()

LATMG OHT CDRTES

m
"FIELDAT"

ON

LAYING ()Ul' CURVES

A ESSAY WRITTTEN IN 1868

"FIELDAT"

 $\left.\mathrm{K}^{\prime} \mathrm{T} \mathrm{C}.\right]$

$$
\begin{aligned}
& Q A \\
& 483 \\
& P 7 \\
& {[s]}
\end{aligned}
$$

Q.Q.R.

$$
10.512
$$

EXPLANATIUN:

1. Equivalent curves are such as subtend aqual central angles.
2. These angles at the centre form what is cailed the doyree of corvature, or sulely the curmatur.
3. Correspemding print. in difiorent curace are any points where the langent-, and of course the radii as perpendicular to said tangento are parallel.
4. A compound curve is constricted by iwo curves of different radii, said two curves turning in the same direction and having a common tangent at the point of meeting.
5. This point of meeting is called the proint of compound curvature.

- 6. A reversed curve is composed of two curves turning in upposite directions and having a common tangent at iheir point of meeting. The radii may be the same or different.

7. Such point is named the print of reversed curcature.
s. A differenticl curve is one whose radius is equal to the difference between the radii of any two curves to which it is applied.
8. An integral curve is that whose radius equals the sum of the radii of two other curves.

IIEMARKS.

1. As all the curves described in this work a circular the words curve and circle will be ustew synonymously.
2. All ineasurements are referred to the engineerpo chain of 100 feet, and so the vocables chain anin chord mean here both the same.
3. The point where a curve commences is theq termination of a tangent, and the point in whicon the curve ends is the origin of a next tangent Therefore the terms origin (or point of curve, o point of tangency) and termination are applie in reference to the course of location.
4. When simply as often said " set up and adjus t, the transit" it is in the supposition that the reade fully understands such instrument and is able to c detect and remedy the accidents and errors whiclic in practice so frequently occur.

PROPOSITIONS.

The following are demonstrated in most works on geometry, so that it is only necessary to refer to them here.

Fig. I.

PROPOSITION I.

Two tangents (J A \& J B) drawn to a circle from any given point (I) are equal, and a chord (A B) joining the points of tangency ($\mathrm{A} \& \mathrm{l}$) forms equal`angles (I A C \& B C) with said tangents.

1) A tangential angle (J A D), or the smaller of the (two angles (J A D \& G A D) formed between any tangent (G K) and a chord (A D) drawn from the rpoint of tangency (A), is measured by half of the nintercepted arc ($\frac{1}{2} \mathrm{~A} \mathrm{D}=\mathrm{A}$ M or M D) subtended. by said chord ; such temgential angle beiny thus iequal to half of the central rime ($\frac{1}{2} \mathrm{~A} \mathrm{C} \mathrm{D}=\mathrm{ACM}$ or MCD) which the whole arc (A D) measures.

PROPOSITION III.
Fig. I.
The circumferential angle (D A E), having its vertex (A) in the circumference of a circle, subtended by a chord (D. E) and measured by half the corresponding arc ($\frac{1}{2} \mathrm{D} \mathrm{E}$), is equal to half of the central angle ($\frac{1}{2}$ D C E), and therefore (see preceding proposition) to the tangential one (A D).

PROPOSITION IV.
Fig. I.
Equal chords (A D, D E, E F \& F B) subtend equal angles at the centre ($\mathrm{A} \mathrm{CD}, \mathrm{D} \mathrm{C} \mathrm{E}, \mathrm{E} \mathrm{C} . \mathrm{F}$ \& F C B) and also at the circumference (A B D, DAE, EAF\&FAB).

PROPOSITION V.
Fig. I.
The extcrior or deflection angle (L D E) formed between any chord (D E) and the extension (D L) of the preceding one, is double the tangential angle
(J A D) amal equal te that of the curvalmor ar at th centre (A C) .

An angle (A J B) fiyured by the meetiny of tw tangents (J A \& J B) is equal to the supplement "sn the central angle (sup. A C B) subterded by thby "hored which joims the ponto of tangencu (A \& B en -1uls said supplement equals the other angle (D J Ki not very properly described as that of intersection a of the tanyents.

IRELIMINARY PROBLEMS.

Fig. I. PROBLEM I.

To find the distance between two points A and i '.
When they are accessible and visible from each other, measure it with the engineer's chain ; but if they cannot be seen, take several bearings and distances, and resolve them as a traverse in land surveying.

PROBLEM 11.

