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CLASSES OF EQUIVALENT AUCTION MECHANISMS

THE CASE OF RISK NEUTRAL BIDDERS

Richard Engelbrecht-Wiggans

March 1986

Abstract: This paper addresses the question "what characteristics of

an auction mechanism affect the bid taker's expected payments?" To do

so, we define three variants of regret free mechanisms, mechanisms

with a corresponding direct revelation game that is individually

rational and is incentive compatible with respect to specified infor-

mation. By conditioning the incentive compatibility on factors not

explicitly included in previous studies, we establish special equiva-

lent revenue theorems for auctions with dependent information and for

multi-object auctions, as well as for a quite general family of

auctions with independent information.





Int roduction

The theory of auction design attempts to understand, to describe,

and to predict how the bid taker's expected revenue depends on the

various factors that might affect the outcome of an auction. The out-

come depends on both the bidders' bids, and on how these bids affect

who wins what and who pays whom how much. The bids in turn depend on

what the bidders know about the actual characteristics of the objects

being auctioned, about the number of bidders, about their own and

others' preferences, and how the bids will determine who wins what and

who pays whom how much. In addition, the outcome of an auction de-

pends on how the bids depend on what the bidders know. In short , the

theory investigates how the outcome depends on the rules of the auc-

tion, on what the bidders know, and on how the bidders use what they

know.

Note that the rules of the auction describe, but do not necessarily

prescribe, who wins what and who pays whom how much as a function of

the bids made. Two simple examples illustrate the distinction. On

the one hand, a common form of sealed bid auction explicitly pre-

scribes that the object (if sold at all) will be sold to the highest

bidder at an amount equal to the winning bid. On the other hand, a

model might describe a new car buyer as purchasing from the dealer

offering the desired car at the lowest price even though there may

well be no law (other than those of economics or of Nature) for the

winning dealer to be so determined. Note also that this concept of

'"rules" allows us to define auctions quite generally to include any

market mechanism in which all strategic actors know how the actions
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they take will affect who wins what and who pays whom how much; this

includes many mechanisms in addition to those commonly thought as

auct ions

.

One might now define any particular auction method by describing

what types of information the bidders will have, and also describing

how the bids made will affect the auction's outcome. For example, the

(symmetric) independent private values model assumes that bidders'

values for the object being auctioned are independent identically

distributed draws from a known distribution, that bidders are risk

neutral, that each bidder knows his own value for the object precisely

(but knows nothing about others' values except what can be inferred

from the known distribution of the values), and that this entire

description is common knowledge to all the bidders. The auction rules

might specify that the highest bidder wins the object and pays the

amount of the winning bid—the common first price sealed bid auction.

Alternatively, the rules might specify that the highest bidder wins

the object and pays an amount equal to the second highest bid— this

second price sealed bid auction approximates the progressive oral auc-

tion in which the bidder willing to pay the most wins at a price just

barely above the price at which the bidder willing to pay the second

highest drops out of the bidding. The noisy progressive auction in

which the auctioneer starts with a very low asking price and con-

tinuously raises it until all but one bidder have publicly indicated

that (and at what price) they have dropped out of the bidding, and

then awards the object to the remaining bidder at the current asking

price provides yet another approximation to the common progressive

oral auction.
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To complete an auction model, one must describe—again describe

rather than prescribe—how each bidder's bid depends on that bidder's

information. For example, there might be a dominant strategy— a func-

tion translating a bidder's information into a bid with the property

that regardless of how others bid, this bidder can do no better than

follow the specified strategy. In the absence of dominant strategies,

the theory typically resorts to some form of equilibrium, most com-

monly a Nash equilibrium—a set of strategies, one for each bidder,

forms a Nash equilibrium if no one bidder can do better than by

following the strategy specified for him so long as all other bidders

follow the strategies specified for them. (Note that a set of domi-

nant strategies, one for each bidder, always satisfies the conditions

for a Nash equilibrium, and in addition, most other forms of equilib-

rium. )

Occasionally, auction models yield explicit characterizations of

their equilibria, and in turn of the auctioneer's expected revenue,

thereby allowing the direct comparison of one auction method to

another. For example, Vickrey (1961) explicitly characterized the

expected price paid by the winner in the first price and second price

sealed bid independent private values auction models at their respec-

tive equilibria. (In the independent private values model, the second

price auction has a dominant strategy Nash equilibrium.) The two

models yield exactly the same expected revenue.

