been changed.

Fig. 208. (See 181). By 184 the Modulus of Shearing

Elasticity is the quotient obtained by dividing pK by d ; i.e.

(elastic limit not passed),

or inversely, 3=ps-trE&..... (1)'

The value of E& for different substances is most easily
determined by experiments on torsion

in which shearing is the most promi-
nent stress. (This prominence depends
on the position of the bounding planes
of the element considered

; e.g., in Fig.

208, if another element were considered

within the one there shown and with

PIG. 208. its planes at 45 with those of the first,

we should find tension alone on one pair of opposite faces,

compression alone on the other pair.) It will be noticed

that shearing stress cannot be present on two opposite
faces only, but exists also on another pair of faces (those

perpendicular to the stress on the first), forming a couple
of equal and opposite moment to the first, this being

necessary for the equilibrium of the element, even when
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tensile or compressive stresses are also present on the

faces considered.

209. Shearing Stress is Always of the Same Intensity on the

Four Faces of an Element. (By intensity is meant per unit

of area ; and the four faces referred to are those perpen-
dicular to the paper in Fig. 208, the shearing stress being

parallel to the paper.)
Let dx and dz be the width and height of the element

in Fig. 208, while dy is its thickness perpendicular to the

paper. Let the intensity of the shear on the right hand
face be =q^ that on the top face =ps. Then for the ele-

ment aw a free body, taking moments about the axis per-

pendicular to paper, we have

gs dz dy X dx pa dx dy x dz=0 /. gs=ps

{dx and dz being the respective lever arms of the forces

gs dz dy and ps dx dy.)

Even if there were also tensions (or compressions) on
one or both pairs of faces their moments about would
balance (or fail to do so by a differential of a higlier order)

independently of the shears, and the above result would
still hold.

210. Table of Moduli for Shearing.
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As in the tables for tension and compression, the above

values are averages. The true values may differ from

these as much as 30 per cent, in particular cases, accord'

ing to the quality of the specimen.

211. Punching rivet holes in plates of metal requires the

overcoming of the shearing resistance along the. convex

surface of the cylinder punched out. Hence if d = diam-

eter of hole, and t= the thickness of the plate, the neces-

sary force for the punching, the surface sheared being
F= tnd, is

P=Stxd (2)'

Another example of shearing action is the "
stripping

"

of the threads of a screw, when the nut is forced off lon-

gitudinally without turning, and resembles punching in

its nature.

212. EandEg ;
Theoretical Relation. Incase a rod is in

tension within the elastic limit, the relative (linear) lateral

contraction (let this =m) is so connected with U
t
and Et

that if two of the three are known the third can be de-

duced theoretically. This relation is proved as follows,

by Prof. Burr. Taking an elemental cube with four of its

faces at 45 with the axis of the piece, Fig. 209, the axial

half-diagonal AD becomes of a length AD'=AD-\-e.AD
under stress, while the transverse half diagonal contracts

to a length B'D'=ADm.AD. The angular distortion 3

FIG. 209. 212.

>0

FIG. 210.
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is supposed very small compared with 90 and is due to

the shear ps per unit of area on the face BG (or BA).
From the figure we have

tan(45 )
= ==1-^, appro*.

[But, Fig. 210, tan(45 #)=! 2# nearly, where x is a
small angle, for, taking GA= unity= AE, tan AD=AF=
AEEF. _Now approximately EF=~E~G.^o>ndiEG^
J)</2=x</2 .'. AF=I2x nearly.] Hence

1 3=1 m e; or S=m+e . . (2)

Eq. (2) holds good whatever the stresses producing the

deformation, but in the present case of a rod in tension,

if it is an isotrope, and if p = tension per unit of area on
its transverse section, (see 182, putting =45), we have

Et=p+e and Es=(ps on BC)-r-3= }4p+S. Putting also

(w:e)=r, whence m=re, eq. (2) may finally be written

0)

Prof. Bauschinger, experimenting with cast iron rods,
found that in tension the ratio m : e was = {g,, as an average,
which in eq. (3) gives

t
= ^nearly. . . . (4)

His experiments on the torsion of cast iron rods gave
Es
= 6,000,000 to 7,000,000 Ibs. per sq. inch. By (4), then,

Et should be 15,000,000 to 17,500,000 which is approxi-

mately true
( 203).

Corresponding results may be obtained for short blocks

in compression, the lateral change being a dilatation in-

stead of a contraction.
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Examples in Shearing. EXAMPLE 1. Kequired the

proper length, a, Fig. 211, to

guard against the shearing off,

along the grain, of the portion

ab, of a wooden tie-rod, the force

P being = 2 tons, and the width

of the tie = 4 inches. Using a

value of S 1 = 100 Ibs. per sq. in.,

we put fo/S^ 4,000 cos 45 ; i.e.

a==(4,000x0.707)-f-(4x!00)= 7.07

inches.

EXAMPLE 2. A ^ in. rivet of wrought iron, in single

shear (see Fig. 205) has an ultimate shearing strength
P==FS=}ntfg= i^7r(^)

2 x 50,000= 30,050 Ibs. Forsafety,

putting #'=8,000 instead of S,P'= 4,800 Ibs. is its safe

shearing strength in single shear.

The wrought iron plate, to be secure against the side-

crushing in the hole, should have a thickness t
y computed

thus :

P'=tdC'\ or 4,800=^x12,000 .-. *=0.46 in.

If the plate were only 0.23 in. thick the safe value of P
would be only y2 of 4,800.

EXAMPLE 3. Conversely, given a lap-joint, Fig. 205, in

which the plates are % in. thick and the tensile force on

the joint = 600 Ibs. per linear inch of seam, how closely

must y^ inch rivets be spaced in one row, putting #'=8,000
and C' =12,000 Ibs. per sq. in. ? Let the distance between

centres of rivets be =x (in inches), then the force upon
each rivet =600x, while its section 7^=0.44 sq. in. Having

regard to the shearing strength of the rivet we put 600cc=

0.44x8,000 and obtain x=5.86 in.; but considering that the

safe crushing resistance of the hole is = %/ ^-12,000=
2,250 Ibs., 600x=2,250 gives #=3.75 inches, which is the

pitch to be adopted. What is the tensile strength of the

reduced sectional area of the plate, with this pitch ?
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EXAMPLE 4. Double butt-joint ; (see Fig. 207) ;

3
/8 inch

plate; % in. rivets; Tf= <7'=12,000 ; #'=8,333; width of

plates=14 inches. Will one row of rivets be sufficient at

each side of joint, if Q=30,000 Ibs.? The number of rivets

= ? Here each rivet is in double shear and has therefore

a double strength as regards shear. In double shear the

safe strength of each rivet =2FS'=7,333 Ibs. Now 30,000--

7,333=4.0 (say). With the four rivets in one row the re-

duced sectional area of the main plate is =[14 4x ^] X 3
/8

=4.12 sq. in., whose safe tensile strength is =.FT'=4.12x

12,000=49,440 Ibs.; which is > 30,000 Ibs. .-. main plate is

safe in this respect. But as to side-crushing in holes

in main plate we find that C'^d (i.e. 12,000X 3

/8X %= 3,375

Ibs.) is <^Q i.e. <7,500 Ibs., the actual force on side of

hole. Hence four rivets in one row are too few unless

thickness of main plate be doubled. Will eight in one

row be safe ?

213a. (Addendum to 206.) Elasticity of Stone and Cements.

Experiments by Gen. Gillmore with the large Watertown

testing-machine in 1883 resulted as follows (see p. 221 for

notation) :

With cubes of Haverstraw Freestone (a homogeneous brown-

stone) from 1 in. to 12 in. on the edge, Ec was found to be

from 900,000 to 1,000,000 Ibs. per sq. in. approximately ;
and

C about 4,000 or 5,000 Ibs. per sq. in. Cubes of the same

range of sizes of Dyckerman's Portland cement gave EG from

1,350,000 to 1,630,000, and C from 4,000 to 7,000, Ibs. per sq.

in. , Cubes of concrete of the above sizes, made with the

Newark Ce.'s Eosendale cement, gave Ee about 538,000, while

cubes of cement-mortar, and some of concrete, both made with

National Portland cement, showed E from 800,000 to 2,000,-

000 Ibs. per sq. in.

The compressibility of "brick piers 12 in. square in section

and 16 in. high was also tested. They were made of common
North River brick with mortar joints f in. thick, and showed

a value for E of about 300,000 or 400,000, while at elastic

limit C" was on the average 1,000, Ibs. per sq. in.
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CHAPTEE IL

TORSION.

214. Angle of Torsion and of Helix. When a cylindrical

beam or shaft is subjected to a twisting or torsional action,

i. e. when it is the means of holding in equilibrium two

couples in parallel planes and of equal and opposite mo-

ments, the longitudinal axis of symmetry remains straight

7^^ and the elements along it exper-

,
\ience no stress (whence it may be

-^ Jcalled
the "line of no' twist"),

5J[t/ while the lines originally parallel to
1

FIG. 212. it assume the form of helices, each

element of which is distorted in its angles (originally

right angles), the amount of distortion being assumed pro-

portional to the radius of the helix. The directions of the

faces of any element were originally as follows : two radial,

two in consecutive transverse sections, and the other two

tangent to two consecutive circular cylinders whose com-

mon axis is that of the shaft. E.g. in Fig. 212 we have

an unstrained shaft, while in Fig. 213 it holds the two
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couples (of equal moment P a= Q b) in equilibrium. These

couples act in parallel planes perpendicular to the axis of

the prism and a distance, I, apart. Assuming that the

transverse sections remain plane and parallel during tor-

sion, any surface element, m, which in Fig. 212 was entire-

ly right-angled, is now distorted. Two of its angles have

been increased, two diminished, by an amount d, the angle
between the helix and a line parallel to the axis. Suppos-
ing m to be the most distant of any element from the axis,

this distance being e, any other element at a distance *

from the axis experiences an angular distortion *v
e

If now we draw B' parallel to O 1A the angle B B',

=, is called the Angle of Torsion, while d may be called the

helix angle; the former lies in a transverse plane, the latter

in a plane tangent to the cylinder. Now

tan d =(linear arc B B'}-^!; but lin. arc BBl==t
30fc; hence,

putting d for tan d, (3 being small)

(3 and a both in it measure).

215. Shearing Stress on the Elements. The angular distor-

tion, or shearing strain, 3, of any element (bounded as al-

ready described) is due to the shearing stresses exerted on
it by its neighbors on the four faces perpendicular to the

tangent plane of the cylindri-
cal shell in which the element

is situated. Consider these

neighboring elements of an
outside element removed, and
the stresses put in

; the latter

are accountable for the dis-

tortion of the element and so
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hold it in equilibrium. Fig. 214 shows this element

"free." Within the elastic limit d is known to be propor-
tional to ps> the shearing stress per unit of area on the

faces whose relative angular positions have been changed.
That is, from eq. (1), 208, d=ps+Es -, whence, see (1) of

214,

(2)

In (2) pa and e both refer to a surface element, e being
the radius of the cylinder, and ps the greatest intensity of

shearing stress existing in the shaft. Elements lying nearer

the axis suffer shearing stresses of less intensity in pro-

portion to their radial distances, i.e., to their helix-angles.

That is, the shearing stress on that face of the element

which forms a part of a transverse section and whose dis-

tance from the axis is z, is p, =- ps, per unit of area, and
6

the total shear on the face is pdF9 dF being the area of the

face.

216. Torsional Strength. We are now ready to expose the

full transverse section of a shaft under torsion, to deduce

formulae of practical utility. Making a right section of

the shaft of Fig. 213 anywhere between the two couples
and considering the left hand portion as a free body, the

forces holding it in equilibrium are the two forces P of

the left-hand couple and an infinite number of shearing

forces, each tangent to its circle of radius z, on the cross

section exposed by the removal of the right-hand portion.
The cross section is assumed to remain plane during tor-

sion, and is composed of an infinite number of dfs, each

being the area of an exposed face of an element; see
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Each elementary shearing force
~| p$Ft and 3 is its

lever arm about the axis Go . For equilibrium, 2 (mom.)
about the axis Oo must =0 ; i.e. in detail

or, reducing,

P*
fz*dF=Pa ; or, M.=pa . (3)C eX 6

Eq. (3) relates to torsional strength, since it contains ps, the

greatest shearing stress induced by the torsional couple,
whose moment Pa is called the Moment of Torsion, the

stresses in the cross section forming a couple of equal and

opposite moment.

/p is recognized as the Polar Moment of Inertia of the cross

section, discussed in 94 ;
e is the radial distance of the

outermost element, and = the radius for a circular shafto

217. Torsional Stiflhess. In problems involving the angle
of torsion, or deformation of the shaft, we need an equa-
tion connecting Pa and a, which is obtained by substitut-

ing in eq. (3) the value of pa in eq. (2), whence

(4)
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From this it appears that the angle of torsion, a, is propor-
tional to the moment of torsion, Pa, within the elastic

limit ;
a must be expressed in it-measure. Trautwine cites 1

(i.e.
o= 0.0174) as a maximum allowable value for shafts.

218. Torsional Resilience is the work done in twisting a

shaft from an unstrained state until the elastic limit is

reached in the outermost elements. If in Fig. 213 we

imagine the right-hand extremity to be fixed, while the

other end is gradually twisted through an angle each

force P of the couple must be made to increase gradually
from a zero value up to the value P19 corresponding to ax.

In this motion each end of the arm a describes a spacr
= ^ai, and the mean value of the force = %Pi (compai

196). Hence the work done in twisting is

By the aid of preceding equations, (5) can be written

If for ps we write S' (Modulus of safe shearing) we have

for the safe resilience of the shaft

7T/_'

If the torsional elasticity of an originally unstrained shaft

is to be the means of arresting the motion of a moving
mass whose weight is G, (large compared with the parts

'intervening) and velocity =v t we write ( 133)

U'-G **^
2'

*s the condition that the shaft shall not be injnrecL
*
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Polar Moment of Inertia. For a shaft of circular

cross section (see 94) Jp=J^nr
4

;
for a hollow cylinder

JJ,

==
^^(r1

4 r2
4

) ;
while for a square shaft J

p=i^&
4
,
b being

the side of the square ; for a rectangular cross-section

sides & and h, Ip=$h(P-}-h
2

).
For a cylinder e=r; if hol-

low, e=r , the greater radius. For a square, e

220. Non-Circular Shafts. If the cross-section is not cir-

cular it becomes warped, in torsion, instead of remaining

plane. Hence the foregoing theory does not strictly ap-

ply. The celebrated investigations of St. Venant, how-

ever, cover many of these cases. (See 708 of Thompson
and Tait's Natural Philosophy ; also, Prof. Burr's Elas-

ticity and Strength of the Materials of Engineering). Hi
results give for a square shaft (instead of the

. . . . (1)

and Pa=l

f^ps9 instead of eq. (3) of 216, ps being the

greatest shearing stress.

The elements under greatest shearing strain are found

at the middles of the sides, instead of at the corners, when

the prism is of square or rectangular cross-section. The

warping of the cross-section in such a case is easily veri

fied by the student by twisting a bar of india-rubber in

his fingers.

221. Transmission of Power. Fig. 216. Suppose the cog-
wheel B to cause A, on the

same shaft, to revolve uni-

formly and overcome a resis-

tance Q, the pressure of the

teeth of another cog-wheel,
B being drivenby still another

FIG. SIB, wheel. The shaft AB is un-
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der torsion, the moment of torsion being =Pa= Qb. (Pl

and Qi the bearing reactions have no moment about the
axis of the shaft). If the shaft makes u revolutions per
unit-time, the work transmitted (transmitted ; not expend-
ed in twis-ting the shaft whose angle of torsion remains

constant, corresponding to Pa) per unit-time, i.e. the Power,
is

L=P.Zna.u=27tuPa . . . (8)

To reduce L to Horse Power
( 132), we divide by N9

the number of units of work per unit-time constituting
one H. P. in the system of units employed, i.e.,

Horse Power =H. P.-

For example JV=33,000 ft.-lbs. per minute, or =396,000
inch-lbs. per minute ; or = 550 ft.-lbs. per second. Usually
the rate of rotation of a shaft is given in revolutions per
minute,

But eq. (8) happens to contain Pa the moment of torsion

acting to maintain the constant value of the angle of tor-

sion, and since for safety (see eq. (3) 216) Pa=/S"7
p -7-e,

with J
p
= y2T^ and e=r for a solid circular shaft, we have

for such a shaft

(Safe), H. P.= . . . (9)N

which is the safe H. P., which the given shaft can trans^

mit at the given speed. S' may be made 7,000 Ibs. per sq.

inch for wrought iron
; 10,000 for steel, and 5,000 for cast-

iron. If the value of Pa fluctuates periodically, as when
a shaft is driven by a connecting rod and crank, for (H. P.)

we put mX(H. P.), m being the ratio of the maximum to

the mean torsional moment; m= about Bunder ordi-

nary circumstances (Cotterill).
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222. Autographic Testing Machine. The principle of Prof
Thurston's invention bearing this name is shown in Fig

FIG. 217.

217. The test-piece is of a standard shape and size, its

central cylinder being subjected to torsion. A jaw, carry-

ing a handle (or gear-wheel turned by a worm) and a drum
on which paper is wrapped, takes a firm hold of one end
of the test-piece, whose further end lies in another jaw

rigidly connected with a heavy pendulum carrying a pen-
cil free to move axially. By a continuous slow motion of

the handle the pendulum is gradually deviated more and

more from the vertical, through the intervention of the

test-piece, which is thus subjected to an increasing tor-

sional moment. The axis of the test-piece lies in the axis

of motion. This motion of the pendulum by means of a

properly curved guide, WR, causes an axial (i.e., parallel

to axis of test-piece) motion of the pencil A, as well as an

angular deviation /? equal to that of the pendulum, and

'this axial distance CF,=sf, of the pencil from its initial

position measures the moment of torsion=Pa=Pc sin ft.

As the piece twists, the drum and paper move relatively

to the pencil through an angle silo equal to the angle
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of torsion a so far attained. The abscissa so and ordinate

sT of the curve thus marked on the paper, measure,
when the paper is unrolled, the values of a and Pa through
all the stages of the torsion. Fig. 218 shows typical

FIG. 218.

jurves thus obtained. Many valuable indications are

given by these strain diagrams as to homogeneousness of

composition, ductility, etc., etc. On relaxing the strain

at any stage within the elastic limit, the pencil retraces

its path ;
but if beyond that limit, a new path is taken

called an "
elasticity-line," in general parallel to the first

part of the line, and showing the amount of angular re-

covery, B(Jy and the permanent angular set, OB.

223. Examples in Torsion. The modulus of safe shearing

strengtn, S', as given in 221, is expressed in pounds per

square inch
;
hence these two units should be adopted

throughout in any numerical examples where one of the

above values for S* is used. The same statement applies
to the modulus of shearing elasticity, E*, in the table of

210.

EXAMPLE 1. Fig. 216. With P = 1 ton, a = 3 ft., I =
10 ft., and the radius of the cylindrical shaft r=2.5 inches,

required the max. shearing stress per sq. inch, ps, the

shaft being of wrought iron. From eq. (3) 216

Pae __ 2,000x36x2.5
=2,930 Ibs. per sq. inch,

which Is a safe value for any ferrous metaL
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EXAMPLE 2. What H. P. is the shaft in Ex. 1 transmit-

ting, if it makes 50 revolutions per minute ? Let u =
number of revolutions per unit of time, and N' = the num-
ber of units of work per unit of time constituting one

horse-power. Then H. P.=Pw27ra-f-jV, which for the foot-

pound-minute system of units gives

H. P.=2,000x50x27rx3-i-33,000=57^ H. P.

EXAMPLE 3. What different radius should be given to

the shaft in Ex. 1, if two radii at its extremities, originally

parallel, are to make an angle of 2 when the given moment
of torsion is acting, the strains in the shaft remaining con-

stant. From eq. (4) 217, and the table 210, with =
1

0.035 radians (i.e. TT-measure), and I
p
= l

/2xr*, we have

2,000X36X120 =17.45 ,. r=2 .04inclies.

^0.035x9,000,000

(This would bring about a different p, but still safe.) Ti*

foregoing is an example in stiffness.

EXAMPLE 4. A working shaft of steel (solid) is to trans-

mit 4,000 H. P. and make 60 rev. per minute, the maximum

twisting moment being \ l/2 times the average; required
its diameter. d=14.74 inches. Ans.

EXAMPLE 5. In example 1, pA
= 2,930 Ibs. per square

inch ; what tensile stress does this imply on a plane at 45

with the pair of planes on which ps acts ? Fig. 219 shows

FIG. 220.
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a small cube, of edge =dx, (taken from the outer helix of

Fig. 215,) free and in equilibrium, the plane of the paper

being tangent to the cylinder ;
while 220 shows the portion

BDC, also free, with the unknown total tensile stresspdx*^2
acting on the newly exposed rectangle of area =dxXdx^/%,

p being the unknown stress per unit of area. From sym-

metry the stress on this diagonal plane has no shearing

component. Putting ^[components normal io BD~\=Q,
we have

pdx
2

^/2=2dx
2pscos4:5 =dx2ps^2~.:p=pa . (1)

That is, a normal tensile stress exists in the diagonal

plane BD of the cubical element equal in intensity to the

shearing stress on one of the faces, i.e., =2,930 Ibs. per sq.

in. in this case.

Similarly in the plane AG will be found a compressive
stress of 2,930 Ibs. per sq. in. If a plane surface had been

exposed making any other angle than 45 with the face of

the cube in Fig. 219, we should have found shearing and

normal stresses each less than ps per sq. inch. Hence the

interior dotted cube in 219, if shown " free
"

is in tension

in one direction, in compression in the other, and with

no shear, these normal stresses having equal intensities.

Since S' is usually less than T' or G', if ps is made = S'

the tensile and compressive actions are not injurious. It

follows therefore that when a cylinder is in torsion any
helix at an angle of 45 with the axis is a line of tensile,

or of compressive stress, according as it is a right or left

handed helix, or vice versa.

EXAMPLE 6. A solid and a hollow cylindrical shaft, of

equal length, contain the same amount of the same kind
of metal, the solid one fitting the hollow of the other.

Compare their torsional strengths, used separately.
The solid shaft has only ^ the strength of the hollow

one. Ans.
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CHAPTER IIL

FLEXUREOFHOMOGENEOUSPRISMSUNDER
PERPENDICULAR FORCES IN ONE PLANE.

224. Assumptions of the Common Theory of Flexure. When
a prism is bent, under the action of external forces per-

pendicular to it and in the same plane with each other, it

may be assumed that the longitudinal fibres are in tension

on the convex side, in compression on the concave side,

and that the relative stretching or contraction of the ele-

ments is proportional to their distances from a plane in-

termediate between, with the understanding that the flex-

ure is slight and that the elastic limit is not passed in any
element. )

This " common theory
"

is sufficiently exact for ordinary

engineering purposes if the constants employed are prop-

erly determined by a wide range of experiments, and in-

volves certain assumptions of as simple a nature as possi-

ble, consistently with practical facts. These assumptions
are as follows, (for prisms, and for solids with variable cross

sections, when the cross sections are similarly situated as

regards a central straight axis) and are approximately
borne out by experiment :

(1.) The external or "
applied

"
forces are all perpendicu-

lar to the axis of the piece and lie in one plane, which may
be called the force-plane ; the force-plane contains the

axis of the piece and cuts each cross-section symmetri-

cally ;

(2.) The cross-sections remain plane surfaces during
flexure ;

(3.) There is a surface (or, rather, sheet of elements)
which is parallel to the axis and perpendicular to the

force-plane, and along which the elements of the solid ex-
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perience no tension nor compression in an axial direction,

this being called the Neutral Surface;

(4.) The projection of the neutral surface upon the force

plane (or a || plane) being called the Neutral Line or Elastic

Curve, the bending or flexure of the piece is so slight that

an elementary division, ds, of the neutral line may be put

=dx, its projection on a line parallel to the direction of

the axis before flexure";

(5.) The elements of the body contained between any
two consecutive cross-sections, whose intersections with

the neutral surface are the respective Neutral Axes of the

sections, experience elongations (or contractions, accord-

ing as they are situated on one side or the other of the

neutral surface), in an axial direction, whose amounts are

proportional to their distances from the neutral axis, and

indicate corresponding tensile or compressive stresses ;

(6.) E^E.;
(7.) The dimensions of the cross-section are small com-

pared with the length of the piece ;

(8.) There is no shear perpendicular to the force plane
on internal surfaces perpendicular to that plane.

In the locality where any one of the external forces is

Applied, local stresses are of course induced which demand

separate treatment. These are not considered at present.

225. Illustration. Consider the case of flexure shown in

Fig. 221. The external forces are three (neglecting the

FORCE PLANE

1

._
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weight of the beam), viz.: Plt P2 , and P3. Pl and P3 are

loads, P2 the reaction of the support.
The force plane is vertical. NiL is the neutral line or

elastic curve. NA is the neutral axis of the cross-section

at m ; this cross-section, originally perpendicular to the

sides of the prism, is during flexure "| to their tangent

planes drawn at the intersection lines
;
in other words, the

side view QNB, of any cross-section is perpendicular to

the neutral line. In considering the whole prism free we
have the system Plf P2 , and P3 in equilibrium, whence
from 2YQ we have P2=Px+P3,

and from JT(mom. about

O) = 0, P3?3
== PA. Hence given P1 we may determine the

other two external forces. A reaction such as P2 is some-

times called a supporting force. The elements above the

neutral surface N^LS&re in tension ; those below in com-

pression (in an axial direction).

jj

226. The Elastic Forces. Conceive the beam in Fig. 221

separated into two parts by any transverse section such,

as QAy and the portion NiON, considered as a free body
in Fig. 222. Of this free body the surface QAB is one of

par

Fie. 222.
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I

the bounding surfaces, but was originally an internal sur-

face of the beam in Fig. 221. Hence in Fig. 222 we must

put in the stresses acting on all the dF's or elements of area

of QAB. These stresses represent the actions of the body
taken away upon the body which is left, and according to

assumptions (5), (6) and (8) consist of normal stresses (ten-

sion or compression) proportional per unit of area, to the

distance, z, of the dF's from the neutral axis, and of shear-

ing stresses parallel to the force-plane (which in most
cases will be vertical).

The intensity of this shearing stress on any dF varies

with the position of the dF with respect to the neutral

axis, but the law of its variation will be investigated later

(
253 and 254). These stresses, called the Elastic Forces

of the cross-section exposed, and the external forces Pl and

P2,
form a system in equilibrium. We may therefore ap-

ply any of the sonditions of equilibrium proved in 38.

227. The Neutral Axis Contains the Centre of Gravity of the

Cross-Section. Fig. 222. Let e~ the distance of the outer-

most element of the cross-section from the neutral axis, and
the normal stress per unit of area upon it be =p, whether

tension or compression. Then by assumptions (5) and (6),

224, the intensity of nprmal stress on any dF is = -. p
and the actual

normal stress on any dF is= ~ pdF . (1)

This equation is true for dF'a having negative 's, i.e.

on the other side of the neutral axis, the negative value

of the force indicating normal stress of the opposite char-

acter
;
for if the relative elongation (or contraction) of two

axial fibres is the same for equal z's, one above, the other

below, the neutral surface, the stresses producing the

changes in length are also the same, providedUt=Ec; see
184 and 201.
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For this free body in equilibrium put SX=Q (JTisa
horizontal axis). Put the normal stresses equal to their

X components, the flexure being so slight, and the X com-

ponent of the shears = for the same reason. This gives

(see eq. (1) )

Ai pdF= ; i.e. *L CdFz= ; or, Fz=0 (2)J e e J e

IB. which ~z distance of the centre of gravity of the cross-

section from tne neutral axis, from which, though un-

known in position, the a's have been measured (see eq.

(4) 23).

In eq. (2) neither p-z-e nor F can be zero .. z must = ;

i.e. the neutral axis contains the centre of gravity. Q. E. D.

[If the external forces were not all perpendicular to the

beam this result would not be obtained, necessarily.]

228. The Shear. The " total shear," or simply the
"
shear," in the cross-section is the sum of th.e vertical

shearing stresses on the respective dF's. Call this sum

e7, and we shall have from the free body in Fig. 222, by

putting -7=0 (T being vertical)

P2 Pl J=Q.\J=P^-Pl . . (3)

That is, the shear equals the algebraic sum of the ex-

ternal forces acting on one side (only) of the section con-

sidered. This result implies nothing concerning its mode
of distribution over the section.

229. The Moment. By the "Moment of Flexure" or

simply the Moment, at any cross-section is meant the sum
of the moments of the elastic forces of the section, taking
the neutral axis as an axis of moments. In this summa-
tion the normal stresses appear alone, the shear taking no

part, having no lever arm about the neutral

Fig. 222, the moment offlexure
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This function, CdFtf, of the cross-section or plane figure

is the quantity called Moment of Inertia of a plane figure,

85. For the free body in Fig. 222, by putting ^(mom.s
about the neutral axis NA)=Q, we have then

=0, or in general, *-- =M . (5)
o 6

in whichM signifies the sum of moments,* about the neutral

axis of the section, of all the forces acting on the free body
considered, exclusive of the elastic forces of the exposed
section itself.

230. Strength in Flexure. Eq. (5) is available for solving

problems involving the Strength of beams and girders, since

it contains p, the greatest normal stress per unit of area to

be found in the section.

In the cases of the present chapter, where all the exter-

nal forces are perpendicular to the prism or beam, and

have therefore no components parallel to the beam, i.e. to

the axis X, it is evident that the normal stresses in any
section, as QB Fig. 222, are equivalent to a couple ; for the

condition 2X=Q falls entirely upon them and cannot be

true unless the resultant of the tensions is equal, parallel,

and opposite to that of the compressions. These two equal
and parallel resultants, not being in the same line, form a

couple ( 28), which we may call the stress-couple. The
moment of this couple is the " moment of flexure

" p~
, and

it is further evident that the remaining forces in Fig. 222,

viz.: the shear J and the external forces P
l
and P2, are

equivalent to a couple of equal and opposite moment to

the one formed by the normal stresses.

* It is evident, therefore, thatM (ft.-lbs., or in.-lbs.) is numerically equal
to the "moment of flexure," or moment of the " stress couple "; so that

occasionally it may be convenient to use " M" to denote the value of the

latter moment also.
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1
231, Flexural Stiffness. The neutral line, or elastic curve,

containing the centres of gravity of all the sections, was

originally straight ; its radius of curvature at any point,
as N, Fig. 222, c

7

uring flexure may be introduced as fol-

lows. QB and U'V are two consecutive cross-sections,

originally parallel, but now inclined so that the intersec-

tion C, found by prolonging them sufficiently, is the centre

of curvature of the ds (put =dx) which separates them at

N, and CG=p=? the radius of curvature of the elastic

curve at N. From the similar triangles U'UGa,nd GNCwQ
have dlidx ::e: pt in which dX is the elongation, V U, of a

portion, originally =dx, of the outer fibre. But the rela-

tive elongation e= -y- of the latter is, by 184, within the
dx

elastic limit, =J^L*.~ = and eq. (5) becomes.

(6)

AXI6X

From (6) the radius of curvature can be computed. E=
the value of E^=E^ as ascertained from experiments in

bending.
To obtain a differential equation of the elastic curve, (6)

may be transformed thus,^Fig. 223. The curve being very

flat, consider two consecutive

cfo's with equal dx's ; they may
be put = their dx's. Produce

the first to intersect the dy of the

second, thus cutting off the d*y 9

i.e. the difference between two

consecutive cfa/'s. Drawing a per-

pendicular to each ds at its left

extremity, the centre of curva-

ture C is determined by their in-

tersection, and thus the radius

of curvature p. The two shaded

PIG. 233. triangles have their small angles
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equal, and d?y is nearly perpendicular to the prolonged
ds ; hence,, considering them similar, we have

p:dx::dx:d
2

y.: -
p

and hence from eq. (6) we have

(approx.) EI^=M . . (7)
diX

as a differential equation of the elastic curve. From this

the equation of the elastic curve may be found, the de-

flections at different points computed, and an idea thus

formed of the stiffness. All beams in the present chap-
ter being prismatic and homogeneous both E and / are the

same (i.e. constant) at all points of the elastic curve. In

using (7) the axis JTmust be taken parallel to the length
of the beam before flexure, which must be slight ; the

minus sign in (7) provides for the case when d^y-^dx
2
is es-

sentially negative.

232. Resilience of Flexure. If the external forces are made-

to increase gradually from zero up to certain maximum
values, some of them may do work, by reason of their

points of application moving through certain distances

due to the yielding, or flexure, of the body. If at the be-

ginning and also at the end of this operation the body is

at rest, this work has been expended on the elastic resis-

tance of the body, and an equal amount, called the work
of resilience (or springing-back), will be restored by the

elasticity of the body, if released from the external forces,

provided the elastic limit has not been passed. The energy
thus temporarily stored is of the potential kind ; see

148, 180, 196 and 218.

232a. Distinction Between Simple, and Continuous, Beams (or

"Girders"). The external forces acting on a beam consist
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generally of the loads and the " reactions
"

of the sup-

ports. If the beam is horizontal and rests on two supports

only, the reactions of those supports are easily found by
elementary statics [ 36] alone, without calling into ac-

count the theory of flexure, and the beam is said to be a

Simple Beam, or girder ; whereas if it is in contact with

more than two supports, being
"
continuous," therefore,

over some of them, it is a Continuous Girder
( 271). The

remainder of this chapter will deal only with simple
beams.

ELASTIC CURVES.

233. Case I. Horizontal Prismatic Beam, [Supported at Both

Ends, With a Central Load, Weight of Beam Neglected. Fig.
224 First considering the whole beam free, we find each

-w

FIG. 224. 233.

reaction to be =^P. AOB is the neutral line ; required
the equation of the portion OB referred to as an origin,

and to the tangent line through as the axis of X. To
do this consider as free the portion mB between any sec-

tion m on the right of and the near support, in Fig.

225. The forces holding this free body in equilibrium

FIG. 825. FIG. 226.
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are the one external force ^P, and the elastic forces act-

ing on the exposed surface. The latter consist of Jt the

shear, and the tensions and compressions represented in

the figure by their equivalent
"
stress-couple." Selecting

N9 the neutral axis of ra, as an axis of moments (that J

may not appear in the moment equation) and putting
2* (mom) =0 we have

Fig. 226 shows the elastic curve OB in its purely geomet-
rical aspect, much exaggerated. For axes and origin as in

figure d?y-r-dx* is positive.

Eq. (1) gives the second as-derivative of y equal to a

function of x. Hence the first as-derivative of y will be

equal to the as-anti-derivative of that function, plus a con-

stant, C. (By anti-derivative is meant the converse of de-

rivative, sometimes called integral though not in the sense

of summation). Hence from (1) we have (El being a con-

stant factor remaining undisturbed)

(2)' is an equation between two variables dy+dx and x, and
holds good for any point between and B\ dy-^-dx de-

noting the tang, of
,
the slope, or angle between the tan-

gent line and X. At the slope is zero, and x also zero ;

nence at (2)' becomes

#7x0=0 0+0

which enables us to determine the constant C, whose value

must be the same at as for all points of the curve.

Hence C=0 and (2)' becomes
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from which the slope, tan. , (or simply , IP. ^--measure j

since the angle is small) may be found at any point. Thus
at B we have x=^l and dy-s-dx=al) and

1 PI?

"^IT ST

Again, taking the a?-anti-derivative of both members of eq.

(2) we have

and since at both x and y are zero, <7' is zero. Hence

the equation of the elastic curve OB is

To compute the deflection of from the right line join

ing A and B in Fig. 224, i.e. BK, =d, we put a?=ji in (3),

being then =d, and obtain

Eq. (3) does not admit of negative values for x ; for if

the free body of Fig. 225 extended to the left of 0, the ex-

ternal forces acting would be P, downward, at ; and y2P %

upward, at B, instead of the latter alone ; thus altering

the form of eq. (1). From symmetry, however, we know
that the curve AO, Fig. 224, is symmetrical with OB about

the vertical through Q.
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233a. Load Suddenly Applied. Eq. (4) gives the deflection

d corresponding to the force or pressure P applied at the

middle of the beam, and is seen to be proportional to it.

If a load G hangs at rest from the middle of the beam,
P= G ;

but if the load G, being initially placed at rest

upon the unbent beam, is suddenly released from the ex-

ternal constraint necessary to hold it there, it sinks and
deflects the beam, the pressure P actually felt by the beam

varying with the deflection as the load sinks. What is

the ultimate deflection dm ? Let Pm the pressure be-

tween the load and the beam at the instant of maximum
deflection. The work so far done in bending the beam
= J^Pmdm . The potential energy given up by the load

= Gdm , while the initial and final kinetic energies are both

nothing.

... Gdm=y2Pmdm . . (5)

That is, Pm =26r. Since at this instant the load is sub-

jected to an upward force of ZG and to a downward force

of only G (gravity) it immediately begins an upward mo-

tion, reaching the point whence the motion began, and

thus the oscillation continues. We here suppose the elas-

ticity of the beam unimpaired. This is called the " sud-

den
"
application of a load, and produces, as shown above,

double the pressure on the beam which it does when grad-

ually applied, and a double deflection. The work done

by the beam in raising the weight again is called its re-

silience.

Similarly, if the weight G is allowed to fall on the mid-

dle of the beam from a height h, we shall have

,
or approx., ,

and hence, since (4) gives dm in terms of P
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This theory supposes the mass of the beam small com-

pared with the falling weight.

234. Case II Horizontal Prismatic Beam, Supported at Both

Ends. Bearing a Single Eccentric Load. Weight. of Beam Neg-
lected. Fig. 227. The reactions

of the points of support, P and

PU are easily found by consider-

ing the whole beam free, and put-

ting first ^(mom.^ =0, whence P\
=Pl-r-llf and then ^(mom.)B =0,

Fie 227. whence P =P(lr-J)+ll. PQ and

PI will now be treated as known quantities.

The elastic curves OC and CB, though having a common
tangent line at C (and hence the same slope c ),

and a com-
mon ordinate at C, have separate equations and are both

referred to the same origin and axes, as shown in the

figure. The slope at 0, o, and that at B,al9 are unknown

constants, to be determined in the progress of the work.

Equation of OC. Considering as free a portion of the

beam extending from B to a section made anywhere on

0(7, x and y being the co-ordinates of the neutral axis of

that section, we conceive the elastic forces put in on the

exposed surface, as in the preceding problem, and put

^(mom. about neutral axis of the section) =0 which gives

(remembering that here dfy-z-dx
2
is negative.)

, . (1)

whence, by taking the x anti-derivatives of both members

To find (7, write out this equation for the point 0, where

dy-^-dxOQ and x=Q, and we have C=EIa^', hence the

equation for slope is
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lx-^-P^v-^+EIa, . (2)

Again taking the x anti-derivatives, we have from (2)

Ely=P M-P* +EIa&+( 0' =0) (3)

(at Oboth x and y are .-. (7'=0). In equations (1), (2),

and (3) no value of x is to be used <0 or >Z, since for

points in CB different relations apply, thus

Equation of CB. Fig. 227. Let the free body extend

from B to a section made anywhere on (Tfi.^moms.), as

before, =0, gives

=-Pl(ll-x) ... (4)

(N.J3. In (4), as in (1), Eld^y-^dx
2
is written equal to a neg-

ative quantity because itself essentially negative ; for the

curve is concave to the axis X in the first quadrant of the

co-ordinate axes.)

From (4) we have in the ordinary way (cc-anti-deriv.)

. . (5)'
CLX A

To determine C", consider that the curves CB and OG
have the same slope (dy-^dx) at C where xl\ hence put
x I in the right-hand members of (2) and of (5)' and

equate the results. This gives C" = ^PP-\-EIo^ and .-.

. (5)

l[l?L-\ +G'" . (6)'
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At (7, where xlt both curves have the same ordinate
;

hence, by putting x=l in the right members of (3) and (6)'

and equating results, we obtain C'"= %PV. .'. (6)' be

comes

as the Equation of CB, Fig. 227. But OQ is still an unknown

constant, to find which write out (6) for the point B where

x = l\, and y = 0, whence we obtain

!= a similar form, putting P for Plt and (?x 1) for L

235. Maximum Deflection in Case II. Fig. 227. The or-

dinate ym of the lowest point is thus found. Assuming
t> /4li, it will occur in the curve 0(7. Hence put the

dy-r-dx of that curve, as expressed in equation (2), =0.

Also for o write its value from (7), having putP1 =Pl-:r-li3

and we have

whence [a? for max. y]=

Now substitute this value of x in (3), also OQ from (7), and

put Pl =Pl -r-li, whence

Max. Deflec.=2/max=V9 -

236. Case III. Horizontal Prismatic Beam Supported at Both

Ends and Bearing a Uniformly Distributed Load along its Whole

Length. (The weight of the beam itself, if considered,
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constitutes a load of this nature.) Let 1= the length
of the beam and w the weight, per unit of length,
of the loading ; then the load coming upon any length x

will be =wx, and the whole load =wL By hypothesis w
is constant. Fig. 228. From symmetry we know that the

FIG. 228.

reactions at A and B are each =%wl, that the middle of

the neutral line is its'lowest point, and the tangent line at

is horizontal. Conceiving a section made at any point
m of the neutral line at a distance x from 0, consider as

free the portion of beam on the right of m. The forces

holding this portion in equilibrium are ywl, the reaction

at B ; the elastic forces of the exposed surface at m, viz.:

the tensions and compressions, forming a couple, and J
the total sheor

;
and a portion of the load, iv(

l

/2lx). The
sum of the me ments of these latter forces about the neu-

tral axis of m, is the same as that of their resultant ; (i.e.,

their sum, since they are parallel), and this resultant acts in

the middle of the length yl x. Hence the sum of these

moments =w( l
/^l x)^(^l x). Now putting I (mom.

about neutral axis of m) =0 for this free body, we have

(i)
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Taking the ic-anti-derivative of both sides of (1),

0) (2)

as the equation of slope. (The constant is =0 since at

both dy-s-dx and x are =0.) From (2),

^=|(^2-Y^4

)+[C'=0] . . (3)

which is the equation of the elastic curve
; throughout,

i.e., it admits any value of x from x=-}-}4lto x= ^l.
This is an equation of the fourth degree, one degree high-
er than those for the Curves of Cases I and II, where

there were no distributed loads. If w were not constant,

but proportional to the ordinates of an inclined right line,

eq. (3) would be of the fifth degree ; if w were propor-
tional to the vertical ordinates of a parabola with axis

vertical, (3) would be of the sixth degree ;
and so on.

By putting x=*4l in (3) we have the deflection of be-

low the horizontal through A and B, viz.: (with W= total

load =wl)
=__

384 El 384 El

237. Case IV. Cantilevers, A horizontal beam whose only

support consists in one end being built in a wall, as in

Fig. 229(a), or supported as in Fig.

229(6) is sometimes-called a canti-

lever. Let the student prove that in

Fig. 229(a) with a single end load P
t

the deflection of B below the tangent
at Ois c?=^P^

3

-i-^B7;the same state-

ment applies to Fig. 229(6), but the

tangent at is not horizontal if the

beam was originally so. It can also

FIG. m be proved that the slope at B, Fig.

229(a) (from the tangent at 0) is
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PI2

The greatest deflection of the elastic curve from the right
line joining AB, in Fig. 229(6), is evidently given by the

equation for y max. in 235, by writing, instead of P of

that equation, the reaction at in Fig. 229(6). This assumes
that the max. deflection occurs between A and 0. If it

occurs between and B put (l\l) for I.

If in Fig. 229(a) the loading is uniformly distributed

along the beam at the rate of w pounds per linear unit,

the student may also prove that the deflection of B below
the tangent at is

238, Case V. Horizontal Prismatic Beam Bearing Equal Ter-

minal Loads and Supported Symmetrically at Two Points.

Fig. 231. Weight of beam neglected. In the preceding
cases we have made use of the approximate form EldPy-^-dx*
in determining the forms of elastic curves. In the present

FIG. 231.

case the elastic curve from to C is more directly dealt

with by employing the more exact expression EI-^p (see

231) for the moment of the stress-couple in any section.

The reactions at and C are each =P, from symmetry.
Considering free a portion of the beam extending from A
to any section ra between and C (Fig. 232) we have, by
putting 2 (mom. about neutral axis of m)=0,
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That is, the radius of curvature is the same at all points
of 00; in other words OC is the arc of a circle with the

above radius. The upward deflection of F from the right
line joining and C can easily be computed from a knowl-

edge of this fact. This is left to the student as also the

value of the slope of the tangent line at (and C). The
deflection of D from the tangent at C= l

/$PP-t-JSI, as IB

Fig. 229(a),

SAFE LOADS IN FLEXURE*

239. Maximum Moment. As we examine the different sec-

tions of a given beam under a given loading we find differ*

ent values of p, the normal stress per unit of area in the

outer element, as obtained from eq. (5) 229, viz.:

in which I is the " Moment of Inertia
"

( 85) of the plane

figure formed by the section, about its neutral axis, e the

distance of the most distant (or outer) fibre from the neu-

tral axis, and M the sum of the moments, about this neu-

tral axis, of all the forces acting on the free body of which
the section in question is one end, exclusive of the stresses

on the exposed surface of that section. In other words
M is the sum of the moments of the forces which balance

the stresses of the section, these moments being taken

about the neutral axis of the section under examination.

For the prismatic beams of this chapter e and I are the

same at all sections, hence p varies with M and becomes a

maximum when M is a maximum. In any given case the

location of the "dangerous section" or section of maximum
M

y
and the amount of that maximum value may be deter-

mined by inspection and trial, this being the only method

(except by graphics) if the external forces are detached.
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If, however, the loading is continuous according to a de-

finite algebraic law the calculus may often be applied,

taking care to treat separately each portion of the beam
between two consecutive reactions of supports, or detached

loads.

As a graphical representation of the values of M along
the beam in any given case, these values may be conceived

laid off as vertical ordinates (according to some definite

scale, e.g. so many inch-lbs. of moment to the linear inch

of paper) from a horizontal axis just below the beam. If

the upper fibres are in compression in any portion of the

beam, so that that portion is convex downwards, these or-

dinates will be laid off below the axis, and vice versa ; for

it is evident that at a section where M=Q, p also =0, i.e.,

the character of the normal stress in the outermost fibre

changes (from tension to compression, or vice versa) when
M changes sign. It is also evident from eq. (6) 231 that

the radius of curvature changes sign, and consequently the

curvature is reversed, when M changes sign. These mo-
ment ordinates form a Moment Diagram, and the extremities

a Moment Curve.

The maximum moment, Mmt being found, in terms of

the loads and reactions, we must make the p of the " dan-

gerous section," where M=Mm, equal to a safe value H'9

and thus may write

(2)

Eq. (2) is available for finding any one nnknown quanti-

ty, whether it be a load, span, or some one dimension of

the beam, and is concerned only with the Strength, and not

with the stiffness of th,e beam. If it is satisfied in any
given case, the normal stress on all elements in all sections

is known to be = or <R', and the design is therefore safe

in that one respect.
As to danger arising from the shearing stresses in any



264 MECHANICS OF ENGINEERING.

section, the consideration of the latter will be taken up in

n subsequent chapter and will be found to be necessary

only in beams composed of a thin web uniting two flanges.
The total shear, however, denoted by J, bears to the mo-
ment Mt an important relation of great service in deter-

mining Mm. This relation, therefore, is presented in the

next article.

240. The Shear is the First x-Derivative of the Moment

Fig. 233. (x is the distance of any section, measured parallel

to the 'beam from an arbitrary

origin). Consider as free a ver-

tical slice of the beam included

between any two consecutive

vertical sections whose distance

apart is dx. The forces acting
are the elastic forces of the two

internal surfaces now laid bare,

and, possibly, a portion, wdx,
of the loading, which at this

part of the beam has some intensity =w Jbs. per running
linear unit. Putting ^(mom. about axis .?V')=Owe have

(noting that since the tensions and compressions of section

N form a couple, the sum of their moments about N' is

just the same as about N,)

F -
:

N

dx~-

J

FIG. 233.

But
}

-~=M, the Moment of the left hand section/? =M^
t

e e

that of the right ;
whence we may write, after dividing

through by dx and transposing,

dx . dM_j tT 1<e
''~dx

' (3)

for w ^ vanishes when added to the finite J, and M' M=
dM= increment of the moment corresponding to the incre-

ment, dx, of x. This proves the theorem.
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Now the value of x which renders M a maximum or

minimum would be obtained by putting the derivative

dM-~ dx = zero; hence we may state as a

Corollary. At sections where the moment is a maximum
or minimum the shear passes through the value zero.

The shear J at any section is easily determined by con-

sidering free the portion of beam from the section to either

end of the beam and putting JT(vertical components)=0.
In this article the words maximum and minimum are

used in the same sense as in calculus
; i.e., graphically,

. they are the ordinates of the moment curve at points
where the tangent line is horizontal. If the moment curve be
reduced to a straight line, or a series of straight lines, it

has no maximum or minimum in the strict sense just
stated ; nevertheless the relation is still practically borne
out by the fact that at the sections of greatest and least

ordinates in the moment diagram the shear changes sign

suddenly. This is best shown by drawing a shear diagram,
whose ordinates are laid off vertically from a horizontal

axis and under the respective sections of the beam. They
will be laid off upward or downward according as e/is

found to be upward or downward, when the free body con-

sidered extends from the section toward the right.
In these diagrams the moment ordinates are set off on

an arbitrary scale of so many inch-pounds, or foot-pounds,
to the linear inch of paper ; the shears being simply
pounds, or some other unit of/orce, on a scale of so many
pounds to the inch of paper. The scale on which the
beam is drawn is so many feet, or inches, to the inch of

paper.

241. Safe Load at the Middle of a Prismatic Beam Support-
ed at the Ends. Fig. 234. The reaction at each support
is y2 P. Make a section n at any distance x< from J5.

Consider the portion nB free, putting in the proper elas-

tic and external forces. The weight of beam is neglected.
From ^(mom. about n)=0 we have



266 MECHANICS OF ENGINEERING.

Evidently M is proportional to x, and the ordinates repre

senting it will therefore be limited by the straight line

,Fio. 234.

Hit, forming a triangle B'RA'. From symmetry, another

triangle O'RA' forms the other half of the moment dia-

gram. From inspection, the maximum M is seen to be in

the middle where x= ^l, and hence

. (1)

Again by putting J?(vert. compons.)=0, for the free body
nB we have

and must point downward since ~ points upward. Hence
the shear is constant and = y2P at any section in the right

hand half. If n be taken in the left half we would have,

nB being free, from J(vert. com.)=0,
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the same numerical value as before ; but e/must point up-
ward, since at B and J at n must balance the downward
P at A. At A, then, the shear changes sign suddenly,
that is, passes through the value zero ; also at A, M is a

maximum, thus illustrating the statement in 240. Notice

the shear diagram in Fig. 234.

To find the safe load in this case we write the maximum
value of the normal stress, p,=B

l

,
a safe value, (see table

in a subsequent article) and solve the equation for P.

But the maximum value of p is in the outer fibre at A,
since M for that section is a maximum. Hence

is the equation for safe loading in this case, so far as the

normal stresses in any section are concerned.

ExAMPL^.-t-If the beam is of wood and has a rectangu-
lar section with width b= 2 in., height &-= 4 in., while its

length 1= ICfcjL, required the safe load, if the greatest nor-

mal stress iiMdmited to 1,000 Ibs. per sq. in. Use the

pound and inch. From 90 I= l

/l2 M3=Y12x2x64=10.66

biquad. inches, while e=^s=2 in.

, P_4#/_ 4x1,000x10.66~~
e 120x2

242, Safe Load Uniformly Distributed along a Prismatic Beam

Supported at the Ends. Let the load per lineal unit of the

length of beam be =w (this can be made to include the

weight of the beam itself). Fig. 235. From symmetry,

each reaction = y^wl. For the free body nO we have, put*

ting 2(wom. about w)=0,
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which gives M for any section by making x vary from

to I. Notice that in this case the law of loading is con-

tinuous along the whole length, and that hence the mo-
ment curve is continuous for the whole length.

FIG. 235.

To find the shear J", at n, we may either put J?(vert. com

pons.)=0 for the free body, whence J= y?wl wx, and mus
therefore be downward for a small value of x

; or, employ

ing 240, we may write out dM-r-dx, which gives

the same as before. To find the max. M, or Mmt put eA* O
v

which gives x=^l. This indicates a maximum, for whan
substituted in d2M-^-dx2

t i.e., in w, a negative result is

obtained. Hence Mm occurs at the middle of the beam and

its value is

the equation of safe loading. W= total

It can easily be shown that the moment curve is p por.
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;Ion of a parabola, whose vertex is at A" under the mid-
Jib of the beam, and axis vertical. The shear diagram
consists of ordinates to a single straight line inclined to

its axis and crossing it, i.e., giving a zero shear, under the

middle of the beam, where we find the max. M.
If a frictionless dove -tail joint with vertical faces were

introduced at any locality in the beam and thus divided
the beam into two parts, the presence of J would be made
manifest by the downward slipping of the left hand part
on the right hand part if the joint were on the right of the

middle, and vice versa if it were on the left of the middle.

This shows why the ordinates in the two halves of the

shear diagram have opposite signs. The greatest shear

is close to either support and is Jm=

243. Prismatic Beam Supported at its Extremities and Loaded
in any Manner. Equation for Safe Loading. Fig. 236. Given

P .p
2

D the loads Pl9 P2, and P3, whose

B |

'

I I o distances from the right sup-
Port are li> h and

5 ; ,required
the equation for safe loading ;

i.e., find Mm and write it =
ITI+e.

If the moment curve were

continuous, i.e., if M were a

continuous function of x from

end to end of the beam, we
could easily find Mm by making

FIG. 236. dM-:rdx=0, i.e., e/=0, and sub-

stitute the resulting value of x in the expression for M.
But in the present case of detached loads, J is not zero,

necessarily, at any section of the beam. Still there is

some one section where it changes sign, i.e., passes sud-

denly through the value zero, and this will be the section

of greatest moment (though not a maximum in the stricf;

sense used in calculus). By considering any portion n 1
as free, 7is found equal to the Reaction at Diminished by
the Loads Occurring Between n and 0. The reaction at B is
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obtained by treating the whole beam as free (in which case

no elastic forces come into play) and putting ^(mom.
about 6>)=0; while that at 0,=P =Pl-i-P2-}-P3 PB

If n is taken anywhere between and E, t7=Po
E "

F, J=P -P
l .

" " F "
H, J=P -P

l
-P2

" " " " H tf _B tT:=P P P P
This last value of e/also = the reaction at the other

support, j5. Accordingly, the shear diagram is seen to

consist of a number of horizontal steps. The relation

J=dM-:rdx is such that the slope of the moment curve is

proportional to the ordinate of the shear diagram, and

that for a sudden change in the slope of the moment curve

there is a sudden change in the shear ordinate. Hence in

the present instance, J being constant between any two

consecutive loads, the moment curve reduces to a straight
line between the same loads, this line having a different

inclination under each of the portions into which the beam
is divided by the loads. Under each load the slope of the

moment curve and the ordinate of the shear diagram change

suddenly. In Fig. 236 the shear passes through the value

zero, i.e., changes sign, at F; or algebraically we are sup-

posed to find that P Pl is -f- while PQ P
l
~P2 is

,
in

the present case. Considering FO, then, as free, we find

Mm to be

Pi(l2 li)
and the equation for safe loading is

V

(i.e., if the max. M is at F). It is also evident that the

greatest shear is equal to the reaction at one or the other

support, whichever is the greater, and that the moment
at either support is zero.

The student should not confuse the moment curve, which
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is entirely imaginary, with the neutral line (or elastic

curve) of the beam itself. The greatest moment is not

necessarily at the section of maximum deflection of the

neutral line (or elastic curve).

For the case in Fig. 236 we may therefore state that the

max. moment, and consequently the greatest tension or

compression in the outer fibre, will be found in the sec-

tion under that load for which the sum of the loads (in-

cluding this load itself) between it and either support first

equals or exceeds the reaction of that support. The
amount of this moment is then obtained by treating as free

either of the two portions of the beam into which this

section divides the beam.

244, Numerical Example of the Preceding Article. Fig. 237.

Given Plt P2 ,
P3 , equal to y ton, 1 ton, and 4 tons, re-

FIG. 237.

spectively ; ^=5 feet, 12=7 feet, and ^=10 feet; while the

total length is 15 feet. The beam is of timber, of rectan-

gular cross-section, the horizontal width being &=10

inches, and the value of R' (greatest safe normal stress),
= y2 ton per sq. inch, or 1,000 Ibs. per sq inch.
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Required the proper depth h lor the beam, for safe load-

ing-

Solution. Adopting a definite system of units, viz., the

inch-ton-second system, we must reduce all distances such

as I, etc., to inches, express all forces in tons, write R'=y2
(tons per sq. inch), and interpret all results by the same sys-

tem. Moments will be in inch-tons, and shears in tons.

[N. B. In problems involving the strength of materials

the inch is more convenient as a linear unit than the foot,

since any stress expressed in Ibs., or tons, per sq. inch, is

numerically 144 times as small as if referred to the square

foot.]

Making the whole beam free, we have from moms, about

O,Pfi=^[^X 60+1x84+4x120] =3.3 tons.-. P =5.5

3.3=2.2 tons.

The shear anywhere between O and E is J= P =2.2 tons.
" E and F is ^=2.2 #=1.7

tons.

The shear anywhere between F and HisJ =2.2 y2 1 =
0.7 tons.

The shear anywhere between H and B is J = 2.2 y2 1

4= 3.3 tons.

Since the shear changes sign on passing H% .% the max.
moment is at If; whence making HO free, we have

M at H=Mm =2.2x120 }4x 60 1x36=198 inch-tons.

For safety Mm must =-
,
in which JZ y2 ton per sq.e

inch, e=y2 \L y2 of unknown depth of beam, and /, 90, =
1 W, with 6=10 inches
' # I-

X 10^=198; or tf =237.6.% A =15.4 inches.

245. Comparative Strength of Rectangular Beams. For such

a beam, under a given loading, the equation for safe load-

ing is

=Mm i. e. % R bh*=Mm .... (1)
6
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whence the following is evident, (since for the same length,
mode of support, and distribution of load,Mm is propor-
tional to the safe loading.)
For rectangular prismatic beams of the same length,

same material, same mode of support and same arrange-
ment of load :

(1) The safe load is proportional to the width of beams

having the same depth (h).

(2) The safe load is proportional to the square of the

depth of beams having the same width (&).

(3) The safe load is proportional to the depth of beams

having the same volume
(i. e. the same bh]

(It is understood that the sides of the section are hori-

zontal and vertical respectively and that the material if

homogeneous.)

246. Comparative Stiffness of Rectangular Beams. Taking th*.

deflection under the same loading as an inverse measure
of the stiffness, and noting that in 233, 235, and 236,

this deflection is inversely proportional to I=^bh
z=

the "moment of inertia" of the section about its neutral

axis, we may state that :

For rectangular prismatic beams of the same length,
same material, same mode of support, and same loading :

(1) The stiffness is proportional to the ^idth for beams
of the same depth.

(2) The stiffness is proportional to the cube of the

height for beams of the same width (b).

(3) The stiffness is proportional to the square of the

depth for beams of equal volume (bhl).

(4) If the length alone vary, the stiffness is inversely

proportional to the cube of the length.

247. Table of Moments of Inertia. These are here recapitn

lated for the simpler cases, and also the values of <5. the

distance of the outermost fibre from the axis.

Since the stiffness varies as /(other things being equal),

itu. T
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while the strength varies as 7-i-e, it is evident that a

square beam has the same stiffness in any position (89),
while its strength is greatest with one side horizontal, for

then e is smallest, being =}4b.

Since for any cross-section I CdF a
2
,
in which =the

distance of any element, dF, of area from the neutral axis,

a beam is made both stiffer and stronger by throwing
most of its material into two flanges united by a vertical

web, thus forming a so-called " I-beam "
of an I shape. But

not without limit, for the web must be thick enough to

cause the flanges to act together as a solid of continuous

substance, and, if too high, is liable to buckle sideways,
thus requiring lateral stiffening. These points will be

Created later.

SECTION.
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Iron Co. of Trenton, N". J. (Cooper, Hewitt & Co.) manu-

facture prismatic rolled beams of wrought-iron
*

variously

called /-beams, deck-beams, rails, and "
shape iron," (in-

cluding channels, angles, tees, etc., according to the form

of section.) See fig. 239 for these forms. The company

|:BEAM. CHANNEL. DECK-BEAM. RAIL.

FIG. 230.

TEE.

publishes a pocket-book giving tables of quantities rela-

ting to the strength and stiffness of beams, such as the

safe loads for various spans, moments of inertia of their

sections in various positions, etc., etc. The moments of

inertia of /-beams and deck-beams are computed accord-

ing to 92 and 93, with the inch as linear unit. The
/-beams range from 4 in. to 20 inches deep, the deck-

beams being about 7 and 8 in. deep.
For beams of still greater stiffness and strength com-

binations of plates, channels, angles, etc., are riveted to-

gether, forming
"
built-beams," or "

plate girders." The

proper design for the riveting of such beams will be ex-

amined later. For the present the parts are assumed to

act together as a continuous mass. For example, Fig. 240

shows a "
box-girder," formed of two " channels

" and

two plates riveted together. If the axis of symmetry, N,
is to be horizontal it becomes the neu-

tral axis. Let C= the moment of iner-

tia, of one channel (as given in the

pocket-book mentioned) about the axis

N perpendicular to the web of the chan-

nel. Then the total moment of inertia of

the combination is (nearly)FIG. 940.

/N - (1)

* These forms are now (1900) rolled almost exclusively of steel (" struc-

tnnl Ptoel ").
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In (1), b, tt and d are the distances given in Fig. 240 (d ex*

tends to the middle of plate) while d' and t' are the length
and width of a rivet, the former from head to head

(i.e., d' and t' are the dimensions of a rivet-hole).

For example, a box-girder of wrought-iron is formed of

two 15-inch channels and two plates 10 inches wide and 1

inch thick, the rivet holes ^ in. wide and 1^ in. long.
That is, b=10; t=I; d=8; *' = #; and d' =1% inches.

Also from the pocket-book we find that for the channel in

question, (7=376 biquadratic inches. Hence, eq. (1)

7N=752+2xlOxlx64 4x1x^(8 ^)
2

=1737biquadr.in.

Also, since in this instance e = S} inches, and 12000

Ibs. per sq. inch (or 6 tons per sq. in.) is the value for E'

(=greatest safe normal stress en the outer element of any
cross-section) used by the Trenton Co. (for wrought iron),

we have -=
e

R'l 12000x1737
8.5

=2451700 inch-lbs.

That is, the box-girder can safely bear a maximum mo-

ment, Mm ,
= 2451700 inch-lbs. = 1225.8 inch-tons, as far

as the normal stresses in any section are concerned.

(Proper provision for the shearing stresses in the section,

and in the rivets, will be considered later).

249. Strength of Cantilevers.- In Fig. 241 with a single
concentrated load P at the

projecting extremity, we

easily find the moment at

n to be M =Px, and the

max. moment to occur at

the section next the wall,

p its value beingMm Pl.

The shear, J", is constant,
FIG. 241. FIG. 242. an(J = P at all Sections.

The moment and shear diagrams are drawn in accordance

with these results.
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If the load W= wl is uniformly distributed on the can-

tilever, as in fig. 242, by making nO free we have, putting
. about n)

= 0,

pi x
=wx .

<)
.'. y2 wi.

Hence the moment curve is a parabola, whose vertex is at

(/ and axis vertical. Putting -T (vert, compons.) = we
obtain J = wx. Hence the shear diagram is a triangle,
and the max. J= wl =s W.

250. Resume" of the Four Simple Cases. The following table

shows the values of the deflections under an arbitrary
load P9 or W, (within elastic limit), and of the safe load ;
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load, if uniformly distributed instead of concentrated in

the middle, but will deflect ^ more
;
whereas with a given

load uniformly distributed the deflection would be only

5/%
of that caused by the same load in the middle, provided

*he elastic limit is not surpassed i# either case.

251. B/, etc. For Various Materials. The formula^/= Mm ,

e

from which in any given case of flexure we can compute
the value of pm ,

the greatest normal stress in any outer

element, provided all the other quantities are known,
holds good theoretically within the elastic limit only.

Still, some experimenters have used this formula for the

rupture of beams by flexure, calling the value of pm thus

obtained the Modulus of Rupture, R. R may be found to

differ considerably from both the T or C of 203 with

some materials and forms, being frequently much larger.

This might be expected, since even supposing the relative

extension or compression (i.e., strain) of the fibres to be

proportional to their distances from the neutral axis as

the load increases toward rupture, the corresponding

stresses, not being proportional to these strains beyond the

elastic limit, no longer vary directly as the distances from the

neutral axis
;
and the neutral axis does not pass through the

centre of gravity of the section, necessarily.

The following table gives average values for R, R', R ',

and E for the ordinary materials of construction.* E, the

modulus of elasticity for use in the formulae for deflection,

is given as computed from experiments in flexure, and is-

nearly the same as Et and E&
In any example involving R', e is usually written equal

to the distance of the outer fibre from the neutral axis,

whether that fibre is to be in tension or compression ;

since in most materials not only is the tensile equal to the

compressive stress for a given strain (relative extension

or contraction) but the elastic limit is reached at about

the same strain both in tension and compression.
* Wet, or unseasoned, timber is very considerably weaker than that (such as

ordinary
"
dry" timber) containing only 12 per cent, of moisture. Large pieces

of timber take a much longer time to season than small ones. (Johnson.)
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TABLE FOB USE IN EXAMPLES IN FLEXURE.
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The great range of values of R for timber is due not

only to the fact that the various kinds of wood differ

widely in strength, while the behavior of specimens of

any one kind depends somewhat on age, seasoning, etc.,

but also to the circumstance that the size of the beam un-

der experiment has much to do with the result. The ex-

periments of Prof. Lanza at the Mass. Institute of Tech-

nology in 1881 were made on full size lumber (spruce), of

dimensions such as are usually taken for floor beams in

buildings, and gave much smaller values of It (from 3,200

to 8,700 Ibs. per sq. inch) than had previously been ob-

tained. The loading employed was in most cases a con-

centrated load midway between 4he two supports.
These low values are probably due to the fact that in

large specimens of ordinary lumber the continuity of it&

substance is more or less broken by cracks, knots, etc.,

the higher values of most other experimenters having
been obtained with small, straight-grained, selected pieces,
from one foot to six feet in length. See footnote p. 278.

The value .#'=12,000 Ibs. per sq. inch is employed by
the N. J. Iron and Steel Co. in computing the safe loads

for their rolled wrought ironf beams, with the stipulation
that the beams (which are high and of narrow width) must

be secure against yielding sideways. If such is not the

case the ratio of the actual safe load to that computed with

R= 12,000 is taken less and less as the span increases.

The lateral security referred to may be furnished by the

brick arch-filling of a fire-proof floor, or by light lateral

bracing with the other beams.

252. Numerical Examples. EXAMPLE 1. A square bar of

wrought iron, 1^ in. in thickness is bent into a circularJ

arc whose radius is 200 ft., the plane of bending being par-
allel to the side of the square. Required the greatest nor-

mal stress pm in any outer fibre.

Solution. From 230 and 231 we may write

ET wT=/ .. p=eE-t-p, i.e., is constant.

.
P e

f For their steel beams, channels, etc., this company uses R' = 16,000 ibs.

per sq. inch.

\ See portion OC, Fig. 231, p. 261, for example.
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For the units inch and pound (viz. those of the table in

251) we have e=^ in., p =2,400 in., and E-25,000,000 Ibs.

per sq. inch, anl .*.

p= pra=^x25,000,000-r2,400
= 7,812 Ibs. per sq. in.,

which is quite safe. At a distance of J^ inch from the

neutral axis, the normal stress is =
[y2-^-^.]pm

=
/^pm ==

5,208 Ibs. per sq. in. (If the force-plane (i.e., plane of

bending) were parallel to the diagonal of the square, e

would =y2 X 1.5V2 inches, giving ^= [7,812X^2 ] Iks.

per sq. in.) 238 shows an instance where a portion, 0(7,

Fig. 231, is bent in a circular arc.

EXAMPLE 2. A hollow cylindrical cast-iron pipe of radii

3 :

/2 and 4 inches* is supported at its ends and loaded in

middle (see Fig. 234). Eequired the safe load, neglecting
the weight of the pipe. From the table in 250 we have
for safety

le

From 251 we put R'= 6,000 Ibs. per sq. in.; and from

247 J=^-(r 1

4 r2
4

); and with these values, r2 being =-1, r
l
=

4, e=r!=4, 7r=-y-
and Z=144 inches (the inch must be the

unit of length since 72'=6,000 lb#. per sq. inch) we have

P=4X6,OOOX^ -f (256-150)4- [144x4] .-. P= 3,470 Ibs.

The weight of the beam itself is G Vf9 ( 7), Le.,

0=^'-^= f(16-12^)144x^=443 Ibs.

(Notice that
7-, here, must be Ibs., per cubic inch). This

weight being a uniformly distributed load is equivalent to

half as much, 221 Ibs., applied in the middle, as far as the

strength of the beam is concerned (see 250), .*. P must be

taken =3,249 Ibs. when the weight of the beam is consid-

ered.

* And length of 12 feet, should be added.
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EXAMPLE 3. A wrought-iron rolled I-beam supported
at the ends is to be loaded uniformly Fig. 235, the span

being equal to 20 feet. Its cross-section, Fig. 244, has a

depth
*

parallel to the web of 15

inches, a flange width of 5 inches.

In the pocket book of the Trenton

Co. it is called a 15-inch light I-

beam, weighing 150 Ibs. per yard,
FIG. 244. with a moment of inertia=523. bi-

quad. inches about a gravity axis perpendicular to the

web (i.e., when the web is vertical, the strongest position)

and = 15 biq. in. about a gravity axis parallel to the web

(i.e., when the web is placed, horizontally).

First placing the web vertically, we have from 250,

W,= Safe load, distributed, =8^5. With #=12,000,
le,

/!=523, Z=240 inches, el=7^ inches, this gives

W
l
=

[8 x 12,000 x 523]+ [240 x -f ] =27,893 Ibs.

But this includes the weight of the beam, 6r=20 ft.

= 1,000 Ibs.; hence a distributed load of 26,893 Ibs., or 13.45

tons may be placed on the beam (secured against lateral

yielding). (The pocket-book referred to gives 13.27 tons

as the safe load.)

Secondly, placing the web horizontal,

of Wl

or only about Vi2 of W.
EXAMPLE 4. Kequired the deflection in the first case of

Ex. 3. From 250 the deflection at middle is

73 K

'2E7~S
"

Strictly 15T
3
6 inches.
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.-. ^=0.384 in.

EXAMPLE 5. A rectangular beam of yellow pine, of width

b=4 inches, is 20 ft. long, rests on two end supports, and is

to carry a load of 1,200 Ibs. at the middle ; required the

proper depth h. From 250

P=4^=4 # &# JL
le

;

' T 12
'

JA

.. hz=QPl-:r4:Ii'b. For variety, use the inch and ton. For
this system of units P=0.60 tons, .#'=0.50 tons per sq. in.,

Z=240 inches and b= 4 inches.

... tf=(6x0.6x240)-r-(4x0.5x4)=108 sq. in. .-. ^=10.4 in,

EXAMPLE 6. Suppose the depth in Ex. 5 to be deter-

mined by the condition that the deflection shall be = l

/sn

if the span or length. We should then have from 250

d= I Z=I *?
500 48 El .

Using the inch and ton, with ^7=1,200,000 Ibs. per sq. in*,

which = 600 tons per sq. inch, and I= l

/d>h\ we have

y= 500x0.60x240x240x12 = h ^
48x600x4

As this is > 10.4 the load would be safe, as well.

EXAMPLE 7. Required the length of a wro't iron pipe

supported at its extremities, its internal radius being 2j{

in., the external 2.50 in., that the deflection under its own

weight may equal
l

/m of the length. 579.6 in. Ans.

EXAMPLE 8. Fig. 245. The wall is 6 feet high and one

foot thick, of common brick work

(see 7) and is to be borne by an

/-beam in whose outer fibres no

greater normal stress than 8,000

"6 Ibs. per sq. inch is allowable. If

FIG. 245. a number of I-beams is available,
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ranging in height from 6 in. to 15 in. (by whole inches),

which one shall be chosen in the present instance, if their

cross-sections are Similar Figures, the moment of inertia of

the 15-inch beam being 800 biquad. inches ?

The 12-inch beam. Ana.

SHEARING STRESSES IN FLEXURE.

253. Shearing Stresses in Surfaces Parallel to the Neutral

Surface. If a pile of boards (see Fig. 246) is used to sup-

port a load, the boards being free to slip on each other, it

is noticeable that the end overlap, although the boards

UNLOADED

FIG. 246. FIG. 247.

are of equal length (now see Fig. 247) ; i.e., slipping has

occurred along the surfaces of contact, the combina-

tion being no stronger than the same boards side by
side. If, however, they are glued together, piled as in the

former figure, the slipping is prevented and the deflection

is much less under the same load P. That is, the com-

pound beam is both stronger and stiffer than the pile of

loose boards, but the tendency to slip still exists and is

known as the "
shearing stress in surfaces parallel to the

neutral surface." Its intensity per unit of area will now
be determined by the usual "

free-body
"
method. In Fig.

248 let AN' be a portion, considered free, on the left of any

--<ftJ ^
N N

FIG. 248.
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section N :

,
of a prismatic beam slightly bent under forces

in one plane and perpendicular to the beam. The moment

equation, about the neutral axis at N'
t gives

=M'
;
whence p'=

M'e
e I

Similarly, with AN as a free body, NN' being =dx,

==M
; whence p=

e I

(1)

(2)

p and p' are the respective normal stresses in the outer

fibre in the transverse sections N and N' respectively.
Now separate the block NN'

t lying between these two
consecutive sections, as a free body (in Fig. 249). And

pa
PART OF J

tWTOF

FIG. 250.

furthermore remove a portion of the top of the latter block,
the portion lying above a plane passed parallel to the neu-

tral surface and at any distance z" from that surface. This
latter free body is shown in Fig. 250, with the system of

forces representing the actions upon it of the portions taken

away. The under surface, just laid bare, is a portion of a sur-

face (parallel to the neutral surface) in which the above men-
tioned slipping, or shearing, tendency exists. The lower por-
tion (of the block NN') which is now removed exerted this
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rubbing, or sliding, force on the remainder along the under

surface of the latter. Let the unknown intensity of this

shearing force be JT(per unit of area) ;
then the shearing

force on this under surface is = Xy"dx, (y",= oa in figure,

being the horizontal width of the beam at this distance z"

from the neutral axis of N*) and takes its place with the

other forces of the system, which are the normal stresses

between
|

,
and portions of J and J', the respective

\_z=z"

total vertical shears. (The manner of distribution of J
over the vertical section is as yet unknown ; see next arti-

ole.)

Putting I (horiz. compons.) = in Fig. 250, we have

e
^p'dF Ce Z

-pdFXy"dx=0
"

. e /g e

== fzdF

But from eqs. (1) and (2), ffp = (MM)*,*-^ dMy

while from 240 dM = Jdx ;

,.Xy"dx=<^ fzdF.'.X
=*- fldF (3)/

t/3// ly" J%
n

as the required intensity per unit of area of the shearing
force in a surface parallel to the neutral surface and at a

distance z" from it. It is seen to depend on the " shear
" J

and the moment of inertia / of the whole vertical section;

upon the horizontal thickness* y" of the beam at the sur-

face in question ;
and upon the integral / zdFt

z"

which (from 23) is the product of the area of that part of
the vertical section extendingfrom the surface in question to

the outerfibre, by the distance of the centre of gravity of that

part from the neutral surface.

* Thickness of actual substance.
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It now follows, from 209, that the intensity (per unit

area) of the shear on an elementary area of the vertical

cross section of a bent beam, and this intensity we may call

Z, is equal to that X, just found, in the horizontal section

which is at the same distance (z") from the neutral axis.

254. Mode of Distribution of J, the Total Shear, over the Verti-

cal Cross Section. The intensity of this shear, Z (Ibs. per

sq. inch, for instance) has just been proved to be

=x=-, C
III / ,'

(4)

To illustrate this, required the

value of Z two inches above the neu-

tral axis, in a cross section close to

the abutment, in Ex. 5, 252. Fig.
251 shows this section. From it we AS

have for the shaded portion, lying
above the locality in question, y" =

4 inches, and Ce ~
'

zdF = (area
/ 3"= 2

of shaded portion) X (distance of

its centre of gravity from NA) =
(12.8 sq. in.) x (3.6 in.)

= 46.08 cubic inches.

the total shear J = the abutment reaction = 600 Ibs.,
while / = L. W = 1- x 4 x (10.4)

3 = 375 biquad. inches.
Both Jand /refer to the whole section.

FIG. 251.

~ 600x46.08 1Q ,<oii,=18.42 Ibs. per sq. m.,

insignificant. In the neighborhood of the neutral

axis, where z" = 0, we have y
1' 4 and

'S X 2.6=54.8,

wh..e J and / of course are the same as before. Hence
for z" =0
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^=^=21.62 Ibs. per sq. in.

At the outer fibre since
6
zdF=0, z" being = e, Z is

FIG. 252

for a beam of any shape.
For a solid rectangular section like the

above, Z and z" bear the same relation to

each other as the co-ordinates of the para-

bola in Fig. 252 (axis horizontal).

Since in equation (4) the horizontal

thickness, y", from side to side ef the sec-

tion of the locality where Z is desired,

occurs in the denominator, and since /
ezdF

z"

increases as z" grows numerically smaller, the following

may be stated, as to the distribution of J, the shear, in

any vertical section, viz.:

The intensity (Ibs. per sq. in.) of the shear is zero at

the outer elements of the section, and for beams of ordi-

nary shapes is greatest where the section crosses the neu-

tral surface. For forms of cross section having thin webs

its value may be so great as to require special investiga-

tion for safe design.

Denoting by ZQ the value of Z&i the neutral axis, (which
=X in the neutral surface where it crosses the vertica

section in question) and putting the thickness of the sub-

stance of the beam = bQ at the neutral axis, we have,

j ( area above
) j the dist . of ite cent . ),* =JiBS

-15
X
I5?5g f

X

{
grav.from that axis

Jfo

255, Values of Zo for Special Forms of Cross Section, From
the last equation it is plain that for a prismatic beam the

value of ZQ is proportional to J9
the total shear, and hence

to the ordinate of the shear diagram for any particular

case of loading. The utility of such a diagram, as obtain-
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ed in Figs. 234-237 inclusive, is therefore evident, for by

locating the greatest shearing stress in the beam it

enables us to provide proper relations between the load-

ing and the form and material of the beam to secure safety

against rupture by shearing.
The table in 210 gives safe values which the

maximum ZQ in any case should not exceed. It is

only in the case of beams with thin webs (see Figs.
238 and 240) however, that ZQ is likely to need at-

tention.

For a Rectangle we have, Fig. 253, (see eq. 5,
FIG. 263.

254) b =b, I=

.:Z=X =^- Z i.e.,
= A

(total shear)-f-(whole area)

Hence the greatest intensity of shear in the cross-section

is A as great per unit of area as if the total shear were

uniformly distributed over the section.

FIG. 254. FIG. 255. FIG. 256.

For a Solid Circular section Fig. 254

J

FIG. 257.

.

2 3;r 3

[See 26 Prob. 3].

For a Hollow Circular section (concentric circles) Fig;
255, we have similarly,
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ntrf-rWfa-rj 2 3;r

Applying this formula to Example 2 252, we first have

as the max. shear Jm Y2P =1,735 Ibs., this being the abut-

ment reaction, and hence (putting it = (22 -f- 7))

-

which cast iron is abundantly able to withstand in shear-

ing.

For a Hollow Rectangular Beam, symmetrical about its

neutral surface, Fig. 256 (box girder)

The same equation holds good for Fig. 257 (I-beam with

square corners) but then b2 denotes th sum of the widths

of the hollow spaces.

256. Shearing Stress in the Web of an I-Beam. It is usual to

consider that, with I-beams (and box-

beams) with the web vertical the shear J,

in any vertical section, is borne exclusively

by the web and is uniformly distributed

over its section. That this is nearly true

may be proved as follows, the flange area

being comparatively large. Fig. 258. Let

F
l be the area of one flange, and I* that of

the half web. Then since
Fia. 268.

/-4
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,(the last term approximate, y2 li being taken for the radi-

us of gyration of FI,) while

CdF=F+F (the first term approx.) we have
Jo 2 4

J
z _ wc __,A -V>o6^i+2^o)

' "Wo*

if we write (2^+^) + (6^+2^)= 1A - But b^ is the

area of the whole web, .*. the shear per unit area at the

neutral axis is nearly the same as if J were uniformly dis-

tributed over the web. E. g., with Fl
= 2 sq. in., and FQ

= 1 sq. in. we obtain ZQ
= 1.07 (J-rtyty.

Similarly, the shearing stress per unit area at n, the

upper edge of the web, is also nearly equal to J+

eq., 4 (254) for then I f (zdF)']
= F^\ nearly,

\_y z"= l/2 hQ J

while / remains as before.

The shear per unit area, then, in an ordinary I-beam ia

obtained by dividing the total shear J by the area of the

web section.

EXAMPLE. It is required to determine the proper
thickness to be given to the web of the 15-inch wrought-
iron rolled beam of Example 3 of 252, the height of web

being 13 inches, with a safe shearing stress as low* as 4000

Ibs. per sq. in. (the practice of the N. J. Steel and Iron

Co., for webs), the web being vertical.

The greatest total shear, Jm , occurring at either support
and being equal to half the load (see table 250) we have

with 6 = width of web,

Z max.= -; i.e. 4000 = .-. ^ 0.26 inches.
6 Xl3

* This low value of 4000 in the vertical edge of an element of the web
may carry with it a much higher intensity of shearing stress on some internal

oblique plane, it the element is near the junction with the flange (see 270a
on p. 319); hence the choice of 4000.
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(Units, inch and pound). The 15-inch light beam of the

N. J. Co. has a web ]/2 inch thick, so as to provide for a

shear double the value of that in the foregoing example.
In the middle of the span Z$ = 0, since J = 0.

257. Designing of Riveting for Built Beams. The latter are

generally of the I-beam and box forms, made by riveting

together a number of continuous shapes, most of the ma-
terial being thrown into the flange members. E. g., in fig.

259, an I-beam is formed by riveting together, in the

manner shown in the figure, a " vertical stem plate
"
or

web, four "
angle-irons," and two "

flange-plates," each of

FIG. 259. FIG. 260.

these seven pieces being continuous through the whole

length of the beam. Fig 260 shows a box-girder. If the

riveting is well done, the combination forms a single rigid

beam whose safe load for a given span may be found by

foregoing rules ;
in computing the moment of inertia, how-

ever, the portion of cross section cut out by the rivet

holes must not be included. (This will be illustrated in

a subsequent paragraph.) The safe load having been com-

puted from a consideration of normal stresses only, and

the web being made thick enough to take up the max.

total shear, /m ,
with safety, it still remains to design the

riveting, through whose agency the web and flanges are

caused to act together as a single continuous rigid mass.

It will be on the side of safety to consider that at a given
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locality in the beam the shear carried by the rivets con-

necting the angles and flanges, per unit of length of beam,
is the same as that carried by those connecting the angles
and the web ("vertical stem -plate"). The amount of

this^
shear may be computed from the fact that it is equal to

that occurring in the surface (parallel to the neutral sur-

face) in which the web joins the flange, in case the web
and flange were of continuous substance, as in a solid I-

beam. But this shear must be of the same amount per
horizontal unit of length as it is per vertical linear unit in

the web itself, where it joins the flange ; (for from 254 Z
=X.) But the shear in the vertical section of the web,

being uniformly distributed, is the same per vertical linear

unit at the junction with the flange as at any other part
of the web section ( 256,) and the whole shear on the ver-

tical section of web = J, the
" total shear

"
of that section

of the beam.

Hence we may state the following :

The riveting connecting the angles with the flanges, (or
the web with the angles) in any locality of a built beam,
must safely sustain a shear equal to J on a horizontal length

equal to the height of web.

The strength of the riveting may be limited by the re-

sistance of the rivet to being sheared (and this brings
into account its cross section) or upon the crushing resist-

ance of the side of the rivet hole in the plate (and this in-

volves both the diameter of the rivet and the thickness of

the metal in the web, flange, or angle.) In its practice the

N. J. Steel and Iron Co. allows 7500 Ibs. per sq. inch shear-

ing stress in the rivet (wrought iron), and 12500 Ibs. per

sq. inch compressive resistance in the side of the rivet-

hole, the axial plane section of the hole being the area of

reference.

In fig. 259 the rivets connecting the web with the angles
are in double shear, which should be taken into account in

considering their shearing strength, which is then double ;

those connecting the angles and the flange plates are in
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single shear. In fig. 260 (box-beam) where the beam ia

built of two webs, four angles, and two flange plates, all

the rivets are in single shear. If the web plate is very
high compared with its thickness, vertical stiffeners in the

form of T irons may need to be riveted upon them lat-

erally [see 314].

EXAMPLE. A built I-beam oi wrought iron (see fig. 259)
is to support a uniformly distributed load of 40 tons, its

extremities resting on supports 20 feet apart, and the

height and thickness of web being 20 ins. and y2 in. re-

spectively. How shall the rivets, which are \ in. in di-

ameter, be spaced, between the web and the angles which
are also y2 in. in thickness? Eeferring to fig. 235 we find

that J = y W 20 tons at each support and diminishes

regularly to zero at the middle, where no riveting will there-

fore be required. (Units inch and pound). Near a sup-
port the riveting must sustain for each inch of length of

beam a shearing force of (J ~r height of web) = 40000 -r-

20 in. = 2000 Ibs. Each rivet, having a sectional area of

i^ TT (^j)
2 = 0.60 sq. inches, can bear a safe shear of 0.60

X 7500 = 4500 Ibs. in single shear, and .-. of 9000 Ibs. in

double shear, which is the present case. But the safe

compressive resistance of the side of the rivet hole in

either the web or the angle is only 7/& in. x % in. X 12500
= 5470 Ibs., and thus determines the spacing of the rivets

as follows :

2000 Ibs. -r- 5470 gives 0.36 as the number of rivets per
inch of length of beam, i.e., they must be 1 -f- 0.36 = 2.7

inches apart, centre to centre, near the supports; 5.4 inches

apart at ^ the span from a support; none at all in the

middle.

However,
" the rivets should not be spaced closer than

2^ times their diameter, nor farther apart than 16 times

the thickness of the plate they connect," is the rule of the

N. J. Co.

As for the rivets connecting the angles and flange plates,

being in two rows and opposite (in pairs) the safe shear-
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ing resistance of a pair (each in single shear) is 9,000 Ibs.,

while the safe compressive resistance of the sides of the

two rivet holes in the angle irons (the flange plate being
much thicker) is = 10,940 Ibs. Hence the former figure

(9,000) divided into 2,000 Ibs., gives 0.22 as the number of

pairs of rivets per inch of length of the beam
; i.e., the

rivets in one row should be spaced 4.5 inches apart, centre

to centre, near a support ;
the interval to be increased in

inverse ratio to the distance from the middle of span,

(bearing in mind the practical limitation just given).

If the load is concentrated in the middle of the span,
instead of uniformly distributed, /is constant along each

half-span, (see fig. 234) and the rivet spacing must accord-

ingly be made the same at all localities of the beam.

SPECIAL PROBLEMS IN FLEXURE.

258. Designing Cross Sections of Built Beams. The last par-

agraph dealt with the riveting of the various plates ; we
now consider the design of the plates themselves. Take

for instance a built I-beam, fig. 261 ;
one vertical stem-

. 261
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plate, four angle irons, (each of sectional area = A, re-

maining after the holes are punched, with a gravity axis

parallel to, and at a distance = a from its base), and two

flange plates of width = b, and thickness = t. Let the

whole depth of girder = h, and the diameter of a rivet

hole =f. To safely resist the tensile and compressive
forces induced in this section by Mm inch-lbs. (Mm being
the greatest moment in the beam which is prismatic) we
have from 239,

Mm =^I (1)
6

R' for wrought iron = 12,000 Ibs. per sq. inch, e is = y2 h

while 1, the moment of inertia of the compound section,

is obtained as follows, taking into account the fact that

the rivet holes cut out part of the material. In dealing
with the sections of the angles and flanges, we consider

them concentrated at their centres of gravity (an approx^
imation, of course,) and treat their moments of inertia

about N as single terms in the series CdF z*

(see 85). The subtractive moments of inertia for the

rivet holes in the web are similarly expressed ; let bQ =
thickness of web.

f /N for web = fa (hZt)*ZbQt' [| t a']
2

-|

7N for four angles = 4tA
[ t a]

2

( 7N for two flanges
= 2(620 t (1)

2

the sum of which makes the 7N of the girder. Eq. (1) may
now be written

-^--4 (2)aF

which is available for computing any one unknown quan-

tity. The quantities concerned in 7N are so numerous and

they are combined in so complex a manner that in any
numerical example it is best to adjust the dimensions of

the section to each other by successive assumptions and
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trials. The size of rivets need not vary much in different

cases, nor the thickness of the web-plate, which as used

by the N. J. Co. is
"
rarely less than ^ or more than ^

inch thick." The same Co. recommends the use of a

single size of angle irons, viz., 3" X 3'' X ^", for built

girders of heights ranging from 12 to 36 inches, and also

y in. rivets, and gives tables computed from eq. (2) for

the proportionate strength of each portion of the com-

pound section.

EXAMPLE. (Units, inch and pound). A built I-beam

with end supports, of span = 20 ft. = 240 inches, is to

support a uniformly distributed load of 36 tons 72,000 Ibs.

If y inch rivets are used, angle irons 3'' X 3" X ^", ver-

tical web y^" in thickness, and plates 1 inch thick for

flanges, how wide (b
=

?) must these flange-plates be ?

taking h = 22 inches = total height of girder.

Solution. From the table in 250 we find that the max.

M for this case is y& Wl, where W = the total distributed

load (including the weight of the girder) and I = span.
Hence the left hand meniber of eq. (2) reduces to

Wl
7i^

72000 x 240 x 22

16
' W ~

16 x 12000

That is, the total moment of inertia of the section must
be = 1,980 biquad. inches, of which the web and angles

supply a known amount, since bQ
= ^ !/

,
t = 1", f= ^",

a' = 1%", A== 2.0 sq. in., a =
0.9'', and h = 22", are

known, while the remainder must be furnished by the

flanges, thus determining their width &, the unknown

quantity.

The effective area, A, of an angle iron is found thus :

The full sectional area for the size given,
= 3 X $4 +

2>^ X J/2
=2.75 sq. inches, from which deducting for two

rivet holes we have

A= 2.752 x % X */2== 2.0 sq. in.

The value a = 0.90" is found by cutting out the shape
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of two angles from sheet iron, thus :

and balancing it on a knife edge. (The

gaps left by the rivet holes may be ignored,
without great error, in finding a). Hence,

substituting we have

IN for web =-1- . ^x203 2x^ . % [8^]
2 =282.3

IN for four angles = 4x2x [9.10]
2=662.5

IN for two nanges=2(^T)xlX(10^)
2

=220.4(& 1.5)

.-. 1980= 282.3+662.5+(6 1.5)220.4

whence b = 4.6 + 1.5 = 6.1 inches

the required total width of pach of the 1 in. flange plates.

This might be increased to 6.5 in. so as to equal the

ttnited width of the two angles and web.

The rivet spacing can now be designed by 257, and

the assumed thickness of web, y2 in., tested for the max.

total shear by 256. The latter test results as follows :

The max. shear Jm occurs near either support and =
y2 W= 36,000 Ibs. .-., calling &' the least allowable thickness

of web in order to keep the shearing stress as low as 4,000

Ibs. per sq. inch,

b' x 20" x 4000 =36000 .-. b' =0.45"

showing that the assumed width of y2 in. is safe.

This girder will need vertical stiffeners near the ends,

as explained subsequently, and is understood to be sup-

ported laterally. Built beams of double web, or box-

form, (see Fig. 260) do not need this lateral support.

259. Set of Moving Loads. When a locomotive passes over

a number of parallel prismatic girders, each one of which

experiences certain detached pressures corresponding to

the different wheels, by selecting any definite position of

the wheels on the span, we may easily compute the reac-

tions of the supports, then form the shear diagram, and

finally as in 243 obtain the max. moment, Mm9 and the
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max. shear e/m ,
for this particular position of the wheels.

But the values ofMm and Jin for some other position may
be greater than those just found. We therefore inquire
which will be the greatest moment among the infinite

number of (Jf^)' (one for each possible position of the

wheels on the span). It is evident from Fig. 236 from the

nature of the moment diagram, that when the pressures or

loads are detached, the Mm for any position of the loads,

which of course are in this case at fixed distances apart,

must occur under one of the loads (i.e.
under a wheel).

We begin .. by asking : What is the position of the set of

moving loads when the moment under a given wheel is

greater than will occur under that wheel in any other po-
sition? For example, in Fig. 262, in what position of the
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In (1) we have M2 as a function of x, all the other quan-
tities in the rightjhand member remaining constant as the

loading moves ;
x may vary from ~x=a+a' to

x=l (c+& a'). For a max. M2t we put dM2--dx=0, i. e.

~(l-2x+a')=Q .-. a (for Max M.2}=

(For this, or any other value of x, d-^M^dx2
is negative,

hence a maximum is indicated). For a max. M2, then, R
must be as as far (^2 a') ofr one side of the middle of the

span as P2 is on the other ; i.e., as the loading moves, the

moment under a given wheel becomes a max. when that

wheel and the centre of gravity of all the loads (then on

the span) are equi-distantfrom the middle of the span.
In this way in any particular case we may find the

respective max. moments occurring under each of the

wheels during the passage, and the greatest of these is the

Mm to be used in the equation Mm=Hf
I-~e for safe loading.*

*

As to the shear J9
for a given position of the wheels this

will be the greatest at one or the other support, and

equals the reaction at that support. When the load moves
toward either support the shear at that end of the beam

evidently increases so long as no wheel rolls completely
over and beyond it. To find /max., then, dealing with

each support in turn, we compute the successive reactions

at the support when the loading is successively so placed
that consecutive wheels, in turn, are on the point of roll-

ing off the girder at that end
; the greatest of these is the

max. shear, Jm . As the max. moment is apt to come under

the heaviest load it may not be necessary to deal with
more than one or two wheels in finding Mm .

EXAMPLE. Given the following wheel pressures,

A< . . 8' . . >B< . . 5' . . >C< . . 4 . . <D
4 tons. 6 tons. 6 tons. 5 tons.

on one rail which is continuous over a girder of 20 ft. span,
under a locomotive.

* Since this maybe regarded as a case of "sudden application" of a load, it is

customary to make R' much smaller than for a dead load; from one-third to one-half

smaller.
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1. Required the position of the resultant of A, B, and C 5

2.
" " " "

A, B, (7, and D ;

3.
" " " "

B, (7, and D.

4 In what position of the wheels on the span will the

moment under B be a max. ? Ditto for wheel C? Required
the value of these moments and which is Mm ?

5. Required the value of 7m, (max. shear), its location and
the position of loads.

Results. (1.) 7.8' to right of A. (2.) 10' to right of A.

(3.) 4.4' to right of B. (4.) Max. M* = 1,273,000 inch Ibs.

with all the wheels on
;
Max.MG

= 1,440,000 inch-lbs. with

wheels B, C, and D on. (5.) Jm = 13.6 tons at right sup-

port with wheel D close to this support.
260. Single Eccentric Load. In the following special cases

of prismatic beams, peculiar in the distribution of the

loads, or mode of support, or both,
the main objects sought are the

values of the max. moment Mm , for

use in the equation
7?/rMm= (see 239);

and of the

e

max. shear Jm . from

I

FIG. 263.

which to design the web riveting
in the case of an I or box-girder.
The modes of support will be such
that the reactions are independent
of the form and material of the

beam (the weight of beam being
neglected). As before, the flexure is to be slight, and the
forces are all perpendicular to the beam.
The present problem is that in fig. 263, the beam being

prismatic, supported at the ends, with a single eccentric

load, P. We shall first disregard the weight of the beam
itself. Let the span =^+1^ First considering the whole
beam free we have the reactions Rl

= PI, + I and R2
=

* 'i ~^~ ^.

Making a section at m and having Om free, x being < 121

2 (vert, compons.) = gives
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R2 J=0, i.e., J=B2 ;

while from 2 (mom.)m==0 we have

^-
Z-R2x= .'.M= Rx=

I

These values of J and M hold good between and C, J
being constant, while M is proportional to x. Hence for

C the shear diagram is a rectangle and the moment dia-

gram a triangle. By inspection the greatest M for 00 is

for x = Z2,
and = PIJ2 *- ^ This is the max. M for the

beam, since between C and B, M is proportional to the dis-

tance of the section fronp. B.

. . m-- --- . . .

is the equation for safe loading.
J = R

l
in any section along OB, and is opposite in sign

to what it is on 0(7; i.e., practically, if a dove-tail joint

existed anywhere on OC the portion of the beam on the

right of such section would slide downward relatively to

the left hand portion ; but vice versa on CB.

Evidently the max. shear Jm = Rl or R>, as 12 or ^ is the

greater segment.
It is also evident that for a given span and given beam

the safe load P, as computed from eq. (1) above, becomes

very large as its point of application approaches a sup-

port ; this would naturally be expected but not without

limit, as the shear for sections between the load and the

support is equal to the reaction at the near support and

may thus soon reach a limiting value, when the safety of

the web or the spacing of the rivets, if any, is considered.

Secondly, considering the weight of the beam, or any
uniformly distributed loading, weighing w Ibs. per unit of

length of beam, in addition to P, Fig. 264, we have the
reactions

Let ?2 be >^; then for a portion Om of length
moments about m give
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x
e ^'2~

Le., on OC, M=E2 x y2 wx2
. . . . (2)

Evidently for x =
(i.e. at 0)M = 0, while for = 4 (i.e.

ut (7) we have, putting w = W -f- Z

It remains to be seen whether a value of Jf may not exist

in some section between and (7, (i.e., for a value of cc

<12 in eq. (2)), still greater than Mc . Since (2) gives M as

a continuous function of x between and 6Y

, we put
dJf -r- dx = 0, and obtain, substituting the value of the con-
stants RZ and w,

( max.
=0 .-. #n

-j

for J!/ or

( min.

M max., since

='+ (4)

for

FIG. 264.

- dx* is negative
when this value of x is sub-

stituted. If the particular
_j value of x given by (4) is

<?2, the corresponding value

of M (call it Mn ) from eq.

(2) will occur on 0(7 and will

be greater than MG (Dia-

grams II. in
fig. 264 show

this case) ; but if #n is > 12,

we are not concerned with
the corresponding value of

Mj and the greatest M on OC
would be Mc .

For the short portion BC,
which has moment and shear

diagrams of its own not con-

tinuous with those for 0(7, it

may easily be shown that

Mc is the greatest moment of

any section. Hence the M
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max., or Mm ,
of the whole beam is either Jfc or Mnt

according as xn is > or < 12. This latter criterion may be

expressed thus, [with 12
*

I denoted by /3 ,
the distance

of P from the middle of the span] :

and since from (4) and (2)

The equation for safe loading is

and

-W
. . . . (6)

Seeeqs. (3) and (5)
for M. c and Af u

If either P, Wt
Z3,

or ^ is the unknown quantity sought, the

criterion of (6) cannot be applied, and we .*. use both equa-
tions in (6) and then discriminate between the two results.

The greatest shear is Jm==^ , in Fig. 264, where 12 is

261. Two Equal Terminal Loads, Two Symmetrical Supports
Fig. 265. [Same case as in Fig. 231, 238]. Neglect

weight of beam. The reaction at each support being=P,
(from symmetry), we have for a free body Om with x < Zj

f^O .-. M=Px (li

(2)

while where x > ^ and <

Px-P (xl,) ^
That is, see (1), M varies directly with x between and (7,

while between C and D it is constant. Hence for safe

loading

(3)
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The construction of the

moment diagram is evident

from equations (1) and (2).

As for J", the shear, the

same free bodies give, from
2 (vert, forces)= 0.

On 00 . J=P . . . (4)

On CD . J=P P=zero(5)

(4) and (5) might also be ob-

tained from (1) and (2) by
writing J=d M-dx, but the

former method is to be preferred in most cases, since the

latter requires M to be expressed as a function of x while

the former is applicable for examining separate sections

without making use of a variable.

If the beam is an I-beam, the fact that J is zero any-
where on D would indicate that we may dispense with

a web along D to unite the two flanges; but the lower

flange being in compression and forming a "
long column "

would tend to buckle out of a straight line if not stayed by
a web connection with the other, or some equivalent brac~

ing.

262, Uniform Load over Part of the Span. Two End Supports.

Fig. 266. Let the load= W, extending from one support
over a portion= c, of the span, (on the left, say,) so that

W= we, w being the load per unit of length. Neglect

weight of beam. For a free body Om of any length
so < B

(i.e. < c), I momsm=0 gives

pi WX* -n *
T[jr T> WX* /tx

-H ^ ^=0 .'.M^fitX _ . . . (1)A &

which holds good for any section on B. As for sections

on B (7 it is more simple to deal with the free body m'O,

of length

x' < C B from which we have M=Ez x !
. . (2)
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FIG. 266.

On OB
while on B C

which shows the moment
curve for B C to be a straight
line DC t tangent at D to the

parabola 0' D representing

eq. (1.) (If there were a con-

centrated load at B
y CD

would meet the tangent at

D at an angle instead of co-

inciding with it
; let the stu-

dent show why, from the

shear diagram).
The shear for any value of

a? on B is :

. . J=R
l

ivx ... (3)

, . J= J?2== constant . (4)

The shear diagram is constructed accordingly.

To find the position of the max. ordinate of the para-
bola, (and this from previous statements concerning the

tangent at the point D must occur on J5, as will be seen
and will .-. be the Mm for the whole beam) we put J"=0 in

eq (3) whence

(5)

and is less than c, as expected. [The value of J?1=
t̂

*=(wc -r-l) (I ), (the whole beam free) has been substi-

tuted]. This value of x substituted in eq. (1) gives

iw n /
C Y / R'l

is the equation for safe loading.
The max. shear Jm is found at and is = B^ which is

evidently >.#2,
at C.
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263. Uniform Load Over Whole Length With Two Symmetric?

Supports. Fig. 267. With the notation expressed in the fig-

ure, the following results may be obtained, after having

divided the length of the beam into three parts for sepa-

rate treatment as necessitated by the external forces, which

are the distributed load W, and

and the two reactions, each =

y2 W. The moment curve is

made up of parts of three dis-

tinct parabolas, each with its

axis vertical. The central par-
abola may sink below the hori-

zontal axis of reference if the

supports are far enough apart,

in which case (see Fig.) the elas- '

FlQ 267

tic curve of the beam itself becomes concave upward be-

tween the points E and F of "
contrary flexure." At each

of these points the moment must be zero, since the radius

of curvature is oo and M = El -r- p (see 231) at any sec-

tion
;
that is, at these points the moment curve crosses its

horizontal axis.

As to the location and amount of the max. moment Mm9

inspecting the diagram we see that it will be either at H9

the middle, or at both of the supports B and C (which from

symmetry have equal moments), i.e., (with I = total length,)

M r
A IT*

\
and/. ==

e J

W.

or

..... at IT

at B and C

according to which is the greater in any given case ; i.e.

according as 12 is > or < ^ ^/ m

The shear close on the left of B = wllf while close to the

right of B it = ^ W w\. (It will be noticed that in thia

case since the beam overhangs, beyond the support, the

shear near the support is not equal to the reaction there,

as it was in some preceding cases.)
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Hence J =
j ^ ^_^ |

according as I,

>

264, Hydrostatic Pressure Against a Vertical Plank. From
elementary hydrostatics we know that the pressure, per
unit area, of quiescent water against the vertical side of a

tank, varies directly with the depth, x, below the surface,

and equals the weight of a prism of water whose altitude

=
a?, 'and whose sectional area is unity. See Fig. 268.

FIG. 268.

plank is of rectangular cross section, its constant

breadth, b, being r~ to the paper, and receives no sup-

port except at its two extremities, and B, being level

with the water surface. The loading, or pressure, per unit

of length of the beam, is here variable and, by above defini-

nition, is = w= fxb, where f = weight of a cubic unit

(i.e.
the heaviness, see 7) of water, and x = Om = depth

of any section m below the surface. The hydrostatic pres-
sure on dx = wdx. These pressures for equal dx's, vary
as the ordinates of a triangle ORiB.

Consider Om free. Besides the elastic forces of the ex-

posed section m, the forc*es acting are the reaction RQ, and

the triangle of pressure OEm. The total of the latter is

J^ wdx = xdx

and the sum of the moments of these pressures about m is

equal to that of their resultant (
= their sum, since they
x2 x

are parallel) about m, and .*. = ?b -.
m
-

2 3
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[From (1) when x = I, we have for the total water pres-

sure on the beam W
{

= fb =- and since one-third of this

will be borne at we have RQ ~/1s r^
2

.]

Now putting 2( moms, about the neutral axis of m)=0,
for Om free, we have

T* *10 /

o e

(which holds good from x = to x =
I). From 2 (horiz.

forces) = we have also the shear

as might also have been obtained by differentiating (2),

since J = dM -r- dx. By putting J = ( 240, corollary)
77Q have for a max. M^x l-^- \/3, which is less than I

and hence is applicable to the problem. Substitute this

in eq. 2, and reduce, and we have

Sfl .. . E'l 1 1 "L
(4)

as the equation for safe loading.
265. Example. If the thickness of the plank is h, re-

quired h = ?, if E' is taken = 1,000 Ibs. per sq. in. for

timber
( 251), and I = 6 feet. For the inch-pound-second

system of units, we must substitute R' = 1,000 ;
I = 72

inches / 7*
= 0.036 Ibs. per cubic inch (heaviness of water

in this system of units); while J =bh* -5- 12, ( 247), and e

= ^ h. Hence from (4) we have

1000 ta3 0.0366x72* . .

= * Ao.16 .. A = 2.27 in.

It will be noticed that since x for Mm = I -f- v
7

^, and not

% I, Mm does not occur in the section opposite the resul-

tant of the water pressure ;
see Fig. 268. The shear curve

is a parabola here
; eq. (3).
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266. The Four x-Derivatives of the Ordinate of the Elastic Curve

If y = func. (x) is the equation of the elastic curve for

any portion of a loaded beam, on which portion the load

per unit of length of the beam is w = either zero, (Fig.

234) or = constant, (Fig. 235), or = a continuous func. (x)

^ (as in the last
), we may prove, as fol-

lows, that w = the x-derivative of the

_^
shear. Fig. 269. Let N and If be two

- consecutive cross-sections of a loaded

beam, and let the block between them,

bearing its portion, wdx, of a distributed

load, be considered free. The elastic

Ui

forces consist of the two stress-couples
FIG. 269.

(tensions and compressions) and the two

shears, J"and J + dJ> e&7being the shear-increment conse-

quent upon x receiving its increment dxt By putting

^(vert. components) = we have

j+dJwdxJ=0 .-.

dx

Q. E. D. But J itself = dM + dx, ( 240) and
M = [d

2

y -T- dx2
] EL By substitution, then, we have the

following relations :

=ordinate at any point of the elastic curve (1)

_^= a =slope at any point of the elastic curve . . (2)

>-72
y

El -r-^-= M = ordinate (to scale) of the moment curve (3)

-r $"u ,1 1- T ( the ordinate (to scale) )
,A \

EI^ =^ '

I of the shear diagram }
' ' &

( the load per unit of length }

El ^ = w = < of beam = ordinate (to scale) y . (5)
&&

(
of a curve of loading. )

If, then, the equation of the elastic curve (the neutral line

of the beam itself ;
a reality, and not artificial like the
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other curves spoken of) is given ; we may by successive

differentiation, for a prismatic and homogeneous beam so

that both E and / are constant, find the other four quan-
tities mentioned.

As to the converse process, (i.e. having given w as a

function of x, to find expressions for Jt M and y as func-

tions of x) this is more difficult, since in taking the

^-anti-derivative, an unknown constant must be added and

determined. The problem just treated in 264, however,
offers a very simple case since w is the same function of

x, along the ivhole beam, and there is therefore but one elas-

tic curve to be determined.

We .*. begin, numbering backward, with

WT d^ - -rbr\ sinC6 w = ?bx> S6e
1

~dtf
T

\ last and Fig. 268 ('
[N. B. This derivative (dJ-^dx) is negative since

dx have contrary signs.]

A (shear=)E

But writing out this equation for a?=0, i.e. for the point
0, where the shear=7? , we have 11$= -{-Const..: Const. =
RQt and hence write

(Shear)

Again taking the cc-anti-derivative of both sides

(Moment=)EI^= rb^+Il x+(Const.=0) . (3o)
a'Ju o

[At 0, x=Q also M, .-. Const. =0], Again,

At 0, where x=0 dy-^dx=c^=\hQ unknown slope of the
elastic line at 0, and hence G r

=EIa^

> . . . (2a)
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Passing now to y itself, and remembering that at 0, both
y and x are zero, so that the constant, if added, would=
zero, we obtain (inserting the value of from last

)

-r*~+rW~

the equation of the elastic curve. This, however, contains
the unknown constant =the slope at 0. To determine

write out eq. (la) for the point B, Fig. 268, where x is

known to be equal to l
t and y to be = zero, solve for

,

and insert its value both in (la) and (2a). To find the

point of max. y (i.e.,
of greatest deflection) in the elastic

curve, write the slope, i.e. dy -f- dx, = zero [see eq. 2a] and
solve for x

; four values will be obtained, of which the one

lying between and I is obviously the one to be taken.