To find the anyle A I B formed by the meeting of the two tangents I A and I B when the point I is inaccessible.

If the included figure has only three sides, add fis. 11 . ogether the supplements of the angles G A B and B $B \Lambda$, and subtract their sum from 180°, the remainder will be the angle A I B.

If the included figure has four sides, subtract the Firs, III، iv sum of the three interior angles $\mathrm{A}, \mathrm{C} \& \mathrm{~B}$ marked by dotted sectors of circles from 360°, and the difference will be the angle A I B.

If the inchaded figure has more than four sides, Fig. V. 'add togetlier all the interior angles A, C, D, E, F and B, marked by dotted sectors of circles, and subtract their sum from twice as many right angles as the figure has sides less four, and the remainder will be the angle A I B.

PROBLEM III.

Fig. I.
Io unite two sirdight lines of roarl, as A a anit II B, ly a curve.

The angle of meeting of the tangent is measured, and then a radius tor the curve may be assumed and the length of the tangents calculated ; or the tangents may be assumed of a practical length and the radius calculated.

Fig. I.
To find the radius $C A$ of a curve, given the ant $A I B$ at the meeting of the tangents $I A$ a $I B\left(=120^{\circ}\right)$, and the tangent $I A(=16 ;$ feet)

CA: IA: r: n. t. $<$ AC I $\left(=30^{\circ}\right)$
CA : 1654: : $1: .57735$
$\mathrm{CA}+.57735=1654+1$
$\mathrm{C} A=\frac{1644}{.57735}=2865$ feet, the radius of the curb

Fig. I. PROBLEM V.

To find the tangent $J A$, given the $a n{ }^{-}$! B to the meeting of the tangents $\int A$ una $J B^{\prime}$ (120°), and the radius of the curve $(=286($ feet.)

$$
\begin{aligned}
& \text { CA : J A : : r:n. } \mathrm{t} \text { < AC J }\left(=30^{\circ}\right) \\
& 2865: \mathrm{J} \mathrm{~A}:: 1: .57735 \\
& \mathrm{~J} \mathrm{~A} \times 1=2865+.57735 \\
& \mathrm{~J} A=1654 \text { feet }
\end{aligned}
$$

Fig. I.

PROBLEM VI.

To find the angle $A J P$ at the meeting of the tangents $J A$ and $J B$, given the radius $C A$ of

Bcurve（ $=2865 . f$ eet），and the tangent $J A(=$ ；54 feet）．

> Ј A $:$ J A : : r:n.t. < A C J $2865: 1654:: 1$ n. t. <A C J $2865+$ n. t. \& AC J $=1654+1$
> n.t. $<$ A C J $=\frac{1654}{2865}=.57835$
$<\mathrm{ACJ}=30^{\circ}$（by table of natural tangents．）
$<$ A C B（double of $<$ A C J）$=60^{\circ}$
$<$ A JB（supplement of $<\mathrm{ACB})=120^{\circ}$

PROBLEN VII．

To find the tangential angle J A D with which（Fig．I．） to commence a curve at either of the points of tan－ gency A or B ，given the radius $C A$ of the curve $(=2865$ feet $)$ ．

Bisect the chord A D by the line C M，aud in the right angled triangle C A M we have．

$$
\begin{aligned}
& \text { CA:AM: r: ns. }<\text { ACM(}=\text { C゚ JAD }) \\
& \text { 2865:50::1: n. s. くA OM } \\
& 2865+\mathrm{n} . \mathrm{s} .<\mathrm{ACM}=50+1 \\
& \text { n. s. }<\mathrm{ACM}=\frac{50}{2865}=.01745 \quad \text {, } \\
& <\mathrm{ACM}=1^{\circ} \text { (by table of natural sines) } \\
& <\mathrm{JAD}=1^{\circ} \text {. }
\end{aligned}
$$

PROBLEM VIII.

10

(Fig 1.) To find the number of chords to construct a cur 50 given the radius $C A$ of the curve $(=2865$ feet $)$ a the angle $A I B$ at the mreting of the tangents A and $I B\left(=120^{\circ}\right)$.

Once kuown, by problem VII, the tangenti angle J A D, twice the same must be divided im the supplement of A J B (which is the angle A B) and the quotient will be the number of chord to construct the curre.

$$
\begin{aligned}
& \frac{60^{\circ}}{2=}=\frac{V A C B}{2 \times<} \frac{1}{2} \mathrm{D}-30 \text { chords. }
\end{aligned}
$$

PROBLEM IX.