More recently, Milgrom and Weber (1982) relaxed both the indepen-

dent values and known values assumptions of the independent private

values model to obtain a more general affiliated information model, a
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model that then yielded the following ranking (in order of decreasing

expected revenue to the auctioneer at their corresponding equilibria):

1) the noisy progressive mechanism, 2) the second price sealed bid

mechanism, and 3) the first price sealed bid mechanism. Roughly

speaking, the more (affiliated) information that might affect the

price paid by the winner—regardless of whether such information came

from non-winning bidders during the auction itself, was revealed by

the auctioneer before the auction started, or, as in the second price

model, only affects the price after all bids have been submitted—the

higher the auctioneer's expected revenue as predicted by the model.

Unfortunately, very few auction models have yielded explicit cha-

racterizations of their equilibria. Fortunately, however, an alter-

native approach to studying auctions suppresses the details of how

bidders bid (and also of how the bids affect the outcome) by instead

directly describing—not prescribing—how the bidders' information

affects the expected outcome. In particular, each possible equilib-

rium to each possible auction model has a corresponding direct-

revelation auction model—an auction model with an equilibrium at

which each bidder truthfully reveals his actual information, and the

outcome has the same relation to bidders' information as at the

specified equilibrium in the original model. (To construct the direct

revelation auction, simply require the auctioneer to calculate what

bids the bidders would have made at the specified equilibrium using

the information the bidders report to the auctioneer, and to then

implement whatever outcome would have resulted from these bids in the

original auction. Now, when asked to "bid" by telling the auctioneer
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his actual information, no bidder can do better than responding truth-

ful lv no matter how other bidders respond.) Therefore, any relation-

ship between bidders' information and outcome that arises from some

equilibrium in some auction model also rises at a truth revealing

equilibrium of some direct-revelation auction. Since direct-

revelation auctions are themselves auctions, the class of relation-

ships possible between bidders' information and the outcome of an

auction at equilibrium coincides with the class of such relationships

for truth revealing equilibria of direct-revelation auctions. This

allows us to study the possible outcomes of a family of auctions by

focusing on the corresponding direct-revelation auctions— a class of

auctions for which the truth revealing strategy provides an explicit

characterization of an equilibrium.

Note that any failure to explictly characterize an equilibrium for

an auction translates into an inability to define precisely which

direct-revelation auction corresponds to the original auction. How-

ever, we may still study entire families of direct-revelation auctions,

Any auction that, for example, maximizes the auctioneer's expected

revenue over a family of direct-revelation auctions also maximizes the

auctioneer's expected revenue over the larger, corresponding family of

auctions in general. Thus, this approach allows one to construct a

practical auction with certain properties by first identifying a

direct-revelation auction with the desired properties, and then

finding a practical auction that may be expected to have the same

relationship between bidders' information and outcome as the chosen

direct-revelation auction.
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Myerson (1981) first used this direct-revelation approach to study

independent private values auction models. For any fixed distribution

function and fixed number of risk neutral bidders, he considered all

relations of outcome to bidders' actual values satisfying the follow-

ing two conditions: 1) incentive compatibility—no bidder could do

strictly better by lying about his value for the object than by tell-

ing the truth, and 2) individual rationality—each bidder, for each

possible value of the object to him, could report a value with the

ultimate effect of exactly zero profit (in other words, each bidder

must always have an option in effect equivalent to not bidding). The

result: for any fixed number of risk, neutral bidders and fixed dis-

tribution of the bidder's values, the allocation rule— the part of the

rules that describes who wins the object as a function of all the

bidders' values—uniquely determines each bidder's expected payment as

a function of all the bidder's values. In particular, at equilibrium,

all independent private values auctions that always award the object

to the bidder valuing it most highly generate precisely the same ex-

pected revenue for the auctioneer. (In addition, Myerson determined

that the allocation rule that maximizes the auctioneer's expected

revenue always awards the object to the highest valuer so long as that

bidder's value exceeds an appropriately chosen critical value; other-

wise the auctioneer destroys the object. This allocation rule gives a

positive probability of the auctioneer destroying a valuable object.

However, at least to some extent, this ex-post inefficiency of the

auctioneer's expected revenue maximizing mechanism arises from the

model's assuming a fixed number of bidders; Engelbrecht-Wiggans (1986)
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provides an example in which increasing the probahility of not award-

ing the object decreases the expected number of bidders with the

result that the auctioneer maximizes his expected revenue by always

awarding the object to the highest valuer).