This value of x substituted in (la) will give the maximum
deflection. The location of this maximum deflection is

(2X*= q

nor at the section of max. moment (x =^f-

The qualities of the left hand members of equations (1)

to (5) should be carefully noted. E. g., in the inch-pound-
second system of units we should have :

1. y (B, linear quantity) = (so many) inches.

2. dy+dx (an abstract number) = (so many) abstract

units.

3. M (a moment) = (so many) inch-pounds.
4 J(a, shear, i.e., force)

=
(so many) pounds.

6. w (force per linear unit)
=

(so many) pounds per run-

ning inch of beam's length.

As to the quantities E, and /, individually, E is pounds

per sq. in., and /has four linear dimensions, i.e. (so many)

bi-quadratic inches.
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267. Resilience of Beam With End Supports. Fig. 270. If a

mass whose weight is G (G large com-

pared with that of beam) be allowed to

fall freely through a height = h upon
the centre of a beam supported at its

extremities, the pressure P felt by the

beam increases from zero at the first

instant of contact up to a maximum Pm ,
as already stated

in 233a, in which the equation was derived, dm being
small compared with h,

The elastic limit is supposed not passed. In order that

the maximum normal stress in any outer fibre shall at most

be=.#/

, a safe value, (see table 251) we must put
jy T ~p 7

= ~- [according to eq. (2) 241,] i.e. in equation (a)
4:

above, substitute Pm= [4 R'l] +le, which gives

having put I=F7i? (Is being the radius of gyration 85)

and Fl= V the volume of the (prismatic) beam. From

equation (b) we have the energy, Gh, (in ft.-lbs., or inch-

Ibs.) of the vertical blow at the middle which the beam of

Fig. 270 will safely bear, and any one unknown quantity
can be computed from it, (but the mass of G should not
be small compared with that of the beam.)
The energy of this safe impact, for two beams of the

same material and similar cross-sections (similarly placed),
is seen to be proportional to their volumes; while if further-

more their cross-sections are the same and similarly

placed, the safe Gh is proportional to their lengths. (These
same relations hold good, approximately, beyond the elas'

tic limit.)

It will be noticed that the last statement is just the re-
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verse of what was found in 245 for static loads, (the

pressure at the centre of the beam being then equal to

the weight of the safe load) ;
for there the longer the beam

(and .'. the span) the less the safe load, in inverse ratio.

As appropriate in this connection, a quotation will be

given from p. 186 of " The Strength of Materials and

Structures," by Sir John Anderson, London, 1884, viz.:

" It appears from the published experiments and state-

ments of the Railway Commissioners, that a beam 12 feet

long will only support ^ of the load that a beam 6 feet

long of the same breadth and depth will support, but that

it will bear double the weight suddenly applied, as in the

case of a weight falling upon it," (from the same height,

should be added) ;

" or if the same weights are used, the

longer beam will not break by the weight falling upon it

unless it falls through twice the distance required to frac-

ture the shorter beam."

268. Combined Flexure and Torsion. Crankshafts. Fig. 271.

Let OiB be the crank, and NOi the portion projecting
o beyond the nearest bearing

N. P is the pressure of the

connecting-rod against the

crank-pin at a definite in-

stant, the rotary motion be-

ing uniform. Let a= the

perpendicular dropped from

the axis OOi of the shaft

upon P, and 1= the distance

of P, along the axis Ol from

the cross-sectionNmN' of the

shaft, close to the beajing. Let NN'^e a diameter of this

section, and parallel to a. In considering the portion

NOiB free, and thus exposing the circular sectionNmN\
we may assume that the stresses to be put in on the ele-

ments of this surface are the tensions (above NN') and

the compressions (below NN') and shears ~| to NN', due

to the bending action of P ;
and the shearing stress tan-
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gent to the circles which have as a common centre, and

pass through the respective dF's or elementary areas,

these latter stresses being due to the twisting action of P.

In the former set of elastic forces let p = the tensile

stress per unit of area in the small parallelopipedical ele-

ment m of the helix which is furthest from NN' (the neu-

tral axis) and /= the moment of inertia of the circle about

NN'; then taking moments about 'NN' for the free body,

(disregarding the motion) we have as in cases of flexure

(see 239)

Pi PI- {(, v- Plr (a }_- ,e., p-

[None of the shears has a moment about NN'.] Next

taking moments about OOi, (the flexure elastic forces, both

normal and shearing, having no moments about OOi) we
have as in torsion (216)

pj,
r

Par

in which p* is the shearing stress per unit of area, in the

torsional elastic forces, on any outermost dF, as at m
;

and /p the polar moment of inertia of the circle about its

centre 0.

Next consider free, in Fig. 272, a small parallelepiped
taken from the helix at m (of Fig. 271.) The stresses [see

209] acting on the four faces |
to the paper in Fig. 272

are there represented, the dimensions (infinitesimal) being
n

II
to NN', b

||
to OOi, and d ~\ to the paper in Fig. 272.

Fig. 273.
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By altering the ratio of b to n we may make the angle
what we please. It is now proposed to consider free the

triangular prism, GHT, to find the intensity of normal
stress q, per unit of area, on the diagonal plane GH, (of

length= c,) which is a bounding face of that triangular

prism. See Fig, 273. By writing 2
1

(compons. in direc-

tion of normal to 6r-T)=0, we shall have, transposing,

qcd=pnd sin 0-\-pJ)d sin d+psnd cos 6 ; and solving for q

q=p ~ sin 0+p8 hrsin 0+j.
cos d

J
; . (I)

but n : c=sin d and b : c= cos ..

q=p sin2

0-f-p82 sin d cos . . (2)

This may be written (see eqs. 63 and 60, O. W. J. Trigo-

nometry)

m20 . . (3)

As the diagonal plane GH is taken in different positions

(i.e., as 6 varies), this tensile stress q (Ibs. per sq. in. for

instance) also varies, being a function of 0, and its max.

value may be >p. To find d for q max. we put

^ , -p sin 20+2ps cos 20, . . (4)

-=0, and obtain: tan [2(0 for q max)]---^ . . . (5)

Call this value of 0, 0'. Since tan 20' is negative, 20' lies

either in the second or fourth quadrant, and hence

Bin20 ;-
y

2^8

and cos 20'-T y

^
(6)

vy+4$ vy+4$

[See equations 28 and 29 Trigonometry, O. W. J.] The



FLEXURE. CRANK SHAFT. 317

tipper signs refer to the second quadrant, the lower to the

fourth. If we now differentiate (4), obtaining

(7)

we note that if the sine and cosine of the [20'] of the 2nd

quadrant [upper signs in (6)] are substituted in (7) the re-

sult is negative, indicating a maximum
; that is, q is a max-

imum for 6= the 6' of eq. (6) when the upper signs are taken

(2nd quadrant). To find q max., then, put 0' for in (3)

substituting from (6) (upper signs). We thus find

q max =^[p+Vp2

+4ps

2
.] . . (8)

A similar process, taking components parallel to GH9

Fig. 273, will yield ^s max., i.e., the max. shear per unit of

area, which for a given p and ps exists on the diagonal

plane GH in any of its possible positions, as varies.

This max. shearing stress is

?8 max = Xvy-i-4pg
2

. . (9)

In the element diametrically opposite to m in Fig. 271, p
is compression instead of tension ; q maximum will also

be compression but is numerically the same as the q max.
of eq. 8.

269. Example. In Fig. 271 suppose P=2 tons = 4,000

Ibs., a=6 in., 1=5 in., and that the shaft is of wrought
iron. Kequired its radius that the max. tension or com-

pression may not exceed 72' =12,000 Ibs. per sq. in.; nor the

max. shear exceed /S"=7,000 Ibs. per sq. in. That is, we'

put g=12,000 in eq. (8) and solve for r: also ^=7,000 in

(9) and solve for r. The greater value of r should be
taken. From equations (a) and (b) we have (see 219 and
247 for L and 2)
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which in (8) and (9) give

,.Pmax. (8a)

and max. q,
=% .

V(4Z)
2

-|-4(2a)
2

.(9a)

With max. g=12,000, and the values of P, a, and Z, already

given, (units, inch and pound) we have from (8a), ^=2.72
cubic inches .*. r=1.39 inches.

Next, with max. ^=7,000 ; P, a, and I as before ; from

(9a), r3 =2.&4 cubic inches .. r=1.41 inches.

The latter value of r, 1.41 inches, should be adopted. It

is here supposed that the crank-pin is in such a position

(when P=4,000 Ibs., and a=6 in.) that q max. (and q s

max.) are greater than for any other position ; a number
of trials may be necessary to decide this, since P and a are

different with each new position of the connecting rod. If

the shaft and its connections are exposed to shocks, H and
#' should be taken much smaller.

P.'

270. Another Example of combined torsion and flexure is

shown in Fig. 274. The
P
B
work of the working force

P!(vertical cog-pressure) is

B expended in overcoming the

resistance (another vertical

cog-pressure) Q^
That is, the rigid body

consisting of the two wheels and shaft is employed to

transmit power, at a uniform angular velocity, and since

it is symmetrical about its axis of rotation the forces act-

ing on it, considered free, form a balanced system. (See

114). Hence given PI and the various geometrical quan-

FIG. 274.
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titles alt b it e^c., we may obtain QLt and the reactions P an(l

PB ,
in terms of Plt The greatest moment of flexure in the

shaft will be either P li9 at (7; or PE13, at D. The portion
CD is under torsion, of a moment of torsion =P1a1

= Qjb^

Hence we proceed as in the example of 269, simply put-

ting PQ?! (or PBZ3, whichever is the greater) in place of PI,

and P^ in place of Pa. We have here neglected the

weight of the shaft and wheels. If Qi were an upward ver-

tical force and hence on the same side of the shJ!t as P19

the reactions P and PB would be less than before, and one

or both of them might be reversed in direction.

270a. Web of I-Beam. Maximum Stresses on an Oblique

Plane. The analysis of pp. 315, 316, etc., also covers the

case of an element of the web of a horizontal I-beam under

stress, when this element is taken near the point of junction
with the flange. Supposing that the thickness of web has

already been designed such that the shearing stress on the

vertical (and therefore also on the horizontal) edges of such

an element is at rate of 4000 Ibs. per sq. inch
;
and that the

horizontal tension at each end of this element (since it is

not far from the outer fibre of the whole section) is at rate

of 10,000 Ibs. per sq. in.; we note that Fig. 272 gives us a

side view of this element, with p3
= 4000, and p 10,000,

Ibs. per sq. inch. GTis the lower edge of the upper flange,

corresponding (in an end view) to the point n in Fig. 258 on

p. 290. (We here suppose the upper flange to be in tension
;

of course, an illustration taken from the compression side

would do as well.)

Substitution in equations (8) and (9) of p. 317 results in

giving as maximum stresses on internal oblique planes :

q max. = 11,400 Ibs. per sq. in., tension
;

and q8 max. = 6,460
" " " "

shearing.

This shows why the low value of 4000 Ibs. per sq. in. of

vertical section is adopted as a maximum, in designing the

thickness of webs of I-beams, by the N. J. Steel and Iron

Co.; since the maximum shearing stress on some oblique

plane may be much greater than that ,on a vertical plane.
See p. 291.
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CHAPTEK IV.

FLEXURE, CONTINUED,

CONTINUOUS GIRDERS.

271. Definition. A continuous girder, for present

poses, may be denned to be a loaded straight beam sup-

ported in more than two points, in which case we can no

longer, as heretofore, determine the reactions at the sup-

ports from simple Statics alone, but must have recourse

k> the equations of the several elastic curves formed by its

neutral line, which equations involve directly or indirect-

ly the reactions sought ; the latter may then be found as

if they were constants of integration. Practically this

amounts to saying that the reactions depend on the man-
ner in which the beam bends ; whereas in previous cases,

with only two supports, the reactions were independent of

bhe forms of the elastic curves (the flexure being slight,

however).
As an Illustration, if the straight beam of Fig. 275 is placed

on three supports 0, B, and (?, at the same level, the

reactions of these supports seem at first sight indeterm-

inate
;
for on considering the p i 4

whole beam free, we have three 37 D J?

unknown quantities and only B

two equations, viz : S (vert. FIG. 275.

compons.) and S (moms, about some point)
= 0. If

now be gradually lowered, it receives less and less pres-
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sure, until it finally reaches a position where the beam

barely touches it
;
and the-n O's reaction is zero, and B and

support the beam as if were not there. As to how
low must sink to obtain this position, depends on the

stiffness and load of the beam. Again, if be raised

above the level of B and C it receives greater and greater

pressure, until the beam fails to touch one of the other

supports. Still another consideration is that if the beam
were tapering in form, being stiffest at 0, and pointed at

B and C, the three reactions would be different from their

values for a prismatic beam. It is therefore evident that

for more than two supports the values of the reactions de-

pend on the relative heights of the supports and upon the

form and elasticity of the beam, as well as upon the load.

The circumstance that the beam is made continuous over

the support 0, instead of being cut apart at into two

independent beams, each covering its own span and hav-

ing its own two supports, shows the significance of the

term " continuous girder."
All the cases here considered will be comparatively

simple, from the symmetry of their conditions. The
beams will all be prismatic, and all external forces (i.e.

loads and reactions) perpendicular to the beam and in the

same plane. All supports at the same level,

272. Two Equal Spans; Two Concentrated Loads, One in the Mid-

dle of Each. Span. Prismatic Beam. Fig. 275. Let each half-

span = y2 I. Neglect the weight of the beam. Required
the reactions of the three supports. Call them fB9 P and
Pc. From symmetry PB = Pc, and the tangent to the

elastic curve at is horizontal ; and since the supports
are on a level the deflection of C (and B) below O's tangent
is zero. The separate elastic curves OD and DC have a

common slope and a common ordinate at D.

For the equation of OD, make a section n anywhere be-

tween and D, considering nC a free body. Fig. 276 (a)
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FIG. 276.

with origin and axis as there indicated. From I (moms
about neutral axis of

ri)
= we have (see 281)

(1

=0) . (2)

The constant = 0, for at both x, and dy -f- dx
t
= 0.

Taking the x-anti-derivative of (2) we have

Here again the constant is zero since at O,x and y both =0.

(3) is the equation of OD, and allows no value of x <0
or>y. It contains the unknown force Pc .

For the equation of DC, let the variable section n be made

anywhere between D and (7, and we have (Fig. 276 (A; x

may now range between ^l and I)

(4)

(5)'

To determine (7', put x = y2 l both in (5)' and (2), and

equate the results (for the two curves have a common

tangent line at D) whence C' = l

/% PI1

(6)
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Hence Ely = % PPx-P, fJtl+C" . . (6)'

At D the curves have the same y, hence put x = L in the

right hand member both of (3) and (6)', equating results,

and we derive C"=

(6)

which is the equation of DC, but contains the unknown
reaction Pc. To determine Pc we employ the fact that O's

tangent passes through Cy (supports on same level) and

hence when x = I in (6), y is known to be zero. Making
these substitutions in (6) we have

From symmetry PB also = -P, while P must =
gP,

since PB + P -f- Pc = 2 P (whole beam free). [NoTE.
If the supports were not on a level, but if, (for instance)
the middle support were a small distance = h below
the level line joining the others, we should put x = I and

y =
AQ in eq. (6), and thus obtain PB = Pc

= J P -f-

3El!~, which depends on the material and form of the
i>

prismatic beam and upon the length of one span, (whereas
with supports all on a levd, PB = PG = A P is independent
of the material and form of the beam so long as it is ho-

mogeneous and prismatic.) If P , which would then =
? P 6 El (kQ-7-J?\ is found to be negative, it shows that

requires a support from above, instead of below, to

cause it to occupy a position h below the other supports,
i.e. the beam must be " latched down "

at 0.]

The moment diagram of this case can now be easily con-

structed
; Fig. 277. For any free body nC, n lying in DC

t

we have
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i.e., varies directly as x, un-

til x passes D when, for any

point on DO,

Fie. 277.

figure) and at 0, where x=l, becomes ^

which is =0, (point of in-

flection of elastic curve)
for x=*/n I (note that x is

measured from C in this

32

Hence, since M max. *=~P1
9
the equation for safe loading

is

B'I= 6

e 32
PI . (7)

t while onThe shear at C and anywhere on

it *=
J^P in the opposite direction

. r _np /o\

The moment and shear diagrams are easily constructed,

as shown in Fig. 277, the former being svmmetrical about

a vertical line through 0, the latter about the point 0"
Both are bounded by right lines.

273. Two Equal Spans. Uniformly Distributed Load Over

w wl
Whole Length. Prismatic Beam.

J? W" w*

c Fig. 278. Supports B, 0,
BM J UJJ_LLn J J 1 1 @> on a ^^- Total load

f^~

"^"
u i ^T^

~~-\
= 2 W= %wl and may include

|PO j

w(
i:
z)

I
that of the beam

; w is con-

l I J J J |
I

stant. As befpre, from sym-
i ^-~~~^^^% metry PB=PC, the unknown

p
c|

reactions at the extremi-

278. ties.
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On=x ;
then with nG free, 2 moms, about n= gives

w

=0] (2)
ax z o

[Const. =0 for at both dy+dx the slope, and x, are =0]

' EIy= -

[Const. =0 for at both x and y are =0]. Equations (1),

(2), and (3) admit of any value of x from to I, i.e., hold

good for any point of the elastic curve 0(7, the loading on

which follows a continuous law (viz. : w constant). But
when x=l, i.e., at (7, y is known to be equal to zero, since

0, B and C are on the axis of X, (tangent at 0). With
these values of x and y in eq. (3) we have

0= ^- . *- jAP<P .'. Pc=3wl=$W
2 4

.'. PB=^ JPand P =2W 2PC
= W

The Moment and Shear Diagrams can now be formed since

all the external forces are

known. In Fig. 279 meas-

ure x from (7. Then in any
section n the moment of the
" stress-couple

"
is

wx*

2~ (1)

which holds good for any
value of x on (70, i.e., from

x=0 up to x=l. By inspec-
PIO. 279. tion it is seen that for x=Q,

M=0 ; and also for x=ffl, M=0, at the inflection point G,

beyond which, toward 0, the upper fibres are in tension



326 MECHANICS OF ENGINEERING.

the lower in compression, whereas between C and G they
are vice versa. As to the greatest moment to be found on

CG, put dM-^-dx^ and solve for x. This gives

$6Wwx=Q .-. [x for M max.] =}$ . (2)

which in eq. (1) gives

+AJF7 . . (2)

But this is numerically less than M(= }fa Wl) hence the

stress in the outer fibre at being

P,=X~, ... (3)

ike equation for safe loading is

#m . \vf r
.- . (4)

the same as if the beam were cut through at 0, each half,

of length I, retaining the same load as before [see 242 eq.

(2)]. Hence making the girder continuous over the mid-
dle support does not make it any stronger under a uni-

formly distributed load ; but it does make it considerably

stiver.

As for the shear, 7, we obtain it for any section by tak-

ing the cc-derivative of M in eq. (1), or by putting ^"(ver-
tical forces) =0 for the free body nC, and thus have for

any section on 00

J=#Wwx . . . (5)

e/is zero for x=^l (where M reaches its calculus maxi-

mum My ; see above) and for x=l it = % W which is nu

merically greater than # W, its value at C. Hence
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The moment curve is a parabola (a separate one for each

span), the shear curve a straight line, inclined to the hor-

izontal, for each span.
Problem. How would the reactions in Fig. 278 be

changed if the support were lowered a (small) distance

A below the level of the other two ?

274. Prismatic Beam Fixed Horizontally at Both Ends (at

Same Level). Single Load at Middle. Fig. 280. [As usual

the beam is understood to

be homogeneous so that E
is the same at all sections].

The building in, or fixing,

of the two ends is supposed
to be of such a nature as to

cause no horizontal con-

FIG. 280. straint ; i.e., the beam does

not act as a cord or chain, in any manner, and hence the

sum of the horizontal components of the stresses in any
section is zero, as in all preceding cases of flexure. In

other words the neutral axis still contains the centre of

gravity of the section and -the tensions and compressions
are equivalent to a couple (the stress-couple) whose mo-
ment is the " moment of flexure."

If the beam is conceived cut through close to both wall

faces, and this portion of length=Z, considered free, the

forces holding it in equilibrium consist of the downward
force P (the load) ; two upward shears J and Jc (one at

each section) ;
and two "

stress-couples
"

one in each sec-

tion, whose moments are M andMc . From symmetry we
know that J=JC ,

and that M=MC. From I 7=0 for the

free body just mentioned, (but not shown in the figure),

and from symmetry, we have J= ^ P and Jc
= *4 P ',

but

to determine Mn and Mf , the form of the elastic curves

B and B G must be taken into account as follows :

Equation of OB, Fig. 280. I [mom. about neutral axis

of any section n on B] = (for the free body nC which
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has a section exposed at each end, n being the variable

section) will give

[Note, In forming this moment equation, notice that

Mc is the sum of the moments of the tensions and com-

pressions at G about the neutral axis at n, just as much as

about the neutral axis of G; for those tensions and com-

pressions are equivalent to a couple, and hence the sum of

their moments is the same taken about any axis whatever

"| to the plane of the couple (32).]

Taking the #-anti-derivative of each member of (1),

Ei^-=p(y2 1 x y #*)+MG
x y2 P(i x y2 #2

)
. (2)

(The constant is not expressed, as it is zero). Now from

symmetry we know that the tangent-line to the curve B
at B is horizontal, i.e., for x=^l, dy-r-dx=Q, and these

values in eq. (2) give us

0= whence M=M= PI (3)

Safe Loading. Fig. 281. Having now all the forces which
act as external forces in straining the beam OG, we are

ready to draw the moment diagram and find Mm . For con-

venience measure x from (7. For the free body nC, we
have [see eq. (3)]

e

Eq. (4) holds good for any
section on CB. By put-

7* ting x=0 we haveM=MC
=

ys PI-, l&yo8HC'=Mc to

scale (so many inch-pounds
moment to the inch of pa-

per). At B, for x=y& I,

JfB= yi PI ; hence lay
off B'D=% PI on the op-

FIO. 281. posite side of the axis O'G'
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from HC', and join DH. DK, symmetrical with DH about

B fDt completes the moment curves, viz.: two right lines.

The max. M is evidently =y& PI and the equation of safe

loading

=# PI
6

(5)

Hence the beam is twice as strong as if simply supported
at the ends, under this load

; it may also be proved to be

four times as stiff.

The points of inflection of the elastic curve are in the

middles of the half-spans, while the max. shear is

(6)

275. Prismatic Beam Fixed Horizontally at Both Ends [at Same
Level], Uniformly Distributed Load Over the Whole Length.

Fig. 282. As in the preceding problem, we know from

symmetry that JQ=JQ=^W=% ivl, and that M=MC) and

determine the latter quantities by the equation of the

curve 0(7, there being but one curve in the present in-

stance, instead of two, as there is no change in the law of

loading between and O. With nO free, I (momn)=0
gives

Ei^y=- wot?

(1)

and.% (2)
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The tangent line at being horizontal we have for a?=0, $ =
doc

0, .'. (7=0. But since the tangent line at C is also hori-

zontal, we may for x=l put dy-r-dx=0, and obtain

0=*X JFP+J^H-^titf; whence MQ
=L Wl . (3)

as the moment of the stress-couple close to the wall at

and at C.

Hence, Fig. 283, the equation of the moment curve (a

single continuous curve in this case) is found by putting
2 (momn)=0 for the free body nO, of length x, thus

obtaining

j^^^
FIG. 283.

(4)

an equation of the second degree, indicating a conic. At 0,

M=M of course,= A. Wl ; at ^by putting x=y2 I in (4), we

have ME
= ^ Wl, which is less than Jf

, althoughMB is the

calculus max. (negative) for M, as may be shown by writ-

ing the expression for the shear (J=} W- wx) equal to

zero, etc.
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Hence Mm=^Wl, and the equation for safe loading is

~^k Wl (5)

Since (with this form of loading) if the beam were not

built in but simply rested on two end supports, the equa-
tion for safe loading would be [R'I+e'] = }iWl, (see 242),

it is evident that with the present mode of support it is 50

per cent, stronger as compared with the other ; i.e., as re-

gards normal stresses in the outer elements. As regards

shearing stresses in the web if it has one, it is no stronger*

since Jm=^ Win both cases.

As to stiffness under the uniform load, the max. deflec-

tion in the present case may be shown to be only |-
of that

in the case of the simple end supports. EK

It is noteworthy that the shear diagrani in Fig. 283 is

identical with that for simple end supports 242, under

uniform load
;
while the moment diagrams differ as fol-

lows : The parabola KB'A, Fig. 283, is identical with tha*

in Fig. 235,, but the horizontal axis from which the ordi-

nates of the former are measured, instead of joining the

extremities of the curve, cuts it in such a way as to have

equal areas between it and the curve, on opposite sides

i.e., areas [JT<7'#'-M'0']=area H'G'B'

In other words, the effect of fixing the ends horizontally
is to shift the moment parabola upward a distance = Mc

(to scale),
= i Wl, with regard to the axis of reference,

O'B', in Fig. 235.

276. Remarks. The foregoing very simple cases of con-

tinuous girders illustrate the means employed for deter-

mining the reactions of supports and eventually the max.

moment and the equations. for safe loading and for deflec-

tions When there are more than three supports, with

spans of unequal length, and loading of any description,
the analysis leading to the above results is much more

complicated and tedious, but is considerably simplified
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and systematized by the use of the remarkable theorem of

three moments, the discovery of Clapeyron, in 1857. By
this theorem, given the spans, the loading, and the vertical

heights of the supports, we are enabled to write out a rela-

tion between the moments of each three consecutive sup-

ports, and thus obtain a sufficient number of equations to

determine the moments at all the supports [p. 641 Rankine's

Applied Mechanics.] From these moments the shears

close to each side of each support are found, then the

reactions, and from these and the given loads the moment
at any section can be determined ; and hence finally the

max. moment M.
tl)t

and the max. shear Jm .

The treatment of the general case of continuous girders

by graphic methods, however, is comparatively simple,
and its presentation is therefore deferred, 391.

THE DANGEROUS SECTION OF NON-PRIS-
MATIC BEAMS.

277. Remarks. By
"
dangerous section

"
is meant that sec-

tion (in a given beam under given loading with given mode
of support) where p, the normal stress in the outer fibre,

at distance e from its neutral axis, is greater than in the

outer fibre of any other section. Hence the elasticity of

the material will be first impaired in the outer fibre of

this section, if the load is gradually increased in amount

(but not altered in distribution).

In all preceding problems, the beam being prismatic, /,

the moment of inertia, and e were the same in all sections,

hence when the equation =M [239] was solved for p,
a

. . Me /1N
giving P= ~T

' * ' '
'

'

we found that p was a max., = pm ,
for that section whose

M was a maximum, since p varied as M, or the moment
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of the stress-couple, as successive sections along the beam
were examined.

But for a non-prismatic beam I and e change, from sec-

tion to section, as well as M, and the ordinate of the

moment diagram no longer shows the variation of p t nor

is p a max. where M is a max. To find the dangerous
section, then, for a non-prismatic beam, we express the Mt

the /, and the e of any section in terms of x
t thus obtain-

ing j9=func. (cc), then writing dp-r-dx=Q, and solving for x.

278. Dangerous Section in a Double Truncated Wedge. Two
End Supports. Single Load in Middle. The form is shown in

Fig. 284. Neglect weight of beam
; measure x from one sup-

port 0. The
PA

reaction at

| each support
is y2 P. The
width of the

FIG. 284.
beam & at

all sections, while its height, v, varies, being = h at 0.

To express the e = y2 v, and the / = 1 fo3

(247) of any

section on 0(7, in terms of x, conceive the sloping faces

of the truncated wedge to be prolonged to their intersec-

tion Ay at a known distance = c from the face at 0. We
then have from similar triangles

v : x + c : : h : c, .-. v = - (x + c) . . (I)
c

and .\e = %- (x+c) and /= i b -*|>4-c]
8

. (2)
c c

For the free body nO, I (moms. n)
= gives

... (3)

[That is, the M =
tf Px.] But from (2), (3) becomes

x dp OT5 c2 (x+cf 2x(x+c)= 3P -

By putting dp -=- dx = we obtain both x = e, and
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# = -f c, of which the latter, x + c, corresponds to a

maximum for p (since it will be found to give a negative

result on substitution in d2

p -r- dx*).

Hence the dangerous section is as far from the support

0, as the imaginary edge, A, of the completed wedge, but

of course on the opposite side. This supposes that the

half-span, ^?, is > c\ if not, the dangerous section will

be at the middle of the beam, as if the beam were

prismatic.

the equation for safe ( ft'iiv

-g-=^PJ (5)

(

= o
i,-i -4.1, ) the equation for safe

while with I

load is
.

(
ta .=c

j
and p=R' in [3])

(aee 239.)

279. Double Truncated Pyramid and Cone. Fig. 285. For

FIG. 285.

the truncated pyramid both width = u, and height = v,

are variable, and if b and h are the dimensions at 0, and
c = Qj = distance from to the imaginary vertex A, we

shall have from similar triangles u=~ (#+c)and v= -(a?4- c).

,
in the momentHence, substituting e=*4v and 7=1

equation

x

dp _=
ne (x+cf

(7)

. . (8)
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Putting this = 0, we have x = c, x = c, and x =
+ y2 c, hence the dangerous section is at a distance x=y2 c

from 0, and the equation for safe loading is

either ^^1= ft PI . . . . if ft Hs < % c .... (9)

(in which &' and h f are the dimensions at mid-span)

or
B 4&)j%_fc)

2

=
I/4

Pc if ^ ,. g > l/2
c _ _ _ (10)

For the truncated cone (see Fig. 285 also, on right) where
e = the variable radius r, and 7 = ^ it r*, we also have

f = [Const.] . -JL .... (11)

and hence p is a max. for x = ^ c, and the equation for

safe loading

either = # PZ, for # Z < # c . . . . . (12)

(where r' = radius of mid-span section) ;

or

(where r = radius of extremity.)

>
for ft I > y2 c ..... (13)

NON-PRISMATIC BEAMS OF "UNIFORM
STRENGTH."

280. Remarks, A beam is said to be of "
uniform

strength
" when its form, its mode of support, and the dis-

tribution of loading, are such that the normal stress p has

the same value in all the outer fibres, and thus one ele-

ment of economy is secured, viz. : that all the outer fibres

may be made to do full duty, since under the safe loading,

p will be = to R' in all of them. [Of course, in all cases

of flexure, the elements between the neutral surface and
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the outer fibres being under tensions and compressions
less than R' per sq. inch, are not doing full duty, as

regards economy of material, unless perhaps with respect
to shearing stresses.] In Fig. 265, 261, we have already
had an instance of a body of uniform strength in flexure,

viz. : the middle segment, CD, of that figure ;
for the

moment is the same for all sections of CD [eq. (2) of that

], and hence the normal stress p in the outer fibres (the
beam being prismatic in that instance).

In the following problems the weight of the beam itself

is neglected. The general method pursued will be to find

an expression for the outer-fibre-stress p, at a definite sec-

tion of the beam, where the dimensions of the section are

known or assumed, then an expression for p in the varia-

ble section, and equate the two. For clearness the figures

are exaggerated, vertically.

281. Parabolic Working Beam. UnsymmetricaL Fig. 286

,p

t;

FIG. 286.

CBO is a working beam or lever, B being the fixed fulcrum

or bearing. The force P being given we may compute P
from the mom. equation P^Q

= Pcllt while the fulcrum

reaction is PB=P +PG. All the forces are "| to the beam.
The beam is to have the same width b at all points, and ia

to be rectangular in section.

Kequired first, the proper height J^, at B, for safety.

From the free body BO, of length = lot we have I (momsB)
= 0; Le.,
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Hence, putting pB = R', ^ becomes known from (1).

Eequired, secondly, the relation between the variable

height v (at any section n) and the distance x of n from 0.

For the free body nO, we have (<T momsn
=

0)

Q
=

y2V bv2

But for " uniform strength
"
pn must = pR ;

hence

equate their values from (1) and (2) and we have

5 = ^ which may be written (# v)
2 =

V2
A!

so as to make the relation between the abscissa x and the

ordinate j v more marked
;

it is the equation of a para-

bola, whose vertex is at 0.

The parabolic outline for the portion BC is found simi-

larly. The local stresses at (7, JSt and must be proper-

ly provided for by evident means. The shear J = P
,
at

0, also requires special attention.

This shape of beam is often adopted in practice for the

working beams of engines, etc.

The parabolic outlines just found may be replaced by
trapezoidal forms, Fig. 287, without using much more ma-

terial, and by making the slop-

ing plane faces tangent to the

parabolic outline at points T
and TU half-way between and

J5, and C and B, respectively. It Fie. 237.

can be proved that they contain minimum volumes, among
all trapezoidal forms capable of circumscribing the given

parabolic bodies. The dangerous sections of these trape-
zoidal bodies are at the tangent points T and Tlt This is

as it should be, (see 278), remembering that the subtan-

gent of a parabola is bisected by the vertex.

282. I-Beam of Uniform Strength. Support and load same
as in the preceding . Fig. 288. Let the area of the
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flange-sections be = F and let it be the same for all values

of x. Considering all points of F at any one section as at

the same distance z from the neutral axis, we may write

I = s?F, and assuming that the flanges take all the tension

and compression while the (thin) web carries the shear, the

free body of length x in Fig. 288 gives (moms, about n)

-=Pcx ;
i.e. P..X : or, since p is to be constant,

6 Z

z = [Const.], x ;- . .
;

," (1)

i. e. z must be made proportional to x.

Hence the flanges should be made straight. Practically,

if they unite at (7, the web takes but little shear.

283. Rectang. Section. Height Constant. Two Supports (at Ex-

tremities). Single Eccentric Load. . P

Fig. 289. b and h are the
|

P
P
O

dimensions of the section at ^ 7^">^
B. With #0free we have ^~" b/ "^^ }

(1)
eB

FIG. 289.

At any other section on BO, as n, where the width is u,

the variable whose relation to x is required, we have for

nOfree

(2)

(3)Equating pK and pn we have u : b :: x :
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That is, BO must be wedge-shaped with its edge at 0, ver-

tical.

284. Similar Rectang. Sections. Otherwise as Before. Fig.289 a,

b and h are the dimen-

sions at
;
at any other

section n, on BO, the height
v and width u, are the

variables whose relation to

x is desired and by hypoth-
esis are connected by the

relation

u : v :: b : h (1)

(since the section at n is a rectangle similar to that at B).

For the free body BO ____ pB =

For the free body nO ____ p =
uv

Writing pa
= pB we obtain IQ

-4- bh* = x

put u bv -f- h, from (1) ; whence

.. (2)

. (3)

*, in which

which is the equation of the curve (a cubic parabola)
whose abscissa is x and ordinate % v

; i.e., of the upper
curve of the outline of the central longitudinal vertical

plane section of the body (dotted line BO) which is sup-

posed symmetrical about such a plane. Similarly the

central horizontal plane section will cut out a curve a

quarter of which (dotted line B? 0) has an equation

(5)

That is, the height and width must vary as the cube root
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of the distance from the support. The portion CB will

give corresponding results, referred to the support G.

[If the beam in this problem is to have circular cross-

sections, let the student treat it in the same manner.]

286. Uniform Load. Two End Supports. Rectangular Cr.

Sections. Width Constant. j_wl ; Lwl

"Weight of beam neglected.

How should the height vary,
the height and width at the

middle being h and b ? Fig.
289 b. From symmetry each

reaction = y2 W = y2 wl. FIG. 239 &.

At any cross section n, the width is = ft, (same as that at

the middle) and the height = v, variable. I (moms.n) =0,
for the free body n 0, gives

. . . (i)

But for a beam of uniform strength, pn is to be = pB as

computed from I (moms.B)
= for the free body . . BO,

i.e from

= _22
Hence solve (1) for pn and (2) for pB and equate the results,

whence v*= L[lx-J] ;
or (i^)

2=[^^] (3)

This relation between the abscissa x and the ordinate

of the curve CEO, shows it to be an ellipse since eq. (3)

is that of an ellipse referred to its principal diameter and
the tangent at its vertex as co-ordinate axes.

In this case eq. (3) covers the whole extent of both

upper and lower curves, i.e. the complete outline, of the

curve CBOB', whereas in Figs. 286, 289, and 289 a, such is

not the case.
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287. Cantilevers of Uniform Strength. Beams built in at

one end, horizontally, and projecting from the wall with-

out support at the other, should have the forms given be-

low, for the given cases of loading, if all cross-sections are

to be Rectangular and the weight of beam neglected. Sides

of sections horizontal and vertical. Also, the sections are

symmetrical about the axis of the piece, b and h are the

dimensions at the wall. 1= length. No proofs given.

FIG. 290.

Width Constant.

ig. 290, (6).

end load.

Height constant.
-^

Single end load.

Horizontal outline f

triangular. J

Constant ratio of
^

height v to width u.

Both outlines cu- \* 290'
(
c
>-

bic parabolas. J

(2)

(3)
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Uniform L o a d. T

Width constant.! ..#

Vertical outline tri- \*>*
291> <> <*0=<#A)T (4)

angular.

Uniform Load.

Height constant.

Horiz. outline is

two parabolasmeet-

ing at (vertex)
with geomet. axes

II
to wall.

Uniform Load.-
Both outlines semi-

cubic parabolas.
Sections similar

rectangles.

Fig. 291, (6). ^=(> .(5)

7 (6)

^
Fig. 291, (c).

289. Beams and cantilevers of circular cross-sections

may be dealt with similarly, and the proper longitudinal
outline given, to constitute them " bodies of uniform

strength." As a consequence of the possession of this

property, with loading and mode of support of specified

character, the following may be stated ; that to find the

equation of safe loading any cross-section ivhatever may be

employed. This refers to tension and compression. As

regards the shearing stresses in different parts of the beam
the condition of " uniform strength

"
is not necessarily ob-

tained at the same time with that for normal stress in the

outer fibres.

DEFLECTION OF BEAMS OF UNIFORM
STRENGTH.

$90. Case of 283, the double wedge, but symmetrical,
i.e., II=IQ=y2 l, Fig. 292, Here we shall find the use of the
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FIG. 292.

El
form (of the three forms for the moment of the stress

P
couple, see eqs. (5), (6) and (7), 229 and 231) of the most

direct service in determining the form of the elastic curve

OB, which is symmetrical, and has a common tangent at

B, with the curve BC. First to find the radius of curva-

ture, />,
at any section n, we have for the free body n09

JT(moms. u =0), whence

~+y2Px=0 ;
but

I (3) g

1

^3 |
*=

\V*
1 and *-VuP

we have yi2
- iM-ftP |

and .-. p-% ^ . T (1)

from which all variables have disappeared in the right
hand member

; i.e., p is constant, the same at all points of

the elastic curve, hence the latter is the arc of a circle,

having a horizontal tangent at B,

To find the deflection, d, at B, consider Fig. 292, (b\

where d=KB, and the full circle of radius BH=p is

drawn.

The tnangle_ZrO.ZHs similar to YOB,

But OB=y2 l, KB=d and Z5=2/>

' d== (J

fr>
and - from e<

l- W *~#OT
From eq. (4) 233 we note that for a beam- of the same

material but prismatic (parallelopipedical in this case,)

having the same dimensions, b and h, at all sections as at

1 P$ PI?
the middle, deflects an amount =

jg- jjjf=
J under a
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load P in the middle of the span. Hence the tapering
beam of the present has only ^ the stiffness of the pris*
matic beam, for the same 6, h, I, Et and P.

291. Case of 281 (Parabolic Body), With ^=4), i.e., Symmet-
rical Fig. 293,(a). Kequired the equation of the neutral

Jl_l

V

(a)
(*)

FIG. 293.

line OB. For the free body nO, J(moms. n)=0 gives us

Fig. 293, (6), shows simply the geometrical relations of the

problem, position of origin, axes, etc. OnB is the neutral

line or elastic curv^ whose equation, and greatest ordinate

d, are required. (The right hand member of eq. (1)" is made

negative because d2

y--dx
2
is negative, the curve being con-

cave to the axis Xin this, the first quadrant.)
Now if the beam were prismatic, I, the " moment of in-

ertia" of the cross-section would be constant, i.e., the same

for all values of x, and we might proceed by taking the x-

anti-derivative of each member of (1)" and add a constant ;

but it is variable and is

x, (fromeq. 3, 281, putting k=

hence (1)" becomes

To put this into the form Const. X^=func.
of (x\ we need
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3

only divide through by x z

,.(and for brevity denote

i-4- (}4tyT by A) and obtain

*:..-.. (i)

We can now take the a?-anti-derivative of each member, and

have

A d -=y2P(2x+y
2
)+ C .... (2)'

cLx

To determine the constant (7, we utilize the fact that at Bt

where #=j^Z, the slope dy-r-dx is zero, since the tangent
line is there horizontal, whence from (2)'

.-. (2)' becomes A =P^~%l-x ] ..... (2)dx

Ay=P [l.x-% ^+IC'=0] ... (3)

(C"=0 since for x=Q, 2/=0). We may now find the deflec-

tion d (Fig. 293(6)) by writing x= y2 l and y=d, whence, after

restoring the value of the constant At

JOTS
and is twice as great [being=2. .]^ as if the girder

i
3

* See 233, putting I =^ bh in eq. (4).

were parallelopipedical. In other words, the present girdei
is only half as stiff as the prismatic one.

292. Special Problem. (I.) The symmetrical beam^n Fig.
294 is of rectangular cross-section and constant width ~= 5,
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but the height is constant only over the extreme quarter

spans, being=^=^ A, i. e., half the height h at mid-span.
The convergence of the two truncated wedges forming the

middle quarters of the beam is such that the prolongations

FIG. 294.

of the upper and lower surfaces woM meet over the supports

(as should be the case to make h=2h
l ). Neglecting the

weight of the beam, and placing a single load in middle, it

is required to find the equation for safe loading ; also the

equations of the four elastic curves
; and finally the deflec-

tion.

The solutions of this and the following problem are left

to the student, as exercises. Of course the beam here

given is not one of uniform strength.

293, Special Problem. (II). Fig. 295. Kequired the man-
ner in which the width of the beam must vary, the height

being constant, cross-sections rectangular, weight of beam

FIG. 295.

neglected, to be a beam of uniform strength, if the load 19

uniformly distributed ?
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CHAPTEE V.

FLEXURE OF PRISMATIC BEAMS UNDER

OBLIQUE FORCES.

294 Eemarks, By
"
oblique forces

"
will be understood

external forces not perpendicular to tho beam, but theso

external forces will be confined to one plane, called the

force-plane, which contains the axis of the beam and also

cuts the beam symmetrically. The curvature induced by
these external forces will as before be considered very

slight, so that distances measured along the beam will be

treated as unchanged by the flexure.

It will be remembered that in previous problems the

proof that the neutral axis of each cross section passes

through its centre of gravity, rested on the fact that when
a portion of the beam having a given section as one of its

bounding surfaces is considered free, the condition of

equilibrium Jf (compons. ||
to beam)=0 does not introduce

any of the external forces, since these in the problems re-

ferred to, were "| to the beam
;
but in the problems of the

present chapter such is not the case, and hence the neutral

axis does not necessarily pass through the centre of gravity
of any section, and in fact may have only an ideal, geomet-
rical existence, being sometimes entirely outside of the

section
; in other words, the fibres whose ends are exposed

in a given section may all be in tension, (or all in compres-

sion,) of intensities varying with the distance of each from

the neutral axis. It is much more convenient, however, to

take for an axis of moments the gravity axis parallel to the
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neutral axis instead of the neutral axis itself, since this

gravity axis has always a known position.

295. Classification of the Elastic Forces. Shear, Thrust, and

Stress-Couple. Fig. 296. Let AKMbe one extremity of a

portion, considered free, of a prismatic beam, under oblique
forces. C is the centre of gravity of the section ex-

posed, and GO the gravity axis "| to the force plane CAK.
The stresses acting on the elements of area (each=dF )

of

the section consist of shears (whose sum=e/, the "total

shear") in the plane of the section and parallel to the force

plane, and of normal stress parallel to AK and proportion-
al per unit of area to the distances of the dF's on which

they act from the neutral axis NC"9 real or ideal (ideal in

this figure). Imagine the outermost fibre KA, whose dis-

tance from the gravity axis is=e and from the neutral axis

FIG. 296.

=** -fa, to be prolonged an amount AA f

, whose length by
some arbitrary scale represents the normal stress (tension
01 compression) to which the dF at A is subjected. Then,
ii a plane be passed through A' and the neutral axis NC">
tne lengths, such as mr, parallel to A A', intercepted between
this plane and the section itself, represent the stress-inten-
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eities
(i. e., per unit area) on the respective dF's. (In this

particular figure these stresses are all of one kind, all ten-

sion or all compression ; but if the neutral axis occurs
within the limits of the section, they will be of opposite
kinds on the two sides of NC."} Through C", the point
determined in A'NC" by the intercept CC' of the centre of

gravity, pass a plane A"M"T" parallel to the section it-

self
;
it will divide the stress-intensity AA' into two parts

p {
and p2,

and will enable us to express the stress-intensity

mr, on any dF at a distance a from the gravity -axis GC, in

two parts ;
one part the same for all dF's, the other depen-

dent on z, thus :

[Stress-intensity on any dF] = PI+ ^pz (1)

and hence the

[actual normal stress on any dF~\ = pv
d F + ^ p2 dF (2)

For example, the stress-intensity on the fibre at T, where

z = 61, will be Pi p2t and it is now seen Low we may
C

find the stress at any dF when pl
and p2 have been found.

If the distance a, between the neutral and gravity axes is

desired, we have, by similar triangles

Pz : e :: C'C : a whence a =^ . e (3)
ft

It is now readily seen, graphically, that the stresses or elas-

tic forces represented by the equal intercepts between the

parallel planes AMT and A" M" T", constitute a uniform-

ly distributed normal stress, which will be called the " uni-

form thrust," or simply the thrust (or pull, as the case may

be) of an intensity
= plt and .. of.an amount= Cp^dF =

'pifdF
= pf.

It is also evident that the positive intercepts forming the
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wedge A'A'Gr'C' and the negative intercepts forming the

wedge M"MQr'C' form a system of "graded stresses"

whose combination (algebraic) with those of the "thrust
"

shows the two sets of normal stresses to be equivalent to

the actual system of normal stresses represented by the

small prisms forming the imaginary solid AMT . . A'M* T'.

It will be shown that these graded stresses constitute a
"
stress-couple,"

Analytically, the object of this classification of the nor-

mal stresses into a thrust and a stress-couple, may be made

apparent as follows :

In dealing with the free body KAM Fig. 296, we shall

have occasion to sum the components, parallel to the beam,
of all forces acting (external

and elastic), also those ~| to

the beam; and also sum their

moments about some axis "|

to the force plane. Let this

axis of moments be GC the

gravity -axis of the section

(and not the neutral axis) ;

also take the axis X || to the

beam and F"| to it (and in

force-plane). Let us see

what part the elastic forces

will play in these three summations. See Fig. 297, which

gives merely a side view. Referring to eq. (2) we see that

[see eq. (4) 23]. But as the s's are measured from G a

gravity axis, z must be zero. Hence

[The IX of the Elastic forces] =#fe=
j^ ^^ |
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Also,

[The 2 Tot the Elastic forces] = </:== the shear, . (5)

while for moments about G [see eq. (1)]

[The 2 (moms.G) of the elastic forces]=

And hence finally

where /G, C z*dF, is the "moment of inertia
"

oi

the section about the gravity axis G, (not the neutral axis).

The expression in (6) may be called the moment of the

stress-couple, understanding by stress-couple a couple to

which the graded stresses of Fig. 297 are equivalent. That
these graded stresses are equivalent to a couple is shown

by the fact that although they are X forces they do not

appear in eq. 4, for IX\ hence the sum of the tensions

i C\dF 1 equals that of the compressions pi rzdF~\

in that set of normal stresses.

We have therefore gained these advantages, that, of the

three quantities J"(lbs.), p1 (Ibs. per sq. inch), and p2 (Ibs.

per sq. inch) a knowledge of which, with the form of the

section, completely determines the stresses in the section,

equations (4), (5), and (6) contain only one each, and hence

algebraic elimination is unnecessary for finding any one

of them
;
and that the axis of reference of the moment of

inertia /is the same axis of the section as was used in

former problems in flexure.

Another mode of -stating eqs. (4), (5) and (6) is this : The
sum of the components, parallel to the beam, of the exter-

nal forces is balanced bf the thrust or puU; those perpen-
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dicular to the beam are balanced by the shear; while the

sum of the moments of the external forces about the

gravity axis of the section is balanced by that of the stress-

couple. Notice that the thrust can have no^moment about

the gravity axis referred to.

The Equation for Safe Loading, then, will be this :

(a) . (pi^p-z) max.
"]

whichever

is j- -IT . . (7)

2>i- 2 max.

For R' t see table in 251. The double sign provides for

the cases where pL and p2 are of opposite kinds, one tension

the other compression. Of course (pi+p*) max is not the

same thing as [^ max. +p-2 max.]. Inmost cases in prac-
tice el

= e
t
and then the part (6) of eq. (7) is unnecessary.

295a. Elastic Curve with Oblique Forces. (By elastic curve

is now meant the locus of the centres of gravity of the sec-

tions.) Since the normal stresses in a section differ from

those occuring under perpendicular forces only in the ad-

dition of a uniform thrust (or pull), whose effect on the

short lengths (=dx) of fibres between two consecutive sec-

tions U'V and Z7 F , Fig. 297, is felt equally by all, the loca-

tion of the centre of curvature R, is not appreciably differ-

ent from what it would be as determined by the stress-

couple alone.

Thus (within the elastic limit), strains being proportional
to the stresses producing them, if the forces of the stress-

couple acted alone, the length dx= GQ G' of a small portion
of a fibre at the gravity axis would remain unchanged, and

the lengthening and shortening of the other fibre-lengths

between the two sections Z7 V and IT V, originallj parallel,

would occasion the turning of U'V through a small angle

(relatively to UQ VQ) about 6r', into the position which it oc-

cupies in the figure (297), and GQRl would be the radius of

curvature. But the effect of the uniform pull (added to

that of the couple) is to shift VV parallel to itself into

the position UV, and hence the radius of curvature of the
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elastic curve, of which GQG is an element, is GQR instead

of 6r 72', But the difference between GQE and GQR' is very

small, being the same, relatively, as the difference between,

GQG and G G' ;
for instance, with wrought-iron, even it pl9

the intensity of the uniform pull, were as high as 22,000

Ibs. per sq. in. [see 203] GQG would exceed GQG by only

yi2 of one per cent. (=0.0008) ;
hence by using GE' instead

of GR as the radius of curvature p, an error is introduced

of so small an amount as to be neglected.

But from 231, eqs. (6) and (7),
0* = EI^ = M, the
f)

dVu

the sum of the moments of the external forces ; hence for

prismatic beams under oblique forces we may still use

as one form for the .T(moms.) of the elastic forces of the

section about the gravity-axis ; remembering that the axis

X must be taken parallel to beam.

296. Oblique Cantilever with Terminal Load. Fig. 298. Let
i length. The "

fixing
"

of the lower end of the beam is

its only support. Measure x along the beam from 0. Let

FIG. 298. Fio. 299.

ii be the gravity axis of any section and nT, =x sin a, the

length of the perpendicular let fall from n on the line of

action of the force P (load). The flexure is so slight that

nT is considered to be the same as before the load is al-
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lowed to act. [If were very small, however, it is evident

that this assumption would be inadmissible, since then a

large proportion of nT would be due to the flexure caused

by the load.]

Consider nO free, Fig. 299. In accordance with the pre-

ceding paragraph (see eqs. (4), (5), and (6)) the elastic

forces of the section consist of a shear J, whose value may
be obtained by writing 2T=0

whence JP sin a
; . . . . (1)

of a uniform thrust =p\Ft obtained from 2X=Q, viz :

P cos apl
F=0 .'. p,F=P cos a

; . (2)

and of a stress-couple whose moment [which we may wrify

either &_, or El ^
] is determined from J(moms. n)=0 or

6 aX?

P*lPx sin a=0, or ^=Px sin a . . (3)
e e

As to the strength of the beam, we note that the stress-in-

tensity, p^ of the thrust is the same in all sections, from

to L (Fig. 298), and that p.2,
the stress-intensity in the outer

fibre, (and this is compression if eno' of Fig. 299) due to

the stress-couple is proportional to x
;
hence the max. of

[Pi+#j] will be in the lower outer fibre at L, Fig. 298,

where x is as great as possible, =1
;
and will be a compres-

sion, viz. :

max.=P

.% the equation for Safe Loading is

"

. . . (5)

since with e^= e, as will be assumed here,[jo pi\ max.
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can not exceed, numerically, [^1+^2] max. The stress-

intensity in the outer fibres along the upper edge of the

beam, being pl p2 (supposing el=e) will be compressive
at the upper end near 0, since there p2 is small, x being
small ; but lower down as x grows larger, p2 increasing, a

section may be found (before reaching the point L) where

p2=pl and where consequently the stress in the outer fibre

is zero, or in other words the neutral axis of that section

passes through the outer fibre. In any section above that

section the neutral axis is imaginary, i.e., is altogether out-

side the section, while below it, it is within the section, but

cannot pass beyond the gravity axis. Thus in Fig. 300, O'U

FIG. 300. FIG. 301.

is the locus of the positions of the neutral axis for successive

sections, while OL the axis of the beam is the locus of the

gravity axes (or rather of the centres of gravity) of the

sections, this latter line forming the " elastic curve
"
un-

der flexure. As already stated, however, the flexure is to

be but slight, and a must not be very small. For in-

stance, if the deflection of from its position before flex-

ure is of such an amount as to cause the lever-arm OR of

P about L to be greater by 10 per cent, than its value

(=1 sin a) before flexure, the value of p2 as computed from

eq. (3) (with xT} will be less than its true value in the

same proportion.
The deflection of from the tangent at L, by 237, Fig.

229(a) is d=(P 8ina)P-^-3EIt approximately, putting P sin a
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for the P of Fig. 229 ; but this very deflection gives to the

other component, P cos a, || to the tangent at L, a lever

arm, and consequent moment, about the gravity axes of all

the sections, whence for 2 (moms. L)=0 we have, (more ex-

actly than from eq. (3) when x=l)

. , . (6)

(We have supposed P replaced by its components || and

"| to the fixed tangent at L, see Fig. 301). But even (6)

will not give an exact value for p2 at L
;
for the lever arm

of P cos a, viz. d, is >(P sina)Z
3
-^3.E7, on account of the

presence and leverage of P cos a itself. The true value of

d in this case may be obtained by a method similar to that

indicated in the next paragraph.
297. Elastic Curve of Oblique Cantilever with Terminal Load.

More Exact Solution. For variety place the cantilever as in

Fig. 302, so that the deflection

OY=d tends to decrease the

moment ofP about the gravity
axis of any section, n. "We

may replace P by its X and J

components, Fig. 303, ||
and

"1 respectively to the fixed

tangent line at L. The origin,

IP +'/ 0, is taken at the free end of

FIG. 302. FIG. 3o3. the beam. Let a= angle bet-

ween P and X. For a free body On, n being any section,

we have 2 (moms. n)=0

whence El ^-== P(cosa)y P(sina) x
dzr

(1)

[See eq. (1) 295a], In this equation the right hand
member is evidently (see fig. 303) a negative quantity;
this is as it should be, for Eldty-^dx* is negative, the curve

being concave to the axis X in the first quadrant. (It

must be noted that the axis JTis always to be taken
||

to

the beam, for Eld^y-i-dx* to represent the moment of the

stress-couple.)
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Eq. (1) is not in proper form for taking the #-anti-deri-

vative of both members, since one term contains the vari-

able ?/, an unknown function of x. Its integration is in-

cluded in a more general case given in some works on cal-

culus, but a special solution by Prof. Robinson, of Ohio,
is here subjoined for present needs.*

We thus obtain as the equation of the elastic curve in

Fig. 303,

/Pcos
I"~g9;

i g ^l

~| rfginaVc (cos#\w"]= sin #[~eqaj 6~qx"l (2)V ~~ET L
n n

JL J L
" l

J

In which en denotes the NaperianBase=2.71828, an abstract

number, and q for brevity stands for VPcosa-^jET".

To find the deflection d, we make x=l in (2), and solve

for y; the result is d.

The uniform thrust at L is pLfJ=Pcosa .... (3)

while the stress intensity p2 in the outer fibre at L, is ob-

* Denoting Fcoa+EI\)y g* and Psin a-i-^r/by jo
2

, eq. (1) becomes^-=q*yp*x . . (Q)

Differentiate (6) then ~

d~^^~/~ ~P*- Differentiate again : whence ^-=^
a

-y- . (7)

Xetting ^=w . (8) so that u=q'*y-p'*x, from (Q) we have
0-=-^-and |^=^,

See (7) L= q*Ut which, mult, by 2 du, gives
-^-5

2 C?M du=2q*udu

'-
[ dx constant J. -3-5 I 2dudu=2q* I udu-\-G .'. -r-n=q*u*4-C. whence
\ /

ax j j dx*

,/^! ["+ V^+C 1 ;or C"-Si
n ^' L 2a J n

(9)

a 2o-a; o'a; n qx Cen
Square each side of (9); then C'e 2C'e w-fw=H-^ '.

.'. =}^ C"
n 2C'q*

\ (pee eqs. 6 and 8) ^y-^x=% C'e*- 1 Consolidating the
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tained from the moment equation for the free body L

viz: -M=P(sin)Z P(cos)d ..... (4)

in which e=distance of outer fibre from the gravity axis.

The equation for safe loading is written out by placing
the values ofplt p2, and d, as derived from equations (2),

(3), and (4) in the expression

To solve the resulting equation for P, in case that is the

unknown quantity, can only be accomplished by successive

assumptions and approximations, since it occurs trans-

cendentally.

In case a horizontal tension-member of a bridge-truss is

subjected to a longitudinal tension P' (due to its position
in the truss and the load upon the latter) and at the same
time receives a vertical pressure=P" at the middle, each

half will be bent in the same manner as the cantilever in

I'ig. 302 ; y^P" corresponding to P sin , and P' to Pcos a,

pi qx qx
constant factors we now write y = -^x-}-me ne . . the equation required . (10)

To determine the constants m and n(m= C'-t-'2q*; n= C+2C'q4
) we first find dy+dxt i.e.

by differentiating (10) ^=^+4^+$*
**

- GD a=0 fory=0

.'. (10) gives . . . 0=0+m n /K?n =0 i.e. m n=0 .'. m=n . (12) Also for x=l

a Ql Ql~]
.'. (11) gives 0^+tf

m<?n -fn<2n . . (13); /. with n=m we have m==*

ql ql I

~-p-.0 n -Hn .(14). The equation of the curve, then, substituting (14) in

qx qx

(10) is y=^ x-p*> gfl gn
. (15) .-., Substituting forp and qvr*

, (as in 897) / 7- I ^ -H
*

I xsina ycosa =sina

A/ L n l J L J
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298. Inclined Beam with Hinge at One End. Fig. 304. Let

6 = i. Required the equation for safe loading ; also the

n^ximum shear, there being but one load, P, and that in

tle middle. The vertical wall being smooth, its reaction,

FIG. 305.

Fio.306.

B, at is horizontal, while that of the hinge-pin being un-

known, both in amount and direction, is best replaced by
its horizontal and vertical components B and PJ,, unknown
in amount only. Supposing the flexure slight, we find

these external forces in the same manner as in Prob. 1

37, by considering the whole beam free, and obtain

=r cota ;
H also = ^ cota

; VQ
= P (1)

For any section n between and Bt we have, from the

free body nO, Fig. 305,

uniform thrust = p^F = H cos a . (2)

and from S (moms.n)
= 0,

(8)- =Hx sin a
e

and the shear = J = H sin = ^ P cos a (4)

The max. (Pi+p2) to be found on OB is /. close above 3t

where x = ^A I, and is
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=Jcos +^sin wMch = p cog
rcot,

;+ .
, (g)

In examining sections on CB let the free body be Cn't

Fig. 306. Then from I (longitud. comps.) =

(the thrust=) p^F = VQ sin a -f- HQ cos a (6)'

Le. j?1^
T

=P[sin a H- y2 cos a cot a] (6)

while, from 2' (moms.n')
= 0,

^= Fia;' cos aB<p' sin a (7V
e

Le. ^i=Xpcos ^ (7)
6

Hence (p} }- p*) for sections on CB is greatest when xr

is greatest, which is when x' = *^lt x' being limited be-

tween x' = and a?' = j I, and is

=P cos
[

tan

"+/
Cot a

+^] (8)

which is evidently greater than the max.

see eq. (5). Hence the equation for safe loading is

^' = P cos r*2BJL?l5!2*ff+j(^] .... (9)
/^ /J

in which R' is the safe normal stress, per square unit, for

the material.

The shear, J, anywhere on GB,hom2 (transverse comp.)
=0 in Fig. 306, is

j

J= YQ cos HQ sin a ]/2 P cos a . . (10)
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As showing graphically all the results found, moment^

thrust, and shear diagrams are drawn
in Fig. 307, and also a diagram whose / ! //9
ordinates represent the variation of

(pi-\-pz) along the beam. Each ordi-

nate is placed vertically under the

gravity axis of the section to which it

refers.

299. Numerical Example of the Forego- INCH.LBS.

ing. Fig. 308. Let the beam be of

wrought iron, the load P = 1,800 Ibs.,

hanging from the middle. Cross sec-

tion rectangular 2 in. by 1 in., the 2

in. being parallel to the force-plane.

Required the max. normal stress in

any outer fibre ; also the max. total

shear.

This max. stress-intensity will be in

the outer fibres in the section just below B and on the

upper side, according to 298, and is given by eq. (8) of

that article
;
in which, see Fig. 308, we must substitute

(inch-pound-second-system) P = 1,800 Ibs.; F = 2 sq. in.;

I = V120
2 + 122 = 120.6 in.; e = 1 in,, I = bW = n = %

biquad. inches
;
cot a = JL

; cos a = .0996
;
and tan a = 10.

FIG. 307.

max.
120.6 x 11_

FIG. 309. FIG. 310.

9000 Ibs. persq. inch, very nearly, compression. This is i
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the upper outer fibre close under B. In the lower outer fibre

just under B we have a tension = p2 p^ = 7,200 Ibs. per

sq. in. (It is here supposed that the beam is secure against

yielding sideways.)

300. Strength of Hooks. An ordinary hook, see Fig. 309,

may be treated as follows : The load being = P, if we
make a horizontal section at AB, whose gravity axis g is

the one, of all sections, furthest removed from the line of

action of P, and consider the portion C free, we have the

shear = J = zero ....... (1)

the uniform pull
= p{

F=P . . . (2)

while the moment of the stress-couple, from 2
1

(moms.g)
=

0,is

Pa (3)

For safe loadingpl -f p2 must = R'9 ie.

Tt is here assumed that e = elt and that the maximum

[P\~\~P2\ occurs at AB.

301 Crane. As an exercise let the student investigate the

strength of a crane, such as is shown in Fig. 310.
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CHAPTEK VL

FLEXURE OF " LONG COLUMNS/'

302. Definitions. By
"
long column "

is meant a straight

beam, usually prismatic, which is acted on by two com-

pressive forces, one at each extremity, and whose length
is so great compared with its diameter that it gives way
(or

" fails ") by buckling sideways, i.e. by flexure, instead

of by crushing or splitting like a short block (see 200).

The pillars or columns used in buildings, the compression
members of bridge-trusses and roofs, the " bents

"
of a

trestle work, and the piston-rods and connecting-rods of

steam-engines, are the principal practical examples of long
columns. That they should be weaker than short blocks

of the same material and cross-section is quite evident, but

their theoretical treatment is much less satisfactory than

in other cases of flexure, experiment being very largely
relied on not only to determine the physical constants

which theory introduces in the formulae referring to them,
but even to modify the algebraic form of those formulae,
thus rendering them to a certain extent empirical.

303. End Conditions. The strength of a column is largely

dependent on whether the ends are free to turn, or are

fixed and thus incapable of turning. The former condi-

tion is attained by rounding the ends, or providing them
with hinges or ball-and-socket-joints ;

the latter by facing
off each end to an accurate plane surface, the bearing on
which it rests being plane also, and incapable of turning.
In the former condition the column is spoken of as having
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round ends
;

*
Fig. 311, (a) ;

in the latter as having fixed ends,

(or flat bases ; or square ends), Fig. 311, (b).

(a)

FIG. 312.FIG. 311.

Sometimes a column is fixed at one end while the other

end is not only round but incapable of lateral deviationfrom
the tangent line of the other extremity ; this state of end

conditions is often spoken of as "Pin and Square," Fig.

311, (c).

If the rounding
* of the ends is produced by a hinge or

"pin joint," Fig. 312, both pins lying in the same plane
and having immovable bearings at their extremities, the

column is to be considered as round-ended as regards flex-

ure in the plane ~| to the pins, but as square-ended as re-

gards flexure in the plane containing the axes of the pins.

The " moment of inertia
"
of the section of a column will

be understood to be referred to a gravity axis of the sec-

tion which is T to the plane of flexure (and this corres-

ponds to the "
force-plane

"
spoken of in previous chap-

ters), or plane of the axis of column when bent.

303#. Euler's Formula. Taking the case of a round-ended

column, Fig. 313 (a), assume the middle of the length as

an origin, with the axis X tangent to the elastic curve at

that point. The flexure being slight, we may use the form

dot? for the moment of the stress-couple in any
* With round ends, or pin ends, it should be understood that the force

at each end must be so applied as to act through the centre of gravity of the

base (plane figure) of the prismatic column at that end
;
and continue to do

so as the column bends.
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fa)

FIG. 31c FIG. 314.

section n, remembering that with this notation the axis Jf

must be
||
to the beam, as in the figure (313). Considering

the free body nC, Fig, 313 (6), we note that the shear is

zero, that the uniform thrust =P, and that 2
T

(moms.n)=0
gives (a being the deflection at 0)

Multiplying each side by dy we have

ci/x
dyd

2y=Pady Py dy (2)

Since this equation is true for the y, dx, dy, and d?y of any
element of arc of the elastic curve, we may suppose it

written out for each element from where y=Q, and dy=Q,
up to any element, (where dydy and y=y) (see Fig. 314)
and then write the sum of the left hand members equal to

that of the right hand members, remembering that, since

dx is assumed constant, 1-^cfcc
2
is a common factor on the

left. In other words, integrate between and any point
of the curve, n. That is,

[dy-]d[dy-]=Pa C dyP f* ydy (3)
-Q

Jo Jo

The product dy d
2

y has been written (dy)d(dy\ (for d?y is
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the differential or increment of dy) and is of a form like

xdx, or ydy. Performing the integration we have

**-*{ <*>

which is in a form applicable to any point of the curve,

and contains the variables x and y and their increments

tfo and dy. In order to separate the variables, solve for dx,

and we have

ordx=J^.
(6)ZUVY

a \a I

r
j.

**

sn
|)

.

(6) is the equation of the elastic curve J>0<7, Fig. 313 (a),

and contains the deflection a. If P and a are both given,

y can be computed for a given x, and vice versa, and thus

the curve traced out, but we would naturally suppose a to

depend on P, ior in eq. (6)whenx=y2 l,y should =a. Mak-

ing these substitutions we obtain

i/2l= Jljl (vers. sin 1.00) ; i.e., ^= J*jj \ (7)

Since a has vanished from eq. (7) the value for P ob-

tained from this equation, viz.:

Pt=SI$ .... (8)

is independent of a, and

is .. to be regarded as that force (at each end of the round"

ended column in Fig. 313) which will hold the column at

any small deflection at which it may previously have been

set.
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In other words, if the force is less than P no flexure at

all will be produced, and hence P is sometimes called the

force producing
"
incipient flexure." [This is roughly ver*

ified by exerting a downward pressure with the hand oij

the upper end of the flexible rod (a T-squaj e-blade for in^

stance) placed vertically on the floor of a room
; the pres-

sure must reach a definite value before a decided buckling
takes place, and then a very slight increase of pressure oc-

casions a large increase of deflection.]

It is also evident that a force slightly greater than P
would very largely increase the deflection, thus gaining for

itself so great a lever arm about the middle section as to

cause rupture. For this reason eq. (8) may be looked

upon as giving the Breaking Load of a column with round

ends, and is called Euler'sformula.

Keferring now to Fig. 311, it will be seen that if the three

parts into which the flat-ended column is di-
,

vided by its two points of inflection A and B
are considered free, individually, in Fig. 315,

the forces acting will be as there shown, viz.:

At the points of inflection there is no stress-

couple, and no shear, but only a thrust, =P>
and hence the portion AB is in the condition

of a round-ended column. Also, the tangents
to the elastic curves at and C being pre-
served vertical by the frictionless guide-blocks
and guides (which are introduced here simply
as a theoretical method of preventing the ends
from turning, but do not interfere with verti-

cal freedom) OA is in the same state of flex-

ure as half of AB and under the same forces.

Hence the length AB must = one half the

total length I of the flat-ended column. In
other words, the breaking load of a round-
ended column of length = I, is the same as

that of a flat-ended column of length =L *

Hence for the I of eq. (8) write y2 l and we
|

p

have as the breaking load of a column with FlG - 315

flat-ends and of length =1.
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(9)

Similar reasoning, applied to the "
pin-and-square

"

mode of support (in Fig. 311) where the points of inflec-

tion are at B, approximately ^ I from C, and at the

extremity itself, calls for the substitution of 2
/$ lioil in

eq. (8), and hence the breaking load of a "pin-and-square
""

column, of length = I, is

P2=|
EI* . . . "(10)

Comparing eqs. (8), (9), and (10), and calling the value of

PI (flat-ends) unity, we derive the following statement :

The breaking loads of a given column are as the numbers

I flat-ends

9/16

pin-and-square round-ends
according to the

mode of support.

These ratios are approximately verified in practice.

Euler's Formula [i.e., eq. (8) and those derived from it,

(9) and (10)] when considered as giving the breaking load

is peculiar in this respect, that it contains no reference to

the stress per unit of area necessary to rupture the material

of the column, but merely assumes that the load producing
"
incipient flexure ", i.e., which produces any bending at

all, will eventually break the beam because of the greater

and greater lever arm thus gained for itself. In the canti-

lever of Fig. 241 the bending of the beam does not sensibly

affect the lever-arm of the load about the wall-section, but

with a column, the lever-arm of the load about the mid-

section is almost entirely due to the deflection produced.

304. Example. Euler's formula is only approximately
verified by experiment. As an example of its use when
considered as giving the force producing

"
incipient flex-

ure
"

it will now be applied in the case of a steel T-square-
blade whose ends are free to turn. Hence we use the

round-end formula eq. (8) of 303, with the modulus of

elasticity ^=30,000,000 Ibs. per sq. inch. The dimensions



FLEXURE, LONG COLUMNS. 369

are as follows : the length I = 30 in., thickness =. ^ of an

inch, and width ~ 2 inches. The moment of inertia, I
r

about a gravity axis of the section
||

to the width (the

plane of bending being ||
to the thickness) is (247)

.-. ,
with TT = 22 -f- 7,

>

30,000,000

inches'

- 2031bs~ AUto- -j- 162,000 72

Experiment showed that the force, a very small addition

to which caused a large increase of deflection or side-buck-

ling, was about 2 Ibs.

305. Hodgkinson's Formulae for Columns. The principal

practical use of Euler's formula was to furnish a general

form of expression for breaking load, to Eaton Hodgkin-
eon, who experimented in England in 1840 upon columns

of iron and timber.

According to Euler's formula we have for cylindrical

columns, /being =J^ TIT* =~ nd* (247),
U4

for flat-ends * . J\ =i ET? .

*

i.fc , proportional to the fourth power of the diameter, and

inversely as the square of the length. But Hodgkinson's

experiments gave for wrought-iron cylinders

^3.55
.J3.&1

Pl
=

(const.) x ,2 ;
and for cast iron Pl

=
(const.) x ^-7

Again, for a square column, whose side = b
t
Euler's for*

mula would give

whilo Hodgkinson found for square pillars of wood

fe
4

P!= (const.) X
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Hence in the case of wood these experiments indicated the

same powers for b and I as Euler's formula, but with a dif-

ferent constant factor; while for cast and wrought iron

the powers differ slightly from those of Euler.

Hodgkinson's formulae are as follows, and evidently
not homogeneous ; the prescribed units should .'. be care-

fully followed, d denotes the diameter of the cylindrical

columns, b the side of square columns, 1= length.

(
For solid cylindrical cast iron columns, flat-ends ;

( For solid cylindrical wrought iron columns, flat-ends ;

\ Breaking load in tons ) IQ^^/J- ,- ,o\3<55
. n\ n \

(
of 2,240 Ibs. each }

=

f For solid square columns of dry oak, flat-ends

t
J

5tSs iffiS" }
=1^ >< (> --w - 9 !-*

{For

solid square columns of dry fir', flat-ends ;

Br
ro
k
o^

1

i

(

^
d ^^ I =7.81 X (b in inches)

4
-f-

(Z in ft.)*of 2,240 Ibs. each
)

Hodgkinson found that when the mode of support was
'

pin-and-square," the breaking load was about y2 as

great ;
and when the ends were rounded, about ^ as great

as with flat ends. These ratios differ somewhat from the

theoretical ones mentioned in 303, just after eq. (10.)

Experiment shows that, strictly speaking, pin ends are

not equivalent to round ends, but furnish additional

strength ;
for the friction of the pins in their bearings

hinders the turning of the ends somewhat. As the lengths

become smaller the value of the breaking load in Hodg-
kinson's formulae increases rapidly, until it becomes larger

than would be obtained by using the formula for the

crushing resistance of a short block (201) viz., FC, i.e.,

the sectional area X the crushing resistance per unit of

area.

In such a case the pillar is called a short column, or " short

block," and the value FG is to be taken as the breaking
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load. This distinction is necessary in using Hodgkinson's
formulae ; i.e., the breaking load is the smaller of the two

values, FC and that obtained by Hodgkinson's rule.

In present practice Hodgkinson's formulae are not often

used except for hollow cylindrical iron columns, for which

with d.2 and d^ as the external and internal diameters, we
have for fiat-ends

Breaking load in tons ) n , (d in in.)
355

(c?t
in in.)

3-5
!

of 2,240 Ibs. each f

=

~(Z in feet)"

in which the const. = 44.16 for cast iron, and 134 for

wrought, while n = 1.7 for cast-iron and = 2 for wrought.

306. Examples of Hodgkinson's Formulae. Example 1. Re-

quired the breaking weight of a wrought-iron pipe used

as a long column, having a length of 12 feet, an internal

diameter of 3 in., and an external diameter of 3^ inches,

the ends having well fitted flat bases.

If we had regard simply to the sectional area of metal,

which is F = 1.22 sq. inches, and treated the column as a

short block (or short column) we should have for its com-

pressive load at the elastic limit (see table 203) P"=FC"
-=1.22 X 24,000=29,280 Ibs. and the safe load Pl

may be

taken at 16,000 Ibs.

But by the last formula of the preceding article we have

Breaking load in ) 1<unv (3.25)
355 - 3s-55

1Rn7 .

ton of 2,240 Ibs. each [

= ~J^~
i.e.= 15.07 X 2240=33,768 Ibs.

Detail [log. 3.25] x 3.55= 0.511883 x 3.55= 1.817184 ;

[log. 3.00] x 3.55=0.477,121x3.55=1.693,779 ;

and the corresponding numbers are 65.6 and 49.4 ; theil

difference = 16.2, hence

Br. load in long tons = 134 * la2= 15.072 long tons.

=33,768 Ibs.
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With a " factor of safety
"
(see 205) of four, we have, as

the safe load, p' = 8,442 Ibs. This being less than the

16000 Ibs. obtained from the " short block
"
formula,should

be adopted.
If the ends were rounded the safe load would be one-

third of this i.e., would be 2,814 Ibs ; while with pin-and-

square end-conditions, we should use one-half, or 4,221 Ibs.

EXAMPLE 2. Eequired the necessary diameter to be

given a solid cylindrical cast-iron pillar with flat ends, that

its safe load may be 13,440 Ibs. taking 6 as a iactor of

safety. Let d = the unknown diameter. Using the proper
formula in 305, and hence expressing the breaking load,

which is to be six times the given safe load, in long tons

vre have (the length of column being 16 ft.)

13440x6 _ 44.16 (d in inches)
3-55

,- ,

2240 1617

ie.[<2 in inches]
3-5^

(2)

or log.d=JLj[log. 36+1.7x log. 16-log. 44.16] . . (3)

A log.d= 3JL_[1.958278]
=0.551627 .-. d - 3.56 ins.

This result is for flat ends. If the ends were rounded,
we should obtain d = 4.85 inches.

307. Rankine's Formula for Columns. The formula of this

name (some times called Gordon's, in some of its forms) has

a somewhat more rational basis than Euler's, in that it in-

troduces the maximum normal stress in the outer fibre and
is applicable to a column or block of any length, but still

contains assumptions not strictly borne out in theory, thus

introducing some co-efficients requiring experimental de-

termination. It may be developed as follows :

Since in the flat-ended column in Fig. 315 the middle

portion AB, between the inflection points A and B, is

acted on at each end by a thrust == P, not accompanied by
any shear or stress-couple, it will be simpler to treat thai
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portion alone Fig. 316, (a), since the thrust and stress-

couple induced in the section at _A

R, the middle oiAB, will be equal
\ \\ K\\ (&)

to those at the flat ends, and 6Y, I

in Fig. 315. Let a denote the de-
|

flection of R from the straight line
]

AB. Now consider the portion
AR as a free body in Fig. 316, (6), i

putting in the elastic forces of the

section at R, which may be clas-
| | / (a)

sified into a uniform thrust =
p\F, and a stress couple of moment FIG. sie.

= ^L., (see 294). (The shear is evidently zero, from
e

I (hor comps.) ==
0). Here p l

denotes the uniform pres-
sure (per unit of area), due to the uniform thrust, and p2

the pressure or tension (per unit of area), in the elastic

forces constituting the stress-couple, on the outermost

element of area, at a distance e from the gravity axis ("]

to plane of flexure) of the section. F is the total area of

the section. I is the moment of inertia about the said

gravity axis, g

I (vert, comps.) gives P -= pF . . (f)

Ogives Pa = .... (2)
>

For any section, n, between A and R, we would evidently
have the same^ as at R, but a smaller p2 , since Py < Pa
while e, I, and F9 do not change, the column being pris-
matic. Hence the max. (pi~\-p) is on the concave edge at

R and for safety should be no more than G -f- n, where G
is the Modulus of Crushing ( 201) and n is a " factor of

safety." Solving (1) and (2) for pi andj^, and putting their

sum = C -f- ft ; we have

P Pae G ..
~

We might now solve for P and call it the safe load, bat
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is customary to present the formula in a form for giving
the breaking load, the factor of safety being applied after-

ward. Hence we shall make n = 1, and solve for P, call-

ing it then the breaking load. Now the deflection a is un-

known, but may be expressed approximately, as follows,

in terms of e and I.

Suppose two columns of lengths = Z' and Z", each

bearing its safe load. Then at the point R, ._=^-^-t ia e. 9

P e

E'e' = p' p2'. Considering the curve AB as a circular arc

We have (see 290) a' = Z'
2

-^- 32 p' , i.e. a' =o^-> .
-'

5
and

r>
tf

Z"2

similarly for the other column, a"= ^
2

. _ . If the

columns are of the same material E' = E"
, and if each is

bearing its safe load we may assume p2
' = p2

"
nearly, in

which case the term p%
f ~ E" = p2

'
-4- E ',

and we may
say that the deflection a, under safe load, is proportional
to (length)

2
-f- e, approximately, i. e., that ae = ftl

2
,
where

(3
is a constant (an abstract number also) dependent on

experiment and different for different materials, and I the

full length. We may also write, for convenience, 1= Fk2

,

k being the radius of gyration (see 85). Hence, finally,

we have from eq. (3)

Breaking load ) _ p _ FG />n
for flat ends

j

=
l
~-

W
*

V?

This is known as Rankine's formula.

By the same reasoning as in 303, for a round-ended

column we substitute 2 Z for Z
;
for a pin-and-square col-

umn -t Z for Z
; and .'. obtain

Breaking load
l -.p ss

^^
(X\

for a round-ended column
j

""" ~
J*

W
Ar

2

) -7, ^C
a pin-and-square column
Breaking load for ) r> FC

(

=
. ..
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These formulae, (4), (5), and (6), unlike Hodgkinson's,
are of homogeneousform. Any convenient system of units

may therefore be used in them.

Rankine gives the following values for C and /?, to be

oed in these formulae. These are based on Hodgkinson's

experiments.*
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which the column is a member is quiescent or subject to

vibration from moving loads. By Hodgkinson's formula

33,768 Ibs. was obtained as a breaking load in this case

( 306).

For rounded ends we should obtain (eq. 5)

P =16,100. Ibs., as break, load . (2)

and for pin-and-square, eq. (6)

P2=24,908. Ibs. as break, load . . (3)

EXAMPLE 2. (Same as Example 2, 306). Kequired by
Rankine's formula the necessary diameter, d, to be given
a solid cylindrical cast-iron pillar, 16 ft. in length, with

rounded ends, that its safe load may be six long tons (i.e.,

of 2,240 Ibs. each) taking 6 as a factor of safety. F=^ ,

while the value of I? is thus obtained. From 247, / for

a full circle about its diameter =%>r*=;rr
2

.J^r
8

.'. ^=
Hence eq. (5) of 307 becomes.

Fo the breaking load is to be =6x6x2,240 Ibs., for cast-

iron is 80,000 Ibs. per sq. inch, while ft (abstract number)

~6Sob- Solving for d we have the biquadratic equation :

dt__ 28x6x6x2,240^ 28x6x6x2,240xl62 xl22x4
22x80,000 22x80,000x400

vhence e*= 0.641 (1 33.92), and taking the upper sign,

finally, d= A/22.4 =4.73 inches. (By Hodgkinson's rule

we obtained 4.85 inches).

309. Radii of Gyration. The following table, taken from

p. 523 of Kankine's Civil Engineering, gives values of &*,

the square of the least radius of gyration of the given cross-

section about a gravity-axis. By giving the least value oi
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# it is implied that the plane of flexure is not determined

by the end-conditions of the column
; (i.e., it is implied

that the column has either flat ends or round ends.) If

either end (or both) is a,pi,n-joint the column may need to

be treated as having a flat-end as regards flexure in a plane

containing the axis of the column and the axis of the pin.

if the bearings of the pin are firm
;
while as regards flex-

tire in a plane perpendicular to the pin it is to be consid-

ered round-ended at that extremity.
In the case of a " thin cell

"
the value of ^ is strictly

true for metal infinitely thin and of uniform thickness ; stiH

if that thickness does not exceed l

/h of the exterior diame-

ter, the form given is sufficiently near for practical pur-

poses ;
similar statements apply to the branching forms.

FIG. 317.

Solid Eectangle.
h= least side.

Thin Square Cell
= h.

h= least side.

Solid Circular Section.

Diameter =d.

Thin Circular Cell.

Exterior diam, = d.

Angle-Iron of Equal
rius

Fie. 318.

Fig. 317(o).
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Angle-Iron of unequal
ribs.

Cross of equal arms.

I-Beam as a pillar.

Let area of web =_Z?.

" " loth flanges
=A.

Channel

Iron.

Fig. 318 (a). tf=

Fig. 318 (6). &=4P

Fig. 318 (c). **=g

Fig.318(,*). ^
Let area of web =B ; of flanges =A (both), h extends

from edge of flange to middle of web.

FIG. 319. PHCENIX COLUMN. FIG. 320.

310. Built Columns. The "
compression members "

of

wrought-iron bridge trusses are generally composed of

several pieces riveted together, the most common forms

being the Phoenix column (ring-shaped, in segments,) and

combinations of channels, plates, and lattice, some of which

are shown in Figs. 319 and 320.

Experiments
* on full size columns of these kinds were

made by the U. S. Testing Board at the Watertown Arse-

nal about 1880.

The Phoenix columns ranged from 8 in. to 28 feet in

length, and from 1 to 42 in the value of the ratio of length
to diameter. The breaking loads were found to be some-

what in excess of the values computed from Bankine'g

formula ;
from 10 to 40 per cent, excess. In the pocket-

book issued by the Phoenix company they give the follow*

ing formula for their columns, (wrought-iron.)
* See also p. 112 of the author's "Notes and Examples in Mechanics "

for the Pencoyd experiments on wrought iron columns.
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Breaking load in Ibs. ) 50,000 F
for flat-ended columns J

"" " ~

where F = area in sq. in., I = length, and h = external

diameter, both in the same unit.

Many different formulae have been proposed by different

engineers to satisfy these and other recent experiments on

columns, but all are of the general form of Bankine's.

For instance Mr. Bouscaren, of the Keystone Bridge Co.,

claims that the strength of Phoenix columns is best given

by the formula

Breaking load in } _ 38,000 F
Ibs. for flat-ends.

) =
j

"

100,000
a

(F must be in square inches.)

The moments of inertia, 7, and thence the value of k* =
/ -i- Fy

for such sections as those given in Figs. 319 and
320 may be found by the rules of 85-93, (see also 258.)

(For the "
Straight-line Formula," see 314a, p. 385.)

311. Moment of Inertia of Built Column. Example. It is pro-

posed to form a column by joining two I-beams by lattice-

work, Fig. 321, (a). (While the lattice-work is relied upon
to cause the beams to act together as one piece, it is not

regarded in estimating the area F9 or the moment of iner-

tia, of the cross section). It is also required to find the

proper distance apart = x, Fig. 321, at which these beams
must be placed, from centre to centre of webs, that the

liability to flexure shall be equal in all axial planes, i.e.

that the 1 of the compound section shall be the same
about all gravity axes. This condition will be ful-

filled if /Y can be made 7^* (89), being the centre

of gravity of the compound section, and X perpendicular
to the parallel webs of the two equal I-beams.

Let F' = the sectional area of one of the I-beams, Fr

(see Fig. 321(a) its moment of inertia about its web-axis,

that about an axis "] to web. (These quantities can bo

* That is, 'with flat ends or ball ends ; but with pin ends. Fig. 312, if the

pin Is || toXt put 4/Y = /x ; if II to r, put 4/x = /Y .
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found in the hand-book of the iron company, for each size

of rolled beam).
Then the

total Jx = 2PX ; and total 7Y == 2 v +
[

(see 88 eq. 4.) If these are to be equal, we write them so

and solve for xt obtaining

= /iZiEZV v
312. Numerically ; suppose each girder to be a 10^ inch

light I-beam, 105 Ibs. per yard, of the N. J. Steel and Iron

Co., in whose hand-book we find that for this beam 7'x =
185.6 biquad. inches, and I\ = 9.43 biquad. inches, while

F' = 10.44 sq. inches. With these values in eq. (1) we
have

8.21 inches

Cai

L_ I
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313. Trussed Girders. When a horizontal beam is trussed

FIG. 322.

in the manner indicated in Fig. 322, with a single post or

strut under the middle and two tie-rods, it is subjected to

a longitudinal compression due to the tension of the tie-

rods, and hence to a certain extent resists as a column, the

plane of whose flexure is vertical, (since we shall here sup-

pose the beam supported laterally.)Taking the case of uni-

form loading, (total load = W )and supposing the tie-rods

screwed up (by sleeve nuts) until the top of the poet is on

a level with the piers, we know that the pressure between

the post and the beam is P' = % JF(see 273). Hence

by the parallelogram of forces (see Fig. 322) the tension

in each tie-rod is

Q
W

2 cos a. 16
*

cos a

At each pier the horizontal component of Q is

5= Q sin a=:~
16 (i)

Hence we are to consider the half-beam B as a "
pin-and-

square
" column under a compressive force P= 5

/ie W tan a
t

as well as a portion of a continuous girder over three

equidistant supports at the same level and bearing a uni-

form load W. In the outer fibre of the dangerous section,

0, (see also 273 and Fig. 278) the compression per sq.
inch due to both these straining actions must not exceed

a safe limit, R f

, (see 251). In eq. (6) 307, where P2 is

tJie breaking force for a pin-and-square column, the great-
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est stress in any outer fibre G (
= the Modulus of Crush-

ing) per unit of area. If then we write pcol . instead of G
in that equation, and 5

/16 JFtan instead of Pa we have

j max. stress due ) = 5 JPtan an,
,

16 ^ I
2

~|.

( to column action j
^co1

Jg
*

~]? "9"*
P
'T&V

while from eq. (3), p. 326, we have (remembering that our

present W represents double the Wot 273).

max. stress due ) = = 1 Wle^ 1 Wle
to girder action

j
" i$ 2 ~16

By writing pco\.-\-psf=R'= a safe value of compression per
unit-area, we have the equation for safe loading

. (2)

Here I = the half-span OS, Fig. 322, e = the distance of

outer fibre from the horizontal gravity axis of the cross

section, h* = the radius of gyration of the section referred

to the same axis, while F = area of section. y9 should be

taken from the end of 307.

EXAMPLE. If the span is 30 ft. = 360 in., the girder a 15

inch heavy I-beam of wrought iron, 200 Ibs. to the yard, in

which e = ^ of 15 = 7^ inches, -F=20 sq. in., and F =
35.3 sq. inches (taken from the Trenton Co.'s hand-book),

required the safe load Wt the strut being 5 ft. long.

From 307, p = 1 : 36,000 ; tan a = 15-^5 = 3.00. Hence,

using the units pound and inch throughout, and putting
R' = 12,000 Ibs. per sq. in. = max. allowable compression
stress, we have from eq. (2)

16x20x12,000
'

0)
2
i

.3
_9 ^36,000

'

35.3 _P 35.3

L e., 69,111 Ibs. besides the weight of the beam.

If the middle support had been a solid pier, the safe load

would have been 48 tons
;
while if there had been no

middle support of any kind, the beam would bear safely
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only 11.5 tons,

the strut)].

[Let the student design the tie-rods (and

314- Buckling of Web-Plates in Built Girders. In 257 men-

tion was made of the fact that very high web plates in

built beams, such as /beams and box-girders, might need

to be stiffened by riveting T-irons on the sides of the web.

(The girders here spoken of are horizontal ones, such as

might be used for carrying a railroad over a short sj^an of

20 to 30 feet.

An approximate method of determining whether such

stiffening is needed to prevent lateral buckling of the web,

may be based upon Rankine's formula for a long column

and will now be given.

In Fig. 323 we have, free, a portion of a bent I-beam,
between two vertical sections at a distance apart= ^ =
the height of the web. In such a beam under forces L to

its axis it has been proved (256) that we may consider

the web to sustain all the shear, J, at any section, and the

flanges to take all the tension and compression, which

form the " stress-couple" of the section. These couples
and the two shears are shown in Fig. 323, for the two

exposed sections. There is supposed to be no load on this

portion of the beam, hence the shears at the two ends are



384 MECHANICS OF ENGINEERING.

directions, on its upper and lower edges. Each of thesa

f= J since we have taken a horizontal length Aj = height
of web. In this figure, 324, we notice that the effect of

the acting forces is to lengthen the diagonal BD ana

shorten the diagonal AC, both of those diagonals making
an angle of 45 with the horizontal.

Let us now consider this buckling tendency along AC,

by treating as free the strip A (7, of small width =
6,. This

is shown in Fig. 325. The only forces acting in the direc-

tion of its length AC SLTQ the components along AC of the

four forces J' at the extremities. We may therefore treat

the strip as a long column of a length I hi A/2, of a sec-

tional area F = bblf (where b is the thickness of the web

plate), with a value of k2 = 1

/12 62

(see 309), and with

fixed (or flat) ends. Now the sum of the longitudinal

components of the two JVs at A is Q = 2 J' }4 V2

= J' A/2; but /' itself
^r.

b l/2 k A/2, since the small

rectangle on which J' acts has an area = b y2 \ A/2, and

/he shearing stress on it has an intensity of (J -j- bhj per
unit of area. Hence the longitudinal force at each end of

this long column is

(1)

According to eq. (4) and the table in 307, the safe load

(factor of safety = 4) for a wi*ought-iron column of this

form, with flat ends, would be (pound and inch)

^^36,000 9,000 66, ,ov

If, then, in any particular locality of the girder (ol

wrought-irori) we find chat Q is > Pl9 i.e.

if is > (pound and inch) . . (3)
*

i .

l hl1+
1,500' fi

2

then vertical stiffeners will be required laterally.

When these are required, they are generally placed at
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intervals equal to hlt (the depth of web), along that part
of the girder where Q is > P^
EXAMPLE Fig. 326. Will stiffening pieces be required

in a built girder of 20 feet span, bearing a uniform load of

40 tons, and having a web 24 in. deep and ^ in. thick ?

From 242 we know that the w -40 TONS

greatest shear, e/max., is close to

either pier, and hence we investi-
| \

gate that part of the girder first.

J max. = y2 W = 20 tons

=40,000 Ibs.

.-. (inch and lb.), see (3),

Fie 886.

.905.0 (6)

Ai 24

while, see (3), (inch and pound),

9,000x^
+
i>6oo*o$F

which is less than 1666.66.

Hence stiffening pieces will be needed near the extremities

of the girder. Also, since the shear for this case of loading
diminishes uniformly toward zero at the middle they will

be needed from each end up to a distance of $ of 10 ft.

from the middle.

314a. The "Straight-Line" Formula Mr. T. H.Johnson

(Transac. Am. Soc. C. E., 1886) has proposed formulae for

breaking load in Ibs. per sq. inch of sectional area of column,
as follows (founded on observed tests) :

Wrought iron : Hinged ends, p = 42,000 157
j*

;
^

7 5

Flat ends, p = 42,000 128 r-;

Mild steel : Hinged ends, p = 52,500 220r ;

fc

Flat ends, p = 52,500 179r ;
K

where I is the length, and Jc is the least radius of gyration
of the cross- section, of column.

These formulae have been much used.



386 MECHANICS OF ENGINEERING.

CHAPTER VIL

LINEAR ARCHES (OF BLOCKWORK).

815. A Blockwork Arch is a structure, spanning an opening
or gap, depending, for stability, upon the resistance to

compresssion of its blocks, or voussoirs, the material of

which, such as stone or brick, is not suitable for sustain-

ing a tensile strain. Above the voussoirs is usually

placed a load of some character, (e.q. a roadway,) whose

pressure upon the voussoirs will be considered as vertical,

only. This condition is not fully realized in practice,

unless the load is of cut stone, with vertical and horizontal

joints resting upon voussoirs of corresponding shape (see

Fig. 327), but sufficiently so to warrant

its assumption in theory. Symmetry
of form about a vertical axis will also

be assumed in the following treatment.

316. Linear Arches. For purposes of

theoretical discussion the voussoirs of

Fig. 327 may be considered to become

PIG 327 infinitely small and infinite in number,

thus forming a " linear arch," while retaining the same

shapes, their depth "1 to the face being assumed constant

that it may not appear in the formulae. The joints

between them are ~J to the curve of the arch, i.e., adjacent

voussoirs can exert pressure on each other only in the

direction of the tangent-line to that curve.
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317. Inverted Catenary, or linear Arch Sustaining its Own

Weight Alone, Suppose the infinitely small voussoirs to

have weight, uniformly distributed along the curve, weigh-

ing q Ibs. per running linear unit. The equilibrium of

such a structure, Fig. 328, is of course unstable but theo-

retically possible. Bequired the form of the curve when

equilibrium exists. The conditions of equilibrium are,

obviously : 1st. The thrust or mutual pressure T between

any two adjacent voussoirs at any point, A, of the curve

must be tangent to the curve ; and 2ndly, considering a

portion BA as a free body, the resultant of H the pres-

BH

FIG. 328. Fie. 329. Fig. 330.

sure at B the crown, and T at A, must balance E the re-

sultant of the
II
vertical forces (i.e.,weights of the elementary

voussoirs) acting between B and A.

But the conditions of equilibrium of a flexible, inexten-

sible and uniformly loaded cord or chain, are the very
same (weights uniform along the curve) the forces being
reversed in, direction. Fig. 329. Instead of compression
we have tension, while the II vertical forces act toward in-

stead of away from, the axis X. Hence the curve of equi-

librium of Fig. 328 is an inverted catenary (see 48) whose

equation is

(1)

See Fig. 330. e = 2.71828 the Naperian Base. The "par-
ameter

"
c may be determined by putting x = a, the half

span, and y= Y, the rise, then solving for c by successive
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approximations. The " horizontal tlirust" or H
, is = qc,

while if s = length of arch OA, along the curve, the thrust

T at any point A is

From the foregoing it may be inferred that a series of

soirs of finite dimensions, arranged
so as to contain the catenary curve,

with joints "| to that curve and of

equal weights for equal lengths of

arc will be in equilibrium, and

moreover in stable equilibrium on

account ol friction, and the finite

width of the joints ; see Fig. 331.

Flo. 331.

318. Linear Arches under Given Loading. The linear arches

to be considered further will be treated as without weight
themselves but as bearing vertically pressing loads (each
voussoir its own).

Problem. Given the form of the linear arch itself, it is

required to find the law of vertical depth of loading under

which the given linear arch will be in equilibrium. Fig.

332, given the curve ABC, i.e., the linear arch itself, re-

quired the form of the curve JM.ON, or upper limit of load-

ing, such that the linear arch ABC shall be in equilibrium
under the loads lying between the two curves. The load-

ing is supposed homogeneous and of constant depth ~] to

paper ; so that the ordinates z between the two curves are

proportional to the load per horizontal linear unit. Assume
a height of load

..,
at the crown, at pleasure ; then required

the z of any point m as a function of a and the curve

ABC.

FIG. 332. FIG. 333.
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Practical Solution. Since a linear arch under vertical

pressures is nothing more than the inversion of the curve

assumed by a cord loaded in the same way, this problerq

might be solved mechanically by experimenting with a

light cord, Fig. 333, to which are hung other heavy cords,

or bars of uniform weight per unit length, and at equal
horizontal distances apart when in equilibrium. By varying
the lengths of the bars, and their points of attachment, we

may finally find the curve sought, MON. (See also 343.)

Analytical Solution. Consider the structure in Fig. 334

A number of rods of finite length, in the same plane, are in

equilibrium, bearing the weights P, Plf etc., at the con-

[

-

FIG. 334. FIG. 335.

necting joints, each piece exerting a thrust T against the

adjacent joint. The joint A, (the
"
pin

"
of the hinge), im-

agined separated from the contiguous rods and hence free,
is held in equilibrium by the vertical force P (a load) and
the two thrusts T and T', making angles = d and 0' with

the vertical
; Fig. 335 shows the joint A free. From -T(hor*

izontal comps.)=0, we have.

I7
sin 0=T' sind'.

That is, the horizontal component of the thrust in any rod
is the same for all

; call it H. .*.

(i)
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Now draw a line As *"i to T' and write 2
( compons. | to

As)=0 ; whence P sin 0'= T sin
/?,

and [see (1)]

(2)
sin 6 sin 0'

Let the rods of Fig. 334 become infinitely small and infi-

nite in number and the load continuous. The length of

each rod becomes =ds an element of the linear arch, ft is

the angle between two consecutive cfo's, 6 is the angle be-

tween the tangent line and the vertical, while P becomes
the load resting on a single dx, or horizontal distance be-

tween the middles of the two ds's. That is, Fig. 336, if

f= weight of a cubic unit of the

loading, P=ftdx. (The lamina of

arch and load considered is unity,

~| to paper, in thickness.) H =a,

constant = thrust at crown
;

f)=0'} and sin fi=ds-t-p, (since the

angle between two consecutive tan-

gents is = that between two con-

secutive radii of curvature). Hence

eq. (2) becomes

-3p sin2
but dx=ds sin 0,

H,

|0
sin3

Fie. 336.

(3)

Call the radius of curvature at the crown p , and since

there z= ZQ and 0*=90, (3) gives 7?^=-{>; hence (3) may
be written

/>
sin3

This is the law of vertical depth of loading required. For

a point of the linear arch where the tangent line is verti-

cal, sin 0=0 and z would = oo
; i.e., the load would be in-
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finitely high. Hence, in practice, a full semi-circle, for in-

stance, could not be used as a linear arch.

319. Circular Arc as Linear Arch. As an example of the

preceding problem let us ap-

ply eq. (4) to a circular arc,

Fig. 337, as a linear arch.

Since for a circle p is con-

eq. (4) reducesstant =
to

(5)

Hence the depth of loading
must vary inversely as the cube of the sine of the angle
made by the tangent line (of the linear arch) with the ver-

tical.

To find the depth z by construction. Having z given, G

being the centre of the arch, prolong Ca and make db =
; at b draw a "1 to Cb, intersecting the vertical through a

nt some point d ;
draw the horizontal dc to meet Co at

some point c. Again, draw ce ~| to Cc, meeting ad in e ;

then ae = z required ;
a being any point of the linear arch.

For, from the similar right triangles involved, we have

z =ab=ad sin d=ac sin 6. sin d=ae sin 6 sin 6 sin 6

ae= ae=z. Q.E.D.
[see (5.)]

320. Parabola as Linear Arch. To apply eq. 4 318 to a

parabola (axis vertical) as linear arch, we must find values

of p and p the radii of curvature at any point and the

crown respectively, That is, in the general formula,

we must substitute the forms for the first and second dif-

ferential co-efficients, derived from the equation of the
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FIG. 338. FIG. 339.

curve (parabola) in Fig. 338, i.e. from a?
2 = 2 py ; whence

we obtain

p

Hence o == - = p cosec.3
#, i.e. p= P

(6)

At the vertex 6 = 90 ,\ p =
p. Hence by substituting

for p and
j0

in eq. (4) of 318 we obtain

z=s = constant [Fig. 339] ..... (7)

for a parabolic linear arch. Therefore the depth of homo-

geneous loading must be the same at all points as at the

crown ; i.e., the load is uniformly distributed with respect
to the horizontal. This result might have been antici-

pated from the fact that a cord assumes the parabolic
form when its load (as approximately true for suspension

bridges) is uniformly distributed horizontally. See 46

in Statics and Dynamics.

321. Linear Arch for a Given Upper Contour of Loading, the

arch itself being the unknown lower contour. Given the

upper curve or limit of load and the depth 2 at crown, re-

quired the form of linear arch which will be in equili-
brium under the homogenous load between itself and that

upper curve. In Fig. 340 let MON be the given upper
contour of load, is given or assumed, z' and z" are the

respective ordinates of the two curves BAC and M ON.

Required the eqation of BAG.
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FIG. 340. FIG 341.

As before, the loading is homogenous, so that the

weights of any portions of it are proportional to the

corresponding areas between the curves. (Unity thick-

ness T to paper.) Now, Fig. 341, regard two consecutive

ds's of the linear arch as two links or consecutive blocks

bearing at their junction m the load dP = f (z

f + z"} dx in

which f denotes the heaviness of weight of a cubic unit of

the loading. If T and T' are the thrusts exerted on these

two blocks by their neighbors (here supposed removed)
we have the three forces dP> T and T', forming a system
in equilibrium. Hence from IX=0.

T cos
<p
= T' coe <?'

and

2Y=0 gives T' sin <p' T sin
<p
= dP

(1)

(2)

From (1) it appears that T cos
<p

is constant at all points
of the linear arch (just as we found in 318) and hence

-=the thrust at the crown, = H, whence we may write

T=H -4- cos
<p
and T'=H -T- cos <p' . . . (3)

Substituting from (3) in (2) we obtain

H (tan <p'
tan <p)=dP (4)

But tan <p
= and tan

(f
,'=

dx dx
constant)

while dP =
f (z' + z") dx. Hence, putting for convenience

H ;a
2
, (where a = side of an imaginary square of the
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loading, whose thickness = unity and whose weight H)
we have.

as a relation holding good for any point of the linear arch
which is to be in equilibrium under the load included

between itself and the given curve whose ordinates are z",

Fig. 340.

322. Example of Preceding. Tipper Contour a Straight Line.

Fig. 342. Let the upper contour be a right line and hor-

izontal ; then the " of eq. 5 becomes zero at all points of

ON. Hence drop the accent of z' in eq. (5) and we have

dx2 a2

Multiplying which by dz we obtain

dz d2
z I

dx* a2 (6)

This being true of the z, dz, d2
z and dx of each element of

the curve O'B whose equation is desired, conceive it writ-

ten out for each element between 0' and any point m, and

put the sum of the left-hand members of these equations
= to that of the right-hand members, remembering that

a2 and dx2 are the same for each element. This gives

. . . . (7.)
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FIG. 342. PIG 343

Integrating (7.) between 0' and any point m

= r log.. (;-+(-!)- 1)
.

O L*o v^> \ zo/ '

or 2= -H

(8.)

(9.)

This curve is called the transformed catenary since we may
obtain it from a common catenary by altering all the ordi-

nates of the latter in a constant ratio, just as an ellipse

may be obtained from a circle. If in eq. (9) a were = ZQ

the curve would be a common catenary.
. Supposing 2d and the co-ordinates x and z

l
of the point

B (abutment) given, we may compute a from eq. 8 by put-

ting x =x
l
and = and solving for a. Then the" crown-

thrust H =
f-a

2 becomes known, and a can be used in eqs.

(8) or (9) to plot points in the curve or linear arch. From

eq. (9) we have
x XT- x _* -i T- -2L-1

area ) /* ?o / f a" ^ _ az
Q\

a QQ\
OO'mn f

=Jo^=2Jo [
e ^+e ^J~ ^ L

6 "

J

Fig. 343.

Call this area, A. As for the thrusts at the different

joints of the linear arch, see Fig. 343, we have crown-

thrust =H = fa? . . . ; . . . (11)

and at any joint m the thrust

? =rVou^F2
(12 ;
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323. Remarks. The foregoing results may be utilized

with arches of finite dimensions by making the arch-ring
contain the imaginary linear arch, and the joints T to the

curve of the same. Questions of friction and the resist-

ance of the material of the voussoirs are reserved for a

succeeding chapter, ( 344) in which will be advanced a

more practical theory dealing with approximate linear

arches or "
equilibrium polygons

"
as they will then be

called. Still, a study of exact linear arches is valuable on

many accounts. By inverting the linear arches so far pre-

sented we have the forms assumed by flexible and inexten-

sible cords loaded in. the same way.
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CHAPTEK VTEL

ELEMENTS OF GRAPHICAL, STATICS.

924. Definition. In many respects graphical processes
have advantages over the purely analytical, which recom-
mend their use in many problems where celerity is desired

without refined accuracy. One of these advantages is that

gross errors are more easily detected, and another that

the relations of the forces, distances, etc., are made so

apparent to the eye, in the drawing, that the general effect

of a given change in the data can readily be predicted at

a glance.

Graphical Statics w the system of geometrical construc-

tions by which problems in Statics may be solved by
the use of drafting instruments, forces as well as distances

being represented in amount and direction by lines on the

paper, of proper length and position, according to arbi-

trary scales
; so many feet of distance to the linear inch of

paper, for example, for distances ;
and so many pounds or

tons to the linear inch of paper for forces.

Of course results should be interpreted by the same
scale as that used for the data. The parallelogram of

forces is the basis of all constructions for combining and

resolving forces.

325. Force Polygons and Concurrent Forces in a Plane. If a

material point is in equilibrium under three forces PI P3

P3 (in the same plane of course) Fig. 344, any on of them,
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as P19 must be equal and opposite to E the resultant of

the other two (diagonal of their parallelogram). If now
we lay off to some convenient scale a line in Fig. 345

Pl and || to PI in Fig. 344 ; and then from the pointed end

of PI a line equal and
|| to P2 and

laid off pointing the same way, we
note that the line remaining to

i>
close the triangle in Fig. 345 must
be = and || to P3, since that tri-

angle is nothing more than the

left-hand half-parallelogram of

FIG. 345. Fig. 344. Also, in 345, to dose

the triangle properly the directions of the arrows must

be continuous Point to Butt, round the periphery. Fig.

345 is called a force polygor ;
of three sides only in this

case. By means of it, given any two of the three forces

which hold the point in equilibrium, the third can be

found, being equal and ||
to the side necessary to " close

"

the force polygon.

Similarly, if a number of forces in a plane hold a mate-

rial point in equilibrium, Fig. 346, their force polygon,

Fia.344.

FIG. 346. FIG. 347.

Fig. 347, must close, whatever be the order in which its

sides are drawn. For, if we combine PI and P2 into a re-

sultant Oa, Fig. 346, then this resultant with P2 to form a

resultant Ob, and so on ;
we find the resultant of PI,P2,P3r

and P4 to be Oc, and if a fifth force is to produce equilib-

rium it must be equal and opposite to Oc, and would close

the polygon OdabcO, in which the sides are equal and par-
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allel respectively to the forces mentioned. To utilize this

fact we can dispense with all parts of the parallelograms in

Fig. 346 except the sides mentioned, and then proceed as

follows in Fig. 347 :

If P5 is the unknown force which is to balance the other

four (i.e,
is their anti-resultant), we draw the sides of the

force polygon from A round to B, making each line paral-
lel and equal to the proper force and pointing the same

way ;
then the line EA represents the required P5 in

amount and direction, since the arrow EA must follow

the continuity of the others (point to butt).

If the arrow BA were pointed at the extremity B, then

it gives, obviously, the amount and direction of the result-

ant of the four forces Pl . . . P4. The foregoing shows

that if a system of Concurrent Forces in a Plane is in equi-

librium, itsforce polygon must close.