To resolve the preceding problon when the divisiun N "f twice the tangential an, le $I A D$ inv. $A($ B does not go eventy.
(Fig. I.) For completing or finishing the curve, in this case, a subchord will be required, and mind that the subtangential angle is to the tangential one as the subchord is to a whole chord.

Given the radius $\mathrm{C} \mathrm{A}=2565$ feet, and supposing $<A$ I $B=119^{\circ}$, then $<I A D=1^{\circ}$ (by problem VII), and the number of chords must be, per prob-
im VILI, $30 \frac{1}{2}$; that is, 30 chords and 1 subchord f 50 feet.

PROBLEM X.

?o find the greatest radius's that can be used to construct solely with it the reversed or serpentine (Fig. VI.) curve $A B a$, uniting $G A$ and $g a$, and given the angles $A I B\left(=120^{\circ}\right)$ and aiB $\left(=119^{\circ}\right)$ and the distance $I i(=3342$ feet $)$.

$$
\begin{aligned}
& \angle B \subset I\left(=\frac{1}{2} A C B\right)=30^{\circ} \\
& 180^{\circ}<a i B=180 \text { 으 } 119 \text { 으 } 61 \text { 으 }<a c B \\
& <\mathrm{Bci}\left(=\frac{1}{2} \mathrm{acB}\right)=30 \div 30^{\circ} \\
& \text { n. t. }>\mathrm{BCI}\left(=30^{\circ}\right)=.57735 \\
& \text { n. } \mathrm{t}<\mathrm{BCI}\left(=30^{\circ} 30^{\prime}\right)=.58905 \\
& \text { Sum of the n. t. t.....1.16640 }
\end{aligned}
$$

Now

$$
\begin{aligned}
& 1.1664: .57735:: 3342: \text { I B } \\
& \text { I B }=\frac{.57735+3342}{1.1664}=1654 \\
& \mathrm{I} \mathrm{i}-\mathrm{IB}=3342-1654=1688=\mathrm{i} B
\end{aligned}
$$

In the triangle JBC
CB:JB::r:n.t. < B CI (=30으)
C B: 1654: : $1: .57735$
$\mathrm{CB}=\frac{1654+1}{.57735}=2865$.

Again in the triangle i B c.
 c B:iB: : r: n. t. < B ci $\left(=30^{\circ} 30^{\circ}\right)$
 c B: ifss: : $1: .58905$
 c $B=\frac{1688 \times 1}{.55901}=2865$ (same as above)

PROBLEM XI.

(Fig. ViI.) To find two difitent radii $C B$ and $c B$ to be us in the comstruction of a reversed curve $A E$ uniting the lines $G A$ and $a g$; given t $A I$ angles $B\left(=120^{\circ}\right)$ and ai $B\left(=130^{\circ}\right.$ and distance $I i(=3342$ feet. $)$

$$
\begin{aligned}
& 180 \text { 드 A I P }=180 \text { 으 } 120 \text { 으 } 60 \text { 으くA C B } \\
& \text { B C I }\left(=\frac{1}{2} A C B\right)=30^{\circ} \\
& 180 \text { 으 -a i } \mathrm{B}=180 \text { - } 130 \text { 으 } 50 \text { 으 <ac B } \\
& \mathrm{B} \text { c i }\left(=\frac{1}{2} \text { a c } \mathrm{B}\right)=25^{\circ} \\
& \text { n. t. }<\mathrm{BCI}\left(=30^{\circ}\right)=.57735 \\
& \text { n. t. }<\text { B c i }\left(=25^{\circ}\right)=46631 \\
& \text { Sum of the n.t. t...... } \overline{1.04366}
\end{aligned}
$$

Now

$$
\begin{aligned}
& 1.04366: .57735:: 3342: \text { I B } \\
& \text { I B }=\frac{57735 \times 3342}{1.04366}=1850 \\
& \text { I i-I } D=3.342-1850=1492=\mathrm{i} B .
\end{aligned}
$$

n the triangle I B C

$$
\mathrm{CB}=\frac{1850 \times 1}{.57 .35}=3.204
$$

Igain, in the triangle i B c

$$
\begin{aligned}
& \text { c B:iB::r:n.t. } \angle \mathrm{B} \text { ci }\left(=5^{\circ}\right) \\
& \mathrm{c} B: 1492:: 1: .45631 \\
& \mathrm{c} B=\frac{1492 \times 1}{.46631}=322 \mathrm{I}
\end{aligned}
$$

PROBLEM XII.