While focusing on the independent values case, Myerson also pro-

vided an example to illustrate that with dependent values the auc-

tioneer may be able to expect a revenue equal to the full value of the

object to the bidder who values the object the most. Although the

example mechanism always awards the object to the highest valuer at a

price equal to his declared value, the mechanism differs from the

common first price sealed bid auction in that it effectively forces

bidders, as part of their bids, to bet on how others will bid. If all

bidders reveal their actual values , then each expects to break even on

these side bets, and the auctioneer extracts the full value of the

object; were a bidder to unilaterally deviate from revealing his

actual value, his expected loss from the bet would exceed any expected

gain possible from receiving the object at a more favorable price.

Unfortunately the success of such mechanisms depends entirely on being

very carefully tailored to the appropriate, specific joint distribu-

tion of bidders' values; this limits the practical applications of

full value extracting mechanisms.

Engelbrecht-Wiggans (1985a, b) defines a model of auctions with

possibly dependent information that differs from previous models in

focusing on appropriately chosen sub-family of the direct-revelation

auctions, thereby excluding the full value extracting mechanisms. In

particular, the model parameterizes how the price paid by one bidder
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might depend on the information of other bidders. Specifically, let

r. be a function of the information held by bidders 1, 2, ..., i-1
,

i+1 , ..., such that the amount eventually paid by bidder i depends on

others' information only through this statistic r . Now, consider
i

only regret free mechanisms, that is, auctions with corresponding

direct-revelation auctions satisfying the following modified incentive

compatibility condition: no bidder could do strictly better by lying

about his value for the object even if he already knew (at the time of

bidding) the specific statistic r. through which his eventual payment

would depend on others' information. This family of regret free

mechanisms includes, for example, the common progressive oral auction,

because in such an auction, at the instant the auctioneer says "sold,"

each bidder knows exactly how much he will pay and, yet, until that

instant, each bidder still had the option to bid higher (that is, to

indicate willingness to pay a higher price than he previously

indicated). More generally, this family includes the many competitive

contracting mechanisms in which, before the contract is officially

let, each bidder knows whether or not he is the finalist, the finalist

knows the precise terms of the contract to be let (here, the bidding

determined the actual terms of the contract, rather than simply a

one-shot price, although in some contracts the only terms affected by

the bidding is the price), and yet no bidder advances a new proposal.

On the other hand, the family excludes first price sealed bid auctions

as well as the full value extracting auctions described above.

For regret free mechanisms with risk neutral bidders, the infor-

mation structure (specifying the number of bidders, who has what type
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of information, the joint distribution of the actual information, the

form of the r. functions, and how each bidder's value of the object

relates to all the bidders' information) together with the allocation

rule uniquely determines how much more each bidder i pays (as a func-

tion of his information and the statistic r ) than the minimum (taken
1

over all possible misrepresentations of his own information) he could

have paid in that specific situation. For example, if each bidder has

the option of withdrawing entirely from an auction of a valuable

object (by valuable, we mean that the auctioneer would never consider

paying a bidder a positive amount to take the object), then the infor-

mation structure and allocation rule together uniquely determine the

amount paid by each bidder in any regret free mechanism. Engelbrecht-

Wiggans then proceeds to show that the amount paid will be independent

of the form of the r. functions if the bidders have independent infor-

mation, a result closely related to that of Myerson. Furthermore, for

auctions with dependent information, the more refined the r. functions-

that is, the more detail they capture about others' information— the

higher the price; as a corollary, this yields Milgrom and Weber's

result that at equilibrium, noisy progressive auctions generate at

least as much revenue for the auctioneer as second price sealed bid

auctions.

The current paper focuses on one part of the auction design

problem. In particular, it investigates the question "what character-

istics of an auction actually affect the auction's outcome?" To do

so, it defines three variations of the above mentioned concept of

regret free mechanisms, two of which include the first price sealed
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bid auctions excluded by the previous definition. Applying these

definitions to direct-revelation auctions yields three equivalence

theorems, theorems stating that all regret free mechanisms that

coincide on a specified set of characteristics will result in the same

expected payments. In effect, this paper extends Myerson's equiva-

lence theorem to multi-object auctions, and then obtains corresponding

results for two appropriately restricted classes of auctions with

dependent information.

Notation and Definitions

Let the subscript i (i=l, 2, ..., n) denote one of the n risk.

neutral bidders, while the subscript i=0 denotes the bid taker.

Before the bidding starts, each individual i privately observes the

outcome s. of a random real valued vector S.. The signals have a
1 l

known joint or conditional—the context will indicate which

—

cumulative probability distribution F(*). For convenience, s .

denotes the vector (s~, s, , ..., s. ,, s.,., ..., s ). Then, Let x^
1 l-l l+l n l

be the signal i claims to have observed.