326. Non-Concurrent Forces in a Plane. Given a system of

non-concurrent forces in a plane, acting on a rigid body,

required graphic means of finding their resultant and anti-

resultant
;
also of expressing conditions of equilibrium.

The resultant must be found in amount and direction
; and

also in position (i.e., its line of action must be determined).
E. g., Fig. 3^8 shows a curved rigid beam fixed in a vise

at T, and also under the action of forces Pl
P2 P3 and P4

(besides the action of the vise); required the resultant of

P1? P2 ,
P3,andP4.

By the ordinary

parallelogram of

forces we com-
bine P! and P2 at

a, the intersection

of their lines of

FIO 34?
action, into a re-

sultant E., ;
then J?a with P3 at b, to form jftb ; and finally J?b

with P4 at c to form Pc which is .*. the resultant required,
i.e., of P, . . . . P4 ; and c . . . F is its line of action.
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FIG-

The separate force triangles (half-parallelograms) by
which the successive partial resultants J?a, etc., were found,
are again drawn in Fig. 349. Now since JRC , acting in the

line c..F, Fig. 348,

is the resultant of

PI . . P4, it is plain
that a force Pc

'

equal toRQ and act-

ing along c . . P,but
in the opposite di-

rection, would balance the system PI . . . P4 , (is their anti-

resultant). That is, the forces P, P2 P3 P4 and RQ

' would
form a system in equilibrium. The force RJ then, repre-
sents the action of the vise T upon the beam. Hence re-

place the vise by the force RJ acting in the line . . . F . . . c

to do which requires us to imagine a rigid prolongation of

that end of the beam, to intersect F . . . c. This is shown in

Fig. 350 where the whole beam is free, in equilibrium, under

the forces shown, and in precisely the same state of stress,

part for part, as in Fig. 348. Also, by combining in one

force diagram, in Fig. 351, all the force triangles of Fig. 349

(by making their common sides coincide, and putting RJ
instead of Bc, and dotting all forces other than those of

Fig. 350), we have a figure to be interpreted in connection

with Fig. 350.

SPACE DIAGRAM
FIG. 350.

Hen& we note, first, that in the figure called a force-dia-

gram,. P, Pt PS, P4 and Rc

' form a closed polygon and that
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their arrows follow a continuous order, point to butt,

around the perimeter ;
which proves that one condition of

equilibrium of a system of non-concurrent forces in a plane
is that its force polygon must close. Secondly, note that db

is || to Oa', and be to Ob' ;
hence if the force-diagram has

been drawn (including the rays, dotted) in order to deter-

mine the amount and direction of jR ', or any other one force,

we may then find its line of action in the space-diagram, as

follows: (N. B. By space diagram is meant the figure show-

ing to a true scale the form of the rigid body and the lines

of action of the forces concerned). Through a, the intersec-

tion of P
l and P2 ,

draw a line
||
to Oa' to cut P3 in some point

b
; then through b a line

|| to Ob' to cut P4 at some point o; cF
drawn |j to Oc' is the required line of action of RQ ', the anti-

resultant of P P2 , P3 ,
and P4 .

abc is called an equilibrium polygon; this one having but

two segments, ab and be (sometimes the lines of action of Pl

and Rc

'

may conveniently be considered as segments.) The

segments of the equilibriumpolygon are parallel to the respect"

ive rays of the force diagram.
Hence for the equilibrium of a system of non-concurrent

forces in a plane not only must its force polygon close,

but also the first and last segments of the corre-

sponding equilibrium polygon must coincide with

the resultants of the first two forces, and of the last

two forces, respectively, of the system. E.g., ab coin-

cides with the line of action of the resultant of Pl and P2 ;

be with that of P4 and B/c. Evidently the equil. polygon
will be different with each different order of forces in

the force polygon or different choice of a pole, 0. But if

the order of forces be taken as above, as they occur along
the beam, or structure, and the pole taken at the " butt

"
of

the first force in the force polygon, there will be only one ;

(and this one will be called the special equilibrium polygon

in the chapter on arch-ribs, and the " true linear arch
"
in

dealing with the stone arch.) After the rays (dotted in

Fig. 351) have been added, by joining the pole to each
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vertex with which it is not already connected, the final

figure may be called theforce diagram.
It may sometimes be convenient to give the name of

rays to the two forces of the force pelygon which meet

at the pole, in which case the first and last segments of

the corresponding equil. polygon will coincide with the

lines of action of those forces in the space-diagram (as we

may call the representation of the body or structure on

which the forces act). This "
space diagram

"
shows the

real field of action of the forces, while the force diagram,
which may be placed in any convenient position on the

paper, shows the magnitudes and directions of the forces

acting in the former diagram, its lines being interpreted

on a scale of so many Ibs. or tons to the inch of paper ; in

the space-diagram we deal with a scale of so many/ee to

the inch of paper.
We have found, then, that if any vertex or corner of the

closed force polygon be taken as a pole, and rays drawn

from it to all the other corners of the polygon, and a cor-

responding equil. polygon drawn in the space diagram, the

first and last segments of the latter polygon must co-incide

with the first and last forces according to the order

adopted (or with the resultants of the first two anJ last

two, if more convenient to classify them thus). It remains

to utilize this principle,

327. To Find the Resultant of Several Forces in a Plane. This

might be done as in 326, but since frequently a given set

of forces are parallel, or nearly so, a special method will

now be given, of great convenience in such cases. Fig. 352.

Let P, P2 and

P3 be the given
forces whose

resultant is re-

\

2

quirsd. Let us

first find their

an^i resultant,

or force which

FIG. 352. FU>. 353. will balance



GRAPHICAL STATICS. 403

them. This anti-resultant may be conceived as decom-

posed into two components P and P' one of which, say P,

is arbitrary in amount and position. Assuming P, then,

at convenience, in the space diagram, it is required to find

P'. The five forces must form a balanced system ; hence

if beginning at O lt Fig. 353, we lay off a line 0,A = P by

scale, then A\ and ||
to P,, and so on (point to butt), the

line E0 l necessary to close the force polygon is = P f
re-

quired. Now form the corresponding equil. polygon in

the space diagram in the usual way, Yiz.: through a the

intersection of P and P1
draw ab

\\
to the ray 6^ . . . 1

(which connects the pole 0^ with the point of the last force

mentioned). From b, where ab intersects the line of P2,

draw be, \\
to the ray 0^ . . 2, till it intersects the line of P3.

A line me drawn through c and ||
to the P' of the force

diagram is the line of action of P'.

Now the resultant of P and P' is the anti-resultant of

PI, P2 and P3 ;
.'. d, the intersection of the lines of P and

P', is a point in the line of action of the anti-resultant re-

quired, while its direction and magnitude are given by the

line BA in the force diagram ; for BA forms a closed poly-

gon both with Px P2 P3,
and with PP'. Hence a line

through d
\\
to BA, viz., de, is the line of action of the anti-

resultant (and hence of the resultant) of Plt P2, P3.

Since, in this construction, P is arbitrary, we may first

choose Oit arbitrarily, in a convenient position, i.e., in such

a position that by inspection the segments of the result-

ing equil. polygon shall give fair intersections and not

pass off the paper. If the given forces are parallel the

device of introducing the oblique P and P' is quite neces-

sary.

328. The result of this construction may be stated as

follows, (regarding Oa and cm as segments of the equil.

polygon as well as ab and be): If any two segments of an

equil. polygon be prolonged, their intersection is a point in

the line of action of the resultant of those forces acting at
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the vertices intervening between the given segments. Here,
the resultant of PI P2 P3 acts through d.

329. Vertical Reaction of Piers, etc. Fig. 354. Given the

vertical forces or loads P
}
P2 and P3 acting on a rigid body

(beam, or truss) which is supported by two piers having
smooth horizontal surfaces (so that the reactions must be

vertical), required the reactions VQ and Vn of the piers.

For an instant suppose VQ and Vn known
; they are in

FIG. 354.

equil. with Pl
P2 and P3. The introduction of the equal

and opposite forces P and P' in the same line will not dis-

turb the equilibrium. Taking the seven forces in the

order P V PI P2 P3 Vn and P', a force polygon formed with

them will close (see (b) in Fig. where the forces which

really lie on the same line are slightly separated). With

0, the butt of P, as a pole, draw the rays of the force dia-

gram OA, OB, etc. The corresponding equil. polygon

begins at a, the intersection of P and V in (a) (the space

diagram), and ends at n the intersection of P' and Fn .

Join an. Now since P and P' act in the same line, an

must be that line and must be
II
to P and P' of the force

diagram. Since the amount and direction of P and P' are

arbitrary, the position of the pole is arbitrary, while

P!, P2, and P3 are the only forces known in advance in the

force diagram.
Hence VQ and F"n may be determined as follows: Lay off

the given loads Plf P2 , etc., in the order of their occur-

rence in the space diagram, to form a " load-line
" AD
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(set (&.) Pig. 354) as a beginning for a force-diagram ;
take

any convenient pole 0, draw the rays OA, OB, OC and

OD. Then beginning at any convenient point a in the

vertical line containing the unknown VQt draw ab
|| to OA,

be | 4o OB, and so on, until the last segment (dn in this

case) cuts the vertical containing the unknown Vn in some

point n. Join an (this is sometimes called a closing line)

and draw a
||
to it through 0, in the force-diagram. This

last line will cut tha " load-line
"

in some point n', and

divide it in two parts n' A and Dn', which are respectively

VQ and Vu required.

Corollary. Evidently, for agiven system of loads, in given
vertical lines of action, and for two given piers, or abut-

ments, having smooth horizontal surfaces, the location of the

point n' on the load line is independent of the choice of a

pole.

Of course, in treating the stresses and deflection of the

rigid body concerned, P and P' are left out of account, as

being imaginary and serving only a temporary purpose.

330. Application of Foregoing Principles to a Roof Truss.-

ig. 355. Wl and W2 are wind pressures, P1 and P2 are

loads, while the remaining external forces, viz., the re-

FIG. 355.
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actions, or supporting forces, V , Vn and HM may be found

by preceding . (We here suppose that the right abut-

ment furnishes all the horizontal resistance ; none at the

left).

Lay off the forces (known) Wly W2, Pl9 and P2 in the

usual way, to form a portion of the closed force polygon
To close the polygon it is evident we need only draw a

horizontal through 5 and limit it by a vertical through 1.

This determines Hu but it remains to determine n r
the

point of division between V and VD . Select a convenient

pole Oit and draw rays from it to 1, J2, etc. Assume a con-

venient point a in the line of V in the space diagram, and

through it draw a line
||
to Oi\ to meet the line of W

l in

some point b ; then a line
||
to Oi2 to meet the line of W2

in some point c
; then through c

\\ to Oi3 to meet the line

of P! in some point d ; then through d
\\
to X

4 to meet the

line of P2 in some point e, (e is identical with d, since Pl

and P2 are in the same line) ; then ef \\ to Ofi to meet Hn

in some point/; then/gr || to Of> to meet Fn in some

point g.

abcdefg is an equilibrium polygon corresponding to the

pole Oi.

Now join ag, the "closing-line," and draw a
||
to it

through Oi to determine n'
t the required point of division

between V and Vn on the vertical 1 6. Hence V and Fn
are now determined as well as Ha .

[The use of the arbitrary pole t implies the temporary
employment of a pair of opposite and equal forces in the line

ag, the amount of either being = 0^'].

Having now all the external forces acting on the truss,

and assuming that it contains no " redundant parts," i.e.,

parts unnecessary for rigidity of the frame-work, we proceed
tc find the pulls and thrusts in the individual pieces, on
the following plan. The truss being pin-connected, no

piece extending beyond a joint, and all loads being con-

sidered to act at joints, the action, pull or thrust, of each

piece on the joint at either extremity will be in the direction

of the piece, i.e., in a known direction, and the pin of each
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joint is in equilibrium under a system of concurrent forces

consisting of the loads (if any) at the joint and the pulls

or thrusts exerted upon it by the pieces meeting there.

Hence we may apply the principles of 325 to each joint

in turn. See Fig. 356. In constructing and interpreting

the various force polygons, Mr. B. H Bow's convenient

notation will be used
;
this is as follows : In the space

diagram a capital letter [ABC, etc.] is placed in each tri-

angular cell of the truss, and also in each angular space in

the outside outline of the truss between the external forces

and the adjacent truss -pieces. In this way we can speak of

the force Wi as the force EG, of W2 as the force CE, the

stress in the piece aft as the force CD, and so on. That

is, the stress in any one piece can be named from the

letters in the spaces bordering its two sides. Corresponding
to these capital letters in the spaces of the space-dia-

gram, small letters will be used at the vertices of the closed

force-polygons (one polygon for each joint) in such a way
that the stress in the piece CD, for example, shall be the

force cd of the force polygon belonging to any joint in

which that piece terminates ;
the stress in the piece FO

by the force fg in the proper force polygon, and so on.

In Fig. 356 the whole truss is shown free, in equili-

brium under the external forces. To find the pulls or

thrusts (i.e.,
tensions or compressions) in the pieces, con-

sider that if all but two of the forces of a closed force

polygon are known in magnitude and direction, while the

directions, only, of those two are known, the whole force

polygon may be drawn, thus determining the amounts of

those two forces by the lengths of the corresponding
sides.

We must .*. begin with a joint where no more than two

pieces meet, as at a
; [call the joints a, /9, f, d, and the cor-

corresponding force polygons a', ft etc. Fig. 356.] Hence

at a! (anywhere on the paper) make ab \\ and = (by scale)

to the known force AB (i.e., F ) pointing it at the upper end,

and from this end draw be = and
||
to the known force BG

(i.e., W,) pointing this at the lower end.
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FIG. 356.

To close the polygon draw through c a
||
to the piece

CD, and through a a
|| to AD

; their intersection deter-

mines d, and the polygon is closed. Since the arrows

must be point to butt round the periphery, the force with

which the piece CD acts on the pin of the joint a is a

force of an amount = cd and in a direction from c toward

d ; hence the piece CD is in compression ;
whereas the

action of the piece DA upon the pin at a is from d toward

a (direction of arrow) and hence DA is in tension. Notice

that in constructing the force polygon
' a right-handed

(or clock-wise) rotation has been observed in considering
in turn the spaces ABC and D, round the joint a. A
similar order will be found convenient in each of the other

joints.

Knowing now the stress in the piece CD, (as well as ii^

DA) all but two of the forces acting on the pin at the joint

(3 are known, and accordingly we begin a force polygon, ft',

for that joint by drawing dc,= and
||
to the dc of polygon

a', but pointed in the opposite direction, since the action of

OD on the joint ft is equal and opposite to its action on
the joint a (this disregards the weight of the piece).

Through c draw ce = and
||
to the force CE(i.e., W2) and
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pointing the same way ;
then ef,

= and
|| to the load EF

(i.e. Pj) and pointing downward. Through f draw a
||
to

the piece FG and through d, a
||
to the piece GD, and the

polygon is closed, thus determining the stresses in the

pieces FG and GD. Noting the pointing of the arrows,
we readily see that FG is in compression while GD is in

tension.

Next pass to the joint d, and construct the polygon d',

thus determining the stress gh in GH and that ad in AD
;

this last force ad should check with its equal and oppo-
site ad already determined in polygon a'. Another check

consists in the proper closing of the polygon 7-',
all of

whose sides are now known.

[A compound stress-diagram may be formed by super-

posing the polygons already found in such a way as to

make equal sides co-incide
; but the character of each

stress is not so readily perceived then as when they are

kept separate].
In a similar manner we may find the stresses in any pin-

connected frame-work (in one plane and having no redun-
dant pieces) under given loads, provided all the support-
ing forces or reactions can be found. In the case of a

braced-arch (truss) as
shown in Fig. 357, hinged
to the abutments at t)oth

ends and not free to slide

laterally upon them, the

reactions at and B de-

357. pend, in amount and direc-

tion, not only upon the equations of Statics, but on the

form and elasticity of the arch-truss. Such cases will be
treated later under arch -ribs, or curved beams.

332. The Special EquiL Polygon. Its Relation to the Stresses

in the Rigid Body. Eeproducing Figs. 350 and 351 in Figs.
358 and 359, (where a rigid curved beam is in equilibrium
under the forces P,, P2, P3 ,

P4 and P'c ) we call a . . b . , v
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the special equil. polygon because it corresponds to a force

diagram in which the same order of forces has been ob-

served as that in which they occur along the beam (from
left to right here). From the relations between the force

PIG, 359.

diagram and equil. polygon, this special equil. polygon in

the space diagram has the following properties in connec-

tion with the corresponding rays (dotted lines) in the force

diagram.
The stresses in any cross-section of the portion O'A of

the beam, are due to P
l
alone

;
those of any cross-section

on AB to P
l
and P2 , i.e., to their resultant H^ whose mag-

nitude is given by the line Oa' in the force diagram, while

its line of action is ab the first segment of the equil. poly-

gon. Similarly, the stresses in BG are due to Pl9 P2 and

P3 , i.e., to their resultant 7?b acting along the segment be,

its magnitude being =Ob
r
in the force diagram. E.g., if

the section at m be exposed, considering O'ABm as a free

body, we have (see Fig. 360) the elastic stresses (or inter-

PIG. 361.

nal forces) at m balancing the exterior or " applied forces
w

Plt P2 and P3. Obviously, then, the stresses at m are just
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the same as if Eb the resultant of Pl9 P2 and P3, acted upon
an imaginary rigid prolongation of the beam intersecting
be (see Fig. 361).72b might be called the "anti-stress-result-

ant
"
for the portion BG of the beam. We may /. state

the following : If a rigid body is in equilibrium under a sys-

tem of Non-Concurrent Forces in a plane, and the special equi-

librium polygon has been drawn,, then each ray of the force

diagram is the anti-stress-resultant of that portion of the beam

which corresponds to the segment of the equilibrium polygon
to which the ray is parallel ; and its line of action is the seg-

ment just mentioned,

Evidently if the body is not one rigid piece, but com-

posed of a ring of uncemented blocks (or voussoirs), it may
be considered rigid only so long as no slipping takes place
or disarrangement of the blocks; and this requires that the
" anti-stress-resultant

"
for a given joint between two

blocks shall not lie outside the bearing surface of the

joint, nor make too small an angle with it, lest tipping or

slipping occur. For an example of this see Fig. 362, show-

ing a line of three blocks in equilibrium under five forces.

The pressure borne at the

joint MN9 is R& in the

| Pj
force-diagram and acts in

the line ab. The con-

struction supposes all

the forces given except
FIG. 362. one, in amount and posi-

tion, and that this one could easily be found in amount, as

being the side remaining to close the force polygon, while

its position would depend ok ihe equil. polygon. But in

practice the two forces PT
and J?'c are generally unknown,

hence the point 0, or pole of the force diagram, can not

be fixed, nor the special equil. polygon located, until other

considerations, outside of those so far presented, are

brought into play. In the progress of such a problem, as

will be seen, it will be necessary to use arbitrary trial po-
sitions for the pole 0, and corresponding trial equilibrium

polygons.
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CHAPTEE IX.

GRAPHICAL STATICS OF VERTICAL FORCES,

333. Remarks. (With the exception of 378 a) in prob-
lems to be treated subsequently (either the stiff arch -rib,

or the block-work of an arch-ring, of masonry) when the

body is considered free all the forces holding it in equiL
will be vertical (loads, due to gravity) except the reactions

at the two extremities, as in Fig. 363
;
but for convenience

each reaction will be replaced by its horizontal and verti-

cal components (see Fig. 364). The two ZTs are of course

<>qual, since they are the only horizontal forces in the

system. Henceforth, aU equil. polygons under discussion

le understood to imply this kind of system of forces. Plt

FIG. 363. FIG. 364. FIG. 364a.

etc., will represent the " loads
"

; VQ and Vn the vertical

components of the abutment reactions ;
H the value of

either horizontal component of the same. (We here sup-

pose the pressures TQ and TD resolved along the horizon-

tal and vertical.)
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334, Concrete Conception of an Equilibrium Polygon, Any
equilibrium polygon has this property, due to its mode
of construction, viz.: If the ab and be of Fig. 358 were im-

ponderable straight rods, jointed at b without friction, they
would be in equilibrium under the system of forces there

given. (See Fig. 364a). The rod ab suffers a compression

equal to the E& of the force diagram, Fig. 359, and be a

compression = J?b . In some cases these rods might be in

tension, and would then form a set of links playing the

part of a suspension-bridge cable. (See 44).

335, Example of Equilibrium Polygon Drawn to Vertical Loads

Fig. 365. [The structure bearing the given loads is not

shown, but simply the imaginary rods, or segments of an

equilibrium polygon, which would support the given loads

in equilibrium if the abutment points A and B, to which

the terminal rods ar^ hinged, were firm. In the present
case this equilibrium is unstable since the rods form a

standing structure
;
but if they were hanging, the equilibri-

um would be stable. Still, in the present case, a very light

bracing, or a little friction at all joints would make the

equilibrium stable.

FIG. 365.

Given three loads P19 P2, and P3, and two " abutment
verticals

"
A' and B't in which we desire the equil. poly-

gon to terminate, lay off as a "load-line" to scale, P,, P2 ,

and P3 end to end in their order. Then selecting any pole,
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0, draw the rays 01, 02, etc., of a force diagram (the
and P's, though really on the same vertical, are separated

slightly for distinctness
;
also the ZTs, which both pass

through and divide the load-line into V and Vn). We
determine a corresponding equilibrium polygon by draw-

ing through A (any point in A') a line
||
to . . 1, to inter-

sect P! in some point b
; through b a

||
to . . 2, and so on>

until B' the other abutment-vertical is struck in some

point B. AB is the " abutment-line
"
or "

closing-line."

By choosing another point for 0, another equilibrium

polygon would result. As to which of the infinite

number (which could thus be drawn, for the given loads

and the A and B' verticals) is the special equilibrium poly-

gon for the arch-rib or stone-arch, or other structure, on

which the loads rest, is to be considered hereafter. In

any of the above equilibrium polygons the imaginary
series of jointed rods would be in equilibrium.

336, Useful Property of an Equilibrium Polygon for Vertical

Loads. (Particular case of 328). See Fig. 366. In any

equil. polygon, supporting vertical loads, consider as free

any number of consecutive segments, or rods, with the

loads at their joints, e. g., the 5th and 6th and portions of

the 4th and 7th which, we sup-

pose cut and the compressive
forces in them put in, T4 and

T7t
in order to consider 4567

as a free body. For equil.,

according to Statics, the lines

of action of 1\ and T7 (the com-
see. pression in those rods) must in-

tersect in a point, (7, in the line of action of the resultant

of P4, P5, and P6 ; i.e., of the loads occurring at the inter-

vening vertices. That is, the point C must lie in the ver-

tical containing the centre of gravity of those loads. Since

the position of this vertical must be independent of the

particular equilibrium polygon used, any other (dotted

lines in Fig. 366) for the same loads will give the same re-
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suits. Hence the vertical CD, containing the centre of

gravity of any number of consecutive loads, is easily found

by drawing the equilibrium polygon corresponding to

any convenient force diagram having the proper load-line.

This principle can be advantageously applied to finding

a gravity-line of any plane figure, by dividing the latter

into parallel strips, whose areas may be treated as loads

applied in their respective centres of gravity. If the strips

are quite numerous, the centre of gravity of each may be

considered to be at the centre of the line joining the mid-

dles of the two long sides, while their areas may be taken

as proportional to the lengths of the lines drawn through
these centres of gravity parallel to the long sides and lim-

ited by the end-curves of the strips. Hence the " load-

line
"
of the force diagram may consist of these lines, or.

of their halves, or quarters, etc., if more convenient
( 376).

USEFUL RELATIONS BETWEEN FORCE DIA-

GRAMS AND EQUILIBRIUM POLYGONS,

(for vertical loads.)

337. R6sum6 of Construction. Fig. 367. Given the loads

P.lt etc., their verticals, and the two abutment verticals A'

and B', in which the abutments are to lie ; we lay off a

load-line 1 ... 4, take any convenient pole, 0, for a force-

diagram and complete the latter. For a corresponding
equilibrium polygon, assume any point A in the vertical

A', for an abutment, and draw the successive segments
Al, 2, etc., respectively parallel to the inclined lines of the

force diagram (rays), thus determining finally the abut-
ment B, in B\ which (B) will not in general lie in the hor-
izontal through A.

Now join AB, calling AB the abutment-line, and draw a

parallel to it through 0, thus fixing the point n f on the
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FIG. 367. FIG. 368.

load-line. This point n'
t as above determined, is indepen-

dent of the location of the pole, -0, (proved in 329) and

divides the load-line into two portions (
V = 1 . . . n', and

V'n = n' . . . 4) which are the vertical pressures which two

supports in the verticals A' and B' would sustain if the

given loads rested on a horizontal rigid bar, as in Fig. 368.

See 329. Hence to find the point n' we may use any
convenient pole 0.

[N. B. The forces V and Vn of Fig. 367 are not identi-

cal with F' and F'n , but may be obtained by dropping a

"] from to the load-line, thus dividing the load-line

into two portions which are V (upper portion) and Vn .

However, if A and B be connected by a tie-rod, in Fig.

367, the abutments in that figure will bear vertical press-
ures only and they will be the same as in Fig. 368, while

the tension in the tie-rod will be = On'.']

Theorem, The vertical dimensions of any two equili-

brium polygons, drawn to the same loads, load-verticals, and

abutment-verticals, are inversely proportional to their H's (or

"pole distances "). We here regard an equil. polygon and
its abutment-line as a closed figure. Thus, in Fig. 369,

we have two force-diagrams (with a common load-line, for

convenience) and their corresponding equil. polygons, for

the same loads and verticals. From 337 we know that

On' is II
to AB and n' is ||

to A Bn . Let CD be any ver-

tical cutting the first segments of the two equil. polygons.
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the intercepts thus determined by 2' and '

, respect-

ively. From the

parallelisms just
mentioned, and
others more famil-

iar, we have the

triangle In' sim

ilar to the triangle

Az' (shaded), and

the triangle In'

similar to the tri-

angle A z. Hence
FIG. 369.

the proportions between j In' _z' In' _z" )

bases and altitudes
( ~H h H h )

.'. z' : z' : : H : H. The same kind of proof may easily

be applied to the vertical intercepts in any other segments,

e.g. and z
f

Q. E. D.

339. Corollaries to the foregoing. It is evident that :

(1.) If the pole of the force-diagram be moved along a

vertical line, the equilibrium polygon changing its form

in a corresponding manner, the vertical dimensions of the

equilibrium polygon remain unchanged ; and

(2.) If the pole move along a straight line which con-

tains the point ^', the direction of the abutment-line

remains constantly parallel to the former line, while the

vertical dimensions of the equilibrium polygon change in

inverse proportion to the pole distance, or H, of the force-

diagram. \_H is the "1 distance of the pole from the load-

line, and is called the pole-distance].

340. Linear Arch as Equilibrium Polygon. (See 316.)
If the given loads are infinitely small with infinitely small

horizontal spaces between them, any equilibrium polygon
becomes a linear arch. Graphically we can not deal with

these infinitely small loads and spaces, but from 336 it

is evident that if we replace them, in successive groups.
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Fm 370

by finite forces, each of which = the sum of those com-

] I I 1. J * H J *
'

t, v
l I t t /f applied through the cen-

tre of gravity of that

group, we can draw an

equilibrium polygon
whose segments will be

tangent to the curve of

the corresponding linear

arch, and indicate its posi-

tion with sufficient exactness for practical purposes. (See

Fig. 370). The successive points of tangency A, m, n, etc.,

lie vertically under the points of division between the

groups. This relation forms the basis of the graphical
treatment of voussoir, or blockwork, arches.

341, To Pass an Equilibrium Polygon Through Three Arbitrary

Points. (In the present case the forces are vertical. For

a construction dealing with any plane system of forces see

construction in 378#.) Given a system of loads, it is re-

quired to draw

an equilibrium

them through

anythree points,

two of which
may be consid-

Fio. 371. -I,
e r e d as abut-

ments, outside of the load-verticals, the third point being
between the verticals of the first two. See Fig. 371. The

loads Plt etc., are given, with their verticals, while A, p,

and B are the three points. Lay off the load-line, and

with any convenient pole, Olt construct a force-diagram,
then a corresponding preliminary equilibrium polygon

beginning at A. Its right abutment B
} ,
in the vertical

through 5, is thus found. O
l
n' can now be drawn ||

to ABlf

to determine n'. Draw n'O \\ to BA. The pole of the

required equilibrium polygon must lie on>i'0
( 337}
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Draw a vertical through p. The H of the required equili-
brium polygon must satisfy the proportion H : H^ : : r$ :

pni. (See 338). Hence construct or compute If from
the proportion and draw a vertical at distance H from
the load-line (on the left of the load-line here) ; its inter-

section with n' gives the desired pole, for which a
force diagram may now be drawn. The corresponding

equilibrium polygon beginning at the first point A will

also pass through p and B
;

it is not drawn in the figure.

342. Symmetrical Case of the Foregoing Problem. If two

points A and B are on a level, the third, p, on the middle

vertical between them ;
and the loads (an even number)

symmetrically disposed both in position and magnitude, about

, we may proceed more simply, as follows : (Fig. 372).

From symmetry n'

must occur in the mid-
dle of the load-line, of

which we need lay off

only the upper half.

Take a convenient pola

#!, in the horizontal

through n', and draw a half force diagram and a corres-

ponding half equilibrium polygon (both dotted). The up-

per segment be of the latter must be horizontal and being

prolonged, cuts the prolongation of the first segment in a

point d
y which determines the vertical CD containing the

centre of gravity of the loads occurring over the half-span
on the left. (See 336). In the required equilibrium poly-

gon the segment containing the point p must be horizon-

tal, and its intersection with the first segment must lie in

CD. Hence determine this intersection, 6y

, by drawing the

vertical CD and a horizontal through p ;
then join CA>

which is the first segment of the required equil. polygon.

A parallel to CA through 1 is the first ray of the corres-

ponding force diagram, and determines the pole on tbe

horizontal through n'. Completing the force diagram for

PlG . 372 .
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this pole (half of it only here), the required equil. poly-

gon is easily finished afterwards.

343, To Find a System of Loads Tinder Which a Given Equi-
librium Polygon Would be in Equilibrium, Fig. 373. Let AB
be the given equilibrium polygon. Through any point

as a pole draw a parallel to each

segment of the equilibrium polygon.

Any vertical, as V, cutting these

lines will have, intercepted upon it,

a load-line 1, 2, 3, whose parts 1 . . 2,

2 . . 3, etc., are proportional to the

successive loads which, placed on

the corresponding joints of the equilibrium polygon would

be supported by it in equilibrium (unstable).

One load may be assumed and the others constructed.

A hanging, as well as a standing, equilibrium polygon

snay be dealt with in like manner, but will be mstable equi-

librium. The problem in 44 may be solved in this way.

FIG. 373.
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CHAPTEE X.

RIGHT ARCHES OF MASONRY.

344, In an ordinary "right" stone-arch (i.e.,
one in

which the faces are ~| to the axis of the cylindrical soffit,

or under surface), the successive blocks forming the arch-

ring are called voussoirs, the joints between them being

planes which, prolonged, meet generally in one or more

horizontal lines
; e.g., those of a three-centred arch in three

j| horizontal lines
;
those of a circular arch in one, the axis

of the cylinder, etc. Elliptic arches are sometimes used. The

inner concave surface is called the soffit, to which the radiat-

ing joints between the voussoirs are made perpendicular.

The curved line in which the soffit is intersected by a plane

FIG. 374.

T to the axis of the arch is the Intrados. The curve in the

same plane as the intrados, and bounding the outer ex-

tremities of the joints between the voussoirs, is called the

Extrados.

Fig. 374 gives other terms in use in connection with a
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stone arch, and explains those already given. AB is the
u
springing-line."

345 Mortar and Friction. As common mortar hardens

very slowly, no reliance should be placed on its tenacity
as an element of stability in arches of any considerable

size ; though hydraulic mortar and thin joints of ordinary
mortar can sometimes be depended on. Friction, however,
between the surfaces of contiguous voussoirs, plays an
essential part in the stability of an arch, and will there-

fore be considered.

The stability of voussoir-arches must .*. be made to

depend on the resistance of the voussoirs to compresssion
and to sliding upon each other

;
as also of the blocks

composing the piers, the foundations of the latter being
firm.

346. Point of Application of the Resultant Pressure between

two consecutive voussoirs ; (or pier blocks). Applying
Navier's principle (as in flexure of beams) that the press-
ure per nnit area on a joint varies uniformly from the

extremity under greatest compression to the point of least

compression (or of no compression); and remembering
that negative pressures (i.e., tension) can not exist, as they

might in a curved beam, we may represent the pressure

per unit area at successive points of a joint (from the intra-

dos toward the extrados, or vice versa) by the ordinates of

a straight line, forming the surface of a trapezoid or tri-

angle, in which figure the foot of the ordinate of the cen-

tre of gravity is the point of application of the resultant

pressure. Thus, where the least compression is supposed

FIG. 375. Fio. 376. FIG. 377. Fi&. 378.
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to occur at the intrados A, Fig. 375, the pressures vary as

the ordinates of a trapezoid, increasing to a maximum value

at B
t
in the extrados. In Fig. 376, where the pressure is zero

at B, and varies as the ordinates of a triangle, the result-

ant pressure acts through a point one-third the joint-

length from A. Similarly in Fig. 377, it acts one-third

the joint-length from B. Hence, when the pressure is not

zero at either edge the resultant pressure acts within the

middle third of the joint. Whereas, if the resultant press-
ure falls without the middle third, it shows that a portion
Am of the joint, see Fig. 378, receives no pressure, i.e., the

joint tends to open along Am.
Therefore that no joint tend to open, the resultant press-

ure must fall within the middle third.

It must be understood that the joint surfaces here dealt

with are rectangles, seen edgewise in the figures.

347. Friction. By experiment it has been found the

angle of friction (see 156) for two contiguous voussoirs

of stone or brick is about 30 ; i.e., the coefficient of fric-

tion is / = tan. 30. Hence if the direction of the press-
ure exerted upon a voussoir by its neighbor makes an

angle a less than 30 with the normal to the joint surface^

there is no danger of rupture of the arch by the sliding
of one on the other. (See Fig. 379).

348. Eesistance to Crushing. When the resultant pressure
falls at its extreme allowable limit, viz. : the edge of the

middle third, the pressure per
unit of area at n, Fig. 380, is

double the mean pressure per
unit of area. Hence, in de-

signing an arch of masonry,
we must be assured that at

every joint (taking 10 as a

factor of safety)

( Double the mean press- ) , T -, ,-, \ i n
\ ure per nnit of area I

must be less than /

FIG. 379. FIG. 380.
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C being the ultimate resistance to crushing, of the material

employed ( 201) (Modulus of Crushing).
Since a lamina one foot thick will always be considered

in what follows, careful attention must be paid to the units

employed in applying the above tests.

EXAMPLE. If a joint is 3 ft. by 1 foot, and the resultant

pressure is 22.5 tons the mean pressure per sq. foot is

p=22.5-v-3=7.5 tons per sq. foot

.'. its double=15 tons per sq. foot=208.3 Ibs. sq. inch,

which is much less than yio of G for most building stones ;

see 203, and below.

At joints where the resultant pressure falls at the middle,

the max. pressure per square inch would be equal to the

mean pressure per square inch ; but for safety it is best to

assume that, at times, (from moving loads, or vibrations)

it may move to the edge of the middle third, causing the

max. pressure to be double the mean (per square inch).

Gen ; Gillmore's experiments in 1876 gave the following

results, among many others :

NAME OF BUILDING STONE. C IN LBS. PER SQ. INCH.

Berea sand-stone, 2-inch cube, - ... 8955

4 " " - 11720

Limestone, Sebastopol, 2-inch cube (challc\
- - 1075

Limestone from Caen, France, - - 3650

Limestone from Kingston, N. Y., - 13900

Marble, Vermont, 2-inch cube, - 8000 to 13000

Granite, New Hampshire, 2-inch cube, 15700 to 24000

349. The Three Conditions of Safe Equilibrium for an arch of

nncemented voussoirs.

Kecapitulating the results of the foregoing paragraphs,
we may state, as follows, the three conditions which must

be satisfied at every joint of arch-ring and pier, for each

of any possible combination of loads upon the structure :

<
(1). The resultant pressure must pass within the middle-

third,

(2). The resultant pressure must not make an angle >
30 with the normal to the joint.

(3). The m^an pressure per unit of area on the surface
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of the joint must not exceed

ing of the material.

of the Modulus of crush-

350. The True Linear-Arch, or Special Equilibrium Polygon;

and the resultant pressure at any joint. Let the weight
of each voussoir and its load be represented by a vertical

force passing through the centre of gravity of the two, as

in Fig. 381. Taking any
two points A and B, A
being in the first joint and

B in the last
;
also a third

point, jt>,
in the crown

joint (supposing such to

be there, although gener-

ally a key-stone occupies
the crown), through these FIG. ssi.

three points can be drawn [ 341] an equilibrium polygon
for the loads given ; suppose this equil. polygon nowhero

passes outside of the arch-ring (the arch-ring is the por-
tion between the intrados, mn, and the (dotted) extrados

m'n'} intersecting the joints at b, c, etc. Evidently if such

be the case, and small metal rods (not round) were insert-

ed at A, b, c, etc., so as to separate the arch -stones slight-

ly, the arch would stand, though in unstable equilibrium,
the piers being firm

; and by a different choice of A, p, and

B
y
it might be possible to draw other equilibrium poly-

gons with segments cutting the joints within the arch-

ring, and if the metal rods were shifted to these new inter-

sections the arch would again stand (in unstable equilib-

rium).
In other words, if an arch stands, it may be possible to

draw a great number of linear arches within the limits of

the arch-ring, since three points determine an equilibrium

polygon (or linear arch) for given loads. The question
arises then : ivhich linear arch is the locus of the actual re-

sultant pressures at the successive joints ?

[Considering the arch-ring as an elastic curved beam
inserted in firm piers (i.e., the blocks at the springing-line
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are incapable of turning) and having secured a close fit at

all joints before the centering is lowered, the most satisfac-

tory answer to this question is given in Prof. Greene's
"
Arches," p. 131

; viz., to consider the arch-ring as an

arch rib of fixed ends and no hinges ;
see 380 of next

chapter ;
but the lengthy computations there employed

(and the method demands a simple algebraic curve for the

arch) may be most advantageously replaced by Prof.

Eddy's graphic method (" New Constructions in Graphical

Statics," published in Yan Nostrand's Magazine for 1877),

which applies to arch curves of any form.

This method will be given in a subsequent chapter, on

Arch Ribs, or Curved Beams
;
but for arches of masonry a

much simpler procedure is sufficiently exact for practical

purposes and will now be presented].
If two elastic blocks

of an arch-ring touch at

one edge, Fig. 382, their

adjacent sides making a

small angle with each
382. FIG. 383. other, and are then grad-

ually pressed more and more forcibly together at the edge

m, as the arch-ring settles, the centering being gradually

lowered, the surface of contact becomes larger and larger,

from the compression which ensues (see Fig. 383); while

the resultant pressure between the blocks, first applied at

the extreme edge m, has now probably advanced nearer the

middle of the joint in the mutual adjustment of the arch-

Btones. With this in view we may reasonably deduce the

following theory of the location of the true linear arch

(sometimes called the " line of pressures
" and " curve of

pressure ") in an arch under given loading and with/rm

piers. (Whether the piers are really unyielding, under the

oblique thrusts at the springing-line, is a matter for sub-

sequent investigation.

351, Location of the True Linear Arch. Granted that the

voussoirs have been closely fitted to each other over the
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centering (sheets of lead are sometimes used in the joints

to make a better distribution of pressure); and that the

piers are firm
;
and that the arch can stand at all without

the centering ;
then we assume that in the mutual accom-

modation between the voussoirs, as the centering is low-

ered, the resultant of the pressures distributed over any

joint, if at first near the extreme edge of the joint, advances

nearer to the middle as the arch settles to its final posi-
tion of equilibrium under its load ;

and hence the follow~

ing

352. Practical Conclusions.

I. If for a given arch and loading, with firm piers, an

equilibrium polygon can be drawn (by proper selection of

the points A, p, and B, Fig. 381) entirely within the mid-

dle third of the arch ring, not only will the arch stand, but

the resultant pressure at every joint will be within the

middle third (Condition 1, 349) ;
and among all possible

equilibrium polygons which can be drawn within the mid-

dle third, that is the " true
"
one which most nearly coin-

cides with the middle line of the arch-ring.
II. If (with firm piers, as before) no equilibrium poly-

gon can be drawn within the middle third, and only one

within the arch-ring at all, the arch may stand, but chip-

ping and spawling are likely to occur at the edges of the

joints. The design should .*. be altered.

III. If no equilibrium polygon can be drawn within
the arch -ring, the design of either the arch or the loading
must be changed ; since, although the arch may stand,
from the resistance of the spandrel walls, such a stability
must be looked upon as precarious and not countenanced
in any large important structure. (Very frequently, in

small arches of brick and stone, as they occur in buildings,
the cement is so tenacious that the whole structure is vir-

tually a single continuous mass).

When the " true
"
linear arch has once been determined,

the amount of the resultant pressure on any joint is given

by the length of the proper ray in the force diagram.
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ARRANGEMENT OF DATA FOR GRAPHIC
TREATMENT.

353. Character of Load. In most large stone arch bridges
fche load (permanent load) does not consist exclusively of

masonry up to the road-way but partially of earth filling

above the masonry, except at the faces of the arch where

the spandrel walls serve as retaining walls to hold the

earth. (Fig. 384). If the intrados is a half circle or half-

\ \U
FIG. 884. FIG. 385.

ellipse, a compactly-built masonry backing is carried up
beyond the springing-line to AB about 60 to 45 from the

crown, Fig. 385 ;
so that the portion of arch ring below

AB may be considered as part of the abutment, and thus

AB is the virtual springing-line, for graphic treatment.

Sometimes, to save filling, small arches are built over

the haunches of the main arch, with earth placed over

them, as shown in Fig. 386. In any of the preceding cases

FIG. 386. FIG. 387.

it is customary to consider that, on account of the bond-

ing of the stones in the arch shell, the loading at a given
distance from the crown is uniformly distributed over the

width of the roadway.
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354, Reduced Load-Contour, In the graphical discussion

of a proposed arch we consider a lamina one foot thick,

this lamina being vertical and ~| to the axis of the arch
;

i.e., the lamina is || to the spandrel walls. For graphical
treatment, equal areas of the elevation (see Fig. 387) of

this lamina must represent equal weights. Taking the

material of the arch-ring as a standard, we must find for

each point p of the extrados an imaginary height z of the

^rch-ring material, which would give the same pressure

(per running horizontal foot) at that point as that due to

the actual load above that point. A number of such or-

dinates, each measured vertically upward from the extra-

dos determine points in the "Reduced Load-Contour," i.e.,

the imaginary line, AM, the area between which and the

extrados of the arch-ring represents a homogeneous load

of the same density as the arch-ring, and equivalent to the

actual load (above extrados), vertical by vertical.

355. Example of Reduced Load-Contour. Fig. 388. Given
an arch-ring of granite (heaviness =170 Ibs. per cubic

foot) with a dead load of rubble (heav.
=

140) and earth

(heav.
=

100), distributed as in figure. At the point p, of

the extrados, the depth 5 feet of rubble is equivalent to a

depth of
[j* x5]=4.1 ft. of granite, while the 6 feet of earth

is equivalent to [|^x6]=3.5 feet of granite. Hence the

Reduced Load-Contour has an ordinate, above p, of 7.6 feet.

That is, for each of several points of the arch-ring extrados

reduce the rubble ordinate in the ratio of 170 : 140, and
the earth ordinate in the ratio 170 : 100 and add the re-

sults, setting off the sum vertically from the points in the

extrados*. In this way Fig. 389 is obtained and the area

*This is most conveniently done by graphics, thus : On a right-line set off 17 equal
parts (of any convenient magnitude.) Call this distance OA. Through draw another
right line at any convenient angle (30 to 60) with OA, and on it from O

set off OB equal to 14 (for the rubble ; or 10 for the earth) of the game equal
parts. Join AS. From toward A set off* all the rubble ordinates to be reduced,
feach being set off from 0) and through the other extremity of each dravr a line par-
allel to AS. The reduced ordinates will be the respective lengths, from 0, along OB,
(to the intersections of these parallels with OB.

* With the dividers.
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FIG. 388. FIG. 389.

there given is to be treated as representing homogeneous
granite one foot thick. This, of course, now includes the

arch-ring also. AB is the " reduced load- contour."

356. Live Loads. In discussing a railroad arch bridge
the " live load" (a train of locomotives, e.g., to take an ex-

treme case) can not be disregarded, and for each of its po-
sitions we have a separate Reduced Load-Contour.

EXAMPLE. Suppose the arch of Fig. 388 to be 12 feet

wide (not including spandrel walls) and that a train of lo-

comotives weighing 3,000 Ibs. per running foot of the track

covers one half of the span. Uniformly
* distributed later-

ally over the width, 12 ft., this rate of loading is equiva-
lent to a masonry load of one foot high and a heaviness of

250 Ibs. per cubic ft., i.e., is equivalent to a height of 1.4

ft. of granite masonry [since ^ X 1.0=1.4] over the half

span considered. Hence from Fig. 390 we obtain Fig. 391

in an obvious manner. Fig. 391 is now ready for graphic
treatment.

FIG. 390. FIG. 391.

357. Piers and Abutments. In a series of equal arches

the pier between two consecutive arches bears simply the

weight of the two adjacent semi-arches, plus the load im-

* If the earth-filling is shallow, the laminae directly under the track prob
ably receive a greater pressure than the others.
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mediately above the pier, and /. does not need to be as

large as the abutment of the first and last arches, since

these latter must be prepared to resist the oblique thrusts

of their arches without help from the thrust of another on

the other side.

In a very long series of arches it is sometimes customary
to make a few of the intermediate piers large enough to

act as abutments. These are called " abutment piers," and

in case one arch should fall, no others would be lost except
those occurring between the same two abutment piers as

the first. See Fig. 392. A is an abutment-pier.

nrvnnn
FIG. 3W

GRAPHICAL TREATMENT OF ARCH.
358, Having found the " reduced load-contour," as in

preceding paragraphs, for a given arch and load, we are

ready to proceed with the graphic treatment, i.e., the first

given, or assumed, form and thickness of arch-ring is to be

investigated with regard to stability. It may be necessary
to treat, separately, a lamina under the spandrel wall, and

one under the interior loading. The constructions are

equally well adapted to arches of all shapes, to Gothic as

well as circular and elliptical.

359. Case I. Symmetrical Arch and Symmetrical Loading. .

(The
"
steady

"
(permanent) or " dead "

load on an arch is

usually symmetrical). Fig. 393. From symmetry we need,

FIG. 393. FIG. 394. FIG. 395.
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deal with only one half (say the left) of the arch and load.

Divide this semi-arch and load into six or ten divisions

by vertical lines ; these divisions are considered as trape-
zoids and should have the same horizontal width = b (a
convenient whole number of feet) except the last one, LKN,
next the abutment, and this is a pentagon of a different

width bl9 (the remnant of the horizontal distance LC). The

weight of masonry in each division is equal to (the area

of division) X (unity thickness of lamina) x (weight of a cu-

bic unit of- arch-ring). For example for a division having
an area of 20 sq. feet, and composed of masonry weighing
160 Ibs. per cubic foot, we have 20x1x160=3,200 Ibs.,

applied through the centre of gravity of the division.

The area of a trapezoid, Fig. 394, is ^(/&i+^2)>
and its cen-

tre of gravity may be found, Fig. 395, by the construction

of Prob. 6, in 26 ;
or by 27a. The weight of the pen-

tagon LN, Fig. 393, and its line of application (through
centre of gravity) may be found by combining results for

the two trapezoids into which it is divided by a vertical

through K. See 21.

Since the weights of the respective trapezoids (except,

ing LN} are proportional to their middle vertical in-

tercepts [such as ^(^+^2) Fig. 394] these intercepts (trans-

ferred with the dividers) may be used directly to form the

load-line, Fig. 396, or proportional parts of them if more

convenient. The force scale, which this implies, is easily

computed^ and a proper length calculated to represent the

weight of the odd division LN ; i.e., 1 ... 2 on the load-

line.

Now consider A, the middle point of the abutment joint,

Fig. 396, as the starting point of an equilibrium polygon

(or abutment of a linear arch) for a given loading, and re-

quire that this equilibrium polygon shall pass through pt

the middle of the crown joint, and through the middle of

the abutment joint on the right (not shown in figure).

Proceed as in 342, thus determining the polygon Ap
for the half-arch. Draw joints in the arch-ring through
those points where the extrados is intersected by the ver-
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FIG. 396. FIG. 397.

tical separating the divisions (not the gravity verticals).

The points in which these joints are cut by the segments
of the equilibrium polygon, Fig. 397, are (very nearly, if

the joint is not more than 60 from p, the crown) the points
of application in these joints, respectively, of the resultant

pressures on them, (if this is the " true linear arch
"
for

this arch and load) while the amount and direction of each

such pressure is given by the proper ray in the force-dia-

gram.
If at any joint so drawn the linear arch (or equilibrium

polygon) passes outside the middle third of the arch-ring,
the point A, or p, (or both) should be judiciously moved

(within the middle third) to find if possible a linear arch

which keeps within limits at all joints. If this is found

impossible, the thickness of the arch -ring may be increased

at the abutment (giving a smaller increase toward the

crown) and the desired result obtained
;
or a change in the

distribution or amount of the loading, if allowable, may
gain this object. If but one linear arch can be drawn
within the middle third, it may be considered the " true

"

one
;

if several, the one most nearly co-inciding with the
middles of the joints (see 351 and 352) is so considered.

360. Case II. TJnsymmetrical Loading on a Symmetrical Arch;

(e.g., arch with live load covering one half-span as in Figs.
390 and 391). Here we must evidently use a full force

diagram, and the full elevation of the arch -ring and load.
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See Fig. 398. Select three points A, p, and B, as follows,

to determine a trial equilibrium polygon :

Select A at the lower limit of the middle third of the

FIG. 398.

abutment-joint at the end of the span which is the more

heavily-loaded ;
in the other abutment-joint take B at the

upper limit of the middle third
;
and take p in the middle

of the crown-joint. Then by 341 draw an equilibrium

polygon (i.e., a linear arch) through these three points for

the given set of loads, and if it does not remain within the

middle third, try other positions for A, p, and B, within

the middle third. As to the " true linear arch
"
alterations

of the design, etc., the same remarks apply as already

given in Case I. Yery frequently it is not necessary to

draw more than one linear arch, for a given loading, for

even if one could be drawn nearer the middle of the arch-

ring than the first, that fact is almost always apparent on

mere inspection, and the one already drawn (if within

middle third) will furnish values sufficiently accurate for

the pressures on the respective joints, and their direction

angles.

360a. The design for the arch-ring and loading is not

to be considered satisfactory until it is ascertained that for

the dead load and any possible combination of live-load

(in addition) the pressure at any joint is
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(1.) Within the middle third of that joint ;

(2.) At an angle of < 30 .with the normal to joint-

surface.

(3.) Of a mean pressure per square inch not > than V^
of the ultimate crushing resistance. (See 348.)

361. Abutments, The abutment should be compactly
and solidly built, and is then treated as a single rigid mass.

The pressure of the lowest voussoir upon it (considering
a laming one foot thick) is given by the proper ray of the

force diagram (0 .. 1, e. g., in Fig. 396) in amount and direc-

tion. The stability of the abutment will depend on the

amount and direction of the resultant obtained by com-

bining that pressure Pa with the weight G of the abutment
and its load, see Fig. 399. Assume a probable width RS

f r the abutment and compute the weight G
of the corresponding abutment OBRS and

MNBO, and find the centre of gravity of the

whole mass C. Apply G in the vertical

through (7, and combine it with Pa at their in-

tersection D. The resultant P should not cut

the base ES in a point beyond the middle third

(or, if this rule gives too massive a pier, take

such a width that the pressure per square
inch at S shall not exceed a safe value as

FIG. 399. computed from 362.) After one or two
trials a satisfactory width can be obtained,

"We should also be assured that the angle PDG is less

than 30. The horizontal joints above US should also be

tested as if each were, in turn, the lowest base, and if

necessary may be inclined (like mn) to prevent slipping.

On no joint should the maximum pressure per square inch

be > than l

/w the crushing strength of the cement. Abut-

ments of firm natural rock are of course to be preferred
where they can be had. If water penetrates under an

abutment its buoyant effort lessens the weight of the lat-

ter to a considerable extent,
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362, Maximum Pressure Per Unit of Area When the Resultant

Pressure Falls at Any Given Distance from the Middle
; according

to Navier's theory of the distribution of the pressure ; see

346. Case I. Let the resultant pressure P, Fig. 400, (a),

FIG. 400. FIG. 401.

fall within the middle third, a distance = nd
(< l

/& d)
from the middle of joint (d

= depth of joint.) Then we
have the following relations :

p (the mean press, per. sq. in.),pin (max. press, persq. in.),

and pn (least press, per sq. in.) are proportional to the lines

h (mid. width), a (max. base), and c (min. base) respectively,

of a trapezoid, Fig. 400, (b), through whose centre of gravity
P acts. But ( 26)

^=4-.^Z_
c

i.e., n=/6 Z* or a=h (Qn+l)
6 a-f c h

-' PmP (6H-1). Hence the following table :

press. pm= 2 %
then the max.

times the mean pressure.

Case II. Let P fall outside the mid. third, a distance=
nd (> yk d) from the middle of joint. Here, since the

joint is not considered capable of withstanding tension,

we have a triangle, instead of a trapezoid. Fig. 401. First

compute the mean press, per sq. in.

*> = _
x : ,'. ? or from this table : (lamina ona

(1 2n) 18 d inches

foot thick).
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For nd =
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CHAPTEE XL

ARCH-RIBS.

364. Definitions and Assumptions. An arch-rib (or elastic-

arch, as distinguished from a block-work arch) is a rigid
curved beam, either solid, or built up of pieces like a

truss (and then called a braced arch) the stresses in which,
under a given loading and with prescribed mode of sup-

port it is here proposed to determine. The rib is sup-

posed symmetrical about a vertical plane containing its

axis or middle line, and the Moment of Inertia of any cross

section is understood to be referred to a gravity axis of

the section, which (the axis) is perpendicular to the said

vertical plane. It is assumed that in its strained condi-

tion under a load, the shape of the rib differs so little

from its form when unstrained that the change in the ab-

scissa or ordinate of any point in the rib axis (a curve)

may be neglected when added (algebraically) to the co-

ordinate itself
; also that the dimensions of a cross-section

are small compared with the radius of curvature at any

part of the curved axis, and with the span.

365. Mode of Support. Either extremity of the rib may be

hinged to its pier (which gives freedom to the end-tangent-
line to turn in the vertical plane of the rib when a load is

applied); or may be fixed, i.e., so built-in, or bolted rigid-

ly to the pier, that the end-tangent-line is incapable of

changing its direction when a load is applied. A hinge

may be inserted anywhere along the rib, and of course
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destroys the rigidity, or resistance to bending at that

point. (A. hinge having its pin horizontal "] to the axis of

the rib is meant). Evidently no more than three such

hinges could be introduced along an arch-rib between two

piers ;
unless it is to be a hanging structure, acting as a

suspension-cable.

366. Arch Rib as a Free Body. In considering the whole

rib free it is convenient, for graphical treatment, that no

section be conceived made at its extremities, if fixed
; hence

in dealing with that mode of support the end of the rib

will be considered as having a rigid prolongation reach-

ing to a point vertically above or below the pier junction,

an unknown distance from it, and there acted on by a force

of such unknown amount and direction as to preserve the

actual extremity of the rib and its tangent line in the same

position and direction as they really are. As an illustra-

tion of this Fig. 402

shows free an arch rib.

ONB, with its extremi-

ties and Bfixed in the

piers, with no hinges,
and bearing two
loads P; and P2. The
other forces of the sys-

tem holding it in equi- FIG. 402.

librium are the horizontal and vertical components, of the

pier reactions (H, V, Hn , and Fn ), and in this case of fixed

ends each of these two reactions is a single force not in-

tersecting the end of the rib, but cutting the vertical

through the end in some point F (on the left
;
and in G on

the right) at some vertical distance c, (or cT), from the end.

Hence the utility of these imaginary prolongations OQFt

and BRG, the pier being supposed removed. Compare
Figs. 348 and 350.

The imaginary points, or hinges, F and #, will be called

abutments being such for the special equilibrium polygon
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(dotted line), while and B are the real ends of the curved

beam, or rjb.

In this system of forces there are five unknowns, viz.: V9

Vnt H = Hny and the distances c and d. Their determina-

tion by analysis, even if the rib is a circular arc, is ex-

tremely intricate and tedious ; but by graphical statics

(Prof, Eddy's method ; see 350 for reference), it is com-

paratively simple and direct and applies to any shape of

rib, and is sufficiently accurate for practical purposes.
This method consists of constructions leading to the loca-

tion of the "
special equilibrium polygon

"
and its force

diagram. In case the rib is hinged to the piers, the re-

actions of the latter act through these hinges, Fig. 403,

i.e., the abutments of the special

equilibrium polygon coincide with

the ends of the rib and B, and for

a given rib and load the unknown

quantities are only three V, Vn9 and

H\ (strictly there are four
; but IX

= gives Hn
= H). The solution FlG< 403.

by analytics is possible only for ribs of simple algebraic
curves and is long and cumbrous ; whereas Prol Eddy'a
graphic method is comparatively brief and simple and ia

applicable to any shape of rib whatever.

367. Utility of the Special Equilibrium Polygon and its force

diagram. The use of locating these will now be illustrated

[See 332]. As proved in 332 and 334 the compres-
sion in each " rod

"
or segment of the "

special equilibrium

polygon" is the anti-stress resultant of the cross sections in

the corresponding portion of the beam, rib, or other struc-

ture, the value of this compression (in Ibs. or tons) being
measured by the length of the parallel ray in the force

diagram. Suppose that in some way (to be explained sub-

sequently) the special equilibrium polygon and its force

diagram have been drawn for the arch-rib in Fig. 404 hav-

ing fixed ends, and B, and no hinges ; required the elastia

stresses in any cross-section of the rib as at m. Let the
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FIG. 404.

of the force-diagram on the right be 200 Ibs. to the

inch, say, and that of the space-diagram (on the left) 30 ft.

to the inch.

The cross section ra lies in a portion TK, of the rib, cor-

responding to the rod or segment be of the equilibrium

polygon; hence its anti-stress-resultant is a force R2 acting

in the line 6c, and of an amount given in the force-diagram.

Now R2 is the resultant of V, H, and Plt which with the

elastic forces at m form a system in equilibrium, shown in

Fig, 405 ; the portion FOTm being considered free. Hence

FlO.405, Fia. 406.

taking the tangent line and the normal at m as axes we
should have 2 (tang, comps.) = ; 2 (norm, comps.) = ;

and 2 (moms, about gravity axis of the section at m) = 0,

and could thus find the unknowns pl9 p2 ,
and J", which ap-

pear in the expressions pF the thrust, ^- the moment of
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the stress-couple, and J the shear. These elastic stresses

are classified as in 295, which see. pl and p2 ar Ibs. per

square inch, /is Ibs., e is the distance from the horizontal

gravity axis of the section to the outermost element of

area, (where the compression or tension is p2 Ibs. per sq.

in., as due to the stress-couple alone) while 1 is the " mo-
ment of inertia

"
of the section about that gravity axis.

[See 247 and 295 ; also 85]. Graphics, however, gives
us a more direct method, as follows : Since 7?2,

in the line

be, is the equivalent of V, H, and Pl9 the stresses at m will

be just the same as if S2 acted directly upon a lateral pro-

longation of the rib at T (to intersect 6cFig. 405) as shown
in Fig. 406, this prolongation Tb taking the place of TOF
in Fig. 405. The force diagram is also reproduced here.

Let a denote the length of the "1 from m's gravity axis

upon be, and z the vertical intercept between m and be.

For this imaginary free body, we have,

from JT(tang. compons.) 0, Rz cos a=plF

and from Jf(norm. compons.) =0,fi<2 sin a=J

while from J (moms about) ) we h
the gravity axis 01 m)=0, j e

But from the two similar triangles (shaded ;
one of them

is in force diagram) a :z :: H\R2 .'. R2a=Hz, whence we

may rewrite these relations as follows (with a general state-

ment), viz.:

If the Special Equilibrium Polygon and Its Force Diagram Have

Seen Drawn for a given arch-rib, of given mode of support,

and under a given loading, then in any cross-section of the

rib, we have (F = area of section):

The projection of improper

(L)
ray (of the force diagram) up
on the tangent line of the rill

drawn at the given section.
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(2.) The Shear, i.e., J, =
, . ,

-,
, ,1 The projection of the proper

(upon which dependsthe
* J

\
ray (of the force diagram) up-

shearing stress in the-

web). (See 253 and

(3.) The Moment of the

stress couple, i.e.,

on the normal to the rib curve

at the given section.

256).
The product (Hz) of the H

(or pole-distance) of the force-

diagram by the vertical dis-

tance of the gravity axis of the

section from the spec, equilib-
rium polygon.

By the "
proper ray

"
is meant that ray which is parallel

to the segment (of the equil. polygon) immediately under

or above which the given section is situated. Thus in

Eig. 404, the proper ray for any section on TK is H2 > n

KB, J?3 ; on TO, HI. The projection of a ray upon any

given tangent or normal, is easily found by drawing through
each end of the ray a line "1 to the tangent (or normal) ;

the length between these "|'s on the tangent (or normal) is

the force required (by the scale of the force diagram). We
may thus construct a shear diagram, and a thrust diagram
for a given case, while the successive vertical intercepts
between the rib and special equilibrium polygon form a

moment diagram. For example if the z of a point m is }4

inch in a space diagram drawn to a scale of 20 feet to the

inch, while H measures 2.1 inches in a force diagram con-

structed on a scale of ten tons to the inch, we have, for the

moment of the stress-couple at m, M=Hz= [2.1x10] tons

X[^x20] ft. =210 ft. tons.

368. It is thus seen how a location of the special equili-
brium polygon, and the lines of the corresponding force-

diagram, lead directly to a knowledge of the stresses in all

the cross-sections of the curved beam under consideration,

bearing a given load ; or, vice versa, leads to a statement

of conditions to be satisfied by the dimensions of the rib,

for proper security.

It is here supposed that the rib has sufficient lateral
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bracing (with others which lie parallel with it) to prevent

buckling sideways in any part like a long column. Before

proceeding to the complete graphical analysis of the differ-

ent cases of arch-ribs, it will be necessary to devote the

next few paragraphs to developing a few analytical rela-

tions in the theory of flexure of a curved beam, and to

giving some processes in "
graphical arithmetic."

369. Change in the Angle Between Two Consecutive Rib Tan-

gents when the rib is loaded, as compared with its value

before loading. Consider any small portion (of an arch

rib) included between two consecutive cross-sections
; Fig.

407. KHGW is its unstrained form. Let EA, = ds, be

the original length of this portion of the rib axis. The

length of all the fibres
(||

to rib-axis) was originally =ds

(nearly) and the two consecutive tangent-lines, at E and A,
made an angle = dd originally, with each other. While
under strain, however, all the fibres are shortened equally

an amount dh, by the uniformly distributed tangential

thrust, but are unequally shortened (or lengthened, accord-

ing as they are on one side or ttie other of the gravity axis

E, or A, of the section) by the system of forces making
what we call the " stress couple," among which the stress

at the distance e from the gravity axis A of the section is

called
p.,, per square inch

; so that the tangent line at A'

now takes the direction A'D "] to H'A'G' instead of A'G

(we suppose the eection at E to remain fixed, for
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ence, since the change of angle between the two tangents

depends on the stresses acting, and not on the new posi-
tion in space, of this part of the rib), and hence the angle
between the tangent-lines at E and A (originally

=
d6] is

now increased by an amount CA'D =
d<p (or G'A'R = dip);

G'H' is the new position of GH. We obtain the value of

d(f>
as follows : That part (c^) of the shortening of the

fibre at G, at distance e from A due to the force p$F, is

201 eq. (1), cUj = -^. But, geometrically, eM, also =

Eed<p=p2ds (i.)

But, letting M denote the moment of the stress-couple
at section A (M depends on the loading, mode of support,

etc., in any particular case) we know from 295 eq. (6) that

M=^-9 and hence by substitution in (1) we have

(2)&MEI
[If the arch-rib in question has less than three hinges,

the equal shortening of the fibres due to the thrust (of

the block in last figure) p^F, will have an indirect effect on

the angle d<p.
This will be considered later.]

370. Total Change i.e. A^ 1 in the Angle Between the End

Tangents of a Rib, before and after loading. Take the ex-

ample in Fig. 408 of a rib fixed at one end and hinged at

FIG. 408.
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the other. When the rib is unstrained (as it is supposed
to be, on the left, its own weight being neglected ; it is not

supposed sprung into place, but is entirely without strain)
then the angle between the end-tangents has some value

B

6'
I
dO= the sum of the successive small angles dd for

e/o

each element ds of the rib curve (or axis). After loading,

[on the right, Fig. 408], this angle has increased having
now a value

.

= o'+ r
l

Jo

There must oe no hinge between

FIG. 409.

371. Example of Equation (I.) in Anal-

ysis. A straight, homogeneous, pris-
matic beam, Fig. 409, its own weight

neglected, is fixed obliquely in a wall.

After placing a load P on the free end,

required the angle between the end-

tangents. This was zero before load-

ing .*. its value after loading is

=0+,'=0+

By considering free a portion between and any ds of the

beam, we find that M=Px=mom. of the stress couple.
The flexure is so slight that the angle between any ds and

its dx is still practically =a
( 364), and .. ds=dx sec .

Hence, by substitution in eq. (I.) we have

... <p'=
P
(*,"

)P
[Compare with 237].

2-C/J:
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It is now apparent that if both ends of an arch rib are

Jixed, when unstrained, and the rit} be then loaded ^within
elastic limit, and deformation slight) we must have

/(Mds-r-EI}=
zero, since <p'=Q.

.

372. Projections of the Displacement of any Point of a Loaded

Hib Relatively to Another Point and the Tangent Line at the Lat-

ter. (There must be no hinge between and B). Let

be the point whose displacement is considered and B the

other point. Fig. 410. If j5's tangent-line is fixed while

the extremity is not supported in any way (Fig. 410)
then a load P put on, is displaced to a new position On.

FIG. 410. FIG. 411. FIG. 412.

With as an origin and OB as the axis of X, the projec-
tion of the displacement 00n upon Xt will be called dx,
that upon Y

t Ay.

In the case in Fig. 410, O's displacement with respect to

B and its tangent-line B T, is also its absolute displacement
in space, since neither B nor BT has moved as the rib

changes form under the load. In Fig. 411, however, the

extremities and B are both hinged to piers, or supports,
the dotted line showing its form when deformed under a
load. The hinges are supposed immovable, the rib being
free to turn about them without friction. The dotted line

is the changed form under a load, and the absolute dis-

placement of is zero
; but not so its displacement rela-

tively to B and .Z?'s tangent BT, for BT has moved to a
new position BT'. To find this relative displacement con-
ceive the new curve of the rib superposed on the old in
a way that B and BT may coincide with their original po-
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sitions, Fig. 412. It is now seen that O's displacement

relatively to B and BT is not zero but =00n , and has a

small Ax but a comparatively large Ay. In fact for this

case of hinged ends, piers immovable, rib continuous be*

tweeu. them, and deformation slight, we shall write Ax=
zero as compared with Ay, the axis Xpassing through OB).

373. Values of the X and Y Projections of O's Displacement Rela-

tively to B and B's Tangent ; the origin being taken at 0.

Fig. 413. Let the co-

ordinates of the dif-

ferent points E, D, G,

etc., of the rib, re-

ferred to and an

arbitrary X axis, be

x and y, their radial

distances from be-

ing u
(i.e.,

u for G, u'

for D, etc.; in gener- i $x

al, u). OEDG is the _L ,

unstrainedform of the *

rib, (e.g., the form it Fl

'

G 413

would assume if it lay flat on its side on a level platform,
under no straining forces), while OnE"D'GB is its form
under some loading, i.e., under strain. (The superposi-
tion above mentioned

( 372) is supposed already made if

necessary, so that BT is tangent at B to both forms).
Now conceive the rib OB to pass into its strained condi-

tion by the successive bending of each ds in turn. The

straining or bending of the first ds, BG, through the small

angle dip (dependent on the moment of the stress couple
at G in the strained condition) causes the whole finite piece
06y to turn about G as a centre through the same small

angle d<p ; hence the point describes a small linear arc

O0'=dv, whose radius = u the hypothenuse of the x and

y of (7, and whose value .'. is ov=ud(p.
Next let the section 2), now at D', turn through its

proper angle dip' (dependent on its stress-couple) carrying
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with it the portion D'0 f

,
into the position D'O", making

0' describe a linear arc O'O" =(dv}' =u'd<p' t in which u'=
the hypothenuse on the x' and y' (of D), (the deformation

is so slight that the co-ordinates of the different points
referred to and X are not appreciably affected). Thus,
each section having been allowed to turn through the an-

gle proper to it, finally reaches its position, On ,
of dis-

placement. Each successive 8v, or linear arc described by
0, has a shorter radius. Let dx, (dx)' t etc., represent the

projections of the successive (dv)'s upon the axis X\ and

similarly %, (%)' etc., upon the axis F. Then the total X
projection of the curved line .... Oa will be

Jx= Jdx and similarly dy= jdy . . . (1)

But d v = u d
(p,

and from similar right-triangles,

J x : dv : : y : u and dy : dv : : x : u .*. dx yd<p and dy=xd<f> ;

whence, (see (1) and (2) of 369)

. . (ID

and Jy=fy=ty = (HL)

If the rib is homogeneous E is constant, and if it is of

constant cross-section, all sections being similarly cut by
the vertical plane of the rib's axis (i.e., if it is a " curved

prism ") /, the moment of inertia is also constant.

374. Recapitulation of Analytical Relations, for reference*

(Not applicable if there is a hinge between and E)

Total Change in Angle between ) _ /**Mdseween _ /*

tangent-lines and B ]~J

The X-Projection of O's Displacement
~)

Relatively to B and B's tangent- I ^Myds /TT \
line

; (the origin being at 0) L = / *LT
- (-LL)

and the axes X and Y T to c/0

each other)
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The Y-Projection of O's Displacement, ) _ s*-mi

etc., as above.
} ~Jo~lEI

(III.)

Here x and y are the co-ordinates of points in the rib-

curve, cfc an element of that curve, M the moment of the

stress-couple in the corresponding section as induced by
the loading, or constraint, of the rib.

(The results already derived for deflections, slopes, etc.,

for straight beams, could also be obtained from these

formulae, I., II. and III. In these formulae also it must
be remembered that no account has been taken of the

shortening of the rib-axis by the thrust, nor of the effect

of a change of temperature.)

374a. Eesumfe of the Properties of Equilibrium Polygons and

their Force Diagrams, for Systems of Vertical Loads. See 335

to 343. Given a system of loads or vertical forces, P]? P2,

etc., Fig. 414, and

^Ip, two abutment verti-
2

cals, F' and G' ; if

P
2, we lay off, vertically,

to form a " load-

line," 1 .. 2 = Plf 2. ..

PS
3=P2,etc., select any
Pole, 19 and join Ol

... 1, Oi . . . 2, etc.
;

also, beginning at

any point Fl in the

vertical P', if we draw PL.. a\\ to Oi..l to intersect the

line of P! ;
then ab

\\
to Ol . . 2, and so on until finally a

point GI, in G', is determined ;
then the figure PL .abc G^ is

an equilibrium polygon for the given loads and load verti-

cals, and Oi . . . 1234 is its
" force diagram." The former

is so called because the short segments F& ab, etc., if

considered to be rigid and imponderable rods, in a vertical

plane, hinged to each other and the terminal ones to abut-

ments F
l
and (r

} , would be in equilibrium under the given

loads hung at the joints. An infinite number of equilib-

414.
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rium polygons may be drawn for the given loads and

abutment-verticals, by choosing different poles in the force

. diagram. [One other is shown in the figme ; 2 is its

pole. (.Z^ Gl and F2 (^ are abutment lines.)] For all of

these the following statements are true :

s (1.) A line through the pole, ||
to the abutuieutline cuts

/ the load-line in the same point n', whichever equilibrium

) Plyg n be used ( /. any one will serve to determine n1

).

(2.) If a vertical CD be drawn, giving an intercept z' in

I each of the equilibrium polygons, the product Hz' is the

same for all the equilibrium polygons. That is, (see Fig.

414) for any two of the polygons we have

U.'.H,:: z2
'

: / ;
or H2 z,'

= H, z,'.

(3.) The compression in each rod is given by that
"
ray

"
(in the force diagram) to which it is parallel.

(4.) The "
pole distance

"
H, or -| let fall from the pole

upon the load-line, divides it into two parts which are the

vertical components of. the compressions in the abutment-

rods respectively ( the other component being horizontal) ;

// is the horizontal component of each (and, in fact, of

each of the compressions in all the other rods). The

compressions in the extreme rods may also be called the

abutment reactions (oblique) and are given by ike extreme

rays.

(5.) Three Points [not all in the same segment (or rod)]
determine an equilibrium polygon for given loads. Hav-

ing given, then, three points, we may draw the equilibrium

polygon by 341.

375. Summation of Products. Before proceeding to treat

graphically any case of arch-ribs, a few processes in

graphical arithmetic, as it may be called, must be pre-

sented, and thus established for future use.

To make a summation of products of two factors in each

by means of an equilibrium polygon.



452 MECHANICS OF ENGINEERING.

Construction. Suppose it required to make the summa-
tion 2 (x z) i. e. t to sum the series

#1 i+ #2 32+ #3 % + . . . by graphics.

Having first arranged the terms in the order of magni-
tude of the as's, we proceed as follows : Supposing, for

illustration, that two of the s's (% and 4) are negative

(dotted in figure) see Fig. 415. These quantities x and z

may be of any nature whatever, anything capable of being

represented by a length, laid off to scale.

First, in Fig

416, lay off the

s's in their

order, end to

end, on a ver-

tical load-line

taking care to

lay off % and

34 upward in

their turn.
Take any con-

FIG. 415. FIG. 416. venient pole

; draw the rays ... 1, ... 2, etc.; then, having pre-

viously drawn vertical lines whose horizontal distances

from an extreme left-hand vertical F' are made = xlt
x},

a?3, etc., respectively, we begin at any point F, in the verti-

cal F', and draw a line ||
to ... 1 to intersect the x

}
ver-

tical in some point ;
then V 2' H to ... 2, and so on, fol-

lowing carefully the proper order. Produce the last seg-

ment (6' ... G in this case) to intersect the vertical F' in

some point K. Let KF =k (measured on the same scale

as the x's), then the summation required is

2Y
5

(xz)
= Hk.

H is measured on the scale of the s's, which need not be

the same as that of the #'s ; in fact the 's may not be the

same kind of quantity as the x's.

[PROOF. From similar triangles R: L
:: x

l
: klf -.: x^^HTc^ ;

and " " " H: , :: x2 : L, .: x.z.2=Bk2 ,
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and so on. But H(k1+k2+etG.)=HxFK=Hk'].

376. Gravity Vertical. From the same construction in

Fig. 415 we can determine the line of action (or gravity

vertical) of the resultant of the parallel vertical forces zl9

2, etc. (or loads); by prolonging the first and last segments
to their intersection at

(j. The resultant of the

system of forces or loads

acts through C and is

vertical in this case
; its

value being 2'
(z) y

that is, it = the length
1 ... 7 in the force dia-

gram, interpreted by the

proper scale. It is now

supposed that the z's

represent forces, the x'a

being their respective
lever arms about F. If

the ?'s represent the

areas of small finite por-
tions of a large plane

figure, we. may find a

giavity-line (through C)
of that figure by the

above construction; each

z being-applied through
the centre of gravity of

its own portion.

Calling the distance

x between the verticals

through G and F, we
k 3 have also x . I (z)

=
2' (xz) because 2

(z) is

the resultant of the
|[
z's.

This is also evident from

the proportion (similar

triangles)
H : (1 . . 7) :: x : k.
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376 a, .Moment of Inertia (of Plane Figure) by Graphics, Fig.

416 a. IN = ? First, for the portion on right. Divide OR
?nto equal parts each = Ax. Let zly z2, etc., be the middle

ordinates of the strips thus obtained, and xly etc. their

abscissas (of middle points).

Then we have approximately

IN for

=4x[(z1
x

1)xl+(z2x2)x2+ ...]..(!)

But by 375 we may construct the products z^x^x^ etc.,

taking a convenient .H*
9 (see Fig. 416, (6)), and obtain kly k2t

etc., such that z^ = H'klt z2x2
= H'Jc2,

etc. Hence eq. (1)

becomes :

7N for OR a,pprox.=H'4x['>- l
x

i'^-k2x2+ ...] (
2
)

'&. -
*
V*,

By a second use of 375 (seu^i'g. 416 c) we construct l
t

such that k&t + k.2x2'+ . . . .
= H"l \R" taken at con-

venience]. .'. from eq. (2) we have finally, (approx.),

JN for OR=H'H"lAx ____ (3)

For or?.mple if OR ~- 4 in., with four strips, Ax would =
1 in.; and if li

r
- <*

in., B." = 2 in., and I = 5.2 in., then

7N for OR = 2x2x5.2x1.0=20.8 biquad. inches.

The Iy for L, on the left of N, is found in a similar

manner and added to 7N for OR to obtain the total 7N . The

position of a gravity axis is easily found by cutting the

shape out of sheet metal and balancing on a knife edge ; or

may be obtained graphically by 336
;
or 376.

377. Construction for locating a line vm(Fig. 417) at (a), in

the polygon FG in such a position as to satisfy the two

following conditions with reference to the vertical inter-

cepts at 1, 2, 3, 4, and 5, between it and the given points
1. 2, 3, etc., of the perimeter of the polygon.
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Condition I. (Calling these intercepts u^ u2 , etc., and their

horizontal distances from a given vertical F, xly x.2, etc.)

2 (u) is to =
; i.e., the sum of the positive u'& must be

numerically
~ that of the negative (which here are at 1

and 5). An infinite number of positions of vm will satisfy

condition I.

Condition II S (ux) is

(d)

to =
; i.e., the sum of the

moments of the positive w's

about F must = that of the

G (
a

) negative -M'S. i.e., the moment
of the resultant of the posi-

m tive w's must = that of the

resultant of the negative ;

G and /. (Condit. I being

m already satisfied) these two

resultants must be directly

G( C
) opposed and equal. But the

ordinates u in (a) are indi-

m vidually equal to the differ-

ence of the full and dotted

ordinates in (b) with the

same #'s .*. the conditions

may be rewritten :

2 (dotted ords. in (b)).

II. I [each full ord. in (b)

X its x~\
= 2 [each dotted

ord. in (b) x its x~] i.e., the

centres of gravity of the full

and of the dotted in (b) must lie in the same vertical

Again, by joining vG, we may divide the dotted ordi-

nates of (b) into two sets which are dotted, and broken, re-

spectively, in (c) Then, finally, drawing in (d\

ft, the resultant of full ords. of (c)

T, ".
" " broken " " "

T',
" " " dotted " " "

FIG. 417.
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we are prepared to state in still another and final form the

conditions which vm must fulfil, viz. :

(I.) T+T' must = E\ and (II.) The resultant of T
and T' must act in the same vertical as H.

In short, the quantities T, T', and J% must form a bal-

anced system, considered as forces. All of which amounts

practically to this : that if the verticals in which T and T'

act are known and E be conceived as a load supported by
a horizontal beam (see foot of Fig. 417, last figure) resting
on piers in those verticals, then T and T' are the respec-
tive reactions of those piers. It will now be shown that the

verticals of T and T' are easily found, being independent of

the position of vm
;
and that both the vertical and the mag-

nitude of R, being likewise independent of vm, are deter-

mined with facility in advance. For, if v be shifted up
or down, all the broken ordinates in (c) or (d) will change
in the" same proportion (viz. as vF changes), while the

dotted ordinates, though shifted along their verticals, do

not change in value ;
hence the shifting of v affects neither

the vertical nor the value of T'
t
nor the vertical of J7

.

The value of T, however, is proportional to vF. Similar-

ly, if m be shifted, up or down, T' will vary proportionally
to mG, but its vertical, or line of action, remains the same.

T is unaffected in any way by the shifting of m. ft, d&-

pending for 'iL,:'
~T 1 IIP and position on the full ordinates of

(c) Fig. 417, is independent 01 the location of vm. We
may /. proceed as follows :

1st. Determine R graphically, in amount and position,

by means of 376.

2ndly. Determine the verticals of T and T' by any trial

position of vm (call it v2m.2 ), and the corresponding trial

values of T and T' (call them T2 and T'2 ).

3rdly. By the fiction of the horizontal beam, construct

( 329) or compute the true values of T and T', and then

determine the true distances vF and mG by the propor-

tions

vF : v2F : : T : T, and mG : m,2 G
'

: : T' : F



ARCH-BIBS. 457

Example of this. Fig. 418. (See Fig. 417 for s and t.)

From A toward B in (e) Fig. 418, lay off the lengths (or

lines proportional
to them) of the full

ordinates 1, 2, etc.,

of (/). Take any

pole Oj, and draw the

equilibrium poly-
gon (/")' and pro-

long its extreme seg-

ments to find C and

thus determine J?'s

vertical. R is repre-
sented by AB. In

(g) [same as (/) but

shifted to avoid

complexity of lines],

draw a trial v.2m.2 and

join v2 G2 . Deter-

mine the sum T2 of

the broken ordi- SFIG. 4is.

nates (between v2G2 ana F2G2) and its vertical line of ap-

plication, precisely as in dealing with E ;
also T\ that of

the dotted ordinates (five) and its vertical. Now the true

<- T=Rt+(8+t) and
_the

true- T'=fis+(s^t). Hence com-

pute v~F=(T+T2 ) v7F2 and mG^T'+T'^ m,2G 2 , and by

laying them off vertically upward from F and G respec-

tively we determine v and m, i.e., the line vm to fulfil the

conditions imposed at the beginning of this article, rela-

ting to the vertical ordinates intercepted between vm and

given points on the perimeter of a polygon or curve.

Note (aX If the verticals in which the intercepts lie are

equidistant and quite numerous, then the lines of action

of T.2 and T'2 will divide the horizontal distance between

F and G into three equal parts. This will be exactly true

in the application of this construction to 390.

Note (b). Also, if the verticals are symmetrically placed
about a vertical line, (as will usually be the case) v.2m 2 is
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best drawn parallel to FG, for then T2 and T\ will be

equal and equi-distant from said vertical line.

378. Classification of Arch-Ribs, or Elastic Arches, according
to continuity and modes of support. In the accompany-

ing figures i~h.Q/ull curves show the unstrained form of the

rib (before any load, even its own weight, is permitted to

come upon it) ;the dotted curve shows its shape (much ex-

aggerated) when bearing a load. For a given loading
Three Conditions must be given to determine the special

equilibrium polygon (
366 and 367).

Class A. Continuous rib, free to slip laterally on the

piers, which have smooth horizontal surfaces, Fig. 420.

This is chiefly of theoretic interest, its consideration

being therefore omitted. The pier reactions are neces-

sarily vertical, just as if it were a straight horizontal

beam.

Class B, Rib of Three Hinges, two at. the piers and one

intermediate (usually at the crown) Fig. 421. Fig. 36 also

is an example of this. That is, the rib is discontinuous

and of two segments* Since at each hinge the moment of

the stress couple must be be zero, the special equilibrium

polygon must pass through the hinges. Hence as three

points fully determine an equilibrium polygon for given

load, the special equilibrium is drawn by 341.

H B

FIG. 420. FIG. 421,

[ 378a will contain a construction for arch-ribs of three

hinges, when the forces are not all vertical.]

Class C. Rib of Two Hinges, these being at the piers, the

rib continuous between. The piers are considered im-

movable, i.e., the span cannot change as a consequence of

loading. It is also considered that the rib is fitted to its



AliCII 1UBS. 459

hinges at a definite temperature, and is then under no con-

straint from the piers (as if it lay flat on the ground), not

even its own weight being permitted to act when it is fi-

nally put into position. When the " false works "

or temporary supports are removed, stresses are in-

duced in the rib both by its loading, including its

own weight, and by a change of temperature. Stresses

due to temperature may be ascertained separately and

then combined with those due to the loading. [Classes

A and B are not subject to temperature stresses.] Fig.
422 shows a rib of two hinges,
at ends. Conceive the dotted

curve (form and position un-

der strain) to be superposed

^^., on the continuous curve
I
/ ^ --""

P-? (form before strain) in
'

such

6,T~ a way that B and its tangent
FIG - 422- line (which has been dis-

placed from its original position) may occupy their pre-

vious position. This gives us the broken curve OnB. 00n

is .'. O's displacement relatively to B and j^'s tangent.

Now the piers being immovable OnB (right line)=OB ; i.e.,

the X projection (or Ax) of 00n upon OB (taken as an axis

of X) is zero compared with its Ay. Hence as one condi-

tion to fix the special equilibrium polygon for a given load-

ing we have (from 373)

r
t/o

(1)

The other two are that the
]
must pass through . (2)

special equilibrium polygon (
" " " B . (3)

Class D. Rib with Fixed Ends and no hinges, i.e., continu-

ous. Piers immovable. The ends may be fixed by being
inserted, or built, in the masonry, or by being fastened to

large plates which are bolted to the piers. [The St. Louis

Bridge and that at Coblenz over the Rhine are of this

class.] Fig. 423. In this class there being no hinges we
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FIG. 423.

have no point given in advance through which the special

equilibrium polygon must pass. However, since O's dis-

placement relatively (and absolutely) to B and J5's tangent
is zero, both Ax and Ay [see 373] zero. Also the tan-

gent-lines both at and B being

fixed in direction, the angle be-

tween them is the same under

loading, or change of temperature,
as when the rib was first placed
in position under no strain and at

a definite temperature.
Hence the conditions for locating the special equilibrium

polygon are

/*
B Mds _ Q . /* Myds _ Q t

n*Mxds __ Q
Jo El

'

Jo ~E2~
'

Jo El
In the figure the imaginary rigid prolongations at the

ends are shown [see 366].

Other designs than those mentioned are practicable

(such as : one end fixed, the other hinged ;
both ends fixed

and one hinge between, etc.), but are of unusual occur-

rence.

378a. Bib of Three Hinges, Forces not all Vertical.* If the

given rib of three hinges upholds a roof, the wind-press-
ure on which is to be considered as well as the weights of

the materials composing the roof-covering, the forces will

not all be vertical. To draw the special equil. polygon in

such a case the following
construction holds : Re-

quired to draw an equilib-

rium polygon, for any

plane system of forces,

through three arbitrary

points, A, p and B ; Fig.

B423a. Find the line of

action of Elt the resultant

of all the forces occurring
between A and p; also,

* See p. 117 of the author's "Notes and Examples in Mechanics" fora
detailed example of the following construction.

FIG. 428a.
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that of JR: ,
the resultant of all forces between ,p and B ;

also the line of action of R, the resultant of R^ and 2t2 , [see

328.] Join any point M in R with A and also with B,

and join the intersections N and 0. Then A N will be the

direction of the first segment, B that of the last, and

NO itself is the segment corresponding to p (in the de-

,sired polygon) of an equilibrium polygon for the given
forces. See 328. If A N'p 0' B are the corresponding

segments (as yet unknown) of the desired equil. polygon,
we note that the two triangles MNO and M'N''O

', having
their vertices on three lines which meet in a point [i.e., R
meets Rl and R2 in (7'], are homological [see Prop. VII. of

Introduc. to Modern Geometry, in Chauvenet's Geometry,]
and that . . the three intersections of their corresponding
sides must lie on the same straight line. Of those inter^

sections we already have A and B, while the third must be

at (7, found at the intersection of AB and NO. Hence by

connecting C and p, we determine N' and 0'. Joining

WA and O'B, the first ray of the required force diagram will

be II
to NA, while the last ray will be

||
to O'B, and thus

the pole of that diagram can easily be found and the cor-

responding equilibrium polygon, beginning at A, will pass

through p and B.

(This general case includes those of 341 and 342.)

379. Arch-Rib of two Hinges; by Prof. Eddy's Method,*

[It is understood that the hinges are at the ends.] Ke-

quired the location of the special equilibrium polygon. We
here suppose the rib homogeneous (i.e., the modulus of

Elasticity E is the same throughout), that it is a " curved

prism
"

(i.e., that the moment of inertia / of the cross-

section is constant), that the piers are on a level, and that-

the rib-curve is symmetrical about a vertical line. Fig.
424. For each point m of the rib

curve we have an x and y (both

known, being the co-ordinates of

the point), and also a z (intercept

T- between rib and special equilib-

ria. 424. rium polygon) and a z' (intercept

* r. 25 of Prof. Eddy's book ; see reference in preface of this work.
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between the spec. eq. pol. and the axis X (which is OB).
The first condition given in 378 for Class C may be

transformed as follows, remembering [ 367 eq. (3)] that

M = Hz at any point ra of the rib (and that El is con-

stant).

-A- T
B

Myds = 0, i.e.,
M. fzyds

=
. . fzyds

=
tii c/o MJ! cjo c/o

> \
-

'

- f(y
~

*')2/ds=o; i-6 -' C yyds = C yz
'ds

) c/o c/o e/o

but

z=y -

In practical graphics we can not deal with infinitesimals ;

hence we must substitute As a small finite portion of the

rib-curve for ds\ eq. (1) now reads 2* yy As = 2'
B
yz' As.

But if we take all the As's equal, As is a common factor

and cancels out, leaving as a final form for eq. (1)

S*(yy) = I* (yz') . . . (1)'

The other two conditions are that the special equilibrium

polygon begins at and ends at B. (The subdivision of

the rib-curve into an even number of equal As's will be ob-

served in all problems henceforth.)

379a. Detail of the Construction, Given the arch-rib B9

Fig. 425, with specified loading. Divide the curve into

2345678
! U-IJ I !

4'-4-4-4-~i-t-

FIG. 426.
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eight equal ^s's and draw a vertical through the middle

of each. Let the loads borne by the respective /te's be,

Plt P2 , etc., and with them form a vertical load-line A C to

some convenient scale. With any convenient pole 0"
draw a trial force diagram Q^ AC, and a corresponding
trial equilibrium polygon F G, beginning at any point in

the vertical jF.
Its ordinates z/', z* etc., are propor-

tional to those of the special equil. pol. sought (whose
abutment line is OB) [ 374a (2)]. We next use it to de-

termine n' [see 374a]. We know that OB is the " abut-

ment-line
1 "

of the required special polygon, and that .

*

.

its pole must lie on a horizontal through n'. It remains

to determine its S, or pole distance, by equation (1)' just

given, viz. : 2f yy = Sfyz'. First by 375 find the value

of the summation ^i(yy), which, from symmetry, we may
write 2 m

j/
} Hence, Fig. 426, we obtain

fr,
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the condition 2\ (yy]
= Z\ (yz") is satisfied, and the polo

distance of our trial polygon in Fig. 425, is also that of

the special polygon sought; i.e., the 2" 's.are identical in

value with the z"s of Fig. 424. In general, of course, we
do not find that &/'+V = 2&. Hence the a" 's must all

be increased in the ratio 2k: (&i''+V) to become equal to

the 3"s. That is, the pole distance H of the spec, equil*

polygon must be

TT_ &/'+&/' jjtt (in which H" = the pole distance of the

2 ; trial polygon) since from 339 the ordi-

nates of two equilibrium polygons (for the same loads)
are inversely as their pole distances. Having thus found
the H of the special polygon, knowing that the pole must
lie on the horizontal through n'9 Fig. 425, it is easily

drawn, beginning at 0. As a check, it should pass through
S.

For its utility see 367, but it is to be remembered that

the stresses as thus found in the different parts of tha

rib under a given loading, must afterwards be combined
with those resulting from change of temperature and the

shortening of the rib axis due to the tangential thrusts,.

before the actual stress can be declared in any part.

[NOTE. If the " moment of inertia," /, of the rib-sec-

tion is different at different sections, i.e., if / is variable,

foreq.(l)' we may write ^JlWl'J. , . . (1)'

(where n = -, 7 being the moment of inertia of a particu*
*o

lar section taken as a standard and /that at any section

of rib) and in Fig. 426, use the ^ of each Js instead of y

in the vertical "
load-line," and for a" in Pigs. 427 and

428].
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380. Arch Rib of Fixed Ends and no Hinges. Example of

Class D. Prof. Eddy's Method.* As Before, E and / are

constant along the rib Piers immovable. Bib curve

symmetrical about a vertical line. Fig. 429 shows such a

rib under any loading. Its span is OB, which is taken as

an axis X. The co-ordinates of any point ra' of. the rib

curve are x and y, and z is the vertical intercept between

m' and the special equilibrium polygon (as yet unknown,
but to be constructed). Prof. Eddy's method will now be

given for finding tha spe-
v cial equil. polygon. The

three conditions it

must satisfy (see 378,

Class D, remembering
that E and / are constant

and that M = ITz from

367) areFIQ. 429.

rlds=
;
fxzds=

;
and Cyzds=0 . . (1)

e/o e/o e/o

Now suppose the auxiliary reference line (straight) vm
to have been drawn satisfying the requirements, with

respect to the rib curve that

/*'cfe=0 ;
and fxz'da=0 . . . .

e/o e/o
(2)

in which z' is the vertical distance of any point mf from

vm and x the abscissa of m' fronl 0.

From Fig. 429, letting z" denote the vertical intercept

(corresponding to any m') between the spec, polygon and

the auxiliary line vm
9
we have z=z/

xf
/

, hence the three

conditions in (1.) become

Clz'-z")ds=0', i.e., see eqs. (2) A* z"ds=0 . . . (3)

* P. 14 of Prof Eddy's book ; see reference in preface of this work
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Cx
(z

r

z")ds=Q ; i.e., see eqs. (2) C xz"ds=o
c/o e/ o

provided vm has been located as prescribed.

For graphical purposes, having subdivided the rib curve

into an even number of small equal Js's, and drawn a verti-

cal through the middle of each, we first, by 377, locate

rm'to satisfy the conditions

1?(*')=0 and I?(a*')=0 . . (6)

(see eq. (2) ;
the As cancels out) ;

and then locate the

special equilibrium polygon, with vm as a reference-line,

by making it satisfy the conditions.

2V)=0 . (7); S%ar)=0 . (8); !%*") =I(y*') . (9)

(obtained from eqs. (3), (4), (5) by putting ds=4s, and can-

celling).

Conditions (7) and (8) may be satisfied by an infinite

number of polygons drawn to the given loading. Any one

of these being drawn, as a trial polygon, we determine for it

the value of the sum 2%(yz") by 375, and compare it with

the value of the sum 2'J(y') which is independent of the

special polygon and is obtained by 375. [N.B. It must

be understood that the quantities (lengths) x, y, z, z', and 2",

here dealt with are those pertaining to the verticals drawn

through the middles of the respective ^/s's, which must be

sufficiently numerous to obtain a close result, and not to

the verticals in which the loads act, necessarily, since these

latter may be few or many according to circum stances, see

Fig. 429], If these sums are not equal, the pole distance

of the trial equil. polygon must be altered in the proper
ratio (and thus change the '"s in the inverse ratio) neces-

sary to make these sums equal and thus satisfy condition

(9). The alteration of the s'"s, all in the same ratio, will
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not interfere with conditions (7) and (8) which are already
satisfied.

381. Detail of Construction of Last Problem. Symmetrical Arch-

Rib of Fixed Ends. As an example take a span of the St.

Louis Bridge (assuming /constant) with " live load" cov-

ering the half span on the left, Fig. 430, where the vertical

FIG. 430.

scale is much exaggerated for the sake of distinctness*.

Divide into eight equal Js's. (In an actual example sixteen

or twenty should be taken.) Draw a vertical through the

* Each arch-rib of the St. Louis bridge is a built up or trussed rib of steel about B3C

ft. spau and 52 ft rise, in the form of a segment of a circle . Its moment of inertia,

however, is not strictly constant, the portions near each pier, of a length equal to one
twelfth of the span, having a value of /one-half greater than that of the remainder of

the arc.
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middle of each As. P^ , etc., are the loads coming upon
the respective zte's.

First, to locate vm, by eq. (6) ;
from symmetry it must

be horizontal. Draw a trial vm (not rhown in the figure),

and if the (+ 3
r

)'s exceed the ( z')'s by an amount ', the

true vm will lie a height
' above the trial vm (or below,

97/

if vice versa) ;
n = the number of zfs's.

Now lay off the load-line on the right (to scale),

take any convenient trial pole 0'" and draw a correspond-

ing trial equil. polygon F"'G'". In F"'G'", by 377,

locate a straight line v'"m'" so as to make ^(3"') = and

2*(xz"') = (see Note (b) of 377).

[We might now redraw F"'
'

G-'" in such a way as to bring
v"'m' ff

into a horizontal position, thus : first determine a

point n'" on the load-line by drawing O'"n'"
\
to v" rm'"

t

take a new pole on a horizontal through n'", with the same

II'"
,
and draw a corresponding equil. polygon ;

in the lat-

ter v" fm'" would be horizontal. We might also shift this

new trial polygon upward so as to make v'"m'" and vm
coincide. It would satisfy conditions (7) and (8), having
the same ""s as the first trial polygon ;

but to satisfy con-

dition (9) it must have its ""s altered in a certain ratio,

which we must now find. But we can deal with the individ-

ual z""s just as well in their present positions in Fig. 430.]

The points .Z^and L in vm, vertically over E'" and L'" in

v'"m'", are now fixed
; they are the intersections of the special

polygon required, with vm.

The ordinates between v rf
'm'" and the trial equilibrium

polygon have been called z'" instead of z"
; they are pro-

portional to the respective z'"s of the required special

polygon.
The next step is to find in what ratio the (2

/r/

)'s need to

be altered (or H" r

altered in inverse ratio) in order to be~

come the (s")'s ; i.e., in order to fulfil condition (9), viz. :
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. (9)

This may be done pre-

cisely as for the rib with

two hinges, but the nega-
tive

(s'")'
8 must be prop-

erly considered ( 375)

See Fig. 431 for the de-

tail. Negative z"s or ""s

point upward.
From Fig. 431a

l>
.'. from symmetry

From Fig. 4316 we have

FIG. 431.

and from Fig. 431c

[The same pole distance H is taken in all these construc-

tions] .-. Z\(yz'"}=Hn(k,+k,\

If, then, H (h+k) = 2Hk condition (9) is satisfied by the

z""s. If not, the true pole distance for the special equil.

polygon of Fig. 430 will be

H=

With this pole distance and a pole in the horizontal througi
'"

(Fig. 430) the force diagram may be completed for the

required special polygon ;
and this latter may be con-

structed as follows : Beginning at the point E, in vm,

through it draw a segment ||
to the proper ray of the force

diagram. In our present figure (430) this "
proper ray

"

would be the ray joining the pole with the point of meet-

ing of P2 and P3 on the load-line. Having this one seg-
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ment of the special polygon the others are added in an

obvious manner, and thus the whole polygon completed.
It should pass through L, but not and B.

For another loading a different special equil. polygon
would result, and in each case we may obtain the thrust,

shear, and moment of stress couple for any cross-section of

the rib, by 367. To the stresses computed from these,

should be added (algebraically) those occasioned by change

of'temperature and by shortening of the rib as occasioned

by the thrusts along the rib. These "
temperature

stresses," and stresses due to rib-shortening, will be con-

sidered in a subsequent paragraph. They have no exist-

ence for an arch-rib of three hinges.

[NOTE. If the moment of inertia of the rib is variable

z"
we put for 2' and for z" in equation (6), (7), (8), and

n n

(9), n having the meaning given in the Note in 379 a,

which see
;
and proceed accordingly].

381a. Exaggeration of Vertical Dimensions of Both Space and

Force Diagrams. In case, as often happens, the axis of the

given rib is quite a flat curve, it is more accurate (for find-

ing M) to proceed as follows :

After drawing the curve in its true proportions and pass-

ng a vertical through the middle of each of the equal

zfs's, compute the ordinate (y) of each of these middle points
from the equation of the curve, and multiply each y by
four (say). These quadruple ordinates are then laid off

from the span upward, each in its proper vertical. Also

multiply each load, of the given loading, by four, and then
with these quadruple loads and quadruple ordinates, and
the upper extremities of the latter as points in an exagge-
rated rib-curve, proceed to construct a special equilibrium
polygon, and the corresponding force diagram by the

proper method
( for Class /?, C, or D, as the case may be)

for this exaggerated rib-curve.

The moment, Hz, thus found for any section of the ex-
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aggerated rib-curve, is to be divided by four to obtain the

moment in the real rib, in the same vertical line. To find

the thrust and shear, however, for sections of the real rib,

besides employing tangents and normals of the real rib we

must draw, and use, another force diagram, obtained from

the one already drawn (for the exaggerated rib) by re-

ducing its vertical dimensions (only), in the ratio of four

to one. [Of course, any other convenient number besides

four, may be adopted throughout.]

382. Stress Diagrams. Take an arch-rib of Class D, 378,

i.e., of fixed ends, and suppose that for a given loading (in-

cluding its own weight) the special

equil. polygon and its force diagram
have been drawn [ 381]. It is re-

quired to indicate graphically the

variation of the three stress-elements

for any section of the rib, viz., the

thrust, shear, and mom. of stress-

couple. / is constant. If at any

point m of the rib a section is made, then the stresses ia

that section are classified into three sets (Fig. 432). (See
295 and 367) and from 367 eq. (3) we see that the ver-

tical intercepts between the rib and the special equil.

polygon being proportional to the products Hz or

moments of the stress-couples in the corresponding sec-

tions form a moment diagram, on inspection of which we

can trace the change in this moment, Hz = ?-
, and

hence the variation of the stress per square inch, p2, (as

due to stress couple alone) in the outermost fibre of any
section (tension or compression) at distance e from the

gravity axis of the section), from section to section along
the rib.

By drawing through lines On' and Of parallel re-

spectively to the tangent and normal at any point m of the

rib axis [see Fig. 433] and projecting upon them, in turn,

the proper ray (R3 in Fig. 433) (see eqs. 1 and 2 of 367)
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we obtain the values of the thrust and shear for the sec-

tion at m. When found in this way for a number of points

along the rib their values may be laid off as vertical lines

from a horizontal axis, in the verticals containing the re-

spective points, and thus a thrust diagram and a shear dia-

gram may be formed, as constructed in Fig. 433. Notice

that where the moment is a maximum or minimum the

shear changes sign (compare 240), either gradually or

FIG. 433.

suddenly, according as the max. or min. occurs between

two loads or in passing a load
;
see m', e. g.

Also it is evident, from the geometrical relations involv-

ed, that at those points of the rib where the tangent-line
is parallel to the "

proper ray
"
of the force diagram, the

thrust is a maximum (a local maximum) the moment (of
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stress couple) is either a maximum or a minimum and the

shear is zero.

From the moment, Hx = &*, p* -
e 1

may be computed. From the thrust = Fpit PI
= rus

, (FF
= area of cross-section) may be computed. Hence the

greatest compression per sq. inch (/>!+#>) may be found in

each section. A separate stress-diagram might be con-

structed for this quantity (p\-\-p^ Its max. value (after

adding the stress due to change of temperature, or to rib-

shortening, for ribs of less than three hinges), wherever it

occurs in the rib, must be made safe by proper designing
of the rib. The maximum shear Jm can be used as in 256

to determine thickness of web, if the section is I-shaped,
or box-shaped. See 295.

383. Temperature Stresses. In an ordinary bridge truss

and straight horizontal girders, free to expand or contract

longitudinally, and in Classes A and B of 378 of arch-

ribs, there are no stresses induced by change of tempera-
ture

;
for the form of the beam or truss is under no

constraint from the manner of support ; but with the arch-

rib of two hinges (hinged ends, Class C) and of fixed ends

(Class D) having immovable piers which constrain the dis-

tance between the two ends to remain the same at all tem-

peratures, stresses called "
temperature stresses

"
are in-

duced in the rib whenever the temperature, t, is not the

same as that, tot when the rib was put in place. These

may be determined, as follows, as if they were the only

ones, and then combined, algebraically, with those due to

the loading.

384. Temperature Stresses in the Arch-Rib of Hinged Ends.

(Class C, 378.) Fig. 434. Let E and /be constant, with
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0, jj other postulates as in 379.

Let t =
temperature of

erection, and I = any other

temperature ; also let I =
length of span = OB (in-

Flo m variable) and r
t co-efficient

of linear expansion of the

material of the curved beam or rib (see 199). At tempera-
ture t there must be a horizontal reaction H at each hinge
to prevent expansion into the form O'B (dotted curve),

which is the form natural to the rib for temperature t and

without constraint. We may /. consider the actual form

OB as having resulted from the unstrained form O'B by

displacing 0' to 0, ie., producing a horizontal displace-
ment O'O =l(t-Qrj.
But O'O = Ax (see 373 and 374) ; (N.B. E'a tangent

has moved, but this does not affect Ax, if the axis X is

horizontal, as here, coinciding with the span ;) and the

ordinate y of any point m of the rib is identical with its

z or intercept between it and the spec, equil. polygon,
which here consists of one segment only, viz. : OB. Its

force diagram consists of a single ray Oi n' \
see Fig. 434

Now
( 373)

4x = CMyds ;
and M=Hz = in this case, Hy

EIJo

If. .^ _ H /
B

2 7 j hence for graphics, and..it-t--as' ,

-t )y=H As J f . . . . (1)

From eq. (1) we determine Ht having divided the rib-curve

into from twelve to twenty equal parts each called As .

For instance, for wrought iron, t and t09 being expressed
in Fahrenheit degrees, //

= 0.0000066. If E is expressed
in Ibs. per square inch, all linear quantities should be in

inches and H will be obtained in pounds.

-To2/
2

may be obtained by 375, or may be computed. H
being known, we find the moment of stress-couple = Hyt
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at any section, while the thrust and shear at that section

are the projections of H, i.e., of OX upon the tangent and

normal. The stresses due to these may then be determined

in any section, as already so frequently explained, and

then combined with those due to loading.

385. Temperature Stresses in the Arch-Ribs with Fixed Ends.

See Fig. 435. (Same postulates as to symmetry, E and 1

constant, etc., as in 380.) t and t have the same meaning
as in 384.

Here, as before, we
consider the rib to

have reached its ac-

tual form under tern-

perature t by having
had its span forcibly

shortened from the _

length natural to

temp, t, viz.: O'B',

to the actual length OB, which the immovable piers compel
it to assume. But here, since the tangents at and B are

to be the same in direction under constraint as before, the two

forces Hy representing the action of the piers on the rib,

must be considered as acting on imaginary rigid prolonga-
tions at an unknown distance d above the span. To find

H and d we need two equations.
From 373 we have, since M=Hz=H(yd\

FI0. 435.

or, graphically, with equal

(2)

(3)

Also, since there has been no change in the angle between

end-tangents, we must have, from 374,
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or for graphics, with equal A> 's, I*y nd . . . (4)

in which n denotes the number of Js's. From (4) we
determine d, and then from (3) can compute H. Drawing
the horizontal F G, it is the special equilibrium polygon

(of but one segment) and the moment of the stress-couple
at any section = Hz, while the thrust and sheaT are the

projections of H= O^n' on the tangent and normal respect-

ively of any point m of rib.

For example, in one span, of 550 feet, of the St. Louis

Bridge, having a rise of 55 feet and fixed at the ends, the

force H of Fig. 435 is = 108 tons, when the temperature is

80 Fahr. higher than the temp, of erection, and the en-

forced span is 3*^ inches shorter than the span natural to

that higher temperature. Evidently, :.f the actual temp-
erature t is lower than that tn , of erection, ZTmust act in a

direction opposite to that of Figs. 435 and 434, and the

"thrust
"
in any section will be negative, i.e., a pull.

386. Stresses Due to Rib-Shortening In 369, Fig. 407, the

shortening of the element AE to a length A'E, due to the

uniformly distributed thrust, p\F, was neglected as pro-

ducing indirectly a change of curvature and form in the

rib axis ;
but such will be the case if the rib has less than

three hinges. This change in the length of the different

portions of the rib curve, may be treated as if it were due

to a change of temperature. For example, from 199 we
see that a thrust of 50 tons coming upon a sectional area

of F = 10 sq. inches in an iron rib, whose material has a

modulus of elasticity
= E = 30,000,000 Ibs. per sq. inch,

and a coefficient of expansion #
= .0000066 per degree

Fahrenheit, produces a shortening equal to that due to a

fall of temperature (t t) derived as follows : (See 199)

(units, inch and pound)

(t -t}= P 100,000 g o

FE?i 10 x 30,000,000 x . 0000066"
Fahrenheit.

Practically, then, since most metal arch bridges of

glasses C and D are rather flat in curvature, and the thrusts,
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due to ordinary modes of loading do not vary more than 20

or 80 per cent, from each other along the rib, an imagin-

ary fall of temperature corresponding to an average thrust

in any case of loading may be made the basis of a con-

struction similar to that in 384 or 385 (according as the

ends are hinged, or fixed) from which new thrusts, shears,
and stress-couple moments, may be derived to be combin-
ed with those previously obtained for loading and for

change of temperature.

387. Resume It is now seen how the stresses per square
inch, both shearing and compression (or tension) may be
obtained in all parts of any section of a solid arch-rib or

curved beam of the kinds described, by combining the re-

sults due to the three separate causes, viz.: the load,

change of temperature, and rib-shortening caused by the

thrusts due to the load (the latter agencies, however, com-

ing into consideration only in classes C and D, see 378).