3etween Papallel Roans (eave Radics). Given the (Fig. Vili.) perpendicuiar distance $n d=455$ fet, between two parallel roads is A and ga, and the distance betucen the points of tangency A and $a=3308$ feet, to find the common radius of the reversen curve.

Rele.-Diride four times the perpendicular listance $a d$ into the square of the distance between he pounts of tangener $A a$, and the quotient will be he common radius of the reversed curre.

$$
r=\frac{(\text { A a }) 2}{\dot{+} \text { ad }}=\frac{(3308)^{2} 2}{4 \times 955}=\frac{10942564}{3520} \quad 2865 \text { feet. }
$$

$$
\begin{aligned}
& \text { CB:IB::r:n.t. } \angle \mathrm{B} \text { C } \mathrm{I}\left(=30^{\circ}\right) \\
& \text { C P : 1850:: } 1: .57 .35
\end{aligned}
$$

PROBLEM XIII.

(fig. ix.) Between Parallel Rads (different mai Given the perpendicular distance $a d=615$, between two purallel rouble GAA and ga, the dista between the prints of tangency A and $a=3308$, the racine $C A=-1=$ fees. to find the other rad ca.

In the similar triangle ia d aud CA E we ha
Ai: all: CA: iE $=\frac{1}{2} \mathrm{~A} B$

$A C=\frac{615 \times 255-2}{308}=1066$;
A $a-A B=3305-105 f=2242=a B$

$$
\frac{a B}{2}=\frac{2 \underline{2}+2}{\underline{2}}=1121=a \mathrm{~B}
$$

In the similar triangles And and car we hare Aa: ad \because ca: F,
3308: 615: : : $\operatorname{e121.}$
$\mathrm{ca}_{\mathrm{a}}=\frac{3300+11-1}{01 ;}=6030$.

ON ORDINATES.

PROBLEM I.

Given the radius CA =2865 feet, and the chord \mathcal{E} as usual $=100$, to find $D E$ the middle minute.

> CA:AE::r:n.s. $\angle \mathrm{ACE}$, $2865: 50\left(=\frac{1}{2} \mathrm{~A} B\right):: 1: \mathrm{n} \cdot \mathrm{s} . \angle \mathrm{ACE}$
> 1. $\mathrm{s} . \angle \mathrm{ACE}=\frac{50 \times 1}{2065}=.01745$,
$\angle A C E$, therefore, by table of n. s. s. $=1^{\circ}$.
ww

$$
\begin{aligned}
& \text { r: 刀. cos. } \angle \mathrm{A} \text { C E : : C A : C E } \\
& 1: .999547\left(=\text { n. } \cos .1^{\circ}\right):: 2865: \text { C E, } \\
& \mathrm{CE}=\frac{993575 \times 2565}{1}=2864.564 \text {; }
\end{aligned}
$$

$\mathrm{E}=\mathrm{C} \mathrm{D}-\mathrm{C} \mathrm{E}=\mathrm{C} \mathrm{A}-\mathrm{C} \mathrm{E}=2865-2864.564=436$.
ProdRLEM II.

Fiver the radius $C F=2865$ feet, the middle male $D E=.4360 \neq 0$ foot, and the distance E $=25$. feet, to ind the ordinate $I^{\prime} G$.
(Fig. X.) In the triangle C F H we have

$$
\text { C F : F H : : r: n. s. } \angle \mathrm{FCH}
$$ 2565: 25: : 1: 1.s. $\angle \mathrm{F}$ C H, n. s. \angle F C HI $=\frac{25 \times 1}{\underline{2565}}=.00573$,

$\angle \mathrm{FCH}$, therefore, by table of $\mathrm{n} . \mathrm{se}_{0} \mathrm{~s}=0^{\circ}$, ,
Now

$$
\mathrm{r}: \mathrm{n} \cdot \cos \angle \mathrm{FCH}:: \mathrm{CF}: \mathrm{CH} \text {, }
$$

$1: .9999619$ (n. cos. 30°) : : 2s65: C H,

$$
\mathrm{CH}=\frac{9999619 \times 2862}{1}=2564.591 ;
$$

$$
\mathrm{F} \mathrm{G}=\mathrm{HE}=\mathrm{CH}-\mathrm{CE}=2864.691
$$

$$
2864.564=327
$$

ON L.AYING OUT CLRVES.

PROBLEM I.