Now, to characterize auction mechanisms, let r.(s .) be some sta-
l -i

tistic of s . . If i claims to have observed x. , and the others
-l l

observed s ., individual i obtains the award (or allocation)

a (x., s .); in the simplest case of a single object auction, a.
i i -l r o j > x

equals the object if i's claimed x. would have him value the object at

least as much as anyone else, and a is the empty set otherwise. The

(expected) payment p.(x., a., p.) made by i when a.(x., s .) = a. andr J 1111 11-1 l

r.(s_.) = p may depend on s_. only through the a.(*) and fj(*)
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functions; for example, in a model with real value signals, r (s )

equal to a constant would correspond to a first price mechanism,

r,(s ) = max s. would naturally suggest a second price mechanism, and

r.(s_.) = s_. would naturally suggest a noisy progressive mechanism.

The award a . has an expected value (averaged over everything hut s,

and s . ) to i of v.(s,, s ., a.).
-i ii-ll

For anv specific n, and functions F, r
,

, a., v., and p, define
t- ' i ' 1 ' i' i

u.(s., x., a., p.) as the expected utility11111
/ [v^j^Cs. ,s_

i
,a

i
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i
,s_

i
))-p(x

i
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i
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i
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i
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-l

define U.(s ,x p )=Z u (s ,x ,a ,p ) / dF(s |S =s ,a (s ,S )=a )

a. s
-i
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i
(S

-i
)=p
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and P
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i
),p

1
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i
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i
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S
-i

and define U.(s ,x.) as the expected utility

/ Z u. (s. ,x. ,a. ,p . ) f dF(s .|S.=s.)
J ii'iii J -i'i i
P . a .

s . :r.(S , )=p.&a, (s. ,S . )=ct.
-i l -i 111—1 l
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*/ \Note that if S . is statistically independent of S., then U.(s.,x.)
-l J

l ill
* * *

may be rewritten as V (s ,x.) - P (x ), where V (s ,x ) =ill ii lii
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JL

v.(s.,s ,,a (x.,s ))dF(s ) and P (x )
• s . 1 1 -i i i -i -i i i

-i

p. (x, ,a. (x. ,s . ) ,r. (s .))dF(s ,,). Assume that for each s.,
s_ i i l i i i -i -i l

u. (s
.
,x. ,a

. ,p . ) is dif ferentiahle with respect to x. at x. equal to11111 l i

s, for almost all a. and p. given S. = s.; assume that for each s.,
i 1111 i

'

U. (s.,x.,p ) is dif ferentiable with respect to x. at x. equal to

s, for almost all p. given S. = s.; and assume that for each s.,
i ill i

*
U.(s.,x.) is dif ferentiable with respect to x. at x, equal to s..ill l i i

Roughly speaking, the main import of of these assumptions is to

require zero probability of tied bids; since we allow s. to have

multiple dimensions, any auction with a positive probability of ties

may be modeled by another auction with zero probability of ties (but

with higher dimensional information) using the techniques presented by

Engelbrecht-Wiggans , Milgrom and Weber (1983).

Finally, define a mechanism to be weakly regret free if

-r- u*(s.,x.)
dx i i' l

*
is zero for all s., and min P J (s.) = 0; strongly

i i l --J-
x.=s. s,li i

regret free if for each s., -— U.(s.,x.,p.)—° l dx. l ill is zero for almost
x. =s

.

l l

all p. given Sj = s., and for each p., min P.(s.,p.) = 0: and totally
i i i 1111 *-

d
s '

regret free if for each s., —— u. (s . ,x, ,ct . ,p . ) is zero for almost all
l dx. l liii

l

a. and p. given S. = s., and for each a, and p., min p.(s.,a.,p.) = 0.
i i e

l i' i i' 'li'i'i
x
i

Note that to be weakly regret free corresponds to being incentive

compatible in the (now) traditional sense; any Nash equilibrium has a

corresponding weakly regret free mechanism. To be strongly regret

free, the mechanism must remain incentive compatible when bidder i

knows all the information p . through which his payment might depend on
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s . once the award has been determined. At equilibrium, most common
-l

auction mechanisms are strongly regret free; typical full revenue

extracting mechanisms are not, thereby allowing the possibility of a

revenue equivalence theorem that could not hold if full revenue

extracting mechanisms were included. Finally, to be totally regret

free requires incentive compatibility even after bidder i knows his

award as well as the statistic p . This excludes first price auc-

tions, but includes any mechanism in which the bid taker negotiates a

tentative outcome (specifying awards and payments) known to all

bidders, and this tentative outcome becomes the final outcome if and

only if no bidder desires to negotiate further; when appropriately

viewed, oral auctions serve as an example of such a negotiation

mechanism.