That is, in any cross-section, the stress in the outer fibre

is, [letting TV, 5Ph", ZV", denote the thrusts due to the

three causes, respectively, above mentioned ; (Hz)', (Hz)'\

(Hz)'"
1

,
the moments]

T7' 4- T7 " T7 '"
*> r -i

=:*_: ^^ e

^(Hzy(By'(H*yl
. . . (1)

Le., Ibs. per sq. inch compression (if those units are used).
The double signs provide for the cases

where the stresses in the outer fibre, due
to a single agency, may be tensile. Fig.
436 shows the meaning of e (the same
used heretofore) /is the moment of in-

ertia of the section about the gravity
axis (horizontal) C. F = area of cross-

section. [BI
= e

;
cross section symmet-

rical about C]. For a given loading we

may find the maximum stress in a given rib, or design the

rib so that this maximum stress shall be safe for the ma-
terial employed. Similarly, the resultant shear (total, not
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per sq. inch) = J' J" J'" is obta-ned for any section

to compute a proper thickness of web, spacing of rivets,

etc.

388 The Arch-Truss, or braced arch. An open-work
truss, if of homogeneous design from end to end, may be
treated as a beam of constant section and constant moment
of inertia, and if curved, like the St. Louis Bridge and the

Coblenz Bridge (see 378, Class D), may be treated as an

arch-rib.* The moment of inertia may be taken as

where F^ is the sectional area of one of the pieces I to the

curved axis midway between them, Fig. 437, and h = dis-

tance between them.

FIG. 438. FIG. 437.

Treating this curved axis as an arch-rib, in the usual

way (see preceding articles), we obtain the spec, equil. pol.

and its force diagram for given loading. Any plane "J to

the rib-axis, where it crosses the middle m of a " web-

member," cuts three pieces, A, B and C, the total com-

*The St Louis Bridge is not strictly of constant moment of inertia, being somewhat

strengthened near each pier
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pressioas (or tensions) in which are thus found : For the

point m, of rib-axis, there is a certain moment = Hz, a

thrust = Th9 and a shear = J, obtained as previously ex-

plained. We may then write Psin/3 = J . . . . (1)

and thus determine whether P is a tension or compres-
sion

;
then putting P'+P" P cos ft

- T
]}

2

(in which P is taken with a plus sign if a compression, and

minus if tension), and

(3)

we compute P and P", which are assumed to be both com-

pressions here.
ft

is the angle between the web member
and the tangent to rib-axis at ra, the middle of the piece.

See Fig. 406, as an explanation of the method just

adopted.

HORIZONTAL, STRAIGHT GIRDERS.

389. Ends Free to Turn. This corresponds to an arch-

rib with hinged ends, but it must be understood that there

is no hindrance to horizontal motion. (Fig. 439.) In

Fio 439.

treating a straight beam, slightly bent under vertical forces

only (as in this case with no horizontal constraint), as a
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particular case of an arch-rib, it is evident that since the

pole distance must be zero, the special equil. polygon will

have all its segments vertical, and the corresponding fore,

diagram reduces to a single vertical line (the load line,.

The first and last segments must pass through A and .&.

(points of no moment) respectively, but being vertical will

not intersect PA and P2 ; i.e., the remainder of the special

equilibrium polygon lies at an infinite distance above the

span AB. Hence the actual spec, equil. pol. is useless.

However, knowing that the shear, 7, and the moment

-M"(of stress couple) are the only quantities pertaining to

any section m (Fig. 439) which we wish to determine (since
there is no thrust along the beam), and knowing that an

imaginary force H' 1

', applied horizontally at each end of the

beam, would have no influence in determining the shear

and moment at m as due to the new system of forces, we

may therefore obtain the shears and moments graphically
from this new system (viz.: the loads Pl} etc., the vertical

reactions V and VM and the two equal and opposite H"'&).

[Evidently, since H' has no moment about the neutral

axis (or gravity axis here), of m, the moment at m will be

unaffected by it
;
and since H" has no component "| to the

beam at m, the shear at m is the same in the new system
of forces, as in the old, before the introduction of the

IT*]
Hence, lay off the load-line 1 . . 2. . 3, Fig. 439, and con-

struct an equil. polyg. which shall pass through A and B
and have any convenient arbitrary H" (force) as a pole
distance. This is dona by first determining ri on the load-

line, using the auxiliary polygon A'a'B, to a pole 0' (arbi-

trary"), and drawing O'n' || to A'B'. Taking O 1
'

on a hori-

zontal through ri, making 0''n'=H", we complete the

force diagram, and equil. pol. AaB. Then, z being the ver-

tical intercept between m and the equil. polygon, we have:

Moiueat at mM=H"z (or=H'z
f

also), and shear at m, or

/,~2 . . n'
9 i.e.,

= projection of the proper ray R2 ,
or

0" . . 2, upon the vertical through m. Similarly we ob-

tain M and J at any other sect: rn for the given load. (See
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329, 337 and 367). The moment of inertia need not be

constant in this case.

390, Straight Horizontal Prismatic Girder of Fixed Ends at Same

Level. No horizontal constraint, hence no thrust. I con-

stant. Ends at same level, with end-tangents horizontal.

We may consider the whole beam free (cutting close to the t

walls) putting in the unknown upward shears J and /m

and the two stress couples of unknown moments Mn and

Mn at these end sections. Also, as in 388, an arbitrary
H" horizontal and in line of beam at each extremity. Now
(See Fig. 33) the couple at and the force H" are equiv-
alent to a single horizontal H" at an unknown vertical dis-

tance c below
; similarly at the right hand end. The

special polygon FG is to be determined for this new sys-

tem, since the moment and shear will be the same at any
section under this new system as under the real system.
The conditions for determining it are as follows : Since

the end-tangents are fixed, -M4s=0 .\ z^s=Q and since
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O's displacement relatively to .B's tangent is zero we have
SMxJs =0 .-. 2H"sx48f=;Q >' 2As =0. See 374. Hence
for Equal Js's, 2'(*)=0 and 2(xz)=Q. Now for any pole 0'"

draw an equil. poL F'"G'" and in it (by 377; see Note)
locate t;'"m'" so as to make J(s'")= and 2(x'")=Q.
Draw verticals through the intersections E'" and .Z/", to

determine E and Z on the beam, these are the points of

inflection (i.e.,
of zero moment), and are points in the re-

quired special polygon FG.

Draw 0"V' 1 toV'm'" to fix n". Take a pole 0" on
the horizontal through n", making tXV=lf" (arbitrary),
draw the force diagram 0" 1234 and a corresponding

equilibrium polygon beginning at E. It should cut L,
and will fulfil the two requirments 2*(z)=Q and J(a?)=0,
with reference to the axis of the beam O'B'. The moment of

the stress-couple at any section m will be MH"z, and the

shear J = the projection of the "
proper ray

"
of the force

diagram 0" . . 1, 2, etc., upon the vertical (not in the trial

diagram 0'". . 1, 2, etc.). As far as the moment is concern-

ed the trial polygon F'n'(?'" will serve as well as the special

polygon FG ; i.e., M=H"'z'" as well as H"z, H" f

being the

pole-distance of 0'" ;
but for the shear we must use the

rays of the final and not the trial diagram.
The peculiarity of this treatment of straight beams,

considered as a particular case of curved beams, consists

in the substitution of an imaginary system of forces in-

volving the two equal and opposite, and arbitrary ZTs, for

the real system in which there is no horizontal force and

consequently no "
special equilibrium polygon," and thus

determining all that is desired, i.e., the moment and shear

at any section.

In the polygon FG the student will recognize the " mo-

ment-diagram
"
of the problems in Chaps. Ill and IV.

He will also see why the shear is proportional to the

slope of the moment curve in those chapters. For
dx

example, the "
slope

"
of the second segment of the poly-

gon FG, that segment being || to 0" 2, is
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tang, of angle 20'V'=^'^0
7V7 =shear -*- H"

and similarly for any other segment ; i.e., the tangent oi

the inclination of the " moment curve," or line, is propor-.
tional to the shear.

It is also interesting to notice with the present problem
of a straight beam, that in the conditions

J(Js)=0 and 2(z4s)x=0,

t>r locating the polygon FG, each ds is T to its , and

^hat consequently each zAs is the area of a small vertical

strip of area between the beam and the polygon, and

(z4s)x is the " moment" of this strip of area, about 0' the

origin of x. Hence these conditions imply ; first, that the

area EWL between the polygon and the axis of the beam

on one side is equal to that (O'FE+LB'G) on the other

Side, and, secondly, that the centre of gravity of EWL lies

in the same vertical as that of O'FE and LB' G combined.

Another way of stating the same thing is that, if we join

FG, the area of the trapezoid FO'B' G is equal to that of the

figure FEWLG, and their centres 8f gravity lie in the same
vertical. A corresponding statement may be made (if we join

F'"G'"] for the trapezoid F"'v'"m'"G'" and figure
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CHAPTER XII.

OF CONTINUOUS GIRDERS.

[MAINLY DUE TO PROF. MOHR. OF AIX-LA-CHAPELLE ]

391. The Elastic Curve of a Horizontal Loaded Beam, Homoge-
neons and Originally Straight and Prismatic, is an Equilibrium

Polygon, whose "load-line" it vertical

and consists of the successive products

Mdx [treated as if they were loads

each applied through the middle of

its proper dx~], and whose "pole dis-

tance" is EL Fig 441 (exaggerated).

Let AO and 00 be any two con-

secutive equal elements of a very
flat elastic curve (as above described).

Prolong AO to cut NO. Then from

231, eq. (7), we have

dx (1)

where cP^ZJtfjand, hence, if a triangle (Fig. 442) O'D'C',
be formed with O'D' \ to OD, O'C'

\\ to 00, and D'& ver-

tical, while its (horizontal) altitude O'n is made equal, by
scale, to El of the beam, then from the similarity of the

triangle OZ>(7and O'D'C' and the proportion ineq. (l)we
see that D'C' must represent the product Mdx on the same
scale by which O'n represents EL M is the moment of
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the stress-couple at the section whose neutral axis ib pro-

jected in 0.

Similarly, if M' is the moment of the stress-couple at

0, and we draw O'F', II
to CF, G'F' must represent M'di

(on same scale). It is therefore apparent that the line

AOCF bears to the figure O'D'C'F' the same relation

which an equilibrium polygon (for vertical forces) does to

its force diagram, the " loads
"

of the force-diagram being
the successive values of Mdx laid off to scale, while its

"
pole-distance

"
is El laid off on the same scale. [As if

Mdx and M'dx were loads suspended at and C respec-

tively.]

Practically, since any actual elastic curve is very flat,

and since a change of pole-distance will change all verti-

cal dimensions of the equilibrium polygon in an inverse

equal ratio, we may exaggerate the vertical dimensions of

the elastic curve by choosing a pole distance smaller than

El in any convenient ratio, n. Any deflection in the elas-

tic curve thus obtained will be greater than its true value

in the same ratio n.

Graphically, in order to draw exaggerated elastic curves

according to this principle, we obtain approximate results

by dividing the length of the beam into a number of equal

Jsc's, draw verticals through the middles of the J#'s as
"
force-verticals,"and lay off as a " load-line

"
to any con-

venient scale the corresponding values of MAx in their

proper order.

The quality of the product MAx is evidently (length)
2 x

force, and with the foot and pound as units such a product

may be called so many (sq. ft.) (Ibs.). It will be noticed

that these products (MAx) are proportional to, and maybe
represented by, the areas of the corresponding vertical

strips of the "
moment-diagram

"
proper to the case in

hand, These strips together make up the " moment-area"

as it may be called, lying between the moment curve and

its horizontal axis (which is the axis of the beam itself,

according to 389 and 390).
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392. Mohr's Theorem. The principle of the previous

paragraph may therefore be enunciated as follows : That

just as the moment curve (of a straight prismatic horizontal

beam) between tivo consecutive supports is an equilibrium poly-

gon/or the loading between those supports, so also is the elastic

curve itself an equilibrium polygonfor the " moment-area
"
con-

sidered as a loading.

In dealing with the moment-curve of a single span the

pole distance is arbitrary (
389 and 390), but the position

of the pole relatively to the load line in other respects, and
the location of the moment-curve (equil.-pol.) relatively to

the beam (considered to be still straight for this purpose),

depend on whether the beam simply rests on the two sup-

ports, without projecting beyond ; or is built in, and at

what angles ;
or as with a continuous girder, on the inclina-

tion of the tangent-lines at the supports, as influenced by
the presence of loads on all the spans, and on whether all

supports are on the same level or not.

For example, in 389, for a single span, the ends of

beam being simply supported without overhanging, the

pole 0" must be on a horizontal through n', and the mo-
ment curve must pass through the extremities A and B of

the beam, thus giving a " moment-area "
lying entirely on

one side of the beam (or axis from which the moment or-

dinates, z, are to be measured) ; whereas, in 390, also a

single span, where the ends of the beam are built in hori-

zontally and at the same level, the pole must be taken on

the horizontal through n" 9
and the moment-curve FEWLG

must intersect the beam in the points E and L (E, L, and

n" being found as prescribed in that problem), and thus

lies partly above and partly below the beam. It will be

necessary, later, to distinguish the upper and lower parts

of the moment-area as positive and negative.

In drawing the equilibrium polygon which constitutes

the actual elastic curve, however, and hence making use of

the successive small ^vertical strips of the moment-area,

(when found) as if they were loads, to form a load-line ac-

cording to a convenient scale, the pole distance is not ar-
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bitrary but must be = El on the same scale. Still, since

for convenience we must always greatly exaggerate the

vertical scale of the elastic curve, we may make the pole

distance = El-r-n and thus obtain an elastic curve whose

vertical dimensions are n times as large as those of the real

curve ;
while the position of the pole will depend on the

direction of the tangent lines at the extremities of the span.

An example will now be given.
*

393 Example of an Elastic Curve (Beam Prismatic) Drawn as

an Equilibrium Polygon Supporting the Moment-Area as Loading.

Let the beam be simply supported at its extremities (at

the same level), and bear a single eccentric load P, Fig.

443, its own weight being neglected. The moment-area

consists of a triangle AGE [see first part of 260, or use

the graphic method of 389, thus utilizing a force diagram

012.], its altitude being the moment represented by the

Pll
ordinate CD and having a value . Hence the total

moment-area = }& base AB X mom. CD

i.e., =
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Divide AB into (say) eight equal Jx's (eight are rather

few in practice ; sixteen or twenty would be better) and
draw a vertical through the middle of each. Note the

portion of each of these vertical intercepts between the

axis of the beam and the moment-curve ACS. The pro-
ducts M Ax for the different subdivisions are proportional
to these intercepts, since all the ^ce's are equal, and are the

respective moment-areas of the ^to's.

Treating these products as if they were loads, we lay off

the corresponding intercepts (or their halves, or quarters,
or other convenient fractional part or multiple), from E
downwards to form a vertical "

load-line," beginning with

fche left-hand intercept and continuing in proper order.

As to what scale this implies, we determine by dividing
the total moment-area thus laid off, viz. : y2 Plh, say in

(sq. in.) (Ibs.), by the length of EF in inches, thus obtain-

ing the number of (sq. in.) (Ibs.) which each linear inch of

paper represents.
On this scale the number of inches of paper required to

represent the El of the beam is so enormous, that in its

stead we use the nth portion, n being an arbitrary abstract

number of such magnitude as to make El -f- n a con-

venient pole-distance, TS.

The proper position of the pole 0' on the vertical TWt

is fixed by the fact that the elastic curve, beginning at A,

must terminate in B, at the same level as A. Hence,

assuming any trial pole as 0", and drawing rays in the

usual manner (except that, as henceforth, the pole is taken

on the right of the "
load-line," instead of on the left, so

as to make the resulting equilibrium polygon correspond
in direction of curvature to the actual elastic curve), we
draw the corresponding equilibrium polygon A"B". De-

termining n' by drawing through 0" a line II to the right

line A"B", we draw a horizontal through n' to intersect

TWiu 0', the required pole.

With 0' as pole a new equilibrium polygon begun at A*

will terminate in B' and its vertical ordinates will be n

times as great as those of corresponding points on the
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actual elastic curve AB. The same relation holds between
the tangents of the angle of inclination to the horizontal

at corresponding points (i.e., those in same vertical)of the

two curves.

394, Numerical Case of Foregoing Example, With the inch

and pound as units, let P = 120 Ibs., ^ = 40 in., 12 = 80 in.

while the prismatic beam is of timber having a modulus
of elasticity E = 2,000,000 Ibs. per sq. inch, d&id is rectan-

gular in section, being 2 in. wide and 4 in. high, so that

(its width being placed horizontally) the moment of iner-

tia of the section is / = 1

/M bhz = yi2 x2x64 = 10^ bi-

quadratic inches
( 90.) Eequired the maximum deflection.

Adopting 1:20 as the scale for distances (i.e., one linear

inch of paper to twenty inches of actual distance) we make
the horizontal AB 6 in. long, Fig. 443, and AD 2 in., tak-

ing a point G at convenience in the vertical through Z>,

and joining AC and CB, thus determining the moment-

diagram for this case. [As to what pole distance, H, is

implied in this selection of (7, is immaterial in this simple
case of a single load ; hence we do not draw the corre-

sponding force-diagram at all.] We divide AB into eight

equal parts and draw a vertical through the middle of

each. The intercepts, in these verticals, between AB and

the broken liuQ'ACB we lay off from .# toward F as pre-

scribed in 393. (By taking DC small enough the line EF
will not be inconveniently long.)

Suppose this length EF measures 6.4 inches on the

paper (as in the actual draft by the writer). Since it rep-
resents a moment-area of

y2Pl^= 1^x120x40x80=192,000 (sq. in.) (Ibs.), the scale

of our "moment-area-diagram," as we may call it, must be

192,000-J-6.4=30,000 (sq. in.) (Ibs.) per linear inch of paper.

Now #7=21,333,333 (sq. in.) (Ibs.), which on the above

scale would be represented by 711 linear inches of paper.
With w=100, however, we lay off ST=EI+n=7.1l inches

of paper as a pole distance, and with a trial pole 0" in
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the vertical TW draw the trial equilibrium polygon or

elastic curve A"B", and with it determine n', then the final

polygon A'B' as already prescribed. In A'B' we find the

greatest ordinate, NK, to measure 0.88 inches of paper,
which represents an actual distance of 0.88 x 20 = 17.6

inches But the vertical dimensions of the exaggerated
elastic curve A'B' are n=WO times as great as those of the

actual, hence the actual max. deflection is <i=17.6-^n=:0.176

in. [This maximum deflection could also be obtained from

the oblique polygon A"B" whose vertical dimensions are

equal to those of A'B'. By the formula of 235 we ob-

tain d= 0.174 inches.]

395. Direction of End-Tangents of Elastic Curve in the Foregoing

Problem. As an illustration bearing on subsequent work
let us suppose that the only result required in 394 is

tan
, i.e., the tangent of the angle B'A'T', which the

t.-ingent-line A
'

T' to the elastic curve at the extremity A',

Jb'ig. 443, makes with the horizontal line A'B', (tan. aQ is

called the "slope" at A.) Let '' be the tangent-line at

B'. These two "
end-tangents

"
are parallel respectively to

EO' and FO', and intersect at some point R. Now since

A'KB' is an equilibrium polygon sustaining an imaginary
set of loads represented by the successive vertical strips of

the moment-area ACB, the intersection R must lie in the

vertical containing the centre of gravity, U, of that mo-
ment-area [ 336|.

Hence, if the vertical containing U is known in advance,

or, as in the present case, is easily constructed without

making the strip-subdivision of 394, we may determine

the end-tangents very briefly by considering the whole

moment-area, M.A., (considered as a load) applied in the

vertical through U, as follows :

Since AGB is a triangle, we find U by bisecting AB in

X, joining CX, and making XU = % XC, and then draw a

vertical through U. Laying off EF=6A inches [so as to

represent a moment-area of 192,000 (sq. in.) (Ibs.) on a

scale of 30,000 (sq. in.) (Ibs.) per linear inch of paper],
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and making ST=7.ll inches as before, we assume a trial

pole 0" on TW, draw the two rays 0"E and Q"F, construct

the corresponding trial polygon of two segments A"R"B",
for the purpose of finding n'. With a pole 0' on TW&nd
on a level with n' we draw the two rays O'E and O'F, and

the corresponding segments A'R % and RB'. (JB' should be

on a level with A', as a check.) These two segments are

the end-tangents required.

We have, therefore,

tan =

In the present numerical problem we find B'T' to mea-

sure 3 in. of paper, i.e, 60 in. of actual distance for the

exagg. elastic curve, and therefore 0.60 in. in the real elas-

tic curve (with n = 100)

o
120 in.

It is now evident that the position and direction of the

end-tangents of the elastic curve lying between any two sup-

ports are independent of the mode of distribution of the

moment-area so long as the amount of that moment-area and

the position of its centre of gravity remain unchanged. This

relation is to be of great service.

396. Re-Arrangement of the Moment-Area. As another illus-

tration conducing to clearness in later constructions, let

us determine by still another method the end-tangents of

the beam of 394 and 395. See Fig. 444. As already

seen, their location is independent of the arrangement of

the moment-area between. Let us re-arrange this moment-

area, viz., the triangle AGB, in the following manner :

By drawing AX parallel to BC, and prolonging BCio V

in the vertical through A, we may consider the original

moment-area ACS to be compounded of the positive mom.-
area VBXA, a parallelogram, with its gravity-vertical

passing through /), the middle of the span ;
of the negative

mom. -area VCA, a triangle whose gravity-vertical passes
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through Z>! making AD L=% AD
\
and of another negative

mom.-area, the triangle ABX, whose gravity-vertical passes

through D3 at one-third the span from B. That is, the

(ideal) positive load ACE is the resultant of the positive

load (M.A.)2 and the two negative loads (or upward pulls)

(M.A.\ and (M.A.)& and may therefore be replaced by them

without affecting the location of the end-tangents, at A

and B, of the elastic curve AB. These three moment-
areas are represented by arrows, properly directed, in the

figure, but must not be confused with the actual loads on

the beam (of which, here, there is but one, viz., P).

From the given shapes and dimensions, since ACE
192,000 (sq. in.) (Ibs.), we easily derive by geometrical

principles :

(KA.\= +576,000 (sq. in.) (Ibs.)

(M.A.\=
- 96,000

(M.A.)Z
= -288,000

Hence, with a pole distance El -4- n = 7.11 in. as before,

and a "moment-load-line" formed of 1'2' = (M.A.) l9 (on
scale of 30,000 (sq. in. Ibs.) to one inch) 2'3' = (M.A.),, and

3'4' (M.A.\t
first with a trial pole 0", construct the trial
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polygon A"B", and find n' in usual way ( 337) ; then take

a pole 0' on the horizontal through n' and the vertical

TW, and draw the new polygon A' 123 J5'. It should

pass through B' on a level with A', and A'\ and B'3 are the

required end-tangents (of the exagg. elastic curve).

[NOTE If B' were not at the same level as A'
',
but

(say) 0.40 in. below it, B f should be placed at m, a distance

' x = 2 inches (on the paper) below its present posi-
^0

tion, (since the distance scale is 1:20 and n = 100, in this

case) and the " abutment-line
"
of final polygon would be

A'm\.
Of course, this special re-arrangement of the moment-

area is quite superfluous in the present problem of a dis-

continuous girder (not built in), but considerations of this

kind will be found indispensable with the successive spans
of a continuous girder.

397. Positive and Negative Moment-Areas in Each Span of a

Continuous Girder (Prismatic). In the foregoing problem of a

discontinuous girder (covering one span only) not built in at

the ends (otherwise it would be classed among continuous

girders), the moment-curve, or equilibrium polygon of

arbitrary H, is easily found by 389 without the aid of the

elastic curve, and the end moments are both zero ; (i.e., the

moment-curve meets the beam in the end-verticals) but in

each span of a continuous girder the end-moments are not

zero (necessarily), and the points in the end-verticals where
the moment-curve must terminate (for an assumed H) can

not be found without the use of the elastic curve (or of

some of its tangents) of the whole beam, dependent, as it is,

upon the loading on all the spans, and the heights of the

supports.
Let Fig. 445 show, in general, any one span of a pris-

matic continuous girder (prismatic ; hence / is constant),
between two consecutive supports A and BQ . Pb P2 > etc.,

are the loads on the span.

[If the displacement of An relatively to the end-tangent
at B, and the angle between the end-tangents (of elastic
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curve) were known, the moment-curve or equilibrium

polygon FWG, (AB being the axis of beam) might be

found by a process similar to that in _390, but the elastic

curves in successive spans are so inter-dependent that the

above elements can not be found directly.]

Ithli

Fio. 445.

We now suppose, for the sake of discussion, that the

whole girder has been investigated (by a process to be

presented) for the given loads, spans, positions of supports,

etc., and then the moment-curve FEWLG found, with the

corresponding force-diagram, for the span in the figure
and some arbitrary H. The horizontal line AB represents
the axis of the beam (for this purpose considered straight
and horizontal) as an axis from which to measure the

moment ordinates.

Thus, the moment (of the stress-couple) at A is = H X

AF\ at B, H x BG ;at E and L, zero (points of inflection).

Now, according to the usual conceptions of analytical

geometry, we may consider the portion EWL, of the mo-

ment-area, above AB as positive, and those below, AEF
and LB G, as negative ; but since not one of these three
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areas, nor the position of its gravity-vertical, is known in

advance, since they are not independent of the other

spans, a more advantageous re-arrangement of the moment-
area may be made thus :

Join FG and FB, and we may consider the original
nioment-,rea replaced by the following three component
areas : the positive moment-area FEWLGF (shaded by ver-

tical lines) ;
the negative triangular moment-area AFB

;

and the negative triangular moment-area BFG (the nega-
tive moment-areas being shaded by horizontal lines). (In

subsequent paragraphs, by positive and negative moment-
areas will be implied those just mentioned.)
These three moment-areas, treated as loads, each applied

in its own gravity-vertical, and considered in any order,

may be used instead of the real distributed moment- area,

as far as determining, or dealing with, the end-tangents of the

dastic-curve at A and B is concerned
( 396), and the fol-

lowing advantages will have been gained :

(1.) The amount of the positive moment-area, (M.A.\ in

Fig. 445, (depending on the area lying between the polygon
FEWG and the abutment-line F G of the latter), and the

position of its gravity-vertical, are independent of other spans,

and can be easily found in advance, since this moment-area

and gravity -vertical are the same as if the part of the beam

covering this span were discontinuous and simply rested on the

supports A and Bu , as in 389.

(2.) The gravity-vertical of the left-hand negative mo-

ment-area, (M.A.)i, is always one-third the span from the

left end-vertical, A A'; that of the other, (M.A.\, an equal
distance from the right end-vertical, B B'.

(3.) The two (right and left) negative moment-areas
are triangular, each having the whole span I for its alti-

tude, and for its base the intercept AF (or BG) on which
the end-moment depends. Hence, if the amounts of these

negative moment-areas have been found in any span, we

may compute the values which AF and BG must have for

a given H, and thus determine the terminal points F and
G of the moment-curve of that span (for that value of H).
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For example, if (M.A.\ has been found (by a process not

yet given) to be 160,000 (sq. in.) (Ibs.) while AB = I = 160

in., then the moment M^ which AF represents, is computed
from the relation

(M.A.\ = y2 AB x

or Jf= -2000, in. Ibs.

If #has been chosen = 100 Ibs. we put HxAF = 2000

and obtain AF = 20 inches of actual distance, so that with

a scale of 1:20 for distances AF would be one linear inch

of paper. (Of course, in computing BG the same value of

H must be used.) "With H= 100 Ibs., then, and F and G
as known points of the equilibrium polygon FEW G, it

is easily drawn by the principles of 341.

We thus notice that the amounts of the two negative

moment-areas are the only elements affected by the con-

tinuity of the girder, in this re-arrangement of the actual

moment-areas.

In the lower part of Fig. 445 A' and B' represent the

extremities of the (exagg.) elastic curve, the vertical dis-

tance B'B'", ofB 9 from the horizontal through A' (in case

the two supports A and B are not at same level, as we
here suppose for illustration) being laid off in accordance

with the principles of the note in 396.

NOTE. It is now evident that if the "false polygon" (as

it will be called) ^4'123^' has been obtained (and means for

doing this will be given later) in which the first and last

segments are the end tangents of the (exagg.) elastic curve,

and which bears the same relation to the three moment
areas just mentioned, as that illustrated in Fig. 444, we

may proceed further to determine the amounts of (M.A.\
and (M.A.\ as follows, by completing the moment-area dia-

gram :

Having laid off the known (M.A.\ (or positive moment-

area)=2'3', and ST=EI--n, a line parallel to 12 drawn

through 2', determines the pole 0', through which paral-
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lels to A'l and B'3 will fix 1' and 4' on the vertioal 8V>
and thus determine l"2'=(M.A.\ and S'4f=(M.A.^ Their

numerical values are then computed in accordance with

the scale of the moment-area diagram.
The polygon A'V&B' will be called the "false poh/gon

"

of the span in question, its end-segments being the end-

tangents of the elastic curve.

398. Values of the Positive Moment-Area in Special Cases.

For several special cases these are easily computed, and

as an illustration, Fig. 446 shows a continuous girder, AF

FIG. 446.

of five spans, all six supports on a level, and the weight of

the beam neglected. At the extremities A and F, as at

the other supports, the beam is not built in, but simply
touches each support in one point ; hence the moments at

A and F are zero, i.e., the moment curve must pass through
A and F, so that in the first span the left negative mo-

ment-area, and in the fifth span the right negative mo-

ment-area, are zero. The positive moment-area* are

shaded.

On the first span is placed a uniformly distributed load

W over the whole span I'. .*. the positive moment-area
for that span is the same as in the case of Fig. 235 [soo

(1) 397] and being represented by a parabolic segment
whose area is two-thirds that of the circumscribing rec-

tangle, its value is
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[se uq. (2) 242], while its gravity-vertical bisects the

span.
The only load on the second span is a concentrated one,

P"t at distances Z/' and 1% from the extremities of the span;
hence the positive moment-area is triangular and has a

value

(M.AX'=#P'W - (2)

as in 393. Its gravity vertical may easily be constructed

as in Fig. 443 [see (1) 397],

The third span carries no load ; hence its positive mo-
ment-area is zero, and the actual moment-area is composed

solely of the two triangular negative moment-areas GDH
and DHI, the moment-curve consisting of the single

straight line HI.

The fourth span carries a uniform load ?Fnr=f^viIV, and
.*. has a positive moment-area

(M.Aff^/vW"(VV ... (3)

as in eq. (1), acting through the middle of the span (grav-

ity-vertical).

Since the fifth and last span carries no load, its positive

moment-area is .zero, the moment curve being the straight

line JFj so that the actual moment-area is composed of

the left-hand negative moment-area.

At F it is noticeable that the reaction or pressure of the

support must be from above downward to prevent the

beam from leaving the point F\ i.e., the beam must be
" latched down," and the reaction is negative.

If the beam were built in at A (or F) the moment at

that section would not be zero, hence the left (or right)

neg. moment-area would not be zero in that span, as in

our present figure. But in such a case the tangent of the

elastic curve would have a known direction at A (or F) and

the problem would still be determinate as will be seen.
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A' . . . F !

gives an approximate idea (exaggerated) of

the form of the elastic curve of the entire girder. A change
in the loading on any span would affect the form of this

curve throughout its whole length as well as of all the

moment curves.

NOTE. It is important to remark that any two of the

triangular negative moment-areas which have a common
base (hence lying in adjacent spans) are proportional to

their altitudes, i.e., to the lengths of the spans in which they
occur ; thus the neg. mom.-areas (Fig. 446) GCH&ndDCH
have a common base OH,

_V ...

'-~-

(The notation explains itself ; see figure.) It also follows,

that the resultant of these two neg. moment-areas (if re-

quired in any construction ; see 400) acts in a vertical

which divides the horizontal distance between their gravity ver-

ticals in the inverse ratio of the spans to which they belong

[21 and eq. (4) above].

Hence, since this horizontal distance is X^"~f"K^'" their

resultant must act in a vertical Y'"9 whose distance from
the gravity-vertical of GCH is %l"

f
t and from that of

CUD, yd".

399. Amount and Gravity-Vertical of the Positive Moment

Area of One Span as Due to Any Loading. Since we can not

deal directly with a continuous load by graphics, but must
subdivide it into a number of detached loads sufficiently

numerous to give a close approximation, let us suppose
that this has already been done if necessary, and that P19

P2 , etc., are the detached loads resting in the span AS in

question ;
see Fig. 447.

Since [by (1), 397] the positive moment-area is the

same as the total moment-area would be if this portion of

the beam simply rested on the extremities of the span, not

extending beyond them, we may use the construction in

389 for finding it, remembering that in that paragraph the
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oblique polygon in the lower part of Fig. 439 will serve

as well as the (upper) one whose abutment-line is the

beam itself, asfar as moments are concerned.

Hence, Fig. 447, lay off the load-line LL'
y take any pole

0, with any convenient pole-distance H, and draw the

equilibrium polygon FWG. After joining FG, FWGf1

will be the positive moment-area required.

To find its gravity vertical, divide the span AB, or FG't

into from ten to twenty equal parts (each
=

As] and draw a

PIG. 447.

vertical through the middle of each. The lengths xi9 z^

etc., on these verticals, intercepted in the moment-area,
are proportional to the corresponding strips of moment-

area, each of width =As, and of an amount HzAs.

Form a load line, SK, of the successive z's, and with

any pole 0', draw the equilibrium polygon A'B' (for the

^-verticals). The intersection, R, of the extreme segments*

is a point in the required gravity-vertical ( 336).

The amount of the moment-area is (M.A.\= 2[Hzds\
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For example, with the span =Z=120 in., subdivided into

twelve equal ^s's, we have Js 10 inches (of actual distance).

IfH=4 inches of paper and SK=2(z)=W.Z inches of paper,
the force-scale being 80 Ibs. to the inch, and the distance**

scale 15 inches to the inch (1:15), we have

(M.A.)2
= [4x 80] x 10x [10.2x15] =489600. (sq. in.)(lbs.)

400. 'Construction of the "False-Polygons" For All the Spans
of a Given (Prismatic) Continuous Girder, Tinder Given Loading,
and With Given Heights of Supports. [See note in 397 for

meaning of "false-polygon ".] Let us suppose that the

given girder covers three unequal spans, Fig. 448, with

supports at unequal heights, and that both extremities A
and D are built-in, or "

fixed," horizontally. To clear the

ground for the present construction, we suppose that, from
the given loading in each span, the positive moment-area
of each span has been obtained in numerical form [so

many (sq. in.) (Ibs.) or (sq. in.) (tons)] and its gravity-ver-
tical determined by 398 or 399 ; that the horizontal

distances
(i.e., the spans Z', I", and I'" and the distance be-

tween the above gravity-verticals and the supports) have
been laid off on some convenient scale ; that El has been

computed from the material and shape of section of the

girder and expressed in the same units as the above mo-
ment-areas ; that a convenient value for n has been se-

lected (since EI-^-n is to be the pole distance of all the

moment-area-diagrams), and that the vertical distances of

B, C, and D, from the horizontal through A, have been
laid off accordingly (see note in 396).

In the figure (448) verticals are drawn through the

points of support ;
also verticals dividing each span into

thirds, since the unknown negative moment-areas (sub-

scripts 1 and 3) act in the latter
( 397) ;

and the gravity-
verticals of the known positive moment-areas. The ver-

ticals Y', Y", V'\ and V"', are to be constructed later.

The problem may now be stated as follows :

the positions of the supports, the value of El and nt
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the fact that the girder is fixed horizontally at A and D, tM

heights of supports, the location of the gravity-verticals of all

the positive and negative moment-areas, and the amounts of ikt

positive moment-area^ ; it is required to find graphically the

"false-polygon" in each span.

The " false-polygons," viz.: A 123 B for the first span (on

the left), B 123 G for the second, etc., are drawn in the figure

Fie. 448.

lor the purpose of discussing their properties at the out-

set. Since 3B and B\ are both tangent to the elastic curve

at B, they form a single straight line ; similarly (71 is but

the prolongation of 3(7. Also Al and 3D must be hori-

zontal since the beam is built in horizontally at its ex-

tremities A and D.

That is, the three false polygons form a continuous

equilibrium polygon A . . . D, in equilibrium under the

"loads"

(M.A.y, (M.A.\'t (KA.y, etc.,

ao that we might use a single mom. -area-diagram in con-

nection with it, but for convenience the latter will b&
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drawn in portions, one under each span, with a pole dis-

tance = .

Of this polygon A ... D, we have the two segments AL
and 3-D already drawn, and know that it passes through
the points B and C ; we shall next determine by construc-

tion other points (called
" fixed points ") pQ

'

t p", pQ", p'",
and pQ

'" in (the prolongations of) certain other segments.
Tofind the "fixed point

"
prf, where the segment 23 in the

first span cuts the vertical F', the gravity-vertical of

(M.A.y. The vertex p', or 1, is already known, being the

intersection of Al with V. Lay off2' 3' = (M.A.y which is

known, and take a trial pole 0/with a pole-distance^/-^-7i;

join t

'
2' and t

'
3'. Draw 12

II
to 2'0

t
to determine 2,,

on the vertical (M. A.)2', then through 2 a line
||
to 0/3' to

cut V in PQ. The unknown segment 23 must cut V: in

the same point ;
since all positions of 0' on the vertical

T'U' will result in placing pQ
' in this same point, and one

of these positions must be the real pole 0' (unknown).

[This is easily proved in detail by two pairs of similar

triangles].

To determine the "fixed-point
"
p"9 in the prolongation

of segment 12 of second span. The prolongations
of the segments 23 (of first span) and 12 (of second span)
must meet in a point k' in the (vertical) line of action of the

resultant of (M. A.y and (M. A.\" ( 336). Although the

amounts of (M. A.)$ and (M. A.\" are unknown, still the

Vertical line of action of their resultant (by 398, Note) is

I"known to be F', a horizontal distance to the right of
o

(M.A.\' ; hence Y f
is easily drawn. Therefore, the unknown

triangle &'31 has its three vertices on three known verti-

cals, the side k'3 passes through the known point pQ

'

y and
the side 13 through the known point B. Now by pro-

longing PQ 2 (or any line through p ') to cut (M. A.\' and
Yf

in 3 and &/, respectively, joining 3 B and prolonging
this line to cut (M. A.\" in some point 1

,
and then joining

fc
'

1 ,
we have a triangle & '3 1 f which we can make a
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statement precisely the same as that just made for k* 3 1

But if two triangles [as &'31 and kQ
' 3 1 ] have theii

vertices on three parallel lines (or on three lines which

meet in a point) the three intersections of their correspond-

ing sides must lie on the same straight line [see reference

to Chauvenet, 378 a]. Of these intersections we have

two,^>
' and B

;
hence the third must lie at the intersection

of the line pj B (prolonged) with & ' 1 , and in this way the
" fixed point

"
p" 9

a point in &'l and .'. in the segment 12

(of second span; prolonged, is found. Draw a vertical

through it and call it V".

Thefixed point p
"

(in prolongation of segment 23 of sec-

ond span) lies in the vertical V" and is found from p" and

the known value of (M.A.\" precisely as^>
' was found from

p'. That is, we lay off vertically 2" 3" = (M.A.\", and join

2" and 3" to Ot", which is any point at distance El n

to the right of 2"3". Through p" draw a line
|| to 2" Ot

"

to cut
(
M. A.)2

"
in 2 , then 2 _p

"
II
to Ot

" 3" to determine

p
" on the vertical V".

The fixed points p'" and^></" in the third span lie in the

prolongations of the segments 12 and 23, respectively, of

that span, p'" being found from the points pQ
" and G and

the verticals (M.A.\"t Y", and (M.A.\'" 9
in the same manner

as p" was determined with similar data, while p '", in the

same vertical V" as p'", depends on (M. A.)2
'" and its

gravity vertical as already illustrated
; hence the detail

need not be given ; see figure.

In this way ior any number of spans we proceed from

span to span toward the right and determine the succes-

sive fixed points, until the points p and p of the last span
have been constructed, which are p'" and p

"'
in our

present problem. Since p
'"

is a point in the segment 23

(prolonged) of the last span, we have only to join it with

3 in that span, a point already known, and the segment 23

is determined. Joining the intersection 2 with p'" we
determine the next segment 21 and of coarse the vertex 1,

which is then joined with C and prolonged to intersect

M. A.\" to fix the segment 103 and the point 3. Join
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3 PQ> and proceed in a similar manner toward the left,

until the whole equilibrium polygon (or series of " false

polygons ") is finally constructed ; the last step being the

joining of 2 with p'.

401. Treatment of Special Features of the Last Problem. (1.)

If the beam is simply supported at A, Fig. 448, instead of

built-in, (M. A.)' becomes zero, and the two segments A\
and 12 of that span form a single segment of unknown
direction. Hence, the point A will take the place of p',

and the vertical FA that of V.

(2.) Similarly, if D, in the last span, is a simple support

(beam not built in) (M. A.)B
'" becomes zero, and the seg-

ments D3 and 32 form a single segment of unknown

direction, so that after pj' has been found, we join pf
and D to determine the segment Z>2 ; i.e., in this last span,
D takes the place of 3 of the previous article.

(3.) If the first span carries no load (M. A.)2

f

is zero, and
the segments 12 and 23 will form a single segment 23.

Hence if the beam is built in at A, pd will coincide with

the known point p' (i.e., 1), while if A is a simple support

p
'

and_p' coincide with A, since, then, (M, A.) L

'

is zero and

A 123 is a single segment.

(4.) If the last span is unloaded (third span in Fig. 448),

(M. A.)2

'"
is zero, 123 becomes a single segment, and hence

PQ" will coincide with p'" ;
so that after p'" has been con-

structed it is to be directly joined to 3, if the beam is

built in at D, and will thus determine the segment 13
;
or

to D, if D is a simple support, (for then (M. A.)z

'"
is zero

and the three segments 12, 23, and 3 D form a single seg-

ment.)

(5.) If an intermediate span is unloaded (say the second

span, Fig. 448) the positive mom.-area, (M. A.\" t
is zero,

123 becomes a straight line, i.e. a single segment, and

therefore p" coincides with p" ; hence, when p" has been

found we proceed as if it were pQ".

402. To Find the Negative Mom.-Areas, the Mom.-Curves, Shears,

and Reactions of the Supports. (1.) Having constructed the
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false polygons according to the last two articles, the negto*

tive moment-areas of each^ span are tken to be found by the

note in 397, Fig. 445, and expressed in numerical form.

[If the positive niom.-area of the span is zero the points

2' and 3' will coincide, Fig. 445, and in the case mentioned

in (3), (or (4)),
of 401, if A (or D) were a simple support,

in Fig. 448, the mom.-area-diagram of Fig. 445 would have

but two rays.]

(2.) The moments at the supports (or "end-moments
"

of

the respecL\e spawns) depending, as they do, directly on

the negative mom. -areas, can now be computed as illustrated

in (3) 397. The fact that each " end-moment "
may be

obtained from two negative mom.-areas, separately, one in

each adjacent span (except, of course at the extremities of

the girder) forms a check on the accuracy of the work.

The two values should agree within one or two per cent.

(3.) The " moment-curve
"
of each span or equilibrium

polygon formed from a force-diagram whose load-line con-

sists of the actual loads on the span laid off in proper
order, can now be drawn, a convenient value for H having
been selected (the same Hfor aU the spans, that the moment-
curves of successive spans may form a continuous line for

the whole girder); since we may easily compute the proper
moment ordinate at each support to represent the actual

moment, then, for the H adopted, by (3) 397. The

moment-curve of each span, since we know its two extreme

points and its pole-distance H, is then constructed by
341.

(4.) The shear. Since the last construction involves

drawing the special force-diagram for each span, with a

ray corresponding to each part of the span between two

consecutive loads, the shear at any section of the beam is

easily found as being the length of the vertical projection
of the "

proper ray/' interpreted by the force-scale of the

force-diagram, as in 389 and 390. With the shears as
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__ax_____A ordinates a shear-diagram may
now be constructed, if desired, for

each span. The directions of the

shears should be carefully noted.

(5.) Reactions of supports. Let

us consider " free
"
the small por-

tion of the girder, at each point
of support, included between two

sections, one close to the support
on each side, Fig. 449. Suppose
it is the support (7, and call the

reaction, or pressure at that sup-

port Bc. Then, for vertical equi-

librium, i.e., 27 = ( 36), we have

(5)

and, in general, the reaction at a support equals the

(algebraic) sum of the two shears, one close to the support
ou the right, the other on the left. The meaning of the

subscripts is evident. In applying this rule, however, a

free body like that in Fig. 449 should always be drawn, or

conceived ; for the two shears are not always in the same

direction ; hence the phrase
"
algebraic sum."

At a terminal support, as A or F, Fig. 446, if the beam
is not built in, the reaction is simply equal to the shear

(since the beam does not overhang) just as in 241 and

243. Fig. 446 presents the peculiarity that the reaction

of the support F is negative, (as compared with J?c in Fig.

449); i.e., the support at F must be placed above the beam
to prevent its rising (this might also be the case at (7, 01

D, in Fig. 446, for certain relations between the loads).

403. Numerical Example of Preceding Methods. As illustrat-

ing the constructions just given, it is required to investi-

gate the case of a rolled wrought-iron
"
I-beam," [a 15-

inch heavy beam of the N. J. Steel and Iron Co.,] extend-

ing over four supports at the same level, covering three
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spans of 16, 20, and 14 feet respectively, and bearing a

single load in each of the extreme spans, but a uniform

load over the entire central span. As indicated thus :

6ft.

W"
40 tons 32 tons

[This is a practical case where W" is the weight of a

biick wall, and P' and P" r
are loads transmitted by col-

umns from the upper floors of the building ; A and D are

simple supports, and the weight of the girder is neglected.]
The beam has a moment of inertia / = 707 biquad.

inches, and the modulus of elasticity of the iron is E =
25,000,000 Ibs. per sq. in.,

= 12,500 tons per sq. in.

Although with a prismatic continuous girder under

given loading, with supports at the same level, it may easily
be shown that the moments, shears, and reactions, to be

obtained graphically, are the same for all values of /, so

long as the elastic limit is not surpassed, still, on account

of the necessity of its use in other problems (supports
not on a level\ we shall proceed as if the value of / wore

essential in th-is one.

Selecting the inch and ton as units for numerical work,
we have

El= 12500 x 707. = 8,837,500 (sq. in.) (tons) while the

respective positive mom.-areas, from eqs. (2) and (3) of

398, are :

(M. A.\' =y2 x 30 x 84 x 108 = 136,080 (sq. in.) (tons)

(M. A.\" = yu x 40 x 2402 = 192,000
" "

(M. A.}j" = */2 x 32 x 96 x72 = 110,592
"

Adopting a scale of 60,000 (sq. in.) (tons) to the lineal inch

of paper, for mom.-area diagrams, we have for the above

mom. -areas 2.27 in., 3.20 in., and 1.84 in., respectively, OB

the paper, for use in Fig. 448.
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Having laid off the three spans on a scale of 60 inches

to the inch of paper, with A, B, C, and D in the same hori-

zontal line, we find by the construction of Fig. 443, that the

gravity-vertical of (M. A.\' lies 4.0 in. to the left of the

middle in the first span, that of (M. A.)J" 4.0 in. to the

right of the middle of the third span ; while that of

(M. A.).2", of course, bisects the central span. Hence we
draw these verticals ; and also those of the unknown neg-
ative mom.-areas through the one-third points ;

remember-

ing [ 401, (1) and (2)] that (M. A.\' and (M. A.)f" are

both zero in this case.

Since El = 8,837,500 (sq. in.) (tons), it would require
147.29 in. to represent it, as pole-distance, on a scale of

60,000 (sq. in.) (tons) to the inch ; hence let us take n = 50

for the degree of (vertical) exaggeration of the false poly-
TjlT

gons, since the corresponding pole-distance - - = 2.94 in.

of paper is a convenient length for use with the values of

(M. A.)2
'

t (M. A.\", etc., above given.

Following the construction of Fig. 448, except thatp
f
is

at A, andp" is to be joined to D
( 401), (the student will

do well to draft the problem for himself, using the pre-
scribed scales,) and thus determining the false-polygons,
we then construct and compute the neg. mom.-areas

according to 402 (1), and the note in 397, obtaining th

following results :

(( (

(I tf

(M. A.\', 1.43 in. of pap.,
= 85,800 (sq. in.) (tons)

(M. A.y, 1.77 " = 106,200

(J A.y, 1.68 " " " = 100,800

(M. A.y',l.\l"
" " = 70,200

"

The remaining results are best indicated by the aid ol

Fig. 450. Following the items of 402, we find [(3) 397]
^ that the moment at B, using (M. A.y, is

= 885 inch-tons.



510 MECHANICS OF ENGINEERING.

[or, using (M. A.),', 'JfB - 2x^800=893 in.

Similarly, Mc
= 2x^800 = 840 in. tons,

[or, using (M. A.\'", Mc
= 835.7 in. tons.]

Hence, taking means, we have, finally,

JfA=0 ;
JfB=889 in. tons ;

3fc=837.8 ; JfD=0.

Fig. 450 shows the actual mom.-areas and shear-dia

grams, which are now to be constructed.

Fie. 450.

Selecting a value H = 20 tons for the pole-distance of

the successive force-diagrams, (the scale of distances being
5 ft. (60 in.) to the inch we have [(3) 397]

20 x ~BO = MR = 889in.-tons .-. WG = 44.4 in. of actual

distance, or 0.74 in. of paper ;
also 20 x GK = MG = 837.8

in.-tons .-. CK 41.89 in., or 0.698 in. of paper.

Having thus found G and K, and divided BG into ten

equal parts, applying four tons in the middle of each, we
construct by 341 an equilibrium polygon which shall

pass through G and TTand have 20 tons as a pole-distance.

(We take a force-scale of 10 tons to the inch.) It will

form a (succession of short tangents to a) parabola, and is

the moment curve for span SO. Similarly, for the single
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loads P' and P'" in the other two spans, we draw the

equilibrium polygons AN'G and KZ'"D, for the same H
as before, and passing through A and 6r, and K and D, re-

spectively.

Scaling the moment -ordinates NN'9 QQ", and ZZ'",

reducing to actual distance and multiplying by H, we have

for these local moment maxima, M$ = 1008, M^ = 336, and

Mz
= 936, in. tons.

Evidently the greatest moment is Mv and .'. the stress

in the outer fibre at JV will be
( 239)

tons per sq. inch which is much

too large. If we employ a 20-inch heavy beam, with J=
1650 biquad. in., the preceding moments will still be the

same (supports all at same level) and we have

or nearly 12,000 Ibs. per sq. in., and is therefore safe

( 183).

If three discontinuous beams were to be used, the 20-

inch size of beam (heavy) would be much too weak, in

each of the three spans, as may be easily shown ; hence the

economy of the continuous girder in such a case is readily per-
ceived. It will be seen, however, that the cases of conti-

nuity and of discontinuity do not differ so much in the

shear-diagrams as in the moment curves. By scaling the

vertical projection of the proper rays in the special force

diagrams (as in 389 and 390) we obtain the shear for

any section on AN, as J^R (see Fig. 449 for notation) =
12.3 tons ; on NB, JBL = 17.7 tons ;

from B to G it varies

uniformly from J"BR = 20.3 tons, through zero at Q, to JCIi

= 19.7 tons of opposite sign. Also, for CZt
JCR = 18.6

tons
; and for ZD, e7DL = 13.4 tons. Hence, the reactions

of the supports are as follows :

tons ; B=JBL+Jj,R=S8.0 tons.

38.3 tons
;
.RD=e7DL=13.4 tons.
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[In the shear-diagram, the shear-ordinates are laid oft

below the axis when the shear points down, the "free body
"

extending to the right of the section considered, (as e7CL in Fig.

449) ; and above, when the shear points upward for the

same position of the free body.]
If we divide the max. shear, 20.3 tons by the area of the

web, 13.75 sq. in., of the 20-inch heavy beam, (256), we
obtain 1.5 tons or 3000 Ibs. per sq. in., which is < 4000

( 183). Notice the points of inflection, i', i/', etc., where

Mis zero.

Sufficient bearing surface should be provided at the

bupports.
A swing-bridge offers an interesting case of a continu-

ous girder,

404. Continuous Girder of Variable Mom. of Inertia. If / is

variable and IQ denote the mom. of inertia of some con-

venient standard section, then we may write / = I -f- m,
when ra denotes the number of times IQ contains /. In a

non-prismatic beam, ra is different for different sections

but is easily found, and will be considered given at each

section.

In eq. (1) of 391, then, we must put IQ -* m in place of

/ and thus write

d*y __ [mMdx] /-ft~

and (pursuing the same reasoning as there given) may
therefore say that in a girder of variable section if each

small vertical strip (Mdx) of the moment-area be multiplied by
the value ofm proper to that section, and these products (or "vir-

tual mom.-area strips) considered as loads, the elastic curve is an

equilibriumpolygonfor these loads with a,pole distance = EI .

In modifying 400 for a girder of variable section, then,

besides taking E!Q -f- n as pole distance, proceed as

follows :

Construct the positive mom.-area for each span accord-

ing to 399 ; for each z of Fig. 447, substitute mz (each 2
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having in general its own m), and thus obtain the " virtual

positive mom.-area," and its gravity vertical.

Similarly, there will be an unknown " virtual neg. mom.'

area" not triangular, replacing each neg. mom.-area of

400. Though it is not triangular, each of its ordi-

nates equals the corresponding ordinate of the unknown

triangular neg. mom. -area multiplied by the proper m, and

its gravity-vertical (which is independent of the amount of the

unknown neg. mom.-area) is found in advance by the process
of Fig. 447, using, for B'S, a set of ordinates obtained thus :

Draw any two straight lines AB and FB9 Fig. 445, (for a

left-hand trial neg. mom.-area; or FB and GFio? a right-

hand one) meeting in the end-vertical of the span, divide

the span into ten or twenty equal spaces, draw a vertical

through the middle of each, noting their intercepts between

AB and FB. Add these intercepts and call the sum S.

Multiply each intercept by the proper m, and with these

new values as a's construct their gravity vertical as in Fig.
447. Add these new intercepts, call the sum $T, and denote

the quotient S -r- Sv by /?.

"We substitute the three verticals mentioned, therefore,

for the mom.-area verticals of 400, and the " virtual pos*
rnom.-area

"
for the pos. mom.-area, in each span ; pro-

ceed in other respects to construct the " false polygons
"

according to 400. Then the result of applying the con-

struction in the note 397 will be the " virtual neg. mom.-

areas," each of which is to be multiplied by the proper

/3 to obtain the corresponding triangular neg. mom.-area,
with which we then proceed, without further modifica-

tions in the process, according to (2), (3), etc. of 402.

[The conception of these " virtual mom.-areas "
is due

to Prof. Eddy ; see p. 36 of his " Kesearches in Graphical
Statics," referred to in the preface of this work.]
405. Remarks, It must be remembered that any unequal

settling of the supports after the girder has been put in

place, may cause considerable changes in the values of the

moments, shears, etc., and thus cause the actual stresses to

be quite different from those computed without taking
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into account a possible change in the heights of the sup-

ports. See 271.

For example, if some of the supports are of masonry,
while others are the upper extremities of high iron or

steel columns, the fluctuations of length in the latter due

to changes of temperature will produce results of the

nature indicated above.

If an open-work truss of homogeneous design from end

to end (treated as a girder of constant moment of inertia^

whose value may be formulated as in 388,) is used as a

continuous girder under moving loads, it will be subject

to " reversal of stress
"
in some of its upper and lower hor-

izontal members, i.e., the latter must be of a proper de-

sign to sustain both tension and compression, (according
to the position of the moving loads,) and this may disturb

the assumption of homogeneity of design. Still, if / is

variable, 404 can be used
;
but since the weight of the

truss must be considered as part of the loading, several

assumptions and approximations may be necessary before

establishing satisfactory dimensions.

Prof. Cotterill's Applied Mechanics contains an admirable

semi-graphic demonstration of Clapeyron's Theorem of
Three Moments (already mentioned on p. 332 of this work).



PART IV.

HYDRAULICS.

CHAPTEE I.

DEFINITIONS FLUID PRESSURE HYDROSTATICS BEGUN.

406. A Perfect Fluid is a substance the particles of which

are capable of moving upon each other with the greatest free

dom, absolutely without friction, and are destitute of mutual

attraction. In other words, the stress between any two con-

tiguous portions of a perfect fluid is always one of compression
and normal to the dividing surface at every point ; i.e., no

shear or tangential action can exist on any imaginary cutting

plane.

Hence if a perfect fluid is contained in a vessel of rigid ma-

terial the pressure experienced by the walls of the vessel is

normal to the surface of contact at all points.

For the practical purposes of Engineering, water, alcohol,

mercury, air, steam, and all gases may be treated as perfect
fluids within certain limits of temperature.

407. Liquids and Gases. A fluid a definite mass of which

occupies a definite volume at a given temperature, and is in-

capable both of expanding into a larger volume and of being

compressed into a smaller volume at that temperature, is called

a Liquid, of which water, mercury, etc., are common examples;
whereas a Gas is a fluid a mass of which is capable of almost

indefinite expansion or compression, according as the space
within the confining vessel is made larger or smaller, and al-

ways tends to fill the vessel, which must therefore be closed in

every direction to prevent its escape.
515
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Liquids are sometimes called inelastic fluids, and gases

elastic fluids.

408. Remarks. Though practically we may treat all liquids

as incompressible, experiment shows them to be compressible

to a slight extent. Thus, a cubic inch of water under a pres-

sure of 15 Ibs. on each of its six faces loses only fifty millionths

(0.000050) of its original volume, while remaining at the same

temperature; if the temperature be sufficiently raised, how-

ever, its bulk will remain unchanged (provided the initial tem-

perature is over 40 Fahr.). Conversely, by heating a liquid in

a rigid vessel completely filled by it, a great bursting pressure

may be produced. The slight cohesion existing between the

particles of most liquids is too insignificant to be considered in

the present connection.

The property of indefinite expansion, on the part of gases,

by which a confined mass of gas can continue to fill a confined

space which is progressively enlarging, and exert pressure

against its walls, is satisfactorily explained by the " Kinetic

Theory of Gases," according to which the gaseous particles are

perfectly elastic and in continual motion, impinging against

each other and the confining walls. Nevertheless, for prac-

tical purposes, we may consider a gas as a continuous sub-

stance.

Although by the abstraction of heat, or the application of

great pressure, or both, all known gases may be reduced to

liquids (some being even solidified); and although by con-

verse processes (imparting heat and diminishing the pressure)

liquids may be transformed into gases, the range of tempera-
ture and pressure in all problems to be considered in this work

is supposed kept within such limits that no extreme changes of

state, of this character, take place. A gas approaching the

point of liquefaction is called a Vapor.
Between the solid and the liquid state we find all grades of

intermediate conditions of matter. For example, some sub-

stances are described as soft and plastic solids, as soft putty,

moist earth, pitch, fresh mortar, etc.; and others as viscous and

sluggish liquids, as molasses and glycerine. In sufficient bulk,
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however, the latter may still be considered as perfect fluids.

Even water is slightly viscous.

409. Heaviness of Fluids. The weight of a cubic unit of a

homogeneous fluid will be called its heaviness, or rate of

weight (see 7), and is a measure of its density. Denoting it

by y, and the volume of a definite portion of the fluid by V,
we have, for the weight of that portion,

= Vy.

This, like the great majority of equations used or derived in

this work, is of homogeneousform ( 6), i.e., admits of any sys-

tem of units. E.g., in the metre-kilogram second system, if y
is given in kilos, per cubic metre, V must be expressed in

cubic metres, and G will be obtained in kilos.; and similarly

in any other system. The quality of 7, G- -
V, is evidently

one dimension of force divided by three dimensions of length.

In the following table, in the case of gases, the temperature
and pressure are mentioned at which they have the given
heaviness, since under other conditions the heaviness would be

different
;
in the case of liquids, however, for ordinary pur-

poses the effect of a change of temperature may be neglected

(within certain limits).

HEAVINESS OF VARIOUS FLUIDS.*

[In ft. Ib. sec. system; y = weight in Ibs. of a cubic foot.]

Liquids.
j At temp, of melting ice; and 14.7
-j lbg persq in tension-

Freshwater, y 62.5

Sea water 64.0

Mercury 848.7
Alcohol 49.3

Crude Petroleum, about 55.0

(N.B. A cubic inch of water

weighs 036024 Ibs.; and a cubic
foot 1000 av. oz.)

Atmospheric Air 0. 08076

Oxygen 0.0892

Nitrogen 0.0786

Hydrogen 0.0056

Illuminating ) from 0300
Gas, fto 0.0400

Natural Gas, about 0.0500

* See Trautwine's Civ. Engineer's Pocket Book for an extended table

p. 380, edition of 1885.
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For use in problems where needed, values for the heaviness

of pure fresh water are given in the following table (from

Rossetti) for temperatures ranging from freezing to boiling ;

as also the relative density, that at the temperature of maxi-

mum density, 39.3 Fahr. being taken as unity. The temper-
atures are Fahr., and y is in Ibs. per cubic foot.

Temp.
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[Rankine's nomenclature has been adopted in the present
work. Some recent writers use the term Hydromechanics for

mechanics of fluids, subdividing it into Hydrostatics and

Hydrokinetics, as above
; they also use the term Dynamics to

embrace both of the two divisions called Statics and Dynamics

by Rankine, which by them are called Statics and Kinetics re-

spectively. Though unusual, perhaps, the term Hydraulics is

here used to cover the applied Mechanics of Gases as well as

of Liquids.]

Before treating separately of liquids and gases, a few para-

graphs will be presented applicable to both kinds of fluids.

411. Pressure per Unit Area, or Intensity of Pressure. As in

180 in dealing with solids, so here with fluids we indicate the

pressure per unit area between two contiguous portions of

fluid, or between a fluid and the wall of the containing vessel,

by p, so that if dP is the total pressure on a small area dF,
we have

dP ....... (1)

as the pressure per unit area, or intensity of pressure (often,

though ambiguously, called the tension in speaking of a gas)
on the small surface dF. If pressure of the same intensity
exists over a finite plane surface of area = F^ the total pres-

sure on that surface is

or

P = fpdF=pfdF= Fp, }P [ .... (2)

(N.B. For brevity the single word "
pressure" will some-

times be used, instead of intensity of pressure, where no am-

biguity can arise.) Thus, it is found that, under ordinary con-

ditions at the sea level, the atmosphere exerts a normal pressure

(normal, because fluid pressure) on all surfaces, of an intensity
of about p 14*7 Ibs. per sq. inch (= 2116. Ibs. per sq. ft.).

This intensity of pressure is called one atmosphere. For ex-
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ample, the total atmospheric pressure on a surface of 100 sq.

in. is [inch, lb., sec.]

P = Fp = 100 X 14.7 =.1470 Ibs. (= 0.735 tons.)

The quality of p is evidently one dimension of force divid-

ed by two dimensions of length.

412. Hydrostatic Pressure
; per Unit Area, in the Interior of a

Fluid at Rest. In a body of fluid of uniform heaviness, at

rest, it is required to find the mutual pressure per unit area be-

tween the portions of fluid on opposite sides of any imaginary

cutting plane. As customary, we shall consider portions of

the fluid as free bodies, by supplying the forces exerted on

them by all contiguous portions (of fluid or vessel wall), also

those of the earth (their weights), and then apply the condi-

tions of equilibrium.

First, cutting plane horizontal. Fig. 451 shows a body of

homogeneous fluid confined in a rigid

vessel closed at the top with a small air-

tight but frictionless piston (a horizontal

disk) of weight = G and exposed to at-

mospheric pressure (=pa P^r unit area)

on its upper face. Let the area of piston-

face be = F. Then for the equilibrium
of the piston the total pressure between

its under surface and the fluid at must
Fia. 451.

be

and hence the intensity of this pressure is

(1)

It is now required to find the intensity,^?, of fluid pressure

between the portions of fluid contiguous to the horizontal cut-

ting plane J?7at a vertical distance = h vertically below the pis-

ton 0. In Fig. 452 we have as a free body the right parallelo-
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piped OBC of Fig. 451 with vertical sides (two ||
to paper and

four 1 to it). The pressures acting on its six faces are normal

to them respectively, and the weight of the prism is = vol.

Xy = Fhy, supposing y to have the same value at all parts of

the column (which is practically true for any height of liquid

and for a small height of gas). Since the f NFpo

prism is in equilibrium under the forces oUIll
shown in the figure, and would still be so

were it to become rigid, we may put ( 36)

2 (vert, compons.) = and hence obtain

Fp _ Fp,
- Fhy = 0. . . (2)

(In the figure the pressures on the ver-

tical faces ||
to paper have no vertical com-

ponents, and hence are not drawn.) From FIG. 458.

(2) we have

(3)

(hy, being the weight of a column of homogeneous fluid of unity
cross-section and height A, would be the total pressure on the

base of such a column, if at rest and with no pressure on the

upper base, and hence might be called intensity due to weight.)

Secondly, cutting plane oblique. Fig. 453. Consider free

an infinitely small right triangular prism ~bcd, whose bases are

|| to the paper, while the three side

faces (rectangles), having areas = dF,
dF, ,

and dF^ ,
are respectively hori-

zontal, vertical, and oblique ;
let angle

cbd = of. The surface be is a portion
of the plane BC of Fig. 452. Given

p ( intensity of pressure on dF) and

<*, required^, the intensity of pressure
on the oblique face M, of area dF^
[N. B. The prism is taken very small

in order that the intensity of pressure may be considered con-

stant over any one face
;
and also that the weight of the prism

may be neglected, since it involves the volume (three dimen-

FIG. 453.
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eions) of the prism, while the total face pressures involve only

two, and is hence a differential of a higher order.]

From 2 (vert, compons.) = we shall have

pjLF,, cos a pdF ;
but dF~- dF., cos a

;

which is independent of the angle a.

Hence, the intensity of fluid pressure at a given point is

the same on all imaginary cutting planes containing the

point. This is the most important property of a fluid, and is

true whether the liquid is at rest or has any kind of motion ;

for, in case of rectilinear accelerated motion, e.g., although the

sum of the force-components in the direction of the accelera-

tion does not in general = 0, but = mass X ace., still, the

mass of the body in question is = weight -r- <?, and therefore

the term mass X ace. is a differential of a higher order than

the other terms of the equation, and hence the same result

follows as when there is no motion (or uniform rectilinear

motion).

413. The Intensity of Pressure is Equal at all Points of any
Horizontal Plane in a body of homogeneous fluid at rest. If

we consider a right prism of the fluid in Fig. 451, of small

vertical thickness, its axis lying in any horizontal plane J3C,

its bases will be vertical and of equal area dF. The pressures

on its sides, being normal to them, and hence to the axis, have

no components ||
to the axis. The weight of the prism also

has no horizontal component. Hence from 2 (hor. comps.

|| to axis)
= 0, we have,p l

and pz being the pressure-intensi-

ties at the two bases,

p,dF-p,dF=b\ .:p=p,, . . . . (1)

which proves the statement at the head of this article.

It is now plain, from this and the preceding article, that

the pressure-intensity p at any point in a homogeneous fluid

at rest is equal to that at any higher point, plus the weight
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(hy) ofa column of the fluid of section unity and of altitude

(A)
= vertical distance between the points.

P =Po (2)

whether they are in the same vertical or not, and whatever be

the shape of the containing
vessel (or pipes], provided the

fluid is continuous between

the two points; for, Fig. 454,

by considering a series of

small prisms, alternately ver-

tical and horizontal, obcde, we
know that

FiG.454.

; Pc=pb ',

Pd=pc hjs ;
and pe p&\

hence, finally, by addition we have

(in which h = h^ A
2).

If, therefore, upon a small piston at o, of area = 7^, a force

P be exerted, and an inelastic fluid (liquid) completely fills the

vessel, then, for equilibrium, the force to be exerted upon the pis-

ton at 0, viz., Pe ,
is thus computed : For equilibrium of fluid

Pe =Po + ^r ;
and for equil. of piston 0,p = P ~ J?Q ; also,

(3)

From (3) we learn that if the pistons are at the same level

(h = 0) the total pressures on their inner faces are directly

proportional to their areas.

If the fluid is gaseous (2) and (3) are practically correct if

h is not > 100 feet (for, gas being compressible, the lower

strata are generally more dense than the upper), hut in (3) the

pistons must be fixed^and Pe and P refer solely to the in-

terior pressures*
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Again, if h is small or p very great, the term hy may be

omitted altogether in eqs. (2) and (3) (especially with gases,

since for them y (heaviness) is usually small), and we then

have, from (2),

P=P*', ........ (4)

being the algebraic form of the statement : A body o

at rest transmits pressure with equal intensity in every direc-

tion and to all of its parts. [Principle of "
Equal Transmis-

sion of Pressure."]

414. Moving Pistons. If the fluid In Fig. 454 is inelastic

and the vessel walls rigid, the motion of one piston (o) through
a distance s causes the other to move through a distance se de-

termined by the relation F^Q
= Fese (since the volumes de-

scribed by them must be equal, as liquids are incompressible);
but on account of the inertia of the liquid, and friction on the

vessel walls, equations (2) and (3) no longer hold exactly, still

are approximately true if the motion is very slow and the

vessel short, as with the cylinder of a water-pressure engine.

But if the fluid is compressible and elastic (gases and vapors ;

steam, or air) and hence of small density, the effect of inertia

and friction is not appreciable in short wide vessels like the

cylinders of steam- and air-engines, and those of air-compres-
sors

;
and eqs. (2) and (3) still hold, practically, even with high

piston-speeds. For exam pie, in the space AB,
^S- 455, between the piston and cylinder-head

of a steam-engine (piston moving toward the

right) the intensity of pressure, p, of the

steam against the moving piston B is prac-

FIO. 455. tically equal to that against the cylinder-head
A at the same instant.

415. An Important Distinction between gases and liquids

(i.e., between elastic and inelastic fluids) consists in this :

A liquid can exert pressure against the walls of the contain-

ing vessel only by its weight, or (when confined on all sides)

by transmitted pressure coming from without (due to piston

pressure, atmospheric pressure, etc.); whereas
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A gas, confined, as it must be, on all sides to prevent dif-

fusion, exerts pressure on the vessel not only by its weight,

but by its elasticity or tendency to expand. If pressure from

without is also applied, the gas is compressed and exerts a still

greater pressure on the vessel walls.

416. Component, of Pressure, in a Given Direction. Let

ABCD, whose area = dF, be a small element of a surface,

plane or curved, andp the intensity of

fluid pressure upon this element, then

the total pressure upon it \$>pdF, and is

of course normal to it. LetA 'B'CD be

the projection of the element dF upon
a plane CDM making an angle a with

the element, and let it be required to

find the value of the component ofpdF
in a direction normal to this last plane (the other component

being understood to be ||
to the same plane). We shall have

Compon. ofpdF ~] to CDM= pdFcos a =p(dF.coB a). (I)

But dF . cos a = area A'B'CD, the projection of dF upon
the plane CDM.

.-. Compon. "1 toplane CDM. =p X (project, ofdFon CDM)\

i.e., the component offluid pressure (on an element of a sur-

face) in a given direction (the other component being "| to

the first) isfound l>y multiplying the intensity of'the pressure

by the area of the projection of the element upon a plane ~| to

the give?i direction.

It is seen, as an example of this, that if the fluid pressures

on the elements of the inner surface of one hemisphere of a

hollow sphere containing a gas are resolved into components "I

and
||
to the plane of the circular base of the hemisphere, the

sum of the former components simply == nr*p, where r is the

radius of the sphere, andp the intensity of the fluid pressure ;

for, from the foregoing, the sum of these components is just

the same as the total pressure would be, having an intensity p,
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oil a great circle of the sphere, the area, 7r/
>a

,
of this circle being

the sum of the areas of the projections, upon this circle as a

base, of all the elements of the hemispherical surface. (Weight
of fluid neglected.)

A similar statement may be made as to the pressures on

the inner curved surface of a right cylinder.

417. Non-planar Pistons. From the foregoing it follows that

the sum of the components ||
to the piston-rod, of the fluid

pressures upon the piston at A, Fig. 457, is just the same as at

B^ if the cylinders are of equal size and the steam, or air, is at

the same tension. For the sum of the projections of all the

elements of the curved surface of A upon a plane ~| to the

piston-rod is always = TIT* = area of section of cylinder-bore.

FIG. 457.

If the surface of A is symmetrical about the axis of the cylin-

der the other components (i.e., those ~| to the piston-rod) will

neutralize each other. If the line of intersection of that sur-

face with the surface of the cylinder is not symmetrical about

the axis of the cylinder, the piston may be pressed laterally

against the cylinder-wall, but the thrust along the rod or
"
working force'* ( 128) is the same (except for friction in-

duced by the lateral pressure), in all instances, as if the surface

were plane and ~1 to piston-rod.

418. Bramah, or Hydraulic, Press. This is a familiar instance

of the principle of transmission of fluid pressure. Fig. 458.

Let the small piston at have a diameter d = 1 inch = -fa ft.,

while the plunger E, or large piston, has a diameter d f = AB
= CD = 15 in. = f ft. The lever MJV weighs #, = 3 Ibs.,

and a weight O = 40 Ibs. is hung at M. The lever-arms of

these forces about the fulcrum N are given in the figure.

The apparatus being full of water (oil is otten used), the fluid

pressure P9 against the small piston is found by putting
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. about ^T) = for the equilibrium of the lever

whence [ft., lb., sec.]

P9 x i _ 40 X 3 - 3 X 2 = 0. .-. P = 126 Ibs.

FIG. 458.

But, denoting atmospheric pressure by pa ,
and that of the

water against the piston by p (per unit area), we may also

write

. -pa\

Solving for jp9 ,
we have, putting pa 14.7 X 144 Ibs. per

sq. ft.,

p. = [l26
-f-

1 (-^)
3

J + 14.7 X 144 = 25236 Ibs. per sq. ft.

Hence at e the press, per unit area, from 409, and (2), 413, is

pe =p + hy= 25236 + 3 X 62.5 = 25423 Ibs. per sq. ft.

= 175.6 Ibs. per sq. inch or 11.9 atmospheres, and the total

upward pressure at e on base of plunger is

P = Fepe = n~pe
= J *(Jff x 25423 = 31194 Ibs.,

or almost 16 tons (of 2000 Ibs. each). The corapressive force

upon the block or bale, C, P less the weight of the plunger
and total atmos. pressure on a circle of 15 in. diameter.
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419. The Dividing Surface of Two Fluids (which do not mix) in

Contact, and at Rest, is a Horizontal Plane. For, Fig. 459, sup-

posing any two points e and of this sur-

face to be at different levels (the pressure

at being j? ,
that at epe ,

and the heavi-

nesses of the two fluids yl
and y\ respec-

tively), we would have, from a considera-

tion of the two elementary prisms eb and

10 (vertical and horizontal;, the relatioaFIG. 459.

while from the prisms ec and cO, the relation

These equations are conflicting, hence the aoove supposition

is absurd. Therefore the proposition is true.

For stable equilibrium, evidently, the heavier fluid must oc-

cupy the lowest position in the vessel, and if there are several

fluids (which do not mix), they will arrange

themselves vertically, in the order of their den-

sities, the heaviest at the bottom, Fig. 460. On
account of the property called diffusion the par-

ticles of two gases placed in contact soon inter-

mingle and form a uniform mixture. This fact

gives strong support to the " Kinetic Theory of

Gases" ( 408).

FIG. 460.

m$

420. Free Surface of a Liquid at Rest, The surface (of a

liquid) not in contact with the walls of the containing vessel

is called a free surface, and is necessarily

horizontal (from 419) when the liquid is at

rest. Fig. 461. (A gas, from its tendency
to indefinite expansion, is incapable of hav-

ing a free surface.) This is true even if the

space above the liquid is vacuous, for if the

surface were inclined or curved, points in the

body of the liquid and in the same horizon-

tal plane would have different heights (or
"
heads") of liquid
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between them and the surface, producing different intensities

of pressure in the plane, which is contrary to 413.

When large bodies of liquid like the ocean are considered,

gravity can no longer be regarded as acting in parallel lines
;

consequently the free surface of the liquid is curved, being ~]

to the direction of (apparent) gravity at all points. For ordi-

nary engineering purposes (except in Geodesy) the free surface

of water at rest is a horizontal plane.
421. Two Liquids (which do not mix) at Rest in a Bent Tube

open at Both Ends to the Air, Fig. 460
;
water and mercury, for

instance. Let their heavinesses be yL

and YI respectively. The pressure at e

may be written ( 413) either

or

JPe
=

according as we refer it to the water

column or the mercury column and

their respective free surfaces where the

pressure^ =Po9
= Pa = atmos. press.

is the surface of contact of the two liquids.

P =Pa i.e., A,

Hence we have

r. : y, (3)

le., tike freights of thefree surfaces of the two liquids above the

surface of contact are inversely proportional to their respec-
tive heavinesses.

EXAMPLE. If the pressure at e 2 atmospheres ( 396) we
shall have from (2) (inch-lb.-sec. system of units)

A,x, = JP, pa = 2 X 14.7 - 14.T = 14.7 Ibs. per sq. inch.

.-. AB must = 14.7 -5- [848.7 -5- 1728] = 30 inches
*-

(since, for mercury, y9
= 848.7 Ibs. per cub. ft.). Hence,

from (3),

, ,.
A, = = 30 = 408 inches = 34 feet.
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i.e., for equilibrium, and thatjye may = 2 atmospheres, A
2
and

h
l (of mercury and water) must be 30 in. and 34 feet respec-

tively.

422. City Water-pipes. If h = vertical distance of a point

B of a water-pipe below the free surface of reservoir, and the

water be at rest, the pressure on the inner surface of the pipe

at B (per unit of area) is

p =p -\- hy ;
and herep =pa = atmos. press.

EXAMPLE. If h = 200 ft. (using the inch, lb., and second)

p = 14.7 + [200 X 12] [62.5 ^- 1728] = 101.5 Ibs. per sq. in.

The term hy. alone, = 86.8 Ibs. per sq. inch, is spoken of as the

hydrostatic pressure due to 200 feet height, or "Head," of

water. (See Trautwine's Pocket Book for a table of hydro-

static pressures for various depths.)

If, however, the water isflowing through the pipe, the pres-

sure against the interior wall becomes less (a problem of Hy-

drodynamics to be treated subsequently), while if that motion

is suddenly checked, the pressure becomes momentarily much

greater than the hydrostatic. This shock is called " water-

ram" and "
water-hammer," and may be as great as 200 to 300

Ibs. per sq. inch.

423. Barometers and Manometers for Fluid Pressure. If a

tube, closed at one end, is filled with water, and the other ex-

tremity is temporarily stopped and afterwards

opened under water, the closed end being then

a (vertical) height = h above the surface of

the water, it is required to find the intensity,

p ,
of fluid pressure at the top of the tube, sup-

posing it to remain filled with water. Fig.

463. At E inside the tube the pressure is

14.7 Ibs. per sq. inch, the same as that outside

at the same level
( 413) ; hence, from pE pn

P*=pE -hy (1)'
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EXAMPLE. Let h = 10 feet (with inch-lb.-sec. system) ;
then

p. = 14.7 - 120 X [62.5 H- 1728] = 10.4 Ibs. per sq. inch,

or about f of an atmosphere. If now we inquire the value

of h to make p = zero, we put/^ hy = and obtain h =
408 inches, = 34 ft., which is called the height of the water-

barometer. Hence, Fig. 463&, ordinary atmospheric pressure
will not sustain a column of water higher than 34 feet. If

mercury is used instead of water the height supported by one

atmosphere is

I = 14.7 -r- [848.7 -5- 1728] = 30 inches,

= 76 centime, (about), and the tube is of more manageable

proportions than with water, aside from the ad-

vantage that no vapor of mercury forms above

the liquid at ordinary temperatures. [In fact, the

water-barometer height b = 34 feet has only a

theoretical existence since at ordinary tempera-
tures (40 to 80 Fahr.) vapor of water would

form above the column and depress it by from

0.30 to 1.09 ft.] Such an apparatus is called a

Barometer, and is used not only for measuring
the varying tension of the atmosphere (from 14.5

to 15 Ibs. per sq. inch, according to the weather and height
above sea-level), but also that of any body of gas. Thus, Fig.

464, the gas in ZHsput in communication with

the space above the mercury in the cistern at

(7; and we have p hy, where y heav. of

mercury, and JP is the pressure on the liquid in

the cistern. For delicate measurements an at-

tached thermometer is also used, as the heavi-

ness y varies slightly with the temperature.
If the vertical distance CD is small, the ten-

sion in C is considered the same as in D.
For gas-tensions greater than one atmosphere,

the tube may be left open at the top, forming an open ma-

FIG. 463a.

FIG. 464.
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nometer, Fig. 465. In this case, the tension of the gag above

the mercury in tilt cistern is

FIG. 465.

in which b is the height of mercury (about 30

in.) to which the tension of the atmosphere above

the mercury column is equivalent.

D EXAMPLE. If h = 51 inches, Fig. 465, we
have (ft., lb., sec.)

p [4.25 ft. + 2.5 ft.] 848.7 = 5728 Ibs. per sq. foot

= 39.7 Ibs. per sq. inch 2.7 atmospheres.

Anotherform of the open manometer consists of a U tube,

Fig. 464, the atmosphere having access to one branch, the gas

to be examined, to the other, while the

mercury lies in the curve. As before, we
have

wherepa = atmos. tension, and b as above.

The tension of a gas is sometimes spoken
of as measured by so many inches of mer?

cury. For example, a tension of 22.05

Ibs. per sq. inch (Ij- atmos.) is measured by 45 inches of mer-

cury in a vacuum manometer (i.e., a common barometer),

Fig. 464. With the open manometer this tension (1 atmos.)

would be indicated by 15 inches of actual mercury, Figs. 465

and 466. An ordinary steam-gauge indicates the excess of

tension over one atmosphere ;
thus " 40 Ibs. of steam" implies

a tension of 40+ 14.7 = 54.7 Ibs. per sq. in.

The Bourdon steam-gauge in common use consists of a

curved elastic metal tube of flattened or elliptical section

(^with the long axis ~| to the plane of the tube), and has one
end fixed. The movement of the other end, which is free and

FIG. 466.
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closed, by proper mechanical connection gives motion to the

pointer of a dial. This movement is caused by any change of

tension in the steam or gas admitted, through the fixed end, to

the interior of the tube. As the tension increases the ellip<

tical section becomes less flat, i.e., more nearly circular, caus-

ing the two ends of the tube to separate more widely, i.e., the

free end moves away from the fixed end
;
and vice versa.

Such gauges, however, are not always reliable. They are

graduated by comparison with mercury manometers
;

and

should be tested from time to time in the same way.*

424. Tension of Illuminating Gas. This is often spoken of as

measured by inches of water (from 1 to 3 inches usually).

Strictly it should be stated that this

water-height measures the excess of

its tension over that of the atmos-

phere. Thus, in Fig. 466, water

being used instead of mercury, h =
say 2 inches, while b = 408 inches.

This difference of tension may be

largely affected by a change in the

barometer due to the weather, or by
a difference in altitude, as the follow-

ing example will illustrate:

EXAMPLE. Supposing the gas at rest, and the tension at the

gasometer A., Fig. 467, to be "two inches of water," required
the water-column h" (in open tube) that the gas will support
in the pipe at B, 120 feet (vertically) above the gasometer.
Let the temperature be freezing (nearly), and the outside air at

a tension of 14.7 Ibs. per sq. inch
;
the heaviness of the gas at

this temperature being 0.036 Ibs. per cubic foot. For the

small difference of 120 ft. we may treat both the atmosphere
and the gas as liquids, that is, of constant density throughout
the vertical column, and therefore apply the principles of

413
;
with the following result :

The tension of the outside air at .B, supposed to be at the

same temperature as at A, will sustain a water-column less

than the 408 inches at A by an amount corresponding to the

* Of late years gauges have come into use constructed of boxes with cor-

rugated sides of thin metal like the aneroid barometer. Motion of the sides,

under varying internal fluid pressure, causes movement of a pointer on a dial.

FIG. 467.
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120 feet of air between, of the heaviness .0807 Ibs. per cub.

ft. 120 feet of air weighing .0807 Ibs. per cub. ft. will balance

0.154 ft. of water weighing 62.5 Ibs. per cubic ft., i.e., 1.85

inches of water. Now the tension of the gas at B is also less

than its tension at A, but the difference is not so great as with

the outside air, for the 120 ft. of gas is lighter than the 120 ft.

of air. Since 120 ft. of gas weighing 0.036 Ibs. per cubic ft.

will balance 0.0691 ft., or 0.83 inches, of water, therefore the

difference between the tensions of the two fluids at B is greater

than at A by (1.85
- 0.83 =

)
1.02 inches; or, at B the total

difference is 2.00 + 1.02 = 3.02 inches.

, Hence if a small aperture is made in the pipe at B the gas

will flow out with greater velocity than at A. At Ithaca,

N. Y., where the University buildings are 400 ft. above the

gas-works, this phenomenon is very marked.

When the difference of level is great the decrease of tension

as we proceed upward in the atmosphere, even with constant

temperature, does not follow the simple law of 413; see

4-77.

For velocity of flow of gases through orifices, see 548, etc.

425. Safety-valves. Fig. 468. Eequired the proper weight
G to be hung at the extremity of the horizontal lever AB,

with fulcrum at B, that the flat

a Jt disk-valve E shall not be forced

upward by the steam pressure, /,

until the latter reaches a given
value =p. Let the weight of

the arm be G
l ,

its centre of grav-

ity being at C, a distance = o

from B
;

the other horizontal distances are marked in the

figure.

Suppose the valve on the point of rising; then the forces

acting on the lever are the fulcrum-reaction at B, the weights
G and 6r

l ,
and the two fluid-pressures on the disk, viz. : Fp^

(atmospheric) downward, and Fp (steam) upward. Hence,
from ^(moms. B)

= 0,

Gl + G,G + Fpaa - Fpa = 0. ... (1)
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Solving, we have

-A)-0,r '

(2)

EXAMPLE. "With a = 2 inches, J = 2 feet, c
.

= 1 foot

#j = 4 lbs.,^>
= 6 atmos., and diam. of disk = 1 inch; with

the foot and pound,

G = |4 .

*

(^)

8

[6 X W.7 X 144 - 1 X 14.7 X 144]
- 4: X*.

/. G = 2.81 Ibs.

[Notice the cancelling of the 144; for F(p pa) is pounds,

being one dimension of force, if the pound is selected as the

unit of force, whether the inch or foot is used in both fac-

tors.] Hence when the steam pressure has risen to 6 atmos.

(= 88.2 Ibs. per square inch) (corresponding to 73.5 Ibs. per sq.

in. by steam-gauge) the valve will open if G = 2.81 Ibs., or be

on the point of opening.

426. Proper Thickness of Thin Hollow Cylinders (i.e,, Pipes

and Tubes) to Resist Bursting by Fluid Pressure.

CASE I. Stresses in the cross-section due to End Pressure/

Fig. 469. Let AB be the circular cap clos-

ing the end of a cylindrical tube containing
fluid at a tension = p. Let r = internal

radius of the tube or pipe. Then considering
the cap free, neglecting its weight, we
have three sets of

\\
forces in equilibrium

in the figure, viz. : the internal fluid pres-

sure nr^p ;
the external fluid pressure

=
7tr*pa ;

while the total stress (tensile) on

the small ring, whose area now exposed is

%nrt (nearly), is = Snrtp^ , where t is the thickness of the pipe,
and

j!?j
the tensile stress per unit area induced by the end-pres-

sures (fluid).
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For equilibrium, therefore, we may put ^(hor. comps.) = 0;

>1==0;

(1)
. _r(p-pa)
Jri

~
o/

(Strictly, the two circular areas sustaining the fluid pressures

are different in area, but to consider them equal occasions but

a small error.)

Eq. (1) also gives the tension in the central section of a thin

hollow sphere, under bursting pressure.

CASE II. /Stresses in the longitudinal section ofpipe, due to

radialfluidpressures* Consider free the half (semi-circular)

of any length I of the pipe, be-

tween two cross-sections. Take an

axis X (as in Fig. 470) ~] to the

longitudinal section which has been

made. Let p, denote the tensile

stress (per unit area) produced in

the narrow rectangles exposed at A
and B (those in the half-ring edges,

having no X components, are not

drawn in the figure). On the in-

ternal curved surface the fluid pres-

sure is considered of equal intensity

=.p at all points (practically true even with liquids, if 2r is

small compared with the head of water producing p). The
fluid pressure on any dF or elementary area of the internal

curved surface is = pdF. Its X component (see 416) is

obtained by multiplying j? by the projection of dF on the ver-

tical plane ABC, and since p is the same for all the dF's of

the curved surface, the sum of all the ^components of the in-

ternal fluid pressures must p multiplied by the area of rect-

angle ABCD, = %rlp and similarly theX components of the

FIG. 470.

*
Analytically this problem is identical with that of the smooth cord on

a smooth cylinder, 169, and is seen to give the same result.
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external atmos. pressures = '2rlpa (nearly). The tensile stresses

( ||
to X) are equal to 2%?a ;

hence for equilibrium, 2X=
gives

2rlpa = ;

(2)

This tensile stress, called hoop tension,p^ opposing rupture by

longitudinal tearing, is seen to be double the tensile stress^

induced, under the same circumstances, on the annular cross'

section in Case I. Hence eq. (2), and not eq. (1), should be

used to determine a safe value for the thickness of metal, t, or

any other one unknown quantity involved in the equation.

For safety against rupture, we must put p^ = T'
',

a safe

tensile stress per unit area for the material of the pipe or tube

(gee 195 and 203) ;

(For a thin hollow sphere, t may be computed from eq. (1) ;

that is, need be only half as great as with the cylinder, other

things being equal.)

EXAMPLE. A pipe of twenty inches internal diameter is to

contain water at rest under a head of 340 feet
; required the

proper thickness, if of cast-iron.

340 feet of water measures 10 atmospheres, so that the in

ternal fluid pressure is 11 atmospheres ;
but the external pres

sure j?a being one atmos., we must write (inch, lb., sec.)

(pPa) = 10 X 14.T = 147.0 Ibs. per sq. in., and r = 10 in.,

while ( 203) we may put T' =i of 9000 = 4500 Ibs. per sq,

in.
;
whence

10
t = ^ = 0.326 inches.
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But to insure safety in handling pipes and imperviousness to

the water, a somewhat greater thickness is adopted in practice

than given by the above theory.

Thus, Weisbach recommends (as proved experimentally also)

for

Pipes of sheet iron, t [0.00172 rA -\- 0.12"

'0.00476 rA + 0.34
=

cast t =
copper t =
lead t =

U00296 rA + 0.16
=

U01014 rA + 0.21 1

zinc t = [0.00484 rA + 0.16
=

inches
;

in which t = thickness in inches, r = radius in inches, and A
= excess of internal over external fluid pressure (i.e., p pa)

expressed in atmospheres.

For instance, for the example just given, we should have

(cast-iron)

t = .00476 X 10 X 10+ 0.34 = 0.816 inches.

If the pipe is subject to " water-ram" ( 422) the strength
should be much greater. To provide against

"
water-ram,"

Mr. J. T. Fanning, on p. 453 of his "
Hydraulic and Water-

supply Engineering," advises adding 230 feet to the static

head in computing the thickness of cast-iron pipes.

For thick hollow cylinders see Rankine's Applied Mechan-

ics, p. 290, and Cotter-ill's Applied Mechanics, p. 403.

427. Collapsing of Tubes under Fluid Pressure. (Cylindrical

boiler-flues, for example.) If the external exceeds the internal

fluid pressure, and the thickness of metal is small compared
with the diameter, the slightest deformation of the tube or

pipe gives the external pressure greater capability to produce
a further change of form, and hence possibly a final collapse ;

just as with long columns ( 303) a slight bending gives great

advantage to the terminal forces. Hence the theory of 426

is inapplicable. According to Sir Win. Fairbairn's experi-
ments (1858) a thin wrought-iron cylindrical (circular) tube

will not collapse until the excess of external over internal

pressure is
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p(in Ibs. per sq. in.)
= 9672000

1~.
. .(!).. (not homog.)

(t, I, and d must all be expressed in the same linear unit.)

Here t == thickness of the wall of the tube, d its diameter, and

I its length ;
the ends being understood to be so supported as

to preclude a local collapse.

EXAMPLE. With Z = 10 ft. = 120 inches, d = 4 in., and t =
^ inch, we have

p = 9672000f^- -T- (120 X
4)~|

= 201.5 Ibs. per sq. inch.

For safety, -J-
of this, viz. 40 Ibs. per sq. inch, should not be

exceeded
; e.g., with 14.7 Ibs. internal and 54.7 Ibs. external.

[NOTE. For simplicity the power of the thickness used in eq. (1) above

has been given as 2.00. In the original formula it is 2.19, and then all

dimensions must be expressed in inches. A discussion of the experiments
of Mr. Fairbairn will be found in a paper read by Prof. Unwin before the

Institute of Civ. Engineers (Proceedings, vol. xlvi.). See also Prof. Unwin 's

" Machine Design," p. 66, It is contended by some that in the actual con-

ditions of service, boiler-flues are subjected to such serious straining

actions due 1o unequal expansion of the connecting parts as to render the

above formula quite unreliable, thus requiring a large allowance in itg

application.]
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CHAPTEE II.

HYDROSTATICS (Continued) PRESSURE OF LIQUIDS IN TANEi
AND RESERVOIRS.

428. Body of Liquid in Motion, but in Relative Equilibrium.^

By relative equilibrium it is meant that the particles are not

changing'their relative positions, i.e., are not moving among
each other. On account of this relative equilibrium the fol-

lowing problems are placed in the present chapter, instead of

under the head of Hydrodynamics, where they strictly belong.

As relative equilibrium is an essential property of rigid bodies,

we may apply the equations of motion of rigid bodies to bodies

of liquid in relative equilibrium.

CASE I. All the particles moving in parallel right lines

with equal velocities / at any given instant (i.e., a motion of

translation.) If the common velocity is constant we have a

uniform translation, and all the forces acting on any one par-

ticle are balanced, as if it were not moving at all (according to

iNewton's Laws, 54); hence the relations of internal pressure,

free surface, etc., are the same as if the liquid were at rest.

Thus, Fig. 471, if the liquid in the moving tank is at rest rel-

v atively to the tank at a given instant, with

its free surface horizontal, and the motion

of the tank be one of translation with a uni-

form velocity, the liquid will remain in this

condition of relative rest, as the motion
FIG. 471.

proceeds.
But if the velocity of the tank is accelerated with a constant

acceleration =p (this symbol must not be confused with p
for pressure), the free surface will begin to oscillate, and finally

come to relative equilibrium at some angle a with the horizon-

tal, which is thus found, when the motion is horizontal. See

Fig. 472, in which the position and value of a are the same,
whether the motion is uniformly accelerated from left to right
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Fio. 472.

or uniformly retarded from right to left. Let be the lowest

point of the free surface, and Ob a

small prism of the liquid with its

axis horizontal, and of length = x
;

nb is a vertical prism of length

2, and extending from the extremity
of Ob to the free surface. The

pressure at both and n is pa =
atmos. pres. Let the area of cross-

section of both prisms be dF.

Now since Ob is being accelerated in direction JT(horizont.),

the difference between the forces on its two ends, i.e., its 2X,
must = its mass X accel. ( 109).

(y = heaviness of liquid ; pb press, at b) ;
and since the ver-

tical prism nb has no vertical acceleration, the ^(vert. com-

pons.) for it must = 0.

.\pbdF-padF-zdF.y=0 (2)

From (1) and (2),

?r m

-= sr
. ...i = .

g X Q

Hence On is a right line, and therefore

(3)

tan or-, = ..

x a

[Another, and perhaps more direct, method of deriving this

result is to consider free a small particle of the liquid lying in

the surface. The forces acting on this particle are two : the

first its weight dG ; and the second the resultant action of

its immediate neighbor-particles. Now this latter force (point-

ing obliquely upward) must be normal to the free surface of

the liquid, and therefore must make the unknown angle a with

the vertical. Since the particle has at this instant a rectilinear

accelerated motion in a horizontal direction, the resultant of the

two forces mentioned must be horizontal and have a value =
mass X acceleration. That is, the diagonal tormed on the two
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forces must be horizontal and have the value mentioned, =
(dG -r- g)p ;

while from the nature of the figure (let the stu-

dent make the diagram for himself) it must also = dG tan a.

jri , dG p
.: dG tan a .p ; or, tan a = ^-.

ff 9
. . Q. E.

If the translation were vertical, and the acceleration upward
[i.e., if the vessel had a uniformly accelerated upward motion

or a uniformly retarded downward motion], the free surface

would be horizontal, but the pressure at a depth = h below the

surface instead of^> =pa -\-hy would be obtained as follows:

Considering free a small vertical prism of height = h with

upper base in the free surface, and putting J2"(vert. compons.)
= mass X acceleration, we have

dF.p - dF.pa
- hdF. y =

MF' Y
.pi

(5)

If the acceleration is downward (not the velocity necessarily)
we makep negative in (5). If the vessel falls freely,p = g
and .'.p =pa ,

in all parts of the liquid.

Query : Supposep downward and > g.

CASE II. Uniform Rotation about a VerticalAxis. If the

narrow vessel in Fig. 473, open at top and containing a liquid,

be kept rotating at a uniform angu-
lar velocity GO (see 110) about a

vertical axis Z, the liquid after some

oscillations will be brought (by fric-

tion) to relative equilibrium (rotat-

ing about Z, as if rigid). Required
the form of the free surface (evi-

dently a surface of revolution) at

each point of which we know
^"^^

FIG. 473.
Let (9 be the intersection of the

axis Zwith the surface, and n any point in the surface
;
o being
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a point vertically under n and in same horizontal plane as 0.

Every point of the small right prism nb (of altitude = z and

sectional area dF) is describing a horizontal circle about Z, and

has therefore no vertical acceleration. Hence for this prism,

free, we have 2Z = 0; i.e.,

dF.pb
- dF.pa - zdF.-y = ..... (1)

Now the horizontal right prism Ob (call the direction . . . &,

X) is rotating uniformly about a vertical axis through one ex-

tremity, as if it were a rigid body. Hence the forces acting

on it must be equivalent to a single horizontal force, G?
a

J/p,

(122$,) coinciding in direction with X. [M= mass of prism
= its weight -r- ^, and p = distance of its centre of gravity

from
;
here p = ^x = % length of prism]. Hence the

of the forces acting on the prism Ob must = <*?-
But the forces acting on the two ends of this prism are their

own X components, while the lateral pressures and the weights
of its particles have no X compons. ;

1. . . (2)
*y

From (1) and (2) we have

s=(J
w'=i> (3)

where v = cox = linear Telocity of the point n in its circular

path.

[As in Case I, we may obtain the same result by considering
a single surface-particle free, and would derive for the resultant

force acting upon it the value dG tan a in a horizontal direc-

tion and intersecting the axis of rotation. But here a is dif-

ferent for particles at different distances from the axis, tan a

being the
-^-

of the curve On. As the particle is moving uni-

formly in a circle the resultant force must point toward the
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centre of the circle, i.e., horizontally, and have a value - . ~ >
g x

where x is the radius of the circle [ 74, eq. (5)] ;

j.
d& (cox)* dz of

tan a =- - '
: or tan a, = ,

=
;

g x dx g

Hence any vertical section of the free surface through the

axis of rotation Z is a parabola, with its axis vertical and vertex

at 0; i.e., the free surface is &paraboloid of revolution, with

Z as its axis. Since GOX is the linear velocity v of the point

5 in its circular path, z = "height due to velocity" v [ 52],

EXAMPLE. If the vessel in Fig. 473 makes 100 revol. per

minute, required the ordinate z at a horizontal distance of x =
4 inches from the axis (ft.-lb.-sec. system). The angular veloc-

ity GO =
\Vi7t 100 4- 60] radians per sec. [N. B. A radian =

the angular space of which 3.1415926 . . . make a half-revoL*

or angle of 180]. With x = 4 ft. and g = 32.2,

and the pressure at b (Fig. 471) is (now use inch, lb., sec.)

f0 K

& =pa+zy= 14.7+ 2 X = 14.781 Ibs. per sq. in.

Prof. Mendelejeff of Eussia has recently utilized the fact an-

nounced as the result of this problem, for forming perfectly

true paraboloidal surfaces of plaster of Paris, to receive by

galvanic process a deposit of metal, and thus produce specula

of exact figure for reflecting telescopes. The vessel contain-

ing the liquid plaster is kept rotating about a vertical axis

at the proper uniform speed, and the plaster assumes the de-

sired shape before solidifying. A fusible alloy, melted? may
also be placed in the vessel, instead of liquid plaster.
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REMARK. If the vessel is quite full and closed on top, ex-

except at 0' where it communicates

by a stationary pipe with a reser-

voir, Fig. 474, the free surface

cannot be formed, but the pres-

sure at any point in the water is

just the same during uniform rota-

tion, as if a free surface were formed

with vertex at 0\

See figure for A and 0. (In subse-

quent paragraphs of this chapter
the liquid will be at rest.)

FIG. 474.

428a. Pressure on the Bottom of a Vessel containing Liquid at

Rest. If the bottom of the vessel is plane and horizontal, the

intensity of pressure upon it is the same at all points, being

&1

c
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single point (Fig. 477), which in this case (horizontal plate)

is its centre of gravity. This point is called

the Centre of Pressure, or the point of appli-

cation of the resultant of all the fluid pressures

acting on the plate. The present case is such

that these pressures reduce to a single result-

ant, but this is not always practicable.

EXAMPLE. In Fig. 476 (cylindrical vessel

FIG. 477.
containing water), given Ji = 20 ft., A, ==

15 ft., ^ = 2 ft., 7\ = 4 ft., required the pressure on the bot-

tom, the vertical tension in the cylindrical wall CA, and the

hoop tension ( 426) at G. (Ft., lb., sec.) Press, on bottom =
Fhy = Ttrfhy = 7rl6 X 20 X 62.5 = 62857 Ibs.

;
while the

upward pull on CA =

(yrrf
-

7tr?)h,y = ar(16
-

4)15 X 62.5 = 35357 Ibs.

If the vertical wall is t = -fa inch thick at C this tension will

be borne by a ring-shaped cross section of area = %nr (nearly)

= 2*48 X TV = 30.17 sq. inches, giving (35357 -r- 30.17) =
about 1200 Ibs. per sq. inch tensile stress (vertical).

The hoop tension at C is horizontal and is

P" = r*(P ~Pa) -5- t (see 426), wherep =pa + h,y ;

= 3125 lb, per sq, in.

Tfcr

(using the incli and pound).

429. Centre of Pressure. In subsequent work in this chapter,

sin/36 the atmosphere has access both to the free surface of

liquid and to the outside of the vessel walls, and j9 would canv

eel out in finding the resultant fluid pressure on any elemen*

tary area dF of those walls, we shall write :

The resultantfluid pressure on any dF of the vessel wall is

normal to its surface and is dP =pdF= zydF. in which z

is the vertical distance of the element below the free surface

of the liquid (i.e., z = the "head of water"). If the surface

pressed on is plane, these elementary pressures form a system
of parallel forces, and may be replaced by a single resultant
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(if the plate is rigid) which will equal their sum, and whose

point of application, called the Centre of Pressure, may be

located by the equations of 22, put into calculus form.

If the surface is curved the elementary pressures form a sys

tern of forces in space, and hence ( 38) cannot in general be

reduced to a single resultant, but to two, the point of applica-

tion of one of which is arbitrary (viz., the arbitrary origin,

38).

Of course, the object of replacing a set of fluid pressures by
a single resultant is for convenience in examining the equi-

librium, or stability, of a rigid body the forces acting on which

include these fluid pressures. As to their effect in distorting

the rigid body, the fluid pressures must be considered in their

true positions (see example in 264), and cannot be replaced

by a resultant.

430, Resultant Liquid Pressure on a Plane Surface forming
Part of a Vessel Wall. Co-ordinates of the Centre of Pressure.

Fig. 478. Let AB be a portion (of any shape) of a plane
surface at any angle with the

horizontal, sustaining liquid

pressure. Prolong the plane
of AB till it intersects the free

surface of the liquid. Take

this intersection as an axis Y,

being any point on T. The
axis X, "| to Y, lies in the

given plane. Let a = angle
between the plane and the free

surface. Then x and y are the

co-ordinates of any elementary FIG. 478.

area dF of the surface, referred to JTand Y. &=. the "head
of water," below the free surface, of any dF. The pressures
are parallel.

The normal pressure on any dF = zydF\ hence the sum of
these, = their resultant,

= P, = yfstJF= Fzy (1)
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in which z = the <c mean s" i.e., the s of the centre of gravity

G of the plane figure AB^ and F'= total area of AB \_Fz =

fzdF, from eq. (4), 23]. y = heaviness of liquid (see 409).

That is, the total liquid pressure on a plane figure is equal
to the weight of an imaginary prism of the liquid having a

base = area of the given figure and an altitude = vertical

depth of the centre of gravity of the figure below the surface

of the liquid. For example, if the figure is a rectangle with

one base (length = )
in the surface, and lying in a vertical

plane,

Evidently, if the altitude be increased, P varies as its square.

From (1) it is evident that the total pressure does not de-

pend on the horizontal extent of the water in the reservoir.

Now let xc and yc denote the co-ordinates, in plane YOX,
of the centre of pressure, C, orpoint of application of the re-

sultant pressure P, and apply the principle that the sum of

the moments of each of several parallel forces, about an axis ~|

to them, is equal to the moment of their resultant about the

same axis [ 22]. First taking OY as an axis of moments,
and then OX, we have

=
f*(zydF)x,

and Pyc = f*(zydF)y.
. (2)

But P = Fzy Fx(mi a)y, and the z of any dF a? sin a.

Hence eqs. (2) become (after cancelling the constant, y sin a)

___ .--
, ana yc

in which IT = the " mom. of inertia" of the plane figure re-

ferred to Y (see 85). [N. B. The centre of pressure as

thus found is identical with the centre of oscillation ( 117)
and the centre of percussion [ 113] of a thin homogeneous
plate, referred to axes Xand Z, T being the axis of suspen-

sion.]

Evidently, if the plane figure is vertical a 90. a? = z for



CENTRE OF PRESSURE. 549

^all dF's, and x = z. It is also noteworthy that the position

of the centre of pressure is independent of a.

NOTE. Since the pressures on the equal dF's lying in any
horizontal strip of the plane figure form a set of equal parallel

forces equally spaced along the strip, and are therefore equiva-
lent to their sum applied in the middle of the strip, it follows

that for rectangles and triangles with horizontal bases, the

centre of pressure must lie on the straight line on which the

middles of all horizontal strips are situated.

431. Centre of Pressure of Rectangles and Triangles with Bases

Horizontal. Since all the dF\ of one horizontal strip have

the same
a?,
we may take the area of the strip K

for dF in the summation fx*dF. Hence for

the rectangle AB, Fig 479, we have from eq.

(3), 430, with dF=ldx,

;(i)

o

A

i,
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Also, since the centre of pressure must lie on the line AB join*

ing the vertex to the middle of base (see note, 430), we easily

determine its position.

Evidently for h, = 0, i.e., when the vertex is in the surface,
o

t
v x = fA3

. Similarly, for a triangle with

J*i base horizontal and vertex down. Fig. 481,
^....0-** -*t 7 o

we find that

If the base is in the surface, h
l
= and

(3) reduces to xc
= JA2

.

It is to be noticed that in the case of the triangle the value

of o? is the same whatever be its shape, so long as h
l
and A

a

remain unchanged and the base is horizontal. If the base is

not horizontal, we may easily, by one horizontal line, divide

the triangle into two triangles whose bases are horizontal and

whose combined areas make up the area of the first. The re-

sultant pressure on each of the component triangles is easily

found by the foregoing principles, as also its point of applica-

tion. The resultant of the two parallel forces so determined

will act at some point on the line joining the centres of pres-

sures of the component triangles, this point being easily found

by the method of moments, while the amount of this final re-

sultant pressure is the sum of its two components, since the

latter are parallel. An instance of this procedure will be

given in Example 3 of 433. Similarly, the rectangle of Fig.
479 may be distorted into an oblique parallelogram with hori-

zontal bases without affecting the value of xc ,
nor the amount

of resultant pressure, so long as h
l
and A

a remain unchanged.

432. Centre of Pressure of Circle. Fig. 482. It will lie on

the vertical diameter. Let r = radius. From eq. (3), 430,

7V IQ +F ~x 7rr
4 + nr* ~x

x* = ?= ;
= -1-1

Fx

(See eq. (4), 88, and also 91.)

X
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FIG. 483.

433. Examples. It will be noticed that although the total

pressure on the plane figure depends for its value upon the

head, z, of the centre of gravity, its point of application is al-

ways lower than the centre of gravity.

EXAMPLE 1. If 6 ft. of a vertical sluice-gate, 4 ft. wide,

Fig. 483, is below the water-surface, the total

water pressure against it is (ft., lb., sec.
; eq.

(1),430)

P = Fzy = 6 X 4 X 3 X 62.5 = 4500 Ibs.,

and (so far as the pressures on the vertical

posts on which the gate slides are concerned)

is equivalent to a single horizontal force of

that value applied at a distance XG
= f of

6 = 4 ft. below the surface
( 431).