 Fig. $\because 1$.To lay out a curve, with the traresit and chain, tangential angles and chorlo.

Let $\mathrm{N} A$ be the tangent and it the pint of tanney. Set up and adjust the transit at A: place eindex at zero and take a backight in N. Then verse the telescope and turn the index until it lows the tangential angle I A B and measure the ue A B equal to one chain. Lay off the angles : A C, C A D, D A E. E A F and FAG. and reasure the lines $\mathrm{BC}, \mathrm{CD}, \mathrm{D} \mathrm{E}$, ith the chain as before. B, C, D, E, F and G ill he points or stations in the cnere, which may e constructed all the way round by repeating the bove process most carefully, and bearing also in lind that should there be a subchord, as $G \mathrm{H}$, the sbtangential angle G A H must be the same iart f the tangential angle I A B that the subchord G I is of the chord $A B$

PROBLEM II.

Fig. XI
To complete the tangent, that is, after zetting out
a number of stations, as B, C, D and E in curve, to find the tangent $E \cdot J$ at the last statiol ${ }^{3}$

Produce A E to K and I E to J ; then, ins triangle A I E we have the angle $1 \mathrm{~A} E=\mathrm{I} \mathrm{E}$. $\mathrm{KE} \mathrm{J}=$ the sum of all the tangential angles t the preceding tangent $N A$. Now remains to lay off the angle K E J, and the tangent E found. But suppose the curve is afterwards timed to H, the tangent H L wili be fonind laying off the angle $\mathrm{L} \quad \mathrm{H} M=j \mathrm{HE}=$ the suat all the tangential and subtangential angles th the preceding langent E J ; and should anytI prevent our seeing from A further than the sta E, the curve may be continued from E, in the s manner as it was commenced at A, by layin? the tangential angles J E F, F EG, etc.

Fig. XIl.

PROBLEM III.

To lay out a curve, with the transit and ch by deflection angles and chords.

Let $\mathrm{N} A$ be the tangent and A the point of gency. Set up and adjust the transit at $A ; 1$ the index at zero, and take a backsight to N . '1 reverse the telescope, and turn the index un shows the tangential angle I A $1 \prime$, and measure line $\mathrm{A} B$ equal to one chain. Remove afterw
' transit to the station B and lay off the deflection gle OB C equal to twice the tangential angle A B, and measure the line $B C$ equal to one ain. Do the same at the different stations C, D d E, making each exterior angle P C D and D E equal to twice the tangential angle I A P, d measure each of the chords $\mathrm{C} D$ and 11 E ual to one chain. The points B, C, D and E will stations in the curve; but if after setting out a mber of them it becomes expedient or necessary find at the last station, E for instance, the tangent I, lay off simply the tangential angle $R E J$ equal half the deflection angle $O B C$, and the desired agent EI is found. This being altogether the pot usual method of setting out a curve on the ound.

PROBLEM IV.

Fig. XIII.
To find the tangential distance to lay out a curve th the chain and rod, or "by the eye" as it is led, given the tangential angle and the radius of id curve.

Let N A be the tangent and A the point of agency; the tangential angle $O \mathrm{AB}=1^{\circ}$ and the ord $\mathrm{A} B=$ one chain. Draw $\mathrm{B} O$ perpendicular N^{A} produced in O . In the right angled triangle B O we have

$$
\begin{aligned}
& \text { A B:BO::r:n.s. <OAB(=10), } \\
& 100: \mathrm{BO}:: 1: .01745, \\
& \text { B O }=\frac{100+.01745}{1}=1.745, \text { the tangen }
\end{aligned}
$$

distance, which is known to be the sine of tangential angle, but it is used as the chord wi laying ont a curve" by the eye." The deflec - distance is taken double the tangential one, and s_{2} deflection distance is also to be used as a chord the above practical rule, that, for railroad pr tice and curves of more than 300 feet radins a chords of one chain, will be found to produce, any, a very trifling error.

To construct now the desired curve, from t] point of tangency A and in line with $\mathrm{N} A$, measi, A O equal to one chain, and stick a pin at O. Al from A measure the chord A B equal to one chai at the same time measuring with the graduated r_{c} from the pin O the tangential distance $O B$ equal 1.745 feet and place a stake at B. The pin at 0 now to be removed. Next make B P equal to o chain, and, in a line with $B A$, stick a pin at Also from B measure the chord $B C$ equal to of chain, at the same time measuring with the rod frof the pin P the deflection distance $\mathrm{P} C$ equal twice the tangential distance OB , thas 1.745 $1=3.490$. In this manner proceed to find oth stations in the curve, viz D, E, T, etc ; and order to pass from the curve at F to a tangent

M, taking care only to measure the tangential istance $T H$ instead of the deflection distance $T G$, roceed as before in this method which is consiered sufficiently accurate for curves on a canal or ommon road and will answer very well, if careally performed, for railroad curves in the absence fa transit instrument.