Results

Theorem 1 : For weakly regret free mechanisms with S_. statistically

independent of S., n and the functions F, a, and v uniquely determine

P*(s.).
l i

Proof : Applying the definition of weakly regret free gives

A
for all s. and min P.(s.) = 0.

l 11
x. =s

.

s

.

li l

d * d *
-T
2- V.(S.,X.) = -2_ P.(X.)
dx. i i l dx. l l

1 X . =S . 1
1

1 1

*
The differential condition determines P.(x.) except for an additive11
constant; min P.(s.) = sets the constant.

s.
l

Theorem 2 : For strongly regret free mechanisms in which p.(x.,a.,p.)

is exogenously specified for all values of a except one (say a. ),

n and the functions F, a, r, and v uniquely determine p (s.,a *,p ).ill i
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Proof: Since p.(x ,ct.,p.) varies with x. only for a. equal to a.*,

the definition of strongly regret free gives -— V (s.,x.,p )

x
i
=s

i

^ p
i
(Vt> and min P.(s.,p.) = for each p.. The differ-

x. =s . s

.

11 i

ential condition determines P.(s.,p.) except for an additive constant;ill
min P.(s.,p.) = sets the constant. Now, since we know p (s.,ot.,p.)

s
i * *

for all a. except for a. equal to a., P.(s.,p.) determines p.(s.,a.,p,)
l l liii 1111

Theorem 3 : For totally regret free mechanisms, n and the functions F,

a, r, and v uniquely determine p. (x. ,ct . ,p . ) for each a, and p..1111 i l

Proof : The definition of totally regret free gives that

d
p. (x. ,a (x , s . ) ,p .

)

x.=s

.

l l

= £- ! v -(s.,s .,a.(x.,s .))dF(s .|S=s,,r.(S .) =
dx. ' s . l 1-11 1-1 -l ' i i i -i

i -l

p.,a.(s.,S .)=a.) and min p.(s.,a.,p.) = for each a. and p.. The111-11 1111 l l

differential condition defines p.(x. ,a.,p.) except for an additive

constant; min p,(s.,a.,p.) = sets the constant.r
i l i l

The first theorem shows that for independent signals, the expected

payments do not depend on how the payments might depend on others'

information. In other words, for the case of independent signals, at

equilihrium, all auctions—first price, second price, noisy progres-

sive, or what have you—generate the same expected revenue for the hid

taker. This result extends the equivalence result of Myerson in two

ways: first, our model allows hidders to have multi-dimensional

private information, and second, our model covers multi-ohject auctions,
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The second theorem shows that for a typical single object auction

in which loosing bidders pay nothing, the bid taker's expected revenue

hinges on how much of the other bidders' information gets factored into

the winner's price; given the existing results ordering the expected

revenue from mechanisms in the case of dependent information, we could

not have reasonably hoped for any more sweeping equivalence theorem.

The theorem also illuminates a critical difference between the first

price and the full value extracting mechanisms, two mechanisms that

typically result in different expected revenue levels for the bid

taker. While both mechanisms leave the winner totally ignorant of

others' information (other than what can be inferred through the known

joint distribution of the signals) up until the award and price are

announced, the first price auction is strongly regret free, while the

typical full revenue extracting mechanism is not. Therefore, for

dependent values, not only the amount of other bidders' information

reflected in the winner's expected payment affect the bid taker's

expected revenue, but even the remaining equivalence can hold only for

strongly regret free mechanisms.

Going to the third theorem involved trading off the diversity of

mechanisms covered versus the generality of mechanisms covered. In

particular, the theorem only applies to totally regret free mechanisms,

a smaller family than the strongly or weakly regret free mechanisms.

On the other hand, this theorem does apply to multi-object auctions in

which each bidder may have more than one piece of private information,

and in which one bidder's information may be statistically dependent

on the other bidders' information.
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Summary

This paper defined three variations of the regret free mechanism

concept previously defined by Engelbrecht-Wiggans . The different

definitions include a varying diversity of auction mechanisms; all

three definitions, however, include a greater diversity of mechanisms

and models than previously considered. Finally, for each definition

of regret free, a corresponding theorem establishes under what con-

ditions what characteristics of the auction mechanism determine the

expected payments.
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