EXAMPLE 2. To (begin to) lift the gate in Fig. 483, the

gate itself weighing 200 Ibs., and the coefficient of friction

between the gate and posts being/*= 0.40 (abstract numb.) (see

156), we must employ an upward vertical force at least

= P' = 200 + 0.40 X 4500 = 2000 Ibs.

EXAMPLE 3. It is required to find the resultant hydro-
static pressure on the trapezoid in Fig. 483& with the dimen-

sions there given and its bases horizontal
;
also its point of ap-

plication, i.e., the centre of pressure of

r~
r

the plane figure in the position there

A B c D shown. From symmetry the C. of P. will

be in the middle vertical of the figure,

as also that of the rectangle B CFE, and

that of the two triangles ABE and

CDF taken together (conceived to be

shifted horizontally so that CF and

BE coincide on the middle vertical,

thus forming a single triangle of 5 ft. base, and .having the

same total pressure and C. of P. as the two actual triangles
taken together). Let P

l
= the total pressure, and xc

f

refer to

the C. of P., for the rectangle ;
P

2
and xe\ for the 5 ft. tri-

f

AD -10
EF- 5

FIG. 483a.
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angle; A
1
= 4 ft. and A

2
= 10 ft. being the same for both.

Then from eq. (1), 430, we have (with the ft., lb., and sec.)

P
l
= 30 X 1y = 210>/ ;

and Pa
=

J- X 6 X 5 X 67 = 90y;

while from eqs. (1) and (3) of 431 we have also (respectively)

2 1000-64 2 936

3
'

100 - 16
"

3

1 484-80-4-100

84
= 7.438 feet;

228

8+10 2X18
= 6.333 feet.

The total pressure on the trapezoid, being the resultant of

P
l
and Pa ,

has an amount = JP
l + Pt (since they are parallel),

and has a lever-arm xc about the axis Y to be found by the

principle of moments, as follows :

(210 X 7.438 + 90 X 6.33)r=- - = 7 '09ft-" =

The total hydrostatic pressure on the trapezoid is (for fresh

water)
P = P

1 + P,= [210+ 90] 62.5 = 18750 Ibs.

EXAMPLE 4. Eequired the horizontal force P', Fig. 484, to

be applied at N (with a leverage of a' = 30 inches about the

fulcrum M) necessary to (begin

to) lift the circular disk AB of

radius r = 10 in., covering an

opening of equal size. NMAB
is a single rigid lever weighing
#' = 210 Ibs. The centre of

gravity, G, of disk, being a ver-

tical distance H = O'G = 40

inches from the surface, is 50

inches (viz., the sum of OM =
k = 20" and MG = 30") from

axis Y
; i.e., x = 50 inches.

FIG. 484. The centre of gravity of the

whole lever is a horizontal distance 5', 12 inches, from M.
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For impending lifting we must have, for equilibrium of the

lever,

-lc); . . . . (1)

where P = total water pressure on circular disk, and a? =
OC. From eq. (1), 430, (using inch, lb., and sec.,)

P = Fzy = nr*zy =

From 432, xc
= OC =

fi9 ^
x 40 X -^ = 454.6 Ibs.

1 1Jo

~\ v* 1~ = 50 + i. = 50.5 in.
4 x 4:

= JL [210 X 12 + 454.6 x 30.5] = 546 Ibs.
oU

434. Example of Flood-gate. Fig. 485. Supposing the rigid

double gate AD, 8 ft. in total width, to

have four hinges ;
two at 0, and two at/",

1 ft. from top and bottom of water chan- ~=

nel
; required the pressures upon them, in-t-

taking dimensions from the figure (ft., E 9

\ \ L_

lb., sec.).

Wat. press.
= P = Fzy

= 72X4^X62.5 = 20250 Flo. 485 .

pounds, and its point of application (cent, of press.) is a dis-

tance xc
= f of 9' = 6' from

( 431). Considering the

whole gate free and taking moments about e, we shall have

(press, at f)xT = 20250 x 5
;

.-. press, at/= 14464 Ibs.

(half on each hinge at/"), and

/. press, at e = P press, at/*= 5875 Ibs.

(half coming on each hinge).
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If the two gates do not form a single rigid body, and hence

are not in the same plane when closed, a wedge-like or toggle-

joint action is induced, producing much greater thrusts against

the hinges, and each of these thrusts is not ~] to the plane of

the corresponding gate. Such a case forms a good exercise

for the student.

435. Stability of a Vertical Rectangular Wall against Water

Pressure on One Side. Fig. 486. All dimensions are shown in

^u^

FIG. 486.

the figure, except I, which is the length
of wall "1 to paper. Supposing the wall

to be a single rigid block, its weight G'

=
h'h'ly' (y' being its heaviness

( 7),

and I its length). Given the water

depth = h, required the proper width

V for stability. For proper security :

First, the resultant of G' and the

water-pressure P must fall within the

base BD (or, which amounts to the same thing), the moment
of G' about D, the outer toe of the wall, must be numerically

greater than that of P
;
and 4

Secondly, P must be less than the sliding frictionfG' (see

156) on the base ED.

Thirdly, the maximum pressure per unit of area on the

base must not exceed a safe value (compare 348).

NowP = Fzy = hi y = h*ly (y = heaviness of water) ;

2 2

and x = h.

Hence for stability against tipping about D,

P\h must le < G'W ; i.e., tftly < ^fi'l

while, as to sliding on the base,

P mmtle <fG' ; i.e., \Ttly <fVh'ly
f
.

(1)

(2)

As for values of the coefficient of friction,/, on the base of

wall, Mr. Fanning quotes the following among others, from

various authorities :
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For point-dressed granite on dry clay, / = 0.51

" " " moist clay, 0.33

" " " " "
gravel, 0.58

" " " smooth concrete, 0.62
" " " similar granite, 0.70

For dressed hard limestone on like limestone, 0.38
" < " "

brickwork, 0.60

For common bricks on common bricks, 0.64

To satisfactorily investigate the third condition requires the

detail of the next paragraph.

436, Parallelopipedical Reservoir Walls. More Detailed and

Exact Solution. If (1) in the last paragraph were an exact

equality, instead of an inequality,

the resultant R of P and G'

would pass through the corner

Z>, tipping would be impending,
and the pressure per unit area at

D would be theoretically infinite.

To avoid this we wish the wall

to be wide enough that the re-

sultant R, Fig. 487, may cut

BD in such a point, E' ,
as to cause the pressure per unit area,

pm ,
at D to have a definite safe value (for the pressure pm at

I), or quite near Z>, will evidently be greater than elsewhere

on BD
; i.e., it is the maximum pressure to be found on BD).

This may be done by the principles of 346 and 362.

First, assume that It cuts BD outside of the middle third/

FIG. 487.

i.e. that

where n denotes the ratio of the distance of E' from the mid-

dle of the base to the whole width, &', of base. Then the pres-
sure (per unit area) on small equal elements of the base BD
(see 346) may be considered to vary as the ordinates of a

triangle MND (the vertex M being within the distance BD\
and E7

]} will = jJ/2) ; i.e.,
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MD = 3(i n)&'.

The mean pressure per unit area, on

and hence the maximum pressure (viz., at D\ being double

the mean, is

--n)]; . . . . (0)

and ifpm is to equal <7'(see 201 and 203), a safe value for the

crushing resistance, per unit area, of the material, we shall

have

To find J', knowing n, we put the 2(mom&,) of the G' and P
at E, about E',-= zero (for the only other forces acting on

the wall are the pressures of the foundation against it, along
MD

;
and since the resultant of these latter passes through E'>

the sum of their moments about E' is already zero) ; i.e.,

G'nb' - P$h = ; or, nbnh f

ly'= |

Having obtained J
r

,
we must also ascertain if P is <fG', the

friction
; i.e., ifP is < fl'h'ly'. If not, V must be still further

increased. (Or, graphically, the resultant of G' and P must
not make an angle > 0, the angle of friction, with the ver-

tical.

If 7i, computed from (1), should prove to be <
-J-,

our first

assumption is wrong, and we therefore assume n < |, and pro-
ceed thus :

Secondly, n being <
-J- (see 346 and 362), we have a
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trapezoid of pressures, instead of a triangle, on BD. Let the

pressure per unit area at D be pm (the maximum on base).

The whole base now receives pressure, the mean pressure (per

unit area) being = G-' -f- [b'l] ;
and therefore, from 362,

Case I, we have

; ..... (Oa)

and since, here, G' = Vh'ly', we may write

For safety as to crushing resistance we put

(On + 1)AV = C'\ whence n = i[^ -
l]

. . (la)

Having found n from eq. (la), we determine the proper
width of base ~b' from eq. (2), in case the assumption n < is

verified.

EXAMPLE. In Fig. 486, let A' = 12 ft., h = 10 ft., while

the masonry weighs (y
f

) 150 Ibs. per cub. ft. Supposing
it desirable to bring no greater compressive stress than 100 Ibs.

per sq. inch (= 14400 Ibs. per sq. ft.) on the cement of the

joints, we put C' = 14400, using the ft.-lb.-sec. system of units.

Assuming n > -J,
we use eq. (1), and obtain

_ 1 _ 2 12 X 150 _ 5_

~2 3* 14400
~ ^

12'

which is > % ;
hence the assumption is confirmed, also the

propriety of using eq. (1) rather than (la).

Passing to eq. (2), we have

-*-f8SrT*r~
But, as regards frictional stability, we find that, with/= 0.30,

a low value, and V = 3.7 ft. (ft., lb., sec.),
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100 X 62.5

fVh'ly
f 2 X 0.3 X 3.7 X 12 X 150

which is greater than unity, showing the friction to be insuf-

ficient to prevent sliding (with / 0.30) ;
a greater width

must therefore be chosen, for frictional stability.

If we make n =
-J-, i.e., make R cut the base at the outer

edge of middle third ( 362), we have, from eq. (2),

and the pressure at D is now of course well within the safe

limit
;
while as regards friction we find

P +fG' = 0.92, < unity,

and therefore the wall is safe in this respect also.

With a width of base = 3.7 feet first obtained, the portion

MD, Fig. 487, of the base which receives pressure [according
to Navier's theory ( 346)] would be only 0.92 feet in length,
or about one fourth of the base, the portion JBM tending to

open, and perhaps actually suffering tension, if capable (i.e., if

cemented to a rock foundation), in which case these tensions

should properly be taken into account, as with beams
( 295),

thus modifying the results.

It has been considered safe by- some designers of high

masonry dams, to neglect these possible tensile resistances, as

has just been done in deriving ~b' 3.7 feet
;
but others, in

view of the more or less uncertain and speculative character of

Navier's theory, when applied to the very wide bases of such

structures, prefer, in using the theory (as the best available),

to keep the resultant pressure within the middle third at the

base (and also at all horizontal beds above the base), and thus

avoid the chances of tensile stresses.

This latter plan is supported by Messrs. Church and Fteley,
as engineers of the proposed Quaker Bridge Dam in connec-

tion with the New Croton Aqueduct of New York City, in

their report of 1887. See 439.
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437. Wall of Trapezoidal Profile. Water-face Vertical.

Economy of material is favored by using a trapezoidal profile.

Fig. 488. "With this form the

stability may be investigated in

a corresponding manner. The

portion of wall above each

horizontal bed should be ex-

amined similarly. The weight
G-' acts through the centre of

gravity of the whole mass.

Detail. Let Fig. 488 show

the vertical cross-section of a

trapezoidal wall, with notation

for dimensions as indicated
;
the

portion considered having a length = I, ~| to the paper. Let

y heaviness of water, y' that of the masonry (assumed homo-

geneous), with n as in 436.

For a triangle ofpressure, MD, on the base, i.e., with n > -J-,

or resultant falling outside the middle third (neglecting pos-

sibility of tensile stresses on left of M\ if the intensity of

pressure^ at D is to = C' ( 201), we put, as in 436,

whence

7[i - n\ C' = f #', i.e.,
= \IK .W + l"}y

f

,

_i_i/ty v

For a trapezoid ofpressure, i.e. with n < -J-,
or the resultant

of P and G' falling within the middle third, we have, as be-

fore ( 362, Case I),

or O', = (6 +l);
whence

n =
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From the geometry of the figure, having joined the middles

of the two bases, we have

( 26,Prob. 6), and, by similar triangles, OT : KV :: gO : h',.

whence

The lines of action of #' and P meet at 2?, and their result-

ant cuts the base in some point E' . The sum of their moments
about E' should be zero, i.e., P . %h G' . ON'\ that is, (see

eq. (a) above, and eq. (1), 430,)

i.e., cancelling,

W)(1>'
- V) + 6nb'(b' + b")]. (2)'

Hence we have two equations for finding two unknowns-

viz.: (l)'and (2)' when n > \ ;
and (la)' and (2)' when n < -J.

For dams of small height (less than 40 ft., say), if we im-

mediately put n =
-J-,

thus restricting the resultant pressure to

the edge of middle third, and solve (2)
r

for b', b'
f

being as-

sumed of some proper value for a coping, foot-walk, or road-

way, while h' may be taken enough greater than h to provide

against the greatest height of waves, from 2.5 to 6 ft., the

value of pm at D will probably be < C '

. In any case, for a

value of n
,
or <, \ we put pm for C"in equation (la)' and

solve for
jt?m ,

to determine if it is no greater than C'.

Mr. Fanning recommends the following values for C' (in lbs
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per sq.foot) with coursed rubble masonry laid in strong mor-

tar:

For Limestone. Sandstone. Granite. Brick.

O 50,000 50,000 60,000 35,000

Av heaviness of /

the masonry in V 152 132 154 120
Ibs. per cub. ft. \

As to/national resistance, P must be </#'; i.e.,

\ltly <fh!y>W + *")...... (3)'

If the base is cemented to a rock foundation with good
material and workmanship throughout, Messrs. Church and

Fteley (see 436) consider that the wall may be treated as

amply safe against sliding on the base (or any horizontal bed),

pro\dded the other two conditions of safety are already satis-

fied.

438. Triangular Wall with Vertical Water-face. Making
l>" = in the preceding article, the trapezoid becomes a right

triangle, and the equations reduce to the following :

and

pm = Wy r

[6ra + 1] for n <
-J-

. . . (la)"

(pm not to exceed C' in any case) ; while to determine the

breadth of base, I', after n is computed [or assumed, for small

height of wall], we have from eq. (2)',

..... (2)"

Also, for frictional stability,

ly must be < tfh'Vly'..... (3)"
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439. High Masonry Dams. Although the principle of the

arch may be utilized for vertical stone dikes of small height

(30 to 50 feet) and small span, for

greater heights and spans the

formula for hoop tension, 426 (or

rather, here,
"
hoop compression"),

on the vertical radial joints of the

horizontal arch rings, Fig. 489, calls

for so great a radial thickness of

joint in the lower courses, that

straight dikes (or "gravity dams")
are usually built instead, even

where firm rock abutments are available laterally.

For example, at a depth of 100 feet, where the hydrostatic

pressure is hy = 100 X 62.5 = 6250 Ibs. per sq. ft., if we as-

sume for the voussoirs a (radial, horizontal) thickness = 4 ft.,

with a (horizontal) radius of curvature r 100 feet, we shall

find a compression between their vertical radial faces of
(ft.>

lb., sec.)

p
,, = r(p-^ = 100 X6260

t 4

or 1085 Ibs. per sq. inch ;
far too great for safety, even if there

were no danger of collapse, the dike being short. If now the

thickness is increased, in order to distribute the pressure over

a greater surface, we are met by the fact that the formula for
"
hoop compression" is no longer strictly applicable, the law of

distribution of pressure becoming very uncertain
;
and even

supposing a uniform distribution over the joint, the thickness

demanded for proper safety against crushing is greater than

for a straight dam (" gravity dam") at a very moderate depth
below the water surface, unless the radius of curvature of arch

can be made small. But the smaller the radius the more does

the dam encroach on the storage capacity of the reservoir, while

in no case, of course, can it be made smaller than half the span.

Another point is, that as masonry is not destitute of elas-

ticity, the longer the span the more unlikely is it that the

parts of the arch will "close up" properly, and develop the
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abutment reactions when the water is first admitted to the

reservoir
;
which should occur if it is to act as an arch instead

of by gravity resistance.

For these reasons the engineers of the proposed Quaker

Bridge Dam reported unfavorably to the plan of a curved de-

sign for that structure, and recommended that a straight dam
be built. See reference in 436. According to their designs
this dam is to be 258 feet in height (which exceeds by about 90

feet the height of any dam previously built), about 1400 feet

in length at the top, and 216 feet in width at the lowest

point of base, joining the bed-rock.

More recently, however (1888), a board of experts, specially

appointed for the purpose, having examined a number of dif-

ferent plans, have reported favorably to the adoption of a

curved form for the dam, as offering greater resistance under

extraordinary circumstances (Impact of ice-floes, earthquakes^

etc.), on account of its arched form (though resisting by

gravity action under usual conditions) than a straight struc-

ture
;
and also as more pleasing in appearance.

Fig. 490 shows the profile of a straight high masonry darn

as designed at the present day. Assuming a width ~b" = from
6 to 22 feet at the top, and a sufficient Ji" (see figure) to ex-

ceed the maximum height of waves, the up-stream outline

ACM is made nearly vertical and perhaps somewhat concave,

while the down-stream profile BDN^ by computation or

graphical trial, or both, is so formed that when the reservoir is

full the resultant R, of the weight
G of the portion AECD of ma- SS'

/7
'A

'I

sonry above each horizontal bed, as = =\

CD, and the hydrostatic pressureP
on the corresponding up-stream face

A C, shall cut the bed CD in such a

point E' as not to cause too great

compression pm at the outer edge D
(not over 85 Ibs. per sq. inch accord-

ing to M. Krantz in " Keservoir F10 - 49 -

Walls"). pm being computed by one of the equations [(0) and

(Da) of 1 436]
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For E' outside the middle third
|

2#
t _,

and neglecting tension (

'

T*
~~

3.^/>./(4_ n\

For v
inside middle third 1 . .pm = (

6yl_+ 1W .

(lay//
C/-/x

where Z = length of wall 1 to paper, usually taken = one foot,

or one inch, according to the unit of length adopted; for n,

see 436.

Nor, when the reservoir is empty and the water pressure

lacking, must the weight G resting on each bed, as CD, cut

the bed in a point E" so near the edge C as to produce exces-

sive pressure there (computed as above). The figure shows

the general form of profile resulting from these conditions.

The masonry should be of such a character, by irregular bond-

ing in every direction, as to make the wall if possible a mono-

lith. For more detail see next paragraph.

440. Quaker Bridge Dam* (on the New Croton Aqueduct).

Attempts, by strict analysis, to determine the equation of the

curve BN, AM being assumed straight, so as to bring the

point E' at the outer edge of the middle third of its joint, or

to make the pressure at D constant below a definite joint, have

failed, up to the present time
;
but approximate and tentative

methods are in use which serve all practical purposes. As an

illustration the method set forth in the report on the Quaker

Bridge Dam will be briefly outlined
;
this method confines E'

to the middle third.

The width AB I" is taken = 22' for a roadway, and h" =
7 ft. The profile is made a vertical rectangle from A down
to a depth of 33 ft. below the water surface (reservoirfull).

Combining the weight of this rectangle of masonry with the

corresponding water pressure (for a length of wall = one foot),

we find the resultant pressure comes a little within the outer

edge of the middle third of the base of the rectangle, while

pm is of course small.

The rectangular form of profile might be continued below

this horizontal joint, as far as complying with the middle
* This dam was not built.
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third requirement, and the limitation of pressure-intensity, is

concerned
; but, not to make the widening of the joints too

abrupt in a lower position where it would be absolutely re-

quired, a beginning is made at the joint just mentioned by

forming a trapezoid between it and a joint 11 ft. farther down,

making the lower base of the latter of some trial width, which

can be altered when the results to which it gives rise become

evident. Having computed the weight of this trapezoid and

constructed its line of action through the centre of gravity of

the trapezoid, the value of the resultant G of this weight and

that of the rectangle is found (by principle of moments or by
an equilibrium polygon) in amount and position, and combined

with the water pressure of the corresponding 44 ft. of water to

form the force 7?, whose point of intersection with the new

joint or bed (lower base of trapezoid) is noted and the value of

pm computed. These should both be somewhat nearer their

limits than in the preceding joint. If not, a different width

should be chosen, and changed again, if necessary, until satis-

factory. Similarly, another layer, 11 ft. in height and of

trapezoidal form, is added below and treated in the same way ;

and so on until in the joint at a depth of 66 ft. from the

water surface a width is found where the point E' is very
close upon its limiting position, whilepm is quite a little under

the limit set for the upper joints of the dam, 8 tons per square
foot. For the next three 11 ft. trapezoidal layers the chief

governing element is the middle-third requirement, E' being

kept quite close to the limit, while the increase of pm to 7.95

tons per sq. ft. is unobjectionable; also, we begin to move
the left-hand edge to the left of the vertical, so that when the

reservoir is empty the point E" shall not be too near the up-
stream edge C.

Down to a depth of about 200 ft. the value ofpm is allowed

to increase to 10.48 tons per sq. ft., while the position of E'

gradually retreats from the edge of its limit. Beyond 200 ft.

depth, to prevent a rapid increase of width and consequent
extreme flattening of the down-stream curve, pm is allowed

to mount rapidly to 16.63 tons per sq. ft. (=231 Ibs. per

sq. in.), which value it reaches at the point N <A the base of
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the dam, which has a width = 216 ft., and is 258 feet below

the water surface when the reservoir is full.

The heaviness of the masonry is taken as y' 156.25 Ibs.

per cubic foot, just f of y = 62.5 Ibs. per cub. foot, the heavi-

ness taken for water.

When the reservoir is empty, we have the weight G of the

superincumbent mass resting on any bed CD, and applied

through the point E" ;
the pressure per unit area at G can

then be computed by eq. (la)"
7

, 439, n being the quotient of

(^CD CE")-- VT> for this purpose. In the present case

we find E" to be within middle third at all joints, and the

pressures at C to be under the limit.

For further details the reader is referred to the report itself

(reprinted in Engineering News, January, 1888, p. 20). The

graphic results were checked by computation, Wegmann's
method, applied to each trapezoid in turn.

441. Earthwork Dam, of Trapezoidal Section. Fig. 491. It is

<.-- _.> D required to find the conditions of sta-

bility of the straight earthwork dam

ABDE, whose length I, L to

paper, as regards sliding horizontally

on the plane AE; i.e., its frictional

K c *
stability. With the dimensions of

p the figure, y and y' being the heavi-

FIO. 491. nesses of the water and earth respec-

tively (see 7), we have

Weight of dam = G, = vol. X y' = lh,\b + Jfa + c)]/. (1)

Resultant water press.
= P =Fzy=OAxlX hy. . (2)

Horiz. comp. of P = H= P sin a

= [02 sin a$My = \ttly. ... (3)

From (3) it is evident that the horizontal component of P is

just the same, viz., = hi . \hy, as the water pressure would be

on a vertical rectangle equal to the vertical projection of OA
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and with its centre of gravity at the same depth (JA). Com-

pare 416. Also,

Yert. comp. ofjP= V = P cos a

= \OA cos a]^hly = \ahly, ... (4)

and is the same as the water pressure on the horizontal projec-

tion of OA if placed at a depth O'G = -JA.

For stability against sliding, the horizontal component of P
must be less than the friction due to the total vertical pressure

on the plane AE, viz., G l -\- V \
hence if/"is the coefficient of

friction on AE, we must haveH<f \_G l -\- "F], i.e. (see above),

must be <Jlh$ + i(a, + c)]/+ ^ahly . . (5)

However, if the water leak under the dam on the surface AE^
so as to exert an upward hydrostatic pressure

V =
[a, + I + c\lhy,

(to make an extreme supposition,) the friction will be only

and (5) will be replaced by

JZ </[<?,+ F-- Fa...... (6)

Experiment shows ("Weisbach) that with y=0.33 computa-
tions made from (6) (treated as a bare equality) give satisfactory

results.

EXAMPLE. (Ft., lb., sec.) With /= 0.33, h = 20 ft, h, =
22 ft, a = 24 ft., a, = 26.4 ft., and o 30 ft., we have, mak-

ing (6) an equality, with y' = %y,

=f

/. i(400)=|[22(5+28.2)2 +^(24X20) -(26.4+J+ 30)20];

whence, solving for J, the width of top, b = 10.3 feet.
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442, Liquid Pressure on Both Sides of a Gate or Rigid Plate,

The sluice-gate AB, for example, Fig. 492, receives a pressure.

P
l ,
from the " head-water" Jf, and

an opposing pressure P3 from the

"tail-water" N. Since these two

horizontal forces are not in the same

j, though parallel, their resultant

which = jP, P^ ,
acts horizon-

tally in the same plane, but at a dis-

FIG. 492. tance below
1
= u, which we may

find by placing the moment of R about O
t , equal to the alge-

braic sum of those of P
1
and P2 about Ov

.

Ru = Ppj - Pt(a>e
" + h).

_u _* a

(i)

(2)

(7, and Q are the respective centres of pressure of the surfaces

OJZ and OJ$, and u = distance of R from O
l , while h = dif-

ference of level between head and tail waters. If the surfaces

O,-Z? and OJ$ are both rectangular,

ac
/ = |A1

and ve
" = |A3

.

EXAMPLE. Let the dimensions be as in Fig. 493, both sur-

faces under pressure being rect-

angular and 8 ft. wide. Then (ft.,

lb., sec.) R = P, - P, ,
or

( 430)

4]62.5

FW. 493.

= 20000 Ibs. = 10 tons;

while from ex. (2)

[12X8X6X8-8X8X
20000

That is, u = 6.93 feet, which locates O. Hence the pressure
of the gate upon its hinges or other support is the same (aside
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from its own weight), provided it is rigid, as if the single

horizontal force R = 10 tons acted at the point (7, 2.93 ft. be-

low the level of the tail-water surface.

443. If the plate, or gate, is entirely below the tail-water

surface, the resultant pressure is applied in the centre of gravity

of the plate. Proof as follows: Conceive the surface to be

divided into a great number of small equal areas, each = dF;
then, the head of water of any dF being = x

l
on the head-

water side, and = # on the tail-water side, the resultant pres-

sure on the dF is ydF(xl
a?a) =yhdF, in which h is the

difference of level between head and tail water. That is, the

resultant pressures on the equal dF's are equal, and hence

form a system of equal parallel forces distributed over the plate

in the same manner as the weights of the corresponding por-

tions of the plate ;
therefore their single resultant acts through

the centre of gravity of the plate ; Q. E. D. This single re-

sultant =fyhdF= yhfdF= Fhy.
EXAMPLE. Fig. 494. The resultant pressure on a circular

disk ab of radius = 8 inches, (in

the vertical partition OK,) which

has its centre of gravity 3 ft.

below the tail-water surface, with

h 2 ft., is (ft., lb., sec.)

R = Fhy = nr*hy

X = 174.6 Ite, ^
and is applied through the centre

jj

of gravity of the circle. Jfyi- Wf%%^^

dently R is the same for any

depth Mow the tail-water surface, so long as h = 2 ft.

the student find a graphic proof of this statement.]

[Let

444. Liquid Pressure on Curved Surfaces. If the rigid surface

is curved, the pressures on the individual dJ?'B, or elements of

area, do not form a system of parallel forces, and the single re-

sultant (if one is obtainable) is not equal to their sum. In
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general, the system is not equivalent to a single force, but can

always be reduced to two forces
( 38) the point of application

of one of which is arbitrary (the arbitrary origin of 38) and

its amount = V(2Xy + (2 Y)* + (2Z)\
A single Example will be given ;

that of a thin rigid shell

having the shape of the curved surface of a right cone, Fig.

495, its altitude being h and radius of base = r. It has no

bottom, is placed on a smooth horizontal table, vertex up, and

is filled with water through a small hole in the apex 0, which is

left open (to admit atmospheric

pressure). What load, besides its

own weight G') must be placed

upon it to prevent the water from

lifting it and escaping under the

edge A ? The pressure on each

dF of the inner curved surface is

zydF &&& is normal to the surface.
FIG. 495.

Its vertical compon. is zydFmn a,

and horizontal compon. = zydF cos a. The dF'& have all

the same a, but different z's (or heads of water). The lifting

tendency of the water on the thin shell is due to the vertical

components forming a system of
|| forces, while the horizon-

tal components, radiating symmetrically from the axis of the

cone, neutralize each other. Hence the resultant lifting force

is

F= ^(vert. comps.) = y sin afzdF= y sin a F~z\ (1)

whereF= total area of curved surface, and z the "head of

water" of its centre of gravity. Eq. (1) may also be written

thus:

V=yFb ~z', ....... (2)

in which Fb = F sin a = area of the circular base = area of

the projection of the curved surface upon a plane ~\ to the

vertical, i.e., upon a horizontal plane. Hence we may write

,
. ...... (3)

since z = A, being the z of the centre of gravity of the curved
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surface and not that of the base, y = heaviness of water. If

G' = weight of the shell and is < T
7
,
an additional load of

V G' will be needed to prevent the lifting. If the shell has

a bottom of weight = G"
, forming a base for the cone and

rigidly attached to it, we find that the vertical forces acting on

the whole rigid body, base and all, are : V upward ;
G' and

G" downward; and the liquid pressure on the base, viz.,

Vf = 7tr*hy ( 428$) also downward. Hence the resultant

vertical force to be counteracted by the table is downward, and

- G' + G" + V -
F, which = G' + G" + \nr*hy ; (4)

i.e., the total weight of the rigid vessel and the water in it, as

we know, of course, in advance.
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EARTH PRESSURE AND RETAINING WALLS.

[NOTE. This chapter was outlined and written mainly by
Prof. 0. L. Crandall, and is here incorporated with his permis-
sion. The theory of earth pressure is arranged from Bau-

meister.]

445. Angle of Repose. Granular materials, like dry sand,

loose earth, soil, gravel, pease, shot, etc., on account of the

friction between the component grains, occupy an intermediate

position between liquids and large rigid bodies. When heaped

up, the side of the mass cannot be made to stand at an inclina-

tion with the horizontal greater than a definite angle called the

angle of natural slope, or angle of repose, different for each

material
;
so that if the side of the mass is to be retained per-

manently at some greater angle, a Retaining Wall (or
" Revet-

ment Wall" in military parlance) becomes necessary to sup-

port it. If the material is somewhat moist it may be made to

stand alone at an inclination greater than that of the natural

slope, on account of the cohesion thus produced, but only as

long as the degree of moisture remains
;
while if much water

is present, it assumes the consistency of mud and may require
a much thicker wall, if it is to be supported laterally, than if

dry.

In dealing with earth to be supported by a retaining wall,

we consider the former to have lost any original cohesion

which may have existed among its particles, or that it will

eventually lose it through the action of the weather
;
and hence

treat it as a granular material.

A few approximate values of the angle of natural slope are

572
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given below, being taken from Fanning, p. 345
;
see reference

on p. 538 of this work.

MATERIAL.
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2d. A downward sliding of the mass ABC 1

along the back

face AB of the wall. That is, the resultant pressure P' of

the wall against the mass BA C' at this instant makes an angle

sx-xx &-V--.S

FIG. 496.

complement of angle of friction between the earth and

wall) with the plane AB and on the upper side. The weight
of the wedge of earth BAG' will be called G', and we desire

to find the pressure P' against the wall.

LetBA 7be a wedge (of the earth-mass), in which A C makes

any angle with A V, and suppose it to be on the point' of

moving down and forcing out the wall; thus encountering
friction both on the plane A C and the plane AB. Then the

forces acting on it are three, acting in known directions
;

viz. :

^ G, its own weight, vertical ;/W, the resultant pressure of the

earth below it, making an angle /3 with A C on upper side
;

andxP, the resultant pressure of the wall, at angle 6 with AB
(see Fig. 496 for positions of N and P). If now we express

the force P in terms of and other quantities, and find that

value 0', of 0, for which P is a maximum, we thereby deter-

mine the "wedge of maximum thrust" ABC 'A
;
while this

maximum thrust, P'
,
is the force which the wall must be de-

signed to withstand. [If the wall is overturned, the earth

will sink with it until this part of its surface gradually as-

sumes the natural slope.]

Let G = weight of prism of base ABC, and altitude unity

"1 to paper; then G = y X area ABC, where y = " heavi-

ness" wgt. per cub. unit, of earth. JSTow P, 6r, and $
balance; therefore, in triangle aba, if a^'and ac are drawn

jj
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and = G and ^respectively, be is and || to P; and from

Trigonometry we have

p - a sin W ~ #1 m
>

in which <? stands for a + 0, for brevity, being the angle
whichP makes with the vertical. N makes an angle = ft

with the vertical.

The value, 0', of 0, which makes P a maximum is found

by placing = 0. From eq. (1), remembering that G is a

function of 0, and that ft and d are constants, we have

:
- <) - G cos O -

<f>~| + Gsin (ft
-

</>) cos (/3-f 5 - 0)

For P to be a maximum we must put

numerator of above =

To find a geometrical equivalent of
,
denote AC by, Z>

and draw AE, making an' angle = d<p with AC. Now the

area ACI = AI X CE=.(L + dlftZdQ = %L*d<}> . . .

(neglecting infinitesimal of 2d order). Now

dG = y X area ACI X unity ;
/. -= - = \yl?\ .*. () becomes

~ sn

+ G ein (/3
-

0) cos (/?+ d 0) = ;

i.e., G =__jyZ
3
ain (/? 0) sin (/?+ tf 0)_

sin (/S -f 6 0) cos (/? 0) cos (/?+ d 0) sin (ft 0)
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when P is a maximum
;
and hence, calling G' and 0' and

the values of G, 0, and Z, for max. P, we have

and therefore from (1) P max. itself is

447. Geometric Interpretation and Construction. If in Fig.

496 we draw CF, making angle d with AD, G being any

point on the ground surface BD, we have

CF-= L sin (ft
~

<l>\

sin tf

Drop a perpendicular FH from F to A G, and we shall have

FH= CF. sin (ft+ 6 -
<A),
= L .

h (/>- *)
sin o

From this it follows that the weight of prism of fiie^l CF
and unit height

sn

When ^IC1
'

(as varies) assumes the position and value

bounding the prism of maximum thrust, Fig. 497, L becomes

Z\ and =
cf)

f

\
and eq. (4) gives the weight of the prism

AC'F'. This weight is seen to be equal to that of the prism

(or wedge) of maximum thrust ABC', by Comparing eq. (4)

with eq. (2); that is, AC' bisects the area ABC'F', and
hence may be determined by fixing such a point C

'

', on the

upper profile BD, as to make the triangular area AC'F'

equal to the sectional area of the wedge BC'A\ C'F' being
drawn at an angle = d with AD.

This holds for any form of ground surface BD, or any
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values of the constants /?, a, or 6. C' is best found graphic-

ally by trial, in dealing with

an irregular profile BD.

Having found AC'^ =
L'

,
P f

can be found from

(3), or graphically as fol-

lows : (Fig. 497) With F'
as a centre and radius =
C'F') describe an arc cut-

ting AD in J
',
and join

C'J'. The weight of prism
with base C'J'F' and unit height will = P '. For that prism
has a weight

FIG. 497.

'J' . Q'H'\

but

and

Sn -
sn

C'H' = L sin (ft
- 00 ;

sin
a

(/5 00 .

weight of prism C'JfF= \yL ,
^ .

sin o

[See eq. (3).]

448. Point of Application of the Resultant Earth Thrust

This thrust (called P' throughout this chapter except in the

present paragraph) is now known in magnitude and direction,

but not in position ; i.e., we must still determine its line of

action, as follows :

Divide AB into a number of equal parts, ab, be, cd, etc.-

see Fig. 498. Treat ab as a small retaining wall, and find the

magnitude P' of the thrust against it by 447
;
treat ac simi-

larly, thus finding the thrust, P", against it
;
then ad, ae, etc.,

the thrusts against them being found to be P"
',
PIV

,
etc.

;
and

so on. ISTow the pressure

P' on ab is applied nearly at middle of ab,

P" __ p' ic
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and so on. Erect perpendiculars at the middle paints of ab,

be, cd, etc., equal respectively to P'
^

P" - p^ p>>> _ p>>, etc., and" join the

ends of the perpendiculars. The per-

pendicular through the centre of gravity

of the area so formed (Fig. 498) will

give, on AB, the required point of ap-

plication of the thrust or earth pressure

on AB, and this, with the direction and
FIG. 498.

magnitude already found in 447, will

completely determine the thrust against the wall AB.

449. Special Law of Loading. If the material to be retained

consists of loose stone, masses of masonry, buildings, or even

moving loads, as in the case of a wharf or roadway, each can

be replaced by the same weight of earth or other material

which will render the bank homogeneous, situated on the same

verticals, and the profile thus reduced can be treated by 447

and 448.

Should the solid mass extend below the plane of rupture,

AC', and the plane of natural slope, it will become a retaining

wall for the material beyond, if strong enough to act as such

(limiting the profile ABCD of Fig. 496 to the front of the

mass, or to the front and line of rupture for- maximum thrust

above it, if it does not reach the surface); if not strong enough,
or if it does not reach below the plane of natural slope, its

presence is better ignored, probably, except that the increased

weight must be considered.

The spandrel wall of an arch may present two of these

special cases
; i.e., the profile may be enlarged to include a

moving load, while it may be limited at the back by the other

spandrel.

If the earth profile starts at the front edge of the top of

wall, instead of from the back as at B, Fig. 496, eq. (3) would

only apply to the portion behind AB prolonged, leaving the

part on the wall (top) to be treated as a part of the wall to aid

in resisting the thrust.

If the wall is stepped in from the footings, or foundation
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.courses, probably the weak section will be just above them
;

if

stepped at intervals up the back of the wall, the surface of separa-

tion between the wall and filling, if it is plane, will probably

pass through the first step and incline forward as much as pos-

sible without cutting the wall.

450. Straight Earth-profile. The general case can be simpli-

fied as follows (the earth-profile BD being straight,' at angle
= C with vertical, = DET) : Since the triangles ABC' and

7-

u \
N-\
y

^

FIG. 499.

C'AF' are equal, from 447, and A C' is common, therefore

B8F'H (both being drawn 1 to AC'). Draw AE and

BM ||
to F'G' (i.e., at angle d with AD\ cutting DB, pro-

longed, in ^. We have

DE EA C'E
and

But C'F' = ^Jf (since J?xS = H'F') ;

therefore

EA

= =; i.e., DE. BE=
(/'JS' ^^T

which justifies the following construction for locating the de-

sired point C' on BD, and thus finding AC' L' and the

angle 0': Describe 'a circle on ED as a diameter, and draw
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~| to BD) thus fixing X in the curve. With centre E
describe a circular arc through JT, cuttingBD in (7', required

Having AC' (i.e., Z'), <p' is known
;
hence from eq. (3) we

obtain the earth thrust or pressure P'\ or, with F' as centre

and radius C'F', describe arc G'J'\ then the triangle G'F'J 1

is the base of a prism of unity height whose weight = P' (as

in 447).

Centre of Pressure. Applying the method of 448, Fig.

498, to this case, we find that the successive Z"s are propor-

tional to the depths ab, ac
9 ad, etc., anc^ that the successive P'B

are proportional [see (3)] to the squares of the depths ;
hence

the area in Fig. 498 must be triangular in this case, and the

point of application of the resultant pressure on AB is one

third of AB from A : just as with liquid pressure.

451. Resistance of Retaining Walls. (Fig. 500.) Knowing
the height of the wall we can find its weight, = G

l ,
for an as-

sumed thickness, and unity width ~] to paper. The resultant

of G
l , acting through the centre of gravity of wall, and P', the

thrust of the embankment, in its proper
line of action, should cut the base A V
within the middle third and make an

angle with the normal (to the base) less

than the angle of friction.

For the straight wall and straight

earth-profile of Fig. 499 and 450, the

Fm.5oo length Z', = AC', can be expressed in

terms of the (vertical) height, A, of wall, thus :

cos a

- oi\ h sin (C
and Z' -- AC' - AB * -UUU JL/ J3. \j -LX> -j 7 ,r TT; T/V >

sin (C )
cos OL sin (C )

,. eq. (3) becomes

__ Aa

Bin'G* - 0Qsin
a

(C-^) , Aa

tr ~^~^
'

"~iTyin 2

(C'- 00
W

cos
9 a

'W
[A representing the large fraction for brevity.]
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This equation will require, for a wall of rectangular section,

that the thickness, d, increase as h, in order that its weight may
increase as A2

(i.e.,
as P') and that its resisting moment may

increase with the overturning moment.

By this equality of moments is meant that /" a = GJ> ;

where a and J are the respective lever-arms of the two forces

about the front edge of the middle third. (AB is the back of

the wall.) In other words, their resultant will pass through
this point.

The following table is computed on the basis just mentioned,

viz., that the resultant of P' and G shall pass through the

front edge of the midde third.

The symbols of eq. (5) and the table are all shown in Fig.

499, except y, 0, and $. y = weight of a cubic foot of earth,

here assumed = f that of masonry (e.g.,
if earth weighs

100 Ibs., masonry is assumed to weigh 150 Ibs. per cubic foot) ;

6 = angle which the thrust P' makes with the back of the

wall
;
and $ = a

-f- 8,
= 6 in this case as the wall is vertical,

or a = 0. d is the proper safe thickness to be given to the

wall, of rectangular section, to prevent overturning, as stated

above
;
h is the altitude, and A is the fraction shown in eq. (5).

Whether the wall is safe against sliding on its base, and

whether a safe compression per unit area is exceeded on the

front edge of the base, are matters for separate consideration.

The latter will seldom govern with ordinary retaining walls.

a = 0; i.e., wall is vertical; also density of wall = f that of the earth.
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(since the area of &ABC' = kAC'F') 0' must =
These values, in (5), give

P1 = \YK tan
8

%ft ; i.e., A = tan' %/3. . . . (6)

In Case II, since C = 90, a = and = fa .-. d = /3 ;

and (5) reduces to

sin
a

(/?-0Q. . sin
a

(/?-00 m^h
sin/? cos' 0"

'

~sln>cos'0'-

In Case III, C = /? and ^Z> wiU be
||

to ^1Z>, D being at

infinity. See Fig. 501. Through
^ draw BH ~\ to ^^>, and RF"

now to be located on BD, so as

to make (area of) &ABC' =
(area of) l^AC'F 1

(according
to 447), the angle C

'F 'A being
= d = <x-\- ;

=
0, in this case,

and hence also = ft. Conceive

FIG. SOL B and F' to be joined.

Now &AC'F' = &ABF" + &BF'F".

But &ABC' = &BF'F" (equal bases and altitudes).

Hence A ABC' cannot = &AC'F' unless C f
is moved out

to infinity ; and then
r becomes = ft, and eq. (5) reduces to

[Increasii

Pf= %yh* sin fi ; i.e., A = sin fi. (8)

[ncreasing a from zero will decrease the thickness d
; i.e.,

inclining the wall inwards will decrease the required thickness,

but diminish the frictional stability at the base, unless the lat-

ter be ~l to AB. The back of the wall is frequently inclined

outwards, making the section a trapezoid, to increase the fric-

tional stability at the base when necessary, as with timber

walls supporting water.]
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452, Practical Considerations. An examination of the

values of A and d in the table of 451 will show that in sup-

porting quicksand and many kinds of clay which are almost

fluid under the influence of water, it is important to know
what kind of drainage can be secured, for on that will depend
the thickness of the wall. With well compacted material free

from water-bearing strata, an assumed natural slope of 1 to 1

(i.e., 1J hor. to 1 vert.) will be safe
;
the actual pressure below

the effect of frost and surface water will be that due to a much

steeper slope on account of cohesion (neglected in this theory).

The thrust from freshly placed material can be reduced by

depositing it in layers sloping back from the wall. If it is not

so placed, however, the natural slope will seldom be flatter

than 1% to 1 unless reduced by water. In supporting material

which contains water-bearing strata sloping toward the wall

and overlain by strata which are liable to become semi-fluid

and slippery, the thrust may exceed that due to semi-fluid ma-

terial on account of the surcharge. If these strata are under

the wall and cannot be reached by the foundation, or if resist-

ance- to sliding cannot be obtained from the material in front

by sheet-piling, no amount of masonry can give security.

Water at the back of the wall will, by freezing, cause the

material to exert an indefinitely great pressure, besides disinte-

grating the wall itself. If there is danger of its accumulation,

drainage should be provided by a layer of loose stone at the

back leading to "weep-holes" through the wall.

A friction-angle at the back of the wall equal to that of the

filling should always be realized by making the back rough by

steps, or projecting stones or bricks. Its effect on the required
thickness is too great to be economically ignored.

The resistance to slipping at the base can be increased, when

necessary, by inclining the foundation inwards
; by stepping

or sloping the back of the wall so as to add to its effective

weight or incline the thrust more nearly to the vertical; by
sheet-piling in front of the foundation, thus gaining the resist-

ance offered by the piles to lateral motion
; by deeper founda-

tions, gaining the resistance of the earth in front of the wall.
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The coefficient of friction on the base ranges, according to

Trautwine, from 0.20 to 0.30 on wet clay ;

" .50 to .66 "
dry earth

;

"
.66 to .75 " sand or gravel ;

" .60 on a dry wooden platform ;
to .75 on a

wet one.

If the wall is partially submerged, the buoyant effort should

be subtracted from G
l ,

the weight of wall.

453. Results of Experience. (Trautwine.) In railroad prac-

tice, a vertical wall of rectangular section, sustaining sand,

gravel, or earth, level with the top [p. 682 of Civ. Eng. Pocket

Book] and loosely deposited, as when dumped from carts, cars,

etc., should have a thickness d, as follows :

If of cut stone, or of first-class large ranged rubble, in mortar. . . . d = .35ft
"

good common scabbled mortar-rubble, or brick d .40A
" well scabbled dry rubble d = .50A

Where h includes the total height, or about 3 ft. of foundations.

(d) For the best masonry of its class h may be taken from

the top of the foundation in front.

(b) A. mixture of sand or earth, with a large proportion of

round boulders or cobbles, will weigh more than the backing
assumed above

; requiring d to be increased from one eighth to

one sixth part.

(c) The wall will be stronger by inclining the back inwards,

especially if of dry masonry, or if the backing is put in place
before the mortar has set.

(d) The back of the wall should be left rough to increase

friction.

(e) Where deep freezing occurs, the back should slope out-

ward for 3 or 4 feet below the top and be left smooth.

(/) When a wall is too thin, it will generally fail by bulging
outward at about one third the height. The failure is usually

gradual and may take years.

(g) Counterforts, or buttresses at the back of the wall, usually
of rectangular section, may be regarded as a waste of ma-

sonry, although considerably used in Europe; the bond will
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seldom hold them to the wall. Buttresses in front add to the

strength, but are not common, on account of expense.

(Ji)
Land-ties of iron or wood, tying the wall to anchors im-

bedded below the line of natural slope, are sometimes used to

increase stability.

(?')
Walls with curved cross-sections are not recommended.

454. Conclusions of Mr. B. Baker. (" Actual Lateral Pressure

of Earthwork.") Experience has shown that d = 0.25A, with

batter of 1 to 2 inches per foot on face, is sufficient when

backing and foundation are both favorable
;
also that under no

ordinary conditions of surcharge or heavy backing, with solid

foundation, is it necessary for d to be greater than 0.50A.

Mr. Baker's own rule is to make d = 0.33A at the top of

the footings, with a face batter of 1J inches per foot, in ground
of average character; and, if any material is taken out to form

a face-panel, three fourths of it is put back in the form of a

pilaster. The object of the batter, and of the panel if used, is

to distribute the pressure better on the foundation. All the

walls of the " District Railway" (London) were designed on

this basis, and there has not been a single instance of settle-

ment, of overturning, or of sliding forward.

455. Experiments with Models. Accounts of experiments
with apparatus on a small scale, with sand, etc., may be found

in vol. LXXI of Proceedings of Institution of Civil Engineers,

London, England (p. 350) ;
also in vol. n of the " Annales des

Ponts et Chaussees" for 1885 (p. 788).

The results of these experiments, and the results of experi-
ence given in 453 and 454, when compared with the table

of p. 581, indicate a fairly close agreement between practice
and theory. This agreement is believed to be close enough
BO that the general method of 447 and 451, with the table

of p. 581, can be relied upon in practice. The greatest value of

this method will, of course, be for cases of exceptional loading,
inclined walls, etc., where the results of experience do not

furnish so valuable a guide.



CHAPTEE IV.

HYDROSTATICS (Contmued)-lMKERSWN AND FLOTATION.

456. Rigid Body Immersed in a Liquid. Buoyant Effort. If

any portion of a body of homogeneous liquid at rest be con-

ceived to become rigid without alteration of shape or bulk, it

would evidently still remain at rest
; i.e., its weight, applied at

its centre of gravity, would be balanced by the pressures, on its

bounding surfaces, of the contiguous portions of the liquid ;

hence,

If a rigid body or solid is immersed in a liquid, loth being
at rest, the resultant action upon it of the surrounding liquid

(or fluid] is a vertical upward force called the "buoyant

effort" equal in amount to the weight of liquid displaced,

and acting through the centre of gravity of the volume (con-

sidered as homogeneous) of displacement (now occupied by the

solid). This point is called the centre of buoyancy, and is

sometimes spoken of as the centre of gravity of the displaced
water. If V = the volume of displacement, and y = heavi-

ness of the liquid, then the

buoyant effort
= Vy (1)

(By
" Tolume of displacement" is meant, of course, the volume

of liquid actually displaced when the body is immersed.)
If the weight G

r

of the solid is not equal to the buoyant

effort, or if its centre of gravity does not lie in the same verti-

cal as the centre of buoyancy, the two forces form an unbal-

anced system and motion begins. But as a consequence of

ihis very motion the action of the liquid is modified in a man-

ner dependent on the shape and kind of motion of the body.
586



IMMERSION. 587

Problems in this chapter are restricted to cases of rest, i.e.,

balanced forces.

Suppose G' = V'y ; then,

If the centre of gravity lies in the same vertical line as the

centre of buoyancy and underneath the latter, the equilibrium
is stable ; i.e., after a slight angular disturbance the body re-

turns to its original position (after several oscillations) ;
while

if above the latter, the equilibrium is unstable. If they coin-

cide, as when the solid is homogeneous (but not hollow), and

of the same heaviness ( 7) as the liquid, the equilibrium is

indifferent, i.e., possible in any position of the body.
The following is interesting in this connection :

In an account of the new British submarine boat "
Nautilus,"

a writer in Chambers^ Journal remarked [1887] :
a At each

side of the vessel are four port-holes, into which fit cylinders

two feet in diameter. When these cylinders are projected

outwards, as they can be by suitable gearing, the displacement
of the boat is so much increased that the vessel rises to the

surface; but when the cylinders are withdrawn into their

sockets, it will sink."

As another case in point, large water-tight canvas "air-bags"
have recently been used for raising sunken ships. They are

sunk in a collapsed state, attacked by divers to the submerged

vessel, and then inflated with air from pumps above, which of

course largely augments their displacement while adding no

appreciable weight.

457. Examples of Immersion. Fig. 502. At (a) is an ex-

ample of stable equi-

librium, the centre of

buoyancy B being above

the centre of gravity (7,

and the buoyant effort

V'y = Gf = the weight
of the solid

;
at (#'), con-

versely, we have un-

stable equilibrium, with

V'y still = G'. At (bj the buoyant effort V'y is > G', and

FIG. 502.1
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to preserve equilibrium the body is attached by a cord to the

bottom of the vessel. The tension in this cord is

*= V'y-0'. ...... (i)

At (c) V'y is < #', and the cord must be attached to a

support above, and its tension is

8. = G' - V'y (2)

If in eq. (2) [(<?)
in figure] we call Se the apparent weight of

the immersed body, and measure it by a spring- or beam-bal-

ance, we may say that

The apparent weight of a solid totally immersed in a liquid

equals its real weight diminished by that of the amount of

liquid displaced ; in other words, the loss of weight = the

weight of displaced liquid.

EXAMPLE 1. How great a mass (not hollow) of cast-iron can

be supported in water by a wrought-iron cylinder weighing
140 Ibs., if *he latter contains a vacuous space, and displaces

3 cub. feet of water, both bodies being completely immersed ?

[Ft., lb., sec.]

The buoyant effort on the cylinder is

V'y = 3 X 62.5 = 187.5 Ibs.,

leaving a residue of 47.5 Ibs. upward force to buoy the cast-

iron, whose volume V" is unknown, while its heaviness
( 7)

is y" = 450 Ibs. per cub. foot. The direct buoyant effort of

the water on the cast-iron is V'y = {V" X 62.5] Ibs.,

and the problem requires that this force -f- 47.5 Ibs. shall

= V"y" = the weight G" of the cast-iron
;

.-. V" X 62.5 + 47.5 = V" X 450
;

.-. V" = 0.12 cub. ft, while 0.12 X 450= 54 Ibs. of cast-iron.

Ans.

EXAMPLE 2. Required the volume V
',
and heaviness y',

of a homogeneous solid which weighs 6 Ibs. out of water and

4 Ibs. when immersed (apparent weight) (ft., lb., sec).
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From eq. (2), 4 = 6 - V X 62.5
;

/. V 0.032 cub. feet
;

.-. Y' = & *- V = 6 +- -032 =m -5 lbs - Per cub - ffc
->

and the ratio of y' to y is 187.5 : 62.5 = 3.0 (abstract num-

ber) ; i.e., the substance of this solid is three times as dense,

or three times as heavy, as water. [The buoyant effort of the

air has been neglected in giving the true weight as 6 lbs.]

458, Specific Gravity. By specific gravity is meant the ratio

of the heaviness of a given homogeneous substance to that of

a standard homogeneous substance
;
in other words, the ratio

of the weight of a certain volume of the substance to the

weight of an equal volume of the standard substance. Dis-

tilled water at the temperature of maximum density (4 Centi-

grade) under a pressure of 14.7 lbs. per sq. inch is sometimes

taken as the standard substance, more frequently, however, at

62 Fahrenheit (16.6 Centigrade). Water, then, being the

standard substance, the numerical example last given illustrates

a common method of determining experimentally the specific

gravity of a homogeneous solid substance, the value there ob-

tained being 3. The symbol cr will be used to denote specific

gravity, which is evidently an abstract number. The standard

substance should always be mentioned, and its heaviness;/;

then the heaviness of a substance whose specific gravity is <r is

and the weight G' of any volume V of the substance may be

written

G' = Vy = V'o-y...... (2)

Evidently a knowledge of the value of y' dispenses with the

use of cr, though when the latter can be introduced into prob-
lems involving the buoyant effort of a liquid the criterion as

to whether a homogeneous solid will sink or rise, when im-

mersed in the standard liquid, is more easily applied, thus :

Being immersed, the volume V of the body = that, V9
of

displaced liquid. Hence,
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if & is > V'r, i.e., if V'y' is > V'y, or cr > 1, it sinks
;

while if G' is < V 'y, or cr < 1, it rises
;

i.e., according as the weight G' is > or < than the buoyant
effort.

Other methods of determining the specific gravity of solids,

liquids, and gases are given in works on Physics.

459. Equilibrium of Flotation. In case the weight G' of an

immersed solid is less than the buoyant effort V'y (where V is

the volume of displacement, and y the heaviness of liquid) the

body rises to the surface, and after a series of oscillations comes

to rest in such a position, Fig. 503, that its centre of gravity C
and the centre of buoyancy B (the new B, belonging to the

new volume of displacement, which is limited above by the

horizontal plane of the free surface of the liquid) are in the

same vertical (called the axis of flotation, or line of support),

and that the volume of displacement has diminished to such a

new value V, that

Vy=G' (1)

In the figure, V = vol. AND, below the horizontal plane

AN, and the slightest motion of the body will change theform
of this volume, in general (whereas with

complete immersion the volume of dis-

placement remains constant). For stable

equilibrium it is not essential in every
case that C (centre of gravity of body)
should be below B (the centre of buoy-

ancy) as with complete immersion, since if

503.

"

the solid is turned, B may change its posi-

tion in the body, as the form of the volume AND changes.

There is now no definite relation between the volume of

displacement Fand that of the body, V, unless the latter is

homogeneous, and then for G' we may write V'y'^ i.e.

V'y' = Vy (for a homogeneous solid) ;
. . (2)

or, the volumes are inversely proportional to the heavinesses.
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The buoyant effort of the air on the portion ANE may be

neglected in most practical cases, as being insignificant.

If the solid is hollow, the position of its centre of gravity

may be easily varied (by shifting ballast, e.g.) within certain

limits, but that of the centre of buoyancy B depends only on

the geometrical form of the volume of displacement AND,
below the horizontal plane AN.
EXAMPLE. (Ft., lb., sec.) Will a solid weighing G = 400

Ibs., and having a volume V 8 cub. feet, without hollows

or recesses, float in water? To obtain a buoyant effort of

400 Ibs., we need a volume of displacement, see eq. (1), of

V G' 400V= = - = only 6.4 cub. ft.

y 62.5

Hence the solid will float with 8 6.4, or 1.6, cub. ft. pro-

jecting above the water level.

Query : A vessel contains water, reaching to its brim, and

also a piece of ice which floats without touching the vessel.

When the ice melts will the water overflow ?

460. The Hydrometer is a floating instrument for determin-

ing the relative heavinesses of liquids. Fig. 504 shows a sim-

ple form, consisting of a bulb and a cylin-

drical stem of glass, so designed and

weighted as to float, upright in all liquids

whose heavinesses it is to compare. Let F
denote the uniform sectional area of the

stem (a circle), and suppose that when float-

ing in water (whose heaviness = y) the

water surface marks a pointA on the stem
;

and that when floating in another liquid,

say petroleum, whose heaviness, = yp ,
we

wish to determine, it floats at a greater

depth, the liquid surface now marking A
on the stem, a height = x above A. G' is

the same in both experiments; but while the volume of dis-

placement in water is F, in petroleum it is F+ Fx. There-

fore from eq. (1), 459,
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in the water G' = Vy, ..... (1)

and in the petroleum, G' =
( V-\-Fx)yp \

. . (2)

from which, knowing G', F> ae,
and y, we find Fand yp , i.e.,

F=fland X.-.. ... (3)

[N.B. FIB best determined by noting the additional dis-

tance, = I, through wliich the instrument sinks in water under

an additional load P, not immersed / for then

&+P =(F+ Fl)Y, or F= -

EXAMPLE. [Using the inch, ounce, and second, in which

system y = 1000 -r- 1728 = 0.578 ( 409).] With ' = a

ounces, and ^^ 0.10 sq. inch, x being observed, on the

graduated stem, to be 5 inches, we have for the petroleum

3X0.578

T0^5^0578
=

= 56.7 Ibs. per cub. foot.

Temperature influences the heaviness of most liquids to

some extent.

In another kind of instrument a scale-pan is fixed to the top
of the stem, and the specific gravity computed from the weight

necessary to be placed on this pan to cause the hydrometer to

sink to the same point in all liquids for which it is used.

461. Depth of Flotation. If the weight and external shape
of the floating body are known, and the centre of gravity so

situated that the position of flotation is known, the depth of
the lowest point below the surface may he determined.
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CASE I. Right prism or cylinder with its axis vertical.

Fig. 505. (For stability in this position,

see 464#.) Let G' weight of cylin-

der, /'"'the area of its cross-section (full

circle), h' its altitude, and h the un-

known depth of flotation (or draught] ;

then from eq. (1), 426,

6^FY

in which y = heaviness of the liquid.

If the prism (or cylinder) is homo-

geneous (and then (7, at the middle of h', is higher than J3)

and y' its heaviness, we then have

FIG. 505.

_ Fh'y' _ y'h' _
(2)

in which cr = specific gravity of solid referred to the liquid as

standard. (See 458.)

CASE II. Pyramid or cone with axis vertical and vertex

down. Fig. 506. Let V =. volume of

whole pyramid (or cone), and V= vol-

ume of displacement. From similar

pyramids,

A"
.h'.

But G' = Vy ; or, V= ; whence FIG. 506.

h = h'
(3)
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CASE III. Ditto, but vertex up. Fig. 507. Let the nota

T~~ tion be as before, for V and V. The

part out of water is a pyramid of volume
= V" = V F, and is similar to the

whole pyramid ;

'- V: V ::h"* : h'\

Also,
FIG. 507.

.:, finally, h =
A'[l

-
.J/l

- [6" -
F'y]].

... (4)

CASE IV. Sphere. Fig. 508. The volume immersed is

V = / l"~ n
(%rz z*)dz = ?rA

a r
$

v o
I

and hence, since Vy = ^ = weight
of sphere,

?rA
3

G'
nrh = ,

3 v (5)

From which cubic equation A may be^^^ obtained by successive trials and ap-
" :=^

proximations.
Fl - 508 - [An exact solution of (5) for the

unknown h is impossible, as it falls under the irreducible case

of Cardan's Kule.]
CASE V. Right cylinder with axis horizontal. Fig. 509.

lers.J f X

hence, since

Ffa. 509.

lr*\ct \ sin

Y

(6)
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From this transcendental equation we can obtain <*
5 by trial,

*n adians (see example in 428), and finally A, since

h = r(l cos at) (7)

EXAMPLE 1. A sphere of 40 inches diameter is observed to

have a depth of flotation h = 9 in. in water. Required its

weight G '. From eq. (5) (inch, lb., sec.) we have

Gf = [62.5 -r- 1728]7r9
2

[20
- X 9] = 156.5 Ibs.

The sphere may be hollow, e.g., of sheet metal loaded with

shot
;
constructed in any way, so long as G f and the volume

V of displacement remain unchanged. But if the sphere ifl

homogeneous, its heaviness ( 7) y
f must be

= Q' -=- V = Gf

-r- fnr* = (156.5) -f- f7r20"

= .00466 Ibs. per cubic inch,

and hence, referred to water, its specific gravity is cr = about

u!3.

EXAMPLE 2. The right cylinder in Fig. 509 is homogeneous
and 10 inches in diameter, and has a specific gravity (referred

to water) of <r = 0.30. Required the depth of flotation A.

Its heaviness must be y' = cry ;
hence its weight

0' = V'o-r =7rr*l(rr;

bonce, from eq. (6),

r*l[a J sin 2#] = TT^'Zcr, /. a \ sin 2<x = TTCT

(involving abstract numbers only). Trying a = 60 (
=

\it in

radians), we have

|TT sin 120 = 0.614
;
whereas no- = .9424

For a = TO
,
1.2217 - i sin 140 = 0.9003

;

For a = 71, 1.2391 -
-J-

sin 142 = 0.9313
;

Vor a = 71 22', 1.2455 - J sin 142 44r = 0.9428, which

fcp considered sufficiently close. Now from eq. (7),

A = (5 in.) (1
- cos 71 22') = 3.40 in. An*
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462, Draught of Ships. In designing a ship, especially if 01

a new model, the position of the centre of gravity is found by

eq. (3) of 23 (with weights instead of volumes) ; i.e., the sum

of the products obtained by multiplying the weight of each

portion of the hull and cargo by the distance of its centre of

gravity from a convenient reference-plane (e.g., the horizontal

plane of the keel bottom) is divided by the sum of the weights,
and the quotient is the distance of the centre of gravity of the

whole from the reference-plane.

Similarly, the distance from another reference-plane is de-

termined. These two co-ordinates and the fact that the centre

of gravity lies in the median vertical plane of symmetry of the

ship (assuming a symmetrical arrangement of the framework

ind cargo) fix its location. The total weight, 6?/

, equals, of

course, the sum of the individual weights just mentioned. The

centre of buoyancy, for any assumed draught and correspond-

ing position of ship, is found by the same method
;
but more

simply, since it is the centre of gravity of the imaginary homo-

geneous volume between the water-line plane and the wetted

surface of the hull. This volume (of "displacement") is

divided into an even number (say 4 to 8) of horizontal laminae

of equal thickness, and Simpson's Rule applied to find the vol-

ume (i.e.,
the V of preceding formulae), and also (eq. 3, 23)

the height of its centre of gravity above the keel. Similarly,

by division into (from 8 to 20) vertical slices, 1 to keel (an

even number and of equal thickness\ we find the distance of

the centre of gravity from the bow. Thus the centre of buoy-

ancy is fixed, and the corresponding buoyant effort Vy (tech-

nically called the displacement and usually expressed in tons')

computed, for any assumed draught of ship (upright). That

position in which the "
displacement" = G' weight of ship

is the position of equilibrium of the ship when floating up-

right in still water, and the corresponding draught is noted.

As to whether this equilibrium is stable or unstable, the fol-

lowing will show.

In most ships the centre of gravity O is several feet above

the centre of buoyancy, B, and a foot or more below the water

line.
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After a ship is afloat and its draught actually noted its total

weight 6r',
= Vy, can be computed, the values of Vfor dif-

ferent draughts having been calculated in advance. In this

way the weights of different cargoes can also be measured.

EXAMPLE. A ship having a displacement of 5000 tons is

itself 5000 tons in weight, and displaces a volume of salt water

Y= G'-i- y = 10,000,000 Ibs. -*- 64 Ibs. per cub. ft. = 156250

cub. ft.

463. Angular Stability of Ships. If a vessel floating upright
were of the peculiar form and position of

Fig. 510 (the water-line section having an

area = zero) its tendency to regain that

position, or depart from it, when slightly

inclined an angle from the vertical is due

to the action of the couple now formed by
the equal and parallel forces Vy and G',

which are no longer directly opposed. This

couple is called a righting couple if it acts

to restore the first position (as in Fig. 511,
where C is lower than JB) 9

and an

upsetting couple if the reverse, C
above B. In either case the mo-

ment of the couple is

= Vy . BC sin = Vye sin 0, ^
and the centre of buoyancyB does not

change its position in the vessel, since

the water-displacing shape remains

the same
; i.e., no new portions of

the vessel are either immersed or

raised out of the water.

But in a vessel of ordinary form, when turned an angle from
the vertical, Fig. 512 (in which ED is a line which is vertical

when the ship is upright), there is a new centre of buoyancy,

B^ , corresponding to the new shape A^N^D of the displacement-

volume, and the couple to right the vessel (or the reverse)

FIG. 510.

FIG. 511.



598 MECHANICS OF

consists of the two forces Gf
at O and Vy at B

l ,
and has a

moment (which we may call M, or

/E moment of stability) of a value

(28)
I

/

jzM - i^-l _X_ Jf = Vy . mC sin 0. (1)

FIG. 512.

C.
rL=_~ Now conceive put in at B (centre

^^=r- of buoyancy of the upright posi-

tion) two vertical and opposite

forces, each = Vy = G'
, calling

them P and P, (see 20), Fig. 512.

"We can now regard the couple [6r' 5 Vy] as replaced by the

two couples [#', P] and [P,, Vy~\\ for evidently

Vy . mC sin = Vy . BG sin + F/ . mJ? sin
;

(33 and 34;)

.-. J/ = Vy Wsin + Vy ~mB sin 0. . . (2)

But the couple [#', P] would be the only one to right the

vessel if no new portions of the hull entered the water or

emerged from it, in the inclined position ;
hence the other

couple

Flo. 513.

Vy} owes its existence to the emersion of the

wedge AOA 19 and the immersion

of the wedge NON^ i.e., to the

loss of a buoyant force Q = (vol-

ume A #4i) X y on one side, and the

-=. gain of an equal buoyant force on

the other; therefore this couple

[P Vy] is the equivalent of the

couple [Q,Q], Fig. 51L, formed by

putting in at the centre of buoyancy
of each of the two wedges a vertical

force

Q = (vol. of wedge) X r Vwy. (See figure.)
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If a denotes the arm of this couple, we may write

Vy TmB sin 0, [of eq. (2)],
= Vwya ;

. . (3)

and hence, denoting J?6Y

by e, we have

M = Vye sin + Vwya ; .... (4)

the negative sign in which is to be used when C is above B
(as with most ships). 0, the intersection of ED and AN,
does not necessarily lie on the new water-line plane A l

JV
l

.

EXAMPLE. If a ship of
( Vy =) 3000 tons displacement

with C 4 ft. above B (i.e.,
e 4 ft.) is deviated 10 from

the vertical, in salt water, for which angle the wedges A OA l
and

NON
l̂
have each a volume of 4000 cubic feet, while the hori-

zontal distance a between their centres of buoyancy is 18 feet,

the moment of the acting couple will be, from eq. (4) (ft.-ton-

sec. system, in which y of salt water = 0.032),

M = 3000X 4 X 0.1736 + 4000 X 0.032X 18 = 220.8 ft. tons,

which being -f- indicates a righting couple.

464. Remark. If with a given ship and cargo this moment
of stability, M, be computed, by eq. (4), for a number of values

of 0, and the results plotted as ordinates (to scale) of a curve,

being the abscissa, the curve ob-

tained is indicative of the general

stability of the ship. See Fig. 514.

For some value of 0= OK (as well

as for 0) the value of M is

zero, and for > OK, M is nega-

tive, indicating an upsetting couple.
FlG - 514-

That is, for 0=0 the equilibrium is stable, but for = OK,
unstable ; andM = in both positions. From eq. (4) we see

why, if Cis above B, instability does not necessarily follow.

464a. Metacentre of a Ship. Keferring again to Fig. 512,

we note that the entire couple \G' , Vy] will be a righting

couple, or an upsetting couple, according as the point m (the

<p-
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intersection of the vertical through B l ,
the new centre of

buoyancy, with BC prolonged) is above or below the centre

of gravity C of the ship. The location of this point m changes
with 0; but as becomes very small (and ultimately zero) m
approaches a definite position on the line DE, though not oc-

cupying it exactly till = 0. This limiting position of m is

called the metacentre^ and accordingly the following may be

stated : A ship floating upright is in stable equilibrium if its

metacentre is above its centre of gravity / and vice versa.

In other words, for a slight inclination from the vertical a

righting, and not an upsetting, couple is called into action, if

m is above C. To find the metacentre, by means of the dis-

tance Bm, we have, from eq. (3),

Vy sin

and wish ultimately to make = 0. Now the moment

( Vwy)a = the sum of the moments about the horizontal fore-

and-aft water-line axis OL, Fig. 515, of the buoyant efforts

<pzdfy due to the immersion of the
N

>s x ______ A ^-v--- L separate vertical elementary

<?J
V

X?A^F^~T .-'' JP prisms of the wedge OLNJtf.

plus the moments of those lost,

from emersion, in the wedge
OLA.A. Let OA.LN, be the

new water-line section of the

ship when inclined a small

FIO. 515. angle from the vertical

(0 = NO.N^, and OALN the old water-line. Let z = the

"1 distance of any elementary area dF of the water-line section

from OL (which is the intersection of the two water-line

planes). Each dFis the base of an elementary prism, with

altitude = 02, of the wedge N^OLN (or of wedge A.OLA
when z is negative). The buoyant effort of this prism = (its

vol.) X y = yz<pdF, and its moment about OL is

Hence the total moment, = Qa, or Vwya, of Fig. 513,

= </>yfs*dF= y<t> X JOL
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of water-line section, in which IOL denotes the " moment of

inertia
5 '

( 85) of the plane figure OALNO about the axis OL.
Hence from (5), putting = sin 0(true when 0), we have

mB = IOL -r- F; and therefore the distance mC\ of the meta-

centre m above (7, the centre of gravity of the ship, Fig. 512, is

= AM ,
= .

e
, . . .

in which e = BC= distance from the centre of gravity to the

centre of buoyancy, the negative sign being used when C is

above B
;
while F= whole volume of water displaced by the

ship*

We may also write, from eqs. (6) and (1), for small values

Mom. of righting couple =M= Vy sin ~ e
,

. (7)

or

Ve]. .... (7)'

Eqs. (7) and (7)' will give close approximations for < 10 or

15 with ships of ordinary forms,

EXAMPLE 1. A homogeneous right parallelepiped, of

heaviness y', floats upright as in ^

Fig. 516. Find the distance ^mO = hm for its metacentre in this A p-f

position, and whether the equilibrium ~^= /|
is stable. Here the centre of gravity, :^\=;~f

C, being the centre of figure, is of ~=^
course above B, the centre of buoy- ir

ancy ;
hence e is negative. B is the ^-1^1

centre of gravity of the displacement,
^^ ^

and is therefore a distance %h below

the water-line. We here assume that I is greater than

From eq. (2), 461,
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and since CD = } A', and BD r= JA, .-. e = i(A'-

while ( 90) /OL ,
of the water-line section AN,

Also,

and hence, from eq. (6), we have

Hence if &'
a
is > 6A'

8 ^ (l ^ the position in Fig. 516 is

one of stable equilibrium, and vice versa. E.g. ,
if y

f = f^,
J

r = 12 inches and hr =. 6 inches, we have (inch, pound, sec.)

- 6 X = 2.5 in.

The equilibrium will be unstable if, with y
f = J^, 5

r

is made
less than 1.225 h'

\ for, putting m(7 = 0, we obtain / =
1.225 h'.

EXAMPLE 2. (Ft., lb., sec.) Let Fig. 517 represent the half
water-line section of a loaded ship of G' = Vy = 1010 tons

olML. -I 4 0..J L L L -_5j|23*5678
FIG. Sir.

displacement ; required the height of the metacentre above the

centre of buoyancy, i.e., mB = ? (See equation just before eq.

(6).) Now the quantity 7OL ,
of the water-line section, may,

from symmetry, (see 93
?)
be written

(1)
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in which y = the ordinate 1 to the axis OL at any point; and

this, again^ by Simpson's Rule for approximate integration,

OL being divided into an even nnmber, n, of equal parts, and

ordinates erected (see figure), may be written

From which, by numerical substitution (see figure for dimen-

sions
;
n = 8),

2 160
-/or, = -^

3 3X8 [(0.5

s + 4(5"+ 128 + 133+ Y
3

)

125
1728 729

or
> 2197 2744

343 1331

IOL = ^[0.125+4 X 4393 + 2 X 4804+ 0.125]

Inr. 120801
,

= 3.8 feet.

That is, the metacentre is 3.8 feet above the centre of buoyancy,
and hence, if JSC = 2 feet, is 1.90 ft. above the centre of

gravity. [See Johnson's Cyclopaedia, article Naval Architec-

ture.']

465. Metacentre for Longitudinal Stability, If we consider

the stability of a vessel with respect to pitching, in a manner

similar to that just pursued for rolling, we derive the position

of the metacentre for pitching or for longitudinal stability

and this of course occupies a much higher position than that

for rolling, involving as it does the moment of inertia of the

water-line section about a horizontal gravity axis ~] to the keel.

With this one change, eq. (6) holds for this case also. In

large ships the height of this metacentre above the centre of

gravity of the ship may be as great as 90 feet.



CHAPTEK Y.

HYDROSTATICS (Continued) GASEOUS FLUIDS.

466. Thermometers. The temperature, or " hotness" of

liquids has, within certain limits, but little influence on their

statical behavior, but with gases must always be taken into

account, since the three quantities, tension, temperature, and

volume, of a given mass of gas are connected by a nearly in-

variable law, as will be seen.

An air-thermometer, Fig. 518, consists of a large glass bulb

filled with air, from which projects a tine straight tube of

even bore (so that equal lengths

represent equal volumes). A
small drop of liquid, A, sepa-

rates the internal from the ex-

ternal air, both of which are

at a tension of (say) one at-

mosphere (14.7 Ibs. per sq. inch). When the bulb is placed
in melting ice (freezing-point) the drop stands at some point F
in the tube

;
when in boiling water (boiling under a pressure

of one atmosphere), the drop is found at B, on account of the

expansion of the internal air under the influence of the heat

imparted to it. (The glass also expands, but only about y^
as much

;
this will be neglected.) The distance FB along the

tube may now be divided into a convenient number of equal

parts called degrees. If into one hundred degrees, it is found

that each degree represents a volume equal to the y^nnnr

(.0036Y) part of the total volume occupied by the air at freez-

ing-point ; i.e., the increase of volume from the temperature of

freezing-point to that of the boiling-point of water 0.36T of the

volume at freezing, thepressure being the same, and even having

any value whatever (as well as one atmosphere), within ordi-

nary limits, so long as it is the same both at freezing and boil-

604
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ing. It must be understood, however, that by temperature of

boiling is always meant that of water boiling under one at-

mosphere pressure. Another way of stating the above, if one

hundred degrees are used between freezing and boiling, is as

follows : That for each degree increase of temperature the in-

crease of volume is^ of t..e total volume at freezing; 2T3

being the reciprocal of .00367.

As it is not always practicable to preserve the pressure con-

stant under all circumstances with an air-thermometer, we use

the common mercurial thermometer for most practical pur-

poses. In this, the tube is sealed at the outer extremity, with

a vacuum above the column of mercury, and its indications

agree very closely with those of the air-thermometer. That

equal absolute increments of volume should imply equal incre-

ments of heat imparted to these thermometric fluids (under
constant pressure) could not reasonably be asserted without

satisfactory experimental evidence. This, however, is not al-

together wanting, so that we are enabled to say that within a

moderate range of temperature equal increments of heat pro-

duce equal increments of volume in a given mass not only of

atmospheric air, but of the so-called
"
perfect" or "permanent"

gases, oxygen, nitrogen, hydrogen, etc. (so named before it was

found that they could be liquefied). This is nearly true for

mercury also, and for alcohol, but not for water. Alcohol

freezes at 200 Fahr., and hence is used instead of mercury
as a thermometric substance to measure temperatures below

the freezing-point of the latter.

The scale of a mercurial thermometer is fixed
;
but with an

air-thermometer we should have to use a new scale, and in a

new position on the tube, for each value of the pressure.

467. Thermometric Scales. In the Fahrenheit scale the tube
between freezing and boiling is marked off into 180 equal

parts, and the zero placed at 32 of these parts below the freez-

ing point, which is hence + 32, and the boiling-point + 212.
The Centigrade, or Celsius, scale, which is the one chiefly

used in scientific practice, places its zero at freezing, and 100
at boiling-point. Hence to reduce
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Fahr. readings to Centigrade, subtract 32 and multiply by $;
Cent. " "

Fahrenheit, multiply by and add 32.

468. Absolute Temperature. Experiment also shows that if

a mass of air or other perfect gas is confined in a vessel whose

volume is but slightly affected by changes of temperature,

equal increments of temperature (and therefore equal incre-

ments of heat imparted to the gas, according to the preceding

paragraph) produce equal increments of tension (i.e., pressure

per unit area) ; or, as to the amount of the increase, that when
the temperature is raised by an amount 1 Centigrade, the ten-

sion is increased ^^ of its value at freezing-point. Hence,

theoretically, an ideal barometer (containing a liquid unaffected

by changes of temperature) communicating with the confined

gas (whose volume practically remains constant) would by
its indications serve as a thermometer,

Fig. 519, and the attached scale could be

graduated accordingly. Thus, if the col-

imn stood at A when the temperature
was freezing, A would be marked on

the Centigrade system, and the degree

spaces above and below A would each
FIG. 519. _

^i^ Q ^jie hejg]^ AB^ an(j therefore

the point B (cistern level) to which the column would sink if

the gas-tension were zero would be marked 273 Centi-

grade.

But a zero-pressure, in the Kinetic Theory of Gases ( 408),

signifies that the gaseous molecules, no longer impinging

against the vessel walls (so that the press.
=

0), have become

motionless; and this, in the Mechanical Theory of Heat, or

Thermodynamics, implies that the gas is totally destitute ofheat.

Hence this ideal temperature of 273 Centigrade, or 460

Fahrenheit, is called the Absolute Zero of Temperature, and by

reckoning temperatures from it as a starting-point, our formulas

will be rendered much more simple and compact. Tempera-
ture so reckoned is called absolute temperature, and will be

denoted by the letter T. Hence the following rules for re-

duction :
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Absol. temp. T in Cent, degrees == Ordinary Cent. + 273
;

Absol. temp. T in Fahr. degrees = Ordinary Fahr. -f 460.

For example, for 20 Cent., T = 293 Abs. Cent.

469. Distinction Between Gases and Vapors. All known

gases can be converted into liquids by a sufficient reduction of

temperature or increase of pressure, or both.
; some, however,

with great difficulty, such as atmospheric air, oxygen, hydro-

gen, nitrogen, etc., these having been but recently (1878) re-

duced to the liquid form. A vapor is a gas near the point of

liquefaction, and does not show that regularity of behavior

under changes of temperature and pressure characteristic of a

gas when at a temperature much above the point of liquefac-

tion. All gases treated in this chapter (except steam) are sup-

posed in a condition far removed from this stage. The fol-

lowing will illustrate the properties of vapors. See Fig. 520.

Let a quantity of liquid, say water, be intro- THrRM .

duced into a closed space, previously vacuous,

of considerably larger volume than the water,

and furnished with a manometer and ther-

mometer. Vapor of water immediately be-

gins to form in the space above the liquid, and

continues to do so until its pressure attains a

definite value dependent on the temperature,

and not on the ratio of the volume of the vessel and the origi-

nal volume of water
; e.g., if the temperature is 70 Fahren-

heit, the vapor ceases to form when the tension reaches a value

of 0.36 Ibs. per sq. inch. If heat be gradually applied to raise

the temperature, more vapor will form (with ebullition
; i.e.,

from the body of the liquid, unless the heat is applied very

slowly), but the tension will not rise above a fixed value for
each temperature (independent of size of vessel) so long as

there is any liquid left. Some of these corresponding values,

for water, are as follows : For a

Fahr. temp. = 70 100 150 212 220 287 300

= '36 '93 3 '69 14<T 17 '2 55 ' 67'2

= one atm.

At any such stage the vapor is said to be saturated.
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Finally, at some temperature, dependent on the ratio of the

original volume of water to that of the vessel, all of the water

will have been converted into vapor (i.e., steam); and if the

temperature be still further increased, the tension also increases

and no longer depends on the temperature alone, but also on

the heaviness of the vapor when the water disappeared. The

vapor is now said to be superheated, and conforms more in its

properties to perfect gases.

470. Critical Temperature. From certain experiments there

seems to be reason to believe that at a certain temperature^
called the critical temperature, different for different liquids,

all of the liquid in the vessel (if any remains, and supposing
the vessel strong enough to resist the pressure) is converted

into vapor, whatever be the size of the vessel. That is, above

the critical temperature the substance is necessarily gaseous,

in the most exclusive sense, incapable of liquefaction by pres-

sure alone
;
while below this temperature it is a vapor, and lique-

faction will begin if, by compression in a cylinder and conse-

quent increase of pressure, the tension can be raised to a value

corresponding, for a state of saturation, to the temperature

(in such a table as that just given for water). For example, if

vapor of water at 220 Fahrenheit and tension of 10 Ibs. per

sq. inch (this is superheated steam, since 220 is higher than

the temperature which for saturation corresponds to ^> 10

Ibs. per sq. inch) is compressed slowly (slowly, to avoid change
of temperature) till the tension rises to 17.2 Ibs. per sq. in.,

which (see above table) is the pressure of saturation for a tem-

perature of 220 Fahrenheit for water-vapor, the vapor is satu-

rated, i.e.. liquefaction is ready to begin, and during any fur-

ther slow reduction of volume the pressure remains constant

and some of the vapor is liquefied.

By
"
perfect gases," or gases proper, we may understand,

therefore, those which cannot be liquefied by pressure unac-

companied by great reduction of temperature; i.e., whose
"

critical temperatures" are very low. The critical temperature
of N2O, or nitrous oxide gas, is between 11 and -(- 8 Cen-

tigrade, while that of oxygen is said to be at 118 Centi-
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grade. [See p. 471, vol. 122 of the Journal of the franklin

Institute. For an account of the liquefaction of oxygen, etc.,

see the same periodical, January to June, 1878.]

471, Law of Charles (and of Gay Lussac). The mode of gradu-
ation of the air-thermometer may be expressed in the follow-

ing formula, which holds good (for practical purposes) within

the ordinary limits of experiment for a given mass of any
perfect gas, the tension remaining constant :

y= 7o _j_ 0.0036T V.t = F.(l + .0036ft);..(!)

in which V denotes the volume occupied by the given mass

at freezing-point under the given pressure, V its volume at

any other temperature t Centigrade under the same pressure.

Now, 273 being the reciprocal of .00367, we may write

v_ F (2W-M). ie
y

.

T
(press.) . ,

y'
~~273~"

e
''

T.
~ Tt

'

1 const.
\

' (2>

(see 468
;)
in which T = the absolute temperature of freezing-

point.
= 273 absolute Centigrade, and T the absolute tem-

perature corresponding to t Centigrade. Eq. (2) is also true

when T and T are both expressed in Fahrenheit degrees (from
absolute zero, of course). Accordingly, we may say that, the

pressure remaining the same, the volume of a given mass of

gas varies directly as the absolute temperature.
Since the weight of the given mass of gas is invariable at a

given place on the earth's surface, we may

always use the equation Vy = Vy , ....... (3)

pressure constant or not, and hence (2) may be rewritten

Y T
. const.); . (4)Y ^o

i.e., if the pressure is constant, the heaviness (and therefore
the specific gravity) varies inversely as the absolute tempera-
ture.
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Experiment also shows (468) that if the volume [and there-

fore the heaviness, eq. (3)] remains constant, while the tem-

perature varies, the tension p will change according to the

following relation, in which p = the tension when the tem-

perature is freezing :

(5)

t denoting the Centigrade temperature. Hence transforming,

as before, we have

= \
voL

>
and '

I

p9

"

T '

( heav., const.
(

' (6)

or, the volume and heaviness remaining constant, the tension

of a given mass of gas varies directly as the absolute tempera-
ture. This is called the Law of Charles (or of Gay Lussac).

472. General Formulae for any Change of State of a Perfect Gas.

If any two of the three quantities, viz., volume (or heavi-

ness), tension, and temperature, are changed, the new value of

the third is determinate from those of the other two, according
to a relation proved as follows (remember-

ing that henceforth the absolute temperature

only will be used, T, 468) : Fig. 521.

At A a certain mass of gas at a tension of

^? ,
one atmosphere, and absolute tempera-

ture T (freezing), occupies a volume V .

Let it now be heated to an absolute temp.
= T', without change of tension (expanding

behind a piston, for instance). Its volume will increase to a

value V which from (2) of 471 will satisfy the relation

Fio. 521.

.-
V ~~ T '

' 9 -*<>

(See B in figure.)

Let it now be heated without change of volume to an abso-

lute temperature T (C in figure). Its volume is still V, but
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the tension has risen to a value p, such that, on comparing B
and by eq. (6), we have

*-

Combining (T) and (8), we obtain for any state in which the

tension is z>, volume V, and absolute temperature T, in

(General) . . .
^~ =&*

; or^-
= a constant ; . (9)

or

(General). . . .
^ m = ^n n

, (10)

which, since

(General). . Vy = V,y, = VmYm = Vnyn ,
. . . (11)

is true for any change of state, we may also write

(General) .... -^ = -^-, (12)

or

Pm. Pn~ /-( o\
( }

m-m n-n

These equations (9) to (13), inclusive, hold good for any state

of a mass of any perfect gas (most accurately for air). The

subscript refers to the state of one-atmosphere tension and

freezing-point temperature, m and n to any two states what-

ever (within practical limits) ; y is the heaviness, Y and 409,

and T the absolute temperature, 468.

If p, V, and 7"of equation (9) be treated as variables, and

laid off to scale as co-ordinates parallel to three axes in space,

respectively, the surface so formed of which (9) is the equation
is a hyperbolic paraboloid.

473. Examples. EXAMPLE 1. What cubic space will be

occupied by 2 Ibs. of hydrogen gas at a tension of two atmos-

pheres and a temperature of 27 Centigrade?
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With the inch-lb.-sec. system we have p = 14.7 Ibs. per sq.

inch, y = [.0056
-=- 1728] Ibs.* per cubic inch, and T = 273

absolute Centigrade, when the gas is at freezing-point at one

atmosphere (i.e., in state sub-zero). In the state mentioned in

the problem, we have^? = 2 X 14.7 Ibs. per sq. in.,

T= 273 + 27 = 300 absolute Centigrade,

while y is required. Hence, from eq. (12),

2 X 14.7 14.7

Y 300
~

(.0056 -*- 1728)273
'

/. Y =
'

OQ Ibs. per cub. in. = .0102 Ibs. per cub. foot
;
and if

1728

the total weight, = G, = Vy, is to be 2 Ibs., we have (ft., lb.,

sec.) V = 2 -f- 0102 = 196 cubic ieet.Ans.

EXAMPLE 2. A mass of air originally at 24 Centigrade
and a tension indicated by a barometric column of 40 inches

of mercury has been simultaneously reduced to half its

former volume and heated to 100 Centigrade; required its

tension in this new state, which we call the state n, m being the

original state. Use the inch, lb., sec. We have given, there-

fore, pm = f X 14.7 Ibs. per sq. inch, Tm = 273 + 24 = 297

absolute Centigrade, the ratio

Vm : Vn = 2 : 1, and Tn = 273+ 100 =373 Abs. Cent;

whilepn is the unknown quantity. From eq. (10), hence,

pn = ^.^..pm = 2 Xm . X U.r= 4^21l
' n -*- m

which an ordinary steam-gauge would indicate as

(49.22
-

14.7)
= 34.52 Ibs. per sq. inch.

(That is, if the weather barometer indicated exactly 14.7 Ibs.

per sq. inch.)

* See table on p. 517.
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EXAMPLE 3. A mass of air, Fig. 522, occupies a rigid closed

vessel at a temperature of 15 Centigrade (equal to that of sur-

rounding objects) and a tension

of four atmospheres [state m~\.

J3y opening a stop-cock a few

seconds, thus allowing a portion
of the gas to escape quickly, and

then shutting it, the remainder FIG. 522.

of the air [now in state ri\ is found to have a tension of only
2.5 atmospheres (measured immediately) ;

its temperature can-

not be measured immediately (so much time being necessary

to affect a thermometer), and is less than before. To compute
this temperature, Tn ,

we allow the air now in the vessel to

come again to the same temperature as surrounding objects

(15 Centigrade) ;
find then the tension to be 2.92 atmospheres.

Call the last state, state r (inch, lb., sec.). The problem then

stands thus :

pm =4x14.7
ym = 1

Tm = 288 Abs. Cent.

pn = 2.5 X 14.7

rp _ o j principal
n

1 unknown

j9r = 2.92 X 14.7

yr = 7n (since Fr = Vn)

Tr = Tm = 288 Abs. Cent,

In states n and r the heaviness is the same
;
hence an equa-

tion like (6) of 4:71 is applicable, whence

288= 246 Ab, Cent.

or 27 Centigrade ; considerably lelowfreezing, as a result of

allowing the sudden escape of a portion of the air, and the con-

sequent sudden expansion, and reduction of tension, of the re-

mainder. In this sudden passage from state m to state n, the

remainder altered its heaviness (and its volume in inverse ratio)

in the ratio (see eqs. (11) and (10) of 472)

Yn _ = Pn '^n ='
v*.

' Tn

~

2.5 X 14.7 288

4 X 14.7
'

246

Now the heaviness in state m (see eq. (12), 472) was
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_Prn_ Y.T. _ 4 X 14.7

on 288Yin rri

* m

.0807 273 _ .306

1728
'

14.7
~~

1728

Ibs. per cub. in. = .306 Ibs. per cub. ft.

.-. yn = 0.73 X ym = 0.223 Ibs. per cub. ft.,

and also, since Vm = 0.73 Vn ,
about -gfa of the original quan-

tity of air in vessel has escaped.

[NOTE. By numerous experiments like this, the law of

cooling, when a mass of gas is allowed to expand suddenly (as,

e.g., behind a piston, doing work) has been determined
;
and

vice versa, the law of heating under sudden compression ;
see

487.]

474. The Closed Air-manometer. If a manometer be formed

of a straight tube of glass, of uniform cylindrical bore, which

is partially filled with mercury and then inverted in a cistern

of mercury, a quantity of air having been left between the

mercury and the upper end of the

tube, which is closed, the tension of

this confined air (to be computed
from its observed volume and tem-

perature) must be added to that due

to the mercury column, in order to

obtain the tension^/ to be measured.

See Fig. 523. The advantage of this

kind of instrument is, that to meas-

ure great tensions the tube need not

be very long. Let the temperature
T7

,
of whole instrument, and the tension p, of the air or gas

in the cistern, be known when the mercury in the tube stands

at the same level as that in the cistern. The tension of the

air in the tube must now be j? x also, its temperature Tt ,
and its

volume is V
l
= Fh

l , T^being the sectional area of the bore of

the tube
;
see on left of figure. When the instrument is used,

gas of unknown tension p' is admitted to the cistern, the tem-

perature of the whole instrument being noted (= T\ and the

heights h and h" are observed (h + h" cannot be put = h
l

v\
P"
T''
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unless the cistern is very large), p' is then computed as fol-

lows (eq. (2), 413) :

....... (1)

in which p = the tension of the air in the tube, and ym the

heaviness of mercury. But from eq. (10), 472, putting

7, =^ and V=

*^T'T =JT*...... <2>

Hence finally, from (1) and (2),

p
> = h"Ym+

h

f.^pt...... (3)

Since Tl9 p^^ and A, are fixed constants for each instrument,

we may, from (3), computep
1
for any observed values of h and

T (N.B. T and T
t
are absolute temperatures), and construct

a series of tables each of which shall give values of p' for a

range of values of A, and one special value of T*

EXAMPLE. Supposing the fixed constants of a closed air-

manometer to be (in inch-lb.-sec. system) p^ = 14.7 (or one

atmosphere), T, = 285 Abs. Cent, (i.e., 12 Centigrade), and

Aj = 3' 4" = 40 inches
; required the tension in the cistern

indicated by h" 25 inches and h 15 inches, when the

temperature is 3 Centigrade, or T = 270 Abs. Cent.

For mercury, ym = [848.7 -T- 1728] ( 409) (though strictly

it should be specially computed for the temperature, since it

varies about .00002 of itself for each Centigrade degree).

Hence, eq. (3),

1)8. per sq. inch, or nearly 3 atmospheres [steam-gauge would

read 34.7 Ibs. per sq. in.].

475. Mariotte's Law, (or Boyle's,) Temperature Constant
; Le.,

Isothermal Change. If a mass of gas be compressed, or al-
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lowed to expand, isothermally, i.e., without change of tern*

perature (practically this cannot be done unless the walls of the

vessel are conductors of heat, and then the motion must be

slow), eq. (10) of 472 now becomes (since Tm = Tn)

( MariottJs Law, \ y __ y or^ = E?i m
( Temp, constant

) pn

'

Vm '

i.e., the temperature remaining unchanged, the tensions are

inverselyproportional to the volumes, of a given mass of a

perfect gas ; or, the product ofvolume by tension is a constant

quantity. Again, since Vmym = Vnyn for any change of

state,

j
MariottJs LaW, \ Pm __. Ym Qr Pm _ Pn . /m

\ Temp, constant \ pn

""

yn
9

ym yn
9 ^ '

i.e., the pressures (or tensions are directly proportional to the

(firstpower of the) heavinesses, if the temperature is the same.

This law, which is very closely followed by all the perfect

gases, was discovered by Boyle in England and Mariotte in

France more than two hundred years ago, but of course is only
a particular case of the general formula, for any change of

state, in 472. It may be verified experimen-

tally in several ways. E.g., in Fig. 524, the

tube M being closed at the top, while PN is

open, let mercury be poured in at P until it

reaches the level A'Ef
. The air in OA is now

at a tension of one atmosphere. Let more mer-

cury be slowly poured in at P, until the ail

confined in has been compressed to a volume

,,p ,,-jA*'
OAn = i of OA, and the height B"E" then

A ~
measured

;
it will be found to be 30 inches

; i.e.,

A the tension of the air in is now two atmos-

.M pheres (corresponding to 60 inches of mercury).
FIG. 524.

Again, compress the air in to % its original

volume (when at one atmosphere), i.e., to volume OA'" =z

\OA'> and the mercury height B'"E'" will be 60 inches, show-

ing a tension of three atmospheres in the confined air at (90
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inches of mercury in a barometer). It is understood fhat the

temperature is the same, i.e., that time is given the compressed
air to acquire the temperature of surrounding objects after

being heated by the compression, if sudden.

[NOTE. The law of decrease of steam-pressure in a^steam-

englne cylinder, after the piston has passed the point of " cut-

off
" and the confined steam is expanding, does not materially

differ from Mariotte's law, which is often applied to the case

of expanding steam
;
see 479.]

While Mariotte's law may be considered exact for practical

purposes, it is only approximately true, the amount of the

deviations being different at different temperatures. Thus,
for decreasing temperatures the product Vp of volume by
tension becomes smaller, with most gases.

EXAMPLE 1. If a mass of compressed air expands in a

cylinder behind a piston, having a tension of 60 Ibs. per sq.

inch (45.3 by steam-gauge) at the beginning of the expansion,
which is supposed slow (that the temperature may not fall) ;

then when it has doubled in volume its tension will be only
30 Ibs. per sq. inch

;
when it has tripled in volume its tension

will be only 20 Ibs. per sq. inch, and so on.

EXAMPLE 2. Diving-bell. Fig. 525. If the cylindrical

diving-bell AB is 10 ft. in height, in what

depth, h = ?, of salt water, can it be let down
to the bottom, without allowing the water to

rise in the bell more than a distance a = 4 ft. ?

Call the horizontal sectional area, F. The
mass of air in the bell is constant, at a constant

temperature. First, algebraically ; at the

surface this mass of air occupied a volume

Vm = Fh" at a tension pm = 14.7 X 144 Ibs.

per sq. ft., while at the depth mentioned it is

compressed to a volume Vn = F(ji" a\ and

is at a tensionpn =pm -\- (h a)yW9 in which

yw = heaviness of salt water. Hence, from

'h=
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hence, numerically, (ft., lb., sec.,)

476. Mixture of Gases. It is sometimes stated that if a vessel

is occupied by a mixture of gases (between which there is no

chemical action), the tension of the mixture is equal to the sum

of the pressures of each of the component gases present ; or,

more definitely, is equal to the sum of the pressures which the

separate masses of gas would exert on the vessel if each in turn

occupied it alone at the same temperature.

This is a direct consequence of Mariotte's law, and may be

demonstrated as follows :

Let the actual tension be j?, and the capacity of the vessel V.

Also let V
l , "P, , etc., be the volumes actually occupied by the

separate masses of gas, so that

F, + F,+ ...= F; ..... (1)

and pl9 j9a , etc., the pressures they would individually exert

when occupying the volume V alone at the same tempera-
ture. Then, by Mariotte's law,

etc.; ... (2)

whence, by addition, we have

i.e., p=p l+p9+ ........ (3)

Of course, the same statement applies to any number of

separate parts into which we may imagine a mass of homo-

geneous gas to be divided.

For numerical examples and practical questions in the solu-

tion of which this principle is useful, see p. 239, etc., Ean-

kine's Steam-engine. (Rankine uses 0.365, where 0.36T has

been used here.)
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477, Barometric Levelling. By measuring with a barometer

the tension of the atmosphere at two different levels, simul-

taneously, and on a still day, the two localities not being widely

separated horizontally, we may compute their vertical distance

apart if the temperature of the stratum of air between them

is known, being the same, or nearly so, at both m
stations. Since the heaviness of the air is

different in different layers of the vertical
.;

column between the two elevations ^Vand J/, :

Fig. 526, we cannot immediately regard the
'

whole of such a column as a free body (as was

done with a liquid, 412), but must consider f
h:

a horizontal thin lamina, Z, of thickness

= dz and at a distance = z (variable) below

M, the level of the upper station, N being
the lower level at a distance, A, from J/.

The tension, p, must increase from M
downwards, since the lower laminae have to support a greater

weight than the upper ;
and the heaviness y must also increase,

proportionally toj9, since we assume that all parts of the col-

umn are at the same temperature, thus being able to apply
Mariotte's law. Let the tension and heaviness of the air at

the upper base of the elementary lamina, Z, be p and y re-

spectively. At the lower base, a distance dz below the upper,
the tension isp + dp. Let the area of the base of lamina be

F\ then the vertical forces acting on the lamina are Fp^ down-

ward
;

its weight yFdz downward
;
and F(p + dp) upward.

For its equilibrium ^(vert. compons.) must =
;

.-. F(p + dp) Fp Fydz ;

i.e., dp = ydz, (1)

which contains three variables. But from Mariotte's law,

4T5, eq. (2), if pn and yn refer to the air at N, we may

substitute y = ?-^p and obtain, after dividing by p, to separate

the variables^ and 0,
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Summing equations like (2), one for each lamina between

M (wherep =pm and 2 = 0) and N (wherep =pn &nd.2 = h\
we have

Yn

which gives A, the difference of level, or altitude, between M.
and N) in terms of the observed tensions pn andpm ,

and of yn ,

the heaviness of the air at JV, which may be computed from

eq. (12), 472, substituting from which we have finally

in which the subscript refers to freezing-point and one at-

mosphere tension
;
Tn and T are absolute temperatures. For

the ratiopn : pm we may put the equal ratio hn : hm of the

actual barometric heights which measure the tensions. The

log. e (or Naperian, or natural, or hyperbolic, log.)
= (common

log. to base 10) X 2.30258. From 409, y of air = 0.08076

Ibs. per cub. ft., andj? = 14.701 Ibs. per sq. inch
;
T

Q
= 273

Abs. Cent.

If the temperatures of the two stations (both in the shade)

are not equal, a mean temp. = ^(Tm-\- Tn ) may be used for

Tn in eq. (4), for approximate results. Eq. (4) may then be

written

h (in feet)
=
26213^. log. . f^l ... (5)

*i LPm_\

The quantity
^ = 26213 ft., just substituted, is called the

Ko

height of the homogeneous atmosphere, i.e., the ideal height

which the atmosphere would have, if incompressible and non-
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expansive like a liquid, in order to exert a pressure of 14.701

Ibs. per sq. inch upon its base, being throughout of a constant

heaviness = .08076 Ibs. per cub. foot.

By inversion of eq. (4) we may also write

_

'*

(6)

where e = 2.71828 = the Naperian Base, which is to be raised
/77

to the power whose index is the abstract number .
-

. h,
Po J-n

and the result multiplied by j?OT to obtain pn .

EXAMPLE. Having observed as follows (simultaneously) :

At lower station N, hn = 30.05 in. mercury ; temp. = 77.6 F.
;

"
upper

" M, hm = 23.66 " " = 70.4 F.
;

required the altitude h. From these figures we have a mean

absolute temperature of 460 + (77.6 + 70.4) = 534 Abs.

Fahr.
; hence, from (5),

h = 26213 X f X 2.30258 X log. 10
= 6787.9 ft.

(Mt. Guanaxuato, in Mexico, by Baron von Humboldt.)

Strictly, we should take into account the latitude of the place,

since y varies with g (see 76), and also the decrease in the

intensity of gravitation as we proceed farther from the earth's

centre, for the mercury in the barometer weighs less per cubic

inch at the upper station than at the lower.

Tables for use in barometric levelling can be found in Traut-

wine's Pocket-book, and in Searles's Field-book for Railroad

Engineers, as also tables of boiling-points of water under dif-

ferent atmospheric pressures, forming the basis of another

method of determining heights.

478. Adiabatic Change Poisson's Law. By an adidbatio

change of state, on the part of a gas, is meant a compression
or expansion in which work is done upon the gas (in compress-

V--
OF THE

UNIVERSITY
Of

C.JI IV.^Mfeltlk
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ing it) or ~by the gas (in expanding against a resistance) when
there is no transmission of heat between the gas and enclosing

vessel, or surrounding objects, by conduction or radiation.

This occurs when the volume changes in a vessel of non-con-

ducting material, or when the compression or expansion takes

place so quickly that there is no time for transmission of heat

to or from the gas.

The experimental facts are, that if a mass of gas in a cylinder

be suddenly compressed to a smaller volume its temperature is

raised, and its tension increased more than the change of vol-

ume would call for by Mariotte's law
;
and vice versa, if a gas

at high tension is allowed to expand in a cylinder and drive a

piston against a resistance, its temperature falls, and its tension

diminishes more rapidly than by Mariotte's law.

Again (see Example 3, 473), if -gfa of the gas in a rigid

vessel, originally at 4 atmos. tension and temperature of

15 Cent., is allowed to escape suddenly through a stop-cock

into the outer air, the remainder, while increasing its volume

in the ratio 100 : 73, is found to have cooled to 27 Cent.,

and its tension to have fallen to 2.5 atmospheres ; whereas, by
Mariotte's law, if the temperature had been kept at 288 Abs.

Cent., the tension would have been lowered to y
7^ of 4, i.e.,

to 2.92 atmospheres only.

The reason for this cooling during sudden expansion is, ac-

cording to the Kinetic Theory of Gases, that since the " sensi-

ble heat" (i.e., that perceived by the thermometer), or "
fiat-

ness" of a gas depends on the velocity of its incessantly moving

molecules, and that each molecule after impact with a receding

piston has a less velocity than before, the temperature neces-

sarily falls
;
and vice versa, when an advancing piston com-

presses the gas into a smaller volume.

If, however, a mass of gas expands without doing work, as

when, in a vessel of two chambers, one a vacuum, the other

full of gas, communication is opened between them, and the

gas allowed to fill both chambers, no cooling is noted in the

mass as a whole (though parts may have been cooled tem-

porarily).

By experiments similar to that in Example 3, 473, it has
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been found that for air and the "
perfect gases," in an adiabatic

change of volume [and therefore of heaviness], the tension

varies inversely with the 1.41th power of the volume. This

is called Poissorfs Law. For ordinary ^purposes (as Weisbach

suggests) we may use f instead of 1.41, and hence write

Adiabat. \ Pm _ (Y*tf or pm
Change] K W'

' S
and combining this relation with the general eqs. (10) and (13),

472, we have also

Adiabat. Pm _ I ^mY /o\

pn

"
I Tj '

i.e., the tension varies directly as the cube of the absolute tem-

perature; also,

Adiabat.
I lZA-(Tn

Change} \Vj-\T

i.e., the volume is inversely, and the heaviness directly, as the

square of the absolute temperature.
Here in and n refer to any two adiabatically related states.

Tis the absolute temperature.
EXAMPLE 1. Air in a cylinder at 20 Cent, is suddenly

compressed to ^ its original volume (and therefore is six times

as dense, i.e., has six times the heaviness, as before). To what

temperature is it heated ? Let m be the initial state, and n the

final. From eq. (3) we have

= A ;
.-. Tn = 718 Abs. Cent,

293 V 1

or nearly double the absolute temperature of boiling water.

EXAMPLE 2. After the air in Example 1 has been given
time to cool again to 20 Cent, (temperature of surrounding
obiects) it is allowed to resume, suddenly, its first volume, i.e.,

* That is, for cases where the larger tension is not greater than four to

six times the smaller.
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to increase its volume sixfold by expanding behind a piston,

To what temperature has it cooled ? Here Tm 293 Abs.

Cent., the ratio Vm : Vn = ,
and Tn is required. Hence,

from (3),

=
;

.-. Tn = 293 - V^ 119.5 Abs. Cent.,

or = 154 Cent., indicating extreme cold.

From these two examples the principle of one kind of ioe-

making apparatus is very evident. As to the work necessary

to compress the air in Example 1, see 483. It is also evident

why motors using compressed air expansively have to encoun-

ter the difficulty of frozen watery vapor (present in the air to

some extent).

EXAMPLE 3. What is the tension of the air in Example 1

(suddenly compressed to % ^ts original volume) immediately

after the compression, if the original tension was one atmos-

phere? That is, with Vn : Vm = 1 : 6, and^?m = 14.7 Ibs. per

sq. inch, pn = ? From eq. (1), (in., lb., sec.,)

pn = 14.T X 6 = 14.7 26 = 216

Ibs. per sq. inch
; whereas, if, after compression and without

change of volume, it cools again to 20 Cent., the tension is

only 14.7 X 6 = 88.2 Ibs. per sq. inch (now using Mariotte's

law).

479. Work of Expanding Steam following Mariotte's Law,*

Although gases do not in general follow Mariotte's law in ex-

panding behind a piston (without special provision for sup-

plying heat), it is found that the tension of saturated steam

(i.e., saturated at the beginning of the expansion) in a steau*

engine cylinder, when left to expand after the piston has

passed the point of "
cut-off" diminishes very nearly in

accordance with Mariotte's law, which may therefore be ap-

plied in this case to find the work done per stroke, and thence

the power. In Fig. 527 a horizontal steam-cylinder iff
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shown in which the piston is making its left-to-right stroke.

The " back-pressure" is con-

stant and Fq, F being the

area of the piston and y the

intensity (i.e., per unit area)

of the back or exhaust pres-

sure on the right side of the

piston ;
while the forward

pressure on the left face of the

piston = Fp, in which ^? is the

steam-pressure per unit area,

and is different at different

points of the stroke. While the

piston is passing from O" to

D",p is constant, being =pb = the boiler-pressure, since the

steam-port is still open. Between D" and C", however, the

steam being cut off (i.e., the steam-port is closed) at D", a dis-

tance a from 0"
,p decreases with Mariotte's law (nearly), and

its value is (Fa -r- Fx)pb at any point on C"D"
,
x being the

distance of the point from On
'.

Above the cylinder, conceive to be drawn a diagram in

which an axis OX\&
\\

to the cylinder-axis, OY an axis 1 to

fche same, while is vertically above the left-hand end of the

cylinder. As the piston moves, let the value of p correspond-

ing to each of its positions be laid off, to scale, in the vertical

immediately above the piston, as an ordinate from the axis X.
Make OD' = q by the same scale, and draw the horizontal

D 'C '. Then the effective work done on the piston-rod while

it moves through any small distance dx is

dW = force X distance = F(p

and is proportional to the area of the strip RS, whose width is

rfa? and length =j> #; so that the effective work of one
stroke is
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and is represented graphically by the area A'ARBC'D'A'*
From 0" to D" p is constant and pb (while q is constant at

all points), and x varies from to a
;

which may be called the work of entrance
,
and is represented

by the area of the rectangle A'ADD' .