PROBLEM V.

Fig. NIV.
To lay out.a curve commencing with a subchord. Given, for instance, the tangential angle equal ${ }^{\circ}$, and the radius of the curve 2565 feet, to begin he curve with a subchord 50 feet at A , point of langency of N A .
Set up and adjust the transit at the point A, and place the index at zero, reversing then the telescope and laying off the subtangential angle O A $\mathrm{B}\left(=0^{\circ} 30,\right)$ which must be the same part of the whole tangential :ugle that the subchord is of a whale chord. Next lay off the whole tangential angles B A $\mathrm{C}, \mathrm{CAD}, \mathrm{D}$ A E, etc, and the churds B C, C D, D E, etc, each equal to one chain. But should the view he obstructed at A, the transit must be removed to B the end of the subchord A B, and sight back to A, and lay off the deflection angle P B Cequal to the subtangential and a whole tangential angle $\left(=1^{\circ}, 30^{\prime}\right)$, and make the chord B equal one chain. The rest of the curve can be laid
off by whole tangential angles from B, viz C B I$)$, B E, etc., and whole chords riz C D, D E, et each equal one chain. It is true that mathemave cally the subchord does not bear the same propor tion to the whole chord that the subtangentiar angle does to the whole tangential angle: th fo error thongh, arising from this supposition, is reall \mathbf{O} so very tritling in large railroad curves with chords of one chain that it is neglected in curves (\% more than 300 feet radins.

Fig. XV.

PROBLEM VI.

To lay aff the curves using long chords.
This is frequently convenient in preliminaryt locations, and goes thus: instead of finding the f stations $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$, etc., with tangential] angles and single chniils of one chain each, the points C, E and G ray be ascertained with a great deal less trouble by using twice the tangential angle. taking then the chords A C, A E and A G that are nearly t- cee as long as the single chord of one chain ; but the table of long chords contains the exact length of those required to subtend respectively $2,3, \pm$ or 5 stations, which latter limit it is not desirable to exceed.

To lay out the curve when any obstruction preavents the use of the ordinary methods.

In such case the radins of said curve (O A) and the tangential angle ($J \mathrm{OD}$) must be already found or given. suppose () $A=2865$ feet J $\mathbf{O} \mathrm{D}=1^{\circ}$, an! let $\mathrm{G} A$ be the tangent and A the point of tangency where wo wish to begin a curve. Set $u p$ and adjust the transit at A p place the index at zero, and take a back sight to G. Then reverse the telescope and turn the index until it shows such a multiple of the tangential angle JCD as will enable ns to clear the honse which obstructs us at B. In the tigure we have taken five times the tangential angle, viz 5°, therefore the sight.will pass through C (the 5 th station (from A) which will be found by measuring the long chord A © taken from table for hog chords; and now from the station C we can lay off the tangential angles J C D, D CE, E C F , each equai 1°, and making the chords C D, D E, E F equal one chain, tind the stations $\mathrm{D}, \mathrm{E}, \mathrm{F}$ in the curre.

PRGBLAM VII.

Fig. XVII
To lay out a come bs and andividy one whatsome obstruction, as in the precidiay podobem, aristr. For the same case mentioned we have this other
method and it is performed by running a cu: parallel to the true curve, either inside or outs of it, in the following way: 1st. upon the rad A O measure A H of any convenient length aliquot part of said radius is always the best) a from the point H proceed to lay off the seve stations I, J, K, L, M, with the tangential angle and the anxiliary chord H I which is to be o culated as follows : multiply the distance A H one chain (100 fect) and divide the product the radius of the curve, and the quotient subtract from one chain (100 feet) will give the length the auxiliary chord if the auxiliary arc is on t inside of the true curre, but to be added to o chain (100 feet) if the auxiliary are is on the 0 side. The stations of the true curve, viz C, D, F , are easily found by laying off the distances $\mathrm{C}, \mathrm{L} \mathrm{D}, \mathrm{K} \mathrm{E}, \mathrm{J} \mathrm{F}$, each equal to A H.

Fig.XVII.
θ