From D" to G"p is variable and, by Mariotte's law, = pb ;

ie.,

:s the work of expansion, adding which to that of entrance,

we have for the total effective work of one stroke

By effective work we mean that done upon the piston-rod

and thus transmitted to outside machinery. Suppose the

engine to be "
double-acting" ;

then at the end of the stroke a

communication is made, by motion of the proper valves, be-

tween the space on the left of the piston and the condenser of

the engine ;
and also between the right of the piston and the

boiler (that to the condenser now being closed). On the return

stroke, therefore, the conditions are the same as in the forward

stroke, except that the two sides of the piston have changed

places as regards the pressures acting on them, and thus the

same amount of effective work is done as before.

If n revolutions of the fly-wheel are made per unit of time

(two strokes to each revolution), the effective work done per
unit of time, i.e., thepower of the engine, is

L= 2/iW= 27i^^l + log..
-
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For simplicity the above theory has omitted the considera-

tion of " clearance" that is, the fact that at the point of " cut-

off
" the mass of steam which is to expand occupies not only

the cylindrical volume Fa, but also the " clearance" or small

space in the steam-passages between the valve and the entrance

of the cylinder, the space between piston and valve which is

never encroached upon by the piston.
"
Wire-drawing" has

also been disregarded, i.e., the fact that during communication

with the boiler the steam-pressure on the piston is a little less

than boiler-pressure. For these the student should consult

special works, and also for the consideration of water mixed

with the steam, etc. Again, a strict analysis should take into

account the difference in the areas which receive fluid-pressure

on the two sides of the piston.

EXAMPLE 1. A reciprocating steam-engine makes 120 revo-

lutions per minute, the boilerpressure is 40 Ibs. by the gauge

(i.e., j?&
= 40 + 14.7 = 54.7 Ibs. per sq. Inch), the piston area

is F= 120 sq. in., the length of stroke I = 16 in., the steam

being "cut off" at J stroke
(.*.

a = 4 in., and I : a = 4.00),

and the exhaust pressure corresponds to a "vacuum of 25

inches" (by which is meant that the pressure of the exhaust

steam will balance 5 inches of mercury), whence q = -f$ of

14.7 = 2.45 Ibs. per sq. inch. Eepired the work per stroke,

W
9
and the corresponding power Z.

Since I : a = 4, we have log., 4 = 2.302 X .60206 = 1.386,

and from eq. (4), (foot, lb., see ,)

W=m (54.7 X 144) . . [2.386]
-

tf% (2.45 X 144) . f

= 5165.86 392.0 = 4773.868 ft. Ibs. of work per stroke,
and therefore the power at 2 rev. per sec. (eq. 5) is

L = 2 X 2 X 4773.87 = 19095.5 ft. Ibs. per second.

Hence in horse-powers, which, in ft.,-lb.-sec. system, =Z-r-55fy

Power = 19095.5 -f- 550 = 34.7 H. P.

EXAMPLE 2. Required the weight of steam consumed per
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second by the above engine with given data; assuming with

Weisbach that the heaviness of saturated steam at a definite

pressure (and a corresponding temperature, 469) is about
|-
of

that of air at the same pressure and temperature.

The heaviness of air at 54.7 Ibs. per sq. in. tension and

temperature 287 Fahr. (see table, 469) would be, from eq-

(12) of 472 (see also 409),

-y.y. P = .0807X492 54.7

T > 460 + 287 '14,7"

Ibs. per cub. foot, f of which is 0.1237 Ibs. per cub. ft. Now
the volume* of steam, of this heaviness, admitted from the

boiler at each stroke is V Fa = |ff . % 0.2777 cub.
ft.,

and therefore the weight of steam used per second is

4 X .2777 X 0.1237 = 0.1374 Ibs.

Hence, per hour, 0.1374 X 3600 = 494.6 Ibs. of feed-water

tire needed for the boiler.

If, with this same engine, the steam is used at full boiler

pressure throughout the whole stroke, the power will be

greater, viz. = %nFl(pb q) 33440 ft. Ibs. per sec., but

the consumption* of steam will be four times as great; and

hence in economy of operation it will be only 0.44 as efficient

(nearly).

480. Graphic Representation of any Change of State of a Con-

fined Mass of Gas. The curve of expansion AB in Fig. 527 is

an equilateral hyperbola, the axes JTand Y being its asymp-
totes. If compressed air were used instead of steam its ex-

pansion curve would also be an equilateral hyperbola if its

temperature could be kept from falling during the expansion

(by injecting hot-water spray, e.g.), and then, following
Mariotte's law, we would have, as for steam, ( 475,)^? V= con-

stant, i&.,pFx = constant, and therefore px = constant, which

is the equation of a hyperbola, p being the ordinate and x the

abscissa. This curve (dealing with a perfect gas) is also called

an isothermal, the x and y co-ordinates of its points being pro-

* We here neglect the practical fact that a portion of the fresh steam

entering the cylinder is condensed prematurely, so that the actual con-

sumption is somewhat greater than as here derived.
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portional to the volume and tension, respectively, of a mass of

air (or perfect gas) whose temperature is maintained constant.

Hence, in general, if a mass of gas be confined in a rigid

cylinder of cross-sec-

tionF (area), provided
with an air-tight pis-

ton, Fig. 528, its vol-

ume, Fx, is propor-
tional to the distance

OD - x (of the piston

from the closed end of

the cylinder) taken as

an abscissa, while its o

tension p at the same

instant may be laid off

as an ordinate from D.
Thus a point A is fixed. Describe an equilateral hyperbola

through A, asymptotic to X and Y, and mark it with the ob-

served temperature (absolute) of the air at this instant. In a

similar way the diagram can be filled up with a great number

of equilateral hyperbolas, or isothermal curves, each for its

own temperature. Any point whatever
(i.e., above the critical

temperature) in the plane angular space YOX will indicate by
its co-ordinates a volume and a tension, while the correspond

ing absolute temperature T will be shown by the hyperbola

passing through the point, since these three variables always

satisfy the relation ( 472)

. . . (1)'

FIG 528.

Any change of state of the gas in the cylinder may now be

represented by a line in the diagram connecting the two points

corresponding to its initial and final states. Thus, a point

moving along the line AB, a portion of the isothermal marked

293 Abs. Cent., represents a motion of the piston from D to

E, and a consequent increase of volume, accompanied by just

sufficient absorption of heat by the gas (from other bodies) to

maintain its temperature at that figure (viz., its temperature at
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A). If- the piston move from D to E, without transmission

of heat, i.e., adiabatically ( 478), the tension falls more

rapidly, and a point moving along the line AB 1

represents the

corresponding continuous change of state. AB' is a portion
of an adiabatic curve, whose equation, from 478, is

= const
5

in whichpK and XK refer to the point K where this particular
adiabatic curve cuts the isothermal of freezing-point. Evi-

dently an adiabatic may be passed through any point of the

diagram. The mass of gas in the cylinder may change its

state from A to B' by an infinite number of routes, or lines on
the diagram, the adiabatic route, however, being that most likely
to occur for a rapid motion of the piston. For example, we

may cool it without allowing the piston to move (and hence

without altering its volume nor the abscissa x) until the pres-
sure falls to a valuepB > = DL = EB f

, and this change is rep-
resented by the vertical path from A to L

;
and then allow it

to expand, and push the piston from D to E (i.e., do external

work), during which expansion heat is to be supplied at just
such a rate as to keep the tension constant, =%>& =pL ,

this

latter change corresponding to the horizontal path LB' from
L to B'.

It is further noticeable that the work done by the expanding

gas upon the nearface of the piston (or done upon the gas when

compressed) when the space dx is described by the piston, is

= Fpdx, and therefore is proportional to the area pdx of the

small vertical strip lying between the axis X and the line or

route showing the change of state
;
whence the total work done

on the near piston-face, being Ffpdx, is represented by the

area fpdx of the plane figure between the initial and final

ordinates, the axis X and the particular route followed be-

tween the initial and final states (N.B. We take no account

here of the pressure on the other side of the piston, the latter

depending on the style of engine). For example, the work
done on the near face of the piston during adiabatic expansion
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from D to E is represented by the plane figure AB'EDA^
and is measured by its area.

The mathematical relations between the quantities of heat

imparted or rejected by conduction and radiation, and trans-

formed into work, in the various changes of which the con-

fined gas is capable, belong to the subject of Thermodynamics^
which cannot be entered upon here.

It is now evident how the cycle of changes which a definite

mass of air or gas experiences when used in a hot-air engine,

compressed-air engine, or air-compressor, is rendered more in-

telligible by the aid of such a diagram as Fig. 528
;
but it

must be remembered that during the entrance into, or exit

from, the cylinder, of the mass of gas used in one stroke, the

distance x does not represent its volume, and hence the locus

of the points in the diagram determined by the co-ordinates^?

and x during entrance and exit does not indicate changes of

state in the way just explained for the mass when confined in

the cylinder. However, the work done by or upon the gas

during entrance and exit will still be represented by the plane

figure included by that locus (usually a straight horizontal

line, pressure constant) and the axis of JT and the terminal

ordinates.

481. Adiabatic Expansion in an Engine using Compressed Air.

Fig. 529. Let the compressed air at a tension pm and an

absolute temperature Tm be supplied
from a reservoir (in which the loss is

continually made good by an air-com-

pressor). Neglecting the resistance of

the port, its tension and temperature
when behind the piston are still pm and

Tm . Let xn = length of stroke, and Q 1 1 !

j

Jet the cut-off (or closing of communi-

cation with the reservoir) be made at

eome point D where x = xm ,
the posi-

tion ofD being so chosen (i.e., the ratio

: xn so computed) that after adia-x
FIG. 529.

batic expansion from D to E the pres-

sure shall have fallen from pm atM (state in) to a value pn = pa
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= one atmosphere at N(state ri),
at the end of stroke

;
so that

when the piston returns the air will be expelled (
ki exhausted ")

at a tension equal to that of the external atmosphere (though
at a low temperature). Hence the back-pressure at all points

either way will be pn per unit area of piston, and hence the

total back-pressure = Fpn ,
F being the piston area.

From to D the forward pressure is constant and = Fpmy
and the effective work, therefore, or work on piston-rod from

to D, is

V= F\_pm P^Xm ,
. . (1)

represented by the rectangle M'MLN'. The cut-off being
made at Z>, the volume of gas now in the cylinder, viz.,

Vm = Fxm ,
is left to expand. Assuming no device adopted

(such as injecting hot-water spray) for preventing the cooling

and rapid decrease of tension during expansion, the latter is

adidbatic, and hence the tension at any point P between M
and N will be

. . [see 478; V=Fx\; . . (a)
oc i

. Work of expansion

=
FJ^pdx

- Fpn(xn - #w), (2)

and is represented by the area MPNL.

But pdx=p^x-*fa= -
S^ipl)*- (1)*]

;

-Q*].
. . (3)

Now substitute (3) in (2) and then add (2) to (1), noting that
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- Fpn(xn
-

aw) =

which furthermore, since n and m are adiabatically related

[see (a)], can be reduced to

and we have finally :

Total work onpiston-) m- nw |~1 ^V~I
rod per stroke f=

T = 3^^-
[

"W J'

But ,?fem = Fm ,
and the adiabatic relation holds good,

therefore we may also write

in which Vm = the volume which the mass of air used per
stroke occupies in the state m, i.e., in the reservoir, where the

tension isj?m and the absolute temperature = Tm .

To find the work done perpound of air used (or other unit

of weight), we must divide W by the weight G = Vmym of

the air used per stroke, remembering (eq. (13), 472) that

Work per unit of weight of\_^T p r IP*
\*"|

lir used in adiabatic working j

~ m
y T [_ \pm) Jair

The back-pressurej?n pa = one atmosphere.
In (6) y = .0807 Ibs. per cub. foot, p, = 14.7 Ibs. per sq,

inch, and T -=- ^3 Abs, Cent, or 492 Abs. Fahr.
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It is noticeable in (6) that for given tensionspm and pni the

work per unit of weight of air used is proportional to the ab-

solute temperature Tm of the reservoir. The temperature Tn
to which the air has cooled at the end of the stroke is obtained

as in Example 2, 478, and may be far below freezing-point

unless Tm is very high or the ratio of expansion, xm : xn , large.

EXAMPLE. Let the cylinder of a compressed-air engine have

a section of F =- 108 sq. in. and a stroke xn = 15 inches. The

compressed air entering the cylinder is at a tension of 2 atmos.

(i.e., pm = 29.4 Ibs. per sq. in., and pn -7-pm = ),
and at a

temperature of 27 Cent, (i.e.,
Tm

'

300 Abs. Cent.). Ee-

quired the proper point of cut-off, or xm = ?
,
in order that the

tension may fall to one atmosphere at the end of the stroke
;

also the work per stroke, and the work per pound of air. Use

the foot, pound, and second.

From eq. (a), above, we have

P

and hence the volume of air in state m, used per stroke [eq.

(5)] is

Vm = Fxm = -Hi X 0.7875 = 0.5906 cubic feet;

while the work per stroke is

W= 3 X 0.5906 X 29.4 X 144 X [1
-

(i) ]
= 1545 ft. Ibs.,

and the work obtained from each pound of air, eq. (6),

ft. Ibs. per pound of air used.

The temperature to which the air has cooled at the end of

stroke [eq. (2), 478] is
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Tn = TmA/- = 300 X VT= 300 X .794 = 238 Abe. C. ;

i.e., 35 Centigrade.

482. Remarks on the Preceding, This low temperature is

objectionable, causing, as it does, the formation and gradual
accumulation of snow, from the watery vapor usually found

in small quantities in the air, and the ultimate blocking of the

ports. By giving a high value to Tm , however, i.e., by heat-

ing the reservoir, Tn will be correspondingly higher, and also

the work per pound of air, eq. (6). If the cylinder be encased

in a u
jacket" of hot water, or if spray of hot water be injected

behind the piston during expansion, the temperature may be

maintained nearly constant, in which event Mariotte's law will

hold for the expansion, and more work will be obtained per

pound of air
;
but the point of cut-off must be differently

placed. Thus if, in eq. (4), 479, we make the back-pressure,

which = (Fa -f- Fl)pb , equal to the value to which the air-

pressure has fallen at the end of the stroke by Mariotte's law,

we have

Workper stroke with ) _ 17 -i / 1\_ y i ( ^\ n\
isotherm, expans. j

~~ â >b f*'* \a/~ ^M^^-S? \ar

and hence

Work per unit of weight of air, ) _1
-77

PO i (l\ /9\

with isothermal expansion j

~~ m
y f

' e

\^/*
*

\.)

Applying these equations to the data of the example, we
obtain

Work per unit of weight of air with iso- 1 _ A 69 T7 P*
thermal expansion \

" ' m
y f '

whereas, with adiabatic expansion, work
| _ ~ ~j p.

per unit of weight of air is only )

=

y~T'
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483. Double-acting Air-compressor, with Adiabatic Compres-

sion. This is the converse of 481. In Fig. 530 we have the

piston moving from right to left, compressing a mass of air

which at the beginning of the stroke fills the cylinder. This is

brought about by means of an external

motor (steam-engine or turbine, e.g.)

which exerts a thrust or pull along the

^ piston-rod, enabling it with the help

<< of the atmospheric pressure of the

"T
j

1

fresh supply of air flowing in behind
*

'

^
x

it, to first compress a cylinder-full of

.__ j air to the tension of the compressed
air in the reservoir, and then, the

X-,1

I

'" '''
I I port or valve opening at this stage,

to force or deliver it into the reservoir.

1 Let the temperature and tension of the

cylinder-full of fresh air be THl
and

pni ,
and the tension in the reservoir be pmi . Suppose the

compression adiabatic. As the piston passes from E toward

the left, the air on the left has no escape and is compressed, its

tension and temperature increasing adiabatically until it reaches

a value pmi = that in reservoir, at which instant, the piston

being at some point D, a valve opens and the further progress
of the piston simply transfers the compressed air into the re-

servoir without further increasing its tension. Throughout
the whole stroke the piston-rod has the help of one atmosphere

pressure on the right face, since a new supply of air is entering
on the right to be compressed in its turn on the return stroke.

The work done from EtvD may be called the work of com-

pression that from D to 0, the work of delivery.

[Since, here, dx and dW(or increment of work) have con-

trary signs, we introduce the negative sign as shown.]

/z>

The work of compression = JEF(p pni )dx. . . . (Ic)

r
The worl tf delivery = JDF(pmi pn^dxa . . (Id)
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In these equations only^ and x are variables. In the sum-

mation indicated in (10) p change? 4fek tically ; in (ld)j? ii

constant =pmj as now written.

In the adiabatic compression the air passes from the state n
t

to the state m
l (see N^ and M

l
in figure).

The summations in these equations being of the same form

as those in equations (1) and (2) of 481, but with limits in-

verted, we may write immediately,

Workper stroke = W= 3 Vmipmi |~1 -(^Yl . . (2)
\Pm l

1 -I

ind

Workper unit ofweight 1 = 37* P*
f~i _(_^iV~~| /3\

of air compressed j

~
mi ^T

7
'

L \^>m / J

The value of T
nil ,

at the immediate end of the sudden com-

pression, by eq. (2) of (478), is

The temperature of the reservoir being Tm , as in 481

(usually much less than Tmi ),
the compressed air entering it

cools down gradually to that temperature, Tm , contracting in

volume correspondingly since it remains at the same tension

jpmi
. The mechanical equivalent of this heat is lost.

Let us now inquire what is the efficiency of the combination

of air-compressor and compressed-air engine, the former sup-

plying air for the latter, both working adiabatically, assuming
that no tension is lost by the compressed air in passing along
fche reservoir between, i.e., that^>OTl =^?m . Also assume (s
already implied, in fact) that^?^ =pn = one atmos., and that

the temperature, Tni ,
of the air entering the compressor cyl-

inder is equal to that, Tm ,
of the reservoir and transmission-

pipe.

To do this we need only find the ratio of the amount of

work obtained from one pound (or other unit of weight) in the

eompressed-air engine to the amount spent in compressing onr

of air in the compressor. Calling this ratio 77,
the
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efficiency, and dividing eq. (6) of 481 by eq. (3) of this para-

graph, we have, with substitutions just mentioned,

_ Tm _ Abs. temp, of outerfree air
t_ m _ . ,
t ft

p, of air at end
'

den compression,

Tmi ( Abs. temp, of air at end
'

\ ofsudd

or, substituting from eq. (4), and remembering that T
Ul
= T

we have also

(6)

JS *jsmi

also, since

we may write

_ 7^ __ Ab. tern, air leaving eng. cyl. ,.

Tm Ab. tein. outer free air.

For practical details of the construction and working of

engines and compressors, and the actual efficiency realized, the

student may consult special works, as they lie somewhat be-

yond the scope of the present work.

EXAMPLE 1. In the example of 445, the ratio ofpm topn

was = J-. Hence, if compressed air is supplied to the reser-

voir under above conditions, the efficiency of the system is,

from eq. (6), ij
= V~% = 0.794, about 80 per cent.

z> 1
EXAMPLE 2. If the ratio of the tensions is as small as ^,

Pm 6

the efficiency would be only (-J)*
= 0.55

; i.e., 45 per cent of

the energy spent in the compressor is lost in heat.

EXAMPLE 3. What horse-power is required in a blowing

engine to furnish 10 Ibs. of air per minute at a pressure of

4 atmos., with adiabatic compression, the air being received

by the compressor at one atmosphere tension and 27 Cent.

(ft.-lb.-sec. system). Since 27 C. = 300 Abs. C. = Tn
, ,
we

have, from eq. (4),

Tmi
= 300 ()i = 477 Abs. Cent;

and hence, eq. (3),



HOT-AIK ENGINES. Z.P* C 639

14 7 X 144
The workperpound of air = 3X 477

'

= 50870 ft. Ibs. per pound of air. Hence 10 Ibs. of air will

require 508700 ft. Ibs. of work
;
and if this is done every min-

ute we have the req. H. P. =WW = 15 -4 H - P -

NOTE. If the compression could be made isothermal, an

approximation to which is obtained by injecting a spray of

cold water, we would have, from eqs. (1) and (2) of 482 :

Worker )_ T p , / pmi \ _300 X 14.7 X 144

II. air }

- Tn^T^'\l^J
-

.0807 X 273

= 39950 ft. Ibs. per lb., and the corresponding H. P. = 12.1
;

a saving of about 25 per cent, compared with the former.

The difference was employed in heating the air in the air-com-

pressor with adiabatic compression, and was lost when that

extra heat was dissipated in the reservoir as the air cooled

again. This difference is easily shown graphically by compar-

ing in the same diagram the areas representing the work done

in the two cases.*

484. Hot--air Engines. Since we have seen that the tension

of air and other gases can be increased by heating, if the vol-

ume be kept the same, a mass of air thus treated can after-

wards be allowed to expand in a working cylinder, and thus

become a means of converting heat into work. In Stirling's

hot-air engine a definite confined mass of air is used indefinitely

without loss (except that occasional small supplies are needed

to make up for leakage), and is alternately heated and cooled.

A displacement-plunger, or piston, fitting loosely in a bell-like

chamber, is so connected with the piston of the working-

cylinder and the fly-wheel, that its forward stroke is made
while the other piston waits at the beginning of its stroke.

In this motion the plunger causes the confined air to pass in a

thin sheet over the top and sides of the furnace dome, thus

greatly increasing its tension. The air then expands behind

the working piston with falling tension and temperature, and,

* See Eng. Neics, pp. 234 and 297, Oct. and Nov. 1897, for an account
of a "

four-stage
"
compressor and test of same.
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while that piston pauses at the end of its forward stroke, is

again shifted in position, though without change of volume,

by the return stroke of the plunger, in such a way as to pass

through a coil of pipes in which cold water is flowing. This

reduces both its temperature and tension, and hence its resist-

ance to the piston on the return stroke is at first less than at-

mospheric, but is gradually increased by the compression.

This cycle of changes is repeated indefinitely, and is easily

traced on a diagram like that in Fig. 528, and computations
made accordingly.

A special invention of Stirling's is the "
regenerator" or box

filled with numerous sheets of wire gauze, in its passage

through which the working air, after expansion, deposits some

of its heat, which it re-absorbs to some extent when, after

further cooling in the "
refrigerator" or pipe coil and com-

pression by the return stroke of the piston, it is made to pass

backward through the regenerator to be further heated by the

furnace in readiness for a forward stroke. This feature, how-

ever, has not realized all the expectations of its inventor and

improvers, as to economy of heat and fuel.

In Ericsson's hot-air engine, of more recent date, the dis-

placement-plunger fits its cylinder air-tight, but valves can be

opened through its edges when moving in one direction, thus

causing it to act temporarily as a loose plunger, or shifter.

The two pistons move simultaneously in the same direction in

the same cylinder, but through different lengths of stroke, so

that the space between them is alternately enlarged and con-

tracted. The working piston also has valves opening through
it for receiving a fresh supply of air into the space between

the two pistons. During the forward stroke a fresh instal-

ment from the outer air enters through the working piston into

the space between it and the other, whose valves are now
closed and which is now expelling from its further face,

through proper valves, the air used in the preceding stroke
;

no work is done in this stroke. On the return stroke this

fresh supply of air is free to expand behind the now retreating

working piston, while its tension is greatly increased by its

being shifted (at least a large portion of it) over the furnace
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dome through the valves (now open) of the plunger piston, by
the motion of the latter, which now acts as a loose plunger.

The engine is therefore only single-acting, no work being done

in each forward stroke. For further details, see Goodeve's

and Rankine's works on the steam-engine ;
also the article

" Hot-air Engine" in Johnson's Cyclopaedia by Fres. Barnard,

and Rontgen's Thermodynamics.

485. Brayton's Petroleum-engine. Although a more recent

invention than the gas-engines to be mentioned presently, this

motor is more closely related to hot-air engines than the latter.

By a slow combustion of petroleum vapor the gaseous products

of combustion, while under considerable tension, are enabled

to follow up a piston with a sustained pressure, being left to

expand through the latter part of the stroke. Thus we have

the furnace and working cylinder combined in one. The

gradual combustion is accomplished by making use of the

principle of the Davy safety-lamp that flame will not spread

through layers of wire gauze of proper fineness.

486. Gas-engines. We again have the furnace and working"

cylinder in one in a "gas-engine" where illuminating gas and

atmospheric air are introduced into the working cylinder in

proper proportions (about ten parts of air to one of gas, by

weight) to form an explosive mixture of more or less violence and

exploded at a certain point of the stroke, causing a very sudden

rise of temperature and tension, after which the mass expands
behind the piston with falling pressure. On the return stroke

the products of combustion are expelled, and no work done,
these engines being single-acting. In some forms the mixture

is compressed before explosion, since it has been found that

under this treatment a mixture containing a larger proportion
of air to gas can be made to ignite, and that then the resulting

pressure is more gradual and sustained, like that of steam or of

the mixture in the Brayton engine. That is, the effect ia

analogous to that of "
slow-burning powder" in a gun.

In the " Otto Silent Gas-engine" the explosion occurs only

every fourth stroke, and one side of the piston is always open
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to the air. The action on the other side of the piston is as

follows : (1) In the forward stroke a fresh supply of explosive
mixture is drawn into the cylinder at one atmosphere tension.

(2) The next (backward) stroke compresses the mixture into

about one fourth of its original bulk, this operation occurring
at the expense of the kinetic energy of the fly-wheel. (3) The

mixture is ignited, the pressure rises to 8 or 10 atmospheres,

and work is done on the piston through the next (forward)

stroke, the tension of the products of combustion having
fallen to about two atmospheres at the end of the stroke.

(4) In the next (backward) stroke the products of combus-

tion are expelled and no work is done.

The Atkinson "Cycle Gas-engine," an English invention of

recent date (see the London Engineer for May 1887
; pp. 361

and 380) also makes an explosion every fourth stroke, but the

link work connecting the piston and fly-wheel is of such de-

sign that the latter makes but one revolution during the four

strokes. Also the length of the expansion or working stroke

is greater than that of the compression stroke and the products
of combustion are completely expelled. Consequently the effi-

ciency of this motor is at present greater than that of any other

gas-engine.* See 487.

One of the most simple gas-engines is made by the Economic

Motor Company of New York. The piston has no packing,

being a long plunger ground to fit the cylinder accurately and

kept well lubricated. As with most gas-engines the cylinder is

encased in a water-jacket to prevent excessive heating of the

working parts and consequent decomposition of the lubricant.

For further details on these motors, see Rankine's " Steam-

engine," Clark's "Gas-engines" in Yan BTostrand's Science

Series, and article
"
Gas-engine" in Johnson's Cyclopaedia ;

also

Prof. Thurston's report on Mechanical Engineering at the

Vienna Exhibition of 1873, and proceedings of the "Society
of Engineers" (England) for 1881.

487. Efficiency of Heat-engines. According to the mechan-

ical theory of heat, the combustion of one pound of coal, pro-
* Later : The Diesel petroleum-engine (practically a gas-engine) greatly

exceeds the Atkinson engine in performance (see Engineering News,
Mar. 1898, p. 172, and Dec. 1898, p. 422), a heat efficiency of 35 per cent

having been attained (in the cylinder ; 25 on the brake).
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ducing, as it does, about 14,000 heat-units (British Thermal
units

;
see 149, Mechanics) should furnish

14,000 X 772 = 10,808,000 ft. Ibs. of work,

if entirely converted into work. Let us see how nearly this is

accomplished in the performance of the most recent and

economical marine engines of the present day, viz., the triple

expansion engines of some Atlantic steamers, which are claimed

to have consumed per hour only 1.25 Ibs. of coal for each

measured
(
u indicated ") horse-power of effective work done in

their cylinders. The work-equivalent of 1.25 Ibs. of coal per
hour is

1.25 X 14,000 X 772 = 13,510,000 ft. Ibs. per hour;

while the actual work per hour implied in " one H. P. per
hour" is

33000 X 60 = 1,980,000 ft. Ibs. per hour.

That is, the engines utilize only one seventh of the heat of com-

bustion of the fuel.

According to Prof. Thurston, this is a rather extravagant
claim (1.25), the actual consumption having probably been 1.4

Ibs. of coal per H. P. per hour.

The ordinary compound marine engine is stated to use as

little as 2.00 Ibs. per hour for each H. P.

Most of the heat not utilized is dissipated in the condenser.

Similarly, the water jacket, a necessary evil in the operation

of the gas-engine, is a source of great loss of heat and work.

Still, Mr. Wm. Anderson in his recent work,
" Conversion of

Heat into Work" (London, 1887), mentions a motor of this

class as having converted into work
-J-

of the heat of combus-

tion [an Otto " Silent Gas-engine," tested at the Stevens

Institute, Hoboken, N". J., in 1883] ;
while Prof. Unwin found

the Atkinson engine (see last paragraph) capable of returning

(in the cylinder) fully \ of the heat-equivalent of the gas con-

sumed. [This latter result was confirmed in Philadelphia in

Jan. 1889 by Prof. Barr, under direction of Prof. Thurston.]
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488. Duty of Pumping-engines. Another way (often used

in speaking of the performance of pumping-enginesj of ex-

pressing the degree of economy attained in the use of fuel by
the combined furnace, boiler, and engine is to give the num-

ber of foot-pounds of work obtained from each 100 Ibs. of coal

consumed in the furnace, calling it the "
duty" of the engine.

For example, by a duty of 99,000,000 ft. Ibs. it is meant that

from each pound of coal 990,000 ft. Ibs. of work are obtained.

From this we gather that, since one horse-power consists of

33,000 X 60 = 1,980,000 ft. Ibs. per hour, the engine men-

tioned must use each hour

1,980,000 -r- 990,000 = 2 Ibs. of coal for each H. P. developed ;

which is as low a figure as that attained by the marine engines
last quoted.*

489. Buoyant Effort of the Atmosphere. In the case of a

body of large bulk but of small specific gravity the buoyant
effort of the air (due to the same cause as that of water, see

456) becomes quite appreciable, and may sometimes be

greater than the weight of the body. This buoyant effort is

equal to the weight of air displaced, i.e.,
= Vy, where V is

the volume of air displaced, and y its heaviness.

If G
l

total weight of the body producing the displace-

ment, the resultant vertical force is

p=G
l

- VY, ....... (i)

and for equilibrium, or suspension in the air, we must have

P = 0, i.e.,

G,= Vy (2)

We may therefore find approximately the elevation where

a given balloon will cease to ascend, by determining the heavi-

ness y of the air at that elevation from eq. (2) ; then, know-

ing approximately the temperature of the air at that elevation,

we may compute its tension p [eq. (13), 472], and finally,

from eqs. (3), (4), or (5) of 477, obtain the altitude required.
EXAMPLE. The car and other solid parts of a balloon weigh
* The duty of the engine (as distinct from that of the furnace and boiler)

lias recently been defined to be the number of foot-pounds of work rendered

by the engine for each million heat-units in the steam furnished to it. (Kent.)
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400 Ibs., and the bag contains 12,000 cub. feet of illuminating

gas weighing 0.030 Ib. per cub. foot at a tension of one at-

mosphere and temperature of 15 Cent., so that its total

weight =12,000 X 0.030 = 360 Ibs.

Hence G-
1
= T60 Ibs. We may also write with sufficient

accuracy : Whole volume of displacement = F= 12,000 cub. ft.

As the balloon ascends the exterior pressure diminishes, and

the confined gas tends to expand and so in- - M--Or ________ -* m
crease the volume of displacement "P"; but .''.'.';';.'. j

v *

this we shall suppose prevented by the

strength of the envelope. At the surface

of the ground (station n of Fig. 531 ; see

also Fig. 526) let the barometer read 29.6

inches and the temperature be 15 Cent.

Then Tn = 288 Abs. Cent., and the heavi- FIG. 531.

ness of the air at n is

.0807 X 273 *fjf x 14.7

14.7 288~~

"
At the unknown height A, where the balloon is to come to

vest, i.e., at J/", Gl
must = Yy [eq. (2)] ;

therefore

T =nt: = -0633 lbs- per cnb - ft
;

and if the temperature at M be estimated to be 5 Cent, (or

Tm = 278 Abs. Cent.) (on a calm day the temperature de-

creases about 1 Cent, for each 500 ft. of ascent), we shall

- YnT_WU 288
~

pm ~7mTm
~

0633

and hence, from eq. (5), 477, with $(Tm+ Tn) put for Tn ,

h = 26213 X fff X 2.30258 X log.,. 1.206 = 5088 ft.



CHAPTEE YL

HYDRODYNAMICS BEGUN STEADY FLOW OF LIQUIDS
THROUGH PIPES AND ORIFICES.

489a. The subject of Water in Motion presents one of the

most unsatisfactory branches of Applied Mechanics, from a

mathematical stand-point. The internal eddies, cross-currents,

and general intricacy of motion of the particles among each

other, occurring in a pipe transmitting a fluid, are almost en-

tirely defiant of mathematical expression, though the flow of

water through a circular orifice in a thin plate into the air pre-

sents a simpler case, where the conception of " stream lines" is

probably quite close to the truth. In most practical cases we
are forced to adopt as a basis for mathematical investigation

the simple assumption that the particles move side by side in.

such a way that those which at any instant form a lamina

or thin sheet, 1 to the axis of the pipe or orifice, remain

together as a lamina during the further stages of the flow.

This is the Hypothesis of Flow in Plane Layers, or Laminated

Flow. Experiment is then relied on to make good the discre-

pancies between the indications of the formulae resulting from

this theory and the actual results of practice ;
so that the science

of Hydrodynamics is largely one of coefficients determined by

experiment.

490. Experimental Phenomena of a "
Steady Flow." As pre-

liminary to the analysis on which the formulae of this chapter
are based, and to acquire familiarity with the quantities involved,

it will be advantageous to study the phenomena of the appara
tus represented in Fig. 532. A large tank or reservoir _BCi&

connected with another, DE, at a lower level, by means of a

rigid pipe opening under the water-level in each tank. This

646
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pipe has no sharp curves or bends, is of various sectional areas

at different parts, the changes of section being very gradual,

and the highest point N^ not being more than 30 ft. higher
than JSOj the surface-level of the upper tank. Let both tanks

FIG. 532.

be filled with water (or other liquid), which will also rise to If
and to ./Tin the pipe. Stop the ends L and N^ of the pipe,

and through M, a stop-cock in the highest curve, pour in water

to fill the remainder of the pipe ; then, closing M, unstop L
and NI .

If the dimensions are not extreme (and subsequent formulas

will furnish the means of testing such points) the water will

now begin to flow from the upper tank into the lower, and

all parts of the pipe will continue full of water as the flow

goes on.

Further, suppose the upper tank so large that its surface-
level sinks very slowly' or that an influx at A continually
makes good the efflux at E\ then the flow is said to be a Steady
Flow

; or, a state of permanency is said to exist
; i.e., the cir-

cumstances of the flow at each section of the pipe are per-

manent, or steady.
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By measuring the volume, V, of water discharged at E in a

time t,
we obtain the volume offlow per unit of time, viz.,

= T ........ (1)

while the weight offlow per unit of time is

(2)

where y = heaviness ( 7) of the liquid concerned.

Water being incompressible and the pipe rigid, it follows

that the same volume of water per unit of time must be pass-

ing at each cross-section of the pipe. But this is equal to the

volume of a prism of water having F, the area of the section,

as a base, and, as an altitude, the mean velocity = v with which

the liquid particles pass through the section. Hence for any
section we have

,
. (3)

in which the subscripts refer to different sections. If the flow

were unsteady, e.g., if the level BC were sinking, this would

be true for a definite instant of time
;
but when steady, we

see that it is permanently true; e.g.,Fl
v

l
at any instant = JF[vt

at the same or any other instant, subsequent or previous. In

other words, in a steady flow tJie velocity at a given section

remains unchanged with lapse of time.*

[K.B. We here assume for simplicity that the different

particles of water passing simultaneously through a given sec-

tion (i.e., abreast of each other) have equal velocities, viz., the

velocity which all other particles will assume on reaching this

section. Strictly, however, the particles at the sides are some-

what retarded by friction on the surface of the pipe. This as-

sumption is called the Assumption of Parallel Flow, or Flow
in Plane Layers, or Laminated Flow.~\

Let us suppose Q to have been found as already prescribed.

We may then, knowing the internal sectional areas at different

parts of the pipe, N^ N^, etc., compute the velocities

* The flow of water in the drive-pipe of a hydraulic ram is a familiar instance
of an unsteady flow. The water in this pipe is permitted to flow with an
accelerated motion for a short time and then suddenly brought to rest} this

operation being repeated indefinitely.
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v*=Q + Fi, v*=Q + F; etc.,

which the water must have in passing those sections, respec-

tively. It is thus seen that the velocity at any section has no

direct connection with the height or depth of the section from

the plane, BC, of the upper reservoir surface. The fraction

- will be called the height due to the velocity> v, or simply
t/

the velocity-head, for convenience.

Next, as to the value of the internal fluid pressure, p, per
unit-area (in the water itself and against the side or wall of

pipe) at different sections of the pipe. If the end N^ of the

pipe were stopped, the problem would be one in Hydrostatics,

and the pressure against the side of the pipe atN
l (also at N

t

on same level) would be simply

measured by a water column of height

in whichpa = one atmosphere, and b = 34 ft. = height of an

ideal water barometer, and y = 62.5 Ibs. per cubic foot
;
and

this would be shown experimentally by screwing into the side

of the pipe at N
l
a small tube open at both ends

;
the water

would rise in it to the level BC. That is, a column of water

of height = Aj would be sustained in it, which indicates that

the internal pressure at N^ corresponds to an ideal water col'

umn of a height

But when a steady flow is proceeding, the case being now one

of Hydrodynamics, we find the column of water sustained at

rest in the small tube (called an open piezometer) N^S has a

height y l ,
less than A,

,
and hence the internal fluid pressure is
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less than it was when there was no flow. This pressure being

called j9j, the ideal water column measuring it has a height

~ =

at N
l ,

and will be called the pressure-head at the section re-

ferred to. "We also find experimentally that while the flow is

steady the piezometer-height y (and therefore the pressure-

head t>+ y) at any section remains unchanged with lapse of

time, as a characteristic of a steady flow.

[For correct indications, the extremity of the piezometer
should have its edges flush with the inner face of the pipe

wall, where it is inserted.]

At N^ although at the same level as JV, ,
we find, on in-

serting an open piezometer, TF, that with F
3
= F^ (and there-

fore with v3
= v

t) 2/3
is a little less than y l ;

while if F
t < F^

(so that v
9 > 0,), 2/3

is not only less than y l ,
but the dif-

ference is greater than before. We have therefore found

experimentally that, in a general way, when water is flowing
in a pipe it presses less against the side of the pipe than it did

before the flow was permitted, or (what amounts to the same

thing) the pressure between the transverse laminae is less than

the hydrostatic pressure would be.

In the portion HN^O of the pipe we find the pressure less

than one atmosphere, and consequently a manometer register-

ing pressures from zero upward (and not simply the excess

over one atmosphere, like the Bourdon steam-gauge and the

open piezometer just mentioned) must be employed. At N~% ,

e.g., we find the pressure

= i atmos., i.e.,
& = 17 ft.

Even below the level BC, by making the sections quite nar-

row (and consequently the velocities great) the pressure may be

made less than one atmosphere. At the surface .Z?6
Y
the pres-

sure is of course just one atmosphere, while that in the jet at

N^ entering the right-hand tank under water, is necessarily

pt
= 1 atmos. -f- press, due to col. h' of water practically at rest;
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i.e.,
= pressure-head at N^ = b -f- A';

(whereas if N< were stopped by a diaphragm, the pressure-
head just on the right of the diaphragm would be ~b -f- A', and

that on the left ft + A
4 .)

Similarly, when a jet enters the atmosphere in parallel fila-

ments its particles are under a pressure of one atmosphere, i.e.,

their pressure-head = b = 34 ft. (for water) ;
for the air im-

mediately around the jet may be considered as a pipe between

which and the water is exerted a pressure of one atmosphere.

491. Recapitulation and Examples. We have found experi-

mentally, then, that in a steady flow of liquid through a rigid

pipe there is at each section of the pipe a definite velocity and

pressure which all the liquid particles assume on reaching that

section
;
in other words, at each section of the pipe the liquid

velocity and pressure remain constant with progress of time.

EXAMPLE 1. If in Fig. 532, the flow having become steady,

the volume of water flowing in 3 minutes is found on meas-

urement to be 134 cub. feet, the volume per second is, from

eq. (1), 490,

Q = |||. 0.744 cub. ft. per second.

EXAMPLE 2. If the flow in 2 min. 20 sec. is 386.4 Ibs., the

volume of flow per second is [ft., lb., sec.
; eqs. (1) and (2)]

V G 386.4 1
Q = " V * *'-''

"62T
'

140
=

EXAMPLE 3. In Fig. 532 the height of the open piezometer
at N

l
is y l

= 9 feet
;
what is the internal fluid pressure ?

[Use the inch, lb., and sec.] The internal pressure is

p l =pa+ yy = 14.7+ 108 X #& = 18.6 Ibs. per sq. inch.

The pressure on the outside of the pipe is, of course, one at-

mosphere, so that the resultant bursting pressure at that point
is 3.9 Ibs. per sq. in.

EXAMPLE 4. The volume of flow per second being .0441
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cub. ft. per sec., as in Example 1, required the velocity at a

section of the (circular) pipe where the diameter is 2 inches.

[Use ft., lb., and sec.]

O 0.0441 A0 ,

while at another section of the pipe where the diameter is four

inches (double the former) and the sectional area, F, is there-

fore four times as great, the velocity is of 2.02 = 0.505 ft.

per sec.

492. Bernoulli's Theorem for Steady Flow; without Friction.

If the pipe is comparatively short, without sudden bends,

elbows, or abrupt changes of cross-section, the effect of friction

of the liquid particles against the sides of the pipe and against

each other (as when eddies are produced, disturbing the paral-

lelism of flow) is small, and will be neglected in the present

analysis, whose chief object is to establish a formula for steady

flow through a short pipe and through orifices.

An assumption, now to be made, (Aflow in plane layers, or

laminatedflow, i.e., flow in laminae "1 to the axis of the pipe
at every point, may be thus stated : (see Fig. 533, which shows

a steady flow proceeding, through a

pipe CD of indefinite extent.) All the

liquid particles which at any instant

form a small lamina, or sheet, as AB,
~| to axis of pipe, ~keep company as a

lamina throughout the whole flow.

The thickness, ds', of this lamina re-

mains constant so long as the pipe is of constant cross-section,

but shortens up (as at C) on passing through a larger section,

and lengthens out (as at D) in a part of the pipe where the

section is smaller (i.e., the sectional area, F, is smaller). The
mass of such a lamina is Fds'y -f- g [ 55], its velocity at any
section will be called v (pertaining to that point of the pipe's

axis), the pressure of the lamina just behind it is Fp, upon the

rear face, while the resistance (at the same instant) offered by
its neighbor just ahead is F(p -f- dp) on the front face

;
also
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FIG. 534.

its weight is the vertical force Fds'y. Fig. 534 shows, as a

free body, the lamina which at

any instant is passing a point

A of the pipe's axis, where the

velocity is v and pressure p.

Note well the forces acting ;

the pressures of the pipe wall

on the edges of the lamina have

no components in the direction

of v, for the wall is considered

smooth, i.e., those pressures are

1 to wall; in other words, no

friction is considered. To this free body apply eq. (7) of 74,

for any instant of any curvilinear motion of a material point

vdv = (tang, acceleration) X ds, . . . . (1)

in which ds = a small portion of the path, and is described in

the time dt. Now the tang, accel. = ^(tang. compons. of the

acting forces)
~- mass of lamina, i.e.,

Fp F(p 4- dp) + Fyds' cos
tana. ace. = T ,

- (2)

Fyds' -

g

Now, Fig. 535, at a definite instant of time, conceive the

volume of water in the pipe to be subdivided into a great
number of laminae of equal mass (which implies equal volumes

in the case of a liquid, but not with gaseous fluids), and let the

ds just mentioned for any one lamina be the distance from its

centre to that of the one next ahead
;
this mode of subdivision
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makes the ds of any one lamina identical in value with its

thickness ds', i.e.,

ds = ds'........ (3)
We have also

ds cos = dz, or ds' cos = dz
;

. . (4)

z being the height of the centre of a lamina above any con-

venient horizontal datum plane. Substituting from (2), (3),

and (4) in (1), we derive finally

- vdv+ ^-dp + dz = Q. . (5)
g r

'

The flow being steady, and the subdivision into laminae

being of the nature just stated, each lamina in some small time

dt moves into the position which at the beginning of dt was

filled by the lamina next ahead, and acquires the same velocity,

the same pressures on itsfaces, and the same value of z, that

thefront lamina had at the beginning of dt.

Hence, considering the simultaneous advance made by all

the laminae in this same dt, we may write out an equation like

(5) for each of the laminae between any two cross-sections n and

m of the pipe, thus obtaining an infinite number of equations,
from which by adding corresponding terms, i.e., ty integra-

tion, we obtain

whence, performing the integrations and transposing,

Vm \Pm\ _ v*
, Pn , ,

( BernoulWs
\

,~

~fy~~~f~~*
m
-fy~~~^~~*

n '

'( Theorem }' '"W

Denoting by Potential Head the vertical height of any section

of the pipe above a convenient datum level, we may state

Bernoulli's Theorem as follows :

In steady flow without friction, the sum of the velocity-

head, pressure-head, andpotential head at any section of the

pipe is a constant quantity, being equal to the sum of the cor-

responding heads at any other section.
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It is noticeable that in eq. (7) each of the terms is a lineal

quantity, viz., a height, or head, either actual, such as zn and

zm ,
or ideal (all the others), and does not bring into account the

absolute size of the pipe, nor even its relative dimensions (vm

and vn , however, are connected by the equation of continuity
Fmvm Fnvn\ and contains no reference to the volume of

water flowing per unit of time [()] or the shape of. the pipe's

axis. When the pipe is of considerable length compared with

its diameter the friction of the water on the sides of the pipe
cannot be neglected ( 512).

It must be remembered that Bernoulli's Theorem does not

hold unless the flow is steady, i.e., unless each lamina, in com-

ing into the position just vacated by the one next ahead (of

equal mass), comes also into the exact conditions of velocity

and pressure in which the other was when in that position.

[N.B. This theorem can also be proved by applying to all

the water particles between n and m, as a collection of small

rigid bodies (water being incompressible) the theorem of Work
and Energy for a collection of Rigid Bodies in 142, eq. (xvi),

taking the respective paths which they describe simultaneously
in a single dt.~\

493. First Application of Bernoulli's Theorem without Friction.

Fig. 536 shows a large tank from which a vertical pipe of

uniform section leads to another tank and dips below the sur-

face of the water in the latter. Both surfaces are open to the

air. The vessels and pipe being filled with

water, and the lower end m of the pipe un- .'>:":.

stopped, a steady flow is established almost
*~"

immediately, the surface BO being very

large compared with F, the area of the (uni-

form) section of the pipe.

Given F, and the heights A and A, re-

quired the velocity vm of the jet at m and

also the pressure, pnl at n (in pipe near en-

trance of same), m is in the jet, just clear

of the pipe, and practically in the water-

level, AD. The velocity vm is unknown,
FIG. 535.

but the pressurepm is practically =pa = one atmosphere, since
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the pressure on the sides of the jet is necessarily the hydro-

static pressure due to a slight depth below the surface AD.

.-. Press.-head at m is = * = I = 34 feet. . . ( 423)

Now apply Bernoulli's Theorem to sections m and n, taking

a horizontal plane through m as a datum plane for potential

heads, so that zn = h and zm = 0, and we have

But, assuming that the section of the pipe is filled at every

point, we must have

tW=*?

for, in the equation of continuity

if we put Fm = Fn ,
the pipe being of uniform section, we ob-

tain vm = vn . Hence eq. (1) reduces to

= I - h = 34 ft. - h. (2)

Hence the pressure at n is less than one atmosphere, and if a

small tube communicating with an air-tight receiver full of air

were screwed into a small hole at n, the air in

the receiver would gradually be drawn off until

its tension had fallen to a valuepn . [This is the

principle of SprengePs air-pump, mercury, how-

ever, being used instead of water, as for this

heavy liquid b = only 30 inches.]

If h is made > l> for water, i.e. > 34 feet (or

> 30 inches for mercury), pn would be negative
from eq. (2), which is impossible, showing that,

the assumption of full pipe-sections is not borne

out. In this case, h > 5, only a portion, mn\
(in length somewhat less than &,) of the tube will be kept full

%j&
Fia. 537.
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during the flow (Fig. 537); while in the part Kn' vapor of

water, of low tension corresponding to the temperature

( 469), will surround an internal jet which, does not fill tne

pipe. As for the value of vm ,
Bernoulli's Theorem, applied

to BC and m, in Fig. 536, gives finally vm = Vtyh, .

EXAMPLE. If h = 20 feet, Fig. 536, and the liquid is water,

the pressure-head at n is (ft., lb., sec.)

= b - h = 34' - 20' = 14 ft.,

r

and therefore

pn 14 X 62.5 = 875 Ibs. per sq. ft. = 6.07 Ibs. per sq. in.

494. Second Application of Bernoulli's Theorem without Fric-

tion. Knowing by actual measurement the open piezometer

height yn at the section n in
..- AIR . . .

Fig. 538 (so that the pressure-

= o -f- yn i
^ n is

Y
known) ; knowing also the

vertical distance hn from n
to m, and the respective

cross-sections Fn and Fm (Fm being the sectional area of the

jet, flowing into the air, so that *22 =
5), required the volume

of flow per sec.; i.e., required Q, which

(1)

The pipe is short, with smooth curves, if any, and friction

will therefore be neglected. From Bernoulli's Theorem [eq.

(7), 492], taking m as a datum plane for potential heads, we
have

But from (1) we have
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substituting which in (2) we obtain, solving for

(8)

and hence the volume per unit of time becomes known, viz.,

Q = f.vm (4)

NOTE. If the cross-section Fm of the nozzle, or jet, is > Fn ,

<vm becomes imaginary (unless yn is negative (i.e.,^?n < one at-

mos.), and numerically > hn ] ;
in other words, the assigned

cross-sections are not filled by the flow.

EXAMPLE. If yn = 17 ft. (thus showing the internal fluid

pressure at n to be pn = y(yn -\- b)
= 1-J atmos.), hn = 10 ft.,

and the (round) pipe is 4 inches in diameter at n and 3 inches

at the nozzle m, we have from (3) (using ft.-lb.-sec. system of

units in which g = 32.2)

= 4/2x32-2(17- -^ = 50<4 ft

pT.B. Since Fm -f-^ is a ratio and therefore an abstract

number, the use of the inch in the ratio will give the same

result as that of the foot.]

Hence, from (4),

Q = F^m ^ i^(A)
3 X 50.4 = 2.474 cub. ft. per sec.

495. Orifict* in Thin Plate, Fig. 539. When efflux takes

place through an orifice in a thin plate, i.e., a sharp-edged
orifice in the plane wall of a tank, a contracted vein (or

" vena
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contracta") is formed, the filaments of water not becoming

parallel until reaching a plane, m,

parallel to the plane of vessel wall,

which for circular orifices is at a dis-

tance from the interior plane of vessel

wall equal to the radius of the circular

aperture ;
and not until reaching this

plane does the internal fluid pres-

sure become equal to that of the sur-

rounding medium (atmosphere, here),
FlG - 539 -

i.e., surrounding the jet. We assume that the width of the

orifice is small compared with h, unless the vessel wall is

horizontal.

The area of the cross-section of the jet at m, called the con-

tracted section, is found on measurement to be from .60 to .64

of the area of the aperture with most orifices of ordinary

shapes, even with widely different values of the area of aper-

ture and of the height, or head, A, producing the flow. Call-

ing this abstract number [.60 to .64] the Coefficient of Con-

traction, and denoting it by (7, we may write

in which F= area of the orifice, and Fm = that of the con-

tracted section. C ranges from .60 to .64 with circular orifices,

but may have lower values with some rectangular forms. (See

table in 503.)

A lamina of particles of water is under atmospheric

pressure at n (the free surface of the water in tank or reser-

voir), while its velocity at n is practically zero, i.e. vn =
(the surface at B being very large compared with the area of

orifice). It experiences increasing pressure as it slowly de-

scends until in the immediate neighborhood of the orifice,

when its velocity is rapidly accelerated and pressure decreased,

in accordance with Bernoulli's Theorem, and its shape length-

ened out, until finally at m it forms a portion of a filament of

a jet, its pressure is one atmosphere, and its velocity, = vm ,

we wish to determine. The course of this lamina we call a



660 MECHANICS OF ET^GINEEKING.

"stream-line? and Bernoulli's Theorem is applicable to it,

just as ii it were enclosed in a frictionless pipe of the same

form. Taking then a datum plane through the centre of m,

we have

while

= 0, and vm = \\

* also = b, zn h, and vn = 0.

Y

Hence Bernoulli's Theorem gives

(1)

and

That is, the velocity of the jet at m is theoretically the same as

that acquired by a body falling freely in vacuo through a

height =h= the " head of water." We should therefore ex-

pect that if the jet were directly ver-

tically upward, as at m, Fig. 540,

a height
-^-

would be actually attained. [See

52 and 53.] Experiment shows

that the height of the jet (at m)
does not materially differ from h if

h is not > 6 or 8 feet. For h > 8 ft., however, the actual height
reached is < A, the difference being not only absolutely but

relatively greater as h is taken greater, since the resistance of

the air is then more and more effective in depressing and

breaking up the stream. (See 578.)

At m', Fig. 540, we have a jet, under a head = h
',
directed

FIG. 540.
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at an angle a with the horizontal. Its form is a parabola

( 81), and the theoretical height reached is Ji" = h! sin
a a

9

( 80).

The jet from an orifice in thin plate is very limpid and clear.

From eq. (1), we have theoretically

vm = V'Zgli

(an equation we shall always use for efflux into the air through

orifices and shortpipes in the plane wall of a large tank whose

water-surface is very large compared with the orifice, and is.

open to the air), but experiment shows that for an "
orifice in

thin plate" this value is reduced about 3$ by friction at the

edges, so that for ordinary practical purposes we may write

vm = $ V fyh = 0.97V, .... (2)

in which is called the coefficient of velocity.

Hence the volume of flow, Q, per time-unit will be

Q = Fmvm = CF(f> Vtofa on the average = 0.62FV 2gh. (3)

It is to be understood that the flow is steady, and that the

reservoir surface (very large) and the jet are both under at-

mospheric pressure. </>C is called the coefficient of'efflux.
EXAMPLE 1. Fig. 539. Eequired the velocity of efflux,

^m ,
at m, and the volume of the flow per second, Q, into the

air, if h = 21 ft. 6 inches, the circular orifice being 2 in. in

diam.
;
take 0= 0.64. [Ft., lb., and sec.]

From eq. (2),

vm = 0.97 t/2 X 32.3 X 21.5 = 36.1 ft. per sec. ;

hence the discharge is

Q =Fmvm = 0.64 X
2

X 36.1 = 0.504 cub. ft. per second.

EXAMPLE 2. [Weisbach.] Under a head of 3.396 metres

the velocity vm in the contracted section is found by measure-
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ments of the jet-curve to be 7.98 metres per sec;, and the dis-

charge proves to be 0.01825 cub. metres per sec. Required
the coefficient of velocity (0) and that of contraction (C\ if

the area of the orifice is 36.3 sq. centimetres.

Use the metre-kilogram-second system of units, in which

g = 9.81 met. per sq. second.

From eq. (2),

V 2gh V2 X 9.81 X 3.396

while from (3) we have

-01825

F<f> V~fyA
Fvn Tttft. X 7.98

_~

and (7, being abstract numbers, are independent of the sys-

tem of concrete units adopted.

NOTE. To fir.d the velocity vm of the jet at the orifice by
measurements of the jet-curve, as mentioned in Example 2,

we may proceed as follows : Since we cannot very readily as-

sure ourselves that the direction of the jet at the orifice is

horizontal, we consider the angle a
Q
of the parabola (see Fig.

93 and 80) as unknown, and therefore have two unknowns
to deal with, and obtain the necessary two equations by meas-

uring the a? and y (see page 84) of two points of the jet, re-

membering that if we use the equation (3) of page 84 in its

present form points of the jet below the orifice will have nega-
tive y's. The substitution of these values ^ , , y, ,

and yz

in equation (3) furnishes two equations between constants, in

which only a and h are unknown. To eliminate a
9 ,

for

- we write 1 -f- tan
2 a

,
and taking a?

a
= 2^ for con*-

COS ^-Q

venience, we finally obtain

**..+ fly.-y.y, md ... /EEWEEZI,
y.
- 2

2/. V %. - ayj

in which y t
and y2

are the vertical distances of the two points
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chosen below the orifice
;
that is, we have already made them

negative in eq. (3) of page 84. The h of the preceding equa-

tion simply denotes vm
* ~

2</, and must not be confused with

that of the last two figures. For accuracy the second point

should be as far from the orifice along the jet as possible.

496. Orifice with Rounded Approach.* -Fig. 541 shows the

general form and proportions of an orifice or mouth-piece in

the use of which contraction does not

take place beyond the edges, the inner

surface being one u of revolution," and

so shaped that the liquid filaments are
n i ^ J

parallel on passing the outer edge m\
hence the pressure-head at m is = b

(= 34 ft. for water and 30 inches for

mercury) in Bernoulli's Theorem, if

efilux takes place into the air. "We FlG - 541 -

have also the sectional area Fm = F= that of final edge of

orifice, i.e., the coefficient of contraction, or (7,
= unity = 1.00,

so that the discharge per time-unit has a volume

The tank being large, as in Fig. 540, Bernoulli's Theorem

applied to m and n will give, as before,

vm =

as a theoretical result, while practically we write

vm =0V^/i, ....... (1)

and Q = F<j>\/~Zgh........ (2)

As an average is found to differ little from 0.97 with this

orifice, the same value as for an orifice in thin plate ( 495).

497. Problems in Efflux Solved by Applying Bernoulli's

Theorem. In the two preceding paragraphs the pressure-

heads at sections m and n were each = pa ~ y = height of

* Smooth conical nozzles for fire-steams give = . 97 with, h = press.-

heiid + veloc.-head at base of play-pipe ; see p. 833.
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the liquid barometer = b
;
but in the following problems this

will not be the case necessarily. However, efflux is to take

place through a simple orifice in the side of a large reservoir,

whose upper surface (n) is very large, so that vn may be put
:= zero.

Problem I. Fig. 542. "What is the velocity of efflux, vm , at

the orifice m (i.e., at the contracted sec-

tion, if it is an orifice in thin plate)

of a jet of water from a steam-boiler, if

the free surface at n is at a height = h

above m, and the pressure of the steam

over the water is pn ,
the discharge tak-

ing place into the air?

Applying Bernoulli's Theorem to sec-

tion m at the orifice [where the pres-

sure-head is b and velocity-head v^ -H 2^ (unknown)] and to

section n at water-surface (where velocity-head = and pres-

sure-head pn -4- y\ we have, taking m as a datum for poten-
tial heads so that zm = and zn = A,

. . . . (1)

EXAMPLE. Let the steam-gauge read 40 Ibs. (and hence

pn = 54.7 Ibs. per sq. inch) and h = 2 ft. 4 in.
; required vm .

Also if F \ sq. in., in " thin plate," required the rate of

discharge (volume). The temperature of saturated steam of

the given tension must be 286 Fahr. [see foot of page 607].
The water is practically at the same temperature and hence

of a heaviness, y, of 57.7 Ibs. per cubic ft. (p. 518).
From eq. (1) above, then, with ft. Ib. and sec., noting that

for this case b = [(14.7 X 144) -5- 57.7] feet,

i v - x ' x
*

= 81.1 ft. per sec., theoretically; but*
practically

* Another practical matter in this case is that some of the hot water will" flash
"
into steam on relief from the higher pressure.
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vm = 0.97 X 81.1 = 78.6 ft. per sec.
;

so that the discharge begins at the rate of

Q = 0.64 Fvm = 0.64 X i - yJr X 78.6 = 0.174 cub. ft. p. sec.

Problem II. Fig. 543. With what velocity, vm ,
will water

flow into the condenser C of a steam-engine where the tension

of the vapor is pm , < one atmosphere, if

h = the head of water, and the flow takes

place through an orifice in thin plate?

Taking position m in the contracted section

where the filaments are parallel, and the

pressure therefore equal to that of the sur-

rounding vapor, viz.,j?m ,
and position n in

the (wide) free surface of the water in the

tank, where (at surface) the pressure is one FIG. 543.

atmosphere [and .-.
^ = b = 34 ft.] and velocity practically

zero; we have, applying Bernoulli's Theorem to n and m, tak-

ing m as a datum level for potential heads (so that zn = h and

-, - * . CD

and

as theoretical results. But practically we must write

(3)

and

in which F= area of orifice in thin plate, and O= coefficient

of contraction = about 0.62 approximately [see 495].
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EXAMPLE. If in the condenser there is a " vacuum" of 27

inches (meaning that the tension of the vapor would support

2J inches of mercury, in a barometer), so that

pm = [$$ X 14.7] Ibs. per sq. inch, and h = 12 feet,

while the orifice is inch in diameter
;
we have, using the ft.,

ib., and sec;,

= 51.1 ft. per sec.

(We might also have written, for brevity,

= [2i : 30] X 34 = 2.833,

since the pressure head for one atmos. = 34 feet, for water.

Hence, for a circular orifice in thin plate, we have the volume

discharged per unit of time,

Q = CFv = 0.62 X
f(]!)'

X 51 '1 = '04:81 cuk ft< Per sec '

497a. Efflux through an Orifice in Terms of the Internal and

External Pressures. Fig. 544. Let efflux take place through
a small orifice from the plane side of a large tank, in which at

the level of the orifice the hydrostatic pressure was =p' be-

fore the opening of the orifice, that of the medium surround-

ing the jet being =p". When a steady flow

is established, after opening the orifice, the

pressure in the water on a level with the ori-

fice will not be materially changed, except in

the immediate neighborhood of the orifice [see

495] ; hence, applying Bernoulli's Theorem

to m in the jet, where the filaments are parallel,

and a point n, in the body of the liquid and

FIO. 544. at the same level as m, and where the particles
are practically at rest [i.e., vn = 0] (hence not too near the
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orifice), we shall have, cancelling out the potential heads which

are equal,

-L =-..
1g y

'

2</

. ... (i)

(In Fig. 544 p' would be equal to pa + hy.) Eq. (1) is con-

veniently applied to the jet produced by
a force-pump^ supposing, for simplicity,

the orifice to be in the head of the pump-
cylinder, as shown in Fig. 545. Let the -

thrust (force) exerted along the piston-

rod be = P, and the area of the piston

be = F' . Then the intensity of internal

pressure produced in the chamber AB
(when the piston moves uniformly) is

FIG. 545.

while the external pressure in the air around the jet is simply

pa (one atmos.).

. . (i)'

(N.T3. Of course, at points near the orifice the internal

pressure is < p'\ read 495.)

EXAMPLE. Let the force, or thrust, P, [due tv steam-pres-
sure on a piston not shown in figure,] be 2000 Ibs., and the

diameter of pump-cylinder be d = 9 inches, the liquid being
salt water (so that y 64 Ibs. per cubic foot).

Then

= 0.442 sq.ft.,

And [ft., lb., sec.]
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*, =
0.97^/2

X 32.2 x^^_ = 65.4 ft. per se*

If the orifice is well rounded, with a diameter of one inch,

the volume discharged per second is

Q = Fmvnt
= Fvm = ^(-!-Y X 65.4 = 0.353 cub. ft. per sec.

To maintain steadily this rate of discharge, the piston must

move at the rate [veloc. = v'] of

v f =^ Q -- F' = .353 +
j-(} = 0.800 ft. per sec.,

and the force P must exert apower ( 130) of

Z = Pv' = 2000 X 0.800 = 1600 ft. Ibs. per sec.

= about 3 horse-power (or 3 H. P.).

If the water must be forced from the cylinder through a

pipe or hose before passing out of a nozzle into the air, the

velocity of efflux will be smaller, on account of "fluid fric-
tion" in the hose, for the same P\ such a problem will be

treated later [513]. Of course, in a pumping-engine, by the

use of several pump-cylinders, and of air-chambers, a practically

steady flow is kept up, notwithstanding the fact that the mo-

tion of each piston is not uniform, and must be reversed at the

end of each stroke.

498. Influence of Density on the Velocity of Efflux in the Last

Problem. From the equation^
of the preceding paragraph, wherep" is the external pressure
around the jet, and p' the internal pressure at the same level

as the orifice but well back of it, where the liquid is sensibly
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at rest, we notice that for the same difference of pressure

|~j/ p"~^ the velocity of efflux is inversely proportional to the

square root of the heaviness of the liquid. Hence, for the

same (p
f

p"\ mercury would flow out of the orifice with a

velocity only 0.272 of that of water
;
for

.5_ / 1 272
~~

V 13.5
~

1000'

Again, assuming that the equation holds good for the flow or

gases (as it does approximately when p' does not greatly exceed

f"\ e.g., by 6 or 8 per cent), the velocity of efflux of atmospheric

air, when at a heaviness of 0.807 Ibs. per cub. foot, would be

times as great as for water, with the same p' p" . (See

548, etc.)

499. Efflux under Water. Simple Orifice. Fig. 546.

and A
3 be the depths of the (small) ori-

fice below the levels of the " head " and
"
tail

" waters respectively. Then, using
the formula of 49 70, we have for the

pressure at n (at same level as m, the

jet)

FIG. 546.

Let

and for the external pressure, around

the jet at m,

whence, theoretically,

(1)

where h = difference of level between the surfaces of the two
bodies of water.
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Practically,
=

but the value of for efflux under water is somewhat uncer-

tain
;
as also that of C

9
the coefficient of contraction. "Weis-

bach says that //,
= 0(7, is -^ part less than for efflux into the

air
; others, that there is no difference (Trautwine). See also

p. 389 of vol. 6, Jour, of 'Engin. Associations, where it is

stated that with a circular mouth-piece of 0.37 in. diarn., and

of "
nearly the form of the vena contracta" /* was found to be

.952 for discharge into the air, and .945 for submerged dis-

charge.

500. Efflux from a Small Orifice in a Vessel in Motion.

CASE I. When the motion is a vertical translation and uni-

formly accelerated. Fig. 547. Suppose the vessel to move up-
ward with a constant acceleration p.

(See 49a.) Taking m and n as in the

two preceding paragraphs, we know that

pm =p" = external pressure = one at-

mos. =pa (and .-. =
II).

As to the

internal pressure at n (same level as m,
but well back of oritice), pn ,

this is not

equal to (o+ A)/, because of the acceler-

ated motion, but we may determine it by considering free the

vertical column or prism On of liquid, of cross-section = dF,
the vertical forces acting on which are padF, downward at 0,

pndF upward at n, and its weight, downward, hdFy. All

other pressures are horizontal. For a vertical upward acceler-

ation '=p9
the algebraic sum of the vertical components of all

the forces must = mass X vert. acceL,

whence

Putting pn and pa equal to the p' and p" , respectively, of

the equation, we have

FIG. 547.

- ...... (1)
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of 497,

(2)

It must be remembered that vm is the velocity of the jet rel-

atively to the orifice, which is itself in motion with a variable

velocity. The absolute velocity wm of the particles of the jet

is found by the construction in 83, being represented graph-

ically by the diagonal of a parallelogram one of whose sides is

vm ,
and the other the velocity c with which the orifice itself is

moving at the instant, as part of the vessel. The jet may
make any angle with the side of the vessel.

On account of the flow the internal pressures of the water

against the. vessel are no longer balanced horizontally, and the

latter will swing out of the vertical unless properly constrained.

Ifp g = ace. of gravity, vm V 2 V %gh. If p is nega-

tive and = g, vm = ; i.e., there is no flow, but both the vessel

and its contents fall freely, without mutual action.

CASE II. When the liquid and the vessel both have a uni-

form rotary motion about a vertical axis with an angular veloc-

ity
= QD ( 110). Orifice small, so that we may consider the

liquid inside (except near the orifice) to

be in relative equilibrium. Suppose the

jet horizontal at m, Fig. 548, and the

radial distance of the orifice from the

axis to be = x. The external pressure

pm = pa ,
and the internal [see 428,

eqs. (3) and (4)] is

FIG. 548.

hence the velocity of the jet, relatively to the orifice, is (from

497, since pn and pm correspond to the p' and p" of that

article),
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~T^'; (3;

in which w, = GOX, = the (constant) linear velocity of the ori-

fice in its circular path. The absolute velocity wm of the par-

tides in the jet close to the orifice is the diagonal formed on

w and vm ( 83). Hence by properly placing the orifice in the

casing, wm may be made small or large, and thus the kinetic

energy carried away in the effluent water be regulated, within

certain limits. Equation (3) will be utilized subsequently in

the theory of Barker's Mill.

EXAMPLE. Let the casing make 100 revol. per min. (whence

& = [27rlOO -T- 60] radians per sec.), & ^ 12 feet, and x = 2

ft.
;
then (ft., lb., sec.)

, -Jl X 32.2 X 12 + = 34.8 ft. per see.

(while, if the casing is not revolving, vm = V%ghQ
= only 27.8

ft. per sec.).

If the jet is now directed horizontally and backward, and

also tangentially to the circular path of the centre of the orifice,

its absolute velocity (i.e., relatively to the earth) is

wm = vm GDX 34.8 20.9 = 13.9 ft. per sec.,

and is also horizontal and backwards. If the volume of flow

is Q = 0.25 cub. feet per sec., the kinetic energy carried away
with the water per second ( 133) is

ft. Ibs. per second = 0.085 horse-power.

501. Theoretical Efflux tlirough Rectangular Orifices of Con-

siderable Vertical Depth, in i Vertical Plate. If the orifice is

so large vertically that the velocities of the different filaments

in a vertical plane of the stream are theoretically different, hav-

ing different " heads of water," we proceed as follows, taking
into account, also, the velocity of approach, c, or mean velocity
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(if any appreciable), of the water in the channel approaching
*he orifice.

Fig. 549 gives a section of the side of the tank and orifice.

Let b = width of the rectangle, the sills of the latter being

horizontal, and a = A
3 A, ,

its height. Disregarding con-

traction for the present, the theoretical volume of discharge

per unit of time is equal to the

sum of the volumes like vmdF
( vjbdw), in which vm = the ^Ls^rJ
velocity of any filament, as m,
in the jet, and bdx = cross-sec-

tion of the small prism which

passes through any horizontal

strip of the area of orifice, in a

unit of time, its altitude being
vm . For each strip there is a FIG 549.

different x or " head of water," and hence a different velocity.

Now the theoretical discharge (volume) per unit of time is

/X-V,

But from Bernoulli's Theorem, if k = c* -r- 2g = the velocity,
head at n, the surface of the channel of approach nC^b being
the pressure-head of n, and x its potential head referred to m as

datum (KB. This h = 34 ft. for water, and must not be con-

fused with the width b of orifice), we have [see 492, eq. (7)]

..... (2)'

and since dx = d(x+ &), Tc being a constant, we have, from (1)'

and (2)
;

,

Theoret. = 1 \
r

\
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Theoret. Q = &VTg [(h, + *)
-

(h, + *)]. . (1)

(I now denotes the width of orifice.) If c is small, the chan-

nel of approach being large, we have

Theoret. Q --= & Vfy (hj -h*) .... (2)

(c being Q -r- area of section of nC).

If ^ = 0, i.e., if the orifice becomes a notch in the side, or

an overfall [see Fig 550, which shows the* contraction which

actually occurs in all these cases], we have for an overfall
*

Theoret. Q = %bv 2g\_(ht+ fc)l &J (3)

NOTE. Both in (1) and (2) h, and A
a
are the vertical depths

of the respective sills of the orifice

from the surface of the water

three orfourfeet hack of the plane

of the orifice, where the surface is

comparatively level. This must

be specially attended to in deriv-

Fl - 55 -

ing the actual discharge from the

theoretical (see 503).

If Q were the unknown quantity in eqs. (1) and (3) it would

be necessary to proceed by successive assumptions and ap-

proximations, since Q is really involved in Jc
;
for

h = ^ and F c Q

(where F is the sectional area of the channel of approach nO).
With fc = (or c very small, i.e., F9 very large), eq. (3) re-

duces (for an overfall) to

Theoret. Q = |M2 V*2gh^, .....

or $ as much as if all parts of the orifice had the same head of

water A
2 (as for instance if the orifice were in the horizontal

bottom of a tank in which the water was A
3 deep, the orifice

having a width = ~b and length = A
3).

* The most satisfactory mathematical treatment of the flow over an overfall

weir is that of '.FJamant (see p. 96 of his Hydraulique, Paris, 1900, 2d edition).
Its resulting formula is in remarkable accord with experiment, but is not con-
venient for practical use.
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502, Theoretical Efflux through a Triangular Orifice in a Thin

Vertical Plate or Wall. Base Horizontal. Fig. 551. Let the

channel of approach be so large that the velocity of approach

may be neglected, h^ and A
2
= depths of sill and vertex,

which is downward. The analysis differs from that of the

preceding article only in having k = and the length u, of a

horizontal strip of the orifice, variable
;
b being the length of

the base of the triangle. From similar triangles we have

u Ao x b ,-, N-

.: Theoret. Q = fvmdF=fvntudx = -=--rM1
* %)dx\

and finally, substituting from eq. (2)' of 501, with Ic = 0,

FIG. 551.

Tfooret. Q =

FIG. 552.

For a triangular notch as in Fig. 552, this reduces to

(4)

(5)

i.e., ff of the volume that "would be discharged per unit of
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time if the triangular orifice witli base ~b and altitude A
3 were

cut in the horizontal bottom of a tank under a head of A
a .

The measurements of A
2
and b are made with reference to the

level surface back of the orifice (see figure) ;
for the water-

surface in the plane of the orifice is curved below the level

surface in .the tank.

Prof. Thomson has found by experiment that with

b = 2A
2 ,

the actual discharge = theoret. disch. X 0.595
;
and

with b = 4A
2 ,

actual theoret. disch. X 0.620.

503. Actual Discharge through Sharp-edged Rectangular Ori-

fices (sills horizontal) in the vertical side of a tank or reservoir.

CASE I. Complete and Perfect Contraction. The actual

volume of water discharged per unit of time is much less than

the theoretical values derived in 501,

chiefly on account of contraction. By
complete contraction we mean that no

edge of the orifice is flush with the

side or bottom of the reservoir
;
and

by perfect contraction, that the channel

of approach, to whose surface the

heads A, and A
2 are measured, is so

large that the contraction is practically

the same if the channel were of infi-

nite extent sideways and downward
from the orifice.

For this case (A, not zero) it is found most convenient to

use the following practical formula (b
= width) :

FIG. 553.

Actual =
(6)

in which (see Fig. 553) a = the height of orifice, Aj = the ver-

tical depth of the upper edge of the orifice below the level of

the reservoir surface, measured afewfeet back of the plane of
the orifice, and // is a coefficient of efflux (an abstract number),
dependent on experiment.
With // .= 0.62 approximate results (within 3 or 4 per cent)

may be obtained from eq. (6) with openings not more than
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18 inches, or less than 1 inch, high ;
and not less than 1 inch

wide; with heads (\ + -) from 1 ft. to 20 or 30 feet.
V 2/

EXAMPLE. What is the actual discharge (volume) per min-

ute through the orifice in Fig. 553, 14 inches wide and 1

foot high, the upper sill being 8 ft. 6 in. below the surface of

still water ? Use eq. (6) with the ft, lb., and sec. as units, and

yw
= 0.62.

Solution :

Q = 0.62 X 1 X H X 1/2 X 32.2[8J+]= 17.41 cub. ft. per.sec.

while theflow of weight is

G=Qy = 17.41 X 62.5 = 1088 Ibs. per second.

Poncelet and Lesbros
1

Experiments. For comparatively ac-

curate results, values of /* taken from the following table

(computed from the careful experiments of Poncelet and Les-

bros) may be used for the sizes there given, and, where prac-

ticable, for other sizes by interpolation. To use the table, the

values of h^ , #, and b must be reduced to metres, which can be

done by the reduction-table below
;
but in substituting in eq.

(6), if the metre-kilogram-second system of units be used g
must be put 9.81 metres per square second (see 51), and Q
will be obtained in cubic metres per second.

Since // is an abstract number, once obtained as indicated

above, it does not necessitate any particular system of units in

making substitutions in eq. (6). The ft., lb., and sec. will be

used in subsequent examples.

TABLE FOR REDUCING FEET AND INCHES TO METRES.

1
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TABLE, FROM PONCELET AND LESBROS.

VALUES OF /<o, FOB EQ (6), FOB RECTANGULAR ORIFICES IN THIN PLATE;

(Complete and perfect contraction.)

Value of h lt

Fig. 553 (in

metres).
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From the foregoing table,

for h, = 0.10m
-,

I = 0.60rn - and a = 0.20m
-,
we find //

= .602

h, = 0.10m
-,
I = 0.20m- a=0.20m

-, /it
= .592

diff. = ;oio

Hence, by interpolation,

for A, = 0.10m -

I = 0.51m
-,
and a = 0.20m

-,
we have

K = 0.602 -A [-602 - 0.592] = 0.600.

Hence [ft., lb., sec.], remembering that // is an abstract num-

ber, from eq. (6),

X X = 4.36Q = 0.600 X

cub. ft. per second.

CASE II. Incomplete Contraction. This name is given to

the cases, like those shown in Fig. 554, where one or more

sides of the orifice have an interior border flush with the sides

or bottom of the (square-cornered) tank.

Not only is the general direction of the stream altered, but

the discharge is greater, on account of the larger size of the

contracted section, since contraction is prevented on those sides

which have a border. It is assumed that the contraction which

does occur (on the other edges) is perfect / i.e., the cross-sec-

tion of the tank is large compared with the orifice. According
to the experiments of Bidone and

Weisbach with Poncelet's ori-

fices (i.e., orifices in thin plate

mentioned in the preceding table),

the actual volume discharged per
unit of time is

(7)

FIG. 554.
(differing from eq. (6) only in

the coefficient of efflux //), in which the abstract number
ju. is

found thus: Determine a coefficient of efflux // as if eq. (6)

were to be used in Case I
; i.e., as if contraction were complete

and perfect ;
then write
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, ..... (7)'

where n = the ratio of the length of periphery of the orifice

with a border to the whole periphery.

E.g., if the lower sill, only, has a border,

while if the lower sill and both sides have a border,

EXAMPLE. If h, = 8 ft. (= 2.43m
-),

I = 2 ft. (= 0.60m
-),

a = 4 in. (= 0.10m
-),

and one side is even with the side of

the tank, and the lower sill even with the bottom, required the

volume discharged per second. (Sharp-edged orifice, in ver-

tical plane, etc.)

Here for complete and perfect contraction we have, from

Poncelet's tables (Case I), /*6
= 0.608. Now ^ = 4; hence*

from eq. (7)',

fji
= 0.608 [1+ 0.155 X i]= 0.6551 ;

hence, eq. (7), _
Q= 0.655 X 2 X A 1/2X32.2(8+4.

= 10.23 cub. ft. per sec.

CASE III. Imperfect Contraction. If there is a submerged
channel of approach, symmetrically

placed as regards the orifice, and of

an area (cross-section),
= 6> not

much larger than that, = F, of the

orifice (see Fig. 555), the contraction

is less than in Case I, and is called

imperfect contraction. Upon his

experiments with Poncelet's orifices,

FIG. 555. with imperfect contraction, Weisbach

bases the following formula for the discharge (volume) per
unit of time, viz.,

(8)



RECTANGULAR ORIFICES. 681

(see Fig. 553 fei notation), with the understanding that the co*

efficient

where / fe the coefficient obtained from the tables of Case I

(as if the contraction were perfect and complete), and ft an ab-

stract number depending on the ratio F : (? = , as follows:

0.0760 [9
1*

1.00].

To shorten computation Weisbach gives the following table

for/?:

EXAMPLE. Let h,= 4' 9J" (= 1.46

met.), the dimensions of the orifice

being

width = b = 8 in. (= 0.20m-);

height = a = 5 in. (= 0.126m-);

while the channel of approach (CD,
Fig. 555) is one foot square. From
Case I, we have, for the given di-

mensions and head,

A* = 0.610;

TABLE A.

m.
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appreciable, not only is the contraction imperfect, but

strictly we should use eq. (1) of 501, in

which the velocity of approach is considered.

Let F= area of orifice, and G that of the

cross-section of the channel of approach;
then the velocity of approach is c = Q -~

(r,

and Tc (of above eq.)
= f ~

2g = Q
9 -~

2gG*;

but Q itself being unknown, a substitution of

k in terms of Q in eq. (1), 501, leads to an
FIG. 556.

equation of high degree with respect to Q.

Practically, therefore, it is better to write

and determine / by experiment for different values of the

ratio F-~- G., Accordingly, Weisbach found, for Poncelet's

orifices, that if /i is the coefficient for complete and perfect

contraction from Case I, we have

^ = A(l+ />0 (9)'

ft' being an abstract number, and being thus related to^-i- 6r,

ft'
- 0.641 (9)"

A, was measured to the surface one metre back of the plane of

the orifice, and F : G did not exceed 0.50.

Weisbach gives the following table computed from eq. (9)" :

TABLE B. ft.

in

EXAMPLE. A rectangular water-trough 4

wide is dammed up with a vertical board

which is a rectangular orifice, as in Fig. 556, of

width I 2 ft. (= 0.60 met.), and height a = 6

in. (= 0.15 met.) ;
and when the water-level be-

hind the board has ceased rising (i.e., when the

flow has become steady), we find that A, = 2 ft.,

and the depth behind in the trough to be 3 ft.

Eequired Q.

Since F: G = l sq. ft. ~ 12 sq. ft. = .0833,

we find (Table B) ft' == 0.005
;
and /i being = 0.612 from Pon,

celet's tables, Case I, we have finally, from eq. (9),

F+G.
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Q = 0.612 (1.005) 2 xi V2 X 32'.2 X 2.25

= 7.41 cub. f-t. per second.

504. Actual Discharge of Sharp-edged Overfalls (Overfall*

Weirs; or Rectangular Notches in a Thin Vertical Plate).

CASE I. Complete and Perfect Contraction (the normal

case), Fig. 557
; i.e., no edge is flush

with the side or bottom of the

reservoir, whose sectional area is

very large compared with that, &A
a ,

of the notch. By deptn, A
a ,

of the

notch, we are to understand the

depth of the sill 'below the surface
afewfeet lack of the notch where

it is level. In the plane of the

notch the vertical thickness of the stream is only from to $

of A
3

. Putting, therefore, the velocity of approach = zero,

and hence k= 0, in eq. (3) of 501, we have for the

Fio. 557.

Actual Q = (10)

(5 = width of notch,) where /* is a coefficient of efflux to be

determined by experiment.

Experiments with overfalls do not agree as well as might be

desired. Those of Poncelet and Lesbros gave the results in

Table 0.

EXAMPLE 1. With TABLE C.

A, = 1 ft. 4 in. (= .405*),

I = 2 ft. (= 0.60m
-),

we have, from Table 0, /*.
= .586,

and (ft., lb., sec.)

.-. <?=.586xfX2xf I/2X32.2X

= 9.54 cub. ft. per sec.

EXAMPLE 2. What width, ,

must be given to a rectangular notch, for which A
a
= 10 in.

(= 0.25m<), that the discharge may be Q = 6 cub. feet per see.*

For 6 = 0.20-
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Since b is unknown, we cannot use the table immediately,
but take //

= .600 for a first approximation ; whence, eq. (10),

(ft., lb., sec.,)

6

0.6 X | X H- V* X 32.2 X
= 2.46 ft.

Then, since this width does not much exceed 0.60 metre,

we may take, in Table C, for Aa
= 0.25 met., /* = .589 ;

6

.589 X I X H V2 X 32.2 X
= 2.50 ft.

CASE II. Incomplete Contraction ; i.e.
,
both ends are flush

with the sides of the tank, these being ~\ to the plane of the

notch. According to Weisbach, we may write

(11)

in which /*
= 1.04:1/< , /* being obtained from Table C for the

normal case, i.e., Case I. The section of channel of approach
is large compared with that of the notch

;
if not, see Case IV.

CASE III. Imperfect Contraction i.e., the velocity of ap-

proach is appreciable ; the sectional area G
of the channel of approach not being much

larger than that, F, = bh^ = area of notch.

Fig. 558. b = width, and A
2
= depth of

notch (see Case I). Here, instead of using
a formula involving

lc = c
a + 2g = [Q + Q]* 4- 2(7

Fl&. 558.

(see eq. (3), 501), it is more convenient to put

as before, with

(12)

(12)'

in which yuc is for the normal case [Case I] ;
and ft, according
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to Weisbach's experiments, may be obtained from the empiri-

cal formula

ft
= 1.718 (12)"

TABLE D.

[Table D is computed from (12)".]

(The contraction is complete in this case
; i.e., the ends are

not flush with the sides of the tank.)

EXAMPLE. If the water in the channel of ap-

proach has a vertical transverse section of G = 9

sq. feet, while the notch is 2 feet wide (i.e.,

b = 2') and 1 foot deep (A2
I

7

) (to level of

surface of water 3 or 4 ft. back of notch), we

have, from Table C, with b = .60 met. and

Aa
= 0.30 met.,

/*.
= 0.586

;

while from Table D, with F: G 0.222 (or f),

F
&
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ft
= 0.041 + 0.3693 {) ,

. . . . (ia
v/

an empirical formula based by Weisbach on his own experi-

ments.* To save computation, ft may be found from Table E,

founded on eq. (13)".

TABLE E.

F
G~
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Q = 1x0.6284,(6-^)4/2^, . . (14)

in which 5 = width.

This provides for incomplete contraction, as well as for com-

plete and perfect contraction, by making

n = 2 for perfect and complete contraction (Fig. 557) ;

n = 1 when one end only is flush with side of channel
;

n = when both ends are flush with sides of channel.

The contraction was considered complete and perfect when

the channel of approach was made as wide as practicable,

13.96 feet, the depth being about 5 feet.

Mr. Francis also experimented with submerged or " drowned"

weirs in 1883
;
such a weir being one in which the sill is be-

low the level of the tail-water (i.e., of receiving channel).

508. Fteley and Stearns's Experiments at Boston, Mass., in 1877

and 1880. These may be found in the Transactions of the

American Society of Civil Engineers, vol. xn, and gave rise

to formulae differing slightly from those of Mr. Francis in

some particulars. In the case of suppressed end-contractions,

like that in Fig. 559, they propose formulae as follows :

When depth of notch is not large,

$ (in cub. ft. per sec.)
= 3.31 A

2
i + 0.007 5 . (15)

(b and A
3 l}oth infeet\

" A
2 ,

the depth on the weir, should be measured from the sur-

face of the water above the curvature of the sheet."
" Air should have free access to the space under the sheet."

The crest must be horizontal. The formula does not apply to

Depths on the weir less than 0.07 feet.

When the depth of notch is quite large, a correction must
be made for velocity of approach, <?,

thus :

Q (in cub. ft. per sec.) = 3.31 &[\+ 1.5 ^-T+ 0.007 b (16)L 2g J

(J, Aa ,
and <?* -f- 2<7, in feet).
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The channel should be of uniform rectangular section for

about 20 ft. or more from the weir, to make this correction

properly. If G = the cross-section, in sq. ft., of the channel

of approach, c is found approximately by dividing an approxi-

mate value of Q by G ;
and so on for closer results.

The weir may be of any length, &, from 5 to 19 feet.

506a. Recent Experiments on Overfall-weirs in France. In

the Annales des Ponts et Chaussees for October 1888 is an

account of extensive and careful experiments conducted in

1886 and 1887 by M. Bazin on the flow over sharp-edged
overfall-weirs with end-contractions suppressed ; i.e., like that

shown in Fig. 559. The widths of the weirs ranged from

0.50 to 2.00 metres, and the depths on the weirs (A2) from,

0.05 to 0.60 metre. With p indicating the height of the sill

of the weir from the bottom of the channel of approach, M.

Bazin, as a practical result of the experiments, recommends

the following formula as giving a reasonably accurate value

for the volume of discharge per unit of time :

. (IT)

where the coefficient X has a value

Eq. (IT) is homogeneous, i.e., admits of any system of units.

Provision was made in these experiments for the free en-

trance of air under the sheet (a point of great importance),
while the walls of the channel of approach were continued

down-stream, beyond the plane of the weir, to prevent any
lateral expansion of the sheet. The value of p ranged from

0.20 to 2.00 metres.

Herr Hitter von Wex in his "
Hydrodynami'k

"
(Leipsic,

1888) derives formulae for weirs, in the establishing of which
some rather peculiar views in the Mechanics of Fluids are

advanced.
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Formulae and tables for discharge through orifices or over

weirs of some forms not given here may be found in the

works of Weisbach, Kankine, and Trautwfne.*

Mr. Hamilton Smith, a noted American hydraulic engineer,

has recently published
"
Hydraulics," a valuable compilation

and resume of the most trustworthy experiments in all fields

of hydraulics (New York, 1886: John Wiley & Sons).

f

4?

507. Efflux through Short Cylindrical Tubes. When efflux

takes place through a short cylindrical tube, or " short pipe,"

at least 2^ times as long as wide,

inserted at right angles in the

plane side of a large reservoir,

the inner corners not rounded

(see Fig. 560), the jet issues

from the tube in parallel fila-

ments and with a sectional area
}

Fm , equal to that, F, of interior

of tube.

To attain this result, however, Fl - 56 -

the tube must be full of water before the outer end is un-

stopped, and must not be oily ;
nor must the head, A, be

greater than about 40 ft. for efflux into the air. Since at in

the filaments are parallel and the pressure-head therefore equal
to & ( 34 ft. of water, nearly), = that of surrounding medium,
= head due to one atmosphere in this instance

;
an application

of Bernoulli's Theorem [eq. (Y), 492] to positions m and n
would give (precisely as in 454 and 455)

v = veloc. at m =

as a theoretical result
;
but experiment shows that the actual

value of vm in this case is

= 0.815 (1)

0.815 being an average value for
,
the coefficient ofvelocity, for

ordinary purposes. It increases slightly as the head decreases,
* Mr. .Rafter's paper, in Vol. 44 (p. 220) of the Trans. Am. Soc. C. E., gives an

account of Bazin's experiments with weirs of irregular forms
;
as also of similar

experiments made at the Hydraulic Laboratory of the College of Civil Engineer-
ing at Cornell University.
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and is evidently much less than the value 0.97 for an orifice in

a thin pkte, 495, or for a rounded mouth-piece as in 496.

But as the sectional area of the stream where the filaments

are parallel, at m, where vm = 0.815 V%gh, is also equal to that,

F, of the tube, the coefficient of efflux, /< ,
in the formula

is equal to
; i.e., there is no contraction, or the coefficient

of contraction, 67
,
in this case = 1.00.

Hence, for the volume of discharge per unit of time, we
have practically

Q = <t>,FVfyh = 0.815 TPylp? ... (2)

The discharge is therefore about ^ greater than through an

orifice of the same diameter in a thin plate under the same

head [compare eq. (3), 495] ;
for although at m the velocity

is less in the present case, the sectional area of the stream is

greater, there being no contraction.

This difference in velocity is due principally to the fact that

the entrance of the tube has square edges, so that the stream

contracts (at m', Fig. 561) to a

section smaller than that of the

tube, and then re-expands to the

full section, F, of tube. The

eddying and accompanying in-

ternal friction caused by this re-

expansion (or "sudden enlarge-

ment" of the stream) is the prin-

cipal resistance which diminishes
PIG. 561.

the velocity. It is noticeable, also, in

this case that the jet is not limpid and

clear, as from thin plate, but troubled

and only translucent (like ground-

glass). The internal pressure in the

stream at m! is found to be less than

one atmosphere, i.e. less than that at m,
as shown experimentally by the suck-

ing in of air when a 8 ma]! aperture is made in the tube op

FIG. 562.
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posite mf
. If the tube itself were so formed internally as to

lit tins contracted vein, as in Fig. 562, the eddying would be

diminished and the velocity at m increased, and hence the

volume Q of efflux increased in the same proportion. (See

509a.)

If the tube is less than 2J- times as long as wide, or if the

interior is not wet by the water (as when greasy), or if the head

is over 40 or 50 ft. (about), the efflux takes

place as if the tube were not there, Fig. 563,

and we have

vm = 0.97 VZgh, as in 495.

EXAMPLE. The discharge through a short

pipe 3 inches in diameter, like that in Fig. 560,

is 30 cub. ft. per minute, under a head of

2' 6", reservoir large. Required the coefficient of efflux

;/ ,
=

,
in this case. For variety use the inch-pound-min-

ute system of units, in which g = 32.2 X 12 X 3600 (see Note,

51). /e , being an abstract number, will be the same numer-

ically in any system of units.

From eq. (2),

30 X 1728

x ga x 32>2 x 12 x 603 X 30

= 0.803.

508. Inclined Short Tubes (Cylindrical). Fig. 564. If the

short tube is inclined at some angle
a < 90 to the interior plane of the

reservoir wall, the efflux i smaller than

when the angle is 90, as in 507.

We still use the form of equation

Q = fiFYtyh, = <t>FVZgh ;-
. (3)

but from Weisbach's experiments /i

should be taken from the following table:



692 MECHANICS OF ENGINEERING.

TABLE F, COEFFICIENT OF EFFLUX (INCLINED TUBE).

Fora = 90
take ju = <p= .815
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TABLE G (CONICAL CONVERGING TUBES).

Angle of )

8
o

10
,

convergence )
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Mr. J. B. Francis also experimented with Yenturi's tube

(see
u Lowell Hydraulic Experiments"). See also p. 389 of

vol 6 of the Journal of Engineering Societies, for experi-

ments with diverging short tubes discharging under water.

The highest coefficient (/t) obtained by Mr. Francis was 0.782.

509a. New Forms of the Venturi Tube. The statement made
in 507, in connection with Fig. 562, was based on purely
theoretic grounds, but has recently (Dec. 1888) been com-

pletely verified by experiments* conducted in the hydraulic

laboratory of the College of Civil Engineering at Cornell

University. Three short tubes of circular section, each 3 in.

in length and 1 in. in internal diameter at both ends, were ex-

perimented with, under heads of 2 ft. and 4 ft. Call them A,

B, and C. A was an ordinary straight tube as in Fig. 561;
the longitudinal section of B was like that in Fig. 562, the

narrowest diameter being 0.80 in. [see 495; (0.8)
2 = 0.64];

while C was somewhat like that in Fig. 566, being formed

like B up to the narrowest part (diameter 0.80 in.), and then

made conically divergent to the discharging end. The results

of the experiments are given in the following table :

Name of
Tube.
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510. " Fluid Friction." By experimenting with the flow of

water in glass pipes inserted in the side of a tank, Prof. Rey-
nolds of England has found that the flow goes on in parallel

filaments for only a few feet from the entrance of the tube,

and that then the liquid particles begin' to intermingle and

cross each other's paths in the most intricate manner. To
render this phenomenon visible, he injected a fine stream of

colored liquid at the inlet of the pipe and observed its further

motion, and found that the greater the velocity the nearer to

the inlet was the point where the breaking up of the parallel-

ism of flow began. The hypothesis of laminated flow is,

nevertheless, the simplest theoretical basis for establishing

practical formulae, and the resistance offered by pipes to the

flow of liquids in them will therefore be attributed to the fric-

tion of the edges of the laminae against the inner surface of

the pipe.*
The amount of this resistance (often called skin-friction)

for a given extent of rubbing surface is by experiment found

1. To be independent of the pressure between the liquid and

the solid
;

2. To vary nearly with the square of the relative velocity /

3. To vary directly with the amount of rubbing surface;
4. To vary directly with the heaviness [y, 409] of the

liquid.

Hence for a given velocity v, a given rubbing surface of

area = S, and a liquid of heaviness y, we may write

v*
Amount of friction (force) = fSy ^ , (1)

Tog

in whichf is an abstract number called the coefficient of fluid

friction, to be determined by experiment. For a given liquid,

Driven character (roughness) of surface, and small range of

velocities it is approximately constant. The object of intro-

v*

ducing the %g is not only because ^ is a familiar and useful
*&

function of v, but that v* -r- 2^ is a height, or distance, and there-

fore the product of S (an area) by v* -r- 2g is a volume, and this

volume multiplied by y gives the weight of an ideal prism of

* The resistance is really due both to the friction of the water on the sides of
the pipe and to the friction of the water particles on each other. The assump-
tion that it is due to the former action alone simply affects the mathematical
form of our expressions, without invalidating their accuracy, since the value of

/ is in any case dependent on experiment. See Engineering News, July-Dec.
1901, pp. 332 and 476.
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the liquid; hence S^- y is &force and ymust be cm abstract

number and therefore the same in all systems of units, in any

given case or experiment.
In his experiments at Torquay, England, the late Mr. Froude

found the following values for/*, the liquid being salt water,

while the rigid surfaces were the two sides of a thin straight

wooden board
-fa

of an inch thick and 19 inches high, coated

or prepared in various ways", and drawn edgewise through the

water at a constant velocity, the total resistance being measured

by a dynamometer.

511. Mr. Froude's Results. (Condensed.) [The velocity
was the same = 10 ft. per sec. in each of the following cases.

For other velocities the resistance was found to vary nearly as

the square of the velocity, the index of the power varying
from 1.8 to 2.16.]

TABLE H.

Character of Surface.
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to,) the frictioDs on tbe -edges are the only additional forces as

compared with the system in Fig.

534. Let w denote the length
of the wetted perimeter of the

base of this lamina (in case of a

pipe running full, as we here

postulate, the wetted perimeter
is of course the whole perimeter*
but in the case of an open chan"

nel or canal, w is only a portion

of the whole perimeter of the

cross-section). Then, since the

area of rubbing surface at the edge is S wds', the total fric-

tion for the lamina is [by eq. (1), 510] =fwy (v*
~-

2g)ds'.

Hence from vdv = (tan. accel.) X ds, and from (tan. accel.)=
[^"(tang. compons. of acting forces)]

~
(mass of lamina), we

have

Fp _ F(p+ dp)+ Fyds' cos fwy - dsr-
:
-

=r^-f
Fyds' -r- g

As in 492, so* here, considering the simultaneous advance of

all the laminae lying between any two sections m and n during
the small time dt, putting ds' = ds, and dsr

cos = dz (see

Fig. 568), we have, for any one lamina,

"Now conceive an infinite number of equations to be formed

like eq. (1), one for each la-

mina between n and m, for the

same dt, viz., a dt of such

length that each lamina at the

ond of dt will occupy the

same position, and acquire the

same values of v, z, and p9

that the lamina next in front

had at the beginning of the FIO. 568.

dt (this is the characteristic of a steady flow]. Adding up

_J DATU"^
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the corresponding terras of all these equations, we have (re

membering that for a liquid y is the same in all laminae^

tfds; . (2)1

i.e.? after transposition and writing E for F~ w, for brevity,

This is Bernoulli's Theorem, for steadyflow of a liquid tot,

apipe ofslightly varying sectional area F, and internalperi/m-
eter w, taking into account no resistances or friction, except
the "

skin-friction," or u
fluid-friction," of the liquid and sides

of the pipe.

Resistances due to the internal friction of eddying occasioned

by sudden enlargements of the cross-section of the pipe, by
elbows, sharp curves, valve-gates, etc., will be mentioned later.

The negative term on the right in (3) is of course a height or

head (one dimension of length), as all the other terms are such,

and since it is the amount by which the sum of the three heads

(viz., velocity-head, pressure-head, and potential head) at mt

the down-stream position, lacks of being equal to the sum of

the corresponding heads at n, the up-stream position or section,

we may call it the "Loss of Head" due to skin-friction between

n and m\ also called friction-head* or resistance-heady or

height of resistance.

The quantity H = F -f- w = sectional-area -f- wetted-pe

rimeter, is an imaginary distance or length called the Hydraur
lie Mean Radius, or Hydraulic Mean Depth, or simply

hydraulic radws of the section. For a circular pipe of diam-

eter = d~

while for a pipe of rectangular section,

r>_~
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513. Problems involving Friction-heads; and Examples ol

Bernoulli's Theorem with Friction.

PROBLEM I. Let the portion of pipe between n and m be

level, and of uniform cir-
*&>%

cular section and diameter nlSSMt
= d. The jet at m dis-

charges into the air, and

has the same sectional area,

F= J7rd*,as the pipe; then

the pressure-head at m is

34 feet (for

m,

^^
FIG. 569.

water), and the velocity-

head at m is = that at n, since vm = vn . The height of the

water column in the open piezometer at n is noted, and = yn

(so that the pressure-head at n is^ = yw+5); while the
Y

length of pipe from n to m is = I.

Knowing I, d, yn ,
and having measured the volume Q, of

flow, per unit of time, it is required to jmd theform of the

friction-bead and the value off. From

Fmvm = Q, or %nd*vm Q, . . . . (1)

vm becomes known. Also, vm is known to be = vn ,
and the

velocity at each ds is v = vm , since F (sectional area) is con-

stant along the pipe, and Fv = Q. The hydraulic radius is

R= \d\ (2)

the same for all the ^s between n and m.

Substituting in eq. (3) of 512, with the horizontal axis of

the pipe as a datum for potential heads, we have

i.e., since J^d8 l=. length of pipe from n to m, thefriction-

headfor a pipe of length = Z, and uniform circular section

</ diameter = d, reduces to theform
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I V*
Friction-head = ^f-j ~ ? (4)

where v = velocity of water in the pipe, being in this case

also = vm and = vn . Hence this friction-head varies directly

cbs the length and as the square of the velocity, and inversely

as the diameter ; also directly as the coefficientf.
From (3), then, we derive (for this particular problem)

Piezometer-height a$n = yn = 4f-^ . - . (5)

i.e., the open piezometer-height atn is equal to the loss of head

(all of which is friction-head here) sustained between n and the

mouth of the pipe. (Pipe horizontal.)

EXAMPLE. Kequired the value of/, knowing that d= 3 in.,

yn (by observation) = 10.4 ft., and Q = 0.1960 cub. ft. per

sec., while I = 400 ft. (n to m). From eq. (1) we find, in ft.-

Ib.-sec. system, the velocity in the pipe to be

then, using eq. (5), we determine/ to be

400 X
AA/U?K

PROBLEM II. Hydraulic Accumulator. Fig. 570. JLet the

areaFn of the piston on the left be quite large compared with

FIG. 570.

that of the pipes and nozzle. The cylinder contains a friction-
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weighted piston, producing (so long as its downward slow

motion is uniform) a fluid pressure on its lower face of an

intensity pn = L^+ ^niV] -=- Fn per unit area (pa = one

atmos.).

Hence the pressure-head at n is

where G = load on piston.

The jet has a section at m = Fm that of the small straight

nozzle (no contraction). The junctions of the pipes with each

other, and with the cylinder and nozzle, are all smoothly
rounded

;
hence the only losses of head in steady flow between

n and in are the friction-heads in the two long pipes, neglect.

ing that in the short nozzle. These friction-heads will be of

the form in eq. (4), and will involve the velocities v
l
and v

t

respectively in these pipes (supposed running full). v
l
and v

t

may be unknown at the outset, as here.

Knowing G and all dimensions and heights, we are required
to find the velocity vm of the jet, flowing into the air, and the

volume of flow, (), per unit of time, assumingf to be known
and to be the same in both pipes (not strictly true).

Let the lengths and diameters be denoted as in Fig. 570,
their sectional areasF

l
and F^ the unknown velocities in them

t;, and v
t .

From the equation of continuity [eq. (3), 490], we have

and V,= . ... (7)

To find vm i we apply Bernoulli's Theorem (with friction),

eq. (3), 512, taking the down-stream position m in the jet

close to the nozzle, and the up-stream position n just under the

piston in the cylinder where the velocity vn is practically noth-

ing. Then with m as datum plane we have

.
(8)
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Apparently (8) contains three unknown quantities, vm9 v ,

and v
a ;

but from eqs. (7) v
l
and vt can be expressed in terms

of vm ,
whence [see also eq. (6)]

or, finally,

\/*(*+)
*M / 7 ,-f? \a 1 tTT \<^

' ^ )

and hence we have also

# =^>, ....... (11)

EXAMPLE. If we replace the force G of this problem by
the thrust P exerted along the pump-pist n of a steam fire-

engine, we may treat the foregoing as a close approximation
to the practical problem of such an apparatus, the pipes being
consecutive straight lengths of hose, in which (for the probable

values of -y, and v^) we may take/*= .0075 (see
"
Fire-streams,"

by Geo. Ellis, Springfield, Mass.).* (Strictly, f varies somewhab

with the velocity; see 517.) Let P = 12000 Ibs., and the

piston-area atn = Fn = 12 sq. in. = J sq. ft. Also, leth 20

ft., and the dimensions of the hose be as follows :

dt
=B 3 in., dt

= 2 in., dn (of nozzle) = 1 in.;

With the foot-pound-second system of units, we DOW have

teq.(10)]

See 578.
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_ /
"V
_ /2 X 32.2 X 404" .

-59 + 5 -62

vm = 60.0 ft. per sec. If this jet were directed vertically

v *

upward it should theoretically attain a height = -- = nearly

56 feet, but the resistance of the air would reduce this to about

40 or 45 ft.

We have further, from eq. (1),

Q= FmVm = f(4)*X
60' = 3 -2T Cllb- ft P6r S6C-

If there were no resistance in the hose we should have, from

4970,

vm= +
A~j
= 1/2 X 32.2 X 404= 161.3 ft. per sec.

513a. Influence of Changes of Temperature. Although Poi-

seuille and Hagen found that with glass tubes of very small

diameter the flow of water was increased threefold by a rise of

temperature from to 45 Cent., it is unlikely that with com-

mon pipes the rate of flow is appreciably affected by the ordi-

nary fluctuations of temperature ;
at any rate, experiments of

sufficient precision are wanting, as regards such an influence.

See Mr. Hamilton Smith's "
Hydraulics," p. 16, where he

says :
u
Changes by variation in T (temperature) will probably

only be appreciable with small orifices, or with very low heads

for orifices or weirs."

514. Loss of Head in Orifices and Short Pipes. So long as the

steady flow between two localities n and m takes pJace in a pipe

having no abrupt enlargement or diminution of section, nor

sharp curves, bends, or elbows, the loss of head may be ascribed

solely to the surface action (or
"
skin-friction") between water.

and pipe ;
but the introduction of any of the above-mentioned

features occasions eddying and internal disturbance, and fric-

tion (and consequent heat) ; thereby causing further deviations
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from Bernoulli's Theorem
; i.e., additional losses of head> of

heights of resistance.

From the analogy of the form of a friction-head in a long

pipe [eq. (4), 513], we may assume that any of the above

heights of resistance is proportional to the square of the veloc-

ity, and may therefore always be written in the form

1

j
Loss of Head due to any \ _ ~

tf_
.

(
cause except skin-friction j

~~

2g
'

in which v is the velocity of the water in the pipe at the sec-

tion where the resistance occurs
;

or if, on account of an

abrupt enlargement of the stream-section, there is a correspond-

ing diminution of velocity, then v is always to denote this

diminished velocity (i.e.,
in the down-stream section). This

velocity v is often an unknown at the outset.

C, corresponding to the abstract factor 4/ -- in the height of
Ci

resistance due to skin-friction [eq. (4), 513], is an abstract

number called the Coefficient of Resistance, to be determined

experimentally ;
or computed theoretically, where possible.

Roughly speaking, it is independent of the velocity, for a given

fitting, casing, pipe-joint, elbow, bend, valve-gate at a definite

opening, etc., etc.

515. Heights of Resistance (or Losses of Head) Occasioned by
Short Cylindrical Tubes. When dealing with short tubes dis-

charging into the air, in 507, deviations from Bernoulli's

Theorem were made good by using a coefficient of velocity 0,

dependent on experiment. This device answered every pur

pose for the simple circumstances of the case, as well as for

simple orifices. But the great variety of possible designs of a

3ompound pipe (with skin-friction, bends, sudden changes of

cross section, etc.) renders it almost impossible, in such a pipes

to provide for deviations from Bernoulli's Theorem by a single

coefficient of velocity (velocity of jet, that is) for the pipe as a

whole, since new experiments would be needed for each new

design of pipe. Hence the great utility of the conception of
u
loss of head," one for each source of resistance.
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If a long pipe issues from the plane side of a reservoir and

the corners of the junction are not rounded [see Fig. 571], we
shall need an expression for

"}'
the loss of head at the en-

7J? trance, E, as well as that

due to the skin-friction in the

pipe. But, whatever the velocity, v, in the pipe proves to

3e, influenced as it is both by the entrance loss of head and

the skin-friction head (in applying Bernoulli's Theorem), the

v*
loss of head at E, viz., C,E -, will be just the same as if efflux

y

took place through enough of the pipe at E to constitute a
4 short pipe," discharging into the air, under some head h
different from h' of Fig. 571) sufficient to produce the same

velocity v. But in that case we should have

or = aA
y

(1)

(See 507 and 508, being the "
coefficient of velocity," and

h the head, in the cases mentioned in those articles.)

We therefore apply Bernoulli's Theorem to the cases of

those articles (see Figs, 560 and 564) in order to determine the

loss of head due to the short pipe and obtain (with m as datum
level for potential heads)

Now the v of eq. (2) is equal to the vm of the figures referred

to, and CE is a coefficient of resistance for the , short pipe, and

we now desire its value. Substituting for
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its value
aA from eq. (1), we have

Hence when a 90 (i.e.,
the pipe is ~] to the inner reser-

voir surface), we derive

S

(0.815)

-1 = 0.505; . . l> = 90;] . .
8

and similarly, for other values of a (taking from the table,

508), we compute the following values of C^ (corners not

v9

rounded) for use in the expression for "
loss of head," C# :

Fora= 90

C*=.5Q5
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Each loss of head (or height of resistance) will be of the form

C (except skin-friction head in long pipes, viz., 4/ --J,

the v in each case being the velocity, known or unknown, in

that part of the pipe where the resistance occurs (and hence
is not necessarily equal to vm or vn).

517. The Coefficient,/, for Friction of Water in Pipes. See

eq. (1), 510. Experiments* have been made by Weisbach,

Eytelwein, Darcy, Bossut, Prony, Dubuat, Fanning, and oth-

ers, to determine f in cylindrical pipes of various materials

(tin, glass, zinc, lead, brass, cast and wrought iron) of diameters

from J inch up to 36 inches. In general, the following deduc-

tions may be made from these experiments :

1st. f decreases when the velocity increases
; e.g., in one

case with the

same pipe/ was = .0070 for v = 2' per sec.,

while/ was = .0056 for v = 20' per sec.

2dly. / decreases slightly as the diameter increases (other

things being equal);

e.g., in one experiment/ was = .0069 in a 3-in. pipe,

while for the same velocity/ was = .0064 in a 6-in. pipe.

3dly. The condition of the interior surface of the pipe
affects the value of/ which is larger with increased roughness
of pipe.

Thus, Darcy found, with a, foul iron pipe with d= 10 in.

and veloc. = 3.67 ft. per sec., the value .0113 for/; whereas

Fanning (see p. 238 of his
"
Water-supply Engineering"), with

a cement-lined pipe and velocity of 3.74 ft. per sec. and d =
20 inches, obtained/= .0052.

Weisbach, finding the first relation very prominent, pro-

posed the formula

/ =0.00359 +

when the velocities are great, while Darcy, taking into account

both the 1 st and 2d relations above, writes (see p. 585, Ran-

kine's Applied Mechanics)
* Among the most important recent experiments are those of Prof. G. S. Wil-

liams (with Messrs. Hubbell and Feukell); and of Drs. Saph and Schoder. See
Trans. Am. Soc. C. E. for April, 1902, and Proc. Am. Soc. C. E. for May 1903.

Hering and Trautwine's book on Kutter's Formula contains many experi-
mental data on pipes.
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/= .0043 fl + 1 .

1
.

I-L
"9 X diam. in ft.J~

.001

ft. per sec. fi +L 18 X diam. in ft.

For practical purposes, Mr. J. T. Fanning has recommended,
and arranged in an extensive table (pp. 242-246 of his book

just mentioned), values* off'for clean iron pipe, of diameters

from inch to 96 inches, and for velocities of 0.1 ft. to 20 ft

per second. Of this the. table opposite is an abridgment, in-

serted with Mr. Fanning's permission, for use in solving nu-

merical problems.
In obtaining/

1

for slightly tuberculated and for foul pipes,

the recommendation, of Mr. Fanning seem to justify the fol-

lowing rules :

For slightly tuberculated pipes of diams. ft.

we should add 23$
and forfoul pipes of same size

1ft. 2 ft

16$
38$

4ft.

13$
25$

of the/ for clean pipes, to itself. For example, if/*= .007

for a certain %-h. pipe when clean, with velocity = 0.64 ft. per

sec., we have/= .007 X 1.72 = .01204 when it is foul.

For first approximations a mean value of f= .006 may be

employed, since in some problems sufficient data may not be

known in advance to enable us to take/"from the table.

EXAMPLE. Fig. 572. In the steady pumping of crude

petroleum weighing y = 55 Ibs. per cubic foot, through a six-

inch pipe 30 miles long,
to a station 700 ft. higher
than the pump, it is

found that the pressure
in the pump cylinder at"

n, necessary to keep up
a velocity of 4.4 ft. per

sec. in the pipe, is 1000
Ibs. per sq. inch. Kequired the coefficient f in the pipe. A.S

all losses except the friction-head in the pipe are insignificant,
the latter only will be considered. The velocity-head at n may

* Caution. For riveted wrought-iron pipe, with projecting rivet-teads
and lapping edges, the values of/may be nearly double those of this table.

See Eng. News, Dec. '95, p. 415
; also in Jan., etc., '96, pp. 59, 74, 193, 393.
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be pat = ;
the jet at m being of the same size as the pipe,

the velocity in the pipe is = vm ,
and therefore vm 4.4 ft. per

sec. Notice that m, the down-stream section, is at a higher
level than n.

From Bernoulli's Theorem, 516, we have, with n as a

datum level,

Using the ft., lb., and sec., we have

h = 700 ft., vm
*
-^ fy = 0.30 ft.,

while

, 14.7 X 144 , pn 1000 X 144
o =- - = 38.47 ft., and =-

?5
- =

55 y

Hence, in eq. (1),

0.30+ 38.5 + 700 = 2618 - 4/.
^

..

ft.

Solving for/", we have f = .00485 (whereas for water, with

v = 4.4 ft. per sec. and d = ft., the table, p. 709, gives

f= .00601.

If the Y ^ the petroleum had been 50 Ibs. per cubic foot,

instead of 55, we should have obtained * = 2880 feet and f
= .0056.

18. Flow through a Long Straight Cylindrical Pipe, including

k>th friction-head and entrance loss of head (corners not rounded);
reservoir large. Fig. 573.

The jet issues directly

from the end of the pipe,

in parallel filaments, into

the air, and therefore

::-v has same section as pipe;
FIG. 573.

~
i t f ,1 . ,

hence, also, vm of the jet
= v in the pipe (which is assumed to be running full), and i&



COEFFICIENT OF LIQUID FRICTION. 711

therefore the velocity to be used in the loss of head t,E - - at

the entrance ^( 515),

Taking m and n as in figure and applying Bernoulli's

Theorem ( 474), withm as datum level for the potential heads

zm and zn ,
we have

Three different problems may now be solved :

First, required the head h to keep up a flow of given volume
= Q per unit of time in a pipe of given length I and diameter

= d.

From the equation of continuity we have

40
/. veloc. ofjet, which = veloc. in pipe, = vm = ^-. . . (2)

7t(L

Having found vm = v, from (2), we obtain from (1) the re-

quired A, thus :

Now E = 0.505 if a = 90 (see 515), while / may be

taken from the table, 517, for the given diameter and com-

puted velocity [ym = v, found in (2)], if the pipe is clean; if

not clean, see end of 517, for slightly tuberculated and for

foul pipes.*

Secondly. Given the head A, and the length I and diameter

d of pipe, required the velocity in the pipe, viz., -y,
= vm ,

that

of jet; also the volume delivered per unit of time, Q. Solv-

ing eq. (1) for vm ,
we have

vm = - -Vtojh; ... (4)

* "
Hydraulic Tables," for friction-head of water in pipes, by Prof. G.

S. Williams and Mr. Allen Hazen (New York, 1905, John Wiley & Sons),

cover the cases of pipes in various states of tuberculation, etc.
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whence Q becomes known, since

(5)

. The first radical in (4) might for brevity be called

a coefficient of velocity, 0, for this case. Since the jet has the

same diameter as the pipe, this radical may also be called a

coefficient of effiux.~\

Since in (4)/"depends on the unknown v as well as on the

known d, we must first put/" = .006 for a first approximation
for vm ;

then take a corresponding value for f and substitute

again ;
and so on.

Thirdly, knowing the length of pipe and the head A, we
wish to find the proper diameter d for the pipe to deliver a

given volume Q of water per unit of time. Now

which substituted in (1) gives

that is,

.'. d = 1

As the radical contains d, we first assume a value for d,

with/= .006, and substitute in (7). With the approximate
7alue of d thus obtained, we substitute again with a new value

for f based on an approximate v from eq. (6) (with d = its

first approximation), and thus a still closer value for d is de-

rived
;
and so on. (Trautwine's Pocket-book contains a table

of fifth roots and powers.) If I is quite large, we may put
d = for a first approximation. In connection with these

examples, see last figure.
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EXAMPLE 1. What head h is necessary to deliver 120 cub.

ft. of water per minute through a clean straight iron pipe 140

ft. long and 6 in. in diameter ?

Prom eq. (2), with ft., lb., and sec., we have

v = vm = [4 X WJ *- <*)
3= 10 -18 ft - Per sec -

Now for v = 10 ft. per sec. and d = \ ft., we find (in table,

517) /= .00549
;
and hence, from eq. (3),

of which total head, as we may call it, 1.60 ft. is used in pro-

ducing the velocity 10.18 ft. per sec. (i.e., vm
*

-r- %g = 1.60 ft.),

while 0.808 ft. [= C^^j is lost at the entrance ^(with a =

90), and 9.82 ft. (friction-head) is lost in skin-friction.

EXAMPLE 2. [Data from Weisbach.] Required the de-

livery, Q, through a straight clean iron pipe 48 ft. long and

2 in. in diameter, with 5 ft. head (= h). v, =vm , being un-

known, we first take/*= .006 and obtain [eq. (4)]

/

1+ .505

= 6.18 ft. per sec.

From the table, 517, for v = 6.2 ft. per sec. and d = 2 in.
f

/= .00638, whence

. 4 X .00638 X 48 ^2 x 32 '2 x 5

1 + .505 -| j

= 6.04 ft. per sec.,

which is sufficiently close. Then, for the volume per second,

Q = ~ d?vm = |7r(i-)
2
6.04 0.1307 cub. ft. per sec.
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[Weisbach's results in this example are

vm = 6.52 ft. per sec.

and Q = 0.1420 cub. ft. per sec.,

but his values for/ are slightly different.]

EXAMPLE 3. [Data from Weisbach.] What must be the

diameter of a straight clean iron pipe 100 ft. in length, which

is to deliver Q of a cubic foot of water per second under

5ft. head (= A)?

With/= .006 (approximately), we have from eq. (7), put-

ting d = under the radical for a first trial (ft, lb., sec.),

4:0
whence v = - = 7 ft. per sec.

nd

For d = 3.6 in. and v = 7 ft. per sec., we find/= .00601
;

whence, again,

-, s /L505^X .30 +4 X .00601 X 100 ( x"?V n oA* .=
V~ 2 X 32.2 X 5 ""VirV

and the corresponding v = 6.06 ft.

For this d and v we fiud/= .00609, whence, finally,

[Weisbach's result is d = .318 ft.]

519. Ch6zy's Formula. If, in the problem of the preceding
paragraph, the pipe is so long, and therefore I : d so great^
that 4/7 -r- d in eq. (3) is very large compared with 1 -f E)
we may neglect the latter term without appreciable error;
whence eq. (3) reduces to

h = 4 ~
-
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which is known as Cheztfs Formula. For example, if I = 1000

ft. and d = 2 in. =
-J- ft., and/approx. .006, we have 4=f-- =

cL

144, while 1 + CE for square corners 1.505 only.

If in (8) we substitute

(8) reduces to

so that for a very long pipe, consideringf as approximately

constant, we may say that to deliver a volume = Q per unit

of time through a pipe of given length = I,
the necessary head,

A, is inversely proportional to the fifth power of the diameter.

And again, solving (9) for Q, we find that the volume con-

veyed per unit of time is directly proportional to the fifthpower

of the square root of the diameter / directly proportional to

the square root of the head ; and inversely proportional to the

square root of the length. (Not true for short pipe ;
see above

example.)
If we conceive of the insertion of a great number of piezom-

eters along the long straight pipe, of uniform section, now
under consideration, the summits of the respective water

columns maintained in them will lie in a straight line joining
the discharging (into the air) end of the pipe with a point in

the reservoir surface vertically over the inlet extremity (prac-

tically so), and the "
slope" of this line (called the Hydraulic

Grade Line or Gradient)^ i.e., the tangent (or sine
;
the angle

is so small, generally) of the angle which it makes with the

horizontal is =
,
and may be denoted by s. Putting also

i

\d R = the hydraulic radius of the section of the pipe, and

vm = v = velocity in pipe, we may transform eq. (8) into

or, v = A(s)*9
. . .(10)
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which is the form by which Mr. Hamilton Smith (see 506)

interprets all the experiments quoted by him on long pipes.

As to notation, however, he uses n for A, and r for R. With

the foot and second as units, the quantity A (not an abstract

number) varies approximately between 60 and 140. For a

given A we easily tind the correspondingf from the relation

f=-^. If the pipe discharges under water, h = the differ-
A

ence of elevation of the two reservoirs. If the pipe is not

horizontal, the use of the length of its horizontal projection

instead of its actual length in the relation s = - occasions an

error, but it is in most cases insignificant.

Similarly, if a steady flow is going on in a long pipe of uni-

form section, at the extremities of any portion of which we
have measured the piezometer heights (or computed them

from the readings of steam or pressure gauges), we may apply

eq. (9), putting for A the difference of level of the piezometer

summits, and for I the length of the pipe between them.

520. Coefficient / in Fire-engine Hose.* Mr. Geo. A. Ellis,

C.E., in his little book on "
Fire-streams," describing experi-

ments made in Springfield, Mass., gives a graphic comparison

(p. 45 of his book) of the friction-heads occurring in rubber

hose, in leather hose, and in clean iron pipe, each of 2^- in.

diameter, with various velocities; on which the following state-

merits may be based : That for the given size of hose and

pipe (d 2-J in.) the coefficient f for the leather and rubber

hose respectively may be obtained approximately by adding to

f for clean iron pipe (and a given velocity) the per cent of

itself shown in the accompanying table.

EXAMPLE. For a clean iron pipe

2-J in. diam., for a velocity 10 ft.

per sec., we have, from 517, f =.

.00593. Hence for a leather hose of

the same diameter, we have, for -y =
10 ft. per sec.,

Velocity
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621. Bernoulli's Theorem as an Expression of the Conservation

of Energy for the Liquid Particles. In any kind of flow with-

out friction, steady or not, in rigid immovable vessels, the

aggregate potential and kinetic energy of the whole mass of

liquid concerned is necessarily a constant quantity (see 148

and 149), but individual particles (as the particles in the sink-

ing free surface of water in a vessel which is rapidly being

emptied) may be continually losing potential energy, i.e.,

reaching lower and lower levels, without any compensating in-

crease of kinetic energy or of any other kind
;
but in a steady

flow withoutfriction in rigid motionless vessels, we may state

that the stock of energy of a given particle, or small collection

of particles, is constant during the flow, provided we recognize
a third kind of energy which may be called Pressure-energy,

or capacity for doing work by virtue of internal fluid pressure ;

as may be thus explained :

In Fig. 574 let water, with a very slow motion and under a

pressure p (due to the reservoir-head -f- atmosphere-head be-

hind
it), be admitted behind a pis-

ton 1;he space beyond which is

k. vacuous. Let s length of

stroke, and F= the area of pis-

ton. At the end of the stroke,

^ >^ by motion of proper valves, com-

7/ VAC - munication with the reservoir is

Fia 574>
cut off on the left of the piston

and opened on the right, while the watexr in the cylinder now on

the left of the piston is put in communication with the vacu-

ous exhaust-chamber. As a consequence the internal pressure

of this water falls to zero (height of cylinder small), and on

the return stroke is simply conveyed out of the cylinder,

neither helping nor hindering the motion. That is, in doing
the work of one stroke, viz.,

W= force X distance = Fp X s = Fps,

a volume of water V= Fs, weighing Fsy (Ibs. or other unit),

has been used, and, in passing through the motor, has experi-

enced no appreciable change in velocity (motion slow), and
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therefore no change in kinetic energy, nor any change of level,

and hence no change in potential energy, ~but it has given up
all its pressure. (See 409 for y.)

Now TF, the work obtained by the consumption of a weight
= G = Vy of water, may be written

W= Fps = Fsp = Vp = Vy. = G. . . (1)

Hence a weight of water = O is capable of doing the work

G X - = G- X head due to pressure p, i.e.,
= G X pressure-

head^ in giving up all its pressurep or otherwise, while still

having a pressure p, a weight G- of water possesses an amount

of energy, which we may call pressure-energy, of an amount

= G'
,
where y the heaviness

( Y) of water, and - = a
Y Y

height, or head, measuring the pressure p ; i.e., it equals the

pressure-head.

We may now state Bernoulli's Theorem without friction in

a new form, as follows : Multiplying each term of eq. (7),

451, by Qy, the weight of water flowing per second (or other

time-unit) in the steady flow, we have

Qr%f+Qr^+ Qr^=Qr^+Qrf+Qrzn- (2)

But Qy -2- = _M2_-ym
2 =

-J- X mass flowing per time-unit X
2g 2 g

square of the velocity = the kinetic energy inherent in the

volume Q of water on passing the section m, due to the veloc-

ity at m. Also, Qy = the pressure-energy of the volume

Q at m, due to the pressure at m
;
while Qyzm = the potential

energy of the volume Q at m due to its height zm above the

arbitrary datum plane. Corresponding statements may be

made for the terms on the right-hand side of (2) referring to

the other section, n, of the pipe. Hence (2) may be thus read :

The aggregate amount of energy (of the three kinds mentioned)
resident in the particles of liquid when passing section m is
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equal to that when passing any other section, as n ; in steady

flow withoutfriction in rigid motionless vessels y that is, the

store of energy is constant.

522. Bernoulli's Theorem with Friction, from the Standpoint of

Energy. Multiply each term in the equation of 516 by Qy,
as before, and denote a loss of head or height of resistance due

to any cause by hr ,
and we have

~+ Or*. - (3)

Each term Qyhr (e.g.^ Qy 4f due to skin-friction in a
d 2(/

long pipe, and Qy CE - due to loss of head at the reservoir

entrance of a pipe) represents a loss ofenergy, occurring between

any position n and any other position m down-stream from n,

but is really still in existence in the form of heat generated by
the friction of the liquid particles against each other or the

sides of the pipes.

As illustrative of several points in this connection, consider

two short lengths of pipe in

Fig. 575, A and B, one offering

a gradual, the other a sudden,

enlargement of section, but

otherwise identical in dimen-

sions. We suppose them to

occupy places in separate lines

of pipe in each of which a

steady flow with full cross-sec-

tions is proceeding, and so reg-

ulated that the velocity and in-

ternal pressure at n, in A, are

equal respectively to those at n FWK 575.

in B. Hence, if vacuum piezometers be inserted at 71, the
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smaller section, the water columns maintained in them by the

internal pressure will be of the same height, -?, for both A

and B. Since at m, the larger section, the sectional area is the

same for both A and B, and since Fn in A = Fn in B, so that

QA = QBI hence vm in A = vm in B and is less than vn .

Now in B a loss of head occurs (and hence a loss of energy)

between n and m, but none in A (except slight friction-head);

hence in A we should find as much energy present at m as ai

n, only differently distributed among the three kinds, while at

m in B the aggregate energy is less than that at n in B.

As regards kinetic energy, there has been a loss between n

and m in both A and B (and equal losses), for vm is less than

vn . As to potential energy, there is no change between n and

m either in A or B, since n and m are on a level. Hence if

the loss of kinetic energy in B is not compensated for by an

equal gain of pressure-energy (as it is in A), the pressure-head

)
at m in B should be less than that

f )
atmin A. Ex-

IB \y)A
periment shows this to be true, the loss of head being due to

the internal friction in the eddy occasioned by the sudden en-

largement ;
the water column at m in B is found to be of a

less height than that at m in A, whereas at n they are equal.

(See p. 467 of article "
Hydromechanics" in the Ency. Bri-

tannica for Mr. Froude's experiments.)
In brief, in A the loss of kinetic energy has been made up

in pressure-energy, with no change of potential energy, but in

B there is an actual absolute loss of energy Qyhr ,
or

v
2

= QyC, -^, suffered by the weight Qy of liquid. The value

of C in this case and others will be considered in subsequent

paragraphs.

Similarly, losses of head, and therefore losses of energy,
occur at elbows, sharp bends, and obstructions, causing eddies

and internal friction, the amount of each loss for a given

weight, ,
of water being = Gh r = #C-- ;

hr
= C being

the loss of head occasioned by the obstruction
( 474). It is
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therefore very important in transmitting water through pipes

for purposes of power to use all possible means of preventing
disturbance and eddying among the liquid particles. E.g.,

sharp corners, turns, elbows, abrupt changes of section, should

be avoided in the design of the supply-pipe. The amount of

the losses of head, or heights of resistance, due to these various

causes will now be considered (except skin -friction, already

treated). Each such loss of head will be written in the form

v
2

C ,
and we are principally concerned with the value of the

2^
abstract number

,
or coefficient of resistance, in each case.

The velocity v is the velocity, known or unknown, where the

resistance occurs; or if the section of pipe changes at this

place, then v velocity on the down-stream section. The late

Professor "Weisbach, of the mining-school of Freiberg, Saxony,
was one of the most noted experimenters in this respect, and

will be frequently quoted.

523. Loss of Head Due to Sudden (i.e., Square-edged) Enlarge-

ment. Borda's Formula, Fig. 576. An eddy is formed in the

i angle with consequent loss of energy. Since

S? each particle of water of weight = G
l , arriving

:g with the velocity v
l
in the small pipe, may be

|L^ jfi^lj considered to have an impact against the base

FIO. 576. of the infinitely great and more slowly moving
column of water in the large pipe, and, after the impact,
moves on with the same velocity, -ya ,

as that column, just as

occurs in inelastic direct central impact ( 60), we may find

the energy lost by this particle on account of the impact by

eq. (1) of 138, in which, putting M^ = G
t

-f- </,
and M^

*TI -T- g = mass of infinitely great body of water in the large

pipe, so that J/
2
= 00, we have

Energy lost by particle = 6r
l

^ ~ v
*>-

t . . r

and the corresponding

Loss of head = ^)!,
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which, since F^ = F^ , may be written

['F "l*^
9

Loss of head in sudden enlargement -=f 1 ~.

That is, the coefficient C for a sudden enlargement is

. (2)

FI and F9
are the respective sectional areas of the pipes. Eq.

(2) is Bordtfs Formula.

NOTE. Practically, the flow cannot always be maintained

with full sections. In any case, if we assume the pipes to be

running full (once started so), and on that assumption compute
the internal pressure at F

l ,
and find jt to be zero or negative,

the assumption is incorrect. That is, unless there is some

pressure at F
1
the water will not swell out laterally to fill the

large pipe.

EXAMPLE. Fig. 577. In the short tube AB containing a

sudden enlargement, we have given Fy
= Fm = 6 sq. inches,

F
}

4 sq. inches, and h 9 feet. Ee-

quired the velocity of the jet at m (in

the air, so that j?w -- y = ~b 34 ft.), if

the only loss of head considered is that

due to the sudden enlargement (skin-

friction neglected, as the tube is short
;

the reservoir entrance has rounded cor-

FIG. 577.
ners). Applying Bernoulli's Theorem

to m as down-stream section, and n in reservoir surface as up-
stream position (datum level'at m), we have

Bat, here, va
= vm ;

From eq. (3) we have

(5)

C = (!-!) = 0.25,
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and finally (ft., lb., sec.)

vm = \ V* X 32.2 X 9 = 0.895 i/2x 32.2x9

= 21.55 ft. per sec.

(The factor 0.895 might be called a coefficient of velocity for

this case.) Hence the volume of flow per second is

Q = Fmvm = ylr X 21.55 = 0.898 cub. ft. per sec.

We have so far assumed that the water fills both parts of the

tube, i.e., that the pressure^, at F
l ,

is greater than zero (see

foregoing note). To verify this assumption, we compute j?,

by applying Bernoulli's Theorem to the centre of F
t
as down-

stream position and datum plane, and n as up-stream position,

with no loss of head between, and obtain

But since F
l
v

l
= Fj)t ,

we have

and hence the pressure-head atF
l (substituting from equations

above) is

and /. p l
= fj of 14.7 = 11.6 Ibs. per sq. inch, which is

greater than zero
;
hence efflux with the tube full in both parts

can be maintained under 9 ft. head.

If, with F
l
and F^ as before (and .*.

), we put p l
= 0, and

solve for A, we obtain h = 42.5 ft. as the maximum head

under which efflux with the large portion full can be secured.

524. Short Pipe, Square-edged Internally. This case, already
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treated in 507 and 515 (see Fig, 578 ;
a repetition of 560),

presents a loss of head due to the sudden enlargement from

the contracted section at iri (whose sec-

tional area may be put = CF, C being
an unknown coefficient, or ratio, of

v
,x i contraction) to the full section F of

a?_L:r the pipe. From 515 we know that

FIG. 578.

^~Ifr^^^ the loss of head due to the short pipe
^^^. v 2

<m. is Ar = C*|j (for a = 90), in which

E = 0.505
;
while from Borda's For-

[~ ff
1

~~la

mula, 523, we have also E = -^ 1 . Equating these,

we find the coefficient of internal contraction at m' to be

=== = 0.584,

or about 0.60 (compare with 0= .64 for thin-plate contrac-

tion, 495). It is probably somewhat larger than this (.584),

since a small part of the loss of head, Ar ,
is due to friction at

the corners and against the sides of the pipe.

By a method similar to that pursued in the example of

523, we may show that unless A is leas than 40 feet, about,

the tube cannot be kept full, the discharge being as in Fig.

551. If the efflux takes place into a "
partial vacuum," this

limiting value of h is still smaller. Weisbach's experiments
confirm these statements (but those in the C. U. Hyd. Lab.

seem to indicate that the limiting value for A in the first case

is about 50 ft.).

525. Diaphragm in a Cylindrical Pipe. Fig. 579. The dia-

phragm being of "thin plate,"

let the circular opening in it

(concentric with the pipe) have

an area = F, while the sectional

area of pipe Beyond F, the FIG. 579.

stream contracts to a section of area = CF=F
l ,
in enlarging
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which to Jill the section F^ ,
of pipe, a loss of head occurs

which by Borda's Formula, 523, is

where v
a
is the velocity in the pipe (supposedfull). Of course

F
l (or CF) depends on F\ but since experiments are necessary

in any event, it is just as well to give the values of C itself, as

determined by Weisbach's experiments, viz. :

For?- =.10
-Pa
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no loss of head between, we have, as the principle of the ap-

paratus,

: , _= n
, .

Y *~fy

"
r

rV
whence, since Frvr = Fnvn ,

in which represents the first radical factor. should differ

W
but little from unity with -^ small (and such was found to be

J^r

the case by experiment). Its theoretical value is constant and

greater than unity. In the actual use of the instrument the

and are inferred from the observed piezometer-heights
Y Y

yr and yn (since
= yr -\- J, and = yn -\- &, b being = 34 ft.),

and then the quantity flowing per time-unit computed, from

Q = Fnvn ,
vn having been obtained from eq. (2). This pro-

cess gives a value of Q about four per cent in excess of the

truth, according to the second set of experiments mentioned

below, if vn =35 ft. per sec.
;
but only one per cent excess with

vn = 5 or 6 ft. per sec.

Experiments were made by Mr. Herschel on two meters of

this kind, in each of which Fn was only one ninth of Fr ,
a

ratio so extreme that the loss of head due to passage through
the instrument is considerable. E.g., with the smaller appara-

tus, in which the diameter at n was 4 in., the loss of head be-

tween r and m was 10 or 11 ft., when the velocity through n
was 50 ft. per sec., those at other velocities being roughly pro-

portional to the square of the velocity. In the larger instru-

ment dn was 3 ft., and the loss of head between r and m was

much more nearly proportional to the square of the velocity

than in the smaller. (E.g., with vn = 34.56 ft. per sec. the

loss of head was 2.07 ft., while with vn = 16.96 ft. per sec. it
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was 0.49 ft.) The angle of divergence was much smaller in

these meters than that in Fig. 580.

527. Sudden Diminution of Cross-section, Square Edges. Fig.
581. Here, again, the resistance is

Ua_

due to the sudden enlargement from JE:"^ -y_->^
the contracted section to the full sec- -^.-Jsj 5>j ^jr^dfz^'

1
'*

tion F^ of the small pipe, so that in ^~~~-~^-^\\

the loss of head, by Borda's formula, FIG. 581.

-im . - . a)

the coefficient

-1 = 4r-l . . . (2)

depends on the coefficient of contraction (7; but this latter is

influenced by the ratio of F^ to F
9 ,

the sectional area of the

larger pipe, C being about .60 when F^ is very large (i.e.,

when the small pipe issues directly from a large reservoir so

that F^ : FQ practically
=

0). For other values of this ratio

Weisbach gives the following table for O
9
from his own ex-

periments :

FOT F* : F = .10
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For a = 20
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. It is understood that the portion I>C of the pipe is keptfuH

by the flow
; which, however, may not be practicable unless

JBCis more than three or four times as long as

wide, and is full at the outset. A semicircular

bend occasions about the same loss of head as a

quadrant bend, but two quadrants forming a re-

verse curve in the same plane, Fig. 586, occasion a

double loss. By enlarging the pipe at the bend,

or providing internal thin partitions parallel to the

sides, the loss of head may be considerably dimin-

ished. Weisbach gives the following table com-

puted from eq. (1), but does not state the absolute size of the

pipes.

For
^-=.10
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mentioned, forming a total length of 14 feet, and tbe total loss

of head again determined through the same range of velocities.

By subtraction, the loss of head due to the elbow was then

easily found for each velocity, and assuming the form

for the loss of head, C was computed in each case.

From Fig. 586a it is seen that the stream meets with a sud-

den enlargement and a sudden diminution, of section, as well

as with the short bend
;
so that the disturbance is of a rather

complex nature.

The principal results of Prof. Bellinger's experiments, after

the adjustment of the observed quantities by
"
least squares,"

were found capable of being represented fairly well by the

formula

C = 0.621 + [2
n -

1] X 0.03T6, ... (2)

where n = [veloc. in pipe in ft. per sec.] -+- 5. The following
table was computed from eq. (2) (where v is in ft. per second) :

=
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experiments furnish us with a range of values of C in the ease

of these obstacles in a cylindrical pipe 1.6 inches in diameter,

as follows (for meaning of s, d, and <*, see figures, v is

the velocity in the full section of pipe, running full on both

sides.)

Valve-gate.
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through the continuous line of pipe in the figure, containing twr

sizes of cylindrical pipe (d = 3 in., and d
9
= 1 in.), and two

90 elbows in the larger. The flow is into the air at m, the

jet being 1 in. in diameter, like the pipe. At E, a = 90, and

the corners are hot rounded
;
at K, also, corners not rounded.

Use the ft.-lb.-sec. system of units in which g = 32.2.

Since Q = i gal.
= } - fffa = .0668 cub. ft. per sec., and

therefore the velocity of the jet

vm = v, = Q + JarOjV)'
= 12.25 ft. per sec.;

hence the velocity in the large pipe is to be v = Q-)X = 1.36

ft. per sec. From Bernoulli's Theorem, we have, with m as

datum plane,

involving six separate losses of head, for each of which there

is no difficulty in finding the proper C or/, since the velocities

and dimensions are all known, by consulting preceding para-

graphs. (Clean iron pipe.)

From 515, table, for a = 90 we have . . . C* = 0.505

517, for d.= 3 in., and v =1.36 ft. per sec.,/ = .00725
" "

d, = l in., and v,-= 12.25
" "

/,= -00613

528 (elbows), for a 90 .... Ce*.
=0.984

"
527, for sudden diminution at K we have

[since F% -s- F. = T -5- 3
a = 0.111, /. G =0.625]

<*=(.-)= 0.360.

Solving the above equation for A, then, and substituting
above numerical values (in ft.-lb.-scc.-system), we have (noting
that vm = v and v =

X
984)

.360+
4x -00

-613x20l;
TT5" -J



EXAMPLES; WITH LOSSES OF HEAD. 733

Asa (12.257 r
i , /Q0623 +.07160+ .0243)+(.360+ 5.8848 I;

64.4 L J

.-. h = 2.323 X 7.3469 = 17.09 ft. Ans. '

It is here noticeable how small are the losses of head in the

large pipe, the principal reason of this being that the velocity

in it is so small (VQ
= only 1.36 ft. per sec.), and that in gen-

eral losses of head depend on the square of the velocity

(nearly).

In other words, the large pipe approximates to being a reser-

voir in itself.

With no resistances a head h = vm
8
-r- 2g = 2.32 ft. would be

sufficient.

EXAMPLE 2. Fig. 590. With the valve-gate Fhalf raised

(i.e., s = \d in Fig. 587), required the volume delivered per
second through the clean pipe here shown. The jet issues

>
fc-80-' *

FIG. 59p.

from a short straight pipe, or nozzle (of diameter d^ = 1 in.)

inserted in the end of the larger pipe, with the inner corners

not rounded. Dimensions as in figure. Radius of each bend
= r = 2 in. The velocity vm of the jet in the air = velocity

t in the small pipe ;
hence the loss of head at

Now vm is unknown, as yet ;
but V

Q ,
the velocity in the large

r(-Y~i
pipe, is =vm \~t ; Le.,v = ^$vm . From Bernoulli's The-
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orem (m as datum level) we obtain, after transposition,

Of the coefficients concerned,f alone depends on the un-

known velocity v . For the present [first approximation],

put ................ / = .006

From 515, with a = 00, ......
'

. . E = .505

From 517, valve-gate with s = d, . , . . . F = 2.06

From 529, with a : r = 0.5, ....... B = 0.294

While at K, from 527, having

we find from table, ..... ..... C = 0.700

and/. 6r=^- l]'
=

(0.428)'. . . . i.e., C*= 0.183

Substituting in eq. (1) above, with v* = (^-)
2
vm*, we have

in which the first radical, an abstract number, might be called

a coefficient of velocity, 0, for the whole delivery pipe ;
and

also, since in this case Q, = Fmvm = F^ , may be written

Q = nFt Vfyh, it may be named a coefficient of efflux, p.

Hence

r 505 + 2.06, S x.294 + iJL^^l + . 1

.% vm= 0.421 Vfyh = 0.421 1/2x32.2x25 = 16.89 ft. per seu

(The .421 might be called a coefficient of velocity.) The
volume delivered per second is

Q = *d; vm = t?r(/T)* 16.89 = .207 cub. ft. per sec.

(As the section of the jet Fm = F^ ,
that of the short pipe or

nozzle, we might also say that .421 = // coefficient of efflux,

for we may write Q = pF^ V%gh, whence ^ = .421.)
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532, Siphons. In Fig. 532, 490, the portion HN%
is

above the level, BCy of the surface of the water in the head

reservoir BL, and yet under proper conditions a steady flow

can be maintained with all parts of the pipe full of water, in-

cluding HN^O. If the atmosphere exerted no pressure, this

would be impossible ;
but its average tension of 14.7 Ibs. per

sq. inch is equivalent to an additional depth of nearly 34 feet

of water placed upon BC. With no flow, or a very small

velocity, the pipe may be kept full if JV9 is not more than

33 or 34 feet above BG\ but the greater -y,, the velocity of

flow at N^ ,
and the greater and more -numerous the losses

of head between Z and N^ the less must be the height of N%

above BC for a steady flow.

The analytical criterion as to whether a flow can be main-

tained or not, supposing the pipe completely filled at the out-

set, is that the internal pressure must be > at all parts of

the pipe. If on the supposition of a flow through a pipe of

given design the pressure^? is found < 0, i.e. negative, at any

point \Nt being the important section for test] the supposition
is inadmissible, and the design must be altered.

For example, Fig. 532, suppose LN^N^ to be a long pipe of

uniform section (diameter = d, and length = Z),
and that under

the assumption of filled sections we have computed v4 , the

velocity of the jet at^ ; i.e.,

/
y

. . . (1)

To test the supposition, apply Bernoulli's Theorem to the

surface BC and the pointNt where the pressure isp99 velocity

?,(= vt ,
since we have supposed a uniform section for whole

pipe), and height above BC=h^. Also, let length of pipe
Whence we have

[BC being datum plane."|
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Solving for % we have

We note, then, that for^>8 to be > 0,

In the practical working of a siphon it is found that atmos-

pheric air, previously dissolved in the water, gradually collects

at N't ,
the highest point, during the flow and finally, if not re-

moved, causes the latter to cease. See reference below.

One device for removing the air consists in first allowing it

to collect in a chamber in communication with the pipe be-

neath. This communication is closed by a stop-cock after the

water in it has been completely displaced by air. Another

stop-cock, above, being now opened, water is poured in to re-

place the air, which now escapes. Then the upper stop-cock is

shut and the lower one opened. The same operation is again

necessary, after some hours.

On p. 346 of the Engineering News of November 1887 may
be found an account of a siphon which has been employed since

1875 in connection with the water-works at Kansas City. It

is 1350 ft. long, and transmits water from the river to the

artificial
" well

" from which the pumping engines draw their

supply. At the highest point, which is 16 ft. above low-water

level of the river, is placed a " vacuum chamber "
in which the

air collects under a low tension corresponding to the height,
and a pump is kept constantly at work to remove the air and

prevent the "
breaking" of the (partial) vacuum. The diam-

eter of the pipe is 24 in., and the extremity in the " well
"
dips

5 ft. below the level of low water. See Trautwine's Pocket-

book, for an account of Maj. Orozet's Siphon.

532a. Branching Pipes.* If the flow of water in a pipe is

caused to divide and pass into two others having a common
* Problems of this kind are best solved by tables or diagrams. Mr. Cof-

fin's book "
Graphical Solution of Hydraulic Problems" is useful for this

purpose.
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junction with the first, or vice versa
;
or if lateral pipes lead

out of a main pipe, the problem presented may be very com-

plicated. As a comparatively simple instance, let us suppose
that a pipe of diameter d and length I leads out of a reservoir,

and at its extremity is joined to two others of diameters d
t
and

d^ and lengths l
t
and 1

9 respectively, aod that the further extrem-

ities of the latter discharge into the air without nozzles under

heads h
l
and A, below the reservoir surface. Cal these two

pipes Nos. 1 and 2. That is, the system forms a Y in plan.

Assuming that all entrances and junctions are smoothly

rounded, so that all loss of head is due to skin-friction, it is re-

quired to lind the three velocities of flow, v
9
v

1 ,
and t>

a ,
in the

respective pipes. First applying Bernoulli's Theorem to a

stream-line from the reservoir surface through the main pipe
to the jet at the discharging end of pipe No. 1, we have

and similarly, dealing with a stream-line through the main

pipe and No. 2,

while the equation of continuity for this case is

. .... (3)

From these three equations, assuming/ the same in all pipes

as a first approximation, we can find the three velocities (best

by numerical trial, perhaps) ;
and then the volume of discharge

of the system per unit of time

(4)

533. Time of Emptying Tertical Prismatic Vessels (or Inclined

Prisms if Bottom is Horizontal) under Variable Head.

CASE I. Through an orifice or short pipe in the bottom and

opening into the air. Fig. 591. As the upper free surface,,
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of area = F f

, sinks, F' remains constant. Let z = head of

water at any stage of the emptying ;
it = s at the outset, and

= when the vessel is empty. At any

instant, Q, the rate of discharge (= vol-

ume per time-unit) depends on z and is

Q = FVfyS; . . . (1)

where /*
=

coefficient of efflux
= <pC=

coefficient of velocity X coefficient of con-

traction [see 495, eq,, (3)]. We here suppose F' so large

compared with F, the area of the oritice, that the free surface

of the water in the vessel does not acquire any notable velocity

at any stage, and that hence the rate of efflux is the same at

any instant, as for a steady flow with head = z and a zero

velocity in the free surface. ^ is considered constant. From

(1) we have

dV= (vol. discharged in time dt) = Qdt = ^FVfyz dt. . (2

But this is also equal to the volume of the horizontal lamina,

F'dZ) through which the free surface has sunk in the same

time dt.
-

.% dt=

We have written minus F'dz because, dt being an increment,

dz is a decrement. To reduce the depth from z^ (at the start,

time == t = zero) to zn ,
demands a time

W
>>=--4-= \

>jiFVZz

whence, by putting zn = 0, we have the time necessary to

empty the whole prism

C t
__ %F'z* iF'z. 2 X volume of vessel

.
.

"

nFVfy : pFV2gz
""

initial rate of discharge
'
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that is, to empty the vessel requires double the time of dis-

charging the same amount of water if the vessel had been kept
full (at constant head = Z

Q
.= altitude of prism).

To Jill the same vessel through an orifice in the bottom, the

flow through which is supplied from a

body of water of infinite extent hori-

zontally, as with the (single) canal lock

of Fig. 592, will obviously require the

same time as given in eq. (5) above,

since the effective head z diminishes

from Z
Q
to 0, according to the same law.

EXAMPLE. What time will be needed

to empty a parallelopipedical tank (Fig. 591) 4 ft. by 5 ft. in

horizontal section and 6 ft. deep, through a stop-cock in the

bottom whose coefficient of efflux when fully open is known
to be /*

= 0.640, and whose section of discharge is a circle of

diameter \ in. ? From given dimensions F' = 4 X 5 = 20

sq. ft., while z = 6 ft. Hence from eq. (5) (ft.-lb.-sec.)

time of \ =
emptying j

0.64 X
2 X 20 X _ j 13980 seconds

V2 X 32.!

CASE II. Two communicatingprismatic veuels. Required
the time for the water to come to a common level ON, Fig.

T 593, efflux taking place through a small

orifice, of area = F, u-ider water. At

any instant the rate of discharge is

FIG. 593.

as before, z = difference of level. Now
if F' and^ 7/

are the horizontal sectional

areas of the two prismatic vessels (axes

vertical) we have F'x = F"y^ and hence z> which = x

, ,

-, and dx =
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As before, we have
F'F" z '

or < = ~

Hence, integrating, the time for the difference of level to

change from 2 to zn

F'+F
and by making zn = in (6), we have the

%F'F" 1 l~z^
time of coming to a common level =

-p,,-^,, ~W/ ~^f
CO

ALGEBRAIC EXAMPLE. In the double lock in Fig. 594, let

L' be full, while in L" the water stands at a level MN the

same as that of the tail-

water. F' and F" are the

horizontal sectional areas of

the prismatic locks. Let

the orifice, 0, between

them, be at a depth = h
l

below the initial level KE
of L

',
and a height = A

a

above that, MN, of L".

The orifice at 0, area = F, being opened, efflux from L' be-

gins into the air, and the level of L" is gradually raised from

MN to OD, while that of L' sinks from KE to AE a distance

= a, computed from the relation vol. F'a = vol. F"Ji^^ and

the time occupied is [eq. (4)]

FIG. 594.

As soon as is submerged, efflux takes place un^er water, and

we have an instance of Case II. Hence the time of reaching
a common level (after submersion of 0) (see eq. 7) is

and the total time is = t, + 4 ,
with a = F"\ -r- F'.
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CASE III. Emptying a vertical prismatic vessel through

rectangular "notch" in the side, or over-

fall. Fig. 595. As before, let even the

initial area (= zjb) of the notch be small

compared with the horizontal area F' of

tank. Let z = depth of lower sill of notch

below level of tank surface at any instant,

and b = width of notch. Then, at any in-

stant (see eq. 10, 504), Flo. 595.

Bate ofdisch. (vol.)
= <> =

.-. vol. of disch. in dt = \)&

and putting this = F'dz = vol. of water lost by the tank

in time dt, we have

whence

3 F 3 F'

c-
3F r 1 _

(10)

as the time in which the tank surface sinks from a height z^

above sill to a height zn above sill. If we inquire the time t
f

for the water to sink to the level of the sill of the notch we

put zn zero, whence t' = infinity. As explanatory of this

result, note that as z diminishes not only does the velocity of

flow diminish, but the available area of efflux (= zb) also grows

less, whereas in Cases I and II the orifice of efflux remained

of constant area = F.

Eq. (10) is applicable to the waste-weir of a large reservoir

or pond.

534. Time of Emptying Vessels of Variable Horizontal Sec-

tions. Considering regular geometrical forms first, let us take
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CASE I. Wedge-shaped vessel, edge horizontal and under-

neath, orifice F in the edge, so that

2, the variable head, is always the

altitude of a triangle similar to the

section ABC of the body of water

when efflux begins. At any instant

during the efflux the area, $, of

the free surface, variable here,

takes the place of F' in eq. (3) of

533, whence we have,

far any case of variablefree surface, dt = ^ /
__ . . (11)

FIG. 596.

In the present case S= ul, and from similar triangles

u : z :: b : z^\

whence
S=llz + z9 ,

and

and hence the time of emptying the whole wedge, putting

^ = 0, is

4 $blz _ 4 Vol. of wedge
%' }iF V%gz<>

3 initial rate of discharge
(13)

i.e., f as long as to discharge the same volume of water under

a constant head = z . This is equally true if the ends of the

wedge are oblique, so long as they are parallel.

CASE II. Right segment of paraboloid of
revolution. Fig. 597. Axis vertical. Ori-

fice at vertex. Here the variable free surface

has at any instant an area, = S,= nu*, u be-

ing the radius of the circle and variable.

From a property of the parabola

u* : 5* : : z : z.
; .*. S= ntfz -?- z. , FIG. 597.
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sod hence, from eq. (11),

743

whence, putting zn = 0, we have the time of emptying the

whole vessel

4 7ttf^z _ 4 total vol. ..

3 jjiFV%gzQ
3 initial rate of disck?

same result as for the wedge, in Case I
;
in fact, it applies to

any vessel in which the areas of horizontal sections vary

directly with their heights above the orifice.

CASE III. Anypyramid or cone ; vertex down ; small ori-

fice in vertex. Fig. 598. Let area of the

base = S9 ,
at upper edge of vessel. At

any stage of the flow S = area of base of

pyramid of water. From similar pyra- &^^^r

\ 4o

mids

and[eq.(ll)]

So

whence (sn= 0) the time of emptying the whole vessel is

2 Sz*

or,

6 Total volume
tf =-.-r- - - ..... (15)5 ^n^t^al rate of d^sch.

CASE IY. Sphere. Similarly, we may show that to empty



744 MECHANICS OF ENGINEERING.

a sphere, of radius = r, through a small orifice, of area = F,
in lowest part, the necessary time is

I6
15

8 Vol.

init. rate of disch.

535. Time of Emptying an Obelisk-shaped Vessel. (An obe-

lisk may be defined as a 'solid of six plane faces, two of which

are rectangles in parallel planes and with sides respectively

parallel, the others trapezoids; a frustum of a pyramid is a

particular case.)

A volume of this shape is of common occurrence
;
see Fig.

599. Let the altitude = A, the two rectangular faces being

horizontal, with dimensions as in figure. By drawing through

F, G, and II right lines par-

allel to EC, to cut the upper

base, we form a rectangle

KLMC equal to the lower

base. Produce ML to P and

KL to N, and join PG and

NG-. We have now sub-

divided the solid into a paral-

lelopiped KLMC - EHGF,
a pyramid PBNL - G, and

two wedges, viz. APLR-HG and LNDM-FG, with

their edges horizontal
;
and may obtain the time necessary to

empty the whole obelisk-volume by adding the times which

would be necessary to empty the individual component vol-

umes, separately, through the same orifice or pipe in the bot-

tom plane EG. These have been already determined in the

preceding paragraphs. The dimensions of each component
volume may be expressed in terms of those of the obelisk, and
all have a common altitude = h.

Assuming the orifice to be in the bottom, or else that the

discharging end of the pipe, if such is used, is in the plane of
the bottom EG, we have as follows, F being the area of dis-

charge :

FIG. 599.
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Time to empty the parallelepiped] ^
_ ^A ,7- ,..,

separately would be (Case /, 533) j

*
l

uF Vty

Time to empty the two
) 0^/7 /

wedges separately K = I ^~
(6W/,534) *)' 3

For thepyramid \ / __ 2 (I I,) (b b,)

(<7^ ///, 534) f

' -*
8 -5* ^ <fij

V/l '

Hence to empty the whole reservoir we have

_ (4)

EXAMPLE. Let a reservoir of above form, and with b = 50 ft.>

I = 60 ft., b,
= 10 ft., Z

t
= 20 ft., and depth of water h = 16

ft., be emptied through a straight iron pipe, horizontal, and

leaving the side of the reservoir close to the bottom, at an angle
a = 36 with the inner plane of side. The pipe is 80 ft. long
and 4 inches in internal diameter

;
and of clean surface. The

jet issues directly from this pipe into the air, and hence

F=ln($f sq. feet. To find /*, the "coefficient of efflux"

(=0, the coefficient of velocity in this case, since there is no

contraction at discharge orifice), we use eq. (4) (the first radical)

of 518, withyapprox. = .006, and obtain

i -4X.006X80
T

'36L

(N".B. Since the velocity in the pipe diminishes from a

value

v = .361 V2g X 16 = 11.6 ft. per sec.

at the beginning of the flow to v zero at the close,f = .006

is a reasonably approximate average with which to compute
the average above

;
see 517.
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Hence from eq. (4) of this paragraph (ft.-lb.-sec. system)

[3 X 50 X 60+ 8 X 10 X 20+2(50 X 20+10 X 60)]2 VlS

15 X 0.361 X
|(|)V2X 32.2

nt\i ^ A 01, * ( Probably within 2 or 3$ of
= 29110 sec. = 8 hrs. 5 mm.

j

'
the truth>

536. Time of Emptying Reservoirs of Irregular Shape. Simp-

son's Rule. From eq. (11), 534, we have, for the time in

which the free surface of water in a vessel of any shape what-

ever sinks through a vertical distance =dz,

~~
,
whence [time =-1

-=-_ fte-We, , . (1)L=

where 8 is the variable area of the free surface at any in-

stant, and z the head of water at the same instant, efflux

proceeding through a small orifice (or extremity of pipe) of

area = F. If 8 can be expressed in terms of z, we can in-

tegrate eq. (1) (i.e., provided that S&-* has a known anti-

derivative) ;
but if not, the vessel or reservoir being irregular

in form, as in Fig. 600 (which shows a pond whose bottom

has been accurately surveyed, so that we know the value of S
for any stage of the emptying), we can still get an approximate

solution by using Simpson's
Rule for approximate inte-

gration. Accordingly, if we

inquire the time in which

the surface will sink from

to the entrance JKof the pipe
in Fig. 600 (any point n

;
at

E. or short of that), we
FlG - 600 -

divide the vertical distance

from to n (4 in this figure) into an even number of equal

parts, and from the known form of the pond compute the area

8 corresponding to each point of division, calling them #,,#,,
etc. Then the required time is approximately

r
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-^+4(3, A_
* -

EXAMPLE. Fig. 600. Suppose we have a pipe Em of the

same design as in the example of 535, and an initial head of

z^
= 16 ft., so that the same value of /*,

= .361, may be used.

Let zn z 8 feet, and divide this interval (of 8 ft.) into

four equal vertical spaces of 2 ft. each. If at the respective

points of division we find from a previous survey that S =
400000 sq. ft., S, = 320000 sq. ft, S, = 270000 sq. ft., 3

=
210000 sq. ft., and 4

= 180000 sq. ft.
;
while n = 4, p = .361,

and the area F \n($f .0873 sq. ft., we obtain (ft.,lb., sec.)

G=
16 8 r4QOOOO X 320000

7==-
0.361 X.0873 1/2 X 32.2 X 3 X 4 L i/16

_
2 X 270000

,

4 X 210000 ISOOOpn = 2444000 sec.

V12~ 1/10 V8" J= 28d - 6b ' 53m- 20S-

volume discharged, V, may also be found by Simpson's

Rule, thus : Since each infinitely small horizontal lamina has

a volume

or, approximately,

F= ^^-S. + 45, + 2$ + 45, + . . . +&
071 L

Hence with w = 4 we have (ft., lb., sec.)

+
180000~]

= 2,160,000 cub. ft.
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537. Volume of Irregular Reservoir Determined by Observing

Progress of Emptying. Transforming eq. (11), 534, we have

But Sdz is the infinitely small volume d V of water lost by
the reservoir in the time dt, so that the volume of the reser-

voir between the initial and final (0 and n) positions of the

horizontal free surface (at beginning and end of the time tn)

may be written

A*
' \ z*dt. (1)
Jo

This can be integrated approximately by Simpson's Rule, if

the whole time of emptying, = tn ,
be divided into an even

.. ....-.-..:.-.:,-...-.->.v^ ,.-,:-.:... number of equal

parts, and the values

2
, 0j , 2 , etc., of the

head of water noted

at these equal inter-

vals of time (not of

vertical height). The

corresponding sur-

face planes will not
FIG. 601.

be equidistant, in general,
when n = 4 (see Fig. 601)

Whence for the particular case



CHAPTER VII.

HYDRODYNAMICS (Continued) STEADY FLOW OF WATER IN
OPEN CHANNELS.

538. Nomenclature. Fig. 602. When water flows in an

open channel, as. in rivers, canals, mill-races, water-courses,

ditches, etc., the bed

and banks being rigid,

the upper surface is

free to conform in

shape to the dynamic
conditions of each case,

which therefore regu-
late to that extent the

shape of the cross-sec-

tion-

In the vertical trans- Fl - 602 -

verse section AC in figure, the line AC is called the air-profile

(usually to be considered horizontal and straight), while the

line ABC, or profile of the bed and banks, is called the wetted

perimeter. It is evident that the ratio of the wetted perimeter
to the whole perimeter, though never < -J, varies with the

form of the transverse section.

In a longitudinal section of the stream, EFGH, the angle
made by a surface filament EF with the horizontal is called

the slope, and is measured by the ratio s = h : I, where I is the

length of a portion of the filament and h = the fall, or vertical

distc^nce between the two ends of that length. The angle be-

tween the horizontal and the line HG along the bottom is not

necessarily equal to that of the surface, unless the portion of

the stream forms a prism ; i.e., the slope of the bed does not

necessarily = s = that of surface.

EXAMPLES. The old Croton Aqueduct has a slope of 1.10

ft. per mile
; i.e., s = .000208. The new aqueduct (for New

710
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York) has a slope $ = .000132, with a larger transverse section.

For large sluggish rivers s is much smaller.

539. Velocity Measurements. Yarious instruments and

methods may be employed for this object, some of which are

the following :

Surface-floats are small balls, or pieces of wood, etc., so

colored and weighted as to be readily seen, and still but little

affected by the wind. These are allowed to float with the cur-

rent in different parts of the width of the stream, and the sur-

face velocity c in each experiment computed from c=.l-r-t,

where I is the distance described between parallel transverse

alignments (or actual ropes where possible), whose distance

apart is measured on the bank, and t = the time occupied.

Double-floats. Two balls (or small kegs) of same bulk and

condition of surface, one lighter, the other heavier than water,

are united by a slender chain, their

weights being so adjusted that the

light ball, without projecting notably
above the surface, buoys the other

ball at any assigned depth. Fig. 603.

It ia assumed that the combination

moves with a velocity c', equal to the

arithmetic mean of the surface veloc-

ity c of the stream and that, c, of the water filaments at the

depth of the lower ball, which latter, <?,
is generally less than

c . That is, we have

C'=%(GO + C) and /. c = 2c'-c . . . . (1)

Hence, c having been previously obtained, eq. (1) gives the

velocity c at any depth of the lower ball, c' being observed.

The floating staff is a hollow cylindrical rod, of adjustable

length, weighted to float upright with the top just visible. Its

observed velocity is assumed to be an average of the velocities

of all the filaments lying between the ends of the rod.

Woltmanrfs Mill ; or Tachometer or Current-meter, Fig.

604, consists of a small wheel with inclined floats (or of a small
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FIG. 604.

"
ecrew-propeller" wheel /S) held with its plane 1 to the cur

rent, which causes it to re-

volve at a speed nearly pro-

portional to the velocity, c,

of the water passing it.

By a screw-gearing W on

the shaft, connection is

made with a counting ap-

paratus to record the num-

ber of revolutions. Some-

times a vane B is attached,

to compel the wheel to face

the current. It is either

held at the extremity of a pole or, by being adjustable along
a vertical staff fixed in the bed, may be set at any desired depth
below the surface. It is usually so designed as to be thrown

in and out of gear by a cord and spring, that the time of mak-

ing the indicated number of revolutions may be exactly noted.

By experiments in currents of known velocities a table or

formula can be constructed by which to interpret the indica-

tions of any one instrument
; i.e., to find the velocity c of the

current corresponding to an observed number of revolutions

per minute.

A peculiar form of this instrument has been recently in-

vented, called the Ititchie-HasJcell Direction-current Meter,
for which the following is claimed :

u This meter registers

electrically on dials in boat

from which used, the direction

and velocity, simultaneously,

of any current. Can be used

in river, harbor, or ocean cur-

rents."

Pitotfs Tube consists in prin-
r

ciple of a vertical tube open =
above, while its lower end, also "^
open, is bent horizontally up- 2
stream; seeA in figure. After

~
FIG. eosT"

the oscillations have ceased, the water in the tube remains
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stationary with its free surface a height, 7i', above that of the

stream, on account of the continuous impact of tbe current

against the lower end of the column. By the addition of

another vertical tube (see B in figure) with the face of its

lower (open) end parallel to the current (so that the water-

level in it is the same as that of the current), both tubes being

provided, with stop-cocks, we may, after closing the stop-

cocks, lift the apparatus into a boat and read off the height h f

at leisure. We may also cause both columns of water to

mount, through flexible tubes, into convenient tubes in the

boat by putting the upper ends of both tubes in communica-

tion with a receiver of rarefied air, and thus watch the oscilla-

tions and obtain a more accurate value of h'. [See Van JS~os-

trand's Mag. for Mar. '78, p. 255.] Theoretically
*
(see 565),

the thickness of the walls of the tube at the lower end being

considerable, we have

. . ..... (1)

as a relation between c, the velocity of the particles impinging
on the lower end, and the static height Ti'

( 565). Eq. (1) is

verified fairly well by Weisbach's experiments with fine in-

struments, used with velocities of from 0.32 to 1.24 meters

per second. Weisbach found

c = 3.54 Vh' (in meters) met. per sec.,

whereas eq. (1) gives

c= 3.133 Vhf

(in meters) met. per sec.

In the instruments used by Weisbach the end of the tube

turning up-stream was probably straight ; i.e., neither flaring

nor conically convergent. A change in this respect alters the

relation between c and ti
';

see 565 for Pilot's and Darcy's
results.

Pilot's Tube, though simple, is not so accurate as the ta-

chometer.

* In the foot-note of p. 803, if a be assumed = 60, instead of 90, with .Fas

before, we obtain

c = Vlgh'.
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The Hydrometric Pendulum, a rather uncertain instrument,
is readily understood from Fig. 606. The side AJ3, of the

quadrant ABC, being held vertical, the

plane of the quadrant is made parallel to

the current. The angle 9 between the

cord and the vertical depends on G, the

effective weight (i.e., actual weight dimin-

ished by the buoyant effort) of the ball

(heavier than water), and the amount of P,
the impulse or horizontal pressure of the

current against the latter, since the cord

will take the direction of the resultant It,

for equilibrium.

Now P (see 5Y2) for a ball of given size and character of

surface varies (nearly) as the square of the velocity ; i.e., if P'
is the impulse on a given stationary ball, when the velocity of

the current = c', then for any other velocity c we have

P'P = impulse = c* (2)

From this and the relation tan 6 = ^ we derive

With a given instrument and a specified system of units, the

numerical value of the first radical may be determined as a

single quantity, by experimenting with a known velocity and

the value of 6 then indicated, and may then, as a constant fac-

tor, be employed in (3) for finding the value of c for any ob-

served value of 6
;
but the same units must be used as before

540. Velocities in Different Parts of a Transverse Section,

The results of velocity-measurements made by many experi-

menters do not agree in supporting any very definite relation

.between the greatest surface velocity (c max.)
of a transverse
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section and the velocities at other points of the section, but

establish a few general propositions :

1st. In any vertical line the velocity is a maximum quite

near the surface, and diminishes from that point both toward

the bottom and toward the surface.

2d. In any transverse horizontal line the velocity is a maxi-

mum near the middle of the stream, diminishing toward the

banks.

3d. The mean velocity = v, of the whole transverse section,

i.e., the velocity which must be multiplied by the area, F, of

the section, to obtain the volume delivered per unit of time,

(1)

Is about 83 per cent of the maximum surface velocity (<? max.)
observed when the air is still

; i.e.,

v = 0.83 X (o9 max.)
....... (2)

Of eight experimenters cited by Prof. Bowser, only one gives

a value (= 0.62) differing more than .05 from .83, while others

obtained the values .82, .78, .82, .80, .82, .83.

In the survey of the Mississippi Eiver by Humphreys and

Abbot, 1861, it was found that the law of variation of the

velocity in any given vertical line could be fairly well repre-

sented by the ordinates of a parabola (Fig. 607) with its axis

horizontal and its vertex at a distance d,

jfjEf^'j
:-= below the surface according to the follow-~= ing relation, f" being a number dependent
T^. on the force of the wind (from for no_
~~' wind to 10 for a hurricane) :

(3)

^-+?'__~=- where d is the total depth, and the double

sign is to be taken + for an up-stream,
-

FK>. GOT. for a down-stream, wind. The following
relations were also based on the results of the survey :

(putting, for brevity, B = 1.69 -f- Vd+ 1.5,) . (4)
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...... (5)

jKH-ta), .... (6)

and

c* = cin+3F tfBv. ..... (7)

(These equations are not of homogeneousform, but call for

thefoot and second as units.)

In (4), (5), and (6),

c = velocity at any depth z below the surface
;

cm = mean velocity in the vertical curve
;

c
dl
= max. " " "

qdl
= "at mid-depth ;

cd = velocity at bottom
;

v = mean velocity of the whole transverse section.

It was also found that the parameter of the parabola varied

inversely as the square root of the mean velocity cm of curve.

In general the bottom velocity (cd) is somewhat more than
-J-

the maximum velocity (cdl )
in the same vertical. In the Mis-

sissippi the velocity at mid-depth in any vertical was found to

be very nearly .96 of the surface velocity in the same vertical;

this fact is important, as it simplifies the approximate gauging
of a stream.

541. Gauging a Stream or River, Where the relation (eq. (2),

540) v = .83 (c max.)
is not considered accurate enough for

substitution in Q = Fv to obtain the volume of discharge (or

delivery) Q of a stream per time-unit, the transverse section

may be divided into a number of subdivisions as in Fig. 608,

of widths a
l , Q , etc., and

mean depths d
l , d^ , etc.,

and the respective mean

velocities, c
l , , , etc., com-

puted from measurements FIG. eos.

with current-meters ;
whence we may write

... (7)
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With a small stream or ditch, however, we may erect a ver-

tical boarding, and allow

the water to flow through a

rectangular notch or over-

fall, Fig. 609, and after the

head surface

permanent,

has become

measure A2

(depth of sill below the

level surface somewhat

back of boards), and b

(width) and use the formu-

lae of 504; see examples
FIG. 609.

in that article.

542. Uniform Motion in an Open Channel. We shall tiow

consider a straight stream of indefinite length in which the

flow is steady, i.e., a state of permanency exists, as distin-

guished from a freshet or a wave. That is, the flow is steady

when the water assumes fixed values of mean velocity v, and

sectional area F, on passing a given point of the bed or bank
;

and the

Eq. of continuity . . Q = Fv =FQvQ
= F^v l

= constant . . (1)

holds good whether those sections are equal or not.

By uniform motion is meant that (the section of the bed

and banks being of constant size and shape) the slope of the

bed, the quantity of water (volume = Q) flowing per time-

unit, and the extent of the wetted perimeter, are so adjusted
to each other that the mean velocity of flow is the same in all

transverse sections, and consequently the area and shape of the

transverse section is the same at all points ;
and the slope of

the surface = that of the bed. We may therefore consider,

for simplicity, that we have to deal with a prism of water of

indefinite length sliding down an inclined rough bed of con-

stant slope and moving with uniform velocity (viz., the mean

velocity v common to all the sections) ;
that is, there is no ac-

celeration. Let Fig. 610 show, free, a portion of this prism,
of length = Z, and having its bases ~\ to the bed and surface.
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The hydrostatic pressures at the two ends balance each other

from the identity of conditions. The only other forces having

FIG. 610.

Components parallel to the bed and surface are the weight

& = Fly of the prism (where y = heaviness of water) making
an angle = s (= slope) with a normal to the surface, and the

friction between the water and the bed which is parallel to the

surface. The amount of this friction for the prism in question

may be expressed as in 510, viz.:

P=fric.=fSr ^=fwly?-,
... (2)

in which S = wl = rubbing surface (area)
= wetted perimeter,

w, X length (see 538), and /"an abstract number. Since the

mass of water in Fig. 610 is supposed to be in relative equili-

brium, we may apply to it the laws of motion of a rigid body,

and since the motion is a uniform translation ( 109) the com-

ponents, parallel to the surface, of all the forces must balance.

.*. Q- sin s must = P = fric, ;
.*. Fly =- =fwly ;

(/
2i(j

thence

=/$$' w
or

*^y> (3)

in which Fw is called 7?, the hydraulic mean depth, or

hydraulic radius. (3) is sometimes expressed by saying that
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the whole fall, or head, A, is (in uniform motion) absorbed in

friction-head. Also, since the slope s = h
I, we have

which is of the same form as Chezy's formula in 519 for a

very long straight pipe (the slope s of the actual surface in this

case corresponding to the slope along piezometer-summits in

that of a closed pipe). In (4) the coefficient A = V%g H-/ is

not, like/", an abstract number, but its numerical value depends
on the system of units employed.

542a. Experiments on the Flow of Water in Open Channels.

Those of Darcy and Bazin, begun in 1855 and published in

1865 (" Kecherches Hydrauliques"), were ^ery carefully con-

ducted with open conduits of a variety of shapes, sizes, slopes,

and character of surface. In most of these i uniform flow was

secured before the taking of measurements. The velocities

ranged between from about 0.5 to 8 or 10 ft. per second, the

hydraulic radii from 0.03 to 3.0 ft., with deliveries as high as

182 cub. ft. per second. For example, the following results

were obtained in the canals of Marseilles and Craponne, the

quantity A being for the foot and second. The sections were

nearly all rectangular. See eq. (4) above.

No.
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good mortar joints, and about 9 ft. wide
;
the depths of water

ranging from 1.5 to 4.5 ft. With plaster of pure cement on

the bed in one of the experiments the high value of A = 153.6

was reached (foot and second), with v = 2.805 ft. per second,
R = 2.111 ft., s = .0001580, and Q = 87.17 cu. ft. per second.

Captain Cunningham, in his experiments on the Ganges
Canal at Koorkee, India, in 1881, found A to range from 48

to 130 (foot and second).

Humphreys and Abbot's experiments on the Mississippi
River and branches (see 540), with values of R from 2 or

3 ft. to 72 ft., furnish values of A from 53 to 167 (foot and

second).

542b. Kutter's Formula. The experiments upon which
Weisbach based his deductions for/, the coefficient of fluid

friction, were scanty and on too small a scale to warrant gener-
al conclusions. That author considered that/ depended only
on the velocity, disregarding altogether the degree of rough-
ness of the bed, and gave a table of values in accordance with

that view, these values ranging from .0075 for 15 ft. per sec.

to .0109 for 0.4 ft. per sec.; but in 1869 Messrs. Kutter and

Ganguillet, having a much wider range of experimental data

at command, including those of Darcy and Bazin, and those

obtained on the Mississippi River, evolved a formula, known
as Kutter

}

s Formula, for the uniform motion of water in open
channels, which is claimed to harmonize in a fairly satisfactory
manner the chief results of the best experiments in that direc-

tion. They make the coefficient A in eq. (4) (or rather the

factor - contained in A) a function of R, s, and also n an
J

abstract number, or coefficient of roughness, depending on the

nature of the surface of the bed and banks
; viz.,

1.811 .00281
41.6 + l +v in

per
sec.

which is Kutter's Formula.*

* A book of "
Diagrams of Mean Velocity based on Kutter's Formula," by

the present writer (New York, J. Wiley & Sons, 1902), obviates the necessity
of numerical substitution in Kutter's formula for all practical purposes.
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That is, comparing (5) with (4), we have f a function of

JR, and s, as follows :

/=
n

. . . (6)

From (6) it appears that / decreases with an increasing R,
ts has been also noted in the case of closed pipes ( 517) ;

that

it increases with increasing roughness of surface
;
and that it

is somewhat dependent on the slope. The makers of the

formula give the following values for n.

Values of n. n =

,009 for well-planed timber bed
;

.010 for plaster in pure cement
;

.011 for plaster in cement with \ sand
;

.012 for unplaned timber
;

.013 for ashlar and brickwork
;

*

.015 for canvas lining on frames;

.017 for rubble
;

.020 for canals in very firm gravel ;

.025 for rivers and canals in perfect order and regimen, and

perfectly free from stones and weeds
;

.030 for rivers and canals in moderately good order and regi-

men, having stones and weeds occasionally ;

.035 for rivers and canals in bad order and regimen, overgrown
with- vegetation and strewn with stones or detritus of

any sort.

Kutter's Formula is claimed to apply to all kinds and sizes of

watercourses, from large rivers to sewers and ditches
;
for uni-

form motion. If VR is the unknown quantity, Kutter's For-

mula leads to a quadratic equation ;
if s the slope, to a cubic.

Hence, to save computation, tables have been prepared, some

of which will be found in vol. 28 of Yan Nostrand's Magazine

* For ordinary brick sewers Mr. R. F. Hartford claims that n = .014

gives good results. See Jour. Eng. Societies for '84- '85, p. 220.
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(pp. 135 and 393) (sewers), and in Jackson's works on Hydrau-
lics (rivers). See foot-note on p. 759.

The following table will give the student an idea of the

variation of the coefficient A, = 3
,
of eq. (4), or large

J

bracket of eq. (5), with different hydraulic radii, slopes, and

values of 7i, according to Kutter's Formula
;
from R \ ft.,

for a small ditch or sluice-way (or a wide and shallow stream),

to R = 15 ft., for a river or canal of considerable size. Under

each value of R are given two values of A
;
one for a slope of

3' = .001, and the other for s" = .00005. All these values of

A imply the use of the foot and second.

These values of A have been scaled by the writer from a

diagram given in Jackson's translation of Kutter's "
Hydraulic

Tables," and are therefore only approximate. The corre-

sponding values of /",
the coefficient of fluid friction, can be

2(7

computed fromf=^.

n
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To quote from a letter of Mr. I. A. Shaler of the Aqueduct

Corps of Engineers,
" Mr. Fteley states that the cleanliness of

the conduit (Sudbury) had much to do in affecting the flow.

He found the flow to be increased by 7 or 8 per cent in a por-

tion which had been washed with a thin wash of Portland

cement."

EXAMPLE 1. A canal 1000 ft. long of the trapezoidal sec-

tion in Fig. 611 is required to deliver 300 cubic ft. of water

per second with the water 8 ft. deep at all

sections (i.e., with uniform motion), the

slope of the bank being such that for a depth
of 8 ft. the width of the water surface (or

length of air-profile) will be 20 ft.; and the

coefficient for roughness being n = .020. What is the neces-

sary slope to be given to the bed (slope of bed = that of sur-

face, here) (ft., lb., sec.) ?

The mean velocity

v = Q + jr 300 -r- i (20+ 8) 8 = 2.67 ft. per sec.

[So that the surface velocity of mid-channel in any section

would probably be
(<?omax )

= v -f- 0.83 3.21 ft. per sec. (eq.

(2), 540).]

The wetted perimeter

w = 8 + 2 1/8' + 6' = 28 ft.,

and therefore the mean hydraulic depth

= E = F+ w = 112 -7- 28 = 4 ft.

To obtain a first approximation for the slope, we may use

the value /'= .00795 given by Weisbach for a velocity of 2.67

ft. per sec., and obtain, from (3),

A==
.00795 X 1000 X . = ()221f

112 X 2 X 32.2

i.e. s = h + l = .000221.
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With this value for the slope and E = 4 ft. (see above), we
then have, from eq. (6) (putting n = .020),

.00281 \ .020

K
'

.2256 .00035
= .0071,

with which value off we now obtain

h = 0.200 feet
; i.e., slope = s = .00020.

EXAMPLE 2. If the bed of a creek falls 20 inches every
1500 ft. of length, what volume of water must be flowing to

maintain a uniform mean depth of 4 ft., the corresponding
surface-width being 40 ft., and wetted perimeter 46 ft. ? The
bed is

" in moderately good order and regimen ;" use Kutter's

Formula, putting n = 0.030 (ft. and sec.).

First we have

=
y/(40X

44)
-

(46
X
q~?)

= .066,

while V
r
R~(K) =1.98, and the slope = s = ff -r- 1500=.00111

;

hence

= 104.43 X .066

1.6685
'

1.98

v = 4.13 ft. per sec.

or

Hence, also,

Q = Fv = 40 X 4J X 4.13 = Y43.4 cub. ft. per sec.

[N.B. Weisbach works this same example by eq. (3) with a

value off taken from his own table, his result being v = 6.1
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ft. per sec., which would probably be attained in practice only

by making the bed and banks smoother than as given.]

EXAMPLE 3. The desired transverse water-section of a canal

is given in Fig. 612. The slope is to be

3 ft. in 1600
; i.e., s = 3 -r- 1600

; or, for

I 1600 ft., h = 3 ft. What must be the

velocity (mean) of each section, for a uni-

form motion, the corresponding volume

delivered per sec., Q, = Ft), ?
; assuming that the character

of the surface warrants the value n = .030 ?

Knowing the slope s,
= 3 ~- 1600

;
and the hydraulic radius

R, = F+-w, = 79.28 sq. ft. -r- 24.67 ft.,
= 3.215 feet

;
with

w= .030 we substitute directly in eq. (5), obtaining v = 4.6T

ft. per sec.
;
whence Q = Fv 370 cub. ft. per sec.

543. Hydraulic Mean Depth for a Minimum Frictional Resist-

ance. We note, from eq. (3), 542, that if an open channel

of given length I and sectional area F is to deliver a given

volume, Q, per time- unit with uniform motion, so that the

common mean velocity v of all sections ( Q -f- F) is also a

given quantity, the necessary fall = A, or slope s h -=-
/, is

seen to be inversely proportional to 7?, the hydraulic mean

depth of the section, = (F -r- w\ = sectional area -=- wetted

perimeter.

For h to be as small as possible, we may design the form of

transverse section, so as to make R as large as possible ; i.e.,

to make the wetted perimeter a minimum for a given F\ for

in this way a minimum of frictional contact, or area of rub-

bing surface, is obtained for a prism of water of given sectional

area T^and given length I.

In a closed pipe running full the wetted perimeter is the

whole perimeter; and if the given sectional area is shaped in

the form of a circle, the wetted perimeter, = w, is a minimum

(and R a maximum). If the full pipe must have a polygonal

shape of n sides, then the regular polygon of n sides will pro-
vide a minimum w.

Whence it follows that if the pipe or channel is running
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half full, and thus becomes an open channel, the semicircle,

of all curvilinear water pro-

files, gives a minimum w.

Also, of all trapezoidal pro-

files with banks at 60 with

the horizontal the half of a

regular hexagon gives a

minimum w. Among all

rectangular sections the half

square gives a minimum w
;

and of all half octagons the half of a regular octagon gives a

minimum w (and max. ^) for a given F. See Fig. 613 for

fill these.

The egg-shaped outline, Fig. 614, small end down, is fre-

quently given to sewers in which it is important that the

different velocities of the water at dif-

ferent stages (depths) of flow (depend-

ing on the volume of liquid passing per

unit-time) should not vary widely from

each other. The lower portion ABC,
providing for the lowest stage of flow

AB, is nearly semicircular, and thus in-

duces a velocity of flow (the slope being
constant at all stages) which does not

differ extremely from that occurring

when the water flows at its highest

stage DE, although this latter velocity is the greater; the

reason being that ABC from its advantageous form has a

hydraulic radius, R, larger in proportion to its sectional area,

F\ than DCE.
That is, F -=- w for ABC is more nearly equal toF -^ w for

DEC than if DEC were a semicircle, and the velocity at the

lowest stage may still be sufficiently great to prevent the de-

posit of sediment. See 575.

544. Trapezoid of Fixed Side-slope. For large artificial water-

courses and canals the trapezoid, or three-sided water-profile

(symmetrical), is customary, and the inclination of the bank,

FIG. 614.
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or angle 6 with the horizontal, Fig. 615, is often determined

by the nature of the material

composing it, to guard against

washouts, caving in, etc. We
are therefore concerned with the

following problem : (riven the

area, F, of the transverse section,

and the angle 0, required the value of the depth x (or of upper
width z, or of lower width y, both of which are functions of x)
to make the hydraulic mean depth, R == F -f- w, a maximum,
or w -r- F a minimum. F\s> constant.

From the figure we have

FlG - 615 -

and

whence

0, . (1)

3
cot. 6;

= i.(^-a?
3
cot. 8), ........ (2)

substituting which in (1) and dividing by F9 noting that

2 cosec. 6 cot. = ^ we have
sin

w

For a minimum w we put

1 . 2 cos0

dx
= 0;

.'. a? (for max. or min. w) = A /= ^."

y 2 cos 6

The+ sign makes the second derivative positive, and hence
for a min. w or max. 12 we have

VF * 6x (call it a/) =x'=
cos
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while the corresponding values for the other dimensions are

y' = -^
x' cot. ... ...... (5)

and

z'=y'+ 2x'cot.0=^-+ a'cot.0. ... (6)
OK

For the corresponding hydraulic mean depth R!

[see (3)],

i.e.
9
the max. R, we have

_1_
1 2 cosfl ,__2_'~ '

" * =
'

j/ 1 .

= .....

Equations (4), (5), ... (8) hold good, then, for the trapezoi-

dal section of least frictional resistance for a given angle 0.

PROBLEM. Required the dimensions of the trapezoidal sec-

tion of minimum frictional resistance for 6 = 45, which with

h = 6 inches fall in every 1200 feet (= I)
is required to de-

liver Q = 360 cub. ft. of water per minute with uniform
motion.

Here we have given, with uniform motion, A, Z, and Q,
with the requirement that the section shall be trapezoidal, with
= 45

,
and of minimum frictional resistance. The following

equations are available :

Eq. of continuity . . . Q = Fv, ...... (!')

Eq. (8) preceding, for con- ) r>/ __ _! / 8ip #

dition of least resistance
)

' "
2 \ 2 cos

There are three unknown quantities, v, F, and It'. Solve
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(!') for v; solve (2') for R'\ substitute their values in (3')$

whence

-D
._r2/

7V2^o^#n*
SghVsin V J

Since/ cannot be exactly computed in advance, for want of

knowing the value of It, we calculate it approximately [eq. (6)>

542b] for an assumed value of R, insert it in the above

equation (4'), and thus find an approximate value of F\ and

then, from (8), a corresponding value of R, from which a new
value of /can be computed. Thus after one or two trials a

satisfactory adjustment of dimensions can be secured.

545. Variable Motion. If a steady flow of water of a de-

livery Q, = Fv, = constant, takes place in a straight open
channel the slope of whose bed has not the proper value to

maintain a "
uniform motion" then " variable motion" ensues

(the flow is still steady, however); i.e., although the mean

velocity in any one transverse section remains fixed (with lapse

of time), this velocity has different values for different sections ;

but as the eq. of continuity,

etc.,

still holds (since the flow is steady), the different sections

have different areas. If,

Fig. 616, a stream of

water flows down an

inclined trough without

friction, the relation

between the velocities

v and v
l

at any two
FIG. 616. sections and 1 will be

the same as for a material point sliding down a guide without

friction (see 79, latter part), viz. :

v,
9 _ v *



VARIABLE MOTION. OPEN CHANNEL. 769

an equation of heads (really a case of Bernoulli's Theorem,

492). But, considering friction on the bed, we must sub-

tract the meanfriction-headf -=>- [see eqs. (3) and (3'),

542] lost between and 1
;

this friction-head may also bet

written thus: f^-L and therefore eq. (1) becomes

which is the formula for variable motion / and in it I is the

length of the section considered, which should be taken short

enough to consider the surface straight between the end-sec-

tions, and the latter should differ but slightly in area. The

subscript m may be taken as referring to the section midway
between the ends, so that vm

* = i(^
2 + v,

2

).
The wetted pe-

rimeter wm = J(w -f- w,)9
and Fm = %(F + F^. Hence eq.

(2) becomes

and again, by putting VQ
= Q ~- F

, v, = Q -r-F
l , we may

write

A=r |-l 1,1 f%.+ >) (I ,
1

whence

From eq. (4), having given the desired shapes, areas, etc., of

the end-sections and the volume of water, Q, to be carried per
unit of time, we may compute the necessary fall, A, of the sur-

face, in length = I
;
while from eq. (5), having observed in an

actual water-course the values of the sectional areasF9 and F. $

the wetted perimeters w9 and wl ,
the length, = I, of the pen-
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tion considered, we may calculate Q and thus gauge the stream

approximately, without making any velocity measurements.

As to the value of/
1

,
we compute it from eq. (6), 542b,

using for R a mean between the values of the hydraulic radii

of the end-sections.

546. Bends in an Open Channel. According to Humphreys
and Abbot's researches on the Mississippi Kiver the loss of

head due to a bend may be put

536 n ' (i)

i A.

in which v must be inft. per sec., and tf, the angle ABC, Fig.

617, must be in 7r-measure, i.e. in radians.

The section F must be greater than 100

sq. ft., and the slope s less than .0008. v

is the mean velocity of the water. Hence
if a bend occurred in a portion of a

stream of length Z, eq. (3) of 542 be-

comes
v*^

Fro. 617.

h = "

while eq. (2) of 545 for variable motion would then become

(o and S as above.) (For
" radian" see p. 544.)

547. Equations for Variable Motion, introducing the Depths.
--

Fig. 618. The slope of the bed being sin a (or simply a,

arnicas.), while that of the surface is

different, viz., ""l/T"^

sin/? = 5 = A-5-Z,

we may write

FIG. 6ia
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in which d and d
t
are the depths at the end-sections of the

portion considered (steady flow with variable motion). With
these substitutions in eq. (4), 545, we have, solving for I,

Q*

From which, knowing the slope of the bed and the shape
and size of the end-sections, also the discharge Q, we may
compute the length or distance, ,

between two sections whose

depths differ by an assigned amount (d d^). But we can-

not compute the change of depth for an assigned length I from

(6). However, if the width b of the stream is constant, and

the same at all depths ; i.e., if all sections are rectangles hav-

ing a common width
; eq. (6) may be much simplified by intro-

ducing some approximations, as follows : We may put

F;

approx ' = < <, v

and, similarly,

which approx. = 2fe- .

djb 2g

Hence by substitution in eq. (6) we have

-- sin
djb 2g

547a. Backwater. Let us suppose that a steady flow "has

been proceeding with uniform motion
(i.e., the surface parallel
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to the bed) in an open channel of indefinite extent, and that a

vertical wall is now set up across the stream. The water rises

and flows over the edge of the wall, or weir, and after a time

a steady flow is again established. The depth, y ,
of the water

close to the weir on the up-stream side is greater than d
,
the

original depth. We now have " variable motion " above the

weir, and at any distance x up-stream from the weir the new

depth y is greater than d . This increase of depth is called

backwater, and, though decreasing up-stream, may be percep-

tible several miles above the weir. Let s be the slope of the

original uniform motion (and also of present bed), and v the

v*

velocity of the original uniform motion, and let ~k .

y

Then, if the section of the stream is a shallow rectangle of

constant width, we have the following relation (Rankine) :

(1)=
l[y.

- y+ (d.
- 2*X0 - <

where is a function of
^-,

as per following table :

For = 1.0



CHAPTEK VIII.

DYNAMICS OF GASEOUS FLUIDS.

548, Steady Flow of a Gas. [N.B. The student should now
review 492 up to eq. (5).] The differential equation from

which Bernoulli's Theorem was derived for any liquid, with-

outfriction, was [eq. (5), 492]

-vdv+ dz+ -dj> = 0, (A)
y /

and is equally applicable to the steady flow of a gaseous fluid,

but with this difference in subsequent work, that the heaviness,

y ( '"0?
f the gas passing different sections of the pipe or

stream-line is, or may be, different (though always the same at

a given point or section, since the flow is steady). For the

present we neglect friction and consider the flow from a large

receiver, where the great body of the gas is practically at rest,

through an orifice in a thin plate, or a short nozzle with a

rounded entrance.

In the steady flow of a gas, since y is different at different

points, the equation of continuity takes the form

Flow of weightier time-unit = F^v ly l
= F^v^y^ = etc.

;
. (a)

i.e., the weight of gas passing any section, of area F, per unit

of time, is the same as for any other section, or Fvy = con-

stant, y being the heaviness at the section, and v the velocity.

549. Flow through an Orifice Remarks. In Fig. 619 we
have a large rigid receiver containing gas at some tension,pn ,

higher than that, pm ,
of the (still) outside air (or gas), and at

some absolute temperature Tn ,
and of some heaviness yn ;

that

is, in a state n. The small orifice of area F being opened, the

gas begins to escape, and if the receiver is very large, or if the

supply is continually kept up (by a blowing-engine, e.g.), after

773
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FIG. 619.

a very short time the flow becomes steady. Let nm represent

any stream-line ( 495) of the flow. According to the ideal

subdivision of this stream-line into

laminae of equal mass or weight (not

equal volume, necessarily) in estab-

lishing eq. (A) for any one lamina,

each lamina in the lapse of time dt

moves into the position just vacated

by the lamina next in front, and

assumes precisely the same velocity,

pressure, and volume (and there-

fore heaviness} as that front one had at the beginning of the

dt. In its progress toward the orifice it expands in volume,
its tension diminishes, while its velocity, insensible at n, is

gradually accelerated on account of the pressure from behind

always being greater than that in front, until at m, in the
" throat" of the jet, the velocity has become vm ,

the pressure

(i.e., tension) has fallen to a value pm ,
and the heaviness has

changed to ym . The temperature Tm (absolute) is less than

Tn ,
since the expansion has been rapid, and does not depend

on the temperature of the outside air or gas into which efflux

takes place, though, of course, after the effluent gas is once

free from the orifice it may change its temperature in time.

We assume the pressure^ (in throat of jet) to be equal to

that of the outside medium (as was done with flow of water),

so long as that outside tension is greater than .527pn ;
but if it

is less than .527 pn and is even zero (a vacuum), experiment
seems to show that^>m remains equal to 0.527 of the interior

tension pn : probably on account of the expansion of the

effluent gas beyond the throat, Fig. 620, so

that although the tension in the outer edge,
at a, of the jet is equal to that of the outside

medium, the tension at m is greater because

of the centripetal and centrifugal forces devel-

oped in the curved filaments between a and
m. (See 553.)

550. Flow through an Orifice; Heaviness assumed Constant

during Flow. The Water Formula. If the inner tension pn ex-

FIG. 620.
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ceeds cne outer, pm ,
but slightly, we may assume that, like

water, the gas remains of the same heaviness during flow.

Then, for the simultaneous advance made by all the laminae or

a stream-line, Fig. 619, in the time dt, we may conceive an

equation like eq. (A) written out for each lamina between n
and m.) and corresponding terms added

; i.e.,

/ f*m f*m f*m rfn

(For orifices) .... i/> + .)(>+./ = <>. . (Ej

In general, y is different in the different laminae, but in the

present case it is assumed to be the same in all; hence, with

m as rktura level and h = vertical distance from n to m, we

have, />om eq.

- = 0. (1)
2? fy y y

But we may put vn = ;
while A, even if several feet, is

small compared with -^ ^
. E.g., with pm = 15 Ibs. per

sq. in. and pn 16 Ibs. per sq. in., we have for atmospheric
air at freezing temperature

^ _^ - 1638 feet.

y y

Hence, putting vn and h in eq. (1), we have

^
2 _ Pn Pm ( Waterformula for small

\ /%\

2p yn \ difference ofpressures, only, f

The interior absolute temperature Tn being known, the yn

(interior heaviness) may be obtained from yn =pny T -f- Tnp 9

( 472), and the volume of flow per unit of time then obtained

(fir.t solving (2) for vm)
is

(3)

where Fm is the sectional area of the jet at m. If the mouthr

piece or orifice has well-rounded interior edges, as in Fig. 541,
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its sectional area F may be taken as the area Fm . But if it is

an orifice in "thin plate," putting the coefficient of contraction

=-. C'= 0.60, we have

Fm =CF=Q.WF\ and <?* = 0.60^w . . (4)

This volume, Qm ,
is that occupied by the flow per time-unit

when in state ra, and we have assumed that ym = yn ;
hence

tfco weight offlow per time-unit is

G = Qmym = FmvmYn = FmvmYn . ... (5)

EXAMPLE. In the testing of a blowing-engine it is found

capable of maintaining a pressure of 18 Ibs. per sq. inch in a

large receiver, from whose side a blast is steadily escaping

through a " thin plate" orifice (circular) having an area F= 4

sq. inches. The interior temperature is 30 Cent, and the out-

side tension 15 Ibs. per sq. in.

Required the discharge of air per second, both volume and

weight. The data are : pn 18 Ibs. per sq. in., Tn = 303

Abs. Cent.,F= 4 sq. inches, and^?m = 15 Ibs. per sq. in. Use

ft.-lb.-sec. system.

First, the heaviness in the receiver is

" = t 'Tu
r< ^ 55

'm x - 807 = - 89 lb8 ' per cub " ft

Then, from eq. (2),

/^Pn-pm_ /vm \/ *y ~\/V Yn V
_ 555.3

feet

per sec.

(97 per cent of this would be more correct on account of fric-

tion.)

' Qm=Fmvm=.6Fvm = TV-rh-X 555.3 = 9.24 cub. ft. per sec.

at a tension of 15 Ibs. per sq. in., and of heaviness (by hypoth-

esis)
= .089 Ibs. per cub. ft. Hence weight

= G = 9.24 X .089 = .82 Ibs. per sec.
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The theoretical power of the air-compressor or biowing- en-

gine to maintain this steady flow can be computed as in Exam-

ple 3, 483.

551, Flow through an Orifice on the Basis of Mariotte's Law;
or Isothermal Efflux. Since in reality the gas expands during
flow through an orifice, and hence changes its heaviness (Fig.

619), we approximate more nearly to the truth in assuming
this change of density to follow Mariotte's law, i.e

0?
that the

heaviness varies directly as the pressure, and thus imply that

the temperature remains unchanged during the flow. We
again integrate the terms of eq. (B\ but take care to note that,

noiv, y is variable (i.e., different in different laminae at the

same instant), and hence express it in terms of the variable p
(froineq. (2), 475), thus:

/W ^ny
Therefore the term / -^- of eq. (B\ becomesUn y

= _P_n Pn
(1)

n Yn 'W
and, integrating all the terms of eq. (B\ neglecting A, and call

ing vn zero, we have

v
_^_ _ Pn

i
Pn ( efflux ly Mariotte's \

/
2\

2<7 yn pm
' '

\ Law through orifice \

'

T r>

As before, yn = -- - y ,
and the flow of volume per time-

% ^n Po
unit at ?n is

Q. = F~v.', ....... (3)

while if the orifice is in thin plate, Fm may be put = .60 F,
and the

weight of the flow per time-unit G Fmvmym. . (4)

If the mouth- piece is rounded, Fm F= area of exit orifice

of mouth-piece.
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EXAMPLE. Applying eq. (2) to the data of the example in

550, where yn was found to be .089 Ibs. per cub. ft., we have

("ft., lb., sec.]

vm =

.' & = ^>m = 0.60 X y^f X 584.7 = 9.745 cub. ft. per sec.

Since the heaviness at m is, from Mariotte's law,

ym = S^ yn = f| of .089, i.e., ym = .0741 Ibs. per cub. ft.,
Pn

hence the weight of the discharge is

G = QmYm = 9.745 X .0741 = 0.722 Ibs. per sec.,

or about 12 per cent less than that given by the " water for-

mula." If the difference between the inner and outer tensions

had been less, the discrepancy between the results of the two

methods would not have been so marked.

552. Adiabatic Efflux from an Orifice. It is most logical to

assume that the expansion of the gas approaching the orifice,

being rapid, is adiabatic ( 478). Hence (especially when the

difference between the inner and outer tensions is considerable)

it is more accurate to assume y as varying according* to Pois-

son's Law, eq. (1), 478
; i.e., y = [yn -t-prf]p%, in integrat-

ing eq. (B). Then the term

/*m /7r> m

L f^=

* Bead the foot-note on p. 623.
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ana eq. (2?), neglecting h as before, and with vn = 0, becomes

(See Fig. 619)

-
. (Adiabaticflow; orifice.) . (1)

Having observed pn and 7^ in the reservoir, we compute
rri

yn =P^ (from 472). The gas at m, just leaving the
LnPo

orifice, having expanded adiabaticallj from the state n to the

state m, has cooled to a temperature Tm (absolute) found thus

(8 478),

Tm =Tn
(^J,

...... (2)

and is of a heaviness

and the flow per second occupies a volume (immediately on

exit)

Qm = Fmvn , (4)
and weighs = Fmvmym (5)

EXAMPLE 1. Let the interior conditions in the large reser-

voir of Fig. 619 be as follows (state n) : pn = 22 Ibs. per sq.

in., and Tn = 294 Abs. Cent, (i.e., 21 Cent.) ;
while ex-

ternally the tension is 15 Ibs. per sq. inch, which may be taken

as being = pm = tension at m, the throat of jet. The opening
is a circular orifice in " thin plate" and of one inch diameter.

Required the weight of the discharge per second [ft., lb., sec.;

g = 32.2].

22 5 V 144 273
FirSt> r" =

14.7x144
'

294
X -0807= - 116 lbs- Per c l>. ft.

Then, from (1),

72X 32.2X3X22.5X144 8 __

0.116
"

L Mr]
~ ' per
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Xow F= i?r(TV)
2 = .00546 sq. ft.

-

.-. Qm = OFvm = .WFvm = 0.60 X .00546 x 825 = 2.702

cub. ft. per sec.
,
at a temperature of

Tm = 294 ff= 257 Abs. Cent. = - 16 Cent.,*

and of a heaviness

ym = 0.116 V(f)' = 0.0885 Ibs. per cub. ft.,

so that the weight of flow per sec.

= a = Qmym = 2.702 X .0885 = .239 Ibs. persec.

EXAMPLE 2. Let us treat the example already solved by the

two preceding approximate methods ( 550 and 551) by the

present more accurate equation of adiabatic flow, eq. (1).

The data were'(Fig. 619):

pn 18 Ibs. per sq. in.
;
Tn = 303 Abs. Cent. ;

pm = 15 " " "
;
and F = 4 sq. inches

[F being the area of orifice]. yn was found = .089 Ibs. per
cub. ft. in 550

; hence, from eq. (1),

From (4),

Qm=Fmvm=.6Fvm=.Qx^fX 576.2 = 9.603 cub. ft. per sec.;

and since at m it is of a heaviness

ym = .089 V(ffy
3 = .0788 Ibs. per cub. ft.,

we have weight of flow per sec.

= G = Qmym = 9.603 x .0788 = 0.756 Ibs. per see.

* By the impact of the effluent air on the outside air, with extinction of

velocity, the temperature rises again.
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Comparing the three methods for this problem, we see that

By the " waterformula? . . . =: 0.82 Ibs. per sec.

" isothermalformula, . . G 0.722 " "

" adiabaticformula, . . G 0.756 " "

553. Practical Notes. Theoretical Maximum Flow of Weight.
* If in the equations of 552 we write for brevity ^>TO-;->:= a*

we derive, by substitution from (1) and (3) in (5),

This function of x is of such a form as to be a maximum for

= 0>-5-^.)=(t)
1

=.5l2; . / . . (2)

i.e., theoretically, if the state n inside the reservoir remains

the same, while the outside tension (considered =pm of jet,

Fig. 619) is made to assume lower and lower values (so that

#, =-pm -r-pn i
diminishes in the same ratio), the maximum flow

of weight per unit of time will occur when pm = .512 pnj a

little more than half the inside tension. (With the more ac-

curate value 1.41 (1.408), instead of f, see 478, we should

obtain .527 instead of .512 for dry air; see 549.)

Prof. Cotterill says (p. 544 of his "
Applied Mechanics") :

"The diminution of the theoretical discharge on diminution

of the external pressure below the limit just now given is an

anomaly which had always been considered as requiring ex-

planation, and M. St. Tenant had already suggested that it

could not actually occur. In 1866 Mr. R. D. Napier showed

by experiment that the weight of steam of given pressure dis-

charged from an orifice really is independent of the pressure

of the medium into which efflux takes place*; and in 1872

Mr. Wilson confirmed this result by experiments on the reac-

tion of steam issuing from an orifice."

i

" The explanation lies in the fact that the pressure in the

* When the difference between internal and external pressures is great,-'

should be added.
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centre of the contracted jet is not the same as that of the sur-

rounding medium. The jet after passing the contracted sec-

tion suddenly expands, and the change of direction of the fluid

particles gives rise to centrifugal forces" which cause the pres-

sures to be greater in the centre of the contracted section than

at the circumference ;
see Fig. 620.

Prof. Cotterill then advises the assumption that j9m=.527j9n

(for air and perfect gases) as the mean tension in the jet at m
(Fig. 619), whenever the outside medium is at a tension less

than .527j9n . He also says,
" Contraction and friction must

be allowed for by the use of a coefficient of discharge the

value of which, however, is more variable than that of the

corresponding coefficient for an incompressible fluid. Little is

certainly known on this point." See 549 and 554.

For air the velocity of this maximumflow of weight is

Vel.ofmax. G = w?\ ? ft. per sec., . (3)

where Tn = abs. temp, in reservoir, and T = that of freezing

point. Rankine's Applied Mechanics ( p. 584) mentions ex-

periments of Drs. Joule and Thomson, in which the circular

orifices were in a thin plate of copper and of diameters 0.029

in., 0.053 in., and 0.084 in., while the outside tension was

about one half of that inside. The results were 84 per cent

of those demanded by theory, a discrepancy due mainly, as

Rankine says, to the fact that the actual area of the orifice was

used in computation instead of the contracted section; i.e., con-

traction was neglected.

554. Coefficients of Efflux by Experiment. For Orifices and

Short Pipes. Small Difference of Tensions. Since the discharge

through an orifice or short pipe from a reservoir is affected

not only by contraction, but by slight friction at the edges,

even with a rounded entrance, the theoretical results for the

volume and weight of flow per unit of time in preceding para-

graphs should be multiplied both by a coefficient of velocity

and one for contraction
(7, as in the case of water

; i.e., by a

coefficient of efflux /*,
= 0(7. (Of course, when there is no
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contraction, C= 1.00, and then //
= as with a well-rounded

mouth-piece, for instance, Fig. 541, and with short pipes.)

Hence for practical results, with orifices and short pipes, we
should write for the weight offlow per unit of time

(1)

(from the equations of 552 for adiabatic flow, as most accu-

rate; pm -7-pn may range from
-J-

to 1.00). F= area of orifice,

or of discharging end of mouth-piece or short pipe. yn =
heaviness of air in reservoir and = TpnyQ

~ Tnp , eq. (13) of

437
;
and /*

= the experimental coefficient of efflux.

From his own experiments and those of Koch, D'Aubuis-

eon, and others, Weisbach recommends the following mean
values of JJL for various mouthpieces, when pn is not more than

\ larger than pm (i.e., about Ml % larger), for use in eq. (1) :

1. For an orifice in a thin plate, ....... /*=0.56
2. For a shortcylindricalpipe(innercorners not rounded),/*=0.75
3. For a well-rounded mouth-piece (like that in Fig. 541), /*=0.98
4. For a short conical convergent pipe (angle about 6), /*=0.92

EXAMPLE. (Data from Weisbach's Mechanics.) "If the

sum of the areas of two conical tuyeres of a blowing-machine
is F= 3 sq. inches, the temperature in the re&ervoir 15 Cent.,

the height of the attached (open) mercury manometer (see

Fig. 464) 3 inches, and the height of the barometer la the ex-

ternal air 29 inches,
5' we have (ft, lb., sec.)

pn ^ (ft) l.r X 144 Ibs. per sq. ft ;

n= Ht -ft X 0.0807 = 0.0816 Ibs. per cob. ft,

While ^'= yfj- sq. ft. and (see above) /*
= 0.92

;
hence

Q = 0.92 X rl-r (fl*
1 V2X 322 X 3X X 14.7 X 144 X .0816 [1

-
j/fjjj
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i.c., G .6076 Ibs. per second
;
which will o 3upy & volume

F = a -f- v. = G -f- .0807 = 7.59 cub. ft.

at one atmosphere tension and freezing-point teirpo
while at a temperature of Tn = 288 Abs. Cent, and tcBoion of

pm ||. of one atmosphere (i.e., in the state in which it was

on entering the blowing-engine) it occupied a volume

F = X 7.59 = 8.24 cub. ft.

(This last is Weisbach's result, obtained by an approximate

formula*)

555. Coefficients of Efflux for Orifices and Short Pipes for a

Large Difference of Tension. For values > f and < 2, of the

ratio pn : pm , of internal to external tension, Weisbach's ex-

periments with circular orifices in thinplate, of diameters (=d)
from 0.4 inches to 0.8 inches, gave the following results :

Pn'.pm =
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Orifice.- --Fig. 621. If the internal pressure pn ,
and tempera.

fcure Tn ,
must be measured in a

small reservoir or pipe, n, whose

sectional area Fn is not very large

compared with that of the oridce,

F, (or of the jet Fn ,) the velocity

vn at n (velocity of approach) can- FIG. esi.

not be put = zero. Hence, in applying eq. (/?), 550, to the

successive laminae between n and m, and integrating, we shall

have, ior adiabatic steady flow,

V* Vn _ tyn
I""-, (Pm\~'"-

instead of eq. (1) of 552. But from the equation of continuity
for steady flow of gases [eq. (a) of 548], Fnvnyn= Fmvmym \

F *v
a

hence vn
*

,
^OT

a

,
while for an adiabatic change from n

to m, = f
)

; whence by substitution in (1), solving for

vm , we have

before, from 472 and 478,

* d y--()>. ...-.-.. (4)

Having observed pn , pm , and yn , tiion, and knowing the

area F of the orifice, we may compute yn , M̂9 and vmy and

finally the

Weight offlow per tvine-unit= @ = j&Fk)mym9 . . (5)
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taking // from 554 or 555. In eq. (2) it must be remembered

that for an orifice in " thin plate," Fm is the sectional area of

the contracted vein, and = CF\ where C may be put = -^L .

."7

. EXAMPLE. If the diameter of AB, Fig. 621, is 3 inches.

and that of the orifice, well rounded, = 2 in.
;

if pn = 1^ at-

mospheres = -ff X 14.7 X 144 Ibs. per sq. ft., while pm = |J of

an atmos., so that 2 = ft, and Tn = 283 Abs. Cent., re-

Pn

qnired the discharge per second, using the ft., lb., and sea

From eq. (3),

Yn = if-Hf X 0.0807 .08433 Ibs. per cub. ft;

whence (eq. (4))

ym = (U)Vn = -07544 Ibs. per cub. ft.

Then, from eq. (2),

= 558.1 ft. per sec. ;

.-. a = 0.98
|(|)

S

558.1 x .07544 = .9003 Ibs. per sec.

557. Transmission of Compressed Air; through very Long
level Pipes. Steady Flow.

CASE I. When the difference between the tensions in the

reservoirs at the ends of the pipe is small. Fig. 622. Under

FIG. 623.

these circumstances it is simpler to employ the form of formula
that would be obtained for a liquid by applying Bernoulli's

Theorem, taking into account the "
loss of head "

occasioned
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by the friction on the sides of the pipe. Since the pipe is

very long, and the change of pressure small, the mean velocity

in the pipe, v', assumed to be nearly the same at all points

along the pipe, will not be large ;
hence the difference be-

tween the velocity-heads at n and m will be neglected ;
a cer-

tain mean heaviness y' will be assigned to all the gas in the

pipe, as if a liquid.

Applying Bernoulli's Theorem, with friction, 516, to the

ends of the pipe, n and m, we have (as for a liquid)

Putting (as above mentioned) vm
*

vj = 0, we have, more

simply,

The value of f as coefficient of friction for air in long

pipes is found to be somewhat smaller than for water
;
see next

paragraph.

558. Transmission of Compressed Air. Experiments in the St.

Gothard Tunnel, 1878. [See p. 96 of Vol. 24 (Feb. '81), Tan
Nostrand's Engineering Magazine.] In these experiments,
the temperature and pressure of the flowing gas (air) were ob-

served at each end of a long portion of the pipe which delivered

the compressed air to the boring-machines three miles distant

from the tunnel's mouth. The portion considered was selected

at a distance from the entrance of the tunnel, to eliminate the

fluctuating influence of the weather on the temperature of the

flowing air. A steadyflow being secured by proper regulation

of the compressors and distributing tubes, observations were

made of the internal pressure (p\ internal temperature (T\ as

well as the external, at each end of the portion of pipe con-

sidered, and also at intermediate points ;
also of the weight

of flow per second G = Q y ,
measured at the compressors

under standard conditions (0 Cent, and one atmos. tension).

Then knowing the p and T at any section of the pipe, the
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heaviness y of the air passing that section can be computed
rri

|

I
from ~ = -7^ and the velocity v = G -f- Fy, F being

L r PO J- -1

the sectional area at that point. Hence the mean velocity v'
9

and the mean heaviness y'',
can be computed for this portion

of the pipe whose diameter = d and length = Z. In the ex-

periments cited it was found that at points not too near the

tunnel-mouth the temperature inside the pipe was always
about 3 Cent, lower than that of the tunnel. The values of

/in the different experiments were then computed from eq.

(2) of the last paragraph ; i.e.,

(2)

all the other quantities having been either directly observed,

or computed from observed quantities.

THE ST. GOTHARD EXPERIMENTS.

[Concrete quantities reduced to English units.]

No.
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On p. 370, vol. xxiv, Yan Nostrand's Mag., Prof. Robinson

of Ohio mentions other experiments with large long pipes.

From the St. Gothard experiments a value off= .004 may
be inferred for approximate results with pipes from 3 to 8 in.

in diameter.

EXAMPLE. It is required to transmit, in steady flow, a supply
of G 6.456 Ibs. of atmospheric air per second through a pipe
30000 ft. in length (nearly six miles) from a reservoir where

the tension is 6.0 atmos. to another where it is 5.8 atmos., the

mean temperature in the pipe being 80 Fahr., = 24 Cent.

{i.e.
= 297 Abs. Cent.). Required the proper diameter of

pipe ;.<# = ? The value f .00425 will be used, and the ft.-

Ib.-sec. system of units. The mean volume passing per second

in the pipe is

Q'=G + y>........ (3)

Ql Q'
The mean velocity may thus be written : v' = -~ = -~-

. (4)
JT \nd

The mean heaviness of the flowing air, computed for a mean
tension of 5.9 atmospheres, is, by 472,

x -0807 = -431 Ibs - ^roab- ft- ;

-and hence, see eq. (3),

xv G- 6.456 ,

cub"

at tension of 5.9 atmos., and temperature 297 Abs. Cent.

Now, from eq. (2),

whence

3* 4/ y'l Q'*
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and hence, numerically,

5 / 4 X .004:25 X 0.431 X 30000 X (14.T4)
8
"

~
y (.7854)

2

[U.7 X M4(6.00 5.80)]2 X 32.2
~

559. (Case II of 557) Long Pipe, with Considerable Differ-

ence of Pressure at Extremities of the Pipe. Flow Steady. Fig.

623. If the difference between the end-tensions is compara-

tively great, we can no longer deal with the whole of the air

in the pipe at once, as regards ascribing to it a mean velocity

and mean tension, but must consider the separate laminae,

such as AB(& short length of the air-stream) to which we may
apply eq. (2) of 557

;
A and B corresponding to the n and

m of Fig. 622. Since the ^>n pm , Z, y', and v' of 557

correspond to the dp, ds, y, and v of the present case (short

section or lamina), we may write

dp * ,?
V* 7-

But if G = weight of flow per unit of time, we have at any

section, Fvy G (equation of continuity) ; i.e., v = G H- Fy,
whence by substitution in eq. (1) we have

dp 4/

Eq. (2) contains three variables, y, p, and s (= distance of

lamina from ri). As to the dependence of the heaviness y on

the tensionp in different laminae, experiment shows that in most

cases a uniform temperature is found to exist all along the

pipe, if properly buried, or shaded from the sun
;
the loss of

heat by adiabatic expansion being in great part made up by
the heat generated by the friction against the walls of the
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pipe. This is due to the small loss of tension per unit of

length of pipe as compared with that occurring in a short dis-

charge pipe or nozzle. Hence we. may treat the flow as iso-

thermal, and writep -f- y pn>-- yn>

( 475, Mariotte's Law).

Hence y = p, which substituted in eq. (2) enables us to

Pn'

Performing the integration, noting that at n'ppn>,
5 = 0,

and at m'p =pm > and s = I,
we have

ir*> 2 - <n '
2
1 - ^f l

*L I
isothermal floiv~

Zgd' F*' yn,' \ in long pipes

It is here assumed that the tension at the entrance of the pipe
is practically equal to that in the head reservoir, and that at

the end (m'} to that of the receiving reservoir; which is not

strictly true, especially when the corners are not rounded. It

will be remembered also that in establishing eq. (2) of 557

(the basis of the present paragraph), the "inertia" of the gas
was neglected ; i.e., the change of velocity in passing along
the pipe. Hence eq. (4) should not be applied to cases where

the pipe is so short, or the difference of end-tensions so great,

as to create a considerable difference between the velocities at

the two ends of the pipe. (See Addendum on p. 797.)

EXAMPLE. A well or reservoir supplies natural gas at a ten-

sion of pn > 30 Ibs. per sq. inch. Its heaviness at Cent.

and one atmosphere tension is .0484 Ibs. per cub. foot. In

piping this gas along a level to a town two miles distant, a

single four-inch pipe is to be employed, and the tension in the

receiving reservoir (by proper regulation of the gas distributed

from it) is to "be kept equal to 16 Ibs. per sq. in. (which would

sustain a column of water about 2 ft. in height in an open
water manometer, Fig. 465).
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The mean temperature in the pipe being 17 Cent., required
the amount (weight) of gas delivered per second, supposing

leakage to be prevented (formerly a difficult matter in practice).

Solve (4) for 6?

,
and we have

(5)

First, from 472, with Tn, = Tm, = 290 Abs. Cent., we

compute

Hence with/ =.005,

(16 X 144)]
4X.005 X 10560 X 46154:

= 0.337 Ibs. per sec.

(For compressed atmospheric air, under like conditions, we
would have G 0.430 Ibs. per second.)
Of course the proper choice of the coefficient/ has an im-

portant influence on the result.

From the above result (G- = 0.337 Ibs. per second) we can

compute the volume occupied by this quantity of gas in the

/3

receiving reservoir, using the relation Qm > = .

/ m'

The heaviness ym> of the gas in the receiving reservoir is

most easily found from the relation -SzL = S^
, which holds

7m' Yn>

good since the flow is isothermal. I.e., '= 46454ft.;
Ymf

whence ym , = 0.049 Ibs. per cubic foot, pm> being 16 X 144
Ibs. per sq. ft.

Hence

cub - ft - per sec -
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It should be said that the pressure at the up-stream end of

the pipe depends upon the rate of flow allowed to take place.

With no flow permitted, the pressure in the tube of a gas-

well has in some cases reached the high figure of 500 or 600

]bs. per sq. in.

560. Rate of Decrease of Pressure along a Long Pipe. Con-

sidering further the case of the last paragraph, that of a

straight, long, level pipe of uniform diameter, delivering gas

from a storage reservoir into a receiving reservoir, we note

that if in eq. (4) we retainpm> to indicate the tension in the

receiving reservoir, but let pn> denote in turn the tension at

points in the pipe successively further and further (a distance

x) from the receiving reservoir w', we may write x for I and

obtain the equation (between two variables,pn> and x)

Pn* Pm* = Const. X os (6)

This can be used to bring out an interesting relation men-

tioned by a writer in the Engineering News of July 1887

(p. 71), viz., the fact that in the parts of the pipe more distant

from the receiving end, m', the distance along the pipe in

which a given loss of pressure occurs is much greater than

near the receiving end.

To make a numerical illustration, let us suppose that the

pipe is of such size, in connection with other circumstances,
that the tension pn, at A, a distance x = six miles from m'

',
is

two atmospheres, the tension in the receiving reservoir being
one atmosphere ;

that is, that the loss of tension between A.

and m' is one atmosphere. If we express tensions in atmos-

pheres and distances in miles, we have for the value of the

constant in eq. (6), for this case,

Const. = (4 1) 6 = f ; (for assumed units.) . . (7)

Now \Qtpn' = the tension at B, a point 18 miles from ra',

and we have, from eqs. (6) and (7), the tension at B 3.16

atmospheres. Proceeding in this manner, the following set of

values is obtained :
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Point.
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tension in those portions could be made smaller than as shown

in the preceding example.
To secure a more rapid fall of pressure at the up-stream end

of the pipe, and at the same time provide for the same delivery

of gas as with a pipe of uniform diameter throughout, a pipe
of variable diameter may be employed, that diameter being

considerably smaller at the inlet than that of the uniform pipe
but progressively enlarging down-stream. This will require

the diameters of portions near the discharging end to be larger

than in the uniform pipe, and if the same thickness of metal

were necessary throughout, there would be no saving of metal,

but rather the reverse, as will be seen
;
but the diminished

thickness made practicable in those parts from a less total hoop
tension than in the corresponding parts of the uniform pipe
more than compensates for the extra metal due to increased

circumference, aside from the diminished liability to leakage,

which is of equal importance.
A simple numerical example will illustrate the foregoing.

The pipe being circular, we may replaceF by \nd
l

in equation

(4), and finally derive, G being given,

d = Const. X f-
-1-1*= C. \ ^ ,1! . (8)a '

Let A be the head reservoir, and m' the receiving reservoir,

and B a point half-way between. At A the tension is 10 at-

nrospheres ;
at m', 2 atmospheres. For transmitting a given

weight of gas per unit-time, through a pipe of constant diam-

ter throughout, that diameter must be (tensions in atmospheres ;

2/ being the length), by eq. (8),

d = Cl *

If we substitute for the pipe mentioned, another having a con-

stant diameter d, from A to B, where we wish the tension to

be 5 atmospheres, and a different constant diameter d^ from B
to m', we derive similarly
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and

It is now to be noted that the sum of d
l
and d

y is slightly

greater than the double of d
;
so that if the same thickness of

metal were used in both designs the compound pipe would

require a little more material than the uniform pipe; but,

from the reasoning given at the beginning of this paragraph,
that thickness may be made considerably less in the down-

stream part of the compound pipe, and thus economy secured.

[In case of a cessation of the flow, the gas tension in the

whole pipe might rise to an equality with that of the head-

reservoir were it not for the insertion, at intervals, of auto-

matic regulators, each of which prevents the increase of ten-

sion on its down-stream side above a fixed value. To provide
for changes of length due to rise and 1'all of temperature, the

pipe is laid with slight undulations.]

It is a noteworthy theoretical deduction that a given pipe of

variable diameter connecting two reservoirs of gas at specified

pressures will deliver the same weight of gas as before, if
turned end for end. This follows from equation (3)', 559.

With d variable, (3)' becomes (with F= \ptf)

f'-pdp)=G*C"f
m

'^', i.e., & = -Pn
'

~^
m/a

. . (9)

WjJ*
(" is a constant.)

r'ds is evidently the same in value if the pipe be

turned end for end. In commenting on this circumstance, we
should remember (see 559) that the loss of pressure along the

pipe is ascribed entirely tofrictional resistance, and in no de-

gree to changes of velocity (inertia).

On p. 73 of the Engineering News of July 1887 are given
the following dimensions of a compound pipe in actual use,

and delivering natural gas. The pressure in the head-reservoir

is 319 Ibs. per sq. in.; that in the receiving reservoir, 65. For

2.84 miles from the head-reservoir the diameter of the pipe is
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8 in.
; throughout the next 2.75 miles, 10 in.; while in the

remaining 3.84 miles the diameter is 12 in. At the two

points of junction the pressures are stated to be 185 and 132

Ibs. per sq. in., respectively, during the flow of gas under the

conditions mentioned.

561a. Values of the Coefficient of Fluid Friction for Natural

Gas. In the Ohio Keport on Economic Geology for 1888 may
be found an article by Prof. S. W. Kobinson of the University
of that State describing a series of interesting experiments
made by him on the flow of natural gas from orifices and

through pipes. By the insertion of Pitot tubes approximate
measurements were made of the velocity of the stream of gas
in a pipe. The following are some of the results of these ex-

periments,^ p^ representing the loss of pressure (in Ibs. per

sq. inch) per mile of pipe-length, and /"the coefficient of fluid

friction, in experiments with a six-inch pipe :

Pi -p*



CHAPTEK IX.

IMPULSE AND RESISTANCE OF FLUIDS.

562. The so-called
" Reaction" of a Jet of Water flowing from

a Vessel In Fig. 624, if a frictionless but water-tight plug E
be inserted in an orifice in the

vertical side of a vessel mounted

on wheels, the resultant action of

the water on the rigid vessel (as a

whole) consists of its weight G,

and a force P' = FJiy (in which

F= the area of orifice) which is

the excess of the horizontal hydro-
static pressures on the vessel wall

toward the right ( ||
to paper) over

those toward the left, since the

pressure P, = Fhy, exerted on the plug is felt by the post (7,

and not by the vessel. Hence the post D receives a pressure

P' = Fhy. (1)

Let the plug B be removed. A steady flow is then set up

through the orifice, and now the pressure against the post D is

%Fhy (as will be proved in the next paragraph) ;
for not only

IB the pressure Fhy lacking on the left, because of the orifice,

but the sum of all the horizontal components ( ||
to paper) of

the pressures of the liquid filaments against the vessel wall

around the orifice is less than its valup before the flow began,

by an amount Fhy. A resistance E ZFhy being provided,
and the post removed, a slow uniform motion may be main-

lined toward the right, the working force being 'zFliy = P"
as
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Fio. 625.

(see Yig. 625
;
R is not shown). If an insufficient resistance

be furnished before removing the post Z>, . . . ^ .

the vessel will begin to move toward the

right with an acceleration, which will

disturb the surface of the water and

change the value of the horizontal force.

This force

P"=:^Fhy ... (2)

is called the " reaction" of the water-jet ;

y is the heaviness of the liquid ( 7).

Of course, as the flow goes on, the

water level sinks and the ' reaction" diminishes accordingly.

Looked upon as a motor, the vessel may be considered to be a

piston-less and valve-less water-pressure engine, carrying its

own reservoir with it.

In Case II of 500 we have already had a treatment of the
" Reaction-wheel "

or u Barker's mill," which is a practical

machine operating on this principle, and will be again con-

sidered in "
Hydraulic Motors." *

563. " Reaction" of a Liquid Jet on the Vessel from which it

Issues. Instead of showing that the pressures on the vessel

close to the orifice are less than they were when there was no

flow by an amount Fhy (a rather lengthy demonstration),

another method will be given, of greater simplicity but some-

what fanciful.

If a man standing on the rear platform of a car is to take up
in succession, from a basket on the car, a number of balls of

equal mass = J/, and project each one in turn horizontally

backward with an acceleration =p, he can accomplish this

only by exerting against each ball a pressure = Mp, and in the

opposite direction against the car an equal pressure Mp. If

this action is kept up continuously the car is subjected to a

constant and continuous forward force of P" = Mp.
Similarly, the backward projection of the jet of water in the

case of the vessel at rest must occasion a forward force against

the vessel of a value dependent on the fact that in each small

interval of time At a small mass AM of liquid has its velocity

changed from zero to a backward velocity of v Vtyh ;
that

*
Hydraulic Motors ; with related subjects. New York, 1905, John

Wiley & Sons.
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is, has been projected with a mean acceleration of p = -
At

so that the forward force against the vessel is

P" = mass X ace. = . (3)At

If Q = the volume of water discharged per unit time, then

AM QZ.
At, and since also Q = Fv = F\/

^gh, eq. (3) be-

comes "Reaction" ofjet = P" = ZFhy. ... (4)

(A similar proof, resulting in the same value for P"
,

is

easily made if the vessel has a uniform motion with water sur-

face horizontal.)

If the orifice is in " thin plate," we understand by F the

area of the contracted section. Practically, we have v=
</> V%gh

( 495), and hence (4) reduces to

P" = %<pFhy.......... (5)

Weisbach mentions the experiments of Mr. Peter Ewart of

Manchester, England, as giving the result P" = \.*V&Fliy

with a well-rounded orifice as in Fig. 625. He also found
= .94 for the same orifice, so that by eq. (4) we should have

P" = Z(MJFhy = l.WFhy.

With an orifice in thin plate Mr. Ewart found P"
\.\kFliy. As for a result from eq. (4), we must put, for F^
the area of the contracted section .647^

( 495), which, with

=
.96, gives

P" = 2(M)
t
.64Jf

r

hy = l.lSI
t

hy. ... (6)

Evidently both results agree well with experiment.

Experiments made by Prof. J. B. Webb at the Stevens

Institute (see Journal of the Franklin Inst., Jan. '88, p. 35)
also confirm the foregoing results. In these experiments the

vessel was suspended on springs and the jet directly down-

ward, so that the "reaction" consisted of a diminution of the

tension of the springs during the flow.

564. Impulse of a Jet of Water on a Fixed Curved Vane (with

Borders). The jet passes tangentially upon the vane. Fig.
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626. B is the stationary nozzle from which a jet of water of

cross-section F (area) and velocity = c impinges tangentially

upon the vane, which has

plane borders, parallel to

paper, to prevent the lat-

eral eicape of the jet.

The curve of the vane is

not circular necessarily.

The vane being smooth,
the velocity of the water

in its curved path remains

= c at ail points a*ong
the curve. Conceive the

curve divided into a great

number of small lengths each = ds, and subtending some

angle = rf'0 from its own centre of curvature, ite radius of

curvature being r (different for different <fo's), which makes

some angle = with the axis Y (1 to original straight jet

BA). At any instant of time there is an arc of water AD in

contact witli the vane, exerting pressure upon it. The pres-

sure dP of any ds of the vane against the small ma^s of water

Fds. . y -T- g then in contact with it is the "
deviating" or " cen-

tripetal
" force accountable for its motion in a curve of radius

=
r, and hence must have a value

FIG. 626.

dp (1)

The opposite and equal of this force is the dP shown in

Fig. 626, and is the impulse or pressure of this small mass

against the vane. Its ^-component is dX = dP sin 0. By
making vary from to <*, and adding up the corresponding
values of dX we obtain the sum of the JT-components of the

small pressures exerted simultaneously against the vane by the

src of water then in contact with it
; i.e., noting that d#=r

- sin

Lo
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hence the X-impulse ) =
againstfixed vane

) g
^ a]= cos a], (2)

in which Q Fo volume of water which passes through the

nozzle (and also = that passing over the vane, in this case) per

unit of time, and a = angle between the direction of the

stream leaving the vane
(i.e.,

at D) and its original direction

(BA of the jet) ; i.e., a = total angle of deviation. Similarly,

the sura of the ^-components of the dP's of Fig. 626 may be

shown to be

Y-impulse on fixed vane =JQ
dP . cos = 52-2 sin a...(2)'

Hence the resultant impulse on tha vane is a force

F" = - cos a), . . (3)

and makes such an angle <*', Fig.

that

t
T sin a

tan a = -=? =X 1 cos a

> with the direction

?n

FIG. 627. FIG. 628.

For example, if a = 90, then ' = 45; while ?f at =
Fig. 628, we have a' =

; i.e., f* is parallel to the jet BAt
and its value is
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565. Impulse of a Jet on a Fixed Solid of Revolution whoso
Axis is Parallel to the Jet. If the

curved vane, with borders, of the pre-

ceding paragraph be replaced by a

solid of revolution, Fig. 629, with its

axis in line of the jet, the resultant

pressure of the jet upon it will simply
be the sum of the ^-components (i.e.,

= to BA) of the pressures on all ele-

ments of the surface at a given instant
; Le.,

FIG. 629.

(5)

while the components 1 to X, all directed toward the axis of

the solid, neutralize each other. For a fixed plate, then, Fig.

630, at right angles to the jet, we have for the force, or " im-

pulse" (with a = 90),
,a=x7t

FIG. 630.

(6)

The experiments of Bidone, made in

1838, confirm the truth of eq. (6) quite

closely, as do also those of two students of

the University of Pennsylvania at Phila-

delphia (see Jour, of the Frank. Inst. for Oct. '87, p. 258).

Eq.(6) is applicable to the theo-

ry of Pitot's Tube (see 539),

Fig. 631, if we consider the edge
}f the tube plane and quite wide.

The water in the tube is at rest,

and its section at A (of area=
may be treated as a flat vertical

plate receiving not tmly the

hydrostatic pressure Fxy, due

to the depth x below the sur- Fro. en.

face, but a continuous impulse P" Fy -5- g [see eq. (6)].*

* This implies that the sectional area F ot the "equivalent isolated jet
is equal to that of the extremity of tube and that a is 90, an assumptioi
which, though simple, is largely conjectural.
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For the equilibrium of the end A, of the stationary column

AD, we must have, therefore,

= Fxy+ Fh'Y ; i.e. A' = (8.0) . (7)
y y

The relation in equation (7) corresponds reasonably well

with the results of Weisbach's experiments with the instru-

ment mentioned in 539. Pitot himself, on trial of an in-

strument in which the edges of the tube at A were made flar-

ing or conically divergent, like a funnel, found

(7)'

while Darcy, desirous that the end of the tube should occasion

as little disturbance as possible in the surrounding stream,

made the extremity small and conically

convergent.* The latter obtained the

relation

h' = almost exactly (1.0)

(See 539.)

If the solid of revolution is made cup-

shaped^ as in Fig. 632, we have (as in

Fig. 628) a = 180, and therefore, from

eq. (5),

'

FIG. 632.

(8)

EXAMPLE. Fig. 632. If c 30 ft. per sec. and the jet

(cylindrical) has a diameter of 1 inch, the liquid being water,

so that y = 62.5 Ibs. per cub. ft., we have [ft., lb., sec.]

the impulse (force) = P" =
a
i(ia)-

8

32.2
= 19.05 Ibs.

Experiment would probably show a smaller result.

See p. 833 for Mr. Freeman's Experiments.
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o-

566. Impulse of a Liquid Jet upon a Moving Vane having

Lateral Borders and Moving in the Direction of the Jet. Fig.

633. The vane has a motion of translation ( 108) in the

same direction as the jet. Call this the axis X. It is moving
with a velocity v away from the jet (or, if toward the jet, v

is negative). We con-

sider v constant, its ac-

celeration being prevented

by a proper resistance

(such as a weight = G)
to balance the JT-com-

ponents of the arc-pres-

sures. Before coming in

contact with the vane,

which it does tangentially

(to avoid sudden devia-

tion), the absolute velocity

( 83) of the water in the

jet
=

<?,
while its velocity

relatively to the vane at A is = c v
9
and it will now be

'proved that the relative velocity along the vane is constant.

See Fig. 634. Let v = the velocity of the vane (of each

point of it, since its motion is one of translation), and u = the

velocity of a water particle (or small mass of water of length
= ds] relatively to the point of the vane which it is passing.

Then 10, the absolute velocity of the small mass, is the diago-

nal formed on u and v. Neglecting friction, the only actual

force acting on the mass is P, the pressure of the vane against

it, and this is normal to the curve. Now an imaginary system
of forces, equivalent to this actual system of one force jP, i.e.,

capable of producing the same motion in the mass, may be

conceived of, consisting of the individual forces which would

produce, separately, the separate motions of which the actual

motion of this small mass M is compounded. These com-

ponent motions are as follows :

1. A horizontal uniform motion of constant velocity = v
;

and

2. A motion in the arc of a circle of radius = r and with a
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velocity = -w, which we shall consider variable until proved
otherwise.

Motion 1 is of such a nature as to call for noforce (by New-

ton's first law of motion), while motion 2 could be maintained

bj a system of two forces, one normal, Pn ,
= -

,
and the

it ?/

other tangential, Pt M-j- [see eq. (5), p. 76]. This imagi-
(Lt

nary system of forces is shown at (II.), Fig. 634, and is equiv-

(I.)

FIG. 634.

alent to the -actual system at (I.). Therefore 2 (tang, com-

pons.) in (I.) should be equal to 2 (tang, compons.) in (II.) ;

whence we have

- p<
= Q

->
- ^J =

;
or sH* w

i.e., u is constant along the vane and is equal to c v at every

point. (The weight of the mass has been neglected since the

height of the vane is small.) In Fig. 634 the symbol w has

been used instead of
<?,

and the point corresponds to A in

Fig. 633.

[N.B. If the motion of the vane were rotary, about an axis

1 to AB (or to c\ this relative velocity would be different at

different points. See Notes on Hydraulic Motors. If the

radius of motion of the point A, however, is quite large com-

pared with the projection of AD upon this radius, the relative

velocity is approximately = c v at all parts of the vane,
and will be taken = c v in treating the "

Hurdy-gurdy" in

567.]
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By putting 2 (normal compons.) of (I.)
= 2 (normal com-

pons.) in (II.) We have

P = Pn ; i.e., P =MU-= M(P-^; . . (2)

so that to find the sum of the ^-components of the pressures

exerted against the vane simultaneously by all the small masses

of water in contact with it at any instant, the analysis differs

from that in 564 only in replacing the c of that article by
the (c v) of this. Therefore

2(Z-pressures) = Px = ~^(c *>)

8

[1 cos a], . (3)
y

(where a is the angle of total deviation, relatively to vane, of

the stream leaving the vane, from its original direction), and

is seen to be proportional to the square of the relative velocity.

F is the sectional area of jet, and y the heaviness
( 7) of the

liquid. The 1^-cornponent (or PT)
of the resultant impulse

is counteracted by the support EF^ Fig. 633. Hence,for a,

uniform motion to le maintained, with a given velocity = v,

the weight G must be made = Px of eq. (3). (We here

neglect friction and suppose the jet to preserve a practically

horizontal direction for an indefinite distance before meeting
the vane. If this uniform motion is to be toward the jet, v

will be negative in eq. (3), making Px (sa\d .'. G) larger than

for a positive v of same numerical value.

As to the doing of work [ 128, etc.], or exchange of

energy, between the two bodies, jet and vane, during a uni-

form motion away from the jet, Px exerts apower of

-
v)*v[l

- cos ], . . . (4)
/

in which Z denotes the number of units of work done per unit

of time by Px \ i.e., i\\Q power ( 130) exerted by P9 .

If v is negative, call it v', and we have the

Power expended ) r> , Fy ,
/VI /M _

/tt

b,, vane upon jet \

== P*V = -X*+0 t1
~ cos ] (<*
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Of course, practically, we are more concerned with eq. (4)

than with (5). The power L in (4) is a maximum for v = -Jc;

but in practice, since a single moving vane or float cannot

utilize the water of the jet as fast as it flows from the nozzle,

let us conceive of a succession of vanes coming into position

consecutively in front of the jet, all having the same velocity

v
;
then the portion of jet intercepted between two vanes is at

liberty to finish its work on the front vane, while additional

work is being done on the hinder one
; i.e., the water will be

utilized as fast as it issues from the nozzle.

With such a series of vanes, then, we may put Q', = 2<
J

c
9

the volume of flow per unit of time from the nozzle, in place

of F(c v)
= the volume of flow per unit of time over the

vane, in eq. (4) ;
whence

Power exerted on \ __
series of vanes

)

_ cos -?M . (6)

Making v variable, and putting dL
f

-s-dv=Q, whence c 2^=0,
we find that for v =

-J-0, Z', the power, is a maximum. As-

suming different values for a, we find that for a 180, i.e.,

by the use of a semicircular vane, or of a hemispherical cup,

Fig. 635, with a point in middle, 1 cos or is a max., = 2
;

whence, with v =
<?,

we have, as the

maximum power,

L' _Q'y c*__'~

in which M' denotes the mass of the flow

per unit of time from the stationary

nozzle. Now is the entire kinetic

FIG.

energy furnished per unit of time oy the

jet ;
hence the motor of Fig. 635 (series

of cups) has a theoretical efficiency of

unity, utilizing all the kineticenergy of the water. If this is

true, the absolute velocity of the particles of liquid where they
leave the cup, or vane, should be zero^ which is seen to be true,
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as follows : At ff, or Hr

,
the velocity of the particles rela-

tively to the vane is = G v = what it was at A, and hence

is = G =
;

hence at H the absolute velocity is w =
2 2

G G

(rel. veloc. toward left) (veloc. of vane toward right) = 9

2 2

Q.E.D. For v > or < \c this efficiency will not be attained.

567 The California "Hurdy-gurdy;" or Pelton Wheel. The

efficiency of unity in the series of cups just mentioned is in

practice reduced to 80 or 8,5 per cent from friction and lateral

escape of water. The

Pelton wheel or Cali-

fornia "
Hurdy-gur-

dy," shown (in prin-

ciple only) in Fig. 636,

is designed to utilize

the mechanical rela-

tion just presented,

and yields results con-

firming the above the-

ory, viz., that with the

linear velocity of the

cup-centres regulated to equal ^,
and with a = 180, the effi-

ciency approaches unity or 100 per cent. Each cup has a pro-

jecting sharp edge or rib along the middle, to split the jet ;
see

Fig. 635.

This wheel was invented to utilize small jets of very great

velocities (c) in regions just deserted by
"
hydraulic mining"

operators. Although c is great, still, by giving a large value
y>

to r, the radius of the wheel, the making, of v = - does not

necessitate an inconveniently great speed of rotation (i.e.,

revolutions per unit of time). The plane of the wheel may
be in any convenient position.

In the London Engineer of May '84, p. 397, is given an ac-

count of a test* made of a "
Hurdy-gurdy," in which the motor

* See p. 834 for further details of this test and a perspective view of wheel
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showed an efficiency of 87 per cent. The diameter of the

wheel was only 6 ft., that of the jet 1.89 in., and the head of

the supply reservoir 386 ft., the water being transmitted

through a pipe of 22 inches diameter and 6900 ft. in length,

107 H. P. was developed by the wheel.

EXAMPLE. If the jet in Fig. 636 has a velocity c = 60 ft.

per second, and is delivered through a 2-inch nozzle, the total

power due to the kinetic energy of the water is (ft., lb., sec.)

~
-1
=

34-
and if, by making the velocity of the cups = - 30 ft. per2

sec., 85 per cent of this power can be utilized, the t>ower of

the wheel at this most advantageous velocity is

L .85 X 4566.9 = 3881 ft Ibs. per sec. = 7.05 horse-power

[since 3881 -r- 550 == 7.05] ( 132). For a cup-velocity of 30

ft. per sec., if we make the radius, /*,
= 10 feet, the angular

velocity of the wheel will be GO = v -f- r = 3.0 radians per
sec. (for radian see Example in 428

;
for angula** velocity,

110), which nearly = TT, thus implying nearly a half-revolu-

tion per sec.

568. Oblique Impact of a Jet on a Moving Plate having
no Border. The plate

has a motion of trans-

lation with a uniform

veloc. == v in a direc-

tion parallel to jet,

whose velocity is c.

At the filaments of

liquid are deviated, so

that in leaving the plate

their particles are an

found in the moving
FIG. 637. plane BB' of the plate

surface, but the respective absolute velocities of these particles
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depend on the location of the point of the plate where they
leave it, being found by forming a diagonal on the relative

veloc. c v and the velocity v of the p]ate. For example, at

B the absolute velocity of a liquid particle is

w = BE = 4V + (c vf + 2v(c v) cos or,

while at B 1
it is

w' = B'E' Vv*+ (c v)* 2v(c v) cos a ;

but evidently the component 1 to plate (the other component

being parallel) of the absolute velocities of all particles leaving

the plate, is the same and v sin a. The skin-friction of the

liquid on the plate being neglected, the resultant impulse of

the let against the plate must be normal to its surface, and itsJO L

amount, jP, is most readily found as follows :

Denoting by AM the mass of the liquid passing over the

plate in a short time At, resolve the absolute velocities of all

the liquid particles, before and after deviation, into com-

ponents "I to the plate (call this direction T) and
||

to the

plate. Before meeting the plate the particles composing AM
have a velocity in the direction of T of cy

= c sin a
;
on leav-

ing the plate a velocity in direction of Y of v sin a : they have

therefore lost an amount of velocity in direction of Y =
(c v) sin a in time At\ i.e., they have suffered an average
retardation (or negative acceleration) in a Indirection of

. accelera- ) (c v)sm a /<iv

to Y -- - W

Hence the resistance in direction of I^(i.e., the equal and op-

posite of P in figure) must be

PY = mass X '1^-accel. = -
(c v) sin a

; . . (2)At

and therefore, since - =M = ~- mass of liquid passing
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over the plate per unit of time (not that issuing from nozzle),

we have

in which F= sectional area of jet before meeting plate.

[N.B. Since eq. (3) can also be written P Me sin a
Mv sin a, and Me sin ex may be called the I^-momentum before

contact, while Mv sin a is the Z-momentum after contact (of

the mass passing over plate per unit of time), this method may
be said to be founded on \hv principle of momentum which is

nothing more than the relation that the accelerating force in

any direction mass X acceleration in that direction
; e.g.,

P. = Mpx ;
Pv
= Mpv ;

see 74.]

If we resolve P, Fig. 637, into two components, one, P', \\

to the direction of motion (v and c\ and the other, P"9 ~| to

the same, we have

=(c-v)sm*<x, . ... (4)

and

P"= P cos a = -^-
(c v) sin a cos a. . . (5)

(Q = F(c v)= volume passing over the plate per unit of

time.) The force P" does no work, while the former, P'
9

does an amount of work P'v per unit of time
; i.e., exerts a

power (one plate)

= Z=P/
tf = -^(<?--y)vsinV. . . . (6)

If, instead of a single plate, a series of plates, forming a

regular succession, is employed, then, as in a previous paragraph,
we may replace Q, = F(c v), by Q' Fc, obtaining as the

Power exerted ~by jet ) T , Fey , .

on series ofplates \

= L =
"^(c ^^ 8m W
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Q
For v and a = 90 we have

2i

\M'<? ,T, _m"~max.

= only half the kinetic energy (per time-unit) of the jet.

569. Rigid Plates Moving in a Fluid, Totally Submerged.
Fluid Moving against a Fixed Plate. Impulse and Resistance.

If a thin flat rigid plate have a motion of uniform translation

with velocity = v through a fluid

which completely surrounds it, Fig.
"" '

638, a resistance is encountered (which ~^>
must be overcome by an- equal and op-

-

posite force, not shown in figure, to

preserve the uniform motion) consist-

ing of a normal component N, 1 to

plate, and a (small) tangential com-

ponent, or skin-friction, T, \\
to plate.

FIG. 638.

Unless the angle #, between the surface of plate and the direc-

tion of motion ... v, is very small, i.e. unless the plate is

moving nearly edgewise through the fluid, N is usually much

greater than T. The skin-resistance between a solid and a fluid

has already been spoken of in 510.

When the plate and fluid are at rest the pressures on both

sides are normal and balance each other, being ordinary static

fluid pressures. When motion is in progress, however, the

normal pressures on the front surface are increased by the

components, normal to plate, of the centrifugal forces of the

curved filaments (such as AB) or "
stream-lines," while on

the back surface, D, the fluid does not close in fast enough to

produce a pressure equal to that (even) of rest. In fact, if the

moticr is sufficiently rapid, and the fluid is inelastic (a liquid),

a vacuum may be maintained behind the plate, in which case

there is evidently no pressure on that side of the plate.

Whatever pressure exists on the back acts, of course, to

diminish the resultant resistance. The water on turning the

sharp corners of the plate is broken up into eddies forming a
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" wake" behind. From the accompaniment of these eddies,

the resistance in this case (at least the component N normal to

plate) is said to be due to "
eddy-making ;" though logically

we should say, rather, that the body does not derive the assist-

ance (or negative resistance) from behind which it would ob-

tain if eddies were not formed
; i.e., if the fluid could close in

behind in smooth curved stream-lines symmetrical with those

in front.

The heat corresponding to the change of temperature pro-

duced in the portion of fluid acted on, by the skin-friction

and by the mutual friction of the particles in the eddies, is the

equivalent of the work done (or energy spent) by the motive

force in maintaining the uniform motion ( 149). (Joule's

experiments to determine the Mechanical Equivalent of Heat

were made with paddles moving in water.)

If the fluid is sea-water, the results of Col. Beaufoy's ex-

periments are applicable, viz.:

The resistance, per squarefoot of area, sustained by a sub-

merged plate moving normally to itself [i.e., a = 90] in sea-

water with a velocity qfv = 10 ft. per second is 112 Ibs. He
also asserts that/0/

1 other velocities the resistance varies as the

square of the velocity. This latter fact we would be led to

suspect from the results obtained in 568 for the impulse of

jets; also in 565 [see eq. (6)]. Also, that when the plate

moved obliquely to its normal (as in Fig. 638) the resistance

was nearly equal to (the resistance, at same velocity, when
a = 90) X (the sine of the angle a) ; also, that the depth of
submersion had no influence on the resistance.

Confining our attention to a plate moving nor-

mally to itself, Fig. 639, let F= area of plate,

y heaviness
( 409) of the fluid, v = the uni-

form velocity of plate, and g the acceleration

of gravity (=32.2 for the foot and second
;

= 9.81 for the metre and second). Then from

the analogy of eq. (6), 565, where velocity c of

the jet against a stationary plate corresponds to

the velocity v of the plate in the present case

moving through a fluid at rest, we may write.
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Resistance offluid \ __ r> _ v* (v normal ) ,^
to moving plate j

= ~ ^
2^~

' ' '

(
to plate j

* * *W
And similarly for the impulse of cm indefinite stream offluid

against a fixed plate ( ~| to velocity of stream), v being the

velocity of the current,

Impulse of current \ _ p _ -,-& 1? (v normal
j /QX

upon fixed plate )"
~ ^

^2^'*'(to plate j

' " ^ f

The 2y is introduced simply for convenience; since, having
<y given, we may easily find v* -r- 2g from a table of velocity-

heads
;
and also (a ground of greater importance) since the co-

efficients C and C,

f which depend on experiment are evidently

abstract numbers in the present form of these equations (for

22 and P are forces, and Fytf -i- 2^ is the weight (force) of

an ideal prism of fluid
;

hence C and C' must be abstract

numbers.)
From Col. Beaufoy's experiments (see above), we have for

sea-water [ft., lb., sec.], putting R = 112 Ibs., F= 1 sq. ft.,

y = 64 Ibs. per cub. ft., and v = 10 ft. per second,

2X32.2X112 , 13"

1.0 X 64 X 10
2

Hence in eq. (1) for sea-water, we may put C = 1.13 (with

y = 64 Ibs. per cub. ft.).

From the experiments of Dubuat and Thibault, Weisbach

computes that for the plate of Fig. 639, moving through either

water or air, C = 1-25 for eq. (1), in which the y for air must

be computed from 473
;
while for the impulse of water or

air on fixed plates he obtains C' = 1-86 for use in eq. (2). It

is hardly reasonable to suppose that C and C' should not be

identical in value, and Prof. Unwin thinks that the difference

in the numbers just given must be due to errors of experi-

ment.* The latter value, C' = 1.86, agrees well with equation

(6) below. For great velocities C and C
r

are greater for air

than for water, since air, being compressible, is of greater
heaviness in front of the pkte than would be computed for

.

* Flamant thinks that this difference is due to the fact that the relative
conditions are not identical in the two cases; since when a current of liquid
impinges against a stationary plate there is much intricacy of internal motion

among the particles of fluid, to which there is nothing to correspond when
a plate is moved through stationary liquid.
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the given temperature and barometric height for use in eqs.

(1) and (2)

The experiments of Borda in 1763 led to the formula

P = [0.0031 + 0.0003.5^' .... (3)

for the total pressure upon a plate moving through the air

in a direction 1 to its own surface. P is the pressure in

pounds, c the length of the contour of the plate in feet, and S
its surface in square feet, while v is the velocity in miles per

hour. Adopting the same form of formula, Hagen found
s

from experiments in 1873, the relation

P= [0.002894+ 0.00014c]$y" . . . (4)

for the same case of fluid resistance.

Hagen's experiments were conducted with great care, but

like Borda's were made with a "whirling machine," in which

the plate was caused to revolve in a horizontal circle of only

7 or 8 feet radius at the end of a horizontal bar rotating about

a vertical axis. Hagen's plates ranged from 4 to 40 sq. in. in

area, and the velocities from 1 to 4 miles per hour.

The last result was quite closely confirmed by Mr. H. Allen

Hazen at "Washington in November 1886, the experiments

being made with a whirling machine and plates of from 16 to

576 sq. in. area. (See the American Journal of Science, Oct.

1887, p. 245.)

In Thibault's experiments plates of areas 1.16 and 1.531 sq.

ft. were exposed to direct wind-pressure, giving the formula

.T = 0.00475$y
3

(5)

Recent experiments in France (see R. R. and Eng. Journal,

FeK '87), where flat boards were hung from the side of a rail-

way train run at different velocities, gave the formula

P = 0.00535$y
2

(6)

The highest velocity was 44 miles per hourc The magnitude
of the area did not seemingly affect the relation given.* More

*
Langley found P = 0.000327/SV. See also Irminger's experiments

^Engineering News, Feb. 1895, p. 109).
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extended and elaborate experiments are needed in this field,

those involving a motion of translation being considered the

better, rather than with whirling machines, in which "centrif-

ugal action" must have a disturbing influence.*

The notation and units for eqs. (4), (5), and (6) are the same

as ihose givsn for (3).

It may be of interest to note that if equation (3) of 568 be

considered applicable to this case of the pressure of an un-

limited stream of fluid against a plate placed at right-angles to

the current, with F put equal to the area of the plate, we ob-

tain, after reduction to the units prescribed above for the pre-

ceding equations and putting a = 90,

(7)

The value y = 0.0807 Ibs. per cub. ft. has been used in the

substitution, corresponding to a temperature of freezing and

a barometric height of 30 inches. At higher temperatures,

of course, y would be less, unless with very high barometer.

569a. Example. Supposing each blade of the paddle-wheel
of a steamer to have an area of 6 sq. ft., and that when in the

lowest position its velocity [relatively to the water, not to the

vessel] is 5 ft. per second
;
what resistance is it overcoming in

salt water ?

From eq. (1) of 569, with C = 1.13 and y = 64 Ibs. per
cubic foot, we have (ft., lb., sec.)

If on the average there may be considered to be three pad-
dles always overcoming this resistance on each side of the

boat, then ,the work lost (work of "
slip") in overcoming these

resistances per second (i.e., power lost) is

LI = [6 X 169.4] Ibs. X 5 ft. per sec. = 5082 ft.-lbs. per sea.

or 9.24 Horse Power (since 5082 H- 550 = 9.24)._
* See Capt. Bixby's article on p. 175 et seq. of the Engineering New*

MarcLi 1895.



818 MECHANICS OF ENGINEERING.

If. further, the velocity of the boat is uniform and = 20 ft.

per sec., the resistance of the water to the progress of the boat

at this speed being 6 X 169.4, i.e. 1016.4 Ibs., the power ex-

pended in actual propulsion is

Z
2
= 1016.4 X 20 = 20328 ft.-lbs. per sec.

Hence the power expended in both ways (usefully in propul-

sion, uselessly in "
slip") is

Z
3+ L, = 25410 ft.-lbs. per sec. = 46.2 H..P.

Of this, 9.24 H. P., or about 20 per cent, is lost in "
slip."

570. Wind-pressure

on the surface of a

roof inclined at an

angle = a with the

horizontal, i.e., with

the direction of the

B wind, is usually esti-

mated according to

the empirical formulaFIG. 640.

(Button's)

p p
f

[sin a]
[i-84cosa-

1]^ (1)

in which p' = pressure of wind per unit area against a vertical

surface ( ~| to wind), and p = that against the inclined plane

(and normal to it) at the same velocity. For a value of

jp'='40 Ibs. per square foot (as a maximum), we have the

following values for j?, computed from (1) :

For a 5



WIND AND SAIL.

with the same notation as above. Some experimenters in

London tested this latter formula by measuring the pressure
on a metal plate supported in front of the blast-pipe of a blow-

ing engine; the results were as follows:

a =
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in the present position its tendency is to accelerate, or retard,

the motion of the boat. If we form a parallelogram of which

w is the diagonal and c one side, then the other side OK, mak-

iag some angle a with BM, will be the velocity v of the wind

relatively to the boat (and sail), and upon this (and not upon w)

depends the action on the sail. The sail, being so placed that

the angle is smaller than a, will experience pressure from

"he wind ;
that is, from the impact of the particles of air which

strike the surface and glance along it. This pressure, P, is

normal to the sail (considered smooth), and evidently, for the

position of the parts in the figure, the component of P along
MB points in the same direction as c, and hence if that com-

ponent is greater than the water-resistance to the boat at this

velocity, c will be accelerated; if less, G will be retarded.

Any change in c, of course, gives a different form to the

parallelogram of velocities, and thus the relative velocity v

and the pressure P, for a given position of the sail, will both

change. [The component of P ~] to MB tends, of course, to

cause the boat to move laterally, but the great resistance to

such movement at even a very slight lateral velocity will make

the resulting motion insignificant.]

As c increases, a diminishes, for a given amount and position

of w
;
and the sail must be drawn nearer to the line MB, i.e.

6 must be made to decrease, to derive a wind-pressure having
a forward fore-and-aft component ;

and that component be-

comes smaller and smaller. But if the craft is an ice-boat, this

small component may still be of sufficient magnitude to exceed

the resistance and continue the acceleration of c until c is

larger than w
; i.e., the boat may be caused to go as fast as, or

faster than, the wind, and still be receiving from the latter a

forward pressure which exceeds the resistance. And it is

plain that there is nothing in the geometry of the figure to

preclude such a relation (i.e., c > w, with 6 < a and > 0).

672. Resistance of Still Water to Moving Bodies, Completely
Immersed. This resistance depends on the shape, position, and

velocity of the moving body, and also upon the roughness of

its surface. If it is pointed at both ends (Fig. 642) with its
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FIG 642

so that the resistance

axis parallel to the velocity, v, of its uniform motion, the

stream lines on closing to-

gether smoothly at the hinder

extremity, or stern, B, exert

normal pressures against the

surface of the portion CD...B

whose longitudinal compo-
nents approximately balance

the corresponding components
of the normal pressures on CD
R, which must be overcome to maintain the uniform velocity

-y, is mainly due to the "
skin-friction" alone, distributed along

the external surface of the body ;
the resultant of these resist-

ances is a force R acting in the line AB of symmetry (sup-

posing the body symmetrical about the direction of motion).

If, however, Fig. 643, the stern, E..B..F\* too bluff,

. eddies are formed round the corners

^and jF'j and the pressure on the

surface E . . . F is much less than

in Fig. 642; i.e., the water pres-

sure from behind is less than the

backward (longitudinal) pressures

from in front, and thus the resultant

resistance R is due partly to skin-

friction and partly to "
eddy-making" ( 569).

[NOTE. The diminished pressure on EF\$> analogous to the

loss of pressure of water (flowing in a pipe) after passing a nar-

row section the enlargement
from which to the original

section is sudden. E.g., Fig.

644, supposing the velocity v

and pressure p (per unit-area)

to be the same respectively
at A and A', in the two

pipes shown, with diameter

AL = WK=A'L' = WE'
then the pressure at M
equal to that at A (disregarding skin-friction), whereas that at

FIG. 643.

K'

FIG. 644.
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that at M is considerably less than that at A' on account

of the head lost in the sudden enlargement. (See also Fig.

575.)]

It is therefore evident that bluffness of stern may be a large

factor in the production of resistance.

In any case experiment shows that for a given body sym-
metrical about an axis and moving through a fluid (not only

water, but any fluid) in the direction of its axis with a uni-

form velocity = -y,we may write approximately the resistance

R = (resistance at vel. v) =
2?

(i)

As in preceding paragraphs, F area of the greatest section,

"I to axis, of the external surface of body (not of the sub-

stance; i.e., the sectional area of the circumscribing cylinder

(cylinder in the most general sense) with elements parallel

to the axis of the body, y = the heaviness
( 409) of the

fluid, and v = velocity of motion ; while C is an abstract

number dependent on experiment.

According to Weisbach, who cites different experimenters,
we can put for spheres, moving in water, C = about 0.55 ;

for cannon-balls moving in water, C = .467.

According to Robins and Hutton, for spheres in air, we
have

For v in mets. [

per sec. f
*
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scribing right parallelopiped moving with four faces parallel

to direction of motion.

EXAMPLE. The resistance of the air at a temperature of

freezing and tension of one atmosphere to a musket-ball J inch

in diameter when moving with r velocity of 328 ft. per sec.

is thus determined by Piobert's formula, above :

C = 0.451(1 + .0023 X 100) = 0.554
;

hence, from eq. (1),

R = 0.554 X x -0807 X -= 0.1018 Ibs.

572a. Deviation of a Spinning Ball from a Vertical Plane in

Still Air. It is a well-known fact in base- ball playing that if a

rapid spinning motion is given to the ball about a vertical axis

as well as a forward motion of translation, its path will not

remain in its initial vertical plane, but curve out of that plane
toward the side on which the absolute velocity of an external

point of the ball's surface is least. Thus, if the ball is thrown

from North to South, with a spin of such character as to ap-

pear
" dock-wise" seen from above, the ball will curve towa/rd

the West, out of the vertical plane in which it started.

This could not occur if the surface of the ball were perfectly

smooth (there being also no adhesion between that surface and

the air particles), and is due to the fact that the cushion of com-

pressed air which the ball piles up in front during its progress,

and which would occupy a symmetrical position with respect

to the direction of motion of the centre of the ball if there

were no motion of rotation of the kind indicated, is now piled

up somewhat on the East of the centre (in example above),

crerting constantly more obstruction on that side than on the

right ;
the cause of this is that the absolute velocity of the sur-

face-points, at the same level as the centre of ball, is greatest,

and the friction greatest, at the instant when they are passing-

through their extreme Easterly positions; since then that

velocity is the sum of the linear velocity of translation and

that of rotation
; whereas, in the position diametrically oppo-
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Bite, on the West side, the absolute velocity is the difference ;

hence the greater accumulation of compressed air on the left

(in the case above imagined, ball thrown from North to South,

etc.).

573. Robinson's Cup-anemometer. This instrument, named

after Dr. T. K. Kobinson of Armagh, Ireland, consists of four

hemispherical cups set at equal intervals in a circle, all facing

in the same direction round the circle, and so mounted on a

light but rigid framework as to be capable of rotating with

but little friction about a vertical axis. When in a current of

air (or other fluid) the apparatus begins to rotate with an ac-

celerated velocity on account of the pressure against the open
mouth of a cup on one side being greater than the resistance

met by the back of the cup diametrically opposite. Very soon,

however, the motion becomes practically uniform, the cnp-

centre having a constant linear velocity v" the ratio of which

to the velocity, v', of the wind at the same instant must be

found in some way, in order to deduce the value of the latter

from the observed amount of the former in the practical use

of the instrument. After sixteen experiments made by Dr.

Kobinson on stationary cups exposed to winds of varying in-

tensities, from a gentle breeze to a hard gale, the conclusion

was reached by him that with a given wind- velocity the total

pressure on a cup with concave surface presented to the wind

was very nearly four times as great as that exerted when the

convex side was presented, whatever the velocity (see vol.

xxu of Transac. Irish Royal Acad., Part /, p. 163).

Assuming this ratio to be exactly 4.0 and neglecting axle-

friction, we have the data for obtaining an approximate value

of m, the ratio of v' to.the observed v", when the instrument is

in use. The influence of the wind on those cups the planes of

whose mouths are for the instant
||
to its direction will also be

neglected.

If, then, Fig. 645, we write the impulse on a cup when the

hollow is presented to the wind [ 572, eq. (1)]

^ = C*Fy, (i)
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and the resistance when the convex side is presented

P, = ^Fr^, ....... (2)

we may also put

In (1) and (2) v and va
are relative velocities.

Eegarding only the two cups A and B,
whose centres at a definite instant are mov- -

ing in lines parallel to the direction of the

wind, it is evident that the motion of the
~_

cups does not become uniform until the rel-

ative velocity v' v" of the wind and cup
A (retreating before the wind) has become

so small, and the relative velocity v' 4- v"

with which B advances to meet the air-

particles has become so great, that the im-

pulse of the wind on A equals the resist-

ance encountered by B\ i.e., these forces,

Ph and PC )
must be equal, having equal

lever-arms about the axis. Hence, for uniform rotary motion,

i.e. [see eq. (3)],

+ 1J;
r' ^-l)' = (^+ l)'. (5)

Solving the quadratic for m, we obtain

m = 3.00
(6)

That is, the velocity of the wind is about three times that of

the cup-centre.

574. Experiments with Robinson's Cup-anemometei. -The
ratio 3.00 just obtained is the one in common use in connec-

tion with this instrument in America. Experiments by Mr.
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Hazen at Washington in 1886 (Am. Jour. Science, Oct. '87,

p. 248) were made on a special type devised by Lieut. Gibbon.

The anemometer was mounted on a whirling machine at the

end of a 16-ft. horizontal arm, and values for ra obtained, with

velocities up to 12 miles per hour, from 2.84 to 3.06
; average

2.94. The cups were 4 in. in diameter and the distance of their

centres from the axis 6.72 in., these dimensions being those

usually adopted in America. This instrument was nearly new

and was well lubricated.

Dr. Robinson himself made an extensive series of experi-

ments, with instruments of various sizes, of which an account

may be found in the Philos. Transact, for 1878, p. 797 (see

also the volume for 1880, p. 1055). Cups of 4 in. and also of

9 in. were employed, placed first at 24 and then at 12 in. from

the axis. The cup-centres revolved in a (moving) vertical

plane perpendicular to the horizontal arm of a whirling-

machine
;
this arm, however, was only 9 ft. long. A friction-

brake was attached to the axis of the instrument for testing the

effect of increased friction on the value of m. At high speeds

of 30 to 40 miles per hour (i.e., the speed of the centre of the

instrument in its horizontal circle, representing an equal speed
of wind for an instrument in actual use with axis stationary)

the effect of friction was relatively less than at low velocities.

That is, at high speeds with considerable friction the value of

m was nearly the same as with little friction at low speeds.

With the large 9 in. cups at a distance of either 24 or 12 in.

from the axis the value of in at 30 miles per hour ranged

generally from 2.3 to 2.6, with little or much friction
;
while

with the minimum friction m rose slowly to about 2.9 as the

velocity diminished to 10 miles per hour. At 5 miles per
hour with minimum friction m was 3.5 for the 24 in. instru-

ment and about 5.0 for the 12 in. The effect of considerable

friction at low speeds was to increase m, making it as high as

8 or 10 in some cases. With the 4 in.-cups no value was ob-

tained for m less than 3.3. On the whole, Dr. Robinson con-

cluded that m is more likely to have a constant value at all

velocities the larger the cups, the longer the arms, and the less

the friction, of the anemometer. But few straight-line experi-
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ments have been made with the cup-anemometer, the most

noteworthy being mentioned on p. 308 of the Engineering
News for October 1887. The instrument was placed on the

front of the locomotive of a train running between Baltimore

and Washington on a calm day. The actual distance is 40

miles between the two cities, while from the indications of the

anemometer, assuming m = 3.00, it would have been in one trip

46 miles and in another 47. The velocity of the train was 20

miles per hour in one case and 40 in the other.

575 Other Anemometers. Both Biram's and Castello's ane-

mometers consist of a wheel furnished with radiating vanes

set obliquely to the axis of the wheel, forming a small "wind-

mill," somewhat resembling the current-meter for water shown

in Fig. 604
; having six or eight blades, however. The wheel

revolves with but little friction, and is held in the current of

air with its axis parallel to the direction of the latter, and very

quickly assumes a steady motion of rotation. The number of

revolutions in an observed time is read from a dial. The in-

struments must be rated by experiment, and are used chiefly

in measuring the velocity of the currents of air in the galleries

of mines, of draughts of air in flues and ventilating shafts, etc.

To quote from vol. v of the Eeport of the Geological Sur-

vey of Ohio, p. 370 :

fc<

Approximate measurements (of the

velocity of air) are made by miners by flashing gunpowder,
and noting with a watch the speed with which the smoke

moves along the air-way of the mine. A lighted lamp is

sometimes used, the miner moving along the air-gallery, and

keeping the light in a perfectly perpendicular position, noting

the time required to pass to a given point."

Another kind makes use of the principle of Pitot's Tube

(p. 751), and consists of a U-tube partially filled with water,

one end of the tube being vertical and open, while the other

turns horizontally, and is enlarged into a wide funnel, whose

mouth receives the impulse of the current of air; the differ-

ence of level of the water in the two parts of the U is a meas-

ure of the velocity.
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576. Resistance of Ships.* We shall first suppose the ship to

l)e towed at a uniform speed ; i.e., to be without means of self-

propulsion (under water). This being the case, it is found that

at moderate velocities (under six miles per hour), the ship

being of "fair" form (i.e.,
the hull tapering both at bow and

stern, under water) the resistance in still water is almost wholly
due to skin-friction,

"
eddy-making" (see 569) being done

away with largely by avoiding a bluff stern.

When the velocity is greater than about six miles an hour

the resistance is much larger than would be accounted for by
skin-friction alone, and is found to be connected with the sur-

face-disturbance or waves produced by the motion of the hull

in (originally) still water. The recent experiments of Mr.

Froude and his son at Torquay, England, with models, in a tank

300 feet long, have led to important rules (see Mr. White's

Naval Architecture and "
Hydromechanics" in the Ency.

Britann.} of so proportioning not only the total length of a

ship of given displacement, but the length of the entrance (for-

ward tapering part of hull) and length of run (hinder tapering

part of hull), as to secure a minimum "wave-making resist-

ance" as this source of resistance is called.

To quote from Mr. White (p. 460 of his Naval Architecture,

London, 1882): "Summing up the foregoing remarks, it

appears :

"
(1) lL\\&t frictional resistance, depending upon the area of

the immersed surface of a ship, its degree of roughness, its

length, and (about) the square of its
*

speed, is not sensibly

affected by the forms and proportions of ships; unless there

be some unwonted singularity of form, or want of fairness.

For moderate speeds this element of resistance is by far the

most important ;
for high speeds it also occupies an important

position from 50 to 60 per cent of the whole resistance,

probably, in a very large number of classes, when the bottoms

are clean and a larger percentage when the bottoms become
foul.

"
(2) That eddy-making resistance is usually small, except in

special cases, and amounts to 8 or 10 per cent of the frictiona)

* Not in canals, but in water of indefinite width and deptli
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resistance. A defective form *of stern causes largely increased

eddy-making.
"

(3) That wave-making resistance is the element of the

total resistance which is most influenced by the forms and pro-

portions of ships. Its ratio to the frictional resistance, as well

as ite absolute magnitude, depend on many circumstances
;
the

Tnost important being the forms and lengths of the entrance

and run, in relation to the intended full speed of the ship.

For every ship there is a limit of speed beyond which each

small increase in speed is attended by a disproportionate in-

crease in resistance
;
and this limit is fixed by the lengths of

the entrance and run the '

wave-making features
'

of a ship.

"The sum of these three elements constitutes the total re-

sistance offered by the water to the motion of a ship towed

through it, or propelled by sails
;
in a steamship there is an

1

augment
'

of resistance due to the action of the propel-

lers."

In the case of a steamship driven by a screw propeller, this

augment to the resistance varies from 20 to 45 per cent of the

"tow-rope resistance," on account of the presence and action

of the propeller itself
;
since its action relieves the stern of

some of theforward hydrostatic pressure of the water closing

in around it. Still, if the screw is placed far back of the stern,

the augment is very much diminished
;
but such a position in-

volves risks of various kinds and is rarely adopted.
We may compute approximately the resistance of the water

to a ship propelled by steam at a uniform velocity v, in the

following manner : Let L denote the power developed in the

engine cylinder ; whence, allowing 10 per cent of L for engine

friction, and 15 per cent for " work of slip" of the propeller-

blade, we have remaining 0.75Z, as expended in overcoming
the resistance R through a distance = v each unit of time

; i.e.,

(ypprox.) 0.75Z = Jfo........ (1)

EXAMPLE. If 3000 indicated H. P.
( 132) is exerted by the

engines of a steamer at a uniform speed of 15 miles per hour



830 MECHANICS OF ENGINEERING.

(= 22 ft. per sec.), we have (with above allowances for slip and

engine friction) [foot-lb.-sec.]

i X 3000 X 550 = E X 22
;

/. R = 56250 Ibs.

Further, since R varies (roughly) as the square of the veloc-

ity, and can therefore be written R = (Const.) X ^
a

,
we have

from (1)
L = a constant X v* . . . . . . (2)

as a roughly approximate relation between the speed and the

power necessary to maintain it uniformly. In view of eq. (3)

involving the cube of the velocity as it does, we can understand

why a large increase of power is necessary to secure a propor,

tionally small increase of speed.

577, "
Transporting Power," or Scouring Action, of a Current,

The capacity or power .of a current of water in an open
channel to carry along with it loose particles, sand, gravel,

pebbles, etc., lying upon its bed was investigated experiment

tally by Dubuat about a century ago, though on a rather small

scale. His results are as follows :

The velocity of current must be at least

0.25 ft. per sec., to transport silt
;

0.50 " ." "
loam;

1.00 " " "
sand;

2.00 " "
gravel;

3.5 " " "
pebbles 1 in. in diam.;

4.0 " " broken stone
;

5.0 " "
chalk, soft shale.

However, more modern writers call attention to the fact

that in some instances beds of sand are left undisturbed by
currents of greater velocity than that above indicated for sand,

and explain this fact on the theory that the water-particles

may not move parallel to the bed, but in cycloids, approxi-

mately, like the points in the rim of a rolling wheel, so as to

have little or no scouring action on the bed in those cases.

In case the particles move in filaments or stream-lines

parallel to the axis of the stream the statement is sometimes
made that the "

transporting power" varies as the sixth powef
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of the velocity of the current, by which is meant, more defi-

nitely, the following: Fig. 646. Conceive a row of cubes (or

other solids geometri-

cally similar to each

other) of many sizes,

all of the same heavi-

ness ( 7), and simi-

larly situated, to be

placed on the horizon-

sSt^S^^
FIG. 646.

tal bottom of a trough
and there exposed to

a current of water,

being completely im-

mersed. Suppose the coefficient of friction between the cubes

and the trough-bottom to be the same for all. Then, as the

current is given greater and greater velocity v, the impulse
Pm (corresponding to a particular velocity vm) against some

one, m, of the cubes, will be just sufficient to move it, and at

some higher velocity vn the impulse Pn against some larger

cube, ft, will be just sufficient to move it, in turn. "We are to

prove that Pm : Pn :: vm
6

: vn\

Since, when a cube barely begins to move, the impulse is

equal to the friction on its base> and the frictions under the

cubes (when motion is impending) are proportional to their

volumes (see above), we have therefore

3
* (i)

Also, the impulses on the cubes, whatever the velocity, are pro-

portional to the face areas and to the squares of the velocities

(nearly ;
see 572) ;

hence

(2)

From (1) and (2) we have

11 "
Tj /> '* "

" "" ~~ ~~ (8)
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while from (3) and (2) we have, finally,

Thus we see in a general way why it is that if the velocity

of a stream is doubled its transporting power is increased

about sixty-four-fold ; i.e., it can now impel along the bottom

pebbles that are sixty-four times as heavy as the heaviest which

it could move before (of same shape and heaviness).

Though rocks are generally from two to three times as

heavy as water, their loss of weight under water causes them to

encounter less friction on the bottom than it not immersed.

578. Recent Experiments with Fire-hose, Nozzles, etc. (Ad-
dendum to 520.) The very full and careful investigations of

Mr. J. R. Freeman, hydraulic engineer of Boston, Mass., in this

line (see Transac. A. S. 0. E., Nov. 1889) furnish the following

results: By taking piezometer readings at the ends of a portion

of fire-hose conducting a steady flow of water, the values of loss

of pressure due to fluid friction per 100 feet of length could be

computed ;
a careful measurement being also, made of the

diameter of the hose and of the volume of water transmitted in

an observed time. The table here given presents results applica-

ble to hose of exactly 2.5 inches diameter, for a delivery of water

at the rate of 240 gallons per minute (that is, for a velocity in

the hose of 15.68 ft. per sec.). (The value of / has been com-

puted by the writer.)

Sample.
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As to nozzles, it was found that the plain conical nozzle gave
the best results, jets from the ring-nozzles being slightly inferior

in range.

By means of a very delicate form of Pitot's tube measurement!

were made of the velocity in different parts of the section of jets,

near the nozzle, with the interesting result that in "about two-

thirds the whole distance from centre to circumference the ve-

locity remains the same as at centre," and that at ^ inch from

tb: wall of most of the orifices the velocity was only 5$ less than

at centre of jet. With a jet from a 5-foot length of brass tubing
1 inch in diameter and used as a nozzle the velocity fell off

rapidly for filaments further from the centre; e.g., at half the

distance from centre to circumference the velocity was 90$ of

that at the centre, and at the outside edge 60$. Most of the

nozzles ranged from 1 in. to 1 in - in diameter of orifice.

By using these velocity measurements to "
gauge

"
the flow it

02
was found that the relation h' = - was quite closely borne out

*9

(within 1$) (see eq. (7)", p. 804). The point of the Pitot tube

was conically convergent, its extremity being 0.017 in. in external

diameter and containing an orifice of 0.006 in. diameter. A
minute passage-way led from the orifice to a Bourdon gauge.

Based on his experiments, Mr. Freeman gives tables for the

maximum vertical height, V, and also the maximum horizontal

range, H, of "good effective fire-streams" delivered from smooth
conical nozzles of various sizes and with different piezometer

pressures p (in Ibs. p. sq. in. above atmosphere) at the base of:

play-pipe, the gauge being at same level as nozzle. (The dis-

tances reached by the extreme drops are very inucn greater with,

the high pressures. V and H are in feet.)

The following is a brief synopsis of this table, d is the internal

diameter of the extremity of nozzle. The maximum horizontal

range was obtained at an angle of elevation of about 32.

For p =



834 MECHANICS OF ENGINEERING.

579 Addendum on the Pelton Water-wheel. The annexed cut and

additional details of the test alluded to on p. 810 are taken from circulars

of the manufacturers, of San Franciso, Cal.

The water was measured over an iron weir I" thick and 3.042 feet long
Without end contraction.

The depth was measured by a Boyden hook gauge reading to .001", and
was .4146 foot. The quantity of water discharged was found to be 2.819

cubic feet per second Fteley's formula. The head lost by friction in pipe
was 1.8 feet, reducing the effective head to 384.7 feet.

The work done was measured by a Prony brake bearing vertically down
upon a platform scale and which showed a weight of 200 pounds upon the

scale-beam when the brake gear was suspended by a cord from a point im

mediately above the wheel-shaft. This made a constant minus correction

of 200 pounds. The friction pulley had a face of 12", and being kept wet

by a jet of clear cold water, it developed very little heat and ran without
much jumping. Thirteen tests were made showing very uniform results,
the first four of which were as follows :

Tests.
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Aberration of Light 90

Absolute Velocity 89

Abutment-Line 414
Abutments of Arches 430, 435

Acceleration, Angular 107

Acceleration, Linear 49

Acceleration, Normal 75, 77

Acceleration of Gravity 51, 160, 179

Acceleration, Tangential 74, 80
Action and Reaction 1, 53

Angular, or Rotary, Motion. . . 107

Anomalies in Friction 192

Anti-Derivative, see Preface
and p. 253

Anti-Resultant 402
Anti-Stress-Resultant 411

Apparent Weight 78, 79

Arches Linear 386, 396
Arches of Masomy 421, 437
Arch-Ribs 438,483
Arch-Ribs, Classification of . ... 458
Arch-Rib of Three Hinges . 458,460
Arch-Rib of Hinged Ends 440,

458, 461
Arch-Rib of Fixed Ends 439,459,465
Arch Truss, or Braced Arch.. . 478
Atwood's Machine 159

Autographic Testing Machine. 240
Beams, Rectangular, Compar-

ative Strength and Stiffness

272,273,277
Belting, Pressure of 181

Belting, slip of 182
Bent Lever with Friction 173

Boat-Rowing 160
Bow's Notation 467
Box-Girder 275,292
Braced Arch 438,478
Brake, Prony 158
Brakes, Railroad 190
Bridge, Arch 430
Bridge-Pier 141

Bridge, Suspension 46
Bridge Truss, Warren 35

Buckling of Web-Plates 383
Built Beams, designing Sec-

tions of 295
Built Columns 878
Burr, Prof.

, Citations from.224, 229
Butt-Joint 226

FAOK.
Cantilevers 260, 276, 341
Cantilever, Oblique 353, 356

Catenary, Common 46

Catenary Inverted 387

Catenary, Transformed 395
Cast Iron 220, 279
Cast Iron, Malleable 224
Centre of Gravity, 18, 19, etc.. . .336
Centre of Oscillation 119
Centre of Percussion of Rod. .. Ill

Centrifugal Action 125

Centrifugal Force 77, 78

Centripetal Force 77, 78, 79
Centrobaric Method 24
Cheval- Vapaur 136
Chrome Steel 224
Circle as Elastic Curve 262, 343
Circular Arc as Linear Arch. . 391

Closing Line 414

Coblenz, Bridge at 459, 478

Columns, Long 363

Composition of Forces... 4, 8, 31, 38

Compression of Short Blocks. . 218
Concurrent Forces 6, 8, 397
Cone of Friction 168
Conical Pendulum 78

Connecting-Rod 59, 69, 70
Conservation of Energy. ..... 156

Conservation of Momentum 66
Continuous Girders, by Analysis

320-333
Continuous Girders, by
Graphics 484514

Copying-Press 71

Cords, Flexible 42
Cords, Rigidity of 192

Couples 27, 30
Cover-Plates 226
Crane 362
Crank-Shaft, Strength of 314

Creeping of Belts 186

Crushing, Modulus of. ... 219, 424
Curvilinear Motion 72

Dangerous Section 262, 332
Dash-Pot 158
Deck-Beam 275

Deflections, (Flexure) 252262, 342

Derivatives, (Elastic curve).... 310
Derived Quantities 2

Deviating Force 77
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Diagrams, Strain 209, 241

Displacement of Point of Arch
Rib 447

Dove-Tail Joint 269

Duchayla's Proof of the Parallelo-

gram of Forces 4

Dynamics, Definition 4

Dynamics of a Rigid Body 105

Dynamics, of Material point. ... 49

Dynamometers 157, 158, 159

Eddy, Prof., Graphic Methods,
(See Preface) 426

Elastic Curve a Circle . . . 262, 343
Elastic Curve an Equilibrium
Polygon 484

Elastic Curves. . 245, 252262, 358
Elastic Curves, the Four x-De-

rivatives of 310

Elasticity-Line 241

Elasticity, Modulus of 203, 22V
Elastic Limit 202
Elevation of Outer Rail on Rail-
road Curves 78

Ellipse of Inertia 94

Ellipsoid of Inertia 104

Elliptical Beam 340

Elongation of Wrought-Iron
Rod 207

Energy 137

Energy, Conservation of 156

Energy, Kinetic... 137, 144, 147, 150

Energy, Potential 155

Equations, Homogeneous 2

Equator,Apparent Weight at the 78

Equilibrium.. ... 4, 33, 39

Equilibrium Polygon 401,450

ICquilibrium Polygon Through
Three Points 418,419

Equivalent Systems 7, 105, 145

Exaggeration of Vertical Di-
mensions in Arch-Ribs, . . . 470

Examples in Flexure 280284
Examples in Shearing. . . .231, 232

Examples in Tension and
Compression 222, 223

Examples in Torsion 241243
Experiments of an English
Railroad Commission 314

Experiments of Hodgkinsbn
207,369

Experiments of Prof. Lanza... 280

Experiments on Building Stone 424

Experiments on Columns 378
Extrados 421
Euler'sFormula for Columns... 364
Factor of Safety 223

Falling Bodies 51
"False Polygons" 497, 501

Fatigue of Metals 224

" Fixed Points "
503

Flexural Stiffness 250
Flexure 244886
Flexure and Torsion Combined 314
Flexure, Beams of Uniform
Strength 335

Flexure, Common Theory 244
Flexure, Eccentric Load. . .256, 301
Flexure, Elastic Curves in.. 245,

251,252262
Flexure, Examples in 280284
Flexure, Hydrostatic Pressure 308
Flexure, Moving Loads 298
Flexure, Non-Prismatic
Beams 332, 335

Flexure of Long Columns 363
Flexure of PrismaticBeams
Under Oblique Forces. . .347362

Flexure, Safe Loads in 262 284

Flexure, Safe Stress in 279
Flexure, Shearing Stress in

284295
Flexure, Special Problems
in 295319

Flexure, Strength in 249

Flexure, the Elastic Forces 246
Flexure, the "Moment" 249

Flexure, the "Shear" 248

Flexure, Uniform Load . . . 258, 267
302, 305, 307, 324, 329, 340

Flow of Solids 212

Fly-Wheel 121,151
Fly-Wheel, Stresses in. .. .126, 127
Force 1

Force Diagram 400
Force Polygons S97

Forces, Concurrent 6, 8

Forces, Distributed 197

Forces, Non-Concurrent 6, 31

Forces, Parallel 13

Forces, Parallelogram of 4

Forces, Varieties of 7

Free Axes 129

Free-Body Method, the. . . .11, 105

Friction 164194, 422, 423
Frictional Gearing 172

Friction, Anomalies in 192
Friction Axle 175

Friction Brake 158

Friction, Cone of 168

Friction in Machinery 191

Friction, Sliding 164168
Friction of Pivots 179

Friction, Rolling 186

Friction-Wheels 1 77

Friction, Work Spent in 149'

General Properties of Materials
204

Governor Ball. . 78
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Graphic Representations of Uni-

formally Accelerated Motion. . 57

Graphic Treatment of Arch .... 431

Gravity, Acceleration of 51, 79, 160

Gravity, Centre of 18, 336,453

Gravity-Vertical 453

Graphical Statics, Elemants
of 397420

Graphical Statics of Vertical
Forces 412420

Guide Curve 83

Gyroscope 132
Harmonic Motion 58, 81, 117

Heat Energy 156

Heaviness, Table, Etc 3

Height Due to Velocity 52, 84

Hodgkinson's Formulae for
Columns 369

Hoir ogeneous Equations 2
Hooke's Law. 201, 203, 207

Hooks, Strength of 362
Horizontal Straight Girders by
Graphics 479483

Horse-Power 136, 239,242
I-Beam 275, 292,295,337
Ice-Boat, Speed of 90

Impact 63

Impact, Loss of Energy in. ... 141
Inclined Beam 359
Inclined Plane 83, 135, 151, 166, 169
Indicator 159
Inertia 53
Inertia of Piston-Rod 59
Instantaneous Rotation, Axis

of 112
Internal Stress, General Prob-
lem of 205

Intrados 421
Isochronal Axes 120

Isotropes 204
Kinetic Energy.., 137,144, 147, 150

Knot, Fixed 43

Knot, Slip 43
Lanza, Experiments of Prof.... 280
Lateral Contraction 211, 229
Lateral Security of Girders 280, 298
Lever 18, 71

Lever, Bent, With Friction 173, 174
Linear Arches... 386396, 417, 425
Live Loads 298, 430
Load-Line 413
Locomotive on Arch 430
Locomotive on Girder 298
Locomotive. Parallel-Rod of... 131

Malleable Cast Iron 224
Mass 2, 53
Material Point 3

Mechanical Equivalent of Heai; 156

liechanics. Definition of 1

Mechanics, Divisions of , 4
Middle Third 423
Modulus of Elasticity 203, 227
Modulus of Resilience 213
Modulus of Rupture (Flexure) 278
Modulus of Tenacity 212
Moduli of Compression 219
Mohr's Theorem 486
Moment-Area 485
Moment of a Force , 14

Moment-Diagram 263
Moment of Flexure. . . 248, 348, 351
Moment of Inertia 91
Moment of Inertia by Graphics 454
Moment of Inertia of Box-
Girder 276

Moment of Inertia of Built
Beam 296

Moment of Inertia of Built
Column 379

Moment of Inertia of Plane
Figures. 9198, 249, 274

Moment of Inertia of Rigid
Bodies 98, 103

Moment of Inertia of Truss 478
Moment of Torsion 236
Momentum 66
Mortar 422
Motion, Curvilinear 72

Motion, Rectilinear 50
Motion, Rotary 107

Moving Loads (Flexure 298

Naperian Base 183, 357, 387

Naperian Logarithms 47
Navier's Principle 422, 436
Neutral Axis 245, 247, 347, 355
Neutral Line (see Elastic Curve.)
Newton's Laws 1, 53
Non-Concurrent Forces in a
Plane 31, 399

Non-Concurrent Forces in Space 37
Normal Acceleration 75, 76, 77
Normal Stress 200

Oblique Section of Rod in Ten-
sion 200

Parabola as Linear Arch 391
Parabolic Cord 45
Parabolic Working-Beam. 336, 344
Parallel Forces . . 13
Parallel-Rod of Locomotive. . 131

Parallelogram of Forces 4

Parallelogram of Motions 7?

Parallelogram of Velocities 72

Pendulum, Compound 118

Pendulum, Conical .' 78
Penduluni

i Cycloidal, 80
Pendulum, Simple Circular 81
Phoenix Columns 378
Pier Reactions 404
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Piers of Arches 430, 435

Pile-Driving
"

140

Pillars (see columns)
" Pin-and-Square

" Columns... 364

Planet, Velocity of 82

PolarMoment of Inertia 97, 238

Pole (in Graphics) 401

Pole-Distance 416, 417

Practical Notes 223

Potential Energy 155

Power 134

Power of Motors. . . . 153, 157, 158

Power, Transmission of, by
Belting 184

Power, Transmission of by
Shafts 238, 318

Principal Axes 104, 129

Projectile in Vacuo 83, 8487
Prony Friction Brake 158

Pulley 43,103
Punching Rivet Holes 229

Quantity, Kinds of 1

Quantities, Derived 2

Radius of Curvature, 75, 76,

250,353
Radius of Gyration 91, 92, 115,

,....313,376
Rankine's Formula for Col-
umns 372,375

Rays of Force Diagram 401
Reaction . , 1, 18, 36, 53, 404
Reduced Load-Contour 429

Regulation of Machines 153
Relative and Absolute Veloci-

ties 89
Resilience.... 204, 213, 237, 251, 313
Resultant of Parallel Forces, 13, 15
Resultant of Two or More
Forces 4, 6

Reversal of Stress 514

Rigid Body 4

Rigidity of Ropes 192

Riveting for Built Beams. ... 292
Rivets and Riveted Plates. 225, 292
Robinson, Prof. , Integration by 357
Rod in Tension 198, 200
Rolling Friction 186

Rolling Motion 130
Roof Truss 37, 405
Rotary Motion 68, 107, 129
Rotation and Translation Com-
bined

, .130, 150
Rupture 202
Safe Limit of Stress 202
Safe Loads in Flexure ... 262, 284
St. Louis Bridge 459, 467, 478
Schiele's"Anti-Friction" Pivots 181
Set, Permanent... 202, 209, 208 241
Shafts 233239

Shafts, Non-Circular 239
Shear Diagram (Flexure) 265

Shearing 225232
Shearing Distortion 227

Shear, Distribution of in Flex-
ure 287

Shearing Forces 7, 225

Shearing Stress,

7,200,201, 225, 234,284
Shear, the First ^-Derivative

of Moment (Flexure) 264

Skidding 190

Slip (of Oar, etc.) 161

Slope (in Flexure) 253
Soffit 421

Spandrel. 421

Special Equilibrium Polygon
409,424,440

Specific Gravity 3

Statics, Definition of 4
Statics, Graphical 397420
Statics of a Material Point 8
Statics of a Rigid Body 27
Statics of Flexible Cords 42
Steam Engine Problems... 5$,

61, 69,70,121,131, 151

Steam Hammer 138

Stiffening of Web-Plates 383

Stone, Strength of 221, 424
Stress Diagrams for Arch-Ribs. 471
Stresses Due to Rib Shorten-

ing 476
Strain Diagrams 209, 241

Strains, two kinds only. 196
Stress 197, 198
Stress and Strain, Relation

Between 201

Stress-Couple 253, 348

Stress, Normal and Shearing... 200

Strength of Materials ; 195

Stretching of a Prism Under
its Own Weight 215

" Sudden "
Application of a

Load 214, 255

Summation of Products by
Graphics 451

Suspension Bridge 46
Table for Flexure 279

Table for Shearing 228

Tables for Tension and Com-
pression 221

Tackle 43

Temperature Stresses 206, 217,

.. . 222,473

Tenacity. Moduli of 212

Testing' Machine, Autographic 240

Theorem of Three Moments.... 332

Thrust (in Flexure) 348, 350

Torsion.. ....233243



INDEX TO MECHANICS 0^ SOLIDS.
(For Index to " Hydraulics" see p. rrii.)

XXI

Torsion, Angle of 233
Torsion Balance 116

Torsion, Helix Angle in 233

Torsion, Moment of 236
Torsional Resilience 237

Torsional Stiffness 236
Torsional Strength 235

Tractrix, The 181

Transformed Catenary 395

Transmission of power by
Belting 184

Transmission of Power by Shafting
238, 318

Translation, Motion of 68,

105,106, 133, 137

Trussed Girders 381

Uniformly Accelerated Motion

Uniform Motion.'.'.' .'.'.' .' 48,' 107', 129

Uniform Strength, Beams of.. 335

Uniform Strength, Solid of, in

Tension 216

Units, Proper Use see 6, p. 2

Velocity, Absolute 89

Velocity, Angular 107

Velocity, Linear 49

Velocity, Relative.. . 89
Virtual Moment 67
Virtual Velocities 67
Voussoir 386, 421
Warren Bridge Truss 35

Water, Jets of ... 87
Web of I-Beam 274

Wsb of I-Beam, Buckling of.. 383

Web of I-Beam, Shear in.. .... 290

Wedge, with Friction 171

Weight 2,3,7, 79

Weight, Apparent. 78, 79

Wind and Sail-Boat 89, 90

Work 133, 134, etc.

Work and Energy in Machines
146,147, etc.

Working-Beam 336, 844

Working Strength 202
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Absolute Temperature 606

Absolute Zero 606

Accumulator, Hydraulic 700

Adiabatic Change, 621, 629, 631, 636

Adiabatic Expansion in Com-
pressed-air Engine 631

Adiabatic Flow of Gases from
an Orifice 778

Air Collecting in Water-pipes,
731, 736

Air, Compressed, Transmission
of 786-790

Air-compressor 636
Air -profile 749

Air-pump, Sprengel's 656
Air-thermometer 604

Amplitude of Backwater 772

Anemometer, Robinson's. . 824, 826

Anemometer, Biram's 827

Anemometer, Castello's 827

Angle of Repose 572

Angular Stability of Ships. ... 597
Atkinson Gas-engine 642, 643

Atmosphere as a Unit Pressure, 519

Augment of Resistance of Screw
Propeller 829

Backwater 771

Ball, Spinning, Deviation from
Vertical Plane 823

Balloon '. 644
Barker's Mill 672
Barometers 530
Barometric Levelling 619
Bazin, Experiments 688

Beaufoy's Experiments 814

Bellinger, Prof., Experiments
with Elbows 729

Bends, Loss of Head due to. ... 728
Bends in Open Channels 770
Bent Tube, Liquids in 629
Bernoulli's Theorem and the

Conservation of Energy 717
Bernoulli's Theorem for Gases, 773
Bernoulli',* Theorem, General
Form 706

Bernoulli's Theorem, Steady
Flow without Friction. . .652, 654

Bernoulli's Theorem with Fric-
tion 696

Bidone, Experiments on Jets. . . 803

Blowing-engine, Test 776
Borda's Formula 722
Bourdon Steam-gauge 532

Boyle's Law , . ; . . 615
Bramah Press 52t

Branching Pipes . . 731

Brayton's Petroleum-engine . . . 641

Buoyant Effort 586

Buoyant Effort of the Atmos-
phere 644

Canal Lock, Time of Filling, 739, 740

Centigrade Scale 605
Centre of Buoyancy 586
Centre of Pressure 546

Change of State of Gas 610

Chezy's Formula 714

Chezy's Formula for Open Chan-
nels 758

Church and Fteley, Report on
Quaker Bridge Dam, 558, 563, 564

Clearance 627
Closed Air-manometer 614
Coal Consumption 643
Coal, Heat of Combustion 643
Coefficient of Contraction 659
Coefficieats of Efflux, 661, 712,

676, 734, 738, 784
Coefficient of Fluid Friction, 707, 797
Coefficient of Resistance 704
Coefficient of Roughness. . .759, 760
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Friction, Fluid 695, 797, 828

Fronde's Experiments on Fluid

Friction 696

Fronde's Experiments on Grad-

ual Enlargement in Pipes . . . 725

Froude's Experiments with

Piezometers 720

Fteley and Stearns's Experi-
ments on Overfalls 687

Fteley and Stearns's Experi-
ments with Open Channels. . 758

Gas and Vapor 607

Gas-engines 641

Gaseous Fluids 604-645

Gas, Flow through Shoi) Pipes, 784

Gas, Flow through Orifi. us.. 773-784
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through 741
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Parallelopipedical Reservoir

Walls 555
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Pistons, Non-planar 526
Pitot's Tube 751, 804, 827
Plate between Two Levels of

Water 568,569
Plates, Impulse of Jets on.. 801,

805, 810
Plates Moving in a Fluid 813

Plates, Resistance in Sea-water. 814
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State of Permanency of Flow. . . 647
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Steam, Saturated, Heaviness of . 628
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Meyer's Determination of Radicles in Carbon Compounds. (Tingle.). . i2mo, i oo

Miller's Manual of Assaying i2mo, i oo

Mixter's Elementary Text-book of Chemistry i2mo, i 50

Morgan's Outline of Theory of Solution and its Results i2mo, i oo

Elements of Physical Chemistry i2mo, 2 oo

Morse's Calculations used in Cane-sugar Factories i6mo, morocco, i 50
Mulliken's General Method for the Identification of Pure Organic Compounds.

Vol. I Large 8vo, 5 oo

O'Brine's Laboratory Guide in Chemical Analysis 8vo, 2 oo

O'DriscolTs Notes on the Treatment of Gold Ores 8vo, 2 oo

Ostwald'? Conversations on Chemistry. Part One. (Ramsey.) i2mo, 150
Ostwald's Conversations on Chemistry. Part Two. (Turnbull ). (In Press.)
* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests.

8vo, paper, 50
Pictet's The Alkaloids and their Chemical Constitution. (Biddle.) 8vo, 5 oo

Pinner's Introduction to Organic Chemistry. (Austen.) i2mo, i 50
Poole's Calorific Power of Fuels 8vo, 3 oo

Prescott and Winslow's Elements of Water Bacteriology, with Special Edcr-
ence to Sanitary Water Analysis i2mo, i 25



* Reisig's Guide to Piece-dyeing 8vo, 25 oo

Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint 8vo, 2 oo

Richards's Cost of Living as Modified by Sanitary Science i2mo, i oo
Cost of Food, a Study in Dietaries i2mo, i oo

* Richards and Williams's The Dietary Computer 8vo, i 50
Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I.

Non-metallic Elements.) 8vo, morocco, 75
Ricketts and Miller's Notes on Assaying 8vo, 3 oo
Rideal's Sewage and the Bacterial Purification of Sewage 8vo, 3 50

Disinfection and the Preservation of Food 8vo, 4 oo

Rigg's Elementary Manual for the Chemical Laboratory 8vo, i 25
Rostoski's Serum Diagnosis. (Bolduan.) i2mo, i oo

Ruddiman's Incompatibilities in Prescriptions 8vo, 2 oo

Sabin's Industrial and Artistic Technology of Paints and Varnish 8vo, 3 oo
Salkowski's Physiological and Pathological Chemistry. (Orndorff.) 8vo, 2 50
Schimpf's Text-book of Volumetric Analysis i2mo, 2 50

Essentials of Volumetric Analysis i2mo, i 25
Spencer's Handbook for Chemists of Beet-sugar Houses i6mo, morocco, 3 oo

Handbook for Sugar Manufacturers and their Chemists. . i6mo, morocco, 2 oo

Stockbridge's Rocks and Soils 8vo, 2 50
* Tillman's Elementary Lessons in Heat 8vo, i 50
* Descriptive General Chemistry 8vo, 3 oo
Treadwell's Qualitative Analysis. (Hall.) 8vo, 3 oo

Quantitative Analysis. (Hall.) 8vo, 4 oo
Turneaure and Russell's Public Water-supplies 8vo, 5 oo
Van Deventer's Physical Chemistry for Beginners. (Boltwood.) i2mo, i 50
* Walke's Lectures on Explosives 8Tr

o, 4 oo

Washington's Manual of the Chemical Analysis of Rocks 8"o, 2 oo
Wassermann's Immune Sera : Haemolysins, Cytotoxins, and Precipitins. (Bol-

duan.)' i2mo, i oo
Well's Laboratory Guide in Qualitative Chemical Analysis 8vo, i 50

Short Course in Inorganic Qualitative Chemical Analysis for Engineerirg
Students i2mo, i 50

Text-book of Chemical Arithmetic I2mo, i 25
Whipple's Microscopy of Drinking-water 8vo, 3 50
Wilson's Cyanide Processes i2mo, i 50

Chlorination Process , i2mo, i 50
Wulling's Elementary Course in Inorganic, Pharmaceutical, and Medical

Chemistry i2mo, 2 oo

CIVIL ENGINEERING.
BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEERING.

RAILWAY ENGINEERING.
Baker's Engineers' Surveying Instruments i2mo, 3 oo

Bixby's Graphical Computing Table Paper 19^X24! inches. 25
** Burr's Ancient and Modern Engineering and the Isthmian Canal. (Postage,

27 cents additional.) 8vo, 3 50
Comstock's Field Astronomy for Engineers 8vo, 2 50
Davis's Elevation and Stadia Tables 8vo, i op
Elliott's Engineering for Land Drainage i2mo, i 50

Practical Farm Drainage i2mo, i oo

*Fiebeger's Treatise on Civil Engineering 8vo, 5 oo
Folwell's Sewerage. (Designing and Maintenance.) 8vo, 3 oo

Freitag's Architectural Engineering. 2d Edition, Rewritten 8vo, 3 50
French and Ives's Stereotomy 8vo, 2 50
Goodhue's Municipal Improvements I2mo, i 75
Goodrich's Economic Disposal of Towns' Refuse 8vo, 3 50
Gore's Elements of Geodesy 8vo, 2 50
Hayford's Text-book of Geodetic Astronomy 8vo, 3 oo
Bering's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2 50
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Howe's Retaining Walls for Earth I2mo, i 25

Johnson's (J. B.) Theory and Practice of Surveying Small 8vo, 4 oo

Johnson's (L. J.) Statics by Algebraic and Graphic Methods 8vo, 2 oo

Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) . i2mo, 2 oo

Mahan's Treatise on Civil Engineering. (1873.) (Wood.) 8vo, 5 oo

* Descriptive Geometry 8vo, i 50

Merriman's Elements of Precise Surveying and Geodesy 8vo, 2 50

Elements of Sanitary Engineering 8vo, 2 oo

Merriman and Brooks's Handbook for Surveyors i6mo, morocco, 2 oo

KTugent's Plane Surveying 8vo, 3 50

Ogden's Sewer Design / i2mo, 2 oo

Patton's Treatise on Civil Engineering 8vo half leather, 7 50

Reed's Topographical Drawing and Sketching 4to, 5 oo

Rideal's Sewage and the Bacterial Purification of Sewa{,3 8vo, 3 50

Siebert and Biggin's Modern Stone-cutting and Masonry 8vo, i 50

Smith's Manual of Topographical Drawing. (McMillan.) 8vo, 2 50

Sondericker's Graphic Statics, with Applications to Trusses, Beams, and Arches.
8vo, 2 oo

Taylor and Thompson's Treatise on Concrete, Plain and Reinforced 8vo, 5 oo
* Trautwine's Civil Engineer's Pocket-book i6mo, morocco, 5 oo

Wait's Engineering and Architectural Jurisprudence 8vo, 6 oo
Sheep, 6 50

Law of Operations Preliminary to Construction in Engineering and Archi-
tecture 8vo, 5 oo

Sheep, 5 50
Law of Contracts .8vo, 3 oo

Warren's Stereotomy Problems in Stone-cutting 8vo, 2 50

Webb's Problems in the Use and Adjustment of Engineering Instruments.
i6mo, morocco, i 25

* Wheeler s Elementary Course of Civil Engineering 8vo, 4 oo

Wilson's Topographic Surveying 8vo, 3 50

BRIDGES AND ROOFS.

Boiler's Practical Treatise on the Construction of Iron Highway Bridges. .8-vo, 2 oo
* Thames River Bridge 4*0, paper, 5 oo

Burr's Course on the Stresses in Bridges and Roof Trusses, Arched Ribs, and
Suspension Bridges 8vo, 3 50

Burr and Falk's Influence Lines for Bridge and Roof Computations. . . .8vo, 3 oo

Du Bois's Mechanics of Engineering. Vol. II Small 4to, 10 oo

Foster's Treatise on Wooden Trestle Bridges 4to, 5 oo

Fowler's Ordinary Foundations 8vo, 3 50

Greene's Roof Trusses 8vo, i 25

Bridge Trusses 8vo, 2 50

Arches in Wood, Iron, and Stone 8vo, 2 50

Howe's Treatise on Arches 8vo, 4 oo

Design of Simple Roof-trusses in Wood and Steel 8vo, 2 oo

Johnson, Bryan, and Turneaure's Theory and Practice in the Designing of

Modern Framed Structures Small 4to, 10 oo

Merriman and Jacoby's Text-book on Roofs and Bridges:

Part I. Stresses in Simple Trusses 8vo, 2 50

Part II. Graphic Statics .8vo, 2 50

Part IH. Bridge Design 8vo, 2 50

Part IV. Higher Structures 8vo, 2 50

Morison's Memphis Bridge 4to, 10 oo

WaddelTs De Pontibus, a Pocket-book for Bridge Engineers. . i6mo, morocco, 3 oo

Specifications for Steel Bridges i2mo, i 25

Wood's Treatise on the Theory of the Construction of Bridges and Roofs . . 8vo, 2 oo

Wright's Designing of Draw-spans :

Part I. Plate-girder Draws 8vo s
2 50

Part II. Riveted-truss and Pin-connected Long-span Draws 8vo, 2 50
Two parts in one volume ~ . .8vo, 3 50
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Briggs's Elements of Plane Analytic' Geometry i2mo,
Compton's Manual of Logarithmic Computations i2mo,
Davis's Introduction to the Logic of Algebra 8vo,
* Dickson's College Algebra Large i2mo,
* Introduction to the Theory of Algebraic Equations Large i2mo,
Emch's Introduction to Protective Geometry and its Applications 8vo,

Halsted's Elements of Geometry 8vo,

Elementary Synthetic Geometry '. 8vo,

Wolff's Windmill as a Prime Mover 8vo, 3 oo
Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel. .8vo, 4 oo

MATHEMATICS.

Baker's Elliptic Functions 8vo, I 50
Elements of Differential Calculus i2mo, 4 oo

oo

50

So

50

25

50

75

50
Rational Geometry i2mo, 75

* Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size. paper, 15

too copies for 5 oo
* Mounted on heavy cardboard, 8X TO inches, 25

10 copies for 2 oo

Johnson's (W. W.) Elementary Treatise on Differential Calculus. .Smah 8vo, 3 oo

Johnson's (W. W.) Elementary Treatise on the Integral Calculus. Small 8vo, i 50

Johnson's (W. W.) Curve Tracing in Cartesian Co-ordinates i2mo, i oo

Johnson's (W. W.) Treatise on Ordinary and Partial Differential Equations.
Small 8vo, 3 50

Johnson's (W. W.) Theory of Errors and the Method of Least Squares. i2mo, i 50
* Johnson's (W. W.) Theoretical Mechanics 1200, 3 oo

Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.) . i2mo, 2 oo
* Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other

Tables 8vo, 3 oo

Trigonometry and Tables published separately Each, 2 oo
* Ludlow's Logarithmic and Trigonometric Tables 8vo, i oo
Maurer's Technical Mechanics 8vo, 4 oo
Merriman and Woodward's Higher Mathematics 8vo, 5 oo
Merriman's Method of Least Squares 8vo, 2 oo
Rice and Johnson's Elementary Treatise on the Differential Calculus. . Sm. 8vo, 3 oo

Differential and Integral Calculus. 2 vols. in one Small 8vo, 2 50
Wood's Elements of Co-ordinate Geometry 8vo, 2 oo

Trigonometry: Analytical, Plane, and Spherical i2mo, i oo

MECHANICAL ENGINEERING.

MATERIALS OF ENGINEERING, STEAM-ENGINES AND BOILERS.

Bacon's Forge Practice i2mo, i 50
Baldwin's Steam Heating for Buildings i2mo, 2 50
Barr's Kinematics of Machinery 8vo, 2 50
* Bartlett's Mechanical Drawing 8vo, 3 oo
* " " "

Abridged Ed 8vo, 150
Benjamin's Wrinkles and Recipes i2mo, 2 oo

Carpenter's Experimental Engineering 8vo, 6 oo

Heating and Ventilating Buildings 8vo, 4 oo

Cary's Smoke Suppression in Plants using Bituminous Coal. (In Prepara-
tion.)

Clerk's Gas and Oil Engine Small 8vo, 4 oo

Coolidge's Manual of Drawing 8vo, paper, i oo

Coolidge and Freeman's Elements of General Drafting for Mechanical En-

gineers Oblong 4to, 2 50
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Cromwell's Treatise on Toothed Gearing tamo, i 50

Treatise on Belts and Pulleys i2mo, i 50

Durley's Kinematics of Machines 8vo, 4 oo

Flather's Dynamometers and the Measurement of Power i2mo, 3 oo

Rope Driving i2mo, 2 oo

Gill's Gas and Fuel Analysis for Engineers i2mo, i 25
Hall's Car Lubrication 12:010, i oo

Bering's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2 50
Button's The Gas Engine 8vo, 5 oo

Jamison's Mechanical Drawing 8vo, 2 50

Jones's Machine Design :

Part I. Kinematics of Machinery 8vo, i 50
Part n. Form, Strength, and Proportions of Parts 8vo, 3 oo

Kent's Mechanical Engineers' Pocket-book i6mo, morocco, 5 oo

Kerr's Power and Power Transmission 8vo, 2 oo

Leonard's Machine Shop, Tools, and Methods
"

8vo, 4 oo
*Lorenz's Modern Refrigerating Machinery. (Pope, Haven, and Dean.) . .8vo, 4 oo
MacCord's Kinematics; or, Practical Mechanism. 8vo, 5 oo

Mechanical Drawing 4to, 4 oo

Velocity Diagrams 8vo, i 50
Mahan's Industrial Drawing. (Thompson.) 8vo, 3 50
Poole s Calorific Power of Fuels 8vo, 3 oo

Reid's Course in Mechanical Drawing 8vo, 2 oo

Text-book of Mechanical Drawing and Elementary Machine Design. 8vo, 3 oo

Richard's Compressed Air i2mo, i 50
Robinson's Principles of Mechanism 8vo, 3 oo

Schwamb and Merrill's Elements of Mechanism 8vo, 3 oo

Smith's Press-working of Metals 8vo, 3 oo

Thurston's Treatise on Friction and Lost Work in Machinery and Mill

Work 8vo, 3 oo
Animal as a Machine and Prime Motor, and the Laws of Energetics . 12mo, i oo

Warren's Elements of Machine Construction and Drawing , . . . 8vo, 7 50
Weisbach's Kinematics and the Power of Transmission. (Herrmann

Klein.) 8vo, 5 oo

Machinery of Transmission and Governors. (Herrmann Klein.). .8vo, 500
Wolff's Windmill as a Prime Mover 8vo, 3 oo

Wood's Turbines 8vo, 2 50

MATERIALS OF ENGINEERING.

Bovey's Strength of Materials and Theory of Structures 8vo, 7 30
Burr's Elasticity and Resistance of the Materials of Engineering. 6th Edition.

Reset 8vo, 7 50
Church's Mechanics of Engineering 8vo, 6 oo

Johnson's Materials of Construction 8vo, 6 oo

Keep's Cast Iron 8vo, 2 50
Lanza's Applied Mechanics 8vo, 7 50
Martens's Handbook on Testing Materials. (Henning.) 8vo, 7 50
Merriman's Mechanics of Materials. 8vo, 5 oo

Strength of Materials I2mo, i oo

Metcalf's Steel. A manual for Steel-users I2mo. 2 oo

Sabin's Industrial and Artistic Technology of Paints and Varnish 8vo, 3 oo

Smith's Materials of Machines I2mo, i oo

Thurston's Materials of Engineering 3 vols., 8vo, 8 oo

Part II. Iron and Steel 8vo, 3 50
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their

Constituents 8vo, 2 50

Text-book of the Materials of Construction 8wo, 5 oo
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Wood's (De V.) Treatise on the Resistance of Materials and an Appendix on
the Preservation of Timber 8vo, 2 oo

Wood's (De V.) Elements of Analytical Mechanics 8vo, 3 oo

Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and
SteL 8vo, 4 oo

STEAM-ENGINES AND BOILERS.

Berry's Temperature-entropy Diagram I2mo, 25
Carnot's Reflections on the Motive Power of Heat. (Thurston.) i2mo, 50
Dawson's "Engineering" and Electric Traction Pocket-book. . . .i6mo, mor., oo

Ford's Boiler Making for Boiler Makers i8mo, oo

Goss's Locomotive Sparks 8vo, oo

Hemenway's Indicator Practice and Steam-engine Economy i2mo, oo

Button's Mechanical Engineering of Power Plants 8vo, 5 oo

Heat and Heat-engines , 8vo, 5 bo
Kent's Steam boiler Economy 8vo, 4 oo

Kneass's Practice and Theory of the Injector 8vo, i 50
MacCord's Slide-valves 8vo, 2 oo

Meyer's Modern Locomotive Construction 4to, 10 oo

Peabody's Manual of the Steam-engine Indicator lamo. i 50
Tables of the Properties of Saturated Steam and Other Vapors 8yo, i oo

Thermodynamics of the Steam-engine and Other Heat-engines 8vo, 5 oo

Valve-gears for Steam-engines 8vo, 2 50

Peabody and Miller's Steam-boilers .8vo, 4 oo

Pray's Twenty Years with the Indicator Large 8vo, 2 50

Pupin's Thermodynamics of Reversible Cycles in Gases and Saturated Vapors.

(Osterberg.). i2mo, i 25
Reagan's Locomotives: Simple Compound, and Electric ! . i2mo, 2 50
Rontgen's Principles of Thermodynamics. (Du Bois.) 8vo, 5 oo
Sinclair's Locomotive Engine Running and Management I2mo, 2 oo
Smart's Handbook of Engineering Laboratory Practice i2mo, 2 50
Snow's Steam-boiler Practice 8vo, 3 oo

Spangler's Valve-gears 8vo, 2 50
Notes on Thermodynamics i2mo, i oo

Spangler, Greene, and Marshall's Elements of Steam-engineering 8vo, 3 oo
Thurston's Handy Tables 8vo, i 50

Manual of the Steam-engine 2 vols., 8vo, 10 oo
Part I. History, Structure, and Theory 8vo, 6 oo
Part II. Design, Construction, and Operation 8vo, 6 oo
Handbook of Engine and Boiler Trials, and the Use of the Indicator and

the Prony Brake 8vo, 5 oo

Stationary Steam-engines 8vo, 2 50
Steam-boiler Explosions in Theory and in Practice i2tno, i 50

Manual of Steam-boilers, their Designs, Construction, and Operation 8vo, 5 oo
Weisbach's Heat, Steam, and Steam-engines. (Du Bois.) 8vo, 5 oo
Whitham's Steam-engine Design 8vo, 5 oo
Wilson's Treatise on Steam-boilers. (Flather.) i6mo, 2 50
Wood's Thermodynamics, Heat Motors, and Refrigerating Machines. . .8vo, 4 oo

MECHANICS AND MACHINERY.

Barr's Kinematics of Machinery 8vo, 2 50
Bovey's Strength of Materials and Theory of Structures 8vo, 7 50
Chase's The Art of Pattern-making * I2mo, 2 50
Churchls Mechanics of Engineering 8ro, 6 oo
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Church's Notes and Examples in Mechanics 8vo oo

Compton's First Lessons in Metal-working i2mo, 50

Comptcm and De Groodt's The Speed Lathe i2mo, 50

Cromwell's Treatise on Toothed Gearing i2mo, 50

Treatise on Belts and Pulleys i2mo, 50

Dana's Text-book of Elementary Mechanics for Colleges and Schools. . i2mo, 50

Dingey's Machinery Pattern Making i2mo, oo

Dredge's Record of the Transportation Exhibits Building of the World's

Columbian Exposition of 1893 4to half morocco, 5 oo

Du Bois's Elementary Principles of Mechanics:

Vol. I. Kinematics 8vo, 3 50

Vol. II. Statics 8vo, 4 oo

Vol. in. Kinetics 8vo, 3 50

Mechanics of Engineering. Vol. I Small 4to, 7 So
Vol. II Small 4to, 10 oo

Durley's Kinematics of Machines 8vo, 4 oo

Fitzgerald's Boston Machinist i6mo, i oo

Flather's Dynamometers, and the Measurement of Power i2mo, 3 oo

Rope Driving i2mo, 2 oo

Goss's Locomotive Sparks. 8vo, 2 oo

Hall's Car Lubrication i2mo, i oo

Holly's Art of Saw Filing i8mo, 75

James's Kinematics of a Point and the Rational Mechanics of a Particle. Sm.8vo,2 oo
* Johnson's (W. W.) Theoretical Mechanics i2mo, 3 oo

Johnson's (L. J.) Statics by Graphic and Algebraic Methods 8vo, 2 oo

Jones's Machine Design :

Part I. Kinematics of Machinery 8vo, i 50

Part II. Form, Strength, and Proportions of Parts 8vc, 3 oo

Kerr's Power and Power Transmission 8vo, 2 oo

Lanza's Applied Mechanics 8vo, 7 50

Leonard's Machine Shop, Tools, and Methods 8vo, 4 oo

*Lorenz's Modern Refrigerating Machinery. (Pope, Haven, and Dean.). 8vo, 4 oo

MacCord's Kinematics; or, Practical Mechanism 8vo, 5 oo

Velocity Diagrams 8vo, i 50
Maurer's Technical Mechanics 8vo, 4 oo

Merriman's Mechanics of Materials 8vo, 5 oo
* Elements of Mechanics i2mo, i oo

* Michie's Elements of Analytical Mechanics 8vo, 4 oo

Reagan's Locomotives: Simple, Compound, and Electric i2mo, 2 50

Reid's Course in Mechanical Drawing 8vo, 2 oo

Text-book of Mechanical Drawing and Elementary Machine Design. 8vo, 3 oo

Richards's Compressed Air i2mo, i 50

Robinson's Principles of Mechanism 8vo, 3 oo

Ryan, Norris, and Hoxie's Electrical Machinery. VoL 1 8vo, 2 50
Schwamb and Merrill's Elements of Mechanism 8vo, 3 oo

Sinclair's Locomotive-engine Running and Management i2mo, 2 oo

Smith's (0.) Press-working of Metals 8vo, 3 oo

Smith's (A. W.) Materials of Machines i2mo, i oo

Spangler, Greene, and Marshall's Elements of Steam-engineering 8vo, 3 oo

Thurston's Treatise on Friction and Lost Y/ork in Machinery and Mill
Work 8vo, 3 oo

Animal as a Machine and Prime Motor, and the Laws of Energetics.
i2mo, i oo

Warren's Elements of Machine Construction and Drawing 8vo, 7 so
Weisbach's Kinematics and Power of Transmission. (Herrmann Klein. ) . 8vo. 5 oo

Machinery of Transmission and Governors. (Herrmann Klein. ).8vo, 5 oo

Wood's Elements of Analytical Mechanics 8vo, 3 oo

Principles of Elementary Mechanics I2mo, i 25
Turbines 8vo, 2 50

The World's Columbian Exposition of 1893 4to, I oo
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METALLURGY.

Egleston's Metallurgy of Silver, Gold, and Mercury:

Vol. L Silver 8vo, 7 So

Vol. IL Gold and Mercury 8vo, 7 SO
** Iles's Lead-smelting. (Postage 9 cents additional.) 1210.0, 2 50

Keep's Cast Iron 8vo, 2 50

Kunhardt's Practice of Ore Dressing in Europe 8vo, i go

Le Chatelier's High-temperature Measurements. (Boudouard Burgess. )i2mo, 3 oo

Metcalf's Steel. A Manual for Steel-users iimo, 2 oo

Smith's Materials of Machines I2mo > i oo

Thurston's Materials of Engineering. In Three Parts 8vo 8 oo

Part II. Iron and Steel 8vo, 3 50

Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their

Constituents 8vo, 2 50

Ulke's Modern Electrolytic Copper Refining 8vo, 3 oo

MINERALOGY.

Barringer's Description of Minerals of Commercial Value. Oblong, morocco, 2 50

Boyd's Resources of Southwest Virginia 8vo, 3 oo

Map of Southwest Virignia Pocket-book form. 2 oo

Brush's Manual of Determinative Mineralogy. (Penfield.) 8vo, 4 oo

Chester's Catalogue of Minerals 8vo, paper, i oo

Cloth, i 25

Dictionary of the Names of Minerals 8vo, 3 50

Dana's System of Mineralogy Large 8vo, half leather, 12 50
First Appendix to Dana's New "

System of Mineralogy." Large 8vo, i oo

Text-book of Mineralogy 8vo, 4 oo

Minerals and How to Study Them I2mo, i 50

Catalogue of American Localities of Minerals Large 8vo, i oo

Manual of Mineralogy and Petrography i2mo , 2 oo

Douglas's Untechnical Addresses on Technical Subjects i2mo, i oo

Eakle's Mineral Tables 8vo, i 25

Egleston's Catalogue of Minerals and Synonyms 8vo, 2 50
Hussak's The Determination of Rock-forming Minerals. (Smith*. ). Small 8vo, 2 oo

Merrill's Non-metallic Minerals; Their Occurrence and Uses 8vo, 4 oo
* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests.

8vo paper, o 50
Rosenbusch's Microscopical Physiography of the Rock-making Minerals.

(Iddings.) 8vo, 5 oo
* Tillman's Text-book of Important Minerals and Rocks , .8vo. 2 oo

Williams's Manual of Lithology 8vo, 3 oo

MINING.

Beard's Ventilation of Mines I2mo, 2 50
Boyd's Resources of Southwest Virginia 8vo. 3 oo

Map of Southwest Virginia Pocket book form, 2 oo

Douglas's Untechnical Addresses on Technical Subjects I2mo. i oo
* Drinker's Tunneling, Explosive Compounds, and Rock Drills. .4to.hf.mor 25 oo

Eissler's Modern High Explosives 8vo 4 co
Fowler's Sewage Works Analyses. 12010, 2 oo

Goodyear's Coal-mines of the Western Coast of the United States i2mo. 2 50
Ihlseng's Manual of Mining , Svcv. 5 oo
** Iles's Lead-smelting. (Postage pc. additional.) iamo. 2 50
Kunhardt's Practice of Ore Dressing in Europe SYO, i 50
O'Driscoll's Notes on the Treatment of Gold Ores .8vo, 2 oo
* Walke's Lectures on Explosives Svo, 4 oo
Wilson's Cyanide Processes , . 12010., i 50

Chlorination Process I2mo, i 50
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Wilson's Hydraulic and Placer Mining 12010, 2 oo
Treatise on Practical and Theoretical Mine Ventilation I2mo, i 25

SANITARY SCIENCE.

Bashore's Sanitation of a Country House lamo, i oo
FolwelTs Sewerage. (Designing, Construction, and Maintenance.) 8vo, 3 o

Water-supply Engineering 8vo, 4 oo
Fuertes's Water and Public Health i2mo, i 50

Water-filtration Works I2mo, 2 50
Gerhard's Guide to Sanitary House-inspection i6mo, i oo
Goodrich's Economic Disposal of Town's Refuse Demy 8vo, 3 50
Hazen's Filtration of Public Water-supplies 8vo, 3 oo
Leach's The Inspection and Analysis of Food with Special Reference to State

Control 8vo, 7 50
Mason's Water-supply. (Considered principally from a Sanitary Standpoint) 8vo, 4 oo

Examination of Water. (Chemical and Bacteriological.) i2mo, i 25
Merriman's Elements of Sanitary Engineering 8vo, 2 oo

Ogden's Sewer Design i2mo, 2 oo
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer-

ence to Sanitary Water Analysis I2mo, i 25
* Price's Handbook on Sanitation i2mo, i 50
Richards's Cost of Food. A Study in Dietaries I2mo, i oo

Cost of Living as Modified by Sanitary Science i2mo, i oo

Richards and Woodman's Air, Water, and Food from a Sanitary Stand-

point. . . 8vo, 2 oo
* Richards and W .iams's The Dietary Computer 8vo, i 50

Rideal's Sewage and Bacterial Purification of Sewage 8vo, 3 50

Turneaure and Russell's Public Water-supplies 8vo, 5 oo

Von Behring's Suppression of Tuberculosis. (Bolduan.) i2mo, i oo

Whipple's Microscopy of Drinking-water , 8vo, 3 50
Woodhull's Notes on Military Hygiene i6mo, i 50

MISCELLANEOUS.

De Fursac's Manual of Psychiatry. (Rosanoff and Collins.). .Large i2mo, 2 50

Emmons's Geological Guide-book of the Rocky Mountain Excursion of the

International Congress of Geologists Large 8vo, i 50

Ferrel's Popular Treatise on the Winds 8vo. 4 oo

Haines's American Railway Management I2mo, 2 50

Mott's Composition, Digestibility, and Nutritive Value of Food. Mounted chart, i 25

Fallacy of the Present Theory of Sound i6mo, i oo

Ricketts's History of Rensselaer Polytechnic Institute, 1824-1894. .Small 8vo, 3 oo

Rostoski's Serum Diagnosis. (Bolduan.) 12010, i oo

Rotherham's Emphasized New Testament Large 8vo, 2 oo

Steel's Treatise on the Diseases of the Dog 8vo, 3 50

Totten's Important Question in Metrology 8vo, 2 50

The World's Columbian Exposition of 1893 4*0, i oo

Von Behring's Suppression of Tuberculosis. (Bolduan.) i2mo, i oo

Winslow's Elements of Applied Microscopy i2mo, i 50

Worcester and Atkinson. Small Hospitals, Establishment and Maintenance;

Suggestions for Hospital Architecture : Plans for Small Hospital . i2mo, i 25

HEBREW AND CHALDEE TEXT-BOOKS.

Green's Elementary Hebrew Grammar i2mo, i 25

Hebrew Chrestomathy 8vo, a oo

Gesenius's Hebrew and Chaldee Lexicon tc the Old Testament Scriptures.

(Tregelles.) Small 4to, half morocco, 5 oo

Lettepis's Hebrew Bible 8vo, 2 2
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